
Crowd against the machine: A simulation-based benchmark tool to
evaluate and compare robot capabilities to navigate a human crowd

Fabien Grzeskowiak1, David Gonon2, Daniel Dugas3, Diego Paez-Granados2, Jen Jen Chung3, Juan Nieto3

Roland Siegwart3, Aude Billard2, Marie Babel1 and Julien Pettré1

Abstract— The evaluation of robot capabilities to navigate
human crowds is essential to conceive new robots intended to
operate in public spaces. This paper initiates the development
of a benchmark tool to evaluate such capabilities; our long
term vision is to provide the community with a simulation tool
that generates virtual crowded environment to test robots, to
establish standard scenarios and metrics to evaluate navigation
techniques in terms of safety and efficiency, and thus, to install
new methods to benchmarking robots’ crowd navigation capa-
bilities. This paper presents the architecture of the simulation
tools, introduces first scenarios and evaluation metrics, as well
as early results to demonstrate that our solution is relevant to
be used as a benchmark tool.

I. INTRODUCTION
A large number of mobile robots are conceived with the

intention of being operated in public spaces, likely to be
frequented by crowds. Assessing robots’ ability to navigate
through the crowd in a way that is efficient and safe is
thus of paramount importance. However, such assessment
is difficult for several reasons. Firstly, a crowd is a dynamic
and complex environment, the state of which depends on a
very large number of parameters. A meaningful evaluation
should cover as much of this parameter space as possible,
this guarantees that the robot behaviour has been studied
in most of the situations it may encounter. However, this
crowd complexity compounds the already high-dimensional
parameter space related to the robot behaviour.

Ideally, we should study and test various robot behaviours
in the same situations. This would enable comparing ef-
ficiency and safety levels offered by various navigation
techniques. Unfortunately, this results in a combinatorial
explosion. The risks linked to the participants and the cost
of conducting real-world experiments are our two last major
problems. This explains why research work dedicated to
robot navigation in crowds are limited to tests with a limited
number of participants that barely constitute a crowd. To
mitigate this issue, our paper explores solutions to provide
the community with a crowd-robot navigation benchmark
tool. Our work addresses three aspect of this problem:
i) to define reference navigation scenarios, ii) to provide
simulation algorithms and a framework for the simulation
itself, iii) to introduce metrics for evaluating efficiency and
safety levels.

1F. Grzeskowiak, M. Babel and J. Pettré are with Univ Rennes Inria
CNRS IRISA, Rennes, France. julien.pettre@inria.fr

2D. Gonon, D. Paez-Granados and A. Billard are with EPFL, Lausanne,
Switzerland. aude.billard@epfl.ch

3D. Dugas, J. J. Chung, J. Nieto and R. Siegwart are with ETH, Zürich,
Switzerland. jenjen.chung@mavt.ethz.ch

Simulation-based evaluation offers valuable insights. Nev-
ertheless, it cannot replace the validity of real tests because,
if robot simulation cannot already be considered perfectly
accurate, the simulation of human behaviour is even more
complex. It is impossible to simulate all the behaviour that
a crowd can exhibit, in particular, its reactions to a robot.
However, crowd simulation is useful to create a synthetic
test environment. It can be a preliminary and complementary
tool to real tests that evaluate the evolution of a robot in an
environment that is representative in many aspects to a real
crowd.

At the very least, simulation-based testing addresses the
four problems outlined above: it can automatically explore
large situational parameter spaces, it eases comparisons and
is, without question, safe. Moreover, simulation brings the
major interest of allowing one to easily define a set of
standard situations, which are defined by the configuration
of the crowd and the task of the robot. These can be precisely
replicated from one series of tests to another, which can be
elaborated and shared at the scale of a whole community. It
therefore makes simulation-based testing an ideal candidate
to be used as a benchmark tool to fairly evaluate and compare
the behaviour of robots in a crowd.

Our article presents the following contributions: (i) a
simulation platform, open and accessible to the community,
allowing the simulation of robot motion among a moving
crowd, (ii) a preliminary set of standard situations, repre-
sentative of common ones to which a robot is exposed when
navigating in a crowded environment, (iii) a set of metrics to
evaluate the test results with regard to the robot’s efficiency,
the disturbance caused to the crowd’s navigation, as well as
the related risks of collisions, (iv) a demonstration of this
tool’s capabilities to be used as a benchmark.

