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Introduction

Contact mechanics studies the interaction of bodies as they move closer to each other. The nature of this interaction
may be very different but typically involves energy exchanges in the form of heat, electric charge or strain for
example. This last type of energy exchange will be of special interest to us in this thesis. The theory of elasticity
will be used to find the deformed configuration of bodies coming into contact. Common academic problems include
contact between a deformable body and a rigid foundation or two deformable bodies. Contrary to single-body
elasticity problems, contact problems are intrinsically nonlinear even for the simplest linear constitutive model.
The nonlinearity is tied to the unknown contact interface and the resulting inequality constraints. Mathematicians
have spent a great deal of effort on those problems and entire books have been devoted to them. We should
point out that the existence and uniqueness of contact problems has only been proved in special cases. Yet, the
industry needs are such that even without the well-posedness of contact problems, computational scientists have
developed a wide range of solution methods. Unsurprisingly, the inequality constraints tightly bound computational
contact mechanics with optimization. In addition, finite element discretizations are used to approximate the infinite-
dimensional variational problem. Yet again, additional challenges arise in the computations which one does not
encounter in a single-body elasticity problem. Indeed, different bodies lead to different domains and the solution to
the underlying partial differential equation must be coupled across these different domains. This task is hindered
by a priori independent discretizations of the bodies, which lead to nonconforming meshes at the interfaces. The
underlying type of nonconformity is inherently geometric, meaning there may exist small gaps or overlaps at the
discrete interfaces. The issue has been traditionally addressed using the mortar finite element method. It is based
on projection techniques for transferring information across the interface. However, this method is known to be
difficult to implement and requires a few ad hoc strategies to meet specific challenges. These include the use
of numerical quadrature and the special treatment of cross-points when more than two subdomains meet. The
INTERNODES (INTERpolation for NOn-conforming DEcompositionS) method (Deparis et al., 2016) appears as
a very promising alternative for solving problems in contact mechanics. It is a flexible interpolation based method
which overcomes a great deal of the implementation issues of the mortar method and was shown to be at least as
accurate (Gervasio and Quarteroni, 2018). Preliminary work in computational contact mechanics showed that the
INTERNODES method could be successfully applied but also revealed several challenges in efficiently solving the
sequence of linear systems arising from the method (Günther-Hanssen, 2020).

In this work, we investigate preconditioning techniques for solving these linear systems. We propose an efficient
preconditioner which achieves very fast convergence independent of the mesh size. The performance of the method
relies on a single matrix factorization. The method performs best when this factorization is computed exactly.
Nevertheless, it still performs well for inexact factorizations. The remainder of the thesis is structured as follows.
Interpolation being one of the key features of the INTERNODES method, Chapter 1 provides the necessary back-
ground. The emphasis is set on a specific type of interpolation called radial basis function interpolation. The
section extends the work of Deparis et al. (2014) and discusses implementation aspects. Chapter 2 covers the
mathematical modeling of contact problems in its most basic form. A linear elastic constitutive model is assumed
for simplicity. From the strong form of the differential problem, the weak form is derived followed by a finite
element discretization. The section covers the application of the INTERNODES method to contact problems and
further discusses implementation aspects. Chapter 3 gathers some of the properties of the INTERNODES matrix
which is an essential step towards preconditioning. Solution techniques for large scale linear systems are discussed
in Chapter 4 with an emphasis on iterative methods. Chapter 5 presents preconditioning techniques tailored for
the INTERNODES matrix. This chapter represents the bulk of the thesis and ends with numerical experiments
illustrating the effectiveness of the developed preconditioners. The most successful preconditioning techniques are
discussed in this chapter. However, some other attempts have been listed in Appendix A for the record. Finally,
Chapter 6 concludes with an application of the INTERNODES method to a classic problem of contact mechanics.
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Chapter 1

Radial basis function interpolation

1.1 Introduction

Interpolation is at the heart of the INTERNODES method and distinguishes it from mortar finite element methods
which are based on projection techniques. In the INTERNODES method, interpolation can be either based on
Lagrange or radial basis function (RBF) interpolants (Deparis et al., 2016). However, RBF interpolants are preferred
for problems with geometric non-conformities. Since this is one of the essential types of non-conformities encountered
in contact mechanics problems, these interpolants will be discussed thoroughly in this chapter. Although the
discussion is mostly theoretical, the resulting properties have several interesting computational consequences which
will be exploited in the design of preconditioners. Part of the discussion in this chapter extends the work of Deparis
et al. (2014) who introduced several modifications to the classic RBF interpolation. RBF interpolation is widely used
in a variety of applications involving the interpolation of scattered data. Such applications include the numerical
solution of partial differential equations and neural networks. The survey paper of Buhmann (2000) discusses
both globally and locally supported radial basis functions and provides an overview of their theoretical properties
including convergence. In particular, compactly supported radial basis functions have found fertile grounds for very
large interpolation problems. They will be at the center of attention in this chapter.

The chapter is organized as follows: in Section 1.2, a short introduction to radial basis function interpolation is
given and the modifications introduced by Deparis et al. are discussed. Necessary conditions for the modifications
to be well defined were already established by the same authors. In Section 1.3, sufficient conditions are derived,
based on which some theoretical properties of the interpolation matrices are proved. Finally, Section 1.4 discusses
algorithmic aspects used to ensure the interpolation matrices satisfy the sufficient conditions.

1.2 Radial basis function interpolation

Let Ξ = {ξm}Mm=1 be a set of interpolation points where some function evaluations are known. We define the global
interpolant Πf (x) of a function f : Rd → R as

Πf (x) =

M∑
m=1

γfmφ(‖x− ξm‖, r)

where γfm ∈ R for m = 1, . . . ,M are coefficients and φ is a radial basis function which depends on the distance from
the interpolation point ‖x− ξm‖ and is parameterized by a radius r. Typical choices for radial basis functions are

listed in Table 1.1. In the table, δ = ‖x‖
r is used to denote the relative distance from the center.
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Name φ
Thin-plate splines δ2 ln δ
Inverse multiquadratic 1

r
√
δ2+1

Gaussian splines e−δ
2

Wendland C2 (1− δ)4(1 + 4δ)

Table 1.1: Common radial basis functions

Thin-plate splines, inverse multiquadratic and Gaussian radial basis functions are all globally supported whereas
the Wendland C2 radial basis functions are locally supported and we consider only the values of δ ∈ [0, 1]. This
property is very interesting because it leads to sparse interpolation matrices.

Let fξ ∈ RM be the vector containing function evaluations at the interpolation points {f(ξm)}Mm=1 and γf ∈ RM be
the vector of coefficients. The interpolation conditions Πf (ξm) = f(ξm) for m = 1, . . . ,M lead to the linear system

ΦMMγf = fξ

where ΦMM ∈ RM×M is such that (ΦMM )ij = φ(‖ξi− ξj‖, r). For many radial basis functions of practical interest,
the resulting coefficient matrix ΦMM is positive definite and thus the solution to the linear system is unique. This
is the case when using for instance Gaussian or inverse multiquadratic radial basis functions. This property is
also satisfied for the Wendland C2 basis functions (Wendland, 1995). However, for thin-plate splines, a low degree
polynomial term must be added to the interpolant to ensure the linear system is uniquely solvable (Buhmann,
2000). We will restrict the discussion here to cases where ΦMM is positive definite.

Let Λ = {ζn}Nn=1 be a set of points where the interpolant is to be evaluated. Let fζ ∈ RN be the vector containing
the evaluations {Π(ζn)}Nn=1. Then

fζ = ΦNMγf = ΦNMΦ−1
MM fξ

and ΦNMΦ−1
MM defines an interpolation matrix. Deparis et al. (2014) introduced two modifications:

1. A localized radius was chosen for the radial basis functions. Thus,

(ΦMM )ij = φ(‖ξi − ξj‖, rj) i, j = 1, . . . ,M

(ΦNM )ij = φ(‖ζi − ξj‖, rj) i = 1, . . . , N j = 1, . . . ,M

Using a localized radius allows to take advantage of a nonuniform distribution of interpolation points. In
regions where the density of points is high, the radius can be reduced without affecting much the accuracy
and allows to spare storage for the interpolation matrices.

2. A rescaling of the radial basis functions was introduced which enables the exact interpolation of constant
functions. Let 1ξ ∈ RM be a vector containing only ones. We define

f̂ζ = ΦNMΦ−1
MM fξ

gζ = ΦNMΦ−1
MM1ξ

and set fζi =
f̂ζi
gζi

i = 1, 2, . . . , N . This rescaling is in fact equivalent to defining a new interpolant Π̄f (x) =
Πf (x)
Π1(x) . Thus, if Π was initially a polynomial function, then Π̄ is a rational function. On the algebraic side,

the rescaling is equivalent to defining the interpolation matrix

RNM = D−1
NNΦNMΦ−1

MM

where DNN = diag(gζ) is a diagonal matrix formed by the components of the vector gζ . The matrix RNM
will be used extensively throughout the next chapters.

The numerical results presented by the authors showed that the rescaling greatly improved the accuracy of the
interpolation. However, the localized radius unfortunately destroys the symmetry of the matrix ΦMM . Moreover,
it raises two important concerns:

1. The matrix ΦMM must be invertible.
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2. The vector gζ must not contain a zero entry.

Clearly, a necessary condition for the second issue not to occur is that ΦNM does not contain a row of zeros. It
is equivalent to ensuring that each evaluation point ζn n = 1, 2, . . . , N lies in the support of at least one basis
function. Our goal is to find sufficient conditions to safely avoid these two issues.

1.3 Properties of the radial basis function matrices

In this section, we will first find an easy sufficient condition for the matrix ΦMM to be invertible. We will then
gather some of the properties of the matrix ΦMM and its inverse. Finally, we will show that under the same
condition, the second issue is safely avoided without further assumptions. Some of the results of this section are not
used in the next chapters. They have nevertheless been included to support ongoing research. The essential results
needed for the remaining chapters are summarized at the end of this section. One of the important concepts of this
section is the one of (strict) diagonal dominance. A matrix A ∈ Cn×n is said to be strictly diagonally dominant by
rows if

|aii| >
n∑
j=1
j 6=i

|aij | i = 1, 2, . . . , n

It is strictly diagonally dominant by columns if

|aii| >
n∑
j=1
j 6=i

|aji| i = 1, 2, . . . , n

Before proceeding any further, let us recall the important Gershgoring theorem (Gershgorin, 1931).

Theorem 1.1: Gershgorin theorem

Let A ∈ Cn×n and let λ be an eigenvalue of A. Then,

λ ∈
n⋃
i=1

Di

where Di = {z ∈ C : |z − aii| ≤
∑n
j=1
j 6=i
|aij |} is the ith Gershgorin disc.

Proof. Let (λ,x) be an eigenpair of A and let i be such that |xi| = maxj=1,...,n |xj | = ‖x‖∞. Obviously, xi 6= 0
because x 6= 0. Then, the ith equation of Ax = λx reads

λxi =

n∑
j=1

aijxj

Hence,

(λ− aii)xi =

n∑
j=1
j 6=i

aijxj

Taking the modulus and using the triangle inequality leads to

|λ− aii||xi| ≤
n∑
j=1
j 6=i

|aij ||xj | ≤ |xi|
n∑
j=1
j 6=i

|aij |

Therefore,

|λ− aii| ≤
n∑
j=1
j 6=i

|aij |
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This equation is a disc of center aii and radius
∑n
j=1
j 6=i
|aij |. Obviously, for a given eigenvalue we do not know what

the index i is. Therefore, by considering all i = 1, 2, . . . , n, we are guaranteed that the eigenvalue belongs to at
least one of the discs.

Remark: For real matrices, one can apply the same proof steps to AT instead of A since the eigenvalues of A and
AT are the same. The region of the complex plane can then be defined as the union of row and column discs.

We are seeking sufficient conditions for the matrix ΦMM to be invertible. In that respect, the following theorem
will be useful.

Theorem 1.2: Levy–Desplanques theorem

Let A ∈ Cn×n be a strictly diagonally dominant matrix by rows or columns. Then, A is invertible.

Proof. A is invertible if and only if its adjoint A∗ is. Thus, without loss of generality, we may restrict ourselves to
diagonal dominance by rows. The proof is then a straightforward consequence of Gershgorin’s theorem. Indeed,
using the strict diagonal dominance property, the definition of the ith Gershgorin disc reduces to

Di = {z ∈ C : |z − aii| < |aii|}

Since 0 /∈ Di and λ ∈
⋃n
i=1Di, then λ cannot be equal to zero. Therefore, the matrix is invertible.

Consequently, ensuring that ΦMM is strictly diagonally dominant by rows is sufficient for its invertibility. Addi-
tionally, if this property is satisfied, the spectrum of ΦMM is better characterized. The following corollary provides
an interesting result.

Corollary 1.1

Let A ∈ Rn×n be a strictly diagonally dominant matrix by rows which additionally satisfies aii = 1 for
i = 1, . . . , n and let λ denote an eigenvalues A. Then,

0 < <(λ) < 2

−1 < =(λ) < 1

Proof. The Gershgorin discs all reduce to

Di = {z ∈ C : |z − 1| < 1} i = 1, . . . , n

which are discs of unit radius centered at 1. The result naturally follows.

Lemma 1.1

Let A ∈ Rn×n be a strictly diagonally dominant matrix by rows which additionally satisfies aii = 1 for
i = 1, . . . , n and aij ≥ 0 for i 6= j. Then, the following inequalities hold:

1 ≤ ‖A‖∞ < 2

1 ≤ ‖A−1‖∞ ≤
1

α

where α = mini=1,...,n

(
|aii| −

∑n
j=1
j 6=i
|aij |

)
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Proof. The first inequalities are a simple consequence of the definition of A. Even though aij ≥ 0 i, j = 1, . . . , n,
we will still use absolute values in order to identify general results more easily. For any index i, we have

1 ≤ |aii|+
n∑
j=1
j 6=i

|aij | =
n∑
j=1

|aij | ≤ max
i=1,2,...,n

n∑
j=1

|aij | = ‖A‖∞

Moreover, for any index i
n∑
j=1

|aij | = |aii|+
n∑
j=1
j 6=i

|aij | < 2|aii| = 2

In particular, it holds for the maximum among all i. Thus ‖A‖∞ < 2. For the bounds on the inverse, let B = A−1.
Then, from AB = I, we deduce that

1 =
∣∣ n∑
k=1

bikaki
∣∣ ≤ n∑

k=1

|bik||aki| ≤
n∑
k=1

|bik| ≤ max
i=1,...,n

n∑
k=1

|bik| = ‖A−1‖∞

Finally, the upper bound is a particular case of a more general result from Varga (1976). We will proceed in two
steps. The proof arguments are taken from Nick Higham’s website. Let x 6= 0 and y be such that y = Ax. Let i
be such that |xi| = maxj=1,...,n |xj | = ‖x‖∞. Then, from the ith equation, we obtain

aiixi = yi −
n∑
j=1
j 6=i

aijxj

Taking the absolute value leads to

|aii||xi| = |aii|‖x‖∞ ≤ |yi|+
n∑
j=1
j 6=i

|aij ||xj | ≤ |yi|+ ‖x‖∞
n∑
j=1
j 6=i

|aij |

From which we deduce

‖x‖∞ ≤
|yi|

|aii| −
∑n
j=1
j 6=i
|aij |

≤ ‖y‖∞
α

where we defined α = mini=1,...,n

(
|aii| −

∑n
j=1
j 6=i
|aij |

)
. Now, let v be the vector such that

‖A−1‖∞ =
‖A−1v‖∞
‖v‖∞

Defining x as x = A−1v, we may apply the previous result from which we conclude

‖A−1‖∞ =
‖x‖∞
‖v‖∞

≤ 1

α

This result can be used to bound the condition number in the infinity norm as

κ∞(A) = ‖A‖∞‖A−1‖∞ <
2

α

However, the resulting bound is quite pessimistic. It is interesting to note that the inverse B = A−1 still enjoys
some weaker form of diagonal dominance. The result is given in the next lemma and allows to better characterize
the magnitude of the entries.

Lemma 1.2

Let A ∈ Rn×n be a strictly diagonally dominant matrix by rows which additionally satisfies aii = 1 for
i = 1, . . . , n and aij ≥ 0 for i 6= j. Let B = A−1, then

|bij | < |bjj | i = 1, 2, . . . , n i 6= j

bii >
1

2
i = 1, 2, . . . , n

8



Proof. The first result holds for any strictly diagonally dominant matrix by rows whereas the second result is a
consequence of the first one and requires the additional assumptions on A. Since AB = BA = I, we have

n∑
k=1

aikbkj = 0 i 6= j

Now, let us denote βj = maxi=1,...,n |bij | for j = 1, . . . , n. Then, by the triangle inequality, we obtain for i 6= j

|aii||bij | ≤
n∑
k=1
k 6=i

|aik||bkj | ≤ βj
n∑
k=1
k 6=i

|aik| < βj |aii|

Thus, |bij | < βj holds for all i 6= j. Hence βj = |bjj |. For the second result, we use the fact that

n∑
k=1

aikbki = 1 i = 1, 2, . . . , n

Therefore, due to the properties of A, we deduce that

|1− bii| = |1− aiibii| ≤
n∑
k=1
k 6=i

|aik||bki| < |bii|
n∑
k=1
k 6=i

|aik| < |bii||aii| = |bii|

Thus, we have the interesting relation |1− bii| < |bii| which implies that bii >
1
2 .

We are particularly interested in knowing something about γ = Φ−1
MM1. Note that if Φ−1

MM were also diagonally
dominant by rows, then we could conclude immediately that γi > 0 i = 1, . . . , n. However, as we have just seen,
Φ−1
MM only has a much weaker form of diagonal dominance. In fact, the final result still holds but one has to proceed

differently to prove it.

Theorem 1.3

Let γ be the solution of Aγ = 1 where A ∈ Rn×n is a strictly diagonally dominant matrix by rows which
additionally satisfies aii = 1 for i = 1, . . . , n and aij ≥ 0 for i 6= j and 1 is the vector of all ones. Then,

0 < γi ≤ 1 i = 1, 2, . . . , n

Proof. We begin by proving a few useful implications. Considering the ith equation of Aγ = 1, we have

γi +

n∑
j=1
j 6=i

aijγj = 1 i = 1, . . . , n (1.1)

Let us investigate different cases:

• Assume γi > 1, then, from equation (1.1)

γi︸︷︷︸
>1

+

n∑
j=1
j 6=i

aijγj

︸ ︷︷ ︸
<0

= 1

Thus, there exists a least one index k 6= i such that γk < 0 and aik > 0.

• Assume γi < 0, then we deduce that

γi︸︷︷︸
<0

+

n∑
j=1
j 6=i

aijγj

︸ ︷︷ ︸
>1

= 1

9



Thus, there exists γk > 1 for some index k 6= i. Indeed, since aij ≥ 0, even if all γj = 1 for j 6= i, we would
have

n∑
j=1
j 6=i

aijγj =

n∑
j=1
j 6=i

aij < 1

which does not satisfy the equation. Similarly, if all γj < 1 for j 6= i, we still have
∑n
j=1
j 6=i

aijγj < 1. Hence,

there exists a least one index k 6= i such that γk > 1.

• Assume γi = 0, then, we note that
n∑
j=1
j 6=i

aijγj = 1

For the exact same reasons as previously, we deduce that there exists a least one index k 6= i such that γk > 1

To summarize, we have the following implications:

• γi > 1 =⇒ ∃γk < 0 k 6= i

• γi < 0 =⇒ ∃γk > 1 k 6= i

• γi = 0 =⇒ ∃γk > 1 k 6= i. And from the first point we deduce that ∃γl < 0 l 6= k

These implications form a circle. In particular, combining the two last implications, we have shown that if there
exists an index k such that γk ≤ 0, then there exists an index i 6= k such that γi > 1. We will prove that having a
γi > 1 is in fact impossible. Therefore, γi ∈ (0, 1] for i = 1, . . . , n.

Let us denote γi = maxj γj and γk = minj γj . Hence, we assume the maximum is attained for the index i and the
minimum for the index k. Assume γi > 1 such that it can be expressed as γi = 1 + d with d > 0. Then, from
equation (1.1)

−
n∑
j=1
j 6=i

aijγj = d

Since we have assumed γi > 1, there exists a γj < 0. Thus, γk < 0 since it is the minimum. Now, let us remark
that

d = −
n∑
j=1
j 6=i

aijγj ≤ −γk
n∑
j=1
j 6=i

aij < −γk

Thus, γi < 1− γk. Now considering equation k of the linear system Aγ = 1

γk +

n∑
j=1
j 6=k

akjγj = 1

Thus,

1− γk =

n∑
j=1
j 6=k

akjγj ≤ γi
n∑
j=1
j 6=k

akj < γi

Thus, γi > 1 − γk which is a contradiction. Hence, γi > 1 is impossible. Since assuming the existence of a γk ≤ 0
leads to the existence of a γi > 1, having a γk ≤ 0 is also impossible. Therefore, γi ∈ (0, 1] for i = 1, . . . , n.

From these results we also deduce the following corollary.
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Corollary 1.2

Let γ be the solution of Aγ = 1 where A ∈ Rn×n is a strictly diagonally dominant matrix by rows which
additionally satisfies aii = 1 for i = 1, . . . , n and aij ≥ 0 for i 6= j and 1 is the vector of all ones. Then,

γi = 1 ⇐⇒ aij = 0 ∀j = 1, . . . , n j 6= i

Proof. Let γi = 1, then, from the ith equation of the linear system

1 +

n∑
j=1
j 6=i

aijγj = 1

n∑
j=1
j 6=i

aijγj = 0

However, aij ≥ 0 and from the previous theorem γj > 0 j = 1, 2 . . . , n. Hence, aij = 0 ∀j = 1, . . . , n j 6= i

Now, let aij = 0 ∀j = 1, . . . , n j 6= i, then, straightforwardly γi = 1.

In fact, maxi=1,...,n |γi| can be characterized more precisely. The result is given in the next corollary.

Corollary 1.3

Let γ be the solution of Aγ = 1 where A ∈ Rn×n is a strictly diagonally dominant matrix by rows which
additionally satisfies aii = 1 for i = 1, . . . , n and aij ≥ 0 for i 6= j and 1 is the vector of all ones. Then,

1

2
< ‖γ‖∞ ≤ 1

Proof. There are different ways of proving these results. One of the easiest ways is to use sub-multiplicativity. From
Aγ = 1, we obtain

1 = ‖Aγ‖∞ ≤ ‖A‖∞‖γ‖∞
From which we deduce the lower bound thanks to Lemma 1.1 as

‖γ‖∞ ≥
1

‖A‖∞
>

1

2

As for the upper bound, we already know from Theorem 1.3 that γi ≤ 1 for i = 1, . . . , n.

From all these results, we conclude that asking for ΦMM to be strictly diagonally dominant by rows is enough.
This single requirement solves both the invertibility and the rescaling issue. However, although γi > 0, it could be
nevertheless arbitrarily close to zero. This can be easily verified with a simple example. Let us consider the linear
system (

1 1− ε
0 1

)(
γ1

γ2

)
=

(
1
1

)
with 0 < ε ≤ 1. The unique solution is (

γ1

γ2

)
=

(
ε
1

)
which is arbitrarily close to zero by taking the limit ε→ 0.

In practice, such cases are unlikely to occur. One may come to the misleading conclusion that they are encountered
for very weakly diagonally dominant matrices (matrices for which α = mini=1,...,n

(
|aii| −

∑n
j=1
j 6=i
|aij |

)
is small).

