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"O frati," dissi, "che per cento milia
perigli siete giunti a l’occidente,
a questa tanto picciola vigilia

d’i nostri sensi ch’è del rimanente
non vogliate negar l’esperïenza,
di retro al sol, del mondo sanza gente.

Considerate la vostra semenza:
fatti non foste a viver come bruti,
ma per seguir virtute e canoscenza."

DANTE, Inferno,
canto XXVI, vv. 112-120





Abstract
We define and study a fixed-point property for linear representations of uniform

topological groups on weakly complete proper cones in locally convex vector spaces.
To this end, we translate this fixed-point property into a functional analysis framework
using a new class of ordered vector spaces and functionals developed expressly for the
occasion.

The specific case of uniform locally compact groups is investigated in-depth employ-
ing harmonic analysis theory.

The hereditary properties of the class of groups with the fixed-point property for
cones are examined by applying the functional perspective in both the uniform topo-
logical case and the uniform locally compact case.

Finally, we consider applications to invariant Radon measures on locally compact
spaces and operator algebras.

Keywords - topological group, uniform structure, ordered vector space, normed
Riesz space, convex cone, amenability, fixed-point property.

Astratto
Definiamo e studiamo una proprietà del punto fisso per rappresentazioni lineari di

gruppi topologici uniformi su coni propri debolmente completi in spazi vettoriali local-
mente convessi. A tal fine, traduciamo questa proprietà del punto fisso in termini di
analisi funzionale utilizzando una nuova classe di spazi vettoriali ordinati e di funzion-
ali sviluppate espressamente per l’occasione.

Il caso specifico dei gruppi localmente compatti uniformi viene studiato approfon-
ditamente utilizzando la teoria dell’ analisi armonica.

Le proprietà ereditarie della classe dei gruppi con la proprietà del punto fisso per
i coni sono esaminate applicando metodi di analisi funzionale sia nel caso topologico
uniforme che nel caso localmente compatto uniforme.

Infine, consideriamo applicazioni alle misure invarianti di Radon su spazi local-
mente compatti e alle algebre di operatori.

Parole chiave - gruppo topologico, struttura uniforme, spazio vettoriale ordinato,
spazio normato di Riesz, cono convesso, amenabilità, proprietà del punto fisso.





Abstrakt
Wir definieren und untersuchen eine Fixpunkteigenschaft für lineare Darstellun-

gen von uniformen topologischen Gruppen auf schwach vollständige Eigenkegeln in
lokalkonvexen Vektorräumen. Zu diesem Zweck übersetzen wir diese Fixpunkteigen-
schaft in Begriffe der Funktionalanalysis unter Verwendung einer neuen Klasse von
geordneten Vektorräumen und Funktionals, die ausdrücklich für diesen Anlass entwick-
elt wurden.

Der spezielle Fall von lokalkompakten uniformen Gruppen wird mit Hilfe der The-
orie der harmonischen Analyse eingehend untersucht.

Die hereditären Eigenschaften der Klasse der Gruppen mit der Fixpunkteigenschaft
für Kegel werden durch Anwendung von Methoden der Funktionalanalysis sowohl im
uniformen topologischen Fall als auch im lokal kompakten uniformen Fall untersucht.

Schließlich betrachten wir Anwendungen an invarianten Radonmaßen auf lokalkom-
pakte Räume und auf Operatoralgebren.

Stichwörter - topologische Gruppe, uniforme Struktur, geordneter Vektorraum,
normierter Riesz-Raum, konvexer Kegel, Mittelbarkeit, Fixpunkteigenschaft.

Résumé
Nous définissons et étudions une propriété de point fixe pour les représentations

linéaires de groupes topologiques uniformes sur des cônes propres faiblement com-
plets dans des espaces vectoriels localement convexes. Pour cela, nous traduisons cette
propriété de point fixe en termes d’analyse fonctionnelle en utilisant une nouvelle classe
d’espaces vectoriels ordonnés et de fonctionelles développée expressément pour l’occasion.

Le cas spécifique des groupes uniformes localement compacts est étudié en détail en
utilisant la théorie de l’analyse harmonique.

Les propriétés de stabilité de la classe des groupes ayant la propriété de point fixe
pour les cônes sont examinées en appliquant des méthodes d’analyse fonctionnelle dans
le cas topologique uniforme et dans le cas uniforme localement compact.

Enfin, nous considérons des applications aux mesures invariantes de Radon sur les
espaces localement compacts et aux algèbres d’opérateurs.

Mots-clés - Groupe topologique, structure uniforme, espace vectoriel ordonné, es-
pace de Riesz normé, cône convexe, moyennabilité, propriété de point fixe.
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Introduction

In [M17] Monod introduced a fixed-point property for discrete (abstract) groups acting
on weakly complete proper convex cones in locally convex vector spaces. He provided
different characterizations of this fixed-point property and studied the class of groups
satisfying it, in particular, pointing out that not all discrete groups have the fixed-point
property for cones, but those that display interesting functional and hereditary prop-
erties. One of the most exciting features of Monod’s fixed-point property is that it is
strictly related to the notion of amenability. Precisely, a discrete group satisfying this
fixed-point property is supramenable, and hence amenable.

Our research work began from the following natural question: is Monod’s fixed-
point property for cones generalizable to topological groups?

Before we begin investigating this question, we should ask ourselves whether it is
well-posed. The following two points convince us that this is the case:

(I) It is possible to define a good notion of amenability for topological groups;

(II) In 1976, Jenkins defined in [J76] a fixed-point property (called property F) for locally
compact groups while studying locally compact groups of subexponential growth.
It turned out that Monod and Jenkins’ fixed-point properties are equivalent when
considering discrete groups, see [M17, Subsection 10.C].

Therefore, we immersed ourselves in a world shaped by cones and groups acting on
them, with the aim of developing a theory that could unify the works of Monod and
Jenkins.

Regarding point (I), the theory of amenability has been an essential source of inspira-
tion. Indeed, part of our research consists of generalising the main results of amenabil-
ity theory for a distinct set of amenable groups (those with the fixed-point property
for cones). Although amenability for topological groups is generally well-understood,
when it comes to non-locally compact topological groups, the theory is not well-defined
in the sense that there are no uniform notations and conventions. For this reason, Chap-
ter 1 is dedicated to recalling and defining the theory of amenability in the generality
required for our purposes (precisely Subsection 1.4.B).

Our first task is to look for as general as possible definition of the fixed-point prop-
erty for cones since what is essential is invisible to the eye.1 Indeed, in the property defined

1Le Petit Prince of Antoine de Saint-Exupéry.
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Introduction

in [M17] the discreteness of the groups annihilated many essential details. However,
that is not the only motivation: by abstracting a property, we may appreciate its essence
and thus better understand how to study it. Each component of the definition we are
about to give is included for wholly unavoidable reasons, which will be discussed in
depth in Chapter 5.

Definition (5.1.4). Let G be a topological group and let U be a functionally invariant
uniformity for G. We say that G has the U -fixed-point property for cones if every
representation of G on a non-empty weakly complete proper cone C in a (Hausdorff)
locally convex vector space E which is locally bounded (U , Uc)-uniformly continuous
and of cobounded type has a non-zero fixed-point.

Fixed points in compact subsets of vector spaces are often associated with invari-
ant functionals, precisely invariant means, on function spaces. To mention only a few
examples of this beautiful friendship we have: the Markov-Kakutani fixed-point Theo-
rem and invariant means on bounded functions for abelian groups ( [Bou81, IV §1 No.1
Théorème 1]); the Rickert-Day fixed-point Theorem and invariant means for amenable
topological groups ( [D61, Theorem 1]); the Ryll–Nardzewski fixed-point Theorem and
invariant means on weakly almost periodic functions on topological groups ( [G69,
§3.1]) and also the common fixed-point property on compacta and extremely amenable topo-
logical groups ( [M66, Theorem 1]). Bearing these examples in mind, it is reasonable
to describe a fixed point in a cone through an invariant functional. The functional that
fulfils this duty is called an invariant normalised integral.

Definition (4.1.4 & 4.1.8). Let E be an ordered vector space and let G be a topological
group. Suppose that G has a representation π on E by positive linear automorphisms
and let d ∈ E be a non-zero positive vector. An invariant normalized integral is a
positive functional I defined on the vector space

(E, d) =

{
v ∈ E : ±v ≤

n

∑
j=1

π(gj)d for some g1, ..., gn ∈ G

}

such that I(d) = 1 and I(π(g)v) = I(v) for every g ∈ G and v ∈ E. We say that G, or
π, has the invariant normalized integral property for E if for every non-zero positive
d ∈ E there exists an invariant normalized integral on the space (E, d).

With this definition in mind, it is possible to give several characterizations of the
aforementioned fixed-point property for cones.

Theorem (5.2.1). Let G be a topological group and let U be a functionally invariant uniformity
for G. Then the following assertions are equivalent:

a) the group G has the U -fixed-point property for cones;

b) the group G has the invariant normalized integral property for Cb
u(G, U );

2
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c) for every action γ of G on a compact space K such that C(K) is πγ-invariant and for
every non-zero positive φ ∈ C(K) for which there is k0 ∈ K such that φ(k0) 6= 0 and the
map g 7−→ gk0 is U -uniformly continuous, there is an invariant normalized integral on
C(K, φ);

d) for every action γ of G on a uniform space (X, UX) such that Cb
u(X, UX) is πγ-invariant

and for every non-zero positive f ∈ Cb
u(X, UX) for which there is x0 ∈ X such that

f (x0) 6= 0 and the map g 7−→ gx0 is (U , UX)-uniformly continuous, there is an invari-
ant normalized integral on

(
Cb

u(X, UX), f
)
.

Unfortunately, most of the tools and techniques used for handling convex compact
sets are useless for handling convex cones. Working with cones is much more difficult
(and less pleasant) than working with compacts. However, do not panic. Cones also
bring gifts and not just coal. Indeed, a (proper) convex cone always defines a vector
ordering on the vector space in which it lives, allowing us to apply the well-developed
theory of ordered vector spaces. But this is still not enough for our goals. For this
reason, part of our work focus on developing a particular class of ordered vector spaces
and positive functionals on them, see Chapters 3 and 4. The theory produced in these
two chapters opens up two different doors for us.

Firstly, we can give a functional characterization of the fixed-point property for
cones. Note that similar characterizations were also studied and widely used in the
case of amenability. See, for example, the work of Zimmer [Z84, Chapter 4].

Theorem (5.3.1). Let G be a topological group and let U be a functionally invariant uniformity
for G. Then the following assertions are equivalent:

a) the group G has the U -fixed-point property for cones;

b) every representation π of G on a normed Riesz space E such that E is G-dominated and
π∗ is locally bounded (U , U ∗

c )-uniformly continuous admits an invariant normalized
integral;

c) every representation π of G on a Banach lattice E such that E is asymptotically G-
dominated and π∗ is locally bounded (U , U ∗

c )-uniformly continuous admits an invariant
normalized integral.

Secondly, we had the opportunity to understand better the invariant integral prop-
erty and, hence, the fixed-point property for cones for locally compact groups. Inspired
by the famous monograph of Greenleaf ( [G69]), we were able to show that for a locally
compact group, the invariant normalized integral properties on the classical Banach lat-
tices are all equivalent.

Theorem (6.3.4). Let G be a locally compact group. If G has the invariant normalized integral
property for one of the following Banach lattices

L∞(G), Cb(G), Cb
lu(G), Cb

ru(G) or Cb
u(G),

then G has the invariant normalized integral property for all the others.

3
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This last theorem generalizes the famous result [G69, Theorem 2.2.1] stating the
equivalence of invariant means for the above classical Banach spaces when consider-
ing amenable groups (see Remark 6.3.5).

In parallel with the investigation on the fixed-point property for cones, we were also
interested in another functional property related to it, the so-called translate property.
The translate property was originally a condition for non-zero positive bounded func-
tions on groups which was first considered implicitly in a question posed by Greenleaf
in [G69, §1.3.].2 However, the first to name it and describe it in the form we know it to-
day was Rosenblatt in his doctoral thesis ( [R72]) while he was studying supramenabil-
ity.

Paraphrasing, the original question posed by Greenleaf was: given a representation
π of a group G on an ordered vector space E and a non-zero positive vector d ∈ E,
does a non-zero invariant functional on the subspace spanR(Gd) imply an invariant
normalized integral one on the space (E, d)? The essential information to ensure a non-
zero invariant functional on spanR(Gd) is encoded in the following property of d, which
is precisely the translate property.

Definition (4.2.1 & 4.2.7). Let E be an ordered vector space and let G be a topological
group. Suppose that G has a representation π on E by positive linear automorphisms.
Then a non-zero positive vector d ∈ E has the translate property if

n

∑
j=1

tjπ(gj)d ≥ 0 implies that
n

∑
j=1

tj ≥ 0 for every t1, ..., tn ∈ R and g1, ..., gn ∈ G.

We say that G has the translate property for E if every non-zero positive vector d ∈ E
has the translate property.

Therefore, Greenleaf’s question can be rephrased in the following way: given a rep-
resentation of a group G on an ordered vector space E and a non-zero positive vector
d ∈ E, does the translate property for d imply the existence of an invariant normalized
integral on (E, d)?

One of the first who studied this question was Rosenblatt, who was able to give a
partial answer in his doctoral thesis ( [R72, Corollary 1.3]) for discrete groups in the case
E = `∞(G) but only for vectors of the form 1A, for some A ⊂ G. A complete answer for
this case was finally given by Monod ( [M17, Corollary 19] and [M17, Corollary 20]).

We studied this problem in Section 4.2, where we provided partial answers for topo-
logical groups and arbitrary ordered vector spaces (Propositions 4.2.20 and 4.2.21). A
complete and exhaustive solution for locally compact groups is presented in Chapter 6.
Indeed,

Theorem (6.3.8). Let G be a locally compact group. If G has the translate property for Cb
ru(G),

then G has the invariant normalized integral property for Cb
ru(G).

2Actually, we do not know if Greenleaf was the first to be interested in this problem.
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Moreover, in the locally compact case, we answered Greenleaf’s question not only
for the space Cb

ru(G) but for all the classical ones.

Theorem (6.3.10). Let G be a locally compact group and let E be one of the following Banach
lattices

L∞(G), Cb(G), Cb
ru(G), Cb

lu(G) or Cb
u(G).

Then G has the translate property for E if and only if G has the invariant normalized integral
property for E.

Combining these last two theorems, we could also show that the translate properties
on the classical Banach lattices are all equivalent.

Theorem (6.3.11). Let G be a locally compact group. If G has the translate property for one of
the following Banach lattices

L∞(G), Cb(G), Cb
lu(G), Cb

ru(G) or Cb
u(G),

then G has the translate property for all the others.

Furthermore, we studied the relationship between means and the translate property
in Section 4.2.B, where we showed that the translate property implies the existence of
localized means on Banach lattices with an order unit (Theorem 4.2.11). In particular,
the translate property for Cb

ru(G) implies amenability (Corollary 4.2.13).

The reason to spend so much time investigating the translate property can be under-
stood by looking at Chapter 7.

In this chapter, we studied the hereditary property of the fixed-point property. First,
we looked at topological groups, and we showed that the class of topological groups
with the fixed-point property for cones is closed under continuous epimorphisms (Corol-
lary 7.1.3), quotients (Corollary 7.1.5), open and dense subgroups (Propositions 7.1.6
and 7.1.10) and extensions by or of finite groups (Propositions 7.1.7 and 7.1.9). Never-
theless, the best results are in the locally compact case as here, the fixed-point property
for cones is equivalent to the translate property. Indeed, working with the translate
property is easier because we do not need control on the whole space (and its dual) but
only on a small portion of it. Thanks to that, we could prove that the class of locally
compact groups with the fixed-point property for cones is closed under closed sub-
groups (Theorem 7.2.1), directed limits (Theorem 7.2.2), Cartesian product with a group
of subexponential growth (Theorem 7.1.18), extensions of compact groups (Proposition
7.1.8) and (discrete) central extensions (Theorem 7.2.7). Moreover, it contains the class
of locally compact groups of subexponential growth (Corollary 7.2.3).

Finally, in the last (short) chapter, a couple of easy but interesting applications of the
fixed-point property for cones are presented. In particular, the fixed-point property for
cones is the correct property to use when studying problems where a non-zero invariant
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Radon measure is required (Theorem 8.1.3). This will lead us to assert that each locally
compact group with the fixed-point property for cones is unimodular (Corollary 8.2.1)
and to slightly generalize a well-known theorem for finitely generated orderable groups
(Theorem 8.3.1).

The last word: in this manuscript, there will be at least one error (mathematical or
otherwise). We take full responsibility for all such mistakes. We have tried to remain as
clear and simple as possible without ever losing the essence of maths.

"Perhaps we should discard the myth that mathematics is a rigorously deductive enterprise. It
may be more deductive than other sciences, but hand-waving is intrinsic."

Desperately Seeking Mathematical Proof
M.B. NATHANSON [N09]
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Organization

We give a brief overview of the manuscript structure.

The first chapters are dedicated to recalling essential basics. Chapter 1 regards the
basics of topological groups and uniform structures, while Chapter 2 concerns cones
and ordered vector spaces.

In Chapter 3 we develop the theory of dominating and asymptotically dominating
spaces, and in Chapter 4 we deal with positive functionals on it. We introduce the
concepts of invariant normalized integral and the translate property.

In Chapter 5 we state the fixed-point property for cones, and we begin to study it in
the case of topological groups. In Chapter 6, we focus only on locally compact groups.

The goal of Chapter 7 is to understand the hereditary properties of the fixed-point
property for cones and of the translate property.

Lastly, in Chapter 8, we give some applications of the fixed-point property for cones
concerning invariant Radon measures.

The manuscript has two appendices. In the first, we discuss the problem of embed-
ding an abstract cone into a vector space, while in the second, we see how the problems
treated in the thesis could also be solved using an operator algebra approach.

General conventions and notations

The capital letter G always denote a group with some specified topology. An abstract
group is nothing but a group endowed with the discrete topology. We consider only
actions of groups and never anti-actions.

Every vector space is real. The notation E′ and E∗ are used for the topological dual,
the set of all continuous linear functionals on E with respect to some given topology, and
the algebraic dual, the set of all linear functionals on E, respectively. The completion of
E with respect to some given uniformity, or some given topology, is written Ê.

Every locally compact topology and every locally convex topology is assumed to be
Hausdorff.
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Chapter 1

Groups, Topologies & Uniformities

The following is the first of two chapters dedicated to recapitulations. The goal here is to
repeat basic concepts and results about uniform spaces, function spaces and (invariant)
means.

We start by discussing general function spaces. Then we pass to uniform structures
on sets and uniformly continuous functions. In particular, we are interested in uni-
form structures on topological groups. After, we repeat the notion of mean and use
it to define uniform amenability. Finally, we conclude the chapter by giving different
characterizations of amenability for uniform groups.

An essential prerequisite for this chapter is the theory of topological groups. Good
references to refresh it are [Bou71, III §1 & §2], [HR63, Chapter Two] and [AT08, Chapter
3].

1.1 About function spaces

Let X be a set and let E be a real vector space. We define the set

EX = { f : X −→ E : f is a function} .

For two functions f , h ∈ EX, their sum f + h ∈ EX is defined pointwise as the
function given by

( f + h)(x) = f (x) + h(x) for every x ∈ X.

We say that f + h is the pointwise sum, or the pointwise addition, of f and h. Similarly,
the multiplication between a function f ∈ EX and a scalar α ∈ R is defined as the
function α f ∈ EX given pointwise by

(α f )(x) = α f (x) for every x ∈ X.

We say that α f is the pointwise scalar multiplication between α and f .
By definition, the set EX equipped with the pointwise addition and scalar multipli-

cation is a vector space.
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Chapter 1. Groups, Topologies & Uniformities

Definition 1.1.1. Let X be a set and let E be a vector space. A subset F(X, E) of EX

is called a vector-valued function space, if it is a vector subspace of EX under point-
wise addition and scalar multiplication. If E = R, then we only write F(X) instead of
F(X, R),and we say that F(X) is a real function space.

Suppose from now on that E is a locally convex vector space. Then a subset V of
E is said bounded, if it is absorbed by every neighborhood of the origin, i.e., for every
neighborhood of the origin U there is α > 0 such that V ⊂ αU. Here, αU = {αv : v ∈
U}. A function f ∈ EX is said a bounded function, if its image im( f ) is a bounded
subset of E. If F(X, E) is a vector-valued function space, then the set of all functions of
F(X, E) that are bounded is denoted by Fb(X, E).

Proposition 1.1.2. Let X be a set and let E be a locally convex vector space. Suppose that
F(X, E) is a vector-valued function space. Then, Fb(X, E) is a vector subspace of F(X, E).

We recall that the sum of two sets A and B in a vector space E is defined as

A + B = {v ∈ E : v = a + b for some a ∈ A and b ∈ B} .

Proof of Proposition 1.1.2. Let f1 and f2 be two functions in Fb(X, E). We want to show
that their sum is still a bounded function. Let U be a neighborhood of the origin of E.
We can suppose that U is a convex set, since E is a locally convex space. Then there are
α1 > 0 and α2 > 0 such that im( f1) ⊂ α1U and im( f2) ⊂ α2U. Set α = α1 + α2. We claim
that im( f1 + f2) ⊂ αU. Indeed,

im( f1 + f2) ⊂ im( f1) + im( f2) ⊂ α1U + α2U.

Therefore, it is sufficient to show that α1U + α2U ⊂ αU. Let v ∈ α1U + α2U. Then there
are v1 and v2 in U such that v = α1v1 + α2v2. Thus,

v = α1v1 + α2v2 = (α1 + α2)

(
α1

α1 + α2
v1 +

α2

α1 + α2
v2

)
︸ ︷︷ ︸

∈U

,

and so v ∈ αU.
Now let λ ∈ R and f ∈ Fb(X, E). We want to show that λ f is still a bounded

function. Let U be a neighborhood of the origin of E. We can suppose that U is balanced
because of [Bou81, I §1 No.5 Proposition 4].1 As f is bounded, there is α > 0 such that
im( f ) ⊂ αU. Set αλ = α|λ|. We claim that im(λ f ) ⊂ αλU. Indeed,

im(λ f ) = λim( f ) ⊂ λαU.

1Recall that a subset U of a vector space E is called balanced if αv ∈ U for all v ∈ U and α ∈ R such
that |α| ≤ 1.
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Section 1.2. Uniform structures on sets

Hence, it is sufficient to show that λαU ⊂ αλU. Let v ∈ λαU. Then there is w ∈ U such
that

v = λαw = α|λ| λ

|λ|w = αλ
λ

|λ|w.

But now λ
|λ|w ∈ U, as U is balanced. Thus, we can conclude that v ∈ αλU.

A direct application of the previous proposition shows that, for every set X and for
every vector space E, the set `∞(X, E) of all bounded functions from X to E is a vector
space.

In the case where (E, || · ||E) is a Banach space, saying that a function f ∈ F(X, E) is
bounded is equivalent to saying that the value supx∈X || f (x)||E is finite. Therefore, we
can define the finite value

|| f ||∞ = sup
x∈X
|| f (x)||E

for every f ∈ Fb(X, E). Then || · ||∞ is a norm on Fb(X, E) that is called the supremum
norm or the uniform norm.

1.2 Uniform structures on sets

This section recalls some definitions and results about uniform structures on sets and
uniformly continuous functions. In particular, we discuss a unique uniform structure,
namely the fine uniformity. Good references about uniformities are: [I64], [J87], [W70]
and [Bou71, Chapitre II].

1.2.A. Definition of uniformity and first examples. Let X be a set and let A, B be two
subsets of X× X. We define the inversion of a set as

A−1 = {(a1, a2) ∈ X× X : (a2, a1) ∈ A}

and the composition of two sets as

A ◦ B = {(a, b) ∈ X× X : ∃x ∈ X s.t. (a, x) ∈ A and (x, b) ∈ B} .

The section of a point x ∈ X with respect to a subset A ⊂ X× X is given by

A [x] = {y ∈ X : (x, y) ∈ A} ,

while the section of a set with respect to A ⊂ X× X is defined as

A [S] =
⋃
x∈S

A [x] .

Finally, the diagonal of X× X is the set ∆X = {(x, x) ∈ X× X : x ∈ X}.

11



Chapter 1. Groups, Topologies & Uniformities

Definition 1.2.1. A uniform structure U for a set X is a collection of subsets of X × X
with the following properties:

(U1) X× X ∈ U ;

(U2) ∆X ⊂ A for any A ∈ U ;

(U3) A−1 ∈ U for any A ∈ U ;

(U4) if A, B ∈ U , then A ∩ B ∈ U ;

(U5) if A ∈ U and A ⊂ B, then B ∈ U ;

(U6) for any A ∈ U , there is B ∈ U such that B ◦ B ⊂ A.

A set X together with a uniform structure U is called a uniform space.

If X is a set with a uniform structure U , we say that U is a uniformity for X.

The elements of U are called entourages or uniform entourages. A basis, or a fun-
damental system, for U is any subset B of U such that every entourage of U contains
an element of B. A uniform structure U is said separated, or Hausdorff, if for any
x1, x2 ∈ X such that x1 6= x2, there is an entourage A ∈ U such that (x1, x2) /∈ A.

Example 1.2.2. (Examples of uniform structures) Let X be a set.

1) The trivial uniformity is the uniformity where the only entourage is X × X, i.e.,
Ut = {X× X}. When X is equipped with the trivial uniformity, we call it a trivial
uniform space.

2) The discrete uniformity is given by the collection Ud = {A ⊂ X× X : ∆X ⊂ A}.
A set X equipped with Ud is called a discrete uniform space.

3) Suppose that X is a metric space and let dX be its metric. For every non-zero r ∈ R,
define the set Ar = {(x1, x2) ∈ X× X : dX(x1, x2) < r}. Then the collection

UdX = {B ⊂ X× X : ∃ r > 0 s.t. Ar ⊂ B}

is a uniform structure on X. The uniform structure UdX is called the metric uni-
form structure, or the metric uniformity, associated to the metric space (X, dX).

4) Suppose that X is a topological vector space. Let V be a neighborhood of the ori-
gin and define the set AV = {(x1, x2) ∈ X× X : x2 − x1 ∈ V}. Then the uniform
structure Uc having as basis the sets AV , where V runs over a neighborhood basis
of the origin, is called the canonical uniform structure of the vector space X.
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Section 1.2. Uniform structures on sets

5) More generally, suppose that G is an abelian topological group. Then the canoni-
cal uniform structure Uc of G is the uniformity having as basis the sets

AV =
{
(g1, g2) ∈ G× G : g−1

1 g2 ∈ V
}

,

where V runs over a neighborhood basis of the identity. This uniform structure is
also called the additive uniformity, see [P13, Definition 2.4].

Clearly, the trivial uniformity is not Hausdorff, while the discrete uniformity is.

Definition 1.2.3. Let (X, U ) be a uniform space. The topology induced by U on X is
the one where a neighborhood basis at a point x ∈ X is given by the sets

{A [x] : A ∈ U } .

If (X, U ) is a uniform space, then we write τ(U ) for the topology induced by U
and we call it the uniform topology of (X, U ). Note that τ(U ) is Hausdorff if and only
if the uniform structure U is Hausdorff ( [J87, Proposition (8.8)]).

Example 1.2.4. (Examples of uniform topologies)

1) Let X be a set and Ut its trivial uniformity. The topology induced by Ut is the
trivial one. In fact, (X× X) [x] = X for every x ∈ X.

2) Let X be a set together with its discrete uniform structure Ud. Then the topology
on X induced by Ud is the discrete topology. This is because ∆X [x] = {x} for
every x ∈ X.

3) Let (X, dX) be a metric space and let UdX be the metric uniform structure associ-
ated. Then the topology induced by UdX is exactly the topology induced by the
metric dX.

A uniform structure induces not every topology on a set X. A necessary and suf-
ficient condition to ensure that a topology comes from a uniform structure is asking
that the topology is completely regular ( [J87, Proposition (11.5)]). Precisely, every com-
pletely regular topology on a set is induced by a separated uniformity, and every topol-
ogy induced by a separated uniformity is completely regular. Note that there are non-
Hausdorff topologies that are induced by (non-separated) uniformities. An example is
the trivial topology, as the trivial uniformity induces it.

Definition 1.2.5. Let (X, τ) be a topological space. Then X is said uniformizable if there
is a uniform structure U on X inducing its topology.

Be aware that for a topology on a set X, different uniform structures may induce it.
However, there are some cases where a topology is induced precisely by one uniform
structure. An example is given by compact topological spaces, see [Bou71, II §4 No.1
Théorème 1].
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1.2.B. Uniformly continuous functions. This subsection repeats the basic properties of
uniformly continuous functions and vector spaces of uniformly continuous functions.

Definition 1.2.6. Let X and Y be two uniform spaces with uniform structures UX and
UY, respectively. A function f : X −→ Y is said uniformly continuous if for every
entourage AY ∈ UY there is an entourage AX ∈ UX such that (x1, x2) ∈ AX implies
( f (x1), f (x2)) ∈ AY. The function f is called a uniform equivalence, if it is bijective
and both f and f−1 are uniformly continuous.

If we set h = ( f × f ), then f is uniformly continuous if and only if for every en-
tourage A of UY, we have that h−1(A) ∈ UX.

Example 1.2.7. (Examples of uniformly continuous functions)

1) Every function from a discrete uniform space to a uniform space is uniformly con-
tinuous.

2) Let (X, dX) and (Y, dY) be two metrics spaces and let UdX and UdY be the respec-
tive metric uniform structures. Then a function f between (X, UdX) and (Y, UdY)
is uniformly continuous if and only if it is uniformly continuous as a function
between the metric spaces (X, dX) and (Y, dY), see [W70, Example 35.12-a)] for
details.

3) Let R equipped with its metric uniformity coming from the Euclidean norm. Then
the map x 7−→ x2 is continuous but not uniformly continuous.

Let X and Y be two uniform spaces with uniform structures UX and UY, respectively.
If f is a map between X and Y, which is uniformly continuous for the respective uniform
structures, we say that f is (UX, UY)-uniformly continuous. In the case where Y is
compact, we only say that f is UX-uniformly continuous, since there is only one uniform
structure on Y, and hence no possible misunderstandings.

Write Cu ((X, UX), (Y, UY)) for the set of all uniformly continuous functions be-
tween (X, UX) and (Y, UY). If the uniform space Y is equal to R equipped with its
canonical uniform structure, we only write Cu(X, U ) instead of Cu ((X, U ), (R, Uc)).
Similarly, we write Cb

u ((X, UX), (Y, UY)) for the set of all bounded uniformly contin-
uous functions between (X, UX) and (Y, UY). As before, we write Cb

u(X, U ) instead of
Cb

u ((X, U ), (R, Uc)).

Proposition 1.2.8. Let (X, UX) be a uniform space and let E be a locally convex vector space.
Then Cu ((X, UX), (E, Uc)) and Cb

u ((X, UX), (E, Uc)) are vector spaces when equipped with
the pointwise addition and scalar multiplication.

Proof. Let f1, f2 be two functions in Cu ((X, UX), (E, Uc)). We want to show that the
function f1 + f2 ∈ Cu ((X, UX), (E, Uc)). Let A ∈ Uc. We can suppose that A is of the
form

AV = {(v1, v2) ∈ E× E : v2 − v1 ∈ V} ,
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Section 1.2. Uniform structures on sets

where V is a convex neighborhood of the origin of E. Then there are A1 and A2 in UX
such that (x, y) ∈ A1 implies that ( f1(x), f1(y)) ∈ A 1

2 V , and (x, y) ∈ A2 implies that
( f2(x), f2(y)) ∈ A 1

2 V . Here,

A 1
2 V =

{
(v1, v2) ∈ E× E : v2 − v1 ∈

1
2

V
}

.

Set A+ = A1 ∩ A2 ∈ UX. Therefore, if (x, y) ∈ A+, then

( f1 + f2)(y)− ( f1 + f2)(x) = f1(x)− f1(y)︸ ︷︷ ︸
∈ 1

2 V

+ f2(x)− f2(y)︸ ︷︷ ︸
∈ 1

2 V

∈ V.

This implies that (( f1 + f2)(x), ( f1 + f2)(y)) ∈ AV , and hence that the sum f1 + f2 is in
Cu ((X, UX), (E, Uc)) as wished.

Let now α ∈ R be different from zero and f ∈ Cu ((X, UX), (E, Uc)). We want to
show that α f is still in Cu ((X, UX), (E, Uc)). Let A ∈ Uc. As before, we can suppose that
A is of the form

AV = {(v1, v2) ∈ E× E : v2 − v1 ∈ V} ,

where V is a convex neighborhood of the origin of E. Then there is Aα ∈ UX such that
(x, y) ∈ Aα implies ( f (x), f (y)) ∈ A 1

|α|V
, where

A 1
|α|V

=

{
(v1, v2) ∈ E× E : v2 − v1 ∈

1
|α|V

}
.

Therefore, if (x, y) ∈ Aα, then

(α f )(y)− (α f )(x) = α ( f (x)− f (y))︸ ︷︷ ︸
∈ 1
|α|V

∈ V.

This implies that ((α f )(x), (α f )(y)) ∈ AV showing that α f is in Cu ((X, UX), (E, Uc)).
We can hence conclude that Cu ((X, UX), (E, Uc)) is a vector space. Moreover, we

have that the set Cb
u ((X, UX), (E, Uc)) is a vector subspace of Cu ((X, UX), (E, Uc)) by

Proposition 1.1.2.

Proposition 1.2.9. Let X, Y and Z be uniform spaces and let f : X −→ Y and g : Y −→
Z be uniformly continuous functions. Then the composition f ◦ g of f and g is a uniformly
continuous function from X to Z.

Proof. See [Bou71, II §2 No.1 Proposition 2].

We saw in point 3) of Example 1.2.7 that not every continuous function is uniformly
continuous. However, the converse is true.
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Proposition 1.2.10. Let (X, UX) and (Y, UY) be two uniform spaces and let f : X −→ Y be a
(UX, UY)-uniformly continuous function. Then f is a continuous function with respect to the
topologies τ(UX) and τ(UY).

Proof. See [Bou71, II §2 No.1 Proposition 1].

This last proposition implies, in particular, that the following inclusion

Cu

(
(X, UX), (Y, UY)

)
⊂ C

(
(X, τ(UX)) , (Y, τ(UY))

)
holds for every uniform space (X, UX) and (Y, UY).

Theorem 1.2.11. Let (X, U ) be a uniform space and let (E, || · ||E) be a Banach space. Then
the function space Cb

u ((X, U ), (E, Uc)) equipped with the supremum norm || · ||∞ is a Banach
space.

Proof. Let ( fn)n be a Cauchy sequence in Cb
u ((X, U ), (E, Uc)) with respect to the supre-

mum norm. We define the function f pointwise by f (x) = limn fn(x) for every x ∈ X.
We claim that f ∈ Cb

u ((X, U ), (E, Uc)), and that ( fn)n converges to f for the supremum
norm.

First of all, note that f is a well-defined function. Indeed for every x ∈ X, the se-
quence ( fn(x))n is Cauchy for the || · ||E-norm, and consequently, it converges by com-
pleteness of E. Thus, the limit limn fn(x) = f (x) exists for every x ∈ X .

We proceed to show that ( fn)n converges to f for the supremum norm. Let ε > 0.
Then there is n0 ∈ N such that

|| fn − fm||∞ = sup
x∈X
|| fn(x)− fm(x)||E < ε for every n, m ≥ n0.

This implies that

|| f (x)− fn(x)||E = || lim
m

fm(x)− fn(x)||E ≤ lim
m
|| fm(x)− fn(x)||E < ε.

for every n > n0 and x ∈ X. Therefore, we can conclude that

|| f − fn||∞ = sup
x∈X
|| f (x)− fn(x)||E

= sup
x∈X
|| lim

m
fm(x)− fn(x)||E

≤ sup
x∈X

lim
m
|| fm(x)− fn(x)||E < ε

for every n > n0.
Let’s show that f is a bounded function. Let ε > 0 and let n0 ∈ N such that || f −

fn0 ||∞ < ε. Then

|| f ||∞ ≤ || f − fn0 ||∞ + || fn0 ||∞ < ε + || fn0 ||∞
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which proves that f is bounded.
It is left to check that f is uniformly continuous. Let A ∈ Uc. We can suppose that A

is of the form

Aε = {(v1, v2) ∈ E× E : ||v2 − v1||E < ε}

for some ε > 0. Now, there is n0 ∈ N such that || f − fn||∞ < ε
3 for every n > n0.

Fix n1 ∈ N such that n1 > n0. Then there is AX ∈ U such that (x, y) ∈ AX implies
( fn1(x), fn1(y)) ∈ A ε

3
, where A ε

3
=
{
(v1, v2) ∈ E× E : ||v2 − v1||E < ε

3

}
. We claim that

( f (x), f (y)) ∈ Aε for every (x, y) ∈ AX. Indeed, given (x, y) ∈ AX, we can compute
that

|| f (x)− f (y)||E ≤ || f (x)− fn1(x)||E + || fn1(x)− fn1(y)||E + || fn1(y)− f (y)||E
≤ || f − fn1 ||∞ + || fn1(x)− fn1(y)||E + || fn1 − f ||∞
<

ε

3
+

ε

3
+

ε

3
= ε.

Therefore, ( f (x), f (y)) ∈ Aε as wished.

Corollary 1.2.12. Let X be a set and let (E, || · ||E) be a Banach space. Then `∞(X, E) equipped
with the supremum norm is a Banach space.

Proof. We have that Cb
u((X, Ud), (E, Uc)) = `∞(X, E). Thus, we can conclude by Theo-

rem 1.2.11.

Suppose now that (E, || · ||E) is a Banach algebra, i.e., a Banach space equipped with
a multiplication such that ||v1v2||E ≤ ||v1||E||v2||E for every two vectors v1, v2 ∈ E.
Then for a set X, we define the pointwise multiplication of two functions f1 and f2 in
EX as the function f1 f2 ∈ EX given pointwise by

( f1 f2)(x) = f1(x) f2(x) for every x ∈ X.

Theorem 1.2.13. Let (X, U ) be a uniform space and let (E, || · ||E) be a Banach algebra. Then
Cb

u ((X, U ), (E, Uc)) equipped with the supremum norm is a Banach algebra under pointwise
multiplication.

Proof. We know already that Cb
u ((X, U ), (E, Uc)) equipped with the supremum norm

is a Banach space by Theorem 1.2.11. Therefore, we only have to check that the space
of uniformly continuous functions Cb

u ((X, U ), (E, Uc)) is closed under pointwise mul-
tiplication. Let f1, f2 be two non-zero functions in Cb

u ((X, U ), (E, Uc)) and let A ∈ Uc.
We can suppose that A is of the form

Aε = {(v1, v2) ∈ E× E : ||v2 − v1||E < ε}

for some ε > 0. Then there are A f1 , A f2 ∈ U such that for every (x, y) ∈ A f1 , we have
that

( f1(x), f1(y)) ∈ A1 =

{
(v1, v2) ∈ E× E : ||v2 − v1||E <

ε

2|| f2||∞

}
∈ Uc,
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and for every (x, y) ∈ A f2 , we have that

( f2(x), f2(y)) ∈ A2 =

{
(v1, v2) ∈ E× E : ||v2 − v1||E <

ε

2|| f1||∞

}
∈ Uc.

Set AX = A f1 ∩ A f2 . Then

|| f1(x) f2(x)− f1(y) f2(y)||E = || f1(x) f2(x)− f1(y) f2(x) + f1(y) f2(x)− f1(y) f2(y)||E
≤ || f2(x)||E|| f1(x)− f1(y)||E + || f1(y)||E|| f2(x)− f2(y)||E
≤ || f2||∞

ε

2|| f2||∞
+ || f1||∞

ε

2|| f1||∞
= ε

for every (x, y) ∈ AX. This implies that ( f1(x) f2(x), f1(y) f2(y)) ∈ Aε. Therefore, the
pointwise product of f1 with f2 is in Cb

u ((X, U ), (E, Uc)). So, Cb
u ((X, U ), (E, Uc)) is an

algebra. It is left to show that the supremum norm is submultiplicative to conclude that
Cb

u ((X, U ), (E, Uc)) is a Banach algebra. Let f1, f2 ∈ Cb
u ((X, U ), (E, Uc)). Then

|| f1 f2||∞ = sup
x∈X
|| f1(x) f2(x)||E ≤ sup

x∈X
|| f1(x)||E|| f2(x)||E

≤ sup
x∈X
|| f1(x)||E sup

y∈X
|| f2(y)||E = || f1||∞|| f2||∞

as wished.

Remark 1.2.14. Note that the boundness condition is a fundamental hypothesis to en-
sure the algebraic structure. For example, let X = R with the canonical uniformity given
by its locally compact topology. Then the function f (x) = x is uniformly continuous
but f (x) f (x) = x2 is not.

1.2.C. The fine uniformity. In the following subsection, we recall some facts about a
particular uniform structure: the fine uniformity. Intuitively, the fine uniformity is the
uniform structure that comes closest to a topology. This uniform structure is not so
much discussed in the literature as studying it is similar to studying a topology. How-
ever, a good exposition of the fine uniformity can be founded in [W70, pp. 244-249].

Let X be a set with two uniform structures U1 and U2. We say that U1 is finer than U2
if the identity map Id : (X, U1) −→ (X, U2) is uniformly continuous. In other words,
if every entourage of U2 is also an entourage of U1. If U1 is finer than U2, we write
U2 ⊂ U1.

Theorem 1.2.15. Let X be a uniformizable topological space. Then there is a finest uniformity
on X, which induces its topology.

Proof. See [W70, Theorem 36.12].
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Definition 1.2.16. Let X be a uniformizable topological space. Then the finest unifor-
mity on X, which induces its topology, is called the fine uniformity of X and it is de-
noted F or FX.

The following theorem is the reason why the fine uniformity is so close to being a
topology.

Theorem 1.2.17. Let (X, UX) and (Y, UY) be uniform spaces. If the function f : (X, τ(UX)) −→
(Y, τ(UY)) is continuous, then f : (X, F ) −→ (Y, UY) is uniformly continuous.

Proof. See [W70, Theorem 36.18].

Therefore, the equality

Cu ((X, F ), (Y, UY)) = C ((X, τ), (Y, τ(UY)))

holds for every uniformizable topological space (X, τ) and every uniform space (Y, UY).

Corollary 1.2.18. Every continuous function from a compact topological space to a uniform
space is uniformly continuous.

Proof. Let X be a compact topological space. By [Bou71, II §7 No.1 Théorème 1], there is
only one uniform structure UX on X. This means that UX = F by Theorem 1.2.15, and
so we can conclude using Theorem 1.2.17.

Corollary 1.2.19. Let X be a topological uniformizable space and let (E, || · ||E) be a Banach
space. Then Cb(X, E) is a Banach algebra when equipped with the supremum norm and the
pointwise multiplication.

Proof. Let F be the fine uniform structure of X. Then

Cb(X, E) = Cb
u ((X, F ), (E, Uc))

by Theorem 1.2.17. This last space is a Banach algebra when equipped with the supre-
mum norm and the pointwise multiplication by Theorem 1.2.13.

1.3 Uniform structures on groups

We focus on the case where X is a topological group. Precisely, we look at specific
uniform structures, which show up naturally when the data of a topological group is
given. Most of them were studied in [RD81]. Moreover, we explain how it is possible
to describe different functions spaces on a topological group via spaces of uniformly
continuous functions.
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1.3.A. Spaces of functions on topological groups. Let G be a topological group, X a
set and E a vector space. Suppose that the group G acts on X via the map

G× X −→ X, (g, x) 7−→ γ(g)(x),

where γ : G −→ Sym(X). We define the γ-representation πγ of G on EX by the equa-
tion

πγ(g) f (x) = f (γ(g)−1(x)) for x ∈ X, g ∈ G and f ∈ EX.

Consider the case X = G. Then there are, at least, two natural actions of G on itself.
The first one is the left-translation action that is given by the map

L : G× G −→ G, (g, x) 7−→ L(g)(x) = gx.

While the second one is the right-translation action that is given by the map

R : G× G −→ G, (g, x) 7−→ R(g)(x) = xg−1.

Therefore, we can introduce the respective representations. We define the left-translation
representation πL of G on EG by

πL(g) f (x) = f (L(g)−1(x)) = f (g−1x) for g, x ∈ G and f ∈ EG.

Similarly, we define the right-translation representation πR of G on EG by

πR(g) f (x) = f (R(g)−1(x)) = f (xg) for g, x ∈ G and f ∈ EG.

Suppose now that E is a locally convex vector space, and consider the sets C(G, E) of
all vector-valued continuous functions from G to E and Cb(G, E) of all bounded vector-
valued continuous functions from G to E. Then C(G, E) and Cb(G, E) are vector-valued
function spaces with the pointwise addition and scalar multiplication by Proposition
1.2.8 and Theorem 1.2.17.

A function f ∈ Cb(G, E) is said to be a bounded vector-valued right-uniformly con-
tinuous function if for every neighborhood V ⊂ E of the origin there is a neighborhood
U ⊂ G of the identity such that for every a ∈ U:

πL(a) f (g)− f (g) ∈ V for every g ∈ G.

We write Cb
ru(G, E) for the subset of all bounded vector valued right-uniformly con-

tinuous functions on G. Similarly, a function f ∈ Cb(G, E) is said to be a bounded
vector-valued left-uniformly continuous function if for every neighborhood V ⊂ E of
the origin there is a neighborhood U ⊂ G of the identity such that for every a ∈ U:

πR(a) f (g)− f (g) ∈ V for every g ∈ G.
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We write Cb
lu(G, E) for the subset of all bounded vector valued left-uniformly con-

tinuous functions on G. We define the set of all bounded vector-valued uniformly
functions on G as the intersection Cb

u(G, E) = Cb
ru(G, E) ∩ Cb

lu(G, E). The sets Cb
ru(G, E),

Cb
lu(G, E) and Cb

u(G, E) are vector subspaces of Cb(G, E).

Now, consider the case where (E, || · ||E) is a Banach space. We can hence define on
Cb(G, E) the supremum norm || · ||∞. A small computation shows that the set Cb

ru(G, E)
is equal to the set of all f ∈ Cb(G, E) such that the orbital map

G −→ Cb(G, E), g 7−→ πL(g) f

is continuous with respect to the supremum norm on Cb(G, E). Similarly, the set Cb
lu(G, E)

coincides with the set of all f ∈ Cb(G, E) such that the orbital map

G −→ Cb(G, E), g 7−→ πR(g) f

is continuous with respect to the supremum norm on Cb(G, E). In other words, Cb
ru(G, E)

is the set of all the continuous vectors of the left-translation representation πL and
Cb

lu(G, E) is the set of all continuous vectors of the right-translation representation πR.

If E = R with its Euclidean norm, then we write Cb(G) instead of Cb(G, R). Similarly
for the spaces Cb

ru(G), Cb
lu(G) and Cb

u(G).

Unless otherwise specified, we always use the left-translation representation on all
of the above function spaces, and we write g f instead of πL(g) f for g ∈ G and f ∈
Cb(G, E).

1.3.B. The five standard uniform structures. We look at specific uniform structures for
topological groups. The uniformities we are going to present are well known and have
been intensely studied for their properties. Particularly good references for this section
are [RD81] and [Bou71, Chapitre III §3].

A topological group together with a uniform structure that induces the group topol-
ogy is called a uniform group.

We saw in the previous section that given a uniformizable topological space X, there
might be more uniform structures on X that induce the topology. When X is a topolog-
ical group, the choice for such uniformity is quite rich. We are particularly interested in
five of them.

• The fine uniformity F . The uniform structure given by Theorem 1.2.15.

• The two-sided uniformity R ∨L . A basis for this uniform structure is given by
the sets

AU = {(g1, g2) ∈ G× G : g2 ∈ g1U ∩Ug1} ,

where U runs over a neighborhood basis of the identity.
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• The right uniformity R. A basis for this uniform structure is given by the sets

AU =
{
(g1, g2) ∈ G× G : g1g−1

2 ∈ U
}

,

where U runs over a neighborhood basis of the identity.

• The left uniformity L . A basis for this uniform structure is given by the sets

AU =
{
(g1, g2) ∈ G× G : g−1

1 g2 ∈ U
}

,

where U runs over a neighborhood basis of the identity.

• The Roelcke uniformity R ∧L . A basis for this uniform structure is given by the
sets

AU =
{
(g1, g2) ∈ G× G : g−1

1 g2 ∈ U and g1g−1
2 ∈ U

}
,

where U runs over a neighborhood basis of the identity.

Firstly, it is important to note that given a topological group G, it is always possible
to define the uniformities R ∨L , R, L and R ∧L . Moreover, each of these uniform
structures induces the topology of the group. Indeed, if U ∈ {R ∨L , R, L , R ∧L }
and AU is a basis element of U , then AU[g] = U for every g ∈ G. Therefore, every
topological group is uniformizable.

By definition, we can see that R, L , R ∧L ⊂ R ∨L and that R ∧L ⊂ R, L .
Moreover, every of the above uniform structures is included in F by definition of this
last. In general, all of these inclusions are strict, but there are cases where some of these
uniform structures coincide.

Example 1.3.1. Let G be a topological group.

1) Suppose that G has the trivial topology. Then all the above uniform structures
coincide as there are only two open sets.

2) Suppose that G is a discrete group. Then the five above uniformities coincide as a
neighborhood basis of the identity is given by the set {e}.

3) Suppose that G is a compact group. Then the five above uniform structures coin-
cide because there is only one uniformity on G that induces its topology ( [Bou71, II
§7 No.1 Théorème 1]).

4) Suppose that G is an abelian group. Then R = L and so

R ∨L = R = L = R ∧L .
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However, in general, they are different from F . Take, for example, R endowed
with its locally compact topology. Then

R ∨L = R = L = R ∧L = UdR ,

where dR is the Euclidean metric on R. But UdR  F . Indeed, f (x) = x2 is
(F , Uc)-uniformly continuous but not (UdR , Uc)-uniformly continuous.

Note that there are even examples of locally compact groups where the right unifor-
mity is different from the left uniformity, see [RD81, Example 2.13].

A topological group for which the left and the right uniform structure coincide is
called a SIN-group. We refer to [RD81, pp. 40-41] for more information about SIN-
groups.

Remark 1.3.2. The two-sided uniformity and the Roelcke uniformity are also called the
upper and lower uniformities, respectively.

The Roelcke uniformity is so-called in honour of Walter Roelcke2, who was the first
to define and study it.

Let f be a uniformly continuous function between the uniform groups (G1, U1) and
(G2, U2). Then we say that f is a uniformly isomorphism if f is a uniform equivalence
and a group isomorphism.

For a group G with group operation ∗, the opposite group Gop of G is the group
given by the same underlying set as G but with group operation g1 ∗op g2 = g2 ∗ g1 for
every g1, g2 ∈ Gop. Moreover, (G, ∗) is a topological group if and only if (Gop, ∗op) is a
topological group, and they are topologically isomorphic. See [RD81, 1.8] for details.

Proposition 1.3.3. Let G be a topological group.

a) Let U ∈ {F , R ∨L , R, L , R ∧L }. Then the function

(G, U ) −→ (G, U ), g 7−→ agb

is uniformly continuous for every a, b ∈ G.

b) The inversion function

(G, R) −→ (Gop, L ), g 7−→ g−1

is a uniformly isomorphism.

c) Let U ∈ {F , R ∨L , R ∧L }. Then the inversion function

(G, U ) −→ (Gop, U ), g 7−→ g−1

is a uniformly isomorphism.
2Görliz 1928 - Krailling bei München 2005.
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Proof. We start showing point a). Let U = F . Then for every a, b ∈ G the functions
g 7−→ agb and g 7−→ g−1 are continuous for the group topology by the definition of
a topological group. Hence, they are uniformly continuous by Theorem 1.2.17. For
U ∈ {R ∨L , R, L , R ∧L } a proof can be founded in [RD81, Proposition 2.24].

The proof of point b) is given in [RD81, Lemma 2.21].
For point c). The map

G −→ Gop, g 7−→ g−1

is a topological group isomorphism, see [RD81, 1.8]. Therefore, the statement is true
for U = F , thanks to Theoreom 1.2.17, and U ∈ {R ∨L R ∧L }, thanks to [RD81,
Proposition 2.25]

In what follows, we identify different function spaces on topological groups with
uniformly continuous function spaces on uniform groups. The idea is to build a bridge
between the world of topological groups and the world of uniform groups.

Theorem 1.3.4. Let G be a topological group and let E be a locally convex vector space. The
following equality hold:

a) Cb(G, E) = Cb
u

(
(G, F ), (E, Uc)

)
;

b) Cb
ru(G, E) = Cb

u

(
(G, R), (E, Uc)

)
;

c) Cb
lu(G, E) = Cb

u

(
(G, L ), (E, Uc)

)
;

d) Cb
u(G, E) = Cb

u

(
(G, L ∧R), (E, Uc)

)
.

Before discussing the proof of the above theorem, recall that every topological group
admits a neighbourhood basis of the identity element composed by symmetric sets (
[HR63, Theorem 4.6]). A subset U of a group G is called symmetric if u−1 ∈ U for every
u ∈ U.

Proof of Theorem 1.3.4. Point a) is only a consequence of Theorem 1.2.17.

We prove b) by double inclusion. Let f ∈ Cb
u

(
(G, R), (E, Uc)

)
and we want to show

that f ∈ Cb
ru(G, E), i.e., for every neighborhood of the origin V ⊂ E there is a neighbor-

hood of the identity U ⊂ G such that for every a ∈ U: πL(a) f (g)− f (g) ∈ V for every
g ∈ G. Therefore, let V ⊂ E be a neighborhood of the origin and define the entourage

AV = {(v1, v2) ∈ E× E : v2 − v1 ∈ V} ∈ Uc.

Then there is A ∈ R such that (x, y) ∈ A implies that ( f (x), f (y)) ∈ AV . We can
suppose that A is of the form

AU =
{
(g1, g2) ∈ G× G : g1g−1

2 ∈ U
}

,
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where U ⊂ G is a symmetric neighborhood of the identity. Let now g ∈ G. Then for
every a ∈ U there is x ∈ G such that a−1g = x, and thus xg−1 = a−1 ∈ U. This implies
that (x, g) ∈ AU and, consequently, that ( f (x), f (g)) ∈ AV . Hence,

πL(a) f (g)− f (g) = f (a−1g)− f (g) = f (x)− f (g) ∈ V

which shows the right-uniformly continuity of f . Let’s prove the inverse inclusion. Let
f ∈ Cb

ru(G, E) and let A be an entourage of E. We can suppose that A is of the form

AV = {(v1, v2) ∈ E× E : v2 − v1 ∈ V} ,

where V ⊂ E is a neighborhood of the origin. Then there is U ⊂ G a symmetric neigh-
borhood of the identity such that for every a ∈ U: πL(a) f (g) − f (g) ∈ V for every
g ∈ G. Define the entourage

AU =
{
(g1, g2) ∈ G× G : g1g−1

2 ∈ U
}
∈ R.

Now, suppose that (x, y) ∈ AU. This means that there is a−1 ∈ U such that xy−1 = a−1,
and hence that

f (x)− f (y) = f (a−1y)− f (y) = πL(a) f (y)− f (y) ∈ V.

We can conclude that ( f (x), f (y)) ∈ AV and, therefore, that f is in Cb
u

(
(G, R), (E, Uc)

)
.

The proof of point c) is similar to the proof of point b).
To show that point d) is true, it is important to remark that a function is uniformly

continuous for the Roelcke uniformity if it is uniformly continuous for both the right
uniformity and the left uniformity. This is only because of the definition of the Roelcke
uniform structure. Thus,

Cb
u

(
(G, L ∧R), (E, Uc)

)
= Cb

u

(
(G, R), (E, Uc)

)
∩ Cb

u

(
(G, L ), (E, Uc)

)
= Cb

ru(G, E) ∩ Cb
lu(G, E) = Cb

u(G, E)

thanks to the points b) and c).

We will switch freely between the interpretation of the above function spaces as
continuous vectors or as uniformly continuous functions during this manuscript.

Corollary 1.3.5. Let G be a topological group.

a) If E is a locally convex vector spaces, then Cb
ru(G, E), Cb

lu(G, E) and Cb
u(G, E) are vector

subspaces of Cb(G, E).

b) If E is a Banach space, then the vector spaces Cb(G, E), Cb
ru(G, E), Cb

lu(G, E) and Cb
u(G, E)

are Banach spaces when equipped with the supremum norm.
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c) If E is a Banach algebra, then the vector spaces Cb(G, E), Cb
ru(G, E), Cb

lu(G, E) and
Cb

u(G, E) are Banach algebras when equipped with the supremum norm and the point-
wise multiplication.

Proof. The proof is only a combination of Theorems 1.2.11, 1.3.4 and 1.2.13.

Note that, in the case where E is a Banach space, the vector-valued function spaces
Cb

ru(G, E), Cb
lu(G, E) and Cb

u(G, E) are closed in Cb(G, E) for the supremum norm. More-
over, Cb

u(G, E) is closed in both Cb
ru(G, E) and Cb

lu(G, E) also for the supremum norm.

1.4 Means on functions spaces

We begin the section by recalling the concept of mean. After, we introduce the notion
of uniform amenability. A good reference about means on function spaces is [BJM89,
Chapter 2].

1.4.A. About the notion of mean. Let X be a set and recall that the vector space `∞(X)
of all real bounded functions on X is a Banach space when equipped with the supremum
norm.

Definition 1.4.1. Let E be a vector subspace of `∞(X) which contains the constant func-
tions. A mean on E is a linear functional m : E −→ R such that m(1X) = 1 and
||m||op = 1.

Note that a mean m on a vector subspace E as above is always positive, i.e., m( f ) ≥ 0
for every f ∈ E such that f (x) ≥ 0 for all x ∈ X. See point (2) of Example 2.2.6 for a
proof of this fact.

Given E as in the definition above, the easier example of a mean is evx, the evaluation
map at the point x ∈ X. Actually, every convex combination of evaluation maps is a
mean, and, more generally, every convex combination of means is a mean. If we write
M(E) for the set of all means on E, then an application of the Banach-Alaoglu Theorem
( [AB99, Theorem 5.105]) shows the following proposition.

Proposition 1.4.2. The set of all meansM(E) is non-empty, convex and compact for the weak-*
topology for every E ⊂ `∞(X) vector subspace which contains the constant functions.

