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“I’d far rather be happy than right any day.”
“And are you?”

“No. That’s where it all falls down, of course.”

— Douglas Adams, The Hitchhiker’s Guide to the Galaxy





Abstract
Many engineering fields rely on frequency-domain dynamical systems for the mathematical
modeling of physical (electrical/mechanical/etc.) structures. With the growing need for more
accurate and reliable results, the computational burden incurred by frequency sweeps has increased
too: in many practical cases, a direct frequency-response analysis over a wide range of frequencies
is prohibitively expensive. In this respect, model order reduction (MOR) methods are very
appealing, as they allow to replace the costly solves of the original problem with a cheap-to-
evaluate surrogate model.
In this work, we describe a MOR approach, dubbed “minimal rational interpolation” (MRI), that
builds a rational interpolant of the frequency response of the dynamical system. In MRI, we
build a surrogate model in a data-driven fashion, starting from only few (very expensive) solves
of the original problem at well-chosen frequencies. Notably, we do not need any knowledge of
(nor access to) the underlying structure of the original problem, so that MRI can be described as
a “non-intrusive” method. We perform a theoretical analysis of MRI, showing that it converges
to the exact frequency response in a quasi-optimal way, in an “approximation theory” sense. We
also describe how this approach can be complemented by adaptive sampling strategies, which,
relying on a posteriori error estimators, automatically select the “best” sampling frequencies.
Oftentimes, the underlying problem does not depend on frequency alone, but also on additional
parameters, which might represent uncertain features of the physical system or design parameters
that have to be optimized. This is the so-called “parametric” case, which is much more complex
than the non-parametric one, especially if a modest number of parameters is involved. As a
way to tackle the parametric setting, we propose a MOR approach based on marginalization:
we use MRI to build local frequency surrogates at different parameter configurations, and then
we combine these local surrogates to obtain a global reduced model. Several issues arise when
carrying out this “combination” step. In this thesis, we propose a practical algorithm for this,
relying on matching the partial fraction expansions of the local surrogates term-by-term.
Several numerical experiments are carried out as a way to showcase the effectiveness of our
proposed approaches, both in the non-parametric and parametric settings. Our “case studies” are
selected as simplified versions of problems of practical interest. Notably, we include examples of
resonant behavior of mechanical structures with uncertain material properties, and of impedance
modeling of distributed electrical circuits with a modest number of design parameters.

Keywords: model order reduction, rational interpolation, frequency response of parametric
dynamical systems, greedy algorithm.
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Résumé
De nombreux domaines de l’ingénierie s’appuient sur les systèmes dynamiques dans le domaine
des fréquences pour la modélisation mathématique des structures physiques (électriques/mécani-
ques/etc.). La nécessité croissante d’obtenir des résultats plus précis et plus fiables s’accompagne
d’une augmentation de la charge de calcul liée aux balayages des fréquences : dans de nombreux
cas pratiques, une analyse directe de la réponse en fréquence sur une large gamme de fréquences
est d’un coût prohibitif. À cet égard, les méthodes de “model order reduction” (MOR) sont très
intéressantes, car elles permettent de remplacer les solutions coûteuses du problème original par
un modèle reduit qui peut être évalué rapidement.
Dans ce travail, nous décrivons une approche MOR, appelée “minimal rational interpolation”
(MRI), qui construit une interpolation rationnelle de la réponse en fréquence du système dynamique.
En MRI, nous construisons un modèle reduit “data-driven”, à partir de seulement quelques
solutions (très coûteuses) du problème original à des fréquences bien choisies. Notamment, nous
n’avons pas besoin de connaître (ni d’accéder à) la structure sous-jacente du problème original, de
sorte que MRI peut être décrite comme une méthode “non-intrusive”. Nous effectuons une analyse
théorique de la méthode MRI, montrant qu’elle converge vers la réponse en fréquence exacte
d’une manière quasi-optimale, dans le sens de la “théorie des approximations”. Nous décrivons
également comment cette approche peut être complétée par des stratégies d’échantillonnage
adaptatives, qui, en s’appuyant sur des estimateurs a posteriori d’erreur, permettent de sélectionner
automatiquement les “meilleures” fréquences d’échantillonnage.
Souvent, le problème sous-jacent ne dépend pas seulement de la fréquence, mais aussi de paramètres
supplémentaires, qui peuvent représenter des caractéristiques incertaines du système physique
ou des paramètres de conception qui doivent être optimisés. C’est ce que l’on appelle le cas
“paramétrique”, qui est beaucoup plus complexe que le cas non-paramétrique, surtout si un
nombre modeste de paramètres est impliqué. Pour aborder le cas paramétrique, nous proposons
une approche MOR basée sur la marginalisation : nous utilisons MRI pour construire des modèles
reduits locaux en fréquence à différentes configurations de paramètres, puis nous combinons ces
modèles locaux pour obtenir un modèle réduit global. Plusieurs difficultés apparaissent lors de
cette étape de “combinaison”. Dans cette thèse, nous proposons un algorithme pratique pour
cette étape, qui repose sur la mise en correspondance terme par terme des décompositions en
fractions partielles des modèles reduits locaux.
Plusieurs expériences numériques sont réalisées afin de démontrer l’efficacité de nos approches, à
la fois dans le cadre non-paramétrique et paramétrique. Nos “études de cas” sont choisies comme
des versions simplifiées de problèmes d’intérêt pratique. Notamment, nous incluons des exemples
de comportement résonnant de structures mécaniques avec des propriétés matérielles incertaines,
et de modélisation de l’impédance de circuits électriques distribués avec un nombre modeste de
paramètres de conception.

Mots clés : model order reduction, interpolation rationnelle, réponse en fréquence des systèmes
dynamiques paramétriques, algorithme glouton.
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1 Introduction

The numerical simulation of dynamical systems in frequency domain is of utmost importance in
several engineering fields, among which electronic circuit design, acoustics, resonance modeling and
control for large structures, and many others. The computational burden of such simulations has
kept increasing in the last decades: on one hand, the problem size has been growing because of the
need for higher numerical resolution; on the other hand, the necessity to tune design parameters
and model uncertain features has lead researchers to tackle parametric models, possibly with a
large number of parameters.

The purpose of model order reduction (MOR) in general, and of parametric MOR (pMOR) in the
specific case of dynamical systems in the presence of parameters, is to alleviate this computational
load. The main strategy to reach this goal relies on building a surrogate model (reduced order
model, ROM), which mimics accurately the original problem, but which can be solved at a much
reduced cost. In the last two decades, the field of pMOR has thrived, leading to the development,
analysis, and application of a wide collection of surrogate modeling strategies. In general, we can
assign each of these methods to one of two main categories:

• Projection-based pMOR. The surrogate model is built by restricting the original problem
onto a suitable subspace, computed from a set of solutions (most often, snapshots of the
system state) of the full problem. This requires access to the operators of the full model,
which are not necessarily available in applications, for instance in the case of a black-box
solver, or if the system operators never get fully assembled in the solution process. Some
subcategories of projective pMOR can be identified depending on whether a global basis
(such as POD/Reduced Basis [Bau+11] or multi-parameter multi-moment-matching [BF14;
Wei+99]) or a collection of local bases (e.g., manifold interpolation of local bases [AF08] or
of reduced system matrices [AF11; LEP09; Pan+10]) are employed.

• Non-intrusive pMOR. The surrogate model is constructed by interpolation or regression
of a set of solutions (usually, output samples) of the full problem. As long as the system state
is not necessary for the application at hand, it is common to work directly with the system
output. In this case as well, the methods can be further split into two subgroups, although
the boundary between the two is more vague: some approaches set up the surrogate by
solving a unique global interpolation problem [GTT18; IA14; LAI11], whereas others build
it by first constructing several (rational) models in frequency only, and then combining
them over parameter space [FKD11; YFB19a; YFB19b].
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Chapter 1. Introduction

Due to its weaker assumptions, in this thesis we consider mostly the latter case. Notably, our final
goal is to provide a data-driven non-intrusive pMOR framework that relies as little as possible on
the specific dependence of the problem on the parameters. Some of the challenges that we face
are the following:

• Taking snapshots of the full model incurs in a high computational cost. As such, we set
the objective of taking as few samples as possible. More specifically, we wish to devise a
MOR approach that achieves the highest possible accuracy, given the available snapshots.
Our “non-intrusiveness” constraint certainly does not help us in this endeavor. Indeed, in
most state-of-the-art non-intrusive MOR approaches, some snapshots must, in effect, be
sacrificed in order to keep the method non-intrusive.

• Still related to the subject of “effective sampling”, we wish to design a strategy for adaptive
sampling. In practice, given a (preliminary) surrogate model, we want to be able to tell if it
is sufficiently accurate for the specific application at hand. If this is not the case, we wish to
identify which not-yet-sampled parameter can provide the “highest amount of information”
when used to update the current surrogate. For both these objectives, our target is the
design of a posteriori indicators of the “goodness of approximation” of the surrogate. Once
again, staying non-intrusive will prove to be a hindrance to us in this task.

• The surrogate modeling of parametric frequency-response problems has intrinsic difficulties,
related, for the most part, to the curse of dimension, which makes most operations increase
considerably in cost when a modest number of parameters is considered. Oftentimes, this
issue manifest itself both in the training of the surrogate model and in its evaluation (once
available), thus reducing the usefulness of MOR. In this context, our target is to reduce
the training and evaluation costs as much as possible. On the training side, this requires
the design of effective strategies for high-dimensional sampling and for the assembly of the
surrogate. On the evaluation side, we make an effort to reduce the computational cost
by keeping the surrogate as “explicit” as possible, thus lowering the number of operations
required for its evaluation.

1.1 Example: analysis of resonances under uncertainty in
structural mechanics

We proceed by providing a simple prototype of a parametric problem for which we want to build
a surrogate model. Since this test will be considered in depth in Section 7.2, here we skip most
mathematical details and keep only the most significant aspects. We wish to mention that, for
the sake of reproducibility, the code used to obtain our results (here and throughout this thesis)
is made publicly available in [Pra21].

Consider the tuning fork depicted in Figure 1.1, subject to a time-harmonic pressure pulse, which
is applied near the top of the fork. If the fork is made of a linearly elastic material, and if
the applied pressure pulse is weak enough, the fork will undergo a time-harmonic deformation,
synchronized with the pulse. As the frequency of the pulse changes, the induced deformation
varies too. In particular, we will observe an amplified effect if the frequency is close to a resonating
frequency of the tuning fork. Such resonating frequencies depend on the properties of the fork, so
that, e.g., changing the density of the material of which the fork is composed will change the
resonating frequencies. This can be observed in Figure 1.1, where we show the deformations
resulting from 9 different combinations of frequency and material density. In concrete terms, we

2



1.1. Example: analysis of resonances under uncertainty in structural mechanics
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Figure 1.1 – Snapshots (at time t = 0) of the deformation induced for different values of the frequency
(see on the left) and of the density (see on top).
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Chapter 1. Introduction

say that the response of the tuning fork depends on both frequency and material parameters.

In practice, one is sometimes interested not in the whole deformation field, but only in a quantity
of interest (QoI), which, in effect, is a (scalar) function of frequency and parameters. For instance,
as QoI, we could take the maximal deformation that a point of the tuning fork undergoes.
Evaluating the QoI requires first finding the deformation field and then extracting the maximal
deformation from it. In MOR, we replace the computation of the “true” deformation field (which
requires a considerable computational effort) with the (much cheaper) evaluation of a surrogate
deformation field. Provided our surrogate is accurate enough for our purposes, this results in a
considerable time save.

In many cases, the evaluation of the (surrogate) QoI is needed in a so-called outer-loop application,
e.g., in optimal design, where we wish to identify the material properties that yield the best
value of the QoI, or in uncertainty quantification (UQ), where the material properties are random
variables, and we wish to quantify statistical features of the QoI. In Section 7.2 we will consider a
specific instance of this latter case, where we estimate the distribution of QoI based on that of
the material properties. Specifically, we use Monte Carlo (MC) sampling for probability density
estimation, comparing the results of sampling the “true” QoI and the surrogate one.

1.2 Thesis outline
This thesis is organized as follows.

In Chapter 2 we recall some results from the literature in several areas: polynomial and rational
approximation theory for scalar functions of a complex variable, dynamical systems in frequency
domain and their infinite-dimensional extensions, and the most popular MOR approaches for
their approximation (in absence of parameters).

In Chapter 3 we introduce a novel approach for rational approximation of vector-valued functions
of a complex variable, and we develop a convergence theory for it, showing maximal convergence
of the approximation for a certain class of target functions. This is our proposed approach for
non-intrusive approximation of non-parametric dynamical systems. For convenience, we include
the proofs of our theoretical results in a separate chapter, namely, Chapter 4.

In Chapter 5 we discuss some of the most relevant issues that arise when applying our proposed
technique in practical applications on a computer. We also describe some useful extensions
of our method. Among them, we provide a strategy for adaptive frequency sampling that is
quite practical in many applications. To conclude this section, we also include some numerical
experiments as proof of the good properties of our approach.

In Chapter 6 we move to parametric dynamical systems. First, we outline the main difficulties of
generalizing MOR methods from the non-parametric to the parametric setting, and we summarize
the state-of-the-art ways in which one usually tries to overcome them. Then, we propose a
strategy to extend our non-parametric approach to the parametric framework, relying on a
“marginalization” idea and on a specific expansion of the frequency-dependent rational surrogate.
Some ideas for adaptive parameter sampling based on locally adaptive sparse grids are also
described.

In Chapter 7 we carry out several detailed numerical experiments involving parametric dynamical
systems in different settings: vibrations of a membrane, structural mechanics, and circuit modeling.

4



1.2. Thesis outline

These simulations allow us to verify the quality of the approximation and the computational
efficiency of the surrogate model obtained with our proposed approach.

In Chapter 8 we conclude the thesis. We also include an outline of some possible future research
directions in the field.
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2 Preliminaries

In this chapter, we introduce some notation and preliminary results that will be useful in the
following sections. In order not to clutter the discussion with too many references, we open each
section with a list of general sources concerning the covered material.

2.1 Polynomial and rational interpolation (in 1D)
Sources: [AKT14; BGM96; BLM18; Cla76; GPT11; GMSV84; HKD12; Kle12; QSS07; SV13;
Saf72; Sta97; Sta98; Tre13; Wal29; Wal60; Wal79]

The topic of approximation of data by polynomial and rational functions is way too vast to be
properly reviewed in an introductory section like this one. As such, we limit our discussion to the
fundamental building blocks on which we will rely in the next sections. We present our results
assuming the data to come from a univariate V-valued function, with V a general complex-valued
Banach space with norm ‖·‖V . When reviewing rational approximation, we will only consider the
case V ⊆ C. Indeed, as we will show in the next chapters, one of the main aims of this thesis is
to extend rational approximation to high-(or even ∞-)dimensional spaces V.

In our review of the already available results concerning polynomial and rational approximation,
we will focus on the cases of holomorphic and meromorphic functions only, respectively. Notably,
we mostly ignore the much more complicated case of (global or local) lower regularity. The main
motivation supporting this choice is that the functions that we wish to approximate are usually
holomorphic or meromorphic (at least when restricted to bounded domains), cf. Sections 2.2
and 2.3.

Moreover, we note that, for the most part, we concentrate on the “interpolation” problem, where
values of the target function (and of its derivatives) must be exactly recovered by the approximant.
This is a special case of the more general “approximation” problem, where the approximant is
not necessarily required to interpolate the data.

2.1.1 Polynomial interpolation (of scalar functions in 1D)

With the term “polynomial interpolation”, we mean the task of finding a polynomial of suitable
degree that recovers the values of the target function, and, possibly, of its derivatives, at a set of

7



Chapter 2. Preliminaries

sample points. Our first result is one of existence and uniqueness, which we state as a definition
for convenience.

Definition 2.1 (Lagrange-Hermite interpolation). Take sample points Z = {zj}Sj=1 ⊂ C (not
necessarily distinct). We denote the distinct elements of Z by {z̊1, . . . , z̊S′}, with z̊j appearing
Ej + 1 times in Z, so that S =

∑S′

j=1Ej + S′. Let v : C→ V be defined at all the sample points,
and admit at least Ej (complex) derivatives at each z̊j. The Lagrange(-Hermite) interpolant of v
at Z is the polynomial

IZ(v) ∈ PS−1(C;V) =
{
S−1∑

n=0
pnz

n : {pn}S−1
n=0 ⊂ V

}

such that
dn

dzn I
Z(v)

∣∣∣∣
z̊j

!= dn

dzn v
∣∣∣∣
z̊j

∀j = 1, . . . , S′, ∀n = 0, . . . , Ej (2.1)

(with the symbol != we denote a constraint that must be enforced, as opposed to an identity).

Note that I{z0,...,z0}(v), with z0 repeated E + 1 times, is the Taylor polynomial of degree E of v
at z0, whereas IZ(v), with Z having distinct elements, is the Lagrangian interpolant of v at Z,
which may be expressed in the extremely useful barycentric form:

IZ(v)(z) = ωZ(z)
S∑

j=1

v(zj)
(z − zj)dωZdz (zj)

with ωZ(z) =
S∏

j=1
(z − zj). (2.2)

We mention that a generalized barycentric form exists also for repeated sample points, although
it is a bit heavy in notation, see (5.4).

In order to understand how well functions can be approximated by polynomials, we must first
introduce some tools from complex analysis.

Definition 2.2 (Logarithmic capacity). Let A b C be compact, containing infinitely many points.
We define its logarithmic capacity (or transfinite diameter) as

Cap(A) = lim
n→∞

inf
P∈PIn(C;C)

sup
z∈A
|P (z)|1/n (2.3)

with PIn(C;C) the set of monic polynomials of exact degree n. If A b C contains only finitely
many points, its logarithmic capacity is 0.

The following bounds hold:
(
`(A)
π

)1/2
≤ Cap(A) ≤ 1

2 max
z,z′∈A

|z − z′| , (2.4)

with ` the 2D Lebesgue measure. For further use, we mention that the capacity of a disk is its
radius, and both bounds in (2.4) are sharp. Note that zero-measure sets may have non-zero
capacity: the capacity of a line segment of length L is L/4.

Now that we know how to measure sets appropriately, we define a way to “expand” them.

Definition 2.3 (Conformal extension via Green’s potential). Let A b C be compact, and assume
that AC = C \A is connected. Identifying C with R2 by x+ iy ↔ (x, y), assume that AC admits a
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2.1. Polynomial and rational interpolation (in 1D)

Green’s function G(x, y) with pole at ∞, i.e., G is real-valued and harmonic over AC , continuous
over AC ∪ ∂A, G|∂A = 0, and G(x, y) ∼ 1

2 log(x2 + y2) as |x+ iy| → ∞. We define the Green’s
potential of A, ΦA : C→ R, as

ΦA(x+ iy) =
{

Cap(A) exp(G(x, y)) if x+ iy ∈ AC ,
Cap(A) if x+ iy ∈ A.

(2.5)

Given ρ ≥ Cap(A), we define a conformal extension Aρ of A as the sub-level set {z ∈ C : ΦA(z) ≤
ρ}. By construction, it turns out that Cap(Aρ) = ρ.

The important case of A being a line segment unfortunately is not covered by this definition, since
its complement does not admit a proper Green’s function. Still, segments can be conformally
extended, although this requires a slight generalization of Definition 2.2. For simplicity, we
provide an ad hoc definition just for segments.
Definition 2.4 (Green’s potential of line segments). The Green’s potential of a line segment
[a, b], with a, b ∈ C, is defined as

Φ[a,b](z) = |b− a|2 Φ[−1,1]

(
z − a+b

2
b−a

2

)
with Φ[−1,1](z) = 1

2 max
∣∣∣z +

√
z2 − 1

∣∣∣ , (2.6)

where the maximum is taken over the two realizations of the complex square root.

The Green’s potential is continuous over C and increases “as we move away from A”. As could
be guessed, disks get conformally extended to disks with larger radii, since the potential of a disk
centered at z0 equals |z − z0| for z outside the disk. Conformal extensions of segments are more
interesting: given A = [−1, 1], its conformal extensions are

Aρ =
{
z + z−1

2 : z ∈ C, |z| ≤ 2ρ
}

for ρ > 1
2 , (2.7)

i.e., Bernstein ellipses with horizontal and vertical axes of lengths ρ± 1
ρ , respectively.

The main point of these definitions is that, when interpolating samples of v taken over A, the
interpolants can be shown to converge to v over conformal extensions of A. We make this
statement rigorous in the following theorem.
Theorem 2.1 (Maximal convergence [Wal60, Section 4.7]).
Let A b C admit a Green’s potential, and assume v to be analytic over A. Let ρ̄ > Cap(A)
(possibly infinite) be the largest number such that v is analytic over the interior of Aρ̄. For all
Cap(A) < ρ < ρ̄, there exist a constant Cρ and a sequence of polynomials {Pn}∞n=1 of increasing
degree (with deg(Pn) ≤ n) such that

‖v(z)− Pn(z)‖V ≤ Cρ
(

Cap(A)
ρ

)n
∀z ∈ A. (2.8)

These polynomial approximations also satisfy

‖v(z)− Pn(z)‖V ≤ Cρ
(
r

ρ

)n
∀z ∈ Ar ∀Cap(A) < r < ρ. (2.9)

On the other hand, for all ρ > ρ̄, there do not exist a constant Cρ and a sequence of polynomials
{Pn}∞n=1 of increasing degree (with deg(Pn) ≤ n) for which (2.8) holds.

9



Chapter 2. Preliminaries

The theorem above provides a “barrier” not only for the region of good approximation by
polynomials, but also for the convergence rate that can be achieved. Moreover, (2.8) suggests
that we should expect the approximation error to behave somewhat uniformly over A, whereas, in
the annulus between ∂A and ∂Aρ̄, the error progressively increases according to the level curves
of the Green’s potential, see (2.9).

Note that Theorem 2.1 does not hold for all sets A, since the concept of maximal convergence
cannot be extended to sets that are “too rough”. However, generalizations to some cases of
practical interest, e.g., a single point A = {z0} or finite unions of points A = {zj}Sj=1, can be
obtained by replacing Green’s potential with lemniscates, cf. [Wal60, Sections 3.3–3.5]. We skip
the details here.

A final question that remains unanswered is how to find a sequence of maximally converging
polynomials. The following theorem provides a sufficient condition for this, showing that
interpolatory polynomials can converge maximally.

Theorem 2.2 (Maximal convergence by interpolants [Wal60, Section 7.2]).
Let A b C admit a Green’s potential ΦA. Define a sequence of sampling sets {ZS}∞S=1, with
ZS = {z(S)

j }Sj=1 ⊂ C. Assume that {ZS}∞S=1 has no limit points outside A, and that

lim
S→∞

S∏

j=1

∣∣∣z − z(S)
j

∣∣∣
1/S

= ΦA(z) uniformly in z over compact subsets of C \A. (2.10)

Then, the sequence of maximally converging polynomials in Theorem 2.1 may be defined as
PS−1 = IZS (v) for all S.

Sampling schemes satisfying (2.10) are commonly referred to as Fekete (or Fejér) points, which
are quite hard to find for general sets A. Luckily, they are available in closed form for some cases
of practical importance:

• for the unit disk, they are the roots of unity: ZS =
{

exp
(
2π jS i

)}S
j=1;

• for the segment [−1, 1], they are the Chebyshev nodes ZS =
{

cos
( 2j−1

2S π
)}S
j=1.

By rotations, dilations, and translations, the Fekete points for general disks and segments are
readily found. Before proceeding, we note that (2.10) is an asymptotic definition, so that the Fekete
points are not at all unique. For instance, the Clenshaw-Curtis nodes ZS =

{
cos
(
j−1
S−1π

)}S
j=1

are also Fekete points for the interval [−1, 1].

Remark 2.1. The Fekete points of A b C, if they exist, can be chosen so that they lie only
on ∂A. More generally, Fekete points accumulate at all points of ∂A, while they cannot have
any limit point in C \ ∂A. This is consistent with the “electrostatic potential” interpretation of
the sampling points, where each sampling point is an electron, free to move within the perfect
conductor A. If the electrons are allowed to move due to electric repulsion forces until the total
energy of the system is minimized (i.e., they are at rest in the “electrostatic ground state”), then
the points corresponding to their rest positions are Fekete.
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2.1. Polynomial and rational interpolation (in 1D)

2.1.2 Rational interpolation (of scalar functions in 1D)

With the term “rational interpolation”, we mean the task of finding a rational function (i.e., the
ratio of two polynomials) of suitable type (see definition below) that recovers the values of the
target function, and, possibly, of its derivatives, at a set of sample points. Like for polynomial
approximation, our first result is one of existence and uniqueness.

Definition 2.5 (Lagrange-Hermite rational interpolation). Take sample points Z = {zj}Sj=1 ⊂ C
(not necessarily distinct). We denote the distinct elements of Z by {z̊1, . . . , z̊S′}, with z̊j appearing
Ej + 1 times in Z. Let v : C → C be defined at all the sample points, and admit at least Ej
(complex) derivatives at each z̊j. Also, let N ∈ {0, . . . , S − 1}, and define M = S − 1−N . The
type [M/N ] Lagrange(-Hermite) rational interpolant of v at Z is the rational function

RZ[M/N ] =
PZ[M/N ]

QZ[M/N ]
, with PZ[M/N ] ∈ PM (C;C), QZ[M/N ] ∈ PN (C;C),

such that QZ[M/N ] 6≡ 0 and

dn

dznP
Z
[M/N ]

∣∣∣∣
z̊j

!= dn

dzn
(
QZ[M/N ]v

)∣∣∣∣
z̊j

∀j = 1, . . . , S′, ∀n = 0, . . . , Ej . (2.11)

(To avoid an overly heavy notation for RZ[M/N ], we do not explicitly indicate the dependence on
the target function v.)

In this thesis, we call type of a rational function P/Q any 2-tuple [M/N ] such that deg(P ) ≤M
and deg(Q) ≤ N . We will never require the concept of exact type [M ′/N ′] such that deg(P ) = M ′

and deg(Q) = N ′.

The S linearized order conditions (2.11) aim at interpolation of v and its derivatives. We note
that the extreme case of all sample points coalescing in one, i.e., Z = {z0, . . . , z0}, is commonly
known under the name of Padé approximation, which generalizes the Taylor polynomial.

We remark that, while RZ[M/N ] is unique (when simplified to lowest terms), PZ[M/N ] and QZ[M/N ]
might not be. For instance, let v(z) = 1 + z2, Z = {0, 0, 0}, and [M/N ] = [1/1]. Then, a simple
calculation shows that

RZ[M/N ](z) = αz

αz
= 1 ∀α ∈ C.

The same example also shows that the linearized order conditions do not necessarily imply the
(non-linearized) order conditions

dn

dznR
Z
[M/N ]

∣∣∣∣
z̊j

!= dn

dzn v
∣∣∣∣
z̊j

∀j = 1, . . . , S′,∀n = 0, . . . , Ej , (2.12)

since 0 = d2

dz2R
Z
[M/N ] 6= d2

dz2 v = 2 in our example.

In general, one might wonder if a rational approximant of type [S − 1−N/N ] could be designed
(using a different definition) so that (2.12) is satisfied, for all N ∈ {1, . . . , S − 2} (the cases N = 0
and N = S − 1, by reciprocity, are covered by Definition 2.1). The general answer is no, as
our simple example above shows. However, if the S sample points are distinct, then (2.11) and
(2.12) are equivalent: a Lagrange (i.e., without derivatives) rational interpolant of given type
[S − 1−N/N ] always exists.
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Due to non-uniqueness and non-existence (when considering the non-linearized problem) issues, a
convergence analysis of rational approximants is trickier than that of polynomial approximants.
However, it turns out that, as long as the denominator degree stays fixed, the convergence analysis
proceeds without snags. First, we mention a generalization of Theorem 2.1.

Theorem 2.3 (Maximal convergence [Wal60, Appendix 4]).
Let A b C admit a Green’s potential, and assume v : C→ V to be analytic over A. Fix N ≥ 0
and define ρ̄ > Cap(A) (possibly infinite) as the largest number such that v is meromorphic over
the interior of Aρ̄, with exactly N poles counting multiplicity, i.e., there exist poles Λ = {λj}Nj=1 ⊂
Aρ̄ \A and vH holomorphic over Aρ̄, such that

v(z) = vH(z)
∏N
j=1(z − λj)

∀z ∈ Aρ̄ \ {λj}Nj=1.

For all Cap(A) < ρ < ρ̄, there exist a constant Cρ and a sequence of rational functions {RM}∞M=1
of increasing numerator degree (type(RM ) = [M/N ]) such that

‖v(z)−RM (z)‖V ≤
Cρ∏N

j=1 |z − λj |

(
Cap(A)

ρ

)M
∀z ∈ A. (2.13)

These rational approximations also satisfy

‖v(z)−RM (z)‖V ≤
Cρ∏N

j=1 |z − λj |

(
r

ρ

)M
∀z ∈ Ar \ Λ ∀Cap(A) < r < ρ. (2.14)

On the other hand, for all ρ > ρ̄, there do not exist a constant Cρ and a sequence of rational
functions {RM}∞M=1 of increasing numerator degree (type(RM ) = [M/N ]) for which (2.13) holds.

Requiring v to be holomorphic over the sampling region A is quite restrictive. However, since its
main purpose is avoiding sampling at the poles of v, such condition can be weakened to: v is
meromorphic over A and its poles lie at strictly positive distance from ∂A, cf. [Wal79, Theorem
1]. Note that, under this relaxed assumption, A must be replaced by A \ Λ in (2.13).

Moreover, we note that (2.14) concerns the convergence of the approximation error over a region
where poles are present. This can be done because the poles of the maximally converging rational
functions are assigned so as to cancel the N poles of v. This choice is ad hoc, and cannot be
applied in practice without having a priori knowledge of the locations of the poles of v. Assuming
that the poles of v are available in advance defeats the purpose of rational approximation, since
the problem effectively simplifies to a polynomial approximation one. As such, we must weaken
the convergence bound (2.14) to allow for inexact pole approximation, as stated by the following
result.

Theorem 2.4 (Quasi-maximal convergence by interpolants [Saf72, Theorem 2]).
Let A b C admit a Green’s potential ΦA and take its Fekete points {ZS}∞S=1, cf. Theorem 2.2.
Let the scalar-valued function v : C → C satisfy the hypotheses of Theorem 2.3. The sequence
of maximally converging rational functions in Theorem 2.3 may be defined as RM = R

ZM+N+1
[M/N ]

(the Lagrange rational interpolant of v, see Definition 2.5) for all M , provided bound (2.14) is
replaced by the weaker condition

‖v(z)−RM (z)‖V ≤ Cρ(År)
(
r

ρ

)M
∀z ∈ År ∀År b Ar \ Λ ∀Cap(A) < r < ρ. (2.15)
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2.2. Dynamical systems in frequency domain

Note that Cρ depends on År, and implicitly contains information on the exact poles Λ. The poles
of RM converge to Λ.

As a final step, we consider the rather complicated case of N not being fixed. In most applications,
the number of poles of the target function v is unknown, and it makes practical sense to increase
N together with S. This gives rise to diagonal approximants [N/N ], with S = 2N + 1, and
sub-/super-diagonal approximants [N+δ/N ], with S = 2N+δ+1. These cases are, unfortunately,
affected by the appearance of so-called spurious poles, namely, numerical roots of QZ[M/N ] that do
not approximate any pole of v. In some situations, the pole is accompanied by a zero (i.e., a root
of PZ[M/N ]), so that zero and pole cancel each other (or, in finite precision, they almost cancel
each other). This zero-pole pair is commonly called Froissart doublet.

These spurious effects prevent uniform convergence of the approximant. However, a weaker notion
of convergence can be proven instead.

Theorem 2.5 (Convergence in capacity [Wal79, Theorem 2]).
Let A b C admit a Green’s potential and take its Fekete points {ZS}∞S=1, cf. Theorem 2.2. Let
the scalar-valued function v : C→ C satisfy the hypotheses of Theorem 2.3. Note, in particular,
that we are fixing a priori (but arbitrarily large) N and ρ̄. Let A′ b Aρ̄ be compact and ε > 0.
Then

lim
N ′→∞

Cap
{
z ∈ A′ :

∥∥∥v(z)−RZ2N′+1
[N ′/N ′](z)

∥∥∥
V
> εN

′}
= 0. (2.16)

with Cap the logarithmic capacity, see Definition 2.2, and RZ2N′+1
[N ′/N ′] the Lagrange rational inter-

polant of v, see Definition 2.5.

This result in capacity allows spurious poles to appear, but constrains their locations to a set of
asymptotically zero capacity. Also, we note that Theorem 2.5 is stated for diagonal approximants.
Generalizations to other types [Mi/Ni] are possible, as long as Mi and Ni diverge when i→∞.

As already mentioned in passing, we have restricted our presentation on rational approximation
to the scalar-valued case. Generalizations of rational approximants to V-valued target functions
(with V a Banach space of dimension > 1) are possible, but not at all straightforward. To
start with, the numerator PZ[M/N ] must become a V-valued polynomial, but the denominator
QZ[M/N ] must, obviously, remain C-valued. This causes an imbalance in the amount of degrees of
freedom that pertains to numerator and denominator. As a consequence, the linearized order
conditions (2.11) are necessarily overdetermined. As a way to solve this issue, one customarily
casts the linearized order conditions in least squares (LS) form, so that interpolation of values and
derivatives is no longer guaranteed. As a notable consequence of this, neither the quasi-maximal
convergence nor the convergence in capacity of rational interpolants can be directly extended to
the higher-dimensional setting, since the involved “interpolants” do not exist. In Chapter 3, we will
address this problem, by proposing a technique for maximally converging rational interpolation
in the non-scalar-valued case, under some restrictions on the approximated quantity.

2.2 Dynamical systems in frequency domain
Sources: [Ant05; GTG15; Rug96; Ske88; Son98]

Linear time invariant (LTI) systems are ubiquitous in engineering applications, where they are
used to model the evolution of an (electrical, mechanical, chemical, etc.) system, usually as a
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result of external inputs, e.g., forces/displacements or voltages/currents. Such systems are usually
expressed in the form of a so-called descriptor system

{
E dv̂

dt (t) = Av̂(t) +Bû(t) for t > 0,
ŷ(t) = Cv̂(t) for t ≥ 0,

(2.17)

with E,A ∈ Cnv×nv , B ∈ Cnv×nu , C ∈ Cny×nv , û ∈ Cnu , v̂ ∈ Cnv , and ŷ ∈ Cny . The vectors
û, v̂, and ŷ are actually “signals”, i.e., functions from the time domain [0,∞) to a vector space
of suitable dimension. We will refer to them as “input”, “state”, and “output” of the system,
respectively. Note that we are employing non-standard notation for the state (which is usually
denoted by x̂) to avoid clashing with the PDE setting that will be introduced in the next section.
Moreover, we indicate time-domain quantities with a hat accent since they are not the main focus
of our work, and will appear much less often than frequency-domain objects. Conversely, we will
represent quantities in frequency domain (for which the hat accent is customarily reserved) as
plain cursive letters.

System (2.17) is of first order, since only the first time derivative appears. However, this form is
general enough, since a descriptor system of any (finite) order can be brought to first order by
so-called augmentation: for instance, consider

{∑S
n=1En

dnv̂
dtn (t) = Av̂(t) +Bû(t) for t > 0,

ŷ(t) =
∑S−1
n=0 Cn

dnv̂
dtn (t) for t ≥ 0,

with, possibly, some of the En’s and Cn’s being zero. We define the augmented state v̂′ =(
v̂>0 , v̂

>
1 , . . . , v̂

>
S−1

)> ∈ CSnv , with v̂n = dnv̂
dtn . This yields the following first order system:





∑S
n=1En

dv̂n−1
dt (t) = Av̂0(t) +Bû(t) for t > 0,

dv̂n−1
dt (t) = v̂n(t) for n = 1, . . . , S − 1, for t > 0,

ŷ(t) =
∑S−1
n=0 Cnv̂n(t) for t ≥ 0,

whose matrix representation (2.17) reads, in block form,

E′ =




E1 · · · ES−1 ES
I

. . .
I


 , A

′ =




A

I
. . .

I


 , B

′ =



B

 , and C ′ =

[
C0 · · · CS−1

]
.

Other augmentation options are possible as well [Gui99; HMT09].

To have a well-posed problem, an initial condition for the state must be prescribed, thus obtaining
a Cauchy problem, e.g.,

{
E dv̂

dt (t) = Av̂(t) +Bû(t) for t > 0,
v̂(0) = 0,

and ŷ(t) = Cv̂(t) for t ≥ 0.

For simplicity, we are setting to zero the initial condition of the Cauchy problem, but, of course,
this should not be seen as a limitation. Note that, if the system was obtained by augmentation of
an order-S system, then the initial condition involves also the time derivatives of v̂, up to order
S − 1. Some cases deserving a special mention are: ny = nu = 1, i.e., single-input single-output
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(SISO) systems, and C = I (the identity matrix of size ny = nv), so that the output coincides
with the system state.

We note that, if E is full rank, we can invert it and obtain a (vectorial) ordinary differential
equation (ODE): dv̂

dt = E−1Av̂ + E−1Bû = A′v̂ + B′û. Instead, if E is not invertible, then
we obtain a differential algebraic equation1 (DAE). Let E = UΣV H be the singular value
decomposition (SVD) of E, so that

U =
[
Ur

∣∣∣U ′r
]
, V =

[
Vr

∣∣∣V ′r
]
, and Σ =

[
Σr

]
,

with Ur, Vr ∈ Cnv×r and Σr ∈ Cr×r, r being the rank of E. Given

v̂r(t) = V Hr v̂(t) ∈ Cr and v̂′r(t) = V ′r
H
v̂(t) ∈ Cnv−r,

we can separate the differential and the algebraic parts:
{

dv̂r
dt (t) = Σ−1

r UHr AVrv̂r(t) + Σ−1
r UHr AV

′
r v̂
′
r(t) + Σ−1

r UHr Bû(t)
0 = U ′r

H
AVrv̂r(t) + U ′r

H
AV ′r v̂

′
r(t) + U ′r

H
Bû(t)

for t > 0.

Assuming invertibility of U ′r
H
AV ′r , we can solve for v̂′r in the algebraic equation, and plug its

expression in the differential equation, thus obtaining a non-singular system of size r.

Under minor regularity assumptions on the input, we can obtain a complementary viewpoint of
the descriptor system by taking the Laplace transform: the Laplace transform of a signal ŵ (ŵ
being either û, v̂, or ŷ) is defined as

w(z) =
∫ ∞

0
ŵ(t)e−ztdt, (2.18)

for all (complex) frequencies z ∈ C for which the integral is defined. Note that we use the
non-standard symbol z to denote the frequency, instead of the more common notations s or ωi,
because, throughout this thesis, we will take z as the independent variable in an approximation
problem like those presented in the previous section. Since the Laplace transform of dv̂

dt (t) is
zv(z), the descriptor system (2.17) in frequency domain reads

{
zEv(z) = Av(z) +Bu(z),
y(z) = Cv(z).

(2.19)

Note that, depending on the form of the input and on the spectral properties of the matrix pencil
(A,E), see below, (2.19) might be valid only for frequencies in a subset of C.

In its basic form (2.19), the frequency-domain formulation of a system only focuses on the
“long-term” behavior of the system. In this regard, a critical quantity to study the system
response to a given input is the transfer function, i.e., the ny × nu matrix

H(z) = C(zE −A)−1B = C adj(zE −A)B
det(zE −A) , so that y(z) = H(z)u(z), (2.20)

where we denote by adj(·) the adjugate matrix (not to be confused with the adjoint matrix),
1We are excluding the trivial case of E = 0, the zero matrix, which yields a linear system that can be solved

(independently) at each time.
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i.e., adj(A) = det(A)A−1 for an invertible matrix A. By definition, z 7→ det(zE −A) belongs to
Pnv (C;C). Similarly, by the Cayley-Hamilton theorem,

z 7→ adj(zE −A) ∈ Pnv−1(C;Cnv×nv ) =
{
z 7→

nv−1∑

n=0
Cnz

n : {Cn}nv−1
n=0 ⊂ Cnv×nv

}
,

i.e., the space of matrix-valued polynomials of degree nv − 1. Accordingly, the transfer function is
a rational matrix-valued function, with poles at the eigenvalues of the pencil (A,E). By extension,
we will call the poles of H the poles or resonating frequencies of the system. Now, we have two
cases depending on the invertibility of E.

• If E is invertible, we may write H(z) = C(zI −A′)−1B′, with A′ = E−1A and B′ = E−1B.
As such, the poles of the system are the eigenvalues of A′, and, if A′ is diagonalizable, we
have the partial fraction form

H(z) =
nv∑

j=1

CPjB
′

z − λj
=

nv∑

j=1

rj
z − λj

, (2.21)

with {λj}nvj=1 being the eigenvalues of A′, with {Pj}nvj=1 the corresponding family of spectral
projectors (A′Pj = λjPj). Note that, if λj is semisimple, e.g., λj = λj+1, multiple terms
with the same denominator, but with projectors onto different spaces, will appear in (2.21).
As such, if A′ is diagonalizable, all the poles of H are simple. On the other hand, multiple
poles may appear whenever A′ is not diagonalizable, leading to the more cumbersome
expression

H(z) =
n′v∑

j=1

dj+1∑

k=1

rj,k
(z − λj)k

, (2.22)

with n′v < nv the number of distinct eigenvalues {λj}n
′
v
j=1, each associated to a spectral

defect dj ≥ 0, i.e., the difference between its algebraic and geometric multiplicity.

• If E is not invertible, we (somewhat formally) say that the pencil (A,E) has∞ as eigenvalue,
with multiplicity at least one. To see what this means, we can process E as we did in
the DAE case above. Splitting the contributions from non-singular and singular parts, we
obtain

H(z) = CV

[
zΣr − UHr AVr −UHr AV ′r
− U ′r

H
AVr − U ′r

H
AV ′r

]−1

UHB.

By Schur complement, assuming U ′r
H
AV ′r to be invertible, we can obtain an expression of

the form
H(z) = C ′(zI −A′)−1B′ +H∞, (2.23)

with C ′ ∈ Cny×r, A′ ∈ Cr×r, B′ ∈ Cr×nu , and H∞ ∈ Cny×nu . The constant term H∞ is
the limit of H as |z| → ∞, and, in a formal way, is the residue corresponding to the nv − r
“missing” ∞ eigenvalues. Depending on the diagonalizability of A′, the same observations
on simple poles as in the previous case apply.

2.3 PDEs in frequency domain
Sources: [Eva10; GT01; Mat08; Qua09; Ram86; Sal+13]
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2.3. PDEs in frequency domain

Several applications of frequency-domain dynamical systems in engineering are discrete in nature,
e.g. in lumped circuit modeling, so that finite-dimensional dynamical systems (2.19) suffice to
study them. However, particularly in the fields of wave propagation and structural analysis,
the interest often lies in understanding continuous infinite-dimensional systems. In this section,
we introduce some archetypal examples of such models and we describe how some of the most
important properties of frequency-domain dynamical systems can be extended from the finite-
dimensional framework to the infinite-dimensional one.

To begin with, we define a spatial domain Ω ⊂ Rd, d ∈ {1, 2, 3}, i.e., an open bounded set, with
sufficiently smooth boundary. As in the previous section, we denote by v̂ the time-dependent state
of the system of interest. Only, this time, v̂ does not take values in the finite-dimensional vector
space Cnv , but in a Hilbert function space defined over Ω, for instance the space of complex-valued
square-(Lebesgue-)integrable functions

L2(Ω) =
{
φ : Ω→ C : φ measurable,

∫

Ω
|φ(x)|2 dx <∞

}
, (2.24)

or a more general Sobolev space

Hk(Ω) =




φ ∈ L2(Ω) :

∑

α1,...,αd≥0
α1+...+αd≤k

∫

Ω

∣∣∣∣
∂α1+...+αdφ

∂xα1
1 · · · ∂xαdd

(x)
∣∣∣∣
2
dx <∞




, (2.25)

for k ≥ 0, with derivatives that should be interpreted in the distributional sense. Negative and
fractional Sobolev indices are also possible, according to the usual definitions. From here onward,
we will denote by V the function space where v̂ takes values, i.e., v̂ : [0,∞)→ V.

As in the previous section, we assume that v̂ is not available in closed form, being given only
implicitly, as the (or a) solution of the partial differential equation (PDE)





∂v̂
∂t (x, t) = L(v̂)(x, t) + B(û)(x, t) for (x, t) ∈ Ω× (0,∞),
F(v̂)(x, t) = 0 for (x, t) ∈ ∂Ω× (0,∞),
v̂(x, 0) = 0 for x ∈ Ω,

(2.26)

where the calligraphic capital letters denote the following time-independent operators:

• L a differential operator from V to the dual space V?;

• B a “forcing term” operator from some Hilbert spaceWu to V?; we might have a scalar/vector
input (Wu = Cnu) like in the finite-dimensional case;

• F an operator from V to some function space V∂ over ∂Ω, e.g., H1/2(∂Ω); for instance,
F(φ) may contain the trace of φ, or of its normal/tangential derivative, or a combination
of them, on ∂Ω; note that we may use F to denote non-homogeneous boundary conditions,
e.g., by making F affine rather than linear.

As in the previous section, for simplicity, we have set the initial condition of the Cauchy problem
to zero. In many applications, we also have a “measurement operator” C : V → Wy (with
Wy some Hilbert space) that defines the system output ŷ = C(v̂) : (0,∞) → Wy. As in the
finite-dimensional case, we might have a scalar/vector output (Wy = Cny and C ∈ [V?]ny ) or the
state itself as the output (Wy = V and C(φ) = φ).
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Chapter 2. Preliminaries

We list here some illustrative specific instances of (2.26).

• Heat equation. In the heat equation, v̂(t) ∈ H1(Ω) denotes the temperature at a point
of Ω. The operator L encodes diffusion by Fick’s law: L(φ) = div(K gradφ), with K a
(potentially, x-dependent) d× d positive-definite matrix, representing thermal diffusivity.
The forcing term could, for instance, be a superposition of localized Gaussian heat sources
with variable intensity: given source locations {x̄j}nuj=1 and δ > 0,

B(û)(x, t) =
nu∑

j=1

ûj(t)
(2πδ2)d/2 exp

(
−‖x− x̄j‖

2

2δ2

)
.

The boundary conditions might be of mixed Dirichlet-Neumann-Robin type, used to model
a fixed temperature TD, a fixed thermal flux gN , and a fixed radiation coefficient kR with
respect to a reference temperature TR, respectively: given a partition ∂Ω = ΓD t ΓN t ΓR
(with t denoting disjoint union),

F(φ) =




(φ− TD)|ΓD
(−(K gradφ) · ν − gN )|ΓN

(kR(φ− TR)− (K gradφ) · ν)|ΓR


 ∈ H1/2(ΓD)×H−1/2(ΓN )×H−1/2(ΓR).

with ν the outer normal to ∂Ω.

• Scalar wave equation. The scalar wave equation is a second-order PDE, which, however,
can be cast in first-order form by augmentation, see Section 2.2. The state v̂(t) ∈ H1(Ω)
represents excitations in the field through which the wave propagates, e.g., the air pressure
for acoustic waves, or the normal plate displacement for (linearly) elastic (small) vibrations
of a thin plate. The differential equation reads

∂2v̂

∂t2
= c2∆v̂ + f̂ ,

with ∆ = div grad the Laplace operator, c the (potentially, x-dependent) wavespeed, and
f̂ a forcing term. As boundary conditions, we may take mixed Dirichlet-Neumann-Robin
ones, with various physical interpretations (pressure, momentum, stress, etc.) depending
on the wave medium. The corresponding F usually has a form similar to that for the heat
equation. One important exception to this arises when modeling wave propagation on
unbounded domains, e.g., through the exterior scattering problem:





∂2v̂
∂t2 = c2∆v̂ + f in Rd × (0,∞),
lim‖x‖→∞ ‖x‖(d−1)/2

(
c(x) ∂

∂‖x‖ + ∂
∂t

)
v̂(x, ·) = 0 in (0,∞),

v̂ = ∂v̂
∂t = 0 in Rd × {0}.

(2.27)

The “boundary condition” above is the so-called Sommerfeld radiation condition, which
ensures that no “wave sources at ∞” exist. The characteristic that sets it apart from the
other boundary conditions introduced above is the appearance of the time derivative in it.
Before proceeding, we note that the exterior scattering problem above does not fall in our
PDE framework, since it is formulated on an unbounded domain. However, it is standard,
for computational reasons, to solve this class of problems by truncating the domain, thus
enforcing the Sommerfeld condition on a finite boundary and recovering our desired PDE
formulation on a bounded domain.
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2.3. PDEs in frequency domain

• Elastic body vibrations. The vibration of a 3D elastic body is a second-order PDE
obtained by combining the conservation of momentum principle and an elastic constitutive
law. The system state v̂(t) ∈ [H1(Ω)]d, d = 3, denotes the displacement vector with respect
to the undeformed configuration Ω. Restricting our focus to the small-deformation regime,
the differential equation reads

∂2v̂

∂t2
+ η

∂v̂

∂t
= 1
ρ

div σ(v̂) + f̂ ,

with η a damping coefficient (measured in Hz), ρ the material density, f̂(t) a force per unit
mass, and σ the d× d stress tensor, which, in linear elasticity, can be expressed as

σ(φ) = µ
(

gradφ+ (gradφ)>
)

+ λ(divφ)I,

µ and λ being the (potentially, x-dependent) Lamé constants of the material. For simplicity,
we only consider Rayleigh mass damping, so that η is a constant. Note that more complicated
damping models might not fall in the theoretical framework of Section 2.3.2 below.

The Dirichlet-Neumann-Robin boundary conditions, encoded by the operator

F(φ) =




(φ− δD)|ΓD
(σ(φ)ν − gN )|ΓN

(kR(φ−XR) + σ(φ)ν)|ΓR


 ∈ [H1/2(ΓD)]3 × [H−1/2(ΓN )]3 × [H−1/2(ΓR)]3,

here assume the connotations of fixed displacement δD, external surface forces per unit area
gN , and external spring-like force with spring stiffness kR and rest position at XR.

We note that, with the exception of the heat equation, which is parabolic, the other problems
presented above are hyperbolic. In particular, the operator L in first-order form (2.26) is symmetric
and semi-positive definite for the heat equation, whereas it has a symplectic (Hamiltonian)
structure in the other cases, e.g., for the scalar wave equation,

∂

∂t

[
φ

φ′

]
=
[

0 c

−(−c∆) 0

] [
φ

φ′

]
+
[

0
f̂

]
.

