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Abstract

How can we synthesize a safe and near-optimal control policy for a partially-observed system, if all
we are given is one historical input/output trajectory that has been corrupted by noise? To address this
challenge, we suggest a novel data-driven controller synthesis method, that exploits recent results in
controller parametrizations for partially-observed systems [18] and analysis tools from robust control. We
provide safety certificates for the learned control policy. Furthermore, the suboptimality of the proposed
method shrinks to 0 - and linearly so - in terms of the model mismatch incurred during a preliminary
system identification phase.

1 Introduction
Consider a partially-observed linear system

x(t+ 1) = Ax(t) +Bu(t) + w(t), y(t) = Cx(t) + v(t) , (1)

where w(t) ∈ W , v(t) ∈ V are disturbances in a compact set. For a time horizon N ∈ N, consider the robust
optimal control task of designing a control policy u(t) = πt(y(t), · · · , y(0)) that

i) ensures that trajectories robustly remain inside a target safety set Γ, that is[
y(t)T u(t)T

]T ∈ Γ , ∀w(t) ∈ W, ∀v(t) ∈ V, ∀t = 0, · · · , N , (2)

ii) minimizes the expected cost

J2 := Ew,v

[
N−1∑
t=0

(
y(t)TQty(t) + u(t)TRtu(t)

)]
, Qt � 0, Rt � 0 . (3)

When the linear model (1) is available, it is well-known how to synthesize πt(·) by minimizing (3) subject to
(1)-(2) (under the assumption that W, V and Γ are convex for tractability - see [20, 21]).

However, in many safety-critical engineering systems [24, 2] the state-space parameters (A,B,C, x0)
are unknown. Instead, the policy design can only be based on a collection of recorded input and output
trajectories. Such data-driven control task is particularly delicate because the historical dataset is itself
corrupted by noise, thus posing a challenge for guaranteeing safety and optimality of the synthesized policies.

Recent approaches have focused on basic Linear Quadratic Regulator (LQR) and Linear Quadratic
Gaussian (LQG) control problems as suitable benchmarks to establish how machine-learning can be interfaced
to the continuous action spaces typical of control [9, 14, 26, 34, 30, 23, 31, 39]. When it comes to more complex
control tasks, recent advances include [10, 13] for constrained and distributed LQR control with direct state
measurements, respectively, and [17] for distributed output-feedback LQG. The approaches of [35, 5, 6, 11, 15]
have showcased how constrained Model Predictive Control (MPC) tasks can be solved by plugging historical
data into a convex optimization problem. In parallel, [7] introduced data-driven formulations for some
controller design tasks. These works inspired several extensions, including closed-loop control with stability
guarantees [3], maximum-likelihood (ML) identification for control [22, 36], and nonlinear variants [25].

Nonetheless, it remains rather unexplored how much the performance degrades, and to what extent safety
is compromised, in the presence of noise in the historical data. Recently, [33, 8] have derived suboptimality
[8] and sample-complexity [33] bounds for fully-observed LQR. A limitation is that the internal system

∗Research supported by the Swiss National Science Foundation under the NCCR Automation (grant agreement
51NF40_80545).

1



states must be fully measured, which is infeasible for several large-scale systems [2]. Furthermore, while [8]
proves that for low-enough noise a high-performing and robustly stabilizing controller can be found, the
corresponding suboptimality is not quantified as an explicit function of the noise level. Finding such explicit
dependency is important in determining whether the noise level in the historical data is tolerable or not.
To address these open points, we propose a method for designing safe and near-optimal output-feedback
control policies solely based on noise-corrupted data. In addition, we explicitly characterize the incurred
suboptimality while guaranteeing safety margins as a function of the model mismatch level.

2 Solution Approach and Theoretical Guarantees
We introduce useful mathematical notation in Appendix A. For compactness, we denote stacked versions
of signals of (1) within the horizon N ∈ N as y =

[
yT(0) · · · yT(N − 1)

]T, and similarly for u. We also
write: 1) G to indicate the impulse response matrix of the unknown plant, that is, the causal block-Toeplitz
matrix whose block-entries are given by the Markov parameters CAtB; 2) y0 =

[
CT · · · (CAN−1)T

]T
x(0) to

denote the free system response.
The dynamics matrices (A,B,C) and the initial state x0 are unknown. Instead, the following data are

available:

D1 A noisy system trajectory {yh(t), uh(t)}−1t=−T recorded offline during an experiment.

D2 The cost matrices Qt, Rt, the safety set Γ, and the sets of disturbances W and V against which we
want to be robustly safe.

We make the following assumptions:

A1 The trajectory data (D1) have been used to generate estimates (Ĝ, ŷ0) of (G,y0) and a model mismatch
level εp such that, for both p = 2 and p =∞, with high probability

‖∆‖p =
∥∥∥G− Ĝ

∥∥∥
p
≤ εp, ‖δ0‖p = ‖y0 − ŷ0‖p ≤ εp .

A2 The disturbances w(t) = Bŵ(t)1 and v(t) are independent over time, have 0 expected value and
variances given by BΣŵB

T � 0 and Σv � 0 respectively.

A3 The sets Γ, W, V are polytopes.

While A2 and A3 are standard technical assumptions that enable tractability of the cost (3) and the
constraints (2), assumption A1 requires further remarks. First, A1 involves an identification phase to
estimate the underlying impulse and free responses. This paradigm is different from the DeePC approach
[35, 5] and that of [33], where historical data are directly plugged into an optimization program to synthesize
the optimal control policy. Identifying the impulse response matrix G is also different from identifying
(A,B) in the full-observation setup of [9, 10]; indeed, in the output-feedback case, the state-space parameters
(A,B,C, x0) can only be deduced up to an arbitrary change of variables [27]. Instead, the impulse response
matrix G is uniquely defined. Second, in addition to standard least-squares (LS) system identification, A1 is
compatible with state-of-the art estimation approaches based on behavioral theory, such as data-enabled
Kalman filtering [1], and the recently proposed Maximum-Likelihood (ML) behavioral estimation [36, 22]; we
refer to Appendix B to showcase how behavioral theory can be used to generate estimates (Ĝ, ŷ0), including
related numerical examples. Last, we note that the model mismatch level εp > 0, for both p = 2 and p =∞,
can be obtained in practice through bootstrapping on multiple data-harvesting runs [12].

To enable tractable formulations, we search over linear output-feedback dynamic control policies in the
form u(t) =

∑t
k=0Kt,ky(k), where Kt,k are the decision variables, and formulate the doubly-robust2 optimal

control problem under consideration:

min
K

max
‖∆‖p ≤ εp, ‖δ0‖p ≤ εp

∀p ∈ {2,∞}

J(G,K) =
√
Ew,v [yTQy + uTRu] (4)

subject to (1), (2), u = Ky + w ,

where K stacks all the decision variables Kt,k as a lower-block-triangular causal matrix. Any control policy
that complies with the constraints of problem (4) guarantees safety of the input and output trajectories for

1As we are only given access to input-output trajectories, and not state trajectories, the control design can only account for
process noise in the form w(t) = Bŵ(t), where ŵ(t) has variance Σŵ - see [16], Remark 1, for instance.

2robustness against 1) realizations of w(t) ∈ W and v(t) ∈ V, 2) estimation error εp > 0.

2



any realizations of w(t) and v(t), and for any model mismatch ∆ and δ0 (within the assumed ε-bounds).
However, the optimization program (4) is highly non-convex in the decision variables K, ∆ and δ0. Our first
main result tackles this challenge by formulating a novel restriction3 of (4), whose tractability is achieved by
optimizing over closed-loop responses Φ = (Φyy,Φyu,Φuy,Φuu)4, rather than over the policy K directly.
This is enabled by the recently developed Input-Output Parametrization (IOP) [18]; details are provided in
Appendix C. From now on, we denote the closed-loop responses that minimize (3) subject to (1)-(2) as Φ?.
To simplify the expressions, and without loss of generality, we select the weights Q, R, and the variances Σw,
Σv to be identity matrices of appropriate dimensions.

