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Abstract

Objective. Stereo-electroencephalography (SEEG) has recently gained importance in analyzing
brain functions. Its high temporal resolution and spatial specificity make it a powerful tool to
investigate the strength, direction, and spectral content of brain networks interactions, especially
when these connections are stimulus-evoked. However, choosing the best approach to evaluate the
flow of information is not trivial, due to the lack of validated methods explicitly designed for
SEEG. Approach. We propose a novel non-parametric statistical test for event-related causality
(ERC) assessment on SEEG recordings. Here, we refer to the ERC as the causality evoked by a
particular part of the stimulus (a response window (RW)). We also present a data surrogation
method to evaluate the performance of a causality estimation algorithm. We finally validated our
pipeline using surrogate SEEG data derived from an experimentally collected dataset, and
compared the most used and successful measures to estimate effective connectivity, belonging to

the Geweke—Granger causality framework. Main results. Here we show that our workflow correctly
identified all the directed connections in the RW of the surrogate data and prove the robustness of
the procedure against synthetic noise with amplitude exceeding physiological-plausible values.

Among the causality measures tested, partial directed coherence performed best. Significance. This
is the first non-parametric statistical test for ERC estimation explicitly designed for SEEG datasets.
The pipeline, in principle, can also be applied to the analysis of any type of time-varying estimator,

if there exists a clearly defined RW.

1. Introduction

Stereoelectroencephalography (SEEG) is traditionally
used by clinicians to locate epileptic foci in patients
with drug-resistant epilepsy [1, 2] and has recently
gained importance to investigate the neuronal struc-
tures involved in important brain functions [3-5], or
as driving signal for brain-computer interfaces [6].
Indeed, SEEG recordings allow us to gather data by
combining electroencephalography (EEG) or magne-
toencephalography (MEG) temporal resolutions of
milliseconds with unmatched spatial specificity [7]
and without the common limitations associated with

© 2021 The Author(s). Published by IOP Publishing Ltd

non-invasive recordings (e.g. artifacts, inverse prob-
lem, source leakage, etc) [4].

Recent works using SEEG recordings have shown
that cognitive tasks cause event-related spectral per-
turbations of brain activity at frequencies up to
300 Hz [3, 8—12]. Furthermore, high gamma activity
arising from a portion of the network engaged by a
task may also causally induce high gamma activity in
another brain region [13]. Fast oscillatory neuronal
activity can in fact play an important role in organiz-
ing neurons in large-scale networks [14—16].

The combination of high spatial and temporal
resolution, together with the possibility to record
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Table 1. Main advantages and disadvantages of the causality metrics considered in this paper.

Causality measures Main advantages

Main disadvantages

DTF Extends the Granger causality concept to

multichannel data.

Cannot discriminate between direct and
indirect connections.

Not well-suited to study interactions
occurring during brief time scales.

Lack of use -and therefore validation- in
literature.

Compromised sensitivity to outflows.

dDTF Selectively enhances direct influences over
indirect ones.

SdDTF Also adapts for examining short-time
epochs.

PDC Able to separate direct from indirect
interactions and works well in relatively
noisy data.

wDTF and wPDC Increases the physiological interpretability of

the DTF or the PDC.

This type of weighting can bias the results by
enhancing interactions coming from channels
with a high-power spectral density.

wideband data, offered by SEEG, makes it a remark-
able tool to identify brain structures engaged in
task-related cognitive processes. Furthermore, SEEG
allows to investigate the direction, the amplitude,
and the characteristic frequencies of the interactions
occurring among those structures. This set of causal
connections under different functional conditions is
traditionally defined as effective connectivity [17].

The work presented here stems from this back-
ground and aims to define a pipeline to evaluate
effective connectivity in SEEG cognitive processing
tasks.

One of the most interesting applications of effect-
ive connectivity is the study of the event-related caus-
ality (ERC), i.e. the changes in the connectivity net-
work of brain structures time-locked to a stimulus
[13]. Hence, to investigate the dynamical evolution of
connectivity patterns in response to a specific com-
ponent of a time-varying stimulus (i.e. the response
window, RW) there is the need to validate a time-
varying connectivity estimation framework.

Such approach may be useful to investigate reach-
ing and grasping tasks [18, 19], or the RW of single
words of a complete sentence [3, 5, 20].