This has relevant consequences on the spectral properties of the system, as we will see in the
upcoming sections.

The frequency-domain formulation of the time-domain PDE (2.26) is obtained with the same
tools and aims as in the finite-dimensional case:

{
zv(x, z) = L(v)(x, z) + B(u)(x, z) for x ∈ Ω,
F(v)(x, z) = 0 for x ∈ ∂Ω.

(2.28)

Note that, to obtain the expression above, we have relied on the assumption that time appears
in the PDE only in the left-hand-side of the differential equation. This is not the case if, e.g.,
the PDE operators are time-dependent or if time derivatives of v̂ appear in the forcing term or
boundary conditions. Both cases can be handled by a careful calculation of the proper Laplace
transforms. We provide in Section 2.3.3 some details on the latter case, in the specific instance of
the Sommerfeld condition.

We proceed by deriving some useful properties for the frequency-domain versions of the PDEs
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Chapter 2. Preliminaries

introduced above.

2.3.1 Simultaneously diagonalizable first-order systems

The heat equation can be cast in the form (2.28) by setting L(φ) = div(K gradφ). If K
is symmetric and positive definite (which is the usual case in practical applications), then L
(endowed with the boundary conditions) is an elliptic semi-negative definite operator, with compact
inverse. As such, we can employ the spectral theorem to identify a basis of H1(Ω), composed
of eigenfunctions of L. More specifically, there exist a discrete spectrum Λ = {λj}j ⊂ R≤0 and
a corresponding H1(Ω)-orthonormal basis Φ = {φλ}λ∈Λ ⊂ H1(Ω), such that limj→∞ λj = −∞
and

L
(∑

λ∈Λ
αλφλ

)
=
∑

λ∈Λ
αλλφλ, (2.29)

for “nice enough” coefficient sequences {αλ}λ∈Λ. Notably, the identity above should be interpreted
as: if the left series converges in the H1(Ω) topology, then the right series converges in the
H−1(Ω) topology, and equality holds.

Consequently, the frequency-domain PDE can be cast over the basis Φ as

z
∑

λ∈Λ
vλ(z)φλ =

∑

λ∈Λ
vλ(z)λφλ +

∑

λ∈Λ
bλ(u, z)φλ, (2.30)

with all series converging in the H−1(Ω) topology, and

vλ(z) = 〈v(·, z), φλ〉V and bλ(u, z) = V?〈B(u)(·, z), φλ〉V .

Since Φ is a basis, we can solve (2.30) component by component, leading to a spectral expansion

v(·, z) =
∑

λ∈Λ

bλ(u, z)
z − λ φλ, (2.31)

which generalizes (2.21). Accordingly, if B(u)(·, z) is holomorphic or meromorphic with respect
to z over some compact A b C, then v(·, z) and y(z) = Cv(·, z) are also meromorphic there. This
justifies a rational approximation approach. We remark that, by symmetry of L, (2.31) is an
H1(Ω)-orthogonal expansion. This property will be crucial in the next sections.

To conclude, we note that, if 0 /∈ Λ (e.g., if the Dirichlet boundary ΓD is non-empty), all the poles
of v are located in the left half C-plane, so that the system state is bounded at all frequencies
with non-negative real parts.

2.3.2 Simultaneously diagonalizable second-order systems

Analyzing the second-order PDEs introduced in Section 2.3 is a bit trickier, since the operator
L in their first-order augmented formulation is not symmetric. However, it turns out that, in
several cases, we can recycle the results for first-order problems. To this aim, assume that the
boundary conditions of the frequency-domain PDE are independent of z, or, equivalently, that
the boundary conditions of the time-domain PDE are time-independent and do not contain time
derivatives of v̂. Without loss of generality, we develop the theory in the linear elasticity case.
Similar conclusions can be obtained for the frequency-domain scalar wave equation, i.e., the
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2.3. PDEs in frequency domain

so-called Helmholtz equation: z2v = c2∆v + f .

Under standard assumptions on the PDE data (ρ, µ, and λ), we can apply the spectral theorem
to the operator L appearing in the second-order formulation. This leads to an expression of the
form

(z2 + ηz)
∑

λ∈Λ
vλ(z)φλ =

∑

λ∈Λ
vλ(z)λφλ +

∑

λ∈Λ
V?〈f(·, z), φλ〉Vφλ, (2.32)

and a second-order H1(Ω)-orthogonal spectral expansion holds:

v(·, z) =
∑

λ∈Λ

V?〈f(·, z), φλ〉V
z2 + ηz − λ φλ. (2.33)

As in the previous case, the rational approximation endeavor is justified if B(u)(·, z) is holomorphic
or meromorphic with respect to z.

Note that, in the undamped case (η = 0), the poles of v are located on the imaginary axis. On
the other hand, if damping is applied (η > 0), all the resonating frequencies (with the possible
exception of z = 0) are located in the left half C-plane, and the system response is bounded at
frequencies with positive real parts.

As in the previous case, since the operator L from the second-order formulation is normal, (2.33)
is an H1(Ω)-orthogonal expansion.

2.3.3 Non-simultaneously diagonalizable systems

Both cases described above rely on the spectral theorem to expand the PDE onto an eigenbasis
of L−1. Notably, the eigendecomposition requires the compactness and normality of L−1 to be
applied. While compactness can be guaranteed in most PDE applications by Sobolev embedding,
normality is not always present. In the class of non-normal problems, the ones that concern
us the most are exterior scattering problems, which, in frequency domain, can be cast in the
Helmholtz form {(

−∆ + z2

c2

)
v(·, z) = f(·, z) in Ω,

(
∂
∂ν + z

c

)
v(·, z) = 0 on ∂Ω,

(2.34)

with ν the outer normal to ∂Ω. We note that it is customary to choose Ω as a ball in Rd centered
at 0, so that ∂

∂ν = ∂
∂‖x‖ .

Since the frequency appears in the boundary conditions, we cannot repeat the same derivation
as before, since applying the spectral theorem to the Laplacian operator endowed with z-
dependent boundary conditions will necessarily yield a z-dependent spectrum and eigenbasis.
Thus, alternative approaches become necessary to obtain a rational-like expansion of v. In
[Bon+20b], we show the following result.

Theorem 2.6 (Meromorphicity of scattering frequency response [Bon+20b, Proposition 5.3]).
Fix an arbitrary bounded open set A ⊂ C, and let v(·, z) ∈ V = H1(Ω) be the solution of (2.34),
with f(·, z) holomorphic with respect to z over A. Then, there exist two functions P and Q,
with P : A → V holomorphic over A, and Q : A → C a polynomial (of finite degree) such that
v(·, z) = P (z)/Q(z) for all z ∈ A. The denominator Q can be chosen so that all of its roots lie
in the left half C-plane, with the possible exception of z = 0.
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Sketch of proof. First, one shows that v(z) is defined and bounded for all z in the right half
C-plane and on the imaginary axis, except at z = 0. This is a classical result in PDE theory, and
can be done using standard Hilbert-space tools.

Then, one uses Riesz representation theory to cast (2.34) in V, rather than in V?, as

(I + T (z))v(·, z) = F (z).

Above, I : V → V is the identity operator in V , so that Iφ is the Riesz representer of −∆φ+ φ ∈
V? = H−1(Ω), whereas T (z) : V → V contains the Riesz representer of the remaining terms of
(2.34), i.e.,

〈T (z)φ, ψ〉V = 〈
(
z2

c2
− 1
)
φ, ψ〉L2(Ω) + 〈z

c
φ, ψ〉L2(∂Ω) ∀φ, ψ ∈ V.

Note that the boundary conditions are included in T (z). Moreover, F (z) ∈ V is the Riesz
representer of f(·, z) ∈ V?, which is also holomorphic with respect to z. The perturbation T (z) is
analytic with respect to z (it is a quadratic polynomial) and is compact (intuitively, by Sobolev
embedding, because T only contains up to first derivatives). To obtain the claim, it suffices to
apply [Ste68, Theorem 1].

We observe that the theorem does not provide any information on the pole orders, i.e., the
exponents in the denominators of a partial fraction expansion like (2.22). Indeed, it only
guarantees that the “total pole order” of A, i.e., the sum of all the orders of the poles in A is
finite, for all bounded A. This implies that, if the poles Λ = {λj}j are countably infinite2, then
limj→∞ |λj | =∞.

As a final note, we remark that, by the Fredholm alternative, if z is a resonating frequency,
then there exists a nontrivial solution to the homogeneous problem obtained by setting f = 0 in
(2.34), and vice-versa. In particular, if λ ∈ Λ, let φλ ∈ V \ {0} be a solution of the corresponding
homogeneous problem. Then, using · to denote complex conjugation,





(
−∆ + λ

2

c2

)
φλ =

(
−∆ + λ2

c2

)
φλ = 0 in Ω,(

∂
∂ν + λ

c

)
φλ =

(
∂
∂ν + λ

c

)
φλ = 0 on ∂Ω,

so that λ is a resonating frequency too. This allows us to conclude that resonating frequencies
are either real (≤ 0) or come in complex conjugate pairs (with negative real parts).

2.4 MOR approaches for frequency-response problems
In applications, it is often required to evaluate the transfer function (2.20) of a system at many
frequencies, often spanning several orders of magnitude. Due to the necessity to invert the
frequency-dependent operator zE − A to obtain the resolvent, this can incur in a substantial
computational cost. Such concerns are especially relevant if the state dimension nv is large, which
is usually the case in practice, e.g., when the descriptor system (2.19) stems from a discretization
of a PDE over a fine grid, cf. Section 2.3. In particular, we put ourselves in the framework where
performing a generalized eigendecomposition of the pencil (A,E) (thus identifying explicitly poles
and residues of H) is unfeasible, e.g., because of numerical instabilities, or just because of the
sheer size of the matrices involved.

2Since Theorem 2.6 holds uniformly over compact sets in C, the poles of v can be at most countably infinite.
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2.4. MOR approaches for frequency-response problems

In order to alleviate the computational burden, it might make sense to replace the original transfer
function H (the full order model, FOM) with a surrogate version H̃ (the reduced order model,
ROM), which should satisfy the following properties:

• Evaluating the ROM at all the desired frequencies saves times over simply evaluating the
FOM at all the desired frequencies. It is customary to split MOR approaches (at least, for
frequency-domain applications) into two parts: first, the ROM H̃ is built starting from
samples of H at few representative frequencies (the so-called snapshots of the FOM); then,
once H̃ has been constructed, it can be evaluated at any (not yet sampled) frequency of
interest. The first phase, dubbed offline phase, is expensive due to the necessity to sample
the FOM, and also due to the operations needed to build H̃ itself, but it only needs to be
carried out once. The second phase, dubbed online phase, is cheaper, since it is independent
of the FOM. If the complexity of the online phase is independent of nv, the ROM is said to
be online-efficient.

• The ROM approximates the FOM with acceptable accuracy. Since we know that H is a
rational function, cf. (2.21) and (2.22), it is customary to confer a rational structure to H̃ too.
The task of “achieving acceptable accuracy” can then be translated as approximating well the
poles (in C) and the residues (in Cny×nu) of H. It should be noted that approximating well
all pole/residue pairs prevents online efficiency. However, fortunately, practical applications
require evaluating H (thus, by proxy, H̃) only at frequencies in a certain region of interest,
what we will refer to as “frequency range”. For instance, in order to analyze long-term
resonant behavior in hyperbolic PDEs, it is common to study purely imaginary frequencies
(corresponding to harmonic modes) in a certain range z ∈ [zmini, zmaxi]. As such, the
pole/residue pairs can be sorted according to their “relevance” over the frequency range
(as we will see in the next chapters, relevance could be measured, e.g., using the Green’s
potential of the frequency range). Then, we can formalize our accuracy requirement by
asking that the ROM approximates well the most relevant pole/residue pairs.

Before proceeding to detail the state-of-the-art of MOR approaches for frequency-domain problems,
we wish to comment on the fact that, in the previous paragraphs, we have implied that the
snapshots of the FOM are samples of the transfer function H. This is not at all a necessity in
a MOR approach. In fact, only some of the methods that we present in the upcoming sections
build a ROM from samples of H. The other methods use samples of the system state v(z) or of
its derivatives, or even trajectories v̂(t) of the state in the time-domain formulation of the system.

2.4.1 Data-driven rational approximation

Sources: [ABG20; Ant05; BG17; GS99; GTG15; IA14; NST18; Xia+19]

One of the most natural (and also most popular) ways of building the ROM H̃ is to follow an
“approximation theory” approach: since we know from system theory that the transfer function is
rational, we are behooved to build the ROM H̃ by rational approximation, relying on snapshots
of H at few sampling frequencies {zj}Sj=1. This family of approaches is usually described as
“data-driven” and “non-intrusive”, because neither knowledge nor access to the matrices defining
the system (E, A, B, and C) is required. As such, this class of methods is especially fitting (pun
intended) for applications where data is experimental, coming from simulations in a lab rather
than on a computer. More generally, the methods that we present here can, in principle, be applied
to any kind of data, not necessarily snapshots of a first-order frequency-domain LTI system.
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However, in such cases, one should worry about whether the data at hand is “well-approximable”
by rational functions.

Let us first consider the case of SISO systems, whose transfer function is scalar-valued (ny =
nu = 1), and assume that S snapshots at distinct frequencies Z = {zj}Sj=1 ⊂ C have been
computed. The simplest option is to define the ROM using Lagrange rational interpolation of
H, as H̃ = RZ[S−1−N/N ], for some N . Considering the partial fraction decomposition (2.21), it is
customary to choose N ≈ S/2, so that M ≈ N . While this approach sounds good in theory, it is
often disastrous in practice (in its naive formulation for general sampling schemes), due to the
(usually) terrible conditioning of the Vandermonde matrices that are necessary to express the
linearized order conditions (2.11). Several countermeasures to improve the numerical stability of
the problem have been explored:

• Select good sampling frequencies and a good polynomial basis. In few cases, the Vander-
monde matrices of the rational interpolation problem are not too badly conditioned, usually
thanks to discrete orthogonality conditions of the polynomial basis of choice. For instance,
monomials are perfectly conditioned (unit condition number) over the roots of unity, as
are the Chebyshev polynomials over the Chebyshev nodes. Unfortunately, it is not always
possible to select “nice” sampling points, e.g., due to the necessity to sample across different
orders of magnitude.

• Use the barycentric (sometimes called partial fraction) basis φz?
k
(z) = (z − z?k)−1, with

{z?k}k a collection of support points. This is not a polynomial basis but, by simple algebraic
manipulations, it can be shown to be equivalent to one, at least in the specific case of
diagonal [N/N ] rational interpolation. This idea defines the so-called Loewner framework
[Ant05; ABG20; BG17; IA14], which works as follows:

(i) Given S = 2N + 1, set aside N + 1 sample points {zj}N+1
j=1 to be support points.

(ii) Define H̃(z) =
(∑N+1

j=1
cjH(zj)
z−zj

)/(∑N+1
j=1

cj
z−zj

)
, with {cj}N+1

j=1 ⊂ C to be found.

(Note that, with this choice, the values of H at the support points are interpolated
automatically, as long as the coefficients cj are non-zero.)

(iii) Find {cj}N+1
j=1 by imposing linearized interpolation conditions

H̃(zk)
N+1∑

j=1

cj
zk − zj

=
N+1∑

j=1

cjH(zj)
zk − zj

!= H(zk)
N+1∑

j=1

cj
zk − zj

∀k = N + 2, . . . , S

(2.35)
(under a normalization condition to avoid c1 = . . . = cN+1 = 0).

• Oversampling. This means casting the Lagrange rational interpolation problem in LS
form, so that, using S samples, we compute a rational approximant of type [M/N ], with
M +N + 1 < S. To this aim, it suffices to replace the M +N + 1 linearized order conditions
with the minimization of the weighted `2 linearized interpolation error:

min
P∈PM (C;C)
Q∈PN (C;C)

S∑

k=1
w2
k |P (zk)−Q(zk)H(zk)|2 . (2.36)

Note that we have added real weights {wk}Sk=1, denoting, in some sense, the relative
importance of the sample points. Moreover, we remark that a normalization condition
(usually set on Q) is still necessary to avoid the trivial solution. Having increased the number

24



2.4. MOR approaches for frequency-response problems

of rows of the Vandermonde matrices involved, the MOR procedure is more numerically
stable. The price to pay is that of the additional snapshots. As a notable element of the LS
school, the vector fitting (VF) [GTG15; GS99] approach sets the weights as wk = |Q(zk)|−1,
with the aim of recovering the “true” (non-linearized) interpolation error

min
P∈PM (C;C)
Q∈PN (C;C)

S∑

j=1

∣∣∣∣
P (zj)
Q(zj)

−H(zj)
∣∣∣∣
2
. (2.37)

Due to the non-linearity (with respect to the coefficients of Q) introduced in problem (2.37),
iterative methods (usually based on Picard iteration) are necessary to solve it approximately.
As a final note, we mention that there exists also a LS version of the Loewner framework
[NST18], where the interpolation conditions (2.35) are replaced by

min
(cj)N+1

j=1 ∈CN+1

S∑

k=N+2
w2
k

∣∣∣∣∣∣

N+1∑

j=1

cj(H(zj)−H(zk))
zk − zj

∣∣∣∣∣∣

2

, (2.38)

under some normalization constraint to avoid the trivial solution c1 = . . . = cN+1 = 0.

Extensions to the non-scalar setting, when at least one of ny and nu is larger than 1, are almost
immediate, but come at a small price. Indeed, as already mentioned in passing in Section 2.1.2,
the linearized order conditions (2.11) of Lagrange rational interpolation lead to an overdetermined
system when applied to vector-/matrix-valued functions, so that it becomes necessary to replace
them by their LS version (2.36), with the absolute value being replaced by the (ny×nu)-Frobenius
norm. This means that, in general, in the vector/matrix setting, exact interpolation at all sample
points is impossible using standard methods. Still, we may have interpolation at a subset of
them, e.g., at the support points if the Loewner framework is employed.

Before proceeding, we note that, as an alternative way of solving the overdetermination issue, a
matrix version of the Loewner framework can be defined, where interpolation of the full transfer
function H is replaced by “tangential interpolation” of eLj H(z) and H(z)eRj , with {eLj }j ⊂ C1×ny

and {eRj }j ⊂ Cnu×1 being user-defined tangential interpolation directions.

2.4.1.1 Model selection: adaptive VF and AAA

As mentioned in the previous section, an online-efficient rational surrogate has the purpose of
approximating the most relevant poles/residues of v. Using a rational surrogate of type [M/N ]
(for simplicity, we assume M = N for the rest of this section), only up to N poles/residues of v
can be estimated. However, in most applications, the user is unaware a priori of how many poles
are relevant, and it is not at all obvious how a correct choice of the degree N could be performed.
One might argue that choosing N as large as possible is the best option, since it maximizes the
chances of identifying at least the relevant poles and residues. However, this leads to two issues,
especially when the number of samples S is very large:

• Overfitting. Due to noise in the snapshots, resulting, e.g., from measurement noise or even
from simple round-off errors, making the ROM too rich could lead to unstable and/or
unreliable results due to overfitting.

• Lack of efficiency. A large surrogate is more expensive to evaluate than a smaller one.
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This, sometimes, can hinder online efficiency. Moreover, storing larger surrogates might be
inconvenient (this matters mostly for cases with large ny or nu).

For these reasons, one should try to find a “sweet spot” in the accuracy versus surrogate size
trade-off. To this aim, both the Loewner framework and VF can be equipped with a “model
selection” routine, whose objective is to explore different rational types [N/N ] and find the
“best” one. All of this usually happens over a fixed set of sample points S, whose snapshots are
pre-computed. Note that, here, we are vitally assuming to be in a data-rich setting, i.e., that S is
large enough to identify the most relevant features of v. For this reason, we use the terms “model
selection” rather than “adaptivity”, which, in this thesis, we reserve for algorithms that add new
sample points until an acceptable accuracy of the ROM is reached.

The model selection for the VF method, see, e.g., [GTG15; Xia+19], essentially works by trial-
and-error, by testing different values of N , building a different VF surrogate for each of them,
and then picking the one yielding the smallest LS misfit, defined as the minimal value of (2.37).
More refined techniques have also been proposed, that progressively increase N , stopping as soon
as the relative fitting error is below a prescribed tolerance (a typical value is 10−3).

Model selection in the Loewner framework works quite similarly. However, one should note that
increasing N in the Loewner framework requires turning sample points into support points, so
that the number of addends in the outer sum in (2.38) decreases. A quite popular flavor of model
selection for the Loewner framework is the AAA algorithm [NST18], where the selection of which
sample points should be turned into support points is carried out in a greedy way, based on the
pointwise misfit between FOM and ROM at the sample points.

2.4.2 State-based intrusive methods: (Petrov-)Galerkin projection

Sources: [Ant05; BF14; BHM18; Fre03; Gri97; GTG15; GW08; QMN15; RHP08]

A fairly complementary view of the MOR endeavor is taken in projective approaches. Here,
the core objective is building a surrogate for the system state v. The surrogate for the transfer
function is obtained only afterwards, as a post-processing step, essentially by multiplying the
ROM of v by the matrix C from the left. In this context, values of the transfer function H are
not enough to build the ROM, and snapshots of the state v are necessary.

The main idea to obtain the surrogate state ṽ is to perform a (Petrov-)Galerkin projection of the
state equation (zE −A)v(z) = Bu onto two linear subspaces Ṽ, W̃ ⊂ V of size R < nv, from the
right and left, respectively. Note that Ṽ = W̃ in the Galerkin case, and that the two subspaces
might have different dimensions in an LS Petrov-Galerkin setting. For simplicity, we ignore the
latter case, since extending our discussion to it is mostly trivial.

In summary, the projection of the FOM can be carried out by following these steps:

• Find bases of Ṽ and W̃, and use them as columns of the rectangular projection matrices
Ṽ , W̃ ∈ Cnv×R, respectively.

• Define the surrogate as a (z-dependent) element ṽ(z) of Ṽ, whose expansion in the chosen
basis of Ṽ reads ṽ(z) = Ṽ α̃(z), with α̃(z) ∈ CR.
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• Find the surrogate coefficients as the solution of the reduced system

W̃H(zE −A)ṽ(z) = W̃H(zE −A)Ṽ α̃(z) != W̃HBu. (2.39)

The reduced problem (2.39) has dimension R, but it requires matrix multiplications of size nv,
thus preventing an (online-)efficient evaluation of the ROM. To overcome this issue, it suffices to
apply the distributive property of matrix multiplication, transforming (2.39) into

(zẼ − Ã)α̃(z) = (zW̃HEṼ − W̃HAṼ )α̃(z) != W̃HBu = B̃u. (2.40)

Note that all terms denoted by a tilde in the outer left- and right-hand-sides have dimensions
independent of nv. Moreover, they can be precomputed once and for all in the offline phase.
Consequently, in order to evaluate the ROM at some new frequency z in the online phase, it
suffices to build the R × R matrix zẼ − Ã, and then solve (2.40). In this way, we can achieve
online efficiency.

Note that a closed-form expression for the surrogate state is available, as

ṽ(z) = Ṽ α̃(z) = Ṽ (zẼ − Ã)−1B̃u.

In particular, by projecting also the matrix C, as C̃ = CṼ ∈ Cny×R, we can derive a reduced
expression for the system output and transfer function:

ỹ(z) = C̃(zẼ − Ã)−1B̃u and H̃(z) = C̃(zẼ − Ã)−1B̃.

This shows that a projective MOR approach yields a rational surrogate, successfully mimicking
the structure of the FOM. In particular, the surrogate model is of sub-diagonal type [R− 1/R],
cf. (2.20).

Now that we have outlined the skeleton of projective MOR approaches, the only piece that is
still missing is: how should the subspaces Ṽ and W̃ be chosen to obtain a “good” ROM? We will
discuss a few specific state-of-the-art strategies next. For simplicity of presentation, we mostly
consider just the Galerkin case.

However, before proceeding, we wish to note that we have only given a cursory overview of
projective methods for first-order LTI dynamical systems. Projective methods can be employed
over a much larger range of problems of the general form A(z)v(z) = B(z)u. In particular, we
remark that, in order to guarantee online efficiency, the FOM should depend on the parameter(s)
z in a separable way, e.g.,

(
nA∑

i=1
θi(z)Ai

)
v(z) =

nB∑

i=1
ϑi(z)Biu, (2.41)

with {θi}nAi=1∪{ϑi}nbi=1 scalar functions, and {Ai}nAi=1 and {Bi}nbi=1 parameter-independent matrices
of suitable sizes. The corresponding reduced model is obtained by projecting each term in the
sums onto the chosen subspace(s):

(
nA∑

i=1
θi(z)W̃HAiṼ︸ ︷︷ ︸

Ãi

)
v(z) =

nB∑

i=1
ϑi(z) W̃HBi︸ ︷︷ ︸

B̃i

u. (2.42)

The FOM decomposition (2.41) is commonly referred to as affine in z by MOR practitioners
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[QMN15; RHP08]. Due to the risk of confusing such term with its more standard mathematical
meaning (of a constant plus a linear term), we will denote the “MOR” meaning as “affineMOR”
and the “standard” one as just “affine”. Note that first-order frequency-domain LTI systems
are affine in both senses. If (2.41) does not hold, there exist approaches to find an affineMOR

approximation of the FOM, e.g., the empirical interpolation method [Bar+04].

In the next sections, we describe some popular and practical ways to choose the reduced spaces
Ṽ and W̃.

2.4.2.1 Krylov methods and implicit moment matching

By looking at the reduced system (2.40) from an eigenproblem viewpoint, we may say that we
are approximating the eigenvalues of the pencil (A,E) by its so-called Ritz eigenvalues. Standard
methods for computing Ritz eigenvalues are available in the linear algebra literature, with one of
the most notable ones being the Krylov method. In this approach, given z0 ∈ C and a vector
b ∈ Cnv , one defines the subspace Ṽ of dimension R = S as

K((z0E −A)−1, b, S) = Span
{

(z0E −A)−jb
}S
j=1 . (2.43)

Sometimes, the vector b is also appended to the family of generators of K((z0E−A)−1, b, S), since,
after all, its “computation” requires no effort. A useful observation for practical computations
involving Krylov subspaces is that an orthonormal basis for K((zE −A)−1, b, S) can be built in a
numerically stable fashion by the Arnoldi algorithm. Such basis can then be used to define in a
numerically robust way the projection matrix Ṽ , see, e.g., [Ant05; Fre03; Gri97; GW08].

This idea can be applied for our MOR purposes. For single-input systems, it is customary to
choose b = B, whereas for multi-input systems one may, e.g., consider the union of the Krylov
spaces obtained using the different columns of B as vectors b. With these choices, it turns out
that the vectors spanning Ṽ are actually the (columns of the) state v(z0) and its derivatives
djv
dzj (z0), for j = 1, . . . , S − 1. For this reason, one can actually show that the ROM is guaranteed
to interpolate v and its derivatives at z0, up to order S − 1, leading to the name implicit moment
matching, see, e.g., [BF14], for the overall MOR approach.

In the implicit moment matching approach, the snapshots are the state v and its derivatives at
the single point z0 (note that this is not exactly the case if the Arnoldi procedure is applied, but
the same conclusions apply). An extension to a “multi-point” method is possible, where, instead
of using all the computational budget on a “deep” Krylov space K((z0E −A)−1, b, S), we define
Ṽ as the sum of Krylov spaces with different centers {zi}Ti=1 ⊂ C:

Ṽ =
T⊕

i=1
K
(

(ziE −A)−1, b,
S

T

)
.

This allows for “distributed” information over the frequency range, and results in Hermite-Lagrange
interpolation of the system state v.

In the limit case T = S, no derivatives of v are considered. In such situation, the ROM approach
changes name to reduced basis (RB) method [QMN15; RHP08]. Interestingly, for SISO systems, a
parallelism could be drawn between the RB method and the (interpolatory) Loewner framework,
see Section 2.4.1, since both methods interpolate H at all the sample points. However, RB is
intrusive while the Loewner framework is not. The main price that one pays for the difference
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in flexibility of the methods is that, by using the Loewner framework, only up to ∼ S/2 poles
can be approximated from S samples of v, whereas RB, with the same number of samples, can
approximate twice as many poles.

As a final remark, we note that, in the Petrov-Galerkin case, the space W is defined by applying
Krylov to the dual problem: W = K((z0E

H −AH)−1, c, S), with c, usually, set equal to CH , or
to the columns of CH for multi-output systems. In the Petrov-Galerkin setting, RB and the
Loewner framework can, in principle, achieve the same peak “snapshot usage efficiency”, since
2R snapshots are necessary to build an approximation of type [R− 1/R] in both approaches (in
the projective case, we are assuming that half of the samples are used to build each of Ṽ and W̃).

2.4.2.2 Proper orthogonal decomposition

In the previous section, we have introduced methods that build a reduced space Ṽ of dimension
R starting from S = R snapshots (for simplicity, we are only considering a Galerkin setting).
However, the RB method (and, up to a point, the implicit moment matching method too) can be
extended to an LS-like MOR approach, where S > R snapshots are used to build the reduced
model. The motivations for doing this are mainly robustness and online efficiency, as already
discussed more thoroughly in Section 2.4.1.

The most widespread way of extracting the “best” dimension-R subspace from the S snapshots is
a principal component analysis (PCA) of the snapshot matrix, which contains the snapshots as
columns. Such PCA is usually computed via SVD, leading to the so-called SVD-proper orthogonal
decomposition (SVD-POD) method [Ant05; QMN15], which works as follows:

• Given the snapshots {v(zj)}Sj=1 ⊂ Cnv , assemble the snapshot matrixX = [v(z1)| . . . |v(zS)] ∈
Cnv×S and the snapshot Gramian

G ∈ CS×S , (G)j′j = 〈v(zj), v(zj′)〉V , j, j′ = 1, . . . , S. (2.44)

• Compute the SVD of G = UΣUH , which is just an eigendecomposition (with U ∈ CS×S)
where the S diagonal elements of Σ = diag(σ1, . . . , σS) are in non-increasing order.

• Define Ũ = XUΣ−1/2 ∈ Cnv×S .

• Define the projection matrix Ṽ by extracting the first R columns of Ũ . The reduced space
Ṽ is the span of the columns of Ṽ .

Note that, if M ∈ Cnv×nv is the positive-definite matrix representing the V-inner product, we
can equivalently find Ũ as matrix containing the left singular vectors appearing in the SVD of
M1/2X.

In our description above, we have implicitly assumed that R is fixed in advance, prescribing the
dimension of the reduced system. On the other hand, in practice, it usually makes more sense to
fix a tolerance ε > 0, and choose R as a function of ε, as the smallest integer such that

S∑

i=R+1
σi ≤ ε

S∑

i=1
σi.

By the Eckart-Young theorem and some algebraic manipulations, this is equivalent to: the R
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columns of Ṽ must be able to capture well the range of X, up to a tolerance ε in the column-wise
V-norm, i.e.,

S∑

j=1

∥∥∥∥∥v(zj)−
R∑

k=1
(Ṽ ):k〈v(zj), (Ṽ ):k〉V

∥∥∥∥∥

2

V
≤ ε2

S∑

j=1
‖v(zj)‖2V ,

where we use (Ṽ ):k to denote the k-th column of Ṽ .

We observe that, in this form, POD displays some similarities to the “model selection” approaches
presented in Section 2.4.1.1, since it is able to find the “sweet spot” between the dimension and
the accuracy of the ROM, with the snapshots being fixed. As a consequence, for POD to work
well, we must assume to be in a data-rich environment, i.e., that the S snapshots are sufficient to
identify the relevant features (poles and residues) of v. We will make an effort to remove this
assumption in the next section.

As a final remark, it is rather interesting to note that a different version of SVD-POD is also
available for frequency-domain problems: assume that snapshots from a time-domain simulation
of v̂(t), cf. Section 2.2, are available, forming the snapshot matrix X = [v̂(t1)| . . . |v̂(tS)]. The
SVD-based construction described above can be carried out using such X, thus building a reduced
frequency-domain model from time-domain data. This class of methods is sometimes applied
under the name “dynamic mode decomposition” [BHM18].

2.4.2.3 Adaptive frequency sampling: the weak-greedy reduced basis method

In many practical cases, taking snapshots is expensive (hence the need for MOR) and one does
not know a priori how many snapshots are “enough” to guarantee a good approximation accuracy.
For this reason, MOR approaches that allow an adaptive selection of the number and locations
of the snapshots are quite useful, particularly because they limit the risk of oversampling. We
remark that we are not just interested in “model selection” here, since we do not assume to be in
a data-rich framework. Instead, we wish to determine whether a ROM has good approximation
properties using only the (few) snapshots that have already been computed. For frequency-response
problems, this is rather tricky, due to the meromorphicity of the response, which, notably, prevents
a uniform convergence of ṽ to v on neighborhoods of the poles, cf. Section 2.1.2.

This problem is quite complicated, since we are asking for a certification of the ROM, i.e., a
guarantee of the goodness of approximation. The MOR strategy that is most commonly used to
this aim is the weak-greedy RB method [QMN15; RHP08]. We proceed by explaining the reason
behind the two terms in its name:

• “Weak” refers to the fact that the FOM residual, which will be defined shortly, is employed
to drive the adaptivity rather than the FOM error ṽ(z)− v(z), used in the strong-greedy
RB method. This is done with the objective of (offline) efficiency, since it turns out that
evaluating the error norm is usually prohibitively expensive, whereas the residual (dual)
norm can be obtained cheaply, as we now show. Given a generic parametric problem
A(z)v(z) = B(z)u whose solution is approximated by the surrogate ṽ(z), the corresponding
“residual” is defined as A(z)ṽ(z)−B(z)u ∈ V? or, equivalently (assuming that v(z) exists),
A(z)(ṽ(z)− v(z)). Note that, if A(z) is almost singular, as it is for dynamical systems when
z is near a pole, then the residue can be small while the error is not. More specifically, if
A and B are locally bounded, the residue is bounded whenever ṽ is, whereas the error is
bounded whenever ṽ and v are.
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For an affineMOR problem (2.41), we can express the residual norm squared as
∥∥∥∥∥

(
nA∑

i=1
θi(z)Ai

)
ṽ(z)−

nB∑

i=1
ϑi(z)Biu

∥∥∥∥∥

2

V?
=

nA∑

i,i′=1
θi(z)θi′(z)〈AiṼ α̃(z), Ai′ Ṽ α̃(z)〉V?

−2Re



nA,nb∑

i,i′=1
θi(z)ϑi′(z)〈AiṼ α̃(z), Bi′u〉V?




+
nB∑

i,i′=1
ϑi(z)ϑi′(z)〈Biu,Bi′u〉V? , (2.45)

with 〈v, w〉V? being the inner product over V? (which exists by Riesz representation theory).
By precomputing the terms 〈Aiv(zj), Ai′v(zj′)〉V? , 〈Aiv(zj), Bi′u〉V? , and 〈Biu,Bi′u〉V? for
all i, i′, j, and j′ (with {v(zj)}j being the snapshots), one can make the cost of evaluating
(2.45) independent of nv.

• “Greedy” refers to the fact that only one new sample point is added at a time, at the
location that maximizes a “greedy indicator”, e.g., the dual norm of the residual. We
summarize the resulting procedure in Algorithm 1. Since the new snapshot does not affect
the previous ones, we do not need to rebuild the ROM from scratch at every iteration.
Indeed, looking at the reduced system (2.42), each term of the right-hand-side only gains a
row, while each term of the left-hand-side gains a thin “border” of new entries: if Ṽ and W̃
are the nv × (S − 1) projection matrices at step S − 1, and φ and ψ are the columns that
are about to be appended to Ṽ and W̃ , respectively, then

B̃next
i =

[
B̃previous
i

ψHBi

]
and Ãnext

i =
[
Ãprevious
i W̃HAiφ

ψHAiṼ ψHAiφ

]
. (2.46)

Algorithm 1 Weak-greedy RB
Require: distinct initial sample points Z = {z1, . . . , zS0} ⊂ C, tolerance ε
Require: affineMOR problem left-hand-side A = A(z) and right-hand-side b = b(z)
Require: distinct test points Ztest = {z1, . . . , zT } ⊂ C \ Z
for j = 1, . . . , S0 − 1 do
compute snapshot v(zj) = A(zj)−1b(zj)

end for
for S = S0, S0 + 1, . . . do
compute snapshot v(zS) = A(zS)−1b(zS)
build the projection matrix Ṽ = [v(z1)| . . . |v(zS)]
Optional: orthonormalize the projection matrix
build the ROM (2.42), using (2.46) if S > S0
evaluate the greedy indicator η(z) at all z ∈ Ztest
find the point of worst approximation z? = arg maxz∈Ztest η(z)
if η(z?) < ε then
return the current ROM

end if
move z? from Ztest to Z, where it acquires the name zS+1

end for

We note that, in Algorithm 1, we have included an optional orthonormalization step for the
projection matrix. This is to improve the stability of the projection. Normalizing the snapshots
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has relevance per se, since the system state is meromorphic, so that samples near and far from
the poles might have different orders of magnitude. Notably, we remark that Ṽ can be kept
orthonormal at all iterations without impacting the incremental construction of the ROM (2.46),
e.g., by the Gram-Schmidt procedure.

Now, as even a cursory glance at the MOR literature (for “standard”, e.g., elliptic and parabolic,
problems) could reveal, it is not customary to use the plain (dual) norm of the residual η(z) =
‖A(z)ṽ(z)− b(z)‖V? as greedy indicator, as we set out to do. Indeed, for coercive and inf-sup
stable problems, one can theoretically prove the existence of a (z-dependent) constant c(z) such
that

‖ṽ(z)− v(z)‖V ≤ c(z) ‖A(z)ṽ(z)− b(z)‖V? . (2.47)

For instance, in the context of elliptic PDEs, c(z) might be the ratio of the continuity and
coercivity constants involved in the Lax-Milgram theorem. When (2.47) holds, one usually
employs as greedy indicator the quantity η(z) = c(z) ‖A(z)ṽ(z)− b(z)‖V? , which provides a
guaranteed bound for the ROM error. In practice, c(z) is not explicitly computable without a
significant (often, unfeasible) computational effort. So, it is customary to settle for an upper bound
for c, say c̃, that is cheaply computable a posteriori, and then set η(z) = c̃(z) ‖A(z)ṽ(z)− b(z)‖V? .
Several techniques to this aim can be found in the literature, e.g., the successive constraint
method [Huy+07; Huy+10].

That being said, frequency-domain applications are not “standard” MOR problems, since the
factor c is often not very well-behaved: as we mentioned in passing above, c(λ) =∞ at all poles
λ. In particular, if v has poles in the target frequency range, or close to it, then most MOR
approaches for finding the upper bound c̃ fail. In fact, one might even wonder if a uniform
control over the error is the correct measure of goodness of approximation, considering that v
is unbounded, cf. Theorem 2.4. For these reasons, one usually falls back onto using the “bare”
residual dual norm, since it is well-behaved at the poles of the system and solves the issue of
the unboundedness of v. Accordingly, this is the de facto standard for weak-greedy MOR of
frequency-domain applications in acoustics, electronics, optics, etc., see, e.g., [ABG20; Bay+20;
RM18; RRM09; Rub14], whenever one anticipates poles in, or close to, the frequency range. One
might (and, if possible, should) apply the standard indicator, containing the factor c̃, whenever
such term is bounded and can be computed reliably, e.g., for parabolic problems (2.26) and
scattering problems (2.27), provided they are uniformly stable over the frequency range. We refer
to Section 5.5.4 for a numerical example.
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3 The minimal rational interpola-
tion method

The minimal rational interpolation (MRI) method was proposed by the thesis author in [Pra20],
combining some of the features of projection methods and of rational approximation approaches.
In brief, MRI builds a surrogate model by constructing a rational approximation of the state v,
starting from snapshots of v at some sample points. The key property of MRI, which distinguishes
it from the rational approximation methods described in Section 2.4.1, is encoded by the “minimal”
in the name of the method: the information provided by the snapshots is exploited as much
as possible. For instance, this means that, for a fixed number of snapshots, MRI can build an
approximant with double the rational type than, e.g., VF can. This “optimal snapshot usage” is,
in some cases, a feature shared by MRI and projective approaches, see Section 2.4.2. However, as
opposed to those methods, MRI is non-intrusive. Particularly, it does not require access to an
affineMOR decomposition/approximation of the FOM, so that even problems with non-affineMOR

frequency dependencies or problems with black-box solvers are amenable to MRI.

In this chapter, we provide a rigorous definition of MRI, and describe a priori convergence results,
which show that MRI has good approximation properties. (To simplify our presentation, we
postpone the proofs of such results until Chapter 4.) In particular, while MRI can be applied, in
principle, for the approximation of any univariate function (even∞-dimensional-valued ones), our
convergence theory, at the moment, relies on some assumptions on the state v: more explicitly,
we will require v to admit a (finite or infinite) partial fraction expansion with simple poles

v(z) =
∑

λ∈Λ

rλ
λ− z , (3.1)

where Λ ⊂ C denotes the set of poles of v, each with a corresponding residue

rλ = lim
z→λ

(λ− z)v(z), (3.2)

see also Section 2.2. The theory below will be shown to hold only when the “most relevant”
residues (see below for a rigorous definition) form a linearly independent set. Crucially, this
property cannot be satisfied if MRI is applied to scalar quantities of interest (QoIs), or to vector
QoIs with too few components (when compared to the number of relevant residues). Consequently,
while MRI can be applied even in such situations, the approximation quality is usually poor.

For simplicity of exposition, we start our discussion from a special case of MRI, the fast LS
Padé approximation method, which was originally introduced in [Bon+20a]. This entails major
simplifications in the definitions, statements, and derivations. An extension to the general MRI
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approach will follow in Section 3.2.

3.1 The single-point case: fast LS Padé approximation
Fast LS Padé approximation generalizes Padé approximation to the vector setting. For simplicity,
we assume the target function to take values in a Hilbert space, rather than in a Banach one, since
having an inner product simplifies matters significantly. Note that even an “infinite-dimensional”
functional setting is allowed. We proposed this technique in [Bon+20a], using the following
definition.

Definition 3.1 (Fast LS Padé approximation [Bon+20a, Definition 4.1]). Let V be a complex-
valued Hilbert space with inner product 〈v, w〉V and induced norm ‖v‖V = 〈v, v〉1/2V , and fix z0 ∈ C
and M,N,E ≥ 0, with E ≥ max{M,N}. Also, let v : C→ V be a V-valued function of a complex
variable, continuous and differentiable (in the complex sense) at least E times at z0. An [M/N ]
fast LS Padé approximant of v centered at z0 (dependent on E) is a rational function

vz0[M/N ] =
P z0[M/N ]

Qz0[M/N ]
, (3.3)

such that

P z0[M/N ] ∈ PM (C;V) =
{

M∑

n=0
pn(z − z0)n : {pn}Mn=0 ⊂ V

}
, (3.4a)

Qz0[M/N ] ∈ Pz0N (C;C) =
{
z 7→

N∑

n=0
qn(z − z0)n : {qn}Nn=0 ⊂ C,

N∑

n=0
|qn|2 = 1

}
, (3.4b)

dn

dznP
z0
[M/N ]

∣∣∣∣
z0

!= dn

dzn (Qz0[M/N ]v)
∣∣∣∣
z0

∀n = 0, . . . ,M, (3.4c)

JE(Qz0[M/N ]) ≤ JE(Q) :=
∥∥∥∥∥

dE

dzE (Qv)
∣∣∣∣∣
z0

∥∥∥∥∥
V

∀Q ∈ Pz0N (C;C). (3.4d)

An [M/N ] fast LS Padé approximant is actually computable (in an efficient way) given only the
Taylor coefficients v(z0), dvdz (z0), . . . , dEvdzE (z0). Indeed, (3.4c) and (3.4d) can be expressed in terms
of such coefficients by the Leibniz rule: for n ∈ N,

dn

dzn (Qv)
∣∣∣∣
z0

=
min{N,n}∑

m=0

(
n

m

)
dmQ
dzm (z0)d

n−mv
dzn−m (z0). (3.5)

Notably, we will see that the identification of Qz0[M/N ] through (3.4d) can be carried out by solving
an eigenproblem. More details on this will be given in Section 5.1.

We also note that fast LS Padé approximants were introduced as an improvement over a prior
similar version of the method, dubbed LS Padé approximation in [BNP18, Definition 4.2]. The
main improvements over this latter technique are discussed in [Bon+20a].

In Definition 3.1, (3.4b) corresponds to a normalization condition on Qz0[M/N ], which prevents
the trivial solution Qz0[M/N ] ≡ 0. In particular, we remark that the normalized polynomials
Pz0N (C;C) are not invariant under centered dilations z 7→ z0 + α(z − z0). For instance, this
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3.1. The single-point case: fast LS Padé approximation

means that rescaling the frequency, in general, changes the surrogate: if ṽ(z) = v(αz), then
ṽ0

[M/N ](z) 6= v0
[M/N ](αz) in general. Moreover, let

〈Q,Q′〉z0 =
∞∑

n=0
qnq′n, where Q(z) =

∞∑

n=0
qn(z − z0)n and Q′(z) =

∞∑

n=0
q′n(z − z0)n, (3.6)

with induced norm ‖Q‖z0 = 〈Q,Q〉1/2z0 . In this metric, Pz0N (C;C) is the unit sphere in PN (C;C).

The minimality condition in (3.4d) is effectively responsible for the identification of the surrogate
denominator Qz0[M/N ], and is pivotal for showing that fast LS Padé approximants have good
properties. In this regard, we note that we say “a”, rather than “the”, fast LS Padé approximant,
since, in general, neither the denominator Qz0[M/N ] nor the rational function P z0[M/N ]/Q

z0
[M/N ] is

uniquely determined. Indeed, on one hand, Qz0[M/N ] is never unique because it can be multiplied
by an arbitrary unit complex number (in such case the surrogate stays unchanged, since P z0[M/N ] is
also multiplied by the same factor, see (3.4c)). On the other hand, JE might have two (or more)
linearly independent minimizers in Pz0N (C;C), leading to different fast LS Padé approximants.
This is especially the case in a numerical framework, if round-off becomes relevant, see Section
5.2.1.

As already mentioned, the “FOM information” needed to compute a fast LS Padé approximant
is the collection of Taylor coefficients of v at z0, of order up to E. This allows to discuss
(qualitatively) the topic of “optimal snapshot usage”.

Remark 3.1. Assume that we are interested in constructing an [M/N ] fast LS Padé approximant,
so that, according to Definition 3.1, at least max{M,N}+ 1 Taylor coefficients of v are necessary.
(Note that this is already an improvement on standard rational approximation, where M +N + 1
Taylor coefficients are necessary to achieve the same rational type, cf. Definition 2.5.) In order
to exploit the information on v (i.e., the snapshots) “optimally”, one should only take as many
samples as necessary, i.e., choose E = max{M,N}. Setting E any larger leads to an LS-like
Taylor method and “wastes” snapshots. This is not really advisable, particularly because it does
not alleviate numerical instabilities (see, e.g., the numerical tests in Section 5.5), differently from
the usual stabilizing effect of adding snapshots in classical methods, e.g., VF. Accordingly, the
choice E = max{M,N} is the de facto standard in our applications, thus justifying the absence
of the parameter E in our notation vz0[M/N ] for fast LS Padé approximants.

Akin to standard Padé approximants (for scalar functions), fast LS Padé approximants rely on
information on the target function at a single point. Notably, the value of v and of its derivatives
up to order M at z0 is recovered exactly by the surrogate, as encoded (in a linearized way) by
(3.4c). Accordingly, we may expect the approximation quality to degrade if we move farther away
from z0. Indeed, this behavior can be rigorously proven, even though the theoretical framework
requires some assumptions.

Assumption 3.1 (Local simple partial fraction expansion). Let Bz0(R) = {z ∈ C : |z − z0| < R}.
We assume that v admits the simple-pole partial fraction expansion (3.1) over Bz0(R), with distinct
poles and z0 /∈ Λ. If the poles of v are (countably) infinite, we require the partial fraction expansion
to be an absolutely convergent series in the V-sense, so that, in particular,

‖v(z)‖V ≤
∑

λ∈Λ

‖rλ‖V
|λ− z| <∞ ∀z ∈ Bz0(R) \ Λ.

Moreover, let Λz0(R) = Λ∩Bz0(R) be the poles of v inside Bz0(R), those that we dubbed “relevant”
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above. We assume that Λz0(R) has a finite number of elements Nz0(R). In particular, we employ
the pole ordering

v(z) =
Nz0 (R)∑

j=1

rλj
λj − z

+
∑

λ∈Λ\Λz0 (R)

rλ
λ− z , (3.7)

with |λ1 − z0| ≤ |λ2 − z0| ≤ . . . ≤ |λNz0 (R) − z0| < R.

Note that a function v satisfying Assumption 3.1 over B0(R) is meromorphic there, but not
necessarily over any Bz0(R+ ε), for ε > 0: for instance

v(z) =
∞∑

n=0

1/n!
1 + e−n − z (3.8)

has a branch point at z = 1 (encoded by a sequence of poles with 1 as limit point), and satisfies
Assumption 3.1 over B0(1) but not over any B0(1 + ε). Incidentally, this example shows why we
have not introduced an ordering in the poles outside Bz0(R), since it might not exist.

Additionally, to develop our theory, we will require the residues to be orthogonal, in the following
sense.

Assumption 3.2 (Orthogonal partial fraction residues). Assumption 3.1 holds. The residues
{rλ}λ∈Λ form a V-orthogonal family, i.e., 〈rλ, rλ′〉V = 0 for all λ 6= λ′.

A discussion on the possibility of extending our results to the weaker assumption of linearly
independent, rather than orthogonal, residues will follow in Section 3.1.3.

In the upcoming sections, we show a priori convergence results for fast LS Padé approximants,
first in the approximation of poles of v, and then in the approximation of v itself.

3.1.1 Pole convergence

Throughout the present section, we assume that Assumption 3.1 holds. Our main aim here is to
show that the fast LS Padé denominator Qz0[M/N ] is close to the “ideal” denominator gz0N , which,
for N ≤ Nz0(R), is defined as an element of Pz0N (C;C) such that gz0N (λj) = 0 for all j = 1, . . . , N .
The polynomial gz0N identifies exactly the N most relevant (with respect to z0) poles of v.

Our first result states a bound for the values |Qz0[M/N ](λj)|, for j = 1, . . . , N , at least under
Assumption 3.2. Since gz0N (λj) = 0 for those values of j, this corresponds to bounding the absolute
error in the denominator |Qz0[M/N ] − g

z0
N | at the relevant poles of v.

