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Abstract
The interaction between neutral particles and the plasma plays a key role in determining the

dynamics of the tokamak boundary that, in turn, significantly impact the overall performance

of the device. Leveraging the work in Wersal and Ricci [Nucl. Fusion 55, 123014 (2015)],

the present thesis describes the development and implementation in the GBS code of a

mass-conserving multi-component self-consistent model to simulate the interplay between

neutrals and plasma in the tokamak boundary. The simulation results are shown to be a useful

tool to disentangle the physics at play in the tokamak boundary, and in particular for the

interpretation of gas puff imaging (GPI).

Developed in the last decade, the GBS code [Ricci et al, Plasma Phys. Control. Fusion 54,

124047 (2012)] allows for self-consistent three-dimensional numerical simulations of the

turbulent plasma and neutral dynamics in the tokamak boundary. In GBS, a set of Braginskii

equations in the drift limit describes the plasma time evolution, and the neutrals are mod-

elled by solving a kinetic equation using the method of characteristics. While GBS enables

simulations in arbitrary magnetic configurations, here we focus on limited plasmas.

We first describe the geometrical operators and proper boundary conditions to ensure that

mass conservation is satisfied. In comparison to the previous non-mass-conserving model of

GBS, the mass-conserving simulations capture more accurately the sharp transition of the

plasma and neutral quantities between the edge and scrape-off layer regions. In addition, we

show that mass conserving simulations allow for reliable quantitative studies of particle fluxes

in the tokamak boundary.

A multi-component model of the neutral-plasma interaction is then developed by extending

the single-component model to the description of a deuterium plasma that includes electrons,

D+ ions, D atoms, D2 molecules and D+
2 ions. The molecular dynamics is introduced through a

set of drift-reduced Braginskii equations for the D+
2 species and considering a kinetic equation

for D2 molecules, in addition to the kinetic equation for D atoms, thus resulting in a coupled

system of kinetic equations for the atomic and molecular neutral distribution functions. The

first multi-component GBS simulations show that, in the relatively long mean-free-path,

sheath limited conditions under consideration, most of the D2 molecules cross the last closed

flux surface (LCFS) and are dissociated or ionized in the edge region, thus giving rise to sources

of D atoms inside the LCFS. This leads to an inward radial shift of the peak of the plasma

source due to ionization of D atoms with respect to the single-component simulations.

The multi-component model is applied to the simulation of GPI diagnostics, where the pres-

ence of a molecular gas puff is simulated self-consistently with the plasma and neutral dy-
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namics of the tokamak boundary. The injected molecules interact with the boundary plasma,

resulting in the emission of light in the Dα wavelength that can be measured to infer the

turbulent properties of the plasma. The simulated mechanisms underlying the light emission,

which include the excitation of D atoms and dissociation of both D2 and D+
2 , provide a reli-

able tool for the interpretation of GPI experimental measurements. The impact of neutral

fluctuations on the Dα emission rate is investigated, as well as the correlation between the Dα

emission and the plasma and neutral quantities.
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plasma physics, controlled fusion, tokamak boundary, scrape-off layer, limited configu-
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component plasma, gas puff imaging, molecular gas puff, neutral fluctuations
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Riassunto
L’interazione tra particelle neutre e il plasma svolge un ruolo fondamentale nel determinare

la dinamica al bordo di un tokamak. A sua volta, questa regione ha un impatto significativo

sulle prestazioni della macchina. Partendo dal lavoro di Wersal e Ricci [Nucl. Fusion 55,

123014 (2015)], la presente tesi descrive lo sviluppo e l’implementazione nel codice GBS di un

modello a più specie, auto-consistente, che verifica la conservazione della massa, utilizzato

per simulare l’interazione tra i neutri e il plasma al bordo di un tokamak. I risultati delle

simulazioni si dimostrano uno strumento utile per districare i meccanismi fisici che hanno

luogo al bordo di un tokamak, particolarmente per l’interpretazione del GPI, una diagnostica

basata sull’iniezione di gas per visualizzare la dinamica del plasma.

Sviluppato nell’ultimo decennio, il codice GBS [Ricci et al, Plasma Phys. Cont. Fus. 54,

124047 (2012)] permette simulazioni numeriche tridimensionali auto-consistenti del plasma

e dei neutri. In GBS, un insieme di equazioni fluide nel limite di deriva descrive l’evoluzione

temporale della dinamica torbolenta del plasma e i neutri sono modellati risolvendo la loro

equazione cinetica. Anche se il codice GBS permette simulazioni in configurazioni magnetiche

diverse, nel presente lavoro ci concentriamo su plasmi con un limiter.

Questa tesi comincia con la descrizione degli operatori geometrici e delle condizioni al bordo

adeguati per garantire la conservazione della massa. In confronto con il modello precedente

di GBS che non conservava la massa, le nuove simulazioni catturano più precisamente la

transizione subita delle quantità del plasma e delle particelle neutre attraverso la LCFS (l’ultima

superficie di flusso chiusa).

Successivamente, un modello a più specie è sviluppato, estendendo il modello di un plasma

ad una sola specie ad uno che è in grado di descrivere un plasma di deuterio composto da elet-

troni, ioni D+, atomi D, molecole D2 e ioni D+
2 . La dinamica molecolare è introdotta attraverso

le equazioni di Braginskii nel limite di deriva per la specie D+
2 e considerando un’equazione

cinetica per le molecole D2, oltre all’equazione per gli atomi. Le prime simulazioni a più specie

con il codice GBS dimostrano che, nel regime di trasporto convettivo considerato in questo

lavoro, la maggior parte delle molecole D2 attraversano la LCFS e sono dissociate o ionizzate

nella regione del bordo, originando quindi atomi D dentro la LCFS. Questo conduce ad uno

spostamento radiale del picco della sorgente di plasma dovuta all’ionizzazione di atomi D

verso l’interno del tokamak, rispetto delle simulazioni con una sola specie.

Il modello a più specie è applicato alla simulazione della diagnostica GPI. In questa simulazio-

ne, l’iniezione di molecole è simulata in modo auto-consistente con la dinamica del plasma

e dei neutri. Le molecole iniettate interagiscono con il plasma e l’interazione risulta nell’e-
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missione di luce nella lunghezza d’onda Dα, misurata per inferire le proprietà turbolente del

plasma. I meccanismi alla base dell’emissione di luce simulati in questo studio, che includono

l’eccitazione di atomi D e la dissociazione di D2 e D+
2 , forniscono uno strumento affidabile per

l’interpretazione di misure sperimentali prodotte dal GPI. In questo lavoro studiamo l’impatto

delle fluttuazioni dei neutri nell’emissione Dα, così come la correlazione tra l’emissione Dα e

varie grandezze fisiche del plasma e dei neutri.

Parole chiave:

fisica dei plasmi, fusione controllata, periferia del tokamak, scrape-off layer, limiter, pla-

smi turbolenti, simulazioni di fluido, modello di Braginskii nel limite di deriva, dinamica

cinetica di neutri, interazione neutri-plasma, conservazione di massa, dinamica moleco-

lare, plasma a più specie, gas puff imaging, iniezione di gas molecolare, fluttuazioni dei

neutri
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1 Introduction

1.1 Controlled nuclear fusion as an energy source

Since the rising of civilizations, people join their efforts to grant each other access to basic

needs in a safe and comfortable environment. This has always relied on the ability of human

communities to exploit the natural resources in order to meet these needs. The industrial

revolution of the XVIII and XIX centuries brought a significant increase into this demand,

requiring energetic resources for large scale production of goods and transportation. Later

in the XIX century, the rising of the first power plants for electric energy generation opened

the door for a new electricity-based society. This led to the technological advances of the

XX century revolutionizing the means of production and life standards of an ever-increasing

number of people. The demand for energy sources grew exponentially in the last century,

leading to an unprecedented increase in fossil fuel consumption (coal, oil, gas) and the quest

for alternative energy sources. Even today, population growth and the continuous rise of the

energy consumption per capita make the overall energy consumption rise year after year,

despite technological progress allowing for a more efficient energy use [1, 2] (see Fig. 1.1).

Fossil fuel exploitation certainly do not provide the solution for such ever-increasing global

energy demand, for two main reasons. First, there is a finite amount of these resources (see

Fig. 1.2). Second, fossil fuel burning has led to an increase of the concentration of CO2 and

other pollutants in the atmosphere, leading to severe environmental consequences, of which

the increase of greenhouse effect and subsequent man-induced changes in the Earth’s climate

are the most worrisome [3] (see Fig. 1.3).

Current alternatives to fossil fuels are based on nuclear fission and renewable energy sources.

The later include hydro-power, the most relevant contribution on a global scale to date (see

Fig. 1.1), and also solar, wind, geothermal and waves. These resources are not exhausted

when exploited for electricity generation and, in general, have no associated greenhouse gas

emissions. However, the availability of these sources is highly dependent on the geographical,

geological and climatological situation of a given country. Moreover, due to the inherent

intermittent nature of most of these sources, major developments on energy storage and
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Chapter 1. Introduction

Figure 1.1: Global primary energy consumption by source, according to Vaclav Smil’s Energy
Transitions: Global and National Perspectives (Second expanded and updated edition) (2017)
[1] and BP Statistical Review of World Energy [2]. Primary energy is calculated based on the
substitution method which takes account of the inefficiencies in fossil fuel production by
converting non-fossil fuel energy into the energy inputs if they had the same conversion losses
as fossil fuels. Image Source: ourworldindata.org

management systems are required to take full advantage of their potential [4]. Finally, although

recent progress has been reported on making energy generation from renewable sources more

efficient, their net power outcome is still largely insufficient to meet global needs.

Nuclear fission has been exploited for the last half century with successful results. The energy

density of uranium and other nuclear fission fuels is 5 orders of magnitude larger than that of

fossil fuels and the operation of nuclear power plants does not involve pollutant gas emissions.

Nuclear fission nowadays contributes with a significant fraction to the overall world electricity

generation (see Fig. 1.1). However, being based on a chain reaction and leading to radioactive

waste, this energy source suffers from important drawbacks. Release of radioactive isotopes

into the environment represents a major threat for the environment and public health. This

may happen due to operating an obsolete nuclear power plant in disregard of proper safety

procedures (Chernobyl, 1986) or leakage originated by earthquakes or other natural disasters

(Fukushima, 2011). Although nuclear accidents of this kind are rare and only responsible

for a small number of casualties in comparison with fossil fuel exploitation [5], the public

acceptance of these events undermines the possible use of this resource. In addition, storage

of radioactive waste generated as a side product of nuclear fission poses a major challenge.

Finally, we remark that even fission resources are not renewable on the long term (uranium

reserves are expected to last approximately a century if exploited in traditional nuclear power

2



1.1. Controlled nuclear fusion as an energy source

Figure 1.2: Years of fossil fuel reserves (coal, oil and natural gas) left, reported as the reserves-
to-product (R/P) ratio which measures the number of years of production left based on known
reserves and annual production levels in 2015. These values can change with time, depending
on the discovery of new reserves and changes in annual production. Based on data from the
BP Statistical Review of World Energy 2016 [7]. Image Source: ourworldindata.org

plants at the current consumption rate [6]).

In this context, finding a reliable long-lasting clean energy source that answers mankind’s

urgent need for energy is one of the great scientific and technological challenges of today. For

this reason, controlled fusion has been on the spotlight of scientific research during the last

half century. The aim of fusion research is to reproduce the fusion reactions taking place in

the stars and to make use of the energy they release to generate electricity. Indeed, the sun, as

the other stars with a similar mass, continuously converts hydrogen into helium, thanks to a

chain of fusion reactions, generating the energy responsible for most phenomena taking place

on Earth.

In the most promising among the set of fusion reactions, a deuterium and tritium nuclei fuse,

originating an α particle (helium-4 nucleus) and a neutron,

2
1D+3

1 T →4
2 He(3.5MeV)+1

0 n(14.1MeV). (1.1)

In this reaction, most of the released energy is carried by the neutron (14.1 MeV), while the

energy of the helium nucleus constitutes the remaining 3.5 MeV. In future fusion power plants

the energy of the fast neutrons will be deposited in an external blanket and used to generate

electricity. On the other hand, the α particles are meant to remain confined and collide with

the fresh D,T fuel to deposit their energy and sustain the fusion reaction reducing the need of

3



Chapter 1. Introduction

Figure 1.3: Time evolution of the average temperature on the Earth’s surface compared to
solar irradiance since 1880, considering averages over 11-year periods to eliminate statistical
noise associated with annual fluctuations. While the two plots are clearly correlated until
1980, the subsequent divergence of the two strongly suggests an important role of enhanced
greenhouse effect on the Earth’s climate (Source: NASA/JPL-Caltech).

external heating.

The reaction in Eq. (1.1) is promising if compared to nuclear fission reactions, as the amount

of energy it releases is about four times larger (per mass unity), thus resulting in a higher

energy density [8, 9]. The fuel for the reaction in Eq. (1.1) is in general easily accessible in

nature, since deuterium is abundant in Earth’s water (about 35g of deuterium can be found in

each cubic metre of sea water [8]). As for tritium, although it does not occur naturally on Earth,

it can be bred from lithium, which is present in the Earth’s crust. There are some drawbacks

of the D-T fusion, such as the non-renewable nature of lithium reserves and the possibility

that fast 14.1MeV neutrons activate the wall materials. For this reason, other reactions are

also being studied for electricity generation, such as D-D fusion, which releases neutrons with

2.5MeV. Notwithstanding those alternatives, D-T is still the main focus of fusion research, as

its energy outcome is larger and the peak cross section is reached at lower temperature [10].

The high temperature necessary for the fusion reaction to occur is due to the small range of
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1.1. Controlled nuclear fusion as an energy source

the strong nuclear force and the repulsive nature of the electromagnetic interaction between

positively charged nuclei. This makes it necessary an energy of the order of 10keV to bring the

fusion isotopes sufficiently close to each other so that the attractive strong nuclear force can

overcome the electrostatic repulsion. This energy corresponds to a temperature of the order of

108K. At such high temperatures, matter is in the plasma state, atoms are ionized and matter

consists of charged particles, ions and electrons, that interact through electromagnetic fields

that they contribute to generate. At the same time, to self-sustain fusion reactions, the plasma

has to be confined in a region of space at sufficiently high densities and with sufficiently

high confinement times. To achieve self-sustained fusion reactions, experiments must aim at

increasing the triple product nTτE, with n the plasma density, T the plasma temperature and

τE the energy confinement time. In fact, the Lawson criterion [11] stipulates that self-sustained

energy generation in a nuclear fusion reactor is only possible for nTτE & 3×1021m−3keVs.

Achieving this triple product is therefore the main goal of current research, and improving the

plasma confinement proves to be a real challenge.

While confinement arises in the Sun as a natural consequence of the gravitational force

generated by the mass of the star itself (of the order of 1030kg), man-made devices must follow

another strategy to confine the plasma (the mass of the whole Earth itself is about 1024kg, one

million times smaller than the sun). The Lorentz force, which the charged particles of the

plasma are subject to, F = q(E+v×B), with q and v the particle charge and velocity and

E and B the electric and magnetic field, can be used. In the presence of a magnetic field,

because of the Lorenz force, charged particles rotate around the magnetic field lines, while

their motion along the direction parallel to the field lines is not constrained. In magnetic

confinement fusion devices, of which the stellarator and the tokamak are the most widely

exploited examples, a field is created inside a toroidal magnetic chamber, with magnetic

field lines closed within the plasma volume ensuring that the plasma remains confined. The

magnetic field inside the device cannot be merely toroidal: if that was the case, charged

particles would not remain confined as their motion would be affected by drifts arising from

the magnetic field curvature and gradient, leading to a loss of confinement. Therefore, a

poloidal component is also created to confine the plasma particles.

In a stellarator, both the toroidal and poloidal components of the magnetic field are generated

by means of external coils, whose complex design is optimized in order to allow for the

magnetic field topologies that best confine the plasma. In contrast, the tokamak (Russian

acronym for toroidal magnetic chamber) uses a different approach, as the toroidal magnetic

field is created by a series of coils positioned around an axially symmetric torus, while the

poloidal field is obtained by exploiting an electromagnetic induction effect. More precisely,

the tokamak works as the secondary circuit of a transformer that crosses the center of the

torus, with the primary circuit relying on an external magnet. This leads to a toroidal current

in the plasma that, in turn, generates a poloidal magnetic field. Additional coils around the

torus are used to adjust the shape of the magnetic field. The resulting helical magnetic-field

lines lie over nested magnetic flux surfaces, that is geometrical surfaces along which the flux

of the magnetic field is constant. The present thesis focuses on the tokamak configuration.
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Chapter 1. Introduction

Figure 1.4: The plasma is confined inside a tokamak by means of a helical magnetic field
(Source: EUROfusion).

Even though there are some drawbacks of inducing an electric current in the plasma, namely

providing a drive for plasma disruptions, the tokamak has been widely studied over the last

decades, emerging as a strong candidate for a high performance fusion device. The quality of

fusion performances is measured by the gain factor Q, which is the ratio between the energy

output and the required power input. The world record for the value of Q was set by JET (Joint

European Torus), in the United Kingdom, in 1998, when Q = 0.67 was achieved.

Nowadays, the scientific community is joining forces on the construction and future operation

of ITER, a large-scale tokamak which is intended to show the feasibility of fusion as an energy

source by reaching a gain factor Q = 10 in a steady state operation. The first plasma is currently

scheduled for December 2025 and ITER is expected to reach the operational target conditions

by 2035.

1.2 The tokamak boundary

The plasma volume inside the tokamak can be divided in two regions according to the mag-

netic field topology: a closed-field line region where the magnetic field lines lie on nested

closed flux surfaces and an open-field line region where the magnetic field lines intersect the

vessel walls. The two regions are separated by the last closed flux surface (LCFS), or separatrix.
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1.2. The tokamak boundary

In the closed-field line region, the high density and high temperature plasma is confined and

nuclear fusion reactions are set to take place in burning plasma conditions. Temperature

and density drop significantly in the outermost layer of the closed-field region, which sets

the sharp transition between the core and the open-field line region. We henceforth denote

this region as the edge, which extends from the outer core to the LCFS. We remark that the

core-edge interface is set based on the change of the plasma pressure scale length and thus it

is not strictly defined.

On the other hand, the open-field line region is filled with plasma outflowing from the closed-

field line region due to cross-field transport and local ionization events of neutral atoms.

Transport is the result of the collisions among charged particles (classical transport), further

enhanced by the device toroidal geometry (neoclassical transport), and also the turbulent

collective dynamics generated in the plasma as a result of pressure and temperature gradients

(turbulent transport). In the open field line region, by flowing along the magnetic field-lines,

the plasma particles hit the vessel walls of the device, being recycled and coming back into the

plasma as neutrals. For this reason, the open field line region is commonly referred to as the

Scrape-Off Layer (SOL).

Successful operation of fusion devices must make sure that the heat load on the vessel wall

does not exceed the maximum threshold allowed by the material. The magnetic field lines are

made to end on metal plates specifically designed to withstand large heat fluxes (e.g. by active

cooling of the material). These can be metal plates, called limiters, which extend radially into

the plasma, thus defining the LCFS, or divertor plates, in case the SOL magnetic field lines

are diverted away from the core region by creating one or more X-points where the poloidal

component of the magnetic field vanishes. In addition to regulating the particle and heat

exhaust, the SOL of a magnetic confinement device influences the overall performance of the

machine by setting the boundary conditions for plasma and energy confinement. The SOL

also plays an important role on fueling, impurity level control and fusion ashes removal [12].

When plasma particles heat the walls, ions and electrons recombine and are recycled into

the plasma as neutrals. A fraction of the ions are simply reflected back into the plasma as

neutral atoms, preserving their energy, while others are absorbed and then reemitted at the

temperature of the wall, in particular when this is saturated. A fraction of the remitted particles

are neutral hydrogen atoms, while others associate to form hydrogen molecules. While neutral

atoms are ionized into the plasma, hydrogen molecules are also ionized, but undergo a number

of dissociation processes as well. An important part of the plasma fueling thus results from

this recycling process [13, 14].

Due to the recycling taking place at the boundary, physical phenomena occurring in the SOL

involve the complex interaction between plasma and neutral particles. Indeed, neutrals are

present in the tokamak boundary as they are formed also by recombination events within

the plasma volume. In addition, they can be injected in the tokamak (for instance, via gas

puffing) with the purpose of fuelling, controlling the heat exhaust, or diagnosing the plasma

7



Chapter 1. Introduction

dynamics. Neutral particles interact with the low-temperature boundary plasma through a

number of collisional processes, thus playing a crucial role in determining the dynamics of

plasma turbulence in the SOL.

If the plasma densities and temperatures in the SOL are sufficiently low, the neutrals interact

weakly with the plasma and ionization takes place mostly inside the LCFS. In this case, there are

no large temperature gradients along the SOL and there is a strong flow of plasma particles all

along the magnetic field lines towards the limiter/divertor. As a consequence, heat convection

dominates heat transport in the SOL. This is referred to as the sheath-limited or convection-

limited regime [12].

On the other hand, if the plasma density is increased, the neutral mean free path decreases,

which results in a large amount of neutrals being ionized in the open-field line region. As a

result, the parallel particle flux in the SOL is significantly reduced, while strong temperature

gradients rise because of the cooling effect due to the ionization of neutrals close to the

limiter/divertor plates. In this condition, heat transport is mainly conductive. The tokamak is

then operated in the so-called conduction-limited or high-recycling regime.

In a divertor configuration, it is possible to extend the high-recycling regime by further de-

creasing the neutral mean free path, thus leading to a dense cloud of neutral atoms near the

divertor plates. As a result, temperature becomes sufficiently low so that volumetric electron-

ion recombination becomes important, thus greatly reducing the flux of particles and heat

to the divertor. In these conditions, known as the detached regime, a large fraction of heat is

radiated, thus making detachment a good candidate for future operation of nuclear fusion

reactors [15].

This regime can also be attained by injecting impurities into the system to mimic the role of

the neutral cloud and, following this approach, a detached regime can also be obtained in

limiter configurations [16, 12].

1.3 Simulation models for tokamak boundary

While the low collisionality of the plasma in the hot dense core of the device demands a kinetic

approach for its description, the considerably lower temperature observed in the tokamak

boundary, which makes the plasma significantly more collisional, opens the possibility to a

fluid description. In the SOL, where most often k‖λmfp ¿ 1, with λmfp the electron mean free

path and k‖ the typical plasma perturbation wavenumber, simulations of plasma turbulence

can be performed by solving a set of fluid equations, derived following the approach developed

by Braginskii [17]. On the other hand, the edge is characterized by a large temperature gradient,

setting the transition from low to high collisionality, and therefore the fluid description is

valid only to the extent that k‖λmfp ¿ 1. In addition, with respect to the tokamak core, the

simulations of the boundary region must address the neutral-plasma interaction in order to

take into account one of the key aspects that determine the plasma dynamics in this region.
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1.4. Scope and outline of the present Thesis

Historically, the simulations of the plasma in the tokamak boundary have been based on

fluid models that describe cross-field plasma transport by means of a convective-diffusive

approach, implemented in codes such as B2 [18, 19], EDGE2D [20], SOLEDGE-2D [21] and

TECXY [22]. The neutral dynamics is approached either by using a diffusive fluid model, as in

the UEDGE [23] code, or by means of a kinetic description, usually based on a Monte Carlo

method, implemented e.g. in the DEGAS2 [24], EIRENE [25], GTNEUT [26] and NEUT2D [27]

codes. These simulation models remain the standard of reference, and the study and design

of the heat exhaust in magnetically confined fusion devices, such as ITER, strongly relies on

simulations carried out by codes that couple these plasma and neutral models, such as the

EMC3-EIRENE [28] and SOLPS [29] codes.

During the last decade, first-principles numerical simulations of plasma turbulence in the

tokamak boundary have emerged in an attempt to overcome the limitations of diffusive models.

Progress has been made possible by the development of several fluid and gyrofluid codes,

namely BOUT++ [30] and its derivation Hermes [31], FELTOR [32], GBS [33, 34, 35, 36], GDB

[37], GRILLIX [38], HESEL [39] and TOKAM3X [40]. These codes are based on the Braginskii

fluid equations taken in the drift limit. Also kinetic codes based on the gyrokinetic model have

been considered, e.g. Gkeyll [41] and XGC1 [42, 43]. Notwithstanding the important progress

in the development of plasma turbulence codes, their coupling to the simulation of the neutral

dynamics is still a challenging open issue.

The coupling of fluid turbulence codes with neutral models is achieved in the BOUT++,

nHESEL, TOKAM3X and GBS codes. BOUT++ is a general framework for fluid model-based

simulation of turbulence in the tokamak boundary, having allowed for a number of derivations.

BOUT++ simulated the neutral-plasma interaction by coupling the gyro-fluid plasma model

with a fluid-diffusive description of the neutrals in a linear device geometry [44]. The nHESEL

[39] code, consists of the coupling of the HESEL code, which evolves density, electron and ion

pressure, and vorticity in a two-dimensional slab geometry, with a one-dimensional diffusive

model for neutral atoms generated by dissociation of molecules injected by gas puffs. nHESEL

simulations allowed for important insights on the neutral-plasma interaction, such as the

influence of blobs on the neutral particle dynamics [45, 39, 46]. In TOKAM3X, the plasma

fluid model is coupled with the Monte Carlo code EIRENE [25] that describes the dynamics of

neutral species. TOKAM3X-EIRENE simulations of a limited configuration showed that, in a

low-density plasma, neutral particle density and flows are weakly affected by the turbulent

fluctuations of the plasma [47]. The present thesis focuses on the GBS code.

1.4 Scope and outline of the present Thesis

The GBS code is a three-dimensional global turbulence code that simulates the plasma dy-

namics in the boundary of magnetic confinement devices. Following a flux-driven approach,

GBS describes the plasma dynamics based on a set of Braginskii equations [17] in the drift

limit [48], with no separation between fluctuations and equilibrium quantities.
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Chapter 1. Introduction

The GBS code started as a two-dimensional fluid turbulence code and it first addressed the

plasma dynamics in simple magnetized plasma (SMT) configurations such as TORPEX [49]

by evolving the drift-reduced Braginskii equations in the plane perpendicular to the device

magnetic field [50, 51]. The parallel dynamics was then included in the model, by using a

straight field-line coordinate system. The first three-dimensional version of GBS allowed

for global simulations of plasma turbulence in linear devices [52], like LAPD [53], or SMT

configurations [54]. GBS was later extended to simulate the tokamak SOL, considering limited

magnetic configurations [33]. As described in Ref. [55], the first SOL simulations considered

the cold ion limit, neglected electromagnetic effects and made use of the Boussinesq approxi-

mation when evaluating the divergence of the polarization flux. Finite ion temperature effects

were included later [56], as well as electromagnetic effects [34]. The GBS simulation domain

was also extended to give the user the possibility to simulate the edge region. In addition,

the Boussinesq approximation was removed [34] in the open field-line region. Moreover,

an approach based upon the method of manufactured solutions (MMS) allowed for the full

verification of the numerical implementation of the GBS model [57]. In parallel, GBS was

adapted to enable the simulation of diverted magnetic configurations, which required the

development of a non-straight field line coordinate system and its implementation to treat

the presence of X-points [35]. The diverted geometry model of GBS has been exploited to

understand the mechanisms underlying intermittent transport in single-null, double-null and

snowflake configurations [58, 59, 60].

Since 2015, the limited configuration version of GBS code also addresses the neutral dynamics

by means of a kinetic model, thus allowing for self-consistent simulations of plasma turbulence

and neutral dynamics [61]. The neutrals and the plasma are coupled via a number of collisional

reactions taking place in the plasma volume and recycling processes at the domain boundary.

The model described in Ref. [61] considers a single neutral species. A kinetic advection

equation for the neutral species is formally solved by applying the method of characteristics

(in a similar way to the nSOLT code [62]). This formal solution, which describes the neutral

distribution function, is then integrated in the velocity space, thus leading to an integral

equation for the neutral density. This equation is then simplified using two assumptions: it

is assumed that the time scale of plasma turbulence is larger than the neutral time of flight,

which turns the neutral calculation into a static problem, and the neutral parallel motion

is also neglected with respect to the characteristic spatial scales of turbulence along the

direction parallel to the magnetic field, which reduces the neutral equation to a set of two-

dimensional independent equations on the plane perpendicular to the magnetic field. The

integral equation for the neutral density obtained within these simplifications is discretized

and solved in the whole plasma volume and the domain boundary. The neutral density and

neutral outflow to the boundary are then obtained. Once the neutral density in the plasma

volume is known, the higher order moments of the neutral distribution function, namely the

neutral flux and neutral temperature, are obtained in a straightforward way.

The neutral model implemented in GBS provides a description valid for all ranges of neutral

density and mean free path [61]. In fact, it has the advantage of avoiding the assumptions on
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1.4. Scope and outline of the present Thesis

the neutral temperature and diffusion coefficients typically considered in fluid-diffusive mod-

els. On the other hand, we highlight that the approach to the neutral dynamics implemented

in GBS is deterministic, thus avoiding the statistical noise of the Monte Carlo method.

The self-consistent model of the neutral plasma interaction in boundary plasmas has been

exploited in Ref. [63] to derive a refined two-point model to link the properties of the plasma

in the upstream and divertor regions. This two point-model matches accurately the results

from GBS simulations. In fact, it accurately predicts the ratio between the electron temper-

atures upstream and at the limiter plates in the open field-line region, considering as input

parameters the particle and heat sources related to cross-field turbulent transport and the

ionization sources along the magnetic field-lines.

GBS simulations were also used to investigate the role of neutral density fluctuations on

the Dα emission, as reported in Ref. [64]. For this purpose, a simulation of a diagnostic gas

puff located on the low-field side equatorial midplane was performed. The results showed

a strong anti-correlation between the neutral density fluctuations and the perturbations of

the plasma quantities at distances from the gas puff smaller than the neutral mean free path,

λmfp,n. However, the neutral density fluctuations were observed to have a small impact on

the statistical moments and turbulence properties of the Dα emission, which suggests that

neglecting the neutral density fluctuation is a valid approximation when integrating the results

of gas puff imaging (GPI) at distances from the gas puff smaller than λmfp,n. On the other

hand, the GBS simulation also showed that the anti-correlation is weaker when distances from

the diagnostic gas puff larger than λmfp,n are considered as the result of non-local shadowing

effects due to the fact that the neutrals cross several plasma structures along their path. As a

result, the neutral density was found to have a non-negligible impact on the Dα emission at

large distances from the gas puff source.

Despite enabling self-consistent simulations of plasma turbulence and neutral dynamics in

the tokamak boundary, the GBS model described in Ref. [61] is not mass-conserving. In fact,

several approximations are considered in the description of both the plasma and the neutrals,

that prevent mass conservation. These assumptions include the simplifications of the device

geometry both in the plasma and the neutral models, the use of the Boussinesq approximation

and a set of boundary conditions based on assumptions that prevent recycling at the vessel

walls from being mass-conserving. In order to account for a fully consistent description of the

neutral-plasma interaction and enable mass conservation, the GBS model is improved in the

present thesis. The modifications introduced in GBS in order to achieve mass conservation

are described in Ch. 2, where the changes implemented in the plasma model, neutral solver

and boundary conditions are discussed in detail. The results of the first mass-conserving GBS

simulations are also presented and analyzed in Ch.2.

The model developed in Ref. [61] considers one neutral species (D atoms) and the corre-

sponding ion species (D+), preventing the description of the processes relevant in realistic

multi-component plasmas. The multispecies description of the neutral and plasma dynamics
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Chapter 1. Introduction

is of particular importance, since the molecular dynamics is expected to play an important

role on plasma recycling at the boundary and fuelling. This requires the description of D+
2

ion dynamics, as well as of both D atoms and D2 molecules. The multi-component model

implemented in GBS to account for different ion and neutral species is the focus of Ch. 3,

where the model is presented in detail. The results obtained from the first multi-component

GBS simulations are also presented and discussed, being compared with the results from the

single-component model.

Finally, we remark that the GPI studies reported in Ref. [64] are based on a single-component

plasma framework. The improvement from a single-component to a multi-component de-

scription is expected to affect the interpretation of GPI results, as predicted in the studies

reported in Ref. [46], based upon fluid simulations of two-dimensional plasmas with multi-

component neutrals described by a fluid-diffusive approach. Ch. 4 focuses on the results of

multi-component GPI simulations. These results are presented and compared with the ones

observed in previous works [46, 64], shedding light on the mechanisms underlying the Dα

emission in realistic multi-component plasmas.

The conclusion of the present thesis follows, in Ch. 5. Following the conclusion, a few

appendices to the main text are included. App. A presents the proof of mass conservation

for the formal solution of the neutral kinetic equation. App. B carries out the derivation

of the average energy of the reaction products and the average electron energy loss for the

dissociative processes considered in the multi-species model presented in Ch. 3. In App. C,

the derivation of the friction and thermal force terms featuring in the velocity and temperature

equations in the multi-component plasma description is presented, following the Zhdanov

closure [65] and considering the approach described in Ref. [66]. App. D lists the kernel

functions used to express the system of equations solved for the neutral species in the multi-

component model presented in Ch. 3. Finally, App. E develops the system of equations

for the multi-component neutral model in the matrix form which is used for its numerical

implementation in GBS.
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2 The mass-conserving GBS model of
plasma turbulence and kinetic neu-
trals

In this chapter, the single-component GBS model for the simulation of the tokamak boundary

developed in the present thesis is described. This model is mass-conserving to leading order

in ρs0/R0, where ρs0 is the ion sound Larmor radius and R0 is the tokamak major radius

at the magnetic axis. A three-dimensional description of plasma turbulence is provided by

the two-fluid drift-reduced Braginskii equations, while the neutral atom dynamics model is

based on the discretization of the formal solution of the Boltzmann equation, with proper

mass-conserving boundary conditions being applied at the vessel walls. The present chapter

describes the implementation of this model in GBS, and demonstrate mass conservation. The

results of the mass-conserving simulation are then shown and discussed, highlighting the

influence that mass conservation has on the profiles of the plasma and neutral quantities. The

formation of the electron density profile is also addressed by relating it to the observed radial

fluxes of plasma and neutral particles. The present chapter is based on the results published

in Ref. [67].
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Chapter 2. The mass-conserving GBS model of plasma turbulence and kinetic neutrals

2.1 Introduction

Developed in the last decade, the GBS code [33, 34] has been used to study plasma turbulence

in basic plasma physics experiments [54, 52], in tokamak limited configurations [68] and it is

now used to perform simulation in diverted configurations [35, 59, 60]. GBS is based on the

drift-reduced Braginskii equations for the plasma. In the limited version of GBS, the plasma

equations are coupled to a kinetic model for the neutrals [61]. The neutral atom density

and higher order moments of the distribution function are computed by solving the kinetic

equation through the method of characteristics and discretizing the resulting integral along

the neutral path (similarly to the nSOLT code [62]). This method provides a description of all

ranges of neutral mean free path [61] while avoiding the statistical noise of the Monte Carlo

methods.

By building upon the self-consistent model for the neutral and plasma dynamics implemented

in the GBS code and described in Ref. [61], the present chapter describes an improved model

aiming at achieving mass conservation in a limited tokamak configuration. The improvements

presented here ensure that mass conservation is satisfied to leading order in ρs0/R0 (with ρs0

the ion sound Larmor radius and R0 the tokamak major radius at the magnetic axis), thus

allowing for accurate quantitative studies in the tokamak boundary. In fact, the results of the

first numerical simulations highlight the crucial role of mass conservation on determining

the particle flux in the tokamak boundary, with physical implications, e.g., on the study of the

tokamak fueling and the flux of particles and heat flux to the vessel walls.

Mass conservation among the plasma species has already been addressed by other boundary

turbulence codes. In GRILLIX [38], plasma particles and energy are conserved by means of a

particle source that compensates on average the particle sink at the outermost flux surface. In

turn, the Hermes module [31], based on the BOUT++ [30] framework, verifies electron density

conservation by implementing the equations in divergence form and relying on finite volume

schemes, both in the limiter and divertor configurations. On the other hand, TOKAM3X

features conservation of the plasma density, parallel ion momentum, electron and ion energy

and charge by implementing the fluid equations in the divergence form [69].

In GBS, the discretization of the solution of the neutral kinetic equation prevents the statistical

noise of the Monte Carlo approach from affecting mass conservation in a coupled neutral-

plasma model. In fact, by improving the model previously implemented in GBS, presented

in Ref. [34], mass conservation is now achieved in GBS to leading order in ρs0/R0. This is

made possible thanks to the implementation of i) operators in the plasma equations that

consistently take the toroidal geometry into account, avoiding the Boussinesq approximation

and geometrical simplifications; ii) solution of the neutral kinetic equation written within

proper toroidal geometry; iii) accurate boundary conditions to ensure mass conservation in

the description of wall recycling. The resulting model enables self-consistent mass-conserving

simulations of the neutral-plasma interaction in the tokamak boundary to leading order in

ρs0/R0. These simulations ultimately allow for quantitative studies of particle fluxes. The first
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2.2. The mass-conserving model for the plasma and neutral particles

results of the improved model, reported in this chapter, are compared with non-conserving

results from previous GBS simulations, highlighting a significant impact of mass conservation.

The role of the plasma and neutral fluxes in the formation of the plasma profile is also assessed

by varying the plasma density considered in the simulations.

This chapter is structured as follows. After the Introduction, the improved mass-conserving

GBS model is presented in Sec. 2.2, focusing separately on the plasma model, the kinetic

neutral model, and the boundary conditions. The verification of mass conservation in GBS is

the focus of Sec. 2.3. Sec. 2.4 reports on the results of the first mass-conserving simulations

carried out with the GBS model presented in this chapter. The differences between the

mass-conserving and the non-mass-conserving models are discussed and the role of plasma

and neutral particle fluxes on the formation of the plasma density profile is addressed, by

performing a density scan. The conclusion of the chapter follows, in Sec. 2.5.

2.2 The mass-conserving model for the plasma and neutral parti-

cles

In this chapter, a mass-conserving model to leading order in ρs0/R0 is derived for the limiter

configuration, where we consider an infinitely thin wedge located on the HFS equatorial

mid-plane acting as a toroidal limiter, similarly to Ref. [70]. Also similarly to Ref. [70], we

consider a toroidal annulus as the simulation domain, which includes both the open field-line

region (SOL) and a fraction of the region inside the LCFS (edge). The mass-conserving plasma

equations are presented in Sec. 2.2.1, while the conserving neutral model, consistent with

the plasma model and the three-dimensional toroidal geometry, is presented in Sec. 2.2.2. In

order to ensure mass conservation in the context of the recycling processes taking place at the

domain boundaries, proper boundary conditions are implemented, being the subject under

discussion in Sec. 2.2.3.