Theorem 1 Assume estimation errors ε2, ε∞ and fix 0 ≤ α < ε−12 . Consider the problem

min
γ∈[0,α),τ∈[0,ε−1

∞ )

1

1− ε2γ
min
Φ̂

∥∥∥∥∥
[√

1+h(ε2, α, Ĝ)+h(ε2, α, ŷ0)Φ̂yy Φ̂yu Φ̂yyŷ0√
1 + h(ε2, α, ŷ0)Φ̂uy Φ̂uu Φ̂uyŷ0

]∥∥∥∥∥
F

. (5)

subject to IOP(Φ̂, Ĝ),
∥∥∥Φ̂uy

∥∥∥
2
≤ γ,

∥∥∥Φ̂uy

∥∥∥
∞
≤ τ, f(ε∞, τ, Φ̂) ≤ 0 .

Then, i) all the feasible solutions of (5) yield a controller K̂ = Φ̂uyΦ̂
−1
yy complying with the safety constraints

(2) for the real underlying plant, and ii) its minimal cost upper-bounds that of (4).

The result is based upon characterizing the relationship between the real closed-loop responses Φ, i.e. the
ones associated with the true impulse response matrix G, and the estimated closed-loop responses Φ̂, i.e.
the ones associated with the estimated matrix Ĝ. We provide full expressions for IOP(·), h(·) and f(·) in
equations (19)-(23), (34) and (37)-(38) of the appendices, respectively. Here, we only highlight that: 1) the
function IOP(Φ̂, Ĝ) defines all the achievable closed-loop responses associated with the estimated plant Ĝ;
2) the scalar function h(·) > 0 comes into play in upper-bounding the cost J(G,K); 3) the function f(·)
defines tightened safety constraints. We note that all the constraints can be implemented explicitly using only
available information. The key property is that, upon fixing the scalars τ and γ, the remaining optimization
program is convex in Φ̂. Hence, a near optimal solution to (5) is obtained through gridding on (γ, τ) and
solving one convex program for each choice of (γ, τ).

A fundamental question that follows naturally is: how much suboptimal is problem (5) with respect
to problem (4)? To answer this question, let J? and (K?,Φ?) denote the min and arg min of (3) subject
to (1)-(2), that is, the ground-truth optimal cost and control policy. Our second result is to show that,
remarkably, the control policy K̂? corresponding to the arg min of (5) yields a near-optimal cost Ĵ , in the
sense that its suboptimality gap (Ĵ2 − J?2)/J?2 vanishes to 0 as a linear function of the estimation error ε.
The proof relies on considering a specific suboptimal solution of (5), which is characterized as the arg min of
a ground-truth doubly-robust (GTDR) optimization program; complete details on the proof are available in
Appendix E.

Theorem 2 Let η = ε2
∥∥Φ?

uy

∥∥
2
and ζ = ε∞

∥∥Φ?
uy

∥∥
∞. Assume that the model mismatch errors are small

enough to guarantee η < 1
5 and ζ < 1

2 , and assume α ∈ [
√

2 η
ε2(1−η) , ε

−1
2 ).5 Moreover, assume that ε∞ is small

enough for the GTDR optimization program to be feasible, and let JGTDR be its minimal cost. Then, when
applying the controller K̂? optimizing (5) to the ground-truth plant G, the relative error with respect to
the ground-truth optimal cost is upper bounded as

(Ĵ2 − J?2)/J?2 ≤ O
(
ε2
∥∥Φ?

uy

∥∥
2

(‖G‖22 + ‖y0‖22)
)

+ 4S(ε∞) , (6)

where S(ε∞) = (JGTDR2 − J?2)/J?2 is the suboptimality incurred by the GTDR optimization program and
is such that S(0) = 0.

The suboptimality gap (6) has two main parts; the first addend scales linearly with ε2, and the second
addend S(ε∞), which is linked to the suboptimality of the tightened GTDR program, disappears as ε∞ → 0.
Furthermore, numerical simulations show that S(ε∞) sharply transitions from 0 to ∞ as ε∞ increases; see
Appendix E, Figure 3 . Hence, in practice, S(ε∞) can be interpreted as a boolean value indicating whether
ε∞ is small enough for our bound to hold.

3that is, its feasible space is a subset of that of (4).
4i.e., the maps relating disturbances to input/output signals upon applying u = Ky, e.g. y = Φyuw, where Φyu =

(I −GK)−1G.
5The value η = ε2

∥∥Φ?
uy

∥∥
2
is unknown in practice because so is Φ?

uy . One then tunes according to α < ε−1
2 .
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3 Numerical Examples
To validate our approach6, we consider synthesis based on noisy data harvested from an unknown underlying
LTI system. The system has a bidimensional dynamic matrix A with spectral radius 0 < ρ ≤ 1. The goal is to
ensure that the output y(1) = 6 drops below the safety value 5.5, robustly against: 1) all future disturbances
with absolute value bounded by 1, and 2) model mismatch of size ε = 0.01. Results for the ideal case

(a) Unsafe regions are colored in grey.
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(b) Suboptimality gaps.

ε = 0 and the noisy-data case are both shown in Figure (a). As expected, noisy data lead to safer, but more
conservative trajectories. Figure (b) validates the suboptimality bound (6). On the left, the gap is shown for
increasing levels of noise variance σ > 0 corrupting historical data samples, leading to increased ε levels.7 For
ε small enough, the growth is linear as predicted by Theorem 2. On the right, the gap is shown for increasing
levels of the spectral radius ρ, showing a growth faster than linear (as indicated by the term ||G||22 in (6)).

4 Conclusions
We have shown that, solely relying on noisy historical input-output trajectories, one can solve complex
optimal control tasks with hard safety requirements. Furthermore, the suboptimality decays linearly for
small model mismatch ε. Future work will focus on further reducing the conservatism of the method, and on
analyzing recursive feasibility for receding-horizon implementations.
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A Notation
In this appendix, we detail the mathematical notation used in the abstract for completeness.

We use R and N to denote the sets of real numbers and non-negative integers, respectively. We use
In to denote the identity matrix of size n × n, 0m×n to denote the zero matrix of size m × n, and 1n to
denote the vector of all ones of length n. We write M = blkdiag(M1, . . . ,MN ) to denote a block-diagonal
matrix with M1, . . . ,MN ∈ Rm×n on its diagonal block entries, and for M =

[
MT

1 . . . MT
N

]T we define
the block-Toeplitz matrix

Toepm×n (M)=


M1 0m×n . . . 0m×n

M2 M1 . . . 0m×n

...
...

. . .
...

MN MN−1 . . . M1

 .
More concisely, we write Toep(·) when the dimensions of the blocks are clear from the context. The Kronecker
product between M ∈ Rm×n and P ∈ Rp×q is denoted as M ⊗ P ∈ Rmp×nq. For a vector v ∈ Rn and
a matrix A ∈ Rm×n, we denote as ‖v‖p, ‖A‖p, their standard p-norm and induced p-norms, respectively
[19]. For a symmetric matrix M , we write M � 0 or M � 0 if and only if it is positive definite or positive
semidefinite, respectively. We say that x ∼ D(µ,Σ) if the random variable x ∈ Rn follows a distribution with
mean µ ∈ Rn and covariance matrix Σ ∈ Rn×n,Σ � 0.

A finite-horizon trajectory of length T is a sequence ω(0), ω(1), . . . , ω(T − 1) with ω(t) ∈ Rn for every
t = 0, 1, . . . , T − 1, which can be compactly written as

ω[0,T−1] =
[
ωT(0) ωT(1) . . . ωT(T − 1)

]T ∈ RnT .
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When the value of T is clear from the context, we omit the subscript [0, T − 1]. For a finite-horizon trajectory
ω[0,T−1], we also define the Hankel matrix of depth L as

HL(ω[0,T−1]) =


ω(0) ω(1) . . . ω(T − L)
ω(1) ω(2) . . . ω(T − L+ 1)
...

...
. . .

...
ω(L− 1) ω(L) . . . ω(T − 1)

 .
Throughout the abstract, for a row-vector x ∈ R1×n, ‖x‖1 =

∑n
i=1 |xi| denotes its 1-norm; this is a slight

abuse of notation that allows streamlining the appearance of a few long derivations.

B Behavioral theory for impulse-response identification
First, we briefly recall Willems’ Fundamental Lemma [32] and useful results from behavioral linear system
theory. Second, we showcase how noisy historical data can be used in practice to identify the impulse response
matrix G and free response y0, incurring small model mismatch.