Reliable time-varying methods are thus needed
to identify the interactions among brain structures
from their electrophysiological signals, and how these
interactions vary with stimuli and time. In particular,
connectivity metrics based on the Geweke-Granger
causality [21, 22] such as the directed transfer func-
tion (DTF) [23], the partial directed coherence (PDC)
[24], the direct DTF (dDTF) [25], the short-time dir-
ect DTF (SdDTF) [13] and the scalogram-weighted
DTF and PDC (wDTF, wPDC) [26], are particu-
larly interesting because they proved to be effect-
ive in correctly identifying interactions on simulated
or benchmark data [13, 26-29]. These indexes are
based on multivariate autoregressive (MVAR) mod-
els and allow the analysis of non-stationary data
[30, 31] by also determining the spectral content of
the interaction.

The DTF extends the Granger causality concept
to multichannel data, which in principle should
allow distinguishing between direct and indirect

interactions. However, non-zero values of DTF can
be found between two recording sites for which the
causal influence is not direct [13]. The dDTF is the
product between the DTF and the partial coherence
[32], and it was designed to successfully discriminate
between direct and indirect causal influences. dDTF is
however unsuited for connectivity estimation in brief
data epochs [13]. To overcome this limitation, the
SADTF was introduced. SADTF assesses magnitudes
and spectral characteristics of directed causal interac-
tions between time series, by also examining short-
time epochs [13]. The PDC can separate direct from
indirect connections and can correctly identify inter-
actions even in relatively noisy data [33-36]. The
PDC, however, normalizes the outgoing connection
strengths and this can, in turn, compromise the sens-
itivity to outflows. The wDTF and the wPDC were
proposed to increase the physiological interpretabil-
ity of the DTF and the PDC [26]. However, this type
of weighting can potentially bias the results by enhan-
cing interactions coming from channels with a high-
power spectral density. The main advantages and
disadvantages of these causality measures are sum-
marized in table 1.

Choosing the best method to evaluate the ERC
on SEEG recordings is not trivial. While the Geweke—
Granger causality measures have been widely used
and validated for the assessment of brain net-
works in EEG/MEG and fMRI scenarios [30, 37-45],
it is still missing a ground truth of the applica-
tion of these techniques on SEEG data. This, com-
bined with the lack of a solid statistical frame-
work to identify significant directed connections,
leads to the need for developing and validating
ERC estimation tools explicitly designed for SEEG
recordings.

To overcome this limitation, we propose here
a new workflow for the ERC assessment on SEEG
recordings, based on a statistical non-parametric
mapping approach [46, 47]. The procedure relies
on the computation of a significance metric tested
against a null permutation distribution obtained by
shuffling several times the time samples of the con-
nectivity measure.
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We tested the validity of our pipeline on surrog-
ate SEEG data with physiologically plausible noise
levels and with a known connectivity matrix as well
as strength and distribution of the causality samples
comparable to those of a real SEEG dataset. In this
way, it was also possible to investigate which combin-
ation of the previously described causality measures
and significance metrics displays results closer to this
ground truth.

2. Methods

2.1. ERC assessment on SEEG recordings

The computational steps necessary to identify sig-
nificant directed connections during the RW on a
multi-trial SEEG dataset are graphically described in
figure 1 and detailed below.

2.1.1. Causality estimation

Within the Granger causality framework, a time series
xj () is deemed to cause another time series x; (¢) if
knowledge of past samples of x; () reduces the predic-
tion error for the current sample of x; (). The relation
between x; (t) and x; () can be estimated by fitting a
time-varying MVAR model on X (¢):

X() =[x (1), %), ...x0 ()] (1

where D is the total number of channels.
The MVAR model assumes a linear relationship
between the channels in X (¢) of the form:

k=1
X)) ==Y AMX(t—k+er) (2
p

where Ay (t) is the time-varying DxD MVAR coeffi-
cients matrix, e (t) is a white noise process with cov-
ariance matrix Wand p is the model order. The Ay (¢)
matrices can be derived by using a general linear Kal-
man filter (GLKF) [31]. To estimate the model order
D> the Bayesian information criterion (BIC) can be
used [48].

To improve ERC estimation accuracy, single tri-
als can be combined in two ways: (a) single-trial
connectivity estimation followed by averaging across
trials, and (b) simultaneous connectivity estimation
on all trials. Here the single-trial modeling is used.
This allows for the possibility of time-warping of the
connectivity matrices before trial averaging to align
epoch events while preserving the frequency content
of the signal. Single-trial modeling is also more reli-
able and less prone to overfitting than multi-trial
modeling [49].

