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Abstract— This paper presents a block BFGS based dis-
tributed optimization approach for nonlinear model predictive
control (NMPC). The proposed method is a variant of the
augmented Lagrangian based alternating direction inexact
Newton method (ALADIN), which achieves a locally super-
linear convergence rate. To deal with the NMPC problem
in continuous time by employing the proposed method, we
elaborate on a systematic implementation based on the C++
library PolyMPC. The performance and advantages of the
proposed method are illustrated by applying the algorithm to
a benchmark continuously stirred tank reactor case study.

I. INTRODUCTION

Model predictive control (MPC) as an advanced control
technique has attracted many interests in both industry [26]
and academia [28]. The idea of MPC is to solve an opti-
mization problem at each sampling instant, which optimizes
a given performance criterion on a finite prediction horizon
subject to potentially nonlinear system dynamics as well as
state and control constraints. In practice, the optimization
problems are scaled up if the dynamic system has distributed
structure comprising a number of subsystems [19], [31] or if
a long prediction horizon is considered [18], [24]. This leads
a significant challenge to the online numerical solver.

When the dynamic system is linear, the online optimal
control problems (OCP) are quadratic programs (QP). A
number of distributed optimization algorithms based on
dual decomposition, have been proposed to deal with OCP
QPs. For example, the gradient ascent method is applied
to solve the dual problem [11], [27]. Some other alternates
employ for example a semi-smooth Newton method [10],
[21] or smoothing techniques based on self-concordant bar-
rier functions [9]. Another class of distributed optimization
methods for convex optimization problems are based on the
alternating direction method of multipliers (ADMM) [3].
In [24] an optimal control algorithm based on ADMM has
been developed. Here, the authors applied ADMM in order
to decompose the optimal control problem in time. Other
authors have investigated applications of ADMM to cooper-
ative control, where a model decomposition is needed [4],
[25]. Recently, an open-source ADMM based QP solver,
OSQP [30], has been released and applied to design linear
MPC controllers.

Concerning nonlinear model predictive control (NMPC),
sequential convex programming (SCP) [17], [33] based al-
gorithms, have been investigated for solving the resulting
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nonlinear programs (NLP). For example, the software li-
brary GALAHAD [12] implements a number of augmented
Lagrangian based methods. Another alternate is to use inte-
rior point (IP) method. A successful IP based optimization
toolkit is IPOPT. In order to save time in practice by
avoiding the evaluation of exact sensitivities, [17] proposed
a quasi-Newton based sequential quadratic programming
(SQP) method exploiting the block-diagonal structure of the
Hessian matrix. Besides, approximate closed-loop schemes,
have been proposed [7], [33] to trade control performance
for speed. In these methods, a fixed number of iterations
of optimization algorithm are employed at each sampling
time such that a suboptimal control input is yielded on-
line. [7] proposed to apply a single SQP step at each
sampling time. Local stability properties of such a scheme
was further investigated in [8] while the corresponding open-
source toolkit ACADO [15] provides a framework for direct
optimal control in real-time iteration. Recently, a C++ library
PolyMPC is proposed in [22] for pseudospectral based
real-time NMPC. A more general framework of real-time
predictive control has been investigated in [33], [34].

In the context of NMPC, although most of the function
evaluation and sensitivity computation can be parallelized in
both SCP and IP methods, distributed NMPC methods, which
solve smaller scale nonlinear programming (NLP) problems
as part of their iteration, remain scarce. This is mostly due
to the fact that only a very few methods exists [14] for non-
convex distributed optimization. Dual decomposition meth-
ods are not applicable to nonconvex optimization problem,
because we may have a duality gap. Similarly, ADMM
methods are in general divergent when applied to non-
convex optimization problems, as discussed in [16]. Recently,
a notable exception, the alternating direction augmented
Lagrangian based inexact Newton (ALADIN) method, has
been proposed [16]. ALADIN is a distributed nonconvex
optimization problem solver, which is capable of achieving
local quadratic convergence rates under mild assumptions
if the exact Hessian is evaluated. Initial attempts to apply
ALADIN in the context of nonlinear optimal control can be
found in [20]. Furthermore, [18] proposed a parallelizable
real-time iteration for NMPC without state and control
constraints, which runs a single ALADIN iteration at each
sampling time.