Lemma 3.1 (Denominator value at poles [Bon+20a, Lemma 5.4] (extended)).
Let Assumption 3.2 be valid over Bz0(R), and take N ≤ Nz0(R). Assume that Qz0[M,N ] is computed
using Definition 3.1, relying on E Taylor coefficients of v. Also, let R̄N = R if N ≥ Nz0(R) and
R̄N = |λN+1 − z0| otherwise. Then, for all j = 1, . . . , N , we have the bound

∣∣∣Qz0[M/N ](λj)
∣∣∣ ≤ Cj

( |λj − z0|
R̄N

)2E
, (3.9)

with Cj independent of M (in fact, the value of M is irrelevant here) and E, but dependent on
N .
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Proof. See Section 4.1.4.

The result above shows that, if N is fixed, the value of the fast LS Padé denominator at a
(relevant) exact pole converges to 0, exponentially in the number of snapshots E. Thanks to the
normalization of Qz0[M/N ] and to the fact that the poles of v are simple, we can convert this into
convergence (at the same rate) of the surrogate poles to the relevant exact ones.

Theorem 3.1 (Pole convergence [Bon+20a, Theorem 5.5]).
Let Assumption 3.2 be valid over Bz0(R), and take N ≤ Nz0(R). Assume that Qz0[M,N ] is computed
using Definition 3.1, relying on E Taylor coefficients of v. Also, let R̄N be as in Lemma 3.1. If
|λN − z0| < R̄N , then, for all j = 1, . . . , N and E large enough,

min
λ′:Qz0[M/N](λ′)=0

|λ′ − λj | ≤ Cj
( |λj − z0|

R̄N

)2E
, (3.10)

with Cj independent of M (in fact, the value of M is irrelevant here) and E, but dependent on
N .

Proof. See Section 4.1.5.

This result shows that fast LS Padé approximation can be employed as a fairly good eigensolver,
as far as the approximation of eigenvalues close to z0 is concerned.

Given the (exponential) convergence result for fixed N , we can ask whether convergence is
guaranteed also when N varies. In particular, the case of practical interest is that of N diverging
to∞, which happens, for instance, when using diagonal fast LS Padé approximants of type [E/E],
with E →∞. This case is much trickier, and it turns out that the rate of convergence depends
in a fairly complicated way on the pattern of the poles of v: notably, if poles are sufficiently
sparse, we can even expect super-exponential convergence, as shown in our numerical results in
Section 5.5. Since, usually, a priori information on the poles of v is not available, we are content
with a “plain” convergence result in the general case. However, we require the following global
assumption.

Assumption 3.3 (Global simple orthogonal partial fraction expansion). We assume that v
admits the simple-pole partial fraction expansion (3.1) over all compact subsets of C, with distinct
poles and z0 /∈ Λ. Moreover, we employ the pole ordering

v(z) =
∞∑

j=1

rλj
λj − z

, (3.11)

with |λ1 − z0| ≤ |λ2 − z0| ≤ . . .. If Λ is finite with m elements, then we set formally λm+1 =
λm+2 = . . . =∞. Otherwise, if the poles are (countably) infinite, we interpret the series in the
V-convergence sense as in Assumption 3.1, and we also require the poles Λ to not have any finite
limit point, i.e., we assume that limj→∞ |λj − z0| = ∞. In addition, we ask that the residues
{rλ}λ∈Λ form a V-orthogonal family in the sense of Assumption 3.2.

Note that Assumption 3.3 implies Assumption 3.2 over Bz0(R), for all R > 0.

Theorem 3.2 (Global pole convergence [Bon+20a, Theorem 5.7]).
Let Assumption 3.3 be valid, and consider a sequence {(Ni, Ei)}∞i=1 ⊂ N2, such that Ni−1 ≤ Ni ≤
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Ei ≤ Ei+1 for all i = 2, 3, . . .. Further, assume that limi→∞Ni = ∞, i.e., both the number of
snapshots and the denominator degree diverge. For all j = 1, 2, . . ., we have

lim
i→∞

min
λ′:Qz0[M/Ni]

(λ′)=0
|λ′ − λj | = 0, (3.12)

where Qz0[M/Ni] denotes the fast LS Padé denominator of degree Ni, computed from Ei Taylor
coefficients of v. (Note that the value of M is irrelevant.)

Proof. See Section 4.1.6.

Remark 3.2. In the previous theorem, if the denominator degrees in {(Ni, Ei)}∞i=1 ⊂ N2 are
bounded, i.e., limi→∞Ni = N̄ < ∞, then the claim still holds for all j = 1, . . . , N̄ , provided
|λN̄ − z0| <

∣∣λN̄+1 − z0
∣∣. To show this, it suffices to apply the “fixed N” result, Theorem 3.1.

Note that, if Ni diverges, we have shown that all exact poles are approximated by surrogate
ones, as long as we allow the denominator to have sufficiently large degree. On the other hand,
we have no guarantee of the converse, i.e., that all surrogate poles are converging to exact ones.
Indeed, in general, spurious poles may appear at arbitrary locations, even in areas where v
behaves smoothly. This is a common issue in (diagonal) rational approximation. In the next
section, we show that the (possible) appearance of such spurious effects does not disrupt the
good approximation properties of the rational approximant.

3.1.2 Error convergence

Also throughout the present section, we assume that Assumption 3.1 holds. We shift our focus
from the fast LS Padé denominator Qz0[M/N ] to the fast LS Padé approximant itself, with the
objective of showing convergence of vz0[M/N ] to v. Due to the (assumed) meromorphic structure
of v, this, in general, will not be possible uniformly with respect to z ∈ Bz0(R). Instead, it
proves necessary to show convergence in a weaker sense, to avoid the singular points of v. See
Theorem 2.4 for a classical result with the same limitation.

Theorem 3.3 (Error convergence [Bon+20a, Lemma 6.1]).
Let Assumption 3.2 be valid over Bz0(R), and take N ≤ min{Nz0(R),M + 1}. Also, let R̄N be
as in Lemma 3.1, and consider the punctured domain BN = Bz0(R̄N ) \ {λj}Nj=1. Then, if vz0[M/N ]
is the [M/N ] fast LS Padé approximant computed with E = max{M,N},

∥∥∥vz0[M/N ](z)− v(z)
∥∥∥
V
≤ C

d(z)
∣∣∣Qz0[M/N ](z)

∣∣∣

( |z − z0|
R̄N

)E
∀z ∈ BN , (3.13)

with C independent of M , E and z, and

d(z) = min
z′∈C\BN

|z − z′| = min
{
R̄N − |z − z0| , |z − λ1| , . . . ,

∣∣z − λNz0 (R)
∣∣} .

Additionally, let B′ be an arbitrary compact subset of BN . We have uniform exponential conver-
gence over B′ for fixed N :

∥∥∥vz0[M/N ](z)− v(z)
∥∥∥
V
≤ CB′

(
maxz∈B′ |z − z0|

R̄N

)E
∀z ∈ B′, for large E, (3.14)
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with CB′ independent of E but, notably, dependent on N and B′.

Proof. See Section 4.1.7.

Note that, as in Theorem 2.4, we are excluding the exact poles from the “convergence set” BN ,
since it is not useful to talk of convergence there. On the other hand, the term d(z) encodes the
distance from z to the exterior of BN , with d(z) = |z − λ| in a neighborhood of each of the N
most relevant poles, denoted by λ. This shows that the error bound (3.13) diverges with order 1
as z approaches an exact (relevant) pole. A similar diverging behavior can be observed when
z approaches the surrogate poles, i.e., the roots of Qz0[M/N ]. This is to be expected, since the
surrogate itself is unbounded there.

Before proceeding further, we remark that the uniform bound (3.14) is the natural extension
of the maximal convergence result from Theorem 2.4, showing that fast LS Padé approximants
converge maximally over disks around the center of approximation. Notably, fast LS Padé
approximants achieve this result relying on N less Taylor coefficients of v than standard rational
(Padé) approximants.

Like for poles, the (exponential) convergence result for fixed N can be extended to variable N .
As in the previous section, we can obtain a general convergence result, under global assumptions
on v. Unfortunately, if N diverges, it is impossible to prove uniform convergence over compact
subsets of the punctured domain BN , mainly due to the possible appearance of spurious poles
even in regions where v is regular. Instead, the convergence must be stated in a weaker sense.

Theorem 3.4 (Global error convergence [Bon+20a, Theorem 6.3] (extended)).
Let Assumption 3.3 be valid, and consider a sequence {(Mi, Ni)}∞i=1 ⊂ N2, such that Ni−1 ≤
Ni ≤Mi + 1 ≤Mi+1 + 1 for all i = 2, 3, . . .. Further, assume that limi→∞Ni =∞, i.e., both the
number of snapshots and the denominator degree diverge. For all R > 0 and ε > 0, we have

lim
i→∞

Cap
({
z ∈ Bz0(R) :

∥∥∥vz0[Mi/Ni](z)− v(z)
∥∥∥
V
> εNi

})
= 0, (3.15)

where vz0[Mi/Ni] is the [Mi/Ni] fast LS Padé approximant computed from Ei = max{Mi, Ni} Taylor
coefficients of v and Cap is the logarithmic capacity, see Definition 2.2.

Proof. See Section 4.1.8.

Remark 3.3. In the previous theorem, if the denominator degrees in {(Mi, Ni)}∞i=1 ⊂ N2 are
bounded, i.e., limi→∞Ni = N̄ <∞, then the claim still holds. To see this, it suffices to use the
“fixed N” result, Theorem 3.3, together with the lemniscate argument in the proof of Theorem 3.4.

This, being a sort of generalization of Theorem 2.5, is a sharp result, in the sense that convergence
in a stronger metric cannot be guaranteed. Some counterexamples to convergence in a stronger
metric (in the classical setting) can be found in [BGM96; Lub03].

3.1.3 Extension to the non-orthogonal case

Most, if not all, of the convergence results for fast LS Padé approximation described until now
rely quite heavily on the assumption of orthogonal residues, encoded by Assumption 3.2, mainly
through the extremely powerful expansion (4.6) given in Section 4.1.2. In a qualitative way, poles
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N λ′1 (‖r′1‖2) λ′2 (‖r′2‖2) λ′3 (‖r′3‖2) λ′4 (‖r′4‖2) λ′5 (‖r′5‖2)

1 +1.4939-0.2027i
(+2.3333e+00)

2 +1.0148-0.0127i +0.0825-2.3462i
(+1.1203e+00) (+2.3205e+00)

3 +1.0001-0.0000i -0.1070-1.3828i +3.3077-0.0055i
(+1.1422e+00) (+7.2808e-01) (+1.2333e+01)

4 +1.0000-0.0000i +0.0413-1.4819i +3.0000-0.0000i +4.0000-0.0000i
(+1.1333e+00) (+1.0042e+00) (+1.1339e+02) (+1.9485e+02)

5 +1.0000+0.0000i +0.0391-1.5167i -1.5355+1.0307i +3.0000+0.0000i +4.0000-0.0000i
(+1.0197e+00) (+5.9199e-01) (+1.2842e+00) (+8.3797e+01) (+1.5516e+02)

Table 3.1 – Roots of Q0
[N/N ] for an artificial 4D v with 2 interfering residues. The norms of the

corresponding surrogate residues are also included.

corresponding to orthogonal residues are easier to identify through JE , since the different residues
do not interfere with each other: in some sense, the only source of noise when building fast LS
Padé approximants comes from the “irrelevant” poles, i.e., those that, being located outside the
convergence region, are not targeted by the approximation effort. And, since this noise decreases
exponentially in E, cf. the proof of Lemma 3.1, good approximation properties can be deduced.

However, residual orthogonality is a quite restrictive assumption, essentially requiring the
symmetry/self-adjointness of the underlying problem, whose state is v. As such, it makes
sense to ask if our convergence results can be extended to the non-orthogonal case. In trying to
answer this question, one important limitation should be kept in mind: fast LS Padé approximants
are incapable of distinguishing collinear residues, due to the definition of optimization problem
(3.4d). We illustrate this with three simple examples. (Note that the code used to obtain the
results below is publicly available as part of [Pra21].)

Let V = C4 with the usual Euclidean inner product 〈·, ·〉2 and norm ‖·‖2. We define

v(z) =
4∑

j=1

ej
j − z + e2

3i/2− z ,

where ej ∈ V is the j-th element of the canonical basis, i.e., (ej)i = δij . We compute [N/N ]
fast LS Padé approximants of v centered at 0, using N Taylor coefficients of v, for N = 1, . . . , 5.
We show in Table 3.1 the surrogate poles. We can observe that the poles λ ∈ {1, 3, 4} are well
approximated for N large enough, since, after all, they are separated from the rest of the spectrum.
On the other hand, the remaining poles at λ ∈ {2, 3

2 i} are not properly identified by the fast LS
Padé approximants. This will be the case, no matter how large we make N (or E). As such, the
region of convergence, cf. Theorem 3.3, will necessarily have to stop at a distance of (at most)
1.5 from the center z0 = 0, even though we have convergence of some poles outside it.

On a side note, we remark that the lack of linear independence also impacts the approximation
quality at the poles that are properly identified. Indeed, in Table 3.1 we can also see the norms
of the residues corresponding to each surrogate pole, computed as

r′j = lim
z→λ′

j

(λ′j − z)vz0[M/N ](z) = −P z0[M/N ](λ
′
j)
/(

d
dz Q

z0
[M/N ]

∣∣∣∣
λ′
j

)
.

By definition of v, all exact residues equal 1, but the numerical ones appear incorrect, particularly
for poles 3 and 4, which lie outside the effective convergence region. As N (or E) increase, we
can expect only the residue corresponding to λ = 1 to converge to the exact value.
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N λ′1 (‖r′1‖2) λ′2 (‖r′2‖2) λ′3 (‖r′3‖2) λ′4 (‖r′4‖2) λ′5 (‖r′5‖2)

1 +5.5855-5.2388i
(+4.5555e+01)

2 +0.8916+0.0541i -0.2640-2.0161i
(+7.9284e-01) (+3.1099e+00)

3 +0.9748-0.1424i +1.2706+0.4407i -0.0122-1.6920i
(+1.8885e+00) (+4.6792e+00) (+2.2926e+00)

4 +0.9554+0.0466i +1.2458-0.6219i +0.0518-1.5713i +1.5141+1.1144i
(+1.4828e+00) (+6.2230e+00) (+2.0335e+00) (+1.2201e+01)

5 +0.9770+0.0209i -1.3339+0.3563i +1.4303-0.5989i +0.0077-1.5626i +1.6326+0.9452i
(+8.9124e-01) (+6.0324e-01) (+6.8311e+00) (+1.5906e+00) (+1.1857e+01)

Table 3.2 – Roots of Q0
[N/N ] for an artificial 4D v with interference between all residues. The norms of

the corresponding surrogate residues are also included.

N λ′1 (‖r′1‖2) λ′2 (‖r′2‖2) λ′3 (‖r′3‖2) λ′4 (‖r′4‖2) λ′5 (‖r′5‖2)

1 +1.6457+0.0000i
(+4.0537e+00)

2 +1.0307+0.0000i +2.9094+0.0000i
(+1.1686e+00) (+4.5077e+00)

3 +1.0005-0.0000i +2.0703+0.0000i +3.6249-0.0000i
(+1.0035e+00) (+1.7533e+00) (+3.2830e+00)

4 +1.0000-0.0000i +2.0000+0.0000i +3.0000-0.0000i +4.0000+0.0000i
(+1.0000e+00) (+1.4142e+00) (+1.7321e+00) (+2.0000e+00)

5 +1.0000+0.0000i -1.1270+0.0000i +2.0000+0.0000i +3.0000+0.0000i +4.0000+0.0000i
(+1.0000e+00) (+2.2012e-15) (+1.4142e+00) (+1.7321e+00) (+2.0000e+00)

Table 3.3 – Roots of Q0
[N/N ] for an artificial 4D v with linearly independent residues. The norms of the

corresponding surrogate residues are also included.

Now we increase the amount of “interference” between residues by setting

v(z) =
4∑

j=1

ej
j − z +

∑4
j=1 ej

3i/2− z ,

so that the residue at 3i/2 is not orthogonal to any of the others. In this case, the results are even
worse, as can be seen in Table 3.2. The “collinearity noise” affects all poles, and the approximation
quality degrades as a consequence: only λ = 1 seems to be identified, and not so well at that.

As a final note, we observe that, in contrast, had the residues been orthogonal (or even just
linearly independent), fast LS Padé approximants would have recovered the exact poles and
residues of v starting from N = dim(V). We show this by building fast LS Padé approximants for

v(z) =
4∑

j=1

∑j
k=1 ek
j − z ,

whose 4 residues are linearly independent, albeit not orthogonal. The surrogate poles and residues
are shown in Table 3.3. Notably, we see the appearance of a Froissart doublet, i.e., a pole with
(numerically) vanishing residue, for N = 5. Other than that, the poles and residues are identified
exactly (‖rj‖2 =

√
j), as predicted.

These simple examples show that the lack of linear independence in the residues can have ruinous
effects on fast LS Padé approximants, making a weakened version of Assumption 3.2 necessary
to hope for any convergence result similar to those of the previous section. Such extensions are
presented (without proof) in [Pra20] for the “fixed N” results from the previous sections, namely,
Theorems 3.1 and 3.3. We summarize here the main claims in the form of a conjecture.

Conjecture 1 ([Pra20]). Let Assumption 3.1 hold for all R, with the spectrum Λ having no finite
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Chapter 3. The minimal rational interpolation method

limit points, cf. Assumption 3.3. Moreover, assume that the residues {rλ}λ∈Λ form a linearly
independent family, i.e., that, if

∥∥∑
λ∈Λ αλrλ

∥∥
V = 0 for some sequence {αλ}λ∈Λ ⊂ C, then

αλ = 0 for all λ. Then, we expect Theorem 3.1 to hold, with a larger constant Cj and with halved
exponent (this is in accordance to the common decrease in convergence rate for non-symmetric
and non-Hermitian eigensolvers). Also, we expect Theorem 3.3 to hold, with larger constants C
and CA.

We perform some numerical verifications of these claims in Section 5.5.

3.2 The general MRI algorithm
The minimal rational interpolation (MRI) algorithm is born as an extension of fast LS Padé
approximation, by allowing the sample points to be distinct, distributed over a region of C, rather
than concentrated at a single point z0. In fact, MRI allows coalescence of the sample points, so
that fast LS Padé approximation (with E = M) is a special case of MRI.

From a different viewpoint, MRI is also a generalization of scalar Lagrange(-Hermite) rational
interpolation, see Definition 2.5, to the high-dimensional setting, providing an alternative to the
LS approaches described in Section 2.4.1. In particular, the term “minimal” in the name of MRI
reveals that, in this technique, we strive to exploit the samples of v as much as possible. More
specifically, we will see that a rational approximation of type [S − 1/S − 1] can be built starting
from S snapshots, whereas, with the classical interpolation approaches described in Section 2.4.1,
building a rational surrogate of the same type requires at least 2S − 1 snapshots.

The definition of MRI, as given by the thesis author in [Pra20], follows.

Definition 3.2 (Minimal rational interpolation [Pra20, Definition 2.1]). Let V be as in Defini-
tion 3.1. We consider sample points Z = {zj}Sj=1 ∈ C (not necessarily distinct) and an integer
N ≥ 0, with N + 1 ≤ S. We require a basis ΨN = {ψi}Ni=0 of the polynomial space PN (C;C).
Also, let v : C→ V be a V-valued function such that IZ(v) exists, according to Definition 2.1. An
[S − 1/N ] MRI of v based on samples at Z (dependent on ΨN ) is a rational function

vZ[S−1/N ] =
IZ(QZ[S−1/N ]v)
QZ[S−1/N ]

, (3.16)

such that

QZ[S−1/N ] ∈ PΨN
N (C;C) =

{
N∑

n=0
qnψn : {qn}Nn=0 ⊂ C,

N∑

n=0
|qn|2 = 1

}
, (3.17a)

JZ(QZ[S−1/N ]) ≤ JZ(Q) :=
∥∥∥∥∥
dS−1

dzS−1 I
Z(Qv)

∥∥∥∥∥
V
∀Q ∈ PΨN

N (C;C). (3.17b)

As already mentioned, MRI includes fast LS Padé approximation as a special case, since IZ
coincides with a truncated Taylor series when Z = {z0, . . . , z0}, and the basis ΨN can be chosen
as the shifted monomials {(· − z0)i}Ni=0, cf. Definition 3.1. Note that, as for fast LS Padé
approximants, uniqueness cannot in general be guaranteed. Moreover, it is interesting to observe
that the term dS−1

dzS−1 I
Z(φ) in (3.17b) corresponds to (a multiple of) the leading coefficient of

the interpolant of φ, extending the equivalent term dEφ
dzE (z0) in fast LS Padé approximation, see
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3.2. The general MRI algorithm

(3.4d).

The normalization condition (3.17a) accounts for the MRI denominator QZ[S−1/N ] being expressed
in the general polynomial basis ΨN , whose choice will, in practice, depend on how the sample
points are distributed. The role that ΨN plays in the numerical properties of MRI is discussed in
Section 5.2.3.

All the theory for fast LS Padé approximation can be generalized to MRI, under similar as-
sumptions on the target function v. However, before presenting the main results, we note that,
with respect to fast LS Padé approximation, in MRI we have the added difficulty due to the
ΨN -based normalization. For most of our results, namely, those for fixed N , no issues due to this
normalization arise. However, when investigating the convergence of MRI as N →∞, we will
need to postulate that ΨN behaves nicely uniformly in N . More specifically, we formalize this by
requiring the existence of uniform (in N) upper and lower bounds for the value of normalized
polynomials Q ∈ PΨN

N (C;C).

Assumption 3.4. Let z0 ∈ C be fixed. For all N ∈ {1, 2, . . .}, let PΨN ,z0
N (C;C) be the set of

polynomials Q ∈ PΨN
N (C;C), such that Q(z0) 6= 0. There exist positive constants ρz0 , cz0 , and

Cz0 (independent of z and N) such that

(cz0)N
N ′∏

j=1

|z − zj |
ρz0 + |z0 − zj |

≤ |Q(z)| ≤ (Cz0)N
N ′∏

j=1

∣∣∣∣
z − zj
z0 − zj

∣∣∣∣

∀Q ∈ PΨN ,z0
N (C;C) ∀z ∈ C ∀N ∈ N, (3.18)

where {zj}N
′

j=1 are the roots of Q, repeated according to multiplicity.

We refer to the results proven in Sections 4.1.1 and 4.2.1 for a motivation behind the specific
structure of the bounds in the assumption above. Note that, in [Pra20], a stronger assumption is
considered: namely, both cz0 and Cz0 must appear without the exponent N in (3.18). However, it
turns out that the weaker Assumption 3.4 is sufficent to develop our theory, cf. Sections 4.2.6
and 4.2.8.

One can prove that some widely used polynomial bases satisfy Assumption 3.4. Among those, we
can find the (scaled and shifted) monomial basis ΨN = {

( ·−z0
R

)i}Ni=0 (see Lemma 4.1 for a proof).
Moreover, the (scaled and shifted) Chebyshev and Legendre polynomials (ΨN = {Ti

( ·−z0
R

)
}Ni=0

and ΨN = {Li
( ·−z0

R

)
}Ni=0, respectively) satisfy Assumption 3.4 for some choices of z0. We refer

to Appendix A for a proof of this fact.

3.2.1 Pole convergence

With the objective of extending the results on pole convergence from Section 3.1.1, we redefine
“pole relevance” to account for the different sampling scheme. To this aim, we must first fix a
“sampling set” A b C, with the convention that we are allowed to take samples of v only at points
of ∂A, namely, at Fekete points of A. Note that this is required only in our theoretical analysis,
and should not be seen as a constraint on the applicability of the MRI method.

In fast LS Padé approximation, pole relevance was set based on how distant each pole of v was
from A = {z0}. When A is not a single point, it turns out that the best way to extend this
concept is through the Green’s potential ΦA, see Definition 2.3, whenever ΦA is well-defined.
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Chapter 3. The minimal rational interpolation method

Accordingly, we generalize Assumption 3.1 as follows.

Assumption 3.5 (Local simple partial fraction expansion). Consider a sampling set A b C
with Green’s potential ΦA. Given a fixed R > Cap(A), let AR be the conformal extension of A,
according to Definition 2.3. We assume that v admits the simple-pole partial fraction expansion
(3.1) over AR, with distinct poles and ∂A ∩ Λ = ∅ (so as to avoid sampling at a pole). If the
poles of v are (countably) infinite, we require the partial fraction expansion to be an absolutely
convergent series in the V-sense, so that, in particular,

‖v(z)‖V ≤
∑

λ∈Λ

‖rλ‖V
|λ− z| <∞ ∀z ∈ AR \ Λ.

Moreover, let ΛA(R) = Λ ∩AR be the poles of v inside AR. We assume that ΛA(R) has a finite
number of elements NA(R). In particular, we employ the pole ordering

v(z) =
NA(R)∑

j=1

rλj
λj − z

+
∑

λ∈Λ\ΛA(R)

rλ
λ− z , (3.19)

with ΦA(λ1) ≤ ΦA(λ2) ≤ . . . ≤ ΦA(λNA(R)) < R.

We note that poles inside A can be ordered in an arbitrary way, since ΦA(λ) = Cap(A) for all
λ ∈ A. An obvious generalization of Assumption 3.2 is also available.

Assumption 3.6 (Orthogonal partial fraction residues). Assumption 3.5 holds. The residues
{rλ}λ∈Λ form a V-orthogonal family, i.e., 〈rλ, rλ′〉V for all λ 6= λ′.

Now we are ready to state our results, which we present in the same order as for fast LS Padé
approximation. We start with the convergence of the MRI denominator values for fixed N .

Lemma 3.2 (Denominator value at poles [Pra20, Lemma 3.6]).
Let A b C be the sampling set, with Green’s potential ΦA, and let Assumption 3.6 be valid over
AR. Take a sequence of Fekete points {ZS}∞S=1, with ZS ⊂ ∂A for all S (we remind the reader
that ZS has S elements, cf. Theorem 2.2). Take a fixed NA(Cap(A)) ≤ N ≤ NA(R). Also, let
R̄N = R if N ≥ NA(R) and R̄N = ΦA(λN+1) otherwise. For all j = 1, . . . , N , ρ < R̄N , and S
large enough (depending on ρ and N), we have the bound

∣∣∣QZS[S−1/N ](λj)
∣∣∣ ≤ Cj

(
ΦA(λj)

ρ

)2S
, (3.20)

with Cj independent of M and S.

Proof. See Section 4.2.4.

From here, we can get to more “practical” results, starting from pole convergence for fixed N .

Theorem 3.5 (Pole convergence [Pra20, Theorem 3.7]).
Let A b C be the sampling set, with Green’s potential ΦA, and let Assumption 3.6 be valid
over AR. Take a sequence of Fekete points {ZS}∞S=1, with ZS ⊂ ∂A for all S. Take a fixed
N ≤ NA(R). Also, set R̄N = R if N = NA(R) and R̄N = ΦA(λN+1) otherwise. Assume that
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3.2. The general MRI algorithm

ΦA(λN ) < ρ < R̄N , with ρ arbitrary. Then, for all j = 1, . . . , N and S large enough (depending
on ρ and N),

min
λ′:QZS[S−1/N](λ′)=0

|λ′ − λj | ≤ Cj
(

ΦA(λj)
ρ

)2S
, (3.21)

with Cj independent of S.

Proof. See Section 4.2.5.

As could have been expected, we see that the Green’s potential of A determines the convergence
rate. Note, in particular, that all poles within A can be expected to converge at the same rate,
since ΦA(λ) = Cap(A) for all λ ∈ A.

In the following result, we generalize the global pole convergence of Theorem 3.2. We note that,
since we are showing convergence of all poles, ordering the poles using the Green’s potential is
unnecessary.

Theorem 3.6 (Global pole convergence [Pra20, Theorem 3.8]).
Let A b C be the sampling set, with Fekete points {ZS}∞S=1, with ZS ⊂ ∂A for all S. Let
Assumptions 3.3 and 3.4 be valid for some z0 ∈ C, and consider a sequence {(Ni, Si)}∞i=1 ⊂ N2,
such that Ni−1 ≤ Ni < Si ≤ Si+1 for all i = 2, 3, . . .. Further, assume that limi→∞Ni =∞, i.e.,
both the number of snapshots and the denominator degree diverge. For all j = 1, 2 . . ., we have

lim
i→∞

min
λ′:Q

ZSi
[Si−1/Ni]

(λ′)=0
|λ′ − λj | = 0. (3.22)

Proof. See Section 4.2.6.

3.2.2 Error convergence

Next comes the error convergence, whose rate is, again, determined by the Green’s potential of A.
Note that, once more, we are relying heavily on Assumption 3.5.

Theorem 3.7 (Error convergence [Pra20, Theorem 3.9]).
Let A b C be the sampling set, with Green’s potential ΦA, and let Assumption 3.6 be valid over
AR. Take a sequence of Fekete points {ZS}∞S=1, with ZS ⊂ ∂A for all S (we remind the reader
that ZS has S elements, cf. Theorem 2.2). Take a fixed N ≤ NA(R). Also, let R̄N be as in
Lemma 3.2, and consider an arbitrary Cap(A) < ρ < R̄N . Define the punctured domain BN as
the interior of Aρ \ {λj}Nj=1. Then, for all ε > 0 and S large enough (depending on N and ε),

∥∥∥vZS[S−1/N ](z)− v(z)
∥∥∥
V
≤ C

d(z)
∣∣∣QZS[S−1/N ](z)

∣∣∣

(
ΦA(z)
ρ

)S
∀z ∈ BN , (3.23)

with C independent of S, and d(z) = minz′∈C\BN |z − z′|.

Additionally, let B′ be an arbitrary compact subset of BN . We have uniform exponential conver-
gence over B′ for fixed N :

∥∥∥vZS[S−1/N ](z)− v(z)
∥∥∥
V
≤ CB′

(
maxz∈B′ ΦA(z)

ρ

)S
∀z ∈ B′, (3.24)
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with CB′ independent of S but, notably, dependent on B′.

Proof. See Section 4.2.7.

Note that the approximation error at all points of A \ Λ can be expected to converge at the
same rate, since ΦA(z) = Cap(A) for all z ∈ A. Moreover, comparing (3.23) with the “maximal
convergence” in Theorem 2.4, we conclude that MRI converges maximally under Assumption 3.6.

Finally, we have global convergence in capacity.

Theorem 3.8 (Global error convergence [Pra20, Theorem 3.10] (extended)).
Let A b C be the sampling set, with Fekete points {ZS}∞S=1, with ZS ⊂ ∂A for all S. Let
Assumptions 3.3 and 3.4 be valid for some z0 ∈ C, and consider a sequence {(Ni, Si)}∞i=1 ⊂ N2,
such that Ni−1 ≤ Ni < Si ≤ Si+1 for all i = 2, 3, . . .. Further, assume that limi→∞Ni =∞, i.e.,
both the number of snapshots and the denominator degree diverge. For all R > Cap(A) and ε > 0,
we have

lim
i→∞

Cap
({
z ∈ AR :

∥∥∥vZSi[Si−1/Ni](z)− v(z)
∥∥∥
V
> εNi

})
= 0, (3.25)

where Cap is the logarithmic capacity, see Definition 2.2.

Proof. See Section 4.2.8.

As a final note, we remark that the considerations on residue collinearity presented in Section
3.1.3 for fast LS Padé approximation apply also to MRI.
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4 Proofs of convergence results for
MRI

In this chapter we report all the proofs of the results from Sections 3.1 and 3.2. For convenience,
we split them depending on whether they pertain to fast LS Padé approximation or MRI.

4.1 Proofs of results for the single-point case
We start from the results related to fast LS Padé approximation. The main reference throughout
this chapter is [Bon+20a].

4.1.1 Auxiliary result: bounds for normalized polynomials

First, it is useful to explore some properties of the set Pz0N (C;C), where Qz0[M/N ] is sought. Notably,
we can show some bounds on values of normalized polynomials.

Lemma 4.1 (Normalization of nodal polynomials [Bon+20a, Lemma 5.1]).
Let Q ∈ Pz0N (C;C). Then

|Q(z)| ≤
(

N∑

n=0
|z − z0|2n

)1/2

=





√
N + 1 if |z − z0| = 1,(
|z−z0|2N+2−1
|z−z0|2−1

)1/2
if |z − z0| 6= 1.

(4.1)

Moreover, assume that Q has exact degree N ′ ≤ N , with roots {zj}N
′

j=1 (repeated according to
multiplicity), all different from z0. Then,

N ′∏

j=1

|z − zj |
1 + |z0 − zj |

≤ |Q(z)| ≤
N ′∏

j=1

∣∣∣∣
z − zj
z0 − zj

∣∣∣∣ ≤
N ′∏

j=1

(
1 +

∣∣∣∣
z − z0
z0 − zj

∣∣∣∣
)
. (4.2)

Remark 4.1. In the second part of the lemma, one could equivalently (formally) set the missing
N −N ′ roots to ∞.

Proof. The first claim follows easily by the Cauchy-Schwarz inequality:

|Q(z)| =
∣∣∣∣∣
N∑

n=0

1
n!

dnQ
dzn (z0)(z − z0)n

∣∣∣∣∣ ≤
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≤
(

N∑

n=0

∣∣∣∣
1
n!

dnQ
dzn (z0)

∣∣∣∣
2
)1/2( N∑

n=0
|z − z0|2n

)1/2

=
(

N∑

n=0
|z − z0|2n

)1/2

.

Given Q ∈ Pz0N (C;C) with roots {zj}N
′

j=1, let ω(z) =
∏N ′

j=1(z − zj), so that Q = τω for some
τ ∈ C \ {0}. By the Hadamard multiplication theorem [Tit78, Section 4.6], we have the identity

|τ |−2 = |τ |−2
N∑

i=0
|qi|2 = |τ |−2

N∑

i=0

∣∣∣∣
1
i!
diQ
dzi (z0)

∣∣∣∣
2

= |τ |−2
∫ 1

0

∣∣Q(z0 + e2πiθ)
∣∣2 dθ

=
∫ 1

0

N ′∏

j=1

∣∣z0 + e2πiθ − zj
∣∣2 dθ.

On one hand, by the triangular inequality, we have

|τ |−2 ≤
∫ 1

0

N ′∏

j=1

(
|z0 − zj |+

∣∣e2πiθ∣∣)2 dθ =
N ′∏

j=1
(|z0 − zj |+ 1)2

.

The lower bound in (4.2) follows.

On the other hand, by the Cauchy-Schwarz inequality in L2((0, 1)), we have

|τ |−2 ≥

∣∣∣∣∣∣

∫ 1

0

N ′∏

j=1

(
z0 + e2πiθ − zj

)
dθ

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣

∫ 1

0




N ′∏

j=1
(z0 − zj) +

N ′∑

j=1
cje

2πijθ


 dθ

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣

N ′∏

j=1
(z0 − zj) +

N ′∑

j=1
cj

∫ 1

0
e2πijθdθ

∣∣∣∣∣∣

2

,

for some θ-independent coefficients {cj}N
′

j=1. Since
∫ 1

0 e
2πijθdθ = 0 for all integers j ≥ 1,

we have |τ |−2 ≥ ∏N ′

j=1 |z0 − zj |, which implies the first upper bound in (4.2). The second
upper bound follows by applying the triangular inequality within each term of the product:
|z − zj | ≤ |z0 − zj |+ |z − z0|.

We note that, alternatively, the second half of the claim could have been proven via Lemmas A.1
and A.2, since monomials are orthogonal over the unit circle (with unit weight).

Now, let gz0N be defined as in Section 3.1.1, i.e., as an element of Pz0N (C;C) such that gz0N (λj) = 0
for all j = 1, . . . , N . By applying (4.2) to gz0N , we obtain (note that z0 is not a root of gz0N by
Assumption 3.1)

N∏

j=1

|z − λj |
1 + |z0 − λj |

≤ |gz0N (z)| ≤
N∏

j=1

∣∣∣∣
z − λj
z0 − λj

∣∣∣∣ ≤
N∏

j=1

(
1 +

∣∣∣∣
z − z0
z0 − λj

∣∣∣∣
)
. (4.3)
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4.1.2 Auxiliary result: alternative expressions of target functional

We can obtain alternative expressions for the quantity JE in (3.4d).
Lemma 4.2 (Alternative expressions of JE [Bon+20a, Section 5] and [Pra20, Section 3.4]).
Let Assumption 3.1 be valid over Bz0(R) for small enough R, and take an arbitrary Q ∈ PN (C;C).
Then,

1
E!JE(Q) =


 ∑

λ,λ′∈Λ

〈rλ, rλ′〉V
(λ− z0)E+1(λ′ − z0)E+1Q(λ)Q(λ′)




1/2

, (4.4)

and
1
E!JE(Q) ≤

∑

λ∈Λ

‖rλ‖V
|λ− z0|E+1 |Q(λ)| . (4.5)

If, in addition, Assumption 3.2 holds, then

1
E!JE(Q) =

(∑

λ∈Λ

‖rλ‖2V
|λ− z0|2E+2 |Q(λ)|2

)1/2

. (4.6)

Proof. Since the derivatives of v are

dnv
dzn (z0) = n!

∑

λ∈Λ

rλ
(λ− z0)n+1 , (4.7)

we can apply the Leibniz rule to JE to obtain

JE(Q) =
∥∥∥∥∥
N∑

n=0

(
E

n

)
dnQ
dzn (z0)d

E−nv
dzE−n (z0)

∥∥∥∥∥
V

=E!
∥∥∥∥∥
∑

λ∈Λ

rλ
(λ− z0)E+1

N∑

n=0

1
n!

dnQ
dzn (z0)(λ− z0)n

∥∥∥∥∥
V

=E!
∥∥∥∥∥
∑

λ∈Λ

rλ
(λ− z0)E+1Q(λ)

∥∥∥∥∥
V

(we have implicitly relied on E ≥ N in applying the Leibniz rule). The upper bound follows by
the triangular inequality, whereas the other claims follow by expanding the V-norm in terms of
the V-inner product.

4.1.3 Auxiliary result: optimal value of target functional

We can build a bound for the minimal value of JE in Definition 3.1, namely, JE(Qz0[M/N ]).

Lemma 4.3 (Minimal value of JE [Bon+20a, Lemma 5.3]).
Let Assumption 3.1 be valid over Bz0(R), and assume that Qz0[M,N ] is computed using Definition 3.1,
relying on E Taylor coefficients of v. Then,

1
E!JE(Qz0[M,N ]) ≤ C

(
R̄N
)−E

, (4.8)

where R̄N = R if N ≥ Nz0(R) and R̄N = |λN+1 − z0| otherwise. The constant C is independent
of M and E.

Proof. Let Neff = min{N,Nz0(R)}. We set ΛNeff = {λj}Neff
j=1 as the “relevant” poles, which are
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the roots of the (effective) target polynomial gz0Neff
∈ Pz0Neff

(C;C) ⊂ Pz0N (C;C). Moreover, we define
the “irrelevant” poles as Λ̄ = Λ \ ΛNeff . Note that minλ∈Λ̄ |λ− z0| ≥ R̄N .

By (3.4d), Qz0[M/N ] yields a lower value of JE than gz0Neff
. This, together with (4.3) and (4.5), gives

1
E!JE(Qz0[M/N ]) ≤

1
E!JE(gz0Neff

) ≤
∑

λ∈Λ

‖rλ‖V
|λ− z0|E+1

∣∣gz0Neff
(λ)
∣∣

=
∑

λ∈Λ̄

‖rλ‖V
|λ− z0|E+1

∣∣gz0Neff
(λ)
∣∣ ≤

∑

λ∈Λ̄

‖rλ‖V
|λ− z0|E+1

Neff∏

j=1

(
1 +

∣∣∣∣
λ− z0
λj − z0

∣∣∣∣
)

≤ sup
λ∈Λ̄


|λ− z0|Neff−E

Neff∏

j=1

(
1

|λ− z0|
+ 1
|λj − z0|

)
∑

λ∈Λ̄

‖rλ‖V
|λ− z0|

.

Since |λj − z0| ≤ |λ− z0| for all j = 1, . . . , Neff and λ ∈ Λ̄, we have

Neff∏

j=1

(
1

|λ− z0|
+ 1
|λj − z0|

)
≤ 2Neff

∏Neff
j=1 |λj − z0|

.

Moreover, since E ≥ N ≥ Neff,

sup
λ∈Λ̄
|λ− z0|Neff−E =

(
inf
λ∈Λ̄
|λ− z0|

)Neff−E
≤
(
R̄N
)Neff−E

.

The claim follows.

4.1.4 Proof of Lemma 3.1

For convenience, we report a copy of the statement in question, copied from Section 3.1.1.

Lemma 3.1 (Denominator value at poles [Bon+20a, Lemma 5.4] (extended)).
Let Assumption 3.2 be valid over Bz0(R), and take N ≤ Nz0(R). Assume that Qz0[M,N ] is computed
using Definition 3.1, relying on E Taylor coefficients of v. Also, let R̄N = R if N ≥ Nz0(R) and
R̄N = |λN+1 − z0| otherwise. Then, for all j = 1, . . . , N , we have the bound

∣∣∣Qz0[M/N ](λj)
∣∣∣ ≤ Cj

( |λj − z0|
R̄N

)2E
, (3.9)

with Cj independent of M (in fact, the value of M is irrelevant here) and E, but dependent on
N .

Proof. Based on (4.6), we define the following Hermitian quadratic form over PN (C;C)×PN (C;C):

bE(Q,Q′) =
∑

λ∈Λ

‖rλ‖2V
|λ− z0|2E+2Q(λ)Q′(λ),

which is obviously semi-positive definite. By Lemma 4.2, JE(Q) = E!bE(Q,Q)1/2. Accordingly,
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we define the Hermitian eigenproblem

find σ ≥ 0 and Qσ ∈ Pz0N (C;C) : bE(Qσ, Q) = σ〈Qσ, Q〉z0 ∀Q ∈ PN (C;C). (4.9)

Note that we are using the inner product 〈·, ·〉z0 defined in (3.6).

Thanks to the standard properties of quadratic forms over finite-dimensional spaces, (3.4d) can
be reinterpreted as: Qz0[M/N ] is a solution of (4.9) with minimal eigenvalue σ. Moreover, we note
that Lemma 4.3 provides an upper bound for (the square root of) such minimal eigenvalue, since

bE(Qz0[M/N ], Q) = 1
E!2 JE(Qz0[M/N ])

2〈Qz0[M/N ], Q〉z0 ∀Q ∈ PN (C;C). (4.10)

Now, let ΛN = {λj}Nj=1 denote the relevant poles. A truncated version of the quadratic form can
be similarly defined as

b
(N)
E (Q,Q′) =

∑

λ∈ΛN

‖rλ‖2V
|λ− z0|2E+2Q(λ)Q′(λ).

Semi-positive definiteness is retained, since

b
(N)
E (Q,Q) =

∥∥∥∥∥∥
∑

λ∈ΛN

rλ
(λ− z0)E+1Q(λ)

∥∥∥∥∥∥

2

V

.

However, the minimal eigenvalue of b(N)
E is certainly 0, for, since λi only ranges over the relevant

poles, b(N)
E (gz0N , g

z0
N ) = 0. On the other hand, since, by Assumption 3.2, the relevant residues are

linearly independent, there cannot exist a polynomial Q of degree ≤ N , linearly independent
from gz0N , such that b(N)

E (Q,Q) = 0, i.e., b(N)
E has rank exactly N .

For each j ∈ {1, . . . , N}, define the monic polynomial γj ∈ PN−1(C;C) as γj(z) =
∏N
i=1,i6=j(z−λi).

The set {gz0N }∪{γj}Nj=1 is a basis of PN (C;C), as can be deduced by direct inspection of the roots
of its elements. Accordingly, we may write Qz0[M/N ] = α0g

z0
N +

∑N
j=1 αjγj , and, for j = 1, . . . , N ,

∣∣∣Qz0[M/N ](λj)
∣∣∣ = |αjγj(λj)| ≤ |αj |

N∏

i=1
i 6=j

|λj − λi| .

Thus, it only remains to bound |αj | from above, for each j. By construction and by semilinearity,
for all j = 1, . . . , N ,

b
(N)
E (Qz0[M/N ], γj) =b(N)

E


α0g

z0
N +

N∑

j′=1
αj′γj′ , γj


 =

N∑

j′=1
αj′b

(N)
E (γj′ , γj)

=
N∑

j′=1
αj′

∑

λ∈ΛN

‖rλ‖2V
|λ− z0|2E+2 γj′(λ)γj(λ)

=αj
‖rλj‖2V

|λj − z0|2E+2 |γj(λj)|
2
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by discrete orthogonality of γj and γj′ over ΛN . It follows that

|αj | =
|λj − z0|2E+2

‖rλj‖2V |γj(λj)|
2

∣∣∣b(N)
E (Qz0[M/N ], γj)

∣∣∣ ≤ C ′j |λj − z0|2E
∣∣∣b(N)
E (Qz0[M/N ], γj)

∣∣∣ ,

with C ′j independent of E.

We need to find a bound for b(N)
E (Qz0[M/N ], γj): to this aim, we observe that

∣∣∣b(N)
E (Qz0[M/N ], γj)

∣∣∣ ≤
∣∣∣bE(Qz0[M/N ], γj)

∣∣∣+ sup
‖Q‖z0=1

∣∣∣b(N)
E (Q, γj)− bE(Q, γj)

∣∣∣ .

In order to bound the first term, we apply (4.10), the Cauchy-Schwarz inequality, and (4.8):
∣∣∣bE(Qz0[M/N ], γj)

∣∣∣ ≤ C2 (R̄N
)−2E ‖γj‖z0 = C ′

(
R̄N
)−2E

.

Regarding the second term, by (4.2) and the triangular inequality, we have

∣∣∣bE(Q, γj)− b(N)
E (Q, γj)

∣∣∣ ≤
∑

λ∈Λ\ΛN

‖rλ‖2V
|λ− z0|2E+2

∣∣∣Q(λ)γj(λ)
∣∣∣

≤
∑

λ∈Λ\ΛN

‖rλ‖2V
|λ− z0|2E+2

(
N∑

n=0
|λ− z0|2n

)1/2 N∏

i=1
i6=j

|λ− λi|

≤
∑

λ∈Λ\ΛN

‖rλ‖2V
|λ− z0|2E+2

(
N∑

n=0
|λ− z0|2n

)1/2 N∏

i=1
i6=j

(|λ− z0|+ |λi − z0|)

≤
∑

λ∈Λ\ΛN

‖rλ‖2V
|λ− z0|2E+2

(
N∑

n=0
|λ− z0|2n

)1/2

2N−1 |λ− z0|N−1
.

As in the proof of Lemma 4.3, we have

∣∣∣bE(Q, γj)− b(N)
E (Q, γj)

∣∣∣ ≤ 2N−1 sup
λ∈Λ\ΛN

(∑N
n=0 |λ− z0|2n

)1/2
|λ− z0|N−1

|λ− z0|2E
∑

λ∈Λ\ΛN

‖rλ‖2V
|λ− z0|2

.

Since E ≥ N , the term inside the supremum, i.e.,

1
|λ− z0|2E−N+1

(
N∑

n=0
|λ− z0|2n

)1/2

= 1
|λ− z0|2E−2N+1

( 0∑

n=−N
|λ− z0|2n

)1/2

,

is decreasing with respect to |λ− z0|, so that

∣∣∣bE(Q, γj)− b(N)
E (Q, γj)

∣∣∣ ≤2N−1

(∑N
n=0

(
R̄N
)2n)1/2 (

R̄N
)N−1

(
R̄N
)2E

∑

λ∈Λ\ΛN

‖rλ‖2V
|λ− z0|2

=C ′′
(
R̄N
)−2E

,
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and the claim follows.

4.1.5 Proof of Theorem 3.1

For convenience, we report a copy of the statement in question, copied from Section 3.1.1.

Theorem 3.1 (Pole convergence [Bon+20a, Theorem 5.5]).
Let Assumption 3.2 be valid over Bz0(R), and take N ≤ Nz0(R). Assume that Qz0[M,N ] is computed
using Definition 3.1, relying on E Taylor coefficients of v. Also, let R̄N be as in Lemma 3.1. If
|λN − z0| < R̄N , then, for all j = 1, . . . , N and E large enough,

min
λ′:Qz0[M/N](λ′)=0

|λ′ − λj | ≤ Cj
( |λj − z0|

R̄N

)2E
, (3.10)

with Cj independent of M (in fact, the value of M is irrelevant here) and E, but dependent on
N .

Proof. Fix j ∈ {1, . . . , N}, and let {λ′j}N
′

j=1 be the roots of Qz0[M/N ], where N ′ ≤ N is the exact
degree of Qz0[M/N ]. By Lemmas 3.1 and 4.1 and the triangular inequality, we have the bound

Cj

( |λj − z0|
R̄N

)2E
≥
∣∣∣Qz0[M/N ](λj)

∣∣∣ ≥
N ′∏

j′=1

∣∣λ′j′ − λj
∣∣

1 +
∣∣∣λ′j′ − z0

∣∣∣

≥
N ′∏

j′=1
φj
(∣∣λ′j′ − λj

∣∣) ≥
(

min
j′=1,...,N ′

φj
(∣∣λ′j′ − λj

∣∣)
)N ′

, (4.11)

with φj(x) = x/(1 + |λj − z0|+ x) a strictly increasing bounded continuous function over x ≥ 0,
such that φj(0) = 0 and φ′(0) = 1/(1 + |λj − z0|). In particular, by monotonicity,

min
j′=1,...,N ′

φj
(∣∣λ′j′ − λj

∣∣) = φj

(
min

j′=1,...,N ′

∣∣λ′j′ − λj
∣∣
)
.

Since |λj − z0| ≤ |λN − z0| < R̄N , we conclude that

lim
E→∞

(
φj

(
min

j′=1,...,N ′

∣∣λ′j′ − λj
∣∣
))N ′

≤ lim
E→∞

Cj

( |λj − z0|
R̄N

)2E
= 0.

In particular, it follows that N ′ > 0 for large E, and
∣∣λ′j′ − λj

∣∣ converges to 0 as E → ∞ by
continuity of φj . Moreover, since this holds for all j, we have N ′ = N for large E.