We found out experimentally this was incorrect. The phenomenon seems related to the dispersion of αi = |aii| −
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∑n
j=1
j 6=i
|aij | across the rows i = 1, . . . , n. In particular, cases for which αi is roughly constant behave well. We

conjecture that

γi → 1 for αi → 1

γi →
1

2
for αi → 0

These are easily understood. When αi → 1 for i = 1, . . . , n, the matrix A is very strongly diagonally dominant and
close to the identity matrix. Thus, the solution to the linear system Aγ = 1 should not be too different from the
vector of all ones. When αi → 0 for i = 1, . . . , n, A is close to loosing its diagonal dominance. In particular, the
row-wise sum of the entries of A is close to 2 for all rows. Thus, all the components of γ must roughly be 1

2 .

Let us summarize the main results of this section. Provided the following conditions are satisfied:

1. ΦNM does not contain a row of zeros,

2. ΦMM is strictly diagonally dominant by rows,

3. (ΦMM )ii = 1 for i = 1, . . . ,M and (ΦMM )ij ≥ 0 for i 6= j,

then the matrix ΦMM is invertible and gζ = ΦNMΦ−1
MM1ξ > 0 component-wise. In particular, the third condition

is satisfied by Wendland C2 basis functions. The next section discusses the first two conditions.

1.4 Algorithmic aspects

In the first part of this section, we will discuss how to ensure the matrices ΦMM constructed are strictly diagonally
dominant by rows. We will consider only the compactly supported Wendland C2 radial basis functions. In Deparis
et al. (2014), different choices of RBF are considered. The rescaled localized Wendland C2 radial basis functions
were the most promising because of their good interpolation accuracy while being only locally supported. Moreover,
numerical experiments revealed the condition number grew very slowly with the size of the interpolation problem.

We recall that the Wendland C2 radial basis functions are defined as

φ(‖x‖, r) =
(

1− ‖x‖
r

)4(
1 + 4

‖x‖
r

)
The definition suggests φ(‖x‖, r) decays extremely fast as ‖x‖ grows. This observation is well illustrated in Figure
1.1 where a typical Wendland C2 basis function for a problem in 2D is plotted.

Figure 1.1: A typical Wendland C2 basis function
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We must now investigate how to enforce the two following requirements:

1. ΦNM does not contain a row of zeros.

2. ΦMM is strictly diagonally dominant by rows.

In fact, for computational reasons, we will enforce a stronger condition on ΦNM : any of its nonzero entries must be
safely away from zero. This requirement is set to avoid dividing by a very small number (potentially even smaller
than machine precision). However, this condition alone is not enough: as we have seen, the entries of γ could be
arbitrarily close to zero. Thus, we could potentially encounter the situation where the only nonzero in a row of
ΦNM multiplies an entry of γ which is ε away from zero. Fortunately, this situation is unlikely in practice.

We will enforce the two conditions:

‖ξi − ξj‖2 ≥ γrj i 6= j (1.2)

∃j : ‖ζi − ξj‖2 ≤ Γrj i = 1, . . . , N (1.3)

where γ,Γ ∈ (0, 1) are scalar parameters satisfying γ < Γ. Condition (1.2) prevents quick loss of diagonal dominance
of ΦMM . Indeed, if two distinct points ξi and ξj are too close to each other (relative to the radius chosen), then
φ(‖ξi − ξj‖, rj) ≈ φ(0, rj) = 1 and diagonal dominance will be quickly lost. Condition (1.2) alone is critical and
prevents us from choosing a too large radius. On the other hand, condition (1.3) avoids having a single nonzero
entry in a row of ΦNM which is too close to zero. Condition (1.3) is equivalent to stating that any point ζi is well
within the support of at least one interpolation point ξj . In other words, it is safely away from the boundary of the
support. If this condition is not met, point ζi will be considered isolated and removed from the set of evaluation
points. A feasible situation is illustrated in Figure 1.2.

From the figure, the number of nonzeros in the jth column of ΦMM and ΦNM can be deduced. These are the
number of points ξi for i = 1, . . . ,M and ζi for i = 1, . . . , N respectively in the support of the ξj . Both are equal
to 3 in Figure 1.2. However, the number of nonzeros in each row of ΦMM and ΦNM can only be deduced once
all radiuses have been computed. More specifically, the number of nonzeros in the ith row of ΦMM is the number
of supports to which point ξi belongs. Similarly, the number of nonzeros in the ith row of ΦNM is the number of
supports to which point ζi belongs. If the point ζi does not belong to any support, then the ith row of ΦNM will
contain only zeros and the rescaling fails. Such a point will also be considered isolated and removed from the set of
evaluation points.
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Figure 1.2: A feasible radius rj satisfying condition (1.2). Point ζi−1 belongs indeed to the support of ξj but
‖ζi−1 − ξj‖2 > Γrj . If @k : ‖ζi−1 − ξk‖2 ≤ Γrk, then the point will be considered isolated

Thanks to condition (1.2), since φ is a decreasing function of ‖x‖, we deduce that

φ(‖ξi − ξj‖, rj) ≤ (1− γ)4(1 + 4γ) i 6= j
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Let us assume point ξi belongs to the support of n different radial basis functions (excluding itself). Then, there
are n nonzero off-diagonal elements in the ith row of ΦMM . Consequently,

M∑
j=1
j 6=i

φ(‖ξi − ξj‖, rj) ≤ n(1− γ)4(1 + 4γ)

In order to enforce strict diagonal dominance by rows, we set the condition

n(1− γ)4(1 + 4γ) < φ(0, ri) = 1

Hence,

n <
1

(1− γ)4(1 + 4γ)

Thus, the interpolation point ξi must not belong to too many different supports. Unfortunately, this condition can
only be verified once all radiuses have been computed. If the condition is not satisfied, the value of γ is slightly
increased and the radiuses are recomputed. The process is repeated until the condition is finally satisfied.

In order to choose a suitable value for γ, we can think of how many nonzeros we should allow in each row of ΦMM .
The function f(γ) = 1

(1−γ)4(1+4γ) is plotted in Figure 1.3.
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Figure 1.3: Upper bound on n

For feasibility purposes, γ must not be too small. In fact n ≥ 2 is a minimum requirement for 2D problems. The
reason will become clear with the application we are considering. On the other hand, choosing γ too large will
much increase the orange area in Figure 1.2 and might eventually also lead to an infeasible problem. In all our
experiments, we chose γ = 0.5 and never encountered any problem. This implies n ≤ 5 and ΦMM will never contain
more than 5 off-diagonal nonzeros per row. Interestingly, this requirement also ensures great sparsity of ΦMM .

Choosing Γ is less critical. Figure 1.4 plots the function f(Γ) = (1− Γ)4(1 + 4Γ). It is the one dimensional profile
of a Wendland C2 radial basis function.

14



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
!

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f

f(!) = (1! !)4(1 + 4!)

Figure 1.4: Choosing Γ

In this case, any value of Γ for which f(Γ) is safely away from machine precision is suitable. In our experiments we
chose Γ = 0.95. Consequently, if ζi is not an isolated node, then there exists an index j such that φ(‖ζi− ξj‖, rj) ≥
3× 10−5 thanks to inequality (1.3).

The discussion of the last section shows that the properties which are enforced on the matrices ΦNM and ΦMM are
controlled by the radiuses of the radial basis functions only. Thus, the matrices ΦNM and ΦMM which are subse-
quently assembled satisfy the properties by construction. As we will see in the chapters to come, this requirement
leads to several other benefits on the computational side and is partly behind the success in the design of efficient
preconditioners. We believe there are yet other advantages but their connection with strict diagonal dominance
could not be precisely established.
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Chapter 2

Modeling of contact problems

The mathematical description of contact problems is very difficult. Entire books have been dedicated to it. For an
in-depth discussion of the functional analysis aspects, we refer to the mathematical literature such as Kikuchi (1988)
and Sofonea (2012). For a discussion related to computational and implementation aspects, we refer to Wriggers
(2006). The description we provide in this chapter is not complete nor rigorous. Instead, we wish to illustrate the
application of the INTERNODES method for the numerical solution of contact problems. The three most popular
solution methods in computational contact mechanics are the penalty method, Lagrange multiplier method and
augmented Lagrangian method. The method presented in this chapter is a Lagrange multiplier method.

In this chapter, we will first consider the continuous description of a contact problem between two deformable elastic
bodies. We will assume a linear elastic constitutive model in quasi-static. The first three sections of this chapter
are a formalization of the work of Günther-Hanssen. Section 2.1 begins by stating the strong form of the problem.
The weak form is then established in Section 2.2. The finite element discretization is covered in Section 2.3 and is
combined with the INTERNODES method. The discretization leads to an algebraic system of equations and the
coefficient matrix will be referred to as the INTERNODES matrix. The nonlinear nature of the contact constraints
requires in fact solving a sequence of such linear systems. Section 2.4 therefore presents the full contact algorithm
and discusses some implementation aspects.

2.1 Strong form

The strong (or differential) form of the problem stems from the balance of momentum and Newton’s laws of
motion. We must define the mathematical properties of the quantities involved. Let Ωk, k = 1, 2, be an open
connected domain of Rd, d = 2, 3, with Lipschitz boundary such that Ω1 ∩ Ω2 = ∅. Let ΓkD, ΓkN and ΓkC form a
partition of the boundary ∂Ωk. The contact interface is common to both bodies. Thus, Γ1

C = Γ2
C = ΓC . We write

∂Ωk = ΓkD ∪ ΓkN ∪ ΓkC and ΓkD ∩ ΓkN = ∅, ΓkD ∩ ΓkC = ∅ and ΓkN ∩ ΓkC = ∅. An illustration is provided in Figure
2.1. In this chapter, we will make all the necessary assumptions on the regularity of the data for the problem to be
well-posed.
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t2(x)

Figure 2.1: Contact problem between two deformable bodies

Our goal is to approximate the displacement field uk of each body k = 1, 2. We will formulate the equilibrium
equations for a given body k. For readability purposes we drop the superscript k from the notations for the time
being. The strong form of the problem reads:

Find u : Ω→ Rd such that



−div(σ(u)) = f(x) in Ω (2.1)

u(x) = g(x) on ΓD (2.2)

σ(u)n = t(x) on ΓN (2.3)

σ(u)n = λ(x) on ΓC (2.4)

λ(x) · n ≤ 0 on ΓC (2.5)

Equation (2.1) is the differential equation to be solved. σ : Rd → Rd×d is the Cauchy stress tensor. f ∈ [L2(Ω)]d is
the body force acting on the solid (for example the gravity).

Equation (2.2) prescribes Dirichlet boundary conditions. g is a prescribed displacement field on ΓD. Equation (2.3)
prescribes Neumann boundary conditions. t ∈ [L2(ΓN )]d are surface tractions prescribed on ΓN and n is the unit
outward normal vector. Equation (2.4) results form the interaction of the two bodies. λ is the stress vector at
the contact interface and is unknown. Inequality (2.5) is one of the Hertz-Signorini-Moreau conditions which are
equivalent to the KKT conditions in optimization. Physically speaking, the stress state must be in compression all
along the contact interface. Compression is negative according to the sign convention used in structural mechanics.

These sets of equations must be complemented with another of the Hertz-Signorini-Moreau conditions. It takes the
form of a compatibility condition of the displacement fields at the interface. Indeed, in the deformed configuration,
the current position on the contact interface must be identical. Thus,

u1 + r1 = u2 + r2 on ΓC (2.6)

where rk is the position vector in the initial configuration. Equality must be understood in a weak sense. This
equation ensures the coupling between the two bodies. Furthermore, λ1 and λ2 are related through Newton’s third
law by λ2 = −λ1.

We now introduce our constitutive model to relate stresses to strains. In linear elasticity, the stress tensor σ is a
linear function of the infinitesimal strain tensor ε. This infinitesimal strain tensor is the restriction to first order
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terms of the more general Green-Lagrange strain tensor used in the theory of elasticity. The constitutive model we
will be using may be written as

σ(u) = 2µε(u) + λ trace(ε(u))I (2.7)

where µ, λ ≥ 0 are known as the Lamé constants which depend on the material and I is the identity tensor. In
fact, equation (2.7) is a simplification for isotropic materials of the more general Hooke’s law. We will restrict the
discussion in this chapter to materials which follow this law. All tensor fields appearing in equation (2.7) are second
order symmetric tensors which may be identified with matrix fields. The infinitesimal strain tensor is the symmetric
part of the gradient of the displacement field

ε(u) =
1

2
(∇u +∇uT )

Due to the restriction to first order terms, the linear elastic model is well-suited when elastic bodies undergo small
(ideally infinitesimal) displacements.

2.2 Weak form

Let us multiply equation (2.1) with a test function v and integrate over the domain Ω. We obtain for the left-hand
side

−
∫

Ω

div(σ(u)) · v dΩ

where we omit the dependence on the variable x for readability. We integrate by parts this term using Green’s
identities and obtain

−
∫

Ω

div(σ(u)) · v dΩ =

∫
Ω

〈σ(u),∇v〉 dΩ−
∫
∂Ω

σ(u)n · v dS

=

∫
Ω

〈σ(u),∇v〉 dΩ−
∫

ΓD

σ(u)n · v dS −
∫

ΓN

σ(u)n · v dS −
∫

ΓC

σ(u)n · v dS

The surface tractions are unknown on the boundary ΓD. Hence, let us choose v ∈ V0 where V0 = {v ∈
[H1(Ω)]d : v|ΓD = 0} where the evaluation on the boundary must be understood in the sense of traces of [H1(Ω)]d

functions. Moreover, we have that 〈σ(u),∇v〉 = 〈σ(u), ε(v)〉 because the trace inner product of a symmetric and
skew-symmetric matrix is zero. Thus, only the symmetric part of ∇u, that is to say ε(u), remains. Now, after
plugging in our constitutive model, using the linearity of the inner product and noting that trace(ε(u)) = div(u)
and the fact that σ(u)n is known on ΓN , we obtain

−
∫

Ω

div(σ(u)) · v dΩ =

∫
Ω

2µ〈ε(u), ε(v)〉+ λ div(u) div(v) dΩ−
∫

ΓN

t · v dS −
∫

ΓC

λ · v dS

Let us furthermore define the space VΓD = {v ∈ [H1(Ω)]d : v|ΓD = g} and Λ = [L2(ΓC)]d.
The weak form now reads:

Find (u,λ) ∈ VΓD × Λ such that∫
Ω

2µ〈ε(u), ε(v)〉+ λ div(u) div(v) dΩ−
∫

ΓC

λ · v dS =

∫
Ω

f · v dΩ +

∫
ΓN

t · v dS ∀v ∈ V0 (2.8)

Let us define the bilinear forms

a(u,v) =

∫
Ω

2µ〈ε(u), ε(v)〉+ λ div(u) div(v) dΩ

b(λ,v) = −
∫

ΓC

λ · v dS

and the linear functional

F (v) =

∫
Ω

f · v dΩ +

∫
ΓN

t · v dS
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The problem may be more compactly written as:

Find (u,λ) ∈ VΓD × Λ such that
a(u,v) + b(λ,v) = F (v) ∀v ∈ V0

Now, for the compatibility conditions in equation (2.6), taking the inner product with a test function w ∈ Λ and
integrating over the contact interface leads to∫

ΓC

u1 ·w dS −
∫

ΓC

u2 ·w dS =

∫
ΓC

r2 ·w dS −
∫

ΓC

r1 ·w dS

We define the linear functional

b̃(u,w) =

∫
ΓC

u ·w dS

and the equation may be compactly written as

b̃(u1 − u2,w) = b̃(r2 − r1,w)

All the equations can now be written in a single system as

a1(u1,v1) + b1(λ1,v1) = F1(v1) ∀v1 ∈ V 1
0

a2(u2,v2) + b2(λ2,v2) = F2(v2) ∀v2 ∈ V 2
0

b̃(u1 − u2,w) = b̃(r2 − r1,w) ∀w ∈ Λ

To account for the Dirichlet boundary conditions, we write uk = uk0 + sk where uk0 ∈ V k0 and sk|ΓkD = gk in the
sense of the trace. The last equation does not involve any Dirichlet boundary conditions. Thus, we may directly
replace uk with uk0 . The system can now be written as

a1(u1
0,v

1) + b1(λ1,v1) = F1(v1)− a1(s1,v1) ∀v1 ∈ V 1
0

a2(u2
0,v

2) + b2(λ2,v2) = F2(v2)− a2(s2,v2) ∀v2 ∈ V 2
0

b̃(u1
0 − u2

0,w) = b̃(r2 − r1,w) ∀w ∈ Λ

These equations form a saddle point type system which is typical from constrained optimization problems. The
system is so named because the solution is a saddle point of a Lagrangian function. These equations are the first
order conditions for a stationary point of the Lagrangian function. We will now derive their discrete counterpart
obtained through the finite element method.

2.3 Finite element approximation

We will approximate the weak form using the Galerkin method and more precisely the finite element method. For
this purpose we introduce a triangulation τh of the domain Ω1 ∪ Ω2 where τh =

⋃N
i=1Ki with Ki being the finite

elements and N the number of elements. The triangulation is typically nonconforming in the vicinity of the discrete
contact interface. The nonconformity is essentially geometric. There exists small gaps or overlaps between the finite
elements of both bodies. However, the triangulation is conforming within each body.

Let D be the set of degrees of freedom. They will be associated to displacements. Thus, D = {1, 2, · · · , dn} where n
is the number of nodes. For the treatment of boundary conditions, the set of degrees of freedom is partitioned into
a set DD, and a set DF . The set DD collects all the degrees of freedom associated to Dirichlet boundary conditions
and the set DF those associated to unknown displacements. All these degrees of freedom are split between the two
bodies.

DD = D1
D ∪ D2

D

DF = D1
F ∪ D2

F
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For each body, it will be useful to distinguish interface degrees of freedom from the others. Thus, we further
partition DkF into the disjoint subsets DkΩ and DkΓ such that

DkF = DkΩ ∪ DkΓ k = 1, 2

We are seeking an approximation uk0,h of uk0 with uk0,h ∈ V k0,h ⊂ V k0 . Similarly, we look for an approximation

λkh ∈ Λkh ⊂ Λk. Note that in the discrete problem, the interface spaces Λ1
h and Λ2

h must be distinguished. Moreover,
we must choose in which of these two spaces the test function wh belongs. This choice amounts to deciding which
body should be the master. For the discrete problem, we introduce some finite element spaces. Let Xr

h be the space
of piecewise polynomials of degree r in each of the d components with d = 2, 3 such that

Xr
h = {vh ∈ [C0(Ω)]d : vh|K ∈ [Pr]d K ∈ τh}

Its subsets are

V kh,0 = {vh ∈ Xr
h : vh,j(xi) = 0 ∀(i, j) : d(i− 1) + j ∈ DkD}

V kh,ΓD = {vh ∈ Xr
h : vh,j(xi) = gkj (xi) ∀(i, j) : d(i− 1) + j ∈ DkD}

Let {φi}dni=1 be the Lagrange basis of Xr
h such that

φd(i−1)+1(x) =


φi(x)

0
...
0

 , . . . , φdi(x) =


0
0
...

φi(x)


In other words, the same nodal basis functions are used for the finite element approximation of the different
components of the displacement field. Similarly, the functions {φj}j∈DkΓ form a basis for Λkh.

We must now introduce some intergrid transfer operators. This is one of the distinguishing features of the IN-
TERNODES method. We define

Π12 : Λ2
h → Λ1

h Π21 : Λ1
h → Λ2

h

Due to the geometric nonconformities encountered in our problem, they will be based on radial basis function
interpolation. The finite element approximation reads:

Find (uk0,h,λ
k
h) ∈ V kh,0 × Λkh for k = 1, 2 such that

a1(u1
0,h,v

1
h) + b1(λ1

h,v
1
h) = F1(v1

h)− a1(s1
h,v

1
h) ∀v1

h ∈ V 1
0,h

a2(u2
0,h,v

2
h) + b2(λ2

h,v
2
h) = F2(v2

h)− a2(s2
h,v

2
h) ∀v2

h ∈ V 2
0,h

b̃(u1
0,h − u2

0,h,wh) = b̃(r2
h − r1

h,wh) ∀wh ∈ Λ1
h

Since any vkh k = 1, 2 and wh can be expressed as a linear combination of the basis functions, it is enough to
enforce equality for all basis functions of the appropriate spaces. Moreover, uk0,h and λkh can be expressed in their
Lagrange basis as

uk0,h(x) =
∑
j∈DkF

ukjφj(x)

λkh(x) =
∑
j∈DkΓ

λkjφj(x)

Then, we obtain∑
j∈DkF

ukj ak(φj(x),φi(x)) +
∑
j∈DkΓ

λkj bk(φj(x),φi(x)) = Fk(φi(x))−
∑
j∈DkD

ukj ak(φj(x),φi(x)) ∀i ∈ DkF

However, as we have already noted, the coefficients λkj for k = 1, 2 are related. In the discrete setting, this relation

may be conveniently expressed using the intergrid transfer operators. Expressing for instance λ1
h in the basis of Λ2

h,
we can write

λ2
h = −Π21(λ1

h) = −
∑
l∈D2

Γ

λ1
h(xl)φl(x)

= −
∑
l∈D2

Γ

∑
j∈D1

Γ

λ1
jφj(xl)φl(x)
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Similarly, due to the compatibility condition in the deformed configuration

b̃(u1
0,h + r1

h,wh) = b̃(Π12(u2
0,h + r2

h),wh) ∀wh ∈ Λ1
h

Collecting all the equations, we obtain∑
j∈D1

F

u1
ja1(φj(x),φi(x)) +

∑
j∈D1

Γ

λ1
jb1(φj(x),φi(x)) = F1(φi(x))−

∑
j∈D1

D

u1
ja1(φj(x),φi(x)) ∀i ∈ D1

F

∑
j∈D2

F

u2
ja2(φj(x),φi(x)) −

∑
l∈D2

Γ

∑
j∈D1

Γ

λ1
jφj(xl)b2(φl(x),φi(x)) = F2(φi(x))−

∑
j∈D2

D

u2
ja2(φj(x),φi(x)) ∀i ∈ D2

F

∑
j∈D1

Γ

u1
j b̃(φj(x),φi(x)) −

∑
l∈D1

Γ

∑
j∈D2

Γ

u2
jφj(xl)b̃(φl(x),φi(x)) =

∑
l∈D1

Γ

∑
j∈D2

Γ

r2
jφj(xl)b̃(φl(x),φi(x))

−
∑
j∈D1

Γ

r1
j b̃(φj(x),φi(x)) ∀i ∈ D1

Γ

Defining the matrices

(KΩk,Ωk)ij = ak(φj(x),φi(x)) ∀(i, j) ∈ DkΩ ×DkΩ k = 1, 2

(KΓk,Ωk)ij = ak(φj(x),φi(x)) ∀(i, j) ∈ DkΓ ×DkΩ k = 1, 2

(KΩk,Γk)ij = ak(φj(x),φi(x)) ∀(i, j) ∈ DkΩ ×DkΓ k = 1, 2

(KΓk,Γk)ij = ak(φj(x),φi(x)) ∀(i, j) ∈ DkΓ ×DkΓ k = 1, 2

Defining the vectors

(uΩk)i = uki ∀i ∈ DkΩ k = 1, 2

(uΓk)i = uki ∀i ∈ DkΓ k = 1, 2

(λ)i = λ1
i ∀i ∈ D1

Γ

And the right-hand side vectors

(fΩk)i = Fk(φi(x))−
∑
j∈DkD

ukj ak(φj(x),φi(x)) ∀i ∈ DkΩ k = 1, 2

(fΓk)i = Fk(φi(x))−
∑
j∈DkD

ukj ak(φj(x),φi(x)) ∀i ∈ DkΓ k = 1, 2

In the INTERNODES method, we end up with small interface mass matrices

(Mk)ij = bk(φj(x),φi(x)) ∀(i, j) ∈ DkΓ ×DkΓ k = 1, 2

and interpolation matrices

(R12)ij = φj(xi) ∀(i, j) ∈ D1
Γ ×D2

Γ

(R21)ij = φj(xi) ∀(i, j) ∈ D2
Γ ×D1

Γ

One should notice that
b1(φj(x),φi(x)) = −b̃(φj(x),φi(x)) ∀(i, j) ∈ D1

Γ ×D1
Γ

The algebraic counterpart of the previous equations is written as
KΩ1Ω1 KΩ1Γ1 0 0 0
KΓ1Ω1 KΓ1Γ1 0 0 −M1

0 0 KΩ2Ω2
KΩ2Γ2

0
0 0 KΓ2Ω2

KΓ2Γ2
M2R21

0 M1 0 −M1R12 0




uΩ1

uΓ1

uΩ2

uΓ2

λ

 =


fΩ1

fΓ1

fΩ2

fΓ2

s


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The vector s is given by s = M1(R12rΓ2
− rΓ1

) and R12 and R21 are the interpolation matrices introduced in the
previous chapter. The matrix M1 can be eliminated from the last block row as it is symmetric positive definite
(and therefore invertible). We will therefore solve the linear system Ax = b with

A =


KΩ1Ω1

KΩ1Γ1
0 0 0

KΓ1Ω1
KΓ1Γ1

0 0 −M1

0 0 KΩ2Ω2 KΩ2Γ2 0
0 0 KΓ2Ω2 KΓ2Γ2 M2R21

0 I 0 −R12 0

 x =


uΩ1

uΓ1

uΩ2

uΓ2

λ

 b =


fΩ1

fΓ1

fΩ2

fΓ2

d


with d = R12rΓ2

− rΓ1
.