2.2.1 A conserving model for the plasma

GBS describes plasma turbulence by solving the drift-reduced Braginskii equations [17, 48],

as it is justified by the typical low-temperature and high-collisionality plasma conditions

in the tokamak boundary. Due to the large amplitude fluctuations, no separation is made

between fluctuations and background quantities. The plasma density n, vorticity Ω, the

electron and ion temperatures Te and Ti, and their parallel velocities v‖e and v‖i, are evolved

in the electrostatic limit, according to the following system of equations,

∂n

∂t
=−ρ

−1∗
B

[φ,n]+ 2

B

[
C (pe)−nC (φ)

]−∇· (nv‖eb)

+D⊥n∇2
⊥n +D‖n∇2

‖n +Sn+nnνiz −nνrec
(2.1)
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∂Ω

∂t
=−∇·

[
ρ−1∗
B 2 [φ,Bω]

]
−∇·

[ v‖i

B
∇‖ (Bω)

]
+∇· ( j‖b

)
+ 2

B
C (pe +pi)+

[
∇Gi ·

(b×k
B

)
+Gi∇·

(b×k
B

)
− 2

3B
C (Gi)

]
+η0Ω∇2

‖Ω+D⊥Ω∇2
⊥Ω−∇·

[nn

n
(νcx +νiz)ω

] (2.2)

∂v‖e

∂t
=− ρ−1∗

B
[φ, v‖e]− v‖e∇‖v‖e

+ mi

me

[
ν j‖
n

+∇‖φ− ∇‖pe

n
−0.71∇‖Te − 2

3n
∇‖Ge

]
+D⊥v‖e∇2

⊥v‖e +D‖v‖e∇2
‖v‖e + nn

n
(νen +2νiz)(v‖n − v‖e)

(2.3)

∂v‖i

∂t
=− ρ−1∗

B
[φ, v‖i]− v‖i∇‖v‖i −

∇‖p

n
− 2

3n
∇‖Gi

+D⊥v‖i∇2
⊥v‖i +D‖v‖i∇2

‖v‖i + nn

n
(νiz +νcx)(v‖n − v‖i)

(2.4)

∂Te

∂t
=− ρ−1∗

B
[φ,Te]− v‖e∇‖Te

+ 4Te

3B

[
C (pe)

n
+ 5

2
C (Te)−C (φ)

]
+ 2Te

3n

[
0.71∇· ( j‖b

)−n∇· (v‖eb
)]

+χ⊥e∇2
⊥Te +∇‖χ‖e∇‖Te +STe

+ nn

n
νiz

[
−2

3
Eiz −Te + me

mi
v‖e

(
v‖e − 4

3
v‖n

)]
− nn

n
νen

me

mi

2

3
v‖e(v‖n − v‖e)

(2.5)

∂Ti

∂t
=− ρ−1∗

B
[φ,Ti]− v‖i∇‖Ti+

4Ti

3B

[
C (pe)

n
− 5

2
C (Ti)−C (φ)

]
+ 2Ti

3n

[∇· ( j‖b
)−n∇· (v‖ib

)]
+χ⊥i∇2

⊥Ti +∇‖χ‖i∇‖Ti +STi

+nn

n
(νiz +νcx)

[
Tn −Ti + 1

3
(v‖n − v‖i)

2
]

,

(2.6)
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with k the magnetic field curvature vector given by k= (b ·∇)b and the vector ω defined as

ω = (
1/B 2

)(
n∇⊥φ+∇⊥pi

)
. Since ω is related to the plasma vorticity by Ω=∇·ω, the Poisson

equation for the electrostatic potential φ required to close the system of equations yields

∇·
( n

B 2 ∇⊥φ
)
=Ω−∇·

(
1

B 2 ∇⊥pi

)
. (2.7)

We remark that, in Eqs. (2.1-2.7), B denotes the local value of the magnetic field modulus for

a given magnetic equilibrium, as required to ensure conservation. We remark that Sne , STe ,

STi in Eqs. (3.19), (2.5) and (2.6) denote respectively the plasma density, electron temperature

and ion temperature sources at the edge-core interface, which mimic the plasma and energy

outflow from the core into the simulation domain.

In Eqs. (2.1-2.7) and in the rest of the chapter, we use dimensionless quantities. Therefore,

the density, n, and the temperatures, Te and Ti, are normalized to the reference values, n0

and Te0, while lengths parallel to the magnetic field are normalized to the tokamak major

radius, R0, lengths perpendicular to the magnetic field are normalized to the ion sound Lar-

mor radius at the magnetic axis, ρs0 = cs0/Ωci0, where cs0 = Te0/mi is the sound speed and

Ωci0 = eB0/mi the ion cyclotron frequency at the magnetic axis (mi stands for the ion mass

and e is the elementary charge). In turn, time is normalized to R0/cs0. The normalization of

all other GBS quantities follows from these normalizations. Precisely, the parallel velocities

v‖e and v‖i are normalized to the ion sound speed cs0, the plasma vorticity Ω is normalized to

n0Te0/(ρ2
s0B 2

0 ), perpendicular diffusion coefficients D⊥ and conductivities χ⊥ are normalized

to cs0ρ
2
s0/R0, while the parallel diffusion coefficients D‖ (added for numerical stability pur-

poses) and conductivities χ‖ are normalized to cs0R0. We also highlight that, in Eqs. (2.1-2.7),

ρ? = ρs0/R0 is the normalized ion sound Larmor radius, b = B/B is the magnetic field unit

vector, p = n(Te +Ti) is the total pressure and ν = ene0R0/(mics0σ‖) is the dimensionless

Spitzer resistivity. It is remarked that the Spitzer parallel conductivity is considered. In fact, we

assume χ‖e,i =χ‖0T 5/2
e,i , following the procedure used in previous GBS models (Refs. [33, 34]),

but the weaker spatial and temporal variation of the 2/(3n) factor is neglected. As a matter

of fact, based on previous GBS simulations, we expect that neglecting the 2/(3n) factor does

not affect our simulation results since conductivity terms are relatively small in the plasma

conditions considered, which lie on the border between the sheath-limited and conduction

limited regimes. The electron and ion gyroviscous terms (Refs. [33, 34]) in Eqs. (2.3) and (2.4)

are given by

Gi =−η0i

[
2∇‖v‖i + C (φ)

B
+ C (pi)

nB

]
, (2.8)

Ge =−η0e

[
2∇‖v‖e + C (φ)

B
− C (pe)

nB

]
. (2.9)
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The Poisson brackets, curvature, parallel and perpendicular gradient operators are introduced

as

[ f , g ] =b · (∇ f ×∇g ), (2.10)

C ( f ) = B

2

[
∇×

(b
B

)]
·∇ f (2.11)

∇‖ f =b ·∇ f . (2.12)

∇⊥ f = [∇−b(b ·∇)] f . (2.13)

We finally note that νiz, νcx, νrec and νen are respectively the ionization, charge exchange,

recombination and electron-neutral elastic collision rates. Similarly to Ref. [61], these collision

rates are evaluated as

νiz = n 〈veσiz(ve)〉 , (2.14)

νcx = n 〈viσcx(vi)〉 , (2.15)

νrec = n 〈veσrec(ve)〉 , (2.16)

νen = n 〈veσen(ve)〉 , (2.17)

where σiz, σcx, σrec and σen are the ionization, charge exchange, recombination and electron-

neutral elastic collision cross-sections, and ve and vi denote the electron and ion velocities,

respectively. We remark that, while νiz, νrec and νen are evaluated by averaging the colli-

sion rates over the electron distribution function, νcx is obtained by averaging over the ion

distribution function [61].

It is remarked that the GBS model presented here does not consider the Boussinesq approx-

imation when evaluating the polarization current density. This constitutes an extension of

the work reported in Ref. [34], since the variation of the magnetic field is properly taken into

account in the polarization current in both the open and closed field-line regions. This enables

the vorticity equation to be written in a mass-conserving form, needed to ensure charge and
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2.2. The mass-conserving model for the plasma and neutral particles

mass conservation.

Contrarily to the procedure followed in Hermes [31] and TOKAM3X [40], Eqs. (2.1-2.6) are not

expressed in divergence form. This choice is justified by the robust numerical implementation

of the Poisson brackets made possible by using the Arakawa scheme [71], similarly to BOUT++

[30]. Moreover, the GBS approach enables a clear separation of the contributions of different

physical mechanisms. For example, it allows for the effect of curvature in the E×B convection

terms to be isolated in a straightforward way. On the other hand, a careful evaluation of

the geometric operators featuring in Eqs. (2.1-2.7) is required for mass conservation to be

satisfied. These operators are derived in Ref. [72] taking into account finite aspect ratio effects

by assuming a constant aspect ratio ε = a0/R0, with a0 the minor radius at the LCFS, and

considering the orderings k‖/k⊥ ¿ 1 and k⊥R0 À 1. This derivation is generalized here to

allow for a consistent variation of the inverse aspect ratio ε(r ) = r /R0, with r the local minor

radius.

We perform the derivation of the geometric operators by assuming an axisymmetric magnetic

field,

B= F (ψ)∇ϕ+∇ψ×∇ϕ, (2.18)

where ψ denotes the poloidal magnetic flux function obtained as the solution of the Grad-

Shafranov equation, ϕ represents the toroidal angle, and F (ψ) is the current function that

yields the magnetic field toroidal component. In order to express the geometric operators, we

introduce the right-handed coordinates set (ξ1,ξ2,ξ3) = (θ∗, f (ψ),ϕ), where f (ψ) is a magnetic

flux coordinate and θ∗ is a poloidal angle chosen such that Bϕ = q(ψ)Bθ∗ , with Bϕ =B ·∇ϕ
and Bθ∗ =B ·∇θ∗ the toroidal and poloidal contravariant components of the magnetic field

respectively (in general B i =B ·∇ξi, with i = 1,2,3), and q(ψ) the safety factor at the magnetic

flux ψ, defined as

q(ψ) = 1

2π

∫ 2π

0
dθ

Bϕ(θ,ψ)

Bθ(θ,ψ)
, (2.19)

with θ the poloidal angle. The reason behind this definition of θ∗ is the fact that the magnetic

field lines are straight in the (θ∗,ϕ) plane, which simplifies the numerical implementation of

derivatives along the magnetic field. In fact, the (θ∗, f (ψ),ϕ) coordinate system is advanta-

geous for the numerical implementation of Eqs. (2.1-2.7) because it facilitates the decoupling

of the derivatives along the directions parallel and perpendicular to the magnetic field. We

then introduce the contravariant metric tensor for this coordinate set, g ij =∇ξi ·∇ξj, the covari-

ant metric tensor, gij = Inv(g ij) (Inv denotes the inverse matrix), and the coordinate Jacobian

J = 1/
√

det (g ij) = 1/[∇θ∗ · (∇ f (ψ)×∇ϕ)]. The magnetic field modulus can be computed from

these definitions as B =
√

B iBi, with the covariant components of the field being given by
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Bi = gijB j (Einstein summation convention is used). The magnetic field unit vector is defined

through bi = Bi/B , while ci = bi/B are the components of the magnetic field unit vector di-

vided by the magnetic field modulus. The Poisson brackets, curvature and parallel gradient

operators are computed from the definitions in Eqs. (2.10-2.12) as

[φ, A] = 1

J
εijkbi

∂φ

∂ξi

∂A

∂ξk
, (2.20)

C (A) = B

2J

∂cm

∂ξj

∂A

∂ξk
εkjm, (2.21)

∇‖A =b ·∇A = bj ∂A

∂ξj
, (2.22)

with εkjm the Levi-Civita symbol. Similarly, the second derivative along the direction parallel

to the magnetic field is obtained by applying Eq. (2.12) twice,

∇2
‖A =b ·∇(b ·∇A) = bibj ∂

2 A

∂ξi∂ξj
+bi ∂bj

∂ξi

∂A

∂ξj
, (2.23)

and the perpendicular derivative is defined from Eq. (2.13) as

[∇⊥A]i = [
g ij −bibj]∂j A. (2.24)

For simplicity, and following Ref. [72], in the present chapter we consider an equilibrium

with circular magnetic flux surfaces and constant current function F (ψ) = B0R0. We highlight

that considering a more complex magnetic equilibrium would not change the conservation

properties of the model, since shaping effects do not impact mass conservation as long as they

are implemented consistently. The flux coordinate f (ψ) is chosen as the radial distance from

the magnetic axis to a given magnetic flux surface, that is r . This leads to the Jacobian for the

(θ∗,r,ϕ) coordinates being expressed as

J (r,θ∗) = r R0

[
1−ε(r )2

]3/2

[1−ε(r )cos(θ∗)]2 . (2.25)

The magnetic field components, bi and ci, can be obtained by using Eqs. (2.18) and (2.25).

Having defined all quantities concerning the magnetic equilibrium, the Poisson bracket

operator is derived as
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[φ, A] = Pθ∗r [φ, A]θ∗r +Prϕ[φ, A]rϕ+Pϕθ∗ [φ, A]ϕθ∗ , (2.26)

with its components and respective coefficients defined as

[φ, A]θ∗r =
∂φ

dθ∗
∂A

∂r
− ∂φ

∂r

∂A

∂θ∗
, (2.27)

[φ, A]rϕ = ∂φ

∂r

∂A

∂ϕ
− ∂φ

∂ϕ

∂A

∂r
, (2.28)

[φ, A]ϕθ∗ =
∂φ

∂ϕ

∂A

∂θ∗
− ∂φ

∂θ∗
∂A

∂ϕ
, (2.29)

Pθ∗r =
bϕ
J

, (2.30)

Prϕ = bθ∗

J
, (2.31)

Pϕθ∗ =
br

J
. (2.32)

The curvature operator is expressed as

C (A) =C r ∂A

∂r
+Cθ∗ ∂A

∂θ∗
+C ‖∇‖A, (2.33)

where the geometric coefficients are given by

C r =− B

2J

∂cϕ
∂θ∗

, (2.34)

Cθ∗ = B

2J

[
∂cϕ
∂r

+ 1

q

(
∂cθ∗

∂r
− ∂cr

∂θ∗

)]
, (2.35)

C ‖ = B

2Jbϕ

(
∂cr

∂θ∗
− ∂cθ∗

∂r

)
. (2.36)

We highlight that, while the Poisson bracket operator in Eq. (2.26) is written in (θ∗,r,ϕ)

coordinates, the curvature operator in Eq. (2.33) features derivatives along θ∗, r and the

direction parallel to the magnetic field. In fact, parallel derivatives can be directly computed

in GBS by taking advantage of the straight-field line coordinate set, (θ∗,r,ϕ), as discussed in

Ref. [33]. Otherwise, the derivative along the magnetic field would have to be projected into

the ϕ and θ∗ directions. This can be derived from Eq. (2.22), yielding

∇‖ = bϕ
[
∂

∂ϕ
+ 1

q

∂

∂θ∗

]
. (2.37)
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It is then possible to reverse the relation in Eq. (2.37) to write the toroidal derivative in terms

of the parallel and poloidal derivatives,

∂

∂ϕ
= 1

bϕ
∇‖− 1

q

∂

∂θ∗
. (2.38)

We can thus use Eq. (2.38) to write the curvature operator in Eq. (2.33) in terms of derivatives

along θ∗ and the parallel direction instead of derivatives along ϕ. Regarding the expressions

in Eqs. (2.27-2.29) for the Poisson bracket operator, the Arakawa scheme [71] is used to

implement them in (θ∗,r,ϕ) coordinates, taking advantage of the robust stability properties of

this numerical scheme.

In comparison with Ref. [72], we do not order k⊥R0 À 1 and the divergence of the magnetic

field unit vector ∇ ·b is consistently taken into account in the present chapter. Therefore,

applying the definition of the divergence of a vector,

∇·b= 1

J

∂

∂ξi
(Jbi ), (2.39)

one obtains, for a circular axisymmetric magnetic equilibrium,

∇·b=−R0bθ
∗

B

∂B

∂θ∗
. (2.40)

In turn, the ∇⊥ operator in Eq. (2.24) entering the plasma equations via Eq. (2.7) can be

expressed by means of Eqs. (2.24) and (2.39) as

∇⊥ ·
[ n

B 2 ∇⊥A
]
= 1

J

∂

∂ξi

[
J

n

B 2 (g i j −bi bk )
∂A

∂ξk

]
. (2.41)

Eq. (2.41) is then developed consistently with the geometry under consideration and keeping

only leading order terms in ρs0/R0 and k‖/k⊥, which yields

∇⊥ ·
[ n

B 2 ∇⊥A
]
=N r r ∂

∂r

(
n

B 2

∂A

∂r

)
+Nθ∗θ∗ ∂

∂θ∗

(
n

B 2

∂A

∂θ∗

)
+ 1

2
N rθ∗ ∂

∂r

(
n

B 2

∂A

∂θ∗

)
+ 1

2
N rθ∗ ∂

∂θ∗

(
n

B 2

∂A

∂r

)
,

(2.42)

where the geometric coefficients are given by

N r r = g r r = 1, (2.43)
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Nθ∗θ∗ = g θ
∗θ∗ + gϕϕ

q2 = 1

r 2

1−εcosθ∗

1−ε2 + 1

R2
0

sin2θ∗+ (1−εcosθ∗)2/q2

(1−ε2)2 , (2.44)

N rθ∗ = 2g rθ∗ =− 2

R0

sinθ∗

1−ε2 . (2.45)

We remark that the k‖/k⊥ ¿ 1 ordering used in the Poisson equation in Eq. (2.7) is not adopted

when Eqs. (2.1-2.6) are developed. As a matter of fact, we include derivatives along the

magnetic field in the geometrical operators present in those equations. Therefore, while mass

is exactly conserved to all orders in k‖/k⊥, the energy is only conserved to leading order in

k‖/k⊥ [48].

We highlight that the stencil used within the implementation of the operator in Eq. (2.42)

considers ε(r ) = r /R0 consistently, therefore taking into account the radial variations of the

geometric coefficients. The stencil is implemented by using a second-order centered finite

difference scheme, which yields

∇·
[ n

B 2 ∇⊥A
]
=− Ai,j

2

[
M r r

i-1,j +2M r r
i,j +M r r

i+1,j

∆r 2 +
Mθ∗θ∗

i,j-1 +2Mθ∗θ∗
i,j +Mθ∗θ∗

i,j+1

∆θ∗2

]

+ Ai+1,j

2∆r 2

(
M r r

i+1,j +M r r
i,j

)
+ Ai-1,j

2∆r 2

(
M r r

i-1,j +M r r
i,j

)
+ Ai,j+1

2∆θ∗2

(
Mθ∗θ∗

i,j+1 +Mθ∗θ∗
i,j

)
+ Ai,j-1

2∆θ∗2

(
Mθ∗θ∗

i,j +Mθ∗θ∗
i,j-1

)
+ 1

8∆r∆θ∗
[

Ai+1,j+1

(
M rθ∗

i+1,j +M rθ∗
i,j+1

)
+ Ai-1,j-1

(
M rθ∗

i-1,j +M rθ∗
i,j-1

)
− Ai-1,j+1

(
M rθ∗

i-1,j +M rθ∗
i,j+1

)
−Ai+1,j-1

(
M rθ∗

i+1,j +M rθ∗
i,j-1

)]
,

(2.46)

with the geometric coefficients redefined as M r r = N r r (n/B 2), M rθ∗ = N rθ∗(n/B 2) and Mθ∗θ∗ =
Nθ∗θ∗(n/B 2).

Finally, we underline that the model equations presented herein reduce to the ones in Ref. [72]

when the inverse aspect ratio is approximated by the constant value ε= a0/R0, thus neglecting

the radial variation of ε across the poloidal plane. In addition, one would have to consider

the limits k‖/k⊥ ¿ 1 and k⊥R0 À 1, as well as the Boussinesq approximation, to retrieve the

model reported in Ref. [72].
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2.2.2 A mass-conserving neutral model

Similarly to the model presented in Ref. [61], the neutral-plasma interaction is addressed in

GBS by solving the kinetic advection equation for the distribution function of neutral atoms

fn, that is

∂ fn

∂t
+v · ∂ fn

∂x
=−νiz fn −νcxnn

(
fn

nn
− fi

ni

)
+νrec fi, (2.47)

where nn and ni denote the neutral and ion density, respectively, and fi the ion distribution

function. We remark that we neglect collisions between neutral particles and elastic collisions

between neutrals and ions. Assuming known plasma properties, we obtain the solution of Eq.

(2.47) by using the method of characteristics, writing it as

fn(x,v, t ) =
∫ r ′

b

0

[
S(x′,v, t ′)

v
+δ(r ′− r ′

b) fn(x′
b,v, t ′b)

]
×exp

[
− 1

v

∫ r ′

0
νeff(x′′, t ′′)dr ′′

]
J (x′)
J (x)

dr ′,
(2.48)

since the neutrals that contribute to the distribution function at position x, velocity v and

time t are generated at position x′ =x− r ′Ω and time t ′ = t − r ′/v , withΩ=v/v designating

the unit vector along the velocity direction and r ′ the distance between x and x′. We remark

that the subscript "b" refers to the intersection of the characteristic passing through x and

direction Ω with the domain boundary. The neutrals are solved in an (R, Z ,ϕ) coordinate

set, which is related to the (r,θ) coordinates by R = R0 [1−ε(r )cosθ] and Z = R0ε(r )sinθ. The

Jacobian of this coordinate set if then given by J (x) = R(x) = R0 [1−ε(r )cosθ]. The volumetric

source of neutrals due to charge-exchange interactions and recombination events occurring

within the plasma is represented by the term

S(x′,v, t ′) = νcx(x′, t ′)nn(x′, t ′)φi(x′,v, t ′)+νrec(x′, t ′) fi(x′,v, t ′), (2.49)

with φi(x′,v, t ′) = mi/(2πTi)exp[−miv2/(2Ti)] the velocity distribution of the ions undergoing

charge-exchange interactions, which is assumed to be a Maxwellian of temperature Ti. We

remark that the volumetric source S(x,v, t) is proportional to the neutral density nn(x, t) =∫
fn(x,v, t )dv, which makes Eq. (2.48) an integral equation for fn .

The effective cross-section for neutral depletion, νeff(x′′, t ′′) = νiz(x′′, t ′′)+νcx(x′′, t ′′), appear-

ing in Eq. (2.48), takes into account the neutrals removed by ionization or charge-exchange

interactions along the path between the source x′ and target x locations. We note that the

neutrals removed by charge-exchange with ions appear as fast neutrals, as described by the

source term in Eq. (2.49). The location x′′ is along the integration path, while t ′′ denotes the

time at which a neutral is at position x′′. The neutral source at the domain boundary is given
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by

fn(x′
b,v, t ′b) = (1−αrefl)(Γout,n +Γout,i)χin(xb,v,Tw )+αrefl[ fn(xb,v−2v⊥)+Γout,iχin(xb,v,Ti )],

(2.50)

where Γout,n = ∫
v⊥<0 |v⊥|cosθ fn(xb,v)dv denotes the flux of neutrals outflowing to the bound-

ary, Γout,i is the flux of ions outflowing from the main plasma, which is calculated from the

quantities evolved by Eqs. (2.1-2.7), v⊥ = v⊥n̂ = (v · n̂)n̂ is the projection of the particle

velocity along the unit vector normal to the boundary pointing towards the plasma n̂, and

χin(xb,v,Tw ) = 3m2/(4πT 2
w)cos(θ)exp

[−mv2/(2Tw)
]

is the Knudsen cosine velocity distribu-

tion assumed for the reemitted neutrals [61, 73], with θ = arccos(Ω · n̂) and Tw the temperature

of neutral particles reemitted at the wall. Eq. (2.50) takes into account that a fraction, αrefl, of

the neutral particles reaching the wall is reflected, while the remaining fraction is absorbed

and then reemitted. Reflected neutrals have a reflected distribution function with respect

to the incoming particles, fn(xb,v−2v⊥). Analogously, the ions outflowing to the boundary

recombine with electrons in the wall and are recycled as neutrals, with a fraction αrefl of them

being reflected and the rest reemitted. For reflected ions we assume a Knudsen cosine velocity

distribution χin(xb,v,Ti ) and ensure that kinetic energy is conserved by considering the ion

temperature Ti instead of wall temperature Tw .

We then solve Eq. (2.48) by considering two approximations that hold within the typical

plasma parameters in the tokamak boundary, as explained in detail in Ref. [61]. We assume

that the plasma quantities vary over characteristic turbulent time scales, τturb, which are larger

than the characteristic neutral time of flight, τn. We also take advantage of the fact that the

typical neutral mean free path, λmfp,n ∼ vth,n/νeff (with vth,n =p
Tn/mn the neutral thermal

velocity, being Tn the neutral temperature and mn the neutral mass, and νeff = νiz +νcx the

effective collision frequency for neutral depletion), is considerably smaller than the typical

elongation of turbulent structures along the direction parallel to the magnetic field, 1/k‖ ∼ R0.

In fact, assuming a neutral temperature Tn ∼ 2eV and an effective frequency for neutral

depletion νeff ∼ 105s−1, it results λmfp,n ∼ 0.1m, which is considerably smaller than R0 ∼ 1m.

This allows us to consider all quantities appearing in Eq. (2.48) independent of the parallel

coordinate, approximately coincident with the toroidal direction in the limit
∣∣∇ψ×∇ϕ∣∣ ¿∣∣F (ψ)∇ϕ∣∣ considered in this chapter. As a result of these approximations, Eq. (2.48) reduces

to a set of time-independent two-dimensional equations in the poloidal plane. Eq. (2.48)

is integrated in the velocity space (vp,ϑ, vt), where vt denotes the projection of the neutral

velocity along the toroidal direction, vp is the modulus of the projection of the velocity on

the poloidal plane and ϑ is the angle between Ω and the horizontal plane. This approach

ultimately leads to a linear integral equation for the neutral density nn in the poloidal plane,
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nn(xp) =
∫ rb

0
dr ′

∫ ∞

0
d vpvp

∫ 2π

0
dϑ

∫ ∞

−∞
d vt

×
{

R(x′
p)

R(xp)

[
S(x′

p,v)

vp
+δ(r ′− r ′

b) fn(x′
p,b,v)

]

×exp

[
− 1

vp

∫ r ′

0
νeff(x′′

p)dr ′′
p

]}
,

(2.51)

where xp and x′
p designate the locations of the target and source of neutral particles within

the poloidal cross section and r ′ denotes the distance between these two points.

The numerical discretization of Eq. (2.51) leads to a matrix equation solved for the neutral

particle density nn(xp) and the flux of neutral atoms at the boundary Γout(xp,b),

[
nn

Γout,n

]
=

[
νcxKp→p Kb→p

νcxKp→b Kb→b

][
nn

Γout,n

]
+

[
νrecKp→p Kb→p

νrecKp→b Kb→b

][
ni

Γout,i

]
, (2.52)

where the kernel functions K are velocity integrals, their expressions being detailed in Ref.

[61]. The kernels link the neutral density nn at a given location within the plasma volume

("p") and the flux of outflowing neutrals Γout,n at a given location at the domain boundary

("b") with the density and flux of neutrals or ions at all locations. Eq. (2.52) represents a

non-homogeneous matrix system, where the homogeneous part describes the contribution

of neutrals generated by charge-exchange processes in the plasma volume and the neutrals

outflowing to the boundary, while the non-homogeneous part accounts for the neutrals

generated by volumetric recombination and ion recycling at the wall.

We highlight that the present thesis takes toroidal geometry into account consistently, by

introducing the proper R(x′
p)/R(xp) geometric factor in Eq. (2.51) with respect to the expres-

sions used in Ref. [61]. The geometric factor R(x′
p)/R(xp) consistently takes toroidicity into

account, instead of the cylindrical geometry considered in Ref. [61], and is crucial for mass

conservation.

2.2.3 Mass-conserving boundary conditions

To ensure mass conservation, proper boundary conditions must be applied to both the plasma

and neutrals. We highlight that the domain boundary includes the interface with the limiter

plates, the edge-core interface and the vessel outer wall. We focus on the boundary conditions

implemented for the plasma fields, as well as the evaluation of the plasma quantities appearing

in Eq. (2.50) at the domain boundary, since these quantities provide the boundary conditions

for the computation of the neutrals.

We start by considering the boundary conditions for the plasma fields at the limiter plates,

where most of the plasma particles end by following the magnetic field lines, being recy-
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cled back to the plasma as neutrals. These boundary conditions, imposed at the magnetic-

presheath entrance where the ion drift approximation breaks, extend the Bohm-Chodura

boundary conditions. Their derivation was first reported in Ref. [74] considering the cold ion

limit and extended for the Ti 6= 0 case in Ref. [75]. Neglecting plasma gradients along the wall,

the plasma boundary conditions at the limiter are given by

v‖i =±
√

TeFT (2.53)

v‖e =±
√

Teexp

(
Λ− φ

Te

)
(2.54)

∂θ∗n =∓ np
TeFT

∂θ∗v‖i (2.55)

∂θ∗φ=∓
p

Tep
FT

∂θ∗v‖i (2.56)

∂θ∗Te = γe∂θ∗φ (2.57)

∂θ∗Ti = γi∂θ∗φ (2.58)

Ω=−
(

1

FT
(∂θ∗v‖i)

2 ±
p

Tep
FT

∂2
θ∗v‖i

)
(2.59)

where the ± signs accounts for magnetic field lines entering or leaving the vessel, FT = 1+Ti/Te,

Λ= log
[p

(1/2π)(mi/me)
]' 3. The parameters γe = γi = 0.1 are numerical coefficients relating

the poloidal derivatives of Te and Ti with the poloidal derivative of the potential at the limiter

[74].

On the other hand, ad hoc boundary conditions are used at the radial boundaries, where

magnetic field lines are parallel to the wall, since no first-principles boundary conditions have

been developed so far for the outer vessel wall and the edge-core interface. As a matter of

fact, the simulation domain is extended along the radial direction both towards the core and

outwards, so that the boundary conditions for the plasma density at the outer vessel walls do

not affect significantly the mass conservation properties of the simulation results. For n, Te,

Ti, v‖e and v‖i, homogeneous Neumann boundary conditions are applied andΩ= 0 is set at

both the wall and the edge-core interface. Regarding φ, we follow an approach similar to the

one reported in Ref. [35], using φ=ΛTe at the wall, withΛTe evaluated at the beginning of the
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simulation, and φ=φ0 at the edge-core interface, with φ0 a properly chosen constant to avoid

strong potential gradients.

We now evaluate the flux of ions outflowing to the boundary, Γout,i, featuring in Eq. (2.50).

This constitutes the primary neutral source in the system and its proper evaluation plays an

important role on for mass conservation. We observe that the total ion flux to the boundary is

Γi = nv‖ib+Γdi +ΓE×B +Γpol,i, (2.60)

where nv‖ib denotes the parallel ion flux, Γdi =−(∇pi×B)/B 2 is the ion diamagnetic drift flux,

ΓE×B = (nB×∇φ)/B 2 the E×B drift flux and Γpol,i = nvpol,i is the ion polarization drift flux,

with the ion polarization velocity written as

vpol,i =− 1

nΩci0

di

d t

(
n

B
∇⊥φ+ 1

B
∇⊥pi

)
− 1

minΩci0
b×

[
Giκ− ∇Gi

3

]
, (2.61)

where di /d t = ∂t +v‖ib ·∇+vE×B ·∇. In this chapter, the polarization drift contributions vpol,i

are neglected in the expression of the ion flux to the boundary, since they are smaller than the

E×B contribution by a factor of the order of ρs0/R0. Therefore, the expression for the ion flux

to the limiter walls considered in the present chapter is given by the projection of Eq. (2.60)

along the poloidal direction θ∗,

[Γi]
θ∗
lim = nv‖ib

θ∗ +Γθ∗di +Γθ
∗

E×B, (2.62)

with the diamagnetic and E×B flux poloidal components expressed as

[Γdi]
θ∗ =− 1

JB 2

[
∂pi

∂r
Bφ− ∂pi

∂ϕ
Br

]
, (2.63)

[ΓE×B]θ
∗ =− n

JB 2

[
∂φ

∂r
Bφ− ∂φ

∂ϕ
Br

]
. (2.64)

We remark that Eq. (2.62) is evaluated locally. In turn, at the vessel wall we consider the radial

component of the flux in Eq. (2.60),

[Γi]
r
wall =Γr

di +Γr
E×B, (2.65)

with
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[Γdi]
r =− 1

JB 2

[
− ∂pi

∂θ∗
Bφ+ ∂pi

∂ϕ
Bθ∗

]
, (2.66)

[ΓE×B]r =− n

JB 2

[
− ∂φ

∂θ∗
Bφ+ ∂φ

∂ϕ
Bθ∗

]
. (2.67)

The flux of ions perpendicular to the outer wall in Eq. (2.65), being considerably smaller than

the flux of ions outflowing towards the limiter in Eq. (2.62), fluctuates and may occasionally

reverse direction. This is also due to the ad hoc plasma boundary conditions used at the wall.

We hence solve this numerical drawback by performing a poloidal and toroidal average of the

flux when evaluating Γout,i, therefore uniformly redistributing it at the wall.

While the boundary conditions imposed at the limiter and outer wall ensure mass-conservation,

the edge-core interface is an open boundary of the simulation domain, which can be crossed

by both ions and neutrals, with the plasma outflow from the core compensating the neutral in-

flow to the core in a steady state situation. In our simulations, the plasma outflowing from the

core to the simulation domain is mimicked by a density source near the edge-core interface,

Sn. For global mass conservation purposes, we consider a dynamical density source matching

the time variation of the volume-integrated plasma density at each time step. As a result, the

system evolves to a steady state where the ion flux at the edge-core interface compensates the

neutral flux. The mass of the system composed by the ions and the neutrals inside the domain

is thus conserved globally and locally, with the density profiles oscillating around a constant

steady-state value. Since energy conservation is not the scope of the present chapter, we do

not impose energy conservation when modelling the heat outflow from the core into the simu-

lation domain. Instead, the energy outflow from the core is mimicked by temperature sources

located at the edge-core interface, STe and STi , which are described by a gaussian profile of

constant amplitude, STe = ATe exp−(r − rc)2/w2 and STi = ATi exp−(r − rc)2/w2, with r the

radial coordinate, rc = 0ρs0 the radial location of the edge-core boundary, w = 5ρs0 the width

of the gaussian source and STe and STi the electron and ion temperature source amplitudes,

respectively.

We remark that the boundary conditions described in the present chapter extend the ones

used in previous GBS models (see Refs. [61] and [34]) thanks to the introduction of boundary

conditions for the neutral model that account for the leading order drift contributions to the

ion flux on top of the parallel motion, while the previous model only considered the parallel

ion flow along the magnetic field lines. Therefore, the corrections implemented in the version

of GBS reported in this chapter ensure mass conservation to leading order in ρs0/R0.

The model considered here does not include gas puffs for fuelling purposes or other fuelling

mechanisms. In fact, in a nuclear fusion reactor, the plasma fuel is expected to be depleted

because of the fusion reactions taking place at the core, which has to be compensated by

the fuelling from the boundary in order to conserve the total mass of the plasma in the

device during operation. We remark that the plasma fuelling can be simulated by using the
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model discussed in this chapter, while global and local mass conservation are ensured by also

including the modelling of the products of the fusion reactors in a multi-species framework,

as well as the presence of a plasma pump for the removal of fusion products. We also note

that in order to establish energy conservation in our simulation, the heat exchange between

the plasma and the walls has to be described, as well as a more comprehensive description of

the collisional heat exchange between different species provided, taking into account the role

played by atomic excitation and different energy levels of the hydrogen atom.

2.3 Verification of Mass Conservation

Aiming at verifying the implementation in GBS of the mass-conserving model described in

Section 2.2, and composed of the plasma model, Eqs. (2.1-2.7), the boundary conditions,

Eqs. (2.53-2.59), and the neutral model, Eq. (2.51), we start by deriving the proper mass

conservation law. We remark that the electron continuity equation, Eq. (2.1), can be expressed

in divergence form as

∂n

∂t
=−∇·Γe +nnνiz +D⊥n∇2

⊥n +D‖n∇2
‖n, (2.68)

where the electron flux Γe is expressed as

Γe = nv‖eb+Γde +ΓE×B, (2.69)

with ΓE×B the E×B drift contribution to the electron flux, and Γde = (∇pe×B)/B 2 the electron

diamagnetic drift flux. We note that in Eq. (2.68), as well as in the rest of the present chapter,

we neglect the recombination sink term, since the recombination rate is negligible compared

to the ones of ionization and charge-exchange at the typical SOL and edge temperatures

considered in our simulations.

The ion continuity equation can be derived from Eq. (2.68) by using the vorticity equation, Eq.

(2.2), which can also be written in divergence form, ∇· j= 0, as

∇· (Γi −Γe)+η0Ω∇2
‖Ω+D⊥Ω∇2

⊥Ω= 0. (2.70)

Using Eqs. (2.70) and (2.68), one obtains the ion continuity equation,

∂n

∂t
=−∇·Γi +nnνiz +D⊥n∇2

⊥n +D‖n∇2
‖n −η0Ω∇2

‖Ω−D⊥Ω∇2
⊥Ω. (2.71)

In what follows, we use D(n,Ω) = D⊥n∇2
⊥n +D‖n∇2

‖n −η0Ω∇2
‖Ω−D⊥Ω∇2

⊥Ω as a simplified

notation. In addition, we note that the solution of the neutral kinetic equation presented in
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Eq. (2.51) obeys the conservation relation nnνiz =−∇·Γn, the detailed demonstration being

presented in the Appendix A to this thesis. Thus, the ion continuity equation in Eq. (2.71) can

be written in terms of the divergence of the neutral flux, yielding

∂n

∂t
=−∇·Γi −∇·Γn +D(n,Ω), (2.72)

which highlights that the variation of the plasma density in time matches the sum of the

divergence of the ion and neutral fluxes, apart from numerical diffusion terms featuring in

the continuity and vorticity equations, Eqs. (2.1-2.2). We note that Eq. (2.72) states the mass

conservation law of the model developed in Section 2.2.

In order to verify Eq. (2.72), we integrate Eq. (2.72) in time and over the poloidal and toroidal

directions, thus obtaining a one-dimensional conservation law,

∫
Jdθ∗dφ∆n =

∫
∆t

d t
∫

Jdθ∗dφ [−∇· (Γi +Γn)+D(n,Ω)] , (2.73)

where ∆n = ∫
∆t (∂n/∂t )d t denotes the local density variation over time. The relative error for

mass conservation, normalized to the volume-integrated density variation, is expressed as

E(r ) =
∫

Jdθ∗dφ ∆n +∫
∆t d t

∫
Jdθ∗dφ [∇· (Γi +Γn)−D(n,Ω)]∫

Jdθ∗dφdr |∆n|/Lr
, (2.74)

with Lr the radial length of the simulation domain.

The error E (r ) is evaluated from a set of GBS simulations and presented in Fig. 2.1. We remark

that the results shown in Fig. 2.1 are independent of the particular time chosen to evaluate the

instantaneous error of mass-conservation.

Our convergence tests show that grid resolution in the radial direction plays a particularly

important role in mass conservation. Three different grid resolutions are considered in Fig. 2.1:

a coarser grid with nx,p = 64 plasma grid points and nx,n = 10 neutral grid points in the radial

direction, an intermediate grid with nx,p = 128 and nx,n = 18, and a finer grid with nx,p = 256

and nx,n = 36. The poloidal and toroidal resolution of the plasma and neutral grids is kept

constant in all simulations, with ny,p = 512, nz,p = 64, ny,n = 360, and nz,n = 64. Convergence

is found in the SOL region, since the error decreases as the grid is refined. In the closed flux

surface region, the error is very small for all the simulations. We remark that the peak of E(r )

at the LCFS is a consequence of the sharp gradients that are observed between the open and

closed field-line regions, ultimately due to the topological transition between the edge and

the SOL. This effect is more important if a higher radial resolution is considered, which results

from the fact that the grid approaches the topological boundary between the two regions.
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Chapter 2. The mass-conserving GBS model of plasma turbulence and kinetic neutrals

Figure 2.1: Instantaneous error in particle conservation, defined according to Eq. (2.74),
evaluated over an interval of two time steps (∆t = 7.5×10−5) for three combinations of plasma
(nx,p×ny,p×nz,p) and neutral (nx,n×ny,n×nz,n) grids: i) (64×512×64) and (10×360×64), blue
line; ii) (128×512×64) and (18×360×64), red line; iii) (256×512×64) and (36×360×64),
green line. Simulation parameters: R0/ρs0 = 500, q = 3.867, n0 = 2×1013cm−3, T0 = 20.0eV,
Ωci = 5.0× 107s−1, Tw = 3.0eV, ν = 0.1, η0e = η0i = 1.0, η0Ω = 4.0, STe = STi = 0.3, χ‖0 = 0.5,
D‖n = D‖v‖e = D‖v‖i = D⊥n = D⊥Ω = D⊥v‖e = D⊥v‖i = D⊥T‖e = D⊥T‖i = 7.0.

Aiming at a further demonstration of convergence, we obtain a global error measurement

by computing the l2 norm corresponding to the relative error E(r ) in Eq. (2.74) for the same

pairs of plasma and neutral grid resolution values considered in Fig. (2.1). We evaluate the l2

norm for the whole domain and then excluding the area around the LCFS where the peaking

is observed, which is given by [xLC F S −1.5ρs0, xLC F S +1.5ρs0]. These results are presented in

Tab. 2.1, which shows clear convergence for the restricted domain. Therefore, provided the

numerical peaking effect is removed, the l2 norm highlights the convergence, thus reinforcing

the conclusions driven from Fig. (2.1).

2.4 Simulation Results

In this section, we present and discuss the results of the first simulations obtained from the

mass-conserving GBS model described in Section 2.2. We start by underlining the differences

with respect to the non-mass-conserving model previously implemented in GBS. A parameter

scan on the plasma density is the performed to understand the influence on the plasma

density on the mechanisms underlying the neutral-plasma interaction. All results presented in

this section refer to time averages over an interval of ∆t = 10.0R0/cs0, during the quasi-steady

state period of the simulations.
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Plasma resolution (nxp ) Neutral resolution (nxn) l2 (WD) l2 (RD)

64 10 6.7 ×10−2 6.0×10−2

128 18 4.0×10−2 9.5×10−3

256 36 3.8×10−2 4.0×10−3

Table 2.1: Values of the l2 norm for the relative error E (r ) in Eq. (2.74) for different plasma and
neutral grid radial resolution (same pairs of values used in Fig. (2.1), considering the whole
simulation domain (WD) and for a restricted domain (RD), which excludes the points located
in the region around the LCFS where numerical peaking is observed, [xLC F S −1.5ρs0, xLC F S +
1.5ρs0].