Remark 1.4.3. If K is a compact space, then we can interpret every mean on C(K) as a
probability measure on K by the Riesz Representation Theorem ( [C13, Theorem 7.2.8]).
In particular, the set of all probability measures Prob(K) on K, is compact for the weak-*
topology.

Suppose now that there is a topological group G which acts on the set X via the
action γ and consider the πγ-representation of G on `∞(X). Take a vector subspace E of
`∞(X) which contains the constant functions and which is πγ-invariant. Then we say
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that a mean m on E is invariant, or invariant for the representation πγ, if π∗γ(g)m = m
for every g ∈ G, where π∗γ is the adjoint of πγ.

Unless otherwise specified, we always use the πγ-representation induced by some
action γ of G on a set X and we write g f instead of πγ(g) f for g ∈ G and f ∈ `∞(X).

Scholium 1.4.4. It is possible to generalize the notion of mean in two different ways.
The first uses ordered vector spaces with an order unit, while the second uses unital
algebras.

1.4.B. Uniform amenability. Consider the case where X = G a topological group. Re-
call that G acts naturally on itself by the left and by the right. Therefore, there are two
natural representations of G on `∞(G). Namely, the left-translation representation πL
and the right-translation representation πR.

Definition 1.4.5. Let G be a topological group. A functionally invariant uniformity for
G is a uniform structure U for G which induces its topology and such that

πL(g) f , πR(g) f ∈ Cb
u(G, U ) for every g ∈ G and f ∈ Cb

u(G, U ).

We borrowed this last notion from Pachl ( [P18]), who stated it for topological semi-
groups. This property distils the essence of what is needed from a uniform structure of
G to define invariant functionals on subspaces of `∞(G).

Lemma 1.4.6. Let G be a topological group and let (X, U ) be a uniform space. Suppose that
there is an action γ of G on (X, U ) and that the map

(X, U ) −→ (X, U ), x 7−→ γ(g)(x) is uniformly continuous for every g ∈ G.

Then

πγ(g) f ∈ Cb
u(X, U ) for every g ∈ G and f ∈ Cb

u(X, U ).

Proof. Let g ∈ G and f ∈ Cb
u(X, U ). We want to show that πγ(g) f is in Cb

u(X, U ).
Clearly, πγ(g) f is bounded. Therefore, we have only to show that it is uniformly con-
tinuous. To this aim, let

Aε = {(r1, r2) ∈ R× R : |r2 − r1| < ε} ∈ U R
c for some ε > 0.

Then there is A f ∈ U such that if (x, y) ∈ A f , then ( f (x), f (y)) ∈ Aε, and there is
Ag ∈ U such that if (x, y) ∈ Ag, then (γ(g)−1(x), γ(g)−1(y)) ∈ A f . Now, for every
(x, y) ∈ Ag, we have that

(πγ(g) f (x), πγ(g) f (y)) = ( f (γ(g)−1(x)), f (γ(g)−1(y))) ∈ Aε

as (γ(g)−1(x), γ(g)−1(y)) ∈ A f . This shows that πγ(g) f is uniformly continuous.
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Corollary 1.4.7. The five uniform structures

F , R ∨L , R, L and R ∧L

are all functionally invariant uniformities for G.

Proof. The proof is a combination of Lemma 1.4.6 together with Proposition 1.3.3.

Corollary 1.4.8. Let G be a topological group and let K be a compact space. Suppose that G acts
on K by homeomorphisms. Then πγ(g)φ ∈ C(K) for every g ∈ G and φ ∈ C(K).

Proof. We can use Lemma 1.4.6 thanks to Corollary 1.2.18.

We can finally state the definition of uniform amenability.

Definition 1.4.9. Let G be a topological group and let U be a functionally invariant
uniformity for G. Then G is said U -amenable if there is an invariant mean on Cb

u(G, U ).

The above definition is quite general. However, the functionally invariant uniformi-
ties for which the notion of U -amenability becomes interesting are essentially the ones
introduced in Section 1.3.B, i.e., the uniform structures F , R ∨L , R, L and R ∧L .

Let’s analyze the notion of U -amenability for these five uniformities. If G is F -
amenable, then G is also U -amenable for every functionally invariant uniformity U
for G by Theorem 1.2.15. If G is R ∨ L -amenable, then G is also U -amenable for
U ∈ {R, L , R ∧L }, and if G is U -amenable for U ∈ {R, L }, then it is also R ∧L -
amenable. Moreover, they are not equivalent as the following examples show.

Example 1.4.10. 1) Let G = Sym(N) be the group of all permutations of the natural
numbers N. Then there is only a Polish topology which makes G a topological
group ( [KR07, Theorem 1.11]). With respect to its unique Polish topology, we
have that G is R-amenable but not F -amenable, see [GH17, Proposition 5.5].

2) LetH be a (complex) infinite-dimensional Hilbert space and let U(H) be the group
of unitary operators on H. The group U(H) considered with its strong operator
topology is a topological group, see [H79, Section 1] for details. Then U(H) is R-
amenable ( [H73, II.2. Proposition 6]) but not L -amenable ( [P06, Example 3.6.3]).
Moreover, this example shows that:

- R-amenability doesn’t imply R ∨L -amenability. Indeed, if it was the case,
then R-amenability will imply L -amenability;

- R ∧L -amenability doesn’t imply L -amenability as U(H) is also R ∧L -
amenable.

3) In [C18], Carderi and Thom constructed a Polish group G which is L -amenable
but not F -amenable. Precisely, the group constructed by Carderi and Thom is
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R-amenable ( [C18, p. 259]) and SIN.3 Therefore, L -amenable. But it is not F -
amenable because it has the free group on two generators as a closed subgroup
( [C18, Theorem 4.2] and [GH17, Corollary 4.6]).

If R ∧L -amenability implies R-amenability, R-amenability implies R ∨L -amenability,
and R ∨L -amenability implies F -amenability are open questions.

Nevertheless, for locally compact groups, life is easier. In fact, all the amenabilities
defined above coincide. Precisely, it was proved the following:

Theorem 1.4.11. Let G be a locally compact group. If G has an invariant mean for one of the
following spaces

L∞(G), Cb(G), Cb
lu(G), Cb

ru(G) or Cb
u(G),

then G has an invariant mean for all the others.

Proof. See [G69, Theorem 2.2.1].

In particular, if a locally compact group G is U -amenable for a functionally invariant
uniformity U which contains the Roelcke uniformity, then G is also U ′-amenable for
every other functionally invariant uniformity U ′ for G.

Another exciting aspect is that every locally compact group admits a functionally
invariant uniformity U for which it is U -amenable.

Example 1.4.12 (M. Gheysens). Let G be a locally compact group and denote Ĝ its
Alexandroff compactification. Then G naturally embeds in Ĝ. Now, consider on G
the uniform structures UA given by the restriction of the unique uniformity of Ĝ to G.
Then UA is a functionally invariant uniformity for G which is called the Alexandroff
uniformity. Peculiarity of this uniformity is that

Cb
u(G, UA) =

{
f : G −→ R : lim

g→∞
f (g) exists

}
= C0(G)⊕ R1G.

Therefore, we can conclude that every locally compact group G is UA-amenable for the
Alexandroff uniformity. An invariant mean for Cb

u(G, UA) can be explicitly given by
m( f ) = limg f (g) for every f ∈ Cb

u(G, UA).

We proceed by giving a few characterizations of U -amenability when U is a func-
tionally invariant uniformity for G. The next theorem is well-known in the community,
but it was impossible to find a formal proof. For this reason, we have decided to give
it here. To this end, we need the following technical lemma that we will use in some
specific case. However, it is helpful to have it stated in full generality for later purposes.

Let E be a dual vector space. We write U ∗
c for the canonical uniformity of E with

respect to the weak-* topology.

3This is because the projective limit of a countable family of SIN-groups is still a SIN-group.
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Lemma 1.4.13. Let (G, U ) be a uniform topological group which acts on a uniform space
(X, UX) via the action γ. Suppose that Fb(X) is a πγ-invariant function subspace of Cb

u(X, UX).

a) The map

ev : (X, UX) −→
(
Fb(X)∗, U ∗

c

)
, x 7−→ ev(x) = evx

is bounded and uniformly continuous.

b) The map

ωγ : (G, U ) −→
(
Fb(X)∗, U ∗

c

)
, g 7−→ ωγ(g) = πγ(g)∗evx0

is bounded and uniformly continuous for every x0 ∈ X such that the orbital map

(G, U ) −→ (X, UX), g 7−→ γ(g)(x0)

is uniformly continuous.

Proof. We start showing point a). Firstly, we prove that the map ev is (UX, U ∗
c )-uniformly

continuous. Let A ∈ U ∗
c . We can suppose that A is of the form

AV =
{
(ψ1, ψ2) ∈ Fb(X)∗ × Fb(X)∗ : ψ2 − ψ1 ∈ V

}
,

where V =
{

ψ ∈ Fb(X)∗ : |ψ( f j)| < ε for every j = 1, ..., n
}

for f1, ..., fn ∈ Fb(X) and
ε > 0. It is possible to make such assumption because a neighborhood basis at the origin
for the weak-* topology is given by sets of the form of V, see [Bou81, II §6 No.2]. Note
that every f j’s is also in Cb

u(X, U ). Therefore, for every j ∈ {1, ..., n} there is Aj ∈ UX
such that (x, y) ∈ Aj implies ( f j(x), f j(y)) ∈ Aε, where

Aε = {(r1, r2) ∈ R× R : |r2 − r1| < ε} ∈ U R
c .

Set AX =
⋂n

j=1 Aj ∈ UX. Then (x, y) ∈ AX implies (x, y) ∈ Aj for every j = 1, ..., n.
Therefore,

|evx( f j)− evy( f j)| = | f j(x)− f j(y)| < ε for every j = 1, ..., n.

But this means that evx− evy ∈ V, and hence (evx, evy) ∈ AV as wished. It is left to show
that ev is bounded for the weak-* topology, i.e., for every V ⊂ Fb(X)∗ neighborhood of
the origin there is α > 0 such that im(ev) ⊂ αV. Thus, let V a basis neighborhood of the
origin. As before, we can suppose that V is of the form

V =
{

ψ ∈ Fb(X)∗ : |ψ( f j)| < ε for all j = 1, ..., n
}

,
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Section 1.4. Means on functions spaces

where f1, ..., fn ∈ Fb(X) and ε > 0. Set α >
maxj || f j||∞

ε and let ψ ∈ im(ev). Then there is
x ∈ X such that ψ = evx, and so

|evx( f j)| = | f j(x)| ≤ max
j
|| f j||∞ < αε.

This implies that im(ev) ⊂ αV.
For point b), write ωγ as the composition of the maps

(G, U ) −→ (X, UX) −→
(
Fb(X)∗, U ∗

c

)
, g 7−→ gx0 7−→ evgx0 = πγ(g)∗evx0 .

As the composition of uniformly continuous maps is uniformly continuous by Propo-
sition 1.2.9, ωγ is (U , U ∗

c )-uniformly continuous. Moreover, ωγ is bounded, since
im(ωγ) ⊂ im(ev) and this last set is bounded.

Theorem 1.4.14. Let G be a topological group and let U be a functionally invariant uniformity
for G. Then the following assertions are equivalent:

a) there is an invariant mean on Cb
u(G, U ), i.e., the group G is U -amenable;

b) every affine action of G on a non-empty convex compact set K for which there is k0 ∈ K
such that the map g 7−→ gk0 is U -uniformly continuous has a fixed-point;

c) every action of G on a non-empty compact set K for which there is k0 ∈ K such that the
map g 7−→ gk0 is U -uniformly continuous and the space C(K) is πγ-invariant has an
invariant probability measure;

d) for every action γ of G on a uniform space (X, UX) for which there is x0 ∈ X such
that the map g 7−→ gx0 is (U , UX)-uniformly continuous and the space Cb

u(X, UX) is
πγ-invariant there is an invariant mean on Cb

u(X, UX).

Proof. We start showing that a) implies b). Let K be a non-empty convex compact set and
suppose that G acts on it by affine transformations. Let k0 ∈ K be the point for which
the orbital action of G on K is U -uniformly continuous. Define the linear operator

T : C(K) −→ Cb
u(G, U ), φ 7−→ T(φ)(g) = φ(gk0).

Then T is well-defined, equivariant and T(1K) = 1G. By hypothesis, there is an invariant
mean m on Cb

u(G, U ). Now, the composition of T with m gives rise to an invariant
mean m defined on C(K). But an invariant mean on C(K) is nothing but an invariant
probability measure on K. Let

β : Prob(K) −→ K, µ 7−→ β(µ) = bµ

be the map which assign to every probability measure µ on K its barycenter bµ. The
map β is well-defined by [Bou63, IV §7 No.1 Proposition 1]. Moreover, β is linear and
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equivariant by definition, see [Bou63, IV §7 No.1 Définition 1]. It is straightforward to
see that bm is a fixed-point for the action of G on K. Indeed,

gbm = gβ(m) = β(gm) = β(m) = bm for every g ∈ G.

Let us show that b) implies c). Let K be a non-empty compact set and suppose that
there is a point k0 ∈ K for which the orbital action of G on it is U -uniformly continu-
ous. The action of G on K induces an action of G on the non-empty convex compact set
Prob(K). An application of Lemma 1.4.13 with (X, UX) = (K, UK) and Fb(X) = C(K)
shows that the map g 7−→ gδk0 is U -uniformly continuous. Here, δk0 is the Dirac mea-
sure at point k0 ∈ K. Hence, we can apply the hypothesis of b) to find a fixed-point in
Prob(K).

We prove that c) implies d). In fact, letM(Cb
u(X, UX)) be the set of means of Cb

u(X, UX)
and let x0 ∈ X the point for which the group G acts orbitally (U , UX)-uniformly contin-
uous on (X, UX). Then the orbital map g 7−→ gevx0 is UX-uniformly continuous because
of Lemma 1.4.13 with Fb(X) = Cb

u(X, UX). Therefore, there is an invariant probability
measure on the compact setM(Cb

u(X, UX)). Using the barycenter map β, it is possible to
find a fixed-point inM(Cb

u(X, UX)) as made before. But a fixed-point inM(Cb
u(X, UX))

is nothing but an invariant mean.
Finally d) implies a) only by applying the hypothesis to the case where (X, UX) =

(G, U ). Note that, for e ∈ G, the map

(G, U ) −→ (G, U ), g 7−→ ge = g

is uniformly continuous.

Scholium 1.4.15. It is natural to be interested in the hereditary properties of U -amenability
for one of the standard five uniform structures for topological groups. However, we de-
cided not to discuss this topic here. For a clear and complete recapitulation of the hered-
itary properties for the uniform structures F and R for topological groups, we advise
taking a look to [GH17]. For the uniform structure L , we refer to the articles [JS20]
and [P20].4 For the case of locally compact groups where everything is equivalent, we
refer to [P84, Chapter 3] and [P88, Chapter 3] for the specific case of Lie groups.

1.4.C. Amenability. In the present subsection, we focus on R-amenability: the original
and historical case for which the terms amenability was coined and studied.

Definition 1.4.16. We say that a topological group G is amenable if it is R-amenable.

A particularity, and a strength, of this case, is that Cb
u(G, R) = Cb

ru(G) is the biggest
vector subspace of `∞(G) on which G acts continuously. This fact makes the difference
between R-amenability and general U -amenability as continuity of the left-translation
representation plays a tremendously important role.

4In both articles L -amenability is called skew-amenability.
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There is an infinite countable number of characterizations of amenability for topo-
logical groups (do not be scared; this number is even uncountable for locally compact
groups). Fortunately, we are only interested in three of them. For a list of character-
izations of amenability for topological groups, we refer to [L90, Theorem 3.2] and for
locally compact groups to the books [P88] and [P84].

Theorem 1.4.17 (Day-Rickert fixed-point Theorem). Let G be a topological group. Then the
following assertions are equivalent:

a) every jointly continuous affine action of G on a non-empty convex compact set K has a
fixed-point;

b) every orbitally continuous affine action of G on a non-empty convex compact set K has a
fixed-point;

c) every affine action of G on a non-empty convex compact set K for which there is k0 ∈ K
such that the map g 7−→ gk0 is R-uniformly continuous has a fixed-point.

Note that each of these fixed-point properties implies amenability because of Theo-
rem 1.4.14.

Proof of Theorem 1.4.17. We have that a) implies b) directly as every jointly continuous
action is orbitally continuous.

Let’s show that b) implies c). Consider the non-empty convex compact setM(Cb
u(G, R))

and note that the action of G on it is orbitally continuous with respect to the weak-*
topology. Therefore, we can apply b) to find an invariant mean. We can conclude using
Theorem 1.4.14.

It is left to show that c) implies a). Therefore, suppose that G acts jointly continuous
on a non-empty convex compact set K. Then the action on each orbit is R-uniformly
continuous by [G17, Lemma C.2.5] and [G17, Lemma C.2.4]. We can apply the hypoth-
esis to find a fixed-point.

As an application of the Day-Rickert fixed-point Theorem, we have the following
famous characterization of amenability.

Corollary 1.4.18. Let G be a topological group. Then the following assertions are equivalent:

a) there is an invariant mean on Cb
ru(G), i.e., the group G is amenable;

b) every jointly continuous affine action of G on a non-empty convex compact set K has a
fixed-point;

c) every jointly continuous affine action of G on a non-empty compact set K admits a non-
zero invariant Radon measure.
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Remark 1.4.19. Day showed Theorem 1.4.17 for discrete groups in [D61, Theorem 1].
In the same paper, he claimed to have a generalization of the fixed-point property for
topological groups, see [D61, Section 4]. However, this generalization was characteriz-
ing the existence of invariant means on Cb(G) instead of on Cb

ru(G). He corrected this
small error in [D64, Theorem 4], where he actually gave a proof of the equivalence of
point a) and b) for U = F of Theorem 1.4.14. Rickert formulated the correct general-
ization in [R67, Theorem 4.2], where he gave a proof of the fact that c) of Theorem 1.4.17
implies amenability. In his proof, he used secretly point a) to show that amenability
implies the fixed-point property.
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Chapter 2

Cones and Lattices

The chapter aims to recall definitions and results about cones and ordered vector spaces.
Precisely: the relationship between cones and vector orderings, Riesz spaces and mono-
tone norms.

In each section, we give a range of examples used in the chapters to come. The
obsession with illustrating every definition and result with concrete examples also has
the ambition to give the reader a panorama of how cones and ordered vector spaces are
present in different domains of mathematics.

Basic knowledge in functional analysis is required. However, every functional anal-
ysis result we employ can be found in any standard textbooks, e.g., [R86], [C97] or
[Bou81].

Standard references for ordered vector spaces are [M91], [S74] and the encyclopedic
book [AB99]. Regarding convex cones in vector spaces, we recommend the book [AT07].

Note that an abstract approach to cones is exposed in Appendix A.

2.1 Cones in vector spaces

Let E be an abstract (real) vector space, i.e., a vector space considered without a topol-
ogy.

Definition 2.1.1. A non-empty subset C ⊂ E is called a cone if it satisfies the following
two properties:

(C1) the set C is additive, i.e., c1 + c2 ∈ C for every c1, c2 ∈ C;

(C2) the set C is positive homogeneous, i.e., αc ∈ C for every c ∈ C and α ∈ R+.

In the literature, there are many slightly different definitions of a cone. We decided
to follow the approach of Bourbaki ( [Bou81, II §2 No.4 Définition 3]). However, the
definition of Bourbaki is more general than ours. In fact, a cone is automatically convex
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and pointed at the origin for us. This is not the case for Bourbaki. The distinction
between the two notions is only due to the fact that we allow the scalar α of point (C2)
to be zero (cf. [Bou81, II §2 No.4 Proposition 10]).

If C is a cone in a vector space E, then

EC = {v ∈ E : v = c1 − c2 for c1, c2 ∈ C}

is called the vector space generated by C. A cone C in a vector space E is said generating
if EC is equal to E, i.e., for every v ∈ E there are c1, c2 ∈ C such that v = c1 − c2.

If C ⊂ E is a cone, then the intersection C ∩ (−C) is a vector subspace of E. Actu-
ally, C ∩ (−C) is the biggest vector subspace of E contained in C ( [Bou81, II §2 No.4
Corollaire 1]).

A cone C is said proper if C ∩ (−C) = {0}.

Example 2.1.2. (Examples of cones)

1) Let Rn be the Euclidean space of dimension n ∈ N. Consider the set given by

C =
{

v = (v1, ..., vn) ∈ Rn : vj ≥ 0 for every j = 1, ..., n
}

.

Then C is a proper cone. Moreover, C is generating, since it is possible to write
every v ∈ Rn as v = v+ − v−, where v+ = (v+1 , ..., v+n ) and v− = (v−1 , ..., v−n ) are
given by

v+j =

{
vj if vj ≥ 0
0 otherwise

and v−j =

{
|vj| if vj < 0
0 otherwise

for every j = 1, ..., n.

2) Consider the Euclidean space Rn of dimension n ∈ N, and define the lexico-
graphic cone as

C =
{

v = (v1, ..., vn) ∈ Rn : ∃k ∈ {1, ..., n} s.t. vj = 0 for j ≤ k and vk+1 > 0
}

.

Then C is proper and generating.

3) Let X be a set and let F(X) be a real function space. Then we define the cone of
positive functions as

C = { f ∈ F(X) : f (x) ≥ 0 for every x ∈ X} .

The cone C is proper, but it is not generating in general.
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4) Let X be a set and consider the vector space RX of all functions from X to R. In this
case, the cone of positive functions C is generating as we can write any f ∈ RX as
the difference f = f+ − f−, where

f+(x) =

{
f (x) if f (x) R≥0
0 otherwise

and f−(x) =

{
| f (x)| if f (x) ≤R 0
0 otherwise

are in C.

5) Let X be a set and C be a cone in a vector space E. Let F(X, E) be a vector-valued
function space. Then the set

C = { f ∈ F(X, E) : f (x) ∈ C for all x ∈ X}

is the cone of C-positive vector-valued functions. If C is a proper cone, then C is
also a proper cone. However, in general C is not generating even if C is.

6) Let C be a cone in a vector space E and let E∗ be the algebraic dual of E. The dual
cone of C, or the polar cone of C, is the cone defined by

C∗ = {ψ ∈ E∗ : ψ(c) ≥ 0 for all c ∈ C} .

In general, C∗ is not generating but if C is proper, then C∗ is also proper.

7) Let A be a (complex) C∗-algebra and let Asa be the vector subspace of all self-
adjoint elements of A, i.e., a ∈ Asa if and only if a = a∗. Define the set

Csa = {a ∈ Asa : a = b∗b for some b ∈ A} .

Then Csa is called the C∗-cone of A or the self-adjoint cone of A. It is a proper
cone but it is not generating in A. However, Csa is a generating cone for Asa. We
refer to [D77, Proposition 1.6.1] for more details.

The following lemma gives a useful and simple characterization of generating cones.

Lemma 2.1.3. Let C be a cone in a vector space E. Then C is generating if and only if for every
v ∈ E there is c ∈ C such that c− v ∈ C.

Proof. Suppose that the cone C is generating and let v ∈ E. Then there are c1, c2 ∈ C
such that v = c1 − c2. This implies that c1 − v = c2 ∈ C.

Let now suppose that for every v ∈ E there is c ∈ C such that c − v ∈ C, and we
want to show that C is generating. Let v ∈ E and take c ∈ C such that c− v ∈ C. Define
c1 = c and c2 = c− v. Then v = c1 − c2.

This last lemma directly inspires the following definition.

Definition 2.1.4. Let C be a cone in a vector space E and let u ∈ C. We say that u is a
C-order unit if for every v ∈ E there is α ∈ R+ such that αu− v ∈ C.
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If C is a cone in a vector space E and u is a C-order unit. We say that E admits a
C-order unit and that u is the C-order unit of E.

Corollary 2.1.5. Let C be a cone in a vector space E and suppose that E admits a C-order unit.
Then the cone C is generating.

Proof. Let u be the C-order unit of E. Then for every v ∈ E there is α ∈ R+ such that
αu− v ∈ C. We can conclude that C is generating by Lemma 2.1.3.

Example 2.1.6. 1) Let X be a set and let Fb(X) be a real function space of bounded
functions. If Fb(X) contains the characteristic function 1X, then the cone of positive
functions is generating.

2) Let K be a compact topological space and consider the vector space C(K) of all real
continuous functions on K. Fix k0 ∈ K and define the cone

C = { f ∈ C(K) : f (k0) = 0 and f (k) ≥ 0 for all k ∈ K} .

Then the cone C is proper but not generating. Indeed, suppose that C is generating
and consider the vector 1K. Then there are f1, f2 ∈ C such that 1K = f1 − f2. But
this is a contradiction as 1K(k0) = 1 6= 0 = f1(k0)− f2(k0).

Note that here 1K is an order unit for the cone of positive functions but not for the
cone C. Indeed, 1K is not even in C.

3) Let C ([0, 2]) be the vector space of all real continuous functions defined on the
interval [0, 2]. Define the cone

C = { f ∈ C ([0, 2]) : f (x) ≥ 0 for every x ∈ [0, 1]} .

Then the cone C is generating, as 1[0,2] ∈ C. However, it is not proper. In fact,

C ∩ (−C) = { f ∈ C ([0, 2]) : f (x) = 0 for every x ∈ [0, 1]} .

4) Let N be the set of natural numbers, and let c00(N) be the vector space of finitely
supported real functions defined on N. Consider the cone of positive functions
C of c00(N). Then C is generating but c00(N) admits no C-order unit. Indeed,
suppose it is not the case. Then there is u ∈ C which is a C-order unit of c00(N).
Let v ∈ c00(N) such that v /∈ C and supp(v)  supp(u). Then there is no α ∈ R+

such that αu− v ∈ C.

2.2 Ordered vector spaces

Recall that an order relation ≤ on a set X is a binary relation with the following prop-
erties:
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(O1) reflexivity, i.e., x ≤ x for all x ∈ X;

(O2) antisymmetry, i.e., if x ≤ y and y ≤ x, then x = y for all x, y ∈ X;

(O3) transitivity, i.e., if x ≤ y and y ≤ z, then x ≤ z for all x, y, z ∈ X.

The pair (X,≤) is said a partially ordered set. The notation x < y, for x, y ∈ X, means
that x ≤ y and x 6= y. When x ≤ y, we also say that y dominates x and, in the case
where x < y, that y strictly dominates x. Alternatively, we also use the symbols ≥ and
> for ≤ and <, respectively.

Let (X,≤) be a partially ordered set and let A be a non-empty subset of X. We say
that A is majorized by a point x ∈ X, or that the point x is majorizing A, if a ≤ x
for every a ∈ A. Similarly, we say that A is majorized by a set B ⊂ X, or that B is
majorizing A, if for every a ∈ A there is b ∈ B such that a ≤ b.

2.2.A. Vector ordering and vector spaces. Let E be a vector space and let ≤ be an order
relation on E such that (E,≤) is a partially ordered set.

Definition 2.2.1. The order relation ≤ on E is called a vector ordering if it is compatible
with the vector space structure. This means that ≤ satisfies, in addition, the following
two axioms:

(V1) if x ≤ y, then x + z ≤ y + z for every x, y, z ∈ E;

(V2) if x ≤ y, then αx ≤ αy for every x, y ∈ E and α ∈ R+.

The pair (E,≤) is called an ordered vector space.

We only write E if the order ≤ is well-understood.

An element x of an ordered vector spaces E is called positive if x ≥ 0. The set of all
positive vectors of an ordered vector space is noted E+ = {x ∈ E : x ≥ 0}, and we refer
to it as the positive cone of E. As the name suggests, E+ is a proper cone in E.

Conversely, let C be a proper cone in a vector space E and define the binary relation

x ≤C y ⇐⇒ y− x ∈ C.

Then E equipped with ≤C becomes an ordered vector space with positive cone C. Ac-
tually, there is a one-to-one correspondence between vector orderings on vector spaces
and proper cones.

Note that if the cone C is not proper, then the binary relation≤C makes E a pre-order
vector space, since the antisymmetry axiom is missing.

Example 2.2.2. (Examples of ordered vector spaces)
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1) Let Rn be the Euclidean space of dimension n ∈ N, and consider the cone C given
in point 1) of Example 2.1.2. Then the corresponding ordering is given by

v ≤ w ⇐⇒ vj ≤ wj for every j = 1, ..., n,

where v = (v1, ..., vn) and w = (w1, ..., wn) are in Rn.

2) Consider the vector space Rn. We define the lexicographic order as

v ≤ w ⇐⇒ ∃k ∈ {1, ..., n} such that vj = wj for all j ≤ k and vk+1 < wk+1,

where v = (v1, ..., vn) and w = (w1, ..., wn) are in Rn. The corresponding positive
cone is the lexicographic cone.

3) Let X be a set and let F(X) be a function space. We define the pointwise order as

f ≤ g ⇐⇒ f (x) ≤ g(x) for every x ∈ X,

where f , g ∈ F(X). Then (F(X),≤) is an ordered vector space. The corresponding
cone is the cone of positive functions.

4) Let X be a set and C be a proper cone in a vector space E. Let F(X, E) be a vector-
valued function space. We define the C-pointwise order as

f ≤ g ⇐⇒ f (x) ≤C g(x) for every x ∈ X,

where f , g ∈ F(X, E) and≤C is the vector ordering on E corresponding to C. Then
(F(X, E),≤) is an ordered vector space. The corresponding cone is the cone of
C-positive vector-valued functions.

5) Let E be an ordered vector space and let E∗ be its algebraic dual. We define the
dual order on E∗ as

ψ1 ≤ ψ2 ⇐⇒ ψ1(v) ≤ ψ2(v) for every v ∈ E,

where ψ1, ψ2 ∈ E∗. Then (E∗,≤) is an ordered vector space with positive cone
(E∗)+, the dual cone of E+.

6) Let E and V be two ordered vector spaces and consider the (abstract) tensor prod-
uct E⊗V. Then the set

C⊗ =

{
n

∑
j=1

vj ⊗ wj : vj ∈ E+ and wj ∈ V+

}

is a proper cone in E ⊗ V. The cone C⊗ is called the tensor cone of E ⊗ V and
E⊗ V becomes an ordered vector space when equipped with the vector ordering
given by C⊗. For more details see [ER70].
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7) Let A be a (complex) C∗-algebra. Then the vector ordering corresponding to the
C∗-cone of A makes A a (real) ordered vector space. We call this order the C∗-
order of A.

We can easily translate the notion of order unit for ordered vector spaces. Let E be
an ordered vector space and let E+ be its positive cone. Then a vector u ∈ E+ is called
an order unit if for every v ∈ E there is α ∈ R+ such that v ≤ αu.

Definition 2.2.3. An ordered vector space E is said Archimedean if ny ≤ x for all n ∈ N
implies that y ≤ 0, where y ∈ E and x ∈ E+.

A proper cone C in a vector space E is said Archimedean if the corresponding order
is.

This property shall not be confused with the Archimedean property often used in num-
ber theory. For the real numbers with their standard order, the two definitions coincide,
but this is generally not true. See [AB99, Example 8.3].

Example 2.2.4. The classical example of a non-Archimedean ordered vector space is Rn,
for n ≥ 2, equipped with the lexicographic order. In fact, we have that ke2 ≤ e1 for
every k ∈ N but e2 > 0. Here, ej is the vector with entry 1 at the j-th place and 0
everywhere else.

2.2.B. Operators between ordered vector spaces. The subsection introduces particular
linear operators between ordered vector spaces, namely positive operators.

Definition 2.2.5. Let E and V be two ordered vector spaces and let T : E −→ V be a
linear operator. Then T is said a positive operator if it sends positive vectors to positive
vectors, i.e., if v ∈ E+, then T(v) ∈ V+. The operator T is said a strictly positive
operator if it sends non-zero positive vectors to non-zero positive vectors, i.e., if v ∈ E+

and v 6= 0, then T(v) ∈ V+ and T(v) 6= 0.

In other words, given two ordered vector spaces E and V with the respective positive
cones CE and CV , a positive operator T between E and V is nothing but a linear map
such that T(CE) ⊂ CV .

If the target space V is equal to R equipped with its natural order, then T is said a
functional. If T is positive, then T is said a positive functional. Similarly, if T is strictly
positive, then T is said a strictly positive functional. Note that a functional T is positive
if and only if T is an element of the dual cone of E+. The set of all positive functionals
is also called the cone of positive functionals of E, and it is denoted E∗+.

Example 2.2.6. (Examples of positive operators)

1) Let X be a set and let `∞(X) be the space of all bounded real functions on X. Fix
f ∈ `∞(X) and define the linear operator

Tf : `∞(X) −→ `∞(X), h 7−→ Tf (h) = f · h.
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Then Tf is positive if and only if f is a positive function. Moreover, the operator Tf
is strictly positive if and only if f is a strictly positive function such that supp( f ) =
X.

2) Let X be a set and let E be a vector subspace of `∞(X) which contains the constant
functions. Then every mean m on E is a positive functional. Indeed, suppose it is
not the case. Thus, there is a non-zero positive function f ∈ E such that m( f ) < 0.
We can suppose that || f ||∞ = 1. Then

m (1X − f ) = m(1X)−m( f ) > 1.

But this is a contradiction with the fact that m(1X − f ) ≤ ||1X − f ||∞ ≤ 1. There-
fore, m is positive.

3) Let RN be the ordered vector space of all real sequences. Then there are no strictly
positive functionals on RN, because every positive linear functional T on RN is
of the form T((an)n) = ∑∞

n=1 anbn, where (an)n ∈ RN and (bn)n ∈ c00(N). We
refer [AB99, Theorem 16.3] for details.

Positive functionals have interesting extension properties. The following theorem
can be interpreted as an ordered vector space version of the famous Hahn-Banach Ex-
tension Theorem.

Theorem 2.2.7 (Kantorovich Theorem). Let E be an ordered vector space and let V ⊂ E be a
vector subspace. Suppose that E is majorized by V. Then every positive functional T : V −→ R
can be extended to a positive functional T : E −→ R.

Proof. See [M91, Corollary 1.5.9].

It is possible to state the Kantorovich Theorem in a more general setting. See for
example [AT07, Theorem 1.60]. However, the classical Kantorovich Theorem is enough
for our future purposes.

2.3 Riesz spaces

The section introduces Riesz spaces, which are ordered vector spaces equipped with
a particularly rich vector ordering. They are so named in honour of the Hungarian
mathematician Frigyes Riesz1, who first defined them in his paper [R29].

2.3.A. Definition and first examples. Let E be an ordered vector space and let A ⊂ E
be a non-empty subset.

Definition 2.3.1. A vector v ∈ E is called the supremum, or the least upper bound, of
A if

1Györ 1880 - Budapest 1956
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a) v is an upper bound of A, i.e., a ≤ v for every a ∈ A;

b) v is the least upper bound of A, i.e., if u ∈ E is an upper bound of A, then v ≤ u.

If v ∈ E is the supremum of a non-empty set A, then we write v = sup A.

The definition of infimum, or greatest lower bound, is analogous. If v is the infimum
of a non-empty set A ⊂ E, then we write v = inf A.

For a finite set {v1, ..., vn} ⊂ E, we use the lattice notation

sup {v1, ..., vn} =
n∨

j=1

vj and inf {v1, ..., vn} =
n∧

j=1

vj.

Definition 2.3.2. An ordered vector space E is said a Riesz space (or a vector lattice) if
every two vectors of E have a supremum and an infimum in E.

A proper cone C in a vector space E is said a lattice cone if E equipped with the
vector ordering given by C is a Riesz space.

In other words, an ordered vector space E is a Riesz space if and only if for every
v, w ∈ E, the vectors v ∨ w and v ∧ w exist and are in E.

For every vector v in a Riesz space E, we can define its positive part v+ and its
negative part v− as follows: v+ = v ∨ 0 and v− = (−v) ∨ 0. This gives rise to a natural
definition of absolute value. We define the absolute value of a vector v ∈ E via the
equation |v| = v ∨ (−v).

Let E be a Riesz space. Then the maps from E× E to E given by

(v, w) 7−→ v ∧ w, (v, w) 7−→ v ∨ w

and the maps from E to E given by

v 7−→ |v|, v 7−→ v+ and v 7−→ v−

are called the lattice operations on E.

Example 2.3.3. (Examples of Riesz spaces)

1) The Euclidean space Rn with its standard order is a Riesz space. The lattice oper-
ations are given by

v∨w = (max(v1, w1), ..., max(vn, wn)) and v∧w = (min(v1, w1), ..., min(vn, wn)) ,

where v = (v1, ..., vn) and w = (w1, ..., wn) are in Rn.
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2) The Euclidean space Rn with the lexicographic order is a Riesz space because the
lexicographic order is total.2

3) Let X be a set and let E be a Riesz space. For two functions f1 and f2 in EX, we
define their supremum f ∨ g and their infimum f ∧ g pointwise by

( f ∨ g) (x) = max ( f (x), g(x)) and ( f ∧ g) (x) = min ( f (x), g(x)) ,

for every x ∈ X. Then EX equipped with the pointwise order, supremum and
infimum is a Riesz space. Similarly, the space `∞(X, E) is also a Riesz space.

4) Let (Ω, Σ, µ) be a measurable space. Recall that two measurable functions are
equivalent if they agree µ-almost everywhere. Let L0(Ω, µ) be the vector space
of all equivalence classes of µ-measurable real functions. We define the µ-almost
everywhere pointwise order on L0(Ω, µ) by

f ≤ g ⇐⇒ f (x) ≤ g(x) for µ-almost all x ∈ Ω.

If we define the supremum and the infimum of two measurable functions µ-almost
everywhere pointwise, then L0(Ω, µ) is a Riesz space ( [AB99, Theorem 4.27]).

Note that the positive cone of a Riesz space is always generating. Indeed, let E be
a Riesz space. After Lemma 2.1.3, we only have to show that for every v ∈ E there is
c ∈ E+ such that c− v ∈ E+. The vector |v| ∈ E+ accomplishes this task.

However, there are generating cones that are not lattice cones, as the following ex-
ample shows.

Example 2.3.4. Let C1((0, 2)) be the vector space of all real differentiable functions de-
fined on (0, 2). Then C1((0, 2)) equipped with the pointwise order is an ordered vector
space. Consider the two differentiable functions f (x) = 2− x and g(x) = x + 1. We
claim that f ∨ g doesn’t exist in C1((0, 2)). Suppose it is not the case. Then there is
h ∈ C1((0, 2)) such that h = f ∨ g. Take the sequence of differentiable functions ( fn)n∈N
given by

fn(x) = |1− x|1+ 1
n +

(
1 +

1
n

)
.

Then

a) fn is an upper bound of the set { f , g} for every n ∈ N;

b) fn ≥ fn+1 for every n ∈ N;

c) ( fn)n converges pointwise to the function F(x) = |1− x|+ 1.

2Recall that an order is said total if every two elements can be compared.
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By definition of supremum, fn ≥ h ≥ F for every n ∈ N. This means that h = F by
points b) and c). But this is a contradiction, as F is not in C1((0, 2)).

However, the cone of positive functions is generating, since 1(0,2) ∈ C1((0, 2)).

The next lemma contains a (incomplete) collection of lattice identities for vectors in
Riesz spaces. We decided to report only the identities used in this monograph. We
refer to [AT07, Theorem 1.17], [M91, Theorem 1.1.1] and [S74, pp. 51-52] for more lattice
identities.

Lemma 2.3.5 (Lattice identities). Let v and w be vectors in a Riesz space E. Then the following
identities hold:

a) v ∨ w = − [(−v) ∧ (−w)] and v ∧ w = − [(−v) ∨ (−w)];

b) α(v ∨ w) = (αv) ∨ (αw) and α(v ∧ w) = (αv) ∧ (αw) for every α ∈ R+;

c) |αv| = |α||v| for all α ∈ R;

d) |v + w| ≤ |v|+ |w| and |v| − |w| ≤ |v− w|;

e) v = v+ − v− and v+ ∨ v− = 0;

f) |v| = v+ + v−, and hence v = 0 ⇐⇒ |v| = 0;

g) v ∨ w = 1
2 (v + w + |v− w|);

h) v ∧ w = 1
2 (v + w− |v− w|);

i) v ∨ w ≤ |v|+ |w| and v, w ≤ v ∨ w;

j) v ∧ w ≤ v, w.

Proof. For a proof of points a) and b) see [AT07, Lemma 1.15], and for a proof of the
points from c) to h) see [S74, Proposition 1.4 & Corollary 1]. Points i) and j) are conse-
quences of the definition of supremum and minimum.

From point a) of the above lemma, we can conclude that to check if an ordered vector
space E is a Riesz space it is sufficient to show that for every two vectors v, w ∈ E their
supremum, or their infimum, exists, and belongs in E.

Note that points g) and h) are the maximum and minimum formulas for Riesz spaces.

Definition 2.3.6. Let X be a set and let E be a Riesz space. Let F(X, E) be a vector-valued
function space equipped with the pointwise order. Then for every f , g ∈ F(X, E), we
define their supremum f ∨ g and their infimum f ∧ g pointwise by

( f ∨ g) (x) = max ( f (x), g(x)) and ( f ∧ g) (x) = min ( f (x), g(x)) ,

for x ∈ X. If f ∨ g, or f ∧ g, is in F(X, E) for every f , g ∈ F(X, E), we say that F(X, E) is
a Riesz vector-valued function space.
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Examples of Riesz vector-valued function spaces are given by EX and `∞(X, E) for a
set X and a RIesz space E.

Actually, every Archimedean Riesz space can be seen as a Riesz function space on
some set X ( [L71, Chapter 7]).

Proposition 2.3.7. Let (X, UX) be a uniform space. Then Cu (X, UX) and Cb
u (X, UX) are

Riesz function spaces.

Proof. We already know that Cu (X, UX) and Cb
u (X, UX) are vector spaces by Proposi-

tions 1.2.8 and 1.1.2. Therefore, it suffices to show that the pointwise supremum and
infimum of two uniformly continuous functions is still a uniformly continuous func-
tion. We give the proof only for the pointwise supremum. The one for the pointwise
infimum is similar.

Let f , g ∈ Cu (X, UX), then the function F = f ∨ g is in RX as this last space is a Riesz
vector-valued function space. Thus, we want to show that F = f ∨ g is in Cu (X, UX) .
Let A ∈ UR. We can suppose that A is of the form

Aε = {(r1, r2) ∈ R× R : |r2 − r1| < ε}
for ε > 0. Then there are A f , Ag ∈ UX such that (x, y) ∈ A f implies ( f (x), f (y)) ∈ A ε

2

and (x, y) ∈ Ag implies (g(x), g(y)) ∈ A ε
2
. Here, A ε

2
=
{
(r1, r2) ∈ R× R : |r2 − r1| < ε

2

}
.

Set AX = A f ∩ Ag ∈ UX and note that if (x, y) ∈ AX, then

|F(x)− F(y)| = |( f ∨ g)(x)− ( f ∨ g)(y)|

=

∣∣∣∣12( f (x) + g(x) + | f (x)− g(x)|
)
− 1

2

(
f (y) + g(y) + | f (y)− g(y)|

)∣∣∣∣
≤ 1

2

(
| f (x)− f (y)|+ |g(x)− g(y)|+

∣∣ | f (x)− g(x)| − | f (y)− g(y)|
∣∣)

≤ 1
2

(
| f (x)− f (y)|+ |g(x)− g(y)|+

∣∣ f (x)− g(x)−
(

f (y)− g(y)
)∣∣ )

≤ 1
2

(
| f (x)− f (y)|+ |g(x)− g(y)|+ | f (x)− f (y) + g(y)− g(x)|

)
≤ | f (x)− f (y)|+ |g(x)− g(y)|

≤ ε

2
+

ε

2
= ε,

where we used point g) of Lemma 2.3.5 in the second equality. Therefore, (F(x), F(y)) is
in Aε, and hence F is uniformly continuous. This show that Cu(X, UX) is a Riesz space.
For Cb

u(X, UX), we can use the same proof together with the fact that F is bounded by
point i) of Lemma 2.3.5. Therefore, Cb

u(X, UX) is also a Riesz space.

Corollary 2.3.8. Let G be a topological group. Then the vector spaces

Cb(G), Cb
ru(G), Cb

lu(G) and Cb
u(G)

are all Riesz function spaces.
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Proof. The proof is a combination of Proposition 2.3.7 and Theorem 1.3.4.

Example 2.3.9. (More examples of Riesz spaces)

1) Let X be a uniformizable space. Then Cb(X) = Cb
u(X, F ) is a Riesz function space

thanks to Proposition 2.3.7 and Theorem 1.2.17. More generally, Cb(X) is a Riesz
function space for every, not a priori uniformizable, topological space X ( [AB99,
Corollary 2.29]).

2) Let G be a topological group and let U be a functionally invariant uniformity for
G. Then Cb

u(G, U ) is a Riesz function space by Proposition 2.3.7.

3) Let (Ω, Σ, µ) be a measurable space. For a function f ∈ L0(Ω, µ), we define the
(possibly infinite) value

Np ( f ) =
∫

Ω
| f (x)|pdµ(x),

where p ∈ (0,+∞) and the integral is taken in the sense of Lebesgue ( [AB99,
Definition 11.12]). For p ∈ (0,+∞), we say that a function f ∈ L0(Ω, µ) is p-
integrable if Np( f ) < ∞, and we write

Lp(Ω, µ) =
{

f ∈ L0(Ω, µ) : Np( f ) < ∞
}

for the set of all p-integrable functions defined on (Ω, Σ, µ). The set Lp(Ω, µ) is
actually a vector subspace of L0(Ω, µ). This is because of the monotonocity of the
Lebesgue integral [AB99, Theorem 11.13 (3)] and because of the inequalities

|a + b|p ≤ (|a|+ |b|)p ≤ (2|b|)p ≤ 2p (|a|p + |b|p) ,

which are true for every a, b ∈ R such that |a| ≤ |b| and for every p ∈ (0,+∞).
Moreover by points i) and j) of Lemma 2.3.5 and by the monotonocity of the
Lebesgue integral, every Lp(Ω, µ) is a Riesz space.

5) Let (Ω, Σ, µ) be a measurable space and let f ∈ L0(Ω, µ). Define the (possibly
infinite) value

|| f ||∞ = inf {M ∈ R : | f (x)| ≤ M for µ-almost all x ∈ Ω} ,

where inf{∅} = +∞. We say that a measurable function f ∈ L0(Ω, µ) is bounded
if || f ||∞ < ∞, and we write

L∞(Ω, µ) =
{

f ∈ L0(Ω, µ) : || f ||∞ < ∞
}

for the set of all bounded measurable functions defined on (Ω, Σ, µ). It is easy to
see that L∞(Ω, µ) is a vector subspace of L0(Ω, µ). Moreover by points i) and j)
of Lemma 2.3.5, L∞(Ω, µ) is a Riesz space. Note that || · ||∞ is actually a norm on
L∞(Ω, µ) called the supremum norm.
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Functionals give other examples of Riesz spaces. Indeed, let E be a Riesz space and
recall that the cone of positive functionals E∗+ of E is nothing but the polar cone of the
positive cone of E.

Definition 2.3.10. The order dual E∗r of E is the vector subspace of E∗ generated by the
cone of positive functionals, i.e.,

E∗r = {ψ1 − ψ2 : ψ1, ψ2 ∈ E∗+} ⊂ E∗.

Then E∗r equipped with the order given by the cone E∗+ is an ordered vector space.
Moreover, this order turns E∗r into a Riesz space.

Theorem 2.3.11 (Riesz). The order dual E∗r of any Riesz space E is a Riesz space. The supre-
mum ψ1 ∨ ψ2 and the infimum ψ1 ∧ ψ2 of two elements ψ1, ψ2 ∈ E∗r are given pointwise by

(ψ1 ∨ ψ2) (v) = sup {ψ1(w) + ψ2(z) : w, z ∈ E+ s.t. w + z = v}

and by

(ψ1 ∧ ψ2) (v) = inf {ψ1(w) + ψ2(z) : w, z ∈ E+ s.t. w + z = v}

for v ∈ E. Moreover for ψ ∈ E∗r , we have that

|ψ| (|v|) = sup {|ψ(w)| : |w| ≤ v} and |ψ(v)| ≤ |ψ|(|v|) for every v ∈ E.

Proof. See [AB99, Theorem 8.24].

Given a Riesz space E, the inclusions E′ ⊂ E∗r ⊂ E∗ hold, and E′ is an ideal in E∗r
( [AB99, Theorem 8.48]).

2.3.B. Structure of a Riesz space. We recall some basic concepts about the intrinsic
structure of Riesz spaces.

Definition 2.3.12. A vector subspace V of a Riesz space E is called a Riesz subspace
if for every v, w ∈ V their supremum, or their infimum, exists and is in V. A vector
subspace V is called an ideal if for v ∈ V and w ∈ E the relation |w| ≤ |v| implies that
w ∈ V.

Every Riesz subspace is itself a Riesz space. From point g) of Lemma 2.3.5, a vector
subspace V of a Riesz space E is a Riesz subspace if and only if v ∈ V implies that |v| ∈
V. Since an ideal is closed by taking absolute value, then every ideal is automatically a
Riesz subspace.

Example 2.3.13. Let R with its natural locally compact topology and consider the Riesz
space C(R) of all (possibly unbounded) real continuous functions on R. Then

1) the vector subspace C1(R) of all differentiable functions is neither a Riesz subspace
nor an ideal. The proof of this fact is similar to the one made in Example 2.3.4;
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2) the vector subspace R1R = {α1R : α ∈ R} of all constant functions is a Riesz sub-
space of C(R) but not an ideal. This is because the pointwise order on R1R is total,
and because every non-constant bounded continuous function can be majorized
by an element of R1R;

3) the vector subspace Cb(R) of all bounded continuous functions is an ideal. This
can be proved using points i) and j) of Lemma 2.3.5. Consequently, Cb(R) is a
Riesz subspace of C(R).

Definition 2.3.14. Let E be a Riesz space and let A ⊂ E be a non-empty subset of E. We
write R(A) for the smallest Riesz subspace generated by A. In other words, R(A) is
the smallest Riesz subspace which includes A.

For a non-empty subset A of a Riesz space E, we write A∧ for the collection of el-
ements of E that can be written as infimum of elements of A, i.e., a ∈ A∧ if there are
a1, ..., an ∈ A such that a =

∧n
k=1 ak. Similarly, we define A∨ as the collection of el-

ements of E that can be written as supremum of elements of A, i.e., a ∈ A∧ if there
are a1, ..., an ∈ A such that a =

∨n
k=1 ak. We write A∧∨ for

(
A∧
)∨ and similarly for

A∨∧. The equality A∧∨ = A∨∧ holds thank to the infinite distributive law for lattices
( [S74, Proposition 1.5]).

Lemma 2.3.15. Let E be a Riesz space and let A ⊂ E be a non-empty subset. Then

R(A) = (spanR(A))∨∧ = (spanR(A))∧∨

Proof. See [AT07, Lemma 1.21].

We recall that a Riesz space E is said majorized by a subspace A if for every v ∈ E
there is a ∈ A such that v ≤ a. In this case, we call A a majorizing subspace of E.

Lemma 2.3.16. Let E be a Riesz space and let A be a non-empty subset of E+. Then R(A) is
majorized by spanR(A).

Proof. Let v ∈ R(A). By Lemma 2.3.15, v is of the form

v =
m∧

i=1

 n∨
j=1

( n(i,j)

∑
k=1

t(i,j)k a(i,j)k

) ,

where the t(i,j)k ∈ R and the a(i,j)k ∈ A for every k ∈ {1, ..., n(i,j)} and for every pair
(i, j) ∈ {1, ..., m} × {1, ..., n}. Then

|v| =

∣∣∣∣∣∣
m∧

i=1

 n∨
j=1

( n(i,j)

∑
k=1

t(i,j)k a(i,j)k

)∣∣∣∣∣∣ ≤
m∧

i=1

 n∨
j=1

( n(i,j)

∑
k=1

∣∣∣t(i,j)k

∣∣∣ ∣∣∣a(i,j)k

∣∣∣ )


=
m∧

i=1

 n∨
j=1

( n(i,j)

∑
k=1

∣∣∣t(i,j)k

∣∣∣ a(i,j)k

) ≤ m∧
i=1

(
n

∑
j=1

( n(i,j)

∑
k=1

∣∣∣t(i,j)k

∣∣∣ a(i,j)k

))
,
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where the last inequality is possible thanks to point i) of Lemma 2.3.5. But now we can
fix j0 ∈ {1, ..., m} and use point j) of Lemma 2.3.5 to deduce that

m∧
i=1

(
n

∑
j=1

( n(i,j)

∑
k=1

∣∣∣t(i,j)k

∣∣∣ a(i,j)k

))
≤

n

∑
j=1

n(i0,j)

∑
k=1

∣∣∣t(i0,j)
k

∣∣∣ a(i0,j)
k .

This last double sum belongs to spanR(A), and so the lemma is proved.

Definition 2.3.17. Let E be a Riesz space and let A ⊂ E be a non-empty subset. We write

I(A) =

{
v ∈ E : there are a1, ..., an ∈ A and t1, ..., tn ∈ R s.t. |v| ≤

n

∑
j=1

tj|aj|
}

for the ideal generated by A.

If A = {x} is only a singleton, then we write Ex instead of I({x}), and we call it the
principal ideal generated by x.

The ideal I(A) is the smallest ideal in E containing A.

Remark 2.3.18. It is also possible to define principal ideals in the context of ordered
vector spaces. See [AT07, Section 2.7].

2.3.C. Positive operators between Riesz spaces. We focus on a particular class of op-
erators between Riesz spaces.

Definition 2.3.19. Let E and V be Riesz spaces and let T : E −→ V be a linear operator.
We say that T is a Riesz operator, or a Riesz homomorphism, if

T(v ∨ w) = T(v) ∨ T(w) and T(v ∧ w) = T(v) ∧ T(w) for all v, w ∈ E.

Note that if T is a Riesz operator, then T is also a positive operator. In fact,

T(v) = T(v+) = T(v) ∨ 0 ≥ 0 for every positive v ∈ E.

However, a positive operator does not need to be a Riesz operator. For example, con-
sider the positive operator

T : c00(N) −→ N, f 7−→ T( f ) = ∑
j∈N

f (j)

and the vectors v = δ−1 + δ0 and w = δ0 + δ1. Then T(v ∨ w) = 2 but T(v) ∨ T(w) = 1.

Let T : E −→ V be a positive operator between Riesz spaces. Then |T(v)| ≤ T(|v|).
Indeed, ±v ≤ |v| for every v ∈ E, and hence

±T(v) ≤ |T(v)| ≤ T (|v|) .

The difference between positive operators and Riesz operators lies in this last in-
equality. The following result shows why.
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Theorem 2.3.20. Let T : E −→ V be a linear operator between Riesz spaces. Then T is a Riesz
operator if and only if for every v ∈ E the identity |T(v)| = T(|v|) holds.

Proof. See [AB99, Theorem 9.15].

Example 2.3.21. (Examples of Riesz operators)

1) Let E be a Riesz space and let V be a Riesz subspace of E. Then the inclusion map

ι : V −→ E, v 7−→ ι(v) = v

is a Riesz operator.

2) Let X be a set and consider the Riesz space `∞(X) of all bounded real functions on
X. Let X0 be a subset of X. Then the restriction map

res : `∞(X) −→ `∞(X0), f 7−→ res( f ) = f |X0

is a Riesz operator. Indeed, we can compute that

res (| f |) = (| f |) |X0 = | f |X0 | = |res( f )| for every f ∈ `∞(X).

3) Let (Ω, Σ, µ) be a measurable space and fix p ∈ [1,+∞]. Then for every positive
φ ∈ L∞(Ω, µ), the multiplication operator

Tφ : Lp(Ω, µ) −→ Lp(Ω, µ), f 7−→ Tφ( f ) = φ · f

is a Riesz operator.

Definition 2.3.22. Let T : E −→ V be a linear map between Riesz spaces. We say that T
is a Riesz isomorphism if T is an onto and one-to-one Riesz homomorphism.

Two Riesz spaces E and V are said Riesz isomorphic if there exists a Riesz isomor-
phism T : E −→ V.

Theorem 2.3.23. Let T : E −→ V be an onto and one-to-one linear map between Riesz spaces.
Then T is a Riesz isomorphism if and only if T and T−1 are positive operators.

Proof. See [AB99, Theorem 9.17].

2.4 Normed Riesz spaces and Banach lattices

The section introduces monotone norms on Riesz spaces. Monotone norms are a partic-
ular class of norms behaving well with respect to the vector ordering. Note that so far,
every ordered vector space was considered as an abstract vector space, i.e., without a
topology on it.
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2.4.A. Monotone norms on Riesz spaces. Let E be a Riesz space. A monotone norm, or
a lattice norm, || · || on E is nothing but a norm such that ||v|| ≤ ||w|| for every v, w ∈ E
with |v| ≤ |w|.

Definition 2.4.1. Let E be a Riesz space and let || · || be a monotone norm on E. Then we
say that (E, || · ||) is a normed Riesz space. If, in addition, E is complete with respect to
the norm || · ||, then we say that (E, || · ||) is a Banach lattice.

Intuitively, a normed Riesz space is a Riesz space equipped with a topology gener-
ated by a norm consistent with the Riesz space structure.

Example 2.4.2. (Examples of normed Riesz spaces)

1) The Euclidean space Rn with its standard order together with the Euclidean norm
is a Banach lattice for every n ∈ N. Moreover, every Banach lattices of finite
dimension n ∈ N can be identified with Rn. See [S74, Corollary 1 p. 70] and note
that every Banach lattice is Archimedean;

2) Let (Ω, Σ, µ) be a measurable space. Fix p ∈ [1,+∞) and consider the Riesz space
Lp(Ω, µ) of all p-integrable functions. We define the Lp-norm on Lp(Ω, µ) by

|| f ||p = Np( f )1/p for f ∈ Lp(Ω, µ).

Then Lp(Ω, µ) equipped with the Lp-norm is a Banach lattice by the Riesz-Fischer
Theorem ( [AB99, Theorem 13.5]).

3) Let (Ω, Σ, µ) be a measurable space and consider the Riesz space L∞(Ω, µ) of all
bounded measurable functions. Then L∞(Ω, µ) equipped with the norm || · ||∞ is
a Banach lattice by the Riesz-Fischer Theorem ( [AB99, Theorem 13.5]).