Definition 1 We say that uh[0,T−1] is persistently exciting (PE) of order L if the Hankel matrix HL(uh[0,T−1])
is full row-rank.

A necessary condition for the matrix HL(uh[0,T−1]) to be full row-rank is that it has at least as many columns
as rows. It follows that the input trajectory uh[0,T−1] must be long enough to satisfy T ≥ (m+ 1)L− 1.

Lemma 1 (Theorem 3.7, [32]) Consider system (1). Assume that (A,B) is controllable and that there
is no noise. Let {yh[0,T−1],u

h
[0,T−1]} be a system trajectory of length T that has been recorded during a past

experiment. Then, if uh[0,T−1] is PE of order n + L, the signals y?[0,L−1] ∈ RpL and u?[0,L−1] ∈ RmL are
trajectories of (1) if and only if there exists g ∈ RT−L+1 such that[

HL(yh[0,T−1])

HL(uh[0,T−1])

]
g =

[
y?[0,L−1]
u?[0,L−1]

]
. (7)

Willems’ Lemma above assumes that historical data are not corrupted by noise. In such ideal setup, one
can exactly identify the impulse response matrix G and the free response y0 directly from historical data
{yh[−T,−1],u

h
[−T,−1]} as follows [28].

Lemma 2 (Noiseless data-driven identification) Assume that (A,B) is controllable and (A,C) is ob-
servable. Further, assume that uh[−T,−1] is PE of order n+ Tini +N , where Tini ≥ l and l is the smallest
integer such that the matrix [

CT (CA)T . . . (CAl−1)T
]T

,

has full row-rank. Let (G, g) be any solutions to the linear system of equationsUpYp
Uf

[G g
]
=

 0mTini×m ur[0,Tini−1]
0pTini×m yr[0,Tini−1][

Im 0m×m(N−1)
]T

0mN×1

, (8)

where
[
Up
Uf

]
= HTini+N (uh[0,T−1]) and

[
Yp
Yf

]
= HTini+N (yh[0,T−1]). Then we have

G = Toep(YfG) , y0 = Yfg .

Proof: Let G be any solution (8). By rearranging the terms, each column of G can be seen as a solution
to (7) associated with a zero initial condition and input u[0,N−1] =

[
eTi 01×m(N−1)

]T, where ei ∈ Rm is
the i-th element of the standard orthogonal basis of Rm. Since the hypotheses of Lemma 1 are satisfied for
L = Tini +N , similar to Proposition 11 of [28] we deduce that YfG is the first block-column of the system
impulse response matrix, independent of which solution to (8) is chosen. Finally, note that Yfg corresponds
to the trajectory starting at x0 (as implicitly defined by the recent trajectory y[−Tini,−1] and u[−Tini,−1])
when applying a zero input [28]. Therefore, it corresponds to the true free response starting from x0.

In practice, however, exact historical and recent data are not available. We assume that historical
trajectories are affected by additive noise wh(t), vh(t)8 at all time instants, with zero expected values and

8where “w” and “v” denote input and output noise, respectively.
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variances Σh
w � 0,Σh

v � 0 respectively. Due to additive noise, the matrix on the left-hand-side of (8)
becomes full row-rank almost surely, and the least-squares solutions of (8) do not recover the free and impulse
responses. This issue is well-known in the behavioral theory literature, and several mitigation strategies have
recently been proposed [5, 6, 7, 36, 1, 22]. Specifically, these methods have the goal of yielding accurate
and coherent estimators based on behavioral theory. For instance, letting the symbol “ ̂ ” denote noisy
historical trajectories the standard LS estimator is given by

GLS =

ÛpŶp
Ûf

+  0mTini×m
0pTini×m[

Im 0m×m(N−1)
]T
 , gLS =

ÛpŶp
Ûf

+ ûh[−Tini,−1]
ŷh[−Tini,−1]

0mN×1

 . (9)

Another approach is to minimize a scalar functional f(·) that penalizes the residuals Ξy = (Yp − Ŷp)G and
ξy = (Yp − Ŷp)g [6]. A choice that reflects the maximum-likelihood (ML) interpretation of total least squares
is proposed in [36] and consists in solving the optimization problems

GML = arg min
G

− log
[
p

([
Ξy
YfG

]
| G, Yf

)]
(10)

subject to

[
Ûp
Ûf

]
G =

[
0mTini×m[

Im 0m×m(N−1)
]T] ,

gML = arg min
g

− log
[
p

([
ξy
Yfg

]
| g, Yf

)]
(11)

subject to

[
Ûp
Ûf

]
g =

[
û[−Tini,−1]

0mN×1

]
,

where p(a|b) indicates the probability of event a conditioned to b.

B.1 Model mismatch beyond least-squares: numerical example
We showcase that ML-based behavioral estimation [22] may lead to significantly lower model mismatch

levels than LS estimation given the same amount of noisy data. For the system A =

[
1 0.25
0 1

]
, B =[

0
0.1

]
, C =

[
1 −1

]
, we gather noisy historical trajectories with T = 200 and Tini = 30 respectively. We

assume that the data are corrupted by Gaussian noise with zero mean and variances Σh
w = Σr

w = σIm
and Σh

v = Σr
v = σIp, where σ ≥ 0. For each experiment, we fix the variance σ ≥ 0 and select a random

exploration control input u. We collect 1000 different historical trajectories for different realizations of the
corrupting noise. For each realization of the trajectories, we compute 1) the LS solution (GLS , gLS) using (9)
and the corresponding impulse and free responses G̃LS , ỹ0,LS , and 2) the ML solution (GML, gML) using
(10)-(11) and the corresponding impulse and free responses G̃ML, ỹ0,ML. For each estimation, we determine
the incurred error levels ε2, ε∞.9 Last, we record the 90-th percentile of these values, both for ML and LS
estimation.

In Figure (3) we compare the values of ε2 and ε∞ incurred by both estimation techniques. We observe that
ML may yield significantly smaller estimation errors than LS identification. While a full sample-complexity
analysis is still unavailable beyond least-squares [9, 29, 33], these examples showcase an advantage in using
more sophisticated estimation techniques for safe data-driven control.

C (B)IOP
In this appendix, we recall the main concepts behind the IOP [18] which, akin to Youla-based and disturbance-
feedback controllers [37, 40], expresses any linear output-feedback control policy in terms of the corresponding
closed-loop responses and the affine subspace they belong to.

With the notation introduced in Section 2, we compactly write the relations between finite-horizon
input-state-output trajectories of system (1) as

x = PA(:, 0)x0 + PBu , (12)
y = Cx + v , (13)

9Since the real system is unavailable, in practice this can be done using a bootstrap procedure.
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Figure 2: Estimation error as a function of the corrupting noise. ML estimation through the ML estimation
yields significantly smaller errors than LS. The green and blue regions indicate the gap for the 2-norm and
∞-norm, respectively. SMM denotes the Signal Matrix Model approximation of ML estimation proposed in
[36]; the MATLAB code for implementing the SMM has kindly been provided by the authors of [36].

where PA(:, 0) denotes the first block-column of PA and

PA = (I − ZA)−1 , PB = (I − ZA)−1ZB ,

A = IN ⊗A , B = IN ⊗B ,

C = IN ⊗ C , Z =

[
0n×n(N−1) 0n×n
In(N−1) 0n(N−1)×n

]
.

Clearly, we have that G = CPB and y0 = CPA(:, 0)x0. Assume now that the input and measurement
disturbances satisfy the box constraints ‖wt‖∞ ≤ w∞ ‖vt‖∞ ≤ v∞, for given positive constants w∞ and v∞.
Further, let

Γ = {(y, u) ∈ (Rp,Rm)| Fyy ≤ by, Fuu ≤ bu} , (14)

with Fy ∈ Rs×p, Fu ∈ Rs×m and by, bu ∈ Rs, represent the nonempty polytope that defines the safe set for
input and output signals. Compliance with the safety requirements[

y(t)
u(t)

]
∈ Γ ⊆ Rp+m , ∀t = 0, . . . , N − 1 ,

over the whole prediction horizon is ensured if and only if

max
‖v‖∞≤v∞, ‖w‖∞≤w∞

Fyy ≤ by , max
‖v‖∞≤v∞,‖w‖∞≤w∞

Fuu ≤ bu , (15)

where max(·) is intended row-wise, namely the maximizers v? and w? are potentially different for each row
of Fyy and Fuu. In (15), we define Fy = IN ⊗ Fy, Fu = IN ⊗ Fu, by = 1N ⊗ by, bu = 1N ⊗ bu.