2.4 Implementation aspects

One should notice immediately that the sign of the Lagrange multipliers has not been enforced anywhere. These
inequality constraints are one of the sources of nonlinearity in computational contact mechanics. The nonlinearity
of contact constraints leads to an iterative procedure which requires solving a sequence of linear systems A(k)x(k) =
b(k). Upon initialization, a potential contact interface is identified based on an intersection radius R. A sketch
of the algorithm is presented in Figure 2.2 and a pseudo-code in Algorithm 2.1. The algorithm starts with the
initialization of an empty list. Nodes belonging to the boundary of both bodies are then visited one after the other.
For each node, a circle (for 2D problems) or a sphere (for 3D problems) of radius R is drawn around this node. The
node is added to the list if any node from the other body is contained in the circle. Once the boundary of both
bodies has been entirely covered, the subset C0 is created. For the contact algorithm to converge, the final and all
intermediate contact interfaces must be contained in it. Hence, C(k) ⊆ C0 ⊆ ∂Ω. In order to meet this requirement,
the intersection radius must be chosen large enough. If the properties of the contact problem are unknown, setting
R = ∞ such that C0 = ∂Ω is the safest choice. It must be emphasized that in general C(0) 6= C0 although it
might happen in exceptional circumstances. The subset C(0) is a correction of C0 based on radial basis function
interpolation requirements. Namely, diagonal dominance of the interpolation matrices is enforced at this stage.
Moreover, zero rows in the matrix ΦNM enable to detect isolated nodes which are discarded from the potential
contact interface. Once C(0) has been identified, the linear system can be solved.
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Figure 2.2: Definition of C0
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Algorithm 2.1 Definition of C0
1: Input: Intersection radius R, set of boundary nodes N1,N2 with N1 ∪N2 = N and N1 ∩N2 = ∅
2: Output: Initial potential contact interface C0
3: Initialize Nc = ∅
4: for k=1,2 do
5: for i ∈ Nk do
6: if ∃j ∈ N \ Nk : ‖xi − xj‖2 ≤ R then
7: Nc ← Nc ∪ {i}
8: end if
9: end for

10: end for
11: Initialize and return C0 constructed from Nc

Referring to the terminology of optimization, this contact interface forms an active set which involves nodes be-
longing to the boundary of both bodies. The linear system enforces contact on all of the potential contact interface.
Once the solution has been computed, the Hertz-Signorini-Moreau conditions must be verified. Due to the dis-
cretized geometry, they are not verified exactly but up to a certain tolerance for the interpenetration of the bodies.
This tolerance typically depends on the mesh size. If the conditions are not verified, the contact interface must
be updated by adding or removing nodes depending on the condition which is violated. A priori, both conditions
could be violated but at different locations on the contact interface. However, the algorithm is designed such that
nodes can only be added or removed at each iteration but not both in order to avoid getting stuck in endless loops.
Consequently, the size of the linear system is changing at each iteration. A sketch of the algorithm is provided in
Algorithm 2.2.

Algorithm 2.2 Contact algorithm

1: Input: Intersection radius R
2: Output: Solution of the contact problem
3: Initialize interface based on intersection radius R. . If R is large enough, all the nodes on the

boundary will form the initial interface.
4: Update interface through RBF interpolation by detecting isolated nodes.
5: while Not converged do
6: Solve the linear system
7: if Projected Lagrange multipliers are all negative then . All of the interface is in compression
8: if No penetration is detected then
9: Break . Successfully converged

10: else
11: Update the interface by adding nodes of interpenetrating bodies
12: end if
13: else
14: Update the interface by removing nodes in tension
15: end if
16: end while
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Chapter 3

Properties of the INTERNODES matrix

3.1 Introduction

As we have seen, the continuous problem already has a saddle point structure which we recover on the discrete level.
It seems therefore natural to preserve the structure from which the linear system stems. It leads to considering a
2 × 2 block structure commonly known as a saddle point system in the literature. Thus, we will most frequently
work with the submatrices and subvectors of this linear system defined as follows:

K =


KΩ1Ω1 KΩ1Γ1

KΓ1Ω1 KΓ1Γ1

0 0 KΩ2Ω2
KΩ2Γ2

0 0 KΓ2Ω2
KΓ2Γ2

 u =


uΩ1

uΓ1

uΩ2

uΓ2

 f =


fΩ1

fΓ1

fΩ2

fΓ2



B =


0
−M1

0
M2R21

 B̃ =
(
0 I 0 −R12

)

Thus, we consider the linear system (
K B

B̃ 0

)(
u
λ

)
=

(
f
d

)
(3.1)

That is Ax = b with

A =

(
K B

B̃ 0

)
x =

(
u
λ

)
b =

(
f
d

)
The stiffness matrix K represents the bulk of the matrix. Based on the previous notations, we denote n = |DF | the
number of degrees of freedom in displacement and m = |D1

Γ| the number of degrees of freedom on the interface of
body 1. It represents the number of constraints linking the degrees of freedom of the interface. Thus, K ∈ Rn×n,
B ∈ Rn×m, B̃ ∈ Rm×n with n >> m and the vectors u, f ∈ Rn and λ,d ∈ Rm.

It is very important to bare in mind that contrary to single-body elasticity problems, the stiffness matrix K is
only positive semidefinite in general. There might exist non-trivial vectors in its kernel. Let us therefore denote
s = dim ker(K), the nullity of K. In the context of mechanics, such vectors are in fact combinations of translations
and rotations and are called rigid modes. The displacement fields associated to these vectors do not generate any
deformation of the body. Consequently, the kernel of the stiffness matrix is a small dimensional subspace with s = 3
in 2D (2 translations, 1 rotation) and s = 6 in 3D (3 translations, 3 rotations) at most (Bochev and Lehoucq, 2011).
More precisely, the stiffness matrix is singular if these rigid modes are not blocked simultaneously for both bodies.
A particular case is when Dirichlet boundary conditions are not prescribed on one of the bodies. More generally, it
is important to note that if Dirichlet boundary conditions are allowed to be prescribed along separate directions (as
is customary in structural mechanics), both blocks of the stiffness matrix could be singular simultaneously. When
investigating computational methods, the structure of K will be entirely ignored as it depends on the numbering
of the nodes in the mesh. We must only bear in mind that it is symmetric positive semidefinite.
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The matrices B and B̃ are coupling matrices linking the degrees of freedom on the interface. The iterative nature
of the contact algorithm means these matrices will change from one iteration to the next. Clearly the matrices B
and B̃ are very sparse. However, they contain small dense submatrices. It is easy to verify both matrices have full
rank m. The matrix B̃ contains the identity matrix in one of its blocks whereas the matrix B contains the interface
mass matrix of body 1 which, from finite element theory, is known to be symmetric positive definite (SPD).

The interface mass matrices and interpolation matrices which form part of the matrices B and B̃ have a special
structure which we will take advantage of. It has been shown that the Galerkin mass matrix for vector valued PDEs
has a Kronecker product structure (Voet, 2020). Such a structure arises when different components of a vector field
are approximated in functional spaces sharing the same basis functions. This situation is frequently encountered in
applications. In particular, it was shown that when the unknowns are ordered such that all nodal degrees of freedom
are grouped together, then the mass matrix is expressed as M = (M̄ ⊗ Id). The corresponding displacement vector
is given by uT = (u1,x, u1,y, u1,z, . . . , un,x, un,y, un,z)

T for d = 3. The size of M̄ is only equal to the number of
nodes and Id is the identity matrix of size d. The scalar case is recovered when d = 1. This expression leads to
major computational savings both in terms of storage and floating point operations. Indeed, one only needs to store
and assemble the smaller matrix M̄ instead of the full matrix M . Moreover, the structure can be exploited when
solving linear systems or computing matrix-vector products. It turns out the interpolation matrices have a similar
Kronecker product structure. Again, this can be understood from the fact that all components of the displacement
field are interpolated using the same radial basis functions. Hence, we can write Rij = (R̄ij ⊗ Id) for i, j = 1, 2 and
i 6= j. This structure will be exploited on various occasions throughout the project.

Let us now return to the linear system with the INTERNODES matrix. The linear system in equation (3.1) is a
nonsymmetric saddle point system. Such systems arise in an impressively large collection of scientific disciplines
including fluid dynamics, optimization and contact mechanics to name just a few. Due to the numerous underlying
applications, they have been extensively studied by the scientific community and there exists abundant literature
on the topic. We will later rely heavily on it for the design of preconditioners.

For the time being, we must verify the well-posedness of the problem. Our eventual goal being application driven,
we will focus on verifying the well-posedness of the discrete finite-dimensional problem. From a linear algebra
perspective, it translates to verifying the invertibility of the INTERNODES matrix in equation (3.1).

3.2 Invertibility conditions

The invertibility conditions are given in the following theorem (Cao, 2008).

Theorem 3.1

The nonsymmetric saddle point matrix

A =

(
K B

B̃ 0

)
is invertible if and only if the following conditions are satisfied:

1. rank(B) = rank(B̃) = m

2. V TB2
KVB̃2

is invertible, where VB2
and VB̃2

are bases for the kernels of BT and B̃ respectively

Proof. The first condition is a straightforward necessary condition. We proceed by contradiction. Assume A is
invertible and rank(B) < m, then there exists a vector p ∈ ker(B) with p 6= 0. Setting xT = (0T ,pT ), we have
Ax = 0 with x 6= 0 and A is singular which is a contradiction. A similar argument for AT instead of A shows that
rank(B̃) < m is impossible.

The proof for the second condition is much inspired from Cao (2008). Let

BT = UB [ΣB 0]V TB

B̃ = UB̃ [ΣB̃ 0]V T
B̃
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be the singular value decomposition of BT and B̃ respectively. UB , UB̃ ∈ Rm×m and VB , VB̃ ∈ Rn×n are orthogonal
matrices and ΣB ,ΣB̃ ∈ Rm×m are diagonal matrices containing the singular values. The matrices VB and VB̃ are
further partitioned as

VB = [VB1VB2 ] and VB̃ = [VB̃1
VB̃2

]

and note that VB2
and VB̃2

are bases for the kernels of BT and B̃ respectively. We now form the orthogonal matrices
S1 and S2 such that

S1 =

(
V TB 0
0 UT

B̃

)
S2 =

(
VB̃ 0
0 UB

)
and consider the matrix S1AS2. Since S1 and S2 are orthogonal matrices (and therefore invertible), S1AS2 is
invertible if and only if A is. Explicitly, we have

S1AS2 =

(
V TB 0
0 UT

B̃

)(
K B

B̃ 0

)(
VB̃ 0
0 UB

)
=

(
V TBKVB̃ V TB BUB
UT
B̃
B̃VB̃ 0

)

=

V TB1
KVB̃1

V TB1
KVB̃2

ΣB
V TB2

KVB̃1
V TB2

KVB̃2
0

ΣB̃ 0 0


After permuting the first and last block rows, we obtain ΣB̃ 0 0

V TB2
KVB̃1

V TB2
KVB̃2

0
V TB1

KVB̃1
V TB1

KVB̃2
ΣB


The determinant of a block triangular matrix being the product of the determinants of its diagonal blocks, the
matrix is invertible if and only if V TB2

KVB̃2
is invertible.

These conditions must be verified by the INTERNODES matrix. The first condition is trivially satisfied and the
second condition implies that

ker(K) ∩ ker(B̃) = ∅ (3.2)

ker(K) ∩ ker(BT ) = ∅ (3.3)

where we made use of the symmetry of K. We will show that these two conditions are satisfied under some
assumptions on the boundary conditions.

As we have already noted, the kernel of the stiffness matrix is a small dimensional subspace which only contains
linear combinations of translations and rotations. On the other hand, by the rank-nullity theorem, dim ker(B̃) =
dim ker(BT ) = n−m is extremely large. Thus, we would like to show that ker(K) * ker(B̃) and ker(K) * ker(BT ).
Unfortunately, the necessary boundary conditions to be prescribed are a priori unknown. Thus, we will initially
assume Γ1

D = Γ2
D = ∅ and understand why the resulting linear system is singular. Based on this knowledge, we will

deduce the necessary Dirichlet boundary conditions to be prescribed. To simplify the discussion, we will further
assume a two-dimensional problem.

The assumptions we have made imply that the coupled body can be freely translated or rotated. These so-called
rigid modes live in the kernel of K. The displacement vector uh belongs to the subspace

{u = a +Rr : a ∈ R2}

where R ∈ R2×2 is a rotation matrix and r is the coordinate vector. We will assume rotations around the origin
for simplicity. When we think in terms of vectors of coefficients, uΓk either belongs to UkT or UkR which are spaces
of translations and rotations respectively. The space UkT is defined as

UkT = span{1k ⊗ e1,1k ⊗ e2} k = 1, 2

where ei is the ith unit vector of the canonical basis of R2, 1k ∈ Rnk is the vector of all ones and nk is the number
of nodes on the contact interface of body k. Clearly, dimUkT = 2. In the case of rotations, UkR is defined as

UkR = span{
(
Ink ⊗R

)(
(rkx ⊗ e1) + (rky ⊗ e2)

)
}

= span{(rkx ⊗Re1) + (rky ⊗Re2)} k = 1, 2
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and clearly dimUkR = 1. We first consider a case of translation where all components of u for displacements along x
are equal to u and all components for displacements along y are equal to v. In particular, the interface displacements
can be expressed as uΓk = u(1k ⊗ e1) + v(1k ⊗ e2).

Let us now compute B̃u explicitly. We have

B̃u = uΓ1
−R12uΓ2

= u(11 ⊗ e1) + v(11 ⊗ e2)− (R̄12 ⊗ I2)
(
u(12 ⊗ e1) + v(12 ⊗ e2)

)
= u(11 ⊗ e1) + v(11 ⊗ e2)−

(
u(R̄1212 ⊗ e1) + v(R̄1212 ⊗ e2)

)
Now recall that the rescaled radial basis functions are designed to interpolate exactly a constant function. This
was one of the features introduced by Deparis et al. (2014). The algebraic meaning is that cR̄ij1j = c1i ∀c ∈ R.
Hence,

B̃u = u(11 ⊗ e1) + v(11 ⊗ e2)−
(
u(11 ⊗ e1) + v(11 ⊗ e2)

)
= 0

Thus, we have found a vector u ∈ {ker(K) ∩ ker(B̃)} and the INTERNODES matrix is singular. Consequently,
Dirichlet boundary conditions must be prescribed such that at least some of the rigid body motions are removed
from the kernel of K. Applying Dirichlet boundary conditions will change the size of K and shrink the dimension
of UkT and UkR. However, the remaining rigid modes have the same structure.

In engineering applications, it is customary to apply Dirichlet boundary conditions on separate components of
the displacements. For instance, prescribing ux on some portion of the boundary while not prescribing the other
components. The analysis is much more elaborate in this case and special care is required. For two-dimensional
problems, these boundary conditions fix the direction vector of the translation such that uΓk ∈ UkT = span{uk(1k⊗
e1) + vk(1k ⊗ e2)} for fixed constants uk and vk. Thus, dimUkT = 1. In such an event, the dimension of the kernel
of K is indeed reduced as we cannot choose the direction of translation anymore. If we assume such boundary
conditions are prescribed on both bodies, we obtain

B̃u = u1(11 ⊗ e1) + v1(11 ⊗ e2)−
(
u2(11 ⊗ e1) + v2(11 ⊗ e2)

)
= (u1 − u2)(11 ⊗ e1) + (v1 − v2)(11 ⊗ e2)

form which we deduce the necessary conditions

u1 6= u2

v1 6= v2

It means that the constant vector-valued functions

u1
h =

(
u1

v1

)
and u2

h =

(
u2

v2

)
point in different directions. If Dirichlet boundary conditions are prescribed for all components of the displacement
field of one of the bodies, then dimU1

T = 0 or dimU2
T = 0. Let us assume dimU1

T = 0 and dimU2
T = 2. Then,

uΓ1
= 0. Moreover,

B̃u = −
(
u2(11 ⊗ e1) + v2(11 ⊗ e2)

)
which is nonzero. We obviously assume u2 and v2 are not simultaneously zero since we are interested in non-trivial
vectors. All other combinations are treated similarly and lead to a nonzero vector.

Let us now deal with rotations. We assume

uΓk ∈ UkR = span{(rkx ⊗Re1) + (rky ⊗Re2)} k = 1, 2

and we again compute B̃u. We obtain

B̃u = (r1
x ⊗Re1) + (r1

y ⊗Re2)−
(
(R̄12r

2
x ⊗Re1) + (R̄12r

2
y ⊗Re2)

)
= (r1

x − R̄12r
2
x)⊗Re1 + (r1

y − R̄12r
2
y)⊗Re2

In general, both terms are nonzero because the interpolation is not perfect. However, we encounter troubles in the
conforming case since R̄12 = I, r1

x = r2
x and r1

y = r2
y. Rotations will always be eliminated provided ΓkD is a set of

nonzero measure.
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Let us now proceed with the same verification for the matrix BT . We obtain for translations

BTu = −M1uΓ1 +RT21M2uΓ2

= −u1(M̄111 ⊗ e1)− v1(M̄111 ⊗ e2) + u2(R̄T21M̄212 ⊗ e1) + v2(R̄T21M̄212 ⊗ e2)

= R̄T21M̄212 ⊗ (u2e1 + v2e2)− M̄111 ⊗ (u1e1 + v1e2)

The only potential issue here is linked to the matrix R̄T21. If m2 > m1, then dim ker(RT21) > 0 and we must ensure
R̄T21M̄212 does not vanish in the event that u1 = v1 = 0. It is difficult to say anything in this case given that the
vector M̄212 and the matrix R̄T21 are completely unrelated. It seems highly unlikely that M̄212 ∈ ker(RT21). Yet, in
the conforming case, R̄T21 = I and M̄1 = M̄2 = M̄ and 11 = 12 = 1 such that the right-hand side becomes

BTu = M̄1⊗
(
(u2 − u1)e1 + (v2 − v1)e2

)
Thus, to be on the safe side, the same conditions on u1, u2 and v1, v2 are needed.

Finally, for rotations

BTu = (R̄T21M̄2r
2
x − M̄1r

1
x)⊗Re1 + (R̄T21M̄2r

2
y − M̄1r

1
y)⊗Re2

None of these quantities are likely to be zero in general. However, the conforming case is again problematic. Since
we have enumerated all cases, let us summarize:

• If the meshes are conforming and Γ1
D = Γ2

D = ∅, then there exists a vector u ∈ {ker(K) ∩ ker(B̃)} and
u ∈ {ker(K) ∩ ker(BT )}. This is not surprising since in the conforming case the kernels of B̃ and BT are the
same.

• If the meshes are nonconforming and Γ1
D = Γ2

D = ∅, then there exists a vector u ∈ {ker(K) ∩ ker(B̃)}.

• If dim ker(K1) > 0 and dim ker(K2) > 0, then ker(K) ∩ ker(B̃) = ∅ and ker(K) ∩ ker(BT ) = ∅ provided the
rigid body motions u1

h and u2
h are not collinear.

• If dim ker(K1) = 0 or dim ker(K2) = 0, then ker(K)∩ ker(B̃) = ∅ and ker(K)∩ ker(BT ) = ∅ except maybe in
some unlikely circumstances.

These results can be generalized to 3D problems.

3.3 Properties of the INTERNODES matrix and its blocks

In this section, we prove and discuss some of the properties of the matrices involved. This information is useful
when investigating the stability of a linear system and may also help in the design of preconditioners. Not all results
will be used in upcoming chapters but they are nevertheless mentioned as a potential backbone for future work.

Before discussing the properties of the matrices, we begin by recalling some important results from finite element
theory. They can be found in Pearson and Wathen (2012), Elman et al. (2014) and Ern (2002) for instance.

Theorem 3.2

Let Ω ⊂ R2 and M ∈ Rn×n be the Galerkin mass matrix resulting from Pm or Qm finite element or spectral
element discretizations with m ≥ 1. Then, the following bounds hold:

ch2 ≤ vTMv

‖v‖22
≤ Ch2 ∀v ∈ Rn

where c and C are positive constants independent of the mesh size but dependent on m. The equivalent
result for Ω ⊂ R3 is

ch3 ≤ vTMv

‖v‖22
≤ Ch3 ∀v ∈ Rn
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These results provide the dependency on the mesh size of the smallest and largest eigenvalues of the mass matrix.
The next theorem provides equivalent results for the stiffness matrix.

Theorem 3.3

Let Ω ⊂ R2 and K ∈ Rn×n be the Galerkin stiffness matrix resulting from Pm or Qm finite element or
spectral element discretizations with m ≥ 1. Then, the following bounds hold:

ch2 ≤ vTKv

‖v‖22
≤ C ∀v ∈ Rn

where c and C are positive constants independent of the mesh size but dependent on m. The equivalent
result for Ω ⊂ R3 is

ch3 ≤ vTKv

‖v‖22
≤ Ch ∀v ∈ Rn

Although the proof in Elman et al. (2014) is for the scalar Poisson equation, the results are much more general
and hold for second order equations under suitable assumptions. General proofs are provided in Ern (2002) for the
mass matrix (pages 342-344) and for the stiffness matrix (pages 344-346).

For stability and preconditioning purposes, it is valuable to have information on the spectral condition number of
the INTERNODES matrix defined as κ(A) = ‖A‖2‖A−1‖2. We will focus on finding a lower and upper bound on
the spectral norm of the matrix. The result is given in the next theorem.