Now it only remains to prove the convergence rate, which we do for the exact pole with index
j ∈ {1, . . . , N}. This is trivial if N = 1 (it suffices to apply φ−1

j to (4.11)), so we restrict our
attention to N > 1. Let r be half the minimal distance between a couple of relevant poles, i.e.,

2r = min
1≤j<j′≤N

|λj − λj′ | .

Since each of the surrogate poles is converging to a different exact pole, for large E, the surrogate
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poles can be partitioned as {λ′j′}Nj′=1 = {λ?} t {λ?j′}N−1
j′=1 , in such a way that

min
j′=1,...,N

∣∣λ′j′ − λj
∣∣ = |λ? − λj | < r <

∣∣λ?j′ − λj
∣∣ ∀j′ = 1, . . . , N − 1.

This allows to refine (4.11):

Cj

( |λj − z0|
R̄N

)2E
≥ φj (|λ? − λj |)

N−1∏

j′=1
φj
(∣∣λ?j′ − λj

∣∣) ≥ φj (|λ? − λj |)φj (r)N−1
.

Dividing by the E-independent term φj (r)N−1 and applying φ−1
j , we obtain

|λ? − λj | ≤ φ−1
j

(
Cj

φj (r)N−1

( |λj − z0|
R̄N

)2E
)
.

Note that, when applying φ−1
j , we are assuming that the argument above is smaller than 1, which

is the case for large E.

To obtain the desired rate, it suffices to note that

φ−1
j (x) = (1 + |λj − z0|)

x

1− x ≤ 2(1 + |λj − z0|)x ∀0 ≤ x ≤ 1
2 ,

where, without loss of generality, we can assume that x ≤ 1
2 for E large enough, since our x

converges to 0 as E →∞.

4.1.6 Proof of Theorem 3.2

For convenience, we report a copy of the statement in question, copied from Section 3.1.1.

Theorem 3.2 (Global pole convergence [Bon+20a, Theorem 5.7]).
Let Assumption 3.3 be valid, and consider a sequence {(Ni, Ei)}∞i=1 ⊂ N2, such that Ni−1 ≤ Ni ≤
Ei ≤ Ei+1 for all i = 2, 3, . . .. Further, assume that limi→∞Ni = ∞, i.e., both the number of
snapshots and the denominator degree diverge. For all j = 1, 2, . . ., we have

lim
i→∞

min
λ′:Qz0[M/Ni]

(λ′)=0
|λ′ − λj | = 0, (3.12)

where Qz0[M/Ni] denotes the fast LS Padé denominator of degree Ni, computed from Ei Taylor
coefficients of v. (Note that the value of M is irrelevant.)

Proof. For simplicity, we only show the result for Ei = Ni, and we drop the index i, so that the
claim is equivalent to convergence as N →∞. The general case is covered in full in [Bon+20a],
and only requires some minor changes to the proof.

Let j ∈ {1, 2, . . .} be fixed once and for all. Moreover, let {λ′j′}N
′

j′=1 be the roots of Qz0[M/N ], with
N ′ ≤ N . From Lemmas 4.2 and 4.3, we know that

‖rλj‖2V
|λj − z0|2N+2

∣∣∣Qz0[M/N ](λj)
∣∣∣
2
≤
∑

λ∈Λ

‖rλ‖2V
|λ− z0|2N+2

∣∣∣Qz0[M/N ](λ)
∣∣∣
2
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= 1
E!2 JE(Qz0[M/N ])

2 ≤ C2 (R̄N
)−2N

,

so that ∣∣∣Qz0[M/N ](λj)
∣∣∣ ≤ C |λj − z0|N+1

‖rλj‖V
(
R̄N
)N .

By inspection of the proof of Lemma 4.3, we note that C can be chosen as

C = (2R̄N )N
∏N
j′=1 |λj′ − z0|

∑

λ∈Λ̄

‖rλ‖V
|λ− z0|

, (4.12)

with R̄N = |λN+1 − z0| and Λ̄ = {λj′}∞j′=N+1.

On the other hand, from the proof of Theorem 3.1, we have

∣∣∣Qz0[M/N ](λj)
∣∣∣ ≥

N ′∏

j′=1
φj
(∣∣λ′j′ − λj

∣∣) ≥ φj
(

min
j′=1,...,N ′

∣∣λ′j′ − λj
∣∣
)N ′

,

with φj(x) = x/(1 + |λj − z0|+ x). In particular, since φj(x) < 1 for all x > 0, we have

∣∣∣Qz0[M/N ](λj)
∣∣∣ ≥ φj

(
min

j′=1,...,N ′

∣∣λ′j′ − λj
∣∣
)N

.

In summary, we see that

φj

(
min

j′=1,...,N ′

∣∣λ′j′ − λj
∣∣
)
≤


 (2R̄N )N
∏N
j′=1 |λj′ − z0|

∑

λ∈Λ̄

‖rλ‖V
|λ− z0|

|λj − z0|N+1

‖rλj‖V
(
R̄N
)N




1/N

=2


 |λj − z0|
‖rλj‖V

∑

λ∈Λ̄

‖rλ‖V
|λ− z0|




1/N
N∏

j′=1

∣∣∣∣
λj − z0
λj′ − z0

∣∣∣∣
1/N

, (4.13)

and, by applying φ−1
j , the claim follows if we can show that the right-hand-side above converges

to 0 as N →∞.

If Λ is finite, i.e., λm = ∞ for m large enough, then the claim holds trivially, e.g., because∑
λ∈Λ̄

‖rλ‖V
|λ−z0| = 0 for N large enough. Otherwise, it is easy to see that many of the terms above

are bounded uniformly with respect to N , so that

φj

(
min

j′=1,...,N ′

∣∣λ′j′ − λj
∣∣
)
≤ (2 + ε)

N∏

j′=1

∣∣∣∣
λj − z0
λj′ − z0

∣∣∣∣
1/N

for an arbitrary ε > 0, for N large enough (depending on ε). But, by the Stolz-Cesàro theorem
[ABC12],

lim
N→∞

N∏

j′=1

∣∣∣∣
λj − z0
λj′ − z0

∣∣∣∣
1/N

= lim
N→∞

∣∣∣∣
λj − z0
λN − z0

∣∣∣∣ = 0,

and the claim follows.
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4.1.7 Proof of Theorem 3.3

For convenience, we report a copy of the statement in question, copied from Section 3.1.2.

Theorem 3.3 (Error convergence [Bon+20a, Lemma 6.1]).
Let Assumption 3.2 be valid over Bz0(R), and take N ≤ min{Nz0(R),M + 1}. Also, let R̄N be
as in Lemma 3.1, and consider the punctured domain BN = Bz0(R̄N ) \ {λj}Nj=1. Then, if vz0[M/N ]
is the [M/N ] fast LS Padé approximant computed with E = max{M,N},

∥∥∥vz0[M/N ](z)− v(z)
∥∥∥
V
≤ C

d(z)
∣∣∣Qz0[M/N ](z)

∣∣∣

( |z − z0|
R̄N

)E
∀z ∈ BN , (3.13)

with C independent of M , E and z, and

d(z) = min
z′∈C\BN

|z − z′| = min
{
R̄N − |z − z0| , |z − λ1| , . . . ,

∣∣z − λNz0 (R)
∣∣} .

Additionally, let B′ be an arbitrary compact subset of BN . We have uniform exponential conver-
gence over B′ for fixed N :

∥∥∥vz0[M/N ](z)− v(z)
∥∥∥
V
≤ CB′

(
maxz∈B′ |z − z0|

R̄N

)E
∀z ∈ B′, for large E, (3.14)

with CB′ independent of E but, notably, dependent on N and B′.

Proof. We start from the case N ≤M = E. For convenience, we set

P z0[M/N ](z) =
M∑

n=0
pn(z − z0)n and Qz0[M/N ](z) =

M∑

n=0
qn(z − z0)n,

with qN+1 = . . . = qM = 0, i.e., we add M −N zero terms to the expression of Qz0[M/N ]. First, we
note that, by (3.4c) and (4.7) we have

pn =
n∑

m=0

1
(n−m)!qm

dn−mv
dzn−m (z0) =

∑

λ∈Λ

n∑

m=0

rλ
(λ− z0)n+1 qm(λ− z0)m,

so that

P z0[M/N ](z) =
∑

λ∈Λ

M∑

n=0

n∑

m=0

rλ
(λ− z0)n+1 qm(λ− z0)m(z − z0)n

=
∑

λ∈Λ

rλ
λ− z0

M∑

m=0
qm(λ− z0)m

M∑

n=m

(
z − z0
λ− z0

)n

=
∑

λ∈Λ

rλ
λ− z0

M∑

m=0
qm(λ− z0)m

(
z−z0
λ−z0

)M+1
−
(
z−z0
λ−z0

)m

z−z0
λ−z0 − 1

=
∑

λ∈Λ

rλ
z − λ

((
z − z0
λ− z0

)M+1 M∑

m=0
qm(λ− z0)m −

M∑

m=0
qm(z − z0)m

)
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=
∑

λ∈Λ

rλ
z − λ

(
z − z0
λ− z0

)M+1
Qz0[M/N ](λ) +Qz0[M/N ](z)v(z).

This allows us to obtain an alternative representation for the approximation error:

vz0[M/N ](z)− v(z) =
P z0[M/N ](z)−Q

z0
[M/N ](z)v(z)

Qz0[M/N ](z)
=
∑

λ∈Λ

rλ
z − λ

(
z − z0
λ− z0

)M+1 Qz0[M/N ](λ)
Qz0[M/N ](z)

.

By taking the V-norm and exploiting the Pythagorean theorem, we obtain

∥∥∥vz0[M/N ](z)− v(z)
∥∥∥
V

=


∑

λ∈Λ

‖rλ‖2V
|z − λ|2

∣∣∣∣
z − z0
λ− z0

∣∣∣∣
2M+2

∣∣∣∣∣
Qz0[M/N ](λ)
Qz0[M/N ](z)

∣∣∣∣∣

2



1/2

≤ |z − z0|M+1

d(z)
∣∣∣Qz0[M/N ](z)

∣∣∣

(∑

λ∈Λ

‖rλ‖2V
|λ− z0|2M+2

∣∣∣Qz0[M/N ](λ)
∣∣∣
2
)1/2

= |z − z0|M+1

M ! d(z)
∣∣∣Qz0[M/N ](z)

∣∣∣
JM (Qz0[M/N ]) (4.14)

by Lemma 4.2. Since E = M , the first claim follows by Lemma 4.3.

In the alternative case N = M + 1 = E + 1, only two minor tweaks to the proof are necessary:
firstly, the expansion of Qz0[M/N ] and P

z0
[M/N ] become

Qz0[M/N ](z) =
M∑

n=0
qn(z − z0)n + qM+1(z − z0)M+1,

and, following the same steps as above,

P z0[M/N ](z) =
∑

λ∈Λ

rλ
z − λ

((
z − z0
λ− z0

)M+1 M∑

m=0
qm(λ− z0)m −

M∑

m=0
qm(z − z0)m

)

=
∑

λ∈Λ

rλ
z − λ

(
z − z0
λ− z0

)M+1
Qz0[M/N ](λ) + v(z)Qz0[M/N ](z)

−
∑

λ∈Λ

rλ
z − λ

((
z − z0
λ− z0

)M+1
qM+1(λ− z0)M+1 + qM+1(z − z0)M+1

)

=
∑

λ∈Λ

rλ
z − λ

(
z − z0
λ− z0

)M+1
Qz0[M/N ](λ) +Qz0[M/N ](z)v(z),

respectively. This is the same expansion as in the case N ≤M , so that (4.14) holds. However,
since M < E, Lemma 4.3 cannot be applied. Instead, we need the alternative bound

∥∥∥vz0[M/N ](z)− v(z)
∥∥∥
V

=


∑

λ∈Λ

‖rλ‖2V
|λ− z0|2M+4

|z − z0|2M+2 |λ− z0|2

|z − λ|2

∣∣∣∣∣
Qz0[M/N ](λ)
Qz0[M/N ](z)

∣∣∣∣∣

2



1/2

≤ |z − z0|M+1

(M + 1)!
∣∣∣Qz0[M/N ](z)

∣∣∣
sup
λ∈Λ

∣∣∣∣
λ− z0
z − λ

∣∣∣∣ JM+1(Qz0[M/N ]).
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The triangular inequality and the definition of d(z) lead to
∣∣∣∣
λ− z0
z − λ

∣∣∣∣ ≤ 1 +
∣∣∣∣
z − z0
z − λ

∣∣∣∣ ≤ 1 + R̄N
d(z) ≤ 2 R̄N

d(z) ,

which then yields the claim by Lemma 4.3.

Now, let N be fixed. To obtain the uniform convergence result, it suffices to bound from below
d and

∣∣∣Qz0[M/N ]

∣∣∣, uniformly over B′. The former is trivially bounded away from 0 since B′ is
a compact subset of BN . Concerning the latter, we know from Theorem 3.1 that the roots of
Qz0[M/N ] converge to exact poles of v, which lie outside of B′. Hence, for E large enough, all roots
of Qz0[M/N ] lie within Bz0(R̄N ), at distance at least ε from B′, for some small enough ε. Then,
Lemma 4.1 gives the desired result: for all z ∈ B′,

∣∣∣Qz0[M/N ](z)
∣∣∣ ≥

N ′∏

j=1

∣∣z − λ′j
∣∣

1 +
∣∣z0 − λ′j

∣∣ ≥
(

ε

1 + R̄N

)N ′
≥ min

{
1, ε

1 + R̄N

}N
> 0,

where {λ′j}N
′

j=1, N ′ ≤ N , are the roots of Qz0[M/N ].

4.1.8 Proof of Theorem 3.4

For convenience, we report a copy of the statement in question, copied from Section 3.1.2.
Theorem 3.4 (Global error convergence [Bon+20a, Theorem 6.3] (extended)).
Let Assumption 3.3 be valid, and consider a sequence {(Mi, Ni)}∞i=1 ⊂ N2, such that Ni−1 ≤
Ni ≤Mi + 1 ≤Mi+1 + 1 for all i = 2, 3, . . .. Further, assume that limi→∞Ni =∞, i.e., both the
number of snapshots and the denominator degree diverge. For all R > 0 and ε > 0, we have

lim
i→∞

Cap
({
z ∈ Bz0(R) :

∥∥∥vz0[Mi/Ni](z)− v(z)
∥∥∥
V
> εNi

})
= 0, (3.15)

where vz0[Mi/Ni] is the [Mi/Ni] fast LS Padé approximant computed from Ei = max{Mi, Ni} Taylor
coefficients of v and Cap is the logarithmic capacity, see Definition 2.2.

Proof. For simplicity, we assume that Ni ≤Mi = Ei for all (large enough) i. The general case is
analogous, and is covered in [Bon+20a]. The main idea of the proof is to define a sequence of
sets {Ai}∞i=1, with Ai ⊂ Bz0(R) for all i, such that

(a)
{
z ∈ Bz0(R) :

∥∥∥vz0[Mi/Ni](z)− v(z)
∥∥∥
V
> εNi

}
⊂ Ai for all i,

(b) limi→∞Cap(Ai) = 0.

Since 0 ≤ Cap(A) ≤ Cap(B) if A ⊂ B, the claim follows.

Define η > 0 small enough and R′ > 0 such that R+ η ≤ R′. Moreover, let R̄Ni = |λNi+1 − z0|,
with R′ < R̄Ni for large enough i. Let Nz0(R′) be as in Assumption 3.1, i.e., Nz0(R′) is the
number of elements of Λ ∩Bz0(R′). Also, let {λ′j,i}

N ′i
j=1 be the poles of Qz0[Mi/Ni], with N

′
i ≤ Ni,

which we sort in such a way that
∣∣λ′1,i − z0

∣∣ ≤ · · · ≤
∣∣∣λ′N ′

i
,i − z0

∣∣∣ .
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Also, we set N ′′i ∈ {0, . . . , N ′i} as the largest index j such that
∣∣λ′j,i − z0

∣∣ ≤ 2R. We define ad
hoc Ai as

Ai =



z ∈ B

z0(R) :



Nz0 (R′)∏

j=1
|z − λj |





N ′′i∏

j=1

∣∣z − λ′j,i
∣∣

 ≤ δN

z0 (R′)+N ′′i
i



 , (4.15)

with

δi =


 RMi+1(1 + 2R)Ni(2R′)Nz0 (R′)

εNi min{1, RNi}
(
R̄Ni

)Mi−Ni min{2R′, η}

∑

λ∈Λ̄i

‖rλ‖V
|λ− z0|

Ni∏

j=1

2
|λj − z0|




1/(Nz0 (R′)+N ′′i )

.

Now it just remains to show the two claims above.

(a) We assume from here onward that z ∈ Bz0(R). By Lemma 4.1, we have

∣∣∣Qz0[Mi/Ni](z)
∣∣∣ ≥

N ′i∏

j=1

∣∣λ′j,i − z
∣∣

1 +
∣∣λ′j,i − z0

∣∣ .

For j = 1, . . . , N ′′i , we have the bound
∣∣λ′j,i − z

∣∣
1 +

∣∣λ′j,i − z0
∣∣ ≥

∣∣λ′j,i − z
∣∣

1 + 2R ,

whereas, for j = N ′′i + 1, . . . , N ′i , we have, by the triangular inequality,
∣∣λ′j,i − z

∣∣
1 +

∣∣λ′j,i − z0
∣∣ ≥

∣∣λ′j,i − z0
∣∣

1 +
∣∣λ′j,i − z0

∣∣ −
|z − z0|

1 +
∣∣λ′j,i − z0

∣∣ ≥
2R

1 + 2R −
R

1 + 2R = R

1 + 2R,

since x 7→ x/(1 + x) is an increasing function. In summary,

∣∣∣Qz0[Mi/Ni](z)
∣∣∣ ≥

RN
′
i−N ′′i

∏N ′′i
j=1

∣∣λ′j,i − z
∣∣

(1 + 2R)N ′i
≥ min{1, RNi}

(1 + 2R)Ni

N ′′i∏

j=1

∣∣λ′j,i − z
∣∣ . (4.16)

Moreover let d(z) be as in Theorem 3.3, but with R′ replacing R:

d(z) = min
{
R′ − |z − z0| , |z − λ1| , . . . ,

∣∣z − λNz0 (R′)
∣∣} .

Also, define j?(z) ∈ {1, . . . , Nz0(R′)} as the index of the closest pole to z, i.e.,
∣∣λj?(z) − z

∣∣ ≤
|λj − z| for j = 1, . . . , Nz0(R′). Then

∏Nz0 (R′)
j=1 |z − λj |

d(z) =





∏Nz0 (R′)
j=1,j 6=j?(z) |z − λj | if

∣∣z − λj?(z)
∣∣ ≤ R′ − |z − z0| ,∏Nz0 (R′)

j=1
|z−λj |

R′−|z−z0| if
∣∣z − λj?(z)

∣∣ > R′ − |z − z0| .
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Both cases can be easily bounded from above by the triangular inequality:

Nz0 (R′)∏

j=1
j 6=j?(z)

|z − λj | ≤
Nz0 (R′)∏

j=1
j 6=j?(z)

(|z − z0|+ |λj − z0|) ≤ (2R′)N
z0 (R′)−1

and ∏Nz0 (R′)
j=1 |z − λj |
R′ − |z − z0|

≤
∏Nz0 (R′)
j=1 (|z − z0|+ |λj − z0|)

R′ −R ≤ (2R′)Nz0 (R′)

η
,

so that ∏Nz0 (R′)
j=1 |z − λj |

d(z) ≤ (2R′)Nz0 (R′)

min{2R′, η} . (4.17)

Now we take (4.14) and then use (4.12) as an upper bound for the constant in (4.8). In
this fashion, we deduce that, for large i,

∥∥∥vz0[Mi/Ni](z)− v(z)
∥∥∥
V
≤ (2R̄Ni)Ni |z − z0|Mi+1

d(z)
∣∣∣Qz0[M/N ](z)

∣∣∣
(
R̄Ni

)Mi∏Ni
j=1 |λj − z0|

∑

λ∈Λ̄i

‖rλ‖V
|λ− z0|

≤ RMi+1

d(z)
∣∣∣Qz0[M/N ](z)

∣∣∣
(
R̄Ni

)Mi−Ni

∑

λ∈Λ̄i

‖rλ‖V
|λ− z0|

Ni∏

j=1

2
|λj − z0|

, (4.18)

with Λ̄i = {λj}∞j=Ni+1. Putting (4.16) to (4.18) together, we obtain



Nz0 (R′)∏

j=1
|z − λj |





N ′′i∏

j=1

∣∣λ′j,i − z
∣∣

 ≤

≤ RMi+1(1 + 2R)Ni(2R′)Nz0 (R′)
∥∥∥vz0[Mi/Ni](z)− v(z)

∥∥∥
V

min{1, RNi}
(
R̄Ni

)Mi−Ni min{2R′, η}

∑

λ∈Λ̄i

‖rλ‖V
|λ− z0|

Ni∏

j=1

2
|λj − z0|

.

Now, let z ∈ Bz0(R) be such that
∥∥∥vz0[Mi/Ni](z)− v(z)

∥∥∥
V
> εNi . Then the right-hand-side

above is ≤ δN
z0 (R′)+N ′′i

i , and (a) follows, since z ∈ Ai by construction.

(b) Ai is a subset of the interior of a lemniscate:

A′i =



z ∈ C :



Nz0 (R′)∏

j=1
|z − λj |





N ′′i∏

j=1

∣∣z − λ′j,i
∣∣

 ≤ δN

z0 (R′)+N ′′i
i



 .

The logarithmic capacity of A′i equals δi by [BGM96, Theorem 6.6.3], so that we just have
to show that limi→∞ δi = 0. To this aim, we first consider

∆i = δ
Nz0 (R′)+N ′′i
i = R(2R′)Nz0 (R′)

min{2R′, η}
∑

λ∈Λ̄i

‖rλ‖V
|λ− z0|

(
R

R̄Ni

)Mi−Ni Ni∏

j=1

2(1 + 2R)R
εmin{1, R} |λj − z0|

.
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We see that
(
R/R̄Ni

)Mi−Ni converges to 0 because its base does, while

lim
i→∞

Ni∏

j=1

2(1 + 2R)R
εmin{1, R} |λj − z0|

= 0

since limj→∞ |λj − z0| =∞, so that

0 ≤ lim
i→∞




Ni∏

j=1

2(1 + 2R)R
εmin{1, R} |λj − z0|




1/(Nz0 (R′)+N ′′i )

≤ lim
i→∞




Ni∏

j=1

2(1 + 2R)R
εmin{1, R} |λj − z0|




1/(Nz0 (R′)+Ni)

= lim
i→∞







Ni∏

j=1

2(1 + 2R)R
εmin{1, R} |λj − z0|




1/Ni



Ni/(Nz0 (R′)+Ni)

= lim
j→∞

2(1 + 2R)R
εmin{1, R} |λj − z0|

= 0

by the Stolz-Cesàro theorem [ABC12].

The claim follows.

4.2 Proofs of results for the general case
Now we move to the results pertaining to MRI. The main reference throughout this chapter is
[Pra20]. For some of the latter results, we only report a sketch of the proof, due to the similarities
with the proofs of the equivalent results for fast LS Padé approximation.

4.2.1 Auxiliary result: bounds for normalized polynomials

In order to better understand how the ΨN -based normalization (3.17a) works, we generalize
Lemma 4.1.
Lemma 4.4 (Normalization of nodal polynomials [Pra20, Lemma 3.4]).
Let Q ∈ PΨN

N (C;C) and z0 ∈ C. Then, there exists Cz0,ΨN (independent of z) such that

|Q(z)| ≤ Cz0,ΨN
(

N∑

n=0
|z − z0|2n

)1/2

=




Cz0,ΨN

√
N + 1 if |z − z0| = 1,

Cz0,ΨN
(
|z−z0|2N+2−1
|z−z0|2−1

)1/2
if |z − z0| 6= 1.

(4.19)

Moreover, assume that Q has exact degree N ′ ≤ N , with roots {zj}N
′

j=1 (repeated according to
multiplicity), all different from z0. Then, there exists cz0,ΨN (independent of z) such that

cz0,ΨN
N ′∏

j=1

|z − zj |
1 + |z0 − zj |

≤ |Q(z)| ≤ Cz0,ΨN
N ′∏

j=1

∣∣∣∣
z − zj
z0 − zj

∣∣∣∣ ≤ Cz0,ΨN
N ′∏

j=1

(
1 +

∣∣∣∣
z − z0
z0 − zj

∣∣∣∣
)
∀z ∈ C.

(4.20)
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Note that cz0,ΨN and Cz0,ΨN depend on N .

Proof. Lemma 4.1 shows that the claim holds true for the shifted monomial basis {(· − z0)i}Ni=0.
The result for general bases follows, since, for a given N , all norms over the finite-dimensional
space PN (C;C) are equivalent.

4.2.2 Auxiliary result: alternative expressions of target functional

We can obtain alternative expressions for the quantity JZ in (3.17b).

Lemma 4.5 (Alternative expressions of JZ [Pra20, Lemma 3.5 (first claim)]).
Let Assumption 3.5 be valid over AR for small enough R, and take an arbitrary Q ∈ PN (C;C).
Also, define the nodal polynomial ωZ(z) =

∏
z′∈Z(z − z′). Then,

1
(S − 1)!J

Z(Q) =


 ∑

λ,λ′∈Λ

〈rλ, rλ〉V
ωZ(λ)ωZ(λ′)

Q(λ)Q(λ′)




1/2

, (4.21)

and
1

(S − 1)!J
Z(Q) ≤

∑

λ∈Λ

‖rλ‖V
|ωZ(λ)| |Q(λ)| . (4.22)

If, in addition, Assumption 3.6 holds, then

1
(S − 1)!J

Z(Q) =
(∑

λ∈Λ

‖rλ‖2V
|ωZ(λ)|2

|Q(λ)|2
)1/2

. (4.23)

Proof. The proof is similar to that of Lemma 4.2, which can be found in Section 4.1.2.

Assume that the sample points are distinct. Then, by the barycentric formula (2.2), we have

JZ(Q) =
∥∥∥∥∥
dS−1

dzS−1 I
Z(Qv)

∥∥∥∥∥
V

=

∥∥∥∥∥∥
∑

λ∈Λ

S∑

j=1

Q(zj)rλ
(λ− zj)dωZdz (zj)

dS−1

dzS−1

(
ωZ

· − zj

)∥∥∥∥∥∥
V

=(S − 1)!

∥∥∥∥∥∥
∑

λ∈Λ

rλ
ωZ(λ)

S∑

j=1

ωZ(λ)Q(zj)
(λ− zj)dωZdz (zj)

∥∥∥∥∥∥
V

= (S − 1)!
∥∥∥∥∥
∑

λ∈Λ

rλ
ωZ(λ)Q(λ)

∥∥∥∥∥
V

.

Note that the last step follows by the exactness of the interpolation operator on degree-(S − 1)
polynomials. Also, we can divide by ωZ(λ) since, by assumption, no pole of v is on ∂A. The first
claim follows. The two bounds can be obtained with the same steps as in Section 4.1.2.

If the sample points are not distinct, it becomes necessary to use the generalized barycentric form
(5.4) instead. The rest of the proof is similar, albeit much more notation-heavy. Alternatively,
the proof of the general case can be carried out by exploiting the exactness of the interpolation
operator IZ as in the proof of Lemma 5.1. We skip the details here.
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4.2.3 Auxiliary result: optimal value of target functional

We can bound the optimal value of JZ .
Lemma 4.6 (Minimal value of JZ [Pra20, Lemma 3.5 (last claim)]).
Let A b C be the sampling set, with Green’s potential ΦA. Take a sequence of Fekete points
{ZS}∞S=1, with ZS ⊂ ∂A for all S (we remind the reader that ZS has S elements, cf. Theorem 2.2).
Let Assumption 3.5 be valid over AR for some R > Cap(A). Fix N ≥ NA(Cap(A)) (with
NA(Cap(A)) the number of poles of v in A). Also, let R̄N = R if N ≥ NA(R) and R̄N =
ΦA(λN+1) otherwise. Then, for all ρ < R̄N and S large enough (depending on ρ and N),

1
(S − 1)!J

ZS (QZS[S−1/N ]) ≤ Cρ−S , (4.24)

The constant C is independent of M and S.

Proof. The proof is fairly similar to that of Lemma 4.3, which can be found in Section 4.1.3.

Let z0 ∈ A \Λ, Neff = min{N,NA(R)}, and set ΛNeff = {λj}Neff
j=1 and Λ̄ = Λ \ΛNeff . In particular,

note that minλ∈Λ̄ ΦA(λ) ≥ R̄N . Also, we define the (effective) target polynomial gANeff
as an

element of PΨN
N (C;C) with exact degree Neff and roots ΛNeff . First, we observe that we can apply

(4.20) to gANeff
to obtain

∣∣gANeff(z)
∣∣ ≤ Cz0,ΨN

Neff∏

j′=1

∣∣∣∣
z − λj′
λj′ − z0

∣∣∣∣ .

By (3.17b), QZS[S−1/N ] yields a lower value of JZS than gANeff
. This, together with (4.22), gives

1
(S − 1)!J

Z(QZS[S−1/N ]) ≤
∑

λ∈Λ

‖rλ‖V
|ωZS (λ)| |gNeffA(λ)| =

∑

λ∈Λ̄

‖rλ‖V
|ωZS (λ)| |gNeffA(λ)|

≤ Cz0,ΨN
∏Neff
j′=1 |λj′ − z0|

∑

λ∈Λ̄

‖rλ‖V
|λ− z0|

|λ− z0|
∏Neff
j′=1 |λ− λj′ |

|ωZS (λ)|

≤ Cz0,ΨN
∏Neff
j′=1 |λj′ − z0|

sup
λ∈Λ̄

(
|λ− z0|

∏Neff
j′=1 |λ− λj′ |

|ωZS (λ)|︸ ︷︷ ︸
rS(λ)

)∑

λ∈Λ

‖rλ‖V
|λ− z0|

. (4.25)

It remains to capture the behavior of the supremum. For S large enough, S > Neff + 1 and, due
to the degree difference between numerator and denominator in rS , lim|λ|→∞ rS(λ) = 0. Thus,
for large enough S, we have two cases:

• the supremum is attained at some λ ∈ Λ̄, which is bounded uniformly in S;

• the supremum is the limit of a sequence {rS(λ̄i)}∞i=1, with Λ̄ ⊃ {λ̄i}∞i=1 → λ̄, where λ̄ is
bounded uniformly in S.

In both cases, we conclude that there exists a finite δ > 0 such that B = (AR̄N+δ \AR̄N )∪ ∂AR̄N
contains all supremizers (or sequences of supremizer convergents) for large S. Thus, we can apply
(2.10) over B: given 0 < ε = 1− ρ/R̄N , for S large enough, we have

(1− ε)SΦA(z)S ≤
∣∣ωZS (z)

∣∣ ≤ (1 + ε)SΦA(z)S ∀z ∈ B,
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so that

sup
λ∈Λ̄

rS(λ) ≤ sup
z∈B

(
|z − z0|

∏Neff
j′=1 |z − λj′ |

|ωZS (z)|

)
≤

supz∈B
(
|z − z0|

∏Neff
j′=1 |z − λj′ |

)

(1− ε)S (infz∈B ΦA(z))S

=
supz∈B

(
|z − z0|

∏Neff
j′=1 |z − λj′ |

)

(1− ε)S
(
R̄N
)S =

supz∈B
(
|z − z0|

∏Neff
j′=1 |z − λj′ |

)

ρS
.

The claim follows.

By inspection of the proof, we can see that, in general, (4.24) might not hold if ρ is replaced by
its upper bound R̄N . This is due to the necessity to replace the nodal polynomial ωZS in bound
(4.22) with its limit ΦA(·)S , see Theorem 2.2. Note that any extension of Lemma 4.3 must be
weakened in this way, due to the added complexity of “distributed” sampling schemes.

4.2.4 Proof of Lemma 3.2

For convenience, we report a copy of the statement in question, copied from Section 3.2.1.

Lemma 3.2 (Denominator value at poles [Pra20, Lemma 3.6]).
Let A b C be the sampling set, with Green’s potential ΦA, and let Assumption 3.6 be valid over
AR. Take a sequence of Fekete points {ZS}∞S=1, with ZS ⊂ ∂A for all S (we remind the reader
that ZS has S elements, cf. Theorem 2.2). Take a fixed NA(Cap(A)) ≤ N ≤ NA(R). Also, let
R̄N = R if N ≥ NA(R) and R̄N = ΦA(λN+1) otherwise. For all j = 1, . . . , N , ρ < R̄N , and S
large enough (depending on ρ and N), we have the bound

∣∣∣QZS[S−1/N ](λj)
∣∣∣ ≤ Cj

(
ΦA(λj)

ρ

)2S
, (3.20)

with Cj independent of M and S.

Sketch of proof. The proof is fairly similar to that of Lemma 3.1, which can be found in Section
4.1.4. As such, here we only summarize the main differences, referring to [Pra20, Theorem 3.6]
for the full proof.

Let j and ρ be fixed once and for all. The quadratic forms are slightly different, since (4.21) must
be used instead of (4.4). Moreover, Lemma 4.6 and (4.20) must replace Lemma 4.3 and (4.2),
respectively. That being said, we obtain a bound of the form: for all ρ̄ < R̄N and S large enough
(depending on ρ̄ and N)

∣∣∣QZS[S−1/N ](λj)
∣∣∣ ≤ Cj

∣∣ωZS (λj)
∣∣2

ρ̄2S .

In particular, we choose ρ̄ = ρ(1 + ε) > ρ, with ε > 0 small enough (e.g., ε = R̄N−ρ
2ρ ). In order to

obtain the claim, we must use (2.10) on the numerator: for the chosen ε, we have
∣∣ωZS (λj)

∣∣2

ρ̄2S ≤ (1 + ε)2S ΦA(λj)2S

ρ̄2S = ΦA(λj)2S

ρ2S ,

for S large enough (depending on ε, i.e., on N and ρ).
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4.2.5 Proof of Theorem 3.5

For convenience, we report a copy of the statement in question, copied from Section 3.2.1.

Theorem 3.5 (Pole convergence [Pra20, Theorem 3.7]).
Let A b C be the sampling set, with Green’s potential ΦA, and let Assumption 3.6 be valid
over AR. Take a sequence of Fekete points {ZS}∞S=1, with ZS ⊂ ∂A for all S. Take a fixed
N ≤ NA(R). Also, set R̄N = R if N = NA(R) and R̄N = ΦA(λN+1) otherwise. Assume that
ΦA(λN ) < ρ < R̄N , with ρ arbitrary. Then, for all j = 1, . . . , N and S large enough (depending
on ρ and N),

min
λ′:QZS[S−1/N](λ′)=0

|λ′ − λj | ≤ Cj
(

ΦA(λj)
ρ

)2S
, (3.21)

with Cj independent of S.

Sketch of proof. The proof is very similar to that of Theorem 3.1, which can be found in Section
4.1.5. As such, we only summarize it here, referring to [Pra20, Theorem 3.7] for all the details.

First, we show that the N poles of the MRI surrogate converge to the exact ones, and then we
obtain the convergence rate by exploiting the fact that the poles are simple, so that they are
separated by a (uniformly) lower-bounded distance. Note that Lemmas 3.1 and 4.1 need to be
replaced by Lemmas 3.2 and 4.4, respectively.

4.2.6 Proof of Theorem 3.6

For convenience, we report a copy of the statement in question, copied from Section 3.2.1.

Theorem 3.6 (Global pole convergence [Pra20, Theorem 3.8]).
Let A b C be the sampling set, with Fekete points {ZS}∞S=1, with ZS ⊂ ∂A for all S. Let
Assumptions 3.3 and 3.4 be valid for some z0 ∈ C, and consider a sequence {(Ni, Si)}∞i=1 ⊂ N2,
such that Ni−1 ≤ Ni < Si ≤ Si+1 for all i = 2, 3, . . .. Further, assume that limi→∞Ni =∞, i.e.,
both the number of snapshots and the denominator degree diverge. For all j = 1, 2 . . ., we have

lim
i→∞

min
λ′:Q

ZSi
[Si−1/Ni]

(λ′)=0
|λ′ − λj | = 0. (3.22)

Sketch of proof. The proof is fairly similar to that of Theorem 3.2, see Section 4.1.6. As such, we
only summarize the main steps here, referring to [Pra20, Theorem 3.8] for the full proof. Note,
however, that [Pra20, Theorem 3.8] uses a stronger version of Assumption 3.4 than ours (with
cz0 and Cz0 appearing without exponents in (3.18)). For this reason, we will briefly outline the
main differences between the two cases at the end of the proof.

Let j ∈ {1, 2, . . .} be fixed, and assume that the poles {λj′}∞j′=1 are sorted according to their
distance from z0. First, using the upper bound in (3.18) and Lemmas 3.2, 4.5, and 4.6, we obtain
a bound on QZSi[Si−1/Ni](λj):

∣∣∣QZSi[Si−1/Ni](λj)
∣∣∣ ≤ (Cz0)Ni∥∥rλj

∥∥
V

∑

λ∈Λ̄

‖rλ‖V
|λ− z0|

∣∣ωZS (λj)
∣∣

∏Ni
j′=1 |λj′ − z0|

sup
λ∈Λ̄

|λ− z0|
∏Ni
j′=1 |λ− λj′ |

|ωZS (λ)| ,
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with Λ̄ = {λj′}∞j′=N+1. Then, we use the lower bound in (3.18) to show that

∣∣∣QZSi[Si−1/Ni](λj)
∣∣∣ ≥ (cz0)Niφj

(
min

j′=1,...,N ′

∣∣λ′j′ − λj
∣∣
)Ni

,

with {λ′j′}
N ′i
j′=1 the roots of QZSi[Si−1/Ni] and φj(x) = x/(ρz0 + |λj − z0|+ x) an increasing function

taking values in [0, 1[.

Due to the properties of φj , the claim follows if we can show that

lim
i→∞

Cz0

cz0


 1∥∥rλj

∥∥
V

∑

λ∈Λ̄

‖rλ‖V
|λ− z0|

∣∣ωZS (λj)
∣∣

∏Ni
j′=1 |λj′ − z0|

sup
λ∈Λ̄

|λ− z0|
∏Ni
j′=1 |λ− λj′ |

|ωZS (λ)|




1/Ni

= 0.

To this aim, we first bound the argument of the supremum via the triangular inequality, obtaining
a simpler expression, whose supremizer is λNi+1. Then, we note that most of the terms appearing
in the resulting bound are bounded uniformly in N , so that we may write

φj

(
min

j′=1,...,N ′
i

∣∣λ′j′ − λj
∣∣
)
≤ Cj

Cz0

cz0

Ni∏

j′=1

( |λj − z0|+ maxz∈A |z − z0|
|λj′ − z0|

)1/Ni
,

with Cj bounded and independent from i. The claim then follows, since, by the Stolz-Cesàro
theorem [ABC12], the product above converges to 0 as i→∞.

These same steps are followed in the proof of [Pra20, Theorem 3.8]. There, however, a condition
stronger than Assumption 3.4 was used, so that the final bound is of the form

φj

(
min

j′=1,...,N ′
i

∣∣λ′j′ − λj
∣∣
)
≤ C

(
Cz0

cz0

)1/Ni Ni∏

j′=1

( |λj − z0|+ maxz∈A |z − z0|
|λj′ − z0|

)1/Ni
.

Since Cz0/cz0 is bounded (by the weaker version of Assumption 3.4), the absence of the exponent
1/Ni does not prevent us from showing the desired claim.

4.2.7 Proof of Theorem 3.7

For convenience, we report a copy of the statement in question, copied from Section 3.2.2.

Theorem 3.7 (Error convergence [Pra20, Theorem 3.9]).
Let A b C be the sampling set, with Green’s potential ΦA, and let Assumption 3.6 be valid over
AR. Take a sequence of Fekete points {ZS}∞S=1, with ZS ⊂ ∂A for all S (we remind the reader
that ZS has S elements, cf. Theorem 2.2). Take a fixed N ≤ NA(R). Also, let R̄N be as in
Lemma 3.2, and consider an arbitrary Cap(A) < ρ < R̄N . Define the punctured domain BN as
the interior of Aρ \ {λj}Nj=1. Then, for all ε > 0 and S large enough (depending on N and ε),

∥∥∥vZS[S−1/N ](z)− v(z)
∥∥∥
V
≤ C

d(z)
∣∣∣QZS[S−1/N ](z)

∣∣∣

(
ΦA(z)
ρ

)S
∀z ∈ BN , (3.23)

with C independent of S, and d(z) = minz′∈C\BN |z − z′|.

Additionally, let B′ be an arbitrary compact subset of BN . We have uniform exponential conver-
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gence over B′ for fixed N :

∥∥∥vZS[S−1/N ](z)− v(z)
∥∥∥
V
≤ CB′

(
maxz∈B′ ΦA(z)

ρ

)S
∀z ∈ B′, (3.24)

with CB′ independent of S but, notably, dependent on B′.

Sketch of proof. The proof is fairly similar to that of Theorem 3.3, see Section 4.1.7. As such, we
only summarize it here, referring to [Pra20, Theorem 3.9] for all the details.

First, we rewrite the error norm by employing the barycentric formula (2.2), making the quantity
JZS (QZS[S−1/N ]) appear: more specifically, the bound (4.14) obtains a generalization in

∥∥∥vZS[S−1/N ](z)− v(z)
∥∥∥
V
≤

∣∣ωZS (z)
∣∣

d(z)
∣∣∣QZS[S−1/N ](z)

∣∣∣
JZS (QZS[S−1/N ]). (4.26)

Then, it suffices to bound this quantity by employing Lemma 4.6 (whereas, in the equivalent
theorem for fast LS Padé approximation, Lemma 4.3 was used).

4.2.8 Proof of Theorem 3.8

For convenience, we report a copy of the statement in question, copied from Section 3.2.2.

Theorem 3.8 (Global error convergence [Pra20, Theorem 3.10] (extended)).
Let A b C be the sampling set, with Fekete points {ZS}∞S=1, with ZS ⊂ ∂A for all S. Let
Assumptions 3.3 and 3.4 be valid for some z0 ∈ C, and consider a sequence {(Ni, Si)}∞i=1 ⊂ N2,
such that Ni−1 ≤ Ni < Si ≤ Si+1 for all i = 2, 3, . . .. Further, assume that limi→∞Ni =∞, i.e.,
both the number of snapshots and the denominator degree diverge. For all R > Cap(A) and ε > 0,
we have

lim
i→∞

Cap
({
z ∈ AR :

∥∥∥vZSi[Si−1/Ni](z)− v(z)
∥∥∥
V
> εNi

})
= 0, (3.25)

where Cap is the logarithmic capacity, see Definition 2.2.

Sketch of proof. The proof is fairly similar to that of Theorem 3.4, see Section 4.1.8. As such, we
only summarize it here, referring to [Pra20, Theorem 3.10] for all the details.

We define a sequence of sets {Ai}∞i=1 where the approximation error is large (more properly, we
should say that we define them as the complements of sets where the error is small) and then we
prove that their capacities converge to 0. In doing this, we rely on Assumption 3.4, (4.26), and
Lemma 3.2.

To conclude this (sketch of) proof, we note that, as in the proof of Theorem 3.6, in [Pra20], we use
a stronger version of Assumption 3.4 than ours (with cz0 and Cz0 appearing without exponents
in (3.18)) to prove an equivalent convergence result. In practical terms, our “weakened” version
of Assumption 3.4 makes the sets Ai larger than the corresponding ones in [Pra20, Theorem 3.10].
Other than this, the proof remains unchanged.
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5 Additional aspects of MRI

In Chapter 3, we have defined and analyzed the MRI approach for rational function approximation.
In the upcoming sections, we discuss some more practical aspects, useful when applying MRI in
a MOR framework. An implementation of MRI is publicly available as part of the open-source
Python package RROMPy, developed by the thesis author. The source code can be found at
c4science.ch/source/RROMPy.

Note that, since fast LS Padé approximation is a special case of MRI, we do not lose any generality
by considering only MRI in our discussion.

5.1 Implementation
The first issue that we face is: given Definition 3.2, how can an MRI be built in a practical
application on a computer? Let us assume that the sample points Z = {zj}Sj=1 are fixed in advance
(see Section 5.3 for more details on sample point selection), and that an external (PDE/linear
system) solver has computed the corresponding snapshots {vj}Sj=1, with vj = v(zj) ∈ V. Note
that, by setting vj = v(zj) for all j, we are implicitly assuming the sample points to be distinct.
The general case is discussed in Section 5.1.1.

Now that the snapshots are available, we can set up the minimization problem that will allow us
to find the MRI denominator QZ[S−1/N ]. For simplicity, we assume that the degree N < S has
been fixed in advance, and we refer to Section 5.2.1 for a discussion on on-the-fly selection of N .
To construct the target functional JZ , see (3.17b), we first look at the quantity dS−1

dzS−1 I
Z(Qv),

with Q a generic polynomial of degree ≤ N . Thanks to the barycentric expansion (2.2), we have

dS−1

dzS−1 I
Z(Qv) =

S∑

j=1

Q(zj)v(zj)
dωZ
dz (zj)

dS−1

dzS−1

(
ωZ

(· − zj)

)
=

S∑

j=1
cjQ(zj)v(zj), (5.1)

with ωZ(z) =
∏S
j=1(z − zj) the nodal polynomial and cj = (S − 1)!/dωZdz (zj).

By expanding Q as Q =
∑N
i=0 qiψi, we can see that JZ(·)2 is a quadratic form with respect to
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the expansion coefficients {qi}Ni=0:

JZ(Q)2 =

∥∥∥∥∥∥

S∑

j=1
cjQ(zj)v(zj)

∥∥∥∥∥∥

2

V

=

∥∥∥∥∥∥

N∑

i=0

S∑

j=1
cjψi(zj)v(zj)qi

∥∥∥∥∥∥

2

V

=
N∑

i,i′=0

S∑

j,j′=1
cjcj′ψi(zj)ψi′(zj′)〈v(zj), v(zj′)〉Vqiqi′ .

Accordingly, the representative matrix of JZ(·)2 can be expressed as ΥH
NC

HGCΥN , with

ΥN ∈ CS×(N+1), (ΥN )ji = ψi(zj), j = 1, . . . , S, i = 0, . . . , N, (5.2)

the (generalized) Vandermonde matrix associated to ΨN at Z,

C ∈ CS×S , (C)jj′ = cjδjj′ , j, j′ = 1, . . . , S, (5.3)

a scaling diagonal matrix, and G the snapshot Gramian (2.44).

This expansion was judiciously chosen so that the normalization of Q, see (3.17a), turns (3.17b)
into a minimal eigenvalue problem for ΥH

NC
HGCΥN , with the expansion coefficients of MRI de-

nominator QZ[S−1/N ] forming the corresponding eigenvector. This allows for an efficient numerical
solution via an “off-the-shelf” eigensolver.

Once QZ[S−1/N ] has been found, the corresponding numerator can be built by solving a polynomial
interpolation problem for QZ[S−1/N ]v. This can be done, e.g., by inverting the generalized square
Vandermonde matrix ΥS−1, cf. (5.2), with {ψi}S−1

i=0 being either the same basis as for QZ[S−1/N ]
(with the addition of some elements if N < S − 1) or a different basis entirely. Note that the
interpolation problem involves linear combinations of the snapshots, so that the coefficients of
IZ(QZ[S−1/N ]v) have the same size as v.

Overall, excluding the computation of the snapshots, the whole MRI-building procedure has
complexity O

(
S2(S + dim(V)

)
. We summarize it in Algorithm 2, where, for notational simplicity,

we use the same basis ΨN ⊂ ΨS−1 (with deg(ψi) ≤ N for i = 0, . . . , N) for numerator and
denominator.

Algorithm 2 MRI for distinct points
Require: distinct sample points Z = {z1, . . . , zS} ⊂ C, sampler v
Require: basis ΨS−1 = {ψ0, . . . , ψS−1}, denominator degree N < S
assemble ΥN and C as in (5.2) and (5.3)
for j = 1, . . . , S do
compute snapshot vj = v(zj)

end for
assemble the S × S snapshot Gramian G as in (2.44)
find the minimal eigenvector (q0, . . . , qN )> ∈ CN+1 of ΥH

NC
HGCΥN , e.g., via eig

set QZ[S−1/N ] =
∑N
i=0 qiψi

assemble ΥS−1 as in (5.2) and compute Υ−1
S−1 =: (γij)S−1,S

i=0,j=1

set PZ[S−1/N ] =
∑S−1
i=0

(∑S
j=1 γijQ

Z
[S−1/N ](zj)vj

)
ψi

return PZ[S−1/N ]/Q
Z
[S−1/N ]
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5.1.1 Implementation for coalesced points

When sample points appear multiple times in Z, e.g., when using fast LS Padé approximation,
the general outline of the algorithm stays the same, but the matrices involved change slightly.
Let us assume that the distinct elements of Z are {z1, . . . , zS′}, with zj appearing Ej + 1 times
in Z. To begin with, we need to extend the barycentric formula to this case: given the nodal
polynomial ωZ(z) =

∏S′

j=1(z − zj)Ej+1, we have

IZ(ψ)(z) = ωZ(z)
S′∑

j=1

Ej∑

l=0

Ej−l∑

k=0

wjk
(z − zj)Ej−l−k+1

1
l!
dlψ
dzl (zj), (5.4)

with {wjk}S
′,Ej

j=1,k=0 unique weights that are available only “implicitly” as the solution of suitable
Hermite interpolation conditions [SV13], which we do not report here for brevity.

Now, let the snapshots be indexed as {vjm}S
′,Ej

j=1,m=0, with vjm = dmv
dzm (zj). By the Leibniz rule,

we have

IZ(Qv) = ωZ(z)
S′∑

j=1

Ej∑

l=0

Ej−l∑

k=0

l∑

m=0

wjkvjm
(z − zj)Ej−l−k+1

1
m!(l −m)!

dl−mQ
dzl−m (zj), (5.5)

so that

dS−1

dzS−1 I
Z(Qv) =

S′∑

j=1

Ej∑

l=0

Ej−l∑

k=0

l∑

m=0

wjkvjm
m!(l −m)!

dl−mQ
dzl−m (zj)

dS−1

dzS−1

(
ωZ

(· − zj)Ej−l−k+1

)
. (5.6)

Whenever Ej − l−k+ 1 > 1 in (5.6), (·− zj)−Ej+l+k−1ωZ has degree smaller than S− 1, and the
(S− 1)-th derivative vanishes. Hence, we are only left with the terms corresponding to l+ k = Ej ,
and

dS−1

dzS−1 I
Z(Qv) =

S′∑

j=1

Ej∑

l=0

l∑

m=0
cjlmvjm

dl−mQ
dzl−m (zj), (5.7)

with cjlm = (S−1)!
m!(l−m)!wj(Ej−l).