Closing the loop with the causal linear control policy

u = Ky + w , (16)

from equations (12) and (13) we obtain the following relationships between disturbances and input-output
signals [

y
u

]
=

[
Φyy Φyu

Φuy Φuu

] [
v + y0

w

]
, (17)

where [
Φyy Φyu

Φuy Φuu

]
=

[
(I −GK)−1 (I −GK)−1G

K(I −GK)−1 (I −KG)−1

]
. (18)

The following proposition shows that one can compute the optimal safe feedback control policy by searching
over achievable input-output closed-loop responses Φ, as characterized by an affine subspace defined over the
plant G.
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Proposition 1 Consider the LTI system (1) evolving under the control policy (16) within a horizon of
length N ∈ N. Then:

i) For any control policy K that complies with the safety constraints, there exist four matrices (Φyy,Φyu,Φuy,Φuu)
such that K = ΦuyΦ

−1
yy . Furthermore, for all j = 1, . . . , sN ,

[
I −G

] [Φyy Φyu

Φuy Φuu

]
=
[
I 0

]
, (19)[

Φyy Φyu

Φuy Φuu

] [
−G
I

]
=

[
0
I

]
, (20)∥∥∥∥∥

[
v∞(Fy,jΦyy)T

w∞(Fy,jΦyu)T

]T∥∥∥∥∥
1

+ Fy,jΦyyy0 ≤ by,j , (21)∥∥∥∥∥
[
v∞(Fu,jΦuy)T

w∞(Fu,jΦuu)T

]T∥∥∥∥∥
1

+ Fu,jΦuyy0 ≤ bu,j , (22)

Φyy,Φyu,Φuy,Φuu with causal sparsities 10 , (23)

where Fy,j ∈ R1×Np, Fu,j ∈ R1×Nm and bu,j ,by,j ∈ R are the j-th row of Fy, Fu and bu,by, respectively.

ii) For any four matrices (Φyy,Φyu,Φuy,Φuu) lying in the affine subspace (19)-(23), the matrix K =
ΦuyΦ

−1
yy is causal and it yields the closed-loop responses (Φyy,Φyu,Φuy,Φuu). Moreover, the linear control

policy K complies with the safety constraints.

Proof of Proposition 1 For the first statement, notice that the controller K achieves the closed-loop
responses (18). Now select (Φyy,Φyu,Φuy,Φuu) as[

Φyy Φyu

Φuy Φuu

]
=

[
(I −GK)−1 (I −GK)−1G

K(I −GK)−1 (I −KG)−1

]
, (24)

Clearly, K = ΦuyΦ
−1
yy . By plugging the corresponding expressions, we verify that (19), (20) and (23) are

satisfied. It remains to prove that (21)-(22) are satisfied. In (15), substitute y and u with their closed-loop
expressions (17). It follows that the addends separately depend on w or v. Hence, (15) can be rewritten as

max
‖v‖∞≤v∞

(FyΦyy) v + max
‖w‖∞≤w∞

(FyΦyu) w + (FyΦyy) CPA(:, 0)x0 ≤ by , (25)

max
‖v‖∞≤v∞

(FuΦuy) v + max
‖w‖∞≤w∞

(FuΦuu) w + (FyΦuy) CPA(:, 0)x0 ≤ bu , (26)

where the max(·) is to be intended row-wise, namely the maximizers v? and w? are potentially different for
each row. The expressions (25)-(26) are already convex in Φ. To have a more explicit expression, similar to
[10] we utilize the well-known property that the ‖·‖1 and the ‖·‖∞ vector norms are dual of each other [4],
that is k ‖x‖1 = max‖w‖∞≤k x

Tw. The result follows immediately by inspecting (25)-(26) and letting xT be
equal to either Fy,jΦyy, Fy,jΦuy, Fy,jΦyu or Fy,jΦuu, and letting k be equal to either v∞ or w∞.

For the second statement, it is easy to notice that K is causal by construction because Φuy and Φyy are
block lower-triangular. By selecting the controller K = ΦuyΦ

−1
yy one has

(I −GΦuyΦ
−1
yy )−1 = (I −GΦuy(I + GΦuy)−1)−1

= ((I + GΦuy −GΦuy)(I + GΦuy)−1)−1 = I + GΦuy = Φyy ,

which shows that Φyy is the closed-loop response from v[0,N−1] +CPA(:, 0)x0 to y[0,N−1] as per (18). Similar
computations hold for the remaining closed-loop responses. For the safety constraints, select any Φ complying
with (21)-(22). It is easy to verify by direct computation that, for any w and v, the same input and output
trajectories defined at (17) are obtained by letting K = ΦuyΦ

−1
yy in (12), (13), (16). Hence, the safety

constraints are satisfied for any disturbance realization.�
Next, linearity of the expectation operator and the identity Ex(xTMx) = Tr(MΣx) + µT

xMµx, that holds
true for the expected value of a quadratic function, allow to rewrite the objective function Ev,w[yTLy+uTRu]
in terms of the closed loop responses. Considering the LTI system (1), the linear control policy that achieves

10Specifically, they have the block lower-triangular sparsities resulting as per the expressions (18), the sparsity of K and that
of G.
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the minimum of the cost functional (3) is given by K = ΦuyΦ
−1
yy , where Φuy,Φyy are optimal solutions to

the following convex program:

min
Φ

∥∥∥∥∥
[
Q

1
2 0

0 R
1
2

] [
Φyy Φyu

Φuy Φuu

] [
Σ

1
2
v 0 y0

0 Σ
1
2
w 0

]∥∥∥∥∥
2

F

(27)

subject to (19)− (23) ,

where Q = blkdiag(Q0, . . . , QN−1), R = blkdiag(R0, . . . , RN−1), Σv = IN ⊗ Σv, Σw = IN ⊗ Σw.
In problem (27), the achievability constraints (19)-(20), the safety constraints (21)-(22) and the cost

function are all expressed in terms of the impulse response matrix G and of the free response y0. Hence, an
explicit state-space description (A,B,C, x0) is not needed for optimal controller synthesis. In light of this
observation, Lemma 2 can be used to embed previously-recorded input-output trajectories into an equivalent
data-driven optimization problem. In particular, it naturally follows from equation (8) that the behavioral
counterpart of problem (27) is given by

min
Φ

∥∥∥∥∥
[
Q

1
2 0

0 R
1
2

][
Φyy Φyu

Φuy Φuu

][
Σ

1
2
v 0 Yfg

0 Σ
1
2
w 0

]∥∥∥∥∥
2

F

(28)

subject to
[
I −Toep(YfG)

] [Φyy Φyu

Φuy Φuu

]
=
[
I 0

]
,[

Φyy Φyu

Φuy Φuu

] [
−Toep(YfG)

I

]
=

[
0
I

]
,∥∥∥∥∥

[
v∞ (Fy,jΦyy)

T

w∞ (Fy,jΦyu)
T

]∥∥∥∥∥
1

+ (Fy,jΦyy)Yfg ≤ by,j ,∥∥∥∥∥
[
v∞ (Fu,jΦuy)

T

w∞ (Fu,jΦuu)
T

]∥∥∥∥∥
1

+ (Fu,jΦuy)Yfg ≤ bu,j ,

∀j = 1, . . . , sN ,

Φyy,Φyu,Φuy,Φuu with causal sparsities.

Note that the optimization problem (28) requires no direct state observation and solely relies on input-
output data Hankel matrices. We denote the resulting parametrization of output-feedback linear policies as
Behavioral IOP (BIOP). Future work will focus on direct formulations that allow to completely bypass the
non-parametric identification step of the impulse response matrix G.

D Proof of Theorem 1
This appendix presents the proposed reformulation of the intractable problem (4) into a more convenient
form. Specifically, we prove two technical lemmas that provide, respectively, a tight upper bound of the
cost function, and a tightened - yet more favorable - expression for the safety constraints. Remarkably, the
suboptimality incurred by these approximations scales linearly with the model mismatch whenever such
discrepancy is sufficiently small, as per Theorem 2.