II. RELATED WORK

The development of new mobile robots intended to move
within crowds requires the evaluation of their navigation
capabilities in terms of efficiency and safety. Simulators
facilitate such evaluation by providing interfaces through
which a robotic component can manipulate and perceive an
abstract environment that models a real phenomenon (in our
case, a crowded environment). In the following, we review
some existing crowd simulators by investigating which tech-
nical concepts and metrics they implement that make them
significant for robotic navigation in human crowds.

A contribution of [1] is a probabilistic planner that updates
its belief on pedestrians’ goal positions and assumes that their

ar
X

iv
:2

10
4.

14
17

7v
1 

 [
cs

.R
O

] 
 2

9 
A

pr
 2

02
1

©IEEE All rights reserved. DOI: 10.1109/ICRA48506.2021.9561694

Accepted version: 2021 IEEE International Conference on Robotics and Automation (ICRA), 
May 30 - June 5, 2021. Xi'an, China. ©IEEE All rights reserved. Personal use of this material is permitted. 
Permission from IEEE must be obtained for all other uses.



decision making is based on PORCA, a variant of ORCA
[2] (using a different cost function modeling pedestrians’
impatience). Thus, the simulator is suitable to demonstrate
exactly this planner’s performance as the planner’s underly-
ing assumptions about pedestrians’ decision making match
exactly how the simulation controls them. The metrics for
the evaluation are the robot’s collision rate, travel time,
length of acceleration/deceleration periods, and success rate
(to reach the goal). [3] compare how a robot using different
learning-based controllers performs when navigating among
pedestrians in the PedSim1 simulator. They measure the
robot’s path length and smoothness as well as pedestrian
comfort by the number of proxemic intrusions by the robot
(proximity at particular angles). [4] evaluate their navigation
technique for the robot in simulations with agents that apply
ORCA [2]. They report the robot’s success rate (to reach
the goal without a collision), collision rate, time, and reward
(referring to their framework of reinforcement learning). [5]
propose an approach that uses inverse reinforcement learning
and predicts collective trajectories by assuming they optimize
an underlying reward function. To show that their approach
works as expected, they perform simulations wherein such
a reward function governs the agents’ behaviour, and the
approach then learns this function to make reliable predic-
tions. [6], [7] call their experiments simulations wherein they
replay crowd motions from a recorded dataset and replace
just one pedestrian by the robot who then needs to plan its
own path (whereas others do not react to it). They measure
the robot’s minimum distance to pedestrians and the robot’s
path length. Similarly, [8] use the same dataset and crowd
replay to simulate how the robot reacts to pedestrians (while
they do not react to it). Webots2 is an open-source simulator
offering animated human characters, albeit looking and walk-
ing rather like puppets. [9] perform crowd simulations which
incorporate heterogeneous navigation methods and limited
perception to investigate the difficulties that one needs to
tackle to enable robots to navigate in crowds. In Webots, they
simulate how a crowd with limited field of view and different
control laws performs, measuring the agents’ number of
collisions and time to reach their goals.

Some work aiming towards robotic navigation in crowds
considers as the key task to understand and accurately
model pedestrian decision making. One could argue that a
robot just needs to replicate the human decision process to
navigate among pedestrians like a regular pedestrian. They
typically do not use simulation to evaluate their methods.
Rather, they (e.g. [10]) measure the similarity between the
trajectories which their methods generate for the robot in a
given situation to the motion of a real human subject in the
same situation (also like in [6], [7]). The evaluation in [11]
lets human participants interact with a virtual pedestrian and
judge later on whether the virtual pedestrian was following
another human participant’s decisions or an automatic game
theoretic planner. This varied Turing test could show whether

1http://pedsim.silmaril.org/
2https://www.cyberbotics.com/

Fig. 1. The CrowdBot simulator architecture: Part of the tool is an
application based on Unity (https://unity.com). This application can
generate scenarios, it simulates how the crowd moves and renders it in a 3D
environment. It also handle physics simulation in order to compute collisions
between the crowd and the robot. Finally, it handles the robot dynamics and
sensing. A second part of the tool is the python module which controls the
Unity application. This module conducts the simulation with instructions
and data sent to the application through sockets, which then sends back
simulation data. This module helps in the generation of datasets of crowd
and robot trajectories, which can be analyzed using the benchmark tools.
Finally, the module propose an API for ROS and PythonRobotics. One last
component is the set of configuration files which gives the parameters of
the simulation.

or not the decisions made in the background by the planner
or the second participant are indistinguishable.