After estimating the Ay (¢) matrices trial by trial,
these are fed to the preferred causality measure
algorithm (details on how to calculate the DTF, PDC,
dDTE, SADTE, wDTE, and wPDC can be found in
[13, 23-26]), resulting in K x D(D — 1) Conny; (f,t)
matrices, where K is the number of trials, and
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Connj; (f, 1) is the information flow from channel j to
channel 1, function of both time and frequency.

2.1.2. Connectivity in RW

All the next steps of the algorithm are applied inde-
pendently at each frequency (or band [f, f,] if values
from Conn;; (f1,t) to Conny; (f>,t) are averaged first).

If the RW is not temporally aligned across trials,
time-warping of the Conn;; (f, -) time series can now
be safely performed without altering the frequency
content of the original signal.

Baseline correction is then carried out by divid-
ing Conn;; (f,-), trial by trial and for each i,j (i # j)
couple independently, by its mean baseline value. The
Connj; (f, ) matrices are finally obtained by averaging
across trials, and a significance metric (sig) that quan-
tifies the increase of the connectivity during the RW
is calculated for each pair i,j (i # j) of channels. Many
significance metrics can be used, here we considered
the following ones:

Significant Mean:

. ax T
sig = —(Zsas CT) 1 (3)
RW mean:
sig = a. (4)
Mean ratio:
sig = 7(252) T (5)
Significant Max:
AxT ()

BT T AT +1

where a and A are respectively the mean and the max-
imum connectivity amplitude during the RW, T'is the
amount of time the RW connectivity is above the 95th
percentile of the distribution of connectivity values in
the baseline and as, A; and T are the same quantities
but pertaining to the other segments s of the stimulus.

The rationale behind the Significant Max met-
ric is to determine the pairs of channels that high-
light the maximum time-specific significant causal-
ity. The Significant Mean metric has been introduced
as a variant of Significant Max to limit the effect
of possible outliers in the causality estimation. The
rationale behind the RW Mean metric is to highlight
the pairs of channels with the highest absolute mean
connectivity during the RW, while the Mean Ratio is
designed to highlight the highest connectivity values
in the RW relative to the causality values of other parts
of the stimulus.
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Figure 1. Processing steps needed to identify a significant connection in the response window (RW). First, the model order p of
the time-varying multivariate autoregressive (MVAR) model is estimated using the Bayesian information criterion (BIC).
Afterwards, a general linear Kalman filter (GLKF) is used to extract the MVAR model parameters that are then fed to the
connectivity estimation algorithm. After the time-warping of the causality time series in order to temporally align the epochs (if
needed), the causality values are baseline corrected and averaged across trials. A significance metric (sig) is subsequently
computed in RW for each couple of channels and compared against a null permutation distribution. This distribution is obtained
by shuffling 1000 times the causality time series for each pair i, j (i 7 j) of channels, by computing the sig;; values and retaining for

each permutation only the maximum across all 4, j pairs.

2.1.3. Identification of significant directed connections
Each sig metric is computed for each pair 1,7 (i # j) of
channels, and the D (D — 1) sig values are stored.

The time samples of the connectivity series are
then shuffled N times and the sig value is re-
computed for each permutation. To construct the
null (permutation) distribution and to control for
false discovery rate [46, 47], the maximum sig
value across all the series for each permutation is
retained. Significance is then assigned to connec-
tions between pairs of electrodes whose sig values
are above the 95th percentile of the permutation
distribution.

It is important to note that the null distribu-
tion can be also computed in many different ways,
for example by circularly and independently shift-
ing the time series [50] or by randomizing their
phases [51]. Supplementary data figures S1 and S2
(available online at stacks.iop.org/JNE/18/056041/
mmedia) show the results after testing the pipeline
with the latter two methods of estimating the null
distribution.

2.2. Case study

To validate our approach and evaluate which combin-
ation of causality measures and RW-significance met-
rics performs best in our SEEG scenario, six real data-
derived channels with a known connectivity profile
were simulated (figure 2(A)). These channels were
then added to the real datasets from which they were
derived to test the pipeline in a typical SEEG analysis
scenario.

2.2.1. The dataset

The real SEEG data were recorded in ten patients
(5 female, median age 32, range 17-44) who
underwent surgical implantation of multiple leads
with intracerebral electrodes for refractory epilepsy
at the ‘Claudio Munari’ Epilepsy Surgery Center of
Milan, Italy [52, 53]. The strategy of implantation
was defined purely based on clinical needs. During
the experiment, the patients were presented with a
set of auditory stimuli, consisting of pairs of Italian
sentences with a homophonous phrase (i.e. with the
same acoustic content) which could be interpreted
as a noun phrase or a verb phrase, depending on the
words preceding and following it. The homophon-
ous part of the stimuli was considered as the RW
(figure 2(B)).