2.4.1 Differences between conserving and non-conserving models

To evaluate the impact of mass conservation on the simulations, we compare the mass-

conserving model described in the present chapter and the model previously implemented

in GBS (described in Ref. [34]). Aiming at disentangling the contributions from each of the

modifications implemented in the plasma and the neutral models, we perform a comparison

with a hybrid model, which considers a mass-conserving model for the neutrals, but makes

use of the previously implemented model for the plasma, featuring inconsistent geometry, the

Boussinesq approximation and the k‖/k⊥ ¿ 1 and k⊥R0 À 1 orderings. For the analysis, we

integrate the plasma and neutral quantities over the flux surfaces, which enables the study of

the plasma and neutral radial profiles. The plasma and neutral densities are presented in Fig.

2.2, for all three models.

Mass conservation is found to have a significant impact on the simulation results. The mass-

conserving simulation shows a considerably higher SOL neutral density that drops significantly

in the edge, an effect which is also observed in the hybrid simulations, where the neutrals are

described by a mass-conserving model. Therefore, the changes in the neutral density profile

arise essentially from the corrections within the neutral model, more precisely from the proper

geometric factor, R(x′
p)/R(xp), included in Eq. (2.51). In addition, in the mass-conserving

model, the plasma density drop from the closed to the open field-line region is more significant

with respect to the one observed in the non-conserving model, while the hybrid model leads

to a result that lies somewhere in between. We thus conclude that the changes in the density

profile are partly a result of the geometrical corrections within the improved plasma model,

mostly thanks to the fact that the radial variation of the inverse aspect ratio ε(r ) = r /R0 is now

consistently taken into account, but are also partly related to the neutral model corrections.

In fact, the modifications in the neutral dynamics also impact the ionization source profiles,

which in turn has a decisive influence on the plasma density and ion flux profiles.

We now turn to the analysis of the radial particle fluxes, so as to investigate the mechanisms

underlying the changes in the plasma and neutral profiles observed in the mass-conserving

model with respect to the one previously implemented in GBS. The radial profiles of the
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Chapter 2. The mass-conserving GBS model of plasma turbulence and kinetic neutrals

Figure 2.2: Comparison of the radial profiles of plasma density for a non-mass-conserving
model, a hybrid version of GBS with conservation properties for the neutrals but not for
the plasma and a mass-conserving model, averaged over an interval ∆t = 10.0R0/cs0 from
the quasi-steady state period of the simulations. The same parameters considered for the
simulations presented in Fig. 2.1 are used, with the plasma and neutral grid sizes (nx,p ×ny,p ×
nz,p ) = (255×511×64) and (nx,n ×ny,n ×nz,n) = (24×360×64).

radial ion and neutral fluxes are presented in Fig. 2.3, where the contributions from E×
B, diamagnetic, and polarization drift fluxes contributing to the overall ion flux are also

discriminated. In the mass-conserving simulations, the ion and neutral fluxes are opposite

to each other to a good approximation. Hence, the divergence of the ion and neutral fluxes

approximately balance each other, apart from small diffusive terms (see Eq. (2.72)). However,

this is not the case for the non-conserving model, where the inward-pointing neutral flux

remains about constant in the edge and decreases smoothly across the SOL to vanish at

the wall, while the outward-pointing ion flux exhibits a rather steep profile, growing sharply

from the core to the LCFS and decreasing towards the wall. Regarding the hybrid model,

which considers the improvements of the neutral model but not those relative to the plasma,

the neutral flux profile is quite similar to the one found for the improved mass-conserving

model, since there are no differences in the neutral computation. On the other hand, the

combination of the previously implemented non-conserving model for the plasma with the

mass-conserving neutral model produces unreliable results for the ion fluxes, especially when

close to the edge-core interface.

We further note that the non-conserving model exhibits a relatively large inward-pointing

diamagnetic drift flux in the edge and near SOL, which reverses sign in the far SOL. On the

other hand, in the mass-conserving model, the diamagnetic flux in Fig. 2.3 is considerably

less important and points radially outwards, except in the vicinity of the LCFS. While the

polarization drift flux plays a certain role in the near SOL in the non-conserving simulation, it

becomes negligible in the whole domain in the mass-conserving simulation. We also highlight

34



2.4. Simulation Results

Figure 2.3: Comparison of the radial profiles of radial neutral and ion fluxes for a non-mass-
conserving model (top panel), a hybrid version of GBS with conservation properties for the
neutrals but not for the plasma (middle panel) and a mass-conserving model (bottom panel),
discriminating the contributions of E×B, diamagnetic and polarization drifts, averaged over
an interval ∆t = 10.0R0/cs0 from the quasi-steady state period, using the same grid sizes and
parameters considered for the simulations presented in Fig. 2.2.

that our results differ from the conclusions reported in Ref. [37], where the absence of neutrals

imposes ∇·Γi = 0 in a steady state, thus forcing a balance between the E ×B drift flux and

the diamagnetic component of the flux. In the simulation results reported in this chapter,

the E ×B drift flux is instead balanced by the neutral particle flux, while the diamagnetic

contribution is negligible with respect to the E ×B flux component.

As a final remark on the impact of the corrections in the boundary conditions for the neutral

calculation, we discuss the relevance of the matching between the flux of ions outflowing

to the limiter, [Γi]θ
∗

lim, described in Eq. (2.62), and the flux of recycled neutrals flowing back

to the plasma, [Γn]θ
∗

lim. Aiming at this, we consider the same interval ∆t = 10.0R0/cs0 from

the quasi-steady state period used in Figs. 2.2 and 2.3 and we compute the averaged ion

and neutral fluxes by integrating along the limiter plates. We then evaluate the relative error,

normalized to the total ion flux, i.e.
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Elim(r ) =
[Γi]θ

∗
lim,tot − [Γn]θ

∗
lim,tot

[Γi]θ
∗

lim,tot

, (2.75)

with

[Γi]
θ∗
lim,tot =

∫
lim

Jdϕdr |[Γi]
θ∗
lim|, (2.76)

[Γn]θ
∗

lim,tot =
∫

lim
Jdϕdr |[Γn]θ

∗
lim|. (2.77)

The procedure is applied to both sides of the limiter, with Elim(r ) = 28.3% at the lower plate for

the non-conserving boundary conditions and Elim(r ) = 9.6% for the mas-conserving model,

while the upper plate yields Elim(r ) = 7.2% for the non-conserving model and Elim(r ) = 2.5%

for the simulation considering improved boundary conditions. These values highlight that

mass-conserving recycling at the limiter becomes more accurate by a factor of three when the

E ×B and diamagnetic drift flux components are included in the expression of the ion flux in

the boundary conditions for the neutral model.

2.4.2 A conserving model for the plasma

In this subsection we analyse the results obtained from simulations that consider different val-

ues of plasma density, which are obtained by varying the normalization density n0. Increasing

n0 makes the reaction rates for ionization, charge-exchange and electron-neutral collisions

larger, which affects the plasma and neutral profiles, as shown in Fig. 2.4. In order to isolate

the role of the neutrals, all simulations consider the same plasma resistivity ν, as well as the

other simulation parameters.

We first consider the lowest density n0 = 5.0×1012cm−3 case (see Fig. 2.4). The neutral density

nn peaks in the SOL close to the limiter plates, where the plasma is recycled, and remains

almost constant in the closed field-line region, given the weak interaction of the neutrals with

the plasma (an important fraction of neutrals penetrate into the core with no interaction with

the plasma in the edge and SOL regions). In fact, because of the higher plasma temperature

in the closed field-line region, the ionization source nnνiz peaks in the vicinity of the limiter,

keeping a fairly constant value in the closed-flux surface region on the HFS. The analysis of

the cross section profile of charge-exchange, nnνcx, leads to similar conclusions.

Regarding the intermediate density case, n0 = 2.0×1013cm−3, it is remarked that ionization is

predominantly localized near the LCFS, the neutrals penetrating considerably less into the

core with respect to the n0 = 5.0×1012cm−3 case. The spatial distribution of charge-exchange

is also characterized by a pronounced peak at the LCFS and a sharp decrease towards the
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Figure 2.4: Cross sections of plasma density n (first row), neutral density nn (second row), ion-
ization source nnνiz (third row) and charge-exchange nnνcx (fourth row) for a mass-conserving
model, considering a time range of ∆t = 10.0R0/cs0 during the simulation quasi-steady
state period, for three different normalization densities: n0 = 5.0×1012cm−3 (left column),
n0 = 2.0×1013cm−3 (center column), and n0 = 4.0×1013cm−3 (right column). Grid sizes and
all other simulation parameters are the same as the ones used for the simulations presented
in Fig. 2.2.

edge-core interface. Due to the weaker penetration of the neutrals into the core and the strong

ionization in the closed field-line region, a significant drop in the neutral density between the

SOL and the edge-core interface is found. Analogously, since most of the ionizations occur

near the LCFS, a significant plasma density source is present in the edge near the limiter,

resulting in a smooth variation of n in the closed field-line region on the HFS.

Regarding the largest density considered in our scan, n0 = 4.0×1013cm−3, the simulation

results exhibit a strong concentration of the ionization and charge-exchange interactions in
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Figure 2.5: Radial plot of the time, toroidally and poloidally averaged density of plasma (top
panel) and neutrals (bottom panel) within a mass-conserving model, considering a time
range of ∆t = 10.0R0/cs0 during the quasi-steady state period, for three different values of the
normalization density: n0 = 5.0×1012cm−3 (green line), n0 = 2.0×1013cm−3 (red line) and
n0 = 4.0×1013cm−3 (blue line). Grid sizes and all other simulation parameters are the same as
the ones used for the simulations presented in Fig. 2.2.

the proximity of the LCFS, with an extremely weak penetration of neutrals across the edge.

Thus, neutral density drop between the SOL and edge regions is further enhanced, while the

plasma density peaks in the closed field-line region close to the limiter.

A more quantitative comparison of the radial profiles of n and nn is presented in Fig. 2.5. We

remark that, while small values of n0 flatten the nn profile in the edge and SOL regions, the

variation of n0 has a weak influence on the radial profile of n (keeping all other parameters

constant. In fact, the variation of ν, which is ultimately related to density, strongly influences

the plasma profile, as discussed in Ref. [76]).

On the other hand, density has a pronounced impact on the radial particle fluxes. As presented

in Fig. 2.6, at low density, the flux of neutrals increases radially in the SOL region, from the

wall to the LCFS, due to the increasing number of neutrals recycled into the plasma. Then, the

neutral flux Γn remains roughly constant in the edge region, since few neutrals are ionized on

their way to the core. As expected, the ion flux is approximately opposite to the neutral flux,

with the dominant contribution arising from the E×B drift, both in the edge and SOL regions,

and considerably smaller contributions from the diamagnetic and polarization drift fluxes. In

addition, a strong radial decrease of the neutral flux is observed from the LCFS to the edge-core

interface at high density, as most neutrals are ionized within the edge close to the LCFS. As

imposed by mass conservation, the ion flux is opposite to the neutral flux also in this case.

In fact, at high density, the ion flux increases radially, from the core to the LCFS. The reason

behind the radial increase of the ion flux is the fact that, at high densities, a large number of
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neutrals are ionized in the edge region, thus generating the ions that contribute to increase the

flux from the core to the LCFS. Beyond the LCFS, the ion flux decreases gradually, as the ions

flow to the limiter plates where they are recycled. Nonetheless, the relative contributions to the

ion flux do not change, as the flux profile is mostly determined by the E×B drift contribution

in the whole simulation domain.

Figure 2.6: Time, toroidally and poloidally averaged radial fluxes of neutrals and ions, discrimi-
nating the contributions of E×B, diamagnetic and polarization drifts, for a mass-conserving
model, considering an average over a time interval ∆t = 10.0R0/cs0 during the quasi-steady
state period, for three different values of the normalization density: n0 = 5.0×1012cm−3 (top
panel), n0 = 2.0×1013cm−3 (middle panel), and n0 = 4.0×1013cm−3 (bottom panel). Grid
sizes and all other simulation parameters are the same as the ones used for the simulations
presented in Fig. 2.2.

2.5 Conclusion

In this chapter, a mass-conserving model to leading order in ρs0/R0 for the study of the neutral-

plasma interaction in the tokamak boundary is presented. The numerical implementation of

this model in the GBS code is described in detail and the first simulation results are shown

and discussed.

The model relies on the drift-reduced two-fluid Braginskii equations for the description of

plasma turbulence and addresses the dynamics of neutral atoms by solving the neutral kinetic

equation, using the method of characteristics and discretizing the resulting formal solution. In

order to ensure mass conservation, ions and neutrals considered as a whole, proper boundary

conditions are implemented at the walls, thus accounting for mass-conserving recycling,

and toroidal geometry is consistently accounted for. More precisely, we consider the radial
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variation of the inverse aspect ratio ε= a0/R0 throughout the code, we avoid the orderings

k‖/k⊥ ¿ 1 and k⊥R0 À 1 in Eqs. (2.1-2.6), and we consistently take into account toroidicity

effects in the neutral calculations. We remark that the changes implemented in GBS also

ensure that the model conserves energy apart from terms (such as collisional heat exchange

and ohmic heating) missing in the temperature equations, which should nevertheless be

negligible in the edge and SOL conditions considered in this work (collisional heat exchange

and ohmic heating), the presence of boundaries, the energy losses due to the ionization and

recombination interactions and the use of the k‖/k⊥ ¿ 1 ordering in the Poisson equation.

We highlight that a proof of the energy conservation law for the drift-reduced Braginskii model

is reported in Ref. [48].

The mass-conserving model is implemented in the GBS code and convergence tests lead to the

conclusion that mass conservation is satisfied. The comparison with the non-mass-conserving

previously implemented model highlights the significant role played by mass conservation on

the simulation results. In fact, when the mass-conserving model described in this chapter is

taken into account, plasma and neutral quantities exhibit a larger drop across the LCFS and

more pronounced differences are found between the SOL and edge regions.

The analysis of the simulation results reveal that the ion particle flux is mostly determined

by the E ×B drift and balances the neutral flux, as expected. A set of simulations performed

by varying the plasma density n0, while keeping ν and other parameters constant, show

that higher densities lead to weaker neutral penetration across the edge, as ionization and

charge-exchange peak closer to the LCFS. As a consequence, high density simulations exhibit

a stronger neutral density drop from the SOL towards the edge-core interface. In addition, the

density scan highlights the impact of density on the radial particle fluxes, as the weaker neutral

penetration associated with higher densities leads to a stronger drop of the neutral flux across

the closed field-line region, from the LCFS to the edge-core interface. The ion flux points

opposite to the neutral flux, as imposed by mass conservation, and is mostly determined by

the E ×B component over the entire domain and for all densities considered.

We highlight that the mass-conserving model presented in this chapter is implemented for

the study of limited tokamak configurations. The implementation of mass conservation in

diverted configurations [35, 60] can be performed by following the steps described in the

present chapter.
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3 A multi-component model of plasma
turbulence and kinetic neutral dy-
namics

In this chapter, we describe a self-consistent model for the simulation of a multi-component

deuterium plasma in the tokamak boundary. The plasma dynamics are described by means

of a set of drift-reduced Braginskii equations for each species, which include electrons, deu-

terium atomic ions and deuterium molecular ions. On the other hand, deuterium atoms

and molecules are addressed by considering a kinetic advection equation for each neutral

species, which are solved by using the method of characteristics. The models describing the

plasma and neutral species are coupled through a set of collisional interactions, which include

dissociation, ionization, charge-exchange and recombination processes. In this chapter, the

derivation of the plasma and neutral models is presented in detail, including its boundary

conditions, and their numerical implementation is discussed. The results of the first GBS

simulations of a multi-component plasma are also shown and analyzed with respect to results

from the single-component plasma model discussed in Ch. 2. We highlight that the content of

the present chapter is submitted for publication to Nuclear Fusion [77].
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3.1 Introduction

The plasma boundary of tokamak devices is characterized by the presence of several ion and

neutral species, interacting through a complex set of collisional reactions [78, 12]. For instance,

not only neutral atoms, but also molecules play a relevant role in the plasma dynamics at

the boundary. Molecules are generated by processes such as the plasma recycling at the

vessel walls and gas puffing. In fact, ions and electrons, which flow along the magnetic-field

lines or across them due to turbulent transport, eventually end at the vessel walls, where

they recombine and re-enter the plasma as neutral particles. These neutrals can keep the

energy of the incoming ion, which effectively undergoes a reflection process, or they can

be emitted at the wall temperature, following the absorption of the incoming ion. In the

later case, a significant fraction of the atoms associate to form molecules, which are then

reemitted back to the plasma [79]. The exact probability of a reflection process, as well as

the probability that atoms associate into molecules, depend on the physical properties of the

material constituting the limiter or divertor plates [24]. Moreover, neutral molecules can be

externally injected to fuel the plasma, reduce the heat flux to the vessel wall (by decreasing

the plasma temperature and hence enhancing volumetric recombination), or for diagnostic

purposes, providing indirect measurements of the plasma quantities.

Neutral atoms and molecules are ionized, leading to atomic and molecular ions, thus gener-

ating a multi-component plasma. Molecules and molecular ions also undergo dissociative

processes, through which they are split into mono-atomic species. Recombination, charge-

exchange, elastic and inelastic collisions also come into play. All these collisional reactions

transform neutral particles into ions and electrons and vice versa, change the temperature of

the plasma species due to the energy required to trigger ionization and dissociation processes

and also impact the velocity of the plasma species. As a consequence, due to the plasma

dynamics in the boundary being strongly influenced by the interactions with neutrals, sim-

ulations of the tokamak plasma boundary should account for its multi-component nature

and consider the multiple collisional interactions, in order to enable reliable quantitative

predictions.

Multi-component plasmas are typically described by a fluid-diffusive model, usually sim-

plifying the Braginskii equations for the plasma species by modelling cross-field transport

through empirical anomalous transport coefficients. This approach is followed by the B2

[18, 19], EDGE2D [20], EMC3 [80], SOLEDGE-2D [21] and TECXY [22] codes. Neutral particle

species can also be described by means of a diffusive fluid approach [81], e.g. in the UEDGE

code [23]. However, the validity of diffusive models is limited to small values of the neutral

mean free path, λmfp,n. Hence, these models can not be applied when λmfp,n is of the order

of the plasma gradient scale length, which is often the case in the tokamak boundary. This

leads to neutrals being more commonly modelled by means of a kinetic description valid for

all ranges of mean free path. These models, which usually rely on Monte Carlo methods, are

implemented in the DEGAS2 [24], EIRENE [25], GTNEUT [26] and NEUT2D [27] codes. In

fact, research on heat exhaust typically requires integrated neutral-plasma simulations of the

42



3.1. Introduction

tokamak boundary, which often couple above mentioned fluid-diffusive multi-component

plasma models and Monte Carlo-based models for the neutral species, e.g. B2-EIRENE [25],

EDGE2D-EIRENE [82], EMC3-EIRENE [28] and SOLPS [29]).

Aiming at shedding light on cross-field transport processes, plasma turbulence simulations in

the tokamak boundary based on fluid and gyrofluid [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]

and kinetic codes [41, 42, 43] have made possible significant progress in the comprehension

of the underlying mechanisms of turbulence and cross-field transport in a single-ion species

boundary plasma. On the other hand, multi-component plasma simulations including turbu-

lent transport are still in their very beginning. Progress was achieved thanks to the coupling of

the SOLEDGE2D [83] and TOKAM3X [40] codes. The resulting SOLEDGE3X code now enables

multi-component plasma simulations, addressing the neutral species by means of the EIRENE

Monte Carlo code. The investigations undertaken with SOLEDGE3X focused on the study

of carbon impurities in the tokamak boundary [66]. Progress was also achieved by coupling

the two-dimensional fluid code HESEL [39] with a one-dimensional fluid-diffusive model for

the neutral particles, including both atoms and molecules. The resulting nHESEL [45, 39, 46]

code thus enables the simulation of a single-ion plasma, featuring the interactions with three

neutral species: cold hydrogen molecules puffed into the system, warm atoms resulting from

the dissociation of the hydrogen molecules and hot hydrogen atoms generated by charge-

exchange processes. This model was used to describe fueling in the presence of gas puffs, as

well as the formation of a density shoulder in the tokamak boundary at a high gas puffing rate.

In the present chapter, we describe the development and numerical implementation in the

GBS code of a multi-component model, addressing the multi-species plasma dynamics by

means of a set of fluid drift-reduced Braginskii equations while describing the neutrals by

solving a kinetic advection equation for each species. This chapter generalizes the implemen-

tation of the interaction between the neutrals and the plasma in GBS first described in Ref. [61]

for single-ion species plasmas, which was later improved in order to verify mass-conservation,

as described in Ch. 2. While the methodology presented in this chapter can be extended to

include an arbitrary number of particle species and the corresponding more complex scenar-

ios, we consider a deuterium plasma, featuring five different species: three charged particle

species, namely electrons (e−), monoatomic deuterium ions (D+) and diatomic deuterium

ions (D+
2 ), and two neutral species, including deuterium atoms (D) and molecules (D2). We

highlight that D− and D+
3 ions, neglected here, may also be important in detachment condi-

tions, as they play an important role in molecular assisted recombination (MAR) processes,

such as dissociative recombination, dissociated attachment and by mutual neutralization

[81, 84, 85].

The model described in this chapter represents the first implementation of a kinetic multi-

species model that avoids the statistical noise from the Monte Carlo method. As a matter of

fact, the neutral kinetic advection equations, valid for any values of the mean free path of

neutral species, are solved by using the method of characteristics and integrating the formal

solution in the velocity space. The resulting system of coupled integral equations for the

43



Chapter 3. A multi-component model of plasma turbulence and kinetic neutral dynamics

density of neutral species is discretized, enabling for the density of neutral particles to be

found. The model has the potential to provide the fundamental elements required for the

description and understanding of the mechanisms taking place in the boundary, including

the fueling and gas puff imaging, where molecular dynamics plays an important role.

The results of the first simulation based on the multi-component GBS model are described in

the present chapter, shedding light on the processes related to plasma fueling. More precisely,

still considering the limited configuration and plasma parameters between the sheath-limited

and high recycling regimes, we show that molecular dissociation has an impact on the space

distribution of ionization and the plasma profiles, compared to single-component simulations.

The present chapter is organized as follows. After the Introduction, the collisional processes at

play in the multi-component deuterium plasma model implemented in GBS are presented

in Sec. 3.2. The drift-reduced Braginskii equations describing a multi-component plasma

are derived, in Sec. 3.3, extending the approach followed in the single-component version of

GBS described in Ch. 2. In Sec. 3.4, the multi-component boundary conditions applied at

the tokamak wall are introduced. The kinetic model for the neutral species is presented in

Sec. 3.5, which also describes the numerical implementation of the model, a generalization

of the approach initially developed in Ref. [61] and then improved as described in Sec. 2.2.2

for a single neutral species model. Finally, we present in Sec. 3.6 the results of the first multi-

component plasma GBS simulations, discussing the effect of the molecules on the plasma

dynamics, with respect to the results from the single-ion species plasma simulations presented

in Ch. 2. The summary follows, in Sec. 3.7.

3.2 Collisional processes in multi-component deuterium plasmas

The model presented in this chapter aims at describing a multi-component deuterium plasma.

Analogously to Refs. [81], [86] and [87], we consider a plasma featuring the e, D+ and D+
2

species and we consider the D and D2 neutral species. D2 molecules are generated by the

association of atoms at the vessel walls and by external injection. A fraction of D2 molecules

are ionized, thus generating D+
2 ions, while dissociative processes give rise to mono-atomic

ions, D+, and neutrals, D, which are also ionized, leading to D+. We highlight that the resulting

five-species model differs from the three-species model used in the previous GBS simulations

of a single-ion species plasma [61] considered in Ch. 2, where only mono-atomic deuterium

ions and neutrals are evolved. We remark that, by introducing the tools required to describe

the fundamental processes at play in multi-component plasmas, the model presented in this

chapter can be extended to account for more complex scenarios, featuring several plasma and

neutral species.

The plasma and neutral species are coupled by a number of collisional processes, which

include ionization, recombination, charge-exchange, dissociation, and elastic collisions be-

tween electrons and neutrals. These processes appear in the models describing the neutral

and plasma as sources and sinks of particles and heat, as well as friction terms. Table 3.1 lists
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3.2. Collisional processes in multi-component deuterium plasmas

the collisional processes considered in our multi-component model, as well as their respective

reaction rates.

We remark that ve, vD+ and vD+
2

denote the modulus of the electron, D+ and D+
2 velocities

respectively, while their densities are represented by ne, nD+ and nD+
2

. On the other hand, σiz,D

and σiz,D2 are the cross sections of the ionization of D and D2 respectively, σrec,D+ and σrec,D+
2

denote the cross sections for recombination of D+ and D+
2 with electrons, σe-D and σe-D2

refer to the cross sections of elastic collisions between electrons and D and D2 respectively,

σdiss,D2
and σdiss,D+

2
represent the dissociation cross sections of D2 and D+

2 , σdiss-iz,D2
and

σdiss-iz,D+
2

are the cross sections for dissociative ionization of D2 and D+
2 , σdiss-rec,D+

2
denotes

the cross section of dissociative recombination of D+
2 ions and, finally, σcx,D+ , σcx,D+

2
, σcx,D-D+

2

and σcx,D2−D+ are the cross sections for D−D+, D2−D+
2 , D−D+

2 and D2−D+ charge-exchange

interactions. In the present work, the distinction between fundamental and excited states

for atoms, molecules and ions is neglected. As a matter of fact, we use the total cross section

for each process considering the sum over the accessible electronic states of the reactants

and products, following Refs. [84] and [85]. By applying momentum and energy conservation

considerations, we compute the velocity and energy of the collision products, too. Since these

also depend on the electronic states of the reactants and products, we average over the states

relevant to a given reaction, taking into account the cross section of each state. The derivation

of these values is detailed in App. B.

By considering Krook collision operators, the collision rates for ionization, recombination,

elastic collisions and dissociative processes are computed as the average over the electron

velocity distribution function, thus neglecting the velocity of the massive particle involved in

the collision (D, D2, D+ or D+
2 ) when computing the relative velocity between the electron and

the other particle. As a matter of fact, electrons have considerably larger thermal velocity than

ions or neutrals. As for charge-exchange processes between D+ ions and the neutral species D

and D2, given the weak dependence of the cross section on the ion-neutral relative velocity

[12], we neglect the neutral particle velocity (D or D2) when evaluating the relative velocity

of the colliding particles (the velocity of a neutral particle is usually smaller than the ion

velocity). Therefore, the reaction rates σcx,D+ and σcx,D2−D+ are computed by averaging over

the distribution function of the D+ species, which we assume to be described by a Maxwellian

with temperature TD+ . We follow the same approach when computing the cross section of

charge-exchange interactions between D+
2 ions and the D2 and D neutrals, by averaging the

cross sectionsσcx,D+
2

andσcx,D−D+
2

over the D+
2 velocity distribution function, which we assume

to be a Maxwellian of temperature TD+
2

.

The 〈vσ〉 products for most of the reactions considered in Table 3.1 are obtained from the

AMJUEL [84] and HYDEL [85] databases (precise references for each cross section listed in

Table 1 of Ref. [87]). We remark that, although these databases present the cross sections for

hydrogen plasmas, we assume in this chapter that they apply also to deuterium. We highlight

that the cross section for the e−−D elastic collisions is obtained from Ref. [88] (page 40, Table

2), while the e−−D2 elastic collision cross section is computed from Ref. [89] (page 917, Table
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Table 3.1: Collisional processes considered and their respective reaction rates.

Collisional process Equation Reaction Frequency

Ionization of D e−+D → 2e−+D+ νiz,D = ne
〈

veσiz,D(ve)
〉

Recombination of D+ and e− e−+D+ → D νrec,D+ = ne
〈

veσrec,D+(ve)
〉

e−−D elastic collisions e−+D → e−+D νe-D = ne 〈veσe-D(ve)〉
Ionization of D2 e−+D2 → 2e−+D+

2 νiz,D2 = ne
〈

veσiz,D2 (ve)
〉

Recombination of D+
2 and e− e−+D+

2 → D2 νrec,D+
2
= ne

〈
veσrec,D+

2
(ve)

〉
e−−D2 elastic collisions e−+D2 → e−+D2 νe-D2 = ne

〈
veσe-D2 (ve)

〉
Dissociation of D2 e−+D2 → e−+D+D νdiss,D2

= ne
〈

veσdiss,D2
(ve)

〉
Dissociative ionization of D2 e−+D2 → 2e−+D+D+ νdiss-iz,D2

= ne
〈

veσdiss-iz,D2
(ve)

〉
Dissociation of D+

2 e−+D+
2 → e−+D+D+ νdiss,D+

2
= ne

〈
veσdiss,D+

2
(ve)

〉
Dissociative ionization of D+

2 e−+D+
2 → 2e−+2D+ νdiss-iz,D+

2
= ne

〈
veσdiss-iz,D+

2
(ve)

〉
Dissociative recombination of D+

2 e−+D+
2 → 2D νdiss-rec,D+

2
= ne

〈
veσdiss-rec,D+

2
(ve)

〉
Charge-exchange of D+,D D++D → D+D+ νcx,D = nD+

〈
vD+σcx,D+(vD+)

〉
Charge-exchange of D+

2 ,D2 D+
2 +D2 → D2 +D+

2 νcx,D2 = nD+
2

〈
vD+

2
σcx,D+

2
(vD+

2
)
〉

Charge-exchange of D+
2 ,D D+

2 +D → D2 +D+ νcx,D-D+
2
= nD+

2

〈
vD+

2
σcx,D-D+

2
(vD+

2
)
〉

Charge-exchange of D2,D+ D2 +D+ → D+
2 +D νcx,D2−D+ = nD+

〈
vD+σcx,D2−D+(vD+)

〉

13). The cross section for the D2 −D+
2 charge-exchange reaction is in turn taken from the

HYDEL database (H.4, reaction 4.3.1), while the cross sections from the ALADDIN database

[90] (obtained from Refs. [91, 92]) are used for the D−D+
2 charge-exchange interaction. For all

the other reactions, the cross sections from the AMJUEL database [84] are considered. The

〈vσ〉 product for the collisional processes considered in this chapter is plotted as a function of

the temperature of the colliding particle in Fig. 3.1.

We henceforth focus on the computation of the velocity and energy of their products. For

charge-exchange interactions following the general form A+B+ → A++B , we assume that,

while A and B+ exchange an electron, their velocities are not affected and energy is con-

served. As a result, the A+ ion is released from the charge-exchange collision with the velocity

of A, and B is released with the velocity of B+. For the e− +D → e− +D elastic collisions,

because of the large electron to deuterium mass ratio, we consider that the D velocity is

not impacted by the collision, while the electron is emitted isotropically in the reference

frame of the massive particle following a Maxwellian distribution function, Φe[vD,Te,e-D] =[
me/(2πTe,e-D)

]3/2 exp
[−me(v−vD)2/(2Te,e-D)

]
, which is centered at the velocity of the in-

coming D particle, vD = ∫
v fDdv/

∫
fDdv. The temperature Te,e-D is, in turn, established by

energy conservation considerations. More precisely, we observe that the average energy of

the incoming electrons consists of the sum of the kinetic energy associated with the fluid

velocity, ve, and the thermal contribution, (3/2)Te. On the other hand, the energy of the

outcoming electrons has a contribution arising from the collective velocity of the re-emitted

particles, vD, and a thermal contribution, Te,e-D. It follows that Te,e-D verifies the balance
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3.2. Collisional processes in multi-component deuterium plasmas

Figure 3.1: 〈vσ〉 product for the collisional processes considered in this chapter. Ionization
processes, elastic collisions and charge-exchange processes are displayed on the top panel,
dissociative reactions on the bottom panel. The 〈vσ〉 product is plotted as a function of the
temperature of the colliding particle.

described by 3Te/2+mev2
e /2 = Te,e-D +mev2

D/2. The elastic collisions between electrons and

D2 are then described in a similar way. The re-emitted electrons have a distribution of veloc-

ities Φe
[
vD2 ,Te,e-D2

], with Te,e-D2 obtained from an analogous conservation law, expressed as

3Te/2+mev2
e /2 = Te,e-D2 +mev2

D2
/2.

Considering the electrons generated by ionization of D, we assume that they are described

by the Maxwellian distribution Φe[vD,Te,iz(D)] centered at the fluid velocity of the D atom vD,

with Te,iz(D) accounting for the ionization energy loss, 〈Eiz〉, its value being presented in

Table 3.2. More precisely, Te,iz(D) satisfies the energy conservation law, 3Te/2+mev2
e /2 =

2
[
Te,iz(D) +mev2

D/2
]+〈

Eiz,D
〉

, since the reaction gives rise to two electrons with the same prop-

erties. A similar approach is followed for the ionization of D2, with the two emitted electrons

being described by a MaxwellianΦe
[
vD2 ,Te,iz(D)2

] centered at the velocity of the D2 molecules,

vD2 , and with temperature Te,iz(D)2 obtained from 3Te/2+mev2
e /2 = 2

[
Te,iz(D2) +mev2

D2
/2

]
+〈

Eiz,D2

〉
, with

〈
Eiz,D2

〉
the average energy loss due to ionization of D2 (see Table 3.2). We high-

light that we neglect multi-step ionization processes when we compute the cross section for

ionization of D and D2, adopting the same procedure for all the other reactions induced by

impacting electrons, such as the dissociative processes.
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We also apply the same procedure used for ionization processes to describe the proper-

ties of the electrons generated by dissociative processes. The electron created by dissoci-

ation of D2 is described by the Maxwellian Φe
[
vD2 ,Te,diss(D)2

] centered around vD2 and with

temperature Te,diss(D)2 obtained from 3Te/2+mev2
e /2 = Te,diss(D2) +mev2

D2
/2+〈

Ediss,D2

〉
. Re-

garding dissociation of D+
2 , the resulting electron is analogously modelled by a Maxwellian

Φ
e
[
v+

D2
,Te,diss(D)+2

] centered at the velocity of the D+
2 ion and with temperature Te,diss(D)+2 given

by the corresponding energy conservation law expressed as 3Te/2+mev2
e /2 = Te,diss(D+

2 ) +
mev2

D+
2

/2+
〈

Ediss,D+
2

〉
. On the other hand, dissociative ionization of D2 gives rise to two elec-

trons, their Maxwellian distribution function, Φe
[
vD2 ,Te,diss-iz(D)2

], being centered around the D2

velocity, vD2 , and characterized by a temperature Te,diss-iz(D2), obtained from 3Te/2+mev2
e /2 =

2
[

Te,diss-iz(D2) +mev2
D2

/2
]
+〈

Ediss-iz,D2

〉
. Similarly, we assume that the electrons generated by

dissociative ionization of D+
2 aredescribed by a MaxwellianΦ

e
[
vD+

2
,Te,diss-iz(D)+2

] centered at vD+
2

and with temperature Te,diss-iz(D+
2 ) obtained from energy conservation, 3Te/2 + mev2

e /2 =
2
[

Te,diss-iz(D+
2 ) +mev2

D+
2

/2
]
+

〈
Ediss-iz,D+

2

〉
.

The evaluation of the temperature of the D atoms and D+ ions released from dissociative

reactions is based on the modelling of these reactions as Franck-Condon dissociation pro-

cesses. These temperatures are summarized in Table 3.2 and rely on data from Ref. [85]. The

calculations are detailed in the App. B. We highlight that the values for the average electron

energy loss due to dissociative processes take into account the energy lost by an electron

when exciting the D2 molecule or D2 molecular ion before dissociation takes place. This

contrasts with other work (see e.g. Ref. [46]) where the energy inherent to the dissociation

process is taken into account. Our approach is justified by the fact that the effective electron

energy loss associated with a given dissociative process accounts for the energy required to

excite the molecule, which, in turn, comprises the energy cost of dissociation, the kinetic

energy of the products and the radiation emitted due to deexcitation of the products. We also

highlight that these particles are emitted isotropically in the frame of the centre of mass of

the incoming D2 or D+
2 particle. Thus, we assume that the D atoms generated by dissociation

of D2 molecules, for example, follow a Maxwellian distributionΦD
[
vD2 ,TD,diss(D2)

]. Similarly, we

describe the neutral D atoms and D+ ions produced by dissociative-ionization of D2 molecules

by the Maxwellian distributionsΦ
D

[
vD2 ,TD,diss-iz(D2)

] andΦ
D+

[
vD2 ,TD,diss-iz(D2)

] respectively, with the

temperature TD,diss-iz(D2) listed in Table 3.2 and evaluated in App. B. In turn,Φ
D

[
vD+

2
,TD,diss(D+

2 )
]

andΦ
D+

[
vD+

2
,TD,diss(D+

2 )
] are the Maxwellian distributions of D atoms and D+ ions generated by

dissociation of D+
2 ions, where vD+

2
denotes the fluid velocity of the D+

2 ion population that

includes the leading order components (see Sec. 3.3). Moreover, dissociative-ionization of

D+
2 gives rise to D+ ions that are described by a Maxwellian distribution Φ

D+
[
vD+

2
,TD,diss-iz(D+

2 )
].

Finally, we remark that the D atoms and D+ generated by dissociative-recombination of

D+
2 are described by the Maxwellian distributionsΦ

D
[
vD+

2
,TD,diss-rec(D+

2 )
] andΦ

D+
[
vD+

2
,TD,diss-rec(D+

2 )
]

respectively, with TD,diss-rec(D+
2 ) denoting the average thermal energy of the reaction products.
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Table 3.2: Average electron energy loss and average energy of reaction products for the ioniza-
tion and dissociative processes included in the model.

Collisional process e− Energy loss Temperature of products

Ionization of D
〈

Eiz,D
〉= 13.60eV —————————

Ionization of D2
〈

Eiz,D2

〉= 15.43eV —————————
Dissociation of D2

〈
Ediss,D2

〉' 14.3eV TD,diss(D2) ' 1.95eV
Dissociative ionization
of D2 (Ee < 26eV)

〈
Ediss-iz,D2

〉' 18.25eV TD,diss-iz(D2) ' 0.25eV
Dissociative ionization
of D2 (Ee > 26eV)

〈
Ediss-iz,D2

〉' 33.6eV TD,diss-iz(D2) ' 7.8eV

Dissociation of D+
2

〈
Ediss,D+

2

〉
' 13.7eV TD,diss(D+

2 ) ' 3.0eV

Dissociative ionization of D+
2

〈
Ediss-iz,D+

2

〉
' 15.5eV TD,diss-iz(D+

2 ) ' 0.4eV

Dissociative recombination of D+
2 —————————– TD,diss-rec(D+

2 ) ' 11.7eV

3.3 The three-fluid drift-reduced Braginskii equations

The plasma turbulent dynamics is described by a fluid model based on a Braginskii set of

equations for each plasma species. Their derivation starts from the kinetic equations for

e−, D+ and D+
2 , which must include the terms arising from the neutral-plasma interactions.

These equations generalise the ones considered in the single-ion species model introduced in

Refs. [34, 61], by adding the new collisional terms listed in Table 3.1, as well as an equation

describing the D+
2 ions. The kinetic equations yield

∂ fe

∂t
+v · ∂ fe

∂x +a · fe

∂v = νiz,DnD

[
2Φe[vD,Te,iz(D)] −

fe

ne

]
+νe-DnD

[
Φe[vD,Te,en(D)] −

fe

ne

]
−νrec,D+

nD+

ne
fe +νiz,D2 nD2

[
2Φe

[
vD2 ,Te,iz(D2)

]− fe

ne

]
+νe-D2 nD2

[
Φe

[
vD2 ,Te,en(D2)

]− fe

ne

]
−νrec,D+

2

nD+
2

ne
fe

+νdiss,D2
nD2

[
Φe

[
vD2 ,Te,diss(D2)

]− fe

ne

]
+νdiss-iz,D2

nD2

[
2Φe

[
vD2 ,Te,diss-iz(D2)

]− fe

ne

]
+νdiss-iz,D+

2
nD+

2

[
2Φ

e
[
vD+

2
,Te,diss-iz(D+

2 )

]− fe

ne

]
+νdiss,D+

2
nD+

2

[
Φ

e
[
vD+

2
,Te,diss(D+

2 )

]− fe

ne

]
−νdiss-rec,D+

2
nD+

2

fe

ne
+C ( fe),

(3.1)

∂ fD+

∂t
+v · ∂ fD+

∂x +a · fD+

∂v = νiz,D fD −νrec,D+ fD+

−νcx,D

(
nD

nD+
fD+ − fD

)
+νcx,D-D+

2
fD −νcx,D2−D+

nD2

nD+
fD+

+νdiss-iz,D2
fD2 +2νdiss-iz,D+

2
fD+

2
+νdiss,D+

2
fD+

2
+C ( fD+),

(3.2)
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and

∂ fD+
2

∂t
+v ·

∂ fD+
2

∂x
+a ·

fD+
2

∂v
= νiz,D2 fD2 −νrec,D+

2
fD+

2

−νcx,D2

(
nD2

nD+
2

fD+
2
− fD2

)
−νcx,D2−D+ fD2 −νcx,D-D+

2

nD

nD+
2

fD+
2

−
(
νdiss-iz,D+

2
+νdiss,D+

2
+νdiss-rec,D+

2

)
fD+

2
+C ( fD+

2
).