Section II introduces a generic form of distributed opti-
mization problem that distinguishes the locally decoupled
and coupled variables. The main contribution of this paper
can be found in Section III and IV. Section III proposes a
variant of ALADIN based on block inverse BFGS updates.
The computational complexity and convergence properties



of the method is discussed. We prove that the complexity
of BFGS-ALADIN is smaller than the complexity of BFGS-
SQP. Furthermore, compared with BFGS-SQP, which can
only make primal iterates have local superlienar conver-
gence rate, we show that the primal-dual iterates of BFGS-
ALADIN converge superlinearly. Section IV considers the
NMPC problem in continuous time and introduces a time
splitting based distributed reformulation. Then, we discuss
the implementation details of BFGS-ALADIN for NMPC
based on PolyMPC. Section V presents numerical results
that have been obtained for a benchmark continuously stirred
tank reactor (CSTR) reactor control problem and which show
that the proposed scheme outperforms BFGS-SQP methods
while being able to stabilize in real time iteration. Section VI
concludes the paper.

Notation: We use notation Sn++(Sn+) to denote real sym-
metric and positive (semi-)definite matrices in Rn×n. For a
given matrix Σ ∈ Sn++, we use notation ‖x‖2Σ = x>Σx. A
local minimizer is called a regular KKT point if the linear
independence constraint qualification (LICQ), strict comple-
mentarity (SC) and the second order sufficient conditions
(SOSC) are satisfied [23]

II. PROBLEM FORMULATION

This paper concerns distributed optimization problems
consisting of M subproblems with decision variables xi ∈
Rnxi and yi ∈ Rnyi ,

min
x,y

M∑
i=1

fi(xi, yi) (1a)

s.t.
M∑
i=1

Aixi = 0 | λ (1b)

hi(xi, yi) ≤ 0 | κi i = 1, ...,M , (1c)

with decoupled objective fi : Rnxi × Rnyi → R and
decoupled inequality constraint hi : Rnxi × Rnyi → Rnhi .
Both are potentially non-convex. Throughout the paper, we
write down the Lagrangian multipliers immediately after
the constraints such that λ ∈ Rm and κi ∈ Rnhi denote
the Lagrange multipliers of the coupled affine equality (1b)
and decoupled inequality constraints (1c), respectively. (1)
distinguishes between yi that are entirely local and xi that
are coupled via an affine constraint (1b) given by matrices
Ai ∈ Rm×nxi . Note that in practice, the number of coupled
variables is often much smaller than the number of fully
decoupled variables, i.e. nx � ny . In order to exploit such
structure, we define the parametric optimization problem

Fi(xi) := min
yi

fi(xi, yi) s.t. hi(xi, yi) ≤ 0 , (2)

over xi while additionally enforcing Fi(xi) = ∞ for all xi
for which (2) is infeasible. As a result, Fi : Rnxi → R∪{∞}
is an extended-value function. In this paper, we assume:
A1 The functions fi and hi are three times continuously

differentiable in both arguments.
A2 Matrix A = [A1 ... AM ] has full row rank.

Note that Fi are, however, non-differentiable, even if A1
is satisfied. This happens because there may be changes of
active set. A2 is equivalent to the standard LICQ condition
for coupled equality constraints. Accordingly, Problem (1)
can be rewritten in the form of

min
x

M∑
i=1

Fi(xi) s.t.
M∑
i=1

Aixi = 0 . (3)

Here, the main motivation for considering problems of the
form (3) is that the original (1) might be a large-scale
optimization problem that is difficult to solve directly. To
this end, an efficient distributed algorithm is developed in
the next section to solve (3), where the functions Fi can be
evaluated in parallel.