We start by analytically characterizing the relationship between the real closed-loop responses Φ, i.e. the
ones associated with the true impulse response matrix G, and the estimated closed-loop responses Φ̂, i.e. the
ones associated with the estimated impulse matrix Ĝ. In particular, recalling that K = ΦuyΦ

−1
yy = Φ̂uyΦ̂

−1
yy ,

G = Ĝ + ∆, y0 = ŷ0 + δ0, it follows from the achievability constraints over Φ̂ and from the Woodbury
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matrix identity that

Φyy = (I −GK)−1 =
(
I − (Ĝ + ∆)Φ̂uyΦ̂

−1
yy

)−1
=
(
I − ĜΦ̂uyΦ̂

−1
yy −∆Φ̂uyΦ̂

−1
yy

)−1
=
(

(Φ̂yy − ĜΦ̂uy −∆Φ̂uy)Φ̂−1yy

)−1
= Φ̂yy(I −∆Φ̂uy)−1 , (29)

Φyu = (I −GK)−1G = ΦyyG = Φ̂yy(I −∆Φ̂uy)−1(Ĝ + ∆) , (30)

Φuy = K(I −GK)−1 = KΦyy = Φ̂uyΦ̂
−1
yy Φ̂yy(I −∆Φ̂uy)−1 = Φ̂uy(I −∆Φ̂uy)−1 , (31)

Φuu = (I −KG)−1 = K(I −GK)−1G + I = ΦuyG + I

= Φ̂uy(I −∆Φ̂uy)−1(Ĝ + ∆) + I =
(
I − Φ̂uy∆

)−1
Φ̂uy(Ĝ + ∆) + I

= (I − Φ̂uy∆)−1(Φ̂uyĜ + Φ̂uy∆ + I − Φ̂uy∆)

= (I − Φ̂uy∆)−1(Φ̂uyĜ + I) = (I − Φ̂uy∆)−1Φ̂uu . (32)

Lemma 3 Let Φ̂ denote the closed-loop responses obtained by applying K to Ĝ. Further, assume that∥∥∥Φ̂uy

∥∥∥
2
≤ γ, where γ ∈ [0, ε−12 ). Then, we have

J(G,K) ≤ 1

1− ε2γ

∥∥∥∥∥
[√

1+h(ε2, γ, Ĝ)+h(ε2, γ, ŷ0)Φ̂yy Φ̂yu Φ̂yyŷ0√
1 + h(ε2, γ, ŷ0)Φ̂uy Φ̂uu Φ̂uyŷ0

]∥∥∥∥∥
F

, (33)

where
h(ε, γ,Y) = ε2(2 + γ‖Y‖2)2 + 2ε ‖Y‖2 (2 + γ ‖Y‖2) . (34)

Proof of Lemma 3 In order to simplify the notation going forward, let the weights Q, R in the cost
function and the noise variances Σw, Σv be identity matrices of appropriate dimensions. The objective in
Problem (4) is given by∥∥∥∥[Φyy Φyu

Φuy Φuu

] [
I 0 y0

0 I 0

]∥∥∥∥2
F

=

∥∥∥∥[Φyy Φyu Φyyy0

Φuy Φuu Φuyy0

]∥∥∥∥2
F

, (35)

or, equivalently, as the square-root of the sum of the square of the Frobenius norms of each of its six blocks.
We proceed by upper-bounding each one of them individually. For the upper-left block, we have

‖Φ̂yy(I −∆Φ̂uy)−1‖F ≤ ‖Φ̂yy‖F

∥∥∥∥∥
∞∑
k=0

(∆Φ̂uy)k

∥∥∥∥∥
2

≤ ‖Φ̂yy‖F
∞∑
k=0

∥∥∥ε2Φ̂uy

∥∥∥k
2

=
‖Φ̂yy‖F

1− ε2‖Φ̂uy‖2
,

where the convergence of the series follows from ∆ and Φ̂uy having zero-entries diagonal blocks by construction.
Similarly,

‖Φ̂uy(I −∆Φ̂uy)−1‖F ≤
‖Φ̂uy‖F

1− ε2‖Φ̂uy‖2
, ‖(I − Φ̂uy∆)−1Φ̂uu‖F ≤

‖Φ̂uu‖F
1− ε2‖Φ̂uy‖2

.

Next, we have

‖Φ̂yy(I −∆Φ̂uy)−1(Ĝ + ∆)‖F ≤ ‖Φ̂yyĜ‖F+‖Φ̂yy∆‖F+

∥∥∥∥∥Φ̂yy

( ∞∑
k=1

(∆Φ̂uy)k

)
(Ĝ + ∆)

∥∥∥∥∥
F

≤ ‖Φ̂yu‖F + ε2‖Φ̂yy‖F + ‖Φ̂yy‖F
ε2‖Φ̂uy‖2(‖Ĝ‖2 + ε2)

1− ε2‖Φ̂uy‖2

≤ ‖Φ̂yu‖F + ε2‖Φ̂yy‖F (2 + ‖Φ̂uy‖2‖Ĝ‖2)

1− ε2‖Φ̂uy‖2
,

and therefore, by developing the squares and using that
∥∥∥Φ̂yyĜ

∥∥∥
F
≤ ‖Φ̂yy‖F ‖Ĝ‖2 we obtain

‖Φ̂yy(I −∆Φ̂uy)−1(Ĝ + ∆)‖2F ≤

(
‖Φ̂yu‖2F + ‖Φ̂yy‖2Fh(ε2, γ, Ĝ)

)
(1− ε2‖Φ̂uy‖2)2

.
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Proceeding analogously, one can also prove that

‖Φ̂yy(I −∆Φ̂uy)−1(ŷ0 + δ0)‖2F ≤
1

(1− ε2‖Φ̂uy‖2)2

(
‖Φ̂yyŷ0‖2F + ‖Φ̂yy‖2Fh(ε2, γ, ŷ0)

)
,

‖Φ̂uy(I −∆Φ̂uy)−1(ŷ0 + δ0)‖2F ≤
1

(1− ε2‖Φ̂uy‖2)2

(
‖Φ̂uyŷ0‖2F + ‖Φ̂uy‖2Fh(ε2, γ, ŷ0)

)
.

Therefore, combining the above inequalities we finally conclude that

J(G,K) ≤

√√√√∥∥∥∥∥
[
Φ̂yy Φ̂yu Φ̂yyŷ0

Φ̂uy Φ̂uu Φ̂uyŷ0

]∥∥∥∥∥
2

F

+‖Φ̂yy‖2F (h(ε2, γ, Ĝ) + h(ε2, γ, ŷ0)) + ‖Φ̂uy‖2Fh(ε2, γ, ŷ0)

1− ε2‖Φ̂uy‖2
�

Lemma 3 exploits the upperbound
∥∥∥Φ̂uy

∥∥∥
2
≤ γ to establish an explicit relationship between the cost

J(G,K), obtained by applying a controller K to the real system G, and the cost J(Ĝ,K), obtained by
applying the same controller to the estimated system Ĝ. To see this, notice that (33) is equivalently rewritten
as

J(G,K) ≤

√
J(Ĝ,K)2 + ‖Φ̂yy‖2F (h(ε2, γ, Ĝ) + h(ε2, γ, ŷ0)) + ‖Φ̂uy‖2Fh(ε2, γ, ŷ0)

1− ε2γ
. (36)

The expression (36) upper-bounds the gap between J(G,K) and J(Ĝ,K) as a quantity that increases
with ε2 and with the norm of Ĝ, ŷ0, Φ̂.