4) Let A be a (complex) C∗-algebra equipped with its C∗-cone. Consider the vector
subspace Asa of all self-adjoint elements of A. Then Asa is a (real) Banach lattice
when equipped with the C∗-order and the C∗-norm given by A if and only if A is
commutative ( [S51, Theorems 1 & 2]).

5) We call a Banach lattice H a Hilbert lattice if its underlying Banach space is a
(complex) Hilbert space. Let H1 and H2 two Hilbert lattices. Then the Hilbert
tensor productH1⊗HH2 equipped with the order given by the closure of the pro-
jective cone Cp is a Hilbert lattice ( [S74, Example 3 p.275]). In particular, the
space of Hilbert-Schmidt operators HS(H) ∼= H′ ⊗HH of a Hilbert lattice H with
the Hilbert-Schmidt norm and the vector ordering given by the tensor cone is a
Hilbert lattice ( [S74, Proposition 6.10 p. 273]).

6) Let G be a topological group and let (E, || · ||) be a Banach lattice. Suppose that G
has a representation π on E by positive linear isometries. We claim that

Ec = {v ∈ E : g 7−→ gv is || · ||-continuous}
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is a Banach sublattice of E. Indeed, (Ec, || · ||) is a Banach space by [M01, Lemma
1.2.4]. Moreover, Ec is also an ideal in E because G acts on it by Riesz isomorphisms
by Theorems 2.3.23 and 2.3.20. Therefore, we can conclude that (Ec, || · ||) is a
Banach sublattice of E.

It is possible to generalise Proposition 2.3.7 using normed Riesz spaces. In fact, in the
proof of this result, we tacitly used the fact that R with its Euclidean norm is a normed
Riesz space.

Proposition 2.4.3. Let (X, UX) be a uniform space and let (E, || · ||E) be a normed Riesz space.
Then Cu ((X, UX), (E, Uc)) and Cb

u ((X, UX), (E, Uc)) are Riesz vector-valued function spaces.

The proof is quite identical to the proof of Proposition 2.3.7. We repeat it only for the
sake of completeness.

Proof of Proposition 2.4.3. We already know that the two sets Cu ((X, UX), (E, Uc)) and
Cb

u ((X, UX), (E, Uc)) are vector spaces by Propositions 1.2.8 and 1.1.2. Therefore, it suf-
fices to show that the pointwise supremum and infimum of two vector-valued uni-
formly continuous functions is still a vector-valued uniformly continuous function. We
present the proof only for the pointwise supremum. The one for the pointwise infimum
is similar.

Let f , g ∈ Cu ((X, UX), (E, Uc)), then the function F = f ∨ g is in EX as this last space
is a Riesz vector-valued function space. Thus, we want to show that F = f ∨ g is in
Cu ((X, UX), (E, Uc)) . Let A ∈ Uc. We can suppose that A is of the form

Aε = {(v1, v2) ∈ E× E : ||v2 − v1||E < ε}

for ε > 0. Then there are A f , Ag ∈ UX such that (x, y) ∈ A f implies ( f (x), f (y)) ∈ A ε
2

and (x, y) ∈ Ag implies (g(x), g(y)) ∈ A ε
2
. Here,

A ε
2
=
{
(v1, v2) ∈ E× E : ||v2 − v1||E <

ε

2

}
.
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Set AX = A f ∩ Ag ∈ UX and note that if (x, y) ∈ AX, then

||F(x)− F(y)||E = ||( f ∨ g)(x)− ( f ∨ g)(y)||E

=

∣∣∣∣∣∣∣∣12( f (x) + g(x) + | f (x)− g(x)|
)
− 1

2

(
f (y) + g(y) + | f (y)− g(y)|

)∣∣∣∣∣∣∣∣
E

≤ 1
2
|| f (x)− f (y)||E +

1
2
||g(x)− g(y)||E

+
1
2

∣∣∣∣∣∣ | f (x)− g(x)| − | f (y)− g(y)|
∣∣∣∣∣∣

E

≤ 1
2
|| f (x)− f (y)||E +

1
2
||g(x)− g(y)||E

+
1
2
|| f (x)− g(x)− ( f (y)− g(y))||E

≤ 1
2
|| f (x)− f (y)||E +

1
2
||g(x)− g(y)||E

+
1
2
|| f (x)− f (y) + g(y)− g(x)||E

≤ || f (x)− f (y)||E + ||g(x)− g(y)||E
≤ ε

2
+

ε

2
= ε,

where we used point g) of Lemma 2.3.5 in the second equality. Therefore, (F(x), F(y))
is in Aε, and hence F is uniformly continuous. This show that Cu ((X, UX), (E, Uc)) is a
Riesz vector-valued function space. For Cb

u ((X, UX), (E, Uc)), we can use the same proof
together with the fact that F is bounded by point i) of Lemma 2.3.5. We can conclude
that Cb

u ((X, UX), (E, Uc)) is also a Riesz vector-valued function space.

Corollary 2.4.4. Let (X, UX) be a uniform space and let (E, || · ||E) be a Banach lattice. Then
Cb

u((X, UX), (E, Uc)) is a Banach lattice when equipped with the supremum norm.

Proof. By Proposition 2.4.3 and Theorem 1.2.11, we know that Cb
u((X, UX), (E, Uc)) is a

Riesz vector-valued function space and a Banach space when equipped with the supre-
mum norm. We only have to check that the supremum norm is monotone. Let f , g ∈
Cb

u ((X, UX), (E, Uc)) such that | f | ≤ |g|. In particular, | f |(x) ≤ |g|(x) for every x ∈ X.
But this implies that

|| f ||∞ = sup
x∈X
|| f (x)||E ≤ sup

x∈X
||g(x)||E = ||g||∞

as wished. We can conclude that Cb
u ((X, UX), (E, Uc)) is a Banach lattice.

Corollary 2.4.5. Let G be a topological group and let E be a Banach lattice. Then the spaces

Cb(G, E), Cb
ru(G, E), Cb

lu(G, E) and Cb
u(G, E)

are all Banach lattices when equipped with the supremum norm.
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Proof. The proof is a combination of Corollary 2.4.4 and of Theorem 1.3.4.

Example 2.4.6. (More examples of normed Riesz spaces)

1) Let X be a set and let (E, || · ||) be a Banach lattice. Then the Riesz space `∞(X, E) =
Cb

u ((X, Ud), (E, Uc)) equipped with the supremum norm is a Banach lattice by
Corollary 2.4.4.

2) Let X be a uniformizable topological space and let E be a Banach lattice. Then
the space Cb(X, E) = Cb

u ((X, F ), (E, Uc)) equipped with the supremum norm is a
Banach lattice by Corollary 2.4.4 and Theorem 1.2.17. Moreover, the vector space
C00(X, E) of all compactly supported continuous functions from X to E is a normed
Riesz space when equipped with the supremum norm as it is an ideal in Cb(X, E).

3) Let G be a topological group and let E be a Banach lattice. Then for every func-
tionally invariant uniformity U for G the space Cb

u ((G, U ), (E, Uc)) is a Banach
lattice when equipped with the supremum norm by Corollary 2.4.4.

Other examples of normed Riesz spaces and Banach lattices can be founded using
the following lemma.

Lemma 2.4.7. The norm completion and the continuous dual of a normed Riesz space are Ba-
nach lattices.

Proof. See [AB99, Lemma 9.4].

Example 2.4.8. Let X be a uniformizable topological space and let E be a Banach lattice.
Then the vector space C0(X, E) of all bounded continuous functions from X to E van-
ishing at infinity is a Banach lattice when equipped with the supremum norm. This is
because C00(X, E) is || · ||∞- dense in C0(X, E) and Lemma 2.4.7.

Banach lattices encompass almost every usual vector space or, at least, almost every
vector space we will use in this manuscript. However, it is possible to find Banach
spaces that admit neither monotone norms nor orders consistent with their norm. In
the following, we see a couple of examples.

Example 2.4.9. Let E be a vector space.

1) Suppose that E admits an order for which it is a non-Archimedean Riesz space.
We claim that there is no norm on E which turns it into a normed Riesz space.
Suppose this is not the case. Then there is a monotone norm || · || defined on E. As
E is non-Archimedean, there are two non-zero vectors v, w ∈ E such that nv ≤ w
for every n ∈ N by [AT07, Exercice 5 p. 20]. Therefore,

n||v|| ≤ ||w|| for every n ∈ N.

But this implies that ||v|| = 0, and hence v = 0 which is a contradiction.

We can conclude that every normed Riesz space has to be Archimedean. In partic-
ular, there are no monotone norms on Rn with the lexicographic order.
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2) The Lozanovsky Theorem ( [AB85, Theorem 4.71]) says that a Banach lattice is
reflexive, or it contains a Riesz isomorphic copy of `1 or c0 . Let E be a non-
reflexive Banach space without an isomorphic copy of `1 or c0, then there is no
order on E, which turns it into a Banach lattice. An example of such a space is the
James space J . A description of James space can be found in [M98, Section 4.5].

Remark 2.4.10. Some authors use the more general notion of normed ordered vector
space, i.e., an ordered vector space equipped with a norm that respects the vector or-
dering. For example, the set Asa of self-adjoint elements of a C∗-algebra A equipped
with the C∗-norm ofA and the order defined by its C∗-cone is an ordered Banach space.
The majority of the results we prove in the following chapters remain valid for normed
ordered vector spaces. However, we decided to work only with normed Riesz space as
the theory for such vector spaces is quite rich and permits us to stay elegant and avoid
unpleasant situations.

2.4.B. Operators on normed Riesz spaces. We present properties of positive linear op-
erators between normed Riesz spaces.

Theorem 2.4.11 (Continuity of positive operators). Every positive operator between Banach
lattices is continuous.

Proof. See [AB99, Theorem 9.6].

The following example shows that the completeness assumption is necessary and
can not be dropped.

Example 2.4.12. Let c00(N) be the normed Riesz space of all eventually zero real se-
quences equipped with the supremum norm. Consider the positive functional given
by

T : c00(N) −→ R, f 7−→ T( f ) = ∑
j∈N

f (j).

On the one hand, T is a positive functional, as the vector order considered on c00(N) is
the pointwise one. On the other hand, T is not continuous with respect to the || · ||∞-
norm. Indeed, take the sequence ( fn)n∈N given by

fn(j) =

{
1
n if j ≤ n
0 otherwise.

Then ( fn)n∈N converges to the zero function in || · ||∞-norm as || fn||∞ = 1
n for every

n ∈ N, but T( fn) = 1 for every n ∈ N.

Corollary 2.4.13. Every two monotone norms which make a Riesz space into a Banach lattice
are equivalent.
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Proof. Let E be a Riesz space and let || · ||1 and || · ||2 be two monotone norms which
turn E into a Banach lattice. Consider the identity map

Id : (E, || · ||1) −→ (E, || · ||2), v 7−→ Id(v) = v.

Then Id is positive, and hence continuous by Theorem 2.4.11. This implies that the norm
|| · ||1 is stronger than the norm || · ||2. Switching (E, || · ||1) with (E, || · ||2), we have that
the norms || · ||1 and || · ||2 are actually equivalent.

Corollary 2.4.14. Let E be a Banach lattice. Then the order dual and the continuous dual of E
coincide, i.e., E∗r = E′.

Proof. See [AB99, Theorem 9.11].

With the help of this last result, we can understand in which case the inclusion E∗r ⊂
E∗ is strict or not for Banach lattices. Indeed, suppose that E is a finite-dimensional
Banach lattice, then the algebraic dual and the continuous dual of E coincide ( [AB99,
Theorem 5.21]). Therefore, we can conclude that E′ = E∗r = E∗. Let now suppose that E
is an infinite-dimensional Banach lattice, then there is a discontinuous functional on E
( [S97, 23.6-b]). By Corollary 2.4.14, we can conclude that the inclusion E∗r ⊂ E∗ is strict.

Definition 2.4.15. Let E and V be two normed Riesz spaces. A linear map T : E −→ V
is said a Riesz isometry if it is a Riesz isomorphism and a linear isometry.

Two normed Riesz spaces E and V are said Riesz isometric if there is a Riesz isome-
try between them.

Lemma 2.4.16. A Riesz isomorphism T : E −→ V between normed Riesz spaces is a Riesz
isometry if and only if ||T(v)||V = ||v||E for every positive v ∈ E.

Proof. The only if part is a consequence of the definition of Riesz isometry. For the if
part, suppose that ||T(v)||V = ||v||E for every positive v ∈ E. Then

||T(w)||V = || |T(w)| ||V = ||T(|w|)||V = || |w| ||E = ||w||E for every w ∈ E.

2.4.C. AM-spaces and AL-spaces. We spend this last subsection recalling two impor-
tant classes of Banach lattices: the AM-spaces and the AL-spaces. They are both Banach
lattices equipped with norms having unique features.

Definition 2.4.17. Let || · || be a monotone norm defined on a Riesz space E. Then || · ||
is said an

- M-norm if ||v ∨ w|| = max (||v||, ||w||) for every v, w ∈ E+;

- L-norm if ||v + w|| = ||v||+ ||w|| for every v, w ∈ E+.

57



Chapter 2. Cones and Lattices

A Riesz space equipped with an M-norm (resp. an L-norm) is called an M-space (resp.
an L-space) while a Banach lattice equipped with an M-norm (resp. an L-norm) is called
an AM-space (resp. an AL-space).

Example 2.4.18. (Examples of AM-spaces and AL-spaces)

1) The one-dimensional Banach lattice R is both an AM-space and an AL-space.
More generally, every Banach lattice, which is both an AM-space and an AL-space,
is finite-dimensional ( [AB99, Corollary 9.39]). We have a sort of converse for the
class of reflexive Banach lattices. In fact, every reflexive Banach lattice, which is
an AM-space or an AL-space, is finite-dimensional ( [AB99, Theorem 9.38]).

2) Let (E, || · ||) be a Banach lattice. Then the principal ideal Ed generated by a vector
d ∈ E equipped with the norm

||v||d = inf {α ∈ R+ : |v| ≤ α|d|} ,

where v ∈ Ed, is an AM-space with unit |d| ( [AB99, Theorem 9.28]). If d is an order
unit for E, then we call the norm || · ||d the order unit norm of E. In this case, the
norm || · || is equivalent to the order unit norm || · ||d by Theorem 2.4.11.

2) Let X be a set and let `∞(X) be the Riesz space of all real bounded functions on
X. Then `∞(X) equipped with the supremum norm is an AM-space. Moreover,
every Banach sublattice of `∞(X) is an AM-space.

3) Let (Ω, Σ, µ) be a measurable space. Then the Riesz space L1(Ω, µ) equipped with
the L1-norm is an AL-space.

4) Let G be a locally compact group and writeM(G) for the vector space of signed
finite regular Borel measures on G. We define on it an order by

µ ≤ λ ⇐⇒ µ(A) ≤ λ(A) for all A ∈ B(G).

Then the pair (M(G),≤) is a Riesz space ( [AT07, p. 22]). The Riesz spaceM(G)
becomes an AL-space when equipped with the total variaton norm || · ||TV ( [AB99,
10.53 Theorem]). Recall that the total variation norm is defined by ||µ||TV = |µ|(G)
for µ ∈ M(G),

Surprisingly, AL-spaces and AM-spaces come always together. In fact, they are mu-
tually dual.

Theorem 2.4.19. A Banach space is an AM-space (resp. an AL-space) if and only if its dual is
an AL-space (resp. an AM-space).

Proof. See [AB85, Theorem 12.22 p. 188].
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Being an AM-space or an AL-space is a pretty restrictive requirement, as the two
following rigidity theorems show.

Note that the next theorem can be viewed as a Banach lattice version of the famous
Gelfand-Naimark Representation Theorem for commutative Banach algebras ( [K09,
Theorem 2.2.7]).

Theorem 2.4.20. Every AM-space with an order unit is Riesz isometric to (C(K), || · ||∞) for
some compact space K.

Proof. See [AB99, Kakutani–Bohnenblust–M. Krein–S. Krein Theorem 9.32].

Theorem 2.4.21. Every AL-space is Riesz isometric to
(

L1(Ω, µ), || · ||1
)

for some measurable
space (Ω, Σ, µ).

Proof. See [AB99, Kakutani Theorem 9.33].

Basically, AM-spaces are abstract versions of C(K)-spaces for a compact set K, and
AL-spaces are abstract versions of L1-spaces.

One other important and interesting property of AM- and AL-spaces is that they
have both the approximation property for Banach spaces ( [S74, Theorem 2.4 p. 239]).
This fact gives us more particular examples of Banach lattices.

Example 2.4.22. Let E be an AM-space or an AL-space.

1) The vector space B0(E) of all compact operators defined on E is a Banach lattice
when equipped with the operator norm and the vector ordering given by the clo-
sure of the tensor cone C⊗ ( [S74, Corollary 2 p. 254]).

2) The vector space N (E) of all nuclear operators defined on E is a Banach lattice
when equipped with the nuclear norm and the vector ordering given by the clo-
sure of the tensor cone C⊗ ( [S74, Theorem 8.3 p. 281]).

We refer to [Ry02, Chapter 4] for more details about the approximation property for
Banach spaces.
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Chapter 3

Dominated Normed Lattices

The goal of the chapter is to introduce and study the notion of dominated ordered vector
spaces.

Those kinds of vector spaces were already secretly present in the literature under
the name of majorized vector spaces. Actually, a dominant vector space is nothing but
a vector space majorized by the vector subspace generated by translates of a non-zero
positive vector. The first to use them in the context of groups was Rosenblatt in his
doctoral thesis [R72] when he was investigating supramenability. After, such notion
has been resumed by Monod in [M17]. Both authors used it only in a specific case and
without considering any topology on it.

The reason for studying this type of ordered vector spaces is that dominated ordered
vector spaces are the natural domain of unbounded invariant functionals, in our case
of invariant normalized integrals. Therefore, such spaces permit us to return to the
comfort zone of bounded linear functionals.

In the first part of the chapter, we define dominated ordered vector spaces and then
study their basic properties. After that, we introduce a class of norms defined on them
(Sections 3.1 and 3.2). Speaking about dominated vector spaces implies that also the
data of a group representation is given. Therefore, it is interesting to ask what are the
continuous vectors with respect to this group representation. A universal answer is
obviously not possible, but some partial ones are. Those are discussed in the last part of
the chapter (Section 3.4).

We recommend Appendix B to an explanation of how unbounded invariant func-
tionals and invariant normalized integrals are linked.

3.1 Dominated Riesz spaces

For instance, let E be an ordered vector space and let G be a topological group. An
action of G on E is a representation of G on E by positive linear automorphisms, i.e., a
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group homomorphism π : G −→ AutL(E)+, where

AutL(E)+ = {T : E −→ E : T is a bijective positive linear operator} .

We don’t assume any continuity condition for the representation of G.

3.1.A. Dominated vector spaces. Suppose that G has a representation by positive linear
automorphisms on an ordered vector space E.

Definition 3.1.1. A vector d ∈ E G-dominates another vector v ∈ E, or v is G-dominated
by d, if there are g1, ..., gn ∈ G such that ±v ≤ ∑n

j=1 gjd. An ordered vector space E is G-
dominated by d if d G-dominates every v ∈ E. In this case, d is called the G-dominating
element of E.

Given a positive vector d ∈ E, we write (E, d) for the set of all vectors of E which are
G-dominated by d. Therefore,

(E, d) =

{
v ∈ E : ±v ≤

n

∑
j=1

gjd for some g1, ..., gn ∈ G

}
.

Example 3.1.2. Let E be an ordered vector space and let G be a topological group. Sup-
pose that G has a representation π on E by positive linear automorphisms.

1) If E admits an order unit u, then (E, u) = E.

2) For every non-zero positive vector d ∈ E, we have the inclusion Ed ⊂ (E, d), where
Ed is the principal ideal generated by d. We have equality if and only if d is fixed
by the action of G on E given by π. In fact, if d is a G-fixed-point, then it is clear
that Ed = (E, d). Conversely, suppose that (E, d) = Ed. Then for every g ∈ G there
is a non-zero positive λg ∈ R such that gd = λgd. Let || · ||d be the Minkowski
functional, or the gauge functional, associated to d ( [AT07, p. 103]). Then

1 = ||d||d = ||gd||d = ||λgd||d = λg||d||d = λg.

This means that gd = d.

3) Suppose that E = `∞(G) and that π = πL the left-translation representation of G.
Let δe be the function which is 1 at the identity element e of G and zero everywhere
else. Then (`∞(G), δe) = c00(G).

If E is a Riesz space and d ∈ E is a positive vector, then (E, d) is the ideal generated
by the set {gd : g ∈ G}. If the action of G on E is trivial, then (E, d) = Ed the principal
ideal generated by d.

Remark 3.1.3. The data that an ordered vector space E is G-dominated depends on the
representation of G on the vector space. Therefore, it would be better to say that E is π-
dominated, where π is the G-representation on E. However, we will do this only when
the number of group representations could confuse.
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Proposition 3.1.4. For every positive d ∈ E, (E, d) is a vector subspace of E. If E is a Riesz
space, then (E, d) is an ideal of E, and hence a Riesz subspace of E.

Proof. Fix a positive vector d ∈ E and let v, w ∈ (E, d). We start showing that v + w is in
(E, d). Take g1, ..., gn, h1, ..., hm ∈ G such that

±v ≤
n

∑
j=1

gjd and ± w ≤
m

∑
i=1

hid.

Then

±(v + w) ≤
n

∑
j=1

gjd +
m

∑
i=1

hid ≤
n+m

∑
k=1

xkd,

where

xk =

{
gk for k ∈ {1, ..., n}
hn−k for k ∈ {n + 1, ..., n + m}.

The fact that αv ∈ (E, d) for every α ∈ R and every v ∈ (E, d) is direct by the definition
of (E, d) and by (V2) of Definition 2.2.1.

Suppose now that E is a Riesz space, and we want to show that (E, d) is an ideal
in E for every positive d ∈ E. To this aim, it suffices to show that (E, d) is closed by
taking absolute value. Therefore, let v ∈ (E, d). Then there are g1, ..., gn ∈ G such that
±v ≤ ∑n

j=1 gjd. But this implies that |v| ≤ ∑n
j=1 gjd, which shows that (E, d) is an ideal

of E.

Notation 3.1.5. Let F(X) be a real function space on a set X and let f be a positive
element of F(X). Then we write F(X, f ) instead of (F(X), f ).

3.1.B. Dominated seminorms and norms. Suppose that G has a representation by pos-
itive linear automorphisms on an ordered vector space E.

Definition 3.1.6. For every positive vector d ∈ E, we define the possibly infinite value

pd(v) = inf

{
n

∑
j=1

tj : ±v ≤
n

∑
j=1

tjgjd for some t1, ..., tn ∈ R+ and g1, ..., gn ∈ G

}
,

where v ∈ E.

The first thing to point out is that pd(v) is finite if and only if v ∈ (E, d). Indeed,
(E, d) = {v ∈ E : pd(v) < ∞} . Therefore, we proceed to study pd when restricted to
(E, d).
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Proposition 3.1.7. For every positive vector d ∈ E, the map

pd : (E, d) −→ R, v 7−→ pd(v)

is absolutely homogeneous, sub-additive, G-invariant and monotone.

Proof. Firstly, let’s show that pd is positive homogeneous. Let α ∈ R and v ∈ (E, d).
Then for every ε > 0 there are g1, ..., gn ∈ G and t1, ..., tn ∈ R+ such that

−
n

∑
j=1

tjgjd ≤ v ≤
n

∑
j=1

tjgjd and
n

∑
j=1

tj ≤ pd(v) +
ε

|α| .

Therefore,

−
n

∑
j=1
|α|tjgjd ≤ −|α|v ≤ αv ≤ |α|v ≤

n

∑
j=1
|α|tjgjd.

But now
n

∑
j=1
|α|tj = |α|

n

∑
j=1

tj ≤ |α|
(

pd(v) +
ε

|α|

)
≤ |α|pd(v) + ε.

Since ε was chosen arbitrarily, pd(αv) = |α|pd(v).
We continue showing that pd is sub-additive. Let v, w ∈ (E, d) and ε > 0. Then there

are g1, ..., gn, h1, ..., hm ∈ G and t1, ..., tn, c1, ..., cm ∈ R+ such that

±v ≤
n

∑
j=1

tjgjd, ±w ≤
m

∑
i=1

cihid,
n

∑
j=1

tj ≤ pd(v) +
ε

2
and

m

∑
i=1

ci ≤ pd(w) +
ε

2
.

Thus,

−
n+m

∑
k=1

bkxkd = −
(

n

∑
j=1

tjgjd +
m

∑
i=1

cihid

)
≤ v + w ≤

n

∑
j=1

tjgjd +
m

∑
i=1

cihid =
n+m

∑
k=1

bkxkd,

where the bk’s are given by

bk =

{
tk for k ∈ {1, ..., n}
cn−k for k ∈ {n + 1, ..., n + m}

and the xk’s are given by

xk =

{
gk for k ∈ {1, ..., n}
hn−k for k ∈ {n + 1, ..., n + m}.
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But now
n+m

∑
k=1

bk =
n

∑
j=1

tj +
m

∑
i=1

ci ≤ pd(v) + pd(w) + ε.

As ε was chosen arbitrarily, the map pd is sub-additive.
The map pd is G-invariant only because G acts linearly and positively on E.
It is only left to show that pd is monotone, i.e., if v, w ∈ (E, d) such that v ≤ w, then

pd(v) ≤ pd(w). Therefore, let v, w ∈ (E, d) such that v ≤ w. Then there are g1, ..., gn ∈ G
and t1, ..., tn ∈ R+ such that

−
(

n

∑
j=1

tjgjd

)
≤ w ≤

n

∑
j=1

tjgjd.

This implies that

−
(

n

∑
j=1

tjgjd

)
≤ −w ≤ v ≤ w ≤

n

∑
j=1

tjgjd,

which suffices to prove that pd(v) ≤ pd(w).

Example 3.1.8. Let E be an ordered vector space and let G be a topological group. Sup-
pose that G acts on E by positive linear automorphisms, and that d is a G-fixed-point.
Then (E, d) = Ed and pd is only the Minkowski functional, or the gauge functional, of
the principal ideal Ed. If E is a Banach lattice, then the pair ((E, d), pd) is an AM-space
( [AB99, Theorem 9.28]).

In general, pd is not a norm on (E, d) as illustrated by the following example.

Example 3.1.9. Let E be a non-Archimedean Riesz space, e.g., R2 with the lexicographic
order, and suppose that G has a representation on E by positive linear automorphisms.
We claim that there is at least one positive vector d ∈ E such that pd is not a norm on
(E, d). Indeed by [AT07, Exercice 5 p. 20], there are x, y ∈ E+ such that ny ≤ x for all
n ∈ N but y > 0. Consider the space (E, x). Then y ∈ (E, x) and

0 ≤ px(y) ≤
1
n

px(x) for every n ∈ N.

This implies that px(y) = 0. Therefore, the map px is not a norm on (E, x).

Therefore, a necessary condition to ensure that pdcan be a norm is that the Riesz
space E is Archimedean. However, for every ordered vector space E and every positive
vector d ∈ E, the map pd is a seminorm on (E, d). Moreover, when E is a Riesz space, pd
is a Riesz seminorm, or a lattice seminorm.

Recall that a Riesz seminorm, or a lattice norm, on a Riesz space E is nothing but a
seminorm p on E such that p(x) ≤ p(y) whenever x, y ∈ E and |x| ≤ |y|.

If E is a vector space and p is a seminorm on E, then we write τ(p) for the topology
generated by the seminorm p.
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Corollary 3.1.10. Let E be an ordered vector space and suppose that G has a representation on
E by positive linear automorphisms.

a) The map pd is a seminorm on (E, d) for every positive vector d ∈ E.

b) If E is a Riesz space, then the map pd is a Riesz seminorm on (E, d) for every positive
vector d ∈ E.

Proof. The proof is only a consequence of Proposition 3.1.7.

Let E be a Riesz space. Then a topology τ on E is said locally convex solid if τ
is a (possibly non-Hausdorff) locally convex linear topology for E, and if the lattice
operations are uniformly continuous with respect to it. Then the space (E, τ) is called
a locally convex solid Riesz space. Examples of locally convex solid Riesz spaces are
given by Normed Riesz spaces. We refer to [AB99, Section 8.13] for more details about
locally convex solid Riesz spaces.

Corollary 3.1.11. Let E be a Riesz space, and suppose that G has a representation on E by
positive linear automorphisms. Then for every positive vector d ∈ E, the pair ((E, d), τ(pd)) is
a locally convex solid Riesz space.

Proof. The corollary is just a consequence of the fact that the topology generated by a
Riesz seminorm is always locally convex solid ( [AB99, Theorem 8.46]).

Remark 3.1.12. Note that for every positive vector d ∈ E, the Riesz seminorm pd is a
norm on (E, d) if and only if the topology τ(pd) is Hausdorff. Indeed, the topology
τ(pd) is Hausdorff if and only if the map

dpd : (E, d)× (E, d) −→ R+, (v, w) 7−→ dpd(v, w) = pd(v− w)

is a metric if and only if pd is a norm. Therefore, if pd is a norm, then the topology τ(pd)
is Hausdorff. Conversely, suppose that τ(pd) is Hausdorff, then dpd is a metric. Hence,
if pd(v) = 0, then dpd(v, 0) = pd(v) = 0. This implies that v = 0, and so the map pd is a
norm.

Bearing in mind this last remark and because working with Hausdorff topologies
is always pleasant, we are interested in understanding when the map pd is a norm.
This happens when the ordered vector space E is supposed to be a normed Riesz space.
Thereby, we ask something more from the representation of G on E.

Whenever we speak about a representation of a group G on a normed Riesz space E,
we always mean a representation of G on E by positive linear isometries, i.e., a group
homomorphism π : G −→ IsoL(E)+, where

IsoL(E)+ = {T : E −→ E : T is a positive linear isometry} .

Be aware that some author asks that an isometry is only an affine operator which pre-
serves the distance. For us, an isometry is also surjective.
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Remark 3.1.13. Suppose that a topological group G acts by positive linear automor-
phisms on a Riesz space E. Then for each order-preserving norm || · ||ub defined on E
for which the action of G on (E, || · ||ub) is uniformly bounded, i.e., there is M > 0 such
that supg∈G ||gv||ub < M for every v ∈ E, there is an order-preserving norm || · ||is on E
for which the action of G on (E, || · ||is) is isometric. Indeed, it suffices to define a new
norm as

|| · ||is := sup
g∈G
||g · ||ub.

Then || · ||is is order-preserving and equivalent to || · ||ub as

|| · ||ub ≤ || · ||is ≤ M|| · ||ub,

where M > 0 is the uniformly bounded constant. Moreover, G acts by positive linear
isometries on (E, || · ||is).

For our purpose, asking that the action of G on E is uniformly bounded would be
enough. Anyway, there is no loss of generality by considering only isometric represen-
tations.

Proposition 3.1.14. Let (E, || · ||) be a normed Riesz space and suppose that G has a represen-
tation on E by positive linear isometries. Let d ∈ E be a non-zero positive vector. Then

a) the inequality ||v|| ≤ pd(v)||d|| holds for every v ∈ (E, d) ;

b) for every v, w ∈ (E, d) such that v is G-dominated by w and w ≥ 0, we have that

pd(v) ≤ pw(v)pd(w).

Proof. We start showing point a). Let ε > 0 and take v ∈ (E, d). Then there are
g1, ..., gn ∈ G, t1, ..., tn ∈ R+ such that |v| ≤ ∑n

j=1 tjgjd and ∑n
j=1 tj ≤ pd(v) + ε

||d|| .
Because the norm || · || is monotone we have that

||v|| ≤
n

∑
j=1

tj||gjd|| ≤
n

∑
j=1

tj||d|| ≤ pd(v)||d||+ ε.

As ε is arbitrary we are done.
Let’s prove point b) . Let ε > 0 be arbitrary and let v, w ∈ (E, d) as in the hypothesis.

Then there are t1, ..., tn, c1, ..., cm ∈ R+ and g1, ..., gn, h1, ..., hm ∈ G such that

|v| ≤
n

∑
j=1

tjgjw, |w| ≤
m

∑
k=1

ckhkd,
n

∑
j=1

tj ≤ pw(v) + ε and
m

∑
k=1

ck ≤ pd(w) + ε.

Thus,

|v| ≤
n

∑
j=1

tjgjw ≤
n

∑
j=1

tjgj

m

∑
k=1

ckhkd =
n

∑
j=1

tj

m

∑
k=1

ckgjhkd.
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Taking the pd-value of this last inequality, we conclude that

pd(v) ≤
n

∑
j=1

tj

m

∑
k=1

ck ≤
n

∑
j=1

tj (pd(w) + ε) ≤ (pw(v) + ε) (pd(w) + ε)

= pw(v)pd(w) + εpw(v) + εpd(w) + ε2.

As ε was chosen arbitrarily, we are done.

Corollary 3.1.15. The pair ((E, d), pd) is a normed Riesz space for every normed Riesz space
E and every non-zero positive vector d ∈ E. Moreover, the group G acts by positive linear
isometries on it.

Proof. It suffices to show that pd(v) = 0 implies v = 0 for every v ∈ (E, d). But if
pd(v) = 0, then ||v|| = 0 by point a) of Proposition 3.1.14. Therefore, v = 0 as || · || is a
norm.

The action of G on (E, d) is by isometries only because the pd-norm is G-invariant by
Proposition 3.1.7.

Example 3.1.16. (Examples of dominated normed Riesz spaces)

1) Suppose that a group G has an action γ on some uniform space (X, U ) such that
the Banach lattice Cb

u(X, U ) is πγ-invariant. Then(
Cb

u((X, U ), 1X), p1X

)
=
(
Cb

u(X, U ), || · ||∞
)

.

2) Let G be a discrete group and consider the left-translation representation of G on
`1(G). Then (

`1(G, δe), pδe

)
= (c00(G), || · ||1)

Let (E, || · ||) be a normed Riesz space and suppose that a topological group G has
a representation by positive linear isometries on it. We know by point a) of Proposition
3.1.14 that the norm pd is stronger than the restriction of the norm || · || on the vec-
tor subspace (E, d). In general, the two norms are not equivalent as illustrated by the
following example.

Example 3.1.17. Let G = Z be the additive group of the integers and consider the space
c00(Z) = `∞(Z, δe). Take the sequence ( fn)n given by fn = 1

n ∑n
j=1 δn. Then ( fn)n con-

verges to the origin for the supremum norm but not for the pδe-norm. Indeed,

|| fn||∞ =
1
n

, while pδe( fn) = 1 for every n ∈ N.
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Scholium 3.1.18. It was natural to define dominated norms. In fact, there are a couple
of examples where they were already considered. One is the functional proof of the
existence of the Haar measure for every locally compact group ( [Bou63, Chap. VII]).
Here, dominating norms have been used on the vector space of compactly supported
continuous functions, not as norms but as sub-additive maps with nice properties. An-
other example is given by Minkowski functionals defined on principal ideals in order
complete Riesz spaces [AB99, Theorem 9.28].

3.2 Asymptotically dominated Banach lattices

For this section, we suppose that (E, || · ||) is a Banach lattice and that G acts on it by
positive linear isometries.

We recall that a sequence (tj)
∞
j=1 ⊂ R is called summable if ∑∞

j=1 tj < ∞ and absolute
summable if ∑∞

j=1 |tj| < ∞. Note that given a positive vector v ∈ E, a positive summable
sequence (tj)

∞
j=1 ⊂ R and a sequence (gj)

∞
j=1 ⊂ G, the sequence (un)∞

n=1 ⊂ E given
by un = ∑n

j=1 tjgjv converges with respect to the norm || · || because the infinite serie
∑∞

j=1 tjgjv converges absolutely in the Banach space E. In fact,

∞

∑
j=1
||tjgjv|| =

∞

∑
j=1

tj||gjv|| = ||v||
∞

∑
j=1

tj,

which implies that limn un ∈ E by [M98, Theorem 1.3.9]. With an abuse of notation,
we write ∑∞

j=1 tjgjd to mean the limit of the partial sum sequence un = ∑n
j=1 tjgjd with

respect to the norm || · ||.

Definition 3.2.1. A vector d ∈ E asymptotically G-dominates another vector v ∈ E,
or v is asymptotically G-dominated by d, if there is a summable positive sequence
(tj)

∞
j=1 ⊂ R and a sequence (gj)

∞
j=1 ⊂ G such that |v| ≤ ∑∞

j=1 tjgjd. A Banach lattice
E is asymptotically G-dominated by d if for every v ∈ E the vector d asymptotically
G-dominates v. In this case, d is called the asymptotically G-dominating element of E.

Given a positive vector d ∈ E, we write (E, d)∞ for the set of all vectors of E which
are asymptotically G-dominated by d. Clearly,

(E, d)∞ =

{
v ∈ E : |v| ≤

∞

∑
j=1

tjgjd for a summable (tj)
∞
j=1 ⊂ R+ and (gj)

∞
j=1 ⊂ G

}
.

Example 3.2.2. Let E be a Banach lattice and let G be a topological group. Suppose that
G has a representation π on E by positive linear isometries.

1) The inclusions (E, d) ⊂ (E, d)∞ ⊂ E hold for every positive vector d ∈ E.
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2) If E admits an order unit u, then (E, u) = (E, u)∞ = E.

3) Suppose that E = `∞(G) and that π = πL the left-translation representation of G.
Let δe be the function which is 1 at the identity element e of G and zero everywhere
else. Then (`∞(G), δe)∞ = `1(G).

Notation 3.2.3. Let F(X) be a real Banach lattice function space on a set X and let f be a
positive element of F(X). We write F(X, f )∞ instead of (F(X), f )∞.

Proposition 3.2.4. The set (E, d)∞ is an ideal of E for every positive vector d ∈ E. In particular,
(E, d)∞ is Riesz subspace of E.

Proof. We only need to show that (E, d)∞ is a vector subspace of E because its defi-
nition implies that it is closed by taking absolute value implying that it is an ideal in
E. Let v, w ∈ (E, d)∞, then there are summable sequences (tj)

∞
j=1, (ai)

∞
i=1 ⊂ R+ and

(gj)
∞
j=1, (hi)

∞
i=1 ⊂ G such that |v| ≤ ∑∞

j=1 tjgjd and |w| ≤ ∑∞
i=1 aihid. Therefore,

|λv| ≤ |λ|
∞

∑
j=1

tjgjd =
∞

∑
j=1
|λ|tjgjd for every λ ∈ R.

Note that the last equality is possible thanks to [M98, Proposition 1.3.7 (d)]. We can
conclude that λv ∈ (E, d)∞ as the sequence (|λ|tj)

∞
j=1 ⊂ R+ is summable. Moreover,

|v + w| ≤ |v|+ |w| ≤
∞

∑
j=1

tjgjd +
∞

∑
i=1

aihid ≤
∞

∑
k=1

bkxkd,

where the bk’s and the xk’s are given by

bk =

{
t k

2
if k is even

a k−1
2

otherwise
and xk =

{
g k

2
if k is even

h k−1
2

otherwise.

As the sum of two positive converging series converges, we have that v + w ∈ (E, d)∞.

Definition 3.2.5. For every positive vector d ∈ E, we define the possibly infinite value

p∞
d (v) = inf

{
∞

∑
j=1

tj : |v| ≤
∞

∑
j=1

tjgjd for a summable (tj)
∞
j=1 ⊂ R+ and (gj)

∞
j=1 ⊂ G

}
,

where v ∈ E.

We can see that p∞
d (v) < ∞ if and only if v ∈ (E, d)∞, and hence

(E, d)∞ = {v ∈ E : p∞
d (v) < ∞} .
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Proposition 3.2.6. Let d ∈ E be a non-zero positive vector. Then

a) the map

p∞
d : (E, d)∞ −→ R, v 7−→ p∞

d (v)

is absolutely homogeneous, sub-additive, G-invariant and monotone;

b) the inequality ||v|| ≤ p∞
d (v)||d|| holds for every v ∈ (E, d)∞;

c) for every v, w ∈ (E, d)∞ such that v is asymptotically G-dominated by w and w ≥ 0, we
have that

p∞
d (v) ≤ p∞

w (v)p∞
d (w).

Proof. The proof of point a) is similar to the one of Proposition 3.1.7. Therefore, we don’t
repeat it here.

To prove points b) and c), we employ the same proof of Proposition 3.1.14. For b),
we use in addition [M98, Proposition 1.3.7 (e)].

In particular,
(
(E, d)∞, p∞

d
)

is a normed Riesz space for every Banach lattice E and
every non-zero positive vector d ∈ E. Moreover for every v ∈ (E, d), the following
inequalities hold:

||v||
||d|| ≤ p∞

d (v) ≤ pd(v).

Example 3.2.7. (Examples of asymptotically dominated normed Riesz spaces)

1) Suppose that a group G has an action γ on some uniform space (X, U ) such that
the Banach lattice Cb

u(X, U ) is πγ-invariant. Then(
Cb

u((X, U ), 1X)∞, p∞
1X

)
=
(
Cb

u(X, U ), || · ||∞
)

.

2) Let G be a discrete group and consider the left-translation representation of G on
`1(G). Then (

`1(G, δe)∞, p∞
δe

)
=
(
`1(G), || · ||1

)
.

The remainder of this section is devoted to showing that the spaces of the form(
(E, d)∞, p∞

d
)
, for E a Banach lattice and d ∈ E a non-zero positive vector, are also Ba-

nach lattices.
We need first to solve some technical detail.
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Lemma 3.2.8. Let (V, || · ||V) and (E, || · ||E) be two normed vector spaces such that V ⊂ E
and || · ||E ≤ || · ||V on V. Suppose that there is a sequence (vn)n in V which converges to an
element v1 ∈ V in || · ||V-norm and to an element v2 ∈ E in || · ||E-norm. Then v1 = v2.

Proof. Let ε > 0. Then there are n1, n2 ∈ N such that ||v1 − vn||V < ε
2 for every n > n1

and ||v2 − vn||E < ε
2 for every n > n2. Pick N = max(n1, n2) and compute that

||v1 − v2||E = ||v1 − vN + vN − v2||E
≤ ||v1 − vN||E + ||vN − v2||E
≤ ||v1 − vN||V + ||vN − v2||E
<

ε

2
+

ε

2
= ε.

As ε was chosen arbitrarily, v1 = v2.

Lemma 3.2.9. Let (E, || · ||) be a Banach lattice and let (xk)k and (yk)k be sequences in E.
Suppose that the two sequences (xk)k and (yk)k are absolutely summable, i.e.,

lim
n

n

∑
k=1
||xk|| < +∞ and lim

n

n

∑
k=1
||yk|| < +∞,

and that for every k ∈ N the inequality xk ≤ yk holds. Then

lim
n

n

∑
k=1

xk ≤ lim
n

n

∑
k=1

yk,

where the limit is taken with respect to the || · ||-norm.

Proof. Consider the sequence (zk)k in E given by zk = yk − xk. By hypothesis (zk)k is
positive, which means that it lives in the positive cone of E. Now,

n

∑
k=1
||zk|| ≤

n

∑
k=1

(
||yk||+ ||xk||

)
=

n

∑
k=1
||yk||+

n

∑
k=1
||xk|| for every n ∈ N.

Taking the limit on both sides, we have that limn ∑n
k ||zk|| < ∞. As E is a Banach space,

the limit limn ∑n
k zk with respect to the || · ||-norm exists and it is positive as the positive

cone of a Banach lattice is always closed, see [AB99, Theorem 8.43 (1)]. This implies that

lim
n

n

∑
k=1

xk ≤ lim
n

n

∑
k=1

yk,

where the two limits are taken with respect to the || · ||-norm.
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For a normed vector space (E, || · ||), write Ê for the completion of E with respect to
the uniformity given by the norm || · || and |̂| · || for the completed norm of Ê. If (vn)n
is a sequence in E, write || · || − limn vn to denote the limit of (vn)n with respect to the
|| · ||-norm.

Recall that the completion (Ê, |̂| · ||) of a normed Riesz space (E, || · ||) is a Banach
lattice (Lemma 2.4.7) and that the lattice operations on a normed Riesz space are uni-
formly continuous, since the topology generated by the norm of a normed Riesz space
is locally convex solid ( [AB99, Theorem 8.41]).

Lemma 3.2.10. Let (E, || · ||E) be a Banach lattice and (V, || · ||V) be a normed Riesz space. Let

ι : (V, || · ||V) −→ (E, || · ||E)

be an injective continuous Riesz homomorphism. Then the (unique) extension

ι̂ : (V̂, |̂| · ||V) −→ (E, || · ||E)

of ι is an injective continuous Riesz homomorphism.

Proof. We start showing that ι̂ is a Riesz homomorphism, i.e., ι̂ (|v̂|) = | ι̂ (v̂)| for every
v̂ ∈ V̂. Let v̂ ∈ V̂ and let (vn)n be a sequence in V which converges to v̂ in |̂| · ||V-norm.
Then the sequence (ι̂ (vn))n converges to ι̂ (v̂) in || · ||E-norm. Thus,

ι̂ (|v̂|) = ι̂
(∣∣∣|̂| · ||V − lim

n
vn

∣∣∣) = ι̂
(
|̂| · ||V − lim

n
|vn|

)
= || · ||E − lim

n
ι̂ (|vn|) = || · ||E − lim

n
ι(|vn|)

= || · ||E − lim
n
|ι(vn)| =

∣∣∣|| · ||E − lim
n

ι(vn)
∣∣∣

=
∣∣∣|| · ||E − lim

n
ι̂ (vn)

∣∣∣ = ∣∣∣ ι̂
(
|̂| · ||V − lim

n
vn

)∣∣∣ = | ι̂ (v̂)|.
It just remains to prove that ι̂ is injective. Suppose it is not the case. Then there is a non-
zero vector v̂ ∈ V̂ such that ι̂ (v̂) = 0. We can suppose that v̂ is positive as ι̂ is a Riesz
homomorphism. By [L67, Theorem 60.4], there is a positive increasing sequence (vn)n

in V which converges to v̂ in |̂| · ||V-norm. This means that there is n0 ∈ N such that
vn0 6= 0. But now 0 < vn0 ≤ v̂, and so ι̂ (vn0) = ι(vn0) = 0 which is a contradiction.

This last lemma is no longer true if we drop the monotonocity of the norm || · ||V .

Example 3.2.11. Let (E, || · ||) be an infinite-dimensional Banach space and let T be a
discontinuous linear functional on it. Define the map

||v||T = ||v||+ |T(v)| for v ∈ E.
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Chapter 3. Dominated Normed Lattices

Then || · ||T is a norm on E, which is strictly finer than the norm || · ||. Therefore, the
identity map

Id : (E, || · ||′) −→ (E, || · ||)

is an injective continuous linear operator. We claim that the extension

Îd : (Ê, |̂| · ||T) −→ (E, || · ||)

is not injective. Indeed, suppose that Îd is injective. Then by the Closed Graph Theorem
( [AB99, Theorem 5.20]) the inverse of Îd has to be continuous. But this is not possible.

Corollary 3.2.12. Let d ∈ E be a non-zero positive vector. Then (̂E, d)∞ can be realized as a
Riesz subspace of E.

Proof. Consider the natural inclusion

ι : (E, d)∞ −→ E, v 7−→ ι(v) = v.

By Lemma 3.2.10, we have that

ι̂ : (̂E, d)∞ −→ E, v 7−→ ι̂(v)

is an injective Riesz homomorphism. Therefore, we can realize (̂E, d)∞ as a Riesz sub-
space of E.

Remark 3.2.13. Let (E, || · ||) be a Banach lattice and let d ∈ E be a non-zero positive
vector. Then Corollary 3.2.12 and Lemma 3.2.8 imply that

p̂∞
d − lim

n∈N

n

∑
j=1

tjgjd = || · || − lim
n∈N

n

∑
j=1

tjgjd

for every absolutely convergent sequence (tj)j ⊂ R+ and every sequence (gj)j ⊂ G.
This is because we can apply Lemma 3.2.8 to the sequence (vn)n in (E, d)∞ given by
vn = ∑n

j=1 tjgjd.

We are finally ready to show the norm completeness of the space
(
(E, d)∞, p∞

d
)
.

Theorem 3.2.14. The pair
(
(E, d)∞, p∞

d
)

is a Banach lattice for every Banach lattice E and
every non-zero positive vector d ∈ E. Moreover, the group G acts by positive linear isometries
on it.

Proof. We have to show that, for every sequence (xk)k in (E, d)∞ such that limn ∑n
k p∞

d (xk) <
∞, the limit limn ∑n

k xk with respect to the p∞
d -norm exists in (E, d)∞.
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First of all, note that ∑n
k=1 p̂∞

d (xk) = ∑n
k=1 p∞

d (xk) for every n ∈ N. Thus, we have

that limn ∑n
k p̂∞

d (xk) < ∞ which means that the limit ` = limn ∑n
k xk exists in (̂E, d)∞ for

the p̂∞
d -norm as the space ((̂E, d)∞, p̂∞

d ) is Banach.
We know that ` ∈ E by Corollary 3.2.12. We claim that ` is actually in (E, d)∞.

Therefore, we have to show that there are sequences (tj)j ⊂ R+ and (gj)j ⊂ G such that

|`| ≤
∞

∑
j=1

tjgjd = || · || − lim
n

n

∑
j=1

tjgjd.

For every k ∈ N there are (t(k)j )j ⊂ R+ and (g(k)j ) ⊂ G such that

|xk| ≤
∞

∑
j=1

t(k)j g(k)j d and
∞

∑
j=1

t(k)j ≤ p∞
d (xk) + 2−k.

Set yk = ∑∞
j t(k)j g(k)j xk. Then |xk| ≤ yk for every k ∈ N and

N

∑
k=1

p̂∞
d (yk) ≤

N

∑
k=1

∞

∑
j=1

t(k)j ≤
N

∑
k=1

p∞
d (xk) + 2−k

for every N ∈ N. Taking the limit on both sides of this last inequality, we have that

lim
N

N

∑
k=1

p̂∞
d (yk) < ∞.

Therefore by Lemma 3.2.9,

|`| ≤
∞

∑
k=1
|xk| ≤

∞

∑
k=1

∞

∑
j=1

t(k)j g(k)j d,

where all the limits are taken with respect to the p̂∞
d -norm. The last double sum con-

verges also in || · ||-norm to the same limit, see Remark 3.2.13. This implies that ` ∈
(E, d)∞. Now, it is easy to show that the sequence (vn)n given by vn = ∑n

k xk converges
to ` in p∞

d -norm. Indeed, for every ε > 0 there is n0 ∈ N such that p̂∞
d (∑n

k xk − `) < ε
for every n > n0 and so

p∞
d (vn − `) = p∞

d

(
n

∑
k=1

xk − `

)
= p̂∞

d

(
n

∑
k=1

xk − `

)
< ε

for every n > n0.
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3.3 Relation between dominated and asymptotically dom-
inated spaces

Let’s shift our attention to the relationship between the spaces (E, d) and (E, d)∞. By
definition, the inclusion (E, d) ⊂ (E, d)∞ holds for every positive d ∈ E. But it gets
better. In fact, the two Riesz spaces have a topological friendship.

We recall that G is a topological group with a representation by positive linear isome-
tries on a Banach lattice E.

Proposition 3.3.1. Let d ∈ E be a non-zero positive vector. Then (E, d) is dense in (E, d)∞
with respect to the p∞

d -norm.

To prove this last proposition, we need the following lemma, which is only a lattice
version of the famous and standard result [AB99, Corollary 5.81]. The latter states that
a vector subspace of a locally convex vector space is not dense exactly when there is a
non-zero continuous linear functional that vanishes on it. We require an ideal version of
it.

Lemma 3.3.2 (Non-density of ideals). Let E be a Banach lattice and let V ⊂ E be an ideal.
Then V is not dense in E if and only if there is a non-zero positive functional on E which vanishes
on V.

Proof. Suppose that there is a non-zero positive functional ψ vanishing on V. In partic-
ular, ψ is continuous by Theorem 2.4.11. Therefore, we can apply [AB99, Corollary 5.81]
to conclude that V is not dense in E.

Suppose now that V is not dense in E. Then there is a non-zero continuous functional
ψ on E which vanishes on V by [AB99, Corollary 5.81]. We claim that |ψ| is the functional
we are searching. Clearly, |ψ| is a non-zero positive functional. We have only to show
that it is zero on V. Let |ψ| = ψ+ + ψ−, where ψ+ is the positive part of ψ and ψ− is the
negative part of ψ. We want to prove that the equality ψ+(v) = ψ−(v) = 0 holds for
every positive vector v ∈ V. Actually, it suffices to prove that ψ+(v) = 0. By Theorem
2.3.11,

ψ+(v) = sup {ψ(w) : w ∈ E and 0 ≤ w ≤ v} = sup {ψ(w) : w ∈ V and 0 ≤ w ≤ v} ,

where the second equality is possible thanks to the fact that V is an ideal in E. As ψ+ is
continuous, we can conclude that ψ+ vanishes on V.

This yields:

Proof of Proposition 3.3.1. Let d ∈ E be a non-zero positive vector and suppose that (E, d)
is not dense in (E, d)∞ for the p∞

d -norm. By Lemma 3.3.2, there exists a non-zero positive
functional ψ which vanishes on (E, d). As ψ is non-zero, there is a non-zero positive
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Section 3.3. Relation between dominated and asymptotically dominated spaces

vector v ∈ (E, d)∞ such that ψ(v) > 0. Now let (tj)
∞
j=1 ⊂ R+ be a summable sequence

and (gj)
∞
j=1 ⊂ G such that v ≤ ∑∞

j=1 tjgjd, and compute that

0 < ψ(v) ≤ ψ

(
∞

∑
j=1

tjgjd

)
=

∞

∑
j=1

tjψ(gjd) = 0,

where the second-to-last equality is true thanks to [M98, Proposition 1.3.7 (d)]. But this
is impossible. Thus, (E, d) is indeed dense in (E, d)∞ with respect to the p∞

d -norm.

Remark 3.3.3. Let (E, || · ||) be a Banach lattice and suppose that it is asymptotically G-
dominated by some positive element d ∈ E. Then E = (E, d)∞. By Theorem 3.2.14, we
know that

(
(E, d)∞, p∞

d
)

is a Banach lattice, and hence (E, p∞
d ) is also a Banach lattice.

Now, two monotone norms that turn a Riesz space into a Banach lattice are equiva-
lent by Corollary 2.4.13. This means that the original norm || · || of E is equivalent
to the p∞

d -norm. In particular, we can always suppose that a norm on an asymptot-
ically G-dominated Banach lattice E is of the form p∞

d , where d is the asymptotically
G-dominating element of E.

Bearing in mind this last remark, we can formulate a converse of Proposition 3.3.1.

Proposition 3.3.4. Let (E, || · ||) be a Banach lattice and suppose that G acts on it by positive
linear isometries. Suppose in addition that E is asymptotically G-dominated by a positive ele-
ment d ∈ E. Then there is a Riesz subspace D of E which is G-dominated by d and || · ||-dense
in E.

Proof. As discussed in Remark 3.3.3, the || · ||-norm is equivalent to the p∞
d -norm on E.

Set D = (E, d). Then D is a Riesz subspace of E which is G-dominated by d and p∞
d -

norm dense in E by Proposition 3.3.1. As the p∞
d -norm is equivalent to the || · ||-norm,

D is also || · ||-norm dense in E concluding the proof.

With the next theorem, we want to clarify once and for all the relationship between
pd and p∞

d . As before, write (̂E, d) for the completion of (E, d) with respect to the uni-
formity given by the pd-norm and p̂d for the completed norm.

Theorem 3.3.5. Let d ∈ E be a non-zero positive vector. Then(
(̂E, d), p̂d

)
= ((E, d)∞, p∞

d ) .

Proof. Consider the natural inclusion

ι : (E, d) −→ (E, d)∞, v 7−→ ι(v) = v.

Note that ι is uniformly continuous as p∞
d ≤ pd, and that it is an injective Riesz homo-

morphism. Therefore by Lemma 3.2.10, the extension

ι̂ : (̂E, d) −→ (E, d)∞, v 7−→ ι̂(v) = v
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Chapter 3. Dominated Normed Lattices

is an injective Riesz homomorphism.
Now, we want to show that ι̂ is surjective. To this aim, we start proving that for every

element v∞ ∈ (E, d)∞ of the form v∞ = ∑∞
j=1 tjgjd, where (tj)j ⊂ R+ is an absolutely

summable sequence and (gj)j ⊂ G, there is v̂ ∈ (̂E, d) such that ι̂ (v̂) = v∞. So, let v∞
such a vector. Then, for every n ∈ N, define the vector Sn(v∞) = ∑n

j=1 tjgjd ∈ (E, d). We
claim that the sequence (Sn(v∞))n converges to v∞ in p∞

d -norm. In fact, for every ε > 0
there is n0 ∈ N such that ∑∞

j=n0
|tj| < ε. This implies that

p∞
d (v∞ − Sn(v∞)) ≤

∞

∑
j=n
|tj| < ε,

for every n > n0. But at the same time, (Sn(v∞))n is also a Cauchy sequence with
respect to the pd-norm. Indeed, let ε > 0 and m ∈ N, then there is n0 ∈ N such that
∑∞

j=n0
|tj| < ε, which implies that

pd(Sn+m(v∞)− Sn(v∞)) ≤
n+m

∑
j=n0

|tj| ≤
∞

∑
j=n0

|tj| < ε,

for every n > n0. Consequently, there is v̂ ∈ (̂E, d) such that limn Sn(v∞) = v̂ in p̂d-
norm. Hence, we have that

ι̂ (v̂) = ι̂ ( p̂d − lim
n

Sn(v∞)) = p∞
d − lim

n
ι̂ (Sn(v∞)) = p∞

d − lim
n

Sn(v∞) = v∞.

Moreover, v∞ = v̂ by Lemma 3.2.8.
Let’s now take an arbitrary v ∈ (E, d)∞, and we show that it lies in the image of ι̂. By

Proposition 3.3.1, there is a sequence (vn)n ⊂ (E, d) which converges to v in p∞
d -norm.