III. BLOCK BFGS BASED ALADIN

This section proposes a block BFGS based ALADIN vari-
ant to solve (3). Similar to existing ALADIN methods [16],
[20], the proposed variant also alternates between solving
decoupled small-scale NLPs in parallel and dealing with a
equality constrained QP for consensus. However, our main
advantage is that the consensus QP is constructed only w.r.t.
the coupled local variable xi and does not need consider the
active constraints at local solutions. The two main steps of
the proposed approach is summarized as follows:

1) Parallelizable Step: The small-scale NLPs

ξk+1
i = arg min

ξi
Fi(ξi) + (Aiξi)

>λk +
1

2

∥∥ξi − xki ∥∥2

Σi
(4)

with potentially adjustable scaling matrices Σi ∈ Snxi
++ are

solved in parallel for all i = 1, ...,M . Here, we use k
to denote the iteration counter. The first-order optimality
condition of (4) yields

bk+1
i = Σi(x

k
i − ξk+1

i )−A>i λki ∈ ∂Fi(ξk+1
i )

with ∂Fi(ξ
k+1
i ) the sub-differential [29] of Fi at the point

ξk+1
i . Note that only if Fi are differentiable at ξk+1

i , bk+1
i

are equal to the gradient ∇Fi(ξk+1
i ). However, Fi are not

always differentiable. In such case, we only know that
bk+1
i ∈ ∂Fi(ξk+1

i ). Then, the BFGS Hessian approximation
is computed as follows,

Hk+1
i = Hk

i −
Hk
i s
k
i (Hk

i s
k
i )>

(ski )>Hk
i s
k
i

+
dki (dki )>

(dki )>ski
(5)

with ski = ξk+1
i − ξki and dki = bk+1

i − bki .
2) Consensus Step: The equality-constrained QP

xk+1 = arg min
x

M∑
i=1

1

2

∥∥xi − ξk+1
i

∥∥2

Hk+1
i

+ x>i b
k+1
i

s.t.
M∑
i=1

Aixi = 0 | λk+1 , (6)

based on the local information is solved. In the following,
we use compact notations

H = diag(H1, ...,HM ) , b =
(
b>1 ... b>M

)>



such that the linear KKT system of (6) can be written as[
Hk+1 A>

A 0

][
xk+1

λk+1

]
=

[
Hk+1ξk+1 − bk+1

0

]
. (7)

Accordingly, the solution of (7) can be worked out analyti-
cally as

λk+1 =

[
M∑
i=1

Ai(H
k
i )−1A>i

]−1

(8a)

·

[
M∑
i=1

Ai
(
ξk+1
i − (Hk+1

i )−1bk+1
i

)]
,

xk+1
i = ξk+1

i −
[
Hk+1
i

]−1
(A>i λ

k+1 + bk+1
i ) . (8b)

As BFGS update (5) is a rank-2 update while the solution
map (8) only requires the inverse of Hk

i , the Sherman-
Morrison-Woodbury formula could be applied to directly
evaluate the inverse Bki = (Hk

i )−1 , i = 1, ...,M with
a rank-2 update as well [23, Chapter 6]. The computation
detail is discussed in the next section.

A. Algorithm Structure

Algorithm 1 elaborates the proposed distributed method
for solving (3) in detail. In Step 1), as functions Fi have
the form (2), one should not introduce a bilevel structure
for solving the decoupled NLPs (4), but solve the joint
augmented Lagrangian minimization problem (10) instead.
As a result, bk+1

i evaluated in Step 3) is equal to the partial
derivative

bk+1
i =

∂

∂xi

{
fi(ξ

k+1
i , yk+1

i ) + (κk+1
i )>hi(x

k+1
i , yk+1

i )

}
where κk+1

i denotes the dual solution of decoupled prob-
lem (10). Step 2) implements a termination criterion. If the
condition holds, we can have the current iteration satisfy the
stationary condition and primal condition of (3) up to an
error of order O(ε), i.e.,