A total of 1439 recording contacts were implanted
in the grey matter. Channels were referenced to two
recording contacts located in the white matter, neutral
to electrical stimulation (neutral reference).

Of all the implanted leads, 242 exhibited task-
specific high gamma activity (150-300 Hz) and were
thus retained for the subsequent analysis (median
14.5, range 2—71). The number of responsive record-
ing contacts for each subject is in supplementary data
table 1. The sampling rate was set to 1000 Hz, and tri-
als were extracted from 1.5 s before stimulus onset,
with a duration of 6 s.

2.2.2. Surrogate data modeling

For each subject, channels were modeled using a
MVAR model with a model order p equal to that
estimated by the BIC. The estimation was carried out
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Figure 2. (A) Graph highlighting the directed connections
(arrows) simulated in the six-nodes surrogate network
during the RW. (B) Schematic of an experimental paradigm
in which a time-varying stimulus is delivered, and the
interest lies in the electrophysiological response specific for,
exclusively, a part of the stimulus, the response window
(RW). (C) Time-frequency plots of the partial directed
coherence (PDC) of the six surrogate SEEG channels. The
horizontal axis represents the time in seconds (relative to
the onset of the stimulus), frequencies are on the vertical
axis, and the colour scale (bottom right) encodes the value
of the PDC, from 0 (blue) to its maximum (red). The plot
in the ith row and jth column shows the PDC from channel
j to channel i. The three white vertical lines in each plot
indicate the onset of the stimulus (dashed line) and the
start and end of the RW (solid line), respectively.

based on the concatenation of all trial baselines and
independently for each subject (subject-by-subject
model orders are in supplementary data table 1).
By imposing the autoregressive coefficients’ val-
ues, it was possible to obtain arbitrary connectivity
relations.

To model the surrogate channels, the distribution
of the MVAR coefficients of the real data (estimated
using a GLKF) in the different segments of the stimu-
lus was used. More specifically, to model the baseline
and the response to the parts of the stimulus outside
the RW, the time-varying MVAR coefficients were
sampled from a normal distribution with mean and
standard deviation equal to those estimated from real
data. The estimation was done on the distribution of
the coefficients for each of the three segment blocks
(baseline, between baseline and the RW, and from the
RW to the end of the stimulus), across time samples,
trials, and channel pairs. To model the increase in
connectivity during the RW, the simulation coeffi-
cients were set as the 99th percentile of the distribu-
tion of MVAR coefficients during the RW. Also, noise
was added as various levels (diffusion) of high val-
ues of estimated connectivity outside the RW. It is
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worth noting that noise is also present during RW
and baseline, even if it is not parametrized. This noise
comes from the MVAR model that was used to sur-
rogate data. It was extracted by sampling from a mul-
tivariate normal distribution with zero mean and
covariance matrix equal to that estimated from the
application of the GLKF to real data. This allowed
increasing surrogate and real data similarity. Hence,
seven equispaced noise levels were simulated as dif-
ferent percentages of the number of significant time
points. A time point was deemed significant if it was
above 95% of the amplitudes of the MVAR coeffi-
cients in the baseline. The 5th and the 95th percentiles
of the distributions of the number of significant time
points for each real dataset were used as boundaries of
the physiological noise, leading to noise levels ranging
from 5% to 47% of supra-threshold (the 95th per-
centile of baseline values) time samples across all sub-
jects (the individual range is shown in supplement-
ary data table 1). This type of noise modeling allowed
to parametrize the strength of the connections out-
side the RW against the amplitude during the RW,
i.e. the signal-to-noise ratio (SNR). The noise diffu-
sion percentages are indeed inversely proportional to
the SNR.

The MVAR model coefficient values of these time
samples were extracted from a normal distribution
with mean and standard deviation equal to those
estimated from the significant time points in the real
data. The noise levels were then increased beyond the
physiological maximum up to 99% and with a step of
5%. This analysis aimed at locating the point at which
performances started to heavily degrade, and to test
which causality/significance combinations were more
robust against substantial noise.

PDC values calculated on the resulting six surrog-
ate channels for one example subject are shown in
figure 2(C), with noise diffusion outside the RW cor-
responding to 7.63%.