We claim that (vn)n is a Cauchy sequence for the pd-norm. Let ε > 0 and m ∈ N, then
there is n0 ∈ N such that p∞

d (vn+m− vn) < ε for every n > n0. This means that there are
(tj)j ⊂ R+ a summable sequence and (gj)j ⊂ G such that |vn+m − vn| ≤ ∑∞

j=1 tjgjd and

∑∞
j=1 tj < ε. Define vε = ∑∞

j=1 tjgjd. As seen before, vε ∈ (̂E, d) and ι̂ (vε) = vε. Now,
ι̂ is a Riesz homomorphism which is injective and surjective on its image. By Theorem
2.3.23, ( ι̂ )−1 is positive. Therefore, |vn+m − vn| ≤ vε in (̂E, d) and, consequently,

pd(vn+m − vn) = p̂d(vn+m − vn) ≤ p̂d(vε) ≤
∞

∑
j=1

tj < ε,

for every n > n0. This shows that (vn)n is a Cauchy sequence for the pd-norm. Thus,
there is ŵ ∈ (̂E, d) such that limn vn = ŵ in p̂d-norm. We can finally compute that

ι̂ (ŵ) = ι̂ ( p̂d − lim
n

vn) = p∞
d − lim

n
ι̂ (vn) = p∞

d − lim
n

vn = v.
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As before, v = ŵ by Lemma 3.2.8.
Finally, we show that p̂d = p∞

d . We already know that p∞
d ≤ p̂d because of the fact

that p∞
d ≤ pd. For the inverse inequality, take v ∈ (E, d)∞ and let ε > 0 arbitrary. Then

there are (tj)j ⊂ R+ a summable sequence and (gj)j ⊂ G such that |v| ≤ ∑∞
j=1 tjgjd and

∑∞
j=1 tj ≤ p∞

d (v) + ε. Set v∞ = ∑∞
j=1 tjgjd and compute that

p̂d(v) ≤ p̂d(v∞) = lim
n

pd(Sn(v∞)) ≤ lim
n

n

∑
j=1

tj =
∞

∑
j=1

tj ≤ p∞
d (v) + ε.

As ε was chosen arbitrarily, p̂d ≤ p∞
d .

3.4 Continuous vectors for dominating norms

Let π be a representation of a topological group G on a locally convex vector space E by
positive linear automorphisms. Then the representation π, or the action of the group G
on E, is said orbitally continuous if for every v ∈ E the map

G −→ E, g 7−→ π(g)v

is continuous. The representation π, or the action of the group G on E, is said jointly
continuous if the map

G× E −→ E, (g, v) 7−→ π(g)v

is continuous w.r.t. the product topology on G× E.

In general, the two continuity notions are different, see [G17, Example C.2.6]. How-
ever, they coincide for a topological group acting by isometries on a normed space. In
fact:

Lemma 3.4.1. Suppose that G has a representation π on a normed space (E, || · ||) by positive
linear isometries. Then the representation π is jointly continuous if and only if it is orbitally
continuous.

Proof. We only have to show that orbital continuity implies joint continuity. Therefore,
let (gα)α be a net in G converging to e ∈ G and let (vn)n be a sequence in E converging
to some v ∈ E. Let ε > 0. Then there is an α0 and a n0 ∈ N such that

||vn − v|| < ε

2
and ||π(gα)v− v|| < ε

2
for every α � α0 and n ≥ n0.

Therefore, we have the estimation

||π(gα)vn − v|| ≤ ||π(gα)vn − π(gα)v||+ ||π(gα)v− v||
= ||vn − v||+ ||π(gα)v− v||

<
ε

2
+

ε

2
= ε.

This show that π(gα)vn converges to v proving the joint continuity.
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Consequently, we only say that G acts continuously on E or that the representation
π of G on E is continuous.

It is a difficult task to understand if the action of G on (E, d) is orbitally, or jointly,
continuous for the locally convex solid topology τ(pd). For this reason, we only con-
sider the case where E is a normed Riesz space.

Before continuing, there are two details to point out. Suppose we have a normed
Riesz space E, a topological group G and a representation π of G on E by positive linear
isometries. First, note that if we want to say something about the continuous vectors of
the pd-norm, we have to suppose that the representation π is continuous for the norm
|| · || because of point a) of Proposition 3.1.14. Secondly, note that if v ∈ E is a continuous
vector for a pw-norm, where w ≥ 0 and w G-dominates v, then v is also a continuous
vector for the pd-norm, where d ≥ 0 and d G-dominates w. This last remark is explained
more precisely in the next proposition.

Proposition 3.4.2. Let π be a representation of a topological group G on a normed Riesz space
E by positive linear isometries and let d be a non-zero positive vector of E. Let v ∈ (E, d) and
suppose that there is a non-zero positive w ∈ (E, d) such that v ∈ (E, w) and such that the map

G −→ (E, w), g 7−→ π(g)v is pw-continuous.

Then the map

G −→ (E, d), g 7−→ π(g)v is pd-continuous.

Proof. Let (gα)α be a net in G which converges to the identity element e ∈ G. Then the
estimation

pd(gαv− v) ≤ pw(gαv− v)pd(w)

holds for every α by point b) of Proposition 3.1.14. This shows that the net (gαv)α con-
verges to v in pd-norm as v is a continuous vector for the pw-norm.

Unfortunately, this is the best we can say for general continuous representation of G
on a normed Riesz space E. From now on, we focus on a specific class of normed Riesz
spaces and a specific representation of G.

Suppose to be in the following setting. Let G be a topological group that acts on a set
X via the action γ. Then we consider real Riesz function spaces of bounded functions
Fb(X) on X which are πγ-invariant and such that the representation πγ of G on Fb(X)
is continuous with respect to the supremum norm.

It was not possible to show that for every non-zero positive function f ∈ Fb(X), the
restriction of πγ to the subspace Fb(X, f ) is p f -continuous. Nevertheless, this is true for
a particular set of functions, precisely for those which dominate their support.
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Definition 3.4.3. A non-zero positive function f ∈ Fb(X) is said to be support-dominating
if there are g1, ..., gn ∈ G such that 1supp( f ) ≤ ∑n

j=1 gj f .

In general 1supp( f ) /∈ Fb(X). This depends on the space on which we are working and
on the function f . For example, take G = R together with its natural locally compact
topology and consider the left-translation representation of G on Fb(G) = Cb(G). Then
every continuous compactly supported function f on G is support-dominating but the
indicator function 1supp( f ) /∈ Cb(G).

Lemma 3.4.4. Let f ∈ Fb(X) be a support-dominating function. Then the action of G on
Fb(X, f ) is orbitally continuous with respect to the p f -norm.

Proof. Fix φ ∈ Fb(X, f ) and let (gα)α ⊂ G be a net such that limα gα = e. We want to
show that limα p f (gαφ− φ) = 0. Let ε > 0 and note that

|gαφ− φ| ≤ ||gαφ− φ||∞
(

gα1supp(φ) + 1supp(φ)

)
for every α.

As f is support-dominating, there are g1, ..., gn ∈ G such that 1supp(φ) ≤ ∑n
j=1 gj f . Thus,

|gαφ− φ| ≤ ||gαφ− φ||∞

(
gα

n

∑
j=1

gj f +
n

∑
j=1

gj f

)
for every α.

As the representations of G on Fb(X) is continuous for the supremum norm, there is α0
such that ||gαφ− φ||∞ < ε

2n for every α � α0. We can conclude that

p f (|gαφ− φ|) ≤ ||gαφ− φ||∞ p f

(
gα

n

∑
j=1

gj f +
n

∑
j=1

gj f

)
≤ 2n||gαφ− φ||∞ < ε

for every α � α0.

3.4.A. The case of compactly supported functions. We focus on representations on the
set of compactly supported continuous functions. This case will be helpful later.

Let G be a topological group, and let X be a locally compact space X on which G
acts via the action γ. Suppose that the vector space C00(X) is πγ-invariant and that the
representation πγ is || · ||∞-continuous.

Recall that the action of G on X is called cocompact if there is a compact subset K of
X such that the image of K under the action of G covers X.

The following is a well-known lemma. We repeat the proof for the sake of complete-
ness.

Lemma 3.4.5. Let X be a locally compact topological space, and let K be a compact subset of X.
Then there are a relatively compact subset U ⊂ X and an open subset V ⊂ X such that

K ⊂ U ⊂ U ⊂ V.
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Proof. For every k ∈ K take a relatively compact neighborhood of it, say Uk. Therefore,
K ⊂ ⋃

k∈K Uk. As K is compact, there are k1, ..., kn ∈ K such that K ⊂ ⋃n
j=1 Ukj . Define

U =
⋃n

j=1 Ukj . Because every Ukj is relatively compact then so is U. As Hausdorff locally
compact spaces are normal, there exists an open set V ⊂ X such that U ⊂ V.

Proposition 3.4.6. Let G be a topological group and let X be a locally compact space. Suppose
that G acts on X. Then the following assertions are equivalent:

a) the action of G on X is cocompact;

b) the space C00(X) admits a support-dominating G-dominating element;

c) the space C00(X) admits a G-dominating element.

Proof. We show that a) implies b). Suppose that the action of G on X is cocompact.
Then there is K ⊂ X a compact set such that X =

⋃
g∈G gK. By Lemma 3.4.5, there are a

relatively compact subset U ⊂ X and an open subset V ⊂ X such that

K ⊂ U ⊂ U ⊂ V.

Now, we can use Uryshon Lemma ( [R86, Lemma 2.12]) to find a positive ψ ∈ C00(X)
such that ψ = 1 on U and ψ = 0 on X \ V. We claim that ψ is a support-dominating
G-dominating element of C00(X). Indeed, let φ ∈ C00(X) and let K′ = supp(φ). As the
action of G on X is cocompact, there are g1, ..., gn ∈ G such that

K′ ⊂
n⋃

j=1

gjK ⊂
n⋃

j=1

gjU.

This implies that

|φ| ≤ ||φ||∞1supp(φ) ≤
n

∑
j=1
||φ||∞1gjU

=
n

∑
j=1
||φ||∞gj1U ≤

n

∑
j=1
||φ||∞gjψ

which proves that ψ is a G-dominating element. The fact the ψ is also support-dominating
is a consequence of the case where φ = ψ in the previous calculation.

Point b) implies point c) directly.
It is left to prove that c) implies a). Therefore, suppose that C00(X) admits a G-

dominating element, say ψ, and we want to show that the action of G on X is cocompact.
To this aim, we have to prove that there is a compact set K ⊂ G such that for every x ∈ X
there is g ∈ G with x ∈ gK. Define K = supp(ψ). Let now take x ∈ X. Then there is
K′ ⊂ X a compact neighborhood of x as X is locally compact. By Urysohn lemma
there exists φ ∈ C00(X) such that supp(φ) ⊂ K′. So, there are g1, ..., gn ∈ G such that
|φ| ≤ ∑n

j=1 gjψ. But this implies that K′ ⊂ ⋃n
j=1 gjK showing that the action of G on X is

cocompact.
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Remark 3.4.7. Actually, what we showed in the previous proposition is that there is K
compact subset of X such that X =

⋃
g∈G gK if and only if there is a non-zero positive

ψ ∈ C00(X) such that X =
⋃

g∈G gsupp(ψ) if and only if C00(X) admits a G-dominating
element. Moreover, every G-dominating element of C00(X) is support-dominating.

With this remark in mind, we can state the following corollary.

Corollary 3.4.8. Let G a topological group that acts on a locally compact space X. If the action
of G on X is transitive, then every non-zero positive element of C00(X) is G-dominating and
support-dominating.

Proof. Fix a non-zero positive function ψ ∈ C00(X). If the action of G on X is transitive,
then X =

⋃
g∈G gsupp(ψ). Thus, ψ is a support-dominating G-dominating element by

Remark 3.4.7.

In particular, if a topological group G is acting transitively on a locally compact space
X, then

C00(X, φ) = C00(X, ψ) = C00(X) for every non-zero positive φ, ψ ∈ C00(X).

Moreover, the two norms pψ and pφ are equivalent.

Proposition 3.4.9. Let G be a topological group and suppose that it has a jointly continuous
action γ on a locally compact space X. Then the πγ representation of G on C00(X) is continuous
with respect to the supremum norm.

Proof. Suppose it is not the case. Then there are ε > 0, a non-zero ψ ∈ C00(X) and a net
(gα)α in G which converges to e ∈ G such that

||πγ(gα)ψ− ψ||∞ > ε for every α.

This means that there is a net (xα)α in X such that

|πγ(gα)ψ(xα)− ψ(xα)| > ε for every α.

As the net (xα)α lies in the compact set supp(ψ), there is a subnet (xβ)β converging to
some x ∈ supp(ψ). Therefore,

|πγ(gα)ψ(xβ)− ψ(xβ)| > ε for every α, β.

This implies that the net (g−1
α , xβ)α,β in G × X is not converging to x for the product

topology. However, this is a contradiction because the action of G on X is jointly con-
tinuous. Therefore, the πγ representation of G on C00(X) is continuous.

Proposition 3.4.10. Let G be a topological group and let X be a locally compact space. Suppose
that G has an action γ on X, which is jointly continuous and cocompact. Then the πγ represen-
tation of G on C00(X) is continuous with respect to the pψ-norm, where ψ is a G-dominating
element of C00(X).
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Proof. We can apply Lemma 3.4.4 because the πγ representation of G on C00(X) is con-
tinuous by Proposition 3.4.9 and because ψ is support-dominating by Remark 3.4.7.

Corollary 3.4.11. Let G be a topological group which has a transitive jointly continuous action
γ on a locally compact space X. Then the πγ representation of G on C00(X) is continuous for
the pψ-norm for every non-zero positive ψ ∈ C00(X).

Proof. The proof is a combination of Proposition 3.4.10 and of Corollary 3.4.8.

3.4.B. An application to nets. In general, convergence in || · ||∞-norm doesn’t imply
convergence in p f -norm as the pd-topology is stronger than the topology generated by
the supremum norm (see example 3.1.17). However, the two convergences coincide if
there are a few extra conditions.

Proposition 3.4.12. Let f ∈ Fb(X) be a non-zero positive support-dominating function and
let (φα)α by a net in Fb(X, f ) which converges in || · ||∞-norm to φ ∈ Fb(X, f ) and which
has decreasing supports, i.e., supp(φα) ⊃ supp(φα′) if α′ � α. Then (φα)α converges to φ in
p f -norm.

Proof. Let ε > 0 and fix an α0. Since f is a support-dominating function, there are
g1, ..., gn, y1, ..., ym ∈ G such that

1supp(φ) ≤
n

∑
j=1

gj f and 1supp(φα0 )
≤

m

∑
i=1

yi f .

Now the inequality

|φ− φα| ≤ ||φ− φα||∞
(

1supp(φ) + 1supp(φα)

)
≤ ||φ− φα||∞

(
n

∑
j=1

gj f +
m

∑
i=1

yi f

)

holds for every α � α0. Taking α′ such that ||φ− φα||∞ < ε
n+m and such that α′ � α0, we

can conclude that

p f (|φα − φ|) ≤ ||φ− φα||∞ p f

(
n

∑
j=1

gj f +
m

∑
i=1

yi f

)
< ε for every α � α′.
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Chapter 4

Positive Functionals on Dominated
Spaces

The chapter is entirely dedicated to the investigation of positive linear functionals on
dominated spaces. Here, dominated norms will play a central role in generating the
suitable topology to work with the interested functionals.

The chapter is divided into two parts that deal with two different functional aspects
of dominated Riesz spaces.

In the first part, we start characterizing the continuity and positivity of linear func-
tionals on dominated ordered vector spaces. After that, we introduce and study the
concept of normalized integral, a particular type of positive functional, which we will
use in each of the following chapters. Finally, we define the invariant normalized inte-
gral property, and we give the first examples of group representations that have it.

In the second one, we define the concept of translate property and then explore its
relationship with localized means and normalized integrals. In particular, we show that
some translate property is powerful enough to provide amenability, and we give some
first partial answers to Greenleaf’s question. However, these answers to Greenleaf’s
question cover the discrete case totally.

4.1 The invariant normalized integral property

Let G be a topological group together with a representation by positive linear automor-
phisms on an ordered vector space E.

4.1.A. Continuity of positive functionals. We recall that a functional ψ on an ordered
vector space E is said uniformly bounded on a set V ⊂ E if there is M > 0 such that
±ψ(v) ≤ M for every v ∈ V.
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Proposition 4.1.1. Let d ∈ E be a non-zero positive vector, and let ψ be a positive functional
defined on (E, d). Suppose that ψ is uniformly bounded on the set {gd : g ∈ G}. Then ψ is
continuous with respect to the τ(pd)-topology.

Proof. Let (vα)α be a net in (E, d) which converges to some v ∈ (E, d) for the τ(pd)-
topology. Then there is a net (εα)α in R converging to zero and there are tα

1 , ..., tα
nα
∈ R

and gα
1 , ..., gα

nα
∈ G such that

±(vα − v) ≤
nα

∑
j=1

tα
j gα

j d and
nα

∑
j=1

tα
j ≤ εα for every α.

Set M = sup {ψ(gd) : g ∈ G}. Then

±ψ(vα − v) ≤
nα

∑
j=1

tα
j ψ(gα

j d) ≤ M
nα

∑
j=1

tα
j ≤ Mεα for every α.

Taking the limit of this last inequality, we have that

lim
α
±ψ(vα − v) ≤ M lim

α
εα = 0.

This implies that the net (ψ(vα))α converges to ψ(v) showing the continuity of ψ.

We can sharper this last result for representations on normed Riesz spaces. The
following proposition is a generalization of the well-known result [R02, Proposition
1.1.2] for means.

Proposition 4.1.2. Let G be a topological group which has a representation on a normed Riesz
space E by positive linear isometries. Fix a non-zero positive vector d ∈ E, and let ψ be a linear
functional defined on (E, d). Then

a) if the functional ψ is positive and uniformly bounded on the set {gd : g ∈ G}, then ψ is
continuous for the pd-norm and

||ψ||op ≤ sup {ψ(gd) : g ∈ G} .

In particular, if ψ is constant on {gd : g ∈ G}, then ||ψ||op = ψ(d);

b) if the functional ψ is continuous for the pd-norm, then

sup {ψ(gd) : g ∈ G} ≤ ||ψ||op ≤ sup {|ψ|(gd) : g ∈ G} .

In particular, if ψ is positive, then ||ψ||op = sup {ψ(gd) : g ∈ G};

c) if the functional ψ is continuous for the pd-norm and positively constant on the set {gd :
g ∈ G}, then ψ is positive.
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Proof. We start by showing point a). The fact that ψ is continuous for the pd-norm is
given by Proposition 4.1.1. Let now v ∈ (E, d) and M = sup {ψ(gd) : g ∈ G}. Then for
every ε > 0 there are t1, ..., tn ∈ R+ and g1, ..., gn ∈ G such that

|v| ≤
n

∑
j=1

tjgjd and
n

∑
j=1

tj ≤ pd(v) +
ε

M
.

Therefore,

|ψ(v)| ≤ ψ(|v|) ≤ ψ

(
n

∑
j=1

tjgjd

)
=

n

∑
j=1

tjψ(gjd) ≤ M
n

∑
j=1

tj ≤ Mpd(v) + ε.

As ε and v were chosen arbitrarily, we can conclude that ||ψ||op ≤ sup {ψ(gd) : g ∈ G}.
If ψ is constant on the set {gd : g ∈ G}, then ψ(d) ≤ ||ψ||op as pd(d) = 1. This implies
that ||ψ||op = ψ(d).

Before proving point b), recall that if ψ is a continuous functional on a Riesz space,
then |ψ| is also a continuous functional with ||ψ||op = || |ψ| ||op by [AB99, Theorem 8.48].
Now the estimation

ψ(gd) ≤ |ψ(gd)| ≤ |ψ|(gd) ≤ ||ψ||op pd(gd) = ||ψ||op holds for every g ∈ G.

Hence, we can conclude that sup {ψ(gd) : g ∈ G} ≤ ||ψ||op. To prove the second in-
equality, set M = sup{|ψ|(gd) : g ∈ G}, and note that this value is finite as |ψ| is
also continuous. Let v ∈ (E, d). Then for every ε > 0 there are t1, ..., tn ∈ R+ and
g1, ..., gn ∈ G such that

|v| ≤
n

∑
j=1

tjgjd and
n

∑
j=1

tj ≤ pd(v) +
ε

M
.

Thus,

|ψ|(v) ≤ |ψ|(|v|) ≤ |ψ|
(

n

∑
j=1

tjgjd

)
=

n

∑
j=1

tj|ψ|(gjd) ≤ M
n

∑
j=1

tj ≤ Mpd(v) + ε.

As ε and v were chosen arbitrarily, we can conclude that ||ψ||op ≤ sup {|ψ|(gd) : g ∈ G}.
It is left to show point c). In order to find a contradiction, suppose that ψ is not

positive. Then there is a non-zero positive v ∈ (E, d) such that pd(v) = 1 and ψ(v) < 0.
Consequently, for every ε > 0 there are t1, ..., tn ∈ R+ and g1, ..., gn ∈ G such that

v ≤
n

∑
j=1

tjgjd and 1 ≤
n

∑
j=1

tj ≤ 1 +
ε

||ψ||op
.
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Now, ||ψ||op = ψ(gd) for every g ∈ G by point b). On the one hand,

ψ

(
n

∑
j=1

tjgjd− v

)
= ||ψ||op

n

∑
j=1

tj − ψ(v) > ||ψ||op.

On the other hand,

ψ

(
n

∑
j=1

tjgjd− v

)
≤ ||ψ||op pd

(
n

∑
j=1

tjgjd− v

)
≤ ||ψ||op pd

(
n

∑
j=1

tjgjd

)
≤ ||ψ||op + ε.

Therefore, ψ
(

∑n
j=1 tjgjd− v

)
≤ ||ψ||op, as ε was chosen arbitrarily. But this is the con-

tradiction searched. Hence, ψ is positive.

The inspiration to define pd-norms comes from these last two propositions. In fact,
such norms are the good ones to generate a topology for which positive functionals
bounded on the majorizing vector subspace spanR {gd : g ∈ G} are continuous. We
can think of these norms as a generalization of the order unit norm1 for G-dominated
ordered vector spaces.

The following example illustrates how these norms are essential to working with
positive functionals defined on dominated spaces.

Example 4.1.3. Let G = Z be the additive group of the integers endowed with the
discrete topology, and let mZ be a Haar measure for Z, i.e., the counting measure. If
the Riesz space c00(Z) is equipped with the pδ0-norm, where δ0 is the Dirac mass at
zero, then mZ is continuous thanks to point a) of Proposition 4.1.2. However, if c00(Z) is
equipped with the supremum norm, then this is not true anymore. Indeed, let ( fn)n ⊂
c00(Z) be the positive sequence given by fn = 1

n ∑n2

j=0 δj. Then

|| fn||∞ =
1
n

∣∣∣∣∣
∣∣∣∣∣ n2

∑
j=0

δj

∣∣∣∣∣
∣∣∣∣∣
∞

=
1
n

for every n ∈ N. Hence, ( fn)n converges to zero in the || · ||∞-norm. Nevertheless,

mZ( fn) =
1
n

mZ

(
n2

∑
j=0

δj

)
=

1
n

n2

∑
j=0

mZ(δj) =
1
n

n2 = n,

for every n ∈ N.

1Let E be a normed Riesz space which admits an order unit u ∈ E. Then the order unit norm on E is
the norm || · ||u defined by ||v||u = inf{α : v ≤ αu}.
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4.1.B. Invariant normalized integrals. Let E be an ordered vector space and suppose
that G has a representation π on E by positive linear automorphisms.

Definition 4.1.4. Fix a non-zero positive vector d ∈ E. Then a functional ψ defined on
(E, d) is called:

- an integral if ψ is positive;

- a normalized integral if it is an integral and ψ(d) = 1;

- an invariant normalized integral if it is a normalized integral and π∗(g)ψ = ψ for
every g ∈ G, where π∗ is the adjoint of π.

Remarks 4.1.5. 1) As before, if E is a normed Riesz space, then we ask that the rep-
resentation of G on E is by positive linear isometries.

2) Let X be a set. Then a mean on an invariant subspace of `∞(X), which contains the
constant functions, is only a normalized integral. In fact, the definition of integral
generalizes the one of mean to ordered vector spaces.

3) Suppose that E is Banach lattice. Then the definition above extends naturally to
the vector subspaces of the form (E, d)∞ for every non-zero positive d ∈ E. In
fact, we know that (E, d) is pd-norm dense in (E, d)∞ (Proposition 3.3.4) and that
p∞

d = pd on (E, d) (Theorem 3.3.5). Moreover, an integral is always continuous for
the pd-norm (Proposition 4.1.2). Therefore, we can extend uniquely every integral
ψ on (E, d) to (E, d)∞. By continuity, the extension preserves the normalization
and the invariance.

Given an ordered vector space E with a representation of a topological group G
by positive linear automorphisms, we say that (E, d) admits an invariant normalized
integral if there is an invariant normalized integral defined on it.

Example 4.1.6. The first and the easier examples of invariant integrals are invariant
means. In fact,

1) every topological U -amenable group G has an invariant normalized integral on
the Banach lattice Cb

u(G, U ) =
(
Cb

u(G, U ), 1G
)
. Here, U is a functionally invariant

uniformity for G;

2) every topological group G admits an invariant normalized integral on the space
W(G) =W(G, 1G) of weakly almost periodic functions, see [B70, Theorem 1.25];

3) more generally, every topological group G admits an invariant normalized inte-
gral on the space Asp(G) = Asp(G, 1G) of Asplund functions, see [GM12, Propo-
sition 2.3].

A first property of invariant normalized integrals can be directly deduced from
Proposition 4.1.1. In fact, the following holds:
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Corollary 4.1.7. Let E be an ordered vector space, and suppose that G acts on E by positive
linear automorphisms. Let d ∈ E be a non-zero positive vector.

a) Suppose that the space (E, d) admits an invariant normalized integral I. Then I is contin-
uous with respect to the pd-norm.

b) Suppose that E is a Banach lattice and that the representation of G on E is by positive
linear isometries. Suppose moreover that (E, d)∞ admits an invariant normalized integral
I. Then I is continuous with respect to the p∞

d -norm, and it has operator norm equal to 1.

Proof. For point a), I is continuous with respect to the pd-norm by Proposition 4.1.1.
Let suppose we are in the situation of point b). Then I has operator norm equal to

||I||op = I(d) = 1 by point a) of Proposition 4.1.2.

4.1.C. The invariant normalized integral property. Let E be an ordered vector space
and let G be a topological group. Suppose that G has a representation on E by positive
linear automorphisms.

Definition 4.1.8. We say that G, or π, has the invariant normalized integral property
for E if the space (E, d) admits an invariant normalized integral for every non-zero
positive vector d ∈ E.

Remarks 4.1.9. 1) As always, if E is a normed Riesz space, then we ask that the rep-
resentation of G on E is by positive linear isometries.

2) Suppose that G has the invariant normalized integral property for a normed Riesz
space E. Then it is not necessarily true that G has the invariant normalized integral
property for the Banach lattice Ê, the topological completion of E.

The following proposition gives the first examples of group representations having
the invariant normalized integral property.

Proposition 4.1.10. Let G be a topological group with a representation on an ordered vector
space E by positive linear automorphisms. Suppose that E admits a strictly positive invariant
functional. Then G has the invariant normalized integral property for E.

Proof. Let ψ be the strictly positive invariant functional on E and let d ∈ E be a non-zero
positive vector. Set c = ψ(d) > 0. Then an invariant normalized integral for (E, d) is
given by I = 1

c ψ.

Example 4.1.11. (Examples of the invariant normalized integral property)

1) Let G be a locally compact group and consider the left-translation representation
of G on the Banach lattice L1(G). Then the formula I( f ) =

∫
G f dmG defines a

strictly positive invariant functional on L1(G). Therefore, every locally compact
group G has the invariant normalized integral property for L1(G) by Proposition
4.1.10.
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2) If, in addition, G is compact, then G has the invariant normalized integral property
for Lp(G) for p ∈ [1, ∞] as Lp(G) ⊂ L1(G) for every p ∈ [1, ∞], see [AB99, Corol-
lary 13.3].

3) More generally, we claim that every representation of a topological group G on
an AL-space by positive linear isometries has the invariant normalized integral
property. Let G be a topological group and suppose that it has a representation π
by positive linear isometries on an AL-space (E, || · ||). Then there is a measurable
space (Ω, Σ, µ) such that (E, || · ||) is Riesz isometric to

(
L1(Ω, µ), || · ||1

)
by Theo-

rem 2.4.21. Consequently, G has a representation by positive linear isometries on
L1(Ω, µ), say πΩ. By construction of (Ω, Σ, µ), the representation πΩ comes from
an action of G on Ω such that the measure µ is G-invariant. Therefore, there exists
a strictly positive invariant functional I on L1(Ω, µ) given by

I( f ) =
∫

Ω
f dµ for every f ∈ L1(Ω, µ).

Thus, we can conclude that the representation π of G on E has the invariant nor-
malized integral property.

4) Since the Haar measure can be interpreted as a strictly positive invariant func-
tional on the Riesz space of compactly supported continuous functions C00(G)
( [Bou63, III §1 No.5 Théorème 1]), then every locally compact group G has the
invariant integral property for C00(G).

5) Let G be a topological group and consider the Banach lattice AP(G) of almost
periodic functions on G, i.e., the spaces of all bounded continuous functions which
have relatively compact orbit with respect to the || · ||∞-norm. ThenAP(G) admits
a strictly positive invariant functional, see [B70, Corollary 1.26]. Hence, every
topological group G has the invariant normalized integral property for AP(G).

6) Let G a topological group and suppose that G has a unitary representation σ on
a (complex) Hilbert space H. Then the representation σ induces a representa-
tion Adσ by positive linear automorphisms on the ordered vector space B(H), of
bounded linear operators fromH to itself, given by

Adσ(g)(T) = σ(g)Tσ(g)∗ for g ∈ G and T ∈ B(H).

Consider the ordered Adσ-invariant vector subspace TC(H) of the trace class op-
erators, and define on it the map

I : TC(H) −→ R, T 7−→ I(T) = tr(T),

where tr denotes the trace function of H. We claim that I is a strictly positive
linear functional on TC(H). Indeed, the map I is linear thanks to [S18, Proposition
6.8] and strictly positive because for every positive T in TC(H) the lower bound
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tr(T) ≥ ||T|| holds by [S18, Proposition 6.4]. Finally, I is Adσ-invariant because
of [S18, Theorem 6.13 (b)]. In fact,

I (Adσ(g)T) = tr (σ(g)Tσ(g)∗) = tr (T) = I (T)

for every g ∈ G and every T ∈ TC(H). We can conclude that G has the invariant
normalized integral property for TC(H) by Proposition 4.1.10.

A peculiarity of these examples is that every invariant normalized integral was al-
ways the restriction of a strictly positive functional defined on a bigger space. These
strictly positive invariant functionals are, almost always, unique up to constant and are
defined on relatively small functions spaces. However, there are examples where dif-
ferent integrals appear. We will see that L∞(G) has the invariant normalized integral
property for every abelian non-compact locally compact group G. However, an invari-
ant mean on L∞(G) can not be strictly positive as explained in [P84, Proposition 21.2].

4.2 The translate property

The section is entirely dedicated to discussing Greenleaf’s question.

4.2.A. First properties of the translate property. For instance, let G be a topological
group acting on an ordered vector space E by positive linear automorphisms.

Definition 4.2.1. We say that a non-zero positive vector d ∈ E has the translate property
if

n

∑
j=1

tjgjd ≥ 0 implies that
n

∑
j=1

tj ≥ 0 for every t1, ..., tn ∈ R and g1, ..., gn ∈ G.

Example 4.2.2. Suppose that G acts by positive linear automorphisms on an ordered
vector space E. Then every G-fixed-point has the translate property because of the ax-
ioms of the vector ordering.

Before continuing, we present an example of a vector that does not have the translate
property.

Example 4.2.3. Let G = F2 = 〈a, b〉 be the free group on 2 generators and consider the
left-translation representation of F2 on the Banach lattice `∞(F2). Let A be the set of all
reduced words of F2 starting with the generator a and define the function

f = a−11A − b1A − 1A.

We claim that f doesn’t have the translate property. Indeed, if w ∈ F2 is a reduced word
starting with a or b, then f (w) = 0. On the other hand, if w ∈ F2 is a reduced word
starting with a−1, b−1 or the identity element e, then f (w) = 1. This implies that f ≥ 0
and that f 6= 0. However, the sum of its coefficients is equal to -1.
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The following result shows that the translate property is somewhat encoded in the
structure of a G-dominated space. Precisely, we can understand if a non-zero positive
vector d ∈ E has the translate property only by looking at the cone of positive function-
als on (E, d) or at the norm pd.

Proposition 4.2.4. Let E be a normed Riesz space and suppose that G has a representation on
E by positive linear isometries. Let d ∈ E be a non-zero positive vector. Then the following
assertions are equivalent:

a) the vector d has the translate property;

b) there exists a normalized integral ψ on (E, d) invariant on spanR{gd : g ∈ G};

c) we have that

pd

(
n

∑
j=1

tjgjd

)
=

n

∑
j=1

tj for every t1, ..., tn ∈ R+ and g1, ..., gn ∈ G.

In other words, pd is additive on spanR{gd : g ∈ G}.

Proof. We start showing that a) implies b). Let d ∈ E be a non-zero positive vector with
the translate property and define the linear map

ω : spanR{gd : g ∈ G} −→ R,
n

∑
j=1

tjgjd 7−→ ω

(
n

∑
j=1

tjgjd

)
=

n

∑
j=1

tj.

Note that ω is well-defined thanks to the translate property. Moreover, it is positive, G-
invariant and ω(d) = 1. As spanR{gd : g ∈ G} is a majorizing vector subspace of (E, d),
we can use Kantorovich Theorem (Theorem 2.2.7) to extend ω in a positive way to all
(E, d). This extension is a normalized integral for (E, d) invariant on spanR{gd : g ∈ G}.

Now, we go for b) implies c). Let t1, ..., tn ∈ R+ and g1, ..., gn ∈ G. Then

pd

(
n

∑
j=1

tjgjd

)
≤

n

∑
j=1

tj pd(gjd) ≤
n

∑
j=1

tj

only because pd is a monotone G-invariant norm. Let ψ be a normalized integral for
(E, d) invariant on spanR{gd : g ∈ G}. By point a) of Proposition 4.1.2, ψ is continuous
with operator norm equal to 1. This implies that

pd

(
n

∑
j=1

tjgjd

)
≥ ψ

(
n

∑
j=1

tjgjd

)
=

n

∑
j=1

tjψ(gjd) =
n

∑
j=1

tj.

We can conclude that pd

(
∑n

j=1 tjgjd
)
= ∑n

j=1 tj as wished.
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Finally, we show that c) implies a). Suppose that the translate property fails for the
vector d. Therefore, there are t1, ..., tn ∈ R and g1, ..., gn ∈ G such that

n

∑
j=1

tjgjd ≥ 0 but
n

∑
j=1

tj < 0.

We can suppose that every tj is in Q. Indeed, if it is not the case, we can take ε > 0 such

that ε <
−∑n

j=1 tj
n , and we can chose qj ∈ Q such that qj ≥ tj and qj − tj < ε for every j.

Then
n

∑
j=1

qjgjd ≥
n

∑
j=1

tjgjd ≥ 0

and
n

∑
j=1

qj =
n

∑
j=1

(qj − tj) +
n

∑
j=1

tj ≤ nε +
n

∑
j=1

tj < 0.

Now, there is m ∈ N st mqj = zj ∈ Z for every j ∈ {1, ..., n}. Then

0 ≤
n

∑
j=1

mqjgjd =
n

∑
j=1

zjgjd = ∑
zj∈I+

zjgjd− ∑
zj∈I−

|zj|gjd,

where I+ =
{

zj : zj > 0
}

and I− =
{

zj : zj < 0
}

. Therefore,

∑
zj∈I−

|zj| = pd

 ∑
zj∈I−

|zj|gjd

 ≤ pd

 ∑
zj∈I+

|zj|gjd

 = ∑
zj∈I+

zj.

On the other side, we have that

0 >
n

∑
j=1

mqj =
n

∑
j=1

zj = ∑
zj∈I+

zj − ∑
zj∈I−

|zj|

which implies that ∑zj∈I− |zj| > ∑zj∈I+ zj. But this is a contradiction.

Remarks 4.2.5. 1) The equivalence between a) and b) is still true if E is supposed to
be an ordered vector space and the representation of G on E is by positive linear
automorphisms. Moreover, the theorem is still true if E is only an ordered normed
vector space and G acts on it by positive linear isometries.

2) Point c) may be a little surprising at first glance but it is something which appears
naturally when there is the absence of the translate property. For example, let f be
the function of Example 4.2.3. Then

a−11A − b1A − 1A ≥ 0 ⇐⇒ a−11A ≥ b1A + 1A.

Therefore,

p1A(b1A + 1A) ≤ p1A(a−11A) = 1.
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Corollary 4.2.6. Suppose that a group G has a representation by positive linear isometries on
an AM-space (E, || · ||). Let d ∈ E be a non-zero positive vector with the translate property and
note L = spanR{gd : g ∈ G}. Then the || · ||-norm and the pd-norm are equivalent on L if and
only if L is finite-dimensional.

Proof. Suppose that || · || and pd are equivalent on L. Then the Banach lattices (L||·||, || ·
||) and (Lpd , pd) are Riesz homeomorphic. But the former is an AM-space while the
latter an AL-space. Therefore, L has to be finite-dimensional by [AB99, Corollary 9.39].

The inverse is given by [K78, Theorem 2.4-5].

Definition 4.2.7. Let G be a topological group and let E be an ordered vector space.
Suppose that G has a representation on E by positive linear automorphisms. Then we
say that G has the translate property for E if every non-zero positive vector d ∈ E has
the translate property.

The following two corollaries of Proposition 4.2.4 give the first examples of group
representations having the translate property.

Corollary 4.2.8. Let E be an ordered vector space and suppose that G has a representation on
E by positive linear automorphisms. If G has the invariant normalized integral property for E,
then G has the translate property for E.

Proof. The translate property for E is assured thanks to the fact that the point b) of
Proposition 4.2.4 is satisfied.

Example 4.2.9. (Examples of representations with the translate property)

1) Every locally compact group G has the translate property for L1(G) and for C00(G).

2) In general, every representation of a topological group by positive linear isome-
tries on an AL-space has the translate property.

3) Every compact group has the translate property for Lp(G) for p ∈ [1, ∞].

4) Every topological group G has the translate property for AP(G).

5) Suppose that a topological group G has a unitary representation σ on a Hilbert
spaceH. Then the representation Adσ of G on TC(H) has the translate property.

Corollary 4.2.10. Let (E.|| · ||) be a normed Riesz space and suppose that a topological group
G has a representation on E by positive linear isometries. Suppose that || · || is an L-norm. Then
G has the translate property for E.

Proof. Let d ∈ E be a non-zero positive vector. Without loss of generality, we can sup-
pose that ||d|| = 1. Let t1, ..., tn ∈ R+ and g1, ..., gn ∈ G. Then

n

∑
j=1

tj ≥ pd

(
n

∑
j=1

tjgjd

)
≥ ||

n

∑
j=1

tjgjd|| =
n

∑
j=1

tj.
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Chapter 4. Positive Functionals on Dominated Spaces

Therefore, condition c) of Proposition 4.2.4 is satisfied. Thus, d has the translate prop-
erty.

At this point, there are two questions we can ask about the translate property. The
first question is: if every vector of a normed Riesz space E has the translate property,
can we construct an invariant functional on E? Similarly, if we know that a non-zero
positive vector d of a Banach lattice E has the translate property, can we construct an
invariant integral on (E, d)? The remaining two subsections are dedicated to answer-
ing those questions. Note that the second question is the famous Greenleaf’s question
aforementioned.

4.2.B. Translate property and invariant means. Let E be a Banach lattice with order
unit u and let G be a topological group. Suppose that G has a representation π on E
by positive linear isometries. We recall that a mean on E is nothing but an integral m
normalized on u. A mean m is said localized on a vector d ∈ E if π∗(g)m(d) = m(d)
for every g ∈ G.

Theorem 4.2.11. Let (E, || · ||) be a Banach lattice with an order unit u and suppose that G
acts on E by positive linear isometries. Then for every non-zero positive vector d ∈ E with the
translate property, there is a mean on E localized on it.

We follow the strategy used by Monod in [M17, Theorem 18].

Proof of Theorem 4.2.11. First of all, we can suppose that the norm || · || of E is the order
unit norm || · ||u as explained in point 2) of Example 2.4.18.

Let d ∈ E be a non-zero positive vector with the translate property, and consider the
Banach subspace

D = spanR
{

d− gd : g ∈ G
}||·||u ⊂ E.

Denote Q = E�D the quotient space equipped with the quotient norm || · ||Q. We claim
that ||uQ||Q = 1, where uQ is the image of the order unit u of E in the quotient Q.
Suppose that it is not the case, then there are ε > 0, t1, ..., tn ∈ R and g1, ..., gn ∈ G such
that v = ∑n

j=1 tj(d− gjd) satisfies ||u− v||u ≤ 1− ε. This means that

u− v ≤ (1− ε)u ⇐⇒ εu ≤ v.

Set M = ||d||u and note that

ε

M
d ≤ εu ≤ v ⇐⇒ v− ε

M
d =

n

∑
j=1

tj(d− gjd)−
ε

M
d ≥ 0.

However, this last inequality is a contradiction with the fact that d has the translate
property. In fact, the sum of its coefficients is equal to − ε

M < 0. Therefore, ||uQ||u = 1.
Using the Hahn-Banach Theorem, there is a continuous linear functional mQ on Q such
that mQ(uQ) = 1. Now, define m as the lift of this functional. Then m is of norm one
and positive. Moreover, m(d) = m(gd) for every g ∈ G as m vanishes on D

96



Section 4.2. The translate property

Together with the following lemma, this last proposition gives us a partial answer to
the first question we asked ourselves.

Suppose that G acts on a set X via the action γ and let E be a subspace of `∞(X) which
is πγ-invariant and which contains the constant functions. Then E is said introverted
if for every v ∈ E and ψ ∈ E′, the real function g 7−→ ψ(gv) is in E. Examples of
introverted spaces are given by W(G) for topological groups ( [BJM89, Theorem 2.5])
and also by C(G) for compact groups ( [BJM89, Example 2.5]).

Lemma 4.2.12. Let G be a topological group with an action γ on a set X. Let E be a πγ-invariant
introverted subspace of `∞(X) containing the constant functions. Then there is a πγ-invariant
mean on E if and only if there is a mean localized on f for every positive function f ∈ E.

Proof. See [GR71, Lemma 1].

As the function space Cb
ru(G) is introverted by [N67, Lemma 1.2], we can conclude

that:

Corollary 4.2.13. If G has the translate property for Cb
ru(G), then G is amenable.

Proof. By Proposition 4.2.11, the translate property for Cb
ru(G) implies that for every

positive function f ∈ Cb
ru(G) there is a localized mean on f . Therefore, there is an

invariant mean on Cb
ru(G) by Lemma 4.2.12.

This last corollary can be seen as a topological version of [M17, Theorem 18].

Scholium 4.2.14. Monod showed Corollary 4.2.13 for discrete groups in his paper [M17].
If we read his proof carefully, we can see that he did not use every hypothesis at his dis-
posal. In fact, he supposed that the group has the translate property for `∞(G), but he
only used it for the vectors of the form 1A, where A ⊂ G. This was possible thanks
to a result of Moore ( [M13, Theorem 1.3]), which characterizes amenability of discrete
groups using finitely additive measures localized on subsets A ⊂ G.

The reverse does not hold in general. Namely, there are amenable groups without
the translate property.

Example 4.2.15. Let G = A f f (R) be the group of affine transformations of the line
endowed with the discrete topology. Then G is amenable as extension of amenable
groups. However, it contains the free semigroup in two generators T2 = 〈a, b〉, where
a(r) = r + 1 and b(r) = 2r. We claim that the vector 1T2 doesn’t have the translate
property. Indeed, define the function

f = 1T2 − a1T2 − b1T2 = 1T2 − 1aT2 − 1bT2

and note that f is non-zero and positive. It is positive because if w ∈ T2, then w ∈ aT2 or
w ∈ bT2 but not both. Thus f (w) ≥ 0. If w ∈ aT2, then w /∈ bT2 and so f (w) ≥ 0. Same
for w ∈ bT2. Finally, f is non-zero as f (e) = 1, where e ∈ T2 is the identity element. But
one can see that the sum of the coefficients of f is −1 which shows that f has not the
translate property.
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Scholium 4.2.16. Perhaps an attentive reader has noticed that, for the case of discrete
groups, the translate property for vectors of the form 1A, where A ⊂ G, is related to the
concept of paradoxical decomposition. We refer to [K14] and to [R72] for an exposition
and a discussion of this relationship.

4.2.C. Translate property and invariant normalized integrals. Let E be a normed Riesz
space, and let G be a topological group with a representation on E by positive linear
isometries.

Definition 4.2.17. Let d ∈ E be a non-zero positive vector and consider (E, d) equipped
with the pd-norm. We define

Id(E) =
{

ψ ∈ (E, d)′+ : ψ(gd) = ψ(d) = 1 for all g ∈ G
}

the set of all normalized integrals on (E, d).

Note that if E is an invariant subspace of `∞(X), for some set X, which contains the
constant functions, then I1G(E) =M(E).

Unlike the set of means, Id(E) can be empty. Fortunately, we know precisely when
it doesn’t happen.

Proposition 4.2.18. For every non-zero positive vector d ∈ E, the set Id(E) is non-empty if
and only if the vector d has the translate property.

Proof. The proof is an application of Proposition 4.2.4.

Using the Banach-Alaoglu Theorem ( [M98, Theorem 2.6.18]) is straightforward to
show that:

Proposition 4.2.19. The set Id(E) is convex and compact with respect to the weak-* topology
for every non-zero positive vector d ∈ E.

Proposition 4.2.20. Let U be a functionally invariant uniformity for G for which G is U -
amenable and let d ∈ E be a non-zero positive vector. Suppose that there is a non-zero ψ0 ∈
Id(E) such that the map g 7−→ gψ0 is U -uniformly continuous. Then the vector d has the
translate property if and only if the space (E, d) admits an invariant normalized integral.

Proof. The if part is straightforward. Let’s look at the only if part. First of all, Id(E)
is non-empty thanks to Proposition 4.2.18. Now, the action of G on Id(E) has a fixed-
point I by Theorem 1.4.14 and because G is U -amenable. The functional I is an invariant
normalized integral for (E, d).

Proposition 4.2.21. Let G be an amenable group and let d ∈ E be a non-zero positive vector.
Suppose that the representation of G on (E, d) is continuous for the pd-norm. Then the vector d
has the translate property if and only if the space (E, d) admits an invariant normalized integral.
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Proof. If there is an invariant normalized integral on (E, d), then the vector d has the
translate property by Corollary 4.2.8. Let’s prove the converse. Suppose that d has the
translate property. Therefore, the convex compact set Id(E) is non-empty by Proposi-
tion 4.2.18. Now, the action of G on Id(E) is orbitally continuous for the weak-* topol-
ogy. This means that G fixes a point I in Id(E) by theorem 1.4.17. This fixed-point is an
invariant integral for (E, d).

Those two last propositions imply the following corollaries.

Corollary 4.2.22. Let G be an amenable group and suppose that E has an L-norm. For every
non-zero positive vector d ∈ E such that the representation of G on (E, d) is continuous for the
pd-norm, the space (E, d) admits an invariant normalized integral.

Proof. By Corollary 4.2.10, the group G has the translate property for E. We can conclude
using Proposition 4.2.21.

Corollary 4.2.23 ( [M17, Corollary 19]). Let G be a discrete group. Then G has the invariant
normalized integral property for `∞(G) if and only if G has the translate property for `∞(G).

Proof. Note that G is amenable in both cases by Corollary 4.2.13. Therefore, we can
conclude using Proposition 4.2.21.

Corollary 4.2.24 (Rosenblatt). Let G be an amenable discrete group which acts on a set X.
Then for every non-zero positive f ∈ `∞(X), there is an invariant normalized integral on
`∞(X, f ) if and only if the function f has the translate property.

Proof. The proof is direct by Proposition 4.2.21.
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Chapter 5

The Fixed-Point Property for Cones

We generalise the fixed-point property for cones given by Monod in [M17] from the
world of discrete groups to the universe of topological ones.

The chapter starts with a discussion by examples about groups acting on cones and
fixed-points, which lead us to state the generalisation of the fixed-point property for
cones. We use these examples to motivate and explain every assumption made in defin-
ing the fixed-point property for cones.

We continue giving different characterisations of the fixed-point property for cones
using the invariant normalised integral property. The whole second section is dedicated
to this purpose.

In the last part of the chapter, we abstract the characterisations developed previ-
ously. The interest of doing such abstraction work is to understand for which spaces
a group with the fixed-point property for cones admits invariant normalized integrals.
Similar characterisations were already developed for amenable groups and widely used
by Zimmer to study rigidity of group actions, see [Z84]. Moreover, such an approach is
helpful to get rid of some technical details, especially when working with locally com-
pact groups.

5.1 A Fixed-point in mind

The geometric starting data is the following: we suppose to have a locally convex vector
space E and a non-empty proper (convex) cone C ⊂ E.

The topological assumption on the cone is weakly completeness. Recall that weakly
complete means that every net in C, which is Cauchy with respect to the canonical
uniformity of the initial topology associated to the family of linear functionals E′ con-
verges. Considering only weakly complete cones is not a significant restriction. In fact,
this condition includes most of the familiar cones we are used to working.

We refer to [C63] for examples of weakly complete cones and to [Bou81, II §6 No.8]
for some properties of weakly complete cones in locally convex vector spaces.
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We say that a group G has a representation on a non-empty proper convex cone C
in a locally convex vector space E to designate that G has a representation on E, which
leaves C invariant.

The pre-order defined by C on E is a vector ordering as C is supposed to be proper.
Asking that the action of G preserves this order is equivalent to asking that the cone
C is G-invariant. Indeed, suppose that the cone C is G-invariant and let v, w ∈ E such
that v ≤C w. This means that w− v ∈ C. Therefore, g(w− v) = gw− gv ∈ C. We can
conclude that gv ≤C gw. Conversely, suppose that the action of G on E preserves the
order induced by the cone C and let c ∈ C. Then 0 ≤C c and so 0 ≤C gc for every g ∈ G.
This shows that the cone C is G-invariant.

In what follows, we illustrate various examples of representations of groups on
cones without non-zero fixed points. This digression aims to motivate the choice of
the definition of the fixed-point property for cones that we will state at the end of the
section.

Starting from the roots: we defined a cone as a convex set. However, some authors
do not ask for convexity. The choice of this assumption is mandatory to work with
locally compact groups and, especially, with discrete ones.

Example A. Every non-trivial locally compact group admits a non-zero fixed-point free repre-
sentation on a non-empty closed non-convex cone.

Proof. Let G be a non-trivial locally compact group. Then G is not extremely amenable
by [V77, Theorem 2.2.1], i.e., there are no invariant multiplicative means on Cb

ru(G). Let
Mm(Cb

ru(G)) ⊂ Cb
ru(G)′ be the set of all multiplicative means on Cb

ru(G). Recall that a
multiplicative mean on Cb

ru(G) is nothing but a mean m on Cb
ru(G) such that m( f1 f2) =

m( f1)m( f2) for every f1, f2 ∈ Cb
ru(G). ThenMm(Cb

ru(G)) is a non-empty, invariant and
compact set for the weak-* topology. But it is not convex. Consider now the weak-*
closed non-convex cone given by

C =
{

αm : α ∈ R and m ∈ Mm(Cb
ru(G))

}
⊂ Cb

ru(G)′.

Then the adjoint representation of G on Cb
ru(G)′ preserves C, but it fixes no non-zero

points.

Nonetheless, convexity is not enough to create attractive starting conditions.

Example B. Every infinite topological group admits a non-zero fixed-point free representation
on a non-empty proper cone.

Proof. Let G be an infinite topological group. Consider the vector space RG of all real
functions from G to R and the left-translation representation πL of G on it. Then RG is a
Hausdorff locally convex vector space when equipped with the pointwise topology. Fix
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a non-zero positive unbounded function f ∈ RG, and consider the πL-invariant locally
convex vector subspace given by

E = spanR {g f : g ∈ G} ⊂ RG.

Note that the pointwise closed cone C of positive functions of E is πL-invariant. Never-
theless, there are no non-zero fixed-points in C as the constant function is not in E.

The absence of non-zero fixed-points in the previous example is essentially due to
the fact that every non-zero orbit of the representation of G on E is unbounded. Indeed,
it suffices to show that the orbital action of G on f is unbounded. Let V ⊂ E be the
neighborhood of the origin given by V = {v ∈ E : |v(x)| < α}, where x ∈ G and α > 0,
and suppose that the set G f is absorbed by V. This means that there is λ > 0 such that
G f ⊂ λV. Now, we can chose y ∈ G such that f (y) > λα and g ∈ G such that g−1x = y.
Therefore, g f (x) = f (g−1x) > αλ. But this is a contradiction with the fact that G f is
absorbed by V.

However, the unboundedness of the representation is not the only problem, since
we can even find fixed-points free continuous positive linear isometric representations
of groups on cones.

Example C. Every non-compact locally compact group admits a non-zero fixed-point free con-
tinuous representation by positive linear isometries on a non-empty proper cone.

Proof. Let G be a non-compact locally compact group and let p ∈ [1,+∞). Consider the
left-translation representation of G on the Banach lattice Lp(G). Then the action of G on
Lp(G) is continuous and by linear positive isometries and preserves the Lp-closed cone
of positive functions Lp(G)+. Nevertheless, G fixes no non-zero vectors in the positive
cone of Lp(G).

Note that the action of G on Lp(G)+ has a fixed-point if and only if G is compact.

Another example of this kind can help us understand why the representation is free
of fixed points. Namely:

Example D. Any infinite discrete group acts on some locally compact space without preserving
any non-zero Radon measure.

Proof. See [MR15, Proposition 4.3].

Despite that, we know that every cocompact action of a discrete supramenable group
on a locally compact space fixes a non-zero Radon measure ( [KMN13, Proposition 2.7]).
On the one hand, the action considered in the proof of [MR15, Proposition 4.3] is not co-
compact. On the other hand, the action of a group G on a locally compact space X is
cocompact if and only if the Riesz space C00(X) admits a G-dominating element (Propo-
sition 3.4.6). Moreover, the topological dual of Lp(G) never allows a G-dominating ele-
ment. Therefore, we can conclude that the topological dual of the locally convex space
where the cone lies should not be too big.
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After this short discussion, we are ready to generalize the fixed-point property for
cones given by Monod.

For instance, we do not ask that every non-zero orbit is bounded. Instead, we ask
that there is at least one non-zero point in the cone for which the boundedness condition
is satisfied. As we want to define a fixed-point property for cones that takes care of the
uniform structure of the group, we put a continuity condition on the action at this point.

Definition 5.1.1. Let G be a topological group and let U be a functionally invariant
uniformity for G. We say that a representation of G on a non-empty proper cone C is
locally bounded (U , Uc)-uniformly continuous if there is a non-zero x0 ∈ C such that
the map

(G, U ) −→ (E, Uc), g 7−→ gx0

is bounded and uniformly continuous.

Remark 5.1.2. Some authors use the terminology slightly instead of locally, e.g. [P18]
or [G17].

We state the following definition to overcome the problem contained in examples C
and D.

Definition 5.1.3. Let G be a topological group that has a representation on a non-empty
proper cone C. We say that the representation of G on C is of cobounded type if E′

admits a G-dominating element for the adjoint representation of G on E′ and for the
order given by the polar cone of C.

We are finally ready to generalize the fixed-point property for cones.

Definition 5.1.4. Let G be a topological group and let U be a functionally invariant
uniformity for G. We say that G has the U -fixed-point property for cones if every
representation of G on a non-empty weakly complete proper cone C in a (Hausdorff)
locally convex vector space E which is locally bounded (U , Uc)-uniformly continuous
and of cobounded type has a non-zero fixed-point.

Proposition 5.1.5. Let G be a topological group and let U be a functionally invariant unifor-
mity for G. If G has the U -fixed-point property for cones, then G is U -amenable.

Proof. Suppose that G has the U -fixed-point property for cones. LetM
(
Cb

u(G, U )
)

be
the set of means on Cb

u(G, U ). Then E = Cb
u(G, U )′ endowed with the weak-* topology

is a locally convex vector space ( [Bou81, I §6 No.2 Remarque 1)]). Consider the non-
empty invariant proper cone given by

C =
{

αm : m ∈ M
(
Cb

u(G, U )
)

and α ∈ R+

}
⊂ Cb

u(G, U )′.
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Then C is weak-* closed in E, and hence weakly complete. The adjoint representation of
G on C is locally bounded (U , U ∗

c )-uniformly continuous.
This because the map g 7−→ geve is (U , U ∗

c )-uniformly continuous and bounded
by Lemma 1.4.13 with (X, U ) = (G, U ) and Fb(X) = Cb

u(G, U ). Moreover, the adjoint
representation of G on Cb

u(G, U )′ is also of cobounded type. Indeed, the topological
dual of Cb

u(G, U )′ with respect to the weak-* topology is only Cb
u(G, U ) ( [Bou81, II §6

No.1 Remarque 1)]) and this last vector space is G-dominated by 1G. Hence, we can
use the U -fixed-point property for cones to find a non-zero fixed-point in C, which is
nothing but an invariant mean after normalization.

We have a better result for discrete groups.

Proposition 5.1.6. Let G be a discrete group and let Ud be the discrete uniformity of G. If G
has the Ud-fixed-point property for cones, then G is supramenable.

Proof. It suffices to show that every cocompact action of G on a locally compact space
fixes a non-zero Radon measure by [KMN13, Proposition 2.7]. Therefore, suppose that G
acts cocompactly on a locally compact space X and let C =M(X) be the cone of Radon
measures on X. Recall that it is possible identify C with C00(X)∗+ the set of all positive
functionals on C00(X) ( [Bou63, III §1 No.5 Théorème 1]). First of all, C is complete for
the vague topology ( [Bou63, III §1 No.9 Proposition 14]), and hence weakly complete
since this topology is weak as it is the weak-* topology given by the duality with C00(X).
Moreover, the representation of G on C is locally bounded as witness by every evalua-
tion map evx at a point x ∈ X. The proof of this last fact is given by Lemma 1.4.13 using
Fb(X) = C00(X). It is only left to check that the representation is of cobounded type,
and then we can apply the Ud-fixed-point property for cones. But, again by [Bou81, II
§6 No.1 Remarque 1)], the topological dual of C00(X)∗ with respect to the weak-* topol-
ogy is only C00(X), and we know that this vector space is G-dominated by a positive
function φ ∈ C00(X) because the action of G on X is cocompact and because of Propo-
sition 3.4.6. Applying the Ud-fixed-point property for cones, we have the existence of a
non-zero Radon measure on X, which ensures the supramenability of G.