In summary, existing works on robots navigating in crowds
mostly just consider one respective facet of crowds in their
simulations, which is likely representing the specific task
they are addressing. Therefore, it seems that a more versatile
simulator, which reflects and integrates such aspects, could
give new impulses to similar research. In particular, the above
simulators are limited to local collision avoidance, i.e. do not
exhibit high-level path planning, and they mostly lack real-
istic gait animation and graphical rendering of pedestrians,
while realistic visual rendering is important for fully vision-
based navigation techniques (e.g. end-to-end learning). Fur-
ther, their metrics are mostly the same, surprisingly not
quantifying the crowd’s efficiency in most evaluations. The
metrics for safety also seem fairly simplistic with most only
considering the robot’s distance to pedestrians. Colliding
agents’ mass, velocity and kinetic energy are suitable to
quantify the potential for injury as several works in human-
robot interaction have shown [12], [13].

III. CROWDBOT SIMULATION PLATFORM

This section describes the CrowdBot simulation architec-
ture shown in Fig. 1.

A. Crowd simulation

The purpose of the crowd simulation component is to
compute the motion of a crowd in a given environment,
represented as a collection of moving points, one for each
simulated individual. For this, we rely on microscopic crowd
simulation algorithms, which perform this calculation based
on the notion of an agent whose trajectory is a function of
its goals and its interactions with the environment. Note that

©IEEE All rights reserved. DOI: 10.1109/ICRA48506.2021.9561694

http://pedsim.silmaril.org/
https://www.cyberbotics.com/
https://unity.com


literature has proposed a number of numerical models of lo-
cal interactions, and more specifically of collision avoidance,
that determine agents’ behaviours [14] [2] [15].

To avoid the effect of limiting crowd behaviours to one of
a unique algorithm, we employ a recent crowd simulation
technique which is capable of reproducing a collection
of crowd simulation algorithms [16]. The motion of each
agent is driven by the definition of a cost function that the
agent optimizes, defined in the agent’s velocity space, which
depend on the state of the agent as well as the state of one
of its neighboring objects (other agents, robot, obstacles).
Several existing algorithms can be reproduced by changing
the definition of this cost function. In addition, agent motion
is subject to the parameter settings of this function.

By choosing such a technique to simulate crowds in the
CrowdBot framework, we open the possibility to include,
in experimental plans, a variety of simulation algorithms as
well as settings.

B. Environment and human simulation

Robot simulations are usually based on 3D rendering
engines with physics simulation, in order to reproduce the
robot’s real environment. In this paper, we focus on mobile
robots that operate on the x-y plane, defining the robot
workspace on which dynamic obstacles can interact with
the robot. For our crowd simulation dedicated to robotics
applications, we extend the 2D representation of the crowd
with animated avatars walking according to the crowd sim-
ulation output. Those avatars are defined with a visual and a
collision model, used by the physics engine, to interact with
the robot. We use Unity3D in order to have high definition
rendering with physics simulation. The crowd simulation
library UMANS [16] is integrated in Unity thanks to a
dedicated interface (API). The simulation, running in Unity,
can be controlled externally thanks a ROS node, or through
a dedicated python module.

C. Robot simulation

In our simulator, a mobile robot is defined as a mechanical
model associated to a visual model, as well as a linear
and angular velocity command as input to control the robot
motion, and outputs that sense the robot’ environment. The
visual model is a list of 3D models of the joints of the robot
associated with a skeleton of the robot, which helps defining
the mechanical behaviour of the robot.

Our simulator offers various ways to define the mechanical
properties of a robot. First, every robot we implemented can
be considered as a kinematic rigid body. This method is
useful for simple simulations when physics is not required,
and can be used on every robot. The second method consist
in considering the robot as a unique point-mass, or a set
of connected rigid bodies. With this method, the robot is
moved around using forces applies on the base of the robot.
Friction limits the mobility of the robot, uniformly or non-
uniformly, which is useful to define holonomic robots as well
as differential drive robots or car-like robots. The third way
to control a robot, dedicated to wheeled robots, is through

giving velocity commands to a regulator which directly
controls the torque of the simulated motors in the wheels
of the robot.

The robot model also defines a set of sensors, which uses
the physics engine and the graphics rendering of Unity to
generate outputs. The software can simulate various stan-
dard sensors: LiDAR, RGBD camera, ultrasound sensors,
odometry. Sensor models also contain parameters that can
be used to fit any sensor specification. Imperfections, such
as noise and missing data, can be added to any sensor for
more realism. The simulation also outputs information about
the simulation, such as simulation time, physics engine report
on agent-robot collision, the crowd position, or crowd mask
for LiDAR, which gives the ID of the agent of the crowd
detected in a LiDAR scan.