Theorem 3.4

Let λ1(K) denote the largest eigenvalue of the stiffness matrix. Then, the spectral norm of the INTERN-
ODES matrix satisfies the following inequalities

λ1(K) ≤ ‖A‖2 ≤
√

(λ1(K) + ‖B‖2)2 + ‖B̃‖22

Proof. By definition, σ1 = ‖A‖2 = max‖x‖2=1 ‖Ax‖2. The INTERNODES matrix A ∈ R(n+m)×(n+m) is expressed
as

A =

(
K B

B̃ 0

)
with K ∈ Rn×n, B ∈ Rn×m and B̃ ∈ Rm×n

For the lower bound,
‖A‖22 = max

‖x‖2=1
‖Ax‖22 ≥ ‖Ay‖22 with ‖y‖2 = 1

Choose yT = (uT ,0T ) with ‖u‖2 = 1 such that ‖Ku‖22 is maximized. Then,

‖Ay‖22 = ‖Ku‖22 + ‖B̃u‖22 ≥ ‖Ku‖22 = λ2
1(K)

For the upper bound, let us write xT = (uT ,pT ) with u ∈ Rn and p ∈ Rm. Then,

max
‖x‖2=1

‖Ax‖22 = max
‖x‖2=1

(‖Ku +Bp‖22 + ‖B̃u‖22)

≤ max
‖x‖2=1

((‖Ku‖2 + ‖Bp‖2)2 + ‖B̃u‖22)

≤ ( max
‖u‖2=1

‖Ku‖2 + max
‖p‖2=1

‖Bp‖2)2 + max
‖u‖2=1

‖B̃u‖22

= (‖K‖2 + ‖B‖2)2 + ‖B̃‖22
= (λ1(K) + ‖B‖2)2 + ‖B̃‖22

Taking the square root completes the proof.

Unfortunately, not much is known about ‖A−1‖2. Thus, we do not have a bound on the condition number itself.
However, the bounds on the spectral norm are already insightful results. Indeed, for 2D problems, the largest
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eigenvalue of the stiffness matrix is bounded by a constant independent of the mesh size according to Theorem
3.3. Since this quantity appears both in the lower and upper bound, it indicates that the spectral norm of the
INTERNODES matrix can only grow if the spectral norm of at least one of the blocks B or B̃ grows. It is therefore
important to characterize the singular values of the blocks B and B̃. The results are summarized in the next few
lemmas.

Lemma 3.1

Let λ1(M1) and λ1(M2) denote the largest eigenvalue of M1 and M2 respectively and λm(M1) the smallest
eigenvalue of M1. Then, the singular values of the matrix B satisfy the inequalities

λm(M1) ≤ σi(B) ≤
√
λ2

1(M1) + λ2
1(M2)‖R21‖22 i = 1, 2, . . . ,m

Proof. We begin by recalling the definition of B as

B =


0
−M1

0
M2R21


and note that for a vector p ∈ Rm, ‖Bp‖22 = ‖M1p‖22 + ‖M2R21p‖22. For the lower bound,

σ2
m(B) = min

‖p‖2=1
(‖M1p‖22 + ‖M2R21p‖22)

Depending on the value of m1 and m2, R21 could potentially have a non-trivial kernel. Therefore, the only safe
assessment is to state that ‖M2R21p‖22 ≥ 0 ∀p ∈ Rm which leads to

σ2
m(B) ≥ min

‖p‖2=1
‖M1p‖22 = λ2

m(M1)

Furthermore, for the upper bound,

σ2
1(B) = max

‖p‖2=1
‖Bp‖22 ≤ max

‖p‖2=1
‖M1p‖22 + max

‖p‖2=1
‖M2R21p‖22

≤ ‖M1‖22 + ‖M2‖22‖R21‖22
= λ2

1(M1) + λ2
1(M2)‖R21‖22

Taking the square root, we obtain the desired result.

Lemma 3.2

The singular values of the matrix B̃ satisfy the inequalities

1 ≤ σi(B̃) ≤
√

1 + ‖R12‖22 i = 1, 2, . . . ,m

Proof. Recalling the definition of B̃ as
B̃ =

(
0 I 0 −R12

)
The singular values of B̃ are the square root of the eigenvalues of B̃B̃T . We obtain straightforwardly

σ2
m(B̃) = min

‖p‖2=1
‖B̃Tp‖22 = min

‖p‖2=1
(1 + ‖RT12p‖22) ≥ 1

σ2
1(B̃) = max

‖p‖2=1
‖B̃Tp‖22 = max

‖p‖2=1
(1 + ‖RT12p‖22) = 1 + ‖R12‖22

Once again, we conclude by taking the square root.
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Some important consequences can be drawn from these results. We are most interested in knowing under which
circumstances the upper bounds on the singular values of B and B̃ are growing. In such an event, ‖B‖2 would
most likely grow as well (whereas ‖B̃‖2 would certainly grow) and hence could lead to a growth of ‖A‖2 according
to Theorem 3.4. For the matrix B, the situation seems under control. From Theorem 3.2, the largest eigenvalues
of the interface mass matrices depend on the mesh size. In fact, they depend only linearly on the mesh size for 2D
problems because the integral is taken over the interface. Thus, any growth of ‖R21‖2 with mesh refinement would
be damped by a factor which is decreasing with the mesh size. The only possibility for the upper bound to grow is
that ‖R21‖2 depends on the inverse of the mesh size to some power q ≥ 2, which is unlikely.

The situation is unfortunately far more troublesome for the matrix B̃. This time, nothing is damping a potential
growth of ‖R12‖2. Thus, if this quantity is growing, so will ‖B̃‖2.

Therefore, if any growth in ‖A‖2 is experienced, it is most likely coming from the matrix B̃. More specifically, it is
entirely linked to the interpolation.

A corollary of these results can be easily derived in the context of a conforming mesh.

Corollary 3.1

In the context of a conforming mesh, the singular values of B and B̃ satisfy the inequalities

√
2λm(M) ≤ σi(B) ≤

√
2λ1(M) i = 1, 2, . . . ,m

σi(B̃) =
√

2 i = 1, 2, . . . ,m

Proof. When the mesh is conforming the matrices B and B̃ simplify as M1 = M2 = M and R12 = R21 = I. Hence,

B =


0
−M

0
M

 and B̃ =
(
0 I 0 −I

)

Thus, ∀p ∈ Rm with ‖p‖2 = 1, ‖Bp‖22 = 2‖Mp‖22. Hence

σ2
m(B) = 2λ2

m(M)

σ2
1(B) = 2λ2

1(M)

Moreover, ∀p ∈ Rm with ‖p‖2 = 1, ‖B̃Tp‖22 = 2‖p‖22 = 2. Therefore, in particular σ2
i (B̃) = 2 i = 1, 2, . . . ,m.

Consequently, the next result states that for a conforming mesh the spectral norm of A cannot grow.

Corollary 3.2

In the context of a conforming mesh, the spectral norm of the INTERNODES matrix satisfies the following
inequalities

λ1(K) ≤ ‖A‖2 ≤
√

(λ1(K) +
√

2λ1(M))2 + 2

Proof. Direct consequence of Corollary 3.1

3.4 Stability of the linear system

One of the most important parameters when solving a contact problem with the INTERNODES method is the
choice of radius for the radial basis functions. As, we have seen, this choice is much constrained by the requirement
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for strict diagonal dominance of the interpolation matrices. In this section, we will investigate the stability of the
method with respect to the choice of radius. We will consider two linear systems obtained with two different sets of
radiuses R1 and R2. Let R12 and R21 denote the interpolation matrices computed from a set of radiuses R1 and
R̂12 and R̂21 be the same matrices computed from a set of radiuses R2. For these different set of radiuses, we are
solving the linear systems

Ax = b

Âx̂ = b̂

Ideally, we would like to quantify ‖x̂ − x‖2. The first step is to get an estimate of ‖δb‖2 = ‖b̂ − b‖2 and
‖δA‖2 = ‖Â − A‖2. These quantities can be easily bounded. Recalling the definitions of the matrices and vectors
involved

A =

(
K B

B̃ 0

)
b =

(
f
d

)
with d = R12rΓ2

− rΓ1
. The blocks and their perturbations are given by

B =


0
−M1

0
M2R21

 δB =


0
0
0

M2δR21

 B̃ =
(
0 I 0 −R12

)
δB̃ =

(
0 0 0 −δR12

)
The perturbations on the coefficient matrix and right-hand side are given by

δA =

(
0 δB

δB̃ 0

)
δb =

(
0

δR12rΓ2

)
The next lemma bounds the magnitude of the perturbations.

Lemma 3.3

Let δR12 = R̂12 − R12, δR21 = R̂21 − R21 and let rΓ2
be the vector of coordinates of the nodes on the

interface of body 2. Then, the following results hold:

‖δb‖2 = ‖δR12rΓ2
‖2

‖δA‖2 ≤
√
‖M2δR21‖22 + ‖δR12‖22

Proof. The result on ‖δb‖2 is immediate. For ‖δA‖2, we consider xT = (uT ,pT ) and obtain

‖δA‖22 = max
‖x‖2=1

‖δAx‖22 = max
‖x‖2=1

(‖δBu‖22 + ‖δB̃p‖22)

≤ max
‖u‖2=1

‖δBu‖22 + max
‖p‖2=1

‖δB̃p‖22

= ‖δB‖22 + ‖δB̃‖22
= ‖M2δR21‖22 + ‖δR12‖22

Taking the square root concludes the proof.

The first term in the upper bound on ‖δA‖2 is not expected to contribute much since ‖M2δR21‖22 ≤ ‖M2‖22‖δR21‖22 =
λ2

1(M2)‖δR21‖22 and λ1(M2) depends on the mesh size. However, the second term in more worrisome: numerical
experiments indicated that ‖δR12‖2 and ‖δR21‖2 could become quite large if no constraints were tied to the matrices
Φ11 and Φ22 and the bound on ‖δA‖2 was found to be very tight. Unfortunately, bounding ‖x̂ − x‖2 requires
assumptions on the magnitude of the perturbation ‖δA‖2 which cannot be verified at this stage.

It must be recognized that all the results from this section do not depend on the properties of the interpolation
matrices. In the next section, we will illustrate the discussion with numerical experiments and we will verify the
tightness of the bounds.
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3.5 Numerical experiments

For a given geometry, we have experimented with different sets of radiuses for the radial basis functions. We have
constructed interpolation matrices which did not satisfy the sufficient conditions of Chapter 1. The purpose is to
illustrate the influence of the choice of radius and verify the tightness of the bounds from the previous section. The
experimentations will be carried out on a contact problem between a curved and a flat boundary. This problem
is referred to in the literature as a Hertzian contact problem. We will encounter it again in future chapters. The
experiments will be repeated for uniform and localized radiuses. We will solve the same problem for different mesh
sizes. However, the radiuses of support of the radial basis functions have been chosen independently of the mesh
size. The supports of the radial basis functions are shown in Figure 3.1 for a mesh size h = 0.01. Note that in order
to preserve the diagonal dominance of the interpolation matrices, the radiuses must depend on the mesh size. This
condition is violated in the experiments and diagonal dominance is certainly lost on fine meshes. Nevertheless, we
did not encounter any issues related to the invertibility of the interpolation matrices nor related to the rescaling.
Suitable boundary conditions were chosen such that the problem was solvable.

Figure 3.1: Support of the radial basis functions for a uniform radius (left figure) and a localized radius (right
figure)

In Figure 3.2 and 3.3, the spectral norm of the INTERNODES matrix is reported for uniform and localized radiuses
respectively. The bounds reported are those of Theorem 3.4. The sharpness of the bounds is quite stunning. In
fact, when using a uniform radius, the lower bound was always attained. We immediately notice a sharp increase
of the spectral norm on fine meshes when using a localized radius. This increase is necessarily linked to an increase
of the spectral norm of either B or B̃. However, according to our previous discussion, an increase of the spectral
norm of B̃ is more likely. The next figures provide a verification.
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Figure 3.2: Spectral norm of the INTERNODES matrix
with uniform radiuses
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Figure 3.3: Spectral norm of the INTERNODES matrix
with localized radiuses

The smallest and largest singular value of B are shown in Figure 3.4 and 3.5 for uniform and localized radiuses
respectively. The bounds reported are those from Lemma 3.1. The smallest singular value seems to decay as the
smallest eigenvalue of the interface mass matrix of body 1. This decay is linear in the mesh size as predicted by
the theory. The largest singular value also behaves nicely for the case with uniform radiuses. However, it increases
slightly for localized radiuses. The non-monotone pattern in this case seems to indicate its growth is being damped.
It is most likely thanks to the eigenvalues of the interface mass matrices.
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Figure 3.4: Singular values of B with uniform radiuses
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Figure 3.5: Singular values of B with localized radiuses

We now finally check the smallest and largest singular value of B̃. They have been reported in Figure 3.6 and 3.7
for uniform and localized radiuses respectively along with the bounds from Lemma 3.2. In this case, the interface
mass matrices are not here to prevent a growth of the singular values. The smallest singular value of B̃ is not
reported for fine meshes because of convergences issues with the solver. However, it seems to get increasingly close
to 1. Although the largest singular value still behaves nicely for uniform radiuses, it increases tremendously for
localized radiuses.
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Figure 3.6: Singular values of B̃ with uniform radiuses
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Figure 3.7: Singular values of B̃ with localized radiuses

We have also computed the smallest singular value of the INTERNODES matrix for these same experiments
although we do not have any theoretical bounds to compare it with. The results are shown in Figure 3.8 and 3.9 for
uniform and localized radiuses respectively. The smallest eigenvalue of the stiffness matrix, known to decay as O(h2)
for 2D problems from Theorem 3.3, is also shown for comparison. From these results, it seems that the smallest
singular value of the INTERNODES matrix is not too different from the smallest eigenvalue of the stiffness matrix
provided the interpolation is accurate enough. However, it may decrease much faster for low quality interpolation.
Therefore, the smallest singular value of the INTERNODES matrix must be some complicated function of the
eigenvalues of K and singular values of B and B̃. Finding tight lower and upper bounds on this quantity is still
ongoing research.
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Figure 3.8: Smallest singular value of the INTERNODES
matrix with uniform radiuses
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Figure 3.9: Smallest singular value of the INTERNODES
matrix with localized radiuses
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Figure 3.10: Spectral condition number of the INTERN-
ODES matrix with uniform radiuses
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Figure 3.11: Spectral condition number of the INTERN-
ODES matrix with localized radiuses

Finally, we conclude these experiments with a verification of the spectral condition number of the INTERNODES
matrix. The results are reported in Figure 3.10 and 3.11 for uniform and localized radiuses respectively. For
uniform radiuses, the results are in good agreement with those from Günther-Hanssen. A typical O(h−2) growth
of the condition number is recovered. However, the situation is much worse for low quality interpolation. For the
smallest mesh size, the condition number for localized radiuses has gained two orders of magnitude with respect to
uniform radiuses. From our previous results, it seems both ‖A‖2 and ‖A−1‖2 are contributing to this increase.

Based on this finding, one could reasonably question whether it is worthwhile keeping the interface mass matrix
of body 1 in the matrix B̃ as it originally appeared in the coefficient matrix. Our experiments indeed indicated
it had a favorable effect on the singular values of B̃ and also on the spectral norm of the INTERNODES matrix.
However, it surprisingly did not improve the condition number of the matrix because the modification seemed to
have increased the spectral norm of the inverse instead.

The stability results were not tested for this problem. However, they were verified for a different geometry. The tests
confirmed the tightness of the bounds and the potential instability of the method in case of large perturbations to
the interpolation matrices. It is unclear whether the diagonal dominance of the interpolation matrices improves the
stability of the method. However, the requirement surely restricts the choice of radius for the radial basis functions
which might indirectly bound δR12 and δR21. Unfortunately, the precise connection between stability and diagonal
dominance could not be established and is left as future work.

Now that we know many of the properties of the blocks of the INTERNODES matrix, we can investigate how to
solve large scale linear systems with this matrix.
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Chapter 4

Numerical solution techniques

This chapter aims at providing the background for the discussion of the next chapter on preconditioners. We will
begin by motivating the choice for the solution method to the linear system. Naturally, the emphasis will be made
on iterative methods. However, direct methods will be also briefly discussed as they are used to solve numerous
smaller linear systems.

4.1 Motivation

There exists a great number of ways of solving a linear system including both direct and iterative methods. The
choice, of course, depends on the matrix at hand, its properties and the size of the problem. Obviously, iterative
methods only make sense if they converge relatively quickly. When applied to an n× n dense matrix, an iterative
method based on matrix-vector multiplications is expected to cost O(n2) operations per iteration. It is therefore
only worthwhile considering when it can converge after say k iterations with k < n. The reason being most direct
methods based on matrix factorizations will cost O(n3) or slightly less.

In the context of matrices arising from finite difference or finite element discretizations of partial differential equa-
tions (PDEs), the matrices are typically sparse and therefore iterative solvers will only cost O(kn) per iteration
with k < n. However, convergence rates of iterative solvers depend on the properties of the matrix and the method
itself. Unfortunately, convergence may be extremely slow and these methods are then much less attractive. This
problem can be circumvented by effective preconditioning techniques as we will see in the next chapter.

Direct solvers, on the other hand, do not have this issue. Their essential cost component is usually linked to
computing a matrix factorization. Solving the linear system is subsequently an easier task.

Apart from the cost related to floating point operations is the cost of storage. Unfortunately, when matrix factoriza-
tions are computed on sparse matrices, the sparsity pattern of the factors is generally destroyed. This is particularly
problematic for large sparse matrices because the factors generated from their decomposition may not fit in mem-
ory. However, it has been shown that this phenomenon, called fill-in, could be greatly reduced by reordering the
rows and columns of the matrix. Unfortunately, computing the optimal reordering turns out to be NP-complete
(Yannakakis, 1981). Obviously, it would not make any sense to solve such a problem when initially our wish is just
to compute the solution of a linear system. For this reason, a number of heuristic methods have been developed
to find good but not optimal reorderings. Some examples for heuristic strategies are Cuthill-McKee and reverse
Cuthill-McKee. Others are theoretically motivated such as Minimum Degree ordering or its cheaper counterpart
called Approximate Minimum Degree ordering. A very popular one for which there are in fact optimality results
is the Nested Dissection method. The last method is particularly effective for matrices with an underlying graph
structure inherited from a finite difference grid or a finite element mesh. Overall, sparse direct methods based on
reordering strategies have matured to a point that they nowadays represent the method of choice for solving large
sparse linear systems, at least for discretizations of two dimensional problems. These strategies will not be discussed
in this report and we instead refer to Davis (2006) for all the theoretical and implementation details.

In the previous chapter, we saw that the linear system we are trying to solve is indeed sparse to a great extent.
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However, our problem is not just solving a linear system, it is solving the entire contact problem. Let us recall that
the blocks B and B̃ of our linear system are changing between each iteration of the contact algorithm. One may
come up with different ideas. For example, we could reassemble the entire system at each iteration. However, such
an operation may be quite costly. An even worse idea would be to change only the lines and columns of the matrix
which have changed from one iteration to the next. Updating the entries of a sparse matrix has a prohibitive cost
due to the shifting of indices in the vectors storing the position of nonzero entries.

Apart from updating the matrix is the issue related to solving the linear system. The use of a direct solver would
require recomputing a factorization at each iteration of the contact algorithm. Based on our previous discussion,
these operations are expected to be very costly. Finally, a decisive observation is that the matrices B and B̃
contain a few dense blocks. For very large problems, such blocks simply cannot be stored. Therefore, forming the
INTERNODES matrix itself becomes infeasible, left alone its factorization. It is precisely this last point which
leads us to consider iterative methods. Iterative methods allow us to never assemble the INTERNODES matrix,
nor the matrices B and B̃. Instead, only the multiplication between the matrices B and B̃ and a given vector must
be coded up. Hence, we define the abstract linear operators B : Rm → Rn and B̃ : Rn → Rm. The algorithm for
these operators will be described in Section 4.4.

We now still have to decide which iterative method to use. Although there are many iterative methods available,
the choice is here restricted to methods for general nonsymmetric matrices. Popular choices include the generalized
minimal residual method (GMRES) (Saad and Schultz, 1986), the full orthogonalization method (FOM) (Saad,
1981) or the biconjugate gradient stabilized method (BiCGSTAB) (Van der Vorst, 1992). These methods all belong
to the class of Krylov subspace methods which we briefly describe next.

4.2 Krylov subspace methods

For any matrix A ∈ Cn×n and vector r ∈ Cn, Krylov subspaces are defined as

Kk(A, r) = span{r, Ar, . . . , Ak−1r} k ≥ 1

Note that any vector v ∈ Kk(A, r) can be written as v = q(A)r with q ∈ Pk−1. Let us now consider a general linear
system Ax = b with A ∈ Cn×n and b ∈ Cn.

Given an initial guess x0 and defining the initial residual r0 = b − Ax0, Krylov subspace methods look for an
approximate solution xk such that xk − x0 ∈ Kk(A, r0). Thus,

xk = x0 + q(A)r0

Consequently,

rk = b−Axk = b−Ax0 −Aq(A)r0

= (I −Aq(A))r0

= p(A)r0

with p ∈ Pk and p(0) = 1.

The criterion based on which the approximate solution xk is computed and some orthogonality relations between
subspaces distinguish the various methods. For example, in GMRES, xk is computed such that is minimizes ‖rk‖2
which explains the name generalized minimal residual method. In FOM, the orthogonality relation rk ⊥ Kk(A, r0)
is enforced whereas in BiCGSTAB, two sequences of vectors satisfying biorthogonality and biconjugacy relations
respectively are computed. There exists many other methods apart from the three listed above. Before choosing a
method, let us recall a few facts.

First of all, since our discussion will eventually turn to preconditioners, the choice of method is not a primal
concern. It is frequently acknowledged in the literature that the quality of the preconditioner is more important
than the choice of the Krylov subspace method (Rozložńık, 2018). Our choice was primarily guided by popularity
and numerical experimentation.

The convergence properties of GMRES are among the most studied and various convergence bounds have been
found. Moreover, in a preliminary study, Günther-Hanssen solved linear systems involving the INTERNODES
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matrix using two different Krylov subspace methods. Namely, GMRES and the conjugate gradient squared (CGS)
method. BiCGSTAB is an improved version of CGS which aims at stabilizing its erratic convergence. The results
of Günther-Hanssen indicated poorer convergence (and occasional failure) of CGS. We therefore decided to carry on
with GMRES and did not experiment with BiCGSTAB. However, the improved convergence properties of GMRES
have a price. Since this method was used throughout the project, the next section provides a more detailed
description of it.

4.3 GMRES

The standard GMRES algorithm is presented in Algorithm 4.1 and is taken from the lecture notes of Kressner
(2020). The preconditioned version of GMRES will be presented in the next chapter. For the exposition, we
consider the most general case where A ∈ Cn×n, but obviously in our application A ∈ Rn×n.

Algorithm 4.1 GMRES

1: Input: Matrix A ∈ Cn×n, right-hand side b ∈ Cn, starting vector x0, k ∈ N
2: Output: Approximate solution xk to Ax = b
3: Set r0 = b−Ax0

4: Set β0 = ‖r0‖2, u1 = r0/β0, U1 = u1

5: for j = 1, 2, . . . , k do
6: Compute wj = Auj
7: Compute hj = U∗j wj

8: Compute ũj+1 = wj − Ujhj
9: Set hj+1,j = ‖ũj+1‖2

10: Set uj+1 = ũj+1/hj+1,j

11: Set Uj+1 = (Uj ,uj+1)

12: Find yj = argminy∈Rj ‖β0e1 − H̃jy‖2
13: Set βj = ‖β0e1 − H̃jyj‖2
14: end for
15: Return xk = x0 + Ukyk

The algorithm consists in building an orthonormal basis Uk for the Krylov subspace

Kk(A, r0) = span{r0, Ar0, . . . , A
k−1r0}

Without any breakdown, the method increases the dimension of the Krylov subspace by one at each iteration. This
is done by projecting the last vector of the basis in the orthogonal complement of Kk(A, r0), normalizing it and
adding it to the basis. In order to compute xk, the approximate solution at step k, a linear least squares problem
involving the matrix H̃k must be solved. This approximate solution is the vector which minimizes the 2-norm of the
residual. In practice, the iterations of GMRES are stopped when the norm of this residual vector is small enough.
There are two standard stopping criteria used in GMRES:

1. A criterion based on the relative residual:
‖rk‖2
‖r0‖2

≤ tol

2. A criterion based on the absolute residual:
‖rk‖2 ≤ tol

where tol is some prescribed tolerance. The l2 norm is the natural norm in GMRES. However, any norm could be
used in the stopping criterion. In fact, it might be worthwhile using the l∞ norm because it does not depend on
the size of the vector. For example, assuming each component of rk ∈ Rn is equal to c << 1, then ‖rk‖2 =

√
n|c|.