Remark 5.1.7. Monod already proposed in [M17, Example 38] a possible generalization
of his fixed-point property. However, the one he gave is not equal to ours in the non-
locally compact case. We will motivate, and hopefully, we will persuade, the readers
that our fixed-point property is the right one to generalize the work of Monod.

However, for locally compact groups, our generalization and the one of Monod co-
incide, see Subsection 6.3.C.

5.2 Characterizations of the U -fixed-point property for cones

The section aims to characterize the U -fixed-point property for cones in a similar way
as done for U -amenability (cf. Theorem 1.4.14).
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Theorem 5.2.1. Let G be a topological group and let U be a functionally invariant uniformity
for G. Then the following assertions are equivalent:

a) the group G has the U -fixed-point property for cones;

b) the group G has the invariant normalized integral property for Cb
u(G, U );

c) for every action γ of G on a compact space K such that C(K) is πγ-invariant and for
every non-zero positive φ ∈ C(K) for which there is k0 ∈ K such that φ(k0) 6= 0 and the
map g 7−→ gk0 is U -uniformly continuous, there is an invariant normalized integral on
C(K, φ);

d) for every action γ of G on a uniform space (X, UX) such that Cb
u(X, UX) is πγ-invariant

and for every non-zero positive f ∈ Cb
u(X, UX) for which there is x0 ∈ X such that

f (x0) 6= 0 and the map g 7−→ gx0 is (U , UX)-uniformly continuous, there is an invari-
ant normalized integral on

(
Cb

u(X, UX), f
)
.

Fixed-points in cones find their functional counterpart in invariant normalized inte-
grals. This is not surprising as invariant normalized integrals are just a generalization
of invariant means and every non-empty convex compact set generates a non-empty
convex cone.

5.2.A. Proof of Theorem 5.2.1. The strategy to prove Theorem 5.2.1 is the following:
firstly, we show the equivalence between a) and b), secondly, we prove the equivalence
of b), c) and d).

We need the following lemma to prove that having the U -fixed-point property for
cones is equivalent to having the invariant normalized integral property for Cb

u(G, U ).
The lemma is also of independent interest as it displays an interesting property of func-
tionally invariant uniformities for topological groups.

Lemma 5.2.2. Let G be a topological group and let U be a functionally invariant uniformity
for G. Then the maps

ωL : (G, U ) −→
(
M(Cb

u(G, U )), U ∗
c

)
, g 7−→ ωL(g) = πL(g)∗evx

and

ωR : (G, U ) −→
(
M(Cb

u(G, U )), U ∗
c

)
, g 7−→ ωR(g) = πR(g)∗evx

are uniformly continuous for every x ∈ G.

Proof. We start showing that ωL is (U , U ∗
c )-uniformly continuous. Let x ∈ G and take

A ∈ U ∗
c . As before, we can suppose that A is of the form

AV =
{
(ψ1, ψ2) ∈ M(Cb

u(G, U ))×M(Cb
u(G, U )) : ψ2 − ψ1 ∈ V

}
,
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where V =
{

ψ ∈ Cb
u(G, U )∗ : |ψ( f j)| < ε

}
for f1, ..., fn ∈ Cb

u(G, U ) and ε > 0. Because
U is a functionally invariant uniformity, we have that the πR(x) f j’s are in Cb

u(G, U ) for
every j = 1, ..., n. Therefore, for every j, there is an Aj ∈ U such that if (g1, g2) ∈ Aj,
then

(
πR(x) f j(g1), πR(x) f j(g2)

)
∈ Aε. Here,

Aε = {(r1, r2) ∈ R× R : |r2 − r1| < ε} ∈ U R
c .

Set AωL =
⋂n

j=1 Aj ∈ U R
c . Thus, if (g1, g2) ∈ AωL , then

|ωL(g1)( f j)−ωL(g2)( f j)| = |πL(g1)
∗evx( f j)− πL(g2)

∗evx( f j)|
= |evg1x( f j)− evg2x( f j)|
= | f j(g1x)− f j(g2x)|
= |πR(x) f j(gj)− πR(x) f j(g2)| < ε,

which implies that ωL(g2) − ωL(g1) ∈ AV . We can conclude that ωL is (U , U ∗
c )-

uniformly continuous.
For the map ωR the proof is similar using the fact that

πR(g)evx( f ) = πL(x−1) f (g) for every g, x ∈ G and f ∈ Cb
u(G, U ).

Proof of Theorem 5.2.1. We start showing that a) is equivalent to b). Thus, let f ∈ Cb
u(G, U )

be a non-zero positive function and we want to prove that there is an invariant normal-
ized integral I on

(
Cb

u(G, U ), f
)
. Set E =

(
Cb

u(G, U ), f
)∗

. Then E is a Hausdorff locally
convex topological vector space when equipped with the weak-* topology, see [Bou81, I
§6 No.2 Remarque 1)]. Consider now the cone C =

(
Cb

u(G, U ), f
)∗
+ of positive func-

tionals on E. This cone is invariant and proper because spanned by positive elements.
Recall that closed subspaces of complete spaces are complete ( [Bou71, II §3 No.4 Propo-
sition 8]) and that algebraic duals are weak-* complete ( [Bou81, II §6 No.7]). Therefore,
C is weakly complete as it is closed in the complete space E.

We claim that the representation of G on C is of locally bounded (U , U ∗
c )-uniformly

continuous type. Indeed, let x ∈ G such that f (x) 6= 0. Then the map g 7−→ gevx is
bounded (U , U ∗

c )-uniformly continuous by Lemma 5.2.2.
The next step is to show that the action is of cobounded type. We have that (E, weak-*)′ =(
Cb

u(G, U ), f
)

by [Bou81, II §6 No.1 Remarque 1)]. Therefore, the cobounded condition
is verified.

Applying the U -fixed-point property for cones to C, we have the existence of a non-
zero G-invariant element I ∈ C. It is clear that I( f ) 6= 0. Indeed, let φ ∈ E+ such that
I(φ) > 0. Then φ ≤ ∑n

j=1 gj f for some g1, ..., gn ∈ G. Therefore,

0 < I(φ) ≤ I

(
n

∑
j=1

gj f

)
= nI( f ).

107



Chapter 5. The Fixed-Point Property for Cones

After a normalization by I( f ), I becomes an invariant normalized integral for E.
Let now prove that b) implies a). Take C a non-empty weakly complete invariant

proper convex cone in a Hausdorff locally convex vector space E, and suppose that the
action of G on E is of cobounded type and locally bounded (U , Uc)-uniformly continu-
ous w.r.t. C. We have to show that there is a non-zero fixed-point in C. Let x0 ∈ C be the
point which witness the locally bounded (U , Uc)-uniformly continuous condition and
let f ∈ E′ be the G-dominating element given by the cobounded condition. For every
λ ∈ E′, we define the map

λ : G −→ R, g 7−→ λ(g) = λ(gx0).

We claim that λ ∈ Cb
u(G, U ) for all λ ∈ E′. Indeed, we can write λ as

λ : (G, U ) −→ (E, Uc) −→ (R, Uc), g 7−→ gx0 7−→ λ(gx0).

Hence, λ is uniformly continuous as composition of uniformly continuous maps. More-
over, λ is bounded as the set im(Gx0) is bounded and continuous linear functionals map
bounded sets to bounded sets ( [Bou81, III §1 No.3 Corollaire 1]).

Thereby, we define the linear operator

Λ : E′ −→ Cb
u(G, U ), λ 7−→ Λ(λ) = λ.

Note that Λ is equivariant because

Λ(aλ) = aλ = aλ = aΛ(λ) for every a ∈ G and λ ∈ E′.

Moreover, Λ is positive. In fact, if λ ∈ E′+, then

λ(g) = λ(gx0) ≥ 0 for every g ∈ G.

Now, the image of Λ is contained in
(
Cb

u(G, U ), f
)

, where f = Λ( f ). This is because

if λ ∈ im(Λ), then there are λ ∈ E′ such that Λ(λ) = λ and g1, ..., gn ∈ G such that
±λ ≤ ∑n

j=1 gj f . This implies that

±λ = ±Λ(λ) ≤ Λ

(
n

∑
j=1

gj f

)
=

n

∑
j=1

gjΛ( f ) =
n

∑
j=1

gj f .

By hypothesis, there exists an invariant normalized integral I defined on
(
Cb

u(G, U ), f
)

whereby one gets the linear map

I : E′ −→ R, λ 7−→ I(λ) = I(Λ(λ)).

It easy to see that I is positive, G-invariant and I( f ) = I( f ) = 1.
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The functional I is actually a fixed-point of the action of G on the algebraic dual of
E′. If we can show that I is in C, we are done. To prove this, embed C in its bidual(
E′
)∗ via the canonical embedding, and, in order to find a contradiction, suppose that

I /∈ C. Because of the fact that C is weakly complete, C is closed in
(
E′
)∗ for the weak-

* topology ( [Bou71, II §3 No.3 Proposition 6] and [Bou71, II §3 No.4 Proposition 8]).
So, we can apply the Hahn-Banach Separation Theorem ( [R86, Thm.3.4]) and find λ ∈(
(E′)∗

)′ such that λ ≥ 0 on C and λ(I) < 0. By [R86, 3.14], we have that λ(I) = I(λ)
and so

0 > λ(I) = I(λ) = I(λ) ≥ 0.

However, this is a contradiction. Therefore, I ∈ C.
Now, we want to show that b) implies d). Let (X, UX) as in the statement, and chose

a non-zero positive function f ∈ Cb
u(X, UX). By hypothesis, there is x0 ∈ X such that

f (x0) 6= 0 and such that the map g 7−→ gx0 is (U , UX)-uniformly continuous. We
define the linear operator

T : Cb
u(X, UX) −→ Cb

u(G, U ), φ 7−→ T(φ)(g) = φ(gx0).

First of all, the operator T is well-defined, i.e., T(φ) is in Cb
u(G, U ) for every φ ∈

Cb
u(X, UX). This is because we can write T(φ) as the composition of uniformly con-

tinuous maps. In fact,

T(φ) : (G, U ) −→ (X, UX) −→ R, g 7−→ gx0 7−→ φ(gx0)

for every φ ∈ Cb
u(X, UX). A fast computation shows that T is also equivariant. Indeed,

T(aφ)(g) = (aφ)(gx0) = φ(a−1gx0) = T(φ)(a−1g) = aT(φ)(g)

for every a, g ∈ G and φ ∈ Cb
u(X, UX). Finally, T is positive as T(φ)(g) = φ(gx0) ≥ 0

for every positive function φ ∈ Cb
u(X, UX) and for every g ∈ G. Note that T( f ) >

0 as f (x0) 6= 0. Therefore, T maps
(
Cb

u(X, UX), f
)

into
(
Cb

u(G, U ), T( f )
)

and on this
last space there is an invariant normalized integral I. The composition I = I ◦ T is an
invariant normalized integral for

(
Cb

u(X, UX), f
)
.

Point d) implies c) directly. Indeed, consider the case where (X, U ) = (K, UK).
Finally, suppose that point c) is true, and we want to show point b). Note that the

Banach lattice Cb
u(G, U ) is an AM-space with an order unit given by the constant func-

tion 1G. Therefore, there is a compact space K such that Cb
u(G, U ) is Riesz isometric to

C(K) by Theorem 2.4.20. By the proof of this last cited theorem (see [AB99, Theorem
9.32] for details), the compact space K can be described explicitly by the set

K =
{

ψ ∈ B+
1 : ψ is an extreme point of B+

1 such that ψ(1G) = 1
}

,
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where B+
1 =

{
ψ ∈ Cb

u(G, U )′+ : ||ψ||op ≤ 1
}

. Moreover, the Riesz isometry between
Cb

u(G, U ) and C(K) is given by the operator

T : Cb
u(G, U ) −→ C(K), f 7−→ T( f ) = ev f .

Note that C(K) is invariant for the representation induced by the action of G on K and
the map T is equivariant. Let now f ∈ Cb

u(G, U ) be a non-zero positive function. Then
T( f ) ∈ C(K) is a non-zero positive function. Set k0 = evx0 . We can compute that

T( f )(k0) = T( f )(evx0) = evx0( f ) = f (x0) 6= 0

and that the map g 7−→ gk0 is U -uniformly continuous by Lemma 1.4.13. Therefore,
there is an invariant normalized integral I on (C(K), T( f )) by hypothesis. Consequently,
the composition I = I ◦ T defines an invariant normalized integral on

(
Cb

u(G, U ), f
)
.

Remarks 5.2.3. 1) We followed the strategy used by Monod in [M17, Theorem 7] for
the proof of the equivalence of a) and b),

2) We could also have used a Gelfand-Naimark Representation Theorem type for
commutative real Banach algebras (for example [A10, Theorem 1.1]) for the demon-
stration of d) implies c) because Cb

u(G, U ) is a Banach algebra for every function-
ally invariant uniformity U for G as showed by Theorem 1.2.13.

As a direct consequences, we have that:

Corollary 5.2.4. Let G be a compact group. Then G has the fixed-point property for cones.

Note that we do not have to specify a functionally invariant uniform structure for
compact groups as there is only one.

Proof of Corollary 5.2.4. Let G be a compact group. Then the normalized Haar measure
of G is a strictly positive invariant functional on C(G). Therefore, G has the invariant
normalized integral property for C(G) by Proposition 4.1.10.

Corollary 5.2.5. Let G be a topological group and let U be a functionally invariant uniformity
for G. If G has the U -fixed-point property for cones, then G has the translate property for
Cb

u(G, U ).

Proof. By Theorem 5.2.1, the group G has the invariant normalized integral property for
Cb

u(G, U ). Therefore, G has the translate property for Cb
u(G, U ) by Corollary 4.2.8.

It is natural to ask when the converse also holds, i.e., the translate property implies
the invariant normalized integral property. We know that this is true for discrete groups
by Corollary 4.2.23. Unfortunately, this is no longer true outside the realm of discrete
groups. However, there is a pleasant surprise for the case of locally compact groups, as
we are going to see in Chapter 6.

Currently, the following proposition is the best that we can expect from general topo-
logical groups.
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Proposition 5.2.6. Let G be a topological group. Suppose that G is R-amenable and let f ∈
Cb

u(G, R) be a non-zero positive support-dominating function. Then
(
Cb

u(G, R), f
)

admits an
invariant normalized integral if and only if f has the translate property.

Proof. The only if part is given by Corollary 4.2.8. For the if part, note that the action
of G on

(
Cb

u(G, R), f
)

is continuous for the p f -norm thanks to Lemma 3.4.4. Hence, we
can conclude using Proposition 4.2.21.

5.2.B. A look at the uniform structures F , R and L . The purpose of this subsection is
to develop Theorem 5.2.1 in the particular cases of the uniform structures F , R and L .

Definition 5.2.7. Let G be a topological group that acts on a uniform space (X, UX) by
uniform isomorphisms.

a) We say that the action of G on (X, UX) is motion equicontinuous if for every
A ∈ UX there is a neighborhood U of the identity of G such that (x, gx) ∈ A for
every g ∈ U and x ∈ X.

b) We say that the action of G on (X, UX) is uniformly equicontinuous if for every
A ∈ UX there is B ∈ UX such that if (x, y) ∈ B, then (gx, gy) ∈ A for all g ∈ G.

Some authors use the term bounded instead of motion equicontinuous, see [P06,
Section 3.6] or [V93]. We decided to use this second terminology because every such
action is, in particular, continuous and because we do not want to create confusion with
the notion of bounded actions on vector spaces.

Lemma 5.2.8. Let G be a topological group.

a) The action of G on (G, R) by left-translation is motion equicontinuous.

b) The action of G on (G, L ) by left-translation is uniformly equicontinuous.

Proof. Let A ∈ R. We can suppose that A is of the form A =
{
(x, y) ∈ G× G : xy−1 ∈ U

}
,

where U is a neighborhood of the identity of G. Now, x(gx)−1 ∈ U for every x ∈ G and
every g ∈ U. This implies that (x, gx) ∈ A proving point a).

For point b), take A ∈ L . As before, we can suppose that A is of the form A ={
(x, y) ∈ G× G : x−1y ∈ U

}
, where U is a neighborhood of the identity of G. Set B = A

and note that for every g ∈ G, we have that (gx, gy) ∈ A if and only if (x, y) ∈ A. This
shows the uniform equicontinuity of the action.

Other simple examples of uniformly equicontinuous actions are given by represen-
tations of topological groups by isometries on metric spaces. Indeed, let (X, dX) be a
metric space on which G acts by isometries and let A ∈ UdX . We can suppose that A is
of the form A = {(x, y) ∈ X× X : dX(x, y) < ε} for some ε > 0. Therefore, (x, y) ∈ A if
and only if (gx, gy) ∈ A.
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Lemma 5.2.9. Let G be a topological group and let (X, UX) be a uniform space. Suppose
that G acts on (X, UX) by uniform isomorphisms. Then for every non-zero positive function
f ∈ Cb

u(X, UX) there is a positive equivariant linear operator Tf : Cb
u(X, UX) −→ `∞(G) such

that Tf ( f ) > 0. Moreover,

a) if the action of G on X is orbitally continuous, then the image of Tf is contained in
Cb

u(G, F );

b) if the action of G on X is motion equicontinuous, then the image of Tf is contained in
Cb

u(G, R);

c) if the action of G on X is uniformly equicontinuos, then the image of Tf is contained in
Cb

u(G, L ).

An action of a topological group on a uniform space is orbitally continuous if it
is orbitally continuous w.r.t the topology induced by the uniform structure. This is
equivalent to asking that the map

(G, F ) −→ (X, UX), g 7−→ gx

is uniformly continuous for every x ∈ X.

Proof of Lemma 5.2.9. Let f ∈ Cb
u(X, UX) be a non-zero positive function. Take x0 ∈ X

such that f (x0) > 0, and define

Tf : Cb
u(X, UX) −→ `∞(G), φ 7−→ Tf (φ),

where Tf (φ)(g) = φ(gx0) for every g ∈ G. Clearly, Tf is well-defined, linear and pos-
itive. Moreover, Tf ( f ) > 0 because of the choice of x0. Let now a ∈ G and notice
that

Tf (aφ)(g) = φ(a−1gx0) = πL(a)φ(gx0) = πL(a)Tf (φ)(g)

for every φ ∈ Cb
u(X, UX) and every g ∈ G. We can conclude that Tf is equivariant

with respect to the induced representation of G on Cb
u(X, UX) and the left-translation

representation of G on `∞(G).
The proof of point a) is straightforward as the composition of continuous maps is

continuous. For the proofs of point b) and c), we refer to [P06, Lemma 3.6.5].

Corollary 5.2.10. If G has the Ud-fixed-point property for cones, then for every action of G
on a uniform space (X, UX) by uniform isomorphisms, the induced representation of G on
Cb

u(X, UX) has the invariant normalized integral property.

Proof. By Lemma 5.2.9, for every non-zero positive function f ∈ Cb
u(X, UX) there is a

positive equivariant operator Tf from Cb
u(X, UX) to `∞(G) such that Tf ( f ) > 0. We can

conclude using the fact that the Ud-fixed-point property is equivalent to G having the
invariant normalized integral property for `∞(G) by Theorem 5.2.1.
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The following result is an elaboration of point d) of Theorem 5.2.1 for the uniform
structures F , R and L .

Corollary 5.2.11. Let G be a topological group.

a) The group G has the F -fixed-point property for cones if and only if for every orbitally
continuous action of G on a uniform space (X, UX) by uniform isomorphisms, the induced
representation of G on Cb

u(X, UX) has the invariant normalized integral property.

b) The group G has the R-fixed-point property for cones if and only if for every motion
equicontinuous action of G on a uniform space (X, UX) by uniform isomorphisms, the
induced representation of G on Cb

u(X, UX) has the invariant normalized integral property.

c) The group G has the L -fixed-point property for cones if and only if for every uniformly
equicontinuous action of G on a uniform space (X, UX) by uniform isomorphisms, the
induced representation of G on Cb

u(X, UX) has the invariant normalized integral property.

Proof. We only give the proof of point a). The proofs of the points b) and c) are similar.
Therefore, suppose that G has the F -fixed-point property for cones and that it has an
orbitally continuous action on a uniform space (X, UX) by uniform isomorphisms. Us-
ing point a) of Proposition 5.2.11, the induced representation of G on Cb

u(X, UX) has the
invariant normalized integral property. For the if part, we apply the hypothesis to the
uniform space (G, F ), and then we conclude with Theorem 5.2.1.

Corollary 5.2.12. Let G be a topological group with the L -fixed-point property for cones. For
every orbitally continuous action of G on a discrete space X, the induced representation of G on
`∞(X) has the invariant normalized integral property.

Proof. Since every continuous action of a topological group on a discrete space is uni-
formly equicontinuous, we can use point c) of Proposition 5.2.11 to show that `∞(X)
has the invariant normalized integral property.

Remark 5.2.13. The previous two corollaries are still true if we change invariant nor-
malized integral property with translate property.

Lemma 5.2.14. Let G be a topological group and let (E, || · ||) be a Banach lattice. Suppose that
G has a continuous representation on E by positive linear isometries. Then for every non-zero
positive vector v ∈ E there is a positive equivariant linear operator Tv : E −→ Cb

u(G, L ) such
that Tv(v) > 0.

Be careful that here we mean equivariant with respect to the right-translation repre-
sentation of G on Cb

u(G, L ).

Proof of Lemma 5.2.9. Let v ∈ E be a non-zero positive vector. By the Hahn-Banach The-
orem there is a positive λ ∈ E′ such that λ(v) > 0. We define the operator

Tv : E −→ Cb
u(G, L ), w 7−→ Tv(w),
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where Tv(w) = λ(gw) for every g ∈ G. Firstly, we should check that Tv is well-defined.
Let w ∈ E and note that

sup
g∈G
|λ(gw)| ≤ ||λ||op||w|| for every g ∈ G.

Therefore, Tv(w) is a bounded function. Then we have to check that Tv(w) is left-
uniformly continuous. To this end, let ε > 0. As the representation of G on E is contin-
uous, there is a neighborhood of the identity A ⊂ G such that

||aw− w|| < ε

||λ||op
for every a ∈ A.

Hence,

|πR(a)Tv(w)(g)− Tv(w)(g)| = |λ(gaw)− λ(gw)|
= |λ(gaw− gw)|
≤ ||λ||op||gaw− gw||
≤ ||λ||op||aw− w|| < ε

for every g ∈ G and a ∈ A. This shows that Tv(w) ∈ Cb
u(G, L ) and so we can conclude

that Tv is well-defined. Moreover, Tv is linear, positive and Tv(v) > 0. Therefore, we
proceed to prove that Tv is equivariant. Let a ∈ G and w ∈ E. Then

Tv(aw)(g) = λ(gaw) = Tv(w)(ga) = πR(a)Tv(w)(g) for every g ∈ G.

Compare the following result with the amenable case (Corollary 1.4.18).

Corollary 5.2.15. Let G be a topological group. Then the following are equivalent:

a) the group G has the R-fixed-point property for cones;

b) the group G has the invariant normalized integral property for Cb
u(G, R);

c) for every jointly continuous action of G on a compact space K, the induced representation
of G on C(K) has the invariant integral property;

d) for every orbitally continuous action of G on a topological space X, the induced represen-
tation of G on

Cb(X)c =
{

f ∈ Cb(X) : g 7−→ g f is || · ||∞-continuous
}

has the invariant normalized integral property.
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Proof. Point a) and b) are equivalent by Theorem 5.2.1. We proceed to prove that points
b) and c) are also equivalent.

For the first implication, let K be a compact set and suppose that G acts on it jointly
continuous. Therefore, the induced representation of G on C(K) is continuous with re-
spect to the || · ||∞-norm by Proposition 3.4.9. Fix a non-zero positive function φ ∈ C(K).
By Lemma 5.2.9, there is a positive equivariant linear operator Tφ from C(K) to Cb

u(G, L )
such that Tφ(φ) > 0. Note that we consider the right-translation representation πR of
G on Cb

u(G, L ). This representation has the invariant normalized integral property be-
cause the representation πL of G on Cb

u(G, R) also has. Now the operator Tφ maps the
space C(K, φ) into

(
Cb

u(G, L ), Tφ(φ)
)
. On this last one there is an invariant normalized

integral I by hypothesis. Then the functional given by I = I ◦ Tφ is an invariant normal-
ized integral for C(K, φ).

We turn now to the inverse implication. By Theorem 2.4.20, Cb
u(G, R) is Riesz iso-

metric to C(K), where K is the weak-* compact set defined as

K =
{

ψ ∈ B+
1 : ψ is an extreme point of B+

1 such that ψ(1G) = 1
}

.

Here, B+
1 =

{
ψ ∈ Cb

u(G, R)′+ : ||ψ||op ≤ 1
}

. As the representation πL of G on Cb
u(G, R) is

|| · ||∞-continuous, the action of G on K is orbitally continuous for the weak-* topology.
Moreover, this action is jointly continuous for the weak-* topology as K is bounded.
Hence, the representation of G on C(K) is || · ||∞-continuous by Proposition 3.4.9. Now,
we can use the invariant normalized integral property of C(K) to conclude that G also
has the invariant normalized integral property for Cb

u(G, R).
Finally, we conclude by showing that the points b) and d) are equivalent. Suppose

that b) is true and suppose that G acts on a topological space X. Consider the vector
subspace

Cb(X)c =
{

f ∈ Cb(X) : g 7−→ g f is || · ||∞-continuous
}
⊂ Cb(X).

Then (Cb(X)c, || · ||∞) is a Banach lattice on which G acts continuously, as explained
in point 6) of Example 2.4.2. By Lemma 5.2.14, for every non-zero positive function
f ∈ Cb(X)c there is a positive equivariant linear operator from Cb(X)c to Cb

u(G, L ).
Therefore, we can use the invariant normalized integral property of the representa-
tion πR of G on Cb

u(G, L ) to show that there is an invariant normalized integral on
(Cb(X), f ). The inverse implication is direct because Cb(G)c = Cb

ru(G) = Cb
u(G, R).

5.3 A functional perspective

We saw that the U -fixed-point property for cones is characterized by the invariant nor-
malized integral property for the Banach lattice of bounded U -uniformly continuous
functions. Here, we want to understand for which other ordered vector spaces the U -
fixed-point property for cones implies the invariant normalized integral property. Note
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Chapter 5. The Fixed-Point Property for Cones

that this kind of question was already studied and largely used in the case of amenabil-
ity. See, for example, the work of Zimmer [Z84, Chapter 4].

In this section, every group representation on a normed Riesz space is by positive
linear isometries.

Let G be a topological group and let U be a functionally invariant uniformity for
G. Suppose that G has a representation π on a normed Riesz space E. Recall from
Definition 5.1.1 that the adjoint representation π∗ on E∗ is locally bounded (U , U ∗

c )-
uniformly continuous if there is a non-zero positive functional λ ∈ E∗ such that the
orbital map g 7−→ gλ is bounded and (U , U ∗

c )-uniformly continuous. Here, U ∗
c is the

canonical uniformity of E∗ with respect to the weak-* topology.

Theorem 5.3.1. Let G be a topological group and let U be a functionally invariant uniformity
for G. Then the following assertions are equivalent:

a) the group G has the U -fixed-point property for cones;

b) every representation π of G on a normed Riesz space E such that E is G-dominated and
π∗ is locally bounded (U , U ∗

c )-uniformly continuous admits an invariant normalized
integral;

c) every representation π of G on a Banach lattice E such that E is asymptotically G-
dominated and π∗ is locally bounded (U , U ∗

c )-uniformly continuous admits an invariant
normalized integral.

Proof. We start by showing that a) implies b). Let E and π be as in the hypothesis of
b). Note that the positive polar cone E∗+ of E∗ is convex and proper. If we equip the
algebraic dual of E with the weak-* topology, then E∗+ is closed in E∗ ( [AT07, Theorem
2.13]). As closed subspaces of complete spaces are complete ( [Bou71, II §3 No.4 Propo-
sition 8]), we have that E∗+ is weak-* complete, and in particular weakly complete. Let’s
now look at the adjoint action of G on E∗. The adjoint representation is of cobounded
type as the adjoint of the adjoint representation it is only the initial one, as the topolog-
ical dual of (E∗, weak-∗) is E ( [AB99, Theorem 5.93]). Moreover, π∗ is locally bounded
(U , U ∗

c )-uniformly continuous by hypothesis. Thus, we can apply the U -fixed-point
property for cones to find an invariant normalized integral on E.

Now, we want to show that b) implies c). To this end, let E and π as in the hypothesis
of c). By Remark 3.3.3, we can suppose that the norm of E is of the form p∞

d , where d
is the asymptotically G-dominating element of E. Thanks to Proposition 3.3.4, there is
a G-dominated Riesz subspace of E, say D, which is p∞

d -norm dense in E. Consider the
G-equivariant continuous linear operator given by restriction

res : (E∗, weak-∗) −→ (D∗, weak-∗), ψ 7−→ res(ψ) = ψ|D.

Let λ ∈ E∗+ be the non-zero positive functional which witnesses the locally bounded
(U , U ∗

c )-uniformly continuous condition. Then res(λ) is a non-zero positive functional
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defined on D, and the map g 7−→ g · res(λ) is bounded (U , U ∗
c )-uniformly continuous.

Thus, the adjoint representations of G on D∗ is locally bounded (U , U ∗
c )-uniformly

continuous. This means that D and π|D respect the hypothesis of b). Accordingly, there
is an invariant normalized integral I on D. Now, I is continuous with respect to the p∞

d -
norm by Corollary 4.1.7, and hence uniformly continuous. We can extend I to a linear
functional I defined on E because D is p∞

d -dense in E. We claim that I is an invariant
normalized integral on E. It is clearly normalized on d. Thus, we only have to show
that it is invariant. Let v ∈ E, then there is a sequence (vn)n in D which converges to v
in p∞

d -norm. Therefore,

I(gv) = I(g lim
n

vn) = I(lim
n

gvn) = lim
n

I(gvn) = lim
n

I(gvn)

= lim
n

I(vn) = lim
n

I(vn) = I(lim
n

vn) = I(v) for every g ∈ G.

This shows that I is an invariant normalized integral on E.
To conclude, we want to show that c) implies a). However, this is direct because

c) implies that G has the invariant normalized integral property for Cb
u(G, U ), and this

implies that G has the U -fixed-point property for cones by Theorem 5.2.1. Indeed, let
f ∈ Cb

u(G, U ) be a non-zero positive function. Then (Cb
u(G, U ), f )∞ together with the

p∞
f -norm is a Banach lattice asymptotically G-dominated by f thanks to Theorem 3.2.14.

Moreover, the adjoint representation πL of the left-translation representation is locally
bounded (U , U ∗

c )-uniformly continuous by Lemma 1.4.13. Therefore, we can conclude
that there exists an invariant normalized integral on (Cb

u(G, U ), f )∞.

We want to distil the essence of the translate property as done for invariant normal-
ized integrals. Note that the translate property has a significant advantage: it does not
depend on the ambient space. This will be useful in situations where we can not have
control over the cobounded condition.

Definition 5.3.2. Let G be a topological group and let U be a functionally invariant
uniformity for G. We say that G has the abstract U -translate property if whenever G
has a representation π on a Banach lattice E by positive linear isometries, then for every
non-zero positive vector v ∈ E for which there is a positive linear functional λ ∈ E′ with
λ(v) 6= 0 and such that the orbital map g 7−→ gλ is bounded and (U , U ∗

c )-uniformly
continuous we have that

n

∑
j=1

tjgjv ≥ 0 implies
n

∑
j=1

tj ≥ 0 for every t1, ..., tn ∈ R and g1, ..., gn ∈ G.

Theorem 5.3.3. Let G be a topological group and let U be a functionally invariant uniformity
for G. Then G has the abstract U -translate property if and only if G has the translate property
for Cb

u(G, U ).

Proof. We start by showing that the abstract U -translate property implies the trans-
late property for Cb

u(G, U ). Let f ∈ Cb
u(G, U ) be a non-zero positive function and let
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t1, ..., tn ∈ R and g1, ..., gn ∈ G such that ∑n
j=1 tjgj f ≥ 0. Take x ∈ G such that f (x) 6= 0

and consider the evaluation map evx at point x ∈ G. Then evx( f ) = f (x) 6= 0 and
evx ≥ 0. Moreover, the orbital map g 7−→ g · evx is bounded and (U , U ∗

c )-uniformly
continuous by Lemma 1.4.13. Therefore, we can apply the abstract U -translate property
to Cb

u(G, U ) to conclude that ∑n
j=1 tj ≥ 0 as wished.

Let now prove the converse. Let E, v and λ as in the definition of the abstract U -
translate property for G and define the map

f : (G, U ) −→ (E′, U ∗
c ) −→ (R, Uc) g 7−→ gλ 7−→ evv(gλ) = λ(gv),

where evv is the evaluation map at point v ∈ E+. Then f ∈ Cb
u(G, U ) as the orbital

action on λ is bounded and (U , U ∗
c )-uniformly continuous, and the evaluation map

evv is (U , U ∗
c )-uniformly continuous. Moreover, f is positive and non-zero as f (e) =

λ(v) 6= 0. Let now t1, ..., tn ∈ R and g1, ..., gn ∈ G such that ∑n
j=1 tjgjv ≥ 0. Then

0 ≤ g−1
n

∑
j=1

tjgjv =
n

∑
j=1

tjg−1gjv

and so

0 ≤
n

∑
j=1

tjλ
(

g−1gjv
)
=

n

∑
j=1

tj f (g−1
j g) =

n

∑
j=1

tjgj f (g) for every g ∈ G.

We can employ the translate property of G for Cb
u(G, U ) to conclude that ∑n

j=1 tj ≥ 0 as
wished.

In the following definition, we drop the locally uniformly continuous condition on
the dual of the U -abstract translate property, but we add continuity of the representa-
tion.

Definition 5.3.4. We say that a topological group G has the abstract continuous trans-
late property if whenever G has a continuous representation on a Banach lattice E by
positive linear isometries, then for every non-zero positive vector v ∈ E, we have that

n

∑
j=1

tjgjv ≥ 0 implies
n

∑
j=1

tj ≥ 0 for every t1, ..., tn ∈ R and g1, ..., gn ∈ G.

The following theorem will be helpful later for studying hereditary properties of the
translate property for Cb

u(G, R). In particular, it shows another time the strength of the
uniform structure R.

Theorem 5.3.5. Let G be a topological group. Then G has the abstract continuous translate
property if and only if G has the translate property for Cb

u(G, R).
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Proof. Suppose that G has the abstract continuous translate property. Then the left-
translation representation of G on the Banach lattice Cb

u(G, R) is continuous. Therefore,
G has the translate property for Cb

u(G, R).
Now, suppose that G has the translate property for Cb

u(G, R) and let π be a con-
tinuous representation of G on a Banach lattice E by positive linear isometries. Let
v ∈ E be a non-zero positive vector and let t1, ..., tn ∈ R and g1, ..., gn ∈ G such that
∑n

j=1 tjπ(gj)v ≥ 0. By Lemma 5.2.14, there is a positive equivariant linear operator Tv

from E to Cb
u(G, L ) such that Tv(v) > 0. Therefore,

0 ≤ Tv

(
n

∑
j=1

tjπ(gj)v

)
=

n

∑
j=1

tjπR(gj)Tv(v).

Nevertheless, saying that the representation πL of G on Cb
u(G, R) has the translate prop-

erty is equivalently saying that the representation πR of G on Cb
u(G, L ) has the translate

property. Thus, we can conclude that ∑n
j=1 tj ≥ 0 as wished.
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Chapter 6

The Locally Compact Case

The chapter handles locally compact groups. The central idea is to employ the theory of
measure for locally compact spaces to develop new tools to investigate the fixed-point
property for cones for locally compact groups.

The first section repeats some basics about Borel measures on locally compact groups
and positive R-modules. Then we use positive modules of compactly supported Borel
measures to adapt the definitions of dominated ordered vector space and invariant nor-
malized integral to the measurable setting. Consequently, even dominated norms will
have a measurable renovation. After that, we study the properties of positive functional
on these new measurable dominated spaces. Finally, we apply the developed theory to
the fixed-point property for cones.

Highlights of this Chapter are Theorem 6.3.4, which shows the equivalence of the
invariant integral properties on the classical Banach lattices, Theorem 6.3.8, which gives
a complete answer to the Greenleaf’s question in the locally compact case and Theorem
6.3.10, which answers Greenleaf’s question also for all the classical Banach lattices.

In this chapter, G is always a locally compact group, and mG is a fixed left-invariant
Haar measure for G.

6.1 Measures, modules and convolution

The section is devoted to recall some facts about measures on locally compact groups
and define positive R-modules. Moreover, we explain how R-modules generalize group
representations.

6.1.A. Measures and convolution. Let B(G) be the Borel σ-algebra of the group G, i.e.,
the σ-algebra generated by the open sets of the topology of G. Recall that a measure on
G is said a Borel measure if it is defined on the σ-algebra B(G).

Definition 6.1.1. Let µ be a Borel measure on G. Then we say that:
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- the measure µ is regular, if

a) each compact subset K of G satisfies µ(K) < ∞

b) each set A ∈ B(G) satisfies

µ(A) = inf {µ(U) : A ⊂ U and U ⊂ G open }

c) each open subset U of G satisfies

µ(U) = sup {µ(K) : K ⊂ U and K ⊂ G compact } ;

- the measure µ is signed, if it also takes negative values;

- the measure µ is finite, if it only takes finite values.

We writeM(G) for the vector space of all signed finite regular Borel measures on
G. Recall thatM(G) equipped with the vector ordering defined by

µ ≤ λ ⇐⇒ µ(A) ≤ λ(A) for all A ∈ B(G)

is a Riesz space. In particular, this means that there is an absolute value operation on
M(G) which can be explicit given by the formula

|µ|(A) = sup

{
n

∑
j=1
|µ(Aj)| : {A1, ..., An} is a partition of A

}
,

where µ ∈ M(G) and A ∈ B(G). We refer to [AT07, p. 22] and to [AB99, Section 10.10]
for details.

Definition 6.1.2. The total variation of a measure µ ∈ M(G) is defined as the value
|µ|(G). The total variation norm onM(G) is defined as ||µ||TV = |µ|(G) for µ ∈ M(G).

The Riesz space M(G) equipped with the total variation norm becomes a Banach
space, see [C13, Proposition 4.1.8]. In particular, M(G) is a Banach lattice as the total
variation norm is monotone by definition.

Definition 6.1.3. Let µ1 and µ2 two measures inM(G). We define their convolution as

(µ1 ∗ µ2)(A) =
∫

G
µ2(x−1A)dµ1(x) =

∫
G

µ1(Ay−1)dµ2(y),

where A ∈ B(G).

The preceding expression is well-defined and belongs to M(G), see [C13, Lemma
9.4.5]. Moreover,

||µ1 ∗ µ2||TV ≤ ||µ1||TV||µ2||TV for every µ1, µ2 ∈ M(G).
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It turns out that the Banach space (M(G), || · ||TV) considered with the convolution as
multiplication is a unital Banach algebra ( [C13, Proposition 9.4.6]).

We are not directly interested into M(G) but rather to its subspaces. But first to
go through the structure of M(G), let’s recall that a Borel measure µ1 is absolutely
continuous with respect to another Borel measure µ2 if for every A ∈ B(G) such that
µ1(A) = 0, then µ2(A) = 0.

WriteM(G)a for the set of all signed finite regular Borel measures which are abso-
lutely continuous with respect to mG. ThenM(G)a is an (algebraic) ideal of the Banach
algebraM(G) ( [C13, Proposition 9.4.7 (a)]).

Theorem 6.1.4. The linear operator

T :
(

L1(G), || · ||1
)
−→ (M(G)a, || · ||TV) f 7−→ T( f ) = µ f ,

where the measure µ f is defined as µ f (A) =
∫

A f (g)dµ(g), is an isometric isomorphism of
Banach algebras.

Proof. See [R02, Theorem A.1.12].

Definition 6.1.5. The support supp(µ) of a measure µ ∈ M(G) is the complement of
the largest open subset of G of µ-measure zero.

By definition, supp(µ) is the smallest closed set whose complement has measure
equal to zero under µ. Hence, the support of a measure is always a closed subset of G.

Write M00(G) for the set of all signed finite regular measures of G with compact
support.

Proposition 6.1.6. The setM00(G) is a normed subalgebra ofM(G).

Proof. First of all, note that the set inclusionM00(G) ⊂ M(G) holds by [Bou63, III §2
No.3 Proposition 11]. Next, we show thatM00(G) is a vector subspace ofM(G). It is
clear thatM00(G) is closed by multiplication by a scalar because

supp(αµ) = supp(µ) for every non-zero α ∈ R and µ ∈ M00(G).

Let now µ1 and µ2 be inM00(G). By [Bou63, III §2 No.2 Proposition 4],

supp(µ1 + µ2) ⊂ supp(µ1) ∪ supp(µ2).

As the union of compact sets is compact and the support of a measure is closed by
definition, we can conclude that the measure µ1 + µ2 has compact support. This proves
thatM00(G) is a vector subspace ofM(G). Finally, we check thatM00(G) is closed by
convolution. Let µ1 and µ2 inM00(G). Then

supp(µ1 ∗ µ2) ⊂ supp(µ1)supp(µ2)

by [Bou59, VIII §1 No.4 Proposition 5 a)]. Now, the set supp(µ1)supp(µ2) is compact
by [HR63, Theorem (4.4)]. This implies that supp(µ1 ∗ µ2) is compact, and hence that
M00(G) is a normed subalgebra ofM(G).
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WriteM00(G)a for the set of all signed compactly supported regular measures of
G which are absolutely continuous with respect to the Haar measure mG. In general,
M00(G)a is not an (algebraic) ideal of M(G) but it is an (algebraic) ideal of M00(G).
This last assertion can be shown using the same proof of [C13, Proposition 9.4.7 (a)].
Moreover, the Riesz space C00(G) can be identified to a subspace ofM00(G)a using the
operator T of Theorem 6.1.4.

6.1.B. About positive R-modules. Before defining the main object of study of this chap-
ter, recall that a R-moduleM is the data of an abelian group (M,+), a ring R and an
operation map R×M −→M such that:

(M1) r · (m1 + m2) = r ·m1 + r ·m2 for every r ∈ R and m1, m2 ∈ M;

(M2) (r1 + r2) ·m = r1 ·m + r2 ·m for every r1, r2 ∈ R and m ∈ M;

(M3) (r1r2) ·m = r1 · (r2 ·m) for every r1, r2 ∈ R and m ∈ M.

Definition 6.1.7. Suppose that R andM are ordered vector spaces. We say thatM is a
positive R-module if it is a R-module and

r ·m ≥ 0 for every positive r ∈ R and every positive m ∈ M.

Example 6.1.8. (Examples of positive R-modules)

1) Let E be an ordered vector space and let L(E) be the set of all linear operators from
E to E. Then E is a positive L(E)-module with operation map given by

T · v = T(v) for T ∈ L(E) and v ∈ E.

2) Let A be a C∗-algebra equipped with its C∗-order. Then A is a positive A-module
with operation map given by

a · b = aba∗ for a, b ∈ A.

Indeed, the C∗-cone Csa of A is invariant under conjugation, see [D77, 1.6.8].

We are only interested in positive M00(G)-module. Note that if E is a positive
M00(G)-module, then there is a natural action by positive linear automorphisms of
the group G on E given by gv = δg · v for g ∈ G and v ∈ E. If E is also a normed Riesz
space, we always suppose that this action is by positive linear isometries.

Therefore, let’s look at some specific example of positiveM00(G)-modules.

Let p ∈ [1, ∞]. We define the convolution between the functions f1 ∈ L1(G) and
f2 ∈ Lp(G) as

( f1 ∗ f2)(g) =
∫

G
f1(x) f2(g−1x)dmG(x) for mG-almost every g ∈ G.
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This expression is well-defined by [HR63, Theorem (20.8)] and turns Lp(G) into a posi-
tive L1(G)-module ( [HR70, Theorem (32.16)]).

Moreover, we define the convolution between a measure and a function by the
formula

(µ ∗ f )(g) =
∫

G
f (x−1g)dµ(x) where g ∈ G, µ ∈ M(G) and f ∈ Lp(G).

This integral exists and is mG-almost everywhere finite by [HR63, Theorem (20.12)]. If
µ ∗ f is defined to be zero when the integral is infinite, we have the following bound

||µ ∗ f ||p ≤ ||µ||TV|| f ||p for all µ ∈ M(G) and f ∈ Lp(G).

We can conclude that:

Proposition 6.1.9. Let G be a locally compact group and let p ∈ [1, ∞]. Then the Banach lattice
Lp(G) is a positiveM(G)-module. In particular, Lp(G) is a positiveM00(G)-module.

Proof. The proof is direct by the definition of convolution between a measure and a
function.

In the case p = 1, there is an intertwining between convolution between functions
and convolution between measures since L1(G) can be identified with the idealM(G)a
as explained in Theorem 6.1.4.

Theorem 6.1.10. Let µ ∈ M(G) and f ∈ L1(G). Then µ ∗ f = µ ∗ µ f , where for the left-
hand side we consider convolution between measures and functions and for the right-hand side
convolution between measures.

Proof. See [HR63, Theorem (20.9)].

This last fact is helpful to give other examples of positiveM00(G)-modules.

Proposition 6.1.11. Let G be a locally compact group. Then each of the following Banach
lattices

L∞(G), Cb(G), Cb
lu(G), Cb

ru(G), Cb
u(G) and C0(G),

is a positiveM(G)-module. In particular, they are all positiveM00(G)-modules.

Proof. We only have to prove that every Banach lattice listed above isM(G)-invariant.
The space L∞(G) is a positiveM(G)-module by Proposition 6.1.9.
Let’s consider the Banach lattice Cb(G) and let f ∈ Cb(G) and µ ∈ M(G). Take a net

(gα)α in G such that limα gα = e, and compute that

lim
α
(µ ∗ f )(gα) = lim

α

∫
G

f (g−1gα)dµ(g)

=
∫

G
lim

α
f (g−1gα)dµ(g)

=
∫

G
f (g−1)dµ(g) = (µ ∗ f )(e).
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This shows that f ∗ µ ∈ Cb(G), and consequently, that Cb(G) is a positive M(G)-
module.

For the space Cb
ru(G), we use the fact that

L1(G) ∗ L∞(G) =
{

φ ∗ f : φ ∈ L1(G) and f ∈ L∞(G)
}
= Cb

ru(G).

This last assertion can be proved using to Cohen-Hewitt Factorization Theorem ( [HR70,
(32.22)] and [HR63, (32.45) (b)] for details). Let µ ∈ M(G) and f ∈ Cb

ru(G). Then there
are φ ∈ L1(G) and F ∈ L∞(G) such that f = φ ∗ F. We can compute that

µ ∗ f = µ ∗ (φ ∗ F) =
(
µ ∗ µφ

)
∗ F.

By Theorems 6.1.4 and 6.1.10, µ ∗ µφ ∈ M(G)a and there is υ ∈ L1(G) such that µ ∗ µφ =
µυ. Therefore,

µ ∗ f = µυ ∗ F = υ ∗ F ∈ Cb
ru(G).

We can conclude that Cb
ru(G) is a positiveM(G)-module.

Let’s move on the Banach lattice Cb
lu(G). By Cohen-Hewitt Factorization Theorem,

we have that

L∞(G) ∗ L1(G) =
{

f ∗ φ : f ∈ L∞(G) and φ ∈ L1(G)
}
= Cb

lu(G),

see [HR63, (32.45) (d)]. Therefore, take f ∈ Cb
lu(G) and µ ∈ M(G). Then there are

F ∈ L∞(G) and φ ∈ L1(G) such that f = F ∗ µ. Thus,

µ ∗ f = µ ∗ (F ∗ φ) = (µ ∗ F) ∗ φ ∈ Cb
lu(G)

as µ ∗ F ∈ L∞(G).
Finally, the proof for the remaining two Banach lattices Cb

u(G) and C0(G) is similar
to the proof for Cb

ru(G). In fact,

L1(G) ∗ Cb
lu(G) =

{
φ ∗ f : φ ∈ L1(G) and f ∈ Cb

lu(G)
}
= Cb

u(G)

and

L1(G) ∗ C0(G) =
{

φ ∗ f : φ ∈ L1(G) and f ∈ C0(G)
}
= C0(G)

by Cohen-Hewitt Factorization Theorem. We refer to [HR63, (32.45)] and to [HR63,
(32.44) (f)], respectively, for details about the factorization of Cb

u(G) and C0(G) above.

Proposition 6.1.12. Let G be a locally compact group. Then the normed Riesz space C00(G) is
a positiveM00(G)-module.
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Proof. As before, we only have to prove that C00(G) isM00(G)-invariant. Therefore, let
µ ∈ M(G) and φ ∈ C00(G). By Proposition 6.1.11, µ ∗ φ is in C0(G). If we can show that
µ ∗ φ has compact support, we are done. However, this is straightforward as

supp(µ ∗ φ) = supp(µ ∗ µφ) ⊂ supp(µ)supp(µφ) = supp(µ)supp(φ).

We can conclude that C00(G) is a positiveM00(G)-module.

We introduce another example of a positiveM(G)-module that will be used in Ap-
pendix B. This example differs from the preceding ones as we are not looking at func-
tions anymore but at linear operators between Hilbert spaces.

Let G be a locally compact group, and suppose that G has a continuous unitary rep-
resentation σ on a (complex) Hilbert space H. Recall that B(H), the vector spaces of
all bounded linear operators of H, is an ordered vector spaces when equipped with its
C∗-order. As seen in point 6) of Example 4.1.11, the representation σ induces a repre-
sentation Adσ on B(H) by positive linear automorphisms via the formula

Adσ(g)T = σ(g)Tσ(g)∗ for g ∈ G and T ∈ B(H).

In general, the representation Adσ is not continuous for the operator norm on B(H).

The representation Adσ leaves invariant many interesting subspaces of B(H). For
instance, the subspace of trace-class operators TC(H), the subspace of Hilbert-Schmidt
operators HS(H), the subspace of compact operators B0(H) and the one of finite-rank
operators F (H). All because of the fact that they are (algebraic) bi-ideals in B(H), see
[S18, Theorem 6.6]. Moreover, it leaves invariant the subspace of self-adjoint operators
Bsa(H) as

(Adσ(g)T)∗ = (σ(g)Tσ(g)∗)∗ = σ(g)T∗σ(g)∗ = σ(g)Tσ(g)∗ = Adσ(g)T

for every g ∈ G and T ∈ Bsa(H).

Let’s look at the vector subspace TC(H) of all trace-class operators on H equipped
with the trace norm

||T||TC = tr
(√

T∗T
)

for T ∈ TC(H).

The pair (TC(H), || · ||TC) is a Banach algebra ( [S18, Theorem 6.15]) and its topological
dual is equal to B(H) ( [S18, Theorem 6.17]). The canonical duality map is given by

B(H)× TC(H) −→ R, (T, S) 7−→ 〈T|S〉 = tr(TS).

Lemma 6.1.13. The representation Adσ of G on TC(H) is continuous for the trace norm || · ||TC.
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Before proving this lemma, recall that we have the following isometric isomorphism

(TC(H), || · ||TC) ∼= (H′ ⊗π H, || · ||π),

where || · ||π is the projective norm and ⊗π is the closure of the abstract tensor product
with respect to the projective norm, see [Ry02, Corollary 4.8] for details. Moreover, the
isomorphism is equivariant when we consider the Adσ representation of G on TC(H)
and the extension of the tensor representation σ∗ ⊗ σ of G onH′ ⊗π H.

Proof of Lemma 6.1.13. The the adjoint representation of G on H′ is continuous for the
operator norm as the unitary representation σ of G onH is continuous. This can be eas-
ily shown thanks to the Riesz Representation Theorem [C97, 3.8]. Therefore, the exten-
sion of the tensor representation σ∗ ⊗ σ of G on H′ ⊗H is continuous for the projective
norm. As continuity of a representation passes to the closure ( [G17, Lemma 4.1.9]), the
representation Adσ of G on TC(H) is continuous for the trace norm.

Corollary 6.1.14. The Adσ representation of G on HS(H) and of B0(H) is continuous for the
Hilbert-Schmidt norm || · ||HS and the operator norm || · ||op, respectively.

Proof. This is due only to the facts that the finite-rank operators F (H) are dense in
HS(H) and in B0(H) for the Hilbert-Schmidt norm and the operator norm, respectively.
Now the restriction of the representation Adσ to F (H) is continuous for both norms
because

||T||op ≤ ||T||HS ≤ ||T||TC for every T ∈ F (H)

by [S18, Proposition 6.4]. The corollary is proved using once again the fact that continu-
ity of a representation passes to the closure ( [G17, Lemma 4.1.9]).

In particular, the adjoint representation (Adσ)∗ of G on B(H) is continuous for the
weak-* topology defined by the duality with TC(H).

We are finally ready to define an action ofM(G) on B(H) using the theory of weak
integration.

Let µ ∈ M(G) and let T ∈ B(H). Then the map

F : (G, µ) −→ B(H), g 7−→ F(g) = Adσ(g)T

is weak-* µ-integrable as for every S ∈ TC(H) the function

〈·|S〉 : (G, µ) −→ R, g 7−→ 〈F(g)|S〉 = tr(Adσ(g)TS)

is continuous and its integral∫
G
〈F(g)|S〉 dµ(g) =

∫
G

tr (Adσ(g)TS) dµ(g) ≤ ||µ||TV||T||op||S||TC
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is finite. Therefore, the weak integral∫
G

F(g)dµ(g) =
∫

G
Adσ(g)Tdµ(g)

defined by the formula〈∫
G

F(g)dµ(g)|S
〉

=
∫

G
〈F(g)|S〉 dµ(g) for every S ∈ TC(H)

is an element of B(H) by the Gelfand-Dunford Theorem ( [Bou59, VI §1 No.4 Théorème
1]). Thus, the map

M(G)×B(H) −→ B(H), (µ, T) 7−→ µ · T =
∫

G
Adσ(g)Tdµ(g)

is well-defined. Moreover, by definition we have that

||µ · T||op ≤ ||µ||TV||T||op for every µ ∈ M(G) and T ∈ B(H).

Proposition 6.1.15. Let G be a locally compact group. Then the ordered operator space B(H)
is a positiveM(G)-module. In particular, B(H) is a positiveM00(G)-module.

Proof. We check that all the axioms which define a positive module are satisfied.
Let T1 and T2 be operators in B(H) and let µ ∈ M(G). Then∫
G
〈Adσ(g)(T1 + T2)|S〉 dµ(g) =

∫
G
〈Adσ(g)T1 + Adσ(g)T2|S〉 dµ(g)

=
∫

G
〈Adσ(g)T1|S〉 dµ(g) +

∫
G
〈Adσ(g)T2|S〉 dµ(g)

for every S ∈ TC(H). Therefore, µ · (T1 + T2) = µ · T1 + µ · T2 and so (M1) is satisfied.
Let now µ1 and µ2 be measures inM(G) and T ∈ B(H). Then∫
G
〈Adσ(g)T|S〉 d (µ1 + µ2) (g) =

∫
G
〈Adσ(g)T|S〉 dµ1(g) +

∫
G
〈Adσ(g)T|S〉 dµ2(g)

for every S ∈ TC(H). Consequently, (µ1 + µ2) · T = µ1 · T + µ2 · T and (M2) is true.
We continue showing (M3). Let µ1, µ2 ∈ M(G) and T ∈ B(H). Then∫

G

〈
Adσ(x)

(∫
G

Adσ(g)Tdµ2(g)
)
|S
〉

dµ1(x) =
∫

G

∫
G
〈Adσ(xg)T|S〉 dµ2(g)dµ1(x)

=
∫

G

∫
G
〈σ(xg)Tσ(xg)∗|S〉 dµ2(g)dµ1(x)

=
∫

G
〈Adσ(xg)T|S〉 d(µ1 ∗ µ2)(xg)

for every S ∈ TC(H). We can conclude that µ1 · (µ2 · T) = (µ1 ∗ µ2) · T as wished.
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The axiom (M4) is clear by the fact that

δg · T = Adσ(g)T for every g ∈ G and T ∈ B(H).

It is only left to show that B(H) is a positiveM(G)-module, i.e., µ · T is positive for
every positive µ ∈ M(G) and T ∈ B(H). Let µ ∈ M(G) be a positive measure and
T ∈ B(H) be a positive operator. We want to show that µ · T is a positive operator.
By [S18, Proposition 3.4], it suffices to show that the inequality 〈(µ · T)(v), v〉 ≥ 0 holds
for every v ∈ H Using [M01, Lemma 3.2.1 (a)], we can directly compute that

〈(µ · T)(v), v〉 =
〈(∫

G
Adσ(g)Tdµ(g)

)
(v), v

〉
=

〈∫
G
(Adσ(g)T) (v)dµ(g), v

〉
=
∫

G
〈(Adσ(g)T) (v), v〉 dµ(g) ≥ 0.

Write Bc(H) for the set of the continuous vectors of the representation Adσ, i.e.,

Bc(H) = {T ∈ B(H) : g 7−→ Adσ(g)T is || · ||-continuous} .

Proposition 6.1.16. Let G be a locally compact group. Then each of the following ordered
operator spaces

Bsa(H), Bc(H), B0(H), and TC(H),

is a positiveM(G)-module. In particular, they are all positiveM00(G)-modules.

Proof. Thanks to the last proposition, we only need to prove that the above operator
spaces areM(G)-invariant.

For Bsa(H), we use the fact that taking the adjoint is a weak-* continuous linear
operation together with [M01, Lemma 3.2.1].

For the operator space Bc(H), we use the same strategy used for Cb
ru(G) in Proposi-

tion 6.1.11. In fact, an application of Cohen-Hewitt Theorem gives that

L1(G) · B(H) =
{

φ · T : φ ∈ L1(G) and T ∈ B(H)
}
= Bc(H).

The same idea also applies to B0(H) because

L1(G) · B0(H) =
{

φ · T : φ ∈ L1(G) and T ∈ B0(H)
}
= B0(H).

Finally, the proof that TC(H) isM(G)-invariant is straightforward always by [M01,
Lemma 3.2.1].