After setting Q =
∑N
i=0 qiψi as usual, we obtain

JZ(Q)2 =
∥∥∥∥∥
dS−1

dzS−1 I
Z(Qv)

∥∥∥∥∥

2

V
=

∥∥∥∥∥∥

N∑

i=0

S′∑

j=1

Ej∑

l=0

l∑

m=0
cjlm

dl−mψi
dzl−m (zj)vjmqi

∥∥∥∥∥∥

2

V

,

so that we may repeat the construction carried out in the Lagrangian case. We have two
notable differences: the scaling matrix C, see (5.3), is no longer diagonal, and the generalized
Vandermonde matrix ΥN , see (5.2), contains also derivatives of the basis polynomials.

The case S′ = 1, i.e., of fully coalesced points Z = {z1, . . . , z1}, admits a simplified formulation,
and is a rather special case, corresponding to fast LS Padé approximation. For both these reasons,
we report here the expressions of the weights w1k = δk0 for k = 0, . . . , S − 1, of the generalized
Vandermonde matrix

ΥN ∈ CS×(N+1), (ΥN )ji = dS−jψi
dzS−j (z1), j = 1, . . . , S, i = 0, . . . , N, (5.8)
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of the lower-triangular scaling matrix

C ∈ CS×S , (C)mj =
{
c1(S−j+m)m if j > m,

0 otherwise,
m = 0, . . . , S − 1, j = 1, . . . , S, (5.9)

and of the snapshot Gramian

G ∈ CS×S , (G)m′m = 〈v1m , v1m′〉V , m,m′ = 0, . . . , S − 1. (5.10)

To conclude this section, we remark that repeated sample points are allowed only if we can query
the solver for derivatives of v too. This is not always possible, especially if the dependence of the
FOM on z is complicated, or if the solver is truly “black-box”. In such cases, approximations of
the derivatives of v (obtained, e.g., by finite differences) might be used instead. On top of this,
we note that taking (too many) derivatives of meromorphic functions is not the most stable idea
to begin with, since the effect of the most relevant poles is usually amplified, see, e.g., (4.7).

5.2 Numerical matters
The approach presented above, as summarized in Algorithm 2, represents the simplest possible
algorithm for MRI. Still, before we can happily employ it in an industrial application, we should
answer several questions. Among those, we consider the most important ones in the following
sections: is the method numerically robust? What metric over V should we choose? What basis
ΨN should we choose?

The even more crucial (in some sense) matter of how to choose Z follows in Section 5.3.

5.2.1 Conditioning and instabilities

We first explore the issue of numerical stability, assuming that all parameters of MRI (v, ‖·‖V , Z,
N , ΨN ) are fixed. For simplicity, we ignore stability issues in the sampling phase, since those
should be dealt with by the sampler, which is responsible for providing us with the snapshots
{vj}Sj=1.

We can identify three main steps that could be numerically problematic. We deal with them one
by one.

5.2.1.1 Assembly of the scaling matrix C, see (5.3)

This requires computing the coefficients cj . It turns out that building C is no more unstable that
inverting the generalized square Vandermonde matrix ΥS−1, an item that we will discuss in the
next point. Indeed, for instance, when the sample points are distinct, the weights {cj}Sj=1 are
actually the entries of the vector

(cj)Sj=1 = Υ−>S−1Υ(lead)
S−1 , with Υ(lead)

S−1 =
[
dS−1ψ0
dzS−1 , . . . ,

dS−1ψS−1
dzS−1

]>
∈ CS . (5.11)
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To see this, it suffices to note that

cj = (S − 1)!
∏S
j′=1,j′ 6=j(zj − zj′)

= dS−1

dzS−1

(
ωZ

(· − zj)dωZdz (zj)

)
= dS−1`j

dzS−1 ,

with `j ∈ PS−1(C;C) the j-th Lagrange polynomial. Now, `j can be found by inversion of ΥS−1,
as the unique polynomial of degree smaller than S that satisfies `j(zk) = δjk, the Kronecker delta:

`j(z) =
S−1∑

i=0

(
Υ−1
S−1ej

)
i
ψi(z), with (ej)i = δij .

(5.11) follows by taking S − 1 derivatives in the identity above.

Note that, if sample points are repeated, more coefficients might need to be computed, and the
weights wjk must also be found, see Section 5.1.1. Regardless, similar arguments apply in that
case too.

5.2.1.2 Inversion of the generalized square Vandermonde matrix ΥS−1, see (5.2)

The robustness of this operation rests mostly on the choice of Z and ΨS−1, which will be discussed
in Section 5.2.3. Still, without changing Z or ΨS−1, there is a (quite obvious) alternative for
improving numerical stability: moving from interpolation to LS approximation. Indeed, in
Definition 3.2, we define the MRI numerator as the degree-(S − 1) interpolant IZ(QZ[S−1/N ]v) in
order to exploit the available information as much as possible. However, in practice, it might
make sense to sacrifice interpolation in the interest of stability. This can be achieved by tweaking
Definition 3.2, replacing the interpolation operator IS with an LS polynomial approximation
operator: e.g., given distinct sample points Z, M < S − 1, and ψ : C → V such that IZ(ψ) is
defined, we consider

IZM (ψ) := arg min
P∈PM (C;V)

S∑

j=1
wj ‖P (zj)− ψ(zj)‖2V , (5.12)

with {wj}Sj=1 ⊂ R>0 suitable weights. The derivative order S − 1 in (3.17b) should then be set
to M in order to capture correctly the leading coefficient of IZM .

Note that, when using an “LS version of MRI”, the optimal snapshot usage is lost, thus making
the resulting approach more similar to standard rational approximation MOR techniques, see
Section 2.4.1.

5.2.1.3 Solution of minimal eigenproblem for ΥH
NC

HGCΥN

The numerical stability of eigenpair computations is usually analyzed using Weyl’s inequality or
similar tools, which allow to bound the spectrum of a (Hermitian) matrix affected by numerical
noise by using the spectrum of the unperturbed matrix and the spectrum of the noise. However,
this has limitations for minimal eigenvalues, as we proceed to showcase with a fairly general
example.

Let the Hermitian matrix A have eigenvalues 0 ≤ σn(A) ≤ . . . ≤ σ1(A), and consider the
Hermitian perturbation ∆, with eigenvalues σn(∆) ≤ . . . ≤ σ1(∆), which we assume small (in
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magnitude). By Weyl’s law, the two smallest eigenvalues of A+ ∆ admit the bounds

σn(A) + σn(∆) ≤ σn(A+ ∆) ≤ σn(A) + σ1(∆)

and
σn−1(A) + σn(∆) ≤ σn−1(A+ ∆) ≤ σn−1(A) + σ1(∆).

In particular, if σ1(∆)−σn(∆) is larger than the spectral gap for σn(A), namely, σn−1(A)−σn(A),
then σn−1(A+ ∆) and σn(A+ ∆) might be arbitrarily close, or even coincide. This, generally, is
not an unsurmountable issue for minimal eigenvalue approximation, since the dependence of the
minimal eigenvalue on the perturbation is continuous. However, approximating the corresponding
minimal eigenvector is troublesome, as it does not depend continuously on ∆ (in fact, it is not
even uniquely defined when the minimal eigenvalue is semisimple, i.e., σn−1(A+∆) = σn(A+∆)).

One fairly straightforward check that can be introduced to detect such situations is: given A :=
ΥH
NC

HGCΥN , compute σn(A) and the corresponding eigenvector (which gives the coefficients
of QZ[S−1/N ]), but also σn−1(A) and σ1(A). If the relative spectral gap σn−1(A)−σn(A)

σ1(A)−σn(A) is too
small, e.g., below a user-defined tolerance (a typical value is 10−14), mark QZ[S−1/N ] as unreliable,
decrease N , and repeat the calculation. This, effectively, allows an on-the-fly selection of N ,
based on the conditioning of the problem. As a side note, we observe that one may also decrease
M together with N , thus making the approach non-interpolatory, cf. Section 5.2.1.2.

Before proceeding to other issues, we wish to describe a strategy that can considerably help
reduce the ill-conditioning of the eigenproblem. The key idea is: since G is a Gramian matrix,
A = ΥH

NC
HGCΥN has itself a Gramian structure. More precisely, let

U =
[
v1

∣∣∣∣ · · ·
∣∣∣∣vS
]

(5.13)

be the snapshot quasi-matrix, whose columns are elements of V, and let

U =
[
w1

∣∣∣∣ · · ·
∣∣∣∣wS

]
R, with 〈wj , wj′〉V = δjj′ and R ∈ CS×S , (5.14)

be its QR decomposition, obtained, e.g., by Householder triangularization [Tre09]. Then G =
RHR, and

A = (RCΥN )H (RCΥN ) ,

so that the eigenvalues and eigenvectors of A are squared singular values and right singular vector
pairs for RCΥN , respectively. Crucially, this means that the conditioning of the problem, e.g., as
measured by the relative spectral gap, necessarily improves, since

σn−1(A)− σn(A)
σ1(A)− σn(A) <

√
σn−1(A)−

√
σn(A)√

σ1(A)−
√
σn(A)

= σn−1(RCΥN )− σn(RCΥN )
σ1(RCΥN )− σn(RCΥN )

whenever σ1(A) > σn−1(A).

5.2.2 Choice of metric

In the definition of MRI, namely Definition 3.2, the “most well-hidden” parameter on which MRI
depends is the norm ‖·‖V , which affects the rational interpolant in a rather convoluted way, by
defining the metric in which the optimization target JZ is measured, see (3.17b).
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In most applications, one can identify the most natural choice for this metric. For instance, in
finite-dimensional non-homogeneous eigenproblem-like settings, e.g.,

(zE −A)v(z) = b with A,E ∈ Cn×n and v(z), b ∈ Cn = V,

with E positive definite, it is reasonable to take the inner product induced by E, namely,
〈v, w〉V = wHEv for v, w ∈ V. Note that frequency-domain LTI dynamical systems usually fall
in this category.

On the other hand, in some cases, a functional viewpoint should be taken, notably when v(z) is
the solution field of a PDE, with V an infinite-dimensional Hilbert space, e.g., H1(Ω) in some of
the examples from Section 2.3. In such settings, one should select ‖·‖V as a functional norm with

respect to which V is Banach, e.g., ‖v‖H1(Ω) =
(
‖|grad v|‖2L2(Ω) + ‖v‖2L2(Ω)

)1/2
for V = H1(Ω).

All this being said, nothing prevents choosing a different norm, or, in fact, even a seminorm, in the
definition of MRI. Of course, this is accompanied by the observation that, if the chosen (semi)norm
is not Hilbertian, i.e., if there is no associated inner product, then finding the minimum of JZ
might be trickier. In particular, expressing the minimization problem as a minimal eigenproblem,
cf. Section 5.1, may not be possible.

Until here, we have only discussed what norms can be used, but now we turn to the issue of
what norms should be chosen, so as to improve the approximation quality. In general, the choice
of ‖·‖V enters MRI in an extremely complicated way, so that a precise answer is impossible.
However, we can obtain a partial indication from the theoretical results from Sections 3.1.1, 3.1.2,
3.2.1, and 3.2.2: if at all possible, one should choose an inner product that makes the residues of
v orthogonal, since this improves the convergence rate of the poles, as well as the constant in the
error convergence (at least in theory, cf. Conjecture 1).

Unfortunately, this is usually impossible, since, in most cases, either (i) one cannot tell a priori if
such an inner product exists, or (ii) one can show a priori that such an inner product does not
exists. However, there are some families of frequency-domain problems where this is a valid option:
for instance, Hermitian dynamical systems with invertible E, cf. Section 2.2, or self-adjoint (or
normal) PDEs, cf. Sections 2.3.1 and 2.3.2. In such cases, one should strive to select an inner
product that makes the problem Hermitian/self-adjoint, or, more generally, normal.

As a concluding remark, in the author’s experience, it seems that the actual impact of the choice
of metric on MRI is less than could be expected. Indeed, we have observed that target functions v
that are “nice”, e.g., that have orthogonal residues in a certain metric, are approximated well even
if MRI is applied with a different metric, with respect to which the residues are not orthogonal.
Some numerical experiments in this direction are carried out in Sections 5.5.2 and 7.1.

5.2.3 Choice of polynomial basis and barycentric extension

Here we explore the question of what metric should be used on the polynomial space PN (C;C) to
define the unit ball PΨN

N (C;C), the search space for the optimal denominator QZ[S−1/N ]. We note
that this question is complementary to that considered in the previous section, where the metric
on the target space was discussed. This time, the theory cannot really give us any meaningful
insights (except that we might want to try to satisfy Assumption 3.4 if we plan to have large
values of N). Instead, in trying to identify the “best” polynomial basis ΨN , which induces the
sought-after metric through (3.17a), we aim mostly at good numerical properties.
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In this context, the main objective is ensuring that the generalized Vandermonde matrices ΥN and
ΥS−1 are reasonably well-conditioned, since, after all, an unstable construction of the numerator
IZ(QZ[S−1/N ]v) could jeopardize the whole rational approximant. To this aim, one should follow
the usual practices for numerical polynomial approximation and interpolation. For instance, if Z
are located at the S-th roots of unity, then monomials can be recommended. Similarly, if Z are
the Chebyshev nodes, then Chebyshev polynomials are the natural choice.

In both above-mentioned cases, a “good” choice of ΨN is possible as a direct consequence of the
sample points being “well-chosen” themselves. However, this is not the case in many practical
situations. For instance, sample points may have unfavorable positions when the data comes
from experimental measurements, or when sample points are added adaptively, see Section 5.3.
Luckily, a universal answer exists, guaranteeing well-posedness of the interpolation endeavor: the
(sample points-dependent) Lagrangian basis, defined as

ΨS−1 = ΨS−1(Z) =
{

ωZ

(· − zi)dωZdz (zi)

}S

i=1

=





S∏

j=1
j 6=i

· − zj
zi − zj





S

i=1

. (5.15)

Note that this expression only holds for distinct sample points. A Hermite-Lagrangian basis
is available in the general case, cf. the generalized barycentric form (5.4). By definition, the
generalized square Vandermonde matrix for this basis is ΥS−1 = I, the identity matrix.

Unfortunately, this incurs in a few issues. On one hand, the basis is not hierarchical, so that, if
N < S− 1, a basis for PN (C;C) cannot be built from elements of ΨS−1, and it becomes necessary
to select a different basis for QZ[S−1/N ]. Note that, in this regard, one can choose a different basis
entirely, or again a Lagrangian one, by picking N + 1 support points out of the S sample points.
On the other hand, and more importantly, even if the construction of the MRI surrogate proceeds
smoothly thanks the Lagrangian basis, the evaluation of polynomials in the Lagrangian basis is
usually highly unstable, thus making the evaluation of the ROM in the online phase unreliable.

In an almost miraculous way, there exists a way to take advantage of the Lagrangian prop-
erty without sacrificing online stability: a barycentric formulation, taking inspiration from the
Loewner framework and AAA, see Section 2.4.1. We provide here a definition of the barycentric
formulation of MRI. Note that, for conciseness, we restrict our focus to distinct sample points,
but generalizations to coalesced sample points are possible, although quite heavy in notation.

Definition 5.1 (Barycentric MRI). Let V be as in Definition 3.2. We consider distinct sample
points Z = {zj}Sj=1 ∈ C. Let v : C→ V be a V-valued function such that IZ(v) exists, according
to Definition 2.1. An [S − 1/S − 1] barycentric MRI of v based on samples at Z is a rational
function

vZ[S−1](z) =




S∑

j=1

(QZ[S−1])jv(zj)
z − zj



/


S∑

j=1

(QZ[S−1])j
z − zj


 , (5.16)

such that

QZ[S−1] ∈ ∂B0(1) =



[q1, . . . , qS ]> ∈ CS :

S∑

j=1
|qj |2 = 1



 , (5.17a)

J̄Z(QZ[S−1]) ≤ J̄Z(Q) :=

∥∥∥∥∥∥

S∑

j=1
(Q)jv(zj)

∥∥∥∥∥∥
V

∀Q ∈ ∂B0(1). (5.17b)
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At first blush, it might not be obvious that vZ[S−1] is a rational function. Still, it suffices to multiply
both numerator and denominator of (5.16) by the nodal polynomial ωZ(z) =

∏S
j=1(z − zj) to

make the “true” polynomial numerator and denominator emerge:

vZ[S−1](z) =
ωZ(z)

∑S
j=1

(QZ[S−1])jv(zj)
z−zj

ωZ(z)
∑S
j=1

(QZ[S−1])j
z−zj

=
∑S
j=1(QZ[S−1])jv(zj)

∏S
j′=1,j′ 6=j(z − zj′)∑S

j=1(QZ[S−1])j
∏S
j′=1,j′ 6=j(z − zj′)

. (5.18)

We can see that the rational form employs a scaled Lagrangian basis

ΨS−1 = ΨS−1(Z) =
{

ωZ

(· − zi)

}S

i=1
=





S∏

j=1
j 6=i

(· − zj)





S

i=1

(5.19)

that satisfies ψi(zi′) = δii′
∏S
j=1,j 6=i (zi − zj). It is customary to use the barycentric form (5.16)

rather than the rational one (5.18), since only the former can be reliably evaluated online in a
robust manner, see, e.g., [BT04; NST18].

We observe that Definition 5.1 is, indeed, an extension of MRI, since (i) the denominator is found
by minimizing the leading coefficient of the (polynomial) numerator

1
(S − 1)!

dS−1

dzS−1




S∑

j=1
(QZ[S−1])jv(zj)

S∏

j′=1
j′ 6=j

( · − zj′)


 =

S∑

j=1
(QZ[S−1])jv(zj),

cf. (5.18), and (ii) the approximation is interpolatory:

lim
z→zj

vZ[S−1](z) = lim
z→zj

(QZ[S−1])jv(zj)
z−zj

(QZ[S−1])j
z−zj

= v(zj).

In particular, we note that barycentric MRI is, by definition, a diagonal rational approximation,
since it forces N = S − 1. Still, technically, one could reduce the degree of the denominator to
N < S by adding S − 1 − N linear constraints to the space B0(1) where QZ[S−1] is sought, cf.
(5.17a), as is sometimes done in scalar barycentric rational interpolation, see, e.g., [Kle12]. For
simplicity, we ignore this possibility here.

As anticipated, the construction of a barycentric MRI requires no (inversions of) Vandermonde
matrices, since interpolation is guaranteed by definition, and the functional J̄Z(·)2 is a quadratic
form, with the snapshot Gramian G, see (2.44), as representative matrix. This, notably, leads to
the quite remarkable conclusion that the denominator coefficients QZ[S−1] can be found in a very
straightforward way as a minimal eigenvector of the snapshot Gramian.

Concerning the theoretical properties of barycentric MRI, we first note that, since we are forcing
N = S − 1, the “fixed N” convergence theory from Section 3.2 is irrelevant here. On the other
hand, it is sensible to ask whether the “N → ∞” results, namely, Theorems 3.6 and 3.8, can
be extended to barycentric MRI. The answer is not trivial, since the scaled Lagrangian basis
(5.19) does not necessarily satisfy Assumption 3.4. Notably, showing whether the lower bound in
Assumption 3.4 holds or not is a rather tricky issue. For this reason, we believe that it would be
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more appropriate to develop a theory for barycentric MRI “from scratch”, rather than trying to
make the method fit in the framework from Section 3.2. To this aim, in the author’s opinion, it
should be possible to extend the proofs of Theorems 3.6 and 3.8 by relying on the specific nodal
form of the barycentric basis (5.19), rather than on Assumption 3.4. For the moment, we leave
this as a conjecture.

5.3 Adaptive frequency sampling
Until now, we have assumed that the sample points Z are fixed in advance by the user. This
is a common framework when the user wishes to limit the number of times the FOM is solved.
However, in practice, the number of samples might not be high enough to provide a good
approximation of the target function over the region of interest. For instance, if the sampling set
A contains N ′ poles of v (counting multiplicity), then at least S = N ′+ 1 snapshots are necessary
to build a surrogate of the appropriate type, and a (slightly) higher number of them might be
advisable to improve the approximation quality. However, in practice, since N ′ is not known in
advance, this does not help us in choosing S.

In this context, an adaptive addition of sample points, in the same spirit as the weak-greedy RB
method, see Section 2.4.2.3, seems appropriate. We summarize the skeleton of the z-adaptive
scheme in Algorithm 3. Note that we need a polynomial basis generator, rather than just a basis,
since the size of the basis will necessarily change at each iteration. To this aim, a natural choice
consists in taking a hierarchical basis (e.g., monomials or Chebyshev polynomials). Also, we
remark that, for simplicity, we always set N = S − 1, i.e., we force a diagonal approximation.
In general, a different choice of N (which should increase with S) could be prescribed by the
user. Still, if the automatic N -reduction from Section 5.2.1 is applied, the algorithm should be
able to adapt N on-the-fly, thus preserving numerical stability. When looking at offline efficiency,
one should note that, as the iterations proceed, the MRI surrogate must be rebuilt from scratch
each time. However, starting from the second iteration, most of the snapshots have already been
computed at a previous iteration, so that, effectively, each call to Algorithm 2 “costs” only one
snapshot and the construction of the surrogate.

Algorithm 3 z-adaptive MRI (for distinct points)
Require: distinct initial sample points Z = {z1, . . . , zS0} ⊂ C, sampler v, tolerance ε
Require: distinct test points Ztest = {z1, . . . , zT } ⊂ C \ Z
Require: basis generator Ψ(S) = {ψ0, . . . , ψS−1} for all S ≥ S0
for S = S0, S0 + 1, . . . do
build MRI vZ[S−1/S−1] via Algorithm 2 using the basis Ψ(S)
evaluate the greedy indicator η(z) at all z ∈ Ztest
find the point of worst approximation z? = arg maxz∈Ztest η(z)
if η(z?) < ε then
return vZ[S−1/S−1]

end if
move z? from Ztest to Z

end for

The key step of Algorithm 3 is the evaluation of the error indicator η at all points of the test
Ztest, which should be a fine grid of points of the sampling set A. Obviously, for the sake of
offline efficiency, the computation of η(z) must not require the snapshot v(z). For this reason,
we use the term “error indicator” rather than just “error”, since the latter cannot be evaluated
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efficiently, whereas the former might. Several possible definitions of η have been proposed by us
in [PN20]. We proceed by summarizing them here.

5.3.1 Intrusive exact affineMOR residual

Assume that the problem depends on frequency in an affineMOR way. We recall the residual
expansion (2.45), which, in the scope of the RB method, allows to evaluate the residual of the
surrogate model at arbitrary (test) frequencies, with a computational cost that is independent
of the size of the original problem. This comes at the price of pre-computing (at modest
computational cost) the terms appearing in the affineMOR expansion (2.45) of the residual.

Such expansion can be recycled for MRI. To this aim, it suffices to observe that, by definition of
the MRI numerator, we can always expand vZ[S−1/N ] on the snapshot basis: e.g., if the sample
points are distinct, the barycentric formula (2.2) yields

vZ[S−1/N ](z) = 1
QZ[S−1/N ](z)

S∑

j=1

ωZ(z)QZ[S−1/N ](zj)vj
(z − zj)dωZdz (zj)

=
S∑

j=1
αj(z)vj . (5.20)

Notably, for MRI, the coefficients {αj}Sj=1 are rational functions, available in closed form, whereas,
for projective methods, they are given implicitly as the solution of the reduced system. As such,
in general, their evaluation is cheaper for MRI. Note that using the affineMOR residual expansion
(2.45) necessarily makes the overall approach intrusive.

5.3.2 Partially intrusive affine residual

Consider a problem of the form (zE −A)v(z) = b+ zb′, i.e., a problem with affine dependence
on z in both left- and right-hand-sides. Note that this family includes frequency-domain LTI
dynamical systems (provided the forcing term is affine). We have the following result.

Lemma 5.1. Let v be the solution of a linear problem with affine dependence on z of both left-
and right-hand-side: (zE − A)v(z) = b + zb′. Assume that vZ[S−1/N ] is the MRI obtained from
samples at the distinct points Z, according to Definition 3.2. Then, we can express the residual
as

(zE −A)vZ[S−1/N ](z)− b− zb′ = c
ωZ(z)

QZ[S−1/N ](z)
, (5.21)

with c ∈ V? independent of z. An explicit expression for c is given in the proof.

Proof. Let ωZ(z) =
∏
z′∈Z(z − z′). We apply the barycentric formulas (2.2) and (5.20) several

times to obtain

(zE −A)vZ[S−1/N ](z) = ωZ(z)
QZ[S−1/N ](z)

S∑

j=1

QZ[S−1/N ](zj)(zE −A)vj
(z − zj)dωZdz (zj)

= ωZ(z)
QZ[S−1/N ](z)

S∑

j=1

QZ[S−1/N ](zj) ((z − zj)Evj + (zjE −A)vj)
(z − zj)dωZdz (zj)

= ωZ(z)
QZ[S−1/N ](z)

S∑

j=1

QZ[S−1/N ](zj)Evj
dωZ
dz (zj)

︸ ︷︷ ︸
c′

+ ωZ(z)
QZ[S−1/N ](z)

S∑

j=1

bQZ[S−1/N ](zj)
(z − zj)dωZdz (zj)
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+ ωZ(z)
QZ[S−1/N ](z)

S∑

j=1

zjb
′QZ[S−1/N ](zj)

(z − zj)dωZdz (zj)

=
ωZ(z)c′ + IZ

(
bQZ[S−1/N ]

)
(z) + IZ

(
b′Q̃Z[S−1/N ]

)
(z)

QZ[S−1/N ](z)
,

with Q̃Z[S−1/N ] denoting the polynomial z 7→ zQZ[S−1/N ](z). Note that we have applied the
definition of the snapshots vj = v(zj) when using the identity (zjE −A)vj = b+ zjb

′.

By exactness of polynomial interpolation, IZ(bQZ[S−1/N ]) = bQZ[S−1/N ]. In general, the same
cannot be said about IZ(b′Q̃Z[S−1/N ]), since Q̃Z[S−1/N ] is a polynomial whose degree might be
larger than S − 1. Still, given γ = 1

(S−1)!
dS−1

dzS−1Q
Z
[S−1/N ] (which is zero if deg(QZ[S−1/N ]) < S − 1),

we have

zb′QZ[S−1/N ](z) = γb′ωZ(z) + b′
(
zQZ[S−1/N ](z)− γωZ(z)

)
= γb′ωZ(z) + b′Q̂Z[S−1/N ](z),

with deg(Q̂Z[S−1/N ]) ≤ S − 1 since ωZ is monic. Since ωZ vanishes over Z, it follows that
IZ
(
γb′ωZ

)
= 0, and we obtain

IZ
(
b′Q̃Z[S−1/N ]

)
(z) = b′Q̂Z[S−1/N ](z) = zb′QZ[S−1/N ](z)− γb′ωZ(z).

Putting everything together, we obtain the desired identity

(zE −A)vZ[S−1/N ](z)− b− zb′ = ωZ(z)
QZ[S−1/N ](z)

(c′ − γb′) .

Remark 5.1. The proof above can be adjusted to show some potentially useful additional results.
Namely, let v be the solution of (zE −A)v(z) = b+ zb′, and consider the interpolation operator
IZ from Definition 2.1, with Z being distinct points. If ṽ = IZ(vQ)/Q for some polynomial
Q ∈ PS−1(C;C) \ {0}, then we have

(zE −A)ṽ(z)− b− zb′ = c
ωZ(z)
Q(z) with c ∈ V? independent of z. (5.22)

Equivalently stated, the choice of the denominator is irrelevant for Lemma 5.1.

Moreover, if v is the solution of (zE −A)v(z) = b and ṽ = IZ(vQ)/Q with Q ∈ PS(C;C) \ {0},
then (5.22) holds. Quite remarkably, this implies that, when b′ = 0, (5.22) holds for the RB
method as well, since the RB surrogate relying on S snapshots is an interpolatory rational function
of type [S − 1/S], see Section 2.4.2.

Lemma 5.1 makes the z-dependence of the residual norm explicit:

η(z) =
∥∥∥(zE −A)vZ[S−1/N ](z)− b− zb′

∥∥∥
V?

= C

∣∣∣∣∣
ωZ(z)

QZ[S−1/N ](z)

∣∣∣∣∣ , (5.23)

with C = ‖c‖V? independent of z. (Note that, for barycentric MRI, this simplifies even further:
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η(z) = C
∣∣∣
∑S
j=1(QZ[S−1])j/(z − zj)

∣∣∣
−1

.) As such, the point z? that maximizes η over Ztest can be
found only using scalar operations, as

z? = arg max
z∈Ztest

∣∣∣∣∣
ωZ(z)

QZ[S−1/N ](z)

∣∣∣∣∣ . (5.24)

This being said, we still need to compute C in order to tell whether the tolerance ε is attained.
To this aim, it suffices to perform a single residual evaluation, e.g., at z?, and then set

C :=
∥∥∥(z?E −A)vZ[S−1/N ](z?)− b− z?b′

∥∥∥
V?

∣∣∣∣∣
QZ[S−1/N ](z?)

ωZ(z?)

∣∣∣∣∣ .

This, in principle, does not require an intrusive access to the system matrices, but assumes that
we can query the solver for (the dual norm of) a residual, something that might not be possible
in a truly non-intrusive setting.

Before continuing, we note that this strategy (and the upcoming ones too) could be applied in a
heuristic way also to more general problems, whose z-dependence is more complicated than just
affine. If the “second variations” of left- and right-hand-sides of the problem are small, we can
expect the point z? in (5.24) to be close to the maximizer of the actual residual norm.

5.3.3 Non-intrusive affine error

Let us consider the framework of the “partially intrusive affine residual” estimator introduced
above, but assume that, in the scope of identifying the scaling factor C in (5.23), it is not
possible to evaluate the residual at z?. The point z? can still be computed in a non-intrusive
fashion, only relying on Z and QZ[S−1/N ], since it does not depend on C. So, the only issue
is determining whether to terminate the greedy iterations or to add z? to Z and continue
with the next iteration. To this aim, we can employ, somewhat heuristically, the error norm
e(z?) =

∥∥∥vZ[S−1/N ](z?)− v(z?)
∥∥∥
V
, rather than the residual norm, in the termination criterion.

More precisely, we follow these steps:

• Find z? as in (5.24).

• Compute the error e(z?).

• If e(z?) is smaller than the tolerance, terminate. Otherwise, continue with the next iteration.

What we are doing is, in effect, “borrowing” the z-dependence from the residual and the scaling
factor from the error.

We remark that error and residual depend differently on z, since the error depends on several
additional quantities that are not available a priori, notably, on the exact poles of the system. In
particular, the residual maximizer z?, see (5.24), might not coincide with the error maximizer.
This makes our approach heuristic, since, even if e(z?) < ε, the tolerance might not be attained
at all other points of Ztest.

Note that, in order to compute e(z?), we are forced to take a snapshot at z?. Still, this should
not be seen as a waste of resources, for a snapshot at z? is precisely the one needed at the next
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greedy iteration. Only the snapshot at the last iteration is effectively wasted. At the same time,
we observe that one could actually build a new MRI surrogate in post-processing, including also
the extra sample point. In the RROMPy package, we carry out this extra step by default. However,
it is quite interesting to note that the “updated” MRI surrogate is, in general, not guaranteed to
perform better than the “non-updated” one. This is due to the non-monotonicity of e and η with
respect to S, which, in turn, is caused by the meromorphicity of v and vZ[S−1/N ].

5.3.4 Non-intrusive affine collinearity

In the previous paragraphs, we have described how an exact (for affine problems) expression
of the residual can be employed to find z?, while a different indicator is used to determine
whether convergence has been reached. Here, we use the same idea, with a non-standard
convergence indicator, based on snapshot collinearity. More precisely, given the span of the
snapshots Ṽ = Span{vj}Sj=1 and the new point z?, we compute the new snapshot v(z?), which
will potentially become vS+1. We determine that the greedy algorithm has converged if

∥∥∥v(z?)− PṼv(z?)
∥∥∥
V

= min
w∈Ṽ
‖v(z?)− w‖V < ε ‖v(z?)‖V , (5.25)

with PṼ the V-orthogonal projection onto Ṽ. This kind of condition was first considered in
[RM18], and corresponds to the idea that, the “farther” the new snapshot is from the span of the
previous ones, the more information it provides to the surrogate. A rigorous motivation based on
ideas from POD, see Section 2.4.2.2, and on the linear independence of the most relevant residues
of v, see Assumption 3.2, is possible, but we skip it here.

Note that, as in the previous case, we can recycle the final snapshot (taken for testing purposes),
by building a new MRI surrogate in a post-processing step, including also the last sample point.

5.4 Adaptive frequency range partitioning
The adaptive sampling strategy presented in the previous section has quite useful features, which
make it applicable in many practical settings. However, it also has some limitations. The main
one is that, although the sample points are chosen optimally for approximation purposes, they
might not have good numerical stability properties. In particular, the related Vandermonde
matrix might be rather ill-conditioned, cf. Section 5.2.1.2. Moreover (and even if the barycentric
basis is used to ensure good Vandermonde-related conditioning) instabilities might appear when
considering the eigenproblem whose solution determines QZ[S−1/N ], cf. Section 5.2.1.3. In the
latter case, we have proposed in Section 5.2.1.3 to reduce the number N of approximated poles
as a way to improve the conditioning. Still, the number of exact poles might be larger than the
largest N that the eigensolver can handle, resulting necessarily in exact poles that cannot be
approximated.

In case of numerical instability, we propose in [PN21] a simple, yet effective, solution, based on
an adaptive partitioning of the frequency range. Our suggested method can handle rather large
frequency ranges, over which a single MRI could not be built in a numerically stable fashion.
The main price to pay is the increased complexity of the overall surrogate, as well as its reduced
global regularity (it is only piecewise-rational rather than rational). Before proceeding, we note
that similar ideas can be found in [HDO11] for weak-greedy RB.
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For simplicity, assume that the frequency range is a line segment1 A = [zL, zR]. If any instability
arises when computing the MRI surrogate on A, then we split A at some point zC ∈ A, into
two sub-intervals A1 = [zL, zC] and A2 = [zC, zR]. Then, we try to build a new MRI surrogate
on each sub-interval. Note that, for the sake of (offline) efficiency, we should try to reuse the
already-computed snapshots in the sub-interval to which they belong. If we encounter any
additional instability, we partition further, and so on. At the end of this algorithm (assuming
that an end comes), we have a partition A =tT

j=1Aj , such that each sub-interval is associated
to the MRI surrogate Hj . In the online phase, if we wish to evaluate the overall surrogate at
z ∈ C, we just find the sub-interval Aj′(z) that is closest to z, i.e.,

j′(z) = arg min
j=1,...,T

min
z′∈Aj

|z − z′| ,

and use Hj′(z)(z) as surrogate value.

The only missing ingredient that we must specify is how to choose the splitting point zC. Several
options are possible: for instance, we can pick the midpoint zL+zR

2 , or the sample point closest
to the midpoint. Alternatively, if A spans several orders of magnitude (as it may happen, e.g.,
when making Bode diagrams in frequency-response analysis), then one might want to replace
the arithmetic midpoint zL+zR

2 with the geometric one √zLzR. Moreover, note that, if the
frequency range is split at a sample point, then the corresponding sample is shared between the
two sub-surrogates, so that the continuity of the overall surrogate at the shared sample is ensured
by the interpolation property.

Algorithm 4 z-adaptive MRI with automatic range partitioning
Require: frequency range A = [zL, zR] ⊂ C, distinct initial sample points Z = {z1, . . . , zS0} ⊂ A
Require: sampler v, tolerance ε, distinct test points Ztest = {z1, . . . , zT } ⊂ A \ Z
Require: basis generator Ψ(S) = {ψ0, . . . , ψS−1} for all S ≥ S0

take initial snapshots v(z1), . . . , v(zS0)
initialize set of unexplored sub-intervals as P = {A}
while P 6= ∅ do
select an arbitrary element A′ = [z′L, z′R] of P and remove it from P
try to build a z-adaptive MRI via Algorithm 3 over A′

(using ε, Ψ, initial sample points Z ∩A′, and test points Ztest ∩A′)
add the newly explored sample points to Z
if a numerical instability is detected then
find z′C ∈ A′ by using one of the strategies detailed above, e.g., z′C =

√
z′Lz
′
R

add [z′L, z′C] and [z′C, z′R] to P
discard the local MRI surrogate over A′

else
store the “good” local MRI surrogate and the interval A′ for further use

end if
end while
return overall surrogate obtained by patching together all the “good” local surrogates

We summarize the procedure in Algorithm 4. Note that, when building the local surrogates by
z-adaptive MRI, see Section 5.3, we use only the portion of sample and test points that belong to
the current sub-interval. If the initial test set Ztest has few elements, or if the sub-interval Z ′ is
particularly small, then the local test set might be rather small too. As such, in order to prevent

1This is actually the most common case in practical applications. Generalizations to 2-dimensional frequency
ranges are possible, e.g., by using sparse grids over a bounding box of A, cf. [HDO11].
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a preemptive termination of the local z-adaptive algorithm, it might make sense to enrich the
local test set with some arbitrary extra points. Moreover, we note that, when choosing a basis
generator for a sub-interval, Ψ might not always be the best choice, e.g., in terms of numerical
stability. To this aim, one may want to shift and rescale (“normalize”) the polynomial basis to
conform to the local sub-interval.

The piecewise-rational surrogate resulting from Algorithm 4 attains the prescribed tolerance
over the whole A and, on each sub-interval, the usual MRI properties hold. However, the
overall surrogate is not necessarily continuous across sub-intervals, except when a shared sample
point is present. Moreover, the “poles” of a piecewise-rational surrogate are not necessarily
well-defined. For instance, taking the union of all the surrogate poles might result in multiple
distinct approximations of the same exact pole. On the other hand, one might try taking

Λ̃ =
T⋃

j=1

{
λ

(j)
i : λ(j)

i is a pole of Hj and j′(λ(j)
i ) = j

}

as surrogate poles (i.e., we accept a pole iff its closest sub-interval is the one of the surrogate to
which it belongs), but this could result in missing some not-so-well-approximated poles near the
intersections between sub-intervals.

To conclude, we note that the above-mentioned instabilities can appear, more generally, even
without adaptive frequency sampling, i.e., in the case of sample points fixed a priori. Our
proposed partitioning approach may be successfully employed to obtain a piecewise-rational
approximation even in such situations. For simplicity, we skip the details here.

5.5 Numerical tests
In this section, we carry out some numerical experiments to validate our theoretical results for fast
LS Padé approximation and MRI. To this aim, we consider a synthetic problem in Cn, n = 100,
which we endow with the standard Euclidean inner product:

{
zv(z) = Av(z) + b,

y(z) = cHv(z),
with A = U diag(λ1, . . . , λn)U−1. (5.26)

In (5.26), Λ = {λj}nj=1 are randomly generated from a uniform distribution over the square
[−5, 5] ⊕ [−5, 5]i ⊂ C, see Figure 5.1 (?), and b, c ∈ Cn are two random (complex) Gaussian
vectors. By similarity, the columns of the matrix U ∈ Cn×n are (not necessarily normalized)
eigenvectors of A, with eigenvalues Λ. Depending on how we select U , v might or might not
satisfy some of the assumptions from Chapter 3. As long as U is invertible, Assumptions 3.1
and 3.5 are satisfied with R = ∞ (due to the finite-dimensional nature of the problem), and
the corresponding residues form a linearly independent family. However, Assumptions 3.2, 3.3,
and 3.6 are satisfied iff the columns of U are orthogonal, that is, iff A is normal: AHA = AAH .

Our main objective is showcasing the effectiveness of MRI. For this purpose, we study the pole
approximation error

min
λ̃∈Λ̃

∣∣∣λ̃− λj
∣∣∣ (5.27)
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(Λ̃ being the surrogate poles) and the relative output approximation error

|ỹ(z)− y(z)|
|y(z)| (5.28)

(ỹ being the ROM), both for fixed and variable denominator degree. Moreover, we compare
MRI with some state-of-the-art MOR competitors, see Section 2.4. More precisely, we apply the
following approaches:

(a) Fast LS Padé approximation centered at z0 = 0, with N = 10 (fixed) and M = E ≥ 10 (the
number of snapshots is S = E + 1).

(b) Diagonal fast LS Padé approximation centered at z0 = 0, with M = N = E ≥ 10.

(c) MRI with samples at the roots of unity (which are Fekete for the unit disk), with N = 10
(fixed) and M + 1 = S > 10.

(d) Diagonal MRI with samples at the roots of unity, with M + 1 = N + 1 = S > 10.

(e) Implicit moment matching centered at z0 = 0, with S = R ≥ 10.

(f) RB with samples at the roots of unity, with R = S ≥ 10.

(g) The Loewner framework with samples (of y) at the roots of unity, with 2N + 1 = S > 20.

Note that, except for the Loewner framework, all methods build first a ROM ṽ for v using
snapshots of v, and only afterwards obtain the ROM for y as ỹ = cH ṽ.

For the sake of reproducibility, the code used to obtain all the results below is made publicly
available as part of [Pra21].

5.5.1 MRI for a normal problem

We start from the best case (at least for MRI): we set U as a randomly generated matrix with
orthonormal columns, obtained by QR factorization of a random Gaussian matrix. In Figure
5.1, we show the relative approximation error over the square [−3, 3]⊕ [−3, 3]i, in a logarithmic
color scale, for all methods. Note that we compare the methods for a fixed number of snapshots
S = 21.

The “single-point” methods (a), (b) and (e) are quite recognizable since their error reaches zero
at z = 0. The approaches based on samples at the roots of unity show an error that is almost
uniform on the unit disk, in accordance with approximation theory, see, e.g., Theorem 2.3. A
notable exception to this is the Loewner framework surrogate, which coincides with the Lagrange
rational interpolant of type [10/10], and whose results appear a bit worse than the rest. This is
due to the rational type (specifically, the numerator degree) being too small to identify well the
features of y. Indeed, the main issue with standard non-intrusive methods is their non-optimal
use of the snapshots, see Section 2.4.1. At the same time, the non-intrusive MRI approach, by
relying on samples of v rather than of y, seems to be very comparable to intrusive projective
methods, at least qualitatively. Note that methods (a) to (f) perform similarly outside the unit
disk. Our theory from Chapter 3 provides a justification (at least for the MRI flavors with fixed
N): since the Green’s potential for the unit disk is the complex magnitude (outside the disk),
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Figure 5.1 – Qualitative results in the normal setting. Figure (?): plot of exact output magnitude
|y(z)|. Figures (a)–(g): plot of the relative error (5.28). Sample points, exact poles, and surrogate poles
are denoted by green pluses, blue circles, and white disks, respectively. All the errors have the same color
scale, reported next to Figure (a). All plots have Re(z) on the x-axis and Im(z) on the y-axis.

86



5.5. Numerical tests

10−16

10−12

10−8

10−4

100

|ỹ(
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Figure 5.2 – Error convergence at z?1 = i
2 and z?2 = 1 + i in the normal setting. Theoretical convergence

rates (for MRI with fixed denominator degree) are also included in black (note that ΦB0(1)(z?1) = 1).
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the convergence rate for the MRI error, see Theorem 3.7, has the same form as the convergence
rate for fast LS Padé approximation, see Theorem 3.3.

We make this analysis quantitative by studying the convergence of the approximation error at
the (arbitrarily selected) points z?1 = i

2 and z?2 = 1 + i, as the number of snapshots increases. We
note that z?1 is in the unit disk while z?2 is not. We show the results in Figure 5.2, where, to avoid
cluttering, we separate the single-point methods from the interpolatory ones. We can observe that
the asymptotic convergence rate predicted by Theorem 3.7 is achieved by all methods. Notably,
the methods with variable denominator degree N seem to converge as fast as those with fixed N ,
if not a bit faster, even though their theory does not allow any foretelling of their convergence
rate, see Theorems 3.4 and 3.8.

Concerning single-point approximations, we note that the convergence appears to stagnate after
S = 25. In fact, the fast LS Padé approximation error at z?2 even increases for larger values of S.
This is due to numerical issues in the computation of the derivatives of v, which become more
and more collinear as the order increases, cf. (4.7). Conversely, the implicit moment matching
method does not seem to suffer from the same issues. This is due to the Arnoldi algorithm, which
allows to perform projections in a (more) stable fashion even when the Krylov subspace order
becomes large.

On the interpolatory side, we confirm that the Loewner framework performs significantly worse
than the rest. This is due to its rational type being smaller than that achievable by the other
methods, for fixed S. A convergence analysis with respect to the numerator degree, which, for
(g), equals (S − 1)/2, would show that all methods perform similarly.

In Figure 5.3 we study the convergence of the pole approximation error, for the (arbitrarily
chosen) poles λ1 ≈ 0.475 + 0.053i and λ6 ≈ 0.983 + 0.893i (we order the poles according to
their distance from z = 0). The observed behavior is similar to that of the approximation error.
Notably, the observed convergence rates are in agreement with Theorems 3.1 and 3.5.

In conclusion, implicit moment matching is the best-performing single-point method, whereas,
among distributed approaches, diagonal MRI and RB perform similarly well. Still, as opposed to
the other two methods, diagonal MRI manages to achieve positive results without being intrusive.

5.5.2 MRI for a non-normal problem

Now we move to a more difficult case: we set U as

U =




1 δ

δ 1
1

. . .
1



∈ Cn×n, (5.29)

so that the first two eigenvectors are non-orthogonal, and thus A is non-normal, whenever δ 6= 0.
Notably, the closer δ is to ±1, the more difficult it will be for MRI to distinguish the first two
poles and residues. We repeat the same numerical experiment as before with this U , for δ = 0.9,
and we report the results in Figures 5.4 and 5.5. As expected, cf. Conjecture 1, the error behaves
similarly to the normal case, for all methods. The pole convergence displays the same behavior
as before too. This is quite remarkable, since Conjecture 1 predicts a decrease of the convergence
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|ỹ(
z

)−
y

(z
) |

|y
(z

)|

(a) z?1
(a) z?2
(b) z?1
(b) z?2
(e) z?1
(e) z?2
|z?

1/λ11|S

|z?
2/λ11|S

10 15 20 25 30 35 40
10−16

10−12

10−8

10−4

100

S

|ỹ(
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Figure 5.4 – Error convergence at z?1 = i
2 and z?2 = 1 + i for δ = 0.9. Theoretical convergence rates (for

δ = 0, for MRI with fixed denominator degree) are also included in black (note that ΦB0(1)(z?1) = 1).
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Figure 5.6 – Error convergence at z?1 = i
2 and z?2 = 1 + i for δ = 0.999. Theoretical convergence rates

(for δ = 0, for MRI with fixed denominator degree) are also included in black (note that ΦB0(1)(z?1) = 1).
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rate (at least for λ1), which we do not observe here.

We further increase the difficulty of the problem by setting δ = 0.999. In this case, one should note
that the conditioning of the matrix zI −A might start to have a relevant effect, by introducing
numerical noise in the snapshots. We show the convergence results in Figures 5.6 and 5.7.

In single-point approximation, the error seems to be greatly affected by the almost-collinear
eigenvectors. Particularly, the error saturates at a smaller S, at a much larger value. This is
probably due to a combination of noise in the snapshots due to ill-conditioning of the problem
and “collinearity noise”, cf. Section 3.1.3. It is rather interesting to note that implicit moment
matching seems to overcome this “noise” when approximating λ6, whose eigenspace is orthogonal
to the others. More generally, implicit moment matching seems able to approximate well poles
whose residues behave well (i.e., they are well-separated from the rest), whereas fast LS Padé
approximation does not.

Interpolatory approaches yield fairly similar results. Overall, we note that the lack of normality
seems to be an issue also for projective approaches, slowing down their convergence. Still, implicit
moment matching and RB appear to perform robustly enough. Moreover, we can observe that,
at least in the regions of exponential convergence, the convergence rate (notably, for poles) does
not seem affected by the lack of normality, contrary to what Conjecture 1 could have lead to
believe. Indeed, the bounds in Theorems 3.1 and 3.7 seem to be always valid.

5.5.3 MRI with greedy sampling

As a last test involving (5.26), we apply MRI with adaptive frequency sampling as described
in Section 5.3. We consider both the normal case and the non-normal cases δ ∈ {0.9, 0.999}
introduced in the previous sections. We set the algorithm parameters as follows:

• The initial sample points are Z = {−1, 1}.

• The tolerance ε is 10−3.

• The test points are approximately 104 points on a Cartesian grid within the unit disk B0(1),
whose spacing is approximately 0.018.

• We use the barycentric basis, see Section 5.2.3.

• We use the hybrid error estimator based on the evaluation of the relative approximation
error (on the state v) in a “look-ahead” fashion. More precisely, we use the approach
presented in Section 5.3.3, but we replace the convergence check e(z?) < ε with its “relative”
version e(z?) < ε ‖v(z?)‖V .

In Figure 5.8, we show some snapshots of the y-error field (with respect to z) as the greedy
iterations proceed, in the normal case. We can observe that the approximation error is quite large
at the beginning, but it decreases as more and more samples are added. In particular, the aim of
the greedy algorithm is to achieve a (relative) error that is uniformly small over the sampling set
B0(1) (technically, only over the discrete test set). We see that this is achieved at S = 17, with
the error tolerance being uniformly attained over B0(1), at least in the “eyeball-norm”.

It is rather interesting to observe that some of the sample points seem to coincide with the
poles of v. Indeed, from Lemma 5.1, we know that additional samples should be added at the
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approximate poles, while, from Theorem 3.6, we know that the approximate poles converge to the
exact ones. On one hand, this makes sense: sampling very close to an exact pole gives extremely
accurate information on such pole, and on the corresponding residue as well. On the other hand,
this can easily lead to issues in computing the snapshot, since the FOM will generally be rather
ill-conditioned near the resonating frequencies. If an iterative linear system solver is applied to
compute the snapshot, a large number of iterations might become necessary. More generally, the
snapshots might be affected by significant numerical noise, regardless of the solver.

Given our non-intrusive paradigm, the simple solution is to ignore these issues by blaming the
FOM solver. However, this is not really satisfactory, as it puts rather important limitations to
the applicability and robustness of the z-adaptive MRI approach. In our numerical experiments,
we do not observe any numerical issues related to noisy samples. A more theoretically motivated
discussion on the effect of noisy samples on MRI can be found in Section 8.1.