D. Robot navigation plugin
We made a simple python module in order to control

the simulation. The module sends data to the simulator:
the simulation clock, which controls the time between sim-
ulation steps, the simulation controller, which is used to
switch between scenarios or to stop the simulation, and a
velocity command, directly used by the robot controller in
the simulation. When a step is executed by the simulation,
the module receives all available data for this step: robot
sensor outputs, crowd location and collision report. We also
provide a ROS node that uses this python module to control
the simulation through ROS topics and ROS parameters and
converts the received data into ROS topics. The module is
also designed to be used with PythonRobotics [17], a python
code collection for robotics algorithms, or more generally
any python implementation of robotics algorithms.

E. Initialisation pipeline and outputs
The simulation require a extensive amount of parameters,

stored in scenarios files. Scenarios files are read by the Unity
simulator and for a given simulation, a scenario file defines
the 3D environment, the camera controls (third person view),
the robots to load and their initial location, the crowd initial
location, the density of the crowd, the flow of the crowd, i.e
the set of goals for each agent, the path planner to use for
each agent, the crowd reactivity to the robot (reactive, not
reactive), and the crowd simulator (UMANS) basic parame-
ters such as preferred speed or maximum acceleration. The
scenario will use the default configuration of UMANS, but it
can be be easily changed to any of the methods proposed by
UMANS in another file. Finally, some parameters are given
as input for the python module directly or as ROS parameters
if the ROS node is used: the time step of the simulation,
the sleep time between steps (for real-time simulation), the
ending conditions, and the number of scenarios to run. Also,
the python module includes a recorder that saves JSON files
of the whole simulation, which is configurable in the python
module (file name and location or data to save).

F. Open source project
The benchmark tool is available freely for anyone on

http://CrowdBot.eu/CrowdBot-challenge/. On

©IEEE All rights reserved. DOI: 10.1109/ICRA48506.2021.9561694

 http://CrowdBot.eu/CrowdBot-challenge/


this website, one can download the CrowdBot challenge
software which was used to generate the dataset and the
benchmark results. It is possible to request access for the
source code by contacting the developers on this page.
This website also links to the documentation (wiki) of the
software which gives details on the functionalities, tutorials
and examples, and videos.

IV. CROWD ROBOT NAVIGATION BENCHMARK

Our intention is to use the CrowdBot simulation platform
as a benchmark tool to evaluate and compare robot crowd
navigation capabilities in terms of safety and efficiency. This
section presents both some navigation techniques we have
selected from literature to be tested, as well as our evaluation
protocol.

A. Navigation techniques and hypotheses

We have selected the 3 following navigation techniques:
i) a “Baseline” method, which consists in having the robot
going straight toward the goal ignoring the crowd, ii) the
dynamic window avoidance method (DWA) [18], and iii) the
reciprocal velocity obstacles method (RVO) [2]. The reason
for this choice is that the robot will respectively: i) ignore
the crowd agents, ii) consider them as static obstacles, and
iii) predict the short term future motion of agents. With this
choice, the benchmark tool shall demonstrate its capability
to reveal benefits and drawbacks on the robot navigation
efficiency and safety with respect to crowd agents. If our
evaluation tool is adequate to be used as a benchmark, the
evaluation should satisfy the following hypotheses:
H1: The Baseline method should get the best score in terms

of efficiency, since the robot is ignoring the crowd.
However, it should be the worst in terms of safety,
since it shall move closer to crowd agents and provoke
many collisions with them, not even trying to lower the
collision forces with the crowd.

H2: The DWA method, in comparison with Baseline, should
show a lower number of collision, and thus a higher
safety level. As the method considers obstacles to be
static, it should show quite poor results in terms of
efficiency, since it may put the robot on useless or late
avoidance trajectories

H3: The RVO method should show the best compromise be-
tween efficiency and safety, as it is capable of predicting
agents’ motion and expects contribution from agents in
performing avoidance.