Scholium 6.1.17. More examples of positive M(G)-modules can be founded in [R20,
Appendix F.1].
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6.2 A measurable point-of-view

The section has the goal of employing measure theory to generalize the theory devel-
oped in Chapters 3 and 4 to locally compact groups. Note that when considering only
discrete groups, everything done in this section coincides with what was done in Chap-
ter 3. In fact, we want to develop specific tools to use for non-discrete locally compact
groups.

For this section, let E be a positive M00(G)-module. If moreover, (E, || · ||) is a
normed Riesz space, then we say that E is a normed Riesz positive M00(G)-module.
In this case, we ask that the inequality

||µ · v|| ≤ ||µ||TV||v||

holds for every µ ∈ M00(G) and every v ∈ E.

6.2.A. Measurably dominated spaces. Let E be a positive M00(G)-module. A vector
v ∈ E is said measurably dominated, orM00(G)+-dominated, by another vector d ∈ E
if there is a positive µ ∈ M00(G) such that ±v ≤ µ · d.

Definition 6.2.1. Let E be a positive M00(G)-module. For a non-zero positive vector
d ∈ E, we define

(E, d)M = {v ∈ E : ∃µ ∈ M00(G)+ s.t. ± v ≤ µ · d} .

In other words, the set (E, d)M is the space of all vectors of E which areM00(G)+-
dominated by d. Note that (E, d) is a G-invariant subset of E as it isM00(G)-invariant
by definition. Moreover, the following holds:

Proposition 6.2.2. Let E be a positive M00(G)-module. Then the set (E, d)M is a vector
subspace of E for every non-zero positive vector d ∈ E. In particular, if E is a normed Riesz
positiveM00(G)-module, (E, d)M is an ideal, and hence a Riesz subspace of E.

Proof. Let d ∈ E be a non-zero positive vector. We want to show that (E, d)M is a
vector subspace of E. Let v1, v2 ∈ (E, d)M. Then there are µ1, µ2 ∈ M00(G)+ such that
±v1 ≤ µ1 · d and ±v2 ≤ µ2 · d. Therefore,

±(v1 + v2) ≤ µ1 · d + µ2 · d = (µ1 + µ2) · d.

But now µ1 + µ2 ∈ M00(G)+. Thus, v1 + v2 ∈ (E, d)M. Let now α ∈ R and v ∈ (E, d)M.
Then there is µ ∈ M00(G)+ such that ±v ≤ µ · d and so

±(αv) ≤ |α|v ≤ |α| (µ · d) = (|α|µ) · d.

This shows that αv ∈ (E, d)M as |α|µ is a positive element ofM00(G). We can conclude
that (E, d)M is an ideal of E.

Let’s switch to the case where E is a normed Riesz positive M00(G)-module. It is
clear that (E, d)M is closed by taking the absolute value for every non-zero positive
vector d ∈ E. Therefore, (E, d)M is an ideal in E, and hence a Riesz subspace of E.
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If G is a discrete group, thenM00(G)+ = c00(G)+. Therefore, (E, d)M = (E, d) for
every non-zero d ∈ E+. If G is a non-discrete locally compact group, we could not show,
either disproved, this last equality. However, the relation between (E, d) and (E, d)M is
described in the following lemma.

Lemma 6.2.3. Let E be a positiveM00(G)-module, and let d ∈ E be a non-zero positive vector.
Then

a) (E, d) ⊂ (E, d)M and (E, µφ · d) ⊂ (E, d)M for every non-zero positive φ ∈ C00(G);

b) (E, µφ · d) = (E, µφ̃ · d) for every non-zero positive φ, φ̃ ∈ C00(G);

c) (E, µφ · d) = (E, µφ · d)M for every non-zero positive φ ∈ C00(G);

d) (E, µφ · d)M = (E, µφ̃ · d)M ⊂ (E, d)M for every non-zero positive φ, φ̃ ∈ C00(G).

Proof. We start by proving point a). As every positive finite combination of Dirac masses
is inM00(G)+, the inclusion (E, d) ⊂ (E, d)M holds. Similarly for every non-zero posi-
tive φ ∈ C00(G), the inclusion (E, µφ · d) ⊂ (E, d)M also holds, since C00(G) can be seen
as a subspace ofM00(G).

The proofs of points b) and c) are only a consequence of the fact that two non-zero
positive compactly supported continuous functions always G-dominate each other, see
Corollary 3.4.8. Indeed, fix two non-zero positive functions φ and φ̃ in C00(G). It suffices
to show that there are elements g1, ..., gn, x1, ..., xm ∈ G such that µφ · d ≤ ∑n

j=1 gj

(
µφ̃ · d

)
and µφ̃ · d ≤ ∑m

k=1 xk
(
µφ · d

)
. As φ and φ̃ are compactly supported continuous functions,

there are g1, ..., gn ∈ G such that φ ≤ ∑n
j=1 gjφ̃ and x1, ..., xm ∈ G such that φ̃ ≤ ∑m

k=1 xjφ.
Therefore,

µφ · d ≤
(

n

∑
j=1

gjµφ̃

)
· d =

n

∑
j=1

gj

(
µφ̃ · d

)
and

µφ̃ · d ≤
(

m

∑
k=1

xkµφ

)
· d =

m

∑
k=1

xk
(
µφ · d

)
.

The proof to show that (E, µφ · d)M = (E, µφ̃ · d)M is similar.
Let’s prove point c). Let v ∈ (E, µφ · d). Then v ∈ (E, µφ · d)M by point a). Therefore,

(E, µφ · d) ⊂ (E, µφ · d)M. Conversely, let v ∈ (E, µφ · d)M. Then there is a positive
µ ∈ M00(G) such that ±v ≤ µ ·

(
µφ · d

)
=
(
µ ∗ µφ

)
· d. But µ ∗ µφ ∈ C00(G) as it can be

seen as an (algebraic) ideal inM00(G). So, v ∈
(
E, (µ ∗ µφ) · d

)
= (E, µφ · d) by point b).

We can conclude that (E, µφ · d) = (E, µφ · d)M.
Let’s look at point d). Let φ, φ̃ ∈ C00(G) be non-zero positive functions. Then

(E, µφ · d)M = (E, µφ · d) = (E, µφ̃ · d) = (E, µφ̃ · d)M
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by points b) and c). Finally,

(E, µφ · d)M = (E, µφ · d) ⊂ (E, d)M

by point a).

It is natural to extend the notion of dominated norm also for spaces of the form
(E, d)M.

Definition 6.2.4. Let E be a positiveM00(G)-module. For every non-zero positive vec-
tor d ∈ E, we define the possibly infinite value

pd(v) = inf {||µ||TV : ±v ≤ µ · d for µ ∈ M00(G)+} ,

where v ∈ E.

Note that pd(v) is finite if and only if v ∈ (E, d)M. Therefore,

(E, d)M = {v ∈ E : pd(v) < ∞} .

Similarly as in Chapter 3, we have the following proposition:

Proposition 6.2.5. Let E be a positiveM00(G)-module. Then the map

pd : (E, d)M −→ R, v 7−→ pd(v)

is absolutely homogeneous, sub-additive, G-invariant and monotone for every non-zero positive
vector d ∈ E.

Proof. Let d ∈ E be a non-zero positive vector. We start checking that pd is absolutely
homogeneous. Let v ∈ (E, d)M and α ∈ R. Then for every ε > 0 there is µ ∈ M00(G)+
such that

±v ≤ µ · d and pd(v)−
ε

|α| ≤ ||µ||TV ≤ pd(v) +
ε

|α| .

Thus,

− ((|α|µ) · d) ≤ αv ≤ (|α|µ) · d and |α|pd(v)− ε ≤ |α| · ||µ||TV ≤ |α|pd(v) + ε.

As ε was arbitrary, we can conclude that |α|pd(v) = pd(αv).
We continue proving that pd is sub-additive. Let v1, v2 ∈ (E, d)M. Then for every

ε > 0 there are µ1, µ2 ∈ M00(G)+ such that

±v1 ≤ µ1 · d, ±v2 ≤ µ2 · d, ||µ1||TV ≤ pd(v1) +
ε

2
and ||µ2||TV ≤ pd(v2) +

ε

2
.

Therefore,

±(v1 + v2) ≤ (µ1 + µ2) · d and ||µ1 + µ2||TV ≤ pd(v1) + pd(v2) + ε.
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As ε was arbitrary, we have that pd is sub-additive.
We show the monotonicity of the map pd, i.e., if v, w ∈ (E, d)M such that v ≤ w,

then pd(v) ≤ pd(w). Therefore, let v, w ∈ (E, d)M such that v ≤ w. Then there is
µ ∈ M00(G)+ such that ±w ≤ µ · d. This implies that

− (µ · d) ≤ −w ≤ v ≤ w ≤ µ · d,

which suffices to ensure that pd(v) ≤ pd(w).
Finally, the G-invariance is a consequence of the fact that G acts onM00(G) by pos-

itive linear isometries with respect to the total variation norm.

In general, given a non-zero positive vector d ∈ E, the map pd is not a norm on
(E, d)M (cf. example 3.1.9). However, it is a lattice seminorm when E is a normed Riesz
positiveM00(G)-module.

Corollary 6.2.6. Let E be a normed Riesz positive M00(G)-module. Then the map pd is a
lattice seminorm for every non-zero positive vector d ∈ E. In particular, the pair ((E, d)M, pd)
is a locally convex solid Riesz space.

Proof. The map pd is a lattice seminorm for every non-zero positive vector d ∈ E by
proposition 6.2.5. We can conclude using [AB99, Theorem 8.46].

Proposition 6.2.7. Let E be a normed Riesz positiveM00(G)-module. Fix a non-zero positive
vector d ∈ E. Then the map pd has the following properties:

a) the inequality ||v|| ≤ pd(v)||d|| holds for every v ∈ (E, d)M;

b) let h, v ∈ (E, d)M such that h isM00(G)+-dominated by v and v ≥ 0. Then

pd(h) ≤ pv(h)pd(v).

Proof. Let d ∈ E be a non-zero positive vector.
We start showing point a). Let v ∈ (E, d)M. Then for every ε > 0 there is µ ∈

M00(G)+ such that

|v| ≤ µ · d and ||µ||TV ≤ pd(v) +
ε

||d|| .

It follows that

||v|| ≤ ||µ · d|| ≤ ||µ||TV · ||d|| ≤ pd(v)||d||+ ε.

As ε was arbitrary, we can conclude that ||v|| ≤ pd(v)||d||.
For point b) take an ε > 0. Then there are µ1, µ2 ∈ M00(G)+ such that

|h| ≤ µ1 · v, v ≤ µ2 · d, ||µ1||TV ≤ pv(h) + ε and ||µ2||TV ≤ pd(v) + ε.
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We can compute that

|h| ≤ µ1 · v ≤ µ1 · (µ2 · d) = (µ1 ∗ µ2) · d.

Using the fact that pd is monotone, it follows

pd(h) ≤ ||µ1 ∗ µ2||TV

≤ ||µ1||TV||µ2||TV

≤ (pv(h) + ε) (pd(v) + ε)

= pv(h)pd(v) + εpv(h) + εpd(v) + ε2.

As ε was arbitrary, we can conclude that pd(h) ≤ pv(h)pd(v) as wished.

Corollary 6.2.8. Let E be a normed Riesz positiveM00(G)-module. Then, the pair ((E, d)M, pd)
is a normed Riesz space for every non-zero positive vector d ∈ E. Moreover, the group G acts by
positive linear isometries on it.

Proof. The proof is direct by points a) and b) of Proposition 6.2.7.

We continue by comparing the pd-norm and the pd-norm.

Proposition 6.2.9. Let E be a normed Riesz positiveM00(G)-module, and let d ∈ E be a non-
zero positive vector. Let (hα)α ⊂ (E, d)M be a net which converges to h ∈ (E, d)M in pv-norm,
where v is a non-zero positive vector of (E, d)M. Then (hα)α converges to h in pd-norm.

Proof. As the net (hα)α converges to h in pv-norm, for every α there are a nα ∈ N and
elements gα

1 , ..., gα
nα
∈ G, tα

1 , ..., tα
nα
∈ R+ such that

|hα − h| ≤
nα

∑
j=1

tα
j gα

j v and lim
α

nα

∑
j=1

tα
j = 0.

Now, there is µ ∈ M00(G)+ such that |v| ≤ µ · d. This means that

|hα − h| ≤
nα

∑
j=1

tα
j gα

j (µ · d) =
((

nα

∑
j=1

tα
j δgα

j

)
∗ µ

)
︸ ︷︷ ︸

∈ M00(G)+

· d

for every α, and thus

lim
α

∣∣∣∣∣
∣∣∣∣∣
(

nα

∑
j=1

tα
j δgα

j

)
∗ µ

∣∣∣∣∣
∣∣∣∣∣
TV

≤ ||µ||TV lim
α

∣∣∣∣∣
∣∣∣∣∣ nα

∑
j=1

tα
j δgα

j

∣∣∣∣∣
∣∣∣∣∣
TV

≤ ||µ||TV lim
α

(
nα

∑
j=1

tα
j δgα

j

)
(G)

≤ µ(G) lim
α

nα

∑
j=1

tα
j = 0,

which proves the convergence in pd-norm.
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We can conclude that if E is a normed Riesz positiveM00(G)-module and d ∈ E is a
non-zero positive vector, then

||v||
||d|| ≤ pd(v) ≤ pd(v) for every v ∈ (E, d).

Therefore, the pd-norm is weaker than the pd-norm on the space (E, d). A situation
where the two norms are actually equal is given in the following proposition.

Proposition 6.2.10. Let E be one of the normed Riesz positiveM00(G)-modules presented in
Subsection 6.1.B. Fix a non-zero positive vector d ∈ E. Then(

(E, µφ · d), pµφ·d
)
=
(
(E, µφ · d)M, pµφ·d

)
for every non-zero positive φ ∈ C00(G).

Proof. By Lemma 6.2.3, we can fix an arbitrary non-zero positive φ ∈ C00(G). We know
that (E, µφ · d) = (E, µφ · d)M and that pµφ·d ≤ pµφ·d by point c) of Lemma 6.2.3 and
Proposition 6.2.9, respectively. Therefore, it suffices to show that pµφ·d ≤ pµφ·d. To
this aim, let v ∈ (E, µφ · d)M. Then there is a positive net (µα)α in M00(G) such that
|v| ≤

(
µα ∗ µφ

)
· d for every α and limα ||µα||TV = pµφ·d(v). Thus,

pµφ·d(v) ≤ pµφ·d
((

µα ∗ µφ

)
· d
)

= pµφ·d
(
µα · (µφ · d)

)
= pµφ·d

(∫
G

x(µφ · d)dµα(x)
)

≤
∫

G
pµφ·d(x(µφ · d))dµα(x) = ||µα||TV

for every α. Hence, pµφ·d(v) ≤ pµφ·d(v). We can conclude that pµφ·d = pµφ·d as wished.

For dominating norms of the form pµφ∗·d there is also an interesting convergence
property illustrated in the following lemma.

Lemma 6.2.11. Let E be a normed Riesz positive M00(G)-module, and let d ∈ E and φ ∈
C00(G) be non-zero positive vectors. Then for every θ ∈ C1

00(G) and for every bounded approx-
imate identity (eα)α for L1(G) in C1

00(G) with decreasing support, we have that

lim
α

(µθ ∗ µeα) · v = µθ · v and lim
α
(µeα ∗ µθ) · v = µθ · v

in pµφ·d-norm for every v ∈ (E, d)M and every θ ∈ C00(G).

The existence of bounded approximate identities with decreasing support is assured
by Urysohn Lemma and the fact that G is locally compact.
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Proof of Lemma 6.2.11. Let v ∈ (E, d)M, θ ∈ C00(G) and (eα)α a bounded approximate
identity for L1(G) in C1

00(G) with decreasing support. We want to show that limα(µθ ∗
µeα) · v = µθ · v in pµφ·d-norm. Without loss of generality, we can suppose that v is
positive, since (E, d)M is spanned by positive elements. Now the estimation

pµφ·d(µθ ∗ µeα · v− µθ · v) = pµφ·d ((µθ ∗ µeα − µθ) · v)
≤ pµφ·v ((µθ ∗ µeα − µθ) · v) pµφ·d(µφ · v)

holds for every α. The last inequality is possible thanks to point b) of Proposition 3.1.14.
The second term is finite because µφ · v ∈ (E, µφ · d)M. So, let’s focus on the first term.
By Proposition 3.4.12, limα θ ∗ eα = θ in pφ-norm. This means that limα µθ ∗ µeα = µθ

in pµφ-norm. Therefore, for every α there is nα ∈ N and elements gα
1 , ..., gα

nα
∈ G and

tα
1 , ..., tα

nα
∈ R+ such that

|µθ ∗ µeα − µθ| ≤
nα

∑
j=1

tα
j gα

j µφ and lim
α

nα

∑
j=1

tα
j = 0.

This implies that

|µθ ∗ µeα − µθ| · v ≤
(

nα

∑
j=1

tα
j gα

j µφ

)
· v =

nα

∑
j=1

tα
j gα

j (µφ · v).

Hence,

pµφ·v (|µθ ∗ µeα − µθ| · v) ≤ pµφ·v

(
nα

∑
j=1

tα
j gα

j (µφ · v)
)

≤
nα

∑
j=1

tα
j pµφ·v(gα

j (µφ · v)) =
nα

∑
j=1

tα
j ,

for every α. Taking the limit with respect to α of this last inequality, it follows that
limα(µθ ∗ µeα) · v = µθ · v in pµφ·d-norm.

The proof to show that limα(µeα ∗ µθ) · v = µθ · v in pµφ·d-norm is similar.

Scholium 6.2.12. The theory developed in this section for positive M00(G)-modules
could have also been developed for general positive R-modules for R an ordered normed
vector space.

6.2.B. Continuous vectors for measurably dominating norms. Given a normed Riesz
positiveM00(G)-module E, we investigate which are the continuous vectors for the pd-
norm. We don’t know if the natural action of G on the normed Riesz space ((E, d)M, pd)
is continuous. However, we can prove something sufficient for our future purposes.
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Lemma 6.2.13. Let E be a normed Riesz positiveM00(G)-module, and let d ∈ E be a non-zero
positive vector. Define theM00(G)-invariant linear subspace

D = spanR
{

µφ · v : φ ∈ C00(G) and v ∈ (E, d)M
}
⊂ (E, d)M.

Then

a) the action of G on D is orbitally continuous with respect to the pµφ·d-norm for every non-
zero positive φ ∈ C00(G);

b) the action of G on D is orbitally continuous with respect to the pd-norm.

Proof. First of all, we should show that D is genuinely aM00(G)-invariant linear sub-
space of (E, d)M. By definition, D naturally carries a structure of vector space. There-
fore, we have only to check that D is a vector subspace of (E, d)M. Let v ∈ D. Then
there are φ ∈ C00(G) and w ∈ (E, f )M such that v = µφ · w. As w ∈ (E, f )M, there is a
µ ∈ M00(G)+ such that |w| ≤ µ · d. Thus,

|v| ≤ |µφ · w| ≤ |µφ| · |w| ≤ |µφ| · (µ · d) =
(
|µφ| ∗ µ

)︸ ︷︷ ︸
∈M00(G)+

· d.

This proves that D is a subspace of (E, f )M. The M00(G)-invariance is directed by
the definition of D and because the measure µφ lies in the ideal M00(G)a for every
φ ∈ C00(G) .

We begin proving a). Fix µψ · v ∈ D and let (gα)α ⊂ G be a net such that limα gα = e
the identity element of G. Without loss of generality, we can suppose that µφ is pos-
itive as each element in M00(G) is the difference of two positive elements. Then the
estimation

pµφ·d
(

gα

(
µψ · v

)
− µψ · v

)
= pµφ·d

(
(gαµψ − µψ) · v

)
≤ pµφ·d

(
|gαµψ − µψ| · |v|

)
≤ pµψ·|v|

(
|gαµψ − µψ| · |v|

)
pµφ·d

(
µψ · |v|

)
holds for every α. Note that the last inequality is possible thanks to point b) of Proposi-
tion 3.1.14. Now pµφ·d(µψ · |v|) is finite, since µψ · |v| ∈ (E, µφ · d). Therefore, we want to
study the first term. To this aim, note that the action of G on C00(G) is orbitally contin-
uous with respect to the pψ-norm as showed in Lemma 3.4.10. In particular, as we can
see C00(G) as a subspace ofM00(G)a, for every α there are nα ∈ N, tα

1 , ..., tα
nα
∈ R+ and

gα
1 , ..., gα

nα
∈ G such that

|gαµψ − µψ| ≤
nα

∑
j=1

tα
j gα

j µψ and lim
α

nα

∑
j=1

tα
j = 0.
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Multiplying both sides of the previous expression by |v|, we have that

|gαµψ − µψ| · |v| ≤
(

nα

∑
j=1

tα
j gα

j µψ

)
· |v| =

nα

∑
j=1

tα
j gα

j
(
µψ · |v|

)
for every α.

Finally taking the pµψ·|v|-norm of this last inequality, we get the estimation

pµψ·|v|
(
|gαµψ − µψ| · |v|

)
≤ pµψ·|v|

(
nα

∑
j=1

tα
j gα

j
(
µψ · |v|

))

≤
nα

∑
j=1

tα
j pµψ·|v|

(
gα

j (µψ · |v|)
)
=

nα

∑
j=1

tα
j for every α.

This implies that limα pµψ·|v|(|gαµψ − µψ| · |v|) = 0. We can conclude that the action is
orbitally continuous.

The proof of point b) is straightforward using Proposition 6.2.9 and point a).

6.2.C. A new kind of integral. The adaption of dominating spaces to the measurable
setting gives rise to a new notion of normalized integral and consequently a new nor-
malized integral property.

Define the set

M1
00(G) = {µ ∈ M00(G) : µ ≥ 0 and ||µ||TV = λ(G) = 1} .

Then M1
00(G) is a unital monoid under convolution between measures with identity

given by δe. Indeed, if µ1 and µ2 are inM1
00(G), then

(µ1 ∗ µ2)(G) =
∫

G
µ2(g−1G)dµ1(g) =

∫
G

µ2(G)dµ1(g) = µ1(G)µ2(G) = 1.

Proposition 6.2.14. Let E be a positiveM00(G)-module. Take a non-zero positive vector d ∈ E
and a positive linear functional ψ ∈ (E, d)∗M. Suppose that ψ is uniformly bounded on the set{

µ · d : µ ∈ M1
00(G)

}
. Then ψ is continuous for the τ(pd)-topology.

Proof. Set M = sup
{

ψ(µ · d) : µ ∈ M1
00(G)

}
and let (vα)α be a net in (E, d)M which

converges to some v ∈ (E, d)M for the τ(pd)-topology. Then there is a positive net (εα)α

in R converging to zero and a net (µα)α inM00(G) such that

±(vα − v) ≤ µα · d and ||µα||TV < εα for every α.

Therefore,

±ψ(vα − v) ≤ ψ (µα · d)

= ||µα||TV ψ

((
µα

||µα||TV

)
· d
)

≤ M||µα||TV
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for every α. The limit with respect of α of this last inequality gives

lim
α
±ψ(vα − v) ≤ M lim

α
||µα||TV ≤ M lim

α
εα = 0.

This implies that the net (ψ(vα))α is converging to ψ(v) for the τ(pd)-topology showing
the continuity of ψ.

This last result can be improved for normed Riesz positive M00(G)-modules (cf.
with Proposition 4.1.2).

Proposition 6.2.15. Let E be a normed Riesz positiveM00(G)-module. Fix a non-zero positive
vector d ∈ E, and let ψ be a non-zero linear functional on (E, d)M. Then

a) if the functional ψ is positive and uniformly bounded on the set {µ · d : µ ∈ M1
00(G)},

then ψ is continuous for the pd-norm and

||ψ||op ≤ sup
{

ψ(µ · d) : µ ∈ M1
00(G)

}
.

In particular, if ψ is constant on the set {µ · d : µ ∈ M1
00(G)}, then ||ψ||op = ψ(d);

b) if the functional ψ is continuous for the p-norm, then

sup
{

ψ(µ · d) : µ ∈ M1
00(G)

}
≤ ||ψ||op ≤ sup

{
|ψ|(µ · d) : µ ∈ M1

00(G)
}

.

In particular, if ψ is positive, then ||ψ||op = sup
{
|ψ|(µ · d) : µ ∈ M1

00(G)
}

;

d) if the functional ψ is continuous for the pd-norm and constant on the set {µ · d : µ ∈
M1

00(G)}, then ψ is positive.

Proof. We start by proving point a). We already know that ψ is continuous for the pd-
norm. Hence, we want to show that ψ is bounded. Let

M = sup{ψ(µ · d) : µ ∈ M1
00(G)}

and let v ∈ (E, d)M be such that pd(v) = 1. Then there is a positive net (µα)α inM00(G)
such that |v| ≤ µα · d for every α and such that limα ||µα||TV = 1. Therefore,

|ψ(v)| ≤ ψ(|v|) ≤ ψ(µα · d) = ||µα||TV ψ

((
µα

||µα||TV

)
· d
)
≤ M||µα||TV

for every α. Hence, |ψ(v)| ≤ M. This implies that ||ψ||op ≤ M as wished.
If ψ is constant on the set {µ · d : M1

00(G)}, then ||ψ||op ≥ M, where M > 0 is the
value of ψ on the set

{
ψ(µ · d) : µ ∈ M1

00(G)
}

. This is because pd(d) = 1 and ψ(d) = M.
Therefore, ||ψ||op ≥ M finishing the proof.
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Before proving point b), recall that if ψ is a continuous functional on a Riesz space,
then |ψ| is also continuous by [AB99, Theorem 8.48] and ||ψ||op = || |ψ| ||op. Now

0 ≤ |ψ(µ · d)| ≤ |ψ|(µ · d) ≤ ||ψ||op pd(µ · d) ≤ ||ψ||op||µ||TV = ||ψ||op

for every µ ∈ M1
00(G). Hence, we can conclude that

sup
{

ψ(µ · d) : µ ∈ M1
00(G)

}
≤ ||ψ||op.

In order to prove the second inequality, set M = sup{|ψ|(µ · d) : g ∈ G}, and note that
this value is finite as |ψ| is also continuous. Let v ∈ (E, d)M. Then for every ε > 0, there
is a positive µ ∈ M00(G) such that

|v| ≤ µ · d and ||µ||TV ≤ pd(v) +
ε

M
.

Thus,

|ψ|(v) ≤ |ψ|(|v|) ≤ |ψ| ( µ · d) ≤ M||µ||TV ≤ M pd(v) + ε.

As ε and v were chosen arbitrarily, we can conclude that

||ψ||op ≤ sup
{
|ψ|(µ · d) : µ ∈ M1

00(G)
}

.

Finally, we show point d). In order to find a contradiction, suppose that ψ is not
positive. Then there is a non-zero positive vector v ∈ (E, d)M such that pd(v) = 1 and
ψ(v) < 0. Consequently, for every ε > 0 there is a positive µ ∈ M00(G) such that

v ≤ µ · d and 1 ≤ ||µ||TV ≤ 1 +
ε

||ψ||op
.

Now ||ψ||op = |ψ(µ · d)| for every µ ∈ M1
00(G) by point c). This implies that

|ψ| (µ · d− v) = ||ψ||op − ψ(v) > ||ψ||op.

However,

|ψ| (µ · d− v) ≤ ||ψ||op pd (µ · d− v)
≤ ||ψ||op pd (µ · d)
≤ ||ψ||op||µ||TV ≤ ||ψ||op + ε.

Therefore, |ψ| (µ · d− v) ≤ ||ψ||op, since ε was chosen arbitrarily. But this is the contra-
diction we were searching. Hence, ψ is positive.

This last result shows that positivity, continuity and be uniformly bounded on the
majorizing subspace are linked proprieties of a linear functional on (E, d)M. The next
proposition shows that also theM00(G)-module structure influences linear functionals.
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Proposition 6.2.16. Let E be a positiveM00(G)-module. Fix a non-zero positive vector d ∈ E,
and let ψ be a functional defined on (E, d)M. Suppose that there is v ∈ (E, d)M such that ψ is
constant on the set {µ · v : µ ∈ M1

00(G)}. Then ψ(µ · v) = µ(G)ψ(v) for every µ ∈ M00(G).

Proof. Let µ ∈ M00(G). Since the positive cone of a Riesz space is always generating,
we can write

µ = µ1 − µ2 where µ1, µ2 ∈ M00(G)+.

Therefore,

ψ(µ · v) = ψ ((µ1 − µ2) · v)
= ψ(µ1 · v)− ψ(µ2 · v)

= µ1(G) ψ

((
µ1

µ1(G)

)
· v
)
− µ2(G) ψ

((
µ2

µ2(G)

)
· v
)

= µ1(G)ψ(v)− µ2(G)ψ(v)
= ψ(v)(µ1 − µ2)(G) = ψ(v)µ(G).

We are now interested in specific linear functionals.

Definition 6.2.17. Let E by a positive M00(G)-module, and let d ∈ E be a non-zero
positive vector. Then a linear functional ψ on (E, d)M is called:

- an integral, if ψ is positive;

- a normalized integral, if it is an integral and ψ(d) = 1;

- a measurably invariant normalized integral, if it is a normalized integral and
ψ(µ · v) = ψ(v) for every µ ∈ M1

00(G) and every v ∈ (E, d)M.

Remark 6.2.18. One might think that this last definition could create confusion with the
Definition 4.1.4 given in Chapter 4. However, it is not the case because is possible to
understand which type of integral we are considering only by looking at the space on
which it is defined.

Example 6.2.19. Let G be an amenable locally compact group. Then by [G69, Theorem
2.2.1], there is a topological invariant mean m on L∞(G), i.e., a mean m defined on
L∞(G) such that m(φ ∗ f ) = m( f ) for every f ∈ L∞(G) and every φ ∈ P(G). Recall that

P(G) =
{

φ ∈ L1(G) : ||φ||1 = 1 and φ ≥ 0
}

.
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We claim that m is also measurably invariant, and hence a measurably invariant nor-
malized integral on L∞(G, 1G)M = L∞(G). Indeed, let µ ∈ M1

00(G) and take φ ∈ P(G).
We can directly compute that

m(µ ∗ f ) = m (φ ∗ (µ ∗ f )) = m((φ ∗ µ)︸ ︷︷ ︸
∈ P(G)

∗ f ) = m( f ) for every f ∈ L∞(G).

Conversely, every measurably invariant mean on L∞(G) is topologically invariant. In
fact, let m be a mean defined on L∞(G) and let φ ∈ P(G). Then there is a positive
sequence (φn)n in C00(G) which converges to φ in L1-norm. Therefore,

0 ≤ |m(φ ∗ f )−m( f )|
= |m(φ ∗ f )−m(φn ∗ f ) + m(φn ∗ f )−m( f )|
≤ |m ((φ− φn) ∗ f ) |+ |m( f )−m( f )|
≤ ||m||op|| (φ− φn) ∗ f ||∞
≤ ||φ− φn||1|| f ||∞

for every n ∈ N and every f ∈ L∞(G). This implies that m(φ ∗ f ) = m( f ) for every
f ∈ L∞(G). We can conclude that m is topologically invariant.

Let d ∈ E be a non-zero positive vector. We say that (E, d)M admits a measurably
invariant normalized integral if there is a measurably invariant normalized integral I
defined on (E, d)M.

Definition 6.2.20. Let E be a positive M00(G)-module. Then G has the measurably
invariant normalized integral property for E if the space (E, d)M admits a measurably
invariant normalized integral for every non-zero positive vector d ∈ E.

Note that the definitions of measurably invariant normalized integral and invariant
normalized integral coincide for discrete groups.

Proposition 6.2.21. Let E be a positiveM00(G)-module. If E admits a strictly positive mea-
surably invariant functional, then G has the measurably invariant normalized integral property
for E.

Proof. Take a non-zero positive vector d ∈ E and let ψ ∈ E∗ be the strictly positive
measurably invariant functional of E. Set c = ψ(d) > 0. Then a measurably invariant
normalized integral for (E, d)M is given by I = 1

c ψ. Therefore, the group G has the
measurably invariant integral property for E.

Example 6.2.22. (Examples of the measurably invariant integral property)

1) Let G be a locally compact group and let C00(G) be the Riesz space of all real
compactly supported continuous functions on G. Consider the strictly positive
functional I on C00(G) given by

I( f ) =
∫

G
f (g)dmG(g) for f ∈ C00(G).
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We claim that I is measurably invariant. Indeed, let µ ∈ M1
00(G). Thanks to Fubini

Theorem ( [C13, Proposition 7.6.4]), it is possible to compute that

I(µ ∗ f ) =
∫

G
(µ ∗ f )(g)dmG(g)

=
∫

G

∫
G

f (x−1g)dµ(x)dmG(g)

=
∫

G

∫
G

f (x−1g)dmG(g)dµ(x)

=
∫

G

∫
G

f (y)dmG(y)dµ(x)

= µ(G)
∫

G
f (y)dmG(y) = I( f ) for every f ∈ C00(G).

By Proposition 6.2.21, we can conclude that every locally compact group has the
measurably invariant integral property for C00(G).

2) Let G be a locally compact group with a unitary representation σ on a Hilbert
space H. We claim that TC(H) admits a strictly positive measurably invariant
functional. Indeed, the trace map tr(·) is strictly positive as tr(T) ≥ ||T|| for ev-
ery positive T ∈ TC(H) by [S18, Proposition 6.4]. Moreover, tr(·) is measurably
invariant. Indeed, let T ∈ TC(H) and µ ∈ M1

00(G). Then

tr(µ · T) = tr
(∫

G
Adσ(g)Tdµ(g)

)
=
∫

G
tr (σ(g)Tσ(g)∗)) dµ(g)

=
∫

G
tr (T) dµ(g)

= µ(G)tr(T) = tr(T).

Therefore, we can conclude that G has the measurably invariant normalized inte-
gral property for TC(H) by Proposition 6.2.21.

Proposition 6.2.23. Let E be a positive M00(G)-module, and fix a non-zero positive vector
d ∈ E. Let I be a measurably invariant normalized integral on (E, d)M. Then I is continuous
with respect to the pd-norm. Moreover, if E is a normed Riesz positiveM00(G)-module, then I
has operator norm equal to one.

Proof. The continuity of I for the pd-norm is given by Proposition 6.2.5. If E is a normed
Riesz positiveM00(G)-module, then ||I||op = I(d) = 1 by Proposition 6.2.15.

Define

C1
00(G) = {φ ∈ C00(G) : φ ≥ 0 and ||φ||1 = 1} .
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If E is a positive M00(G)-module, then a functional ψ defined on (E, d)M, for some
non-zero positive vector d ∈ E, is said C1

00(G)-invariant if ψ(µφ · v) = ψ(v) for every
φ ∈ C1

00(G) and every v ∈ E.

Proposition 6.2.24. Let E be a positiveM00(G)-module, and take a non-zero positive vector
d ∈ E. Let I be a measurably invariant normalized integral defined on (E, d)M. Then

a) the integral I is G-invariant and C1
00(G)-invariant;

b) I(µ · d) = µ(G) for every µ ∈ M00(G).

Proof. Point a) is straightforward because G and C1
00(G) can be represented as subsemi-

groups ofM1
00(G).

The proof of point b) is given by Proposition 6.2.16.

Corollary 6.2.25. Let E be a positive M00(G)-module. If G has the measurably invariant
normalized integral property for E, then G has the invariant normalized integral property for E.

Proof. Let d ∈ E be a non-zero vector. Then (E, d) ⊂ (E, d)M by point a) of Lemma
6.2.3. On the space (E, d)M there is a measurably invariant normalized integral I by
hypothesis. In particular, I is also invariant by point a) of Proposition 6.2.24. Therefore,
the restriction of I on (E, d) is an invariant normalized integral.

6.2.D. The measurably translate property . We can also generalise the translate prop-
erty to the measurable setting, as done with the invariant normalized integral property.

Definition 6.2.26. Let E be a positiveM00(G)-module. We say that a non-zero positive
vector d ∈ E has the measurably translate property if for every µ ∈ M00(G), we have
that

µ · d ≥ 0 implies µ(G) ≥ 0.

Example 6.2.27. Let E = L∞(G) and consider the positive function 1G ∈ L∞(G). Take
µ ∈ M00(G) such that µ ∗ 1G ≥ 0. Then

(µ ∗ 1G)(g) =
∫

G
1G(x−1g)dµ(x) = µ(G)1G(g) for every g ∈ G.

This implies that µ(G) ≥ 0 showing that 1G has the measurably translate property.

A priori, the measurably translate property is stronger than the translate property.

Proposition 6.2.28. Let E be a positiveM00(G)-module and let d ∈ E be a non-zero positive
vector. If d has the measurably translate property, then d has the translate property.
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Proof. Let d ∈ E be a non-zero positive vector and let t1, ..., tn ∈ R and g1, ..., gn ∈ G
such that ∑n

j=1 tjgjd ≥ 0. Then

0 ≤
n

∑
j=1

tjgjd =

(
n

∑
j=1

tjδgj

)
︸ ︷︷ ︸
∈M00(G)

· d.

Therefore, the measurably translate property implies that

0 ≤
( n

∑
j=1

tjδgj

)
(G) =

n

∑
j=1

tj.

Compare the following proposition with Proposition 4.2.4.

Proposition 6.2.29. Let E be a normed Riesz positiveM00(G)-module and let d be a non-zero
positive vector of E. Then the following assertions are equivalent:

a) the vector d has the measurably translate property;

b) there is a normalized integral ψ on (E, d)M which is measurably invariant on the ma-
jorizing subspace {µ · d : µ ∈ M00(G)};

c) the equality pd(µ · d) = µ(G) holds for every positive µ ∈ M00(G).

Proof. We start showing that a) implies b). To this end, define the linear operator

ω : {µ · d : µ ∈ M00(G)} −→ R, µ · d 7−→ ω(µ · d) = µ(G).

First, ω is well-defined. Indeed, if µ1, µ2 ∈ M00(G) are such that µ1 · d = µ2 · d, then

(µ1 − µ2) · d = 0 and (µ2 − µ1) · d = 0.

Therefore, the measurably translate property implies that

(µ1 − µ2) (G) ≥ 0 and (µ2 − µ1) (G) ≥ 0.

From this, it is easy to deduce that µ1(G) = µ2(G), which implies that ω(µ1 · d) = ω(µ2 ·
d). Moreover, ω is positive. Now, the space {µ · d : µ ∈ M00(G)} is majorizing (E, d)M
by definition. Thus, we can apply Kantorovich Theorem (Theorem 2.2.7) to extend ω
to a positive functional ψ defined on (E, d)M. We claim that ψ is a normalized integral
which is measurably invariant on {µ · d : µ ∈ M00(G)}. Indeed, let µ ∈ M1

00(G). Then

ψ(µ · d) = ω(µ · d) = µ(G) = 1
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and

ψ(d) = ψ(δe · d) = ω(δe · d) = δe(G) = 1.

The proof that b) implies a) is straightforward. In fact, let µ ∈ M00(G) such that
µ · d ≥ 0 and let ψ be a normalized integral on (E, d)M which is measurably invariant
on {µ · d : µ ∈ M00(G)}. Then

0 ≤ ψ(µ · d) = µ(G)

by Proposition 6.2.16. Thus, d has the measurably translate property.
Now we show that b) implies c). Let ψ be a normalized integral on (E, d)M which is

measurably invariant on {µ · d : µ ∈ M00(G)}. Note that ψ is continuous with respect
to the pd-norm, and it has operator norm equal to 1. Let µ ∈ M00(G)+. On the one
hand,

pd(µ · d) ≤ ||µ||TV = µ(G).

On the other hand,

pd(µ · d) ≥ ψ(µ · d) = µ(G).

Therefore , pd(µ · d) = µ(G) as wished.
In conclusion, we give the proof that c) implies b). By Jordan Decomposition Theo-

rem, every µ · d in {µ · d : µ ∈ M00(G)} can be written as the difference of two vectors
µ1 · d and µ2 · d in {µ · d : µ ∈ M00(G)+}. In fact,

µ · d = (µ1 − µ2) · d = µ1 · d− µ2 · d.

This means that {µ · d : µ ∈ M00(G)+} is the positive cone of the order vector space
{µ · d : µ ∈ M00(G)}. Let now define the positive homogeneous additive map

ω+ : {µ · d : µ ∈ M00(G)+} −→ R, µ · d 7−→ ω+(µ · d) = pd(µ · d) = µ(G).

By [AT07, Lemma 1.26 (1)], the map ω+ extends to a positive linear functional

ω : {µ · d : µ ∈ M00(G)} −→ R, µ · d 7−→ ω(µ · d)

via the formula ω(µ · d) = ω+(µ1 · d)− ω+(µ2 · d), where µ1, µ2 ∈ M00(G)+ are such
that µ = µ1− µ2. Now we can utilise Kantorovich Theorem (Theorem 2.2.7) to extend ω
to a positive functional ψ defined on (E, d)M. We claim that ψ is a normalized integral
measurably invariant on {µ · d : µ ∈ M00(G)}. Indeed,

ψ(µ · d) = ω+(µ · d) = pd(µ · d) = µ(G) = 1

for every µ ∈ M1
00(G), and

ψ(d) = ψ(δe · d) = ω+(δe · d) = pd(δe · d) = δe(G) = 1.

Therefore, point b) holds.
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Remark 6.2.30. The equivalence between a) and b) is still valid for positive M00(G)-
module.

An application of the previous proposition gives:

Corollary 6.2.31. Let E be a positiveM00(G)-module, and let d be a non-zero positive vector
in E. If (E, d)M admits a measurably invariant normalized integral, then d has the measurably
translate property.

Proof. By hypothesis, (E, d)M admits a normalized integral which is measurably invari-
ant on {µ · d : µ ∈ M00(G)}. Therefore, point b) of Proposition 6.2.29 is satisfied. This
implies that d has the measurably translate property.

Definition 6.2.32. Let E be a positiveM00(G)-module. We say that G has the measur-
ably translate property for E if every non-zero positive vector d of E has the measurably
translate property.

Example 6.2.33. (Examples of the measurably translate property)

1) Every locally compact group G has the measurably translate property for C00(G)
by point 1) of Example 6.2.22 and Corollary 6.2.31.

2) Let G be a locally compact group and let (σ,H) be a unitary representation of G
on a Hilbert spaceH. Then the induced representation Adσ of G on TC(H) has the
measurably translate property by point 2) of Example 6.2.22 and Corollary 6.2.31.

Finally, it is worth mentioning that the measurably translate property for Cb
ru(G)

implies amenability. In fact,

Corollary 6.2.34. Suppose that G has the measurably translate property for Cb
ru(G), then G is

amenable.

Proof. Suppose that G has the measurably translate property for Cb
ru(G). Then G has

the translate property for Cb
ru(G) by Proposition 6.2.28. Therefore, G is amenable by

Corollary 4.2.13.

Scholium 6.2.35. Paterson defined in [P88, (6.42)] a generalized translate property claiming
that it could be a good definition for a topological version of the translate property for
locally compact groups. The notion defined by Paterson is equivalent to our measurably
translate property. The hard part of this equivalence can be shown directly using the
notion of measurably invariant normalized integral.

Another topological translate property for locally compact groups was defined and
studied by Jenkins under the name of property (P) in [J74]. Moreover, in a later publi-
cation, he claimed that this property implies the existence of invariant normalized in-
tegrals defined on particular linear subspaces of L∞(G), see [J80, Proposition 5]. Sadly,
the proof is incorrect because it erroneously claimed that G acts continuously on L∞(G),
which is not true in general. In any case, Jenkins’s translate property is also equivalent
to the measurably translate property.
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6.3 Application to locally compact groups

In this section, we finally apply the positiveM00(G)-module theory developed previ-
ously. In the first part, we use measurably invariant integrals to show the equivalence
of the invariant normalized integral property on different Banach lattices. In the second,
we study the translate property on different spaces. In particular, we give a complete
answer to Greenleaf’s question for locally compact groups. The third and last part aims
to get rid of some technical details when working with the fixed-point property for
cones for locally compact groups applying the results of the previous subsections.

6.3.A. The invariant normalized integral property for locally compact groups. The
entire subsection is dedicated to the demonstration of Theorem 6.3.4. We start by stating
and proving a small lemma that solve the technical core of the theorem. After that, two
propositions prove intermediate results. The proof of the theorem can be founded at the
end of the subsection.

But first recall that

C1
00(G) = {φ ∈ C00(G) : φ ≥ 0 and ||φ||1 = 1}

and note that C1
00(G) is a semigroup under convolution between functions. Moreover,

C1
00(G) can be identified to a subsemigroup ofM1

00(G)a =M1
00(G) ∩M00(G)a.

Lemma 6.3.1. Let f ∈ Cb
ru(G)+ be a non-zero function and let φ ∈ C1

00(G). Consider the
subspace

D = spanR

{
ψ ∗ h : ψ ∈ C00(G) and h ∈ Cb

ru(G, f )M
}
⊂ Cb

ru(G, φ ∗ f ).

Then every positive G-invariant pφ∗ f -continuous functional I on D is also measurably invari-
ant, i.e., I(µ ∗ h) = I(h) for every µ ∈ M1

00(G) and h ∈ D.

Proof. First of all, note that the action of G on the closure Dpφ∗ f ⊂ Cb
ru(G, φ ∗ f ) is or-

bitally continuous with respect to the pφ∗ f -norm because of point a) of Lemma 6.2.13
and [G17, Lemma 4.1.9]. Moreover, the functional I extends uniquely to a positive G-
invariant linear functional on Dpφ∗ f , since it is positive, G-invariant and pφ∗ f -continuous
on D. Now take h ∈ Dpφ∗ f and µ ∈ M1

00(G) and consider the function

F : (G, µ) −→ Dpφ∗ f , g 7−→ F(g) = gh.

The map F is Bochner integrable, because it is continuous and the real integral∫
G

pφ∗ f (F(g))dµ(g) =
∫

G
pφ∗ f

(
gh
)
dµ(g) ≤ pφ∗ f (h)µ(G)
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is finite. Therefore, the Bochner integral
∫

G F(g)µ(g) ∈ Dpφ∗ f , see [DE09, Appendix B].
The pφ∗ f -continuity of I on Dpφ∗ f gives the following:

I(µ ∗ h) = I
(∫

G
gh dµ(g)

)
=
∫

G
I (gh) dµ(g)

=
∫

G
I (h) dµ(g) = I(h)µ(G) = I(h).

This proves that I is also measurably invariant on D.

We now prove the above-cited two propositions.

Proposition 6.3.2. Suppose that G has the measurably invariant normalized integral property
for Cb

ru(G), then G has the measurably invariant normalized integral property for L∞(G).

Proof. Let f ∈ L∞(G) be a non-zero positive function and let φ ∈ C1
00(G). Define the

linear operator

T : L∞(G, f )M −→ Cb
ru(G, φ ∗ f )M, h 7−→ φ ∗ h.

First of all, we check that T is well-defined. It is clear that φ ∗ h ∈ Cb
ru(G) for every

h ∈ L∞(G) by Cohen-Hewitt Factorization Theorem. Suppose that h ∈ L∞(G, f )M,
then there is λ ∈ M00(G)+ such that |h| ≤ λ ∗ f . Consequently,

|φ ∗ h| ≤ φ ∗ |h| ≤ φ ∗ λ︸ ︷︷ ︸
∈ C00(G)

∗ f ,

and so φ ∗ h ∈ Cb
ru(G, (φ ∗ λ) ∗ f )M = Cb

ru(G, φ ∗ f )M by point d) of Lemma 6.2.3.
Let now I be a measurably invariant normalized integral on Cb

ru(G, φ ∗ f )M and de-
fine on L∞(G, f )M the functional I = I ◦ T. We claim that I is a measurably invariant
normalized integral for L∞(G, f )M. Clearly, I is linear as a composition of linear maps
and it is normalized because I( f ) = I(φ ∗ f ) = 1. Therefore, it is left to show that I is
M1

00(G)-invariant. To this end, let µ ∈ M1
00(G), h ∈ L∞(G, f )M and take a bounded

approximate identity (eα)α for L1(G) in C1
00(G) with decreasing support. Then

I(µ ∗ h) = I(φ ∗ µ ∗ h) = I
(

lim
α
(φ ∗ µ) ∗ eα ∗ h

)
= lim

α
I ((φ ∗ µ) ∗ eα ∗ h)

= lim
α

I (φ ∗ eα ∗ h) = I
(

lim
α

φ ∗ eα ∗ h
)
= I (φ ∗ h) = I(h),

since limα(φ ∗ µ) ∗ eα ∗ h = (φ ∗ µ) ∗ h and limα φ ∗ eα ∗ h = φ ∗ h in pφ∗ f -norm by Lemma
6.2.11. This shows that I is measurably invariant and concludes the proof.

Proposition 6.3.3. Suppose that G has the invariant normalized integral property for Cb
ru(G),

then G has the measurably invariant normalized integral property for Cb
ru(G).
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Proof. Let f ∈ Cb
ru(G)+ be a non-zero function and chose a φ ∈ C1

00(G).
Consider the linear operator

T : Cb
ru(G, f )M −→ Cb

ru(G, φ ∗ f ), h 7−→ φ ∗ h

and note that it is well-defined because if h ∈ Cb
ru(G, f )M, then there is µ ∈ M00(G)+

such that |h| ≤ µ ∗ f which implies that

|φ ∗ h| ≤ φ ∗ |h| ≤ (φ ∗ µ)︸ ︷︷ ︸
∈ C00(G)

∗ f .

Hence, φ ∗ h ∈ Cb
ru(G, (φ ∗ µ) ∗ f ) = Cb

ru(G, φ ∗ f ) by point b) of Lemma 6.2.3.
Moreover, note that T maps Cb

ru(G, f )M into

D = spanR

{
ψ ∗ h : ψ ∈ C00(G) and h ∈ Cb

ru(G, f )M
}
⊂ Cb

ru(G, φ ∗ f ).

By hypothesis, there is an invariant normalized integral I on Cb
ru(G, φ ∗ f ). We define

the linear functional I on Cb
ru(G, f )M as I = I ◦ T, and we claim that it is a measurably

invariant normalized integral. Indeed, I is normalized because I( f ) = I(φ ∗ f ) = 1 and
linear as composition of linear maps. Thus, it is left to show that I is measurably in-
variant. To this end, let µ ∈ M1

00(G), h ∈ Cb
ru(G, f )M and take a bounded approximate

identity (eα)α for L1(G) in C1
00(G) with decreasing support. Note that I is measurably

invariant when restricted to D by Lemma 6.3.1. Then

I(µ ∗ h) = I(φ ∗ µ ∗ h) = I
(

lim
α
(φ ∗ µ) ∗ eα ∗ h

)
= lim

α
I ((φ ∗ µ) ∗ eα ∗ h)

= lim
α

I (φ ∗ eα ∗ h) = I
(

lim
α

φ ∗ eα ∗ h
)
= I (φ ∗ h) = I(h),

since limα(φ ∗ µ) ∗ eα ∗ h = (φ ∗ µ) ∗ h and limα φ ∗ eα ∗ h = φ ∗ h in pφ∗ f -norm by Lemma
6.2.11. This shows that I is measurably invariant and concludes the proof.

We are finally ready to give the proof of Theorem 6.3.4.

Theorem 6.3.4. Let G be a locally compact group. If G has the invariant normalized integral
property for one of the following Banach lattices

L∞(G), Cb(G), Cb
lu(G), Cb

ru(G) or Cb
u(G),

then G has the invariant normalized integral property for all the others.

Proof. Firstly, if G has the invariant normalized integral property for L∞(G), then G has
the invariant normalized integral property for all the other function spaces.
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Secondly, the invariant normalized integral property for Cb
u(G) implies the invari-

ant normalized integral property for Cb
ru(G). Indeed, let f ∈ Cb

ru(G)+ be a non-zero
function. Fix a non-zero φ ∈ C00(G), and define the positive linear operator

T : Cb
ru(G, f ) −→ Cb

u(G, f ∗ φ), h 7−→ T(h) = h ∗ φ.

The operator T is well-defined thanks to the Hewitt-Cohen Factorization Theorem. By
hypothesis, there is an invariant normalized integral I on Cb

u(G, φ ∗ f ). Then the func-
tional I = I ◦ T is an invariant normalized integral for Cb

ru(G, f ).
Therefore, it is enough to show that the invariant normalized integral property for

Cb
ru(G) implies the invariant normalized integral property for L∞(G). Thus, suppose

that G has the invariant normalized integral property for Cb
ru(G). Then G has the mea-

surably invariant normalized integral property for Cb
ru(G) by Proposition 6.3.3. There-

fore, G also has the measurably invariant normalized integral property for L∞(G) by
Proposition 6.3.2. We can finally conclude that G has the invariant normalized integral
property for L∞(G) thanks to Corollary 6.2.25.

Remark 6.3.5. If we fix f = 1G in every proof of this subsection, then we obtain a proof
of [G69, Theorem 2.2.1]. Hence, the case of amenability. This is because 1G is a fixed-
point for the action by convolution of the semigroup M1

00(G) on L∞(G), and because
the space C1

00(G) is || · ||1-dense in

P(G) =
{

φ ∈ L1(G) : ||φ||1 = 1 and φ ≥ 0
}

.

Let G be a locally compact group with the U -fixed-point property for cones for
U ∈ {F , R ∨L , R, L , R ∧L }. Suppose that U ′ is another functionally invariant
uniformity for G. Then we can observe that G also has the U ′-fixed-point property
for cones. Indeed, G has the F -fixed-point property for cones by this last theorem,
and this suffices to ensure that G has the U ′-fixed-point property for cones, since F
is the finest functionally invariant uniformity for G. Bearing this observation in mind,
we state the following definition since we are primarily interested in the five standard
uniform structures.

Definition 6.3.6. Let G be a locally compact group. Then we say that G has the fixed-
point property for cones if G has the U -fixed-point property for cones for one, and
hence for all, of the following uniform structures:

F , R ∨L , R, L or R ∧L .

The following corollary motivates the choice of the previous definition.

Corollary 6.3.7. For every orbitally continuous action of a locally compact group G with the
fixed-point property for cones on a topological set X, the induced representation of G on Cb(X)
has the invariant normalized integral property.

Proof. For every non-zero positive function f ∈ Cb(X), there is a positive equivariant
linear operator Tf from Cb(X) to Cb(G) such that Tf ( f ) > 0 by point a) of Lemma 5.2.9.
We can now use the invariant integral property of G for Cb(G) to conclude.
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6.3.B. The translate property. After seeing how the invariant normalized integral prop-
erty for locally compact groups is so generous, two questions arise spontaneously about
the translate property. The first one is: for which Banach lattices is the translate prop-
erty equivalent to the invariant normalized integral property? While the second is: for
which Banach lattices the translate property is equivalent?

Note that the first question is a generalized version of Greenleaf’s question. We
will be able to answer it only thanks to the positive answer to the original Greenleaf’s
question, which is presented in the following theorem.

Theorem 6.3.8. Let G be a locally compact group. If G has the translate property for Cb
ru(G),

then G has the invariant normalized integral property for Cb
ru(G).

Proof. Let f ∈ Cb
ru(G)+ be a non-zero function and fix a φ ∈ C1

00(G). Consider the
functional given by

ω : spanR {g(φ ∗ f ) : g ∈ G} −→ R,
n

∑
j=1

tjgj(φ ∗ f ) 7−→ ω

(
n

∑
j=1

tjgj(φ ∗ f )

)
=

n

∑
j=1

tj.

Thanks to the translate property, ω is well-defined. Moreover, ω is positive, G-invariant
and pφ∗ f -continuous. Now we have the inclusion:

spanR {g(φ ∗ f ) : g ∈ G} ⊂ spanR

{
ψ ∗ h : ψ ∈ C00(G) and h ∈ Cb

ru(G, f )M
}
= D.

Note that the action of G on D is orbitally continuous with respect to the pφ∗ f -norm
by point a) of Lemma 6.2.13. Because G is amenable (Corollary 4.2.13), we can apply
[L90, Theorem 3.2 (j)] and extend ω to a positive linear G-invariant pφ∗ f -continuous
functional ω defined on all D. Note that the functional ω is also measurably invariant
by Lemma 6.3.1. Consider the positive linear operator

T : Cb
ru(G, f ) −→ D, h 7−→ φ ∗ h

and define the functional I = ω ◦ T on Cb
ru(G, f ). We claim that I is an invariant normal-

ized integral. Indeed, I is positive as composition of positive operators and

I( f ) = ω(φ ∗ f ) = ω(φ ∗ f ) = 1.

Therefore, it is left to show that I is invariant. Let g ∈ G, h ∈ Cb
ru(G, f ) and take a

bounded approximate identity (eα)α for L1(G) in C1
00(G) with decreasing support. Then

I(gh) = ω (φ ∗ (gh)) = ω
(
φg ∗ h

)
= ω

(
lim

α
φg ∗ eα ∗ h

)
= lim

α
ω (φ ∗ eα ∗ h) = ω

(
lim

α
φ ∗ eα ∗ h

)
= ω(φ ∗ h) = I(h),

since limα φg ∗ eα ∗ h = φg ∗ h and limα φ ∗ eα ∗ h = φ ∗ h in pφ∗ f -norm by Lemma
6.2.11. Therefore, I is invariant, and G has the invariant normalized integral property
for Cb

ru(G).
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Remark 6.3.9. Employing the same proof of Theorem 6.3.8, it is also possible to show
that the invariant normalized integral property for C0(G) is equivalent to the translate
property for C0(G) if G is an amenable locally compact group.

Thanks to this last result, it is possible to solve Greenleaf’s question for all classical
Banach spaces.

Theorem 6.3.10. Let G be a locally compact group and let E be one of the following Banach
lattices

L∞(G), Cb(G), Cb
ru(G), Cb

lu(G) or Cb
u(G).

Then G has the translate property for E if and only if G has the invariant normalized integral
property for E.

Proof. If G has the invariant normalized property for E, then G has the translate property
for E by Corollary 4.2.8. So, let’s prove the other direction.

The case E = Cb
ru(G) has already been solved in Theorem 6.3.8.

Suppose that G has the translate property for E ∈
{

L∞(G), Cb(G)
}

. Then G has
the translate property for Cb

ru(G). Therefore, G has the invariant normalized integral
property for Cb

ru(G). This implies that G has the invariant integral property for E by
Theorem 6.3.4.