For n = 106 it might be quite pessimistic. Whereas ‖rk‖∞ = |c| is independent of the size of the problem.

Another important remark is linked to the cost of GMRES. The essential cost component of GMRES is concentrated
in lines 6, 7 and 8. Line 6 computes a matrix-vector multiplication which is expected to cost O(cn) with c < n
for a sparse matrix. Lines 7 and 8 orthogonalize the resulting vector against the Krylov basis computed up to
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this stage. Both lines cost O(jn) each. Therefore, the cost of these operations grows with the dimension of the
Krylov basis. Eventually, depending on how large c is, these operation might end up being more expensive than the
matrix-vector multiplication. The storage cost also increases at each iteration because of the growth of the Krylov
basis. Occasional reorthogonalization is also needed to prevent loss of orthogonality of the vectors of the Krylov
basis.

The increasing computational burden can be cut down thanks to restarting. It simply consists in computing the
approximate solution xk for a prescribed k and restarting GMRES using as initial guess the previously computed
approximation. However, restarting GMRES may severely slow down convergence (Wathen, 2015). Thus, GMRES
is very efficient only if it is guaranteed to convergence after a small number of iterations. Preconditioning techniques
are designed to meet this requirement. Before proceeding any further, we must recall a well known convergence
bound.

Theorem 4.1

Assume A ∈ Cn×n is a diagonalizable matrix such that A = XDX−1 is a spectral decomposition for A. Let
rk be the residual obtained after applying k iterations of GMRES with starting vector x0. Then,

‖rk‖2
‖r0‖2

≤ κ(X) min
p∈Pk
p(0)=1

max
λ∈Λ(A)

|p(λ)|

Proof. We have already noted that rk = p(A)r0 with p ∈ Pk and p(0) = 1 holds for any Krylov subspace method.
GMRES minimizes the norm of this residual over all such polynomials. Thus,

‖rk‖2 = min
p∈Pk
p(0)=1

‖p(A)r0‖2 = min
p∈Pk
p(0)=1

‖Xp(D)X−1r0‖2

Bounding its norm using submultiplicativity, we obtain straightforwardly

‖rk‖2 ≤ min
p∈Pk
p(0)=1

‖X‖2‖X−1‖2‖p(D)‖2‖r0‖2

= κ(X) min
p∈Pk
p(0)=1

max
λ∈Λ(A)

|p(λ)|‖r0‖2

Note that if A is normal and its eigenvectors are normalized such that X forms an orthonormal basis, then κ(X) = 1.
In this case, the convergence of GMRES is entirely controlled by its spectrum. In particular, in the Hermitian case,
the convergence bound of MINRES (minimal residual method) is recovered. GMRES was designed as a generaliza-
tion of MINRES for general non-Hermitian matrices. Theorem 4.1 is a clear motivation for preconditioning. The
polynomial term is small if at least one of the following conditions is met:

1. The polynomial degree is large.

2. The eigenvalues are tightly clustered at a few specific locations away from the origin.

The first condition is not interesting as it would require running GMRES for too many iterations. The second
condition can be achieved by a suitable transformation of the linear system. It is precisely one of the main purposes
of preconditioning and we will return to it in the next chapter.

However, in the nonnormal case, the situation is far more troublesome. In general, not much is known about κ(X)
and the spectrum no longer controls the convergence of GMRES entirely. In fact, it may have no influence at all.
It has been shown that any non-increasing curve represents the residual norm as a function of the iteration number
for some problem. The eigenvalues for that problem are arbitrary (Greenbaum et al., 1996). Thus, even a very
tight clustering of the eigenvalues would not improve the convergence. Fortunately, for matrices arising in real life
applications the situation is less dramatic and we can expect the eigenvalues to have an influence. There exists
other convergence bounds for GMRES which can be found in Greenbaum (1997) for instance. However, none of
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them are descriptive in the sense that they depend on unknown quantities or quantities which cannot be bounded.
General descriptive convergence bounds for GMRES are still a research topic.

We end this section by noting that there exists variants of the implementation of GMRES. Algorithm 4.1 uses the
Arnoldi method which is a modified Gram-Schmidt process. Alternatively, Householder transformations have also
been used.

4.4 Fast matrix-vector multiplication

Applying GMRES to solve our linear system requires computing matrix-vector multiplications with the INTERN-
ODES matrix

A =

(
K B

B̃ 0

)
Denoting y = Ax we must compute (

y1

y2

)
=

(
Kx1 +Bx2

B̃x1

)
Computing Kx1 can be done using sparse matrix-vector multiplication. However, computing Bx2 and B̃x1 deserves
some attention. Among the blocks of the matrices B and B̃ are small interface mass matrices and interpolation
matrices and we will naturally take advantage of the Kronecker product structure. We recall that they can be
expressed as

M1 = (M̄1 ⊗ Id) R12 = (R̄12 ⊗ Id)
M2 = (M̄2 ⊗ Id) R21 = (R̄21 ⊗ Id)

Taking advantage of this structure allows to never store the full matrices. Denoting n1 and n2 the number of nodes
on the interface of body 1 and 2 respectively, then M̄1 ∈ Rn1×n1 , M̄2 ∈ Rn2×n2 . As for the interpolation matrices,
R̄12 ∈ Rn1×n2 and R̄21 ∈ Rn2×n1 .

4.4.1 Matrix-vector multiplication with B

Given u ∈ Rm, we must compute

Bu =


0

−M1u
0

M2R21u


In the following, we will often use the identity

vec(ABT ) = (B ⊗ Im) vec(A)

for matrices A ∈ Rm×n, B ∈ Rp×n and where vec denotes the vectorization operator. Now, using the Kronecker
product structure of the matrices and denoting u = vec(U) with U ∈ Rd×n1 , we compute the products:

1. M1u = (M̄1 ⊗ Id) vec(U) = vec(UM̄T
1 ) = vec(UM̄1).

2. M2R21u = (M̄2 ⊗ Id)(R̄21 ⊗ Id) vec(U) = (M̄2R̄21 ⊗ Id) vec(U) = vec(UR̄T21M̄2)

4.4.2 Matrix-vector multiplication with B̃

In this case, given u ∈ Rn, we compute

B̃u =
(
0 I 0 −R12

)
uΩ1

uΓ1

uΩ2

uΓ2

 = uΓ1 −R12uΓ2

41



The vectors uΓ1
and uΓ2

can be reshaped into the matrices U1 ∈ Rd×n1 and U2 ∈ Rd×n2 such that vec(U1) = uΓ1

and vec(U2) = uΓ2 . Thus,

B̃u = vec(U1)− (R̄12 ⊗ Id) vec(U2) = vec(U1 − U2R̄
T
12)

4.4.3 Algorithms

The linear operators avoid explicitly computing the interpolation matrices expressed as

R12 = (R̄12 ⊗ Id) = (D̄−1
11 Φ̄12Φ̄−1

22 ⊗ Id)
R21 = (R̄21 ⊗ Id) = (D̄−1

22 Φ̄21Φ̄−1
11 ⊗ Id)

These matrices still have some sparsity for d ≥ 2 thanks to the Kronecker product with the identity matrix.
However, for extremely large problems, the explicit computation of the interpolation matrices would still lead to
storage issues. Matrix-vector multiplies with Rij will be most efficiently performed by pre-computing and storing
the sparse LU factors of Φjj . Obviously, the diagonal matrix Dii is never formed. Only the vector containing the
rescaling factors gi is needed. This vector is also pre-computed and stored.

In the following algorithms, we recall that D1
Γ and D2

Γ are the sets of degrees of freedom for the interface of body 1
and 2 respectively. Algorithms 4.2 and 4.3 refer to the linear operators B, and B̃ which implement the multiplications
Bu and B̃u respectively. Algorithm 4.4 implements the matrix-vector multiplication with R̄ij .

Algorithm 4.2 Linear operator B
1: Input: Interface mass matrices M̄1, M̄2, interpolation matrix R̄21, sets D1

Γ, D2
Γ, vector u

2: Output: Vector y = B(u)
3: Reshape u into a matrix U
4: Compute Z1 = −UM̄1

5: Compute Z2 = UR̄T21M̄2

6: Initialize y
7: Set y(D1

Γ) = vec(Z1)
8: Set y(D2

Γ) = vec(Z2)
9: Return y

Algorithm 4.3 Linear operator B̃
1: Input: Interpolation matrix R̄12, vector u
2: Output: Vector y = B̃(u)
3: Extract uΓ1

and reshape it as U1

4: Extract uΓ2
and reshape it as U2

5: Compute Z = U1 − U2R̄
T
12

6: Return y = vec(Z)

Algorithm 4.4 Linear operator Rij
1: Input: LU factors such that Φ̄jj = LU , interpolation matrix Φ̄ij , vector gi of rescaling factors.
2: Output: Vector y = Rij(u)
3: Compute u← U−1L−1u
4: Compute u← Φ̄iju
5: Compute element-wise division u← u/gi
6: Return u
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Chapter 5

Preconditioning techniques

Experimentally, the iterative condition number of the INTERNODES matrix does not behave very differently from
the one for the standard Poisson problem. The usual h−2 growth of the iterative condition number with the mesh size
h was experienced even for very different applications (Deparis et al., 2016, Günther-Hanssen, 2020). This property
depends on the differential operator and can be expected from second order unbounded operators. Although the
iterative condition number alone cannot fully describe the behavior of iterative methods in the nonnormal case,
we can still expect the number of iterations to increase with the condition number. As we have discussed in the
previous chapter, such a feature is particularly undesirable when using GMRES because of its growing cost per
iteration. Preconditioning techniques are used to keep the iteration count small despite the growing size of the
problem. Such techniques are absolutely essential for large scale matrix computations. They will be at the center
of attention in this chapter.

The remainder of the chapter is organized as follows: Section 5.1 provides a general introduction to preconditioning.
Section 5.2 follows up with the preconditioned version of GMRES. In Section 5.3 a preconditioner is proposed
and theoretical properties related to the eigenvalues of the preconditioned matrix are proved. The quality of
the preconditioner depends on a parameter which must be chosen suitably. Sections 5.4 and 5.5 gather theoretical
results for the tuning of the preconditioner. The solution to linear systems with this preconditioner is not trivial and
therefore an algorithm is described in Section 5.6. All of our solution methods heavily rely on sparse approximate
inverse techniques as building blocks for larger preconditioners. A brief introduction is included in Section 5.7.
Finally, Section 5.9 concludes this chapter with numerical experiments. The quality of the preconditioner is tested
on contact problems of increasingly large size.

5.1 Introduction

Preconditioning is a very active research area in mathematics. Although preconditioning techniques are mostly
recognized in the context of linear systems, they may also be applied for other purposes such as the computation of
eigenvalues. In this project, however, they will indeed be used for the solution of linear systems. An intuitive idea
is the following: given a linear system Ax = b with A ∈ Cn×n nonsingular and b ∈ Cn which is hard to solve. The
idea is to instead solve a transformed linear system Âx̂ = b̂ which has much nicer properties in some sense and is
easier to solve. The transformation may involve a change of variables from x to x̂.

To date, there does not exist a universal preconditioner nor a universal strategy for building efficient preconditioners.
This has led to an impressive collection of methods. The choice greatly depends on whether one is ”given a problem”
or ”given a matrix” (Wathen, 2015). In the ”given a problem” setting, one may advantageously exploit the origin
of the linear system to design preconditioners. This is most relevant in the context of discretization of partial
differential equations (PDEs) where the properties of the underlying differential operators from which the matrices
stem may be used in the design process. Operator preconditioning is a direct application of these ideas. See for
instance Hiptmair (2006) for a brief introduction.

On the other hand, when one is ”given a matrix”, the origin of the problem is unknown and therefore cannot
be used. More general techniques such as incomplete factorizations and sparse inverses must then be applied.
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These techniques can be applied in principle to any matrix but have found fertile grounds in particular in the
context of optimization. This observation has led authors to classify preconditioners on the basis of applications.
Nevertheless, the distinction is not always clear since some preconditioners may be successfully applied to very
different problems. We refer to the excellent survey papers of Wathen (2015) and Pearson and Pestana (2020) for
a general introduction to preconditioning and to Benzi (2002) for a focus on algebraic preconditioners. The lack
of universal solution procedures and the prominent role intuition plays in the design of preconditioners have led
several authors to characterize it as an art rather than a science. However, one should be confident in thinking that
the more knowledge we have, the more of a science it gets.

Preconditioning linear systems with non-Hermititan (or more generally nonnormal) matrices is even more chal-
lenging. Indeed, as we have already discussed, the spectrum alone does not condition entirely the performance
of Krylov subspace methods. To date, there does not exist any descriptive convergence bound for nonsymmetric
Krylov solvers. Therefore, preconditioning strategies for nonnormal matrices are usually only heuristic. However,
there exist rigorous results based on field of values analysis. Unfortunately, such an analysis is strongly problem
dependent and may get quite technical. It was carried out for instance by Benzi and Olshanskii (2011) for the
linearized Navier-Stokes equations.

There exists various forms of preconditioning commonly classified in three categories.

1. Left preconditioning simply consists in pre-multiplying the linear system with M−1 such that M−1 ≈ A−1 in
some sense. M is called the preconditioning matrix (or preconditioner). We obtain

M−1Ax = M−1b

Âx = b̂

with Â = M−1A and b̂ = M−1b. The residual becomes

r̂ = b̂− Âx = M−1(b−Ax) = M−1r

Thus, left preconditioning also implies a transformation of the residual vector. This transformed residual
vector is called the preconditioned residual.

2. Right preconditioning, instead, inserts the preconditioner between the coefficient matrix and the solution
vector. Therefore, it implies a change of variables as

AM−1Mx = b

Âx̂ = b

with Â = AM−1 and x̂ = Mx. The residual becomes

r̂ = b− Âx̂ = b−Ax = r

In this case, the preconditioned residual and the true (unpreconditioned) residual are the same.

3. Split preconditioning (also called two-sided preconditioning) combines the ideas of left and right precondi-
tioning. The transformation is

M−1
1 AM−1

2 M2x = M−1
1 b

Âx̂ = b̂

The preconditioned residual is expressed as r̂ = M−1
1 r.

If is important to note that the left and right preconditioned matrices are similar: M−1A = SAM−1S−1 with
S = M−1. Thus, they share the same spectrum. It is also true for split preconditioning provided M = M1M2.
Therefore, the form of preconditioning is not important for the spectrum of the preconditioned matrix. However,
other aspects are also relevant. For symmetric matrices, for example, split preconditioning is usually preferred
because it leads to a symmetric preconditioned matrix provided M2 = MT

1 . There exists also other forms of
preconditioning such as polynomial preconditioning. See for example Liu et al. (2015) and their references.
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5.2 Preconditioned GMRES

In Algorithm 5.1, the left preconditioned version of GMRES is presented. In this version, the preconditioned
residual is used. This residual may not be a good measure for the convergence to the solution of the linear system.
It is sometimes recommended to compute the unpreconditioned residual rk = b−Axk. However, this requires the
explicit computation of xk at each iteration and an additional matrix-vector multiplication which in turn increases
the computational cost.

Right preconditioning instead allows to work directly with the unpreconditioned residual. For this reason, it is
usually preferred in applications. The right preconditioned version of GMRES is presented in Algorithm 5.2. It
is quite similar to the left preconditioned version. The main difference is that instead of solving a linear system
with the preconditioner for the initial residual, it must be solved when computing the approximate solution. It
corresponds to back-transforming the solution to the original variable. Other implementation details can be found
in Saad (2003).

A consequence of preconditioning, both left and right, is that a linear system involving the preconditioning matrix
must be solved at each iteration in line 6. Obviously, solving these linear systems must be much easier than solving
the original system. In fact, it is acknowledged that the cost of solving a linear system with the preconditioner
should balance the cost of computing a matrix-vector multiplication with the coefficient matrix (Wathen, 2015).

Algorithm 5.1 Left preconditioned GMRES

1: Input: Matrix A ∈ Cn×n, Preconditioning matrix M ∈ Cn×n, right-hand side b ∈ Cn, starting vector x0,
k ∈ N

2: Output: Approximate solution xk to Ax = b
3: Set r0 = M−1(b−Ax0)
4: Set β0 = ‖r0‖2, u1 = r0/β0, U1 = u1

5: for j = 1, 2, . . . , k do
6: Compute wj = M−1Auj
7: Compute hj = U∗j wj

8: Compute ũj+1 = wj − Ujhj
9: Set hj+1,j = ‖ũj+1‖2

10: Set uj+1 = ũj+1/hj+1,j

11: Set Uj+1 = (Uj ,uj+1)

12: Find yj = argminy∈Rj ‖β0e1 − H̃jy‖2
13: Set βj = ‖β0e1 − H̃jyj‖2
14: end for
15: Return xk = x0 + Ukyk

Algorithm 5.2 Right preconditioned GMRES

1: Input: Matrix A ∈ Cn×n, Preconditioning matrix M ∈ Cn×n, right-hand side b ∈ Cn, starting vector x0,
k ∈ N

2: Output: Approximate solution xk to Ax = b
3: Set r0 = b−Ax0

4: Set β0 = ‖r0‖2, u1 = r0/β0, U1 = u1

5: for j = 1, 2, . . . , k do
6: Compute wj = AM−1uj
7: Compute hj = U∗j wj

8: Compute ũj+1 = wj − Ujhj
9: Set hj+1,j = ‖ũj+1‖2

10: Set uj+1 = ũj+1/hj+1,j

11: Set Uj+1 = (Uj ,uj+1)

12: Find yj = argminy∈Rj ‖β0e1 − H̃jy‖2
13: Set βj = ‖β0e1 − H̃jyj‖2
14: end for
15: Return xk = x0 +M−1Ukyk
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5.3 A preconditioner for the INTERNODES matrix

The first issue we are facing is linked to the very different physical nature of the unknowns in the solution vector
x which combines the displacement vector u and the Lagrange multipliers λ. These quantities are typically ex-
pressed in meters and Newtons per meter respectively. Numerically speaking, they are different by several orders
of magnitude. This difference carries over to the different blocks of the INTERNODES matrix. The entries of the
stiffness matrix are extremely large in comparison to those of B and B̃. This difference is responsible for much of
the ill-conditioning of the matrix. We must therefore proceed with a rescaling. In effect, it will lead to a solution
vector x with all entries having the same units. A simple and yet very efficient rescaling is given by(

ζ−1K B

B̃ 0

)(
u

ζ−1λ

)
=

(
ζ−1f

d

)
It simply consists in dividing the entire first block row by a scaling parameter ζ > 0 and performing a change of
variables. We redefine K ← ζ−1K, λ ← ζ−1λ and f ← ζ−1f . This change of variables is only possible because
λ does not appear on the second block row. The scaling parameter ζ must be chosen depending on the material.
The most prominent material parameter and which generates much of the ill-conditioning is the elastic modulus.
Thus, we recommend setting ζ = E in case of a homogeneous material. In case of a nonhomogeneous material, we
recommend setting ζ = maxx∈ΩE(x).

The rescaling is in fact already a form of preconditioning. More specifically, it is a form of split preconditioning.(
ζ−1I 0

0 I

)
︸ ︷︷ ︸

M−1
1

(
K B

B̃ 0

)(
I 0
0 ζI

)
︸ ︷︷ ︸

M−1
2

(
I 0
0 ζ−1I

)
︸ ︷︷ ︸

M2

(
u
λ

)
=

(
ζ−1I 0

0 I

)
︸ ︷︷ ︸

M−1
1

(
f
d

)

More compactly written as

M−1
1 AM−1

2 M2x = M−1
1 b

Âx̂ = b̂

with Â = M−1
1 AM−1

2 the preconditioned matrix, x̂ = M2x and b̂ = M−1
1 b.

However, we will consider it more as some preliminary step. In the following, we will refer to the INTERNODES
matrix as being the rescaled matrix. Thus, we set A = Â. This rescaling has consequences for the residual vector.
Indeed, the residual norm for the rescaled system behaves almost like a shift of the unpreconditioned residual norm.
We have

‖r‖22 = ‖f − (Ku +Bλ)‖22︸ ︷︷ ︸
‖r1‖22

+ ‖d− B̃u‖22︸ ︷︷ ︸
‖r2‖22

‖rr‖22 = ‖M−1
1 r‖22 =

1

ζ2
‖f − (Ku +Bλ)‖22︸ ︷︷ ︸

‖r1,r‖22

+ ‖d− B̃u‖22︸ ︷︷ ︸
‖r2,r‖22

with ‖r1‖2 >> ‖r2‖2 but ‖r1,r‖2 ≈ ‖r2,r‖2. The components of the residual vector for the rescaled system have the
same units. It can be understood as a form normalization designed to wipe out the effect of material parameters. It
allows us to conveniently choose a tolerance in the stopping criterion of GMRES independent of material parameters.

The abundant literature on saddle point systems provides us with several possibilities for preconditioning the
INTERNODES matrix. Let us recall the properties of the different blocks:

• K ∈ Rn×n is symmetric positive semidefinite.

• B ∈ Rn×m and B̃ ∈ Rm×n with rank(B) = rank(B̃) = m.

Special attention must be paid to the properties of the different blocks of the system. In our case, we are seeking
a preconditioner for a saddle point system with a singular (1, 1) block. The preconditioner we propose is a slight
modification of an augmented Lagrangian preconditioner proposed by Liu (2013) and based on earlier results
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from Cao (2008). As the name suggests, they are widely used in the context of optimization. Liu proposed a
preconditioner of the form

M =

(
K +BW−1B̃ kB

0 −W

)
where k ∈ R is a scalar parameter and W ∈ Rm×m is a symmetric positive definite weight matrix. However, it is
sufficient to only require it to be invertible. In his paper, Liu proved theoretical properties related to the clustering
of the eigenvalues of the preconditioned system. We will present his derivations here. However, we shall consider a
slightly more general preconditioner. It consists in adding scalar parameters α, β, γ ∈ R∗. The reason will become
clear later. We therefore consider

M =

(
K + αBW−1B̃ −βγ−1B

0 −γ−1W

)
We will subsequently discuss suitable choices for the parameters α, β and γ as well as for the matrix W . The
preconditioned system reads

M−1Ax = M−1b

We are attempting to identify the eigenvalues of the preconditioned matrix M−1A. Hence, let us consider the
eigenvalue problem

M−1Av = λv

Thus, the eigenvalues of the preconditioned matrix are the eigenvalues of the generalized eigenvalue problem

Av = λMv

More explicitly, (
K B

B̃ 0

)(
u
p

)
= λ

(
K + αBW−1B̃ −βγ−1B

0 −γ−1W

)(
u
p

)
Hence

((λ− 1)K + αλBW−1B̃)u − (λβγ−1 + 1)Bp = 0 (5.1)

B̃u + λγ−1Wp = 0 (5.2)

The second equation yields p = −γλ−1W−1B̃u. (Obviously, λ 6= 0, otherwise the preconditioned matrix would be
singular). After substituting back in the first equation and regrouping the terms we obtain

λ(λ− 1)Ku + (αλ2 + βλ+ γ)BW−1B̃u = 0 (5.3)

Three different cases must be analyzed.

• If u ∈ ker(B̃), then equation (5.3) reduces to

λ(λ− 1)Ku = 0

Since Ku 6= 0, then λ = 1 is an eigenvalue of multiplicity dim ker(B̃) = n−m.