(3.3)

In Eqs. (3.1-3.3), v denotes the particle velocity, a the particle acceleration due to the Lorentz

Force, and ∂/∂x the gradient in real space and ∂/∂v in the velocity space. The C ( fe), C ( fD+)

and C ( fD+
2

) terms refer to the Coulomb collisions between charged particles influencing the e,

D+ and D+
2 distribution functions, respectively.

The three-fluid Braginskii equations (for a plasma featuring e−, D+ and D+
2 ) are obtained

by computing the first three moments of the kinetic equations for each species in the limit

ΩcD+τD+ À 1, withΩcD+ = eB/mD+ the cyclotron frequency (mD+ stands for the D+ ion mass

and e represents the elementary charge) and τD+ the characteristic Coulomb collision time for

D+ ions. The Braginskii equations, including the neutral-plasma interaction terms, can be

derived by following the steps presented in Ref. [48], taking the form

∂ne

∂t
+∇· (neve) = nDνiz,D −nD+νrec,D+ +nD2νiz,D2 −nD+

2
νrec,D+

2

+nD2νdiss-iz,D2
+nD+

2
νdiss-iz,D+

2
−nD+

2
νdiss-rec,D+

2
,

(3.4)

∂nD+

∂t
+∇· (nD+vD+

)= nDνiz,D −nD+νrec,D+ +nDνcx,D-D+
2
−nD2νcx,D2−D+

+nD2νdiss-iz,D2
+nD+

2

(
2νdiss-iz,D+

2
+νdiss,D+

2

)
,

(3.5)

∂nD+
2

∂t
+∇·

(
nD+

2
vD+

2

)
= nD2νiz,D2 −nD+

2
νrec,D+

2
+nD2νcx,D2−D+ −nDνcx,D-D+

2

−nD+
2

(
νdiss-iz,D+

2
+νdiss,D+

2
+νdiss-rec,D+

2

)
,

(3.6)

mene
deveα

d t
=−∂pe

∂xα
− ∂Πeαβ

∂xβ
−ene

[
Eα+ (ve ×B)α

]+Reα

+me
[
nD

(
2νiz,D +νe-D

)
(vDα− veα)+nD2

(
2νiz,D2 +νe-D2

)(
vD2α− veα

)
+2nD2νdiss-iz,D2

(
vD2α− veα

)+2νdiss-iz,D+
2

nD+
2

(
vD+

2 α
− veα

)
+nD+

2
νdiss,D+

2

(
vD+

2 α
− veα

)
+nD2νdiss,D2

(
vD2α− veα

)]
,

(3.7)
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mDnD+
dD+vD+α

d t
=−∂pD+

∂xα
−
∂ΠD+αβ

∂xβ
+enD+

[
Eα+

(
vD+ ×B

)
α

]+RD+α

+mD

[
nD(νiz,D +νcx,D +νcx,D-D+

2
)(vDα− vD+α)+nD2νdiss-iz,D2

(vD2α− vD+α)

+nD+
2

(
2νdiss-iz,D+

2
+νdiss,D+

2

)
(vD+

2 α
− vD+α)

]
,

(3.8)

mD2 nD+
2

dD+
2

vD+
2 α

d t
=−

∂pD+
2

∂xα
−
∂ΠD+αβ

∂xβ
+enD+

2

[
Eα+

(
vD+

2
×B

)
α

]
+RD+

2 α

+mD2 nD2 (νiz,D2 +νcx,D2 +νcx,D2−D+)(vD2α− vD+
2 α

),

(3.9)

3

2
ne

deTe

d t
+pe∇·ve =−∇·qe −Πeαβ

∂veβ

∂xα
+Qe

+nDνiz,D

[
−Eiz,D − 3

2
Te + 3

2
meve ·

(
ve − 4

3
vD

)]
−nDνe-Dmeve · (vD −ve)

+nD2νiz,D2

[
−Eiz,D2 −

3

2
Te + 3

2
meve ·

(
ve − 4

3
vD2

)]
−nD2νe-D2 meve · (vD2 −ve)

+nD2νdiss,D2

[−Ediss,D2
+meve ·

(
ve −vD2

)]
+nD2νdiss-iz,D2

[
−Ediss-iz,D2

− 3

2
Te + 3

2
meve ·

(
ve − 4

3
vD2

)]
+nD+

2
νdiss,D+

2

[
−Ediss,D+

2
+meve ·

(
ve −vD+

2

)]
+nD+

2
νdiss-iz,D+

2

[
−Ediss-iz,D+

2
− 3

2
Te + 3

2
meve ·

(
ve − 4

3
vD+

2

)]
,

(3.10)

3

2
nD+

dD+TD+

d t
+pD+∇·vD+ =−∇·qD+ −ΠD+αβ

∂vD+β

∂xα
+QD+

+nD(νiz,D +νcx,D +νcx,D-D+
2

)

[
3

2

(
TD −TD+

)+ mD+

2

(
vD −vD+

)2
]

+nD2νdiss-iz,D2

[
3

2

(
TD+,diss-iz(D2) −TD+

)+ mD+

2

(
vD2 −vD+

)2
]

+2nD+
2
νdiss-iz,D+

2

[
3

2

(
TD+,diss-iz(D+

2 ) −TD+
)
+ mD+

2

(
vD+

2
−vD+

)2
]

+nD+
2
νdiss,D+

2

[
3

2

(
TD+,diss(D+

2 ) −TD+
)
+ mD+

2

(
vD+

2
−vD+

)2
]

,

(3.11)

3

2
nD+

2

dD+
2

TD+
2

d t
+pD+

2
∇·vD+

2
=−∇·qD+

2
−ΠD+

2 αβ

∂vD+
2 β

∂xα
+QD+

2

+nD2 (νcx,D2 +νiz,D2 +νcx,D2−D+)

[
3

2

(
TD+

2
−TD+

2

)
+

mD+
2

2
(vD2 −vD+

2
)2

]
,

(3.12)

whereΠeαβ denotes the component of the stress tensor along the α and β directions, Re the

friction force acting on the electrons, qe the electron heat flux density, Qe the electron heat
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Chapter 3. A multi-component model of plasma turbulence and kinetic neutral dynamics

generated by Coulomb collisions and de/d t = ∂/∂t+ (ve ·∇) the electron advective derivative.

The equivalent notation is used for the D+ and D+
2 species.

Similarly to what was done in the derivation of the single-ion species model presented in

Ch. 2, we consider the d/dt ¿ ΩcD+ and k⊥ρD+ ¿ 1 orderings, which are valid in typical

conditions of the tokamak boundary. This leads to the derivation of the drift-limit of the

Braginskii equations, keeping only leading order components in (1/ΩcD+)d/dt in the electron

perpendicular velocity, i.e. v⊥e = v⊥e0 = vE×B +vde, with vE×B = (E×B)/B 2 the E ×B drift

and vde = (B×∇pe)/(eneB 2) the electron diamagnetic drift, thus neglecting electron inertia.

The D+ perpendicular velocity is analogously decomposed as v⊥D+ =v⊥D+0+vpol,D+ +vfric,D+ ,

where the leading order perpendicular velocity,

v⊥D+0 =vE×B +vdD+ , (3.13)

is defined as the sum of the E ×B drift and the diamagnetic drift, vdD+ = (B×∇pD+)/(enD+B 2).

The polarization drift,

vpol,D+ =− 1

nD+ΩcD+

dD+

d t

(
nD+

B
∇⊥φ+ 1

B
∇⊥pD+

)
+ 1

mD+nD+ΩcD+
b×

[
GD+k− ∇GD+

3

]
, (3.14)

is of higher order than v⊥D+0 in the d/d t ¿ΩcD+ expansion, as it is shown in Ref. [48]. The

drift velocity due to friction between D+ ions and the other species,

vfric,D+ = nD

nD+

νcx,D +νiz,D +νcx,D−D+
2

ΩcD+

(
v⊥D −v⊥D+0

)×b+ nD2

nD+

νiz−diss,D2

ΩcD+

(
v⊥D2 −v⊥D+0

)×b

+
nD+

2

nD+

2νdiss-iz,D+
2
+νdiss,D+

2

ΩcD+

(
v⊥D+

2 0 −v⊥D+0

)
×b,

(3.15)

is of higher order in (1/ΩcD+)d/d t , too. This term features contributions from collisions

of D+ with D, D2 and D+
2 particles. Assuming vD . vD+ , vD2 . vD+ and vD+

2
. vD+ , and

noticing that ν/ΩcD+ ¿ 1, we obtain vfric,D+ ∼ (ν/ΩcD+)vD+ ¿ vD+ . Hence, we approximate

vD+ and vD+
2

with their respective leading order components, i.e. v⊥D+ 'v⊥D+0 and v⊥D+
2
'

v⊥D+
2 0, in Eq. (3.15). In Eqs. (3.14) and (3.15), the gyroviscous term for D+ ions, GD+ =

−η0D+
[
2∇‖v‖D+ +C (φ)/B +C (pD+)/(ZD+nD+B)

]
, the D+ viscosity η0D+ , is introduced, as well

as the magnetic field curvature vector k = (b ·∇)b, the gradient along the magnetic field

∇‖ =b ·∇, the gradient perpendicular to the magnetic field ∇⊥ =∇−b∇‖ and the magnetic

field unit vector b=B/B .

A similar approach is followed when deriving the drift-limit of the D+
2 velocity, as the d/d t ¿
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3.3. The three-fluid drift-reduced Braginskii equations

ΩcD+
2

ordering remains valid in typical tokamak boundary conditions. The perpendicular

velocity of D+
2 ions is therefore written as v⊥D+

2
=v⊥D+

2 0 +vpol,D+
2
+vfric,D+

2
, with

v⊥D+
2 0 =vE×B +vdD+

2
(3.16)

the leading order component, with vdD+
2
= (B×∇pD+

2
)/(enD+

2
B 2). We remind that vpol,D+

2
is the

polarization drift velocity and vfric,D+
2

denotes the drift velocity arising from friction between

D+
2 ions and other species. Their respective expressions are

vpol,D+
2
=− 1

nD+
2
ΩcD+

2

dD+
2

d t

(nD+
2

B
∇⊥φ+ 1

B
∇⊥pD+

2

)
+ 1

mD+
2

nD+
2
ΩcD+

2

b×
[

GD+
2
k−

∇GD+
2

3

]
, (3.17)

and

vfric,D+
2
= nD2

nD+
2

νiz,D2 +νcx,D2 +νcx,D2−D+

ΩcD+
2

(
v⊥D2 −v⊥D+

2 0

)
×b, (3.18)

with GD+
2
=−η0D+

2

[
2∇‖v‖D+

2
+C (φ)/B +C (pD+

2
)/(nD+

2
B)

]
the D+

2 gyroviscous term and η0D+
2

the

corresponding viscosity. We note that approximation v⊥D+
2
'v⊥D+

2 0 is used in Eq. (3.18).

To obtain an expression for the parallel friction forces and parallel heat fluxes and close the Bra-

ginskii equations, we apply the collisional closure developed by Zhdanov in Ref. [65], following

the formulation presented in Refs. [66, 93], which facilitates the numerical implementation.

The use of this procedure in the context of the multi-species plasma considered in the present

chapter is detailed in App. C, where we make use of the fact that the nD+
2

is significantly smaller

than the nD+ , i.e. nD+
2

/nD+ ¿ 1, for typical tokamak boundary conditions, which in turn allows

us to write ne ' nD+ thanks to quasi-neutrality. On the other hand, the contributions from the

perpendicular components of the heat fluxes in the terms ∇·qe and ∇·qD+ appearing in the

Te and TD+ equations, respectively, are evaluated by assuming the Ωceτe À 1, ωD+τcD+ À 1

limits (typical time between collisions considerably larger than cyclotron frequency), which

significantly simplifies the expressions, following the same approach described in [17] and

in agreement with the single-ion species model [33, 34]. This approach is generalised to

evaluate the term arising from the perpendicular component of ∇·qD+
2

in the TD+
2

equation,

Eq. (3.12). We also highlight that the collisional heat exchange terms, i.e. Qe, QD+ and QD+
2

, in

Eqs. (3.10-3.12), are neglected in the derivation of the drift-limit of the Braginskii equations,

as they are assumed to be of higher order in ρs0/R0, similarly to the single-component GBS

model presented in Refs. [33, 34] and in Ch. 2 of this thesis.

Therefore, the drift-reduced Braginskii system of equations includes the continuity equation

for the electron species, the continuity equation for the D+
2 species, the vorticity equations
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Chapter 3. A multi-component model of plasma turbulence and kinetic neutral dynamics

that ensures quasi-neutrality, ne = nD+ +nD+
2

, and the equations for the parallel velocities and

temperature of all species. They take the form

∂ne

∂t
=−ρ

−1∗
B

[φ,ne]+ 2

B

[
C (pe)−neC (φ)

]−∇· (nev‖eb)+Dne∇2
⊥ne +Sne

+nDνiz,D −nD+νrec,D+ +nD2νiz,D2 −nD+
2
νrec,D+

2

+nD2νdiss-iz,D2
+nD+

2
νdiss-iz,D+

2
−nD+

2
νdiss-rec,D+

2
,

(3.19)

∂nD+
2

∂t
=−ρ

−1∗
B

[φ,nD+
2

]−∇· (nD+
2

v‖D+
2
b)− 2

B

[
nD+

2
C (TD+

2
)+TD+

2
C (nD+

2
)+nD+

2
C (φ)

]
+DnD+

2
∇2
⊥nD+

2
+SnD+

2
+nD2νiz,D2 −nD+

2
νrec,D+

2
+nD2νcx,D2−D+ −nDνcx,D-D+

2

−nD+
2

(
νdiss-iz,D+

2
+νdiss,D+

2
+νdiss-rec,D+

2

)
,

(3.20)

∂Ω

∂t
=−∇·

[
ρ−1∗
B

([
φ,BΩD+

]+2
[
φ,BωD+

2

])]
−∇·

[
v‖D+

B
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(
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2

B
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(
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2
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2
C (TD+

2
)+TD+

2
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)
]
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(
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B

)
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(
b×k

B

)
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3B
C

(
GD+
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+
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·
(
b×k
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(
GD+

2
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‖Ω+D⊥Ω∇2
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(
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2
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(
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2
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2

)(
ωD+

2
−ωD+
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,

(3.21)

∂v‖e

∂t
=−ρ

−1∗
B

[φ, v‖e]− v‖e∇‖v‖e + mD

me
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∇‖φ− ∇‖pe

ne
− 2

3ne
∇‖Ge −0.71∇‖Te
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(
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)(
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2
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)(
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,

(3.22)
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∂v‖D+

∂t
=−ρ

−1∗
B
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(3.23)
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(3.24)
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(3.25)
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∂TD+

∂t
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(3.26)

and
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(3.27)

In Eqs. (3.19-3.27) we introduce [A,B ] =b · (∇A×∇B), C (A) = (B/2)[∇× (b/B)] ·∇A and the

plasma vorticity Ω =ΩD+ +2ΩD+
2

, with the D+ contribution being given by ΩD+ = ∇·ωD+ =
∇ · [(nD+/B 2

)∇⊥φ+ (
1/B 2

)∇⊥pD+
]

and an analogous D+
2 contribution, ΩD+

2
. The system is

closed by the generalized Poisson equation, which is obtained by inverting the definition of

the plasma vorticity,Ω, yielding

∇⊥ ·
[nD+ +2nD+

2

B 2 ∇⊥φ
]
=Ω−∇⊥ ·

[
1

B 2 ∇⊥
(
pD+ +2pD+

2

)]
. (3.28)

We highlight that the electron gyroviscous term in Eq. (3.22) is defined by analogy with the ion

gyroviscous terms, Ge =−η0e
[
2∇‖v‖e +C (φ)/B −C (pe)/(neB)

]
. When writing Eq. (2.70), we

avoid the Boussinesq approximation and take into account all components of the velocity of
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3.3. The three-fluid drift-reduced Braginskii equations

the ion species D+ and D+
2 , including the higher order polarization and friction contributions.

On the other hand, when expressing the advective derivative for the ion species, dD+/d t and

dD+
2

/d t , we keep only the leading order components of the perpendicular velocity, v⊥D+0 and

v⊥D+
2 0, neglecting vpol and vfric. We consistently neglect the friction and polarization drifts in

the continuity equation for D+
2 . We remark that this is still a reasonable approach within the

conditions considered in the present work, given that the density of D+
2 ions is smaller than

the density of the main ion species by several orders of magnitude. We also note that the terms

of higher order in 1/ΩcD+
2

d/dt in the perpendicular velocity of D+
2 ions are neglected when

∇·vD+
2

is written in the temperature equations, Eqs. (3.26) and (3.27), this assumption being

required to avoid explicit time derivatives featuring in the polarization drift velocity, vpol,D+
2

.

However, all terms are considered in the divergence of the perpendicular velocity of D+ ions

in Eq. (3.26), as we use ∇· j = 0 to write ∇·vD+ in terms of ∇·ve and ∇·vD+
2

. Finally, when

taking the divergence of these terms, we consider ∇·vD ¿∇·vD+ to neglect the contribution

of the velocity of D atoms, which is valid since ρs,D+ ¿ λmfp,D (with ρs,D+ = cs,D+/Ωc,D+ the

sound Larmor radius of D+ ions, cs,D+ =√
Te /mD+ the D+ ions sound speed and λmfp,D the

mean free path of a D atoms). This relation is also generalized to the other neutral and ion

species, namely D2 molecules and D+
2 ions, which enables us to neglect the contribution

of the divergence of the velocities of neutral particles when compared to the divergence of

ion velocities. Similarly to Ch. 2 for the single-component plasma, Sne , SnD+ , STe , STD+ and

STD+
2

in Eqs. (3.19-3.27) represent the density and temperature source terms for the different

plasma species. We highlight that, while neglecting the polarization drift of the D+
2 species is

reasonable in the present chapter, this could not be done if multiple ion species with similar

densities were considered, e.g. in the simulation of a D −T plasma. The polarization drift of

both D+ and T+ would have to be taken into account, which would require a different time

integration scheme with respect to the one used in GBS. A multispecies model for the 2D

simulation of a D −T plasma is presented in detail in Ref. [94].

We remark that dimensionless units are used in Eqs. (3.19-3.27) and in the rest of this chapter,

similarly to Ch. 2. The densities, ne, nD+ and nD+
2

, are normalized to the reference value n0,

while temperatures, Te, TD+ and TD+
2

, are normalized to the respective reference values, Te0,

TD+0 and TD+
2 0 = TD+0, which are also related through the dimensionless quantity τ= TD+0/Te0.

In turn, lengths along the magnetic field are normalized to the tokamak major radius, R0,

lengths in a direction perpendicular to the magnetic field are normalized to the ion sound

Larmor radius, ρs0 = cs0/ΩcD+0, where cs0 = Te0/mD+ is the normalized D+ ion sound speed

and ΩcD+0 = eB0/mD+ is the D+ ion cyclotron frequency at the magnetic axis, and time is

normalized to R0/cs0. All the other normalizations follow, namely the parallel velocities,

v‖e, v‖D+ and v‖D+
2

, normalized to cs0, the plasma vorticity Ω, normalized to n0Te0/(ρ2
s0B 2

0 ),

the perpendicular diffusion coefficients D⊥ and conductivities χ⊥, normalized to cs0ρ
2
s0/R0,

and finally the parallel diffusion coefficients D‖ and conductivities χ‖, normalized to cs0R0.

Normalized quantities are used in the rest of the chapter, except when explicitly mentioned. We

remark that we have defined the parameter ρ? = ρs0/R0 as the ratio between the D+ ion sound

Larmor radius and the tokamak major radius R0. We also note that ν is the dimensionless
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Chapter 3. A multi-component model of plasma turbulence and kinetic neutral dynamics

resistivity given by ν= (e2ne0R0)/(mDcs0σ‖), with the parallel conductivity defined in terms of

the electron characteristic time τe as σ‖ = e2neτe/(0.51me).

We conclude with a couple of remarks on Eqs. (3.19-3.27). At first, we remark that the parallel

conductivity featuring in the temperature equations for electrons is expressed in the form

χ‖,e = χ‖0,eT 5/2
e , where the Spitzer temperature dependence is retained, while we neglect

the weaker space and time dependence of the 2/(3ne) factor, in a similarly approach to the

one followed in the single-component plasma model of GBS [33, 34] discussed in Ch. 2.

An identical procedure is followed when considering χ‖,D+ and χ‖,D+
2

. This approximation

is expected not to affect significantly the results of simulations in the tokamak boundary

conditions considered in the present work, which have parameters between the sheath-limited

and conduction-limited regimes, where the contributions of conductivity are expected to

be small. We also mention that, because the D+
2 density typically drops to very low values,

numerical issues may appear in the equations for v‖D+
2

and TD+
2

, arising from terms featuring

a 1/nD+
2

dependence. In order to develop a more robust numerical approach, we evolve the

parallel flux and pressure of the D+
2 ion species, Γ‖D+

2
= nD+

2
v‖D+

2
and pD+

2
= nD+

2
TD+

2
, instead of

v‖D+
2

and TD+
2

. The equations modelling the time evolution of Γ‖D+
2

and pD+
2

are

∂Γ‖D+
2

∂t
=
∂nD+

2

∂t
v‖D+

2
+nD+

2

∂v‖D+
2

∂t
, (3.29)

and

∂pD+
2

∂t
=
∂nD+

2

∂t
TD+

2
+nD+

2

∂TD+
2

∂t
, (3.30)

with ∂t nD+
2

, ∂t v‖D+
2

and ∂t TD+
2

being given, respectively, by Eqs. (3.20), (3.24) and (3.27). We

remark that, when presenting the results of simulations, we focus on the parallel flux, Γ‖D+
2

,

and pressure, pD+
2

.

3.4 Boundary conditions

The boundary conditions implemented in the single-component GBS model presented in Ch.

2 are extended in the present chapter to include the molecular ion species D+
2 . Similarly to the

single-ion species model, the simulation domain boundary includes the limiter plates, the

outer wall and the interface with the core, which is excluded since the low plasma collisionality

does not enable a description based on a fluid model.

We start by considering the boundary conditions at the limiter plates, where the plasma

particles end as a result of the flow parallel to the magnetic field. Hence, those are the

boundary conditions that more significantly influence the simulation dynamics. Similarly to

Ch. 2, the boundary conditions are imposed at the interface between the collisional pre-sheath
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3.4. Boundary conditions

(CP) and the magnetic pre-sheath (MP), which are derived from the Bohm-Chodura boundary

conditions, following the approach described in Ref. [74] in the cold ion limit and generalized

in Ref. [75] to account for finite ion temperature. In this chapter, we extend this procedure

for a multi-ion species plasma. For this purpose, we use the (y, x, z) coordinates, being z the

direction of the magnetic field, x the direction perpendicular to the magnetic field and parallel

to the limiter surface, and y the direction perpendicular to both x and z (all spatial coordinates

are normalized to ρs0 while the other quantities follow the same normalizations used for Eqs.

(3.19-3.27)). We also introduce the coordinate perpendicular to the limiter plate, expressed as

s = ycosα+ zsinα, where α denotes the angle between the magnetic field line and the plane

of the limiter.

We remark that, to describe the steady-state dynamics of the multi-species plasma in the

CP, we make use of the continuity equation for the D+ and D+
2 species (with quasi-neutrality

providing the electron density) and the parallel momentum equations for e−, D+ and D+
2 .

These can be written, in a steady state, as

∇· (nD+vD+) = Sp,D+ , (3.31)

∇· (nD+
2
vD+

2
) = Sp,D+

2
, (3.32)

ne(ve ·∇)ve =−neE−nevD+ ×B−∇pe +Sm,e, (3.33)

nD+
(
vD+ ·∇vD+

)= nD+E+nD+vD+ ×B−∇pD+ +Sm,D+ (3.34)

and

nD+
2

(
vD+

2
·∇vD+

2

)
= nD+

2
E+nD+

2
vD+

2
×B−∇pD+

2
+Sm,D+

2
, (3.35)

with Sp,D+ and Sp,D+
2

the particle sources for D+ and D+
2 , and Sm,e, Sm,D+ and Sm,D+

2
the

momentum sources for e−, D+ and D+
2 .

From Eqs. (3.31-3.35) and following the approach described in Ref. [75], we obtain a system

of five equations for ∂snD+ , ∂snD+
2

, ∂sv‖D+ and ∂sv‖D+
2

, ∂sφ for the interface between the CP

and the MP border, considering me/mD+ ¿ 1 and assuming the isothermal approximation

for both ions and electrons. Moreover, we remark that, at the MP entrance, gradients along

the x direction are assumed weaker than gradients along s by a factor ε= ρs0/Ln ' ρs0/LTe '
ρs0/Lφ¿ 1, with Ln, LTe and Lφ respectively the gradient scale lengths of ne, Te and φ along

the x direction. At the same time, we neglect finite Larmor radius (FLR) effects and, to express
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Chapter 3. A multi-component model of plasma turbulence and kinetic neutral dynamics

the y and x velocity components of each ion species, D+ and D+
2 , we include only the leading

order terms in (1/ΩcD+)d/dt (see Eqs. (3.13) and (3.16)). This leads to

vy,D+ = vy,E×B + vy,dD+ , (3.36)

vx,D+ = vx,E×B + vx,dD+ , (3.37)

vy,D+
2
= vy,E×B + vy,dD+

2
(3.38)

and

vx,D+
2
= vx,E×B + vx,dD+

2
, (3.39)

where vy,E×B and vx,E×B are respectively the y and x components of the E ×B drift velocity,

vy,dD+ and vx,dD+ are the y and x components of the D+ diamagnetic drift velocity and vy,dD+
2

and vx,dD+
2

are the y and x components of the D+
2 diamagnetic velocity. The velocity of the

D+ ions along the s direction is written as vs,D+ = v‖D+sinα+ vy,D+cosα. We also define the

velocity of the D+ ions along the s direction excluding the diamagnetic contribution, that is

v ′
s,D+ = vs,D+ − vy,dD+cosα, and similarly for the D+

2 ions, yielding v ′
s,D+

2
= vs,D+

2
− vy,dD+

2
cosα.

The system in Eqs. (3.31-3.35) is then written as

vs,D+∂snD+ +nD+sinα∂sv‖D+ −∂xnD+cosα∂sφ= Sp,D+ , (3.40)

vs,D+
2
∂snD+

2
+nD+

2
sinα∂sv‖D+

2
−∂xnD+

2
cosα∂sφ= Sp,D+

2
, (3.41)

nD+vs,D+∂sv‖D+ +nD+(sinα−∂xv‖D+cosα)∂sφ+TD+sinα∂snD+ = S‖m,D+ , (3.42)

nD+
2

vs,D+
2
∂sv‖D+

2
+nD+

2
(sinα−∂xv‖D+

2
cosα)∂sφ+TD+

2
sinα∂snD+

2
= S‖m,D+

2
(3.43)

and

sinαTe∂sne − sinαne∂sφ= S‖m,e, (3.44)
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where S‖m,D+ = Sm,D+ ·b, S‖m,D+
2
= Sm,D+

2
·b and S‖m,e = Sm,e ·b. We make use of the quasi-

neutrality condition, ne = nD+ +nD+
2

, to obtain a system of five linear equations, which is

expressed in matrix form as Mx=S, with

M=



v ′
s,D+ nD+sinα 0 0 −cosα∂xnD+

TD+sinα nD+v ′
s,D+ 0 0 nD+(sinα−∂xv‖D+cosα)

0 0 v ′
s,D+

2
nD+

2
sinα −cosα∂xnD+

2

0 0 TD+
2

sinα nD+
2

v ′
s,D+

2
nD+

2
(sinα−∂xv‖D+

2
cosα)

sinαTe 0 sinαTe 0 −(nD+ +nD+
2

)sinα

 , (3.45)

x=


∂snD+

∂snD+
2

∂sv‖D+

∂sv‖D+
2

∂sφ

 (3.46)

and

S=


Sp,D+

Sp,D+
2

S‖m,D+

S‖m,D+
2

S‖m,e

 . (3.47)

Following the same approach as [74, 75], we observe that, although the source terms are

important in the CP, they become small with respect to the gradient terms at the MP entrance.

This enables the assumption that |ΣjMijXj| À |Si|. Thus, the linear system Mx = S reduces

to Mx = 0 at the MP entrance. We then solve det(M) = 0 with respect to v ′
sD+ to obtain the

non-trivial solution valid at the MP entrance. For this purpose, we follow Ref. [95] to relate the

parallel velocity of the D+
2 ion species, v‖D+

2
, to the parallel velocity of the D+ ions, v‖D+ ,

v‖D+
2
=

√
mD+

mD+
2

v‖D+ = v‖D+
p

2
. (3.48)

We also assume nD+
2

/ne ¿ 1 (and therefore nD+ ' ne) and keep only zero order terms in ε, thus

neglecting all derivatives along the x direction. The condition det(M) = 0 then yields

v ′
sD+ =±

√
TeFT sinα (3.49)
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where the ± signs stand for the magnetic field lines entering/leaving the vessel and we have

defined FT = 1+τTD+/Te. We also remark that v ′
s,D+ = v‖D+sinα, since we neglect vy,E×Bcosα=

∂xφcosα, to obtain the boundary condition for v‖D+ at the limiter,

v‖D+ =±
√

TeFT . (3.50)

The expressions of the boundary conditions for the other plasma quantities then follow. As a

matter of fact, Eq. (3.42) can be inverted to express ∂sφ in terms of ∂sv‖D+ , which yields

∂sφ=−
v ′

sD+∂sv‖D+

FT sinα
=∓

p
Tep
FT

∂sv‖D+ . (3.51)

We make use of Eq. (3.44) to express ∂sne in terms of ∂sφ, that is

∂sne = ne

Te
∂sφ=∓ nep

TeFT
∂sv‖D+ (3.52)

and, applying nD+ = ne, we obtain

∂snD+ = ne/Te∂sφ=∓ nep
TeFT

∂sv‖D+ (3.53)

Regarding the density of the D+
2 ions, we use Eq. (3.41), deriving the boundary condition given

by

∂snD+
2
=∓nD+

2
/
√

TeFT ∂sv‖D+ . (3.54)

To derive the boundary conditions for Te, TD+ and TD+
2

, we note that temperature gradients

along the direction perpendicular to the wall are small compared to the gradients of the other

physical quantities. In fact, Ref. [74, 75] shows that ∂sTe ∼ ∂sTD+ ' 0.1∂sφ. In the present

chapter, we also follow this prescription and assume ∂sTe = ∂sTD+ = ∂sTD+
2
= 0.1∂sφ (we note

that our tests show that imposing ∂sTe = ∂sTD+ = ∂sTD+
2
= 0 does not noticeably impact the

results of the simulation).

To obtain the boundary condition for Ω at the MP entrance, we apply its definition, Ω =
∇· [(nD+/B 2)∇⊥φ+ (1/B 2)∇⊥pD+

]+∇·
[

(nD+
2

/B 2)∇⊥φ+ (1/B 2)∇⊥pD+
2

]
, and we write the sec-

ond order derivatives in the directions perpendicular to the magnetic field retaining only

derivatives along the y direction, making use of ∂2
x ¿ ∂2

y. Given that ∂yB = 0 at the limiter, the

1/B 2 factor is taken constant when computing the derivatives featuring in the definition of

Ω. We write the derivatives along the y direction in terms of derivatives along s and consider
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TD+
2
= TD+ (for simplicity), which finally yields

Ω=−cosα
[
∂s(ne +nD+

2
)∂sφ+TD+∂2

s (ne +nD+
2

)+ (ne +nD+
2

)∂2
sφ

]
. (3.55)

We now use Eqs. (3.52) and (3.54) to express ∂sne and ∂snD+ in terms of ∂sφ and start from Eq.

(3.51) to obtain the final expression of the boundary condition forΩ, that is

Ω=−(ne +nD+
2

)FT cos2α

[
±
p

Tep
FT

∂2
s v‖D+ ∓ 1p

TeFT
(∂sv‖D+)2

]
. (3.56)

Finally, we remark that the boundary condition for the electron parallel velocity is obtained

from the analysis of the electron kinetic distribution function at the MP entrance. As discussed

in Ref. [74], this yields

v‖e =
√

Te

[
±exp

(
Λ− φ

Te

)]
, (3.57)

whereΛ= log
[p

(1/2π)(mi/me)
]' 3.

On the other hand, at the vessel outer wall and the edge-core interface, ad hoc boundary

conditions are considered, similarly to the approach used in the single-ion species GBS

model [74, 75, 34] considered in Ch. 2. As a matter of fact, a set of first-principles boundary

conditions is yet to be derived for such boundaries. We reduce the effect of these ad hoc

boundary conditions on the results of the simulation by radially extending the simulation

domain towards the wall and the core, as in the model presented in Ch. 2. We impose

homogeneous Neumann boundary conditions to ne, nD+ , Te, TD+ , TD+
2

, v‖e, v‖D+ and v‖D+
2

.

Given that the density of D+
2 ions is expected to be very low at the edge-core interface (no D+

2

ions outflow from the core), we use Dirichlet boundary conditions at the edge-core interface

for nD+
2

, setting it to a very small value (we choose nD+
2
= exp(−5), and we notice that this value

has a small impact on the results), while homogenous Neumann boundary conditions are

considered at the outer wall. The boundary conditions considered for the other quantities

follow the same approach described in Ch. 2. More precisely, we also use Dirichlet boundary

conditions for the vorticity, settingΩ= 0 at both the wall and the core interface. We follow the

approach presented in Ref. [35] for the φ boundary conditions, considering φ=ΛTe at the

vessel wall and φ=φ0 at the core interface, where φ0 is a constant value chosen to prevent

large gradients of φ.
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3.5 The kinetic model for the neutral species and its formal solu-

tion

We now extend the approach followed in Ref. [61] and improved in Ch. 2 for a single-neutral

species model. We consider one kinetic equation for each neutral species, namely D atoms

and D2 molecules, which compute their respective distribution functions, fD and fD2 . The

result is a set of coupled equations, yielding

∂ fD

∂t
+v · ∂ fD

∂x
=−νiz,D fD −νcx,D

(
fD − nD

nD+
fD+

)
+νrec,D+ fD+

+νcx,D2−D+

(
nD2

nD+
fD+

)
−νcx,D-D+

2
fD +2νdiss,D2

fD2 +νdiss-iz,D2
fD2

+νdiss,D+
2

fD+
2
+2νdiss-rec,D+

2
fD+

2
,

(3.58)

and

∂ fD2

∂t
+v · ∂ fD2

∂x
=−νiz,D2 fD2 −νcx,D2

(
fD2 −

nD2

nD+
2

fD+
2

)

+νrec,D+
2

fD+
2
−νcx,D2−D+ fD2 +νcx,D-D+

2

(
nD

nD+
2

fD+
2

)
−νdiss,D2

fD2 −νdiss-iz,D2
fD2 .

(3.59)

We then obtain the formal solution of Eqs. (3.58) and (3.59) by applying the method of

characteristics, assuming that the plasma quantities are known. This leads to

fD(x,v, t ) =
∫ r ′

b

0

[
SD(x′,v, t ′)

v
+δ(

r ′− r ′
b

)
fD(x′

b,v, t ′b)

]
×exp

[
− 1

v

∫ r ′

0
νeffD (x′′, t ′′)dr ′′

]
J (x′)
J (x)

dr ′
(3.60)

and

fD2 (x,v, t ) =
∫ r ′

b

0

[
SD2 (x′,v, t ′)

v
+δ(

r ′− r ′
b

)
fD2 (x′

b,v, t ′b)

]
×exp

[
− 1

v

∫ r ′

0
νeffD2

(x′′, t ′′)dr ′′
]

J (x′)
J (x)

dr ′.
(3.61)

The solutions introduced in Eq. (3.60-3.61) describe the distribution functions of D and
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D2 at position x, velocity v and time t as the result of the neutrals generated at a location

x′ =x−r ′Ω, in the plasma volume or at the boundary, and at time t ′ = t −r ′/v , whereΩ=v/v

is the unit vector aligned with the neutral velocity and r ′ is the distance measured from x′

to x (the subscript "b" designates the intersection point between the domain boundary and

the characteristic starting at x with directionΩ). Since the neutrals are solved on the (R, Z )

coordinate system, with R the distance from the torus axis and Z the vertical coordinate

measured from the equatorial midplane, the integral includes the Jacobian corresponding

to this coordinate system, expressed as J(x) = R(x). We highlight that the volumetric source

associated with the collisional processes in Eq. (3.60) is written as

SD(x′,v, t ′) = νcx,D(x′, t ′)nD(x′, t ′)Φ[vD+ ,TD+](x′,v, t ′)+νcx,D2−D+(x′, t ′)nD2 (x′, t ′)Φ[vD+ ,TD+](x′,v, t ′)

+νrec,D+(x′, t ′)nD+(x′,v, t ′)Φ[vD+ ,TD+ ](x′,v, t ′)+2νdiss,D2
(x′, t ′)nD2 (x′, t ′)Φ[

vD2 ,TD,diss(D2)

](x′,v, t ′)

+νdiss-iz,D2
(x′, t ′)nD2 (x′, t ′)Φ[

vD2 ,TD,diss-iz(D2)

](x′,v, t ′)+νdiss,D+
2

(x′, t ′)nD+
2

(x′,v, t ′)Φ[
vD+

2
,TD,diss(D+

2 )
](x′,v, t ′)

+2νdiss-rec,D+
2

(x′, t ′)nD+
2

(x′,v, t ′)Φ[
vD+

2
,TD,diss-rec(D+

2 )
](x′,v, t ′)

(3.62)

since D ions can be created in the plasma volume by D−D+ and D2 −D+ charge-exchange

interactions, recombination of D+ ions with electrons, dissociation of D2 molecules into two

D atoms, dissociative ionization of D2 into D and D+, dissociation of D+
2 ions into D and D+,

and dissociative recombination of D+
2 into two D atoms.

Similarly, D2 molecules are generated in the plasma by charge-exchange collisions between D2

molecules and D+
2 ions or D atoms and D+

2 ions, or by recombination of D+
2 ions with electrons.

Therefore, the volumetric source term in Eq. (3.61) is

SD2 (x′,v, t ′) = νcx,D2 (x′, t ′)nD2 (x′, t ′)Φ[
vD+

2
,TD+

2

](x′,v, t ′)+νrec,D+
2

(x′, t ′)nD+
2

(x′,v, t ′)Φ[
vD+

2
,TD+

2

](x′,v, t ′)

+νcx,D-D+
2

(x′, t ′)nD(x′, t ′)Φ[
vD+

2
,TD+

2

](x′,v, t ′).

(3.63)

We note thatΦ[vD+ ,TD+](x′,v, t ′) = [
mD+/(2πTD+)

]3/2 exp
[−mD+(v−vD+)2/(2TD+)

]
is a Maxwellian

distribution function that describes the D+ ion population, centered at the ion velocity

vD+(x′, t ′), including only the leading order components, vD+ = v‖D+b+v⊥D+0, and based on

the D+ temperature, TD+(x′, t ′). In addition, Φ[
vD+

2
,TD+

2

](x′,v, t ′) is a Maxwellian distribution

describing the D+
2 ions and follows a similar definition. We remark that, when we evaluate the

average velocity of the Maxwellian distributions describing neutrals generated from D2 and

D+
2 , we neglect vD2 and vD+

2
with respect to vD+ , i.e. we assume |vD2 |. |vD+ | and |vD+

2
|. |vD+ |.

We also note that the temperature TD,diss(D2) is the average thermal energy of D atoms gen-

erated by dissociation of D2 molecules, presented in Table 3.2 and calculated in App. B. The
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energy of the neutral D atoms generated by the other dissociative processes is computed using

a similar approach.