O (ε) =

M∑
i=1

Aiξ
k+1
i and O (ε) ∈ ∂Fi(ξk+1

i ) +A>i λ
k

for all i = 1, ...,M . The Sherman-Morrison-Woodbury
formula is applied to evaluate the sensitivities (11) in Step 3)
and to update the dual Hessian in Step 4). Note that the
update of Dk requires the forward sweep (12) to apply the
Sherman-Morrison-Woodbury formula recursively for each
block AiBiA

>
i in (9). Step 5) updates the primal and dual

iterates following (8). The complexity of the block BFGS
update in Algorithm 1 is O

(∑M
i=1 n

2
xi

)
. Compared to this,

the BFGS based SQP methods for solving (1) requires at
least O

(∑M
i=1(nxi

+ nyi)
3
)

. Because a direct BFGS update
has to be used with linearizing the inequality constraint in
sub-QPs such that the standard active set solvers cannot
exploit rank-2 updates.

The standard ALADIN method [16] requires one to con-
sider the linearization of active inequality constraints at the

Algorithm 1 Block BFGS-based ALADIN
Input:
• Initial guesses x0

i ∈ Rnxi and λ0 ∈ Rm.
• Choose a terminal tolerance ε > 0, scaling parameters
ρ > 0 and scaling matrices Σi ∈ Snxi

++ .
Initialization:
• Set k = 0 and choose initial inverse Hessian approxi-

mation B0
i ∈ Snxi

++ and set

D0 =

[
M∑
i=1

AiB
0
iA
>
i

]−1

. (9)

Repeat:
1) Solve decoupled NLPs

(ξk+1
i , yk+1

i ) :=

arg min
ξi,yi

fi(ξi, yi) + (A>i λ
k)>ξi +

1

2

∥∥ξi − xki ∥∥2

Σi

s.t. hi(ξi, yi) ≤ 0 | κk+1
i (10)

for all i = 1, . . . ,M in parallel.
2) If

∥∥∥∑N
i=1Aiξ

k+1
i

∥∥∥ ≤ ε and maxi ‖ξk+1
i − xki ‖ ≤ ε,

terminate with

(x∗, y∗) = (ξk+1
1 , ..., ξk+1

M , yk+1
1 , . . . , yk+1

M ) .

3) Evaluate sensitivities

bk+1
i = Σi(x

k
i − ξk+1

i )−A>i λk , (11a)

Bk+1
i = (I − αki ski (dki )>)>Bki (I − αiski (dki )>)

+ αki d
k
i (dki )> (11b)

Sk+1
i =


(√

βki Aid
k
i +

αk
i√
βk
i

AiB
k
i s
k
i

)>
(
− αk

i√
βk
i

AiB
k
i s
k
i

)>

>

(11c)

for all i = 1, ...,M in parallel, where

ski = ξk+1
i − ξki , dki = bk+1

i − bki ,

αki =
1

(dki )>ski
, βki = (αki )2

(
(ski )>Bki s

k
i + 1

)
.

4) Set Dk+1 = Dk and compute
For 1 : M do

Dk+1 ← Dk+1 −Dk+1Sk+1
i (12)

·
(
I + (Sk+1

i )>Dk+1Sk+1
i

)−1
(Sk+1
i )>Dk+1

End
5) Update the primal and dual iterates by computing

λk+1 = Dk+1

[
M∑
i=1

Ai
(
ξk+1
i −Bk+1

i bk+1
i

)]
, (13a)

xk+1
i = ξk+1

i −Bk+1
i (A>i λ

k+1 + bk+1
i ). (13b)

6) Set k ← k + 1 and go to Step 1).



local solution of (10). Therefore, the changes of local active
set causes that the scale of the coupled QP in the standard
ALADIN method is changed in iterations. Moreover, all
variables xi and yi are included in the coupled QP. In
order to solve the associated large scale KKT system, as
discussed in [20], every iteration requires the null space
method to eliminate the linearization of the active constraints.
In contrast to this, QP (6) is only related to variables xi such
that its scale is small and fixed. Each loop of Algorithm 1
only needs to compute the dual update (13a) with updating
D, and then broadcasts λk+1 such that (13b) can be evaluated
in parallel.