• If u ∈ ker(K), equation (5.3) reduces to

(αλ2 + βλ+ γ)BW−1B̃u = 0

Since BW−1B̃u 6= 0, then
αλ2 + βλ+ γ = 0

which yields

λ1,2 =
−β ±

√
β2 − 4αγ

2α

These eigenvalues have multiplicity s each. We must still identify n+m−(n−m+2s) = 2(m−s) eigenvalues.
Note that if we set β = −2α and γ = α, then we again obtain λ1,2 = 1 which is very favorable, as we already
have a cluster of eigenvalues located at 1.
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• If u /∈ ker(K) and u /∈ ker(B̃), then both terms of equation (5.3) must be considered. After rearranging the
terms, we obtain

Ku =
αλ2 + βλ+ γ

λ(1− λ)
BW−1B̃u = µBW−1B̃u

having denoted µ = αλ2+βλ+γ
λ(1−λ) . This is again a generalized eigenvalue problem. We can express λ as a function

of µ since

λ̄1,2 =
µ− β ±

√
(β − µ)2 − 4γ(α+ µ)

2(α+ µ)
(5.4)

In fact, since we have already set β = −2α and γ = α, the expression simplifies considerably as ∆ =
(β − µ)2 − 4γ(α+ µ) = µ2. Therefore, the remaining eigenvalues are

λ̄1 = 1

λ̄2 =
α

α+ µ

Clearly, limα→∞ λ̄2 = 1. However, in practice, |α| >> |µ| will already lead to an increasingly good eigenvalue
clustering. Since the generalized eigenvalues µ are in general complex, λ̄2 will have a very small imaginary
part.

In summary, provided α is chosen suitably, the eigenvalues of the preconditioned matrix are

• λ = 1 of multiplicity n−m

• λ = 1 of multiplicity 2s

• λ = 1 of multiplicity (m− s)

• λ ≈ 1 of multiplicity (m− s)

The only problem is identifying what µ may be such that α can be chosen suitably. We will discuss this problem
in the next few sections.

5.4 Sign of the generalized eigenvalues µ

There are in fact only 2(m − s) non-trivial eigenvalues µ associated to eigenvectors belonging to the subspace
U = Cn \ {ker(K) ∪ ker(BT ) ∪ ker(B̃)}. All the others are either zero or infinity and are associated to eigenvalues
λ = 1.

The first issue we must resolve is related to the sign of the real and/or imaginary parts of µ. This information is
valuable to avoid some unfortunate situations. For example, assuming µ is real and α is chosen such that |α| ≈ |µ|
but sign(α) = − sign(µ), then, computing α+µ would lead to cancellation and this quantity could get dangerously
close to zero. Since it appears at the denominator in equation (5.4), the eigenvalues of the preconditioned matrix
could increase tremendously. Numerical experiments confirmed such an event could have disastrous consequences
for the preconditioner. We could safely avoid this situation by knowing the sign of µ.

Let us consider the generalized eigenvalue problem

Ku = µCu u ∈ U

with C = BW−1B̃. The choice of W is important and we will choose W = M1. The reason will become clear
in the analysis. When not specified, this choice will be assumed in all the remainder of this work. We define the
generalized Rayleigh quotient

q(u) =
u∗Ku

u∗Cu
u ∈ U

and consider the field of values
F = {q(u) : u ∈ U}
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Clearly, the numerator of q(u) is positive for all u ∈ U . Only the denominator must be analyzed. With the
particular choice for W , the matrix C is expressed as

C = BM−1
1 B̃ = −U1U

T
2

where we have defined

U1 = −BM−1
1 =


0
Im
0
Q1

 U2 = B̃T =


0
Im
0
Q2


with the matrices Q1 = −M2R21M

−1
1 and Q2 = −RT12. The explicit expression of C is

C = −


0 0 0 0
0 I 0 QT2
0 0 0 0
0 Q1 0 Q1Q

T
2

 =


0 0 0 0
0 −I 0 R12

0 0 0 0
0 M2R21M

−1
1 0 −M2R21M

−1
1 R12


Moreover,

u∗Cu = −(uΓ1
+QT1 uΓ2

)∗(uΓ1
+QT2 uΓ2

) = −y∗1y2

with

y1 = uΓ1 +QT1 uΓ2

y2 = uΓ1
+QT2 uΓ2

Thus, u∗Cu is simply the inner product of two vectors. Assuming the vector u has real components, uTCu would
be positive only if the vectors y1 and y2 would be pointing in two very different directions. This can only happen
if the matrices Q1 and Q2 are very different in some sense. This situation seems highly unlikely provided the
interpolation is accurate enough. Therefore, in the general case, we can expect the eigenvalues µ to have negative
real part. In fact, an important result may be stated for the conforming case.

Lemma 5.1

In the context of a conforming mesh, the matrix C obtained after setting W = M is symmetric negative
semidefinite and the eigenvalues µ of interest are all strictly negative.

Proof. In the conforming case, M1 = M2 = M and R12 = R21 = I. Then, C is obviously symmetric and
y1 = y2 = y = uΓ1

− uΓ2
. Thus, u∗Cu = −‖y‖22 < 0 ∀u ∈ U . Consequently, F ⊂ R− and in particular all

generalized eigenvalues of interest are real negative numbers.

5.5 Bounds on the generalized eigenvalues µ

In this section, we seek bounds on the eigenvalues µ of the generalized eigenvalue problem

Ku = µCu u ∈ U

The matrix C has rank m, and we will assume the following ordering for its singular values

σ1 ≥ σ2 ≥ · · · ≥ σm > σm+1 = · · ·σn = 0

Denoting r = rank(K) = n− s, we will assume the following ordering for the eigenvalues of K

λ1 ≥ λ2 ≥ · · · ≥ λr > λr+1 = · · · = λn = 0

The next theorem provides interesting bounds.
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Theorem 5.1

Let µ be an eigenvalue of the generalized eigenvalue problem

Ku = µCu u ∈ U

then, it satisfies the following inequalities:

λr
σ1
≤ |µ| ≤ λ1

σm

Proof. We define the following subspaces

V = Cn \ ker(K)

W = Cn \ {ker(BT ) ∪ ker(B̃)}

Let us note that U ⊆ V and U ⊆ W and recall that u ∈ U . Without loss of generality, we assume all eigenvectors
have unit norm. From the eigenvalue problem, we have

‖Ku‖2 = |µ|‖Cu‖2

We bound the left and right-hand sides

λ1 = max
v∈Cn
‖v‖2=1

‖Kv‖2 ≥ max
v∈U
‖v‖2=1

‖Kv‖2 ≥ ‖Ku‖2 = |µ|‖Cu‖2 ≥ min
v∈U
‖v‖2=1

|µ|‖Cv‖2 ≥ min
v∈W
‖v‖2=1

|µ|‖Cv‖2 = σm|µ|

From the left and right extremes we obtain the upper bound

|µ| ≤ λ1

σm

Similarly for the lower bound

λr = min
v∈V
‖v‖2=1

‖Kv‖2 ≤ min
v∈U
‖v‖2=1

‖Kv‖2 ≤ ‖Ku‖2 = |µ|‖Cu‖2 ≤ max
v∈U
‖v‖2=1

|µ|‖Cv‖2 ≤ max
v∈Cn
‖v‖2=1

|µ|‖Cv‖2 = σ1|µ|

From the left and right extremes we obtain the lower bound

|µ| ≥ λr
σ1

An interesting result follows in the conforming case.

Corollary 5.1

Let µ be an eigenvalue of the generalized eigenvalue problem

Ku = µCu u ∈ U

then, in the context of a conforming mesh, it satisfies the following inequalities:

−λ1

2
≤ µ ≤ −λr

2

Proof. We already know from Lemma 5.1 that in the conforming case the eigenvalues µ are negative. In fact, all
the singular values of C are known in the conforming case. Without loss of generality, we may assumed the matrix
C has been reordered such that it has the following structure

C =

(
0 0
0 C22

)
with C22 =

(
−Im Im
Im −Im

)
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Reorderings do not effect the singular values. The matrix C is symmetric negative semidefinite. Therefore, its
singular values are the absolute value of its eigenvalues. Obviously, any vector expressed as a linear combination of
the vectors of the canonical basis {ei} i = 1, 2, . . . , n− 2m belongs to the kernel of C. The only interesting part of
this matrix is C22. It is easy to see that any vector y of the form yT = (yT1 ,y

T
1 ) with y1 ∈ Rm belongs to the kernel

of C22. We have therefore identified all vectors in the kernel. It is also easy to see that all remaining eigenvectors
are expressed as yT = (yT1 ,−yT1 ). Indeed,(

−Im Im
Im −Im

)(
y1

−y1

)
= −2

(
y1

−y1

)
Therefore, all the nonzero eigenvalues of C are equal to −2. Consequently, all the nonzero singular values of C are
equal to 2.

Theorem 5.1 provides an upper bound based on which we can choose |α|. However, it is not a very practical result.
Indeed, the computation of σ1 and σm may become expensive for very large problems. Moreover, they can only be
computed using Krylov subspace methods for eigenvalue problems because the matrix C is not explicitly available.
Only matrix-vector multiplies can be done with this matrix. It is therefore worthwhile investigating if theoretical
results are available for the singular values of C. Let us first make a few observations.

In general, when choosing W = M1, C22 is expressed as

C22 =

(
−M1

M2R21

)
M−1

1

(
Im −R12

)
= −

(
Im
Q1

)(
Im QT2

)
= −Y1Y

T
2 (5.5)

where we have defined

Y1 =

(
Im
Q1

)
Y2 =

(
Im
Q2

)
and the matrices Q1 = −M2R21M

−1
1 and Q2 = −RT12. The matrices Y1 and Y2 are submatrices of the reordered

factors U1 and U2 respectively. Therefore, we already have a low-rank factorization for the matrix C22. We already
know that C22 has rank m and we would like to find an expression for its truncated singular value decomposition.
For this purpose, we need orthonormal bases for Y1 and Y2. The next result from Kressner (2020) will be useful.

Lemma 5.2

Let Y ∈ Cn×m and Q ∈ C(n−m)×m with n ≥ m be given by

Y =

(
Im
Q

)

then, the columns of U =

(
Im
Q

)
(Im +Q∗Q)−1/2 form an orthonormal basis for Y .

Proof. Clearly, the columns of U and Y span the same subspace. The small matrix (Im + Q∗Q)−1/2 is for the
change of basis. Moreover, the columns of U are orthonormal. Indeed, by a direct computation

U∗U = (Im +Q∗Q)−1/2
(
Im Q∗

)(Im
Q

)
(Im +Q∗Q)−1/2 = (Im +Q∗Q)−1/2(Im +Q∗Q)(Im +Q∗Q)−1/2 = Im

A direct application of the previous lemma shows that

U =

(
Im
Q1

)
(Im +QT1 Q1)−1/2 = Y1(Im +QT1 Q1)−1/2 and V =

(
Im
Q2

)
(Im +QT2 Q2)−1/2 = Y2(Im +QT2 Q2)−1/2

are orthonormal bases for Y1 and Y2 respectively. Substituting in equation (5.5), we obtain

C22 = −U(Im +QT1 Q1)1/2(Im +QT2 Q2)1/2V T
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Let us now denote Z1 = (Im + QT1 Q1)1/2 and Z2 = (Im + QT2 Q2)1/2. These matrices are symmetric positive
definite. We are only interested in the singular values of C22, not the left and right singular vectors. Clearly, the
last expression shows that the singular values of C22 are the singular values of Z1Z2. The next theorem provides
bounds on those singular values.

Theorem 5.2

Let λ1(M2) and λm(M1) denote the largest eigenvalue of M2 and smallest eigenvalue of M1 respectively and
let σ be a nonzero singular value of C. Then, with the choice W = M1, it satisfies the following inequalities:

1 ≤ σ ≤

√(
1 +

λ2
1(M2)

λ2
m(M1)

‖R21‖22
)(

1 + ‖R12‖22
)

Proof. To identify bounds on the singular values, we recall that the singular values of a matrix A are the square
root of the eigenvalues of ATA or AAT depending on the size of the matrix. Then, notice that for all v ∈ Rm

vTZ2Z
2
1Z2v

‖v‖22
=

yTZ2
1y

yTZ−2
2 y

Recalling that Z1 and Z2 are symmetric matrices, the result follows immediately

σ2
m(Z1)σ2

m(Z2) = λm(Z2
1 )λm(Z2

2 ) =
λm(Z2

1 )

λ1(Z−2
2 )
≤ yTZ2

1y

yTZ−2
2 y

≤ λ1(Z2
1 )

λm(Z−2
2 )

= λ1(Z2
1 )λ1(Z2

2 ) = σ2
1(Z1)σ2

1(Z2)

From which we conclude that if σ is a nonzero singular value of C22, then

σm(Z1)σm(Z2) ≤ σ ≤ σ1(Z1)σ1(Z2) (5.6)

We do not necessarily have to compute these singular values. In fact, finding lower bounds on σm(Z1) and σm(Z2)
and upper bounds on σ1(Z1) and σ1(Z2) is enough for our intended applications. Since

σi(Z1) =
√

1 + λi(QT1 Q1) =
√

1 + σ2
i (Q1)

σi(Z2) =
√

1 + λi(QT2 Q2) =
√

1 + σ2
i (Q2)

we obtain straightforwardly

1 ≤ σi(Z1) ≤
√

1 + ‖Q1‖22 ≤
√

1 + ‖M−1
1 ‖22‖M2‖2‖R21‖22 =

√
1 +

λ2
1(M2)

λ2
m(M1)

‖R21‖22

1 ≤ σi(Z2) ≤
√

1 + ‖Q2‖22 =
√

1 + ‖R12‖22

from which we deduce lower and upper bounds on the smallest and largest singular values respectively of Z1 and
Z2. The result of the theorem follows from the inequalities in (5.6).

As a corollary, we obtain an already established result. Indeed, in the conforming case Q1 = Q2 = −Im. Therefore,

σi(Z1) = σi(Z2) =
√

1 + λi(Im) =
√

2 i = 1, 2, . . . ,m

Hence, all the nonzero singular values of C are equal to 2 which is exactly the result we obtained previously.

Combining Theorem 5.1 and 5.2 leads to a very interesting and advantageous result:

|µ| ≤ λ1

σm
≤ λ1

Although the analysis was not entirely trivial, the result is extremely simple. In addition, the upper bound may
be very cheaply approximated using the Gershgorin circles. A much better estimate could be achieved with a few
iterations of Lanczos or even with the power method. However, a tight upper bound is not required. Thus, we may
use the cheapest method available.
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Let us recall that from FEM theory, the mesh size dependency of the largest eigenvalue of the stiffness matrix is
known and depends on the dimension of the problem. For 2D problems, the largest eigenvalue is bounded by a
constant independent of the mesh size whereas for 3D problems it will decrease linearly with the mesh size according
to Theorem 3.3. Setting |α| = λu (α = −λu) with λu an upper bound of λ1 should lead to a highly performing
preconditioner. Optionally, one could set α = −wλu with w > 1 to add a safety margin. However, due to the
numerous inequalities used in the proof, this is absolutely not necessary and λu is already a safe upper bound.
We must also warn against choosing |α| too large: as |α| increases, the condition number of the (1, 1) block of
the preconditioner increases as well. Thus, solving linear systems with the preconditioner might get increasingly
challenging. Therefore, we recommend setting α = −λu without any safeguarding.

Interestingly, the result indicates that the preconditioner should be unaffected by the conditioning of the INTERN-
ODES matrix. In particular, the criterion does not explicitly depend on the matrices Q1 and Q2. Indeed, numerical
experiments well verified this observation. An increased condition number of several orders of magnitude only led
to a very small increase of the number of iterations.

5.6 Solving linear systems with the preconditioning matrix

Now that we have a criterion for the choice of α, we must investigate how to solve linear systems with the precon-
ditioning matrix efficiently.

We begin by substituting β and γ by their expression depending on α, that is to say, β = −2α and γ = α. We set
k = 2 and consider the ideal preconditioner

M =

(
K + αBW−1B̃ kB

0 −α−1W

)
However, we will instead consider the practical preconditioner

M =

(
K̃ + αBW−1B̃ kB

0 −α−1W

)
where K has been replaced by K̃ = K + εIn with ε > 0. Adding the term εIn to K leads to a symmetric positive
definite (and therefore invertible) matrix. Hence, K̃ admits a Cholesky factorization K̃ = LLT where L is a lower
triangular matrix. The Cholesky factorization is unique for symmetric positive definite matrices.

During the iterations of GMRES, we must solve linear systems with the preconditioning matrix: Mx = y. Explicitly(
K̃ + αBW−1B̃ kB

0 −α−1W

)(
x1

x2

)
=

(
y1

y2

)
Therefore,

(K̃ + αBW−1B̃)x1 + kBx2 = y1

−α−1Wx2 = y2

The second equation is trivial and yields x2 = −αW−1y2. The only difficulty is solving

(K̃ + αBW−1B̃)x1 = y1 + αkBW−1y2 = ỹ1

The strategy is to use the sparsity of the blocks B and B̃. At the heart of the method is the following theorem.
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Theorem 5.3

Let the matrix K̃ + αBW−1B̃ be ordered such that

K̃ + αBW−1B̃ =

(
K̃11 K̃12

K̃21 K̃22

)
− α

(
0 0
0 Y1Y

T
2

)
with Y1 and Y2 defined in the previous section. Moreover, let

L =

(
L11 0
L21 L22

)
be the Cholesky factor of K̃ and let us denote G = I − αL−1

22 Y1Y
T
2 L
−T
22 . Then, K̃ + αBW−1B̃ admits a

block LDLT factorization given by

K̃ + αBW−1B̃ =

(
L11 0
L21 L22

)(
I 0
0 G

)(
LT11 LT21

0 LT22

)
= LDLT

Proof. Since K̃ = LLT , a simple substitution leads to

K̃ + αBW−1B̃ = LLT + αBW−1B̃ = L(I + αL−1BW−1B̃L−T )LT

The sparsity of the matrices B and B̃ can be used to simplify the computation of L−1BW−1B̃L−T . Indeed,

L−1BW−1B̃L−T =

(
L−1

11 0
−L−1

22 L21L
−1
11 L−1

22

)(
0 0
0 −Y1Y

T
2

)(
L−T11 −L−T11 L

T
21

0 L−T22

)
=

(
0 0

0 −L−1
22 Y1Y

T
2 L
−T
22

)
Therefore, we obtain

K̃ + αBW−1B̃ =

(
L11 0
L21 L22

)(
I 0

0 I − αL−1
22 Y1Y

T
2 L
−T
22

)(
LT11 LT21

0 LT22

)

Consequently, assuming G = I − αL−1
22 Y1Y

T
2 L
−T
22 is invertible, the inverse of K̃ + αBW−1B̃ admits the explicit

expression

(K̃ + αBW−1B̃)−1 =

(
L−T11 −L−T11 L

T
21L
−T
22

0 L−T22

)(
I 0
0 G−1

)(
L−1

11 0
−L−1

22 L21L
−1
11 L−1

22

)
= L−TD−1L−1

We will denote b1 and b2 the sizes of L11 and L22 respectively with b2 << b1. Consequently, solving a linear system
with K̃+αBW−1B̃ only requires the solution to two large triangular systems and another very small linear system
with the matrix G. In linear elasticity without any remeshing, the stiffness matrix K does not change during the
iterations of the contact algorithm. Thus, we may conveniently compute only a single Cholesky factorization and
reuse it during all subsequent iterations of the contact algorithm for solves with the preconditioning matrix. On
the other hand, the matrix G is completely dense. However, if the problem is small enough, it can be computed
explicitly and direct methods should be used to solve these small linear systems. In such circumstances, one should
not even think of using iterative methods.

For very large problems, resorting to a Cholesky factorization or even forming the matrix G becomes infeasible.
Fortunately, the same strategy can be used with only a few adjustments. First of all, an incomplete Cholesky
factorization can be used instead of the full one. Secondly, linear systems with the small matrix G may be solved it-
eratively. However, using an incomplete Cholesky factorization will destroy the nice properties of the preconditioner.
Numerical testing in a later section will assess the impact on the quality of the preconditioner.
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For now, let us investigate how linear systems with the matrix G may be solved iteratively. The matrix G−1 can
be expressed as

G−1 = (I − αL−1
22 Y1Y

T
2 L
−T
22 )−1

= LT22(L22L
T
22 − αY1Y

T
2 )−1L22

= LT22V
−1L22

where we have denoted V = L22L
T
22 − αY1Y

T
2 . Matrix-vector products with V are clearly affordable. Instead,

matrix-vector products with G would require solving two triangular systems.

Unfortunately, GMRES again converged very slowly for these inner iterations. In fact, convergence was not far
from the worst case scenario where GMRES converges only at the last iteration, when the dimension of the Krylov
basis reaches the size of the matrix. Thus, inner preconditioning is required. Before discussing it, some additional
tools must be introduced.

5.7 Sparse approximate inverse techniques

All the most successful solution techniques we will discuss are based on the approximation of the dense blocks
contained in the low-rank term Y1Y

T
2 by some sparse approximation. We recall that the matrices are expressed as

Y1 =

(
Im
Q1

)
Y2 =

(
Im
Q2

)
The matrices Q1 = −M2R21M

−1
1 and Q2 = −RT12 are very dense. Thus, similarly to B and B̃, the matrices Y1 and

Y2 are never formed explicitly for large problems. However, they admit an exceedingly good sparse approximation
which can be formed explicitly. Before discussing it, we must recall some of the theory behind sparse approximate
inverse techniques. One of the most successful techniques was developed by Grote and Huckle (1997) and we will
follow their discussion in this section. The problem consists in finding a good sparse approximate inverse M to a
sparse matrix A. Let S be a set containing pairs of indices (i, j) which define the sparsity structure of a matrix.
Then, we introduce the set of sparse matrices S = {M ∈ Rn×n : mij = 0 (i, j) /∈ S} and consider the minimization
problem

min
M∈S

‖AM − I‖2F

Historically, sparse approximate inverses were designed for being used as preconditioners. More specifically, the
matrix M is intended here as a right preconditioner. However, our use of sparse approximate inverses will be
somewhat different. It must be recognized that the minimization problem defined above is not a guarantee for
building an effective preconditioner. It does not always provide a reliable measure for the convergence of iterative
methods. However, there are many computational advantages. The minimization in the Frobenius norm allows to
decouple the problem and solve a least squares problem for each column of M separately. For this reason, it is also
well suited for parallel preconditioning. The problem becomes

‖AM − I‖2F =

n∑
k=1

‖Amk − ek‖22

Since the columns of M are computed independently, we may restrict the explanation to only one of them. Due to
the sparsity of mk, many of the columns of A will not contribute. Let J be the set of nonzero entries in mk. We
may further reduce the size of the problem by only considering the nonzero rows of the submatrix A(:,J ). Indeed,
zero rows will not effect the least squares solution. We denote I the set of nonzero rows. Thus, the problem reduces
to

min ‖A(I,J )mk(J )− ek(I)‖22 = min ‖Âm̂k − êk‖22
where Â is the submatrix Â = A(I,J ) and m̂k = mk(J ) and êk = ek(I) are subvectors of mk and ek respectively.
The greater the sparsity of the matrices, the smaller the size of the least squares problem which is solved exactly using
a QR factorization. The procedure is repeated for each column of M . The difficult part is finding a good sparsity
structure S. For this purpose, Grote and Huckle considered an adaptive strategy. One defines an initial sparsity
structure which is then improved within a few iterations. The initial sparsity structure is arbitrary. However, the
better it is chosen, the fewer the number of iterations. For our problem, choosing a diagonal sparsity structure
is a very good choice since the approximate inverse is not expected to be too different from a diagonal matrix.
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To determine how the sparsity structure should be augmented, the residual vector r = A(:,J )m̂k − ek is formed
and the one-dimensional minimization problem minµj ‖r + µjaj‖2 is solved for each column j in a set of potential
candidates. The idea is to find out where fill-in should be allowed such that the nonzeros added will decrease most
the residual. In other words, determining which are the most profitable indices. Once these indices have been
found, they are added to the set J and the procedure is repeated until a tolerance on the residual is reached. To
avoid excessive fill-in, a threshold on the maximum number of nonzeros per column is set. Typically, this threshold
will not be reached if the matrix admits a good sparse approximate inverse. The resulting algorithm the authors
propose is called SPAI (SParse Approximate Inverse). Chow and Saad (1998) proposed different strategies based on
descent type algorithms and Newton iterations to minimize the residual. These methods are coupled with strategies
for numerical dropping as the iterations proceed to avoid excessive fill-in. We refer to Grote and Huckle (1997),
Chow and Saad (1998) and Benzi and Tuma (1999) for all the implementation details. Using an adaptive strategy
for computing the sparsity pattern may be expensive and several alternative techniques were proposed to make such
strategies more efficient.