The effective frequencies for depletion of neutral particles are given by

νeff,D(x′′, t ′′) = νiz,D(x′′, t ′′)+νcx,D(x′′, t ′′)+νcx,D-D+
2

(x′′, t ′′) (3.64)

and

νeff,D2
(x′′, t ′′) = νiz,D2 (x′′, t ′′)+νcx,D2 (x′′, t ′′)+νcx,D2−D+(x′′, t ′′)

+νdiss,D2
(x′′, t ′′)+νdiss-iz,D2

(x′′, t ′′),
(3.65)

since the volumetric sinks of D atoms are associated with ionization or charge-exchange with

D+ or D+
2 , while depletion of D2 is related to ionization, charge-exchange with D+

2 or D+,

dissociation or dissociative ionization.

There is also a contribution to the neutral distribution functions in Eqs. (3.60) and (3.61)

related to plasma recycling taking place at the boundary walls. Therefore, we now focus on the

neutral processes occurring there. Similarly to the single-ion species model discussed in Ch.

2, a fraction, αrefl(x′
b), of the D+

2 ions that reach the boundary walls is reflected back into the

plasma, after recombination with electrons and formation of D2 neutrals. The remaining frac-

tion, 1−αrefl(x′
b), is absorbed and reemitted at wall temperature as D2, also after recombining

with an electron. Similar considerations are valid when describing the D2 neutrals that reach

the boundary, i.e. the D2 molecules are assumed to be reflected or reemitted with the same

probability as D+
2 .

Turning now to the atomic species, since the wall temperature is low, a fraction, βassoc, of the

D+ and D particles absorbed at the walls associate and reenter the plasma as D2 molecules.

The remaining D+ ions and D neutrals reaching the boundaries are reflected or reemitted,

similarly to D+
2 ions and D2 particles, with the same probability of reflection, αrefl(x′

b). As a

result, the distribution functions at the vessel, fD(x′
b,v, t ′) and fD2 (x′

b,v, t ′), for vp =v · n̂> 0

(with n̂ the unit vector normal to the boundary) are written as

fD(x′
b,v, t ′) = (1−αrefl(x′

b))Γreem,D(x′
b, t ′)χin,D(x′

b,v)

+αrefl(x′
b)

[
fout,D(x′

b,v−2vp, t ′)+ Γout,D+(x′
b, t ′)

vp
Φ[

vrefl(D+),TD+
](x′

b,v, t ′)

]
(3.66)

and
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fD2 (x′
b,v, t ′) = (1−αrefl(x′

b))Γreem,D2 (x′
b, t ′)χin,D2 (x′

b,v)

+αrefl(x′
b)

[
fout,D2 (x′

b,v−2vp, t ′)+
Γout,D+

2
(x′

b, t ′)
vp

Φ[
vrefl(D+

2 ),TD+
2

](x′
b,v, t ′)

]
.

(3.67)

At first, we analyse the contributions of reflected particles in Eqs. (3.66-3.67). The reflected D

and D2 are described by the distribution functions fout,D(x′
b,v−2vp, t ′) and fout,D2 (x′

b,v−
2vp, t ′), since v−2vp is the velocity of the neutrals which are reflected when flowing towards

the wall, where vp = vp n̂ denotes the velocity along the direction normal to the wall surface.

On the other hand, we address the contributions from the D+ and D+
2 ions reflected at the

walls by considering the projection of the flux of outflowing D+ and D+
2 along the direction

normal to the boundary surface, which are given respectively by Γout,D+(x′
b) =−Γout,D+(x′

b) · n̂
and Γout,D+

2
(x′

b) =−Γout,D+
2

(x′
b) · n̂. These fluxes include the contributions of the plasma flow

parallel to the magnetic-field lines and the leading order perpendicular drifts, more precisely

the E ×B and diamagnetic drifts, yielding

Γout,D+(x′
b) = nD+v‖D+b+nD+v⊥D+0 (3.68)

and

Γout,D+
2

(x′
b) = nD+

2
v‖D+

2
b+nD+

2
v⊥D+

2 0, (3.69)

We assume that the velocity distribution of the D neutrals generated by reflection of D+ ions

is described by a Maxwellian centered at the velocity, vrefl(D+) = vD+ −2vpD+ , with vpD+ =(
vD+ · n̂)

n̂, and with temperature of the incoming D+ ions, TD+ , given byΦ[
vrefl(D+),TD+

](x′,v, t ′).

Similarly, the D2 neutrals arising from reflection of D+
2 ions are assumed to follow a Maxwellian

distribution,Φ[
vrefl(D+

2 ),TD+
](x′,v, t ′), being vrefl(D+

2 ) =vD+
2
−2vpD+

2
, with vpD+

2
=

(
vD+

2
· n̂

)
n̂ and

TD+
2

the temperature of the incoming D+
2 ions.

We now focus on the contributions in Eqs. (3.66-3.67) that account for the reemission of

neutrals from the boundary, which are written in terms of

Γreem,D(x′
b) = (1−βassoc)

[
Γout,D(x′

b)+Γout,D+(x′
b)

]
(3.70)

and

Γreem,D2 (x′
b) = Γout,D2 (x′

b)+Γout,D+
2

(x′
b)+ βassoc

2

[
Γout,D(x′

b)+Γout,D+(x′
b)

]
. (3.71)
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In addition to the projections of the ion fluxes to the boundary, Γout,D+
2

and Γout,D+
2

, Eqs. (3.70)

and (3.71) account for the projections along the direction normal to the boundary of the fluxes

of D atoms and D2 molecules outflowing to the limiter and walls, Γout,D and Γout,D2 . These are

defined based on the neutral fluxes directed towards the boundary (with vp < 0) as

Γout,D(x′
b) =−

∫
vp<0

(
vp ·n)

fD(x′
b,v)dv (3.72)

and

Γout,D2 (x′
b) =−

∫
vp<0

(
vp ·n)

fD2 (x′
b,v)dv. (3.73)

We assume that the velocity distribution of the reemitted particles follows the Knudsen cosine

law for a given wall temperature, Tw, which for the D atoms yields

χin,D(x′
b,v) = 3

4π

m2
D

T 2
w

cos(θ)exp

(
−mDv2

2Tw

)
, (3.74)

while the expression for D2 molecules is similarly given by

χin,D2 (x′
b,v) = 3

4π

m2
D2

T 2
w

cos(θ)exp

(
−mD2 v2

2Tw

)
. (3.75)

We then follow an approach identical to the one described in Ref. [61] to obtain a set of time-

independent two-dimensional integral equations for nD and nD2 , enabling the numerical

implementation of the formal solution in Eqs. (3.60) and (3.61). First, we take advantage of

the fact that the typical neutral time of flight is shorter than the characteristic turbulence

timescales, τn ¿ τturb, a condition which is denote in Ref. [61] as the neutral adiabatic regime.

This allows for the approximation t ′ = t in Eqs. (3.60-3.67) or, equivalently, ∂t fD = 0 and

∂t fD2 = 0 in Eqs. (3.58-3.59). We also note that the neutral mean free path is typically smaller

than the characteristic elongation of turbulent structures along the magnetic field direction,

λmfp,nk‖ ¿ 1. Therefore, our description of neutral motion is reduced to the analysis of a set

of independent two-dimensional planes perpendicular to the magnetic field, which coincide

approximately with the poloidal planes. Finally, integrating Eqs. (3.60-3.61) over the velocity

space, we obtain a system of two coupled equations for the densities of D atoms and D2

molecules, written as
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nD(x⊥) =
∫

D
d A′ 1

r ′
⊥

∫ ∞

0
d v⊥v⊥

∫ ∞

0
d v‖

{
SD (x′

⊥,v)

v⊥
exp

[
− 1

v⊥

∫ r ′
⊥

0
νeff,D(x′′

⊥)dr ′′
⊥

]}
+

∫
∂D

d a′
b

cosθ′

r ′
⊥b

∫ ∞

0
d v⊥v⊥

∫ ∞

0
d v‖

{
fD(x′

⊥b,v)exp

[
− 1

v⊥

∫ r ′
⊥

0
νeff,D(x′′

⊥)dr ′′
⊥

]}
,

(3.76)

and

nD2 (x⊥) =
∫

D
d A′ 1

r ′
⊥

∫ ∞

0
d v⊥v⊥

∫ ∞

0
d v‖

{
SD2 (x′

⊥,v)

v⊥
exp

[
− 1

v⊥

∫ r ′
⊥

0
νeff,D2

(x′′
⊥)dr ′′

⊥

]}
+

∫
∂D

d a′
b

cosθ′

r ′
⊥b

∫ ∞

0
d v⊥v⊥

∫ ∞

0
d v‖

{
fD2 (x′

⊥b,v)exp

[
− 1

v⊥

∫ r ′
⊥

0
νeff,D2

(x′′
⊥)dr ′′

⊥

]}
.

(3.77)

We remark that the geometrical arguments presented in Ref. [61] are used when considering

the integral along the neutral path and the integral along the angle describing the perpendicu-

lar velocity, that is

∫ r⊥,b

0
dr ′

⊥
∫ 2π

0
dϑF (x⊥,x′

⊥) =
∫

D
d A′ 1

r ′
⊥

F (x⊥,x′
⊥), (3.78)

where d A′ is the area element in the two-dimensional poloidal plane and F (x⊥,x′
⊥) is a generic

function. We also use

∫ r⊥,b

0
dr ′

⊥
∫ 2π

0
dϑδ(r ′

⊥− r ′
⊥b)F (x⊥,x′

⊥) =
∫
∂D

d a′
b

cosθ′

r ′
⊥b

F (x⊥,x′
⊥b), (3.79)

with d a′
b designating a line element along the boundary of D, which we write as ∂D, and

θ′ = arccos(Ω⊥ · n̂).

We also express the volumetric source terms featuring in Eqs. (3.62) and (3.63), SD(x′,v) and

SD2 (x′,v), in terms of nD and nD2 , and the distribution functions of the neutral species at the

boundary appearing in Eqs. (3.66) and (3.63), fD and fD2 , in terms of Γout,D+ , Γout,D+
2

, Γout,D

and Γout,D2 . For the density of D2 molecules, nD2 , this is expressed as
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nD2 (x⊥) =
∫

D
nD2 (x′

⊥)νcx,D2 (x′
⊥)K

D2,D+
2

p→p (x⊥,x′
⊥)d A′

+
∫
∂D

(1−αrefl(x′
⊥,b))Γout,D2 (x′

⊥,b)K D2

b→p (x⊥,x′
⊥,b)d a′

b

+
∫
∂D

(1−αrefl(x′
⊥,b))

βassoc

2
Γout,D(x′

⊥,b)K D2

b→p (x⊥,x′
⊥,b)d a′

b

+
∫

D
nD(x′

⊥)νcx,D-D+
2

(x′
⊥)K

D2,D+
2

p→p (x⊥,x′
⊥)d A′+nD2[rec(D+

2 )](x⊥)

+nD2[out(D+
2 )](x⊥)+nD2[out(D+)](x⊥),

(3.80)

while for the density of D atoms, nD, this is written as

nD(x⊥) =
∫

D
nD(x′

⊥)νcx,D(x′
⊥)K D,D+

p→p (x⊥,x′
⊥)d A′

+
∫

D
nD2 (x′

⊥)νcx,D2−D+(x′
⊥)K D,D+

p→p (x⊥,x′
⊥)d A′

+
∫

D
2nD2 (x′

⊥)νdiss,D2
(x′

⊥)K D,diss(D2)
p→p (x⊥,x′

⊥)d A′

+
∫

D
nD2 (x′

⊥)νdiss-iz,D2
(x′

⊥)K D,diss-iz(D2)
p→p (x⊥,x′

⊥)d A′

+
∫
∂D

(1−αrefl(x′
⊥,b))(1−βassoc)Γout,D(x′

⊥,b)K D,reem
b→p (x⊥,x′

⊥,b)d a′
b

+nD[rec(D+)](x⊥)+nD[out(D+)](x⊥)+nD[diss(D+
2 )](x⊥).

(3.81)

Replacing vp in Eqs. (3.73) and (3.72), the projections of the fluxes of D2 and D along the direc-

tion normal to the boundary are written respectively asΓout,D2 (x′
⊥,b) =−∫

cos(θ)<0 v⊥cosθ fD2 (x′
⊥,b,v⊥)dv⊥

andΓout,D(x′
⊥,b) =−∫

cos(θ)<0 v⊥cosθ fD(x′
⊥,b,v⊥)dv⊥. Then, replacing fD2 (x′

⊥,b,v⊥) and fD(x′
⊥,b,v⊥)

by their expressions as given in Eqs. (3.66) and (3.67), these fluxes are rewritten in terms of nD,

nD2 , Γout,D+ , Γout,D+
2

, Γout,D and Γout,D2 as

Γout,D2 (x⊥,b) =
∫

D
nD2 (x′

⊥)νcx,D2 (x′
⊥)K

D2,D+
2

p→b (x⊥,x′
⊥)d A′

+
∫
∂D

(1−αrefl(x′
⊥,b))Γout,D2 (x′

⊥,b)K D2

b→b(x⊥,x′
⊥,b)d a′

b

+
∫
∂D

(1−αrefl(x′
⊥,b))

βassoc

2
Γout,D(x′

⊥,b)K D2

b→b(x⊥,x′
⊥,b)d a′

b

+
∫

D
nD(x′

⊥)νcx,D-D+
2

(x′
⊥)K

D2,D+
2

p→b (x⊥,x′
⊥)d A′

+Γout,D2[rec(D+
2 )](x⊥)+Γout,D2[out(D+

2 )](x⊥)+Γout,D2[out(D+)](x⊥),

(3.82)

and
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Γout,D(x⊥,b) =
∫

D
nD(x′

⊥)νcx,D(x′
⊥)K D,D+

p→b (x⊥,x′
⊥)d A′

+
∫

D
nD2 (x′

⊥)νcx,D2−D+(x′
⊥)K D,D+

p→b (x⊥,x′
⊥)d A′

+
∫

D
2nD2 (x′

⊥)νdiss,D2
(x′

⊥)K D,diss(D2)
p→b (x⊥,x′

⊥)d A′

+
∫

D
nD2 (x′

⊥)νdiss-iz,D2
(x′

⊥)K D,diss-iz(D2)
p→b (x⊥,x′

⊥)d A′

+
∫
∂D

(1−αrefl(x′
⊥,b))(1−βassoc)Γout,D(x′

⊥,b)K D,reem
b→b (x⊥,x′

⊥,b)d a′
b

+ΓD[rec(D+)](x⊥)+ΓD[out(D+)](x⊥)+ΓD[diss(D+
2 )](x⊥),

(3.83)

We remark that that the densities and fluxes of neutral particles in Eqs. (3.80-3.83) are mul-

tiplied by a factor 1−αrefl(x′
⊥,b) in order to consider only the contribution of particles that

are reemitted at the boundary, hence excluding reflection. We note that reflection of neutral

particles is included in the definition of the kernel functions featuring in Eqs. (3.76-3.77).

We now turn to the definition of the kernel functions appearing in Eqs. (3.80-3.83). These

are defined as integrals in the velocity space for a given pair of source (x′
⊥) and target (x⊥)

locations. Exemplifying for K
D2,D+

2
p→p (x⊥,x′

⊥), the kernel function measures the number of D2

neutrals arriving at a location x⊥ in the plasma volume (p) as a result of collisions involving

neutralization of D+
2 ions at a location x′

⊥ inside the plasma volume (p). Its expression is given

by

K
D2,D+

2
p→p (x⊥,x′

⊥) = K
D2,D+

2

p→p,dir(x⊥,x′
⊥)+αreflK

D2,D+
2

p→p,refl(x⊥,x′
⊥). (3.84)

which splits the contributions to nD2 arising from the direct path of length r ′
⊥,dir connecting x⊥

and x′
⊥, K

D2,D+
2

p→p,dir(x⊥,x′
⊥), and the path referring to the trajectory of neutrals that are reflected

at the boundary, K
D2,D+

2

p→p,refl(x⊥,x′
⊥). Both K

D2,D+
2

p→p,dir and K
D2,D+

2

p→p,refl follow the same expression,

K
D2,D+

2

p→p,path(x⊥,x′
⊥) =

∫ ∞

0

1

r ′
⊥,path

Φ⊥
[
v⊥D+

2
,TD+

2

](x′
⊥,v⊥)exp

[
− 1

v⊥

∫ r ′
⊥,path

0
νeff,D2

(x′′
⊥)dr ′′

⊥

]
d v⊥,

(3.85)

where path = {dir,refl} and r ′
⊥,path denotes the distance between x⊥ and x′

⊥ along the path (for

the direct trajectory r ′
⊥,dir is the distance between the two points along a straight line, while

for the reflected trajectory r ′
⊥,refl is computed as the sum of the distance between x′

⊥ and the

boundary and the distance from the boundary to x⊥). We remark thatΦ⊥
[
v⊥D+

2
,TD+

2

](x′
⊥,v⊥) is
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the integral along the parallel velocity of the D+
2 Maxwellian distribution function,Φ⊥

[
v⊥D+

2
,TD+

2

](x′
⊥,v⊥) =∫ ∞

−∞Φ[
v⊥D+

2
,TD+

2

](x′,v⊥)d v‖. We also note that K
D2,D+

2

p→p,dir in Eq. (3.85) is valid if the points are

optically connected, i.e. if the straight line connecting the two points does not cross the core

nor the limiter plates. Otherwise, if the points are not optically connected, K
D2,D+

2

p→p,dir = 0 is

defined. As for K
D2,D+

2

p→p,refl, we highlight that, following the same approach presented in Ref.

[61] and considered in Ch. 2, we neglect reflection at the outer walls, while ions and neutrals

can be reflected at the limiter plates. The other kernels appearing in Eqs. (3.76-3.77) follow

the same structure as K
D2,D+

2
p→p , and they take into account possible direct and reflected paths

connecting the two points. The form of these kernels is detailed in App. D.

Turning now to the evaluation of the non-homogeneous terms appearing in Eqs. (3.80-3.83),

i.e. the terms that are not proportional to nD nor nD2 , we start by looking at the contribution

of the ions recycled at the wall. As a matter of fact, the contribution to the density of neutral D

atoms of reflection and reemission of D+ ions that reach the boundary and recombine with

electrons is written as

nD[out,D+](x⊥) =
∫
∂D
Γout,D+(x′

⊥,b)
[

(1−αrefl(x′
⊥,b))

(
1−βassoc

)
K D,reem

b→p (x⊥,x′
⊥,b)

+αrefl(x′
⊥,b)K D,refl

b→p (x⊥,x′
⊥,b)

]
d a′

b,
(3.86)

where Γout,D+ is defined in Eq. (3.68). Similarly, the recombination of D+
2 ions with electrons at

the walls that are then either reflected or reemitted as D2, and the recombination of D+ ions

with electrons at the walls and the following association into D2 molecules contribute to the

density of the D2 species. These contributions can be expressed as

nD2[out,D+
2 ](x⊥) =

∫
∂D
Γout,D+

2
(x′

⊥,b)
[

(1−αrefl(x′
⊥,b))K D2,reem

b→p (x⊥,x′
⊥,b)

+αrefl(x′
⊥,b)K D2,refl

b→p (x⊥,x′
⊥,b)

]
d a′

b,
(3.87)

and

nD2[out,D+](x⊥) =
∫
∂D
Γout,D+(x′

⊥,b)

[
(1−αrefl(x′

⊥,b))
βassoc

2
K D2,reem

b→p (x⊥,x′
⊥,b)

]
d a′

b. (3.88)

We also define the non-homogeneous contributions to the flux of neutrals at the boundary,

Γout,D and Γout,D2 , arising from the ions outflowing to the wall. Following a similar approach

to the one described for the contributions to nout,D and nout,D2 , these are expressed as
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Γout,D2[out,D+
2 ](x⊥,b) =

∫
∂D
Γout,D+

2
(x′

⊥,b)
[

(1−αrefl(x′
⊥,b))K D2,reem

b→b (x⊥,b,x′
⊥,b)

+αrefl(x′
⊥,b)K D2,refl

b→b (x⊥,b,x′
⊥,b)

]
d a′

b,
(3.89)

Γout,D2[out,D+](x⊥,b) =
∫
∂D
Γout,D+(x′

⊥,b)

[
(1−αrefl(x′

⊥,b))
βassoc

2
K D2,reem

b→b (x⊥,b,x′
⊥,b)

]
d a′

b,

(3.90)

and

Γout,D[out,D+](x⊥,b) =
∫
∂D
Γout,D+(x′

⊥,b)
[

(1−αrefl(x′
⊥,b))

(
1−βassoc

)
K D,reem

b→b (x⊥,b,x′
⊥,b)

+αrefl(x′
⊥,b)K D,refl

b→b (x⊥,b,x′
⊥,b)

]
d a′

b.

(3.91)

We then turn to the evaluation of the contributions to the neutral particles featuring in Eqs.

(3.80-3.83) generated by volumetric processes involving the ion species D+ and D+
2 . The

contribution to the D2 density from D+
2 recombination processes is expressed as

nD2[rec,D+
2 ](x⊥) =

∫
D

nD+
2

(x′
⊥)νrec,D+

2
(x′

⊥)K
D2,D+

2
p→p (x⊥,x′

⊥)d A′, (3.92)

while the contribution to the flux of D2 to the boundary, also associated to D+
2 recombination

events, is written as

Γout,D2[rec,D+
2 ](x⊥) =

∫
D

nD+
2

(x′
⊥)νrec,D+

2
(x′

⊥)K
D2,D+

2

p→b (x⊥,x′
⊥)d A′. (3.93)

Similar contributions from volumetric recombination processes are considered for the D

neutral species. The contribution to the D density from D+ recombination is given by

nD[rec,D+](x⊥) =
∫

D
nD+(x′

⊥)νrec,D+(x′
⊥)K D,D+

p→p (x⊥,x′
⊥)d A′, (3.94)
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and a similar definition is considered for the flux of D,

Γout,D[rec,D+](x⊥) =
∫

D
nD+(x′

⊥)νrec,D+(x′
⊥)K D,D+

p→b (x⊥,x′
⊥)d A′. (3.95)

Finally, the contribution to nD from the dissociation of D+
2 ions featuring in Eq. (3.81) is

defined as

nD[diss(D+
2 )](x⊥) =

∫
D

nD+
2

(x′
⊥)νdiss,D+

2
(x′

⊥)K
D,diss(D+

2 )
p→p (x⊥,x′

⊥)d A′

+
∫

D
2nD+

2
(x′

⊥)νdiss-rec,D+
2

(x′
⊥)K

D,diss-rec(D+
2 )

p→p (x⊥,x′
⊥)d A′.

(3.96)

and, similarly, the dissociation of D+
2 ions gives rise to a contribution to Γout,D in Eq. (3.83)

defined as

Γout,D[diss(D+
2 )](x⊥) =

∫
D

nD+
2

(x′
⊥)νdiss,D+

2
(x′

⊥)K
D,diss(D+

2 )
p→b (x⊥,b,x′

⊥)d A′

+
∫

D
2nD+

2
(x′

⊥)νdiss-rec,D+
2

(x′
⊥)K

D,diss-rec(D+
2 )

p→b (x⊥,b,x′
⊥)d A′.

(3.97)

The system of coupled kinetic equations for the neutral species is discretized on a regular

cartesian grid in the (R, Z ) plasma and written in matrix form, in order to obtain the corre-

sponding numerical solution by factorizing the matrix and solving the system. We describe

the details of the numerical implementation of the neutral model in App. E.

3.6 First simulation of a multi-component plasma with the GBS code

In this section, we present the results from the first turbulence simulations in the tokamak

boundary based on the multi-component plasma model implemented in the GBS code and

described in the present chapter, in Secs. 3.2-3.5. Analogously to the simulations reported in

Refs. [33, 61] and in Ch. 2 of the present thesis, we consider a tokamak with an infinitesimally

thin toroidal limiter at the HFS equatorial midplane, with major radius R0/ρs0 = 500, and we

simulate a three-dimensional domain, considering an annular cross section that includes

both the edge and the device SOL. The radial length of the domain is Srad = 150ρs0 and the

poloidal length at the core interface is Spol = 800ρs0. Given that we consider the limiter to

extend over 75ρs0, both the open and closed field-line regions have a radial width of 75ρs0,

corresponding to half the domain size along the radial direction.
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The simulation presented in this chapter considers the following parameters: q = 3.992,

n0 = 2×1013cm−3, T0 = 20.0eV, τ= 1, Ωci = 5.0×107s−1, TW = 0.3eV, ν= 0.1, STe = STi = 0.3,

η0e = η0D+ = 1.0, η0Ω = 4.0, χ‖0,e = 0.5, χ‖0,D+ = 0.05, χ‖0,D+
2
= 0.05, D‖ne = 0.5, D‖nD+

2
= 0.0,

D‖v‖e = 0.5, D‖v‖D+ = 0.0, D‖v‖D+
2
= 0.5, and D⊥ne = 21.0, D⊥nD+

2
= D⊥Ω = D⊥v‖e = D⊥v‖D+ =

D⊥v‖D+
2
= D⊥Te = D⊥TD+ = D⊥TD+

2
= 7.0. Regarding the probability of a reflection process

occurring at the limiter, we note that it has a strong dependence on the particle energy and the

properties of the wall material (see Ref. [12]). In this simulation, reflection of ions and neutrals

takes place at the limiter plates with a given probability αrefl,lim, which we take constant along

the limiter surface. We thus write the fraction of particles being reflected at the boundary as

αrefl(x′
⊥,b) =

{
αrefl,lim 6= 0 if x′

⊥,bis located at limiter walls

0 if x′
⊥,bis located at the outer and inner boundary.

(3.98)

Since we choose to consider metallic boundaries, we assume a value identical to the one

adopted in Ref. [61] and in Ch. 2 of this thesis, αrefl,lim = 0.8, with the remaining fraction of the

incoming particles being absorbed and reemitted when the wall is saturated. We also assume

that most of the absorbed D atoms associate into D2 molecules at the tokamak boundary (see

Refs. [79, 96]), thus being reemitted as D2 molecules. We therefore take βassoc = 0.95.

Regarding the numerical parameters of the simulations, the plasma grid resolution is nx,p ×
ny,p ×nz,p = 255×511×64, while the resolution of the neutral grid is nx,n ×ny,n ×nz,n = 24×
138×64. The time step is 3.75×10−5R0/cs, with the neutral quantities being evaluated every

∆t = 0.1R0/cs. Although convergence studies based on the multispecies model presented in

this chapter have not been developed, convergence on plasma and neutral grid refinement

has been studied within the context of single-component simulations. The conclusions

presented in Ref. [36], which we expect to remain valid in the multi-species model presented

in this chapter, confirm that our results are converged with respect to the frequency of neutral

calculation.

Figure 3.2: Typical poloidal snapshot of the electron density (ne) and electron temperature
(Te) taken from the turbulent quasi-steady state of the multi-component plasma simulation
described in the present chapter.
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The simulation results presented here refer to the quasi-steady state regime, reached after a

transient, when the plasma and neutral profiles oscillate around constant equilibrium values.

We highlight that, similarly to the results from single-component GBS simulations, the plasma

behaviour is turbulent in the edge and especially in the SOL, as it can be observed in the

poloidal snapshots of electron density (ne) and temperature (Te) presented in Fig. 3.2. We

perform toroidal and time averages of the plasma quantities evolved by Eqs. (3.19-3.27) and

(3.28) over a time interval of ∆t ' 10R0/cs0. Poloidal cross section plots of these quantities

are shown in Fig. 3.3. In Fig. 3.4, we present the poloidal cross section plots of the density of

the neutral atoms and molecules, nD and nD2 respectively, and the neutral-plasma collisional

interaction terms considered in our model. The results of these multi-species simulations

are compared with respect to a single-component plasma simulation considering the same

parameter values. We present in Fig. 3.5 the time and toroidal averages of the plasma and

neutral quantities from the single-species simulation which we find relevant to compare with

the results from the multi-species simulation.

We start by focusing on some general considerations on the densities of the plasma and

neutral particles. The plots in Fig. 3.3 show that the density of the molecular ion species D+
2 is

between three and four orders of magnitude smaller than the density of the main ion species

D+, which agrees with the assumption nD+
2

/nD+ ¿ 1 considered in Eqs. (3.22-3.27) for the

derivation of the parallel friction and heat flux terms and in Eqs. (3.40-3.44) to obtain the

boundary conditions at the limiter plates. We note that the density of D+
2 peaks just inside

the LCFS close to the limiter, since most of the D2 molecules cross the open-field line region

without interacting due to the low electron densities and temperatures in the SOL and are then

dissociated and/or ionized by the denser and warmer plasma inside the LCFS. As a matter

of fact, nD+
2

matches the profile of the molecular ionization source nD2νiz,D2 shown in Fig.

3.4, which also peaks in the edge near the limiter. On the other hand, Fig. 3.4 shows that nD

and nD2 are similar to nD+ near the limiter plates, while being about one order of magnitude

smaller than nD+ in the rest of the SOL and up to two orders of magnitude smaller inside the

LCFS. Moreover, looking at the relative importance of D and D2, Fig. 3.4 shows that nD2 is

larger than nD by a factor between two and three in the SOL around the limiter, while nD is

larger than nD2 inside the LCFS at the HFS equatorial midplane, as a result of the higher values

of electron density and temperature, which lead to the dissociation of D2 molecules in this

region.

We then turn our attention to the asymmetry of the plasma density and flow. As a matter of fact,

a slight up-down asymmetry in the edge region is observed in the profiles of ne and nD+ , which

are noticeably larger below the equatorial midplane than above it. This can also be observed in

the poloidal snapshot of ne in Fig. 3.2. At the same time, the profiles of v‖e and v‖D+ reveal that

electrons and D+ ions flow in the counterclockwise direction in the edge region (see Fig. 3.3).

Since most neutrals are ionized inside the LCFS and in the vicinity of the limiter, the plasma

particles resulting from the ionization processes flow downwards, which leads to a slightly

larger density of e− and D+ below the equatorial midplane of the device. We highlight that the

nD+ and v‖D+ profiles obtained from simulations based on the single-component model of
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3.6. First simulation of a multi-component plasma with the GBS code

Figure 3.3: Cross section plots of the electron density (ne), D+ density (nD+), D+
2 density (nD+

2
),

electron parallel velocity (v‖e), D+ parallel velocity (v‖D+), D+
2 parallel velocity (v‖D+

2
), electron

temperature (Te), D+ temperature (TD+), D+
2 temperature (TD+

2
) and electrostatic potential (φ),

toroidal and time-averaged over an interval of ∆t = 10.1R0/cs0 from the quasi-steady state of
the multi-component plasma simulation.

GBS are slightly different, as illustrated in Fig. 3.5. In the single-component simulation, an

up-down asymmetry is also observed in the nD+ profile. However, this asymmetry is related to

the ionization source nDνiz being larger in the edge region below the limiter than above it, due

to larger recycling rates at the lower limiter plate. In fact, in contrast to the multispecies case,
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Figure 3.4: Cross section plots of the neutral species densities and source terms resulting from
the neutral-plasma interaction, toroidal and time-averaged over an interval of ∆t = 10.1R0/cs0

from the quasi-steady state of the multi-component plasma simulation described.

the v‖D+ is characterized by a counterclockwise parallel flow of D+ ions in the edge below the

midplane, while the parallel flow is directed clockwise above it.

Another important observation arising from the multi-component plasma simulation is the

higher recycling rates in the region above the limiter than below, which is highlighted by the

up-down asymmetry observed in the profiles of the densities of nD and nD2 in Fig. 3.4. This

suggests that the parallel flux of plasma in the SOL region towards the limiter plates is larger

above the equatorial midplane, which agrees with the up-down asymmetry shown in Fig.

3.3 for the poloidal profiles of nD+ and v‖D+ . A deep investigation of the reason behind this

behaviour calls for a careful analysis of the turbulent dynamics in the SOL, taking also into

account the other components of the flux beyond the parallel flow. Nonetheless, the simulation

results suggest that this up-down asymmetry may be related to the counterclockwise flow of
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plasma in the edge observed in the profile of v‖D+ .

Figure 3.5: Cross section plots of plasma density n = ne = nD+ , ion parallel velocity v‖D+ ,
ion temperature TD+ and ionization source term nD+νiz, toroidal and time-averaged over an
interval of ∆t = 10.1R0/cs0 from a quasi-steady state single-component plasma simulation.
The grid sizes and simulation parameters are the same as the ones considered in the multi-
component simulations, except for the wall re-emission temperature, which is set to TW =
3.0eV, to mimick Franck-Condon dissociation processes, and D⊥ne = 7.0.

Moreover, nD+ is observed to be slightly larger in the HFS with respect to the LFS, which is

related to the existence of D+ sources in the HFS around the midplane. This result agrees

with the conclusions driven from the single-species simulation, where nD+ is also found to be

larger in the HFS as a consequence of the ionization source, nDνiz.

Focusing now on the temperature of the plasma species, we observe that the Te profile presents

a behaviour identical to the one verified in single-component plasma simulations. A clear

asymmetry between the HFS and the LFS is observed for TD+ , whose profile is also very similar

to the results obtained from a single-component simulation presented in Fig. 3.5. As a matter

of fact, the temperature is considerably lower on the HFS compared to the LFS, which is

related to the generation of cold D+ ions inside the LCFS due to the ionization of D atoms,

dissociative processes and charge-exchange collisions. This becomes particularly important

in the region above the limiter, where larger recycling rates are observed. On the other hand,

the profile of pD+
2

peaks inside the LCFS at the HFS, where the majority of the D+
2 ions are

generated by ionization of D2 molecules generated at the limiter. The up-down asymmetry
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of the pD+
2

profile around the limiter plates is also related to the asymmetry of the recycling

rates. As an aside note, we highlight that, since it is strongly related to the Te profile [97], the

electrostatic potential profile obtained from the multi-component simulations is identical to

the one observed for the single-component plasma model.

Focusing on the neutral-plasma interaction terms presented in Fig. 3.4, we start by noticing

that ionization processes are in general considerably more important in the edge region at the

HFS. We also highlight that the ionization frequencies have similar profiles for both atoms and

molecules. However, nD2νiz,D2 peaks in the vicinity of the LCFS, while nDνiz,D peaks further

inside the LCFS and shows a larger spread along the radial direction. In fact, D2 molecules are

generated in the SOL and are dissociated and/or ionized in the proximity of the LCFS, where

the plasma is warmer and denser. In contrast, although most D atoms are generated in the

SOL, they are also a product of dissociation of D2 molecules in the edge. This effect shifts the

maximum of nDνiz,D radially inwards and increases the radial spread of the ionization source,

when compared to single-component plasma simulations. Since nD is larger than nD2 in the

edge, the maximum of nDνiz,D is also almost two times larger than the maximum of nD2νiz,D2 .

Regarding collisions between electrons and neutral particles, we note that the reactions

involving D2 are more important in the SOL, taking place mostly in the area surrounding the

limiter plates, where a larger number of neutral molecules are generated. Reactions with D2

are less important in the edge, as most molecules are dissociated and/or ionized due to the

higher densities and temperatures. On the other hand, elastic collisions between electrons

and D atoms peak inside the LCFS, which is because the cross sections of these reactions are

larger in the edge region due to the higher plasma density and temperature and because of the

presence of D atoms generated by molecular dissociation. We remark that elastic collisions

and charge-exchange reactions are more frequent above the limiter, which follows from the

previous discussion on the strong up-down asymmetry. As for charge-exchange reactions,

we observe that their spatial distribution is similar to the one of collision between electrons

and neutral particles. The charge-exchange reactions between the molecular species (D2 −D+
2

collisions) are less important than the interactions between mono-atomic species (D−D+

collisions) by three to four orders of magnitude, which results from the small nD+
2

to nD+ ratio.

In addition, the terms related to charge-exchange interactions between D2 molecules and

D+ ions (D2 −D+ collisions) are two orders of magnitude smaller than the ones between the

atomic species (D−D+ collisions), in the region of the domain where these interactions are

important. Finally, charge-exchange interactions between D+
2 ions and D atoms is three orders

of magnitude less important than D−D+ collisions, which is a consequence of nDνcx,D−D+
2

being proportional to nD+
2

.

We finally analyse the dissociative reactions, which constitute a sink of molecular species D2

and D+
2 and sources of D atoms and D+ ions. Dissociation of D2 and D+

2 , described by the

terms nD2νdi,D2 and nD+
2
νdi,D+

2
respectively, which do not involve ionization nor recombination

processes, are the dominant dissociation processes, as their frequencies are similar to the

reaction rates of the ionization processes. We highlight that dissociation of D2 molecules peaks
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just above the limiter plate (where most D2 molecules are generated) and in the edge region,

in the proximity of the LCFS, and then it becomes considerably smaller in the core, given

that nD2 drops rapidly across the edge. In contrast, dissociation of D+
2 ions is very small in

the SOL, where the density of D+
2 is negligible (at the typical electron temperature of the SOL,

ionization of D2 has a very small cross section), and is important only inside the LCFS, where

D+
2 ions are generated. The nD+

2
νdi,D+

2
profile thus closely follows the nD+

2
profile, exhibiting

a larger radial spread with respect to the dissociation of D2. As for dissociative ionization of

D2 and D+
2 , nD2νdi−iz,D2 and nD+

2
νdi−iz,D+

2
respectively, we observe that the rates are smaller by

one to two orders of magnitude compared to the dissociation of D2 and D+
2 and peak in the

edge region even further inside. This is related to the fact that the energy required to trigger

dissociative ionization processes is significantly larger than the one required to dissociate

the particles without ionizing them, as shown in Table 3.2. Therefore, these processes are

only important in the edge region, where densities and temperatures are sufficiently high

to make these cross sections significant. This is in particular the case of nD+
2
νdi−iz,D+

2
, since

this term is also proportional to the density of D+
2 ions, which is relevant only inside the

LCFS. However, we remark that these reactions become considerably less important towards

the core, as very few D2 and D+
2 cross the edge region without being dissociated. Regarding

dissociative-recombination of D+
2 particles, nD+

2
νdi−rec,D+

2
, its amplitude is also smaller than

that of dissociation by one to two orders of magnitude and follows very closely the nD+
2

profile,

as there is no energy threshold to trigger the reaction, contrarily to dissociative ionization

processes.

The results described above lead to a global picture of the main processes determining the

dynamics of D2 molecules in the tokamak boundary. Although some D2 are dissociated in the

open field-line region, most of them cross the LCFS and are dissociated into D atoms within a

short distance, as they interact with the plasma of the edge, of higher density and temperature.

The remaining D2 molecules penetrate further inwards and are ionized by the increasingly

warmer and denser plasma, giving rise to D+
2 ions, which in turn have very short lifetimes,

since they are rapidly dissociated into D+ ions and D atoms.

We remark that, due to the low plasma density of the SOL, in the multi-component as well

as in the single-component simulations, a considerable amount of D atoms generated in the

SOL (emitted at the limiter or created by dissociation of D2 molecules) penetrate in the edge,

where ionization takes place due to the higher plasma density and temperature. However,

the presence of the D sources inside the LCFS in the multi-component simulations shifts the

spatial distribution of ionization, nDνiz, towards the core with respect to the results from single-

component simulations, as shown in Fig. 3.5. Therefore, these results highlight the importance

of considering molecular dynamics when describing the neutral-plasma interaction in the

boundary of a tokamak. A parameter scan on the electron density and temperature will allow

broader physical conclusions to be drawn from the multi-component model of the neutral-

plasma interaction presented here. In particular, increasing plasma density and temperature

is expected to reduce the penetration of both D atoms and D2 molecules, thus shifting the

dissociation and ionization sources/sinks radially outwards.
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Figure 3.6: Radial profiles of the ions and neutrals species densities, averaged over the toroidal
and poloidal directions, evaluated over an interval of∆t = 10.1R0/cs0 from a quasi-steady state
simulation.

To conclude, we also present radial plots of the particle densities (Fig. 3.6) and radial fluxes

(Fig. 3.7), which are obtained by evaluating the average of these quantities in time and in

the toroidal and poloidal directions. In Fig. 3.7, we separate the contributions of the E×B,

diamagnetic and polarization drifts to the flux of the ion species, D+ and D+
2 . On the other

hand, Fig. 3.8 presents the results from the single-component simulations. The nD+ profile in

Fig. 3.6 is similar to the one in Fig. 3.8 obtained from the single-component plasma simulation,

with a large density gradient region near the LCFS and a density shoulder forming in the far

SOL. In turn, the density of D+
2 is small in the whole domain and peaks in the edge, across the

LCFS, where most D2 molecules are ionized, and decreases rapidly towards the core, due to the

small penetration of D2 molecules in the warmer and denser plasma in that region. We remark

that the D+
2 ions observed in the open-field line region result mostly from charge-exchange

interactions between D2 and D+ (see Fig. 3.4) and the ionization of D2 molecules reemitted

from the limiter and vessel wall.