2.2.3. Pipeline testing

To test the pipeline the surrogate channels were added
to the corresponding real datasets. This is necessary
to simulate a real-world analysis scenario, especially
regarding the number of channels undergoing the
analysis. In fact, most MVAR estimation algorithms
suffer performance degradation with increasing data-
set dimensionality [31, 49]. Subsequently, the con-
nectivity metrics described before (DTF, wDTE
dDTF, SADTE, PDC and wPDC,) are calculated.

Linear interpolation time-warping was used to
align the RW across all trials, before trial averaging
of the causality time-frequency matrices [54—57]. The
SNR is expected to be large in the context of averaged-
across-trials ERC [58].

Note that all the causalities are functions of both
time and frequency, but, for simplicity, the mean
across all frequencies was retained and used for the
subsequent computation of all the sig values. After
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significance is assigned to a connection between two
channels through the permutation test, a binary con-
nectivity matrix with ones in case of detected connec-
tions and zeros otherwise is obtained for each com-
bination of causality measure, sig metric, and level
of outside RW noise diffusion. Accuracy, sensitivity,
and specificity were thus computed by comparing
the obtained connectivity matrices with the reference
one, as follows:

TP+ TN

accuracy = AN (7)
TP

sensitivity = T (8)
TN

specificity = N 9)

where TP is the number of correctly identified con-
nections, TN is the number of correctly rejected con-
nections, P is the number of RW connections within
surrogate channels, and N is the difference between
the number of all possible connections within surrog-
ate channels and P.

Another important metric to assess the goodness
of the estimation is the number of detected spurious
connections, i.e. the number of significant connec-
tions between the surrogate and real data (ideally it
should be zero).

All statistical testing was done using Friedman
tests with Nemenyi post-hoc [59, 60]. Non-normality
was assessed using the Shapiro-Wilk test [61]. Signi-
ficance was assigned at p < 0.01.

3. Results

Figure 3 shows the accuracies, sensitivities, specificit-
ies, and the number of spurious connections of all the
causality measures, noise diffusion levels, and signi-
ficance metrics (RW mean, Mean Ratio, Significant
Max, and Significant Mean), averaged across subjects.
Only the combinations PDC-RW Mean and PDC-
Mean Ratio achieved perfect accuracy (figure 3(A)).
All the causality measures in combination with the
RW Mean metric (apart from dDTF) showed the
best specificity for all the noise diffusion levels, while
only PDC, in combination with the Mean Ratio met-
ric, achieved similar values. For the Significant Mean
and Significant Max metrics, the PDC, wPDC, and
SADTF reached the highest specificity (figure 3(B)).
All causality measures in combination with the Mean
Ratio metric showed the greatest sensitivity for all
physiological noise diffusion levels, with PDC per-
forming equally well in combination with RW Mean
(figure 3(C)). The number of spurious connections
detected by the RW Mean was almost null, with just
8 for the wDTF in one subject and 2 for the SADTF
in another. All causality measures but PDC identi-
fied spurious connections in combination with all
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the other significance metrics for all the physiological
noise diffusion levels, with numbers exceeding 100
using the Mean Ratio metric (figure 3(D)). Interest-
ingly, the two Significant Mean and Significant Max
metrics always performed equally.

To investigate the dependency of accuracy, sensit-
ivity, and specificity on the level of outside RW noise
diffusion, the trials of the surrogate data were ran-
domly resampled with replacement. The ERC estim-
ation pipeline was executed for each resampling. A
series of linear regression analyses on the accuracy,
sensitivity, and specificity values did not reveal any
significant effect of the level of outside RW noise dif-
fusion (Pearson’s p not significantly different from
zero, significance level adjusted with Bonferroni).
Increasing the noise levels beyond the physiological
maximum up to 99% revealed a decrease in the
pipeline estimation accuracy starting well beyond
physiological plausible levels (median 60%, range
30%-99%), with the PDC-RW Mean combination
remaining the best performing one for almost every
subject.

The general performance of each causality meas-
ure and significance metric was independently
evaluated. For each causality measure, its accuracy,
sensitivity, specificity, and the number of spurious
connections were combined disregarding the signi-
ficance metric and the level of noise diffusion outside
the RW. This revealed that: (a) for accuracy, PDC
performed better than all the other causality meas-
ures; (b) PDC, SADTF and wPDC showed higher
specificity than wDTE, dDTE, and DTF; (c¢) wPDC
showed the lowest sensitivity; (d) PDC, SADTF and
wPDC manifested less spurious connections than
wDTE, dDTE, and DTF (figure 4(A)).