B. Benchmark setup

The idea of the benchmark is to propose a number of
scenarios that each define the robot, the task of the robot and
the activity of the crowd, with a number of parameters. The
simulation platform generates trajectories for both the robot
and the crowd, which are ultimately evaluated according
to several metrics to compare the performances of various
navigation techniques in similar conditions. In this paper,
we illustrate the benchmark with a limited set of scenarios,
which can be extended at will.

a) Robot: We choose to illustrate the benchmark on
one single robot, the TurtleBot2, a common differential drive
robot. The simulated TurtleBot has a maximum velocity
of 1 ms−1 and a maximum acceleration of 5 ms−2. It is
controllable with a linear and angular velocity command. The
simulation provides the crowd location, the robot odometry
and the static obstacles. Those data can be used as an input
for the robot navigation. The virtual robot is also equipped
with a set of virtual sensors that offer the possibility of testing
the robot navigation robustness to limited data: two 2D
LiDARs that provide 360◦ coverage, a front-facing RGBD
camera and 12 simulated ultrasound sensors.

b) Environment and task: the environment is defined
as a corridor of 50m by 10m. The robot starts at one side of
the corridor and its task is to reach the other side. The goal
is reached when the robot travels 40m in the direction of the
corridor. We enforces a time limit of 180 seconds to avoid
infinite simulation for situations where the navigation does
not find a solution. The robot is free to move in this corridor
but cannot cross the borders delimited by four walls. The
crowd however, can cross the walls. In the case that they
traverse a wall, the agent’s position is reset at the opposite
one of the environment, which maintains a constant level of
average density over the entire trial.

c) Crowd activity: Our scenarios are finally defined
by a crowd flow direction, a crowd behavior, and a crowd
density. The possible crowd flows can be in the main
direction of the corridor, pointing toward the same wall as
the robot (1D+) or pointing toward the opposite wall, facing
the robot (1D-). The crowd flow can also be bidirectional, in
the main direction of the corridor, where half of the crowd
is moving in the opposite direction of the other half (1Dx).
Finally, the crowd can move in the secondary direction of the
corridor, crossing the robot path, either in one main direction
(2D), or with two opposing flows (2Dx). We selected two
main crowd simulation algorithms which are fairly common
and easily configurable: “RVO”, and “Social Forces”. These
two algorithms can be configured as reactive or not reactive
to the robot. We also chose to set the parameters of RVO
with 0.5s of horizon time (the crowd only reacts when
close to the robot) or with 1.5s horizon time, which results
in more anticipatory interactions. Finally, we selected four
levels of crowd density: 50 (0.1pm−2), 100 (0.2pm−2) , 200
(0.4pm−2) or 350 (0.7pm−2) agents in the corridor. With all
those parameters combined, we end up with 100 scenarios.
We randomly selected the initial position of the agents of the
crowd and generated the definitive scenarios files to be used
by the different robot navigation techniques.

C. Evaluation metrics

For this paper we limited the study to seven metrics which
can be split into three categories: path efficiency, effect
on the crowd flow, and crowd proximity. The latter two
can be regrouped under the topic of crowd safety. In the
path efficiency metrics, we compare the situations where
the robot is alone to the configuration where the robot is
surrounded by a crowd. For those two configurations, we

©IEEE All rights reserved. DOI: 10.1109/ICRA48506.2021.9561694



compute and compare the time taken by the robot to reach
the goal (T/Tcr), the length of the robot path (L/Lcr),
and the variation of speed (linear and angular) of the robot
during the whole scenario (J/Jcr). The metrics dealing with
the effects on the crowd compare the speed of the robot
neighbors (within 1m range) to the speed of the whole crowd
(NBRvel. =

VNeighbors

VAll
). The slower the neighbors are, the

smaller the metric is. In the second metric, we compare
the angular velocity of the whole crowd to the velocity
of the neighbors of the robot in scenarios (NBRreac. =

ωAll

ωNeighbors
). If the neighbors rotates more than the rest of

the crowd, NBRreac. will be small.
Finally, the metrics dealing with crowd proximity are first

the proximity metric (Prox.) which is defined by

Prox = 1 − 1

tfinal

tfinal∑
t=0

dmin(t)/R

where dmin is the distance to the closest agent, and R is
the range in meter. In our case, we consider that there is
at least 1 person that is in a 5 meter range near the robot.
The last metric is the colliding metric, which is defined by
Colliding = 1 − TCollision

TScenario
where TScenario is the total

time of the scenario, and TCollision is the cumulation of the
collision instants. A score of 1 means no collisions at all.