The idea of sparse approximate inverses dates as far back as the 1970s but research was most intense in the late 1990s.
These techniques are especially effective for small matrices. For large problems, they are acknowledged to be more
expensive than incomplete factorizations. Nevertheless, since most of them apply to general nonsymmetric matrices,
they offer a valuable alternative when incomplete LU factorizations fail due to instabilities. Such instabilities are
most frequently encountered for highly nonsymmetric or indefinite matrices. It was shown experimentally that sparse
approximate inverses could solve difficult problems for which incomplete LU factorizations failed. Nonetheless, one
must bare in mind that these techniques can only be successful provided the inverse is well approximated by a
sparse matrix.

In this project, we will not use them to compute a sparse approximate inverse of the entire INTERNODES matrix.
Instead, they will be used to find very good sparse approximations to the inverse of the matrices Φ11 and Φ22 which
will serve as building blocks for the sparse preconditioner of a larger matrix.

In order to compute a sparse approximation of Y1 and Y2, the matrices Q1 = −M2R21M
−1
1 and Q2 = −RT12 will be

approximated. In fact, they admit an exceedingly good sparse approximation which can be formed explicitly. To
understand why, we must further recall the definition of the matrices R12 and R21.

R12 = D−1
11 Φ12Φ−1

22

R21 = D−1
22 Φ21Φ−1

11

where Dii, i = 1, 2 is a diagonal matrix containing the rescaling factors and Φij , i, j = 1, 2 are radial basis function
interpolation matrices. These matrices are all extremely sparse and the matrices Φii i = 1, 2 are in addition strictly
diagonally dominant by rows. Due to the definition of the Wendland C2 basis functions, the entries of these matrices
decay very fast away from the diagonal. Thanks to this property, we can expect very good sparse approximate
inverses. In fact, the simplest approximation consists of extracting the diagonal only and taking the inverse of the
diagonal entries. The resulting matrix is provably a good approximation (Yan, 2019). However, we will build better
approximations using the SPAI algorithm. The sparse approximation of the matrices R12 and R21 is expressed as

R̂12 = D−1
11 Φ12Ψ22

R̂21 = D−1
22 Φ21Ψ11

where Ψ11 and Ψ22 are the approximations of Φ−1
11 and Φ−1

22 respectively computed with the SPAI algorithm. We
will purposely never write approximate inverses as the true inverse of an approximate matrix. Indeed, it is difficult
in general to prove the non-singularity of a computed sparse approximate inverse unless using a very strict (and
unpractical) tolerance (see Corollary 3.1 of Grote and Huckle). Although it is highly unlikely in practice to encounter
a singular approximate inverse, we cannot prevent it in an easy way.

The matrices Q1 and Q2 are then approximated by

Q̂1 = −M̂2R̂21M̂
−1
1

Q̂2 = −R̂T12

where the mass matrices M1 and M2 are approximated by using their diagonal only. Such an approximation is
based on the fact that the diagonal of a mass matrix is provably a good preconditioner (Wathen, 1987). Finally,
the sparse approximation of the factors Y1 and Y2 is naturally defined as

Ŷ1 =

(
Im
Q̂1

)
Ŷ2 =

(
Im
Q̂2

)
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We are now ready to discuss ideas for inner preconditioning.

5.8 Inner preconditioning

The first step will be to substitute L22L
T
22 by K̃22 − L21L

T
21 such that V can be expressed as

V = K̃22 − αY1Y
T
2 − L21L

T
21

and we note that K̃22 is sparse as it is a submatrix of K̃. Moreover, we have just seen that Y1Y
T
2 can be very well

approximated by a sparse matrix. Thus, only the third term must now be dealt with. The idea is fairly simple and
one of the two following strategies can be applied:

1. All the entries of L21L
T
21 which do not fall within the sparsity pattern of K̃22 or Ŷ1Ŷ

T
2 are dropped (nofill

strategy).

2. All the entries smaller in absolute value to a certain tolerance are dropped (droptol strategy).

Let us denote L̂21L̂
T
21 the resulting sparse approximation. The sparse matrix

V̂ = K̃22 − αŶ1Ŷ
T
2 − L̂21L̂

T
21

can be formed and an LU factorization can be pre-computed at the beginning of each iteration of the contact
algorithm. It is used as preconditioner for the inner iterations. As expected, the quality of the preconditioner is
closely linked to the number of entries being dropped. On the one hand, the fewer the number of entries dropped,
the better the quality of the preconditioner but the more expensive is the cost of applying the preconditioner.
Therefore, there is a trade-off which can be decided on based on numerical experiments. Unfortunately, the quality
of the preconditioner is also expected to decrease for increasingly large matrices. This feature is a consequence of
the increasing number of entries discarded. Incomplete factorizations also suffer from it.

For these reasons, a different strategy was considered. The objective is to design a preconditioner such that its
quality is independent of the size of the matrix but may depend on other parameters.

Let us reconsider the matrix M = L22L
T
22 − αŶ1Ŷ

T
2 . To clarify the explanation, we assume C(0) = C0 and consider

the iteration k = 0. These assumptions will be relaxed later. Then, recall that

Ŷ1 =

(
Im
Q̂1

)
Ŷ2 =

(
Im
Q̂2

)
The matrices Ŷ1 and Ŷ2 have (coincidentally) a trapezoidal pattern which coincides with the first few columns of
L22. The pattern of the matrices is shown in Figure 5.1.
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Ŷ1

Figure 5.1: Replacement of the first m columns of L22 by Ŷ1

Notice that L22 can be partitioned as L22 = (L1, L2) where L1 consists of the first leading m columns of L22 and
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L2 of the b2 −m remaining columns. Then, we obtain

M = L1L
T
1 + L2L

T
2 − αŶ1Ŷ

T
2

≈ L2L
T
2 − αŶ1Ŷ

T
2

= (−αŶ1 L2)(Ŷ2 L2)T

= L̂Û

Thus, L̂ is obtained after replacing the first m columns of L22 by −αŶ1 and Û is obtained after replacing the first
m rows of LT22 by Ŷ T2 . In fact, the assumptions stated previously can be relaxed: the replacement can always be
done provided the row indices of the first nonzeros in each column of Y1 (or Y2) are distinct. Surprisingly, numerical
experimentation indicated that the preconditioner performed better when omitting the −α. The reason remains
unclear.

There are many advantages with this preconditioner. First of all, the cost of computing the factorization is negligible.
Only a few columns must be replaced. Secondly, the number of columns replaced does not depend on the size of the
matrix. It only depends on the number of interface degrees of freedom of the first body (m = m1). Therefore, for a
fixed m, the quality of the preconditioner should not depend on the size of the matrix. Finally, the implementation
is very easy and does not require reorderings.

However, there are a few minor drawbacks. First, the quality of the preconditioner cannot be controlled as we did
with the previous preconditioner based on a drop tolerance. Secondly, applying the preconditioner could be more
expensive depending on how much fill-in is left in the incomplete factors.

5.9 Numerical experiments

In this section, we collect a few numerical experiments designed to test the quality of the preconditioners designed
in the previous sections. We will consider as benchmark problem the classic Hertzian contact problem between two
elastic bodies. Two different variants will be tested. The geometry and boundary conditions are shown in Figure
5.2.
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Figure 5.2: Hertzian contact problems

The first body is represented in gray and the second one in white. Between them lies the potential contact interface
ΓC represented in red. The first body is subjected to homogeneous Dirichlet boundary conditions on its base in
blue in the figure. The only difference between our two variants lies in the boundary conditions of the second body.
In the first case (Figure 5.2, left), we prescribe non-homogeneous Dirichlet boundary conditions on its top edge. In
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the second case (Figure 5.2, right), a uniform traction is instead applied on this same edge. Therefore, the second
body is only subjected to Neumann boundary conditions. This will result in a singularity of the stiffness matrix.

The geometry has been discretized with increasingly smaller mesh sizes and P1 finite elements. The mesh sizes and
the corresponding block sizes have been reported in Table 5.1 and 5.2.

h n m
0.1 530 18
0.05 1 956 34
0.01 46 484 114
0.005 184 134 88

Table 5.1: Mesh sizes and block sizes for variant 1

h n m
0.1 552 18
0.05 1 998 34
0.01 46 686 114
0.005 184 536 88

Table 5.2: Mesh sizes and block sizes for variant 2

The block size n depends on the total number of unknowns. Thus, the second variant leads to a slightly larger n
due to the Neumann boundary conditions. However, the block size m is only controlled by radial basis function
interpolation requirements and does not depend on the boundary conditions.

We will solve the contact problem for these two variants using a right preconditioned GMRES method for solving the
linear systems. In this case, the unpreconditioned residual is readily available. Note that due to the rescaling, the
so-called unpreconditioned residual is in fact the residual of the rescaled system. The decrease of the residual norm
for the outer iterations corresponding to the first iteration of the contact algorithm is reported in Figure 5.3 and 5.4
for variants 1 and 2 respectively. The same preconditioner was also tested using left preconditioned GMRES. The
curves for the unpreconditioned residual norm were very similar to those shown in Figure 5.3 and 5.4 and are omitted.
In particular, the same iteration counts were recovered. Interestingly, when the preconditioned residual was used
instead in the stopping criterion, the results were more pessimistic. According to this residual more iterations were
required to meet the tolerance. Because of the mismatch between the preconditioned and unpreconditioned residual,
we decided to use right preconditioned GMRES. In all numerical experiments, an absolute stopping criterion was
used on the norm of the residual vector with a tolerance of 10−8 and a restart value of 20.
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Figure 5.3: Residual norm for variant 1
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Figure 5.4: Residual norm for variant 2

The figures indicate that the number of iterations needed to reach the prescribed tolerance is almost independent
of the mesh size. This is an extremely precious property when using an iterative solver such as GMRES. As
its cost increases at each iteration, the method is efficient only if the iteration count remains small. Secondly,
the preconditioner is robust: cases with singular or invertible stiffness matrices are handled equally well. This
observation does not come as a surprise. The preconditioner was designed to handle singular stiffness matrices.
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Moreover, thanks to the rescaling, the quality of the preconditioner is not effected by the elastic modulus. This
is well verified in Figure 5.5 for a range of elastic moduli spanning ten orders of magnitude. The experiment was
carried out using variant 1 and an intermediate mesh size of h = 0.05.
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Figure 5.5: Residual norm for different elastic moduli

We will now experiment with incomplete Cholesky factorizations coupled with inner iterations. The same geometry
and mesh sizes will be used in the experiments. In practice, these techniques would not be used for such small
problem sizes. It is nevertheless interesting to compare them here with a method for medium sized problems. In the
experiments, an incomplete Cholesky factorization is computed instead of the full factorization. A drop tolerance
of 10−4 is used. The results for both variants are shown in Figure 5.6 and 5.7. For the first variant, using an
incomplete factorization still leads to a very good preconditioner. However, the iteration count increases with the
size of the matrix as could be expected.

This time, serious issues are encountered for the variant with a singular stiffness matrix. Computing the incomplete
factorization with the perturbed stiffness matrix leads to nonpositive (most likely zero) pivots and the factorization
fails. There is an easy explanation for this failure. The perturbed stiffness matrix is defined as K̃ = K + εIn
with ε = 10−8 in the computations. However, using a drop tolerance of 10−4 will wipe out the perturbation εIn
which guarantees positive definiteness of the matrix. Without the perturbation term, the matrix is singular and the
factorization fails. An easy workaround is to increase the magnitude of the perturbation by choosing ε larger than
the drop tolerance. It successfully removes the issue but also considerably degrades the quality of the preconditioner
when comparing with the first variant.

This is a serious drawback of our approach. Although the Cholesky factorization exists for every symmetric
positive definite matrix, the incomplete factorization may fail. Existence results for incomplete factorizations
are unfortunately limited. In particular, the existence is guaranteed for arbitrary sparsity patterns for M -matrices
and the larger class of H-matrices with positive diagonal entries (see for instance Meijerink and Van Der Vorst
(1977), Theorem 2.4 and Manteuffel (1980), Corollary 3.3). Unfortunately, finite element matrices for problems in
structural mechanics typically do not satisfy these properties. Various strategies have been developed to compute
robust incomplete Cholesky factorizations. Here again the literature is vast and we will not cover it all. One such
method is an incomplete LDLT factorization developed by Benzi and Tůma (2003) which generally leads to good
preconditioners while having little storage requirements. It is based on an A-orthogonalization process which, even
incomplete, cannot lead to pivot breakdowns.

60



0 5 10 15 20 25 30 35 40 45

Iteration number

10 -10

10 -8

10 -6

10 -4

10 -2

100

102

R
es

id
ua

l n
or

m
Outer iterations

h=0.1
h=0.05
h=0.01
h=0.005

Figure 5.6: Residual norm for variant 1 using an incom-
plete Cholesky factorization
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Figure 5.7: Residual norm for variant 2 using an incom-
plete Cholesky factorization

We now compare the different strategies for the inner iterations. These strategies include:

1. The sparse LU preconditioner with nofill strategy.

2. The sparse LU preconditioner with droptol = 10−2 strategy.

3. The LU preconditioner with column replacement.

For these inner iterations, we again use the right preconditioned GMRES method. The risk of using inner iterations
is that potential errors committed in the inner solves affect the outer solves by delaying convergence. Inexact inner
solves might lead to a stagnation of the outer iterations. This situation is particularly unfavorable given the cost
of each outer iteration. It can be avoided by solving the small linear systems to high accuracy. Thus, an absolute
stopping criterion with a small tolerance of 10−11 is used. Due to the small matrix size, the restart threshold
can be increased. However, it was kept relatively small by setting it to 100. The sizes of the different blocks are
reported in Table 5.3 and 5.4. We recall that b2 is the size of the small linear system. In the computations, the
intersection radius is chosen such that C0 ⊂ ∂Ω. Obviously, the closer C0 is to the final contact interface, the better
the performance of the method. Fine tuning the intersection radius can have a tremendous impact on performance.
Such tuning was never done in our experiments. It was chosen based on a rough estimate of where contact was
expected to occur.

h n m b1 b2
0.1 530 18 478 52
0.05 1 956 34 1 856 100
0.01 46 484 114 45 990 494
0.005 184 134 88 183 144 990

Table 5.3: Mesh sizes and block sizes for variant 1

h n m b1 b2
0.1 552 18 500 52
0.05 1 998 34 1 898 100
0.01 46 686 114 46 192 494
0.005 184 536 88 183 546 990

Table 5.4: Mesh sizes and block sizes for variant 2

The residual norm for the first strategy is shown in Figure 5.8 and 5.9 for variant 1 and 2 respectively. The results
are for the first iteration of the contact algorithm and the first outer iteration.
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Figure 5.8: Residual norm for variant 1 using the nofill
strategy

0 10 20 30 40 50 60

Iteration number

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

100

102

R
es

id
ua

l n
or

m

Inner iterations

h=0.1
h=0.05
h=0.01
h=0.005

Figure 5.9: Residual norm for variant 2 using the nofill
strategy

Surprisingly, the iteration counts for the second variant are smaller than those for the first variant for large matrices.
However, we are especially concerned with the increase of the iteration number with the size of the matrix. The
matrix size is controlled by the intersection radius. An upper bound is given by the number of degrees of freedom
on the boundary of both bodies. Thus, the matrix may get quite large. According to Figure 5.10 and 5.11, using the
strategy with drop tolerance improves the iteration count. However, it also induces more fill-in in the preconditioner.
Thus, only a comparison of the computational times could conclude which strategy is most efficient. Overall, the
two strategies behave very similarly with an increase of the iteration count for larger matrices.
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Figure 5.10: Residual norm for variant 1 using the droptol
strategy
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Figure 5.11: Residual norm for variant 2 using the droptol
strategy

We finally test the third strategy in Figure 5.12 and 5.13 for variant 1 and 2 respectively. The preconditioner
performs worse in terms of iteration numbers for smaller matrices in comparison to the two previous strategies.
However, the iteration count grows more slowly with the size of the matrix such that it performs as well as for the
previous strategy for the largest matrix. If this trend persists, we can expect the preconditioner to perform better
for larger matrices.
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Figure 5.12: Residual norm for variant 1 using the mod-
ified LU preconditioner
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Figure 5.13: Residual norm for variant 2 using the mod-
ified LU preconditioner

The different methods are now compared in terms of computational cost. The first round of testing compares
preconditioned GMRES against a direct method used to solve the linear systems. In MATLAB, a direct method
is called when using the backslash command. Due to the properties of the INTERNODES matrix, it will be some
state-of-the-art implementation of a sparse LU factorization. Our method uses an in-house implementation of
preconditioned GMRES. We did not use the built-in gmres function because we lacked control over the stopping
criterion. Moreover, it uses left preconditioned GMRES whereas we are using the right preconditioned version.
Our implementation is very basic and its performance could certainly be improved. All the experiments are carried
out on MacOS with a Dual-Core Intel Core i7 processor with 2.2 GHz of processing speed. In Figure 5.14, the
computational times for the entire contact algorithm are reported for variant 1. The contact algorithm usually
requires solving a sequence of linear systems and not just a single one. Moreover, these times are more instructive
from a user perspective. The contact algorithm calls many different functions. It includes:

1. Computing the radiuses of radial basis functions.

2. Assembling the interpolation matrices, interface mass matrices and stiffness matrix.

3. Solving the linear systems with the INTERNODES matrix.

4. Verifying the convergence of the algorithm.

However, the only difference between the two implementations is the method for solving the linear systems. The
maximum number of iterations for the contact algorithm was set to 10. Most of the time, the contact algorithm
converged within two to three iterations. However, the threshold on the maximum number of iterations was reached
for the smallest mesh size. In fact, the contact algorithm does not converge for the smallest mesh size. The issue
is well identified but will not be discussed here. Since the iteration numbers are different for different mesh sizes,
trying to find a trendline is meaningless.

Some important observations must be made. First of all, the computational times are always relatively small for
both implementations and it is extremely challenging to outperform direct methods for applications where they
excel. For example, for the mesh size h = 0.01 associated to a matrix of size over 46 000, three large linear systems
are solved and the contact algorithm computes the solution in roughly 1.89 s with a direct method. Despite, their
effectiveness, our preconditioned GMRES implementation always outperforms direct methods by a large margin.
For the smallest matrix size, the computational times may fluctuate but they stabilize for larger matrices. The
computational times are also reported in Table 5.5 as well as the speedup factor defined as the ratio of computational
times for a direct and iterative method.
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Figure 5.14: Computational times for the contact algorithm

h 0.1 0.05 0.01 0.005
Time direct [s] 0.10 0.15 1.89 25.34
Time iterative [s] 0.056 0.097 1.10 9.74
Speedup factor 1.88 1.55 1.72 2.60

Table 5.5: Computational times and speedup factors

The speedup factor is expected to increase further with the size of the matrix and the number of linear systems
solved in the sequence. Since our method uses a single Cholesky factorization, its cost is amortized over several
linear systems. In comparison, direct methods will recompute a factorization at each iteration.

We now compare the computational times for the different strategies used in the inner iterations. In this case, an
incomplete Cholesky factorization is used. The results are reported in Figure 5.15 for the first variant. As we have
already noticed, using incomplete factorizations destroys the nice properties of our preconditioner. The number of
iterations needed to converge become mesh size dependent. Although the growth in the number of iterations is
moderate (41 iterations instead of 7 for the smallest mesh size), this increase has dramatic consequences for the
overall computational expense.

64



103 104 105

Problem size

10 -1

100

101

102

C
om

pu
ta

tio
na

l t
im

e 
[s

]

Comparison of the computational time

no-ll

droptol= 10!2

modi-ed LU

Figure 5.15: Computational times for the contact algorithm and different strategies for inner iterations

The curves are not very different from each other because the times reported are for the entire contact algorithm.
Keeping track of the inner iterations only was not convenient because their cost is spread across various functions
located in various files. The figure reveals the overwhelming contribution of the outer iterations. This tremendous
increase is not only due to the additional triangular solves and matrix-vector multiplies but also because of the
growing cost of GMRES. The cost of the inner iterations becomes negligible for large matrices. The figure never-
theless confirms our expectations. The nofill strategy performs well for small matrices but its cost grows rapidly
for larger matrices. On the contrary, the modified LU factorization with column replacement performs poorly on
small matrices but its cost increases more slowly with the size of the matrix such that it becomes competitive for
larger matrices. The strategy with drop tolerance always performs well. For the largest matrix, the modified LU
and drop tolerance strategies perform equally well.

These results once again highlight the benefits of having a preconditioner with mesh size independent convergence,
as is the case when using the complete Cholesky factorization. None of the other preconditioners we have developed
satisfy this property exactly. Although many perform very well on relatively coarse meshes, the increase in the
number of iterations with mesh refinement leads to an unacceptable increase of the computational expense. Some
of our other attempts which are worthwhile mentioning are collected in the Appendix.

A slight drawback of our method is linked to the ordering of the unknowns: we have assumed interface degrees of
freedom appear last in the system of equations. This reordering is absolutely necessary for the efficient solution of
the linear systems. It is the main assumption in Theorem 5.3. In particular, it entails that the perturbed stiffness
matrix cannot be reordered according to Nested Dissection nor any other sparse reordering strategy. Consequently,
more fill-in must be expected in the Cholesky factors. This drawback fortunately turns out to be only minor. Indeed,
the proportion of interface degrees of freedom is very small. Moreover, although interface degrees of freedom must
come last, it is completely irrelevant how degrees of freedom are ordered within each block. In practice, the ordering
computed with Nested Dissection is generated and subsequently interface degrees of freedom are retrieved from the
ordering and placed at the bottom. The other degrees of freedom keep their position in the ordering. Hence, the
actual ordering is only a slight perturbation of the optimal ordering. This strategy was used for our benchmark
problems. Let us provide an illustration for a mesh size h = 0.01 corresponding to a matrix of size 46 484. The
sparsity pattern of the Cholesky factor corresponding to the ordering computed with Nested Dissection is shown in
Figure 5.16 and compared in Figure 5.17 to the sparsity pattern corresponding to the actual ordering used in the
computations. As can be noticed, the increased fill-in is fortunately limited.
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Figure 5.16: Cholesky factor for the ordering of Nested
Dissection
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Figure 5.17: Cholesky factor for the perturbed ordering

As long as the full Cholesky factorization can be afforded, our method will lead to great savings in computational
time. However, large 3D problems remain challenging for our solver. Krylov subspace methods are certainly not
the only option available. Other authors have successfully implemented algebraic multigrid techniques to solve
problems in contact mechanics (Adams, 2004).