B. Local Convergence Analysis

If Algorithm 1 is initialized far from the local minimizers,
an advanced globalization routine has to be used in order
to enforce convergence, more details refer to [16, Sec. 6].
The following discussion is about the local convergence
properties of Algorithm 1.

A3 Function F (x) =
M∑
i=1

Fi(xi) satisfies F (x∗ + Ps) <∞
for all s in a neighborhood of x∗ a local minimizer of
Problem (3). Here, matrix P spans the null space of
constraint Jacobian A, i.e., AP = 0.

In order to establish the local convergence, we introduce the
following technical result.

Lemma 1 Let A1–3 be satisfied. If the local minimizer
(x∗, λ∗) is a regular KKT point, there exist neighborhoods
Xi = {xi | ‖xi − x∗i ‖ ≤ ε} with ε > 0 in which Fi is twice
continuously differentiable for all i = 1, ...,M .

A3 ensures that gradients ∇Fi exist in a neighborhood of the
solution (x∗, λ∗). If (x∗, λ∗) is further a regular KKT point
of (3), there exists sets Xi in which the active set of (2) is
fixed at any xi ∈ Xi. If A1 also holds, the proof of Lemma 1
follows by applying a generalized version of the implicit
function theorem for parametric programming [2].
A4 The BFGS update Hk

i and its inverse Bki are bounded
for all i = 1, ...,M .

Here, A4 further assumes the BFGS updates are bounded
such that the following Lemma can be introduced.

Lemma 2 Let A1–4 be satisfied and the initialization satis-
fies x0

i ∈ Xi while ‖H0
i − ∇2Fi(x

∗
i )‖ is sufficiently small.

If Algorithm 1 converges to a regular KKT point and the
curvature condition (ski )>dki ≥ 0 locally holds for all k > 0,
the iterates of Algorithm 1 satisfy the following inequalities

‖xk−x∗‖ ≤ o(‖ξk−x∗‖), ‖λk−λ∗‖ ≤ o(‖ξk−x∗‖). (14)

We provide a proof of Lemma 2 in the Appendix. Then, the
local super-linear convergence of Algorithm 1 is given by
the following theorem.

Theorem 1 Let the assumptions in Lemma 2 be satisfied.
Furthermore, The scaling matrices Σi in (10) locally are
assumed to satisfy ∇2Fi(x

∗
i ) + Σi � 0 for all i = 1, ...,M .

If the local minimizer is a regular KKT point, then (xk, λk)
converges to (x∗, λ∗) superlinearly.

Proof. In Algorithm 1, the solution of decoupled prob-
lems (10) is a parametric map over the current primal dual
iterates (xk, λk). According to [16, Lem. 3], the solution
map is Lipschitz continuous under the assumptions, i.e., there
exist constants χ1, χ2 > 0 such that

‖ξk+1 − x∗‖ ≤ χ1‖xk − x∗‖+ χ2‖λk − λ∗‖ . (15)

Based on Lemma 2, substituting (14) into (15) yields

‖xk+1−x∗‖+‖λk+1−λ∗‖ ≤ o(χ1‖xk−x∗‖+χ2‖λk−λ∗‖),

which indicates the superlinear convergence rate. �

Remark 1 In practice, the curvature condition d>i si > 0
in Lemma 2, which may be violated even when the iterates
are close to the minimizer [23]. A damped variant of inverse
BFGS for non-convex optimization can be used to overcome
this difficulty [5]. In contrast to standard inverse BFGS,
damped BFGS replaces di by

vi = θidi + (1− θi)Bisi ,

where the scalar θi is computed as

θi =

1 if d>i si ≥ 0.2s>i Bisi ,

0.8s>i Bisi
s>i Bisi−d>i si

if d>i si < 0.2s>i Bisi .
(16)

Then, we only have R-superlinear rate [23, Sec. 18.7].

IV. DISTRIBUTED NONLINEAR MODEL PREDICTIVE
CONTROL USING POLYMPC

This section presents using Algorithm 1 as an online solver
in a nonlinear model predictive control (NMPC) scheme
while elaborating on its implementation details based on the
PolyMPC library.