Other than near the poles of v, the adaptive sampling seems to take samples mostly near the
boundary of the sampling region, namely, close to some of the roots of unity, which are Fekete
points for the unit disk, cf. Theorem 2.2. This behavior (of sampling first around the poles
and then at “approximately Fekete” points) is somehow expected when using the error indicator
from Lemma 5.1. Indeed, the greedy algorithm first tries to “cancel out” each surrogate pole
with a root of the nodal polynomial and then takes on the task of minimizing (uniformly) the
nodal polynomial itself, which can be done exactly by putting samples at the Fekete points. We
note that all these observations are in agreement with the usual numerical considerations on the
“magic points” of the empirical interpolation method [Bar+04], which are chosen in a similar
greedy fashion and are also observed to form an “approximately Fekete” sequence.

We display in Figures 5.9 and 5.10 the relative approximation error and the pole approximation
error as the greedy iterations proceed, respectively. We can see that the normal and non-normal
cases are quite similar. In fact, somewhat surprisingly, the greedy algorithm terminates in less
iterations in the non-normal case. In all settings, we can observe that the errors form a plateau
for small values of S and then start to decrease in a way that is not as neat as in the previous
sections. This is to be expected, since sample points may be added both close and far from the
location where the error is evaluated, thus preventing any hope for a monotonic error decay. A
similar argument can also be used to explain, e.g., the sharp drop in the pole error at S = 12 in
the non-normal cases: quite simply, the twelfth sample point was added very close to λ1.

To conclude, we note that, by comparing Figures 5.9 and 5.10 and Figures 5.2 to 5.7, we see
that the convergence of the relative y-approximation error (at least at z?1 and z?2) and of the pole
approximation error (at least for λ1 and λ6) is faster with greedy sampling than with Fekete
sampling. This provides empirical evidence of the good approximation properties of the greedily
chosen sample points.

5.5.4 MRI for a scattering problem

As a further (more complicated and slightly less academic) non-normal example, we move to
an example from the field of PDEs. More precisely, we consider a frequency-domain scattering
problem of the form (2.34), which we recall here for convenience:

{(
−∆ + z2

c2

)
v(z) = f(·, z) in Ω,

(
∂
∂ν + z

c

)
v(z) = 0 on ∂Ω.
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Figure 5.11 – Solution (real part) of the scattering problem for z = 7i (left) and z = 3πi (right). We
also superimpose the boundary of the scatterer in black.

We fix the 2D unit disk Ω = B0(1) as spatial domain, with normal ν|x = x, and we set the wave
speed and the forcing term as

c(x) =
{

5 if |x| < 1
5

1 otherwise
and f(x, z) = z2

(
1

c(x)2 − 1
)

exp(zx(1)),

respectively. This corresponds to the field scattered by a sound-permeable circular scatterer (with
radius 1

5 and contrast 5) when the horizontal plane wave uinc(x, z) = exp(zx(1)) impinges on it
from the right. We discretize the PDE using piecewise-linear finite elements, over a fine uniform
triangulation of Ω. We note that, for this step, we employ the FEniCS library [Aln+15], which is
fully compatible with the RROMPy package. The finite element space has approximately 2 · 104

degrees of freedom. Two sample solutions at z = 7i and z = 3πi are shown in Figure 5.11.

Our approximation target is the state v(z) ∈ H1(Ω), for z ∈ A = [5i, 10i]. We employ MRI with
S samples at the Chebyshev points of A, i.e.,

Z =
{

7
2 i + 5

2 i cos
(

2j − 1
2S π

)}S

j=1
.

The (optimally conditioned) Chebyshev polynomial basis is used to expand numerator and
denominator. From the well-posedness of the problem for imaginary frequencies, cf. Section 2.3.3,
we expect the system to have no poles within A. Also, we note that the forcing term f depends
on z. On one hand, this introduces an additional complexity in the state v, so that, with respect
to a simpler (e.g., constant) forcing term, we are likely to need more snapshots to achieve a given
accuracy. On the other hand, we see that the dependence of f on z is holomorphic, and looking
for a rational approximation is still justified.

In Figure 5.12, we show the results obtained for S = 21 and S = 31. In particular, we use the
energy seminorm ‖v‖H1

0 (Ω) = ‖|grad v|‖L2(Ω) to measure the magnitude of v. From the plot,
we see that some poles are extremely close to A. This is due to internal reflections inside the
scatterer, cf. Figure 5.11 (left). Overall, we see that the approximation quality is fairly good, but
the relative error is not that small locally around some of the poles.

We compare these results with those obtained with a z-adaptive MRI approach. The greedy
parameters are the same as in Section 5.5.3, except for:
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• The initial sample points are Z = {5i, 10i}.

• The test points are 104 uniformly spaced points over A.

• We use the Legendre polynomial basis to expand numerator and denominator.

Concerning the error estimator, we employ once more the relative “look-ahead” one from Section
5.3.3. Note that, here, its theoretical foundations do not hold because neither the problem nor
the forcing term are affine in z. Still, we choose to employ it in a heuristic way.

The algorithm terminates at the 29-th snapshot, and yields the surrogate shown in Figure 5.13.
We can observe that the relative error behaves much more uniformly than with Chebyshev
sampling. This is reasonable, since, after all, the z-greedy algorithm tries to enforce the tolerance
constraint uniformly over the test set. In particular, this has the consequence of keeping the
error under control even near the poles. This being said, we see that the tolerance is not attained
over the whole domain, since there are some regions where the relative error is between 10−3

and 10−2. This is due to the above-mentioned heuristic nature of the error estimator in the
greedy algorithm. Still, we can be quite satisfied with the results, considering that the tolerance
is exceeded only for few frequencies, and only by a small margin.

As a final measure of the quality of the surrogate, we evaluate the relative approximation error
on a set of 25 quasi-randomly generated points in A \ Ztest (we use the Halton scheme, see
[Hal64]). In Figure 5.14, we plot the maximum of these 25 evaluations. In particular, we show
how such quantity evolves as the z-greedy iterations proceed. For small values of S, we see that
the error stagnates around 1, showing that the amount of samples is not yet sufficient for a good
approximation of all the “relevant” poles. Then, the error starts to decrease until the prescribed
tolerance is attained. Note that the error becomes smaller than the threshold ε exactly at the
last iteration of the adaptive algorithm. This is an empirical verification that our non-intrusive
greedy estimator, albeit heuristic, works well in this not-so-straightforward example.

In the same plot, we also show the same error quantity for the case of Chebyshev samples. Note,
in particular, that the greedy samples form a nested sequence as S increases, but the Chebyshev
ones do not. We can observe that the error measure stagnates (or maybe converges extremely
slowly) over the whole range of values of S. This provides a numerical proof of the fact that
greedily selected sample points perform better than ones fixed a priori.
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6 MOR approaches for parametric
frequency-response problems

In the previous chapters, we have focused on building a surrogate for a problem depending on a
single parameter, namely, the frequency. More generally, the MRI method introduced in Chapter 3
can be applied to produce a reduced model for any univariate function, albeit we have shown
that the quality of the approximation depends on some characteristics of the target function,
i.e., its approximability by a rational function and the non-collinearity of information coming
from different poles. A naturally arising question is, then: can this concept be extended to the
multivariate case? After all, quoting [ABG20], “anything worth simulating will have [additional]
parameters”, which might represent, e.g., control variables, design parameters, or uncertainties,
depending on the application.

In this chapter, we try to provide a partial answer to this question, which, as it turns out, is rather
complex. We start from an overview of the state-of-the-art MOR methods for parametric frequency-
response problems. Then we focus on a specific family of methods, namely, marginalized pMOR
approaches based on interpolation of surrogate poles and residues, and describe our contributions
to the field.

6.1 Parametric dynamical systems in frequency domain

Let there be nθ parameters, which we denote by θ =
(
θ(i))nθ

i=1. We will assume that θ belongs to
some compact parameter range Θ ⊂ Cnθ . In dynamical systems, it is quite common for parameter
dependence to appear in the matrices defining the system. As such, we will take the following
frequency-domain LTI system as model problem:

{
zE(θ)v(z, θ) = A(θ)v(z, θ) +B(θ)u(z, θ),
y(z, θ) = C(θ)v(z, θ).

(6.1)

Infinite-dimensional extensions of parametric problems in the field of PDEs are, of course, also
possible, see, e.g., our numerical examples in Sections 7.1 and 7.2. Throughout this section,
we will assume that all θ-dependent quantities are continuous with respect to θ. In trying to
understand the properties of (6.1), we wish to recycle all our considerations for non-parametric
dynamical systems. To this aim, it suffices to fix θ to obtain a non-parametric system, whose
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transfer function H, notably, depends on z in a meromorphic way:

H(z, θ) = C(θ) adj(zE(θ)−A(θ))B(θ)
det(zE(θ)−A(θ)) =

nv∑

j=1

rj(θ)
z − λj(θ)

. (6.2)

Note that, above, the first identity, giving the rational form of H, is always valid, whereas the
second one requires E(θ) to be invertible and E(θ)−1A(θ) to be diagonalizable, cf. Section 2.2.

Since, by the Caley-Hamilton theorem, both adjugation and determinant are smooth functions
(in fact, polynomials) of the matrix entries, we can deduce that regularity with respect to θ
is passed on from system matrices to the numerator and denominator of the rational form.
However, in this context, we note that any θ-dependence might be raised to the nv-th power,
e.g., adj(zθI) = (zθ)nv−1I and det(zθI) = (zθ)nv .

From (6.2) we can also draw conclusions on poles and residues of the system. Indeed, using
standard results from perturbation theory, see, e.g., [Kat95], one can conclude that poles and
residues are continuous (but possibly multivalued) functions of θ over all compact sets where
the partial fraction expansion (6.2) is valid. In fact, the poles of the system always depend
continuously on θ. Moreover, generally speaking, smoothness is inherited by poles and residues,
as long as the poles stay well-separated. Unfortunately, smoothness (except the continuity of
the poles) might be completely lost when poles cross. We proceed to show this through a simple
example. Let nθ = 1,

A(θ) =
[
1 θ

θ −1

]
, E(θ) =

[
1 0
0 1

]
, B(θ) =

[
1
0

]
, and C(θ) =

[
1 0

]
.

Simple calculations show that the rational form of H is smooth: notably, H is a multivariate
rational function

H(z, θ) = C(zE −A(θ))−1B = z + 1
z2 − 1− θ2 .

(More generally, H is a multivariate rational function whenever E, A, B, and C are polynomial
or rational functions of θ.)

On the other hand, we can verify that the partial fraction form is not as smooth

H(z, θ) =
1
2

(
1 + 1√

1+θ2

)

z −
√

1 + θ2
+

1
2

(
1− 1√

1+θ2

)

z +
√

1 + θ2
,

with
√· being some continuous instance of the complex square root (notably, the same instance

throughout the expression above). Since the complex square root induces branch points at θ = ±i
in poles and residues, they are intrinsically multi-valued. Moreover, we see that A fails to be
diagonalizable at the branch points, and the simple-pole partial fraction expansion does not exist
there, so that we must replace it by

H(z;±i) = 1
z

+ 1
z2 .

Accordingly, the residues in the simple-pole expansion are unbounded at θ = ±i.

Due to the (potential) lack of regularity of poles and residues, many pMOR approaches choose to
avoid a partial fraction expansion of H, working in the rational form, or even the system one
(6.1), instead. However, this may lead to some limitations, as we proceed to explain.
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6.2 Overview of MOR for parametric frequency-domain
problems

In the literature, one can find several approaches for building a surrogate for parametric problems
like (6.1). Broadly speaking, we can split these methods into “non-intrusive” and “intrusive” just
like in the non-parametric case. However, for parametric systems, an additional distinction must
be made, depending on whether the frequency z is treated together with the other parameters θ
or not. Note, however, that the gap between these two families is not as clear-cut as that between
non-intrusive and intrusive methods. We outline the two categories, as well as their main pro
and cons, separately.

6.2.1 State-of-the-art global pMOR approaches

In global pMOR, one builds a single ROM that provides a map from (z, θ) to H(z, θ), thus
treating frequency and parameters “jointly”. The two main instances of global approaches are,
on the data-driven side, multivariate rational approximation [GTT18; IA14; LAI11; MGT20;
Xia+19] and, on the projective side, RB/POD on a global basis [Bau+11; BF14; Dan+04;
DEF09; Wei+99]. Both of them are rather straightforward generalizations of their non-parametric
counterparts. However, some technical observations are in order:

• In multivariate rational approximation, one must choose how to balance the degrees of
numerator and denominator with respect to z and (each component of) θ. In this context,
it is customary to use the barycentric basis for z, in Loewner-style, cf. Section 2.4.1,
whereas standard polynomial bases (monomials, Chebyshev, etc.) are employed to model
the θ-dependence, usually with a constraint on the total degree with respect to θ. Overall,
the resulting surrogate is of the form

H̃(z, θ) =
∑Nz+1
j=1

∑
δ∈∆ pj,δ

(
θ(1))δ1 · · ·

(
θ(nθ))δnθ /(z − zj)

∑Nz+1
j=1

∑
δ∈∆ qj,δ

(
θ(1)
)δ1 · · ·

(
θ(nθ)

)δnθ /(z − zj)
,

with the index set ∆ being, e.g.,

∆ =
{

(δi)nθi=1 ∈ {0, 1, . . .}nθ :
nθ∑

i=1
δi ≤ Nθ

}
.

This corresponds to an approximation of the form P/Q, where P and Q belong to some
tensor space PNz (C;C)⊗ P∆(Cnθ ;C).

• In the projective case, several options are possible for determining the reduced basis that is
used to project the system. A fairly popular choice is the concatenation of reduced bases
obtained by non-parametric MOR (e.g., by implicit moment matching) at few parameter
values {θj}Tj=1. This is usually followed by POD, since many of the basis vectors might be
almost collinear. An alternative is to carry out implicit moment matching jointly in (z, θ),
so that the basis is composed of partial derivatives of v with respect to z and θ at one or
more (z, θ)-points.

• Both strategies allow for a posteriori model selection, using the ideas already discussed in
Sections 2.4.1.1 and 2.4.2.2 for the non-parametric case.
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The greatest advantage of global approaches is their simplicity, both of implementation (especially
in the projective case) and of use (since they are almost as straightforward as their non-parametric
analogues). However, they have some relevant drawbacks. The biggest one is the lack of efficiency
when dealing with even a modest (∼ 5) number of parameters. This issue manifests itself in two
different ways:

• For non-intrusive methods, the number of coefficients in numerator and denominator suffers
from the curse of dimension, increasing at an exponential rate in nθ. By enforcing sparsity
of the coefficients, see, e.g., [CL11], it might be possible to improve the situation in some
cases. However, in general applications, one should not expect the denominator coefficients
to be sparse. For instance, consider the simple case of affinely drifting poles:

v(z, θ) =


zI −




α
(1)
0

. . .
α

(nv)
0


+

nθ∑

i=1
αiθ

(i)I




−1

b =
nv∑

j=1

bj

z − α(j)
0 −

∑nθ
i=1 αiθ

(i)
.

(6.3)
Then, approximating well N poles of the system requires as denominator a full polynomial
in z and θ of total degree N , which has

(
N+nθ+1

N

)
& nNθ /N ! coefficients.

• For intrusive methods, a ROM with good approximation properties usually comes at the
price of a (very) large reduced size R, thus hindering online efficiency. This is due to the
fact that, in general, the “best” basis for projection changes with θ, cf. the partial fraction
expansion (6.2). Accordingly, it becomes necessary to add many global (θ-independent) basis
elements just to follow the evolution of a single θ-dependent basis element. We illustrate
this with a small, but rather perverse, example: consider the matrix A(θ) = a(θ)a(θ)H ,
with

a(θ) =
[
1 θ · · · θN 0 · · · 0

]> ∈ Cnv .

A(θ) has rank 1 for all θ, but a global basis must necessarily be of size N + 1 in order to
recover (by projection) the range of A for all θ ∈ [0, 1].

6.2.2 State-of-the-art marginalized pMOR approaches

In marginalized pMOR, one builds a ROM in two steps: first, surrogates in frequency only are
built at (few) representative parameter values Θ̃ = {θj}Tj=1, and then the different z-ROMs are
combined, usually by some kind of interpolation, over Θ to obtain the overall surrogate. The
difference between global and marginalized pMOR might not emerge clearly from this description.
To make the matter a bit clearer, we consider the four main instances of marginalized pMOR,
which differ in terms of the quantity that gets interpolated over Θ.

6.2.2.1 Interpolation of local reduced bases

Using a projective approach at each θj ∈ Θ̃, we identify (e.g., by implicit moment matching) a
collection of local reduced spaces {Ṽj}Tj=1 and corresponding projection matrices {Ṽj}Tj=1 ⊂ Cnv×R.
Note that, for simplicity, we are assuming that all reduced bases have the same size. Rather
than concatenating the projection matrices and applying POD, cf. Section 6.2.1, we build a
θ-dependent reduced space of size R, which interpolates the local spaces Ṽj . Then, we project
the FOM onto this θ-dependent reduced space to obtain the final surrogate.
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The most critical step to ensure good approximation (other than choosing the local bases in a
judicious way) is the interpolation of the local spaces. In order to avoid rank-deficiencies and
instabilities, this operation is usually done on a manifold of fixed-rank subspaces. In practical
terms, one usually employs the Grassmann manifold, with each reduced space Ṽj being represented
by its projection matrix Ṽj . We refer to [AF08] for more details on the manifold interpolation
step. Also, we note that there are some similarities between this approach and the dynamical
low rank (DLR) method [KL07]. However, in DLR the interpolation is carried out over a single
parameter (time) while all the other parameters are already considered in the local surrogates.

The main advantage of this approach is that it solves the issue of an overly large global basis,
since the basis size is kept fixed to R. The biggest disadvantage is that the manifold interpolation
of the reduced basis over Θ is not at all straightforward, and usually prevents online efficiency,
since identifying the interpolated basis at a new parameter θ? and projecting the FOM are
intrinsically high-dimensional operations. We note that online efficiency might be recovered in
some cases by introducing (in an offline pre-processing step) a low-dimensional approximation
of the manifold interpolation operator [Son13]. Still, the online efficiency comes at the price of
an inexact interpolation, which might have disastrous effects on the quality of the surrogate,
especially if the number of parameters is large.

6.2.2.2 Interpolation of local transfer functions

Assume that, at each θj ∈ Θ̃, a surrogate H̃j for the transfer function H(·; θj) has been built
(note that it does not matter whether this was done via a non-intrusive or an intrusive approach).
Then, the overall surrogate is obtained by polynomial (or rational) interpolation of {H̃j}Tj=1, e.g.,
when nθ = 1, by setting

H̃(z, θ) = IΘ̃(H̃•(z))(θ) =
T∑

j=1

ωΘ̃(θ)

(θ − θj)dωΘ̃

dz (θj)
H̃j(z),

or, more generally, using a separable (“polynomial chaos”-like) expansion

H̃(z, θ) =
T∑

j=1
αj(θ)H̃j(z), with αj : Θ→ C ∀j. (6.4)

The weights αj may be found, e.g., by using “hat functions” on a triangulation of Θ, or radial
basis functions. See Section 6.3.1.3 below for more details.

This idea is extremely simple, but has some quite serious issues. The most notable one is that
the poles of the global ROM are static, i.e., they do not move as θ varies. In particular, the
poles of H̃(·, θ) are the union of all the poles of all the local surrogates H̃j whose weight αj(θ) is
non-zero. This leads to the proliferation of poles, providing a rather compelling motivation for
using locally supported basis functions (e.g., hat functions) as weights in the expansion (6.4).

Some instances of this class of methods can be found in [BB09; FKD11; Spi+15].

101



Chapter 6. MOR approaches for parametric frequency-response problems

6.2.2.3 Interpolation of local reduced system matrices

Let a reduced system {
zẼj ṽj(z) = Ãj ṽj(z) + B̃ju(z, θj),
ỹj(z) = C̃j ṽj(z),

(6.5)

be available at each θj ∈ Θ̃, where ỹj(z) ≈ y(z, θj). Again, for simplicity we are assuming that
all reduced systems have the same size R. Note that (6.5) might be obtained quite naturally by
projecting the system (6.1) at θ = θj onto some subspace Ṽj . However, one might also build
(6.5) in a non-intrusive fashion, by finding first a surrogate H̃j for the transfer function, and
then constructing some system that has H̃j as transfer function. For instance, the simple scalar
transfer function

H̃j(z) =
R∑

i=1

r̃
(j)
i

z − λ̃(j)
i

(6.6)

might be represented in the form (6.5) by setting, e.g.,

Ẽj = I, Ãj = diag(λ̃(j)
1 , . . . , λ̃

(j)
R ), B̃j =




r̃
(j)
1
...
r̃

(j)
R


 , and C̃j =

[
1 · · · 1

]
. (6.7)

Note that a similar construction can be carried out also for systems with more than one
input/output, where, however, C̃j might have a more complicated form and the size of the
system matrices (6.7) is not necessarily R, but

∑R
i=1 rank(r̃(j)

i ), with “rank” the matrix rank. In
particular, each pole λ̃(j)

i appears rank(r̃(j)
i ) times in the diagonal of A.

Once (6.5) is available for all j, a global surrogate can be built by interpolating the reduced
matrices, e.g., as




z
(∑T

j=1 αj(θ)Ẽj
)
ṽ(z, θ) =

(∑T
j=1 αj(θ)Ãj

)
ṽ(z, θ) +

(∑T
j=1 αj(θ)B̃j

)
u(z, θ),

ỹ(z, θ) =
(∑T

j=1 αj(θ)C̃j
)
ṽ(z, θ).

(6.8)

with {αj}Tj=1 weight functions, with αj : Θ→ C for all j, as in Section 6.2.2.2.

Considering that the interpolated objects are reduced quantities of size R, online efficiency is
guaranteed. However, a new issue emerges, due to the so-called freedom introduced by realization
[YFB19b]: the expression of the reduced system (6.5) is not unique. Indeed, general changes of
basis can be applied to the state ṽj and also to the state equation itself: e.g., the system

{
z(PjẼjQ−1

j )ṽ′j(z) = (PjÃjQ−1
j )ṽ′j(z) + (PjB̃j)u(z, θj),

ỹj(z) = (C̃jQ−1
j )ṽ′j(z),

with ṽ′j(z) = Qj ṽj(z),

has the same exact transfer function as (6.5), for all invertible Pj and Qj . Still, the global
surrogate (6.8) depends on the specific realization of the surrogates, so that it becomes necessary
to pre-process the systems (6.5), making all their realizations compatible, before they can be
combined.

Several approaches have been proposed for this purpose: for instance, one may set for simplicity
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Pj = Qj , and find Qj by solving a generalized (non-orthogonal) Procrustes problem1

Qj = arg min
Q:|det(Q)|=1

∥∥∥QẼjQ−1 − Ẽj′
∥∥∥

2

F
+
∥∥∥QÃjQ−1 − Ãj′

∥∥∥
2

F
+

+
∥∥∥QB̃j − B̃j′

∥∥∥
2

F
+
∥∥∥C̃jQ−1 − C̃j′

∥∥∥
2

F
, (6.9)

with the aim of “matching” surrogates j and j′ by a transformation of model j only. Note
that weights might be introduced to balance the relative importance of the four terms in (6.9).
Alternatively, in a projective setting, one may solve an (orthogonal) Procrustes problem involving
the projection matrices Ṽj instead.

This step is then repeated with a sufficient number of surrogate pairs, until all models are matched.
For more details on this intermediate step, we refer to [AF11; DVW10; LEP09; Pan+10].

6.2.2.4 Interpolation of local poles and residues

Assume that, at each θj ∈ Θ̃, a surrogate H̃j for the transfer function H(·; θj) has been built,
with simple partial fraction decomposition (6.6). Once more, we assume that the reduced size R
is the same for all j. To define the overall ROM, we interpolate over Θ the poles and residues of
the local surrogates:

H̃(z, θ) =
R∑

i=1

∑T
j=1 αj(θ)r̃

(j)
i

z −∑T
j=1 αj(θ)λ̃

(j)
i

=
R∑

i=1

r̃i(θ)
z − λ̃i(θ)

, (6.10)

with {αj}Tj=1 scalar-valued weight functions, as in Section 6.2.2.2.

As in Section 6.2.2.3, here too we must worry about the freedom introduced by realization before
interpolating. However, here this issue manifests itself in a milder way, only as the possibility of
permuting the terms of the partial fraction decomposition. In order to find an “optimal” ordering
of the addends, it is customary, see, e.g., [YFB19b], to solve the minimization problem

min
σ∈(1:R)!

R∑

i=1

(∣∣∣λ̃(j)
σi − λ̃

(j′)
i

∣∣∣+
∥∥∥r̃(j)
σi − r̃

(j′)
i

∥∥∥
)
, (6.11)

where (1 : R)! denotes the set of permutations of the tuple (1, . . . , R). Note that weights might
be introduced to balance the relative importance of poles and residues in (6.11). Then,

H̃j(z) =
R∑

i=1

r̃
(j)
σi

z − λ̃(j)
σi

is the “best” reordering of the j-th surrogate with respect to the j′-th one. Note that, although
(6.11) is a combinatorial problem (the discrete search space for σ has size R!), there are some
ways to reduce the cost of its solution, see Section 6.3.1.2. A few alternative matching strategies

1Note that a closed-form solution of the nonlinear problem (6.9) is not available. A common way to simplify
matters, see, e.g., [Pan+10], is to consider the linearized unconstrained problem

Qj = arg min
Q

∥∥QẼj − Ẽj′Q
∥∥2
F

+
∥∥QÃj − Ãj′Q

∥∥2
F

+
∥∥QB̃j − B̃j′

∥∥2
F

+
∥∥C̃j − C̃j′Q

∥∥2
F

instead, which can be solved, e.g., by vectorization of Q.
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are discussed in [YFB18]. This step is repeated with a sufficient number of surrogate pairs, until
all models are matched.

We remark that, interestingly, one could have obtained (almost) the same method by considering
the system representation of H̃j , see (6.7), and solving (6.9) under the constraint of Q being a
permutation matrix. Moreover, note that, for simplicity, we have ignored additional constant or
polynomial terms in the partial fraction decomposition (6.6), which might appear in applications
whenever a rational approximation H̃j is built with type [M/N ], M ≥ N . Such terms do not
need to be matched, since they can be interpolated over Θ as they are.

As opposed to the superposition of the transfer functions, see Section 6.2.2.2, here the number of
poles stays fixed as θ varies. Indeed, continuous or, more generally, smooth functions (depending
on the weight functions {αj}Tj=1) are employed to model the behavior of poles and residues with
respect to θ. As such, this class of surrogates might encounter some issues in approximating
irregularities in poles and residues due to pole intersections, as we will discuss in the next section.

6.3 Additional aspects and improvements to pole/residue
matching

Due to their favorable properties, in this section we restrict our attention to marginalized pMOR
approaches based on interpolation of surrogate poles and residues, and we investigate some of
their features and limitations. We note that, from this section onward, the content is, for the
most part, original, and takes [NP21] as main reference.

6.3.1 Implementation aspects

From a practical viewpoint, the construction of the global surrogate H̃ from the local ones
{H̃j}Tj=1 can be split in three steps.

6.3.1.1 Conversion to partial fraction form

In order to match and interpolate poles and residues of the surrogates, one has to find them first.

Assume that H̃j is available in rational form H̃j = P̃j/Q̃j , with P̃j and Q̃j polynomials of
respective degrees M and N , with M ≥ N − 1. This is the case, e.g., when using MRI. We wish
to convert H̃j to the partial fraction form

H̃j(z) =
N∑

i=1

r̃
(j)
i

z − λ̃(j)
i

+
M−N∑

i=0
r̃

(j)
−i z

i (6.12)

(note that the monomial basis in the second sum may be replaced by a general polynomial basis).
The poles {λ̃(j)

i }Ni=1 can be found as the roots of Q̃j , using an off-the-shelf root-finding algorithm.
Note that, if H̃j is given in barycentric coordinates (5.16), specialized (stable) root-finding
algorithms are available [Kle12; NST18].

Once the poles are available, the residues can then be found in one of two ways:
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• First, the proper residues {r̃(j)
i }Ni=1 are found one by one, by using the formula

r̃
(j)
i = lim

z→λ̃(j)
i

(z − λ̃(j)
i )H̃j(z) = P̃j(λ̃(j)

i )
dQ̃j
dz (λ̃(j)

i )
. (6.13)

Then the remaining improper residues {r̃(j)
−i }M−Ni=0 , if any, are found by imposing the

interpolation conditions

H̃j(z̃) =
N∑

i=1

r̃
(j)
i

z̃ − λ̃(j)
i

+
M−N∑

i=0
r̃

(j)
−i z̃

i ∀z̃ ∈ Z?, (6.14)

with Z? ⊂ C\{λ̃(j)
i }Ni=1 a set ofM−N+1 arbitrary distinct points. This requires evaluating

the surrogate at M −N + 1 points and solving a linear system of the same size.

• All the residues can be found at the same time by solving the interpolation problem (6.14)
with Z? ⊂ C \ {λ̃(j)

i }Ni=1 a set of M + 1 arbitrary distinct points. This requires evaluating
the surrogate at M + 1 points and solving a linear system of the same size.

When projection-based methods are applied to LTI systems, the poles can be found by identifying
the spectrum of the reduced matrix pencil (Ãj , Ẽj), cf. (6.5). Similarly, the residues can then
be computed directly from the eigenvectors of the reduced matrix pencil, see Section 2.2, or by
either of the two approaches described above.

Note that, in our presentation, we have ignored the issue of higher-order poles. In some
circumstances, cf. the diagonalizable case in Section 2.2, multiple poles do not prevent the
existence of the simple expansion (6.12). Indeed, they simply cause the first sum to have less
than N terms, since some of the denominators are the same and can be grouped together. Note
that this might cause an imbalance in the number of poles and residues. We discuss this at length
in Section 6.3.3.

On the other hand, in general, higher-order roots might cause (6.12) to not exist, since higher-order
denominators might become necessary. In this regard, we wish to remark that, numerically, due
to round-off error in the root-finding algorithm, the poles will be always distinct. For instance,
the conversion of z−2 to partial fraction form will likely yield two poles at ±ε, |ε| � 1, with large
(in magnitude) corresponding residues. Obviously, one might employ countermeasures to identify
the pair of nearly identical roots and cluster them together. However, we will see in Section
6.3.2 that, by design, methods based on pole/residue-matching struggle with higher-order poles.
Thus, it does not really matter whether higher-order poles are not properly identified, since the
approximation quality will be rather poor anyway.

6.3.1.2 Matching the surrogates

Given the surrogates in partial fraction form {H̃j}Tj=1, we wish to match them pairwise via
(6.11) until they are all compatible. Note that a global approach, performing a “global” all-to-all
matching of the models is an NP-hard combinatorial problem [Kar72], hence computationally
unfeasible.

To this aim, we propose in [NP21] the following alternative approach. As a preliminary step, we
interpret the sampled parameters {θj}Tj=1 as vertices of a complete graph, see Figure 6.1, and we
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θ1
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θ3

θ4
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θ(1)

θ(2
)

Figure 6.1 – Graph view of the sample points. The red spanning tree has minimal total length.

find a spanning tree of such graph. The T − 1 indices corresponding to the edges of such graph
identify a set of pairs {(jl, j′l)}T−1

l=1 ⊂ {1, . . . , T}2. Then, we match in sequence the surrogates
corresponding to each pair, by solving T − 1 different problems of the form (6.11). As a way to
help the matching procedure, it makes sense to select the spanning tree by minimizing its total
length (in the Cnθ -Euclidean norm), so that each matching happens between surrogates that are
“as close as possible”.

Now we turn to the issue of solving each matching problem. An exhaustive search over the
possible values of σ is unfeasible due to the overly high number of options, namely, R!. In
[YFB19a], a branch-and-bound algorithm is proposed to this aim, which terminates in O(R2)
if the two models to be matched are already “almost matched”, i.e., if the optimal σ is close
to the identical permutation (1, . . . , R), but has worst-case complexity Ω(R!). We improved on
this in [NP21], describing an algorithm for solving (6.11) in worst-case polynomial time. More
specifically, define the R×R matrix D, as

(D)ii′ =
∣∣∣λ̃(j)
σi − λ̃

(j′)
i

∣∣∣+
∥∥∥r̃(j)
σi − r̃

(j′)
i

∥∥∥ .

Each entry of D represents the “cost” of matching pole/residue i in model j to pole/residue i′ in
model j′, cf. (6.11). The matching step can be equivalently characterized as: extract exactly one
entry of D per row and per column so as to minimize the sum of the selected entries. This can be
achieved by using tools from network flow optimization, as described in [Cro16]. Such algorithm is
implemented in the linear_sum_assignment function in the scipy.optimize module [Vir+20],
which takes the cost matrix D as only input. As shown in [Cro16, Section II.C], this method has
O(R3) worst-case complexity.

6.3.1.3 Interpolating poles and residues

After the models have been properly matched, it remains to actually build the global surrogate
(6.10). This can be done either by constructing the T weights {αj}Tj=1, with αj : Θ→ C, or by
directly computing the interpolated poles and residues, namely, {λ̃(i)}Rj=1 and {r̃(i)}Rj=1, with
λ̃(i) : Θ→ C and r̃(i) : Θ→ Cny×nu , directly. In the following, we will discuss the former case,
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since extensions to the latter are usually quite trivial.

Here, the main objective is enforcing, for all j = 1, . . . , T , the (Lagrange) interpolation condition

αj(θj′) = δjj′ ∀j′ = 1, . . . , T, (6.15)

with δ the Kronecker delta. To this aim, one may, e.g., choose {αj}Tj=1 as the family of Lagrange
polynomials associated to {θ̃j}Tj=1, even though this is not straightforward in high(er) dimensions.
Of course, this should be done with care, in order to avoid numerical instabilities, as well as the
standard issues that arise in multivariate polynomial interpolation if nθ > 1. Alternatively, we
note that radial basis functions and Gaussian processes might be particularly interesting choices.

Another important approximation class can be used when the sample points are in a regular
arrangement, e.g., if they form the vertices of a triangulation of Θ or a sparse grid, see Section
6.4.1. In such situations, one may use locally supported piecewise-linear “hat functions”, in
“finite element”-style. The resulting interpolation strategy is quite flexible, suitable even for the
approximation of non-smooth (but continuous) quantities. Obviously, there is another side to the
coin: due to the lack of global smoothness, the piecewise-linear approximation of uniformly (in θ)
smooth functions will necessarily yield worse results than, e.g., global polynomials.

As a final note, we mention that, in some cases, one may want to weaken the interpolation
constraint (6.15) to an LS version

λ̃(i) = arg min
λ̃∈?

T∑

j=1
wj

∣∣∣λ̃− λ̃(i)
j

∣∣∣
2

and

r̃(i) = arg min
r̃∈∗

T∑

j=1
wj

∣∣∣r̃ − r̃(i)
j

∣∣∣
2
,

with ? and ∗ suitable interpolation classes, e.g., polynomials of sufficiently low degree. This may
be done in the interest of numerical stability, but also as a way to “compress” the resulting ROM,
thus improving online efficiency.

6.3.2 Approximation power of parametric partial fraction form

We can expect a pMOR strategy based on interpolation of surrogate poles and residues to yield
good results as long as the simple partial fraction expansion (6.2) holds for all θ ∈ Θ, with the
most relevant poles and residues depending smoothly enough on θ. As usual, pole relevance is
determined based on the target frequency range. Conversely, the smoothness of poles and residues
determines the approximation class where the interpolation weights {αj}Tj=1 should be sought.

That being said, all the interpolation methods that we presented require at least continuity and
boundedness of poles and residues. This assumption can be guaranteed if the FOM matrix pencil
(A(θ), E(θ)), cf. (6.2), satisfies some hypotheses, namely:

1) Invertibility of E(θ) for all θ ∈ Θ. This guarantees the boundedness of all poles.

2) Simultaneous diagonalizability of E(θ) and A(θ) for all θ ∈ Θ (if E is invertible, this is equiv-
alent to the diagonalizability of E−1A). This guarantees the continuity and boundedness of

107



Chapter 6. MOR approaches for parametric frequency-response problems

all residues, and the existence of a simple partial fraction expansion (6.2).

Under these assumptions, even if two (or more) poles intersect at some θ, they remain semisimple
throughout Θ, and their order in the partial fraction decomposition remains equal to 1.

Note that 1) and 2) are sufficient conditions for a good behavior of the relevant poles and
residues, but they are not necessary. Indeed, we can expect our pMOR approach to work well
even if some faraway pole/residue pairs are not smooth, as long as we do not ask the ROM to
approximate them. Accordingly, a somewhat rigorous statement of our minimal assumptions
could read: if we wish to identify R pole/residue pairs, we require the R most important poles
(e.g., using the Green’s potential of the frequency range to define relative importance), as well as
the corresponding residues, to be smooth enough.

In some practical cases, it is actually possible to show that 1) and 2) (or, at least, their weakened
“local” versions) hold, by employing a priori information on the spectral properties of system.
However, in the vast majority of cases, this is not possible. In fact, some situations of interest
are known to have polynomial bifurcations in the poles, with couples of real poles becoming
complex-conjugate. We showcase this with a simple example.

Consider the parametric system (6.1), with nθ = 1 and

A(θ) =
[
0 θ − 0.1
1 0

]
, E(θ) =

[
1 0
0 1

]
, B(θ) =

[
1
0

]
, and C(θ) =

[
0 1

]
.

The corresponding transfer function is readily obtained:

H(z, θ) = 1
z2 − (θ − 0.1) =

1
2
√
θ−0.1

z −
√
θ − 0.1

+
− 1

2
√
θ−0.1

z +
√
θ − 0.1

. (6.16)

We see that θ = θ? = 0.1 is a bifurcation parameter, where A is not diagonalizable, so that the
residues become unbounded there. Now, we apply the pole/residue-matching approach using T
uniformly spaced sample points 0 = θ1 < . . . < θT = 1 over Θ = [0, 1], employing piecewise-linear
hat functions to interpolate poles and residues. In what follows, we choose T ∈ {5, 9, 17}, and
we focus on the approximation of the transfer function over the frequency range A = [−1, 1].
Note that, for simplicity, we interpolate the exact poles and residues of the system, rather than
surrogate ones, so that we can skip the not-so-interesting (in the present section) construction of
the local frequency ROMs. The code used in our experiments below is publicly available as part
of [Pra21].

In Figure 6.2, we show the exact response y and the relative approximation error. We notice
vertical lines with vanishing error at the θ-sample points, since the local frequency responses are
interpolated exactly. If frequency surrogates had been used instead of the exact transfer function,
we would see the z-approximation error at the θ-sample points instead. We can see that the error
is large near the system poles due to the piecewise-linear approximation of the quadratic pole
curve λ(θ). Moreover, the error is also large for all z when θ is located in the interval between
sample points that contains θ?, i.e., ]θ1, θ2[ for T ∈ {5, 9} and ]θ2, θ3[ for T = 17. This is due
to the fact that, locally, we are approximating the quadratic bifurcation with a pair of straight
(with respect to θ) surrogate poles that “twist” around the branch point in the complex plane.
Such poles are not able to provide a faithful approximation of the transfer function (notably,
they break z-symmetry), so that the difficulty in approximating the bifurcation can also affect
frequencies far from the bifurcation frequency z = 0.
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Figure 6.2 – Plot of exact |y(z, θ)| in the top left plot. In the other plots, we show the relative error for
T ∈ {5, 9, 17} samples of θ. Piecewise linear hat functions are used for θ-interpolation. All errors have the
same color scale, reported next to the top right plot. All plots have θ on the x-axis and z on the y-axis.
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Figure 6.3 – Pole approximations for T = 9 (left), where different colors are used for the two poles.
Pole approximation error for λ1 (right) for T ∈ {5, 9, 17}. By symmetry, the error for λ2 is identical.
Piecewise linear hat functions are used for θ-interpolation.
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Figure 6.4 – Residue approximations for T = 9 (left), where different colors are used for the two
residues. Residue approximation error for r1 (right) for T ∈ {5, 9, 17}. By symmetry, the error for r2 is
identical. Piecewise linear hat functions are used for θ-interpolation.
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Figure 6.5 – Plot of exact |y(z, θ)| in the top left plot. In the other plots, we show the relative error for
T ∈ {5, 9, 17} samples of θ. Global polynomials are used for θ-interpolation. All errors have the same
color scale, reported next to the top right plot. All plots have θ on the x-axis and z on the y-axis.
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Figure 6.6 – Pole approximations for T = 9 (left), where different colors are used for the two poles.
Pole approximation error for λ1 (right) for T ∈ {5, 9, 17}. By symmetry, the error for λ2 is identical.
Global polynomials are used for θ-interpolation.
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Figure 6.7 – Residue approximations for T = 9 (left), where different colors are used for the two
residues. Residue approximation error for r1 (right) for T ∈ {5, 9, 17}. By symmetry, the error for r2 is
identical. Global polynomials are used for θ-interpolation.
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Figure 6.8 – Plot of exact |y(z, θ)| in the top left plot. In the other plots, we show the relative error
for T ∈ {5, 9, 17} samples of θ. Chebyshev polynomials are used for θ-interpolation. All errors have the
same color scale, reported next to the top right plot. All plots have θ on the x-axis and z on the y-axis.
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Figure 6.9 – Pole approximations for T = 9 (left), where different colors are used for the two poles.
Pole approximation error for λ1 (right) for T ∈ {5, 9, 17}. By symmetry, the error for λ2 is identical.
Chebyshev polynomials are used for θ-interpolation.
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Figure 6.10 – Residue approximations for T = 9 (left), where different colors are used for the two
residues. Residue approximation error for r1 (right) for T ∈ {5, 9, 17}. By symmetry, the error for r2 is
identical. Global polynomials are used for θ-interpolation.
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However, thanks to the small support of the employed hat functions, the instability is only local
in θ. We can confirm this by looking at the error in the approximation of poles and residues in
Figures 6.3 and 6.4. It is crucial to observe that, if globally supported functions had been used
for the θ-interpolation, the approximation could, in general, have been globally inaccurate due to
the adverse effect of the bifurcation. We proceed to show this numerically. We build a surrogate
using exactly the same information as before. However, this time, the interpolation over Θ is
carried out via global polynomials. More specifically, given T uniformly spaced θ-samples, we
interpolate poles and residues using polynomials of degree T − 1. We show the corresponding
results in Figures 6.5 to 6.7, where we can observe that the above-mentioned global effect of the
bifurcation manifests itself as Gibbs oscillations near the edges of Θ, in accordance to standard
polynomial approximation theory. Note that we pick T small enough that the uniform spacing of
the sample points is not the cause of the instabilities.

We further verify this by repeating the experiment using Chebyshev polynomials over Chebyshev
points of Θ, i.e., θj = 1

2 − 1
2 cos

( 2j−1
2T π

)
for j = 1, . . . , T , so that the interpolation problem is

optimally conditioned. The corresponding results, in Figures 6.8 to 6.10, display a uniformly
poor approximation quality. Particularly, looking at the residue error plot in Figure 6.10, we see
that all the local maxima of the relative error have approximately the same value, in accordance
to the optimality property of Chebyshev polynomials. Unfortunately a bad approximation of
the bifurcation makes such uniform maximal error quite large. As we increase T , we should not
expect such value to decrease (by much).

These not-so-satisfactory results are intrinsic to the pole/residue-matching approach with continu-
ous approximation in θ, since we are trying to approximate an unbounded quantity (the residues)
with a bounded one (polynomials). In order to alleviate this issue, one could allow rational
approximation with respect to θ. However, we note that bifurcations correspond to essential
singularities in the residues. Accordingly, a rational approximation should not be expected to
converge rapidly, if at all.

In our view, the only way to tackle the approximation of singularities in a satisfactory way is by
avoiding the partial fraction decomposition (at least, locally around the singularity). Indeed, from
(6.16), we see that we can recover the exact transfer function by joint (z, θ)-rational approximation
using polynomials of degrees (2, 1). Unfortunately, in general, a joint rational approximation
suffers from the issues described in Section 6.2.1. A marginalized rational approximation might
yield better results, without incurring in the heavy limitations induced by the curse of dimension.
Equivalently, one could try to identify the “bad” bifurcating poles and, locally, group them
together. This yields a hybrid joint/marginalized approach. We discuss this further in Section
8.1.

6.3.3 Unbalanced surrogate matching

The matching approach described in Section 6.2.2.4, solvable with the algorithm from Section
6.3.1.2, was presented under the assumption that the two surrogates to be matched have the same
size (more precisely, the same number of poles). As we describe in [NP21], this assumption can
be weakened to allow the matching of unbalanced surrogates. To this aim, let the two surrogates
H̃j and H̃j′ have Rj and Rj′ poles, respectively, with Rj > Rj′ . We consider the rectangular
matching problem

min
σ∈(1:Rj)!

Rj′∑

i=1

(∣∣∣λ̃(j)
σi − λ̃

(j′)
i

∣∣∣+
∥∥∥r̃(j)
σi − r̃

(j′)
i

∥∥∥
)
, (6.17)
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which can be solved by applying a slight generalization of the algorithm from Section 6.3.1.2,
see [NP21]. Then (σ1, . . . , σRj′ ) gives the desired permutation of the Rj′ “matched” poles and
residues, while the remaining indices (σRj′+1, . . . , σRj ) remain free and can be sorted arbitrarily.
Note that, by invertibility of the optimal permutation, the case Rj < Rj′ can be approached by
switching the roles of the two surrogates.

Now, it remains to decide how to deal with the Rj − Rj′ unassigned poles and residues. We
propose three different options:

a) We might believe such poles to be spurious in the richer j-th surrogate due to some
inaccuracy in building it. Then, we can throw away the corresponding terms from the
partial fraction decomposition of H̃j . Note that, in order to preserve the good approximation
properties at θj , one should compensate for the removed terms. For instance, assume that
we decide to remove the Rj-th term from (6.12) (with Rj = N). Then, we replace H̃j with
the adjusted surrogate

H̃j(z) =
Rj−1∑

i=1

r̃
(j)
i

z − λ̃(j)
i

+
M−Rj+1∑

i=0
r̃

(j)
−i z

i, (6.18)

where the number of smooth terms has been increased by 1. The modified coefficients
{r̃(j)
−i }

M−Rj+1
i=0 are chosen so that

r̃
(j)
Rj

z − λ̃(j)
Rj

+
M−Rj∑

i=0
r̃

(j)
−i z

i ≈
M−Rj+1∑

i=0
r̃

(j)
−i z

i

in some sense. For instance, if H̃j was built by MRI from frequency samples at Zj , we
might find the adjusted coefficients by enforcing interpolation over Zj .

b) We might believe such poles to be missing in the poorer j′-th surrogate, due to some
inaccuracy in building it. Then, we can copy them from H̃j to H̃j′ . As in the previous case,
in order to preserve the good approximation properties at θj′ , this should be accompanied by
a modification of the original terms of H̃j′ . However, we note that, here, it is not necessary
to increase the number of smooth terms M −Rj . See below for a practical instance of this
step.

c) We might believe such poles to be missing in H̃j′ because they are too far away from
the frequency range of interest and, as such, they could not be properly identified by the
surrogate at θj′ , cf. Theorem 3.5. Then, we can add Rj − Rj′ poles at ∞ to the j′-th
surrogate:

H̃j′(z) =
Rj′∑

i=1

r̃
(j′)
i

z − λ̃(j′)
i

+
Rj∑

i=Rj′+1

r̃
(j)
σi

z −∞ +
M−Rj′∑

i=0
r̃

(j′)
−i z

i, (6.19)

where we note that the corresponding residues were copied from the j-th surrogate.
Since the correction is vanishing at θ = θj′ , this does not require any modification to
the original coefficients of H̃j′ . However, it introduces the additional difficulty of having
to interpolate unbounded poles over θ. To this aim, we propose to apply a piecewise-
polynomial/rational interpolation of the poles, extending the approach based on hat functions
described in Section 6.3.1.3. For this, we introduce locally singular (rational) basis functions,
e.g., αθj (θ) = 1/ |θ − θj |, to replace the usual polynomial hat functions at locations with
unbounded poles.
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We compare the three approaches in a simple synthetic example, whose code is available as part
of [Pra21]. Our target is the approximation of the transfer function

H(z, θ) = 1
z −

( 1
2 − 1

4θ
) + 2

z −
( 1

5θ − 1
3
) ,

with (z, θ) ∈ A ×Θ = [−1, 1] × [−1, 1]. We note that H has two real non-intersecting linearly
drifting poles and constant residues. We take parameter sample points at 5 uniformly spaced
points over Θ. We assume that the local frequency surrogate is exact at the 4 points θ1 = −1,
θ3 = 0, θ4 = 1

2 , and θ5 = 1, i.e.,

H̃j(z) = H(z, θj) = 1
z −

( 1
2 − 1

4θj
) + 2

z −
( 1

5θj − 1
3
) for j ∈ {1, 3, 4, 5}. (6.20)

However, we assume that the local frequency surrogate at θ2 = − 1
2 fails to identify the first pole:

H̃2(z) = −8
5 + 2

z + 13
30
. (6.21)

Note that a constant term has been added so that the bad surrogate, albeit missing a pole,
achieves interpolation of H at (z, θ) = (0,− 1

2 ).

In approach a), we remove the first pole (i.e., the positive one) from all surrogates H̃j for
j ∈ {1, 3, 4, 5}. Following approach b) (resp. c)), we adjust the surrogate H̃2 by adding an
extra pole/residue term, with pole λ̃ = λ̃

(1)
1 = 3

4 (resp. λ̃ = ∞) and residue r̃ = r̃
(1)
1 = 1. The

additions/removals of pole/residue terms in approaches a) and b) are followed by adjustments
of the local smooth terms so as to guarantee interpolation of H at z = 0. More specifically, in
approach a), H̃j , for j ∈ {1, 3, 4, 5}, changes from (6.20) to

H̃j(z) = 1
1
4θj − 1

2
+ 2
z −

( 1
5θj − 1

3
) ,

whereas, in approach b), H̃2 changes from (6.21) to

H̃2(z) = 1
z − 3

4
+ 2
z + 13

30
− 4

15 .

No correction is necessary in approach c). We employ piecewise-linear hat functions for the
θ-interpolation in all cases, except in approach c) for the unbounded pole near θ2, where the
singular basis function αθ2(θ) = 1/ |θ − θ2| is used instead.