D. Collision Assessment

We assess each collision by exploiting the simulator’s
report of the colliding human body part in order to compute
its reflected mass mref , which approximates the human
inertia’s contribution to the impact’s kinetics. Each colliding
body part’s mref is computed as the reflected mass of the
part’s corresponding segment of a model that groups the
human body into a vertical articulated chain of four rigid
bodies, subsuming respectively the feet, lower legs, upper
legs, and remaining upper body. These segments’ lengths and
inertial properties are sums of the subsumed parts’ values for
average adults (according to [19]). Following the approach
in [20], we compute for our model mref ≈ 4, 13, 24 [kg]
for the feet, lower and upper legs, respectively. Assuming
the robot’s mass as mrob = 20 [kg], we compute the kinetic
energy which a collision would absorb (and possibly restore)
as ∆E = µv2rel/2, where µ = (m−1

ref + m−1
rob)

−1 is the
reduced mass and vrel is the relative velocity of both agents’
centers towards each other. As ∆E directly quantifies the
bodies’ potential deformation, it provides a measure for
collisions’ severity [12].

V. RESULTS

A. Benchmark results

We represent the seven metrics described in Section IV-
C on two radar charts shown in Fig. 2. Table I gives the
standard deviation for each metric of the radar charts.

B. Collision Assessment Results

Fig. 3 shows how many collisions occurred with particular
values of energy ∆E during all the simulations with a given
robotic controller. To normalize by the simulated time, we

TABLE I
STANDARD DEVIATION FOR HIGH AND LOW DENSITY RADAR CHARTS

Navigation method Metrics
T/Tcr L/Lcr J/Jcr NBR reac. NBR vel. Prox. Colliding

BASELINE High density 0.190 0.00 0.238 1.022 0.070 0.132 0.132
BASELINE Low density 0.022 0.00 0.244 1.402 0.084 0.164 0.027
DWA High density 0.257 0.225 0.289 0.488 0.089 0.175 0.117
DWA Low density 0.171 0.123 0.280 0.0.807 0.096 0.171 0.040
RVO High density 0.236 0.100 0.015 1.052 0.129 0.141 0.092
RVO Low density 0.145 0.067 0.029 1.863 0.125 0.149 0.031

define a particular robotic controller’s collision rate as fc =
Nc/T and energy rate Q = Σ∆E/T , where Nc, T and Σ∆E
denote respectively the total number of collisions, elapsed
time and energy absorption in corresponding simulations. For
the baseline, DWA, and RVO, we measure fc = 0.624, 0.610,
0.311 [1/s] and Q = 2.568, 2.285, 0.901 [J/s], respectively.

VI. DISCUSSION

This section takes each of the results and gives an inter-
pretation in two levels of comparison: path efficiency and
crowd safety.

A. Path efficiency

The path efficiency can be evaluated using the radar chart
on Fig. 2. For the metric L/Lcr, an indicator of path length,
naturally, the score for the baseline method is 1, as the
method will take the shortest path possible in the corridor
(which validates H1). RVO is a lot more direct than DWA
in both low density and high density crowds, which shows
the tendency of DWA to take less direct paths than RVO
to reach the goal (validates H2 and H3). This idea is
reinforced by the J/Jcr metric which is an indicator of the
variation of linear and rotational speed. Indeed, the baseline
and RVO methods have a lot of erratic movements (start and
stop), while DWA takes the robot dynamics into account
and punishes the difference between the current velocity and
desired velocity. The metric T/Tcr, which is an indicator of
the time taken to reach the goal, shows that the most direct
method, the baseline, is the fastest in both low and high
density scenarios (which validates H1). The two methods
RVO and DWA are much slower in high density scenarios.
Indeed, such scenarios lead to situations where the only
solution for the robot is to totally stop the movements or
even move back, facing the starting point instead of the goal.

B. Crowd safety

The crowd safety can be appreciated through the Proximity
metric, the Colliding metric, the neighbour-related metrics
(“NBR reac.” and “NBR vel.”) and the histograms of impact
energy on Fig. 3.

First, it is interesting to notice that, on the radar chart
for low density crowds, the colliding metric has a maximum
value for each of the methods which means that in low den-
sity (0.1 pm−2) the crowd is perfectly capable of avoiding the
robot without it using any specific method. In high density
scenarios, the baseline has a lower score than the two other
methods: the robot does not try to avoid the crowd, thus the
risk of collision increases (which validates H1). Also, in high
density scenarios, RVO performs better than DWA on the

©IEEE All rights reserved. DOI: 10.1109/ICRA48506.2021.9561694



a) b)
Fig. 2. Radar charts of the benchmark. (a) We compute the seven metrics described in Section IV-C for 20 scenarios: 4 levels of density, 5 crowd flows
(see Section IV-B). (b) Similarly, we compute the same radar chart for 5 scenarios with low density only (0.1pm−2)