A. Time Splitting for NMPC

The NMPC problem in continuous time is given by

min
s(·),u(·)

∫ T

0

`(s(t), u(t))dt+ Φ(x(T ))

s.t. ∀t ∈ [0, T ] , ṡ(t) = f(s(t), u(t)) ,

∀t ∈ [0, T ] , c(s(t), u(t)) ≤ 0 ,

s(0) = ŝ , Ψ(s(T )) ≤ 0

(17)

with state s : [0, T ]→ Rns , control inputs u : [0, T ]→ Rnu ,
stage cost ` : Rns × Rnu → R≥0, and terminal cost
Φ : Rns → R. Here, function f : Rns × Rnu → Rnx

denotes the process governing differential equation and c :
Rns ×Rnu → Rnc denotes state and control inequality path
constraints while Ψ : Rns → Rnf the terminal constraints.
The initial state is given by x̂ ∈ Rnx . In order to handle (17)
in a distributed manner, we split the time horizon [0, T ] into
M intervals [ti, ti+1] for all i = 0, ...,M − 1 with t0 = 0



and tM = T . Next, we write down short horizon NMPC
problems

Vi(a, b) = min
s(·),u(·)

∫ ti+1

ti

`(s(t), u(t))dt

s.t. ∀t ∈ [ti, ti+1] , ṡ(t) = f(s(t), u(t)) ,

∀t ∈ [ti, ti+1] , c(s(t), u(t)) ≤ 0 ,

s(ti) = a , s(ti+1) = b ,

(18)

with parametric initial state a and terminal state b. More-
over, we enforce Vi(a, b) = ∞ if (18) is infeasible. As a
result, (17) can be rewritten into the dense form of (3),

min
x

M−1∑
i=0

Vi(x
a
i , x

b
i ) + Φ(xbM−1)

s.t.

{
xbi = xai+1 , i = 0, 1, ...,M − 2

xa0 = ŝ

(19)

such that Algorithm 1 can be used as the online solver to deal
with (17). Note that solving the decoupled problem requires
discretization first and direct method [1] is commonly used.

B. Implementation using PolyMPC

The diagram shown in Figure 1 elaborates the implementa-
tion details of applying Algorithm 1 to NMPC in PolyMPC.
There are three main modules in our implementation: initial-
ization, local solver, consensus update.

Fig. 1. Implementation of Algorithm 1 in PolyMPC

First, users could denote the OCP (17) via the interface of
PolyMPC and define the setting of time splitting method.
Second, the local solver module comprises the optimized
implementation of spectral and pseudo-spectral methods for
discretizing the continuous time OCP. The collocation code
supports several types of Chebyshev and Legendre nodes
of arbitrary order while the spectral module implements the
Galerkin projection on Chebyshev and Legendre orthogonal

bases. Once the discretization is finished, an implementation
of a generic SQP solver with ADMM-based sub-QP solver
and interfaces to several other open-source QP solvers can
be used to deal with (10). Another option is to use interior
point method based solver IPOPT [32], which is accessed
through the Casadi interface of PolyMPC. The consensus
update module uses Eigen [13] as linear algebraic routine
to deal with the matrix and vector multiplication. This
implementation leverages the expression templates mecha-
nism of Eigen to avoid unnecessary copying in complex
mathematical expressions and static polymorphism in C++
to cut runtime overhead linked to the inheritance. More-
over, a special care is taken for the memory management
and exploitation of sparsity associated with pseudo-spectral
collocation methods.