The results are shown in Figure 6.11. We can observe that a) has a single surrogate pole at each
θ, whereas the other approaches have two. Since our setup falls exactly in the framework of case
b) (i.e., the pole/residues unbalance is caused by a local pole being missed by a local surrogate),
it is this method that provides the best result. Still, we can see that, overall, the reconstructed
approximation is quite poor. Indeed, we cannot expect to perform better if crucial information is
missing from the local surrogates.

Oftentimes, in more realistic applications, imbalances in the number of poles arise outside the
frequency range, so that the effects of the model correction are less visible. This is particularly
the case in two situations of practical interest: when poles of H enter and exit the parameter
range as θ varies and when the local surrogates are built by an adaptive method, cf. Sections
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Figure 6.11 – Figure ?) (top left): plot of exact |y(z, θ)|. In the other plots, we show the surrogate
|ỹ(z, θ)| for T = 5 samples of θ. Different methods are used to deal with the missing top pole at θ = − 1

2 .
All plots have the same color scale. All plots have θ on the x-axis and z on the y-axis.

2.4.1.1, 2.4.2.3, and 5.3. Notably, in the latter case, we should never find ourselves in case b),
assuming that a good criterion for model selection/greedy sampling has been used.

In [NP21] we propose a heuristic way to blend the two approaches a) and b), allowing to remove
some extra poles and reconstruct some missing ones. The main idea is quite simple:

• First, we apply b) to obtain a balanced global surrogate

H̃(z, θ) =
R∑

i=1

∑T
j=1 αj(θ)r̃

(j)
i

z −∑T
j=1 αj(θ)λ̃

(j)
i

+ r̃0(z, θ), (6.22)

where R = maxj Rj and r̃0 is smooth, without throwing away any pole.

• Then, for each i ∈ {1, . . . , R}, we count how many times we had to copy the i-th pole/residue
over from a surrogate to another, i.e., how many elements of {λ̃(j)

i }Tj=1 were artificially
added. If the above count is larger than T times some user-prescribed tolerance (between 0
and 1), then the i-th term is removed from (6.22).

• If any partial fraction term was removed at the above step, apply the necessary adjustments
(to the smooth terms) so that the approximation quality is preserved, cf. the discussion
above.

We provide a pseudo-code for this procedure in Algorithm 5.

It is interesting to note that the reconstruction of missing poles introduces an asymmetry in the
matching procedure, so that the order in which the models are matched matters. For a visual
example, see the situation depicted in Figure 6.12. Note that, depending on whether δ ≷ 2

3 , one or
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Algorithm 5 Pole/residue matching for generic (unbalanced) local frequency surrogates

Require: distinct sample points Θ̃ = {θ1, . . . , θT } ⊂ Cnθ
Require: local surrogates {H̃1, . . . , H̃T }
Require: matching root index j? ∈ {1, . . . , T}, tolerance for synthetic poles δ ∈ [0, 1]
initialize the explored sets as J = {j?}
while #J < T do
breadth-first search: (j, j′)← arg minj∈J, j′∈{1,...,T}\J |θj − θj′ |
if Rj ≥ Rj′ then
find optimal permutation σ by solving (6.17)
append the synthetic terms

∑Rj
i=Rj′+1 r̃

(j)
σi /(z − λ̃(j)

σi ) to H̃j′

correct the smooth terms of H̃j′ to account for the added terms and update Rj′ := Rj
apply the inverse permutation of σ to Rj′

else
find optimal permutation σ by solving (6.17) with j and j′ switched
apply the permutation σ to Rj′
for j ∈ J do
append the synthetic terms

∑Rj′
i=Rj+1 r̃

(j′)
i /(z − λ̃(j′)

i ) to H̃j

correct the smooth terms of H̃j to account for the added terms and update Rj := Rj′

end for
end if
add j′ to J

end while
set I = ∅
for i = 1, . . . , R1 do
count how many elements of {λ̃(1)

i , . . . , λ̃
(T )
i } are synthetic

if count> δ T then
add i to I

end if
end for
for j = 1, . . . , T do
remove the terms

∑
i∈I r̃

(j)
i /(z − λ̃(j)

i ) from H̃j

correct the smooth terms of H̃j to account for the removed terms and update Rj := Rj −#I
end for
return {H̃1, . . . , H̃T }

z

θ

θ1 θ2 θ3
z

θ

matching
direction

z

θ

matching
direction

Figure 6.12 – Example of history-dependent matching. Poles of the surrogates are denoted by full dots
(left plot). Results by matching left-to-right (middle plot) and right-to-left (right plot). Dashed arrows
and empty circles are used to denote pole duplication steps and synthetic poles, respectively.
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two poles will withstand the “synthetic tolerance” check if the matching is carried out right-to-left.
On the other hand, two or no poles will remain after left-to-right matching, depending on δ ≷ 1

3 .

For this reason, it is important to choose well the root in the breadth-first exploration of Θ̃,
namely, j? in Algorithm 5. Unfortunately, there is no practical way to tell what index is optimal,
if any. From a computational point of view, it makes sense to choose as root the surrogate with
the largest number of poles, so that we never have to retrace our steps to add synthetic poles,
i.e., we are always in the first case of the first “if” statement in Algorithm 5.

Moreover, we remark that copying poles over from one surrogate to the next is quite blunt,
especially when the parameter resolution is low. If the poles depend smoothly on θ, it is preferable
to employ a reconstruction with a larger stencil, for instance global polynomial extrapolation,
using information from all the surrogates that contain the missing pole, see Section 6.3.1.3.
However, this is not always viable during the matching loop, since we explore Θ̃ breadth-first: for
instance, if Rj < Rj′ , we are forced to reconstruct poles from the single new model H̃j′ . A similar
problem may arise in the case Rj > Rj′ if the already-explored index set J , cf. Algorithm 5, is
too small. Still, it remains feasible to extrapolate all the synthetic poles with higher order after
the matching loop is complete.

6.4 Adaptive parameter sampling

Until now, we have assumed the parameter sample points Θ̃ to have been fixed in advance.
However, in many situations, it proves extremely useful to have some kind of adaptivity included
in the sampling of Θ, so that samples may be added only where the surrogate model is particularly
inaccurate, e.g., in our case, near pole mismatches or where large θ-interpolation errors occur.
Still, it is quite difficult to devise adaptive strategies in non-intrusive pMOR, especially if the
number of parameters nθ is large, since not much is known about the parametric dependence of
the problem.

We propose here a technique for adaptive θ-sampling based on locally refined sparse grids, closely
related to that considered in [Als+19], which, in turn, relies on some ideas from [MZ09; PPB10].
In the next sections, we first introduce locally refined sparse grids and how to interpolate over
them. Then, the description of our θ-adaptive pMOR approach follows. Our main reference in
this section is [NP21].

6.4.1 Locally refined sparse grids

For simplicity, we carry out our construction in the case Θ = [−1, 1]nθ . Generalizations to more
complicated parameter domains may be obtained by isomorphism. First, consider the nested
(Γ(n) ⊆ Γ(n+ 1) for all n) one-dimensional point sets

Γ(d) =





∅ if d < 0,
{0} if d = 0,
{21−dj}2d−1

j=−2d−1 if d > 0.
(6.23)

We extend this definition to multiple dimensions by tensorization: for any level index d =
(d(1), . . . , d(nθ)) ∈ Znθ , we define the corresponding tensor grid Γ(d) = Γ(d(1))× Γ(d(2))× . . .×
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Γ(d(nθ)). It is useful to define the infinite discrete point set

Ξ =
⋃

d∈Znθ
Γ(d) =

∞⋃

d=0
Γ(d)nθ ,

which is dense in Θ (it coincides with the dyadic rationals in Θ) and also, by construction, a
superset of any tensor grid. For our purposes, it suffices to (improperly) define a sparse grid as a
(finite) subset2 of Ξ. We will define the set of adaptive sample points using sparse grids.

Now, given any point θ ∈ Ξ, we can find a unique depth d = d(θ) such that

θ ∈ Γ(d) \
(
nθ⋃

i=1
Γ(d− ei)

)
, (6.24)

with ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Znθ a zero vector with a single 1 at the i-th component.
Equivalently stated, the coordinates of θ =

(
j(1)/2d(1)−1, . . . , j(nθ)/2d(nθ)−1

)
∈ Ξ are fractions in

lowest terms (with d(i) = 0 if j(i) = 0).

We define the forward points of θ as the (≤ 2nθ) elements of the discrete neighborhood

U(θ) =
nθ⋃

i=1

{
θ̃ ∈ Γ(d + ei) :

∣∣∣θ̃ − θ
∣∣∣ = 2−d

(i)
}

= Θ ∩
nθ⋃

i=1

{
θ ± 2−d

(i)
ei

}
,

Moreover, to each θ ∈ Ξ, with (6.24), we associate a hierarchical hat function ϕθ : Θ → [0, 1]
according to the definition

ϕθ(θ̃) =
nθ∏

i=1
ϕ̃θ(i),d(i)(θ̃(i)), (6.25)

with ϕ̃0,0(·) = 1 and, for d = 1, 2, . . .,

ϕ̃θ,d(θ̃) =





1− 2d−1
∣∣∣θ̃ − θ

∣∣∣ if
∣∣∣θ̃ − θ

∣∣∣ < 21−d,

0 if
∣∣∣θ̃ − θ

∣∣∣ ≥ 21−d.

Note that hierarchical hat functions might be continuously extended to the whole Cnθ through
the definition

ϕθ(θ′) = ϕθ

(
arg min
θ′′∈Θ

|θ′′ − θ′|
)

∀θ ∈ Cnθ .

By construction, ϕθ is hierarchical in the following sense: ϕθ(θ′) = 0 at all θ′ ∈ Ξ of which θ is
a forward point (the backward points of θ). Moreover, ϕθ(θ′′) = 0 also at all backward points
θ′′ ∈ Ξ of such θ′, etc., all the way back to θ = 0. We show some two-dimensional examples of
forward points and of hierarchical hat functions in Figure 6.13.

We rely on hierarchical hat functions to cast piecewise-linear interpolation problems over sparse
grids. More precisely, given sample points Θ̃ = {θj}Tj=1 ⊂ Ξ, and data {f(θj)}Tj=1, the piecewise-
linear interpolant of f based on samples at Θ̃ is the unique element ĨΘ̃(f) of span{ϕθj}Tj=1 which
interpolates exactly the data: this means that there exist unique coefficients {cj}Tj=1, depending

2The classical definition of sparse grids, see, e.g., [BNR00; MZ09; NTW08], assumes the subset to have a
specific structure. Namely, a sparse grid has the form

⋃
d∈∆ Γ(d), with ∆ ⊂ Znθ an index set.
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(a) (b) (c)

0 0.2 0.4 0.6 0.8 1

Figure 6.13 – In the top row, the forward points of (0, 0) ∈ Γ(0, 0) in (a), (−1,−1) ∈ Γ(1, 1) and
(1/2, 0) ∈ Γ(2, 0) in (b), and (−1/2,−1) ∈ Γ(2, 1) and (1/2, 1/2) ∈ Γ(2, 2) in (c). In the bottom row, the
corresponding hierarchical hat functions.

only on Θ̃ and {f(θj)}Tj=1, such that

f(θj) = ĨΘ̃(f)(θj) =
T∑

j′=1
cj′ϕθj′ (θj) ∀j = 1, . . . , T. (6.26)

The (Lagrangian) interpolation weight functions (αj in (6.15)) can then be found as piecewise-
linear interpolants of the data {f(θj′) = δjj′}Tj′=1. We note that the expression of each hierarchical
basis function (6.26) depends only on its support point θj , whereas the expression of each
Lagrangian weight function depends on the whole set of sample points Θ̃.

Let Θ̃ ⊂ Ξ be a downward-closed set, i.e., for all θ ∈ Θ̃, all the backward points of θ are also in Θ̃.
Then, our definition of interpolation coincides with the standard one on sparse grids [BNR00]. This
allows a rather nice interpretation of the expansion coefficients {cj}Tj=1 as hierarchical surpluses,
which provide pointwise information on the approximation error between different sparse grid
levels. On the other hand, when Θ̃ is not downward-closed, the corresponding interpolation might
be quite misbehaved: for instance, if 0 /∈ Θ̃, then ĨΘ̃(f)(0) = 0, regardless of f . In the following,
we will assume that Θ̃ is at least sequentially hierarchical, i.e., that, for all θ ∈ Θ̃, there exists a
sequence {θ̃0, . . . , θ̃L} ⊂ Θ̃, such that θ̃0 = 0, θ̃L = θ, and θ̃j+1 is a forward point of θ̃j for all j.

To conclude, we wish to mention the existence of an alternative family of sparse grids, those of
so-called Haar-type [CCS14; MZ09], which can be obtained as above by replacing (6.23) with

Γ(d) =
{
∅ if d ≤ 0,
{21−dj}2d−1−1

j=−2d−1+1 if d > 0.

This prevents any sampling on the boundary of Θ, restricting the sparse grid points to its interior.
This class of sparse grids is particularly natural when continuous piecewise-linear interpolation
is replaced by discontinuous piecewise-constant interpolation, e.g., through the hierarchical
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(a) (b) (c)

Figure 6.14 – In the top row, the Haar-forward points of (0, 0) ∈ Γ(1, 1) in (a), (−1/2,−1/2) ∈ Γ(2, 2)
and (3/4, 0) ∈ Γ(3, 1) in (b), and (−1/4,−1/2) ∈ Γ(3, 2) and (3/4, 1/4) ∈ Γ(3, 3) in (c). In the bottom
row, the corresponding hierarchical piecewise-constant functions (white is 0 and black is 1).

piecewise-constant basis functions

φθ(θ̃) =
nθ∏

i=1
χ
(
θ̃(i) ∈ [θ(i) − 21−d(i)

, θ(i) + 21−d(i)
]
)

with (d(1), . . . , d(nθ)) the level index associated to θ and χ the indicator function, equal to 1
if its argument is true, and 0 otherwise. See Figure 6.14 for some examples of Haar points
and hierarchical basis functions. We remark that employing such bases for a discontinuous
interpolation of poles and residues is equivalent to a θ-“nearest neighbor” approach, effectively
allowing to skip the pole/residue-matching step completely.

6.4.2 The look-ahead strategy for greedy parameter sampling

Now we are ready to describe our adaptive technique, which is summarized in Algorithm 6. The
main idea is to build a (z, θ)-surrogate based on parameter samples Θ̃ = {θj}Tj=1 that are points
of Ξ, and then use the forward points of Θ̃ as a test set, where the accuracy of the surrogate is
verified. If the surrogate model is too inaccurate at some of the test points, they are added to Θ̃,
a new surrogate is computed, and the test set is enlarged. This loop is repeated until a specified
tolerance is achieved at all current test points.

Within each iteration, in order to quantify the accuracy of the current ROM at a test parameter
value θtest, we use the following look-ahead strategy:

• We use the current ROM H̃ (whose training set does not include θtest, nor any of the other
test points) to predict the frequency response at θtest, by H̃(·, θtest).

• Via MRI (or any other frequency-domain MOR approach), we build a frequency surrogate
H̃test at θtest, which we take as “truth frequency response” at θtest. This requires taking new
snapshots at θtest, at as many frequency points as required (note that adaptive frequency
sampling may be employed).

120



6.4. Adaptive parameter sampling

Algorithm 6 Adaptive parameter sampling

Require: initial parameter sample points Θ̃ = {θ1, . . . , θT0} ⊂ Cnθ (sequentially hierarchical)
Require: algorithm for building local ROMs, algorithm for combining local ROMs
Require: tolerance ε > 0
1: loop
2: for θj ∈ Θ̃ do
3: build frequency ROM H̃j ≈ H(·, θj) via the prescribed algorithm
4: (if a frequency ROM has already been built at θj , just load it from memory)
5: end for
6: build a global ROM H̃ by combining the local ones via the prescribed algorithm
7: initialize Θnext = ∅
8: define the test set Θtest as {forward points of θ}

θ∈Θ̃ \ Θ̃
9: for θtest ∈ Θtest do
10: evaluate H̃(·, θtest)
11: build frequency ROM H̃test ≈ H(·, θtest) via the prescribed algorithm
12: (if a frequency ROM has already been built at θtest, just load it from memory)
13: convert H̃(z, θtest) and H̃test to partial fraction form
14: evaluate dist(H̃(·, θtest), H̃test) as in (6.27)
15: if dist > ε then
16: add θtest to Θnext
17: end if
18: end for
19: if Θnext = ∅ then
20: return H̃
21: end if
22: append Θnext to Θ̃
23: end loop

• We convert the two models to partial fraction form:

H̃(z, θtest) =
R̃∑

i=1

r̃i

z − λ̃i
+ r̃0(z) and H̃test(z) =

R̃test∑

i=1

r̃
(test)
i

z − λ̃(test)
i

+ r̃
(test)
0 (z),

with r̃0 and r̃(test)
0 smooth terms, e.g., polynomials. Note that H̃(·, θtest) is already in partial

fraction form if the pole/residue-matching strategy is employed.

• We judge the accuracy of H̃ at θtest by evaluating its “partial fraction distance”3 from
H̃test, i.e.,

dist(H̃(·, θtest), H̃test) = min
σ∈(1:R̃)!

R̃test∑

i=1

(∣∣∣λ̃σi − λ̃(test)
i

∣∣∣+
∥∥∥r̃σi − r̃(test)

i

∥∥∥
)
. (6.27)

This requires the solution of a matching problem, see Section 6.3.1.2. Note that we have
assumed, without loss of generality, that R̃ ≥ R̃test. If this is not the case, it suffices to
switch the roles of the two ROMs.

For the sake of efficiency, it is crucial to observe that, over the different θ-greedy iterations, the

3Actually, (6.27) does not define a distance, e.g., because it is only semi-positive definite when R̃ 6= R̃test.
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Chapter 6. MOR approaches for parametric frequency-response problems

frequency ROM at some θ? might be required several times, not only when evaluating the quality
of the current surrogate (if θ? is in the test set), but also when building the global surrogate (if θ?
is in the training set). As long as memory is not an issue, one should store frequency surrogates
built at previous steps, so that no expensive snapshot is wasted.

An additional observation can be made, again in the context of not wasting snapshots: in
Algorithm 6, all the local surrogates for θtest ∈ Θtest remain unused when the method terminates.
This occurrence is very similar to the single snapshot that gets wasted in the look-ahead z-adaptive
sampling proposed in Sections 5.3.3 and 5.3.4. Still, here, the scale is much larger, since the
test set can (and usually does) contain quite a large number of parameter values, at each of
which several snapshots were taken. For this reason, it makes a lot of sense to carry out a
post-processing step, where Θtest is appended to Θ̃, and a new global surrogate is built using all
the computed local surrogates. This is the default behavior in the RROMPy package.

6.4.2.1 Features and limitations of look-ahead approach

Our proposed approach, differently from the usual isotropic adaptive sparse grid sampling [BNR00;
NTW08], in general does not add whole levels Γ(d), but only subsets of them. In fact, the training
set is not even guaranteed to be downward-closed, but only sequentially hierarchical. The matter
of missing backward points is discussed to some detail in [Als+19, Section 3.2]. Here, we do not
require missing backward points to be added to the training set, both for simplicity of exposition
and (mainly) to reduce the cost of the offline phase. At the same time, if one can afford a higher
offline time, including backward points is advisable, even though the increase in training cost
could be significant, since each sparse grid point has up to 2nθ backward points, and a (costly)
frequency model must be built at each of them for error estimation.

The main advantage of locally refined sparse grids is, rather obviously, the possibility of performing
local refinements near the parameter values where the current surrogate is worse. Notably, we
note that such local refinements are carried out when generating the test set via forward points.
Still, our proposed look-ahead adaptive sampling can be generalized to non-local refinement
schemes. We proceed by giving more details on one such generalization:

• Let {θ1, θ2, . . .} ⊂ Θ be a sequence of procedurally generated sample points. For instance,
we may draw each θj independently from a certain random distribution over Θ or, more
interestingly, we might generate the sample points via a quasi-random (e.g., Sobol or Halton)
sequence generator.

• Initialize the training set as Θ̃ = {θ}T0
j=1, and the test set as Θtest = {θj}T0+Ntest

T0+1 .

• Build the surrogate based on local frequency ROMs at Θ̃ and find all elements of Θtest that
do not satisfy the tolerance.

• Move such test points from Θtest to Θ̃, and add new test points {θT0+Ntest+1, . . .} to Θtest.
Note that we may keep the size Ntest of the test set fixed or we might increase it as the
training set gets larger and larger.

• If no new test points were added, terminate. Otherwise, repeat the loop.

The biggest drawback of this approach is that the new test points are not selected adaptively,
since they are chosen incrementally from the sequence {θ1, θ2, . . .} ⊂ Θ, which was fixed a priori.
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6.4. Adaptive parameter sampling

This motivates the idea of increasing the size of the test set as the algorithm proceeds, as a way
to better explore the parameter domain.

On the other hand, this sampling strategy has the favorable property of suffering from the curse
of dimension even less than sparse grids. Indeed, in the approximation theory literature, we can
find many examples of (quasi-)random sequences of points being successfully used to approximate
functions over extremely high-dimensional spaces [Coo+20; Kuo+21; MN15]. Unfortunately,
the lack of geometric structure in the sample points makes it tricky to use locally supported
(hat-like) basis functions, cf. Section 6.3.1.3, at least in a natural way. Indeed, one could “force”
a hyper-triangulation based on the training points, but this can be computationally expensive
for modest or large numbers of parameters due, again, to the curse of dimension. As a more
favorable alternative, it is customary to employ radial basis functions or, more generally, kernel
approximation for the interpolation of the target quantity (here, poles and residues).

As a final note, we wish to stress that look-ahead sampling strategies are, by their very nature,
heuristic. In particular, we cannot guarantee that, at the end of the greedy loop, the tolerance
will be attained over the whole parameter domain, since we are using a relatively small (and
sparse) test set to quantify the approximation error. Representing (“sketching”) the parameter
domain via the test set can be justified only by assuming the resolution of the test set to be
sufficiently fine. However, in practice, this is usually computationally unfeasible (especially if the
number of parameters is large, due to the curse of dimension).

6.4.2.2 Dörfler-based adaptivity for parameter sampling

The adaptive strategy described in the previous section employs the partial fraction distance as a
measure of “closeness” between truth and surrogate rational models. In particular, the sampling
algorithm terminates only when this distance is uniformly small over the test set. However, in
some cases, see Section 7.1.2, one can numerically observe that such distance never actually gets
below the prescribed tolerance. As we will see, this is usually due to poorly approximated poles
outside the frequency range, which are positioned far apart in the truth and surrogate models.

One naive way of counteracting this issue is to “cut off” the less relevant poles of the local models
before computing their partial fraction distance. For instance, one could remove from the local
surrogates all the poles that are too far from the frequency range A, employing the Green’s
potential of A to define the distance of each pole from A, cf. Assumption 3.5. Note that, in order
to guarantee good approximation, see Section 6.3.3, pole removal should be accompanied by an
adjustment of the local surrogate. Still, this introduces an additional parameter that needs to be
chosen well, namely, the cut-off level. In particular, if the level is too large, the problem is not
solved at all. On the other hand, if the level is too small, some relevant poles might be removed.

A different (but not necessarily disjoint) way of solving the problem is to use the partial fraction
distance only to determine which test points are badly approximated by the current surrogate,
but employ a different strategy to decide when to stop the sampling. To this aim, one could
simply fix in advance a “computational budget”, which corresponds to how many snapshots we
are willing to take. Then, we proceed with the θ-adaptive sampling as described above. Only,
this time, we terminate the algorithm if the tolerance is attained or if the computational budget
is exhausted.

This “computational budget” idea guarantees that the algorithm will terminate. Still, due to
the above-mentioned poorly approximated poles (if they exist), the algorithm may perform
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Chapter 6. MOR approaches for parametric frequency-response problems

refinements only around the parameters to which such “bad” poles belong, leading to rather
coarse sampling over the rest of the parameter domain. This behavior is not exactly desirable,
since a large portion of the computational budget is (almost) wasted by taking snapshots around
the “bad” surrogate(s). Instead, it seems more reasonable to use the extra samples to explore the
parameter domain slightly more “uniformly”. For this purpose, we describe here a Dörfler-like
approach [Dör96]:

• Fix in advance the computational budget and an adaptivity parameter η ∈]0, 1[ (usually
denoted by θ in the literature).

• At each iteration of Algorithm 6, compute the partial fraction distance at all test points
{dist(j)test}θ(j)

test∈Θtest
, with dist(1)

test ≥ . . . ≥ dist(Ttest)test .

• Add to the training set the T test points with the largest distances, with T being the
smallest integer such that

T+1∑

j=1
dist(j)test > η

Ttest∑

j=1
dist(j)test.

• If the computational budget has been exceeded, terminate. Otherwise, proceed with the
next iteration of the sampling loop.

In this approach, we no longer need to fix a tolerance on the partial fraction distance, since test
points are added not in function of their absolute local error, but depending on their relative
contribution to the total testing error. Note that the value of the parameter η determines whether
we want to carry out more localized (for small η) or more uniform (for large η) θ-refinements, cf.
our numerical experiments in Chapter 7.
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7 Numerical tests

In this chapter, we apply the pMOR approach described in the previous sections to some
applications involving parametric frequency-response problems. For the sake of reproducibility,
the code used to obtain all our results is made publicly available as part of [Pra21]. We note that
the PDE examples presented in Sections 7.2 and 7.3 are discretized with the finite element (FE)
method, using the FEniCS library [Aln+15].

Beside the tests performed below, we remark that other examples of (successful) application of
MRI and of our proposed marginalized pMOR method can be found in [Bon+20a; Bon+20b;
BP19; Pra20] and [BP21; NP21], respectively.

7.1 Vibrations of a PAC-MAN-like drum
Our first application is rather academic, but we include it nonetheless because it showcases fairly
well a few interesting properties of MRI, but also some of the intrinsic difficulties that arise in
the parametric case.

Let θ = (θ(1), θ(2), θ(3)) ∈ R3 be a vector of real parameters. We consider a parametric 2D
PAC-MAN-like spatial domain

Ω = Ω(θ(1)) = B0(1) \
{

(x(1), x(2)) : − tan(θ(1))x(1) ≤ x(2) ≤ tan(θ(1))x(1)
}
, (7.1)

for 0 < θ(1) < π
2 , see Figure 7.1. The associated θ(1)-dependent Hilbert space is

V = V(θ(1)) = H1
0 (Ω(θ(1))) =

{
v ∈ H1(Ω(θ(1))) : v|∂Ω(θ(1)) = 0

}
, (7.2)

which we endow with the usual inner product 〈v, w〉V = 〈grad v, gradw〉[L2(Ω)]2 . Moreover, we
define a piecewise-constant parametric forcing term

u(θ(2)) ∈ L2(B0(1)), with u(θ(2))
∣∣∣
x

=
{

1/(π(θ(2))2) if |x− (0, 0.6)| < θ(2),

0 otherwise,
(7.3)

125



Chapter 7. Numerical tests

for 0 < θ(2) < 0.4, and a piecewise-constant parametric sensor (corresponding to a local average)

g(θ(3)) ∈ L2(B0(1)), with g(θ(3))
∣∣∣
x

=
{

1/(π(θ(3))2) if |x− (0,−0.6)| < θ(3),

0 otherwise,
(7.4)

for 0 < θ(3) < 0.4. We consider the parametric Helmholtz equation with homogeneous Dirichlet
boundary conditions





−(∆ + z)v(z, θ) = u(θ(2)) in Ω(θ(1)),
v(z, θ) = 0 on ∂Ω(θ(1)),
y(z, θ) = 〈v(z, θ), g(θ(3))〉L2(Ω(θ(1))).

(7.5)

In the following, in order to lighten the notation, we will often omit parametric dependence.

Using standard tools from PDE analysis, namely, Sobolev embeddings and the Fredholm alter-
native, we can show that, for all θ ∈]0, π2 [×]0, 0.4[2, (7.5) admits a unique solution in V, for all
z ∈ C \ Λ, with Λ = Λ(θ(1)) being the (positive and discrete) spectrum of the minus Laplacian
operator −∆ : V(θ(1))→ V(θ(1))? = H−1(Ω(θ(1))). In particular, note that Λ is independent of
the input and output parameters θ(2) and θ(3), while y obviously is not.

Due to the simplicity of the problem, we can actually pinpoint the spectrum Λ exactly. To this
aim, consider the homogeneous version of (7.5), obtained by setting u = 0. A complex number
z belongs to Λ iff there exists a non-trivial solution to such problem. We move then to polar
coordinates, so that Ω maps to the rectangle (ρ, φ) ∈]0, 1[×]θ(1), 2π − θ(1)[= Ω′(θ(1)). We make a
separable ansatz v(x, y) = wρ(ρ)wφ(φ), so that the Helmholtz equation can be cast as




−d2wρ
dρ2 (ρ)wφ(φ)− 1

ρ
dwρ
dρ (ρ)wφ(φ)− 1

ρ2wρ(ρ)d
2wφ
dφ2 (φ) = zwρ(ρ)wφ(φ) for (ρ, φ) ∈ Ω′(θ(1)),

|wρ(0)| <∞, wρ(1) = 0,
wφ(θ(1)) = wφ(2π − θ(1)) = 0.

Employing the usual separability arguments, see, e.g., [Sal+13, Section 8.5.1], we conclude that,
for a non-trivial solution to exist, there must exist α2 ∈ C such that

{
− 1
ρ2

d2wφ
dφ2 (φ) = α2wφ(φ) for φ ∈]θ(1), 2π − θ(1)[,

wφ(θ(1)) = wφ(2π − θ(1)) = 0,

and {
−d2wρ

dρ2 (ρ)− 1
ρ
dwρ
dρ (ρ)−

(
1
ρ2 − zα2

)
wρ(ρ) = 0 for ρ ∈]0, 1[,

|wρ(0)| <∞, wρ(1) = 0.

The former problem admits a non-trivial solution iff α
2π−2θ(1) is a non-zero integer, in which case

the solution is
wφ(φ) = A sin

(
πα
(
φ− θ(1)

))
∀A ∈ C.

On the other hand, the latter problem is solved (non-trivially) by multiples of the Bessel function
of the first kind ρ 7→ Jα(

√
zρ), under the (boundary) condition that Jα(

√
z) = 0.

Putting everything together, a non-trivial solution to the homogeneous problem is allowed iff
√
z is a root of Jα for some α ∈ R such that α

2π − 2θ(1) ∈ Z \ {0}. (7.6)
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Figure 7.1 – On the left, mesh used to solve the PAC-MAN-like problem for θ(1) = 3π
24 , coarsened

by a factor 4 to allow to distinguish the elements by eye. We also superimpose the boundaries of the
supports of u(0.2) and g(0.1), in blue and red, respectively. On the right, the solution corresponding to
(z, θ) = (12, 3π

24 , 0.2, 0.1). The value of y is approximately −0.466.

Since the roots of Bessel functions can be approximated to arbitrary precision, this provides
an (almost) explicit definition of Λ. Note that, by self-adjointness of the Laplacian operator,
the corresponding eigenspaces are orthogonal with respect to both the L2(Ω) and H1(Ω) inner
products. Hence, we can automatically deduce V-orthogonality.

In order to approximate numerically the Helmholtz problem (7.5), we discretize Ω by introducing
a mesh T , i.e., a collection of (closed) triangles mutually overlapping at most over edges. Then,
we perform a Galerkin projection of the problem onto the finite element (FE) space

VT =
{
v ∈ H1

0 (ΩT ) : v|T is an affine function for all triangles T ∈ T
}
,

where the computational domain ΩT is the interior of the union of all triangles in T . Note that:

• due to the curved boundary, ΩT 6= Ω;

• since Ω has a concave angle at (0, 0) (for 0 < θ(1) < π
2 ), the triangulation should be

properly refined around 0 to account for potential local irregularities in the solution, e.g.,
unboundedness of its gradient;

• for a fine enough mesh, the spectrum of the discretized problem provides a faithful approxi-
mation of the smaller elements of Λ;

• T and VT depend on θ(1).

In our simulations, we set the mesh size (namely, the largest side length of a triangle) to be
approximately 0.02 near the boundary of ∂B0(1) and approximately 0.003 near the center (0, 0).

We remark that the triangulation T is not conforming to the support of the forcing term and of
the sensor. This leads to additional (but minor) errors due to the non-resolved sub-mesh scale at
the boundary of such supports. It is interesting to note that, from this point of view, we could
treat the FE snapshots as affected by a (z, θ)-dependent noise.

From a MOR point of view, we observe that problem (7.5) does not depend on θ in an affineMOR

way. In particular, the parametric spatial domain could be mapped onto a reference (parameter-
independent) domain, e.g., moving to scaled polar coordinates. However, this, on one hand, forces
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to use a parameter-independent triangulation of the domain, whereas, in practice, it might make
sense to refine the mesh more around (0, 0) for smaller angles θ(1). On the other hand, this does
not solve the issue of non-affineMOR dependence on the other parameters θ(2) and θ(3). In fact, it
makes the matter worse, since the expressions of u and g on the reference spatial domain become
θ(1)-dependent.

Note that, had the spatial domain been more complicated, identifying the mapping to the reference
domain would have been rather difficult. To this aim, methods as those presented in [JIR14;
LR10] could have been employed, at the cost of higher cost, both offline and online. Notably, the
increase in online time is due to the higher number of terms that become necessary to obtain an
affineMOR approximation of the mapping.

7.1.1 Non-parametric setting: changing the metric of the Hilbert space

We start by fixing θ = θ̄ = ( 3π
24 , 0.2, 0.1), and by building a surrogate of the state v with respect

to z over the frequency range A = [5, 75]. Note that the frequency range contains 11 elements
of Λ(θ̄(1)). To build the surrogate, we apply barycentric MRI with adaptive sampling, using
the relative look-ahead estimator from Section 5.3.3 (cf. also Section 5.5.3) with a tolerance
ε = 10−2, and 103 uniformly spaced test frequencies. Note that the problem is affine in z, so that
the residual behavior is captured exactly by Lemma 5.1.

Once the surrogate ṽ has been built, we can derive from it a surrogate ỹ for the output through

ỹ(z, θ̄) = 〈ṽ(z, θ̄), g(θ̄(3))〉L2(Ω(θ̄(1))). (7.7)

Since ṽ is a linear combination of the snapshots, see Definition 3.2, and 〈·, g(θ̄(3))〉L2(Ω(θ̄(1))) is a
linear operation, ỹ can be made online-efficient:

ỹ(z, θ̄) = 〈
S∑

j=1
α̃j(z)v(zj , θ̄), g(θ̄(3))〉L2(Ω(θ̄(1))) =

S∑

j=1
α̃j(z) 〈v(zj , θ̄), g(θ̄(3))〉L2(Ω(θ̄(1)))︸ ︷︷ ︸

y(zj ,θ̄)

,

with {α̃j(z)}Sj=1 being the coefficients of the expansion of ṽ onto the snapshot basis. Note that
such coefficients are explicitly available scalar rational functions of z.

The initial training set contains just the two extreme frequencies {5, 75}. The algorithm terminates
at the 16-th iteration, yielding (after the post-processing described in Section 5.3.3) a rational
surrogate of type [16/16]. We show the resulting surrogate state v and output y in Figure 7.2.
Some validation points are also included, showing a good approximation quality.

We compare this approach with two alternatives:

• z-adaptive MRI with the same parameters, but using the polynomial version with the
Legendre basis rather than the barycentric one;

• z-weak-greedy RB based on the relative residual estimator

η(z) =
∥∥(∆ + z)ṽ(z, θ̄) + u(θ̄(2))

∥∥
V′∥∥u(θ̄(2))

∥∥
V′

(where we compute the numerator using (2.45)), with the same parameters as before.
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7.1. Vibrations of a PAC-MAN-like drum

Due to the different estimator, RB requires one extra iteration to reach convergence.

We note that the sample points are located differently in the three cases, see Figure 7.3. This is
rather interesting if we consider that all three approaches select the next sample point using the
same strategy, i.e., by choosing the test point with the maximal residual, cf. Lemma 5.1. This
means that the only reasons for the different “sampling histories” of the methods are the (minor)
differences in the respective surrogates at each iteration, which get amplified as the algorithm
progresses.

The surrogate states and outputs are visually indistinguishable, so we compare the different
surrogates by their relative approximation error instead. In Figure 7.4, we show the errors in both
state and output. We can see that the results are quite similar, and all the methods achieve the
required accuracy in the state relative error. RB seems to have a slight edge on MRI, especially
for larger frequencies. However, this is just due to the extra snapshot taken. If the RB method
had been stopped one iteration in advance, we would recover an error similar to the two MRI
approaches.

Concerning the error, note that, a priori, MRI is not guaranteed to attain the prescribed tolerance,
due to the partly heuristic nature of the estimator, see Section 5.3.3. On the other hand, RB is
not guaranteed to achieve an error below the tolerance either, since it employs the residual as
estimator, and it is not straightforward to relate error and residual. Indeed, due to the presence
of the resonances, the problem is not uniformly inf-sup stable, so that error and residual are not
equivalent near the poles of v.

We plot in Figure 7.5 the singular value decay of the “normalized snapshot Gramian”, i.e., the
Gramian matrix containing the pairwise inner products between normalized snapshots, which
can be obtained from the standard snapshot Gramian (2.44) as

G0 = d
−1/2
G Gd

−1/2
G , with dG = diag((G)11, (G)22, . . . , (G)SS).

We can observe a plateau that lasts for approximately 11 singular values, exactly as many as the
number of poles of v in A. This is in agreement with the observations in [RM18], since all the
relevant residues are, in some sense, equally important for a uniformly good approximation over
the frequency range. We can actually try to make this observation quantitative, by introducing

ζj =
(

Cap(A)
ΦA(λj)

)S
, j = 1, 2, . . . , (7.8)

with ΦA the Green’s potential of the frequency range and Λ = {λj}∞j=1 being the pole ordering
induced by ΦA, cf. Assumption 3.5. The intuitive motivation behind the definition of ζj is the
error bound appearing in Theorem 3.7, where ζj encodes the dependence on S of the bound over
the frequency range. (In theory, we should use Theorem 3.8 rather than Theorem 3.7 since we
are increasing S and N together, but, unfortunately, the former theorem does not give any upper
bound on the error.) We can see in Figure 7.5 that (7.8) seems to behave quite similarly to the
singular values. Notably, ζ1 = . . . = ζ11 = 1 by definition, in agreement with the already-observed
plateau.

It is quite interesting to note that these observations justify a (heuristic but not-so-intrusive) way
of estimating the number of poles in A by looking at the “width” of the plateau in the singular
values of G0. Before proceeding, we wish to remark that, if we had used the singular values of
the non-normalized snapshot Gramian, we would not have observed a behavior as “clean”, see
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Figure 7.2 – Surrogates for norm of the state (left) and magnitude of the output (right) for the
non-parametric PAC-MAN-like problem. Red dots are validation points, obtained by evaluation of the
FOM.
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which iteration each point was added, starting from 0.
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Figure 7.4 – Norm of the relative error in the approximation of the state (left) and output (right) for
the non-parametric PAC-MAN-like problem.
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Figure 7.5 – Singular values of the normalized (left) and non-normalized (right) snapshot Gramian for
the non-parametric PAC-MAN-like problem in the H1

0 (Ω) metric. The black dots in the left plot are
values of (7.8).
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Figure 7.7 – Locations of sample points for barycentric MRI (top), MRI (middle), and weak-greedy RB
(bottom), for the non-parametric PAC-MAN-like problem in the modified metric. The labels indicate on
which iteration each point was added, starting from 0.
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Figure 7.8 – Norm of the relative error in the approximation of the state (left) and output (right) for
the non-parametric PAC-MAN-like problem in the modified metric.
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Figure 7.9 – Singular values of the normalized (left) and non-normalized (right) snapshot Gramian for
the non-parametric PAC-MAN-like problem in the modified metric. The black dots in the left plot are
values of (7.8).
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Chapter 7. Numerical tests

the right plot in Figure 7.5. Indeed, in the snapshot Gramian, each pole λj inside the frequency
range is given a “relevance” that is inversely proportional to the distance (squared) between λj
and the closest sample point. Since such “relevance” is j-dependent, the “plateau” turns out not
to be very flat.

Now, we wish to investigate whether such satisfactory results rely heavily on the orthogonality of
the residues of v. To this aim, we replace the H1

0 (ΩT ) inner product with a different one on VT ,
namely a weighted `2 one:

〈v, w〉? =
dim(VT )∑

j=1
γjv(xj)w(xj),

where {γj}j are independent samples drawn from a uniform distribution on [0, 1] and {xj}j ⊂ ΩT
are the vertices of T . The inner product on the dual space V? is simply obtained by taking the
reciprocals of the weights.

We repeat our experiment by employing this metric. This, among other effects, will induce
changes in the snapshot Gramians used in the methods. Notably, RB is not too affected by the
change of metric. Indeed, thanks to Lemma 5.1, the residual estimator at each iteration remains
unchanged, except for the possible multiplicative scaling by a constant. The only change is in the
snapshot orthonormalization step, which does not have any effect on the surrogate, apart from a
minor one in terms of numerical stability. We confirm this empirically, by noting that the results
by RB are the same as with the original metric.

As before, barycentric MRI terminates at the 16-th snapshot. However, this time, MRI with
Legendre basis requires as many snapshots as RB (thus yielding a slightly lower approximation
error than barycentric MRI). This being said, by looking at Figures 7.6 to 7.9, no significant
change can be observed with respect to the orthogonal case, except for some slight increase in
the surrogate error. Still, the error stays uniformly below the prescribed tolerance also here. In
particular, note that the plateau in the singular value decay of the normalized snapshot Gramian
can be observed even in this modified norm.

7.1.2 Parametric setting: adventures in adaptive sampling

Next, we allow the two non-geometric parameters θ(2) and θ(3) to vary in the range [0.1, 0.3]2.
Note that, since Λ does not depend on those parameters, the poles of v and y are constant. As
such, the only variations of v and y over (θ(2), θ(3)) are due to changes in the residues. Note,
however, that our pMOR approach, in true non-intrusive fashion, will not be aware of this
property.

In order to approximate this problem, we apply the pole/residue-matching approach with adaptive
parameter sampling, where each local surrogate is built as above via greedy barycentric MRI. In
particular, we apply MRI to the system state v, but then we match and interpolate poles and
residues of the surrogate system output (7.7). We interpolate over (θ(2), θ(3)) via piecewise-linear
hat functions. As initial parameter samples, we set Θ̃ = {(0.2, 0.2)}, and we fix the adaptive
parameter sampling tolerance ε = 35 · 10−2, see Algorithm 6. Note that 35 is a scaling factor that
captures the (half-)length of the frequency range, allowing us to “normalize” the partial fraction
distance (6.27) in some sense. Due to the adaptivity in frequency, the surrogates might (and
do) have different sizes. We choose to deal with this by throwing away any pole that remains
unmatched, which, using the notation of Algorithm 6, corresponds to setting δ = 0. Note that,
due to the poles being constant, this parameter does not affect much the results.
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Figure 7.10 – Parameter sample points for the three adaptive methods, applied to the PAC-MAN-like
problem with two parameters. All plots have θ(2) on the x-axis and θ(3) on the y-axis.
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Figure 7.11 – Qualitative results for the PAC-MAN-like problem with two parameters. Plot of exact
y(z?, θ) in the top left plot. In the other plots, we show the surrogates ỹ(z?, θ). All plots have the same
color scale, reported next to the top left plot. All plots have θ(2) on the x-axis and θ(3) on the y-axis.
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Figure 7.12 – Relative error in the approximation of y at z = z? for the PAC-MAN-like problem with
two parameters. All errors have the same color scale, reported next to the top left plot. All plots have
θ(2) on the x-axis and θ(3) on the y-axis.
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Chapter 7. Numerical tests

Unfortunately, the algorithm does not converge, due to the error at all test points with θ(3) = 0.2
never going below the tolerance. In particular, by direct inspection of the local surrogates, we see
that this is due to very large distances between poles outside the frequency range. For instance,
both surrogates at (θ(2), θ(3)) ∈ {(0.2, 0.2), (0.1, 0.2)} identify very well the 11 poles of v inside
the frequency range, but they also have some extra ones: the former has a pole at z ≈ 233, while
the latter at z ≈ 331. At the first iteration, these faraway poles are matched one to the other,
yielding a large partial fraction distance between surrogate and truth models.

To solve this issue, we try to apply some of the ideas from Section 6.4.2.2, namely, introducing
a cut-off in the poles and using a Dörfler-inspired approach. We start from the cut-off method.
Removing all poles outside the range [−3.75, 83.75] (corresponding to a Green’s potential of
2 Cap(A) = 35) still results in a non-converging algorithm, whereas removing the poles outside
[2.1, 77.9] (corresponding to a Green’s potential of 1.5 Cap(A) = 26.25) converges in a single
iteration with only 5 total snapshots, possibly an indication of a too early termination. Indeed,
in our experience, we find it useful to start from a slightly larger initial sample set Θ̃ whenever
choosing an aggressively low cut-off level.

Concerning the Dörfler approach, we set η ∈ {0.5, 0.9}, while limiting the maximum number of θ-
samples to 30, which, considering the results of the previous section, correspond to approximately
500 total snapshots. Since we do not enforce this computational budget too strictly (even if we go
over the budget, we still allow the current iteration to continue), the two approaches effectively
employ slightly more than 30 parameter samples. More specifically, 31 parameter samples are
taken with both η = 0.5 and η = 0.9.

We show in Figure 7.10 the locations of the sample points for the three successful algorithms
(i.e., cut-off with lower tolerance and the two Dörfler ones). In the Dörfler cases, we can observe
the horizontal local refinements at θ(3) = 0.2 due to the above-mentioned issue of faraway poles.
Moreover, we verify that larger values of η correspond to more uniform refinements.

In Figure 7.11, we compare the methods based on their approximation of y at the randomly
selected frequency z? = 31.2178. We use a linear color scale since we do not expect any resonant
behavior with respect to (θ(2), θ(3)). We note that, thanks to the online efficiency of the surrogates,
obtaining the values for the top left plot took approximately 500 times longer than obtaining
those for the other three plots combined. Moreover, we remark that the “jagged” look of the exact
output is due to the fact that the triangulation is not conforming to the support of the forcing
term and of the sensor, as mentioned above. As a consequence, y is not necessarily smooth with
respect to θ(2) and θ(3). In contrast, the surrogates, being based on samples at just few values of
θ, are smoother.

In Figure 7.12, we provide quantitative information on the approximation error. Out of all
methods, the Dörfler approaches seems to perform best. This is reasonable, since, after all, they
rely on more snapshots than the other ROM. Note that the error cannot be expected to be too
small due to (i) the numerical noise due to the above-mentioned non-conformity of the mesh, (ii)
the error in the local surrogates, and (iii) the piecewise-linear interpolation of smooth poles and
residues.

7.1.3 Parametric setting: non-affineMOR parametrization of geometry

Finally, we add also the remaining parameter θ(1), which we allow to vary within the range [ π12 ,
π
6 ].

Now the spectrum changes as well, but it turns out that the relevant poles do not intersect over
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7.2. Harmonic-elastic deformation of a tuning fork

the chosen parameter range, cf. the analytic formula in Section 7.1 and Figure 7.14. Still, the
poles might leave the frequency range as θ(1) increases.

We apply the same three approaches as before. However, for the Dörfler cases, we increase the
computational budget to 50 parameter samples, i.e., approximately 103 snapshots overall. Note
that, since the triangulation T is θ(1)-dependent, the system state v lives in different spaces for
different values of θ(1). This has two important consequences:

• Every time we take a snapshot at a new value of θ(1), it is necessary to create a new mesh
and project the PDE onto the discrete space from scratch.

• Snapshots of the state v at different values of θ(1) are incompatible. Thus, matching and
interpolating the residues of (the surrogate of) y, instead of those of v, as we did in the
previous section, becomes a necessity rather than a choice.

We display in Figure 7.13 the sample points that are employed in each approach. In both the
cut-off case and the Dörfler one with η = 0.5, the algorithm terminates at 53 snapshots, whereas
65 snapshots are necessary for the Dörfler case with η = 0.9.

Now we move to the quality of the surrogate. Since it is impossible to make plots in > 3D, we
restrict θ to the main diagonal of Θ, i.e.,

θ =
( π

12 + π

12α, 0.1 + 0.2α, 0.1 + 0.2α
)

with α ∈ [0, 1].

We show in Figure 7.14 the surrogate poles obtained with the three methods. We can observe
that most of the exact poles are identified well. Notably, some mismatches happen for the two
largest relevant poles in the Dörfler cases. This is due to a poor choice of the relative weights
of pole distance and residue distance in the matching optimization problem (6.11): had less
importance been given to the residues, the matching would have been correct. Similarly, another
way of fixing the incorrect matches is increasing the number of samples of θ, since, in the limit of
many samples, we expect a correct matching of poles and residues whenever the poles do not
cross.

In Figure 7.15, we show the output y(z, θ) and we compare it with its surrogates. The correspond-
ing approximation error is plotted in Figure 7.16. We observe that the approximation quality is
rather good throughout most of the frequency and parameter ranges. However, the error increases
for larger frequencies due to poles slightly larger than 75 that are not approximated so well by
the ROM. Moreover, in the Dörfler cases, we note a larger error near the pole mismatches. That
being said, thanks to the local support of the θ-interpolation basis, the inaccuracy is localized
both in z and θ.

In all cases, the online speedup is approximately 600. Note that we are including the creation of
the triangulation and the assembly of the FE system in measuring the FOM solution time.

7.2 Harmonic-elastic deformation of a tuning fork
We move to a 3D problem in linear elasticity, which could be considered as a simple example of
frequency response of a mechanical structure under material uncertainties.

Let Ω ⊂ R3 be a region of space occupied by a tuning fork, see Figure 7.17. For reference, the
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Figure 7.13 – Parameter sample points obtained with the cut-off approach (top left), and with the
Dörfler approach with η = 0.5 (top right) and η = 0.9 (bottom), for the PAC-MAN-like problem with
three parameters.
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Figure 7.14 – Exact poles of y over the main diagonal of Θ (top left) for the PAC-MAN-like problem
with three parameters. The other plots contain the surrogate poles for the same values of θ. All plots
have z on the x-axis and α on the y-axis, with α = 0 and α = 1 corresponding to two vertices of Θ.
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Figure 7.15 – Qualitative results for the PAC-MAN-like problem with three parameters. Plot of exact
|y(z, θ)| in the top left plot. In the other plots, we show the surrogates |ỹ(z, θ)|. We vary θ over the main
diagonal of Θ. All plots have the same color scale, reported next to the top left plot. All plots have z on
the x-axis and α on the y-axis, with α = 0 and α = 1 corresponding to two vertices of Θ.