Lemma 4 Assume
∥∥∥Φ̂uy

∥∥∥
∞
≤ τ , where τ ∈ [0, ε−1∞ ). Then, if Φ̂ satisfies the tightened safety constraints

f1,j(Φ̂) + f2,j(Φ̂) + f3,j(Φ̂) ≤ by,j , (37)

f4,j(Φ̂) + f5,j(Φ̂) + f6,j(Φ̂) ≤ bu,j , (38)
∀j = 1, . . . , sN ,

where

f1,j(Φ̂) =
v∞

∥∥∥Fy,jΦ̂yy

∥∥∥
1

1− ε∞τ
, f2,j(Φ̂) = w∞

∥∥∥∥∥∥∥


(
Fy,jΦ̂yu

)T
ε∞

1+τ‖Ĝ‖∞
1−ε∞τ

(
Fy,jΦ̂yy

)T

∥∥∥∥∥∥∥
1

,

f4,j(Φ̂) =
v∞

∥∥∥Fu,jΦ̂uy

∥∥∥
1

1− ε∞τ
, f5,j(Φ̂) = w∞

∥∥∥∥∥∥∥


(
Fu,jΦ̂uu

)T
ε∞

1+τ‖Ĝ‖∞
1−ε∞τ

(
Fu,jΦ̂uy

)T

∥∥∥∥∥∥∥
1

,

f3,j(Φ̂) = Fy,jΦ̂yyŷ0 + ε∞

∥∥∥Fy,jΦ̂yy

∥∥∥
1

(
1 + τ ‖ŷ0‖∞

1− ε∞τ

)
,

f6,j(Φ̂) = Fu,jΦ̂uyŷ0 + ε∞

∥∥∥Fu,jΦ̂uy

∥∥∥
1

(
1 + τ ‖ŷ0‖∞

1− ε∞τ

)
,

then Φ̂ satisfies also the safety constraints∥∥∥∥∥∥
[
v∞ (Fy,jΦyy)

T

w∞ (Fy,jΦyu)
T

]T∥∥∥∥∥∥
1

+ (Fy,jΦyy) (ŷ0 + δ0) ≤ by,j , (39)

∥∥∥∥∥∥
[
v∞ (Fu,jΦuy)

T

w∞ (Fu,jΦuu)
T

]T∥∥∥∥∥∥
1

+ (Fu,jΦuy) (ŷ0 + δ0) ≤ bu,j , (40)

for the real system.
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Proof of Lemma 4 By using the fact that for x ∈ Rn and y ∈ Rm we have that
∥∥∥[xT yT

]T∥∥∥
1

=

‖x‖1 + ‖y‖1, the left-hand-sides of (39)-(40) are each made of three addends. The proof hinges on upper-
bounding each one of them. We report the full derivations for the most informative of them. We have

v∞

∥∥∥Fy,jΦ̂yy(I −∆Φ̂uy)−1
∥∥∥
1

= max
‖v‖∞≤v∞

(
Fy,jΦ̂yy + Fy,jΦ̂yy∆Φ̂uy(I −∆Φ̂uy)−1

)
v

≤ v∞
∥∥∥Fy,jΦ̂yy

∥∥∥
1
+ max
‖v‖∞≤v∞

|Fy,jΦ̂yy∆Φ̂uy(I −∆Φ̂uy)−1v|

≤ v∞
∥∥∥Fy,jΦ̂yy

∥∥∥
1
+ v∞

∥∥∥Fy,jΦ̂yy

∥∥∥
1

∥∥∥∆Φ̂uy(I −∆Φ̂uy)−1
∥∥∥
∞

≤ v∞
∥∥∥Fy,jΦ̂yy

∥∥∥
1

+ v∞ε∞

∥∥∥Fy,jΦ̂yy

∥∥∥
1

∥∥∥Φ̂uy

∥∥∥
∞

1− ε∞
∥∥∥Φ̂uy

∥∥∥
∞

≤ v∞
∥∥∥Fy,jΦ̂yy

∥∥∥
1

(
1 +

ε∞τ

1− ε∞τ

)

=
v∞

∥∥∥Fy,jΦ̂yy

∥∥∥
1

1− ε∞τ
= f1,j(Φ̂) .

Next, recalling Φ̂yu = Φ̂yyĜ, we have

w∞

∥∥∥Fy,jΦ̂yy(I −∆Φ̂uy)−1(Ĝ + ∆)
∥∥∥
1

≤ w∞
∥∥∥Fy,jΦ̂yu

∥∥∥
1

+ max
‖w‖∞≤w∞

|Fy,jΦ̂yy∆w|+ max
‖w‖∞≤w∞

|Fy,jΦ̂yy∆Φ̂uy(I −∆Φ̂uy)−1(Ĝ + ∆)w|

≤ w∞
∥∥∥Fy,jΦ̂yu

∥∥∥
1

+ w∞ε∞

∥∥∥Fy,jΦ̂yy

∥∥∥
1

+ w∞ε∞

∥∥∥Fy,jΦ̂yy

∥∥∥
1

∥∥∥Φ̂uy(I −∆Φ̂uy)−1(Ĝ + ∆)
∥∥∥
∞

≤ w∞
∥∥∥Fy,jΦ̂yu

∥∥∥
1
+w∞ε∞

∥∥∥Fy,jΦ̂yy

∥∥∥
1

1+τ

∥∥∥Ĝ∥∥∥
∞

+ ε∞

1− ε∞τ


= w∞

∥∥∥Fy,jΦ̂yu

∥∥∥
1
+ w∞ε∞

∥∥∥Fy,jΦ̂yy

∥∥∥
1

1 + τ
∥∥∥Ĝ∥∥∥

∞
1− ε∞τ

 = f2,j(Φ̂) .

Lastly, remembering that Φ̂uu = I + Φ̂uyĜ and noticing that

(I − Φ̂uy∆)−1Φ̂uu = Φ̂uu + Φ̂uy∆(I − Φ̂uy∆)−1Φ̂uu ,

we have

w∞

∥∥∥Fu,j(I − Φ̂uy∆)−1Φ̂uu

∥∥∥
1

≤ w∞
∥∥∥Fu,jΦ̂uu

∥∥∥
1

+ w∞

∥∥∥Ĝ∥∥∥
∞
ε∞

∥∥∥Fu,jΦ̂uy

∥∥∥
1

∥∥∥Φ̂uy

∥∥∥
∞

1− ε∞
∥∥∥Φ̂uy

∥∥∥
∞

+w∞ε∞

∥∥∥Fu,jΦ̂uy

∥∥∥
1

1− ε∞
∥∥∥Φ̂uy

∥∥∥
∞

≤ w∞
∥∥∥Fu,jΦ̂uu

∥∥∥
1

+ w∞ε∞

∥∥∥Fu,jΦ̂uy

∥∥∥
1

1 + τ
∥∥∥Ĝ∥∥∥

∞
1− ε∞τ

= f5,j(Φ̂) .

Similar computations allows one to derive the upperbounds for the remaining terms. �
Lemma 4 exploits the upperbound

∥∥∥Φ̂uy

∥∥∥
∞
≤ τ to take into account the worst-case increase in the values

of the input and output signals due to uncertainty. One can interpret (37)-(38) as a kind of constraint
tightening approach related to the one that is used in the robust learning-based MPC literature [38]. In our
setup, similar to [10], the feasible set shrinks in the presence of larger impulse and free response estimation
error ε∞. This is because (37)-(38) are more restrictive, and will eventually become infeasible for sufficiently
large ε∞. Instead, the effect of increasing the value of τ is less intuitive. Indeed, as τ increases, the constraint∥∥∥Φ̂uy

∥∥∥
∞
≤ τ softens while (37)-(38) tightens. It is therefore necessary to explicitly optimize over τ . We are

ready to finalize the proof of Theorem 1

14



Proof of Theorem 1 Lemma 3 shows that the the cost of (5) upper-bounds J(G,K) = J(G, Φ̂uyΦ̂
−1
yy )

for every feasible K. Lemma 4 shows that (37)-(38) imply (39)-(40), which are equivalent to the safety
constraints (21)-(22) for the real system.

Note that the optimization problem in (5) can be written as

min
γ∈[0,ε−1

2 ),τ∈[0,ε−1
∞ )

Jrobust(γ, τ) , (41)

where the function Jrobust(γ, τ) is the optimal objective of the inner minimization in (5). This inner
optimization program is convex in Φ̂. �

E Proof of Theorem 2
It is first necessary to characterize a feasible solution to problem (5), which we later exploit to establish
our suboptimality bound. Such feasible solution is constructed as the optimal solution to a ground-truth
doubly-robust (GTDR) optimization program fully stated in Lemma 5 below.

Lemma 5 (Feasible solution to problem (5)) Let η = ε2
∥∥Φ?

uy

∥∥
2
and ζ = ε∞

∥∥Φ?
uy

∥∥
∞. Assume that

the estimation errors are small enough to guarantee η < 1
5 and ζ < 1

2 , and assume α ∈ [
√

2 η
ε2(1−η) , ε

−1
2 ).