Regarding the neutral species, we note that nD peaks in the SOL, close to the LCFS, and

decreases radially outwards, while in the single-component plasma simulation nD increases

monotonically radially towards the wall. This is the consequence of the dissociation of D2

molecules into D atoms in the edge and near SOL, as well as the association of D atoms into

D2 molecules at the limiter plates and the vessel wall. On the other hand, we observe that nD2

decreases monotonically from the outer wall to the interface with the core, since D2 molecules

are generated in the open-field line region as the result of recycling processes and are lost due

to dissociation and ionization processes which take place mostly in the edge and near SOL.

The dissociation of D2 molecules also affects the radial flux of D, ΓD, presented in Fig. 3.7.

In contrast with the single-component plasma simulation presented in Fig. 3.8, ΓD points
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Figure 3.7: Radial profiles of the radial flux for D+ ions (top), D+
2 ions (middle) and neutral

species D and D2 (bottom), averaged over the toroidal and poloidal directions, evaluated
over an interval of ∆t = 10.1R0/cs0 from the quasi-steady state multi-component plasma
simulation. The components of the D+ and D+

2 radial flux are discriminated.

radially inwards in the edge, reversing sign in the SOL, which is a consequence of the release

of D atoms due to the dissociation of D2 molecules, of particular importance close to the LCFS.

Moreover, the D atoms reaching the outer wall associate and are reemitted as D2 molecules,

thus contributing to the outward flux of D. The multi-component plasma simulation shows

that ΓD peaks in the edge, while for a single-component model ΓD is maximum at the LCFS.

This is due to the D atoms that are generated in the edge region close to the LCFS in a multi-

component model, compensating their ionization. At the same time, we remark that the radial

flux of D2 molecules, ΓD2 , points radially inwards in the whole domain (see Fig. 3.7). As a

matter of fact, ΓD2 is roughly constant in the SOL, because the loss of D2 molecules due to

dissociation is compensated by the D2 molecules recycled at the limiter. Then, ΓD2 decreases

in the edge as a result of the molecular dissociation and ionization (due to the larger values

of plasma density and temperature in the closed field-line region), thus becoming negligible

towards the core.

Focusing now on the dynamics of the ion species, we highlight that the radial flux of D+ ions

points radially outwards across the whole domain and is mostly determined by the dominant

E×B flux except in the proximity of the core, where the diamagnetic flux dominates over the

E×B flux. The polarization drift contribution is negligible in the whole domain. We also note

that the flux increases across the edge region from the core to the LCFS, peaks in the near

SOL and gradually decreases across the SOL. This significantly differs from the profile of the

ion flux in the single-component plasma simulation (see Fig. 3.8), where the flux peaks at

the LCFS. This difference between the two models is related to the location of the ionization

source nDνiz. As a matter of fact, while the source has a smooth profile and peaks at the LCFS

in the single-component simulation, the ionization source peaks further inside the edge in
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Figure 3.8: Radial profiles of density (top) and radial flux (bottom) for the D+ and D species, av-
eraged over the toroidal and poloidal directions, evaluated over an interval of ∆t = 10.1R0/cs0

from a quasi-steady state single-component plasma situation. The components behind the
radial ion flux are discriminated. Plasma and neutral grid resolution, as well as simulation
parameters, are the same considered in Fig. 3.5.

the multi-component model, leading to a sharp increase of the D+ flux in the edge, in the

proximity of the LCFS.

We remark that, as seen in Fig. 3.7, the radial flux of D+
2 ions points radially outwards in the

SOL, but is directed radially inwards in the edge. This is a consequence of the fact that most D+
2

are generated in the vicinity of the LCFS, where the D2 molecules are ionized by the warmer

and denser plasma. The D+
2 radial flux is determined by the balance between the inward

pointing E×B and outward pointing diamagnetic drift components in the SOL, by the E×B

flux in the edge close to the LCFS, and by the diamagnetic component towards the core.

We also note that the inward pointing D+
2 flux, ΓD+

2
, is sharply peaked in the edge, in the

vicinity of the LCFS. This is because most D+
2 ions are generated by ionization of D2 molecules

in that region and are dissociated shortly afterwards, having travelled a negligible distance.

Indeed, the spatial location of the peak of ΓD+
2

matches to the one of the nD+
2

profile in Fig. 3.6.

We highlight that the contribution to the flux of D+
2 arising from the polarization drift is not

represented in Fig. 3.7 because it is neglected in our model. Finally, ΓD+
2

is three to four orders

of magnitude smaller than ΓD+ , which is a consequence of the small ratio nD+
2

/nD+ . Since

the polarization drift component is expected to be small compared to the total ion flux of D+
2

molecules, ΓD+
2

, we conclude that neglecting the polarization drift terms in Eqs. (3.19-3.27)

has indeed a negligible impact on the results of the simulation.

We must highlight that the D+
2 flux is very small compared to the flux of the main ion species,

D+, since the density of D+
2 ions is about four orders of magnitude smaller than the density

of D+. This may allow to neglect the D+
2 ion species, by assuming that they are instantly
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dissociated into a D atom and a D+ ion. In the future, we will repeat the simulation presented

here while considering instantaneous dissociation of D+
2 to clarify the impact of taking the

finite lifetime of D+
2 ions into account.

3.7 Conclusions

In this chapter we present a multi-component plasma model for the self-consistent description

of the neutral and plasma dynamics in the tokamak boundary, which is implemented in the

GBS code. A deuterium plasma is simulated in the edge and SOL regions of a tokamak,

featuring electrons, D+ and D+
2 ions, D atoms and D2 molecules. The models that describe

the neutrals and the plasma dynamics are coupled by means of a number of collisional

processes, which are responsible for the introduction of neutral-plasma interaction terms both

in the plasma and the neutral equations. The collisional reactions considered in this chapter

include ionization, elastic collisions between electrons and neutral particles, charge-exchange

collisions and dissociative processes. The multi-component plasma model is based upon the

Braginskii fluid equations derived in the drift-limit, which extend the single-ion species model

to account for D+
2 ions. The closure considered in the present chapter follows the approach

developed by Zhdanov. Regarding the neutral particles, the model used in the single-neutral

species model of GBS [61] is extended to address the effect of the molecular species, D2. As a

matter of fact, in the model presented in this chapter, the neutrals are computed by solving

two coupled kinetic equations for the D and D2 species by using the method of characteristics.

The resulting system of linear integral equations are then discretized and solved with respect

to the densities of neutral species, nD and nD2 .

The results from the first simulation based upon the multi-component model, considering a

toroidally limited plasma, are also described. These results bear some considerable differences

compared to the results from simulations carried out by using the single-ion component model

implemented in GBS. An up-down asymmetry is observed in the ne and nD+ density profiles,

with larger densities being observed below the equatorial midplane. This is related to the

counterclockwise parallel flow of the edge plasma, as reported in the profiles of v‖e, v‖D+ and

v‖D+
2

. This feature also leads to larger recycling rates and higher neutral density in the upper

side of the limiter, compared to the region below the limiter plates. In addition, the density of

the neutral atoms and molecules, nD and nD2 , is found to be about one order of magnitude

smaller than nD+ in the open-field line region and two orders of magnitude smaller in the

edge, while nD+
2

is about three to four orders of magnitude smaller than nD+ , even in the edge

close to the LCFS, where nD+
2

peaks.

Taking into account the molecular dynamics also allowed multi-component plasma simula-

tions to grasp the influence of D2 molecules on the plasma fuelling. In fact, most D2 particles

are generated at the limiter close to the LCFS. A large fraction of D2 molecules cross the LCFS

and reach the edge, where they are typically dissociated into atomic D as a result of the in-

teraction with the high density and temperature plasma. The D atoms thus generated and
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the remaining D2 molecules are then ionized inside the edge, with the D+
2 ions being disso-

ciated shortly afterwards as a consequence of the high electron densities and temperatures.

Therefore, the simulation results reveal an inward radial shift of the peak of the ionization of D

atoms, compared to the results from the single-ion species simulations.

The radial profiles of the densities and radial fluxes are also influenced by the inclusion of

molecules. The radial flux of D+ is observed to increase sharply in the edge, in the vicinity

of the LCFS as a result of the ionization source peaking in that region. The flux of D+ then

remains high in the proximity of the LCFS and decreases sharply in the near SOL, where the

ion sinks at the limiter are dominant over the sources of D+. This constitutes a difference with

respect to the D+ flux observed in the results from a single-ion species simulation, where a

maximum is reported at the LCFS. On the other hand, the D density peaks in the SOL due to

the D2 molecules dissociated in that region. This is also the reason for the sign reversal of the

radial flux of D atoms in the far SOL, where ΓD points radially outwards. On the other hand,

the inward flux of D atoms increases radially inwards inside the LCFS, since D atoms are also

generated in the proximity of the LCFS by D2 dissociation.

To conclude, the results presented in this chapter highlight that the multi-component model

for the self-consistent description of the neutral-plasma interaction provide a description

of a deuterium plasma capturing the molecular dynamics and its overall influence on the

other plasma and neutral quantities. Therefore, the model can be used to address a multi-

component plasma and more than one neutral species at a kinetic level when carrying out

self-consistent first-principles simulations of plasma turbulence in the tokamak boundary.

The procedure described in this chapter can be extended to include other species of plasma

particles or neutrals, as well as the corresponding additional collisional processes. The model

can also be implemented in a diverted tokamak configuration (featuring one or various X-

points), where multi-component simulations are important to shed some light on the high

recycling and detachment regimes.
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Imaging

This chapter presents the results of gas puff imaging (GPI) studies carried out by exploiting the

multi-component model described in Ch. 3. The research reported here aims at extending the

results of previous works on the simulation of GPI to the case of a multi-component deuterium

plasma in a three-dimensional domain. The simulations are performed in a toroidally-limited

plasma with gas puff sources located at the LFS equatorial midplane. The Dα emission arising

from the excitation of D atoms and the contributions from dissociation of D2 molecules and

D+
2 ions, which is observed to dominate over the other components in the proximity of the

wall, are considered. The statistical moments and the turbulence properties, computed for the

different components of the Dα emission, as well as the relevant plasma and neutral quantities,

are investigated. The correlation functions between the Dα emission rate and the plasma

and neutral quantities, namely the electron density, ne, electron temperature, Te, and density

of neutral atoms, nD, are also evaluated considering in detail each contribution to the Dα

emission and analysing the correlation functions between these quantities in the simulation

domain. The results shown in this chapter highlight the importance of considering the neutral

fluctuations when interpreting the measurements of the Dα emission rate, especially in the

edge, where the perturbations of the neutral density have a more significant impact on the Dα

emission.
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4.1 Introduction

Gas puff imaging (GPI) is one of the fundamental diagnostics currently used to evaluate the

turbulent evolution of a plasma in the boundary of tokamak devices [98, 99, 100, 101]. The

GPI diagnostics is based on the injection of neutral particles at a specific toroidal location.

The neutral particles interact with the plasma via a number of collisional processes and give

rise to emission of light as a result of atomic deexcitation. Given that the plasma boundary

is a medium of low optical density, the emitted light interacts weakly with the plasma and

can be measured by one or more high temporal and spatial resolution cameras. The cameras

register the integrated light emitted along the respective lines of sight. Using an horizontal

and a vertical camera, a tomographic reconstruction of the two-dimensional light emission

profile is also made possible.

Optical filters allow for the fast cameras to select a specific spectral line of interest within

the visible range, depending on the composition of the plasma. In the case of a deuterium

plasma, measurements most often focus on the Dα line of the Balmer series [98, 100, 102, 103],

which is the result of the deexcitation of a deuterium atom from the second excited state

D∗(n = 3) to the first excited state D∗(n = 2). Several atomic and molecular processes account

for the presence of deuterium atoms in the D∗(n = 3) state. These processes include impact

excitation of D atoms in the fundamental (n = 1) state and a variety of dissociative processes

of the diatomic deuterium species, D2 and D+
2 . As a result, it is difficult in experiments to

identify the source of Dα emission, even though the majority is expected to come from impact

excitation of D atoms. Moreover, the Dα emission following each excitation process has a

complex dependence on a number of parameters, which makes it even more difficult to

interpret Dα measurements. Therefore, assumptions have to be made, based on the properties

of the diagnosed plasma, to guide the interpretation of experimental results.

The effect of molecular dynamics is often neglected when interpreting Dα emission in ex-

periments [102, 104], therefore excluding the contribution of dissociative processes in the

interpretation of the Dα emission source, which is thus ascribed to electron impact excitation.

The emission rate is thus modelled as [99, 100, 103, 64]

Dα,Exc = nenDrα,Exc(ne,Te), (4.1)

with ne the electron density, nD the density of D atoms and rα,Exc(ne,Te) the emission rate

coefficient for impact excitation of D to the second excited state D∗(n = 3). The dependence of

rα on the electron density and temperature, ne and Te respectively, is theoretically calculated,

based on a collisional-radiative model [105]. In addition, it is often assumed that Dα emission

depends weakly on the neutral density perturbations. As a consequence, nD is assumed

constant in Eq. (4.1) and nD fluctuations are not taken into account in the analysis. Finally,

electron density and temperature fluctuations are assumed strongly correlated in the SOL

region [102, 104]. With these assumptions, the electron pressure can be inferred from the Dα
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emission measurements, which ultimately allows for the study of boundary turbulence. A more

accurate interpretation of Dα emission is made possible by disentangling the dependence

of the Dα emission on ne, nD and Te. This can be obtained by measuring the light emission

resulting from three different spectral lines, similarly to the experiments carried out with He-

lines in the Alcator C-Mod tokamak [98] and the TJ-II stellarator [106]. However, if molecular

dissociation becomes a non-negligible source of Dα emission with respect to impact excitation,

the use of different spectral lines is not sufficient to disentangle the complexity underlying the

Dα emission.

A number of numerical simulations, based on different approaches, have been performed to

disentangle the complexity of the interpretation of GPI results over the last decades. On the

one hand, GPI simulations were carried out assuming that neutral density perturbations are

negligible, focusing therefore on the turbulent dynamics of the plasma [102, 103, 104, 107].

On the other hand, the effect of neutral fluctuations were addressed while considering time-

independent plasma profiles or using analytical models for plasma perturbations [100, 108,

109, 110]. Efforts to jointly address the plasma and neutral dynamics on GPI simulations have

been reported only in the last decade.

The first attempt of a self-consistent description of fast camera data is described in Ref. [111],

where two-dimensional simulations of plasma turbulence and a mono-energetic neutral

model are used. In Ref. [64], the GBS code is used to simulate Dα emission from GPI diag-

nostics with a model of plasma turbulence and neutral dynamics. The three-dimensional

drift-reduced Braginskii equations for a single-component deuterium plasma (D+ and e−)

are solved, coupled with a kinetic model for deuterium atoms, D, in the SOL of a limited

tokamak configuration with a toroidal limiter on the HFS equatorial plane. A gas puff source is

introduced at the LFS equatorial midplane, consisting of the injection of D atoms from the wall.

Since the model does not take into account molecular dynamics, the D atoms are injected into

the domain at a temperature of 3eV, in order to model D atoms generated by Franck-Condon

dissociation of D2 molecules. The study focuses on the Dα line of the Balmer series, reporting

on the correlation between the Dα emission, the electron density, ne, the electron tempera-

ture, Te, and the deuterium atom density, nD. Results show that ne, Te and Dα emission are

all strongly correlated, particularly in the SOL. As for nD fluctuations, different results are

reported at distances from the gas puff location smaller or larger than λmfp,D, in particular a

strong anti-correlation between nD and the plasma quantities is observed at a distance from

the gas puff location smaller than λmfp,D. In fact, positive perturbations of ne and Te lead to

higher ionization rates, thus resulting in lower nD. As a consequence, nD and Dα emission

rates are also strongly anti-correlated in that region. However, while the D atom density has

an effect on the amplitude of the Dα emission rate, according to Eq. (4.1), the impact on the

statistical moments and turbulence properties of the Dα emission remains limited. Ref. [64]

concludes that neglecting the nD fluctuations remains as a valid assumption for interpreting

GPI measurements at distances from the gas puff source smaller than λmfp,D, the main effect

of assuming constant nD being an underestimate of the plasma quantities ne, Te from the

interpretation of Dα emission. On the other hand, Ref. [64] shows that, for distances from the
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gas puff source larger than λmfp,D, the D atom density is influenced by non-local shadowing

effects due to the interaction of the atoms with a number of structures on their way across

the plasma. As a matter of fact, when crossing positive perturbations of ne and Te, atoms are

more likely to be ionized and do not penetrate further into the plasma, thus leading to small

nD in the edge, regardless of the local values of ne and Te. This non-local shadowing effect

[64] hence weakens the anti-correlation between nD and the plasma quantities, ne and Te, as

one moves radially inwards. At the same time, the anti-correlation between nD and the Dα

emission rate decreases, becoming a positive correlation at distances from the gas puff source

larger than λmfp,D. Therefore, nD fluctuations have a more significant impact on the statistical

moments and turbulence characteristics of the Dα emission at distances larger than λmfp,D,

where nD fluctuations should be taken into account when considering GPI measurements.

The nHESEL code [45, 39, 46] has also been used to investigate the physics behind the GPI emis-

sion. nHESEL self-consistently simulates the neutral-plasma interaction in a two-dimensional

domain, relying on a fluid model of single-component plasma turbulence coupled with a diffu-

sive model for multiple neutral species. In Ref. [46], nHESEL simulations explore the effect of

molecular dissociation on the correlation between nD and plasma quantities in the presence

of blob events. Three different neutral species are considered: thermal deuterium molecules,

D2, injected into the system via gas puffing, thermal Helium atoms, He, and non-thermal

deuterium atoms, D, that comprise warm atoms directly generated by Franck-Condon disso-

ciation of molecular deuterium and hot atoms resulting from charge-exchange interactions

with D+ ions.

As described in Ref. [46], dissociative processes lead to volumetric sinks of D2 and sources of

D atoms, while ionization constitutes a sink of D. Since there are no volumetric sources of D2,

an enhancement of ne and Te due to a blob enhances dissociative processes and thus leads

to a decrease of nD2 . Therefore, nD2 is anti-correlated with ne and Te (similarly to nD in Ref.

[46]). On the other hand, the competition between dissociation and ionization events, that

constitute a source and a sink of D atoms respectively, determines the effect of blob-induced

plasma perturbations on the nD fluctuations. In Ref. [46], this balance is expressed as

SD = nD2

[
2νdiss(D2) (Te)+νdiss-iz(D2) (Te)

]−nDνiz (Te) , (4.2)

where νdiss, νdiss-iz and νiz are the dissociation, dissociative-ionization and ionization rates,

all proportional to ne. If SD > 0, an increase of ne leads to an increase of SD, and therefore a

correlation between nD and ne. In contrast, if SD < 0, nD is anti-correlated with ne, similarly

to the observations in Ref. [64]. In Ref. [46] a parameter η is also introduced, defined as the

ratio between the D sources and sinks,

η= nD2

[
2νdiss(D2) +νdiss-iz(D2)

]
nDνiz

= nD2

nD

[
2νdiss(D2) +νdiss-iz(D2)

]
νiz

, (4.3)
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with correlation between ne and nD found for η> 1 and anti-correlation for 0 < η< 1. The value

of η is determined partly by the nD2 /nD ratio and partly by the ratio between the reaction rates

of volumetric sources and sinks, which depend on the electron temperature. As the authors

highlight in Ref. [46], the temperature-dependent term is always larger than 1, approaching

1.7 at large electron temperature. Therefore, as long as nD2 /nD > 0.58, correlation (η> 1) is

always observed. The numerical simulation presented in Ref. [46] points out η > 1 in the

SOL, where nD2 is large, and η < 1 in the edge, because of the large temperature observed

inside the separatrix and the resulting low D2 density. The findings reported in Ref. [46] thus

suggest that nD is correlated with Dα emission in the SOL and anti-correlated in the edge.

This conclusion contrasts with the one in Ref. [64] where, by not taking into account D2

dissociation, nD perturbations are found to be anti-correlated with the plasma density and

temperature perturbations in most of the domain, particularly in the SOL.

The present chapter leverages the studies presented in Ref. [64] and extends them to the case

of a multi-component deuterium plasma by using the GBS model presented in Ch. 3. This

includes two ion species, D+ and D+
2 , and two neutral species, D atoms and D2 molecules,

thus allowing for molecular dissociation to be taken into account. Our goal is to understand

the impact of the multi-component plasma dynamics on GPI diagnostics, extending the work

reported in Ref. [46] by using a global three-dimensional model to describe the tokamak

boundary and addressing the neutrals by discretizing a kinetic advection equation for each

species. The kinetic approach allows us to account for all values of the mean free path for the

neutral species, with no need to distinguish particles of the same species according to their

temperature and origin. In addition to Ref. [46], we also aim at evaluating the contribution to

the Dα emission from dissociation of molecular species, D2 and D+
2 , and compare it with the

main source due to excitation of D atoms.

This chapter is structured as follows: after this Introduction, a brief description of the simula-

tion of the gas puff setup is presented in Sec. 4.2. We then present the simulation results in Sec.

4.3. These results are further discussed in Sec. 4.4, where we evaluate the correlations between

the quantities involved in the computation of the Dα emission rate, and in Sec. 4.5, where we

address the impact of the fluctuations of the density of neutral species on the interpretation of

GPI results. The conclusions follow in Sec. 4.6.

4.2 The GPI diagnostics and Dα emission rate

The simulations described here leverage the self-consistent multi-component model for

plasma turbulence and kinetic neutrals in the tokamak boundary implemented in GBS and

presented in Ch. 3. We consider therefore a limited plasma, with toroidal limiter on the

equatorial HFS limiter. The GPI diagnostics is implemented by adding a low-intensity gas

puff at the equatorial midplane on the LFS. We assume that the gas puff extends over the full

toroidal direction and it is independent of the toroidal angle, to simplify our scenario and its

analysis. The gas puff injects D2 molecules at wall temperature at the outer chamber wall,
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which does coincide with the boundary of the simulation domain. This contrasts with Ref. [64],

where the injected molecules are assumed to undergo Franck-Condon dissociation outside

the simulation domain and enter it as D atoms at a temperature of 3eV. As a matter of fact, the

results obtained from the first multi-component GBS simulation presented in Ch. 3 show that

penetration of D2 molecules across the SOL into the edge is important, at least in the plasma

conditions considered in our simulations (in the transition between the sheath-limited and

conduction-limited regimes), highlighting the importance of properly modelling the puffing

of D2 molecules from the domain boundary.

Following Ref. [64], the distribution function of the D2 molecules injected for the GPI diagnos-

tics from the domain boundary is described by

fD2,gp(y,v) = Sgpexp

(
− (y − ygp)2

2(∆ygp)2

)
χin,D2 (v), (4.4)

where Sgp is the puffing rate (equivalent to the flux of puffed molecules), y is the poloidal

coordinate along the outer wall, ygp is the poloidal coordinate of the center of the gas puff,

∆ygp is the gas puff width and χin(v) is the velocity distribution of the puffed D2 molecules,

which is assumed to follow the Knudsen cosine law,

χD2,in(v) = 3

4π

mD2

T 2
w

cos(θ)exp

(
−mD2 v2

2Tw

)
. (4.5)

In Eq. (4.4), following the definition introduced in the previous chapters, we define the angle

θ = arccos
(
Ω̂ · n̂)

, with the unit vector Ω̂=v/v being along the direction of the neutral velocity,

and the unit vector normal to the boundary n̂ pointing towards the plasma volume. In the

present work, we consider a temperature Tw = 0.3eV, ygp = 400ρs0 (the gas puff is located at

the equatorial outboard midplane) and ∆ygp = 20ρs0.

In the present thesis, similarly to Ref. [64], we focus on the local emission rate from the Balmer

Dα line. However, in addition to the Dα emission resulting from electron impact excitation of

D atoms, dissociation of molecular species D2 and D+
2 is also taken into account as sources of

Dα emission. The total Dα emission rate is hence expressed as

Dα = Dα,Exc +Dα,Diss(D2) +Dα,Diss(D+
2 ), (4.6)

where Dα,Exc is the contribution from the excitation of D atoms to the excited state D∗(n = 3)

defined in Eq. (4.1), while

Dα,Diss(D2) = nenD2 rα,Diss(D2)(ne,Te), (4.7)
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is the contribution from dissociation of D2 molecules into two D atoms, one of which in the

excited state D∗(n = 3). Finally,

Dα,Diss(D+
2 ) = nenD+

2
rα,Diss(D+

2 )(ne,Te), (4.8)

is the contribution that joins the dissociation of D+
2 molecular ions into one D+ ion and one D

atom in the excited state D∗(n = 3) and the dissociative-recombination of D+
2 molecular ions

into two D atoms, one of them in the excited state D∗(n = 3). We recall that nD2 is the density of

D2 molecules and nD+
2

the density of D+
2 ions. We also remark that the emission rate coefficient

for dissociation of D2 molecules generating a D∗(n = 3) atom, rα,Diss(D2)(ne,Te), as well as

the emission rate coefficient for dissociation or dissociative recombination of D+
2 generating

a D∗(n = 3) atom, rα,Diss(D+
2 )(ne,Te), are obtained from a collisional-radiative model [112].

For the emission rate coefficient rα,Diss(D2)(ne,Te), we use the values made available in the

OpenADAS database, similarly to Ref. [64]. Other molecular processes accounting for Dα

emission, such as dissociative-ionization of D2, are neglected here because their cross sections

are considerably smaller than the ones of the processes considered here.

4.3 Simulation results

The simulation of GPI presented here considers a simulation with the same parameters as the

one described in Ch. 3, where the diagnostic gas puff described in Sec. 4.2 is introduced. After

a transient phase, a quasi-steady state is reached, characterized by constant plasma profiles

resulting from the balance between sources and sinks. Our analysis focuses on a time interval

∆t = 40R0/cs0 during the quasi-steady state phase and targets mostly the LFS region around

the diagnostic gas puff (350ρs0 < y < 450ρs0), where Dα light emission following the injected

particles is important. Similarly to Ch. 3, we highlight that the results presented here are

expected to depend strongly on the simulation parameters considered.

We first perform time and toroidal averages of the plasma and neutral quantities relevant for

the study of Dα emission, namely the electron density, ne, the electron temperature, Te, the D

atom density, nD, the D2 molecule density, nD2 , and the D+
2 ion density, nD+

2
. We also study the

number of particles ionized/dissociated per unit volume and unit time, i.e. nDνiz, nD2νiz,D2 ,

nD2νDiss(D2) and nD+
2
νDiss(D+

2 ). The time and toroidal averages of these quantities are presented

in the poloidal cross sections shown in Fig. 4.1. We remark that the 40R0/cs0 time interval

over which the average is performed is considerably larger than the characteristic timescales

of turbulent events. Toroidal averaging is enabled by the axisymmetry of the considered

configuration.

We note that the cross section plots of the plasma and neutral quantities, ne, nD, D2, nD2 ,

nD+
2

and Te, are similar to the ones observed in the simulations reported in Ch. 3 for the first

multi-component plasma simulation, the difference being only in the region close to the gas
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Figure 4.1: Poloidal cross section of time and toroidal-averaged plasma quantities (ne, nD+
2

,
and Te), neutral particle densities (nD, nD2 ), ionization sources (nDνiz and nD2νiz,D2 ) and
dissociation rates (nD2νDiss(D2) and nD+

2
νDiss(D+

2 )).
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Figure 4.2: Poloidal cross section of the logarithm of η and the logarithm of nD2 /nD.

puff at the LFS. As a consequence of the GPI injection, nD2 peaks in the proximity of the outer

wall at the LFS equatorial midplane, where the gas puff is located. We remark that, due to

the SOL conditions considered in this simulation, namely the low Te values observed in the

SOL at the LFS, the D2 mean free path is larger than the SOL width, λmfp,D2
' 95ρs0. As a

consequence, most D2 molecules cross the SOL without interacting with the plasma and are

only dissociated/ionized inside the LCFS, which has an important impact on the Dα emission

profile. As a result of the large λmfp,D2
, the density of D atoms peaks in the edge, close to

the LCFS, and the density of D+
2 ions also peaks further inside. In fact, as shown in Fig. 4.1,

dissociation of D2 molecules peaks inside the LCFS and ionization of D2 molecules, which

requires more energy compared to dissociation, peaks further inside, where the values of ne

and Te are higher. On the other hand, since dissociative processes have in general larger cross

sections than ionization at the same temperature (see Fig. 3.1), most D+
2 ions are dissociated

shortly after being generated. This is confirmed by Fig. 4.1, that shows that dissociation of D+
2

occurs where the ionization of D2 takes place. Finally, ionization of D peaks close to the core, a

consequence of the fact that most D atoms are generated in the edge region and then ionized

when they enter in contact with the warmer and denser plasma in the innermost region of the

domain.

We remark that, while the radial profiles of ne and Te are similar to the ones presented in Ref.

[64], the D atom density, nD, is different, since it peaks inside the LCFS, which is a consequence

of the dissociative processes taking place in the edge where D atoms are generated. On the

other hand, the D2 density, nD2 , peaks in the SOL close to the outer wall, while D+
2 peaks in

the edge, where the high plasma density and temperature maximizes the ionization of D2

molecules.

We also focus on the value of the correlation parameter η, redefined from Eq. (4.2) consistently

with the multi-component plasma model under consideration, so as to take into account all

possible sources and sinks of D atoms (see the list of collisional processes described in Table

3.1), yielding
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η=
nD2

[
2νdiss(D2) +νdiss-iz(D2)

]+nD+
2

[2νdiss-rec +νdiss]

nD

[
νiz +νcx,D−D+

2

] . (4.9)

Figure 4.3: The logarithm of the time and toroidal averaged Dα emission and of its contribu-
tions, Dα,Exc, Dα,Diss(D2) and Dα,Diss(D+

2 ), are represented in the poloidal plane.

Given the values of the reaction rates of the collisional processes, which are plotted in Fig.

3.1, for typical densities and temperatures in the plasma boundary, the term referring to the

dissociation of D2 dominates the numerator of Eq. (4.2), while ionization of D dominates over

D−D+
2 charge-exchange in the denominator. Therefore, for typical SOL and edge parameters,

η' (nD2 /nD)(2νDiss(D2)/νiz), similarly to the expression reported in Eq. (3) from Ref. [46]. Thus,

η> 1 holds whenever nD2 /nD & 0.6 is satisfied.

The time and toroidal average of the logarithm of η and of the logarithm of nD2 /nD are plotted

in Fig. 4.2 on a poloidal cross section. Due to the considerable penetration of D2 molecules

across the LCFS, nD2 /nD > 1 is observed in the SOL and in a significant portion of the edge,
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Figure 4.4: Five snapshots of the normalized fluctuations of each component of the Dα

emission, separated by 0.2R0/cs0. The Dα,Exc, Dα,Diss(D2) and Dα,Diss(D+
2 ) contributions and the

total Dα emission are shown in the first, second, third and fourth rows, respectively.

especially at the LFS equatorial midplane, where the diagnostic D2 gas puff is present. As a

result, η > 1 holds in most of the domain while η < 1 is verified only in a restricted portion

of the edge region closer to the core. This implies that, except for the region close to the

core, the number of D atoms generated by dissociative processes per unit time and unit

volume is larger than the number of D atoms depleted per unit time and unit volume due

to ionization events, with nD being positively correlated with ne and Te. This is in line with

the results reported in Ref. [46] and contrasts with the conclusions in Ref. [64] based on

single-component simulations carried out with GBS. Nevertheless, we highlight that results

are highly dependent on the specific SOL conditions considered, which are characterized by a

lower electron temperature than the one usually found in typical SOL plasmas. In the case of a

higher temperature SOL, we expect a shift radially outwards of the regions observed in this

simulation.

Following Ref. [64], Fig. 4.3 presents time and toroidally averaged poloidal cross sections of

the total Dα emission rate and the contributions from the three sources contributing to it, in

logarithmic scale. We highlight that the excitation of D atoms, Dα,Exc, is the main source of Dα

emission, peaking in the edge. On the other hand, the contribution from dissociation of D2,

Dα,Diss(D2), is one to two orders of magnitude smaller than Dα,Exc. The Dα,Diss(D2) contribution

peaks in the edge, close to the core, because of the high plasma densities and temperatures in

this region, even though the density of D2 molecules is small. Regarding the contribution from

dissociation of D+
2 , Dα,Diss(D+

2 ), we highlight that it peaks in the edge, close to the LCFS. While
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it is smaller than Dα,Exc by a factor of about five in the edge region, it becomes the dominant

source of Dα emission in the far SOL.

Typical snapshots that represent the time evolution of the Dα emission rate are presented

in Figs. 4.4, where the analysis is restricted to the GPI injection, i.e. at the LFS around

the equatorial midplane, 350ρs0 < y < 450ρs0. The normalized perturbation of the total

Dα emission, computed as (Dα−〈Dα〉)/〈Dα〉, with 〈Dα〉 the time and toroidally averaged

Dα emission rate, is considered, as well as of its three sources, computed analogously. The

snapshots are separated by time intervals of 0.2R0/cs0. The Dα,Exc and Dα,Diss(D2) emissions

display a similar profile, while Dα,Diss(D+
2 ) fluctuations, despite bearing an overall qualitative

resemblance to the other emission profiles, peak at different locations. The plots of the

fluctuations of the total Dα emission rate, follow the profiles of the snapshots of Dα,Exc in the

edge and near SOL, since this is the dominant source of Dα emission in that region, and are

similar to the plots of Dα,Diss(D+
2 ) in the far SOL, where it dominates. A parameter scan on the

plasma density and temperature will extend the present study. In particular, we expect that, at

larger values of the electron density and temperature, the whole dynamics is shifted further

out towards the far SOL, as the mean free path of D2 molecules decreases.

4.4 Analysis of the correlation between the Dα emission and the

plasma and neutral quantities

Since the measurements of Dα emission provided by GPI diagnostics are used to infer the

properties of the plasma and neutrals, understanding the correlations between the Dα emis-

sion and these properties is of crucial importance for an accurate interpretation of the GPI

measurements. We then evaluate the correlations between the Dα emission rate and the

ne, nD, nD2 , nD+
2

and Te (the quantities associated with the Dα emission). For this purpose,

following the same procedure as in Ref. [64], we make use of the Spearman rank coefficient of

correlation [113], which varies between −1 (if two functions are totally anti-correlated) and 1

(in case they are perfectly correlated).

Fig. 4.5 shows the Spearman correlations between the quantities involved in the calculation

of the emissivity rate associated with the excitation of D atoms, Dα,Exc. The electron density

and temperature are strongly correlated, especially in the edge region. On the other hand, the

correlation between the neutral density nD and the plasma quantities, ne and Te, is different

from the one observed in Ref. [64]. In fact, nD is correlated with ne in the SOL, with the

correlation increasing towards the LCFS. The correlation function peaks in the edge, close to

the LCFS, and then decreases sharply, becoming negative towards the core. A similar behavior

is found for the Spearman correlation between nD and Te, with the correlation in the SOL and

the anti-correlation in the edge being even stronger compared to the correlation between nD

and Te. This is due to the mechanisms behind the generation and depletion of D atoms in the

SOL and edge regions. In fact, in the SOL region, positive fluctuations of plasma density and

temperature enhance the dissociation of the D2 molecules injected by the gas puff from the
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outer wall, which results in an increase in the D atom density. Hence ne and Te are positively

correlated with nD. Around the LCFS, the density of D2 molecules decreases while the density

of D atom increases. However, the source of D atoms due to molecular dissociation is still

more important than their sink due to ionization processes, since the plasma temperature

remains lower than the ionization threshold. As a result, in agreement with Ref. [46], the

correlations between nD and ne and between nD and Te remain positive.

Figure 4.5: Radial plot of the Spearman correlation function between the quantities involved
in the Dα,Exc emission, at the LFS equatorial midplane (all quantities are averaged in time and
along the toroidal direction).

Deep in the edge, the high temperature leads to an ionization sink that dominates over

dissociation sources. Therefore, local positive fluctuations of ne and Te lead to the decrease of

D atom density, thus resulting in an anti-correlation between nD and the plasma quantities,

ne and Te. The result observed in Ref. [64] is thus recovered, but only for the warmer and

denser plasma in the edge.

Turning to the Dα emission rate due to atom excitation, we observe that it is strongly correlated

with the plasma quantities ne and Te, as expected from (Eq. 4.1), in the SOL and around the

LCFS. The Dα emission is also positively correlated with nD. This results from Eq. (4.1)

and from the fact that ne, Te and nD are also positively correlated with one another, which

agrees with the conclusions in Ref. [46]. On the other hand, the correlation function between

Dα,Exc and the plasma quantities ne and Te falls sharply and becomes negative towards the

core. In fact, at the high densities and temperatures of this region, the density of neutral

atoms drops to very low values, reducing significantly the Dα emission due to atom excitation.

As a result, the Dα emission rate in Eq. (4.1) becomes more sensitive to fluctuations of

nD rather than perturbations of the plasma quantities, which explains why Dα,Exc is anti-

correlated with ne and Te in this region, while strongly correlated with nD. This also highlights

the importance of taking into account the neutral density fluctuations when interpreting
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Dα emission measurements close to the core, as Dα emission rates may become mostly

determined by nD fluctuations. We note that the result of the single-component simulation

in Ref. [64] is retrieved in the edge. In this region, nD is sufficiently large that it does not

constrain the Dα emission. In these conditions, the nD perturbations are less important than

the fluctuations of ne and Te, leading to a positive correlation between Dα,Exc and ne and Te

in most of the edge region and a negative correlation with the atom density, nD.

Figure 4.6: Radial plot of the Spearman correlation function between the quantities involved
in the Dα,diss(D2) emission, at the LFS equatorial midplane (all quantities are averaged in time
and along the toroidal direction).

Fig. 4.6 shows the Spearman correlation function between the variables involved in the Dα

emission rate associated with the dissociation of D2 molecules, Dα,Diss(D2). It is observed that

nD2 and Te are strongly anti-correlated in the whole domain, since positive perturbations of

Te are associated with enhanced ionization of D2 molecules and hence smaller nD2 . Similarly,

nD2 is anti-correlated with ne in the edge and in the near SOL, where large plasma densities

result in a large rate of molecular dissociation and hence smaller density of D2 molecules. The

correlation becomes positive in the far SOL, closer to the gas puff source, where the density

of D2 molecules is larger. In fact, the gas puff is expected to enhance plasma fuelling, i.e.

larger densities of D2 molecules will ultimately lead to an increase of ne. These results are

similar to the ones obtained in Ref. [64] for the Dα emission due to excitation of D atoms in a

single-component plasma. Regarding the Dα,Diss(D2), we observe that it is correlated with ne

and Te in the SOL and in most of the edge region. In particular, the Dα,Diss(D2) −Te correlation

is strong in the SOL. Towards the core, the density of D2 molecules drops, making Dα,Diss(D2)

very small and strongly dependent on the nD2 fluctuations. Therefore, Dα,Diss(D2) is more

sensitive to the fluctuations of nD2 than the perturbations of the plasma quantities, similarly to

the dependence of Dα,Exc on nD. As a result, Dα,Diss(D2) becomes anti-correlated with ne and

Te in the proximity of the core. In contrast, the emission rate is strongly correlated with the

density of D2 molecules near the core, but reduces sharply when one moves radially outwards,
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as nD2 is no longer negligible and hence no longer regulates Dα,Diss(D2).

Figure 4.7: Radial plot of the Spearman correlation function between the quantities involved
in the Dα,diss(D+

2 ) emission, at the LFS equatorial midplane (all quantities are averaged in time
and along the toroidal direction).

Focusing now on the analysis of the Dα emission due to dissociation and dissociative recom-

bination of D+
2 ions, Dα,Diss(D+

2 ) (see Fig. 4.7), we start by highlighting the strong correlation

between the density of D+
2 ions and ne in the SOL and in most of the edge, since positive ne

perturbations enhance the ionization of D2 molecules and hence increase nD+
2

in these regions.