20 40 60
0

0.5

1

cu
t-
off

10−4

10−2

100

20 40 60
0

0.5

1

D
ör
fle

r,
η

=
0.

9

20 40 60
0

0.5

1

D
ör
fle

r,
η

=
0.

5

Figure 7.16 – Relative error in the approximation of y over the main diagonal of Θ for the PAC-MAN-
like problem with three parameters. All errors have the same color scale, reported next to the top left
plot. All plots have z on the x-axis and α on the y-axis, with α = 0 and α = 1 corresponding to two
vertices of Θ.

137



Chapter 7. Numerical tests

total length of the tuning fork is approximately 11cm (see [Pra21] for more details on the spatial
domain). We partition Ω into three parts Ω = Ωpommel t Ωhandle t Ωfork, with Ωpommel being the
spherical pommel and Ωhandle being the remainder of the handle, up to where the fork splits. We
partition the boundary into ∂Ω = ΓD t ΓN , with ΓD = ∂Ωpommel ∩ ∂Ω.

We assume the tuning fork to be made of two linearly elastic materials (one for pommel and
handle, another for the fork) with uniform properties. More precisely, we define piecewise-constant
fields for the Young’s modulus, the Poisson’s ratio, and the material density:

E(θ(1);x) =
{
E0 if x ∈ Ωpommel ∪ Ωhandle,

θ(1) if x ∈ Ωfork,
ν(θ(2);x) =

{
ν0 if x ∈ Ωpommel ∪ Ωhandle,

θ(2) if x ∈ Ωfork,

and ρ(θ(3);x) =
{
ρ0 if x ∈ Ωpommel ∪ Ωhandle,

θ(3) if x ∈ Ωfork.

We fix E0 = 200GPa, ν0 = 0.25, ρ0 = 8kg/dm3, corresponding to steel, whereas we model
θ = (θ(1), θ(2), θ(3)) as uniform random variables, taking values in Θ = [180, 220]GPa×[0.24, 0.26]×
[7.8, 8.2]kg/dm3. We denote their mean value by θ0 = (E0, ν0, ρ0).

We apply a time-harmonic pressure pulse to the top portion of the boundary of one of the
two teeth of the tuning fork. The specific expression at the complex (angular) frequency iω is
f̂(t;x) = f(iω;x)e−iωt ∈ R3, with

f(iω;x) = T

2πL2 exp
(
−|(x− x0)− ((x− x0) · x̃)x̃|2

2L2 + iω
c

((x− x0) · x̃)
)
x̃.

In the expression above, T = 1kN is the total force applied, L = 2cm is the pulse width, x0 =
(−3.1, 10.6, 0)mm is the origin of the pulse, x̃ = (cos(20◦) cos(10◦), sin(10◦), sin(20◦) cos(10◦)) is
the direction of the pulse, and c = 300m/s is the speed of the pulse in the air. Note that f is
space-harmonic in the direction x̃ and Gaussian in any plane orthogonal to x̃.

By linearity, the long-term behavior of the tuning fork can be analyzed by solving the frequency-
domain problem




1
ρ(θ(3)) div σ (v(z, θ), θ) + 2πiη̃zv(z, θ) + 4π2z2v(z, θ) = 0 in Ω̊pommel ∪ Ω̊handle ∪ Ω̊fork,

v(z, θ) = 0 on ΓD,
σ(v(z, θ), θ)ν̃ = f(2πiz) on ΓN ,

(7.9)
with the additional constraint that v(z, θ) and the normal component of σ(v(z, θ), θ) must be
continuous across the interfaces between subdomains, i.e., Ωpommel ∩ Ωhandle and Ωhandle ∩ Ωfork.
In (7.9), we have defined the following quantities:

• The displacement field v(z, θ) ∈ V = [H1
ΓD (Ω)]3, where H1

ΓD (Ω) =
{
v ∈ H1(Ω) : v|ΓD = 0

}
.

We endow V with the elastic energy metric, whose inner product reads

〈v, w〉V =
3∑

i,i′=1
〈(σ (v, θ0))ii′ , (gradw)ii′〉L2(Ω) = 〈σ (v, θ0) , gradw〉[L2(Ω)]3×3 .

Note that we are using the mean value of θ to make the metric parameter-independent.
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7.2. Harmonic-elastic deformation of a tuning fork

• The stress matrix σ ∈ C3×3, whose (linear) constitutive relation is

σ (v, θ) = E(θ(1))
1 + ν(θ(2))

(
grad v + (grad v)>

2 + ν(θ(2))
(1− 2ν(θ(2))) (div v)I

)
.

• The linear frequency z = ω/(2π) ∈ A = [50, 1000]Hz.

• The Rayleigh (mass) damping coefficient η̃ = 100Hz.

• The outer unit normal vector ν̃ to ∂Ω.

As quantity of interest (QoI), we take either of the following two items:

• The maximum displacement magnitude Vmax ∈ R≥0, defined as

Vmax = Vmax(z, θ) = max
x∈Ω
|v(z, θ)|x| , (7.10)

with |·| denoting the usual Euclidean norm in C3. Note that, by construction, Vmax is
usually attained near the end of the teeth of the fork, since it is there that the forcing term
has its support.

• The location (most importantly, the real part) of the natural resonating frequency of
the tuning fork, i.e., in this context, the pole λnat = λnat(θ) ∈ C of v with the smallest
(positive) real part. Note that the frequency and parameter ranges have been chosen so
that Re(λnat(θ)) ∈ A for all θ ∈ Θ.

We remark that the former QoI is a non-linear function of the PDE state v(z, θ), depending on
both z and θ. On the other hand, the latter QoI is a non-linear function of θ only, and for any θ,
its value depends on the whole frequency response of the system.

To make the problem treatable on a computer, we introduce a FE discretization VT of V and then
perform a Galerkin projection of (7.9) onto VT . The finite-dimensional space VT is composed of
piecewise-linear vector-valued functions defined over a tetrahedral discretization of Ω, which has
approximately 1.3 · 104 vertices, resulting in dim(VT ) ≈ 3.9 · 104. We note that the mesh size
has been chosen according to the target frequency range A, to ensure a good resolution of the
relevant frequencies.

Given the solution of the discrete problem v(z, θ) ∈ VT , the corresponding Vmax can be easily
found by computing the maximum of |v(z, θ)|x| over all vertices x of T , due to the discrete solution
being piecewise-linear. On the other hand, computing λnat requires solving a non-Hermitian
quadratic eigenproblem involving the system matrices. Here, we find an approximation of λnat
by augmenting the quadratic eigenproblem, cf. Section 2.2, and then applying the (sparse) eigs
method available in the scipy.sparse.linalg library [Vir+20], which implements an implicitly
restarted Arnoldi method.

Before proceeding, we wish to mention that approximating this problem via projective MOR
is rather complicated, since (i) the problem depends in a non-affineMOR way on z through the
forcing term and (ii) the QoIs are non-linear, hindering online efficiency. In fact, as we will see
below, the non-linearity of the first QoI is an issue even for our approach.
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7.2.1 UQ of non-linear QoIs via locally adaptive sparse grids

We build a surrogate ṽ for the state v by the pole/residue-matching approach from Chapter 6.
To obtain the local surrogates, we apply adaptive MRI with Legendre polynomials, with starting
frequency samples {50, 1000}Hz and tolerance 10−2, using the relative look-ahead estimator from
Section 5.3.3 (cf. also Section 5.5.3). The parameter sample points are selected adaptively starting
from the initial set Θ̃ = {θ0}, by using the Dörfler idea from Section 6.4.2.2, with adaptivity
parameter η = 0.5. We set the computational budget by forcing the number of θ-samples to
be at most 60. Interpolation of poles and residues over θ is carried out by piecewise-linear hat
functions.

We deem important to note that, in the pole/residue matching step, we use a weighted version of
the partial fraction distance (6.27):

dist(H̃(·, θtest), H̃test) = min
σ∈(1:R̃)!

R̃test∑

i=1

(
1

1Hz

∣∣∣λ̃σi − λ̃(test)
i

∣∣∣+ 1
1J

∥∥∥r̃σi − r̃(test)
i

∥∥∥
V

)
.

This is necessary to make the units of poles and residues (Hz and J) compatible.

We remove faraway surrogate poles according to the Green’s potential of A, keeping only those
that have a potential no larger than 2 Cap(A) = 475Hz. This corresponds to removing all poles
outside an ellipse (in C) centered at z = 525Hz, with horizontal and vertical semi-axes of lengths
593.75Hz and 356.25Hz, respectively. Only 4 exact poles are present in this area, as shown in
Figure 7.19 (left). Note that, for all θ, the relevant poles form two pairs of almost coinciding
complex numbers. In particular, all poles must have strictly negative imaginary part due to the
Rayleigh damping.

Surrogates of the QoIs can then be found from ṽ, as follows:

• Ṽmax(z, θ) can be computed from ṽ(z, θ) just like Vmax(z, θ) from v(z, θ), cf. the end of the
previous section. Note that, due to its non-linear nature, Ṽmax is not online-efficient.

• λ̃?(θ) is the pole of ṽ(·, θ) with smallest positive real part. Note that λ̃?(θ) is, by construction,
online-efficient.

The algorithm terminates after 68 samples of θ (see Section 7.1.2 on why more than 60 samples
of θ are taken), whose locations are displayed in Figure 7.18. We can observe that most of the
refinement is performed along θ(1). From this, we can qualitatively conclude that, according to
the pMOR method, the Young’s modulus is responsible for most of the variability. Overall, 886
snapshots of v are taken.

As in the previous example, the dimension of the parameter space prevents visualization of
surrogate and corresponding error over the whole frequency and parameter ranges. In Figures
7.20 and 7.21 we restrict θ to a secondary diagonal of Θ, namely

θ =
(

(180 + 40α)GPa, 0.24 + 0.2α, (8.2− 0.4α)kg/dm3
)

with α ∈ [0, 1].

The first plot compares qualitatively the norm of the state v with its surrogate, whereas the
second shows the relative approximation error in the state. Both results are fairly good, showing
a good accuracy of the surrogate. We mention that the online speedup is approximately 60, i.e.,
in the time required to solve the FOM once, the surrogate can be evaluated 60 times. Note that
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7.2. Harmonic-elastic deformation of a tuning fork

Figure 7.17 – Deformed tuning fork
(by the real part of the displacement) at
(z, θ) = (250Hz, θ0).
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Figure 7.18 – Parameter sample points selected on
a sparse grid by the Dörfler approach with η = 0.5.
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Figure 7.19 – Exact (left) and surrogate (right) poles of y over the main diagonal of Θ. The surrogate
is built from parametric samples on a sparse grid. The coordinates α = 0 and α = 1 correspond to two
vertices of Θ.
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Figure 7.20 – Qualitative results for the ROM built from parametric samples on a sparse grid. Plot of
exact elastic energy ‖v(z, θ)‖V (measured in J) in the left plot. In the right plot, we show the surrogate
‖ṽ(z, θ)‖V . We vary θ over a secondary diagonal of Θ. All plots have the same color scale, reported next
to the left plot. The coordinates α = 0 and α = 1 correspond to two vertices of Θ.
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Figure 7.21 – Relative error in the approximation of v over a secondary diagonal of Θ, from parametric
samples on a sparse grid. The coordinates α = 0 and α = 1 correspond to two vertices of Θ.
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7.2. Harmonic-elastic deformation of a tuning fork

this speedup is fairly good, but not as large as in the previous example, because, in the online
phase, we are approximating the high-dimensional system state, so that true online efficiency is
impossible to achieve.

Next, we move to the first QoI, namely, Vmax. For simplicity, we restrict our focus to a single
frequency z? = 405.8Hz (selected at random). We use a Monte Carlo (MC) approach to
approximate the probability density function (PDF) of Vmax(z?, ·), based on NMC = 104 samples
{Vmax(z?, θi)}NMC

i=1 , with {θi}NMC
i=1 drawn from the distribution of θ. As an approximation, we

repeat the experiment by replacing the FOM Vmax with its surrogate Ṽmax. In particular, we
employ the exact same NMC samples of θ. The PDFs obtained with the two approaches are
shown in Figure 7.22, where we can observe good agreement. Note that, in our plot, rather
than showing a histogram of the MC samples, we show its smoothed version via Gaussian kernel
density estimation (KDE), using the scipy.stats.kde function [Vir+20].

Concerning the computational cost of the MC estimation, let us set as reference TFOM, i.e.,
the time needed for a single FOM solve, which, on a desktop machine with an 8-core 3.60GHz
Intel® processor, is approximately 2 seconds. Running MC with the FOM requires NMCTFOM
(the cost of extracting Vmax from v is negligible). On the other hand, using the ROM requires
approximately 886TFOM (the overhead for training the ROM) plus NMCTFOM/60, with 60 being
the FOM–ROM speedup. Hence, as long as NMC > 886

/(
1− 1

60

)
≈ 900, we can expect to save

time.

Note that there is a (somewhat heuristic) way to further improve the online cost of the surrogate
Ṽmax based on a localized approach. Indeed, as already observed, we can expect the maximum
displacement to be attained near the top of the tuning fork. Let Γtop be the union of the two flat
disks that form the end caps of the tuning fork teeth, i.e.,

Γtop =
{
x ∈ ∂Ω : x(2) = max

X∈∂Ω
X(2)

}
.

(Technically, for our purposes, it would suffice to take the boundary (in the 2D sense) of Γtop,
which is composed of just two circles.) Rather than computing Vmax directly from v using (7.10),
we can introduce an “intermediate system output” y(z, θ) = v(z, θ)|Γtop

∈ [H1/2(Γtop)]3. Note
that such y is a linear functional of v, whose size is much smaller than v’s: specifically, in our
simulation, dim(VT ) ≈ 4 × 104, whereas dim(VT |Γtop

) ≈ 3 · 102. This means that a (mostly)
online-efficient surrogate for y can be easily built from ṽ. Then, we can define the alternative
surrogate

Ṽ ′max = Ṽ ′max(z, θ) = max
x∈Γtop

|ỹ(z, θ;x)| ≈ Vmax(z, θ).

Under the assumption that Ṽmax is attained over Γtop, we have Ṽ ′max = Ṽmax. Still, while the
computation of Ṽmax requires finding the maximum over a vector of FE nodal values of size
dim(VT ), computing Ṽ ′max is much faster, since it only involves a vector of few degrees of freedom.

Computing the second QoI λnat, although very complicated for the FOM, is extremely simple
for the ROM. Indeed, it suffices to evaluate the interpolated surrogate pole with the smallest
positive real part, cf. the surrogate expression (6.10). Hence, the solution of an augmented
non-Hermitian eigenproblem can be replaced by the evaluation of a simple piecewise-linear scalar
function. This allows for a significant online speedup. In our simulation, we measured the speedup
factor to be approximately 3000, since we move from the approximately 15TFOM cost of solving
the eigenproblem to the approximately TFOM/200 cost of evaluating the surrogate λ̃nat. This
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Chapter 7. Numerical tests

means that, overall, we save time as long as NMC > 886
/(

15− 1
200

)
≈ 60. In our experiments,

this speedup comes without any significant drawbacks in accuracy, as we proceed to show. In
Figure 7.23, we compare the MC estimation (smoothed by KDE) of the PDF of Re(λnat) using
NMC = 104 samples of θ. As in the previous case, we observe a good agreement of the two
approximations.

7.2.2 UQ of non-linear QoIs via quasi-random samples

We repeat the experiment from the previous section, changing the strategy for the selection of
the θ-samples used to build the surrogate via pMOR: we use the same number of samples of θ,
but, this time, we identify them via a quasi-random low-discrepancy sequence generator. More
specifically, we use the Halton sequence, see [Hal64]. Such points are much less structured and
have the property of being quasi-uniformly spaced in Θ. Both features can be observed in Figure
7.24, where we plot the 68 sample points.

Due to the lack of geometric structure, we interpolate poles and residues via radial basis functions
with linear bias, namely Wendland C2 functions [Wen04], whose expression reads

ψθj ,r(θ) = ρr




√√√√
(
θ(1) − θ(1)

j

20GPa

)2

+
(
θ(2) − θ(2)

j

0.1

)2

+
(
θ(3) − θ(3)

j

0.2kg/dm3

)2

 , (7.11)

with

ρr(x) =
{(

1− x
r

)4 (1 + 4xr
)

if x < r,

0 otherwise.

Above, θj ∈ Θ is the center of the function, such that ψθj ,r(θ) < ψθj ,r(θj) = 1 for all θ 6= θj ,
whereas r is a scaling factor, whose choice will be detailed shortly. Note that, in (7.11), we have
already applied a non-isotropic scaling by normalizing each parameter according to its range.
The interpolant of the generic θ-dependent quantity φ (with θ ∈ C3 as in our case) is

Ĩ{θ1,...,θT }r (φ)(θ) =
T∑

j=1
cj,rψθj ,r(θ) + b0,r +

3∑

i=1
bi,rθ

(i),

where the coefficients {cj,r}Tj=1 and {bi,r}3i=0 are found by enforcing interpolation and orthogonality
conditions: 




Ĩ
{θ1,...,θT }
r (φ)(θj) = φ(θj) for j = 1, . . . , T,∑T
j=1 c0,r = 0,∑T
j=1 ci,rθ

(i)
j = 0 for i = 1, 2, 3.

(7.12)

The above system has size T + 4 and is linear in the coefficients, so that it can be solved rather
easily. Notably (7.12) has a symmetric saddle-point structure, and its conditioning depends on
the choice of r: smaller values of r correspond to very concentrated basis functions, and make
the interpolation conditions more “diagonal”, leading to a better-conditioned system. Conversely,
larger values of r increase the spread of the basis functions, making the problem worse-conditioned.
As such, we employ the following “linear search”-like conditioning-motivated idea, fairly common
among radial basis practitioners, for choosing the value of r:

• Start from an initial value, e.g., r = 1 or r equal to the smallest distance between sample
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Figure 7.24 – Parameter sample points gen-
erated with the Halton scheme.
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Figure 7.25 – Relative error in the approximation
of v over a secondary diagonal of Θ, from quasi-
random parametric samples. The coordinates α = 0
and α = 1 correspond to two vertices of Θ.
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quasi-random parametric samples), respectively. On the right, the MC approximations of the first
moments of Vmax.
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points.

• Assemble (7.12) and compute its spectral condition number κr, i.e., the ratio of the largest
and smallest singular value of the matrix appearing in the left-hand-side of (7.12).

• If κr is too small, say κr < 106, increase r and retry.

• If κr is too large, say κr > 1012, decrease r and retry.

(Note that this strategy is independent of the interpolated quantity φ.) This approach (with the
above-mentioned bounds on the condition number) yields r = 16 for our set of samples.

In Figure 7.25, we show the approximation error over a secondary diagonal of Θ (the same as
in the previous example, cf. Figure 7.21). We see that the approximation error is fairly similar
to the sparse grid case, if not slightly better, except near the extreme values α = 0 and α = 1,
since, after all, the corresponding vertices of Θ do not belong to the training set Θ̃ (whereas
they always belong to the sparse grid in the previous section). More generally, we may expect
the quality of the surrogate to degrade slightly near the boundary of Θ. The results of the MC
simulations using the surrogate are also fairly similar to the sparse grid case, as can be seen in
Figures 7.26 and 7.27.

Overall, this approach has some advantages:

• Interpolating poles and residues with radial basis functions can be expected to yield better
results than with piecewise-linear hat functions whenever the interpolated quantities are
smooth functions of θ. This seems to be the case in the present example.

• Due to the low-discrepancy property of the sequence of sample points, approaches based
on quasi-random points should be expected to place a higher “density” of sample points
inside Θ rather than near its boundary. This can be beneficial in the context of UQ, since
extreme values of θ (located near the boundary of Θ) are often less likely, particularly if
the underlying distribution of θ is not uniform but has a higher concentration near θ0.

However, there are also some drawbacks:

• Radial basis functions are a bit more costly to evaluate than piecewise-linear hat functions
(at least, this is the case in our implementation). Accordingly, the online efficiency might
suffer slightly. In this specific example, the speedup factor is approximately 15, as opposed
to 60 for sparse grids.

• As already mentioned in Section 6.4.2.1, quasi-random sequences do not allow for local
refinements of the test set in an adaptive sampling framework. In particular, a Dörfler
approach with quasi-random sequences is essentially the same as just taking the first T
elements of the quasi-random sequence, with T being the computational burden.

7.3 Admittance of a transmission line
Our next example comes from circuit modeling and analysis. With it, we wish to show that
even a (slightly) larger number of parameters can be handled by our proposed technique. Before
proceeding, we wish to mention that a similar example has been presented in [NP21].
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Figure 7.28 – Schematic of the transmission line (left) and circuit representation of a unit RLC cell
(right). The degrees of freedom in the modified nodal analysis formulation are the voltage across the
capacitor and the current through the resistor (inductor and resistor are lumped together using their
total equivalent impedance R+ 2πiL).

We consider the 3-port Y-shaped transmission line depicted in Figure 7.28. Each branch of the
circuit is composed of a series of unit RLC cells: the “main” branch contains 200 cells, whereas
the “up” and “down” branches contain 100 cells each. The point of contact between the three
branches is a simple Y-junction. The values of resistance, inductance, and capacitance vary both
within a branch and from one branch to the others. More specifically, let the cells be indexed
from left to right by j, with j ∈ {1, . . . , 200} on the main branch and j ∈ {1, . . . , 100} on the
others. Then, we have

Rmain
j = ξ

(1)
j θ(1), Rup

j = ξ
(2)
j θ(2), Rdown

j = ξ
(3)
j θ(3),

Lmain
j = ξ

(4)
j θ(4), Lup

j = ξ
(5)
j θ(5), Ldown

j = ξ
(6)
j θ(6),

Cmain
j = ξ

(7)
j θ(7), Cup

j = ξ
(8)
j θ(8), Cdown

j = ξ
(9)
j θ(9),

with {ξ(i)
j }j,i being dimensionless scaling factors that we use to model random fluctuations of the

nominal values in each cell. In particular, we draw each of them independently from a uniform
distribution over [0.75, 1.25]. Such random values are drawn once and for all at the beginning of
the simulation, and we consider them fixed in the scope of our analysis.

As parameters, we take the mean values of R, L, and C over each branch, namely, (θ(1), . . . , θ(9)),
which we constrain to the hyper-rectangular parameter domain

θ ∈ Θ = ([9, 11]mΩ)3 × ([450, 550]pH)3 × ([450, 550]fF)3
.

We denote by θ0 the centroid of Θ and we set the frequency range as z ∈ A = [0, 8]GHz. In A
and immediately around it, we can find 12 resonances of the system. Their real parts can be seen
in Figure 7.30 (note that there is a double pole with Re(λ) = 0Hz for all θ) and their imaginary
parts are approximately equal to 15MHz.

Our target is the analysis of the admittance parameters y = y(z, θ) of the system, which form
a 3× 3 complex matrix (measured in Ω−1). Each entry of the matrix provides information on
the current between a port of the circuit and ground, when a unit AC voltage is applied at a
single port, while the other ports are shorted to ground. To compute the admittance parameters,
we apply modified nodal analysis to the circuit, obtaining a θ-dependent system representation
of the form (6.1). In particular, we have nu = ny = 3, with one column of B and one row of C
per port of the circuit, whereas nv = 803, with v containing a collection of current and voltage
values within the circuit. Note that the system is, by linearity of the Kirchhoff laws and of the
components, affine in θ.
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7.3.1 High-dimensional adaptive sampling with modest tolerance

We build a surrogate ỹ for the admittance parameters y by the pole/residue-matching approach.
To obtain the local surrogates, we apply adaptive MRI with Legendre polynomials, with starting
frequency samples {0, 8}GHz and (relative) tolerance 10−3, using the look-ahead estimator from
Section 5.3.3. The parameter sample points are selected adaptively starting from the initial set
Θ̃ = {θ0}. As stopping criterion, we fix the adaptive parameter sampling tolerance ε = 5 · 10−2,
see Algorithm 6, on a weighted version of the partial fraction distance (6.27):

dist(H̃(·, θtest), H̃test) = min
σ∈(1:R̃)!

R̃test∑

i=1

1
4

(
(10−9s)

∣∣∣λ̃σi − λ̃(test)
i

∣∣∣+ (1Ω)
∥∥∥r̃σi − r̃(test)

i

∥∥∥
F

)
,

with ‖·‖F the Frobenius norm. We do this to normalize the poles, but also to make the units
(Hz and Ω−1) compatible by nondimensionalization. Note that the same quantity is used also to
match poles and residues. Then, we use piecewise-linear hat functions to interpolate poles and
residues.

We remove faraway surrogate poles according to the Green’s potential of A, keeping only those
that have a potential no larger than 1.5 Cap(A) = 3GHz. This corresponds to removing all poles
outside an ellipse (in C) centered at z = 4GHz, with horizontal and vertical semi-axes of lengths
5GHz and 1.67GHz, respectively. Note that, due to this fairly strict cut-off, poles that leave the
frequency range by more than 1GHz are necessarily removed from the local surrogates. This
makes it complicated for the global surrogate to approximate poles that are in A (or close to it)
for some parameter samples but then move (slightly) farther away for other values of θ. As a way
to counteract this problem, we apply the “unbalanced matching” approach from Algorithm 5,
with δ = 0.25. This means that surrogate poles might be synthetic at up to 25% of the sample
points.

The parameter sampling loop ends after 3 iterations of Algorithm 6, with a total number of
parameter samples equal to 163, corresponding to 3625 total snapshots. In Figure 7.29, we show
some components of the sample points. We can observe that refinement are applied mostly
across different electric components (e.g., resistors and capacitors) and not between the same
components (e.g., resistors and resistors), regardless of branches.

Due to the modest dimension of the parameter space, we restrict θ to 1-dimensional manifolds
to make our next visual comparisons. In particular, we consider the principal and a secondary
diagonal of Θ:

θP =
(

(9 + 2αP )mΩ, (9 + 2αP )mΩ, (9 + 2αP )mΩ, (450 + 100αP )pH, (450 + 100αP )pH,

(450 + 100αP )pH, (450 + 100αP )fF, (450 + 100αP )fF, (450 + 100αP )fF
)

for αP ∈ [0, 1]

and

θS =
(

(11− 2αS)mΩ, (9 + 2αS)mΩ, (9 + 2αS)mΩ, (550− 100αS)pH, (550 + 100αS)pH,

(450 + 100αS)pH, (550− 100αS)fF, (450 + 100αS)fF, (450 + 100αS)fF
)

for αS ∈ [0, 1].

In Figures 7.30 and 7.31, we show the results for principal and secondary diagonals, respectively.
For simplicity, we restrict our focus to a single off-diagonal entry of y: the admittance between the

148



7.3. Admittance of a transmission line

9 10 119
10

11

9

10

11

θ(1) [mΩ] θ
(2

) [m
Ω]

θ(3
)

[m
Ω

]

9 10 11450
500

550

450

500

550

θ(3) [mΩ] θ
(4

) [p
H]θ(5

)
[p

H
]

9 10 11450
500

550

450

500

550

θ(3) [mΩ] θ
(6

) [p
H]θ(9

)
[n

F]

Figure 7.29 – Adaptively selected parameter sample points (using a modest tolerance). Different triples
of components are shown in different plots.
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Figure 7.30 – Qualitative results using a modest tolerance along the principal diagonal of Θ. Top left:
exact |yUD(z, θP )| (measured in Ω−1). Top right: exact ∠yUD(z, θP ). Middle left: surrogate |ỹUD(z, θP )|.
Middle right: surrogate ∠ỹUD(z, θP ). Bottom left: relative error |ỹUD(z, θP )− yUD(z, θP )| / |yUD(z, θP )|.
Bottom right: surrogate poles λ̃(θP ). In each column, all plots have the same color scale, reported next
to the top plot.
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Figure 7.31 – Qualitative results using a modest tolerance along a secondary diagonal of Θ. Top left:
exact |yUD(z, θS)| (measured in Ω−1). Top right: exact ∠yUD(z, θS). Middle left: surrogate |ỹUD(z, θS)|.
Middle right: surrogate ∠ỹUD(z, θS). Bottom left: relative error |ỹUD(z, θS)− yUD(z, θS)| / |yUD(z, θS)|.
Bottom right: surrogate poles λ̃(θS). In each column, all plots have the same color scale, reported next
to the top plot.
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Figure 7.32 – On the left, plot of the magnitude of exact yIU(z, θ?) and of its surrogates (using a
modest tolerance). On the right, the corresponding relative error.
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7.3. Admittance of a transmission line

two output ports. In the eyeball-norm, the surrogate seems to provide a fairly good approximation
of both magnitude and phase of yUD. We note that it looks like the zeros of y (the blue curves
in the magnitude plots) are not approximated too well. After all, MRI focuses mostly on the
approximation of the poles of the target quantity, rather than of its zeros: a good approximation
of the zeros derives, somewhat indirectly, from the global convergence results (in capacity), cf.
Theorems 3.7 and 3.8.

The relative error plots provide more quantitative results. We can see that the error is rather large
(between 0.1 and 1) over a modest portion of the frequency and parameter range (especially in
Figure 7.31). This was to be expected due to the intrinsic difficulties in approximating multivariate
rational functions in modest and high dimension. In our specific case, the not-so-small error is a
direct consequence of the rather large tolerance that was employed. Setting a lower tolerance
would decrease the error, at the cost of a (much) larger number of samples. Overall, the observed
behavior is consistent with the usual results when approximating high-dimensional functions,
where the approximation quality is great in the eyeball-norm, but not that good in the “actual”
error norm.

The presence of areas of Θ where the relative error is larger than the prescribed tolerances
for z- and θ-adaptivity might seem an indication that the adaptive sampling algorithms, i.e.,
Algorithms 3 and 6, are not working as they should. However, this is not the case for the following
reasons:

• The tolerance on z is guaranteed to be attained only at the training points Θ̃ and not on
the whole Θ. In fact, even on Θ̃, the relative error is necessarily below the tolerance only
over the (admittedly, very fine) z-test set.

• The tolerance on θ is guaranteed to be attained only at the training and test points, i.e.,
in particular, at the forward points of the parameter sample set Θ̃. Due to the modest
dimension of the parameter space, 3 iterations are not enough to reach the vertices of Θ via
forward points. This allows for rather large errors at αP , αS ∈ {0, 1}, which are actually
quite far (at least, in the “forward points” sense) from the training set. One could weaken
this issue by starting from a larger initial set Θ̃ of training points.

• The tolerance on θ is enforced on the partial fraction distance between surrogate and truth
models at the test parameters. While a small partial fraction distance is necessary to have a
good approximation (notably, a small relative error), it is not sufficient for it. In particular,
this can be observed when some of the exact poles are missing from the surrogate, as it
happens near z = 8GHz and αP = 1.

Unfortunately, these issues are not easily solvable, especially when the number of parameters is
large, with the main culprit being the curse of dimension. Indeed, a faithful approximation of a
(1 + nθ)-varied function (like our QoI) will, in general, require a number of samples that increases
exponentially with nθ, even if the target quantity is sufficiently smooth. In devising an adaptive
sampling strategy, one should be aware of the fact that a “sufficiently in-depth” exploration of
the parameter space is quite often computationally unfeasible. In our experiments, we choose to
be conservative on the total number of snapshots taken, accepting the inevitable ensuing decrease
in accuracy.

Looking at Figure 7.30, we can see that the surrogate misses a single pole, close to 8GHz for
αP = 1. This was to be expected, since the pole is rather far from A (notably, it is outside the
cut-off ellipse) for most values of θ, so that it gets eliminated by Algorithm 5. We note that this
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Chapter 7. Numerical tests

causes local inaccuracies, visible mostly in the phase and error plots. Also concerning the poles,
we can see in Figure 7.31 that the poles cross. The surrogate is able to recognize this, cf. the
crossing surrogate poles in the bottom-right figure, thanks to the presence of the residual distance
in the partial fraction distance (6.11) that gets minimized in the matching step.

Since it cannot be seen in the pole plots, we also underline that the double pole at z = 0Hz
is properly identified by the surrogate, which has an (almost) θ-independent pair of poles at
z ≈ ±1kHz.

As a final experiment, we consider the randomly selected parameter point

θ? = (9.75mΩ, 10.9mΩ, 10.5mΩ, 510pH, 466pH, 466pH, 456fF, 537fF, 510fF),

which does not belong to Θ̃. We look at the admittance yIU between input and up ports,
comparing the exact and surrogate values. Moreover, we also consider the value of yIU yielded by
the local frequency surrogate built at the point

θ̃? = arg min
θ̃∈Θ̃

∣∣∣θ̃ − θ?
∣∣∣ .

Such local surrogate is part of the surrogates whose partial fraction expansions are interpolated
to give the overall (z, θ)-surrogate. This comparison is a numerical verification of the pole/residue
interpolation step: more specifically, we wish to check whether the interpolated poles and residues
work better than just using their respective values at the closest parameter sample point, cf. the
discussion on Haar grids in Section 6.4.1.

The results are shown in Figure 7.32. A comparison of the surrogate magnitude |yIU(·, θ?)| shows
that the piecewise-constant (in θ) frequency surrogate at θ̃? performs rather poorly, with the
larger poles being grossly misplaced, whereas the overall piecewise-linear (in θ) surrogate yields a
much better approximation. The relative error provides a quantitative verification of this fact.
We can see that the global surrogate error is uniformly smaller.

7.3.2 High-dimensional adaptive sampling with low(er) tolerance

We repeat the experiment from the previous section with a reduced θ-sampling tolerance ε = 10−2.
This time, the algorithm terminates in 8 iterations, after 1945 samples of θ, corresponding to
41428 total snapshots. We can observe in Figure 7.33 some components of the sample points.
Again, we can observe that refinements are carried out mostly across electrical components of
different type.

In Figures 7.34 and 7.35, we show the results for the principal and secondary diagonal defined in
the previous section, respectively. Again, we only look at the admittance between the two output
ports. We notice that the approximation error near z = 8GHz and αP = 1 is still rather large,
due to the local pole that is missed by the overall surrogate. Similarly, the approximation error
near z = 8GHz and αS = 0 has not improved much, apparently due to a lack of local refinements.
Except for that, the approximation quality seems to be at least slightly better.

We show in Figure 7.36 the surrogate at the randomly selected point θ?, cf. the previous section.
Again, we compare the overall surrogate with the local frequency surrogate built at the sample
point closest to θ?. In particular, we note that such closest sample point θ̃? is, by chance, the
same as in the previous section. The conclusions that we can draw from Figure 7.36 are similar to
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Figure 7.33 – Adaptively selected parameter sample points (using a small tolerance). Different triples
of components are shown in different plots.
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Figure 7.34 – Qualitative results using a small tolerance along the principal diagonal of Θ. Top left:
exact |yUD(z, θP )| (measured in Ω−1). Top right: exact ∠yUD(z, θP ). Middle left: surrogate |ỹUD(z, θP )|.
Middle right: surrogate ∠ỹUD(z, θP ). Bottom left: relative error |ỹUD(z, θP )− yUD(z, θP )| / |yUD(z, θP )|.
Bottom right: surrogate poles λ̃(θP ). In each column, all plots have the same color scale, reported next
to the top plot.
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Figure 7.35 – Qualitative results using a small tolerance along a secondary diagonal of Θ. Top left:
exact |yUD(z, θS)| (measured in Ω−1). Top right: exact ∠yUD(z, θS). Middle left: surrogate |ỹUD(z, θS)|.
Middle right: surrogate ∠ỹUD(z, θS). Bottom left: relative error |ỹUD(z, θS)− yUD(z, θS)| / |yUD(z, θS)|.
Bottom right: surrogate poles λ̃(θS). In each column, all plots have the same color scale, reported next
to the top plot.
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|ỹ I
U

(z
,θ

?
)−
y

IU
(z
,θ

?
) |

|y
IU

(z
,θ

?
)|

full ROM closest z-ROM
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tolerance). On the right, the corresponding relative error.
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7.3. Admittance of a transmission line

those that we already derived from Figure 7.32. Notably, the global surrogate error is comparable,
if not slightly worse, than the one from the last section. In our opinion, the reason behind this
is related to the pole around z = 8GHz that is “missed” near the vertex of Θ corresponding
to αP = 1. Indeed, even though, with respect to the results from the previous section, more
parameter samples are added near such vertex, the pole is still rejected by Algorithm 6, since
it is still missing in more than 25% of the local frequency surrogates. Accordingly, several of
the frequency surrogates have to be adjusted to account for the removed pole, as described in
Section 6.3.3, introducing additional minor errors for z near 8GHz. Since the number of adjusted
surrogates is larger (in proportion) than before, we can expect the effect of this correction to be
slightly more noticeable.

Overall, in our view, the “increase” in accuracy was not worth the extra offline cost, especially
considering that the accuracy is not guaranteed to increase, cf. Figures 7.32 and 7.36. Indeed,
our numerical results can serve as evidence of the fact that, in the parametric setting, the
approximation error does not necessarily decrease monotonically as new snapshots are added.
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8 Conclusions and outlook

This thesis has covered most of the research work that the author has carried out in his 4 years
as a PhD candidate at EPFL.

The first novel contribution is in the form of an original MOR technique, dubbed MRI, aimed at
the non-intrusive surrogate modeling of non-parametric frequency-domain applications. We have
developed and analyzed MRI in the framework of rational approximation. On the theoretical
side, we have taken as reference some classical results in scalar approximation theory [Wal60],
and we have shown that the approximation error converges maximally for a suitable class of
target functions. Also, we have shown that the approximation of the resonating frequencies of
the problem converges at exponential rate. On the applied side, we have provided a practical
MRI algorithm and we have investigated the most relevant issues that intrinsically arise when
implementing non-intrusive rational MOR techniques like MRI, especially considering finite-
precision arithmetic. In addition, we have introduced a strategy for combining MRI with adaptive
sampling, which allows to identify the “best” sample point locations in an automated fashion.

Then, we have outlined the main problems that one encounters in moving from the non-parametric
setting to the parametric one, and we have described a pMOR approach as a way to solve some
of them, relying on a marginalization strategy: MRI is used to build frequency surrogates at
different parameter values, which are then combined to obtain a global reduced model. This
method is still non-intrusive and, if coupled with a suitable parameter sampling strategy, can be
applied even if the number of parameters is modest. The combination of the frequency surrogates
is a critical step for a good approximation quality. As such, we have discussed the topic to
some length, presenting the biggest limitations of our approach, which are mostly related to the
approximability of the problem and to the (possible) incompatibility of the frequency surrogates.

We have complemented our presentation with several numerical experiments to showcase our
proposed approaches, both in the non-parametric and parametric settings. In the non-parametric
case, we have compared MRI with other MOR methods, showing that the obtained results are
mostly similar to (and sometimes better than) the state-of-the-art approaches for the considered
problems. Moreover, we have also successfully verified our theoretical claims in an empirical way.
In the parametric case, we have provided numerical evidence to support the effectiveness of our
technique in few “case studies” of practical interest, whose parametric frequency responses were
approximated fairly well by our method. Although the sizes of our examples are rather small,
when measured in terms of the cost of solving the FOM, we have still been able to observe a
significant ROM-FOM speedup. This allows us to hope for an even greater online efficiency in
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more realistic applications.

8.1 Perspectives
We believe that this thesis provides a thorough presentation of our proposed MOR technique,
with an incremental discussion going from the single-point non-parametric case to the rather
complex parametric setting with fully adaptive sampling. This being said, our investigation has
not, by far, reached its conclusion, and several questions remain outstanding.

A first matter that, in our opinion, deserves further study, is that of well-posedness for MRI, in
the following sense. Consider the non-parametric setting, and assume that the FOM snapshots
are affected by unpredictable noise. If the noise is “small”, should we expect the MRI to be
close to that obtained in the noise-free case? Many results can be found in the literature for
the well-posedness of polynomial interpolation, based, e.g., on the concept of Lebesgue constant
[Smi06]. As such, we should be able to deal with the stability related to the computation
of the MRI numerator. On the other hand, the MRI denominator depends on the snapshots
in a rather complicated way, and it is not clear if we should expect well-posedness. Some
preliminary investigations on this are actually under way, in the scope of applying MRI to
snapshots obtained with h-adaptive FEM, so that the above-mentioned noise corresponds to the
numerical discrepancies due to the different h-adapted meshes used to compute the snapshots.
Some results in this context are already available for intrusive MOR, see, e.g., [ASU17; URL16],
even though the theory only applies to elliptic and parabolic PDEs, and not to problems with
resonant behavior like ours.

A second open question concerns the pole/residue matching step described in Section 6.3. Our
decision of matching poles and residues of the frequency surrogates one by one, cf. Section
6.3.1.2, was motivated by complexity concerns: the bipartite matching problem can be solved in
polynomial time, while the T -partite matching one is NP-hard for T ≥ 3. However, we should
expect the results obtained with a “global” T -partite matching to be more accurate, since this
latter approach can (potentially) identify and exploit global features of poles and residues, as
opposed to just local ones. Notably, one could, in theory, combine the matching and interpolation
steps into one, trying to fit poles and residues with surrogates defined globally over the parameter
domain without having to match them first. The main obstacle to this approach is, as already
mentioned, the computational complexity. Still, it might be feasible to tackle this matching
problem using some ideas from machine learning, whose abilities in pattern recognition are often
praised. In particular, we believe that useful tools could be found in the “clustering” and “mixture
models” literature, see, e.g., [Bis06].

Related to this, we find our third envisioned line of further inquiry: is the matching and
interpolation of poles and residues the best we can do in marginalized pMOR? We have presented
several alternatives in Section 6.2.2, each with its own pro and cons. Notably, our selected method
based on the simple partial fraction decomposition (6.12) is a special case of the one involving local
reduced system matrices, described in Section 6.2.2.3. This latter approach has the advantage of
not needing simple poles, but requires the identification of “change of basis” matrices to remove
the “freedom introduced by realization”, and may struggle in dealing with frequency surrogates of
different sizes. Still, due to its generality, we believe it to have great potential. In particular, we
note that interpolating the local reduced system matrices is equivalent (under some conditions)
to interpolating the coefficients of the numerator and denominator appearing in the rational form
of each local surrogate, i.e., the polynomials Pj and Qj such that Hj = Pj/Qj . Accordingly,
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instead of interpolating poles and residues, it might make sense to interpolate numerators and
denominators. However, among other issues, we note that numerator and denominator can be
both multiplied by an arbitrary constant without changing the rational surrogate, so that such
interpolation must necessarily be carried out over a suitable manifold, taking this extra degree of
freedom into account.
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A Polynomial bases satisfying As-
sumption 3.4

We start from two auxiliary results, which provide sufficient conditions for the lower and upper
bounds in Assumption 3.4 to hold, respectively.

Lemma A.1. Let Γ ⊂ C be a piecewise-smooth bounded curve, and take w : Γ→ R≥0 a weight
function, with ‖w‖L1(Γ) =

∫
Γ w(z) |dl(z)| <∞. Consider a family of complex-valued polynomials

Ψ∞ = {ψi}∞i=0, hierarchical in the sense that deg(ψi) = i for all i. Moreover, assume that Ψ∞ is
orthogonal over Γ with respect to the w-weighted inner product, i.e.,

∫

Γ
w(z)ψi(z)ψi′(z) |dl(z)| = γiδii′ ∀i, i′ = 0, 1, . . . .

If there exist two positive constants a and b, such that γi ≥ abi for all i = 0, 1, . . ., then
ΨN = {ψi}Ni=0 satisfies the lower bound in Assumption 3.4 for all z0 ∈ C, for some (z0-dependent)
cz0 and ρz0 , whose values are given explicitly in the proof. Namely,

|Q(z)| ≥ (cz0)N
N ′∏

j=1

|z − zj |
ρz0 + |z0 − zj |

∀Q ∈ PΨN ,z0
N (C;C) ∀z ∈ C ∀N ∈ N,

where {zj}N
′

j=1 ⊂ C \ {z0} are the roots of Q (repeated according to multiplicity).

Proof. Let N ≥ 1 and z0 be arbitrary, but fixed. Take Q ∈ PΨN ,z0
N a polynomial with roots

{zj}N
′

j=1 ⊂ C \ {z0} (repeated according to multiplicity). Let Q =
∑N
i=0 qiψi and ω(z) =

∏N ′

j=1(z − zj), so that Q = τω for some τ ∈ C \ {0}. Then, by orthogonality of ΨN ,

∫

Γ
w(z) |Q(z)|2 |dl(z)| =

N∑

i,i′=0
qiqi′

∫

Γ
w(z)ψi(x)ψi′(x) |dl(z)| =

N∑

i=0
γi |qi|2

≥amin{1, b}N
N∑

i=0
|qi|2 = amin{1, b}N .

On the other hand, given ρz0 = maxz∈Γ |z − z0|, the triangular inequality gives

∫

Γ
w(z) |Q(z)|2 |dl(z)| = |τ |2

∫

Γ
w(z)

N ′∏

j=1
|z − zj |2 |dl(z)|
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≤ |τ |2
∫

Γ
w(z)

N ′∏

j=1
(|zj − z0|+ ρz0)2 |dl(z)|

= |τ |2
N ′∏

j=1
(|zj − z0|+ ρz0)2 ‖w‖L1(Γ) ,

so that

|τ | ≥
(
amin{1, b}N
‖w‖L1(Γ)

)1/2 N ′∏

j=1

1
ρz0 + |z0 − zj |

.

By |Q| = |τ | |ω|, the lower bound in (3.18) follows, with

cz0 =
(

min {1, b}min
{

1, a

‖w‖L1(Γ)

})1/2

(this value is chosen so that (amin{1, b}N/ ‖w‖L1(Γ))1/2 ≥ (cz0)N for all N ≥ 1).

Lemma A.2. Consider a family of complex-valued polynomials {ψi}∞i=0, hierarchical in the sense
that deg(ψi) = i for all i. Given a fixed z0 ∈ C, assume that

∑N
i=0 |ψi(z0)|2 ≤ (Cz0)2N for some

Cz0 , for all N = 0, 1, . . .. Then ΨN = {ψi}Ni=0 satisfies the upper bound in Assumption 3.4 for
the given z0 and Cz0 . Namely,

|Q(z)| ≤ (Cz0)N
N ′∏

j=1

∣∣∣∣
z − zj
z0 − zj

∣∣∣∣ ∀Q ∈ PΨN ,z0
N (C;C) ∀z ∈ C ∀N ∈ N,

where {zj}N
′

j=1 ⊂ C \ {z0} are the roots of Q (repeated according to multiplicity).

Proof. Let N ≥ 1 be arbitrary, but fixed. Take Q ∈ PΨN ,z0
N a polynomial with roots {zj}N

′
j=1 ⊂

C \ {z0} (repeated according to multiplicity). Let Q =
∑N
i=0 qiψi and ω(z) =

∏N ′

j=1(z − zj), so
that Q = τω for some τ ∈ C \ {0}. Then,

|Q(z)| = |Q(z0)|
∣∣∣∣
Q(z)
Q(z0)

∣∣∣∣ = |Q(z0)|
N ′∏

j=1

∣∣∣∣
z − zj
z0 − zj

∣∣∣∣

(note that |Q(z0)| 6= 0 since z0 is not a root of Q). Now, by the Cauchy-Schwarz inequality, we
have

|Q(z0)| =
∣∣∣∣∣
N∑

i=0
qiψi(z0)

∣∣∣∣∣ ≤
(

N∑

i=0
|qi|2

)1/2( N∑

i=0
|ψi(z0)|2

)1/2

≤
(

N∑

i=0
|ψi(z0)|2

)1/2

≤ (Cz0)N .

The claim follows.

Now we present some specific instances of bases satisfying Lemmas A.1 and A.2. Consider the
Chebyshev polynomials over A = [−1, 1]:

{
ψ0(z) = 1, ψ1(z) = z,

ψi+2(z) = 2zψi+1(z)− ψi(z) for i ≥ 0.
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It is well known that they satisfy the orthogonality relation

∫ 1

−1

ψi(x)ψi′(x)√
1− x2

dx =





π if i = i′ = 0,
π
2 if i = i′ > 0,
0 if i 6= i′,

so that γi ≥ π · 2−i for all i ≥ 0. Moreover, their values at 0 are

ψi(0) =
{

(−1)i/2 if i is even,
0 if i is odd,

so that
∑N
i=0 |ψi(z0)|2 = bN2 c+ 1 ≤ 2N/2 for all N ≥ 0. Hence, they satisfy Assumption 3.4 with

z0 = 0, ρ0 = 1, cz0 = π−1/2, and Cz0 = 21/4. More generally, due to the boundedness of the
Chebyshev basis, the same can be said for any z0 ∈ [−1, 1], possibly with a larger value of Cz0 .

Similar considerations hold for the Legendre polynomials over A = [−1, 1]:
{
ψ0(z) = 1, ψ1(z) = z,

ψi+2(z) = 2i+3
i+2 zψi+1(z)− i+1

i+2ψi(z) for i ≥ 0.

Indeed, they also satisfy an orthogonality relation:
∫ 1

−1
ψi(x)ψi′(x)dx =

{
2

2i+1 if i = i′,

0 if i 6= i′,

so that γi ≥ 2 · 3−i for all i ≥ 0. Moreover, their values at 0 are

ψi(0) =
{

(−1)i/2

2i
(
i
i/2
)

if i is even,
0 if i is odd,

so that1
∑N
i=0 |ψi(z0)|2 ≤ (5/4)N/2 for all N ≥ 0. Hence, they satisfy Assumption 3.4 with

z0 = 0, ρ0 = 1, cz0 = 3−1/2, and Cz0 = (5/4)1/4. More generally, due to the boundedness of the
Legendre basis, the same can be said for any z0 ∈ [−1, 1], possibly with a larger value of Cz0 .

Shifts and dilations of (the independent variable of) the polynomial basis can be handled by
employing the following result.

Lemma A.3. Assume that ΨN = {ψi}Ni=0 satisfies Assumption 3.4 for some z0, ρz0 , cz0 , and
Cz0 . Then, given a, b ∈ C, with a 6= 0, Ψ̄N = {ψ̄i : z 7→ ψi(az + b)}Ni=0 also satisfies Assumption
3.4 for z̄0 = (z0 − b)/a, ρ̄z0 = ρz0/ |a|, c̄z0 = cz0 , and C̄z0 = Cz0 .

Proof. It suffices to apply a change of variable in (3.18).

1For conciseness, we skip a proof of this fact, which can be easily obtained by induction.
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