Let’s move onto the case E = Cb
lu(G). We claim that G also has the translate property

for L∞(G). Indeed, let f ∈ L∞(G) be a non-zero function and let t1, ..., tn ∈ R and
g1, ..., gn ∈ G such that ∑n

j=1 tjgj f ≥ 0. Chose a non-zero positive φ ∈ C00(G). Since
taking the convolution with a positive function is a positive operation, the inequality(

n

∑
j=1

tjgj f

)
∗ φ =

n

∑
j=1

tjgj ( f ∗ φ)︸ ︷︷ ︸
∈ Cb

lu(G)

≥ 0

holds. Therefore, ∑n
j=1 tj ≥ 0. We can hence conclude as in the previous case.

Finally, let E = Cb
u(G). Then G also has the translate property for Cb

ru(G) as f ∗ φ ∈
Cb

u(G) for every φ ∈ C00(G) and f ∈ Cb
ru(G). Thus, we can conclude as above.

Finally, the answer to the second question we asked is contained in the following
theorem:

Theorem 6.3.11. Let G be a locally compact group. If G has the translate property for one of
the following Banach lattices

L∞(G), Cb(G), Cb
lu(G), Cb

ru(G) or Cb
u(G),

then G has the translate property for all the others.

Proof. The proof is only a combination of Theorems 6.3.4 and 6.3.10.
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6.3.C. Another functional perspective. In Section 5.3, we distilled the essence of the in-
variant normalized integral property in a functional way using the theory of G-dominated
normed Riesz spaces developed in Chapter 3. Here, we push this perspective even fur-
ther to get rid of some technical details when working with the fixed-point property
for cones for locally compact groups. The results here developed will be helpful later
to study the class of locally compact groups which enjoy the fixed-point property for
cones.

The following lemma shows that it is possible to suppose just continuity in the defi-
nition of the fixed-point property for cones for locally compact groups. In particular, the
generalization of the fixed-point property for cones proposed by Monod in [M17, Ex-
ample 38] and our generalization coincide for locally compact groups. In fact, point b)
of the following lemma is exactly the generalization suggested by Monod.

A representation of a group on a locally convex vector space is said bounded if every
orbit is bounded.

Lemma 6.3.12. Let G be a locally compact group. The following assertions are equivalent:

a) the group G has the fixed-point property for cones;

b) every bounded orbitally continuous representation of G on a non-empty weakly complete
proper convex cone C in a locally convex vector space E which is of cobounded type has a
non-zero fixed-point.

Proof. We start showing that a) implies b). Suppose that G has a bounded orbitally
continuous representation on a non-empty weakly complete proper cone C in a locally
convex space E which is of cobounded type. Then the representation of G on C is also
locally bounded (F , Uc)-uniformly continuous. To guarantee a non-zero fixed-point in
C, it suffices that G has the invariant normalized integral property for Cb(G) by Theorem
5.2.1 with U = F . Nevertheless, the fixed-point property for cones for locally compact
groups is equivalent to the invariant normalized integral property by Theorem 6.3.4.
Therefore, there is a non-zero fixed-point in C.

Let’s prove the reverse implication. We show that G has the translate property for
Cb

ru(G), which is equivalent to having the fixed-point property for cones for locally com-
pact groups. Let f ∈ Cb

ru(G)+ be a non-zero function and let E = spanR {g f : g ∈ G}
together with the supremum norm. Consider the cone C = (E∗)+ in the locally convex
vector space (E∗, weak-∗). Note that the adjoint action of G on E∗ is orbitally continuous
for the weak-* topology and (E∗, weak-∗)′ = E. Therefore, there is a non-zero positive
G-invariant functional ψ on E. By Proposition 4.2.4, this is sufficient to ensure that f has
the translate property.

We can improve Theorem 5.3.1 for locally compact groups.

Theorem 6.3.13. Let G be a locally compact group. Then the following assertions are equivalent:

a) the group G has the fixed-point property for cones;
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b) every continuous representation π of G on a normed Riesz space E by positive linear
isometries has the invariant normalized integral property;

c) every continuous representation π of G on a Banach lattice E by positive linear isometries
has the invariant normalized integral property.

Proof. Let’s look at the proof of a) implies b). Let π be a continuous representation of
G by positive linear isometries on a normed Riesz space E and let d ∈ E be a non-
zero positive vector. Then the restriction of π on (E, d) is continuous. Therefore, the
adjoint representation of G on the cone (E, d)∗+ in the locally convex space (E, d)∗ is
continuous. We can apply point b) of Lemma 6.3.12 to obtain an invariant normalized
integral defined on (E, d). Thus, G has the invariant normalized integral property for E.

The proof that b) implies c) is straightforward as a Banach lattice is, in particular, a
normed Riesz space.

It is left to show that c) implies a). Nonetheless, this is true because c) implies that
G has the invariant normalized integral property for the Banach lattice Cb

ru(G), and this
implies a) by Theorem 5.2.1.

Example 6.3.14. 1) Let G be a locally compact group with the fixed-point property
for cones. Then G has the invariant normalized integral property for Lp(G) for
every p ∈ [1, ∞]. This is thanks to point c) of Theorem 6.3.13. However, note that
Lp(G) admits an invariant functional if and only if G is compact as explained in
Proposition 5.1.

2) Let G be a locally compact group with the fixed-point property for cones, and
suppose that it has a unitary representation σ on a Hilbert lattice H. Then the
representation Adσ of G on the Banach lattice HS(H) has the invariant normalized
integral property.

Corollary 6.3.15. Let G be a locally compact group. Then G has the fixed-point property for
cones if and only if it has the abstract continuous translate property.

Proof. Let π be a continuous representation of G on a Banach lattice E by positive linear
isometries and suppose that G has the fixed-point property for cones. Then G has the
invariant normalized integral property for E by Theorem 6.3.13. Consequently, G has
the translate property for E by Corollary 4.2.8. Therefore, G has the abstract continuous
translate property.

Now, suppose that G has the abstract continuous translate property. Then G has the
translate property for Cb

ru(G) by Theorem 5.3.5. However, for locally compact groups,
this is equivalent to having the invariant normalized integral property for Cb

ru(G). Hence,
G has the fixed-point property for cones.

Remarks 6.3.16. 1) We mentioned in the introduction that one of our goals was also
to unify the theories developed by Monod in [M17] and by Jenkins in [J76]. We
can assert that this objective is achieved. Indeed, the fixed-point property studied
by Jenkins under the name of property F is:
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Suppose that a locally compact group G has a linear representation on a vector space E
and that there is v ∈ E and φ ∈ E∗ such that the function g 7−→ φ(gv) is a non-zero

positive element of L∞(G). Then there exists a net (φα)α ⊂ E∗ of finite positive
G-translates of φ such that for every g ∈ G the net (φα(gv))α ⊂ R converges to 1.

It is straightforward to see that property F implies the abstract continuous translate
property, which is equivalent to the fixed-point property for cones by Corollary
6.3.15 (see also [J76, Remark p.348]). Now, suppose that G has the fixed-point
property for cones. Therefore, G also has the invariant normalized integral prop-
erty for L∞(G) by Theorem 6.3.13. Take E, v and φ as in the hypothesis of the
property F and consider the vector subspace V = spanR{gv : g ∈ G} ⊂ E. Then
V∗ endowed with the weak-* topology is a locally convex vector space such that
the cone of positive linear functionals on V is closed. An argument similar to that
of Theorem 5.2.1 implies the existence of a net as asked by the property F.

2) In Theorem 6.3.13, it is possible to check conditions b) and c) only for G-dominated
normed Riesz spaces and asymptotically G-dominated Banach lattices, respec-
tively. This is because they are the only spaces in which we are interested.
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Chapter 7

Hereditary Properties

The chapter’s primary goal is to understand and investigate the classes of topological
groups with the fixed-point property for cones and with the translate property.

We saw in the previous chapter that these two families of groups coincide in the
locally compact case. Although we do not have an example to guarantee it, they are
a priori different for topological groups. For this reason, we study the two families of
groups separately in the first part of the chapter dedicated to topological groups. After
that, there will be no further need to treat the two notions independently in the second
one when we deal with locally compact groups.

Finally, we study obstructions that prevent a group from having the fixed-point
property for cones and the translate property.

7.1 The topological case

We start with one of the few general results that it is possible to state about functionally
invariant uniformities.

Proposition 7.1.1. Let G and H be two topological groups and let UG and UH be functionally
invariant uniformities for G and H, respectively. Suppose that there is a uniformly continuous
epimorphism of groups

φ : (G, UG) −→ (H, UH), g 7−→ φ(g).

If G has the UG-fixed-point property for cones (resp. the translate property for Cb
u(G, UG)), then

H has the UH-fixed-point property for cones (resp. the translate property for Cb
u(H, UH)).

We gives the proof only for the U -fixed-point property for cones, since the proof for
the translate property follows from it.

Proof of Proposition 7.1.1. We want to show that H has the invariant normalized integral
property for Cb

u(H, UH). To this end, define the linear operator

T : Cb
u(H, UH) −→ Cb

u(G, UG), f 7−→ T( f ) = f ◦ φ.
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First, T is well-defined, as φ is uniformly continuous. Second, it is strictly positive.
Indeed, if f ∈ Cb

u(H, UH) is a non-zero positive function, then there is x ∈ H such that
f (x) > 0. Thanks to the surjectivity of φ, there is g ∈ G such that φ(g) = x. Thus,

T( f )(g) = f (φ(g)) = f (x) > 0.

Finally, φ is equivariant. To prove this last claim, let x ∈ H. Then there is g ∈ G such
that φ(g) = x. Therefore,

T(x f )(a) = T (φ(g) f ) (a)
= (φ(g) f )(φ(a))

= f (φ(g)−1φ(a))

= f (φ(g−1a)) = gT( f )(a),

for every f ∈ Cb
u(H, UH) and every a ∈ G.

Now the function T( f ) ∈ Cb
u(G, UG) is non-zero and positive for every non-zero

positive function f ∈ Cb
u(H, UH). Therefore, the operator T maps

(
Cb

u(H, UH), f
)

into(
Cb

u(G, UG), T( f )
)
. On this last space, there is an invariant normalized integral I by

hypothesis. Consequently, the functional I = I ◦ T is an invariant normalized integral
on
(
Cb

u(H, UH), f
)
. This shows that H has the invariant normalized integral property

for Cb
u(H, UH), and hence that H has the UH-fixed-point property for cones by Theorem

5.2.1.

Recall that if G is a discrete group, then we write Ud for its discrete uniform structure,
i.e., the uniformity on G definite by Ud = {A ⊂ G× G : ∆G ⊂ A}.

Corollary 7.1.2. If G has the Ud-fixed-point property for cones, then G has the U -fixed-point
property for cones for every group topology τ for G and every functionally invariant uniform
structure U for (G, τ).

Proof. Let τ be a group topology for G and let U be a functionally invariant uniformity
for G with respect to τ. Then the identity map Id : (G, Ud) −→ (G, U ) is a uniformly
continuous isomorphism of groups. Now G has the Ud-fixed-point property for cones
by hypothesis. Therefore, we can conclude that (G, τ) has the U -fixed-point property
for cones by Proposition 7.1.1.

From now on, we only focus on the five standard uniform structures, and we sepa-
rately investigate the fixed-point property for cones and the translate property as they
are a priori two different notions.

7.1.A. Hereditary properties for the U -fixed-point property for cones. First of all, it is
possible to improve Proposition 7.1.1. In fact,
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Corollary 7.1.3. Let G and H be topological groups and let U ∈ {F , R ∨L , R, L , R ∧L }.
Suppose that there is a continuous epimorphism φ : G −→ H. If G has the U -fixed-point
property for cones, then H also has the U -fixed-point property for cones.

Proof. If U ∈ {F , R ∨L , R, L , R ∧L }, then the map φ : (G, U ) −→ (H, U ) is
uniformly continuous by [RD81, Proposition 2.25]. Therefore, H has the U -fixed-point
property for cones by Proposition 7.1.1.

Corollary 7.1.4. Suppose that G admits a topology τ1 for which (G, τ1) has the U -fixed-point
property for cones for U ∈ {F , R ∨L , R, L , R ∧L }. Then the topological group (G, τ2)
has the U -fixed-point property for cones for every stronger group topology τ2 for G.

Proof. Using the continuous isomorphism of groups given by the identity map Id :
(G, τ1) −→ (G, τ2) and Corollary 7.1.3, (G, τ2) has the U -fixed-point property for cones.

Before discussing the next result, we shall clarify the situation about uniform struc-
tures on quotient groups. Suppose that G is a topological group and Q a quotient of G.
Then Q is a topological group when endowed with the quotient topology ( [Bou71, III
§2 No.6 Proposition 16]), and the quotient map q : G −→ Q is continuous with re-
spect to this topology ( [HR63, Theorem (5.16)]). Let now U be a uniform structure
on G. Then the quotient uniform structure UQ on Q with respect to U is the finest
uniformity on Q such that the map q : (G, U ) −→ (Q, UQ) is uniformly continuous.
An interesting fact to point out is that if U is one of the five standard uniformities
{F , R ∨L , R, L , R ∧L }, then the quotient uniform structure UQ of Q with respect to
U is equal to the uniformity U of the topological group Q ( [RD81, Proposition 5.30]).

Corollary 7.1.5. Let G be a topological group and let U ∈ {F , R ∨L , R, L , R ∧L }.
Suppose that Q is a quotient group of G with the quotient topology. If G has the U -fixed-point
property for cones, then Q also has the UQ-fixed-point property for cones.

Proof. The definition of quotient uniform structure and Corollary 7.1.3 are sufficient to
ensure that the conclusion is true.

We continue by studying open subgroups.

Proposition 7.1.6. Let G be a topological group and let U ∈ {F , R ∨L , R, L , R ∧L }. If
G has the U -fixed-point property for cones, then every open subgroups H of G has the U -fixed-
point property for cones.

Proof. It suffices to show that H has the invariant normalized integral property for
Cb

u(H, U ) by Theorem 5.3.1. To this aim, let K be a set of representatives for the right
H-cosets of G and define the operator

T : Cb
u(H, U ) −→ Cb

u(G, U ), h 7−→ T(h)(g) = h(x),
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where g = xk for a k ∈ K. Then T is well-defined and linear. Let now h ∈ Cb
u(H, U ) be

a non-zero positive function. Then for every g ∈ G there is x ∈ G and k ∈ K such that
g = xk. Therefore, T(h)(g) = h(x) ≥ 0. Moreover, there is g0 ∈ H such that h(g0) > 0,
as h is a non-zero function. This implies that T(h)(g0) = h(g0) > 0 as g0 lies in the coset
of the identity element. Thus, we can conclude that T is strictly positive. We claim that
T is also equivariant. Indeed, let a ∈ H and h ∈ Cb

u(H, U ). Then for every g ∈ G there
is k ∈ K such that g = xk for some x ∈ H. Consequently,

T(ah)(g) = (ah)(x) = h(a−1x) = T(h)(a−1g) = aT(h)(g).

Let f ∈ Cb
u(H, U ) be a non-zero positive function and note that the image of the

restriction of T on the space
(
Cb

u(H, U ), f
)

is a non-zero subspace of
(
Cb

u(G, U ), T( f )
)
.

By hypothesis, there is an invariant normalized integral I on
(
Cb

u(G, U ), T( f )
)
. The

composition I = I ◦ T is an invariant normalized integral for
(
Cb

u(H, U ), f
)
.

Proposition 7.1.7. Let G be a topological group and let U ∈ {F , R ∨L , R, L , R ∧L }.
Suppose that F E G is a finite normal subgroup of G such that the quotient group G�F has the
U -fixed-point property for cones. Then G has the U -fixed-point property for cones.

Proof. Let E be a Banach lattice and suppose that G has a representation π on E by posi-
tive linear isometries. Moreover, suppose that π∗ is locally bounded (U , U ∗

c )-uniformly
continuous and that E is asymptotically G-dominated. We want to show that there is an
invariant normalized integral on E.

Let d be the asymptotically G-dominating element of E, and let n = |F| be the order
of the finite group F. Write EF for the normed Riesz subspace of all vectors of E which
are F-invariant, and consider the average operator

T : E −→ EF, v 7−→ T(v) =
1
n

n

∑
j=1

xjv where x1, ..., xn ∈ F.

We can easily check that T is well-defined, continuous and linear. Moreover, T is strictly
positive as F acts by (strictly) positive maps and the positive cone of a Banach lattice is
always convex. Finally, T is equivariant because of the normality of F in G. In fact,

T(gv) =
1
n

n

∑
j=1

xjgv =
1
n

n

∑
j=1

gxjv = gT(v) for every g ∈ G and v ∈ E.

Now there is a natural representation π′ of G�F on EF given by π′(gF)w = π(g)w.
Note that π′ is by positive linear isometries and (π′)∗ is locally bounded (U , U ∗

c )-
uniformly continuous as E′ ⊂ (EF)′. We claim that the Banach lattice EF is asymptoti-
cally G�F -dominated by the vector dF = T(d). Indeed, let vF ∈ EF. As T is surjective,
there is a non-zero positive vector v ∈ E such that T(v) = |vF|, and there are sequences
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(gj)j in G and (tj)j in R+ such that

|v| ≤
∞

∑
j=1

tjgjd and
∞

∑
j=1

tj < ∞.

Therefore,

|vF| = T(v) ≤ T

(
∞

∑
j=1

tjgjd

)
≤

∞

∑
j=1

tjgjT(d) =
∞

∑
j=1

tjgjdF.

As dF is F-invariant, we can conclude that |vF| ≤ ∑∞
j=1 tjq

(
gj
)

dF, where q is the quotient

map from G to G�F. This shows that EF is asymptotically G�F -dominated.
Since G�F has the U -fixed-point property for cones, there is an G�F -invariant nor-

malized integral on EF, say I. Then the functional I = I ◦ T provides a G-invariant
normalized integral on E. The topological group G has the U -fixed-point property for
cones by Theorem 5.3.1.

We have a slightly better result for the uniform structures R and R ∧L .

Proposition 7.1.8. Let G be a topological group and let U ∈ {R, R ∧L }. Let C E G be a
compact normal subgroup. If the quotient group G�C has the U -fixed-point property for cones,
then G has the U -fixed-point property for cones.

Proof. Let E = Cb
u(G, U ) for U ∈ {R, R ∧L } and define the linear and positive oper-

ator given by the Bochner integral

T : E −→ E, f 7−→ T( f ) =
∫

C
c f dmC(c),

where mC is the normalized Haar measure of C. The operator T is well-defined thanks
to the fact that the action of C on E is continuous for the || · ||∞-norm. We claim that T is
G-equivariant. Indeed, fix g ∈ G. Then, for every c ∈ C, the element g−1cg is in C as C
is normal in G. Therefore, for every c ∈ C, there is c′ ∈ C such that cg = gc′. This leads
to the conclusion

T(g f ) =
∫

C
cg f dmC(c) =

∫
C

gc′ f dmC(gcg−1) = g
∫

C
c′ f dmC(c) = gT( f )

for every f ∈ E. Note that we used the fact that the group C is unimodular in the
second-to-last equality. Moreover, T( f ) ∈ EC for every v ∈ E. In fact, for a x ∈ C fixed,
the element cx = y ∈ C for every c ∈ C. Therefore,

T(x f ) =
∫

C
cx f dmC(c) =

∫
C

y f dmC(yx−1) =
∫

C
y f dmC(y) = T( f ) for every f ∈ E.
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If f ∈ E is a non-zero positive function, then the image of (E, f ) under the operator T is
contained in the normed Riesz space (EC, T( f )). Now, the quotient group G�C acts on
EC, and hence on (EC, T( f )). Moreover, this last space is G�C-dominated and the ad-
joint action of G�C on the dual of EC is locally bounded (U , U ∗

c )-uniformly continuous.
Thus, there is a G�C-invariant normalized integral I on (EC, T( f )) by Theorem 5.3.1.
Taking the precomposition with T, we get a G-invariant normalized integral I = I ◦ T
on (E, f ), which implies that G has the U -fixed-point property for cones.

Proposition 7.1.9. Let G be a topological group and let U ∈ {F , R ∨L , R, L , R ∧L }.
Let H < G be a topological subgroup of finite-index. If H has the U -fixed-point property for
cones, then G has the U -fixed-point property for cones.

Proof. Let E be a Banach lattice and suppose that G has a representation π on E by
positive linear isometries. Suppose that π∗ is locally bounded (U , U ∗

c )-uniformly con-
tinuous and that E is asymptotically G-dominated. We want to show that there is an
invariant normalized integral on E as done before.

Note that the restriction of π on the subgroup H defines a representation π|H of H by
positive linear isometries on E such that π∗ is locally bounded (U , U ∗

c )-uniformly con-
tinuous. We claim that E is asymptotically H-dominated by the vector dH = ∑n

k=1 xkd,
where d is the asymptotically G-dominating element of E and {x1, ..., xn} is a set of rep-
resentatives for the right H-cosets of G. Indeed, if v ∈ E, then there are sequences
(gj)j ⊂ G and (tj)j ⊂ R+ such that

|v| ≤
∞

∑
j=1

tjgjd and
∞

∑
j=1

tj < ∞.

Now, for every j ∈ N, we can write gj = hjxk for some k ∈ {1, ..., n} and some hj ∈ H.
Thus,

|v| ≤
∞

∑
j=1

tjgjd =
∞

∑
j=1

tjhjxkd ≤
∞

∑
j=1

tjhj

(
n

∑
k=1

xkd

)
=

∞

∑
j=1

tjhjdH.

As H has the U -fixed-point property for cones, there is an H-invariant normalized in-
tegral I on E. Consequently, the expression I = 1

n ∑n
k=1 x−1

k I defines a G-invariant nor-
malized integral on E. We can conclude that G has the U -fixed-point property for cones
using Theorem 5.3.1.

Notice that the following proposition is not true for the fine uniform structure F .

Proposition 7.1.10. Let G be a topological group and let U ∈ {R ∨L , R, L , R ∧L }.
Suppose that D < G is a dense topological subgroup. If G has the U -fixed-point property for
cones, then D also has the U -fixed-point property for cones.
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Proof. We can uniquely extend every function f ∈ Cb
u(D, U ) to a function ext( f ) ∈

Cb
u(G, U ) by [RD81, Proposition 3.24] and [Bou71, II §3 No.6 Théorème 2]. Therefore,

consider the extension operator

ext : Cb
u(D, U ) −→ Cb

u(G, U ), f 7−→ ext( f )

which gives to every f ∈ Cb
u(D, U ) is unique extension ext( f ) ∈ G. Then ext is a

strictly positive, equivariant linear operator. Take now a non-zero positive function
f ∈ Cb

u(D, U ), and we want to show that there is an invariant normalized integral on(
Cb

u(G, U ), f
)
. As G has the U -fixed-point property for cones, there is a G-invariant

normalized integral on
(
Cb

u(G, U ), ext( f )
)
, say I. Then I = I ◦ ext is a D-invariant nor-

malized integral on Cb
ru(D, f ). We can conclude that D has the U -fixed-point property

for cones by Theorem 5.2.1.

Example 7.1.11. We claim that precompact topological groups have the U -fixed-point
property for cones for U ∈ {R ∨L , R, L , R ∧L }. Indeed, recall that a topological
group G is said precompact if it is isomorphic to a dense subgroup of a compact group
K. Let φ be the continuous isomorphism from G to K and fix U ∈ {R ∨L , R, L , R ∧
L }. Then φ(G) has the U -fixed-point property for cones by Proposition 7.1.10. Con-
sidering the map φ−1 : φ(G) −→ G and using Corollary 7.1.3, we can conclude that G
also has the U -fixed-point property for cones.

Proposition 7.1.12. Let G be a topological group and let H be a closed subgroup of G. Assume
that the space of right-cosets G\H is paracompact and that the fibration p : G −→ G\H is
locally trivial. If G has the F -fixed-point property for cones, then H also has the F -fixed-point
property for cones.

We follow the strategy used by Rickert in [R67, Theorem 3.4].

Proof of Proposition 7.1.12. First, take an open cover (Uj)j∈I of G\H and a family of con-
tinuous sections

(
σj : Uj −→ G

)
j∈I such that (p ◦ σj)(g) = g for all j ∈ I and g ∈ Uj.

This is possible thanks to the fact that the fibration p : G −→ G\H is locally trivial. Since
G\H is paracompact, it is possible to take a partition of the unit (ϕj)j∈I subordinates to
(Uj)j∈I and define the linear operator

T : Cb
u(H, F ) −→ Cb

u(G, F ), f 7−→ T( f )(g) = ∑
j∈I

ϕj(p(g)) f
(

g(σj ◦ p)−1(g)
)

.

First of all, T is well-defined because, for every f ∈ Cb
u(H, F ), the function T( f ) is

continuous as the family of the supports of the partition of the unity (ϕj)j∈I is locally
finite and T( f ) is bounded because ||T( f )||∞ ≤ || f ||∞. Therefore, T( f ) is in Cb

u(G, F ).
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Moreover, T is equivariant. Indeed,

(aT( f )) (g) = T( f )(a−1g)

= ∑
j∈I

ϕj(p(a−1g)) f
(

a−1g(σj ◦ p)−1(a−1g)
)

= ∑
j∈I

ϕj(p(g)) f
(

a−1g(σj ◦ p)−1(a−1g)
)
= T(a f )(g)

for every a, g ∈ G and f ∈ Cb
u(H, F ). Finally, T is strictly positive as the partition of the

unit (ϕj)j∈I is positive.
Now for every non-zero positive function f ∈ Cb

u(H, F ), there is an invariant nor-
malized integral I defined on

(
Cb

u(G, F ), T( f )
)
. Therefore, the composition I = I ◦ T

defines an invariant normalized integral on
(
Cb

u(H, F ), f
)
. This shows that H has the in-

variant normalized integral property for Cb
u(H, F ), and hence the F -fixed-point prop-

erty for cones by Theorem 5.3.1.

Corollary 7.1.13. Let G be a metrizable topological group. If G contains a discrete group with-
out the fixed-point property for cones, then G does not have the F -property for cones.

Proof. All the hypothesis for applying Proposition 7.1.12 are satisfied as explained in
[GH17, Corollary 4.6].

7.1.B. Hereditary properties for the translate property. We should point out that every
proof used in the previous section is applicable for the translate property. Therefore,
every result we stated remains true if the U -fixed-point property for cones is replaced with
the translate property for Cb

u(G, U ).
However, we have some deeper result thanks to the fact that the translate property

for Cb
u(G, U ) is equivalent to the abstract U -translate property, and that the translate

property for Cb
u(G, R) is equivalent to the abstract continuous translate property.

Proposition 7.1.14. Let G be a topological group and let U ∈ {F , R ∨L , R, L , R ∧L }.
Suppose that G = lim−→Hα is the direct limit of a family (Hα)α of topological groups with the
inductive limit topology. If Hα has the translate property for Cb

u(Hα, U ) for every α, then G has
the translate property for Cb

u(G, U ).

Proof. Let f ∈ Cb
u(G, U ) be a non-zero positive function and let t1, ..., tn ∈ R and

g1, ..., gn ∈ G be such that ∑n
j=1 tjgj f ≥ 0. We have to show that ∑n

j=1 tj ≥ 0. Take α

such that g1, ..., gn ∈ Hα and f (φα(x)) 6= 0 for some x ∈ G. Here, φα is the canonical
homomorphism of group which sends each element of Hα to its equivalence class in the
direct limit G. Then φα induces a positive, linear and Hα-equivariant operator

φ∗α : Cb
u(G, U ) −→ Cb

u(Hα, U ), f 7−→ φ∗α( f ) = f ◦ φα.
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Therefore,

0 ≤ φ∗α

(
n

∑
j=1

tjgj f

)
=

n

∑
j=1

tjgjφ
∗
α( f ).

Applying the translate property for Cb
u(Hα, U ) of Hα, we can deduce that ∑n

j=1 tj ≥ 0 as
wished.

Example 7.1.15. Let U(n) be the unitary group of degree n ∈ N endowed with its com-
pact topology and let

ιn : U(n) −→ U(n + 1), u 7−→ ιn(u) =
(

u 0
0 1

)
be the natural inclusion of U(n) in U(n + 1). Define the topological group U(∞) =
lim−→U(n) as the direct limit of the family {(U(n), ιn)}n∈N with the inductive limit topol-
ogy. Then U(∞) has the translate property for Cb

u(U(∞), U ) for every uniform structure
U ∈ {F , R ∨L , R, L , R ∧L } by Proposition 7.1.14.

Proposition 7.1.16. Let G be a topological group and let D < G be a dense topological sub-
group. Then G has the translate property for Cb

u(G, R) if and only if D has the translate property
for Cb

u(D, R).

Proof. The proof of the only if part is equal to the proof of Proposition 7.1.10. Let’s prove
the other direction. By Theorem 5.3.5, it suffices to show that G has the abstract contin-
uous translate property. Therefore, suppose that G has a continuous representation on
a Banach lattice E by positive linear isometries. Fix a non-zero positive vector v ∈ E and
let t1, ..., tn ∈ R, g1, ..., gn ∈ G such that ∑n

j=1 tjgjv ≥ 0. Now there is a net (h(j)
α )α in D

such that limα h(j)
α = gj for every j = 1, ..., n. Thus,

0 ≤
n

∑
j=1

tjgjv =
n

∑
j=1

tj lim
α

h(j)
α v = lim

α

n

∑
j=1

tjh
(j)
α v.

We can conclude that ∑n
j=1 tj ≥ 0 thanks to the abstract continuous translate property of

D.

Example 7.1.17. 1) Every Lévy group G has the translate property for Cb
u(G, R) be-

cause of Propositions 7.1.14 and 7.1.16. Examples of Lévy groups can be found in
Chapters 4 and 5 of [P06].1

1Recall that a topological group G is a Lévy group if there is a family (Gα)α of compact subgroups of G
directed by inclusion having an everywhere dense union and such that for every α the normalized Haar
measure on Gα concentrates with respect to the right uniform structure on G. We refer to [P06, Chapter
4] for more details about Lévy groups.
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2) Let q = pk, where p is a prime number and k ∈ N, and let SLn(q) be the special
linear group of degree n ∈ N over the finite field of q elements. For every n ∈ N,
define the diagonal embedding

φn : SL2n(q) −→ SL2n+1(q), a 7−→ φn(a) =
(

a 0
0 a

)
and write A0(q) = lim−→ SL2n(q) for the direct limit of the discrete family of groups
{(SL2n(q), φn)}n∈N. Now on each group SL2n(q) consider the (normalized) rank
distance d2n .2 We can extend the rank-metric on the group A0(q), say d, and we
define A(q) as the metric completion of A0(q) with respect to d. With the topol-
ogy given by d, the group A(q) becomes a Polish non-locally compact topologi-
cal group. We know that A(q) has the translate property for Cb

u(A(q), R), since
it is a Lévy group ( [C18, Theorem 2.4]). Note that A(q) is a SIN-group, as it
is constructed as the completion of a group equipped with a bi-invariant metric.
Therefore, we can directly deduce that A(q) also has the translate property for
Cb

u(A(q), L ). However, if q is odd, then A(q) contains F2 as a discrete subgroup
( [C18, Theorem 4.2]), and hence it has not the translate property for Cb

u(A(q), F )
by Corollary 7.1.13.

We recall that a locally compact group G is of subexponential growth if for every
compact neighborhood of the identity C ⊂ G, we have that limn mG(Cn)

1
n = 1.

Theorem 7.1.18. Let G be a topological group with the translate property for Cb
u(G, R) and let

H be a compactly generated locally compact group of subexponential growth. Then the Cartesian
product G× H has the translate property for Cb

u(G× H, R).

We follow the strategy used by Monod in [M17, Theorem 8 - (3)] for discrete groups.
To this end, we need the following lemma due to Jenkins.

Lemma 7.1.19 (Jenkins). Let G be a locally compact group. Then the following assertions are
equivalent:

a) the group G is of subexponential growth;

b) for every compact subset K of G and every ε > 0 there is a function φ ∈ L1(G) such that

φ(t) > 0 and φ(ts) ≤ (1 + ε)φ(t) for every t ∈ 〈K 〉 and s ∈ K.

Here, 〈K 〉 is the subgroup generated by K.

Proof. See [J76, Lemma 1].
2Write r(a) for the rank of the matrix a ∈ Mn(Fq). Then the (normalized) rank distance dn on SLn(q)

is defined as dn(a, b) = 1
n r(b− a) ∈ [0, 1]. Note that dn is a bi-invariant metric.
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Proof of Theorem 7.1.18. Let G be a topological group with the translate property for
Cb

ru(G), and let H be a compactly generated locally compact group of subexponential
growth. In order to find a contradiction, suppose that the Cartesian product G × H
does not have the translate property for Cb

ru(G×H). This means that there is a non-zero
positive function f ∈ Cb

ru(G× H) and elements t1, ..., tn ∈ R, g1, ..., gn ∈ G, h1, ..., hn ∈ H
such that

n

∑
j=1

tjgjhj f ≥ 0 but
n

∑
j=1

tj < 0.

Chose an 0 < ε < 1 such that ∑n
j=1 tj < 0, where the coefficients tj are given by

tj =

{
(1 + ε)tj if tj > 0
(1− ε)tj if tj ≤ 0,

for every j = 1, ..., n. Then tj ≥ tj for every j = 1, ..., n. By Jenkin’s lemma there is a
non-zero positive function φ ∈ L1(H) such that πR(hj)φ(x) ≤ (1 + ε)φ(x) for every
x ∈ H and every j = 1, ..., n. Now it is important to notice that Cb

ru(G× H) is a positive
L1(H)-module with operation map given by

L1(H)× Cb
ru(G× H) −→ Cb

ru(G× H), (ψ, f ) 7−→ ψ ∗ f =
∫

H
ψ(h)πL(h) f dmH(h).

The integral here is taken in the Bochner sense. We quickly check that the operation
map is well-defined. First, for every f ∈ Cb

ru(G× H) and every ψ ∈ L1(H), the map

(H, mH) −→ Cb
ru(G× H), h 7−→ ψ(h)πL(h) f

is mH-measurable as ψ is an almost everywhere limit of continuous functions and the
representation πL of H on Cb

ru(G× H) is continuous. Second,∫
H
||ψ(h)πL(h) f ||∞ dmH(h) ≤

∫
H
|ψ(h)| ||πL(h) f ||∞ dmH(h) ≤ ||ψ||1|| f ||∞.

Therefore, the operation map is well-defined by [Bou63, IV §5 N.6 Théorème 5].
Two important properties of the operation map that we shall have in mind are that

(πR(h)ψ) ∗ f = ψ ∗ (πL(h) f ) and πL(g)(ψ ∗ f ) = ψ ∗ (πL(g) f )

for every h ∈ H, g ∈ G, ψ ∈ L1(H) and f ∈ Cb
ru(G× H).

Returning to our problem. It is clear that

(1− ε)φ ≤ πR(hj)φ ≤ (1 + ε)φ for every j = 1, ..., n.

Taking the convolution against f , we deduce that

(1− ε)φ ∗ f ≤ (πR(hj)φ) ∗ f ≤ (1 + ε)φ ∗ f for every j = 1, ..., n.
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Multiplying for tj this last expression, taking into account the sign of tj, we have that

tjφ ∗ f ≥ tj(πR(hj)φ) ∗ f ≥ tjφ ∗ (πL(hj) f ) for every j = 1, ..., n.

We want to apply the abstract continuous translate property of G to the non-zero posi-
tive function φ ∗ f ∈ Cb

ru(G× H). Thus,

n

∑
j=1

tjπL(gj)(φ ∗ f ) ≥
n

∑
j=1

tjπL(gj)
(
φ ∗ (πL(hj) f )

)
≥ φ ∗

(
n

∑
j=1

tjgjhj f

)
≥ 0,

which implies that ∑n
j=1 tj ≥ 0. But this is in contradiction with the fact that ∑n

j=1 tj < 0
by the choice of the tj’s. Therefore, G×H has the translate property for Cb

ru(G×H).

Example 7.1.20. Let M be an injective Von Neumann algebra with separable predual
M∗ and consider the group U(M) = {u ∈ M : uu∗ = u∗u = 1} of all unitary operators
ofM. The group U(M) is a Polish group, when endowed with the ultraweak topology,
i.e., the weak-* topology given by the duality with M∗. By a result of Giordano and
Pestov ( [GP07, Section 3]), U(M) is the direct product of a compact group K and a
Lévy group L. We know that L has the translate property for Cb

u(L, R) by Example
7.1.17 and that K is of subexponential growth. Therefore, we can apply Theorem 7.1.18
to deduce that U(M) has the translate property for Cb

u(U(M), R).

We want to conclude the discussion about topological groups with one last interest-
ing example.

Example 7.1.21 (One example to rule them all). Let Γ = Sym(N) be the group of all
permutations of the natural numbers N. How seen in Example 1.4.10, Γ has a unique
Polish group topology which makes it R-amenable but not F -amenable.

Now, Γ is equal to the closure of the subgroup Sym f (N) of all permutations of N
with finite support. This last group is locally finite, and therefore has the Ud-fixed-point
property for cones by point a) of Theorem 7.2.2. In particular, Sym f (N) has the translate
property for Cb

u(Sym f (N), U ) for all the five standard uniformities U . We can conclude
that G has the translate property for Cb

u(Γ, R) by Proposition 7.1.16.
Moreover, Γ has F2 has a closed discrete subgroup as explained in [GH17, Proposi-

tion 5.5]. Therefore, Γ does not have the translate property for Cb
u(Γ, F ) by Corollary

7.1.13. Γ also does not have the translate property for Cb
u(Γ, L ) because of Corollary

5.2.12 and the fact that the action of Γ on N is continuous.
From these facts, we can draw the following conclusions for topological groups:

1) in general, a closed subgroup H of a topological group G with the translate prop-
erty for Cb

u(G, R) needs not to have the translate property for Cb
u(H, R);

2) Proposition 7.1.16 is not true anymore for the uniformities L and F ;
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3) suppose that a topological group G has the translate property for Cb
u(G, L ). Then

it does not imply that G is L -amenable. Same for the uniform structure F .

Finally, Γ allows us to apply another time Proposition 7.1.8. Indeed, let p ∈ [1, ∞],
p 6= 2, and consider the isometry group Iso(`p(N)). By the work of Banach ( [B78, XI §5
p. 178-179]), we can abstractly see Iso(`p(N)) as the semidirect product {−1, 1}N o Γ.
Then the strong operator topology on Iso(`p(N)) is equal to the product topology of the
Polish topology of Γ and the compact one of {−1, 1}N. Therefore, Iso(`p(N)) has the
translate property for Cb

u(Iso(`p(N)), R).

7.2 The locally compact case

We turn our attention to locally compact groups. We can go much deeper in the study
of the class of locally compact groups with the fixed-point property for cones using the
results of Chapter 6.

Recall that we only speak of the fixed-point property for cones without specifying
any of the five standard uniformities when handling locally compact groups, since they
are all equivalent (see Definition 6.3.6 and paragraph before). Furthermore, having the
fixed-point property for cones is equivalent to having the translate property in the case
of locally compact groups by Theorem 6.3.10.

We start showing that the fixed-point property for cones passes to closed subgroups.
To prove this assertion, we borrow a tool from harmonic analysis on locally compact
groups, namely Bruhat functions. To this end, recall that if G is a locally compact group
and H < G a closed subgroup, then a Bruhat function β for H is a positive continuous
function on G such that supp(β|KH) is compact for every compact subset K of G and
such that

∫
H β(gh)dmH(h) = 1 for every g ∈ G. Note that β depends on the choice of

the Haar measure mH of H. A proof that every closed subgroup of a locally compact
group admits a Bruhat function β can be found in [R02, Proposition 1.2.6].

Theorem 7.2.1. Suppose that G is a locally compact group with the fixed-point property for
cones and let H ≤ G be a closed subgroup. Then H has the fixed-point property for cones.

Proof. We want to show that H has the translate property for L∞(H). Therefore, let β be
a Bruhat function for H and define the linear operator

T : L∞(H) −→ L∞(G), h 7−→ T(h)(g) =
∫

H
h(x)β(g−1x)dmH(x).

Note that T is well-defined. Actually, T(h) ∈ Cb(G) for every h ∈ L∞(H) by [P88, Propo-
sition (1.12)] . Moreover, T is strictly positive because β is positive and the intersection
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supp(β) ∩ supp( f ) is non-empty. Finally, T is equivariant. Indeed,

T(ah)(g) =
∫

H
(ah)(x)β(g−1x)dmH(x) =

∫
H

h(a−1x)β(g−1x)dmH(x)

=
∫

H
h(y)β(g−1ay)dmH(y) =

∫
H

h(y)β((a−1g)−1y)dmH(y)

= T(h)(a−1g) = aT(h)(g)

for every a, g ∈ G and for every h ∈ L∞(H). Now let f ∈ L∞(H) be a non-zero positive
function, and let h1, ..., hn ∈ H and t1, ..., tn ∈ R be such that ∑n

j=1 tjhj f ≥ 0. Therefore,

0 ≤ T
( n

∑
j=1

tjhj f
)
=

n

∑
j=1

tjhjT( f ).

As G has the fixed-point property for cones, then it also has the translate property for
Cb(G) thanks to Theorem 6.3.11. Applying it to the non-zero positive function T( f ), we
have that ∑n

j=1 tj ≥ 0 showing that H has the translate property for L∞(H), and hence
the fixed-point property for cones by Theorems 6.3.11.

Theorem 7.2.2. Let G be a locally compact group. Then:

a) if G is the directed union of closed subgroups with the fixed-point property for cones, then
G has the fixed-point property for cones;

b) if G has a dense subgroup D with the translate property for Cb
u(D, R), then G has the

fixed-point property for cones.

We want to stress that the dense subgroup is not necessarily locally compact in point
b). For this reason, we have to specify for which functionally invariant uniformity the
dense subgroup has the translate property.

Proof of Theorem 7.2.2. The proof of point a) is direct by Proposition 5.3.3 and Proposition
7.1.14.

Let’s look at the proof of point b). The if direction is given by Proposition 7.1.10.
So let’s prove the only if direction. Suppose that D is a dense subgroup of G with the
translate property for Cb

u(D, R). Then G has the translate property for Cb
u(G, R) by

Proposition 7.1.16. This implies that G has the fixed-point property for cones thanks to
Theorem 6.3.10.

As a consequence, for locally compact groups, the fixed-point property for cones is
a local property, i.e., a locally compact group has the fixed-point property for cones if
and only if every of its compactly generated subgroups has it.

Moreover, thanks to the fact that the fixed-point property for cones is equivalent to
the translate property for locally compact groups, the following holds:
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Corollary 7.2.3. Locally compact groups of subexponential growth have the fixed-point property
for cones.

Proof. The proof is only an application of Theorem 7.1.18.

Example 7.2.4. Let G be a discrete abelian group. Then G has polynomial growth ( [P88,
Corollary 6.19]), and hence it has subexponential growth. Therefore, G has the Ud-fixed-
point property for cones. More generally, let G be an abelian topological group and let
U be a functionally invariant uniform structure for G. We can deduce that G has the
U -fixed-point property for cones by Corollary 7.1.2.

Whether the converse is true, i.e., a locally compact group with the fixed-point prop-
erty is of subexponential growth, is still an open problem, even for discrete groups.

Corollary 7.2.5. Virtually nilpotent locally compact groups have the fixed-point property for
cones.

Proof. Nilpotent locally compact groups have subexponential growth by [P88, (6.18)],
and the fixed-point property for cones passes through finite-index subgroups by Propo-
sition 7.1.9.

We say that a locally compact group G is a topologically finite conjugancy classes
group, or G is a FC-topologically group, if the closure of each of his conjugacy classes
is compact. These types of groups have subexponential growth, see [P78]. Therefore,

Corollary 7.2.6. Let G be a locally compact FC-topologically group. Then G has the fixed-point
property for cones.

Finally, we mention another type of extension for discrete groups that preserves the
fixed-point property for cones. The proof is not obvious and quite technical. Accord-
ingly, we decided not to repeat it here.

Recall that a group G is said to be a central extension of a group N if N is contained
in the center of G.

Theorem 7.2.7 (Monod). Central extensions of discrete groups with the fixed-point property
for cones have the fixed-point property for cones.

Proof. See [M17, Section 7].

7.2.A. About groups of subexponential growth. There is a direct way to show that
a locally compact group with subexponential growth has the fixed-point property for
cones. The strategy was pointed out by Paterson in [P88, (6.42)(i)]. He claimed that
a locally compact group G with subexponential growth has the measurably translate
property for L∞(G) and, consequently, the fixed-point property for cones.3 Since Pa-
terson only sketched the proof, we decided to reproduce here a formal and complete
version of it.

3Actually, we took inspiration for the measurably translated property’s definition and the measurably
invariant normalized integral property by this idea of Paterson. To be corrected, it was Paterson the first
to introduce the measurably translate property under the name of generalized translate property.
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Theorem 7.2.8. Let G be a locally compact group of subexponential growth. Then G has the
measurably translate property for L∞(G).

Proof. Let f ∈ L∞(G) be a non-zero positive function and let µ ∈ M00(G) be a regular
Borel measure with compact support s.t. µ ∗ f ≥ 0.

Take a symmetric compact neighborhood C of the identity such that |µ|(G \ K) = 0
and 1C ∗ f 6= 0, and define the sequence (an)n∈N ⊂ R given by an =

∫
Cn f (x)dmG(x).

First of all, note that

(an)
1
n =

(∫
Cn

f (x)dmG(x)
) 1

n
≤ mG(Cn)

1
n

(
sup
x∈Cn

f (x)

) 1
n

≤ mG(Cn)
1
n || f ||

1
n
∞

for every n ∈ N. Therefore, 0 < limn(an)
1
n ≤ 1.

Further,

an+1

an
=

∫
Cn f (x)dmG(x) +

∫
Cn+1\Cn f (x)dmG(x)∫

Cn f (x)dmG(x)
≥ 1

and

lim inf
n

an+1

an
≤ lim inf

n
(an)

1
n ≤ 1

for every n ∈ N. This last affirmation is true because for a sequence of real positive
numbers (an)n, we always have that

lim inf
n

an+1

an
≤ lim inf

n
(an)

1
n .

Therefore, we can take a subsequence (ank)k of (an)n such that limk
ank+2

ank
= 1. De-

fine the sequence of positive functions (Fk)k given by Fk(x) = 1
ank

∫
Cnk+1 f (xg)dmG(g).

We claim that (Fk)k converges uniformly on C to 1C. Indeed, we have to show that
limk Fk(s) = 1 for every s ∈ C. Fix s ∈ C and compute that

Fk(s) =
1

ank

∫
Cnk+1

f (xg)dmG(g) =
1

ank

∫
sCnk+1

f (y)dmG(y),

where sg = y. Note that Cnk ⊂ sCnk+1. In fact, if x ∈ Cnk+1, then x = c1 · ... · cnk where
cj ∈ Cj and j ∈ {i, ..., nk}. So, x = s · e · s−1 · c1 · ... · cnk ∈ sCnk+1. We can conclude that
Fk(s) ≥ 1. Moreover,

Fk(s) =
1

ank

∫
Cnk+1

f (xg)dmG(g) ≤ 1
ank

∫
Cnk+2

f (y)dmG(y) =
ank+2

ank

.
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Putting together this two facts, we conclude that

1 ≤ lim
k

Fk(s) ≤ lim
k

ank+2

ank

= 1

for every s ∈ C. This shows that (Fk)k converges uniformly on C to 1C.
In conclusion,

µ(G) =
∫

G
1G(s)dµ(s)

=
∫

supp(µ)
1G(s)dµ(s)

=
∫

C
1G(s)dµ(s)

=
∫

C
lim

k
Fk(s)dµ(s)

= lim
k

∫
C

Fk(s)dµ(s)

= lim
k

1
ank

∫
C

∫
Cnk+1

f (sg)dmG(g)dµ(s)

= lim
k

1
ank

∫
Cnk+1

∫
C

f (sg)dµ(s)dmG(g)

= lim
k

1
ank

∫
Cnk+1

(µ ∗ f )(g)dmG(g) ≥ 0

showing that G has the measurably translate property for L∞(G).

7.2.B. Obstructions to the fixed-point property for cones. The goal of this section is to
find phenomena that prevents a group of having the fixed-point property for cones or
the translate property.

We recall that a uniformly discrete free subsemigroup in two generators of a topo-
logical group G is a subsemigroup T2 generated by two elements a, b ∈ G such that
there is a neighborhood W of the identity with the property that sW ∩ tW = ∅ for every
s, t ∈ T2, s 6= t.

Proposition 7.2.9. Let G be a locally compact group that contains a uniformly discrete free
subsemigroup in two generators T2. Then G does not have the fixed-point property for cones.

Proof. Suppose it is not the case. Then there is a neighborhood W of the identity such
that sW ∩ tW = ∅ for every s, t ∈ T2. Define the open subset U = T2 ·W. Consequently,
1U > 0 since the set U has Haar measure strictly bigger than zero. By Theorem 6.3.4,
there is an invariant normalized integral I on L∞(G, 1U). But aU ∩ bU = ∅. This means
that the function φ = 1U − 1aU − 1bU is non-zero, and it belongs to L∞(G, 1U)+.
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Therefore,

0 ≥ I(φ) = I(1U)− I(1aU)− I(1bU) = −1,

which is a contradiction.

In particular, not every extension of groups with the fixed-point property for cones
has the fixed-point property for cones. The easiest example is given by the discrete
group of affine transformations of the line RoR∗. In fact, it contains the free subsemi-
group T2 generated by the elements (0, 2) and (1, 1).

However, thanks to this last result, it is possible show that there are particular cases
where having the fixed-point property for cones is equivalent to being of subexponential
growth.

Proposition 7.2.10. Let G be a locally compact group.

a) Suppose that G is connected. Then G has the fixed-point property for cones if and only if
G is of subexponential growth.

b) Suppose that G is compactly generated and almost connected. Then G has the fixed-point
property for cones if and only if G is of subexponential growth.

Proof. In the two cases, the if direction is true by Corollary 7.2.3.
For the only if direction of point a), suppose that G is not of subexponential growth.

Then G contains a uniformly discrete subsemigroup T2 in two generators by [P88, Propo-
sition 6.39]. Therefore, G can not have the fixed-point property for cones by proposition
7.2.9.

For the only if direction of point b), suppose that G has the fixed-point property for
cones and consider the exact sequence given by

{e} −→ Ge −→ G −→ G�Ge
−→ {e},

where Ge is the connected component of the identity. Since Ge is closed in G and G�Ge
is compact, the groups G and Ge have the same growth by [G73, Theorem 4.1]. But Ge
has the fixed-point property for cones by Theorem 7.2.1, and hence it is also of subex-
ponential growth by point a). Therefore, we can conclude that G has subexponential
growth.

Similarly, we have a characterization of the fixed-point property for cones in terms of
free subsemigroups for the class of elementary discrete groups. Recall that the class of
elementary discrete groups is the smallest class of discrete groups containing the finite
and abelian groups, and which is closed by taking subgroups, extensions and direct
limit.

Proposition 7.2.11. A discrete elementary group has the fixed-point property for cones if and
only if it does not contains a free semigroup in two generators.
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Proof. If G is a group with the fixed-point property for cones, then it has not T2 as a
subsemigroup.

Suppose now that G does not have T2 as a subsemigroup. Then G has polynomial
growth by [W94, Theorem 12.18]. Thus, G has the fixed-point property for cones by
Corollary 7.2.3.
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Chapter 8

An Application to Invariant Radon
Measures

This short chapter wants to give a couple of easy but exciting applications of the fixed-
point property for cones. In particular, the fixed-point property for cones can be effi-
ciently applied in problems where a non-zero invariant Radon measure is required.

The first part shows that cocompact actions of groups with the fixed-point prop-
erty for cones on locally compact uniform spaces always admit a non-zero invariant
Radon measure. Then this result is applied to show the unimodularity of locally com-
pact groups with the fixed-point property for cones and give another proof of a well-
known theorem for finitely generated orderable groups.

8.1 Cocompact actions and invariant Radon measures

Let (X, UX) be a uniform space. We say that (X, UX) is a locally compact uniform
space if the topology generated by the uniform structure UX is locally compact. As we
suppose that every locally compact space is Hausdorff, the uniformity UX has to be
separated.

Before starting, it is worth reminding that each Radon measure on a locally compact
space X can be seen as a positive functional defined on the Riesz space C00(X) ( [Bou63,
III §1 No.5 Théorème 1]).

Theorem 8.1.1. Let G be a topological group and let U be a functionally invariant uniformity
for G. Suppose that G has the U -fixed-point property for cones. Then every cocompact action
of G on a locally compact uniform space (X, UX) by uniform isomorphisms for which there is a
point x0 ∈ X such that the map g 7−→ gx0 is (U , UX)-uniformly continuous admits a non-zero
invariant Radon measure.

Proof. First of all, recall that the space C00(X) admits a G-dominating element φ as the
action of G on X is cocompact (Proposition 3.4.6). In particular, C00(X, φ) = C00(X).
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Without loss of generality, we can suppose that φ(x0) 6= 0. Therefore, we can apply
point d) of Theorem 5.2.1 to obtain an invariant integral for C00(X) normalized on φ
which is nothing but a non-zero invariant Radon measure.

Proposition 8.1.2. Let G be a topological group and let (X, UX) be a locally compact uniform
space. Suppose that G acts cocompactly on (X, UX) by uniform isomorphisms. Then

a) if G has the F -fixed-point property for cones and the action of G on X is orbitally contin-
uous, then there is a non-zero invariant Radon measure on X;

b) if G has the R-fixed-point property for cones and the action of G on X is motion equicon-
tinuous, then there is a non-zero invariant Radon measure on X;

c) if G has the L -fixed-point for cones and the action of G on X is uniformly equicontinuous,
then there is a non-zero invariant Radon measure on X.

Proof. The proof is only a combination of Proposition 3.4.6 and Corollary 5.2.11.

It is not surprising that the discussion becomes interesting when we look at the right
uniform structure.

Theorem 8.1.3. Let G be a topological group with the translate property for Cb
u(G, R). Then

each jointly continuous cocompact action of G on any locally compact topological space X has a
non-zero invariant Radon measure.

Proof. As the action of G on X is jointly continuous, the induced representation of G on
C00(X) is continuous by proposition 3.4.10. Let now φ be the support-dominating and
G-dominating element of C00(X) given by proposition 3.4.6. Then the representation of
G on C00(X) is also continuous with respect to the pφ-norm by Proposition 3.4.10. Using
the fact that G also has the abstract continuous translate property (Theorem 5.3.5), we
can find a pφ-continuous positive invariant linear functional I on spanR {gφ : g ∈ G}
normalized on φ. Finally, we can extend it in an invariant way to the whole space
C00(X) using Proposition 4.2.21 together with Corollary 4.2.13.

8.2 Unimodularity

Let G be a locally compact group and write ∆G for its modular function.

Corollary 8.2.1. Let G be a locally compact group with the fixed-point property for cones. Then
G is unimodular.

Proof. Suppose it is not the case. This means that there is g ∈ G such that ∆G(g) = c 6= 1.
Let H := 〈g〉 be the group generated by g. We claim that H ∼= Z, and that H is closed
and discrete as a subgroup of G. This is because of the following facts.
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- The element g has infinite order. Suppose it is not the case. Then there is n ∈ N such
that gn = e. This implies that

∆G(g)n = ∆G(gn) = ∆G(e) = 1 ⇐⇒ ∆G(g) = 1.

But this is a contradiction.

- H is closed. Suppose it is not the case. Then there is a net (gα)α ⊂ H such that
limα gα = x and x /∈ H. Note that (gα)α = (gnα)α, where (nα)α is a net in N
converging to infinity. Then

∆G(x) = ∆G(lim
α

gnα) = lim
α

∆G(g)nα = lim
α

cnα =

{
0 if c < 1
∞ if c > 1.

But this is a contradiction with the fact that im(∆G) is a subgroup of R∗.

- H is discrete. Suppose it is not the case. Then there is a net (gα)α ⊂ H such that
limα gα = e. Employing the same strategy as before, we can find a contradiction.

Therefore, we can conclude that H is isomorphic to Z. Now let G act on the locally
compact space G�H, and note that this action is continuous and cocompact. By Theorem
8.1.3, there is a non-zero invariant Radon measure on G�H. But this is possible if and
only if the restriction of ∆G on the subgroup H is equal to ∆H as explained in [Bou59,
Chap. II §2 No.6 Corollaire 2]. As H is discrete, ∆H = 1. Thus,

1 6= ∆G(g) = ∆H(g) = 1,

which is a contradiction. We can conclude that G is unimodular.

Corollary 8.2.2. Closed subgroups of groups with the fixed-point property for cones are uni-
modular.

Proof. Closed subgroups of a group with the fixed-point property for cones have the
fixed-point property for cones by Theorem 7.2.1. Thus, they are unimodular.

Remark 8.2.3. In general, unimodularity does not pass to closed subgroups. An easy
example is given by the unimodular locally compact Lie group GL2(R) that contains
the non-unimodular (ax + b)-group as a closed subgroup.

Corollary 8.2.4 ( [G73, Lemme I.3.]). Locally compact groups of subexponential growth are
unimodular.

Proof. We know that locally compact groups of subexponential growth have the fixed-
point property for cones by Corollary 7.2.3. Therefore, they are unimodular.
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Chapter 8. An Application to Invariant Radon Measures

8.3 Fixing Radon measures on the line

We want to apply the close relationship between the fixed-point property for cones and
non-zero invariant Radon measures to a dynamical problem. Namely, when the natural
action of a subgroup of Homeo+(R), the group of order-preserving homeomorphisms
of the line, on R fixes a non-zero Radon measure. This problem was studied mainly
by Plante in [P83] and [P75], who discovered that finitely generated virtually nilpotent
subgroups of Homeo+(R) always fix a non-zero Radon measure on the line (an exposi-
tion of those results can be found in [N11, Subsection 2.2.5]). This result is due to the fact
that finitely generated virtually nilpotent groups are of subexponential growth, so it is
not surprising that it si possible to generalise this theorem to the class of groups with the
fixed-point property for cones. Interestingly, the proof for groups with the fixed-point
property for cones is much more natural and less technical than the one for virtually
nilpotent groups.

Recall that a subgroup G of Homeo+(R) is said to be boundedly generated if there
is a symmetric set of generators S of G and a point x0 ∈ R such that the set {sx0 : s ∈ S}
is a bounded subset of the line.