However, since D+
2 ions have a short lifetime, being destroyed by dissociative processes whose

cross sections are larger than the cross section of ionization of D2 molecules, the correlation

between nD+
2

and ne is also strongly influenced by the density of nD2 molecules. As a matter of

fact, towards the core, nD2 drops to residual values, resulting in fewer D2 molecules that can

be ionized than D+
2 ions that can be dissociated. As a consequence, positive fluctuations of

ne lead mostly to enhanced dissociation of D+
2 ions and therefore negative nD+

2
fluctuations,

which turns into an anti-correlation between nD+
2

and ne. The Spearman correlation function

between nD+
2

and Te follows a similar behaviour, i.e. anti-correlation close to the core and cor-

relation in the edge and near SOL, but in the far SOL where anti-correlation between these two

quantities is observed. This is due to the fact that, at the typical temperatures of the far SOL,

dissociation of D+
2 ions dominates over ionization of D2 molecules (see Fig. 3.1). Therefore,

while positive temperature fluctuations result in the generation of D+
2 ions, they also increase

the rate of depletion of D+
2 ions due to dissociative processes even more significantly. As a

consequence, positive Te perturbations lead to negative nD+
2

fluctuations in this region.

Since the density of D+
2 ions is very small everywhere and hence decisively constrains the

Dα,Diss(D+
2 ) emission rate, the Dα,Diss(D+

2 ) emission rate is correlated with nD+
2

in the whole

domain. The correlation is particularly strong near the core, at the LCFS and in the proximity

of the outer wall. The correlation function between Dα,Diss(D+
2 ) and Te is positive in most of
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the domain (higher temperatures are related to larger emissivity coefficients and increased

ionization of D2 molecules), the exception being the proximity to the core and to the outer

wall, where an anti-correlation is found between Dα,Diss(D+
2 ) and Te due to the anti-correlation

between nD+
2

and Te. Similarly, Dα,Diss(D+
2 ) is correlated with ne in the SOL and in most of the

edge, where nD+
2

is correlated with ne, but an anti-correlation between Dα,Diss(D+
2 ) and ne is

observed close to the core, where fluctuation of nD+
2

and ne are also anti-correlated.

Figure 4.8: Radial plot of the Spearman correlation function between the quantities involved
in the Dα emission, at the LFS equatorial midplane (all quantities are averaged in time and
along the toroidal direction).

Finally, Fig. 4.8 shows the correlation functions between the total Dα emission rate, Dα, the

electron temperature Te and the density of each of the species involved in the reactions that

emit light in the Dα line. The correlation with Dα can be interpreted through the analysis

of Dα,Exc, since it dominates over the other sources of Dα emission in the edge and near

SOL, and Dα,Diss(D+
2 ), which is dominant in the far SOL. It is observed that, as for Dα,Exc (see

Fig. 4.5), the Dα emission is anti-correlated with ne and Te near the core, where neutrals

can hardly penetrate and a strong correlation between Dα and nD is observed. For the same

reason, Dα is strongly correlated with nD2 and nD+
2

in this region, even though these species

contribute weakly to the overall emission via dissociative processes. In the edge, Dα emission

is strongly correlated with ne and Te and the correlation between Dα and nD, similarly to

Dα,Exc, is negative, since ionization dominates over dissociation. The correlation between Dα

and nD2 and between Dα and nD+
2

in the edge are explained by the fact that nD2 is strongly

anti-correlated with ne and Te, while nD+
2

is strongly correlated with these plasma quantities.

In the near SOL, Dα is correlated with ne, Te and nD, since dissociation dominates. On the

other hand, since the Dα emission rate in the far SOL is mostly determined by Dα,Diss(D+
2 ), Dα

is also strongly correlated with nD+
2

and ne in this region. The correlation between Dα and Te

drops radially outwards, becoming anti-correlation next to the outer wall. We remark that this
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represents a crucial difference with respect to the Spearman correlation between the Dα emis-

sion rate and Te of the single-component simulation in Ref. [64] with important implications

on the interpretation of GPI measurements, suggesting a different way of interpreting GPI

measurements in the region next to the gas puff source. Moreover, the correlations of Dα with

nD and nD2 near the gas puff source are determined by the correlation between the dominant

Dα,Diss(D+
2 ) contribution and the densities of neutral species nD and nD2 (not shown in Fig.

4.7). This is determined by the fact that Dα,Diss(D+
2 ) is strongly correlated with ne, thus the

correlation between Dα and the densities of neutral species descends from their correlation

with ne. Fig. 4.5 shows a small correlation between ne and nD, explaining that Dα and nD

are not clearly correlated. On the other hand, Fig. 4.6 shows that ne and nD2 are correlated,

thus leading to a correlation between Dα and nD2 in the close proximity to the gas puff. These

conclusions agree with the results observed in Fig. 4.8.

To summarise, we can divide the domain in four different regions according to the correlation

between the Dα emission rate and the plasma and neutral quantities, namely ne, Te and nD.

1) The far SOL, where Dα emission is mostly determined by the contribution of dissociation of

D+
2 ions and which is characterized by the Dα emission being strongly correlated with ne, but

uncorrelated or even slightly anti-correlated with Te and, in general, uncorrelated with nD.

2) The near SOL and LCFS, where Dα emission due to excitation of D atoms dominates over

the contributions from dissociative processes and a strong correlation between Dα emission

and the plasma quantities, ne and Te, is observed. Moreover, since the sources of D due

to dissociative processes are more important than D sinks due to ionization, Dα is strongly

correlated with nD (similar to the conclusions found in Ref. [46]). 3) The edge region, where

Dα is also strongly correlated with ne and Te, but ionization of D dominates with respect to

dissociative processes, hence leading to an anti-correlation between Dα and nD (similar to

the results reported in Ref. [64]). 4) The region of the core, where Dα emission is constrained

by the residual values of the density of D atoms that can penetrate in this region, resulting in

Dα being correlated with nD, but anti-correlated with ne and Te.

To illustrate the implications of these observations in Fig. 4.9, we consider snapshots of the

normalized fluctuations of the plasma and neutral quantities, namely ne, Te, nD, nD2 and nD+
2

,

and the Dα emission, at a given time and toroidal location, focusing on the poloidal region

around the LFS equatorial midplane. The normalized fluctuations for the electron density,

ne, are defined as (ne −〈ne〉)/〈ne〉, and similarly for the other quantities. The results in Fig.

4.9 confirm that ne and Te are strongly correlated in the whole domain, except in the close

proximity to the core, where the correlation is less evident. The fluctuations of the molecular

density, nD2 , are uncorrelated with ne and Te in the SOL, but clearly anti-correlated with the

perturbations of ne and Te around the LCFS and in the edge region, consistently with the

observations in Fig. 4.6. On the other hand, the fluctuations of nD+
2

are strongly correlated with

the electron density and temperature fluctuations, except next to the outer wall, where nD+
2

is

correlated with ne, but anti-correlated with Te (because dissociation of D+
2 is more important

than ionization of D2 at the temperatures typically found in this region), and in the close

proximity to the core, where D2 molecules can hardly penetrate and hence ionization of D2
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Figure 4.9: Typical poloidal snapshots of the fluctuations of ne, Te, nD, nD2 , nD+
2

and the Dα

emission rate at the LFS equatorial midplane, where the gas puff is located.

is small. Regarding the nD fluctuations, one can distinguish the different regions mentioned

above: the region close to the outer wall, where nD is uncorrelated with ne and Te, the edge,
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where the nD fluctuations are anti-correlated with the fluctuations of ne and Te, and the

LCFS with the SOL, where nD fluctuations are positively correlated with electron density and

temperature perturbations. Close to the core, the shadowing effect first reported in Ref. [64],

especially at y ' 420ρs0 is observed. In fact, the positive perturbation of ne, Te enhances

the ionization of D atoms, thus reducing nD locally and also further inside towards the core,

since D atoms can no longer penetrate radially. As a result, nD does not increase when ne

and Te decrease. We therefore conclude that the non-local shadowing effect attenuates the

anti-correlation. Finally, we observe that the total Dα emission rate, Dα, is strongly correlated

with ne and Te in almost the whole domain, except for the far SOL where the link between Dα

and Te is not clear. We remind that this is related to the fact that Dα emission is dominated by

the contribution of dissociation of D+
2 ions, with the total Dα emission being mostly correlated

with nD+
2

and ne in this region, while nothing can be said regarding the correlation between

Dα and Te. We again highlight that the location and radial spread of these regions is affected

by the values of the electron density and temperature, thus leading to a shorter mean free path

of the D2 molecules puffed into the domain.

4.5 Impact of neutral fluctuations

Similarly to the procedure followed in Ref. [64], we evaluate the impact of neutral density

fluctuations on the Dα emission by using the average density of neutral particles when com-

puting the emission rates and compare them with the self-consistent Dα emission profile

that takes into account the instantaneous neutral density. This is of importance for the Dα,Exc

and Dα,Diss(D2) contributions, which rely on the excitation of neutral atoms and molecules,

respectively, but not for the Dα,Diss(D+
2 ) contribution, which is associated with the excitation of

D+
2 plasma ions. For the two excitation channels affected by the density of neutral species, the

Dα emission based on the averaged neutral density profiles can be expressed as

Dα,Exc〈nD〉 = ne 〈nD〉rα,Exc(ne,Te) (4.10)

and

Dα,diss,D2〈nD2〉 = ne
〈

nD2

〉
rα,Diss(D2)(ne,Te), (4.11)

where we considered the time and toroidally averaged D atom density, 〈nD〉, the average D2

molecule density,
〈

nD2

〉
. The resulting total Dα emission evaluated using the average density

of neutral species is therefore given by

Dα〈nn〉 = Dα,Exc〈nD〉+Dα,diss,D2〈nD2〉 +Dα,Diss(D+
2 ). (4.12)
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In Fig. 4.10, snapshots of the Dα and Dα〈nn〉 emission is presented, as well as their relative

difference, (Dα −Dα〈nn〉)/Dα. The contributions of the two excitation channels involving

neutral particles are also analysed. We highlight that Dα,Exc and Dα,Exc〈nD〉 have similar profiles,

but discrepancies of the order of 20%−30% can be seen in the near SOL and edge regions.

The difference becomes particularly important close to the core, where it reaches values

of the order of 50%. Similar considerations hold for the comparison between Dα,Diss(D2)

and Dα,diss,D2〈nD2〉. Since the Dα emission is mostly determined by the contribution from

excitation of D atoms in the edge and near SOL, while the dominant component in the far

SOL, Dα,Diss(D+
2 ), does not depend on the density of neutral species, the plots for the total

Dα emission are similar to those obtained for Dα,Exc. Therefore, our results support the

conclusions expressed in Ref. [64], namely that neutral fluctuations have a non-negligible

impact on the Dα emission rates.

Figure 4.10: Snapshots of the Dα,Exc contribution (top), the Dα,Diss(D2) component (middle) and
the total Dα emission rate (bottom). The emission rate taking into account neutral fluctuations
(left), the same quantity calculated by neglecting the atom density fluctuations (middle), and
relative difference between the two (right) are plotted.

The analysis is further extended by evaluating the effect of neutral density fluctuations on the
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statistical moments of the Dα emission, namely the standard deviation, skewness and kurtosis,

presented in Fig. 4.11, and also the properties of turbulence, i.e. the auto-correlation time,

τauto, the radial and poloidal correlation lengths, Lrad and Lpol, displayed in Fig. 4.12. We also

consider the same quantities from the contributions of the Dα emission, taking into account

and excluding neutral fluctuations. These quantities play an important role on turbulence

characterization and are often used as proxy to analyse the ne and Te fluctuations.

Figure 4.11: Radial profiles of the statistical moments of each component of the Dα emis-
sion rate, representing the standard deviation (left), skewness (middle) and kurtosis (right),
computed at the LFS equatorial midplane. The first row refers to the Dα,Exc contribution, the
second row presents results for the Dα,Diss(D2) component, the third row displays the plots for
the Dα,Diss(D+

2 ) contribution and the fourth row refers to the total Dα emission.

We therefore start our analysis by considering the statistical moments of ne and Te, as well as

of nD, nD2 and nD+
2

as these affect the properties of the Dα emission. The standard deviation

of ne does not change considerably throughout the domain, being of the order of 30% its

equilibrium value, as expected from previous theoretical and experimental studies. In contrast,

the standard deviation of Te in the edge is about two to three times larger than in the SOL,

having a sharp gradient in the region around the LCFS. The standard deviation of nD+
2

decreases

is considerably large at the edge-core interface, decreases slightly in the proximity of the core,
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then it increases a bit close to the LCFS and decreases significantly in the SOL, becoming

negligible close to the outer wall. Focusing on the neutral species, we note that the standard

deviation of nD is large at the edge-core interface, decreases significantly in the edge, increases

slightly around the LCFS and remains approximately constant in the SOL, being comparable to

the standard deviation of Te. Finally, the standard deviation of nD2 at the edge-core interface

is much larger than the standard deviation of the other variables and decreases sharply across

the edge, becoming negligible in most of the SOL.

Turning to the analysis of the skewness, we remark that the skewness of Te is positive and

approximately constant over the whole domain, while ne and nD have negative skewness

in the edge and positive in the SOL. This is different from the result found in Ref. [64] for

the skewness of nD, which is yet another consequence of the introduction of molecular

dynamics. In fact, in the multi-component simulation, plasma fluctuations have different

impact on nD in the edge and SOL. In the SOL, large positive perturbations of ne and Te make

dissociation of D2 molecules more frequent and hence decisively increase nD, while large

negative perturbations do not change nD significantly, which justifies the positive skewness in

the SOL. In the edge, however, D atoms have a higher density than D2 molecules. Therefore,

large positive fluctuations of ne and Te increase the level of ionization of D atoms and hence

result in a sharp decrease of nD, while large negative plasma fluctuations do not lead to

equally important positive fluctuations of nD, thus justifying the negative values of skewness

observed in the edge region. For comparison, in the single-species simulations, since there

are no volumetric sources of nD, large positive plasma perturbations are always associated

with an increase of the ionization levels and consequent sharp decrease of nD, while large

negative perturbations have a less significant impact on nD, thus suggesting negative values of

skewness in the whole domain (in reality, the plots in Ref. [64] show that skewness is negative

in the SOL, where ionization of D atoms is important, and increases radially inwards, since nD

decreases and hence the effect of the plasma perturbations on ionization of D becomes less

important). The skewness of nD2 is positive in the edge and negative in the SOL, similarly to

what was reported for the skewness of nD in Ref. [64]. In addition, the kurtosis of ne, Te and

nD have a similar behaviour, being larger in the SOL compared to the edge region, remaining

between 0 and 5.

We now turn our attention to the Dα emission. Fig. 4.11 shows that the standard deviation

of the Dα,Exc emission rate is larger than the one of ne, Te and nD in most of the domain and

has a different radial dependence. This observation is related to the complex dependency of

the emissivity coefficient rα on ne and Te, which may result in a very different behaviour of

the statistical properties of Dα,Exc compared to ne and Te. It is also found that Dα,Exc〈nD〉 is

20% to 30% smaller than Dα,Exc in the SOL, while this relation is reversed in the edge, where

Dα,Exc〈nD〉 is about 20% larger. The relation between the two quantities in the SOL contrasts

with the one reported in Ref. [64], which is related to the fact that molecular dynamics are

now taken into account, thus affecting the impact of neutral fluctuations on the Dα emission.

We observe that the standard deviation of Dα,Exc〈nD〉 is larger in the SOL compared to the

edge region. The skewness of Dα,Exc and Dα,Exc〈nD〉 is of the same order of magnitude as the
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4.5. Impact of neutral fluctuations

skewness of ne, Te and nD in the edge, but grows radially and becomes much larger than

the skewness of the other quantities in the SOL, which is also not observed in Ref. [64] (we

remark that Dα,Exc is very small in the far SOL, where the Dα emission is mostly determined

by Dα,Diss(D+
2 )). Moreover, we notice that Dα,Exc and Dα,Exc〈nD〉 display similar behaviour in

the SOL, but different behaviour in the edge, especially close to the core. This agrees with

the conclusion reported in Ref. [64] on the effect of neutral perturbations on Dα emission,

confirming that the impact of nD fluctuations on Dα emission increases with the distance

from the gas puff. In fact, nD fluctuations have a strong influence on the qualitative behaviour

of the Dα,Exc emission in the edge and towards the core. The interpretation of the kurtosis is

identical to that of the skewness.

Figure 4.12: Radial profiles of the turbulence properties of each component of the Dα,Exc emis-
sion rate, representing the auto-correlation time (left), poloidal correlation length (middle)
and radial correlation length (right), computed at the LFS equatorial midplane. The first row
refers to the Dα,Exc contribution, the second row presents results for the Dα,Diss(D2) component,
the third row displays the plots for the Dα,Diss(D+

2 ) contribution and the fourth row refers to
the total Dα emission.

Providing a small contribution to the overall Dα emission, Dα,Diss(D2) displays very similar

standard deviation, skewness and kurtosis as Dα,diss,D2〈nD2〉 in the SOL, with the difference

between these quantities being larger in the edge, especially close to the core, which resembles
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Chapter 4. Numerical simulations of Gas Puff Imaging

the results obtained in for the statistical moments of the Dα emission. As a matter of fact, while

Ref. [64] considers Dα emission generated by neutral atoms that are puffed into the system

and then ionized by the plasma, here the Dα,Diss(D2) component of Dα emission is similarly due

to D2 molecules puffed into the system and depleted via dissociation and ionization processes.

We also highlight that the large values of the statistical moments in the SOL around r = 50ρs0,

and in particular the kurtosis, are related to the fact that Dα,Diss(D2) is very small in this region,

and hence large values are strongly influenced by statistical fluctuations.

In contrast to Dα,Exc and Dα,Diss(D2), the statistical moments of Dα,Diss(D+
2 ) are of the same order

as the values of the statistical moments of ne, Te and nD+
2

. We remark that, since Dα,Diss(D+
2 )

dominates over the other Dα emission components in the far SOL, the small values of the

standard deviation, skewness and kurtosis of Dα,Diss(D+
2 ) in the SOL ensure that the values of

these statistical moments for the total Dα emission remain small. We also highlight that the

skewness and kurtosis of Dα,Diss(D+
2 ) follow those of nD+

2
in the edge, while the skewness and

kurtosis decrease in the SOL and become smaller than those of the other quantities.

Finally, we analyse the statistical moments of the total Dα emission, Dα, both including and

neglecting the fluctuations of the density of neutral species, D and D2, and the statistical

moments of all plasma and neutral quantities involved. The standard deviation of Dα is

smaller than the standard deviation of Te at the edge-core interface, increases across the edge

region, peaks at the LCFS, decreases in the SOL and remains approximately constant in the

close proximity of the edge, being similar to the standard deviation of ne in this region. We

highlight that the radial profile of the standard deviation of Dα is very different from the one

of the standard deviation of both ne and Te, but it can still be used as a proxy of the standard

deviation of ne in the far SOL. This difference is once again related to the complex dependency

of the emissivity coefficient in Dα,Exc on ne and Te, and it is also partially explained by the

non-negligible contribution of Dα,Diss(D+
2 ), which depends mostly on the profile of nD+

2
. In

fact, the standard deviation of Dα follows, to some extent, the same behaviour exhibited by

the standard deviation of nD+
2

. Regarding the standard deviation of Dα〈nn〉, although it has

a similar profile to the one of the standard deviation of Dα, we note that it is slightly larger

than the standard deviation of Dα in the proximity of the core and smaller than it in the rest

of the domain, which makes it more similar with the standard deviation of Te. Therefore,

the standard deviation of Dα〈nn〉 could, to some extent, be used as a proxy of the standard

deviation of Te, particularly in the SOL. Regarding the skewness of Dα, we remark that it

almost verifies in the close proximity of the core, decreases slightly radially outwards and then

increases significantly in the edge and near SOL, decreasing sharply in the far SOL, where it

becomes smaller than the skewness of both ne and Te. Since it has a very different behaviour

from the skewness of ne and Te, the skewness of Dα can hardly be envisaged as a proxy for

these quantities. In fact, it has a similar profile to the skewness of nD+
2

, particularly close to the

outer wall, where the contribution from Dα,Diss(D+
2 ) becomes dominant. On the other hand,

the skewness of Dα〈nn〉 has a smoother profile than the skewness of Dα, remaining closer to

the skewness of Te in most of the domain, but its behaviour is still too different from the

profiles of the skewness of ne and Te for it to be used as a proxy of these quantities. Very
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similar observations apply to the analysis of the kurtosis of Dα and Dα〈nn〉, which are small in

the close proximity of the core, increase significantly when approaching the LCFS and in the

near SOL, and then decrease sharply in the far SOL, with a similar behaviour to the kurtosis of

nD+
2

. Although the kurtosis of Dα and Dα〈nn〉 has a smoother profile than the kurtosis of Dα,

both of them have a very different behaviour compared to the kurtosis of ne and Te, which

prevent them from being used as proxies for these quantities in most of the domain.

Fig. 4.11 also shows that the neutral density fluctuations do not affect significantly the statisti-

cal moments of Dα in the SOL, but the discrepancy between the standard deviation, skewness

and kurtosis of Dα and Dα〈nn〉 is larger in the edge and displays different behaviour close to the

core. This reinforces the conclusion that the nD fluctuations can have an important impact

on the Dα,Exc emission, particularly in the edge, and thus must be taken into account when

interpreting experimental results from GPI diagnostics, as highlighted in Ref. [64].

Focusing now on the results of the analysis of the auto-correlation time and of the poloidal

and radial correlation lengths, presented in Fig. 4.12, we note that the auto-correlation time,

τα, is the time interval such that

Ci i (τα) = 1

2
, (4.13)

with Ci i the auto-correlation function between two signals at the same location separated

by a τα time interval. In turn, the radial and poloidal correlation lengths, Lrad and Lpol, are

evaluated as

L = 1.66
δ√

−l nCi j

, (4.14)

where Ci j is the cross-correlation function between the signals measured at the same time

and at the positions labelled i and j , and δ the distance between these two positions. Similarly

to Ref. [64], we observe that there is no significant dependence of the correlation lengths on

the value of δ, as long as 1.5ρs0 . δ. 10ρs0, and we choose δ= 2.9ρs0 for the evaluation of the

radial correlation length and δ= 7.8ρs0 for the evaluation of the poloidal correlation length.

The simulation shows that the fluctuations of the neutral densities have a stronger impact on

the turbulence properties in the edge region compared to the SOL. As a matter of fact, the auto-

correlation time and the poloidal and radial correlation lengths of Dα,Exc and Dα,Exc〈nD〉 are

approximately the same in the SOL, but considerably different in the edge. A similar conclusion

holds for the comparison of the turbulence properties of Dα,Diss(D2) and Dα,diss,D2〈nD2〉. We

also note that the auto-correlation time and the poloidal and radial correlation lengths for

Dα,Diss(D+
2 ), display a similar behaviour compared to the profiles of Dα,Exc and Dα,Diss(D2). The

turbulence properties of the total Dα emission, are therefore marginally affected by the neutral

density fluctuations in the SOL, but strongly impacted in the edge, as shown in Fig. 4.12.
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Since the GPI diagnostic is used to infer the turbulence properties of the plasma quantities,

namely ne and Te, it is interesting to compare the auto-correlation time and correlation lengths

of the Dα emission with the ones of ne and Te, which are also presented in Fig. 4.12. The plots

of τα show that the auto-correlation time of the Dα emission rate is in general longer than

the one for ne. Regarding the auto-correlation time of Te, we note that Dα can be used as its

proxy in the edge, but not in the SOL. In fact, only in the proximity of the LCFS and close to

the wall, where the Dα emission is mostly determined by the contribution of dissociation of

D+
2 , the auto-correlation time of the Dα emission follows the one of Te. On the other hand,

Lrad and Lpol based on the Dα emission provide a good estimate for the same quantities for

ne, while it underestimates the Te measurements. The same conclusions hold for Dα〈nn〉, thus

the correlation lengths of Dα,〈nn〉 can be used to infer Lrad and Lpol of the electron density.

4.6 Conclusion

In this chapter we present the results of a simulation of GPI diagnostics carried out with

the multi-component GBS model introduced in Ch. 3 with the goal of supporting a proper

interpretation of the Dα emission in the context of GPI diagnostics, ultimately to allow for

an accurate reconstruction of the plasma and neutral profiles and a reliable inference of the

properties of plasma turbulence. This simulation extends the study reported in Ref. [64] to

the case of a multi-component deuterium plasma, thus taking into account the dynamics

associated with molecular species, D2 and D+
2 . It also follows up on the work presented in Ref.

[46], that we extend by considering a three-dimensional plasma and simulating the neutrals

by means of a kinetic model valid for all values of the neutral mean free path. Analogously to

Ref. [64], a toroidally symmetric source of D2 molecules at wall temperature is considered at

the LFS equatorial midplane in order to mimic a diagnostic gas puff.

With respect to the analysis in Refs. [64] and [46] the contributions from dissociation of D2 and

D+
2 species to the Dα emission rate is taken into account, in addition to the contribution from

the excitation of D atoms. While the Dα emission is mostly determined by the contribution of

atomic excitation in most of the domain, the dissociation of D+
2 is dominant in the far SOL,

near the gas puff source, where the contribution from atomic excitation is residual. These

results suggest, for future work, to include the contribution from recombination processes

when studying the Dα emission, especially for low SOL temperatures.

The work presented in this chapter also sheds some light on the correlations between the

fluctuations of the components of the Dα emission rate, the plasma quantities and the neutral

species densities, based on the application of the Spearman correlation function. In the

configuration and parameter regime considered here, it is possible to divide the diagnosed

volume in four regions, according to the correlations between the total Dα emission and

the plasma and neutral quantities determining it. In the far SOL, Dα emission is strongly

correlated with ne, but no significant correlation with Te or nD is reported, which is a result

of the Dα emission being mostly determined by the contribution from dissociation of D+
2
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ions. In the near SOL and around the LCFS, Dα emission is strongly correlated with ne, Te and

nD, being mostly determined by excitation of D atoms. On the other hand, radially inward

across the edge region, the Dα emission becomes anti-correlated with the neutral density nD,

as a result of ionization sinks dominating over dissociation sources in that region. Finally,

the very low density of neutral atoms in the proximity of the core results in the Dα emission

being correlated with nD and strongly anti-correlated with the plasma quantities ne and Te.

However, the location and radial spread of the regions found is strongly dependent on the

plasma density and temperature considered in the simulation, as the whole dynamics is

expected to shift radially outwards if higher densities and temperatures are considered.

Regarding the impact of the neutral fluctuations on the Dα emission rate, the simulation results

confirm the conclusions reported in Ref. [64], that the perturbations of the neutral quantities

affect significantly the Dα emission, particularly in the edge and in the proximity of the core.

This is shown for the statistical moments of the Dα emission rate and the related turbulence

properties, which highlight the increasingly important role of the neutral fluctuations as one

moves radially inwards.
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5 Summary and conclusions

The boundary region of a tokamak plays a crucial role in determining the overall performance

of the device, as it regulates the exhaust of particle and energy to the vessel walls, controls

plasma fuelling, impurity levels and Helium ashes removal [12]. In the boundary, the plasma

dynamics is significantly affected by the presence of neutral particles, which are generated by

recycling processes taking place at the surrounding walls, external injection or volumetric re-

combination processes. The GBS code enables self-consistent three-dimensional simulations

of the neutral-plasma interaction in the tokamak boundary, by using a set of drift-reduced

Braginskii equations to model plasma turbulence and a kinetic advection equation for the neu-

tral species [61]. While the plasma equations are solved by using a standard finite-difference

scheme, the numerical solution of the neutral kinetic equation relies on the application of

the method of characteristics, with the integral over the neutral path being numerically dis-

cretized, while considering the τn ¿ τturb and k‖λmfp,n ¿ 1 limits. Leveraging the GBS code,

the present thesis reports on the development of a mass-conserving multi-component self-

consistent plasma and neutral model and its first applications that consider a limited plasma

configuration, with a limiter on the equatorial HFS.

Ch. 2 presents the extension of the GBS model to achieve mass conservation to leading order

in ρs/R0, detailing its numerical implementation and describing the first mass-conserving

simulation results. Mass conservation is achieved by consistently considering toroidicity

effects in the neutral and plasma models and by accounting for the radial variation of the

inverse aspect ratio ε= a0/R0. Moreover, the orderings k‖/k⊥ ¿ 1 and k⊥R0 À 1 are avoided

and a set of boundary conditions implemented to make the plasma recycling processes at

the walls verify mass conservation. The mass-conserving properties of the whole model are

demonstrated by performing proper convergence tests. The results from mass-conserving

simulations differ from the ones obtained by using a non-mass-conserving model, as mass-

conserving simulations are characterized by a sharper transition between the closed and

open field-line regions, noticeable in the profiles of both the plasma and neutral quantities,

thus highlighting the impact of mass conservation on the simulation results. In addition,

quantitative studies of particle fluxes performed with the mass-conserving model show that
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the ion particle flux is mostly determined by the E×B drift, which balances the neutral particle

flux. Finally, when performing a parameter scan on the plasma density, higher densities

result in a weaker penetration of neutral particles across the edge and consequently a more

pronounced drop of the neutral density from the SOL to the edge region. As a result, the flux

of neutrals also drops more significantly from the LCFS to the core.

In Ch. 3, the mass-conserving self-consistent model of plasma turbulence and neutral dy-

namics is extended to include the molecular dynamics in the context of a deuterium plasma,

i.e. by considering a plasma composed of electrons, D+ ions, D atoms, D2 molecules and D+
2

ions. As a result of the introduction of the molecular dynamics, a number of new collisional

processes are taken into account, including ionization, electron-neutral elastic collisions,

charge-exchange and dissociative processes, which give rise to new collisional terms appear-

ing in the equations describing both the plasma and the neutral dynamics. The plasma model

is extended by considering a set of drift-reduced Braginskii equations for the D+
2 ion species,

that implement the Zhdanov closure. On the other hand, the neutral model is improved to

take into account the description of D2 molecules, which is done by solving a neutral kinetic

equation for the molecular species, in addition to the atomic species, thus resulting in a system

of two coupled linear integral equations for the atomic and molecular densities.

The results from the first simulation of a multi-component plasma using GBS are presented.

The density profiles show a noticeable up-down asymmetry, which ultimately results in

larger recycling rates and higher density of neutrals above than below the limiter plates.

The simulation shows that the density of D+
2 ions peaks inside the LCFS in the proximity of

the limiter and is between three and four orders of magnitude smaller than the density of

the main ion species, D+. In addition, the role of D2 molecules on plasma fuelling is also

addressed. It is observed that most of the D2 particles generated in the SOL cross the LCFS

and are dissociated into D atoms in the edge. Both D atoms and D2 molecules are ionized

due to the higher plasma densities and temperatures in the edge, where D+
2 ions have very

short lifetimes, being rapidly dissociated. An interesting result from the simulations is the shift

of the ionization of D atoms radially inward with respect to the results from single-species

simulations, as a result of the significant generation of D atoms due to the dissociation of

D2 molecules inside the LCFS. As a result of the dissociation of D2 in the region around the

LCFS and the association of D atoms at the limiter and vessel walls, the density of D atoms

peaks in the SOL region close to the LCFS, where the radial flux of D atoms reverses sign, as

opposed to the monotonic increase of the density of D atoms towards the wall observed in

single-component GBS simulations.

Ch. 4 reports on the investigation of light emission in GPI performed by exploiting the self-

consistent multi-component model developed in Ch. 3. The research presented in this

Ch. 4 constitutes a follow-up of the studies reported in Refs. [64] and [46], by featuring

three-dimensional simulations of a mass-conserving multi-component deuterium plasma

in the tokamak boundary in the presence of a diagnostic gas puff located at the equatorial

outboard midplane. The molecules puffed at wall temperature into the domain interact with
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the boundary plasma, and this interaction results also in light emission. The studies presented

in this chapter focus on the Dα line emission and take into account the contributions from

excitation of D atoms and dissociative processes acting on D2 molecules and D+
2 molecular

ions, with the component associated with atomic excitation being dominant in most of the

domain, except in the proximity of the gas puff source, where dissociation of D+
2 ions is

dominant. The simulation results reveal that the fluctuations of the neutral density have a

significant impact on the Dα emission rate in the edge, which is supported by the analysis of

the radial profiles of the standard deviation, the skewness, the kurtosis, the auto-correlation

time and the radial and poloidal correlation lengths.

The results presented in Ch.4 also highlight that the simulation domain can be split radially

into four different regions, according to the correlation functions between the Dα emission

rate and the plasma and neutral quantities determining it, namely the electron density, ne,

the electron temperature, Te, and the density of neutral atoms, nD. More precisely, a strong

correlation is observed between the Dα emission and ne in the far SOL, but Dα emission is

found not to be strongly correlated with Te or nD. In the near SOL and around the LCFS, Dα

emission is strongly correlated with ne, Te and nD. In most of the edge region, Dα is also

strongly correlated with both ne and Te, but anti-correlated with nD, since dissociation of

D2 molecules dominates over ionization of D atoms in the SOL, while ionization becomes

dominant in the edge. Finally, towards the core region, the very low neutral density results

in the Dα emission being mostly determined by nD, which in turn translates into a strong

correlation between Dα and nD, and significant anti-correlations between Dα and both ne

and Te. These results provide useful insights on the interpretation of the Dα emission in the

context of GPI diagnostics, as it can guide the interpretation of plasma and neutral quantities

from light emission measurements.

As a final note, we remark that the studies presented in this thesis constitute a step forward to-

wards the realistic self-consistent simulation of the complex dynamics in the boundary region

of a tokamak. While mass-conservation is an essential feature for the accurate simulations

of the neutral-plasma interaction, the ability to simulate multi-ion species and to address

the dynamics of several neutral particles is considered a key element to study relevant issues

concerning the physics of boundary plasmas, such as fuelling and GPI diagnostics.

The results published in this thesis focus on a limited plasma. The extension to diverted

configurations, more widely used in nowadays tokamaks given their advantages on reducing

the heat load on the plasma facing components, should be relatively straightforward. Since

divertor plates are placed, with respect to the limiter plates, further away from the tokamak

core, the inclusion of neutral dynamics is expected to be even more crucial in a diverted

geometry. The implementation of the multi-species model in diverted configurations will also

allow for the conduction-limited and detachment regimes to be addressed by GBS simulations.

The later will most likely require the inclusion of impurities, which in turn will call for an

extension of the model to include new charged and neutral species, by following a similar

approach to the one presented in the present thesis.
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A Proof of mass conservation in the
formal solution of the neutral kinetic
equation
We prove that the formal solution of Eq. (2.47), presented in Eq. (2.51), satisfies the conserva-

tion relation

∇·Γn =−nnνiz. (A1)

For the sake of simplicity, we consider an infinitely extended domain (no boundary conditions)

and plasma related quantities constant. These assumptions lead to an ion velocity distribution

constant in space, µi = µi(v), and constant collisional frequencies (νcx,νiz = const.). The

extension of the proof to the most general case is straightforward.

We start by noting that the neutral flux in Eq. (A1) is given by Γn = ∫
d 3v fnvp in the poloidal

plane (the component of the neutral flux along the toroidal direction is not considered in the

λm f p,nk‖ ¿ 1 and
∣∣∇ψ×∇ϕ∣∣ ¿ ∣∣F (ψ)∇ϕ∣∣ limits studied here). Making use of Eq. (2.48) to

express fn, the neutral flux can be written as

Γn(xp) =
∫ ∞

0
d vpvp

∫ 2π

0
dϑ

∫ ∞

−∞
d vt

∫ ∞

0
dr ′ R(x′

p)

R(xp)
S(x′

p,v)exp

(
−νeff

vp
r ′

)
(cosϑeR + sinϑeZ),

(A2)

where S(x′
p,v) = nn(x′

p)νcxµi(v) within the hypothesis made here, and the neutral velocity vp

is decomposed in (R, Z ) coordinates as vp = vp(CosϑeR +SinϑeZ).

We remark that the xp and x′
p locations are identified by their (R, Z ) coordinates, and they are

related by the distance r ′ and the angle ϑ as

R(x′
p) = R(xp)− r ′cosϑ (A3)

and
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Z (x′
p) = Z (xp)− r ′sinϑ. (A4)

Eqs. (A3-A4) can be inverted to obtain the definitions of r ′ and ϑ as a function of R and Z , that

is

r ′2 = (R(xp)−R ′(x′
p))2 + (Z (xp)−Z ′(x′

p))2, (A5)

cosϑ=
R(xp)−R ′(x′

p)

r ′ , (A6)

and

sinϑ=
Z (xp)−Z ′(x′

p)

r ′ . (A7)

We note that, for a given location x′
p described by coordinates (R(x′

p), Z (x′
p)), the location of

the neutral particle source xp can be described by the variables r ′ and ϑ, according to Eqs.

(A3-A4). Therefore, (R(x′
p), Z (x′

p),r ′,ϑ) must be regarded as four independent variables that

fully describe each pair of source and target points.

We now apply the divergence operator to the neutral flux in Eq. (A2) at the xp location. This

can be written in (R, Z ) coordinates as

∇·Γn(xp) = ∂Γn,R

∂R(xp)
+ ∂Γn,Z

∂Z (xp)
. (A8)

Since the variables r ′ and ϑ are independent of R(xp) and Z (xp)), the R, Z -dependence in Eq.

(A2) comes exclusively from the source S(x′
p,v), namely through the neutral density nn(x′

p),

and from the geometric factor R(x′
p)/R(xp). We then make use of Eqs. (A3) and (A4) and apply

the chain rule (at constant r ′ and ϑ) to write ∂/∂R(x′
p) = ∂/∂R(xp) and ∂/∂Z (x′

p) = ∂/∂Z (xp).

By taking the derivatives with respect to the R, Z coordinates of the source location x′
p, we

obtain

∇·Γn(xp) =
∫ ∞

0
d vpvp

∫ 2π

0
dϑ

∫ ∞

−∞
d vt

∫ ∞

0
dr ′νcxµi(v)[

∂

∂R(x′
p)

(
R(x′

p)

R(xp)
nn(x′

p)

)
cosϑ+ ∂

∂Z (x′
p)

(
R(x′

p)

R(xp)
nn(x′

p)

)
sinϑ

]
exp

(
−νeff

vp
r ′

)
. (A9)
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Since the integrals are performed with respect to r ′ and ϑ, it is convenient to express the

derivatives appearing in Eq. (A9) in terms of these variables. Again, by using the chain rule, we

obtain from Eqs. (A5-A7)

∂nn

∂R(x′
p)

= ∂r ′

∂R(x′
p)

∂nn

∂r ′ +
∂ϑ

∂R(x′
p)

∂nn

∂ϑ
=−cosϑ

∂nn

∂r ′ +
sinϑ

r ′
∂nn

∂ϑ
, (A10)

∂nn

∂Z (x′
p)

= ∂r ′

∂Z (x′
p)

∂nn

∂r ′ +
∂ϑ

∂Z (x′
p)

∂nn

∂ϑ
=−Sinϑ

∂nn

∂r ′ −
Cosϑ

r ′
∂nn

∂ϑ
, (A11)

Applying Eqs. (A10) and (A11) into Eq. (A9) yields

∇·Γn(xp) =−
∫ ∞

0
d vpvp

∫ 2π

0
dϑ

∫ ∞

−∞
d vt

∫ ∞

0
dr ′νcxµi(v)

∂

∂r ′

(
R(x′

p)

R(xp)
nn(x′

p)

)
exp

(
−νeff

vp
r ′

)
.

(A12)

Finally, the integral along r ′ appearing in Eq. (A12) is computed via integration by parts,

yielding

∫ ∞

0
dr ′ ∂

∂r ′

(
R(x′

p)

R(xp)
nn(x′

p)

)
exp

(
−νeff

vp
r ′

)

=−nn(xp)+
∫ ∞

0
dr ′ R(x′

p)

R(xp)
nn(x′

p)
νeff

vp
exp

(
−νeff

vp
r ′

)
(A13)

Using Eq. (A13) to develop Eq. (A12), we can write

∇·Γn(xp) = νcxnn(xp)
∫ ∞

0
d vpvp

∫ 2π

0
dϑ

∫ ∞

−∞
d vtµi(v)

−νeff

∫ ∞

0
d vpvp

∫ 2π

0
dϑ

∫ ∞

−∞
d v‖

∫ ∞

0
dr ′ R(x′

p)

R(xp)

νcxnn(x ′
p)µi(v)

vp
exp

(
−νeff

vp
r ′

)
.

(A14)

Then, since
∫ ∞

0 d vpvp
∫ 2π

0 dϑ
∫ ∞
−∞ d vtµi(v) = 1, the first term on the right-hand side of Eq.