Consider the following optimization problem and its optimal solution Φc:

Φc ∈ arg min
Φ

∥∥∥∥[Φyy Φyu Φyyy0

Φuy Φuu Φuyy0

]∥∥∥∥
F

(42)

subject to
[
I −G

] [Φyy Φyu

Φuy Φuu

]
=
[
I 0

]
,[

Φyy Φyu

Φuy Φuu

] [
−G
I

]
=

[
0
I

]
,

‖Φuy‖2 ≤
∥∥Φ?

uy

∥∥
2
, ‖Φuy‖∞ ≤

∥∥Φ?
uy

∥∥
∞ ,

φ1,j(Φ) + φ2,j(Φ) + φ3,j(Φ) ≤ by,j , (43)
φ4,j(Φ) + φ5,j(Φ) + φ6,j(Φ) ≤ bu,j , (44)
∀j = 1, . . . , sN ,

Φyy,Φyu,Φuy,Φuu with causal sparsities .

where

φ1,j(Φ) =
v∞ ‖Fy,jΦyy‖1

1− 2ζ
, φ4,j(Φ) =

v∞ ‖Fu,jΦuy‖1
1− 2ζ

, φ2,j(Φ) = w∞

∥∥∥∥∥∥
[

(Fy,jΦyu)
T

2
ε∞+ζ‖Ĝ‖∞

1−2ζ (Fy,jΦyy)
T

]T∥∥∥∥∥∥
1

,

φ5,j(Φ) = w∞

∥∥∥∥∥∥
[

(Fu,jΦuu)
T

2
ε∞+ζ‖Ĝ‖∞

1−2ζ (Fu,jΦuy)
T

]T∥∥∥∥∥∥
1

, φ3,j(Φ) = Fy,jΦyyŷ0 + 2
ε∞ + ζ ‖ŷ0‖∞

1− 2ζ
‖Fy,jΦyy‖1 ,

φ6,j(Φ) = Fu,jΦuyŷ0 + 2
ε∞ + ζ ‖ŷ0‖∞

1− 2ζ
‖Fu,jΦuy‖1 .

Then, the following expressions

Φ̃yy = Φc
yy(I+∆Φc

uy)−1, Φ̃yu = Φc
yy(I+∆Φc

uy)−1(G−∆),

Φ̃uy = Φc
uy(I + ∆Φc

uy)−1, Φ̃uu = (I + Φc
uy∆)−1Φc

uu,

γ̃ =

√
2η

ε2(1− η)
, τ̃ =

ζ

ε∞(1− ζ)
, (45)

provide a feasible solution to problem (5).

The achievability constraints of the GTDR program are based upon the ground-truth impulse response G,
and its safety constraints may be more stringent than those of problem (5), thus allowing to guarantee that
Φc is feasible for problem (5). Letting Kc denote the controller being optimal for the GTDR problem, we
define the corresponding suboptimality gap with respect to ground-truth as

S(ε∞) =
J(G,Kc)2 − J(G,K?)2

J(G,K?)2
, (46)
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where we have equivalently denoted JGTDR = J(G,Kc) in the main body of this extended abstract to
simplify the notation. We further note that if the estimation error ε∞ is too large, the GTDR program (42)
may become infeasible. This is expected as the uncertainty level might be incompatible with the required
safety. On the other hand, if the optimal solution to the non-noisy ground-truth problem (3) subject to
(1)-(2) does not activate the safety constraints (2), then the constraints of (42) remain inactive for small
enough ε∞. In such case we have that S(ε∞) = 0.

Exploiting the feasible solution characterized by Lemma 5, we are ready to prove Theorem 2.

Proof of Theorem 2 By denoting as Φ̂? the closed-loop responses obtained by applying K̂? to Ĝ, we
have by Lemma 3

J(G, K̂?) ≤ 1

1− ε2γ?

∥∥∥∥∥
[√

1 + h(ε2, α, Ĝ) + h(ε2, α, ŷ0)Φ̂?
yy Φ̂?

yu Φ̂?
yyŷ0√

1 + h(ε2, α, ŷ0)Φ̂?
uy Φ̂?

uu Φ̂?
uyŷ0

]∥∥∥∥∥
F

,

where γ? is optimal for (5). By Lemma 5, under the assumptions on η and ζ we have that (γ̃, τ̃ , Φ̃) defined
in (45) belongs to the feasible set of (5). Hence, by suboptimality of any feasible solution, one has

J(G, K̂?) ≤ 1

1− ε2γ̃

∥∥∥∥∥
[√

1 + h(ε2, α, Ĝ) + h(ε2, α, ŷ0)Φ̃yy Φ̃yu Φ̃yyŷ0√
1 + h(ε2, α, ŷ0)Φ̃uy Φ̃uu Φ̃uyŷ0

]∥∥∥∥∥
F

.

Using the definition of Φ̃ from Lemma 5, we now relate the term

C̃=

∥∥∥∥∥
[√

1 + h(ε2, α, Ĝ) + h(ε2, α, ŷ0)Φ̃yy Φ̃yu Φ̃yyŷ0√
1 + h(ε2, α, ŷ0)Φ̃uy Φ̃uu Φ̃uyŷ0

]∥∥∥∥∥
F

,

to JGTDR = J(G,Kc). Define the quantities

M c = h(ε2, α, Ĝ) + h(ε2, α, ŷ0) + h(ε2,
∥∥Φc

uy

∥∥
2
,G) + h(ε2,

∥∥Φc
uy

∥∥
2
,y0) ,

M? = h(ε2, α, Ĝ) + h(ε2, α, ŷ0) + h(ε2,
∥∥Φ?

uy

∥∥
2
,G) + h(ε2,

∥∥Φ?
uy

∥∥
2
,y0) ,

V c = h(ε2, α, ŷ0) + h(ε2,
∥∥Φc

uy

∥∥
2
,y0) ,

V ? = h(ε2, α, ŷ0) + h(ε2,
∥∥Φ?

uy

∥∥
2
,y0) .

By using analogous expressions as those derived in Lemma 5, we obtain

C̃ =

√√√√∥∥∥∥∥
[
Φ̃yy Φ̃yu Φ̃yyŷ0

Φ̃uy Φ̃uu Φ̃uyŷ0

]∥∥∥∥∥
2

F

+
(
h(ε2, γ̃, Ĝ)+h(ε2, γ̃, ŷ0)

)∥∥∥Φ̃yy

∥∥∥2
F
+h(ε2, γ̃, ŷ0)

∥∥∥Φ̃uy

∥∥∥2
F

≤

√
J(G,Kc)2 +M c

∥∥Φc
yy

∥∥2
F

+ V c
∥∥Φc

uy

∥∥2
F

1− ε2
∥∥Φc

uy

∥∥
2

.

Thus, we have established the chain of inequalities

J(G, K̂?)2 ≤ 1

(1− ε2γ̃)2
C̃2 ≤ 1

(1− ε2γ̃)2
1

(1− ε2
∥∥Φc

uy

∥∥
2
)2

(
J(G,Kc)2 +M c

∥∥Φc
yy

∥∥2
F

+ V c
∥∥Φc

uy

∥∥2
F

)
.

Next, notice that, by definition of the GTDR suboptimality gap (46), we have

J(G,Kc)2 = (S(ε∞) + 1)J(G,K?)2 .

Recalling that η < 1
5 ,
∥∥Φc

uy

∥∥
2
≤
∥∥Φ?

uy

∥∥
2
and

∥∥Φc
yy

∥∥
2
≤
∥∥Φ?

yy

∥∥
2
, and noticing that if M,V > 0, then
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Ma2 + V b2 ≤ (M + V )(a2 + b2), we can establish the following inequalities.