The same procedure was applied to each signi-
ficance metric, revealing that: (a) RW Mean had
the highest accuracy and specificity and the low-
est number of spurious connections; (b) Mean
Ratio showed the best sensitivity and the largest
number of spurious connections, while perform-
ing poorly in terms of specificity; (c) Significant
Mean and Significant Max always performed equally,
showing the lowest accuracies and sensitivities
(figure 4(B)).

The subject-by-subject results are reported in
table 2. The PDC-RW Mean and the PDC-Mean
Ratio combinations reached 100% accuracy in clas-
sifying the presence or absence of connections. No
spurious connections were detected using the RW
Mean significance metric in 8 out of 10 subjects
for all noise levels. Increasing the noise beyond
physiological boundaries led to spurious connec-
tions in the PDC/Mean Ratio case for 7 out of
10 subjects. Interestingly, the only three subjects
for which the PDC-Mean Ratio combination out-
performed the PDC-RW Mean showed a higher
physiological noise level (Mann—Whitney Us; = 21,
p <0.05).
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Figure 3. Bar plots of the accuracy (A), specificity (B), sensitivity (C) and the number of spurious connections (D) of the
estimated connectivity matrices, averaged across subjects. Each colored group represents a causality metric, while each quadrant
represents a significance metric, i.e. Significant Mean (top left), RW Mean (top right), Mean Ratio (bottom left), Significant Max
(bottom right). The seven bars in each group represent the levels of diffusion of connectivity outside the RW. The black empty
bars are the mean values calculated over subjects and noise levels. The error bars are their standard deviations. The asterisks
represent all the combinations of causality and significance metrics which performed better (Nemenyi post-hoc after Friedman
test, p < 0.01) for the evaluation metric in the corresponding panel title. Multiple asterisks in the same panel indicate that those
combinations of causality and significance metric performed equally amongst them, but better with respect to the others.

The analysis was repeated using p = 2, yielding
very similar results (supplementary data figures S3
and S4), indicating the efficacy of the pipeline even
when lowering its computational complexity.

4. Discussion

Despite recent growing interest, the SEEG has not
been often used before to investigate ERC patterns
in brain circuitry. Here we propose a novel statistical
approach to identify significant directed interactions

in SEEG datasets. We showed the plausibility of our
procedure by also testing the effectiveness of several
causality measures on surrogate data.

The pipeline we defined to identify active directed
connections during a RW can be so summarized: (a)
estimation of the time-varying connectivity matrix;
(b) computation of a significance metric that high-
lights the increase in connectivity during the RW; and
(c) the comparison of this significance metric with a
null distribution derived by randomly shuffling the
connectivity time samples.
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measures or significance metrics (Nemenyi post-hoc after Friedman test, p < 0.01) according to the evaluation metric in the

corresponding panel.

Table 2. The first three columns are causality measure(s), significance metric(s) and combination(s) yielding the highest accuracy for
each subject (Nemenyi post-hoc after Friedman test, p < 0.01). The fourth column is the noise percentage threshold at which
performances of the best combination start to degrade. In case of two or more combinations with no statistical difference in accuracy

scores, the one with the higher noise threshold is selected as the best.

Best causality Best significance

Subj measure(s) metric(s) Best combination(s) Noise threshold (%)
S01 PDC RW Mean PDC-RW Mean 60
S02 PDC RW Mean PDC-RW Mean 55
S03 PDC RW Mean/Mean Ratio PDC-Mean Ratio 90
S04 PDC/SdDTF Mean Ratio PDC-RW Mean 45
S05 PDC RW Mean/Mean Ratio PDC-Mean Ratio 50
S06 PDC RW Mean PDC-RW Mean 55
S07 PDC/SADTF RW Mean PDC-RW Mean 75
S08 PDC/SADTF RW Mean/Mean Ratio PDC-Mean Ratio 99
S09 PDC RW Mean PDC-RW Mean 60
S10 PDC/SdDTF RW Mean PDC-RW Mean 65

We also proposed an assessment procedure of an
ERC pipeline based on surrogate data derived from a
real SEEG dataset, to make the simulated data more
physiologically plausible. A previous work on time-
varying connectivity [13] proposed a method based
on the assumptions of Gaussianity for the distri-
bution of the connectivity values and of temporal
independence, with Bonferroni correction for mul-
tiple comparisons. Here, instead, we propose a non-
parametric approach, that is ideal to overcome the

limitations caused by assuming the independence
between causality time samples and by the overly-
conservative Bonferroni correction of p-values [62].