(A14) yields simply νcxnn(xp). For the second term, one recognises the neutral density at the

xp location as given by Eq. (2.51). Therefore,

∇·Γn(xp) = νcxnn(xp)−νeffnn(xp). (A15)

Since νeff = νcx +νiz, Eq. (A1) is recovered.
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B Evaluation of the average electron
energy loss and reaction product
energies in collisional processes
The Franck-Condon principle [114, 115] states that electronic excitation occurs over a timescale

considerably shorter than the characteristic timescale associated with vibration or dissociation

of the diatomic species. In turn, the vibration or dissociation timescales are much shorter

than the electron deexcitation timescale. As a result, when an electron impacts a D2 molecule

or a D+
2 ion, an electronic excitation is observed with no significant change in the inter-atomic

distance (vertical transition). If the excited state is not stable, the molecule dissociates before

deexcitation takes place. In this case, the difference between the excitation energy and the dis-

sociation energy is converted into kinetic energy of the products (ionization and dissociative

energies are discussed in [116]). We note that the exact energies of the products of dissociation

reactions depend on the vibrational level of the D2 molecule or D+
2 ion. Considering the

excitation of a D2 molecule in a given initial state, the set of vibrational levels accessible for the

molecule in the final state are the ones lying within the region of the potential energy surface

accessed by that particular vertical transition, known as the Franck-Condon region. The mean

energy of the reaction products is thus the average over the Franck-Condon region, taking into

account all accessible vibrational states.

In the present thesis, we model the products of dissociative reactions by considering that they

are reemitted isotropically in the reference frame of the incoming massive particle (D2 or D+
2 ),

thus approximating their velocity distribution as a Maxwellian centered at the velocity of the

incoming D2 or D+
2 . The temperature of the Maxwellian, together with the average electron

energy loss for each process, are obtained from the values presented in [85]. Since these

energies depend on the intermediate excited state of the D2 or D+
2 particle, different values

are found for different channels within the same dissociative process. This requires that an

average is performed over all possible excited states, taking into account the respective cross

section of each process. We present these calculations in detail for each process, following

[85].

The energy loss and the energy of the reaction products may depend on the electronic levels (n)

and sub-levels (l ) of the reaction products, on the molecular orbital (MO) of the intermediate

state, if bonding or antibonding, and on the energy of the incident electron. The energy
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Appendix B. Evaluation of the average electron energy loss and reaction product energies
in collisional processes

values are experimentally determined for all relevant dissociation channels. These quantities

are then averaged over all vibrational states v of the D2 molecules or D+
2 ion and over the

Franck-Condon region, from [85].

We start by considering the dissociation of D2 molecules, i.e.

e−+D2 → e−+D+D. (B.1)

For this reaction, the values of the electron energy loss, 〈∆Ee〉, and reaction product energies,

〈ED〉, depend significantly on the electronic state of the products. Hence, considering that

there are i = 1, ..., N electronic states of the reaction products and, associated, N different

sub-processes contributing to the dissociation of D2, the average electron energy loss 〈∆Ee〉
is obtained by performing a weighed average of 〈∆Ee〉i , the energy loss for the sub-process i ,

based on the 〈σv〉i reaction rate, yielding

〈∆Ee〉 =
ΣN

i=1

[〈σv〉i 〈∆Ee〉i
]

ΣN
i=1 [〈σv〉i ]

, (B.2)

For simplicity, we evaluate all quantities at the reference temperature, Te = 20eV. Similarly,

the average value for the energy of the reaction products is obtained as

〈ED〉 =
ΣN

i=1

[〈σv〉i 〈ED〉i
]

ΣN
i=1 [〈σv〉i ]

, (B.3)

with 〈ED〉i the average energy of the products for the sub-process i .

The values of 〈σv〉i , 〈∆Ee〉i , 〈ED〉i are presented in Table B.1 for all sub-processes. The ad-

ditional information between brackets refers to the minimum and maximum of the range

of energies accessible to 〈∆Ee〉i and 〈ED〉i , following the values listed in [85]. We highlight

that D(1s) denotes a D atom in the fundamental state (electron at the lowest orbital 1s), while

D∗(2s) and D∗(2p) denote an atom in the excited state n = 2 with the electron in an orbital of

type s or p, respectively, and D∗(n = 3) represents an atom in the excited state n = 3. Following

[85], we assume that the energy is equally distributed over the reaction products, regardless of

the fact that their electronic states are the same. Based on the values in Table B.1, from Eqs.

(B.2) and (B.3), we obtain 〈∆Ee〉 ' 14.3eV and 〈ED〉 ' 1.95eV, respectively, at Te = 20eV. These

are the values mentioned in Table 3.2.

Focusing now on the dissociative-ionization of D2,

e−+D2 → D+D++2e−, (B.4)
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Table B.1: 〈σve〉 product, average electron energy loss and average energy of reaction products
for each sub-process of D2 dissociation.

Reaction 〈σve〉i 〈∆Ee〉i 〈ED〉i

e−+D2 → e−+D(1s)+D(1s) 3.8×10−9cm3/s 10.5eV 3eV
e−+D2 → e−+D(1s)+D∗(2s) 5.3×10−9cm3/s 15.3eV 0.3eV
e−+D2 → e−+D∗(2p)+D∗(2s) 9.2×10−10cm3/s 34.6eV 4.85eV
e−+D2 → e−+D(1s)+D∗(n = 3) 5.7×10−10cm3/s 21.5eV 5.7eV

we consider three cases. If the incoming electron has an energy Ee < Eth(g), with Eth(g) = 18eV,

no dissociation takes place. If Eth(g) < Ee < Eth(u), with Eth(u) = 26eV, the electron can ionize

the molecule, resulting in an unstable D+
2 ion, which then dissociates into a D atom and a D+

ion. The short-lived D+
2 has the electron in a bonding molecular orbital (MO) withσ-symmetry,

thus exhibiting gerade (g) symmetry (German for even) state, denoted as D+
2 (Σg). If Ee > Eth(u),

the intermediate D+
2 ion has the electron in a higher-energy antibonding MO withσ-symmetry,

which exhibits ungerade (u) symmetry (German for odd), thus denoted as D+
2 (Σu). As a result

of the different energy levels of the intermediate D+
2 ion, the energy of the final products

will also be different, as well as the average electron energy loss. According to the results

presented in [85], these energies still depend on the energy of the incoming electron within

each sub-process. To simplify the evaluation of the 〈∆Ee〉 and the energy of the products,

we consider the energy to be evenly distributed by the reaction products (D and D+) and we

consider the two cases separately. For Eth(g) < Ee < Eth(u), all dissociative-ionization events

originate an intermediate state D+
2 (Σg), while for Ee > Eth(u) all events generate an intermediate

state D+
2 (Σu). The values for the electron energy loss and reaction product energies being

considered for each case are evaluated for [85] and listed in Table B.2. We note that this is

just an approximation, as even with Te < Eth(u) there are electrons with energies superior to

the threshold that will generate a D+
2 ion in a D+

2 (Σu) state, and vice-versa. Nevertheless, this

approximation avoids us to evaluate 〈∆Ee〉 and 〈ED〉 at every single value of Te.

For the dissociation of D+
2 , i.e.

e−+D+
2 → D++D+e−, (B.5)

different sub-processes are taken into account, following an approach similar to the one

Table B.2: Average electron energy loss and average energy of reaction products for the two
cases of dissociative-ionization of D2.

Reaction 〈∆Ee〉 〈ED〉 =
〈

ED+
〉

e−+D2 → e−+ [
D+

2 (Σg)+e−
]→ D+D++2e− 18.25eV 0.25eV

e−+D2 → e−+ [
D+

2 (Σu)+e−
]→ D+D++2e− 33.6eV 7.8eV
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Appendix B. Evaluation of the average electron energy loss and reaction product energies
in collisional processes

Reaction 〈σve〉i 〈∆Ee〉i 〈ED〉 =
〈

ED+
〉

i

e−+D+
2 → D++D(1s)+e− 1.2×10−7cm3/s 10.5eV 4.3eV

e−+D+
2 → D++D∗(n = 2)+e− 1.0×10−7cm3/s 17.5eV 1.5eV

Table B.3: 〈σve〉 product, average electron energy loss and average energy of reaction products
for each sub-process of D+

2 dissociation.

adopted to treat the dissociation of D2. We perform a weighed average of the electron energy

loss and the reaction products energy by using Eqs. (B.2) and (B.3), respectively. The values of

〈σve〉i , 〈∆Ee〉i and 〈ED〉 =
〈

ED+
〉

i for each sub-process are presented in Table B.3. The weighed

averaged values for the electron energy loss and reaction products energy at the reference

temperature, Te = 20eV, yield 〈∆Ee〉 = 13.7eV and 〈ED〉 =
〈

ED+
〉= 3.0eV, as listed in Table B.3.

Regarding the dissociative-ionization of D+
2 , i.e.

e−+D+
2 → D++D++2e−, (B.6)

we follow [85], where the average energy of the resulting D+ ions is obtained from an average

performed over all vibrational states (v = 0−9) of the D+
2 ion and over the Franck-Condon

region. This yields
〈

ED+
〉= 0.4eV, while the average electron energy loss is 〈∆Ee〉 = 15.5eV.

We finally focus on the dissociative-recombination of D+
2 , which generates a D atom in the

fundamental state (electron in orbital 1s) and a D atom in an excited state (electron with

principal quantum number n ≥ 2), i.e.

e−+D+
2 → D(1s)+D∗(n ≥ 2). (B.7)

We assume that the energy of the products is evenly distributed among the two D atoms and

is given by

〈
ED(1s)

〉' 〈
ED∗(n≥2)

〉' 1

2

(
Ee + Ry

n2

)
, (B.8)

with Ry = 13.6eV the Rydberg unit of energy (corresponding to the electron binding energy in a

hydrogen atom in the fundamental state). Since this expression depends on the energy of the

incoming electron, Ee, and the electronic level n of the excited atom, D∗, we assume an energy

of the incident electron of Ee ' 20eV, the typical value in the region around the LCFS at the

HFS, and consider that these atoms are most likely in the accessible state of lowest energy n = 2

(considering a higher excited state would not change the value of the energy of the products

by a significant amount). Under these assumptions, we get
〈

ED(1s)
〉' 〈

ED∗(n≥2)
〉' 11.7eV.
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C Zhdanov collisional closure

We focus on the derivation of the parallel friction forces and the parallel heat fluxes, denoted

respectively by R‖α = Rα ·b and q‖α = qα ·b for a given species α, with Rα = ∫
mαv′Cαdv

and qα = ∫
(mαv ′2)/2v′ fαdv, where we introduce the thermal component of the velocity,

v′ =v−vα, with vα = ∫
v fαdv the fluid velocity of the α species, and the collision operator

Cα =ΣβCαβ( fα, fβ), with Cαβ describing collisions of species α with species β. We consider

the collisional closure derived by Zhdanov in [65], relying on the approach proposed in [66]

and discussed in [93] for its numerical implementation.

Following [65], the parallel component of the friction forces and heat fluxes of the species α is

related to the parallel gradients of the temperature and parallel velocity of all species through

[
q‖α
R‖α

]
=∑

β

Zαβ

[
∇‖Tβ
w‖β

]
, (C.1)

where Tβ denotes the temperature of plasma species β and w‖β is the parallel component of

the fluid velocity of species β with respect to the center of mass of the plasma, wβ =vβ−vCM,

with vCM = (∑
βnβmβvβ

)
/
(∑

βnβmβ

)
. The matrix Zαβ relates the parallel heat fluxes and

friction forces with the parallel gradients of temperature and parallel velocity. We remark that

Eq. (C.1) simplifies the general result obtained by Zhdanov [65] to the case of singly-ionized

states, neglecting possible multiplicity of charge states for the chemical species present in the

plasma.

In order to compute the matrix Zαβ, we consider the 21N -moment approximation of the

distribution function [65], thus including the moments up to the fifth order moment. We

first express Rα and qα in terms of these moments of the distribution function, namely the

first order moment, wα, the third order moment, hα = q‖α, and the fifth order moment,

rα = mα/4
∫

(c4 − 14c2/γα + 35γα)c fαdc, where we introduce the velocity with respect to

the center of mass of the plasma, c = v−vCM, and the parameter γα = mα/(kTα), with

Tα = ∫
(mαv ′2/2) fαdv. Since only the expressions for the parallel component of the friction
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Appendix C. Zhdanov collisional closure

forces and heat fluxes are needed, we consider only the parallel component of these equations.

The heat flux, q‖α, simply corresponds to the third order moment, h‖α, while the friction

forces, R‖α, are obtained in terms of w‖α, h‖α and r‖α [117], yielding

q‖α = h‖α, (C.2)

R‖α =∑
β

[
G (1)
αβ

(
w‖α−w‖β

)+ µαβ

kT
G (2)
αβ

(
h‖α

mαnα
− h‖β

mβnβ

)
+

(
µαβ

kT

)2

G (8)
αβ

(
rα

mαnα
− rβ

mβnβ

)]
.

(C.3)

where mα and nα are respectively the mass and density of speciesα, µαβ = (mαmβ)/(mα+mβ)

is the reduced mass, and G (n)
αβ

are polynomial functions of the local plasma density and

temperature, their exact expressions being presented in [65] (chapter 8.1, pp. 163-164). Eqs.

(C.2) and (C.3) can then be written in matrix form as

[
q‖α
R‖α

]
=∑

β

Aαβ

[
h‖β
r‖β

]
+∑

β

Bαβ

[
∇‖Tβ
w‖β

]
, (C.4)

where the matrices A and B are defined to satisfy Eqs. (C.2) and (C.3). We now aim at

expressing the moments hα and ∇rα in terms of wα and ∇Tα. This can be achieved by solving

a system of moment equations similar to the one presented in [65] (chapter 8.1, pp. 162-163),

including the time evolution of the moments (wα, hα and ∇rα) and the time evolution of basic

thermodynamic variables (ρ, vCM and T ). We neglect time derivatives and nonlinear terms.

For simplicity, we also assume that, for two massive particle species D+ and D+
2 , the condition

|TD+
2
−TD+ | ¿ TD+

2
is fulfilled, which allows us to write TD+

2
= TD+ = T . Moreover, as long as

Te/TD+ À me/mD+ is verified, T can also be replaced by Te, following [65] (the simulation

results shown in Fig. 3.3 meet these conditions). We therefore impose TD+
2
= TD+ = Te = T ,

while no assumption is made on the temperature and pressure gradients, i.e. temperature

gradients can be different from species to species [65].

The parallel projection of the system of moment equations can then be written as (see [117])

5

2
n‖αk∇Tα =∑

β

[
5

2

µαβ

mα
G (2)
αβ

(
w‖α−w‖β

)+G (5)
αβ

h‖α
pα

+G (6)
αβ

h‖β
pβ

+ µαβ

kT

(
G (9)
αβ

r‖α
pα

+G (10)
αβ

r‖β
pβ

)]
,

(C.5)
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0 =∑
β

[
35

2

(
µαβ

mα

)2

G (8)
αβ

(
w‖α−w‖β

)+7
µαβ

mα

(
G (9)
αβ

h‖α
pα

+G (10)
αβ

hβ
pβ

)
+mα

kT
G (11)
αβ

r‖α
pα

+ mβ

kT
G (12)
αβ

r‖β
pβ

]
,

(C.6)

where pα is the pressure of species α. Rewriting Eqs. (C.5-C.6) in matrix form, one obtains

∑
γ

Pαγ

[
∇‖Tγ
w‖γ

]
=∑

β

Mαβ

[
h‖β
r‖β

]
, (C.7)

which can be inverted to express the parallel third and fourth order fluid moments in terms of

the parallel gradient of temperature and relative parallel velocity as

[
h‖β
r‖β

]
=∑

α

∑
γ

M−1
αβPαγ

[
∇‖Tγ
w‖γ

]
. (C.8)

Finally, making use of Eq. (C.8) to express h‖α and r‖α in Eq. (C.4) in terms of the parallel

temperature gradients and relative velocities, one obtains the expressions for the parallel heat

flux and friction forces in the matrix form presented in Eq. (C.1), that is

[
q‖α
R‖α

]
=

(
AαλM−1

γλPγβ+Bαβ

)[
∇‖Tβ
w‖β

]
. (C.9)

Since the matrices A, B , P and M are fully determined by Eqs. (C.2), (C.3), (C.5) and (C.6),

the expressions of the parallel heat flux and friction forces can be found. Following Zhdanov

[65], these matrices can be expressed in terms of the local values of plasma quantities, namely

densities ne, nD+ and nD+
2

and temperatures Te and TD+ (we again assume TD+
2
= TD+ , mass

ratios and characteristic time scales τeD and τDD, with τeD defined as the inverse of the

collision frequency for momentum transfer between electrons and D+ ions, and τDD the ion

timescale defined as the inverse of the collision frequency for momentum transfer between

D+ ions. We retain only terms of leading order in
p

me/mD, while terms proportional to the

fast electron timescale τeD are neglected when compared to terms proportional to τDD, which

considerably simplifies the final expressions. We also highlight that, besides imposing the

quasi-neutrality relation ne = nD+ +nD+
2

, we take into account the fact that the density of

the molecular ion species is much smaller than the density of the main ion species D+ for

typical tokamak boundary conditions, i.e. nD+
2

/nD+ ¿ 1, keeping therefore only leading order

terms in nD+
2

/nD+ . As a result, the friction forces between molecular ions and other species

are neglected, as well as molecular ion temperature gradient terms, while friction and thermal

force contributions involving D+ and e− species are kept in the expressions of the parallel

components of the heat fluxes and friction forces. The expressions obtained for the friction
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Appendix C. Zhdanov collisional closure

forces and heat fluxes finally yield

q‖e =−3.16neTeτeD

me
∇‖Te +0.71neTe(v‖e − v‖D+),

q‖D+ =−4.52neTD+τDD

mD
∇‖TD+ ,

q‖D+
2
=−1.80neTD+τDD

mD
∇‖TD+ ,

R‖e =−0.71ne∇‖Te − 0.51mene

τeD
(v‖e − v‖D+),

R‖D+ = 0.71ne∇‖Te − 0.51mene

τeD
(v‖D+ − v‖e),

R‖D+
2
= 0,

(C.10)

The expressions in Eqs. (C.10) can be simplified by applying the relation between the electron

and ion characteristic times,

τDD

τeD
= 1p

2

√
mD

me

(
Te

TD+

)
∼ 1p

2

√
mD

me
, (C.11)

having again assumed TD+ ∼ Te. This enables one to write τDD appearing in Eq. (C.10) in

terms of τeD. Following Braginskii’s approach [17] and considering that the the electron

characteristic time is τe = τeD, we then write Eqs. (C.10) in terms of the resistivity, defined as

[33, 34]

ν= 0.51
me

mD

R0

cs0

1

neτeD
, (C.12)

The parallel friction forces and heat fluxes, as they appear in Eqs. (3.22-3.24) and Eqs. (3.25-

3.27), respectively, are therefore written in normalized units as

R‖e =−0.71ne∇‖Te −νne(v‖e − v‖D+),

R‖D+ = 0.71ne∇‖Te −νne(v‖D+ − v‖e),

R‖D+
2
= 0,

q‖e =−1.62

ν
neTe∇‖Te +0.71neTe(v‖e − v‖D+),

q‖D+ =− 2.32p
2ν

√
me

mD
neTD+∇‖TD+ ,

q‖D+
2
=− 0.92p

2ν

√
me

mD
neTD+∇‖TD+ .

(C.13)

We note that, similarly to the single-ion species model implemented in GBS [33], the ohmic
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heating terms are neglected.
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D List of kernel functions

The kernels used in Eqs. (3.80-3.83) for nD2 , Γout,D2 , nD and ΓD are defined as

K
D2,D+

2
p→p (x⊥,x′

⊥) = K
D2,D+

2

p→p,dir(x⊥,x′
⊥)+αreflK

D2,D+
2

p→p,refl(x⊥,x′
⊥), (D.1)

K D2,reem
b→p (x⊥,x′

⊥b) = K D2,reem
b→p,dir (x⊥,x′

⊥b)+αreflK D2,reem
b→p,refl(x⊥,x′

⊥b), (D.2)

K D2,refl
b→p (x⊥,x′

⊥b) = K D2,refl
b→p,dir(x⊥,x′

⊥b)+αreflK D2,refl
b→p,refl(x⊥,x′

⊥b), (D.3)

K
D2,D+

2

p→b (x⊥b,x′
⊥) = K

D2,D+
2

p→b,dir(x⊥b,x′
⊥)+αreflK

D2,D+
2

p→b,refl(x⊥b,x′
⊥), (D.4)

K D2,reem
b→b (x⊥b,x′

⊥b) = K D2,reem
b→b,dir (x⊥b,x′

⊥b)+αreflK D2,reem
b→b,refl(x⊥b,x′

⊥b), (D.5)

K D2,refl
b→b (x⊥b,x′

⊥b) = K D2,refl
b→b,dir(x⊥b,x′

⊥b)+αreflK D2,refl
b→b,refl(x⊥b,x′

⊥b), (D.6)
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K D,D+
p→p (x⊥,x′

⊥) = K D,D+
p→p,dir(x⊥,x′

⊥)+αreflK D,D+
p→p,refl(x⊥,x′

⊥), (D.7)

K
D,D+

2
p→p (x⊥,x′

⊥) = K
D,D+

2

p→p,dir(x⊥,x′
⊥)+αreflK

D,D+
2

p→p,refl(x⊥,x′
⊥), (D.8)

K
D,diss(D+

2 )
p→p (x⊥,x′

⊥) = K D,reem
b→b,dir(x⊥b,x′

⊥b)+αreflK D,reem
b→b,refl(x⊥b,x′

⊥b), (D.9)

K
D,diss-rec(D+

2 )
p→p (x⊥,x′

⊥) = K D,reem
b→b,dir(x⊥b,x′

⊥b)+αreflK D,reem
b→b,refl(x⊥b,x′

⊥b), (D.10)

K D,diss(D2)
p→p (x⊥,x′

⊥) = K D,reem
b→b,dir(x⊥b,x′

⊥b)+αreflK D,reem
b→b,refl(x⊥b,x′

⊥b), (D.11)

K D,diss-iz(D2)
p→p (x⊥,x′

⊥) = K D,reem
b→b,dir(x⊥b,x′

⊥b)+αreflK D,reem
b→b,refl(x⊥b,x′

⊥b), (D.12)

K D,reem
b→p (x⊥,x′

⊥b) = K D,reem
b→b,dir(x⊥b,x′

⊥b)+αreflK D,reem
b→b,refl(x⊥b,x′

⊥b), (D.13)

K D,refl
b→p (x⊥,x′

⊥b) = K D,reem
b→b,dir(x⊥b,x′

⊥b)+αreflK D,reem
b→b,refl(x⊥b,x′

⊥b), (D.14)

K D,D+
p→b (x⊥b,x′

⊥) = K D,reem
b→b,dir(x⊥b,x′

⊥b)+αreflK D,reem
b→b,refl(x⊥b,x′

⊥b), (D.15)

K
D,D+

2

p→b (x⊥b,x′
⊥) = K D,reem

b→b,dir(x⊥b,x′
⊥b)+αreflK D,reem

b→b,refl(x⊥b,x′
⊥b), (D.16)
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K
D,diss(D+

2 )
p→b (x⊥b,x′

⊥) = K D,reem
b→b,dir(x⊥b,x′

⊥b)+αreflK D,reem
b→b,refl(x⊥b,x′

⊥b), (D.17)

K
D,diss-rec(D+

2 )
p→b (x⊥b,x′

⊥) = K D,reem
b→b,dir(x⊥b,x′

⊥b)+αreflK D,reem
b→b,refl(x⊥b,x′

⊥b), (D.18)

K D,diss(D2)
p→b (x⊥b,x′

⊥) = K D,reem
b→b,dir(x⊥b,x′

⊥b)+αreflK D,reem
b→b,refl(x⊥b,x′

⊥b), (D.19)

K D,diss-iz(D2)
p→b (x⊥b,x′

⊥) = K D,reem
b→b,dir(x⊥b,x′

⊥b)+αreflK D,reem
b→b,refl(x⊥b,x′

⊥b), (D.20)

K D,reem
b→b (x⊥b,x′

⊥b) = K D,reem
b→b,dir(x⊥b,x′

⊥b)+αreflK D,reem
b→b,refl(x⊥b,x′

⊥b), (D.21)

K D,refl
b→b (x⊥b,x′

⊥b) = K D,refl
b→b,dir(x⊥b,x′

⊥b)+αreflK D,reem
b→b,refl(x⊥b,x′

⊥b), (D.22)

where the kernel functions for a given path = {dir,refl} are defined as

K
D2,D+

2

p→p,path(x⊥,x′
⊥) =

∫ ∞

0

1

r ′
⊥
Φ⊥

[
v⊥,D+

2
,TD+

2

](x′
⊥,v⊥)exp

[
− 1

v⊥

∫ r ′
⊥

0
νeff,D2

(x′′
⊥)dr ′′

⊥

]
d v⊥,

(D.23)

K D2,reem
b→p,path(x⊥,x′

⊥b) =
∫ ∞

0

v⊥
r ′
⊥

cosθ′χ⊥,in,D2 (x′
⊥b,v⊥)exp

[
− 1

v⊥

∫ r ′
⊥

0
νeff,D2

(x′′
⊥)dr ′′

⊥

]
d v⊥,

(D.24)

135



Appendix D. List of kernel functions

K D2,refl
b→p,path(x⊥,x′

⊥b) =
∫ ∞

0

1

r ′
⊥
Φ⊥

[
vrefl(D+

2 ),TD+
2

](x′,v)exp

[
− 1

v⊥

∫ r ′
⊥

0
νeff,D2

(x′′
⊥)dr ′′

⊥

]
d v⊥,

(D.25)

K
D2,D+

2

p→b,path(x⊥b,x′
⊥) =

∫ ∞

0

v⊥
r ′
⊥

cosθΦ⊥
[
v⊥,D+

2
,TD+

2

](x′
⊥,v⊥)exp

[
− 1

v⊥

∫ r ′
⊥

0
νeff,D2

(x′′
⊥)dr ′′

⊥

]
d v⊥,

(D.26)

K D2,reem
b→b,path(x⊥b,x′

⊥b) =
∫ ∞

0

v2
⊥

r ′
⊥

cosθcosθ′χ⊥,in,D2 (x′
⊥b,v⊥)exp

[
− 1

v⊥

∫ r ′
⊥

0
νeff,D2

(x′′
⊥)dr ′′

⊥

]
d v⊥,

(D.27)

K D2,refl
b→b,path(x⊥b,x′

⊥b) =
∫ ∞

0

v⊥
r ′
⊥

cosθΦ⊥
[
vrefl(D+

2 ),TD+
2

](x′,v)exp

[
− 1

v⊥

∫ r ′
⊥

0
νeff,D2

(x′′
⊥)dr ′′

⊥

]
d v⊥,

(D.28)

K D,D+
p→p,path(x⊥,x′

⊥) =
∫ ∞

0

1

r ′
⊥
Φ⊥[v⊥,D+ ,TD+](x′

⊥,v⊥)exp

[
− 1

v⊥

∫ r ′
⊥

0
νeff,D(x′′

⊥)dr ′′
⊥

]
d v⊥,

(D.29)

K
D,D+

2

p→p,path(x⊥,x′
⊥) =

∫ ∞

0

1

r ′
⊥
Φ⊥

[
v⊥,D+

2
,TD+

2

](x′
⊥,v⊥)exp

[
− 1

v⊥

∫ r ′
⊥

0
νeff,D(x′′

⊥)dr ′′
⊥

]
d v⊥,

(D.30)

K
D,diss(D+

2 )
p→p,path (x⊥,x′

⊥) =
∫ ∞

0

1

r ′
⊥,

Φ⊥
[
v⊥,D+

2
,TD,diss(D+

2 )
](x′

⊥,v⊥)exp

[
− 1

v⊥

∫ r ′
⊥

0
νeff,D(x′′

⊥)dr ′′
⊥

]
d v⊥,

(D.31)

K
D,diss-rec(D+

2 )
p→p,path (x⊥,x′

⊥) =
∫ ∞

0

1

r ′
⊥
Φ⊥

[
v⊥,D+

2
,TD,diss-rec(D+

2 )
](x′

⊥,v⊥)exp

[
− 1

v⊥

∫ r ′
⊥

0
νeff,D(x′′

⊥)dr ′′
⊥

]
d v⊥,

(D.32)
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K D,diss(D2)
p→p,path (x⊥,x′

⊥) =
∫ ∞

0

1

r ′
⊥
Φ⊥

[
v⊥,D2 ,TD,diss(D2)

](x′
⊥,v⊥)exp

[
− 1

v⊥

∫ r ′
⊥

0
νeff,D(x′′

⊥)dr ′′
⊥

]
d v⊥,

(D.33)

K D,diss-iz(D2)
p→p,path (x⊥,x′

⊥) =
∫ ∞

0

1

r ′
⊥
Φ⊥

[
v⊥,D2 ,TD,diss-iz(D2)

](x′
⊥,v⊥)exp

[
− 1

v⊥

∫ r ′
⊥

0
νeff,D(x′′

⊥)dr ′′
⊥

]
d v⊥,

(D.34)

K D,reem
b→p,path(x⊥,x′

⊥b) =
∫ ∞

0

v⊥
r ′
⊥

cosθ′χ⊥,in,D(x′
⊥b,v⊥)exp

[
− 1

v⊥

∫ r ′
⊥

0
νeff,D(x′′

⊥)dr ′′
⊥

]
d v⊥,

(D.35)

K D,refl
b→p,path(x⊥,x′

⊥b) =
∫ ∞

0

1

r ′
⊥
Φ⊥

[
vrefl(D+),TD+

](x′,v)exp

[
− 1

v⊥

∫ r ′
⊥

0
νeff,D(x′′

⊥)dr ′′
⊥

]
d v⊥,

(D.36)

K D,D+
p→b,path(x⊥b,x′

⊥) =
∫ ∞

0

v⊥
r ′
⊥

cosθΦ⊥[v⊥,D+ ,TD+ ](x′
⊥,v⊥)exp

[
− 1

v⊥

∫ r ′
⊥

0
νeff,D(x′′

⊥)dr ′′
⊥

]
d v⊥,

(D.37)

K
D,D+

2

p→b,path(x⊥b,x′
⊥) =

∫ ∞

0

v⊥
r ′
⊥

cosθΦ⊥
[
v⊥,D+

2
,TD+

2

](x′
⊥,v⊥)exp

[
− 1

v⊥

∫ r ′
⊥

0
νeff,D(x′′

⊥)dr ′′
⊥

]
d v⊥,

(D.38)

K
D,diss(D+

2 )
p→b,path (x⊥b,x′

⊥) =
∫ ∞

0

v⊥
r ′
⊥

cosθΦ⊥
[
v⊥,D+

2
,TD,diss(D+

2 )
](x′

⊥,v⊥)exp

[
− 1

v⊥

∫ r ′
⊥

0
νeff,D(x′′

⊥)dr ′′
⊥

]
d v⊥,

(D.39)

K
D,diss-rec(D+

2 )
p→b,path (x⊥b,x′

⊥) =
∫ ∞

0

v⊥
r ′
⊥

cosθΦ⊥
[
v⊥,D+

2
,TD,diss-rec(D+

2 )
](x′

⊥,v⊥)exp

[
− 1

v⊥

∫ r ′
⊥

0
νeff,D(x′′

⊥)dr ′′
⊥

]
d v⊥,

(D.40)
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K D,diss(D2)
p→b,path (x⊥b,x′

⊥) =
∫ ∞

0

v⊥
r ′
⊥

cosθΦ⊥
[
v⊥,D2 ,TD,diss(D2)

](x′
⊥,v⊥)exp

[
− 1

v⊥

∫ r ′
⊥

0
νeff,D(x′′

⊥)dr ′′
⊥

]
d v⊥,

(D.41)

K D,diss-iz(D2)
p→b,path (x⊥b,x′

⊥) =
∫ ∞

0

v⊥
r ′
⊥

cosθΦ⊥
[
v⊥,D2 ,TD,diss-iz(D2)

](x′
⊥,v⊥)exp

[
− 1

v⊥

∫ r ′
⊥

0
νeff,D(x′′

⊥)dr ′′
⊥

]
d v⊥,

(D.42)

K D,reem
b→b,path(x⊥b,x′

⊥b) =
∫ ∞

0

v2
⊥

r ′
⊥

cosθcosθ′χ⊥,in,D(x′
⊥b,v⊥)exp

[
− 1

v⊥

∫ r ′
⊥

0
νeff,D(x′′

⊥)dr ′′
⊥

]
d v⊥,

(D.43)

K D,refl
b→b,path(x⊥b,x′

⊥b) =
∫ ∞

0

v⊥
r ′
⊥

cosθΦ⊥
[
vrefl(D+),TD+

](x′,v)exp

[
− 1

v⊥

∫ r ′
⊥

0
νeff,D(x′′

⊥)dr ′′
⊥

]
d v⊥.

(D.44)

We remark that all velocity distributions given by a Maxwellian or a Knudsen cosine law are

integrated along the parallel velocity, that is

Φ⊥
[
v⊥,D+

2
,TD+

2

](x′
⊥,v⊥) =

∫ ∞

0
Φ[

v⊥,D+
2

,TD+
2

](x′
⊥,v⊥)d v‖, (D.45)

Φ⊥[v⊥,D+ ,TD+ ](x′
⊥,v⊥) =

∫ ∞

0
Φ[v⊥,D+ ,TD+ ](x′

⊥,v⊥)d v‖, (D.46)

Φ⊥
[
v⊥,D2 ,TD,diss(D2)

](x′
⊥,v⊥) =

∫ ∞

0
Φv⊥,D2 ,TD,diss(D2) (x′

⊥,v⊥)d v‖., (D.47)

Φ⊥
[
v⊥,D2 ,TD,diss-iz(D2)

](x′
⊥,v⊥) =

∫ ∞

0
Φ[

v⊥,D2 ,TD,diss-iz(D2)

](x′
⊥,v⊥)d v‖, (D.48)
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Φ⊥
[
v⊥,D+

2
,TD,diss(D+

2 )
](x′

⊥,v⊥) =
∫ ∞

0
Φ[

v⊥,D+
2

,TD,diss(D+
2 )

](x′
⊥,v⊥)d v‖, (D.49)

Φ⊥
[
v⊥,D+

2
,TD,diss-rec(D+

2 )
](x′

⊥,v⊥) =
∫ ∞

0
Φ[

v⊥,D+
2

,TD,diss-rec(D+
2 )

](x′
⊥,v⊥)d v‖, (D.50)

Φ⊥
[
vrefl(D+),TD+

](x′,v) =
∫ ∞

0
Φ[

vrefl(D+),TD+
](x′,v)d v‖, (D.51)

Φ⊥
[
vrefl(D+

2 ),TD+
2

](x′,v) =
∫ ∞

0
Φ[

vrefl(D+
2 ),TD+

2

](x′,v)d v‖, (D.52)

χ⊥,in,D2 (x′
⊥,b,v⊥) =

∫ ∞

0
χin,D2 (x′

⊥,b,v⊥)d v‖, (D.53)

χ⊥,in,D(x′
⊥,b,v⊥) =

∫ ∞

0
χin,D(x′

⊥,b,v⊥)d v‖. (D.54)
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E Numerical solution of the neutral
equations

The coupled neutral equations for D2 and D, Eqs. (3.80-3.83), may be discretized as a linear

matrix system, x= Ax+b, with the unknown x representing the density and boundary flux of

the D2 and D species. Indicating with NP the number of points that discretize the poloidal

plane and NB the number of points discretizing the boundary, x is a vector of size 2(NP+NB ), A

is a 2(NP +NB )×2(NP +NB ) matrix and b is a 2(NP +NB ) vector that includes all contributions

not proportional to the neutral density or flux, namely the effect of recombination of D+ and

D+
2 with electrons, the effect of dissociative processes to which D+

2 ions are subject and the

contributions from the flux of D+ and D+
2 ions to the boundary.

The matrix M , and the vectors x and b can then be written as

x=


nD

Γout,D

nD2

Γout,D2

 , M =


M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

 ,b=


b1

b2

b3

b4

 , (E.1)

where M11 is a matrix of size NP ×NP ,

M11 = νcx,DK D,D+
p→p , (E.2)

that discretizes the kernel K D,D+
p→p defined in Eq. (3.84) at the spatial points where nD is evalu-

ated. The matrix

M21 = νcx,DK D,D+
p→b , (E.3)
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has size NB ×NP and discretizes the kernel K D,D+
p→b defined in Eq. (D.15) at the points where ΓD

is evaluated. The other matrices appearing in the definition of M are defined similarly,

M31 =
[nD+

2

nD
νcx,D+

2 −D

]
K

D2,D+
2

p→p , (E.4)

M41 =
[nD+

2

nD
νcx,D+

2 −D

]
K

D2,D+
2

p→b , (E.5)

M12 = (1−αrefl)(1−βassoc)K D,reem
b→p , (E.6)

M22 = (1−αrefl)(1−βassoc)K D,reem
b→b , (E.7)

M32 = (1−αrefl)
βassoc

2
K D2,reem

b→p , (E.8)

M42 = (1−αrefl)
βassoc

2
K D2,reem

b→b , (E.9)

M13 = νcx,D2−D+K D,D+
p→p +νdiss,D2

K D,diss(D2)
p→p +νdiss-iz,D2

K D,diss-iz(D2)
p→p , (E.10)

M23 = νcx,D2−D+K D,D+
p→b +νdiss,D2

K D,diss(D2)
p→b +νdiss-iz,D2

K D,diss-iz(D2)
p→b , (E.11)

M33 = νcx,D2 K
D2,D+

2
p→p , (E.12)
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M43 = νcx,D2 K
D2,D+

2

p→b , (E.13)

M14 = 0, (E.14)

M24 = 0, (E.15)

M34 = (1−αrefl)K D2

b→p , (E.16)

M44 = (1−αrefl)K D2

b→b , (E.17)

The vector b is defined through the vectors b1 and b3 of size NP ,

b1 = nD[rec(D+)](x⊥)+nD[diss(D+
2 )](x⊥)+nD[out(D+)](x⊥), (E.18)

b3 = nD2[rec(D+
2 )](x⊥)+nD2[out(D+

2 )](x⊥)+nD2[out(D+)](x⊥), (E.19)

and the vector b2 and b4 of size NB ,

b2 = Γout,D[rec(D+)](x⊥)+Γout,D[diss(D+
2 )](x⊥)+Γout,D[out(D+)](x⊥), (E.20)

b4 = Γout,D2[rec(D+
2 )](x⊥)+Γout,D2[out(D+

2 )](x⊥)+Γout,D2[out(D+)](x⊥). (E.21)
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It is remarked that the vector b can also be written as b= Nxi, where xi refers to the densities

and boundary fluxes of the D+ and D+
2 ion species,

xi =


nD+

Γout,D+

nD+
2

Γout,D+
2

 , (E.22)

and the matrix N can be expressed as

N =


N11 N12 N13 N14

N21 N22 N23 N24

N31 N32 N33 N34

N41 N42 N43 N44

 , (E.23)

with entries

N11 = νrec,D+K D,D+
p→p , (E.24)

N21 = νrec,D+K D,D+
p→b , (E.25)

N31 = νrec,D+
2

K
D2,D+

2
p→p , (E.26)

N41 = νrec,D+
2

K
D2,D+

2

p→b , (E.27)

N12 = (1−αrefl)(1−βassoc)K D,reem
b→p +αreflK D,refl

b→p , (E.28)

N22 = (1−αrefl)(1−βassoc)K D,reem
b→b +αreflK D,refl

b→b , (E.29)
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N32 = (1−αrefl)
βassoc

2
K D2,reem

b→p , (E.30)

N42 = (1−αrefl)
βassoc

2
K D2,reem

b→b , (E.31)

N13 = νdiss,D+
2

K
D,diss(D+

2 )
p→p +2νdiss-rec,D+

2
K

D,diss-rec(D+
2 )

p→p , (E.32)

N23 = νdiss,D+
2

K
D,diss(D+

2 )
p→b +2νdiss-rec,D+

2
K

D,diss-rec(D+
2 )

p→b , (E.33)

N33 = νrec,D+
2

K
D2,D+

2
p→p , (E.34)

N43 = νrec,D+
2

K
D2,D+

2

p→b , (E.35)

N14 = 0, (E.36)

N24 = 0, (E.37)

N34 = (1−αrefl)K D2,reem
b→p , (E.38)

N44 = (1−αrefl)K D2,reem
b→b +αreflK D2,refl

b→b . (E.39)
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We remark that a convergence study to estimate the error introduced by the discretization of

the neutral equation was carried out for a single neutral species model and it is reported in

[36].
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[91] P. S. Krstić. Inelastic processes from vibrationally excited states in slow Hˆ+ + H_2 and H+

H_2ˆ+ collisions: Excitations and charge transfer. Physical Review A - Atomic, Molecular,

and Optical Physics, 66:042717, 2002.
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