Theorem 8.3.1. Let G be a boundedly generated subgroup of Homeo+(R) with the fixed-point
property for cones. Then there is a non-zero G-invariant Radon measure on R.

Proof. Let S ⊂ G be a symmetric set that generates G boundedly. If the action of G on R
has a global fixed point, then a Dirac mass on this point is a non-zero invariant Radon
measure.

Thus, suppose that the action of G on R has no global fixed points. We claim that the
action is of cocompact-type in this case. Indeed, let x0 ∈ R be the point which witnesses
the fact that S generates G boundedly and let x1 = sups∈S sjx0. Now, the set I = [x0, x1]
is compact because S generates G boundedly. If we can show that every orbit of G
intersects the interval I, then we have that the action is cocompact. Let x ∈ R and note
that the orbit Gx is unbounded in the two directions. Otherwise, its supremum and its
infimum would be global fixed points. Thus, we can chose x′0, x′1 in Gx such that x′0 <
x0 < x1 < x′1. Let g = sjn · · · sj1 ∈ G be such that gx′0 = x′1 and let m ∈ {1, ..., n− 1} be
the largest index for which the inequality sjm · · · sj1 x′0 < x0 holds. Then sjm+1sjm · · · sj1 x′0
is in the orbit of x, it is greater than or equal to x0, and it is smaller or equal to x1 by
definition. Therefore, we have that the orbit of x intersects I. Now that we know about
the cocompactness of the action, we can conclude by applying Theorem 8.1.3.

In particular, Theorem 8.3.1 generalizes [P75, Theorem (5.4)].

Remark 8.3.2. The assumption that G is boundedly generated cannot be dropped. In
fact, there are even examples of abelian non-boundedly generated subgroups of Homeo+(R)
which fix no non-zero invariant Radon measure on the line (see [P83, Section 5]).
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Section 8.3. Fixing Radon measures on the line

Scholium 8.3.3. Every result of this last subsection could also be proved using the
slightly more general concept of supramenability instead of the fixed-point property
for cones. This is possible thanks to [KMN13, Proposition 2.7].
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Appendix A

Embeddings of Cones in Vector Spaces

This first appendix discusses embedding of abstract cones in vector spaces. It is a folk-
loric result that, given a convex compact set, it is always possible to embeds it into the
continuous dual of a Banach space endowed with the weak-* topology ( [G17, Propo-
sition 5.1.7]). The question is: can we do the same with cones instead of compact sets?
Namely, given an abstract cone, can we embed it in a suitable vector space? The answer
to these questions is positive but more complicated than the one for compact sets.

The study of this problem was started by Rådström in his paper [R52]. He defined
what is an abstract cone and explained how to construct a vector space out of it. More-
over, he showed that finding a linear embedding of the cone into its corresponding
vector space was possible for a particular class of abstract cones. The construction of
Rådström turned out to be very fruitful, and it was largely used to prove more sophisti-
cated embedding theorems. See for examples [U76], [F85], [H55] and [S86]. The method
of Rådström became so important and famous also for its applications in probability
theory, mathematical economics, interval mathematics and related areas ( [S86, Section
9]). We refer to [S85] for an excellent survey about results based on the Rådström con-
struction.

However, there are other exciting embedding theorems for cones, such as the em-
bedding theorem for locally compact cones of Edwards. He showed in [E64] that, given
a generating locally compact cone in a locally convex vector space, it is possible to em-
bed it continuously and linearly in the continuous dual of a Banach space endowed with
the weak-* topology. This result generalizes the embedding theorem for convex com-
pact sets quoted before. Note that, differently from the approach taken by Rådström,
the locally convex vector space, where the locally compact cone lives, is part of the data
for the construction of the embedding.

One could ask if it is also possible to state the fixed-point property for cones us-
ing abstract cones. We can already affirm that it is not possible. Indeed, in the fixed-
point property for cones, the data of the locally convex vector space which contains the
cone on which we are acting is essential. This is because of the group representation’s
cobounded condition, which also considers the dual of the vector space. Note that it is

185
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possible to state the definition of amenability using abstract convex compact sets. Fur-
thermore, it is not possible to restrict the class of cones for which we have to check the
fixed-point property for cones because of its generality.

In the first part of the appendix, the work of Rådström and some of its applications
are discussed. In particular, it is explained how it is possible to extend an action of
a group on an abstract cone to a linear representation on the vector space associated
with it. After, the Edwards theorem for locally compact cones is presented and used to
characterise amenability for topological groups.

A.1 Embedding abstract cones

We start by defining the concept of an abstract cone C and explain the Rådström con-
struction introduced in [R52] of the vector space EC and the embedding of C in EC . We
are going to utilise it consistently in this first section. Afterwards, we look at abstract
cones that admit a partial order and abstract cones that admit metrics.

A.1.A. The Rådström construction. Recall that a semigroup is a set together with a
binary operation that satisfies the associative property.

Definition A.1.1. An abstract cone is a commutative semigroup C with a distinguished
element e ∈ C such that c + e = c for every c ∈ C and a map · : R+ × C −→ C, called
scalar multiplication, satisfying:

(A1) r · (c1 + c2) = r · c1 + r · c2 for all r ∈ R+ and c1, c2 ∈ C;

(A2) (r1 + r2) · c = r1 · c + r2 · c for all r1, r2 ∈ R+ and c ∈ C;

(A3) (r1r2) · c = r1(r2 · c) for all r1, r2 ∈ R+ and c ∈ C;

(A4) 1 · c = c and 0 · c = e for all c ∈ C.

The element e of an abstract cone C is also called the zero element of C. Note that
r · e = e for every r ∈ R+.

Example A.1.2. (Examples of abstract cones)

1) Let E be a vector space and let C ⊂ E be a cone as in Definition 2.1.1. Then C is an
abstract cone.

2) Let E be a vector space and let P(E) be the collection of all subsets of E. We equip
it with the pointwise addition and the pointwise scalar multiplication of sets, i.e.,

A + B = {a + b : a ∈ A and b ∈ B} and c · A = {ca : a ∈ A}

for A, B ∈ P(E) and c ∈ R+. Then P(E) is an abstract cone with zero element
given by the origin of E.
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Definition A.1.3. An abstract cone C is said to have the cancellation property if for
every pair c1, c2 ∈ C for which there is z ∈ C such that c1 + z = c2 + z, the equality
c1 = c2 holds.

Note that every cone as in Definition 2.1.1 has the cancellation property because of
the properties of an ordered vector space.

Example A.1.4. (Examples of abstract cones with the cancellation property)

1) Let E be a locally convex space and consider the collection B(E) of all closed
bounded convex subsets of E. We define the closed sum of two elements A, B
of B(E) as

A+B = {a + b : a ∈ A and b ∈ B}.

Then B(E) equipped with this closed sum and the pointwise scalar multiplication
becomes an abstract cone with zero element given by the origin of E.1 Moreover,
B(E) has the cancellation property as showed in [S86, Theorem 2.2].

2) Let E be a Banach space and let dH be a Hausdorff metric. Define the collection

U(E) = {A ⊂ E : A is a non-empty closed convex set s.t. dH(A, {0}) < ∞} .

Then U(E) equipped with the closed sum and the pointwise scalar multiplication
is an abstract cone with the cancellation property, see [B09, Proposition 2].

Suppose to have an abstract cone C with the cancellation property and define the
equivalence relation ∼ on C × C by

(c1, c2) ∼ (c3, c4) ⇐⇒ c1 + c4 = c2 + c3 for every (c1, c2) and (c3, c4) ∈ C × C.

Write 〈c1, c2〉 for the equivalence class containing (c1, c2) and EC for the set of all equiv-
alence classes of C × C.

On this last set, we define an addition by letting

〈c1, c2〉+ 〈c3, c4〉 = 〈c1 + c3, c2 + c4〉 for every 〈c1, c2〉, 〈c3, c4〉 ∈ EC

and a scalar multiplication by

r · 〈c1, c2〉 =


〈r · c1, r · c2〉 if r ∈ R+

〈(−r) · c2, (−r) · c1〉 otherwise.

Furthermore, we define the map

j : C −→ EC , c 7−→ j(c) = 〈c, e〉.
1Note that B(E) only equipped with the pointwise addition does not need to be a commutative semi-

group as the sum of two closed sets may fail to be closed.
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Theorem A.1.5 (Rådström’s Basic Embedding Theorem). Let C be an abstract cone with
the cancellation property. Then EC is a real vector space satisfying EC = j(C)− j(C), and j is
an additive positive homogeneous embedding. In particular, C can be seen as a generating cone
in EC .

Proof. See [R52, Theorem 1-A].

Let’s now turn our attention to group actions on abstract cones.

Definition A.1.6. An action of G on an abstract cone C is nothing but a group action of
G on the set C such that:

- ge = e for every g ∈ G;

- g(r · c1 + c2) = r · (gc1) + gc2 for every g ∈ G, r ∈ R+ and c1, c2 ∈ C.

Proposition A.1.7. Suppose that a group G acts on an abstract cone C with the cancellation
property. Then the action of G on C extends to a representation of G on EC by linear automor-
phisms.

Proof. As G acts on C, then G also acts on C × C and on EC vie the rule g〈c1, c2〉 =
〈gc1, gc2〉 for every g ∈ E and 〈c1, c2〉 ∈ EC . Note that the action of G on EC is linear.
Now the map j is equivariant with respect to this last action of G on EC . In fact,

j(gc) = 〈gc, e〉 = g〈c, e〉 = g j(c)

for every g ∈ G and c ∈ C. Therefore, the action of G on C extends to a representation
of G on EC by linear automorphisms.

A.1.B. Abstract ordered cones.

Definition A.1.8. An abstract ordered cone is an abstract cone C together with and
order relation ≤ such that the inequalities

c1 + z ≤ c2 + z and r · c1 ≤ r · c2

hold for every c1, c2 ∈ C such that c1 ≤ c2 and for every z ∈ C and r ∈ R+.

The set C+ = {c ∈ C : e ≤ c} is called the positive abstract cone of C.

Definition A.1.9. Let C be an abstract ordered cone. Then:

- the cone C has the order cancellation property if c1 ≤ c2 holds for every c1, c2 ∈ C
satisfying c1 + z ≤ c2 + z for some z ∈ C;

- the cone C is Archimedean if c1 ≤ c2 holds for all c1, c2 ∈ C satisfying nc1 + z1 ≤
nc2 + z2 for some z1, z2 ∈ C and all n ∈ N;
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- the cone C has the Hukuhara property if for all c1, c2 ∈ C satisfying c1 ≤ c2 there
exists some z ∈ C+ such that c1 + z = c2.

Note that the Archimedean property implies the order cancellation property, and
that the cancellation property and the Hukuhara property together imply the order can-
cellation property.

Example A.1.10. (Examples of abstract ordered cone)

1) Let C be a proper cone in a vector space E. Then C and its induced order are
an abstract ordered cone with the order cancellation property and the Hukuhara
property.

2) Let E be a locally convex vector space. Then the abstract cone B(E) equipped
with the set inclusion as order relation is an abstract ordered cone with the order
cancellation property, see [S86, Theorem 3.1].

Let C be an abstract ordered cone, and define on EC an order relation via the rule

〈c1, c2〉 ≤ 〈c3, c4〉 ⇐⇒ c1 + c4 ≤ c2 + c3.

Recall that a map f between two partially ordered sets (X,≤X) and (Y,≤Y) is said
order-preserving if f (x1) ≤Y f (x2) whenever x1 ≤X x2.

Theorem A.1.11. Let C be an abstract ordered cone with the order cancellation property. Then
EC is an ordered vector space, and the maps j and j−1 are order-preserving. Moreover,

a) the ordered vector space EC is Archimedean if and only if C is Archimedean;

b) the abstract cone C has the Hukuhara property if and only if (EC)+ = j (C+).

Proof. See [K77, Satzt 1].

In particular, when C has the Hukuhara property, it is possible to identify its positive
cone with the positive cone of the ordered vector space EC .

Definition A.1.12. Suppose that a group G acts on an abstract ordered cone C. We say
that the action of G on C is order-preserving if for every g ∈ G and c1, c2 ∈ C such that
c1 ≤ c2, then gc1 ≤ gc2.

Proposition A.1.13. Suppose that a group G acts on an abstract ordered cone C with the order
cancellation property. If the action of G on C is order-preserving, then it extends to a represen-
tation of G on EC by positive linear automorphisms.

Proof. We already saw in Proposition A.1.7 how to extend the action on C to a rep-
resentation on EC . We only have to show that the representation is by positive auto-
morphisms. Therefore, suppose that the action of G on C is order-preserving and let
〈c1, c2〉, 〈c3, c4〉 ∈ C such that 〈c1, c2〉 ≤ 〈c3, c4〉. This means that c1 + c4 ≤ c2 + c3. Thus,

g(c1 + c4) = gc1 + gc4 ≤ gc2 + gc3 = g(c2 + c3) for every g ∈ G.
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It is possible to conclude that

g〈c1, c2〉 = 〈gc1, gc2〉 ≤ 〈gc3, gc4〉 = g〈c3, c4〉 for every g ∈ G.

This shows that the representation of G on EC is by positive linear automorphisms.

Definition A.1.14. Let C be an abstract ordered cone. We say that C is an upper semi-
lattice cone if c1 ∨ c2 = sup {c1, c2} exists for every two c1, c2 ∈ C, and the identity

(c1 + z) ∨ (c2 + z) = c1 ∨ c2 + z holds for all c1, c2, z ∈ C.

Note that an upper semilattice cone with the cancellation property has the order
cancellation property. Indeed, let c1, c2 ∈ C such that c1 + z ≤ c2 + z for some z ∈ C,
and suppose that c1 > c2. Thus,

c1 + z = c1 ∨ c2 + z = (c1 + z) ∨ (c2 + z) = c2 + z

and c1 = c2 by the cancellation property. But this is a contradiction. Therefore, c1 ≤ c2.

Clearly, every lattice cone in a vector space is an upper semilattice cone with the
order cancellation property. Another example of an upper semilattice cone is given by
B(E) when E is a locally convex vector space ( [S86, Theorem 4.1]).

Theorem A.1.15. Let C be an upper semilattice cone with the cancellation property. Then EC
is a Riesz space.

Proof. See [K77, Satzt 2].

In particular, the identities

〈c1, c2〉 ∨ 〈c3, c4〉 = 〈(c1 + c4) ∨ (c2 + c3), c2 + c4〉

and

〈c1, c2〉 ∧ 〈c3, c4〉 = 〈c1 + c3, (c1 + c4) ∨ (c2 + c3)〉

hold for every 〈c1, c2〉, 〈c3, c4〉 ∈ EC . We can deduce that the absolute value of an element
〈c1, c2〉 ∈ EC is given by

| 〈c1, c2〉 | = 〈c1, c2〉 ∨ 〈c2, c1〉 = 〈(c1 + c1) ∨ (c2 + c2), c1 + c2〉.

Definition A.1.16. Suppose that a group G acts on an upper semilattice cone C. We say
that the action of G on C is sup-preserving if g (c1 ∨ c2) = gc1 ∨ gc2 for every g ∈ G and
c1, c2 ∈ C.

A sup-preserving action of a group G on an upper semilattice C is automatically
order-preserving. Indeed, if c1, c2 ∈ C such that c1 ≤ c2, then c2 − c1 ≥ 0. Therefore,
0∨ (c2 − c1) = c2 − c1. Take g ∈ G and note that

0∨ (gc2 − gc1) = g 0∨ g(c2 − c1) = g(0∨ (c2 − c1)) = gc2 − gc1.

This implies that gc2− gc1 ≥ 0, and hence that gc1 ≤ gc2 showing that the action is also
order-preserving.
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Proposition A.1.17. Suppose that a group G acts on an upper semilattice cone C with the
cancellation property. If the action of G on C is sup-preserving, then it extends to a representation
of G on EC by Riesz automorphisms.

Proof. By Proposition A.1.13, the induced representation of G on C is by positive linear
automorphisms. We have to prove that it preserves the supremum of vectors. To this
end, let 〈c1, c2〉 and 〈c3, c4〉 be two vectors in EC , and compute that

g (〈c1, c2〉 ∨ 〈c3, c4〉) = g〈(c1 + c4) ∨ (c2 + c3), c2 + c4〉
= 〈g(c1 + c4) ∨ g(c2 + c3), g(c2 + c4)〉
= 〈(gc1 + gc4) ∨ (gc2 + gc3), gc2 + gc4〉
= 〈gc1, gc2〉 ∨ 〈gc3, gc4〉 = g〈c1, c2〉 ∨ g〈c3, c4〉

for every g ∈ G. We can conclude that the representation of G on EC is by Riesz auto-
morphisms.

A.1.C. Abstract normed cones. We recall that a positively homogeneous and transla-
tion invariant metric dC on a semigroup C is only a distance function on C such that

dC(rc1, rc2) = r dC(c1, c2) and dC(c1 + c, c2 + c) = dC(c1, c2)

for every c, c1, c2 ∈ C and every r ∈ R+.

Definition A.1.18. Suppose that C is an abstract cone and that dC is a positively homo-
geneous and translation invariant metric defined on C. Then the pair (C, dC) is called an
abstract metric cone.

Every abstract metric cone (C, dC) has the cancellation property. In fact, let c1, c2 ∈ C
and z ∈ C such that c1 + z = c2 + z. Then

dC(c1, c2) = dC(c1 + z, c2 + z) = 0

which implies c1 = c2 as wished.

Example A.1.19. (Examples of abstract metric cones)

1) Let C be a cone in a normed vector space (E, || · ||). Define the metric

d||·||(c, w) = ||c− w|| for c, w ∈ C.

Then the pair (C, d||·||) is an abstract metric cone.

2) The collection K(E) of all compact convex subsets of a normed vector space E
equipped with the Hausdorff distance dH is an abstract metric cone, see [R52,
Theorem 2].
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3) Let E be a Banach space. Then the abstract cone U(E) equipped with the Haus-
dorff distance is an abstract metric cone, see [B09, Propositions 3-5].

Take now an abstract metric cone (C, dC), and consider the vector space EC . We
define on it the positive map

|| · ||C : EC −→ R, 〈c1, c2〉 7−→ ||〈c1, c2〉||C = dC(c1, c2).

Theorem A.1.20. Let (C, dC) be an abstract metric cone. Then (EC , || · ||C) is a normed vector
space, and the embedding j is an isometry.

Proof. See [R52, Theorem 1-B].

Proposition A.1.21. Suppose that a group G acts isometrically on an abstract metric cone
(C, dC). Then the action of G on C extends to a representation of G on EC by linear isometries.

Proof. The proof is straightforward, since

||g〈c1, c2〉||C = ||〈gc1, gc2〉||C = dC(gc1, gc2) = dC(c1, c2) = ||〈c1, c2〉||C
for every 〈c1, c2〉 ∈ C and g ∈ G.

Definition A.1.22. Let C be an upper semilattice cone and let dC be a positively ho-
mogeneous translation invariant metric on C such that dC(c1, c2) ≤ dC(c3, c4) for every
c1, c2, c3, c4 ∈ C such that c2 ≤ c1, c4 ≤ c3 and c1 + c4 ≤ c2 + c3. Then the pair (C, dC) is
called an upper semilattice metric cone.

Every upper semilattice metric cone (C, dC) has the Archimedean property. In fact,
let c1, c2 ∈ C such that nc1 + z1 ≤ nc2 + z2 for some z1, z2 ∈ C and every n ∈ N. In
order to find a contradiction, suppose that c1 > c2. This implies that the inequality
nc1 + z1 > nc2 + z1 holds for every n ∈ N. Therefore,

n2dC(c2, c1) = dC(nc2 + z1, nc1 + z1) ≤ dC(nc2 + z2, nc2 + z1) = dC(z1, z2),

and so

dC(c2, c1) ≤
1
n2 dC(z1, z2) for every n ∈ N.

Thus, dC(c2, c1) = 0. But this is a contradiction. Hence, c1 ≤ c2. In particular, every
upper semilattice cone has the order cancellation property.

Example A.1.23. (Examples of upper semilattice metric cones)

1) Let (E, || · ||) be a normed Riesz space and let C be the positive cone of E. Then C
equipped with the metric d||·|| defined by d||·||(c, w) = ||c− w||, for c, w ∈ C, is an
upper semilattice metric cone. Indeed, let c1, c2, c3 and c4 in C such that c1 ≤ c2,
c3 ≤ c4 and c1 + c4 ≤ c2 + c3. This implies that 0 ≤ c1 − c2 ≤ c3 − c4. Therefore,

d||·||(c1, c2) = ||c1 − c2|| ≤ ||c3 − c4|| = d||·||(c3, c4)

using the monotonicity of the norm || · ||.
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2) Let E be a normed space. Then the upper semilattice cone B(E) equipped with
the Hausdorff metric is an upper semilattice metric cone, see [S86, Theorem 6.1].

Theorem A.1.24. Let (C, dC) be an upper semilattice metric cone. Then (EC , || · ||C) is a normed
Riesz space, and the embedding j is an order-preserving isometry.

Proof. We have that (EC , || · ||C) is a normed vector space by Theorem A.1.20 and that
EC is a Riesz space by Theorem A.1.15. Moreover, the norm || · ||C is monotone by
definition of upper semilattice metric cone. Therefore, we can conclude that (EC , || · ||C)
is a normed Riesz space.

Proposition A.1.25. Suppose that a group G acts isometrically and order-preserving on an
upper semilattice metric cone (C, dC). Then the action of G on C extends to a representation of
G on EC by positive linear isometries.

Proof. The proof is only a combination of Propositions A.1.13 and A.1.21.

A.2 Embedding of locally compact cones

We present a theorem of Edwards for locally compact cones in locally convex vector
spaces in this second section. First, we recall some results on locally compact cones, and
then we discuss Edwards’s theorem. Finally, we use it to characterise the amenability
of topological groups via representations on locally compact cones.

A.2.A. Bases and topologies. Let C be a cone in a locally convex vector space E. A
base for C is a non-empty convex set B ⊂ C such that every non-zero c ∈ C has a
unique representation of the form c = αb for b ∈ B and α ∈ R+.

The following theorem is a famous and well-known result of Klee about cones that
admit a compact basis.

Theorem A.2.1 (Klee). Let C be a cone in a locally convex vector space E. Then C is locally
compact if and only if it admits a compact base.

Proof. See [K55, (2.4)].

Example A.2.2. (Examples of locally compact cones)

1) Let C be a closed cone in a finite-dimensional vector space E. Then E is a locally
compact vector space by [Bou81, I §2 No.4 Théorème 3]. As C is a closed subset
of E, then it is also locally compact, and hence it admits a compact base. More
generally, if C is a proper generating cone in the dual of a Banach space E, then C
is locally compact with respect to the operator norm topology if and only if E is
finite-dimensional, see [Y78].
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2) Let E be a Banach lattice with an order unit u. Then the set E′+ of continuous
positive functionals on E is a locally compact cone in E′. A base for E′+ is given by
M(E). More generally, let G be a group with a representation by positive linear
isometries on a Banach lattice E. Let d ∈ E be a non-zero positive vector with the
translate property. Then (E, d)′+ is a locally compact cone in (E, d)′. A base for
(E, d)′+ is given by Id(E).

A.2.B. Edwards theorem. Recall that a cone C in a vector space E is generating if every
element in E can be written as the difference of two elements in C.

Theorem A.2.3 (Edwards). Let C be a generating locally compact cone in a locally convex
vector space E. Then C can be embedded in the continuous dual of a Banach space when endowed
with the weak-* topology.

We give a sketch of the construction made by Edwards. We refer to the original
paper ( [E64, Theorem 4]) for the details.

Let C be a generating locally compact cone in a locally convex vector space E, and
let τ denotes the locally convex topology of E. By Klee’s theorem, C admits a compact
basis B. Consider the set

S =

{
n

∑
j=1

cjbj :
n

∑
j=1

cj = 1, cj ∈ R+ and bj ∈ B ∪ (−B) for every j = 1, ..., n

}

of all finite convex combinations of points in B ∪ (−B). Then S is a convex absorbing
neighbourhood of the origin of E. Note that S is absorbing, since C is a generating cone.
Now let pS be the Minkowski functional of S, i.e., pS(v) = inf {c : c > 0 and v ∈ cS}
for v ∈ E. Then pS is a norm on E, which turns the pair (E, pS) into a Banach space.
Moreover:

- the pair (E, pS) is a Banach space and the topology generated by pS is stronger
than the original locally convex topology τ of E;

- the norm pS is additive on C, i.e., pS(c1 + c2) = pS(c1) + pS(c2) for every c1, c2 ∈
C;2

- we have that B = {v ∈ C : pS(v) = 1} and S = {v ∈ E : pS(v) ≤ 1};

- the norm pS is independent of the choice of B, i.e., if B′ is another basis for C, then
the Minkowski functional pS′ is a norm which is equivalent to the norm pS. Here,
S′ is constructed in the same way as S but using B′ instead of B.

2If, in addition, we assume that B is a Choquet simplex, then the vector space E equipped with the
vector ordering given by C and the norm pS is an AL-space ( [E64, Corollary 3]).
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Consider now the vector space given by

E∗ = {ψ : E −→ R : ψ is a linear τ-continuous on pS-bounded sets functional} .

If we equip E∗with the operator norm, then E∗ becomes a Banach space with continuous
dual given by E. In other words, the pair (E∗, || · ||op) is a predual for E. We can consider
on E the weak-* topology given by the duality between E∗ and E. Then the locally
convex topology τ and the weak-* topology on E induce identical relative topologies on
pS-bounded subsets of E and also on C. Therefore, C is locally compact for the weak-
* topology. Moreover, the vector space E∗ is generated by the cone K of all positive
functionals belonging to E∗. This cone is Archimedean, and E∗ admits an order unit
when equipped with the vector ordering given by K. In conclusion, the identity map
embeds C continuously in E when this last is endowed with the weak-* topology.

Scholium A.2.4. A similar construction to Edward’s for universally well-capped cones
was done in [AS68].

A.2.C. A conical characterization of amenability. Let A be a subset of a locally convex
vector space E, and suppose that a group G has a representation by linear automor-
phisms on E. Then we say that G acts uniformly bounded with respect to A if there is
cA > 0 such that for every neighbourhood of the origin U ⊂ E and every v ∈ A, the
inclusion Gv ⊂ cAU holds.

Lemma A.2.5. Suppose that G has a representation by linear automorphisms on a generating
locally compact cone with basis B in a locally convex vector space E. If G acts uniformly bounded
w.r.t. B, then supg∈G pS(gv) < ∞ for every v ∈ E. Here, S = co {B ∪ (−B)}.

Proof. Firstly, we claim that if G acts uniformly bounded w.r.t. B, then G also acts uni-
formly bounded w.r.t. S. Indeed, let cB > 0 be the constant which witness the fact that G
acts uniformly bounded w.r.t. B, U ⊂ E be a neighborhood of the identity and v ∈ S. We
want to show that Gv ⊂ cBU. We can suppose that U is convex as E is a locally convex
vector space. Now there are c1, ..., cn ∈ R+, b1, ..., bn ∈ B ∪ (−B) such that ∑n

j=1 cj = 1
and v = ∑n

j=1 cjbj. Moreover, for every g ∈ G and every j = 1, ..., n there is uj ∈ U such
that gbj = cBuj. Therefore,

gv =
n

∑
j=1

cjgbj =
n

∑
j=1

cjcBuj = cB

n

∑
j=1

cjuj︸ ︷︷ ︸
∈U

.

Hence, gv ∈ cBU. The conclusion is that G acts uniformly bounded w.r.t. S, as g was
chosen arbitrarily.

Fix now v ∈ E and let g ∈ G. Suppose that pS(v) = c. Then there is a net (cα)α

of positive real numbers such that limα cα = c and v ∈ cαS. But now gv ∈ cαgS and
gS ⊂ cBS. So, gv ∈ cαcBS for every α. We can conclude that pS(gv) ≤ cαcB for every α.
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This implies that pS(gv) ≤ cB pS(v). Therefore, supg∈G pS(gv) ≤ cB pS(v), since g was
chosen arbitrarily.

Theorem A.2.6. Let G be a topological group. Then the following assertions are equivalent:

a) the group G is amenable;

b) every orbitally continuous representation of G by linear automorphisms on a locally com-
pact cone C with basis B in a locally convex vector space E which is uniformly bounded
w.r.t. B admits a non-zero fixed-point.

Proof. Let G be an amenable topological group that acts linearly, orbitally continuously,
and with bounded orbits on a locally compact cone C in a locally convex vector space
E. We can assume that C is generating because if it is not the case, we can consider
the locally convex vector space V = C − C. Therefore, we can suppose by Edwards
Theorem A.2.3 that C is a locally compact convex cone in the continuous dual E of a
Banach space E∗ with order unit, and the locally convex topology of E is the weak-*
topology. Note that the action of G on E is still orbitally continuous with respect to the
weak-* topology as the two topologies agree on pS-bounded sets. We define the map

pis(v) = sup
g∈G

pS(gv) for every v ∈ E.

Similarly to Remark 3.1.13, pis is a norm on E which is equivalent to pS-norm and for
which the action of G on E is by linear isometries. Therefore, the operator norm || · ||pS

op

with respect to pS on E∗ is equivalent to the operator norm || · ||pis
op with respect to pis.

For this last one the pre-adjoint action is by linear isometries. This implies that the set
of meanM(E∗) of E∗ is G-invariant. Moreover, G acts orbitally continuous onM(E∗).
Therefore, it fixes a non-zero point which is also in C.

Suppose that G has the fixed-point property for locally compact cones described in
point b). Then it suffices to apply it to the cone

C =
{

cm : c ∈ R+ and m ∈ M(Cb
ru(G))

}
⊂ Cb

ru(G)′,

which is locally compact when Cb
ru(G)′ is endowed with the weak-* topology.
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Looking at C∗-algebras

We mentioned earlier that it would have been possible to get all of the above results us-
ing the theory of C∗-algebra instead of the one of ordered vector spaces. It only depends
on whether the cone we are considering lies in a real or complex vector space.

The first to use this approach has been Rørdam in [R19]. He considered actions of
discrete groups on C∗-algebras, and he understood that invariant normalizing integrals
could be seen as invariant traces.

The theory developed by Rørdam can be easily generalized to topological groups
and uniform structures, as we are going to do in the first part of the chapter. In the
second one, we look at only one particular but universal, C∗-algebra: the C∗-algebra of
bounded linear operators of a Hilbert space.

In this chapter,A is always a complex C∗-algebra andAsa the subspace of self-adjoint
elements of A, i.e., all the elements a of A such that a∗ = a.

B.1 Ideals and traces

We recall that the C∗-order of a C∗-algebra A is the vector ordering induced by the
C∗-cone

Csa = {a ∈ Asa : a = b∗b for some b ∈ A} .

If we equip A with its C∗-order and with its C∗-norm, then A is an ordered Banach
space but, in general, not a Banach lattice ( [D77, 1.6.9]). We have that Asa is a Banach
lattice if and only if A is commutative ( [S51, Theorems 1 & 2]).

In what follows, be careful that the terminology ideal is used in the algebraic sense
and not in the order one. This means that I is a left ideal of a C∗-algebraA if and only if
I is a C∗-subalgebra ofA such that ab ∈ I for every a ∈ A and every b ∈ I . The notions
of right ideal and two-sided ideal are defined similarly. An ideal is said self-adjoint if it
is closed by taking the adjoint.

Definition B.1.1. Let I be a subset of a C∗-algebra A. We say that:
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- the subset I is a hereditary ideal if it is a two-sided self-adjoint ideal such that if
0 ≤ a ≤ b for a ∈ A and b ∈ I , then a ∈ I ;

- the subset I is symmetric if a∗a ∈ I whenever aa∗ ∈ I for all a ∈ A.

Example B.1.2. 1) Let A be a commutative C∗-algebra. Then Asa equipped with the
C∗-norm and the C∗-order is a Banach lattice by [S51, Theorems 1 & 2]. Therefore,
an ideal I of Asa is hereditary if and only if it is a Riesz subspace of A. Actually,
hereditary ideals are a generalization of Riesz subspaces to order vector spaces in
the context of C∗-algebras.

2) Let H be a (complex) Hilbert space and consider the C∗-algebra B(H). Then the
trace class operators TC(H) form a self-adjoint two-sided ideal in B(H), see [P89,
Proposition 3.8]. We claim that TC(H) is a hereditary symmetric ideal. In fact, if
T1, T2 ∈ TC(H) are such that 0 ≤ T1 ≤ T2, then tr(T1) ≤ tr(T2) by [S18, p. 71].
Thus, TC(H) is hereditary. Moreover, if T ∈ B(H) such that T∗T ∈ TC(H), then
tr(T∗T) < ∞. But now tr(T∗T) = tr(TT∗). Therefore, TT∗ ∈ TC(H). We can
conclude that TC(H) is also symmetric.

Note that every C∗-algebra A admits a unique minimal dense hereditary and sym-
metric ideal [P66, Theorem 1.3]. This ideal is called the Pedersen ideal of A and it is
noted Ped(A).1

Example B.1.3. (Examples of Pedersen ideals)

1) Let A be a unital commutative C∗-algebra. Then by the Gelfand-Naimark The-
orem ( [K09, Theorem 2.2.7]), A is isometrically ∗-isomorphic to the C∗-algebra
C(X) for some compact topological space X. A subset S of C(X) is dense if and
only if it is a separating set and if 1X ∈ S by the Stone-Weierstrass Theorem ( [K09,
Theorem A.1.3]). If S is a hereditary ideal, then S = C(X), as 1X is also an order
unit. Therefore, A = Ped(A) for every commutative unital C∗-algebra A.

2) LetA be a non-unital commutative C∗-algebra. ThenA is isometrically ∗-isomorphic
to C0(X) for some locally compact space X. Since continuous compactly supported
functions are uniformly dense in C0(X), then Ped(C0(X)) ⊂ C00(X). However,
Ped(C0(X)) contains C00(X) because it separates points. Therefore, Ped(C0(X)) =
C00(X). In particular, for a non-unital commutative C∗-algebra, we always have
that Ped(A) ⊂ A because the Pederson ideal of a C∗-algebra is preserved under
∗-homomorphism ( [P66, Theorem 1.4]).

3) LetH be a (complex) Hilbert space and consider the C∗-algebra B0(H) of all com-
pact operators onH. Then Ped(B0(H)) = F (H) the finite-rank operators.

1The Pedersen ideal takes its name in honour of the homonymous Danish mathematician Gert
Kjærgård Pedersen (1940-2004), which introduced it in his famous paper [P66].
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4) Let A be a separable C∗-algebra. Then Ped(A) = A if and only if A is unital
( [P66, Theorem 1.5]).

5) There are non-unital C∗-algebras A with Ped(A) = A. An example is given by
Pedersen in [P66, p. 136].

We built the theory of groups having the fixed-point property for cones around the
notion of positive functionals. Precisely, invariant normalized integrals. The notion of
trace gives the translation for the complex world of C∗-algebras. There are two different
ways to define a trace on a C∗-algebra. Nevertheless, the two definitions are equivalent.

Definition B.1.4. Let A be a C∗-algebra.

- A trace defined on the positive cone of A is an additive homogeneous map tr :
A+ −→ [0, ∞] satisfying the trace condition tr(a∗a) = tr(aa∗) for all a ∈ A.

- A linear trace is a positive linear map tr : I −→ C defined on a hereditary sym-
metric ideal I of A which satisfies the trace condition tr(a∗a) = tr(aa∗) for all
a ∈ A such that a∗a, and also aa∗, belongs to I .

For a trace tr defined on the positive cone of a C∗-algebra A, we define its domain
as D = {a ∈ A+ : tr(a) < ∞} and we say that tr is a densely defined trace on A if D is
dense in A. Clearly, if tr is a linear trace, then D = I and tr is said densely defined if I
is dense in A.

Proposition B.1.5. Let A be a C∗-algebra. Then there is a bijection between traces defined on
the positive cone of A and linear traces. Precisely, for a trace tr1 defined on the positive cone
of A, let M = {a ∈ A : tr1(a) < ∞} and consider I = spanC {M}. Then I is a hereditary
symmetric ideal inA, and there is only one linear trace tr2 with domain I which agrees with tr1
on M. Conversely, if tr2 is a linear trace with domain I , then we can recover tr1 via the formula

tr1(a) =

{
tr2(a) if a ∈ I ,
∞ otherwise,

for every a ∈ A+.

Proof. See [R19, Proposition 2.8].

Bearing this last proposition in mind , we only speak about traces without specifying
if they are linear traces or traces defined on the positive cone of A.

We privilege the point of view of linear traces as it provides a natural setting to work
with proper cones. However, it is helpful to have in mind both definitions to understand
better what is happening.
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Definition B.1.6. Let A be a C∗-algebra. Suppose that tr is a trace on A with domain
D. Then tr is said lower semicontinuous if and only if whenever (an)n ⊂ D is an
increasing sequence of positive elements converging in norm to an element a ∈ D, then
tr(a) = limn tr(an).

Theorem B.1.7 (Pedersen Theorem). The restriction of any densely defined trace of a C∗-
algebra on its Pedersen ideal is lower semicontinuous.

Proof. See [P66, Corollary 3.2].

Let tr be a trace on a C∗-algebra A with domain I . Write I for the closure of I in
A. Then Ped(I) ⊂ I ⊂ I . The restriction of tr to Ped(I) is lower semicontinuous by
Pedersen Theorem. If the restriction is equal to zero, then we say that the trace tr is
singular. Therefore, every trace tr on a C∗-algebra A with domain I may be uniquely
written as the sum tr = tr1 + tr2 of a lower semicontinuous trace tr1 and a singular one
tr2 both with domain I .

Definition B.1.8. Let A be a C∗-algebra and I a hereditary symmetric ideal. Then we
write T (A, I) for the set of traces of A with domain I .

The set T (A, I) can be linearly and continuously embedded in the complex locally
convex vector space L(I , C) of all linear operators from I to C. The mentioned lo-
cally convex topology on L(I , C) is the one induced by I , i.e., a net (φα)α in L(I , C)
converges to an element φ ∈ L(I , C) if and only if for every a ∈ I the net (φα(a))α

converges to φ(a). Therefore, T (A, I) can be seen as a proper convex cone in the locally
convex vector space L(I , C).

Be careful that the cone T (A, I) can be degenerate, see for example [R19, Proposi-
tion 2.11]. Examples where T (A, I) is different from zero are given by commutative
C∗-algebras, since a non-zero trace on a commutative C∗-algebra A with domain I is
nothing but a positive element of L(I , C). Others (non-commutative) examples are
given in [R19, Theorem 2.10].

Proposition B.1.9. Let A be a C∗-algebra. Then for every hereditary symmetric ideal I of A,
the cone T (A, I) is weakly complete in L(I , C).

Proof. See [R19, Proposition 3.1].

Scholium B.1.10. The set T (A, Ped(A)) of lower semicontinuous traces onAwas deeply
studied in [ERS01] but as an abstract cone. A particularity of T (A, Ped(A)) is that it
does not have the cancellation property. Thus, it can not be embedded in a real vec-
tor space. Anyway, it was possible to put a lattice structure on it ( [ERS01, Theorem
3.3]). An interesting feature of this point-of-view is that is possible to put a topology on
T (A, Ped(A)) ( [ERS01, Section 3.2]) for which it becomes Hausdorff compact topolog-
ical space ( [ERS01, Theorem 3.7]).
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B.2 Traces and the U -fixed-point property for cones

We are interested in giving characterizations of the U -fixed-point property for cones
in terms of (possibly non-commutative) C∗-algebras. Precisely, we want to link the
U -fixed-point property for cones with the existence of invariant traces on particular
hereditary ideals.

Definition B.2.1. Let M be a subset of a C∗-algebra A. Write IA(M) for the smallest
hereditary ideal in A containing M. If a group G acts on A, then write IG

A(M) for the
smallest G-invariant hereditary ideal in A containing M.

Theorem B.2.2. Let G be a topological group, and let U be a functionally invariant uniformity
for G. Then G has the U -fixed-point property for cones if and only if for every representation
of G on a C∗-algebra A by positive linear isometries and for every hereditary symmetric ideal
I of A such that T (A, I) 6= 0, and the induced action of G on T (A, I) is locally bounded
(U , Uc)-uniformly continuous and of cobounded type, there is a non-zero invariant trace on A
with domain I .

Proof. Suppose that G has the U -fixed-point property for cones for a functionally in-
variant uniform structure U . Then we can apply it to the cone T (A, I), as it is weakly
complete by Proposition B.1.9. Therefore, a non-zero point in T (A, I) is fixed by the
adjoint representation of G on it. This fixed-point is a non-zero invariant trace on A
with domain I .

For the converse, it suffices to show that G has the invariant normalized integral
property for the commutative C∗-algebra

Cb
u ((G, U ), C) = { f : (G, U ) −→ (C, Uc) : f is uniformly continuous} .

Note that Cb
u((G, U ), C) is a (complex) C∗-algebra by Theorem 1.2.13. Thus, write

A = Cb
u ((G, U ), C), and let f ∈ A be a non-zero positive function. Consider the hered-

itary and symmetric ideal I = (A, f ) = IG
A( f ). Then T (A, I) 6= 0, since every positive

linear functional on I is a trace (the algebra being commutative). Moreover, the ad-
joint representation of G on T (A, I) is of cobounded type as the continuous dual of
L(I , C) is I . Finally, it is also locally bounded (U , Uc)-uniformly continuous. This can
be shown as in Lemma 5.2.2. Therefore, there is a non-zero invariant trace on A with
domain I , which is nothing but an invariant integral. After normalization, we become
an invariant normalized integral for I . We can conclude that G has the U -fixed-point
property for cones.

Various conditions to assure that the adjoint representation of G on T (A, I) is of
cobounded type have been given by Rørdam, see [R19, Section 3].

Theorem B.2.3. Let G be a topological group, and let U be a functionally invariant uniformity
for G. The following assertions are equivalent:
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a) the group G has the U -fixed-point property for cones;

b) for every representation of G on a C∗-algebraA by positive linear isometries and for every
non-zero positive d ∈ A such that T (A, IG

A(d)) 6= 0 and the adjoint representation of G
on T (A, IG

A(d)) is locally bounded (U , Uc)-uniformly continuous, there is an invariant
trace with domain IG

A(d) normalized on d;

c) for every representation of G on a commutative C∗-algebra A by positive linear isome-
tries and for every non-zero positive d ∈ A such that the adjoint representation of G
on T (A, IG

A(d)) is locally bounded (U , Uc)-uniformly continuous, there is an invariant
trace with domain IG

A(d) normalized on d.

Proof. We have that a) implies b) thanks to Theorem B.2.2. Moreover, the implication b)
to c) is direct as the latter is a particular case of the former. Finally, c) implies a) only by
applying the hypothesis to the commutative C∗-algebra Cb

u ((G, U ), C).

This theorem can be simplified considering only locally compact groups.

Theorem B.2.4. Let G be a locally compact group. The following assertions are equivalent:

a) the group G has the fixed-point property for cones;

b) for every continuous representation of G on a C∗-algebra A by positive linear isometries
and for every non-zero positive d ∈ A such that T (A, IG

A(d)) 6= 0, there is an invariant
trace with domain IG

A(d) normalized on d;

c) for every continuous representation of G on a commutative C∗-algebraA by positive linear
isometries and for every non-zero positive d ∈ A, there is an invariant trace with domain
IG
A(d) normalized on d.

Proof. The proof is similar to that of the previous theorem.

B.3 An application to the C∗-algebra B(H)

We study the case of the C∗-algebra of bounded linear operators on a Hilbert space.
Our interest in this particular C∗-algebra comes mainly from Bekka’s work on amenable
representations, see [B90].

There are at least two ways to investigate this algebra. The first uses the theory
developed in the previous section, while the second uses the peculiarities of B(H). We
decided to use the second option as the proofs are constructive.

Recall that if we have a topological group G and a unitary representation (σ,H) of
G onH, then there is an induced representation Adσ of G on B(H) given by

Adσ(g)T = σ(g)Tσ(g)∗ for every g ∈ G and T ∈ B(H).
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This representation preserves the C∗-cone of B(H), as it is stable under conjugation of
unitary operators ( [S18, Corollary 3.6]).

From now on, every unitary representation is considered continuous.

B.3.A. Invariant normalized integrals and the translate property.

Definition B.3.1. Let G be a topological group and let (σ,H) be a unitary representation
of G. Then

- the unitary representation (σ,H) has the invariant normalized integral property
if the representation Adσ of G on B(H) has the invariant normalized integral prop-
erty;

- the unitary representation (σ,H) has the translate property if the representation
Adσ of G on B(H) has the translate property.

Clearly, if a unitary representation (H, σ) has the invariant normalized integral prop-
erty, then it has the translate property.

We recall that two unitary representations (σ1,H1) and (σ2,H2) of a topological
groups G are said unitarily equivalent if there is a unitary operator U : H1 −→ H2
such that σ1(g) = U∗σ2(g)U for every g ∈ G. The unitary operator U is said the inter-
twining operator for the representations (σ1,H1) and (σ2,H2).

Proposition B.3.2. The invariant normalized integral property (resp. the translate property) is
preserved under unitary equivalence.

We discuss only the proof for the invariant normalized integral property. The one
for the translate property is similar.

Proof of Proposition B.3.2. Let (σ1,H1) and (σ2,H2) be two unitarily equivalent unitary
representations of a topological group G. Suppose that (σ1,H1) has the invariant nor-
malized integral property. We want to show that (σ2,H2) also has the invariant nor-
malized integral property. Let U be the intertwining operator for the representations
(σ1,H1) and (σ2,H2). Define the linear operator

AdU : B(H2) −→ B(H1), T 7−→ AdU(T) = U∗TU.

First of all, note that AdU is equivariant. In fact,

AdU (Adσ2(g)T) = AdU (σ2(g)Tσ2(g)∗)
= U∗σ2(g)Tσ2(g)∗U
= σ1(g)U∗TUσ1(g) = Adσ1(g) (AdU(T))

for every g ∈ G and every T ∈ B(H2). Moreover, AdU is positive as the C∗-cone
of a C∗-algebra is preserved under conjugation of unitary operators. In particular, for
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every positive operator T ∈ B(H2), the image of the restriction of AdU on B(H2, T)
is contained in B(H1, AdU(T)). Let now T ∈ B(H2) be a non-zero positive operator
and take an invariant normalized integral I on B(H1, U∗TU). Then the composition
I = I ◦AdU defines an invariant normalized integral on B(H2, T). We can conclude that
the unitary representation (σ2,H2) has the invariant normalized integral property.

Remark B.3.3. Let (σ,H) be a unitary representation of a topological group G. Then it
is possible to show, similarly as done in Proposition B.3.2, that (σ,H) has the invariant
normalized integral property (resp. the translate property) if and only if the complex
conjugate representation (σ,H) has the invariant normalized integral property (resp.
the translate property).

LetH be a Hilbert space. Then a faithful unitary invariant state for B(H) is nothing
but a positive functional M ∈ B(H)′ such that M(T) > 0 for every T ∈ B(H)+ and
M(U∗TU) = M(T) for every U ∈ U(H) and every T ∈ B(H).

Proposition B.3.4. Let (σ,H) be a unitary representation of a topological group G. If B(H)
admits a faithful unitary invariant state, then (σ,H) has the invariant normalized integral
property (resp. the translate property).

Proof. Let M be a faithful unitary invariant state for H, and let T ∈ B(H) be a non-
zero positive operator. Then the restriction of M to the vector space B(H, T) defines an
invariant normalized integral. Therefore, (σ,H) has the invariant normalized integral
property.

Corollary B.3.5. Every finite-dimensional unitary representation of a topological group G has
the invariant normalized integral property (resp. the translate property).

Proof. We can apply Proposition B.3.4 because the matricial trace is a faithful unitary
invariant state for every finite-dimensional Hilbert space.

Let (σ,H) be a unitary representation of a topological group G. Recall that

Bc(H) = {T ∈ B(H) : g 7−→ Adσ(g)T is || · ||-continuous} .

We say that (σ,H) has the continuous invariant normalized integral property if the
representation Adσ of G on Bc(H) has the invariant normalized integral property. Sim-
ilarly, we define the continuous translate property for (σ,H).

Proposition B.3.6. Let G be a topological group.

a) If G has the invariant normalized integral property for Cb
lu(G) (resp. the translate property

for Cb
lu(G)), then every unitary representation (σ,H) of G has the invariant normalized

integral property (resp. the translate property).

b) If G has the invariant normalized integral property for Cb
u(G) (resp. the translate property

for Cb
u(G)), then every unitary representation (σ,H) of G has the continuous invariant

normalized integral property (resp. the continuous translate property).
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Proof. First of all, take a positive operator S ∈ TC(H) such that ||S||TC = 1 and consider
the operator

Λ : B(H) −→ Cb
lu(G), T 7−→ Λ(T) = fT,

where the function fT is defined pointwise by fT(g) = tr(TAdσ(g)S) for g ∈ G. Note
that Λ is well-defined. Indeed, let T ∈ B(H), ε > 0 and let (gα)α be a net in G which
converges to the identity element of G. By Lemma 6.1.13, there is α0 such that

||Adσ(gα)S− S||TC <
ε

||T|| for every α � α0.

Therefore,

||πR(gα) fT − fT||∞ = sup
g∈G
|πR(gα) fT(g)− fT(g)|

= sup
g∈G
| fT(ggα)− fT(g)|

= sup
g∈G
|tr (TAdσ(ggα)S− TAdσ(g)S) |

= sup
g∈G
|tr (TAdσ(g) (Adσ(gα)S− S)) |

≤ ||T|| ||Adσ(gα)S− S||TC < ε

for every α � α0. Moreover, it is easy to see that fT is bounded for every T ∈ B(H) as

fT(g) = tr (TAdσ(g)S) ≤ ||T|| ||S||TC for every g ∈ G.

This shows that fT ∈ Cb
lu(G). The fact that Λ is a linear operator comes from the fact

that the trace map is linear. Moreover, Λ is strictly positive and equivariant. Indeed,
let’s start showing that Λ is strictly positive. To this aim, let T ∈ B(H) be a non-zero
positive operator. As S was chosen positive, there is a self-adjoint element Y in B(H)
such that S = Y2 ( [S18, Proposition 3.4]). Thus,

fT(g) = tr(TAdσ(g)S) = tr(Tσ(g)Y2σ(g)∗)
= tr((σ(g)Y)T(σ(g)Y)) ≥ ||(σ(g)Y)T(σ(g)Y)|| > 0

for every g ∈ G. The second-to-last inequality was possible thanks to [S18, Proposition
6.4] and the fact that the C∗-cone is conjugation invariant. To prove the equivariance of
the operator Λ, take x ∈ G and T ∈ B(H). Then

πL(x) fT(g) = fT(x−1g)

= tr(TAdσ(x−1g)S)

= tr(Tσ(x−1g)Sσ(x−1g)∗)

= tr(Tσ(x−1)σ(g)Sσ(g)∗σ(x))

= tr(σ(x)Tσ(x−1)Adσ(g)S)
= tr(Adσ(x)TAdσ(g)S) = fAdσ(x)T(g)
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for every g ∈ G. We can conclude that

Λ(Adσ(x)T) = πL(x)Λ(T) for every x ∈ G and T ∈ B(H).

Finally, we can state the proof of point a). Let (σ,H) be a unitary representation of
G and suppose that G has the invariant normalized integral property for Cb

lu(G). Let
T ∈ B(H) be a non-zero positive operator. Then Λ maps B(H, T) into Cb

lu(G, fT). Take
an invariant normalized integral I on this last space. Then the composition I = I ◦ Λ
provides an invariant normalized integral on B(H, T). This shows that (σ,H) has the
invariant normalized integral property.

For point b), we shall point out that if T ∈ Bc(H), then fT is in Cb
u(G). Indeed, we

know already that fT ∈ Cb
lu(G). Therefore, it suffices to show that fT ∈ Cb

ru(G). Let ε > 0
and let (gα)α be a net in G which converges to the identity element. As T ∈ Bc(H), there
is α0 such that

||Adσ(gα)T − T|| < ε

||S||TC
for every α � α0.

Thus,

||πL(gα) fT − fT||∞ = sup
g∈G
|πL(gα) fT(g)− fT(g)|

= sup
g∈G
| fT(g−1

α g)− fT(g)|

= sup
g∈G
|tr(TAdσ(g−1

α g)S)− tr (TAdσ(g)S) |

= sup
g∈G
|tr(Tσ(g−1

α g)Sσ(g−1
α g)∗)− tr (TAdσ(g)S) |

= sup
g∈G
|tr(σ(gα)Tσ(g−1

α )σ(g)Sσ(g)∗)− tr (TAdσ(g)S) |

= sup
g∈G
|tr ((Adσ(gα)T − T)Adσ(g)S) |

≤ ||Adσ(gα)T − T|| ||S||TC < ε

for every α � α0. We can conclude that fT belongs to Cb
ru(G), and hence to Cb

u(G).
Therefore, we can use the same strategy of the proof of point a) to ensure that the rep-
resentation Adσ of G on Bc(H) has the invariant normalized integral property.

B.3.B. The locally compact case. Let G be a locally compact group and let

L2
C(G) =

{
f : G −→ C : f is complex-measurable and

∫
C
| f |2dmG < ∞

}
.

The left-regular representation of G on L2
C(G) is the unitary representation

λ : G −→ U(L2
C(G)), g 7−→ λ(g)

defined by λ(g) f (x) = f (g−1x) for every g, x ∈ G and f ∈ L2
C(G).
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Theorem B.3.7. Let G be a locally compact group. The following assertions are equivalent:

a) the group G has the fixed-point property for cones;

b) every unitary representation (σ,H) of G has the invariant normalized integral property
(resp. the translate property);

c) the left-regular representation (λ, L2
C(G)) of G has the invariant normalized integral

property (resp. the translate property).

In particular, for a locally compact group, it suffices to check point b) of Theorem
B.2.4 only for the C∗-algebra B(L2

C(G)).

Proof of Theorem B.3.7. Suppose that G has the fixed-point property for cones. In par-
ticular, G has the invariant normalized integral property for Cb

lu(G) by Theorem 6.3.4.
Consequently, every unitary representation (σ,H) of G has the invariant normalized
integral property by point a) of Proposition B.3.6. We can conclude that a) implies b).
Moreover, b) implies c) directly. Thus, we only need to prove that c) implies a). Actually,
we show that if the left-regular representation of G has the invariant normalized inte-
gral property, then G has the invariant normalized integral property for L∞(G). First of
all, we define the linear operator

T : L∞(G) −→ B
(

L2
C(G)

)
, f 7−→ T( f ) = Tf ,

where Tf is defined by Tf (φ) = f · φ for every φ ∈ L2
C(G). Clearly, T is well-defined

as ||Tf (φ)||2 ≤ || f ||∞||φ||2 for every φ ∈ L2
C(G). Moreover, T is strictly positive as we

have that Tf = T2
h , where h =

√
f . Finally, T is equivariant. In fact,

Adλ(x)Tf (φ)(g) = λ(x)Tf λ(x)∗(φ)(g)

= λ(x)Tf (φ)(xg)

= λ(x) (( f )(g) · (φ)(xg))
= TπL(x) f (φ)(g)

for every x, g ∈ G, f ∈ L∞(G) and φ ∈ L2
C(G). This implies that

Adλ(x)T( f ) = T(πL(x) f ) for every x ∈ G and f ∈ L∞(G).

Now, for every non-zero positive f ∈ L∞(G), the operator T maps the space L∞(G, f )
into the space B(L2

C(G), Tf ). Take an invariant normalized integral I on this last space.
Then the composition I = I ◦ T defines an invariant normalized integral on L∞(G, f ).
We can conclude that G has the invariant integral property for L∞(G), and consequently,
the fixed-point property for cones by Theorem 5.2.1.

The proof for the translate property is similar.
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Remark B.3.8. Theorem B.3.7 can also be stated using the continuous invariant normal-
ized integral property (resp. the continuous translate property) for a unitary represen-
tation.

Corollary B.3.9. Let G be a locally compact group. Then the left-regular representation (λ, L2
C(G))

has the invariant normalized integral property if and only if it has the translate property.

Proof. By Theorem B.3.7, (L2
C(G), λ) has the invariant normalized integral property if

and only if G has the fixed-point property for cones if and only if (L2
C(G), λ) has the

translate property.

Recall that, for every (continuous) unitary representation (σ,H) of a locally compact
group G, the ordered vector space B(H) is a positive M(G)-module by Proposition
6.1.16.

Definition B.3.10. Let (σ,H) be a unitary representation of a locally compact group G.
Then we say that:

- the unitary representation (σ,H) has the measurably invariant normalized inte-
gral property if the representation Adσ of G on B(H) has the measurably invariant
normalized integral property;

- the unitary representation (σ,H) has the measurably translate property if the rep-
resentation Adσ of G on B(H) has the measurably translate property.

Theorem B.3.11. Let G be a locally compact group. The following assertions are equivalent:

a) the group G has the fixed-point property for cones;

b) every unitary representation (σ,H) of G has the measurably invariant normalized inte-
gral property (resp. the measurably translate property);

c) the left-regular representation (λ, L2
C(G)) of G has the measurably invariant normalized

integral property (resp. the measurably translate property).

As before, we only present the proof for the measurably invariant normalized inte-
gral property.

Proof of Theorem B.3.11. For the proof that a) implies b), we only have to check that the
operator Λ defined in Proposition B.3.6 isM(G)-equivariant. To this end, let T ∈ B(H)
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and µ ∈ M(G). Then

µ ∗Λ(T)(g) = (µ ∗ fT)(g)

=
∫

G
fT(x−1g)dµ(x)

=
∫

G
fAdσ(x)T(g)dµ(x)

=
∫

G
tr(Adσ(x)TAdσ(g)S)dµ(x)

= tr
(∫

G
Adσ(x)Tdµ(x)Adσ(g)S

)
= tr ((µ · T)Adσ(g)S)
= Λ(µ · T)(g) for every g ∈ G.

Similarly, to show that b) implies c), it suffices to show that the linear operator T of
Theorem B.3.7 isM(G)-equivariant. Therefore, let T ∈ B(H) and µ ∈ M(G). Then

T(µ ∗ f )(φ)(g) = (µ ∗ f )(g)φ(g)

=
∫

G
f (x−1g)dµ(x)φ(g)

=
∫

G
f (x−1g)φ(g)dµ(x)

= (µ · Tf )(φ)(g)

= µ · T( f )(φ)(g) for every g ∈ G and φ ∈ L∞(G).
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