J(G, K̂?)2 − J(G,K?)2

J(G,K?)2

≤

(
1

(1− ε2
∥∥Φc

uy

∥∥
2
)2(1− ε2γ̃)2

)(
S(ε∞) + 1 +

M c
∥∥Φc

yy

∥∥2
F

+ V c
∥∥Φc

uy

∥∥2
F

J(G,K?)2

)
− 1

≤

(
1

(1− η)2(1−
√

2 η
1−η )2

− 1 +
S(ε∞)

(1− η)2(1−
√

2 η
1−η )2

)
+

M c
∥∥Φc

yy

∥∥2
F

+ V c
∥∥Φc

uy

∥∥2
F

(1− η)2(1−
√

2 η
1−η )2J(G,K?)2

≤ η

(
2(1 +

√
2)− (1 +

√
2)2η

(1− (1 +
√

2)η)2

)
+

S(ε∞)

(1− (1 +
√

2)η)2
+

(M c + V c)J(G,Kc)2

(1− (1 +
√

2)η)2J(G,K?)2

≤ 20η + 4S(ε∞) + 4(M c + V c)(S(ε∞) + 1) ,

≤ 20η + 4(M c + V c) + 4S(ε∞)(1 +M c + V c) .

Last, we prove that 20η + 4(M c + V c) = O
(
ε2
∥∥Φ?

uy

∥∥
2

(‖G‖22 + ‖y0‖22)
)
. First, notice that M c + V c ≤

M? + V ? . By considering the expressions of M? and V ?, using α ≤ 5
∥∥Φ?

uy

∥∥
2
, η < 1

5 ,
∥∥∥Ĝ∥∥∥

2
≤ ‖G‖2 + ε2

and ‖ŷ0‖2 ≤ ‖y0‖2 + ε2, we deduce that

M? = h(ε2, α, Ĝ) + h(ε2, α, ŷ0) + h(ε2,
∥∥Φ?

uy

∥∥
2
,G) + h(ε2,

∥∥Φ?
uy

∥∥
2
,y0)

≤ 2
[
ε22(2+5

∥∥Φ?
uy

∥∥
2
‖G‖2)2 + 2ε2 ‖G‖2 (2+5

∥∥Φ?
uy

∥∥
2
‖G‖2) + ε22(2 + 5

∥∥Φ?
uy

∥∥
2
‖y0‖2)2+

+ 2ε2 ‖y0‖2 (2 + 5
∥∥Φ?

uy

∥∥
2
‖y0‖2)

]
+O(ε22

∥∥Φ?
uy

∥∥
2

(‖G‖22 + ‖y0‖22))

= O
(
ε2
∥∥Φ?

uy

∥∥
2

(‖G‖22 + ‖y0‖22)
)
,

and, similarly, V ? = O
(
ε2
∥∥Φ?

uy

∥∥
2
‖y0‖22

)
. �

Proof of Lemma 5 It is easy to verify that Φ̃ satisfies the constraints in (5); indeed, Φ̃ comprises the
closed-loop responses when we apply Kc to the estimated plant Ĝ. Next, we have

∥∥∥Φ̃uy

∥∥∥
2

=
∥∥Φc

uy(I + ∆Φc
uy)−1

∥∥
2
≤

∥∥Φc
uy

∥∥
2

1− ε2
∥∥Φc

uy

∥∥
2

≤
√

2

∥∥Φc
uy

∥∥
2

1− ε2
∥∥Φc

uy

∥∥
2

≤
√

2

∥∥Φ?
uy

∥∥
2

1− ε2
∥∥Φ?

uy

∥∥
2

=
√

2
η

ε2(1− η)
= γ̃ .

Since α ∈ [
√

2 η
ε2(1−η) , ε

−1
2 ) and η < 1

5 , then γ̃ ≤ α < ε−12 . Hence γ̃ is a feasible value for γ in problem (5).
Similarly,∥∥∥Φ̃uy

∥∥∥
∞

=
∥∥Φc

uy(I + ∆Φc
uy)−1

∥∥
∞ ≤

∥∥Φc
uy

∥∥
∞

1− ε∞
∥∥Φc

uy

∥∥
∞
≤

∥∥Φ?
uy

∥∥
∞

1− ε∞
∥∥Φ?

uy

∥∥
∞

=
ζ

ε∞(1− ζ)
= τ̃ .

Since ζ < 1
2 , then τ̃ < ε−1∞ . Hence, it is a feasible value for τ in problem (5). It remains to show that

Φ̃ satisfies the safety constraints (37)-(38). We know that Φc is feasible for (42), and hence φ1,j(Φc) +
φ2,j(Φ

c) + φ3,j(Φ
c) ≤ by,j and φ4,j(Φc) + φ5,j(Φ

c) + φ6,j(Φ
c) ≤ bu,j . We conclude the proof by showing

that fi,j(Φ̃) ≤ φi,j(Φc) for every i = 1, . . . , 6. We report the full derivations for the most informative terms.

f1,j(Φ̃) =
v∞

∥∥∥Fy,j (Φc
yy −Φc

yy∆Φc
uy

(
I + ∆Φc

uy

)−1)∥∥∥
1

1− ε∞τ̃

≤
v∞
∥∥Fy,jΦc

yy

∥∥
1

+
v∞ε∞‖Fy,jΦc

yy‖1‖Φc
uy‖∞

1−ε∞‖Φc
uy‖∞

1− ε∞τ̃

≤
v∞
∥∥Fy,jΦc

yy

∥∥
1

+
v∞ε∞‖Fy,jΦc

yy‖1‖Φ?
uy‖∞

1−ε∞‖Φ?
uy‖∞

1− ε∞τ̃

≤
v∞
∥∥Fy,jΦc

yy

∥∥
1

1− 2ζ
= φ1,j(Φ

c) .
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Figure 3: Robust suboptimality gap S(ε∞). This quantity can be interpreted as an indicator as to whether
the guarantee (6) holds for a given ε∞.

Similarly, it is easy to show that f4,j(Φ̃) ≤ φ4,j(Φc). Next, by remembering that

Φ̃yu = Φc
yu −Φc

yy∆−Φc
yy∆Φc

uy(I + ∆Φc
uy)−1Ĝ ,

Φ̃yy = Φc
yy −Φc

yy∆Φc
uy

(
I + ∆Φc

uy

)−1
,

we have

f2,j(Φ̃)

≤ w∞
∥∥Fy,jΦc

yy(I + ∆Φc
uy)−1(G−∆)

∥∥
1

+ w∞ε∞
∥∥Fy,jΦc

yy(I + ∆Φc
uy)−1

∥∥
1

1 + τ̃
∥∥∥Ĝ∥∥∥

∞
1− ε∞τ̃



≤ w∞
∥∥Fy,jΦc

yu

∥∥
1
+w∞ε∞

∥∥Fy,jΦc
yy

∥∥
1

1+

∥∥Φc
uy

∥∥
∞

∥∥∥Ĝ∥∥∥
∞

1− ε∞
∥∥Φc

uy

∥∥
∞

+ w∞ε∞

∥∥Fy,jΦc
yy

∥∥
1

(
1+τ̃‖Ĝ‖∞
1−ε∞τ̃

)
1− ε∞

∥∥Φc
uy

∥∥
∞

≤ w∞
∥∥Fy,jΦc

yu

∥∥
1

+ w∞
∥∥Fy,jΦc

yy

∥∥
1

ε∞ +
ζ
∥∥∥Ĝ∥∥∥

∞
1− ζ

+
ε∞ +

ζ‖Ĝ‖∞
1−ζ(

1− ζ
1−ζ

)
(1− ζ)


= w∞

∥∥Fy,jΦc
yu

∥∥
1
+2w∞

∥∥Fy,jΦc
yy

∥∥
1

(1− ζ)
(
ε∞ + ζ

∥∥∥Ĝ∥∥∥
∞

)
1− 2ζ

≤ w∞
∥∥Fy,jΦc

yu

∥∥
1
+2w∞

∥∥Fy,jΦc
yy

∥∥
1

(
ε∞ + ζ

∥∥∥Ĝ∥∥∥
∞

)
1− 2ζ

≤ φ2,j(Φc) .

Similarly, f3,j(Φ̃) ≤ φ3,j(Φc) and f6,j(Φ̃) ≤ φ6,j(Φc). By only noticing that ‖Φc
uu‖∞ ≤ 1+

∥∥Φc
uy

∥∥
∞

(∥∥∥Ĝ∥∥∥
∞

+ ε∞

)
and that (1 + ζ)(1− 2ζ) ≤ 1− ζ for every ζ > 0, analogous computations lead to f5,j(Φ̃) ≤ φ5,j(Φc). �
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