V. NUMERICAL CASE STUDY

This section presents the numerical results of applying
Algorithm 1 to a benchmark–continuously stirred tank re-
actor (CSTR) [6], [15]. The associated dynamic differential
equation is given by

ċA(t) = u1(cA0 − cA(t))− k1(ϑ(t))cA(t)

− k3(ϑ(t))(cA(t))2 ,

ċB(t) = − u1cB(t) + k1(ϑ(t))cA(t)− k2(ϑ(t))cB(t) ,

ϑ̇(t) = u1(ϑ0 − ϑ(t)) +
kwAR
ρCpVR

(ϑK(t)− ϑ(t))

− 1

ρCp
[k1(ϑ(t))cA(t)H1 + k2(ϑ(t))cB(t)H2]

+ ke(ϑ(t))(cA(t))2H3] ,

ϑ̇K(t) =
1

mKCPK
(u2 + kwAR(ϑ(t)− ϑK(t))) .

Here, states cA and cB denote the concentrations of cy-
clopentadiene (substance A) and cyclopentenol (substance
B), respectively, while states ϑ and ϑk are the temperature
in the reactor and temperature in the cooling jacket of the
tank reactor. The parameter of system model and setup of
NMPC problem can be found in [6, Section 1.2]. The horizon
length for the experiments is chosen as T = 1500 seconds
with N = 50 control intervals. For the numerical study
we employ the Chebyshev-Gauss-Lobatto (CGL) pseudo-
spectral collocation scheme to approximate the subproblems
(18) as described in the last section. The number of segments
is chosen to be 2 and the order of polynomials is 5.
Simulations were performed on a 3.1 GHz Intel i7 processor
(i7-7920HQ) with 4 cores, 8 threads and 16 GB of RAM,
running Casadi-3.4.5 and Eigen-3.3.7. All local
NLPs (10) in Step 1 of Algorithm 1 are solved to a high
accuracy by using PolyMPC interfacing IPOPT solver.

In order to illustrate the local convergence of Algorithm 1.
Figure 2 shows the performance of Algorithm 1 with respect
to different block size n. Here, wk = (xk, λk) denotes
the primal and dual iterates. The results illustrate that the
local convergence is improved with enlarging the block. As
discussed in Section II, (1) in the form of reformulation (3)



might cause Fi be nondifferentiable in certain iterations. In
such cases, only a linear convergence rate can be observed.

Fig. 2. Open loop convergence with different block sizes n

Table I provides the detailed CPU time for one iteration of
Algorithm 1 with different block sizes. Here, it is assumed
that there is no communication delay, and the parallelizable
operations are divided equally between the computational
units. It shows that the smaller n yields a more parallelizable
implementation and, thus faster run-time of one iteration. In
particular, increasing the block size n increases the run-time
in the first row. The operations in the second and the last
rows are parallelizable and independent of the block size
n. Besides, the operations in the third and fourth rows are
centralized. Since a smaller n makes the number of blocks M
be larger, these operations require more time with decreasing
n.

TABLE I
DETAILED CPU TIME IN [MS] FOR ONE ITERATION OF ALGORITHM 1

WITH DIFFERENT BLOCK SIZES n

Operation n = 1 n = 2 n = 5

P1 Solve local NLP (10) 1.003 1.976 3.095

P Update bi and Bi 0.007 0.007 0.007

C Update D 0.126 0.097 0.043

C Update dual iterates (13a) 0.010 0.008 0.002

P Update primal iterates (13b) 0.003 0.003 0.003

Total time per iteration 1.149 2.091 3.150

Figure 3 shows the comparison with block BFGS based
SQP method and standard ALADIN [20] with BFGS Hessian
approximation. All algorithms use a damped block BFGS
update. Here, the dual iterate of Algorithm 1 is initialized
with zero. As discussed in [17], small block size yields poor
performance in BFGS-SQP. Therefore, in order to make the
comparison be fair enough, we choose n = 5. The results
show that both Algorithm 1 and standard ALADIN [20]
converge faster in terms of number of iterations.