Fig. 3. The histograms count the collisions for each robotic controller
over all simulations, discriminating them by estimated energy absorption.

colliding metric (which validates H2 and H3). The crowd
reaction to the robot can be evaluated through the crowd
velocity metrics: “NBR reac.”, and “NBR vel.”. The radar
charts show that in high density crowds, the robot’s neighbors
are more likely to change their orientation instead of their
speed. In low density, the robot presence does not impact the
crowd much, with the exception of the DWA “NBR reac.”
metric which shows that the robot’s neighbors change their
orientation a lot more than the rest of the crowd. We think
that the robot movement generated by RVO and the baseline
methods generate more linear trajectories than the DWA
method (which validates H3). Linear trajectories are easier
to predict by the crowd simulators we used in the benchmark
(which, at best, linearly extrapolate the trajectory). The
Proximity is naturally higher in high density than in low
density crowds, but the robot navigation method does not
seem to affect this metric. The histograms of impact energy
in Fig. 3 show that the 3 considered techniques generate a
similar distribution of impact energies and thus also impact
forces when collisions occur. It is also visible that DWA
leads to the most collisions at all energy levels. However, the
larger total number results from longer simulations, as the

rate of collision fc (Sec. V-B) for DWA is in between both
other methods (confirming the colliding metric’s ranking).
Still, the Baseline collides more often than RVO on high
energy, while RVO collide more often than the baseline on
low energy, which makes it a good compromise between the
number of collision and energy (which validates H1 and
H3). Finally, the rates of collision and energy absorption fc
and Q (Sec. V-B) are consistently bad for the Baseline, better
for DWA, and a lot better for RVO, which validates H1, H2
and H3 and indicates that RVO leads to the lowest number
and risk of collisions occurring per unit time.

VII. CONCLUSION

We have introduced a new software to simulate the nav-
igation of robots in virtual crowds. We have demonstrated
the potential of such simulator to be used as a benchmark
tool to compare various navigation techniques. This paper
demonstrate limited results, only sufficient to demonstrate
the relevance of this solution to be used as a benchmark
tool. Nevertheless, we believe that the solution we propose
is of interest for the community and opens new perspective
in the evaluation of robot crowd navigation capabilities. For
future work, we want to first extend the metrics by which
we evaluate the robot behaviour. For example, we would like
to measure near-collision situations to evaluate more deeply
safety aspects. Other elements than just trajectories should
be considered. For example, simulation can further explore
the question of sensing the crowd such as by comparing
navigation results in various sensors configuration. Another
direction is to extend the number of scenarios we consider.
The strength of simulation is its potential to explore many
situation for the robot, and is yet unexploited here. Devising
scenarios of greatest interest should however be done at the
community scale.

ACKNOWLEDGMENT

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 779942, CrowdBot.

©IEEE All rights reserved. DOI: 10.1109/ICRA48506.2021.9561694



REFERENCES

[1] Y. Luo, P. Cai, A. Bera, D. Hsu, W. S. Lee, and D. Manocha,
“Porca: Modeling and planning for autonomous driving among many
pedestrians,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp.
3418–3425, 2018.

[2] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal
n-body collision avoidance,” in Robotics research. Springer, 2011,
pp. 3–19.

[3] D. Vasquez, B. Okal, and K. O. Arras, “Inverse reinforcement learning
algorithms and features for robot navigation in crowds: An experi-
mental comparison,” in 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2014, pp. 1341–1346.

[4] C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction:
Crowd-aware robot navigation with attention-based deep reinforce-
ment learning,” in 2019 International Conference on Robotics and
Automation (ICRA), 2019, pp. 6015–6022.

[5] M. Kuderer, H. Kretzschmar, C. Sprunk, and W. Burgard, “Feature-
based prediction of trajectories for socially compliant navigation.” in
Robotics: science and systems, 2012.

[6] P. Trautman, J. Ma, R. M. Murray, and A. Krause, “Robot navigation
in dense human crowds: Statistical models and experimental studies
of human–robot cooperation,” The International Journal of Robotics
Research, vol. 34, no. 3, pp. 335–356, 2015. [Online]. Available:
https://doi.org/10.1177/0278364914557874

[7] P. Trautman and A. Krause, “Unfreezing the robot: Navigation in
dense, interacting crowds,” in 2010 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. IEEE, 2010, pp. 797–803.