It should also be noted that the permutation
method can be applied to any type of time-varying
estimator, whenever a clearly defined RW is avail-
able. Common scenarios are the event-related poten-
tial analysis [63] if it is applied directly on the sig-
nal time series, or event-related spectral perturbation
[64] if it is computed on the signal scalogram.
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Our pipeline relies on two important parameters:
(a) the causality measure used to estimate the con-
nectivity matrix; (b) the significance metric that high-
lights the increase in connectivity during the RW. We
were able to identify the combination of these two
parameters showing the theoretical maximum simil-
arity to the ground truth. We achieved that by evaluat-
ing the accuracy, sensitivity, specificity, and the num-
ber of spurious connections derived from the applic-
ation of our algorithm on benchmark surrogate data.
We also investigated the effect of increasing levels of
noise diffusion outside the RW. Finally, lowering the
model order p of the causality estimation did not sig-
nificantly alter the results, suggesting a way to make
the pipeline less computationally intensive without
affecting its effectiveness.

4.1. Performance of the causality measures

The causality measures we focused on in this work
are based on the framework of the Geweke—Granger
causality. More in detail, these measures can be
divided into two groups: those derived from the
partial directed coherence (the PDC itself and its
weighted version, namely, the wPDC), and those built
upon the directed transfer function (the DTF itself,
the wDTF and the ones weighted by the partial coher-
ence, i.e. the dDTF and the SADTF).

Among these measures, the PDC was the only one
with perfect accuracy in estimating the connectivity
matrix active during the RW of our SEEG surrogate
data. Its power spectral density-weighted version, the
wPDC, showed decreased accuracy and sensitivity,
with no significant difference in specificity or number
of spurious connections. These results suggest that
the weighting of the PDC by the power spectral dens-
ity, while potentially enhancing the biological inter-
pretability of the observed directed connections, may,
in turn, degrade the accuracy in the estimation of the
connectivity matrix by limiting the number of detec-
ted significant connections.

The DTF performed poorly in terms of accur-
acy, specificity, and number of spurious connections
while reaching the same values of the PDC for the
sensitivity. These findings show evidence of a higher
number of estimated directed connections than the
ground truth, which may be caused by its inability to
distinguish between direct and indirect connections.
Finally, the SADTF offered a significant improvement
over the DTE Specifically, the higher specificity is an
indicator of its ability to distinguish between direct
and indirect connections.

In summary, the PDC showed to be the most
effective among the causality measures tested here, in
agreement with previous studies [27-29].

However, it should be noted that the same causal-
ity measures may perform differently in combination
with other significance metrics or other ERC estim-
ation techniques. Here we also leveraged a small set
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of all the possibly available causality measures, but
a full benchmark of these algorithms is beyond the
scope of the paper. This section aims to suggest to
the reader which measures to use together with this
pipeline.

4.2. Performance of the significance metrics

We defined a significance metric as a mathematical
expression able to quantify the increase in the causal-
ity amplitude during a RW when compared against a
null distribution. In this work, we suggested four dif-
ferent significance metrics. Nonetheless, other met-
rics (e.g. a metric based on the SNR [50]) may also be
used with this pipeline.

Among all significance features (RW Mean, Mean
Ratio, Significant Max, and Significant Mean), RW
Mean reached the highest accuracy, perfect sensitiv-
ity, and an almost null number of spurious connec-
tions. Mean Ratio reached, most of the time, a per-
fect sensitivity, but at the expense of presenting the
lowest specificity and the highest number of spuri-
ous connections. While the RW Mean metric in itself
does not give any hint about the increase in connectiv-
ity during the RW, the comparison of its value with
the estimated permutation distribution, does: shuff-
ling the time samples in each permutation allows the
comparison with the causality values corresponding
to the other segments of the stimulus. By retaining, for
each permutation, only the highest sig value among
channel pairs, the RW Mean is able to highlight the
causality values that are among the strongest and truly
significant.

4.3. Performance of the causality measure and
significance metric combinations

In our case study, the combinations PDC-RW Mean
and PDC-Mean Ratio achieved the highest accuracies
in estimating the active connections between chan-
nels during the RW. This, together with the RW
Mean’s lowest number of spurious connections, aver-
age higher accuracy and specificity, and the overall
better performance of the PDC, suggest that the PDC-
RW Mean combination might be the best choice for
the estimation of the ERC in SEEG data. However,
one may be interested in minimizing the type II error
of the test (number of false negatives) at the expense
of a higher type I error (i.e. a higher number of spuri-
ous connections and reduced specificity). In this scen-
ario, we suggest the use of the PDC-Mean Ratio com-
bination instead.