1P: parallelizable, C: centralized

Fig. 3. Convergence comparison with block size n = 5

TABLE II
TOTAL TIME UNTIL CONVERGENCE IN [MS] FOR BLOCK

BFGS-ALADIN (3 ITERATIONS) VS. BLOCK BFGS-SQP (5
ITERATIONS) VS STANDARD ALADIN [20] (3 ITERATIONS) WITH n = 5

Parallel time Centralized time Total time

block BFGS-SQP 14.763 6.274 21.037

block BFGS-ALADIN 9.924 0.185 10.109

standard ALADIN [20] 10.113 3.263 13.376

For the particular example from Figure 3, Table II shows
that if we set the stop tolerance be 10−6, the total computa-
tional time of Algorithm 1 is approximate two times faster
than block BFGS-SQP. Moreover, as discussed in [20], the
standard ALADIN requires to compute the Jacobian matrices
of the active constraints at local solutions and uses null
space method to solve the large-scale coupled QP such that
it spends much more time in the consensus step compared
to Algorithm 1.

VI. CONCLUSION

This paper has presented a block BFGS based ALADIN
method for solving (1). As established in Theorem 1, this
BFGS-ALADIN variant can achieve a superlinear conver-
gence rate while maintaining a favorable computational
complexity. We have discussed the implementation details
of the proposed method based on C++ library PolyMPC
for NMPC. Our case study indicates that BFGS-ALADIN
converges faster than a comparable BFGS-SQP method and
the computation is more efficient than the standard ALADIN
method when applied to a CSTR benchmark case study.
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APPENDIX A. PROOF OF LEMMA 2
If Algorithm 1 converges to a regular KKT point while the curvature

condition locally always holds, Lemma 1 indicate that BFGS update Hk

satisfies∥∥∥P (Hk −∇2F (x∗))∆xk
∥∥∥ = o

(∥∥∥∆xk
∥∥∥)+ O

(∥∥∥ξk − x∗∥∥∥2) (20)

with ∆xk = xk−ξk . Here, [23, Theorem 6.6] can be used to construct (20)
analogously. Note that compared to the proof of BFGS based SQP method,
there is an addition term O

(∥∥ξk − x∗∥∥2) in the right hand side as the

local solution ξki is not feasible with respect to the coupled affine equality
constraint (1b). Here, we use a fact Axk = Ax∗. In order to show the
primal inequality in (15), we denote by ∆x̂k = x̂k − ξk with x̂k the
solution of (6) with exact Hessian, ∇2Fi(ξ

k
i ) for all i = 1, ...,M . Then,

we have that

‖∆xk −∆x̂k‖

= ‖(P∇2F (ξk))−1(P∇2F (ξk)∆xk + Pbk)‖

= O(‖P (Hk −∇2Fk)∆xk‖) + O

(∥∥∥ξk − x∗∥∥∥2)
(20)
= o(‖∆xk‖) + O

(∥∥∥ξk − x∗∥∥∥2)
Here, we use the fact that ‖(P∇2F (ξk))−1‖ is bounded when ξk is
sufficiently close to x∗. Then, we apply triangular inequality such that

‖xk − x∗‖ ≤‖∆xk −∆x̂k‖+ ‖ξk + ∆x̂k − x∗‖

≤o(‖∆xk‖) + O(‖ξk − x∗‖2)
(21)

where the first part of last inequality follows one standard Newton step.
Thus, the primal inequality in (15) can be obtained according to ‖∆xk‖ =
O(‖ξk − x∗‖) [23, Thm. 3.7]. Next, in order to prove the dual inequality,
we use (13a) twice and have

λk = Dk

[
M∑
i=1

Ai

(
ξki −Bk

i b
k
i

)]
,

and λ∗ = Dk

[
M∑
i=1

Ai

(
x∗i −Bk

i b
∗
i

)]
.

Then, we have that

‖λk − λ∗‖

≤
∥∥∥DkA(ξk − x∗)

∥∥∥+
∥∥∥DkABk(bk − b∗)

∥∥∥
≤ ‖DkABk(Hk −∇2F (x∗))(ξk − x∗)‖+ O(‖ξk − x∗‖2)

≤ o(‖∆xk‖) + O(‖xk − x∗‖) + O(‖ξk − x∗‖2)

≤ o(‖ξk − x∗‖) + O(‖ξk − x∗‖2)

which indicates the dual inequality in (15) is satisfied.