[8] P. Bevilacqua, M. Frego, D. Fontanelli, and L. Palopoli, “Reactive
planning for assistive robots,” IEEE Robotics and Automation Letters,
vol. 3, no. 2, pp. 1276–1283, 2018.

[9] T. Fraichard and V. Levesy, “From crowd simulation to robot naviga-
tion in crowds,” IEEE Robotics and Automation Letters, vol. 5, no. 2,
pp. 729–735, 2020.

[10] A. Turnwald, D. Althoff, D. Wollherr, and M. Buss, “Understanding
human avoidance behavior: interaction-aware decision making based
on game theory,” International Journal of Social Robotics, vol. 8,
no. 2, pp. 331–351, 2016.

[11] A. Turnwald and D. Wollherr, “Human-like motion planning based
on game theoretic decision making,” International Journal of Social
Robotics, vol. 11, no. 1, pp. 151–170, 2019.

[12] R. Rossi, M. P. Polverini, A. M. Zanchettin, and P. Rocco, “A
pre-collision control strategy for human-robot interaction based on
dissipated energy in potential inelastic impacts,” in 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2015, pp. 26–31.

[13] S. Haddadin, S. Haddadin, A. Khoury, T. Rokahr, S. Parusel,
R. Burgkart, A. Bicchi, and A. Albu-Schäffer, “On making robots
understand safety: Embedding injury knowledge into control,” The
International Journal of Robotics Research, vol. 31, no. 13,
pp. 1578–1602, 2012. [Online]. Available: https://doi.org/10.1177/
0278364912462256

[14] D. Helbing, I. J. Farkas, P. Molnar, and T. Vicsek, “Simulation of
pedestrian crowds in normal and evacuation situations,” Pedestrian
and evacuation dynamics, vol. 21, no. 2, pp. 21–58, 2002.

[15] T. B. Dutra, R. Marques, J. B. Cavalcante-Neto, C. A. Vidal, and
J. Pettré, “Gradient-based steering for vision-based crowd simulation
algorithms,” in Computer Graphics Forum, vol. 36, no. 2. Wiley
Online Library, 2017, pp. 337–348.

[16] W. van Toll, F. Grzeskowiak, A. L. Gandı́a, J. Amirian, F. Berton,
J. Bruneau, B. C. Daniel, A. Jovane, and J. Pettré, “Generalized
microscropic crowd simulation using costs in velocity space,” in
Symposium on Interactive 3D Graphics and Games, 2020, pp. 1–9.

[17] A. Sakai, D. Ingram, J. Dinius, K. Chawla, A. Raffin, and A. Paques,
“Pythonrobotics: a python code collection of robotics algorithms,”
2018.

[18] D. Fox, W. Burgard, and S. Thrun, “The dynamic window
approach to collision avoidance,” IEEE Robot. Automat. Mag.,
vol. 4, no. 1, pp. 23–33, Mar. 1997. [Online]. Available:
http://ieeexplore.ieee.org/document/580977/

[19] D. A. Winter, Biomechanics and motor control of human movement.
John Wiley & Sons, Ltd, 2009, ch. 4, pp. 82–106. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470549148.ch4

[20] O. Khatib, “Inertial properties in robotic manipulation: An object-
level framework,” The International Journal of Robotics Research,

vol. 14, no. 1, pp. 19–36, 1995. [Online]. Available: https:
//doi.org/10.1177/027836499501400103

©IEEE All rights reserved. DOI: 10.1109/ICRA48506.2021.9561694

https://doi.org/10.1177/0278364914557874
https://doi.org/10.1177/0278364912462256
https://doi.org/10.1177/0278364912462256
http://ieeexplore.ieee.org/document/580977/
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470549148.ch4
https://doi.org/10.1177/027836499501400103
https://doi.org/10.1177/027836499501400103

	I INTRODUCTION
	II RELATED WORK
	III CROWDBOT SIMULATION PLATFORM
	III-A Crowd simulation
	III-B Environment and human simulation
	III-C Robot simulation
	III-D Robot navigation plugin
	III-E Initialisation pipeline and outputs
	III-F Open source project

	IV CROWD ROBOT NAVIGATION BENCHMARK
	IV-A Navigation techniques and hypotheses
	IV-B Benchmark setup
	IV-C Evaluation metrics
	IV-D Collision Assessment

	V Results
	V-A Benchmark results
	V-B Collision Assessment Results

	VI Discussion
	VI-A Path efficiency
	VI-B Crowd safety

	VII Conclusion
	References