Also, linear regression analysis performed on the
causality estimated on the resampled data highlighted
the absence of any effect of the noise diffusion level
outside the RW (for physiologically plausible values).
Even increasing the noise levels beyond the threshold
that degrades the accuracy of all parameters combin-
ations, the PDC-RW Mean almost always showed the
best potential.
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Finally, we observed high consistency of the res-
ults among different subjects. Perfect accuracy was
reached for all of them in identifying the simulated
connections using the pipeline with PDC-Mean Ratio
and/or PDC-RW Mean. Out of ten subjects, seven
showed an overall better accuracy using the PDC
and the RW Mean significance metric. Gender and
number of recording contacts did not have a signi-
ficant effect on the results, while physiological noise
levels did. In fact, in the three subjects for which the
Mean Ratio metric outperformed the RW Mean, we
observed a lower SNR. This paves the way to future
work, in which the dependency of the noise on the
effectiveness of the significance metrics may be fur-
ther investigated, for example, by changing the noise
parametrization method and parametrizing even the
noise in the RW.

However, the procedure outlined is quite robust
against physiologically plausible noise levels, as
modeled in our surrogate SEEG data.

4.4. Other factors affecting causality estimation

It is worth pointing out that the performance of an
ERC estimation workflow depends on several ele-
ments. For example, the choice of the algorithm used
to estimate the MVAR model parameters is crucial.
Here, we used the GLKF, which is a parametric time-
varying estimation method. This family of methods
is to be preferred to the ones based on moving win-
dows, which would require a stationarity assumption
on the signal contained in the windows. This would
bring further limitations to the results [29]. Among
time-varying MVAR estimation methods, the GLKF
outperformed other algorithms, such as the recurs-
ive least square, the multivariate adaptive autore-
gressive estimator, the classic Kalman filter, and the
dual extended Kalman filter [29, 31, 49]. The GLKF
is a parametric method, but there exist approaches
that allow approximating the system transfer func-
tion through multitaper or wavelet transform spectral
estimation. However, these approaches are depend-
ent on parameters that may in turn reduce the spec-
tral resolution. This limitation is absent in paramet-
ric methods [65]. However, the GLKF relies on an
adaptation constant. This adaptation coefficient was
set equal to 0.03, a value laying in the optimal range
for the GLKF [31, 49].

Although it is possible to also use non-linear
methods to estimate the connectivity matrices, lin-
ear ERC evaluation techniques are able to detect
any type of information flow changes, regardless of
whether they are due to linear or non-linear dynam-
ics [5, 66—69].

Another factor possibly affecting the performance
of our pipeline is the number of permutations per-
formed to estimate the null distribution. Ideally, to
get the true permutation distribution, all possible
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permutations of the time samples should be tested.
Since this is not feasible due to computational con-
straints, there is the need to choose a number of
permutations large enough to have a reliable estim-
ation. Previous studies [47, 70] showed that 1000
permutations are enough to well approximate the null
distribution.

The way the null distribution was estimated
did not affect the main results. Supplementary data
figures S1 and S2 show comparable results (i.e. PDC-
RW Mean as the best combination, with no significant
effect of physiological noise on the accuracy) when
estimating the null distribution by randomly shifting
the connectivity time series or by randomizing their
phases.

5. Conclusions

Investigating the strength, direction and spectral
content of brain network interactions with ever-
increasing detail is the goal of most neuroscientists.
The unparalleled spatial specificity and sub-ms tem-
poral resolution of SEEG make it a very promising
technique for analyzing effective connectivity in cog-
nitive tasks. However, the lack of standardized and
validated approaches explicitly designed for SEEG
has, so far, limited its potential.

Here we proposed a pipeline to evaluate causal
information flow in SEEG datasets, that notably adds
to the tools currently available to neuroscientists.
Among the various estimator we tested with this
pipeline, we suggest the use of PDC together with the
here defined RW Mean as they performed the best
in time-varying causality evaluation. To our know-
ledge, this is the first validated ERC analysis approach
designed explicitly for SEEG data.

Finally, we note that the proposed workflow can
be applied to any type of time-varying estimator,
whenever a clearly defined RW is available.
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