The next chapter will conclude with an application of INTERNODES to a classic problem of contact mechanics.
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Chapter 6

Comparison with analytical solutions

In this chapter, we will compare the numerical solution computed with INTERNODES to the analytical solution
of Westergaard for the contact of an elastic wavy surface with a flat surface. The case study reduces to a two
dimensional plane strain problem. The geometry is shown in Figure 6.1. The profile of the wavy surface is modeled
by the equation

f(x) = ∆
(

1− cos
(2πx

L

))
where ∆ is the amplitude and L is the wavelength. Due to the periodicity, only one wavelength is modeled. The
boundary conditions are shown in Figure 6.2. A uniform pressure p̄ is applied on the upper body and horizontal
displacements are blocked along the sides of both bodies for symmetry purposes. Moreover, vertical displacements
are blocked at the bottom of the lower body. Dirichlet boundary conditions must be prescribed along the vertical
of the lower body for the contact problem to be solvable. These are not consistent with the classic Westergaard
solution. However, the result is asymptotically the same.
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Figure 6.1: Elastic contact between a wavy surface and a flat surface
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p̄

Figure 6.2: Boundary conditions

According to the Westergaard solution, the mean pressure is expressed as

p̄ =
πE∗ sin2(ψa)∆

L

with ψa = πa
L and 2a is the contact width in the deformed configuration. The material properties of each body

could be different. Thus, an equivalent elastic modulus is defined as

1

E∗
=

1− v2
1

E1
+

1− v2
2

E2

However, we shall straightforwardly assume the material properties of both bodies are the same such that E∗ =
E

2(1−v2) . The pressure vector is then defined as p̄T = (0,−p̄)T . The contact pressure at the interface is expressed

as (Johnson, 1985)

p(x) =
2πE∗∆
L

cos(ψ)

√
sin2(ψa)− sin2(ψ) − a ≤ x ≤ a (6.1)

where ψ = πx
L . The contact pressure must be compared with the Lagrange multipliers of the finite element solution.

Table 6.1 collects the material and geometrical parameters used in the computations.

Parameter Value
L [m] 1
∆ [m] 0.1
a [m] 0.1
E [Pa] 3× 1010

ν [−] 0.2

Table 6.1: Material and geometrical parameters

We will consider two P1 finite element discretizations with different degrees of nonconformity. In the first case,
the wavy surface and the flat surface are discretized with the same number of elements on their boundary. In the
second case, there are approximately 1.1 more elements on the flat surface. The nonconformity is more severe in
the second case. The finite element solution computed with the INTERNODES method is shown in Figure 6.3
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for the first case. The solution for the second case is very similar. The displacements in absolute value along the
horizontal and vertical are reported in Figure 6.4. The figure indicates some sliding takes place along the interface.

Figure 6.3: Displacements and stresses in the nearly conforming case

Figure 6.4: Displacements in absolute value along the horizontal and vertical for the nearly conforming case
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A zoom of a section of the interface is shown in Figure 6.5 and 6.6 for cases 1 and 2 respectively. Despite the major
nonconformity in the second case, the quality of the solution remains satisfying.
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Figure 6.5: Zoom of the contact interface for case 1
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Figure 6.6: Zoom of the contact interface for case 2

Once the solution has been computed, the nodal contact pressure at the interface of body 1 or 2 is readily available
through the Lagrange multipliers, depending which body is chosen as master. In our experiments, body 1 is always
chosen as master. The contact pressure on the other interface is recovered through interpolation. They can be
directly compared to the analytical solution in equation (6.1) by projecting them along the interface normal. In
the nearly conforming case, Figure 6.7 and 6.8 compare the solutions for the interface of body 1 and 2. Figure
6.9 and 6.10 provide the same comparison for the fully nonconforming case. First of all, it must be noted that
the numerical solution is quite close to the analytical one despite the different setting in the boundary conditions.
When the mesh is nearly conforming, the differences in the contact pressure across the interface are very small.
The fully nonconforming case is clearly more challenging. The spike appearing in Figure 6.9 is quite surprising but
seems to have been smoothed out in the interpolation process.
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Figure 6.7: Contact pressure on the interface of body 1
for case 1
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Figure 6.8: Contact pressure on the interface of body 2
for case 1
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Figure 6.9: Contact pressure on the interface of body 1
for case 2
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Figure 6.10: Contact pressure on the interface of body 2
for case 2

For a continuous problem, the normal component of the stress vector is expressed as σn = n · σn. In the discrete
setting, the normal vector is usually not well defined at nodes due to the angles between finite elements. In practice,
a weighted average is taken of the surface normals of the neighboring finite elements. The weights are proportional
to the lengths (or areas) of the finite elements. However, for the finite element mesh considered in this application,
the lengths of neighboring finite elements were almost equal. Thus, a weighted average or a simple average does not
make much of a difference. Let ñ be this average. Moreover, regardless of the finite element order, the stress field is
discontinuous between the elements. For P1 discretizations, we may simply consider the average of the stress inside
the finite elements to which the node belongs. We name this quantity σ̃. Thus, in the discrete setting, we compute
σ̃n = ñ · σ̃ñ. The normal component of the stress vector should be continuous across the interface. It is verified
experimentally in Figure 6.11 and 6.12 for the nearly conforming and fully nonconforming cases respectively. As
could be expected, the relation is well satisfied when the meshes are nearly conforming. Nevertheless, the error
remains fairly small even in the nonconforming case.
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Figure 6.11: Normal component of the stress vector in
the nearly conforming case
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Figure 6.12: Normal component of the stress vector in
the fully nonconforming case

These experiments confirm the value of the INTERNODES method for solving problems in contact mechanics.
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Conclusion

In this work, we have designed a highly efficient preconditioner for solving the sequence of linear systems arising
from the application of the INTERNODES method to linear elastic problems in contact mechanics. The saddle
point type structure inherited from the variational problem and the properties of the stiffness matrix naturally led to
considering an augmented Lagrangian preconditioner. We have discussed how the preconditioner could be suitably
tuned and we have proved properties related to the spectrum of the preconditioned matrix. Taking advantage of
the sparsity structure of the matrices, we then proposed an algorithm to efficiently solve linear systems with the
preconditioning matrix. Assuming a linear elastic constitutive model, our strategy relies on a unique Cholesky
factorization which is computed once and for all. Resorting to a complete factorization allows the implementation
of a nearly ideal preconditioner. Numerical experiments confirmed the quality and robustness of the preconditioner.
In addition, they revealed that the convergence rate was independent of the mesh size and our preconditioned
iterative scheme outperformed state-of-the-art sparse direct solvers.

To avoid excessive memory usage, we have then discussed possible extensions to incomplete factorizations coupled
with inner iterations. We have proposed several preconditioners for the inner iterations and we have shown exper-
imentally that incomplete factorizations could still lead to an efficient preconditioner. However, pivot breakdowns
were also occasionally experienced during the factorization process. Such breakdowns are well known for applica-
tions in structural mechanics and robust incomplete factorizations could provide a possible remedy. Yet, another
unfortunate feature common to all incomplete factorizations is the increase of the iteration count with the problem
size. Thus, also of interest are other solution techniques which were briefly examined and are listed in the appendix.
Some of these Cholesky-free methods seem very promising for large 3D problems. Those problems were not tested
in the project and there is still much empirical work left in determining the best strategy. Cholesky-free methods
would also certainly be favored in case the stiffness matrix must be reassembled at each iteration of the contact
algorithm, for example in case of nonlinear constitutive models.

With effective preconditioning and a good accuracy, the INTERNODES method could compete with more estab-
lished methods used for problems in contact mechanics. However, much research is still needed before reaching a
definite conclusion. The work done in this thesis remains largely in the design phase. In particular, the project
raised concerns over the stability of the method in close connection with the radiuses of the radial basis functions.
Fortunately, the requirement for diagonal dominance of the interpolation matrices indirectly forces a constraint on
the radiuses. This constraint restricts the choice of radiuses and instabilities seem less likely to occur. Future work
should investigate a potential connection between diagonal dominance of the interpolation matrices and stability.
Secondly, convergence issues might be encountered on very fine meshes. These issues are due to infeasibilities in
the update of the contact interface without violation of the diagonal dominance requirement.
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Appendix A

Other attempts for preconditioning the
INTERNODES matrix

A.1 General guidelines

The preconditioners analyzed in earlier chapters are among the most successful. However, they were not the
first nor the last of a long list of attempts. Below are some of the other attempts for the preconditioning of the
INTERNODES matrix. These attempts have been listed here for the record. This section may be skipped entirely.
However, it might be useful to anyone wishing to extend or improve the work done in this thesis.

The attempts either consist of approximating directly the INTERNODES matrix or the (1, 1) block of the augmented
Lagrangian preconditioner. As we have seen, this preconditioner is very efficient and leads to mesh size independent
convergence when implemented exactly. Thus, we can hopefully expect small changes to this preconditioner to still
yield an effective preconditioner. In fact, it is precisely what we did when adding the small perturbation to the
stiffness matrix appearing in the (1, 1) block.

We have classified these attempts based on the solution technique used. When building efficient preconditioners,
one should bare in mind the following guidelines:

1. The block structure of the matrix must be taken into account.

2. The most critical components of the matrix should be preserved.

As a rule of thumb, one should expect the following behavior: dumping entirely one or more blocks of a matrix
may lead to a good preconditioner for coarse meshes. However, the iteration count may rapidly increase for finer
meshes. As we have already discussed, such a feature is particularly troublesome when using a nonsymmetric Krylov
subspace method such as GMRES since the cost of storage and the number of floating point operations increase at
each iteration. Hence, preconditioners which achieve iteration counts independent of the mesh size are extremely
precious for dealing with large applications. None of the attempts discussed in the subsequent sections preserve this
property exactly. However, iteration counts that increase very slowly with mesh refinement are still very valuable.

A.2 Easy preconditioners

The first and easy preconditioners one may try are based on the approximation of the stiffness matrix by some
suitable sparse matrix. As expected, approximating the stiffness matrix based on its diagonal or triangular part
led to very poor preconditioners even on coarse meshes. On the other hand, Jacobi or Gauss-Seidel preconditioners
based on the entire INTERNODES matrix ignore the block structure and fail for our application. One could try
easy fixes in order to guarantee the invertibility of the preconditioner but numerical experiments rapidly concluded
such preconditioners were worthless (Günther-Hanssen, 2020).
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A.3 Techniques based on matrix factorizations

There are many equivalent ways of factorizing a 2×2 block matrix. Here again, the factorization can be done either
directly on a modification of the INTERNODES matrix or on the (1, 1) block of the preconditioner.

A.3.1 Factorization of a modified coefficient matrix

For large applications, the INTERNODES matrix cannot be formed explicitly due to a few dense blocks inside
the matrices B and B̃. These blocks are therefore replaced by sparse approximations. These approximations are
computed similarly to those used when forming the sparse matrices Ŷ1 and Ŷ2. Moreover, the stiffness matrix being
singular in general, it is replaced with K̃ as we have done for the preconditioner. We will therefore consider the
matrix

M =

(
K̃ B̂
ˆ̃B 0

)

In linear elasticity, only the blocks ˆ̃B and B̂ are changing during the iterations of the contact algorithm. Hence, it
could be interesting to pre-compute an LU or Cholesky factorization of the matrix K̃ and reconstruct a factorization
for the matrix M . For obvious computational and storage reasons, one should always favor a Cholesky over an LU

factorization of K̃. Assuming K̃ has been factorized as K̃ = LLT , we will denote S = − ˆ̃BK̃−1B̂ = − ˆ̃BL−TL−1B̂
the Schur complement of K̃ in M . Then, it can easily be verified that M admits the equivalent factorizations

M =

(
K̃ B̂
ˆ̃B 0

)
=

(
L 0

ˆ̃BL−T I

)(
LT L−1B̂
0 S

)

=

(
K̃ 0
ˆ̃B I

)(
I K̃−1B
0 S

)

=

(
I 0

ˆ̃BK̃−1 I

)(
K̃ 0
0 S

)(
I K̃−1B
0 I

)
The first factorization is almost an LU factorization for the entire matrix. It would be an LU factorization if we
had used an LU factorization of K̃. These factorizations are all equivalent in the sense that:

1. They all require solving two linear systems with the matrix K̃ (or equivalently four triangular systems).

2. They all require solving a linear system with the Schur complement matrix S.

The first point is already a major drawback. Recall that our best solution method only requires solving two
triangular systems. Secondly, the Schur complement matrix cannot be formed in general. First of all, computing
ˆ̃BL−T or L−1B̂ becomes expensive when m becomes large and will lead to much fill-in in the solution matrix.

Hence, even if ˆ̃BL−TL−1B̂ can be computed, the resulting matrix will be completely dense in general. It is also
unclear how to approximate the Schur complement matrix. Schur complement preconditioning is very challenging
in general. A few successful techniques have been developed for applications in fluid dynamics. However, almost
all of them failed for our application.

When modifying the blocks B and B̃ in order to build a preconditioner, some attention must be paid to the
invertibility of the resulting preconditioner. If the preconditioner has a saddle point structure, the same conditions
for the invertibility of the INTERNODES matrix apply to the preconditioner. These conditions were summarized
in Theorem 3.1. For instance, the preconditioner

M =

(
K B̂

B̃ 0

)
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where

B̂ =


0
0
0

M2R21


is singular in any of the following cases:

1. |D1
Γ| > |D2

Γ|

2. The first block of the stiffness matrix is singular

In the first case, rank(B) = m2 < m and the first condition of Theorem 3.1 is violated. In the second case, there
exists a vector x ∈ {ker(K) ∩ ker(BT )} and the second condition of Theorem 3.1 is violated. Both cases were
encountered in experiments.

A.3.2 Factorization of the (1, 1) block of the preconditioner

As we have seen, our preconditioner is highly performing when it is implemented exactly. We have discussed
previously the difficulties in solving the linear systems with coefficient matrix K̃ +αBW−1B̃. An idea is to replace
again the dense blocks inside the matrix αBW−1B̃ by sparse approximations and compute a factorization for the
approximation of K̃+αBW−1B̃. Let us denote M the resulting approximation. Assuming the matrix is reordered,
it is expressed as

M =

(
K11 K12

K21 K22 − αŶ1Ŷ
T
2

)

First idea

An idea is to dump either K12 or K21 in order to recover a triangular block matrix. Subsequently, linear systems with
coefficient matrices K11 and K22−αŶ1Ŷ

T
2 must be solved, both of which can be done very efficiently by computing

a sparse Cholesky factorization for K11 and a sparse LU factorization for K22−αŶ1Ŷ
T
2 . This preconditioner turned

out to be performing quite well for relatively coarse meshes. However, the number of iterations increased rapidly
with mesh refinement. This could be expected because we are dumping entirely a block of the matrix M .

Second idea

Instead of dumping blocks, first note that M can be factorized as

M =

(
I 0

K21K
−1
11 I

)(
K11 0

0 S

)(
I K−1

11 K12

0 I

)
with the Schur complement matrix S = K22 − αŶ1Ŷ

T
2 − K21K

−1
11 K12. Thus, solving linear systems with this

preconditioner requires solving two linear systems with K11 and one smaller linear system with S. Unfortunately, S
cannot be formed because K21K

−1
11 K12 is expensive to compute and is very dense. Therefore, an idea is to consider

instead the preconditioner

M =

(
K11 K12

K21 K22 − αŶ1Ŷ
T
2 +K21K

−1
11 K12

)
and notice that the matrix can be factorized as

M =

(
I 0

K21K
−1
11 I

)(
K11 0

0 Ŝ

)(
I K−1

11 K12

0 I

)
where Ŝ = K22 − αŶ1Ŷ

T
2 is the resulting Schur complement matrix. Clearly, the approximation is motivated by

the fact that linear systems with this matrix are much easier to solve for. The advantage of this technique is
that we have only introduced a small change in one of the blocks of the matrix. The perturbation K21K

−1
11 K12
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added to the (2, 2) block changes the sparsity pattern of the block. However, we found out experimentally that
its entries are much smaller in magnitude in comparison to those of K22 − αŶ1Ŷ

T
2 . The resulting preconditioner

performed very well. However, solving linear systems with this preconditioner requires solving two linear systems
with the large matrix K11. Thus, not only is the iteration count greater than for our most successful method but
also the cost per iteration. Nevertheless, the preconditioner does not assume the availability of any factorization
of the matrix K11. The matrix K11 is symmetric positive definite and very efficient solvers such as the conjugate
gradient method or algebraic multigrid methods may be used to solve linear systems with this matrix (together with
efficient preconditioners). Thus, the preconditioner could become interesting for large 3D applications. Of course,
the preconditioner is even better if K21K

−1
11 K12 can be approximated in some way. Experimentally, using the simple

approximation K21K̂
−1
11 K12 with K̂11 = diag(K11) already significantly improved the quality of the preconditioner.

A.4 Inner preconditioning

Here, the idea is to use the exact augmented Lagrangian preconditioner but use a few inner iterations to solve linear
systems with the coefficient matrix K̃ + αBW−1B̃. These inner solves once again require inner preconditioning.

First idea

An idea is to use the Cholesky factorization of K̃ directly as preconditioner. It does not require updating the
preconditioner during the iterations of the contact algorithm. However, the low-rank term is entirely ignored. Thus,
the greater the magnitude of the entries of αBW−1B̃, the poorer the quality of the preconditioner. Unfortunately,
the magnitude of the low-rank term cannot be controlled because there is already a constraint tied on α. A
parametric study confirmed the rapid decrease of the quality of the preconditioner for increasing values of |α|. The
number of inner iterations was too large for the preconditioner to be of any practical use.

Second idea

Another idea is to precondition the inner iterations with the matrix K̃ + αBW−1B̃. Its inverse can be expressed
using the Woodbury matrix identity:

(K̃ + αBW−1B̃)−1 = [I − K̃−1B(α−1W + B̃K̃−1B)−1B̃]K̃−1

But we are again facing the same issues encountered with other preconditioners:

1. Two large linear systems with the matrix K̃ must be solved at each iteration.

2. The Schur complement matrix cannot be formed and attempts at approximating it have been unsuccessful.

A.5 Low-rank updating

The techniques in this section can either be used as inner preconditioning for solving linear systems with K +
αBW−1B̃ or can directly be used to approximate the (1, 1) block of the preconditioner. The second usage is
generally cheaper. The solution technique again begins with sparse approximations. More specifically, the matrix
αBW−1B̃ is approximated by −αÛ1Û

T
2 with the matrices

Û1 =


0
Im
0

Q̂1

 Û2 =


0
Im
0

Q̂2


Assuming an LU decomposition of K̃ has already been computed, we denote

M = K̃ − αÛ1Û
T
2 = LU − αÛ1Û

T
2

M is expressed as a sparse low-rank update of the matrix K̃.
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First idea

Here, our goal is to find the LU factorization of M by updating the LU factorization of K̃. In fact, there exists
algorithms specifically for this purpose. However, these algorithms require an update of each of the columns of
L and rows of U . Most of these algorithms deal with rank 1 updates. However, some can be extended to deal
with higher rank updates. The algorithm from Bennett (1965) was successfully implemented using the pseudo-code
of Stange et al. (2006). Unfortunately, despite several attempts, our implementations were far more expensive
than recomputing an entire factorization from scratch. Even though the performance of the implementation could
be further improved, it is difficult to imagine it could compete with state-of-the-art implementations of the LU
factorization.

Second idea

The second idea assumes the availability of either a Cholesky or an LU decomposition of K̃. However, whenever
given the choice, we will naturally opt for a Cholesky decomposition. The strategy is similar to building the modified
LU preconditioner for the inner iterations. It stems from noticing that L can be partitioned into L = (L1, L2) where
L1 consists of the first leading m columns of L and L2 of the n−m remaining columns. Then, we obtain

M = L1L
T
1 + L2L

T
2 − αÛ1Û

T
2

If we assume the degrees of freedom are ordered such that those from the interface of body 1 are placed before all
the others, then the m×m identity matrix is contained within the first m rows of Û1 and Û2. Approximate factors
L and U can be formed by replacing the first m columns of L by −αÛ1 and replacing the first m rows of LT by the
ÛT2 . Hence, we consider the approximation

M ≈ L2L
T
2 − αÛ1Û

T
2 = (−αÛ1 L2)(Û2 L2)T = L̂Û

Thanks to the ordering considered, the factors L̂ and Û are invertible. As could be expected, the smaller m is the
better the quality of the preconditioner. However, the quality of the sparse approximation to the low-rank term
also plays a role. The main advantage of this preconditioner is that it comes for free and it requires solving only
two triangular systems at each iteration. Moreover, since the triangular systems are solved sequentially, the factors
L̂ and Û must not be stored simultaneously. The preconditioner turned out to perform very well even on finer
meshes. The iteration numbers were 18, 37 and 57 for mesh sizes h = 0.1, h = 0.05 and h = 0.01 and a tolerance
of 1× 10−7 for inner preconditioning usage.

In fact, the assumption on the ordering can be slightly relaxed. It is sufficient to ensure that the interface degrees
of freedom of body 1 come before those of body 2. However, their relative position with respect to all the other
degrees of freedom is irrelevant. In particular, the ordering we have used extensively where the interface degrees of
freedom come last satisfy the condition. For this ordering, the preconditioner performed even better. The number
of iterations was 15, 21, 28 for the same mesh sizes as before. This finding indicates that the ordering impacts the
performance.

The major shortcoming in its performance results from the dumping of m columns of the Cholesky factor L. How-
ever, as m is expected to decrease during the iterations of the contact algorithm, we can expect this preconditioner
to become even more efficient as the iterations proceed.

A.6 Sparse approximate map

During the iterations of the contact algorithm, the blocks B and B̃ of the INTERNODES matrix are changing.
These changes are of course carried over to the preconditioner. In this section, we will make the dependency on the
iteration number explicit by writing Bk and B̃k for the matrices B and B̃ respectively at iteration k of the contact
algorithm. On the other hand, assuming a linear elastic constitutive model, the stiffness matrix does not change.
Thus, solving linear systems with the preconditioner requires solving a sequence of linear systems of the type

(K +BkW
−1
k B̃k)xk = bk

We will denote Xk = K+BkW
−1
k B̃k. Assuming a good preconditioner, say P0 has been computed upon initialization

for the coefficient matrix X0, one might reasonably question whether it is possible to recycle this good preconditioner
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for later linear solves knowing that Xk for k ≥ 1 will differ from X0 only in a few rows and columns given the
sparsity of BkW

−1
k B̃k. The answer is yes and is based on research from Carr et al. (2021). The idea is to map

the current matrix Xk for k ≥ 1 to X0 (for which there exists a good preconditioner). The new preconditioner
Pk is then constructed by applying the map to the old preconditioner. More specifically, let us consider a right
preconditioner such that X0P0 yields fast convergence. Note that

X0P0 = X0N
−1
k NkP0

and we set Xk = X0N
−1
k or equivalently XkNk = X0. This requirement alone defines the map Nk. Applying Nk

to P0 defines the new preconditioner Pk as Pk = NkP0. Iterative solvers such as GMRES only require matrix-
vector multiplies. Hence, Pk is never formed explicitly but applying Pk now requires two successive matrix-vector
multiplications. In practice, the map Nk is not computed exactly but approximately such that XkNk ≈ X0. In order
to induce computational savings, the approximate map N̂k is a sparse approximation of Nk. For this reason, the
authors called their method the Sparse Approximate Map (SAM). Given a subspace of sparse matrices S ⊆ Rn×n,
the method naturally leads to considering the following minimization problem

min
N̂k∈S

‖XkN̂k −X0‖2F

Note that if the jth column of Xk and X0 are the same, then the jth column of N̂k is simply ej , the jth vector
of the canonical basis of Rn. The problem we are facing is very similar to computing sparse approximate inverses.
The only difference is that we are solving the least squares problems with a right-hand side vector x0,j instead of
the vector ej . Consequently, the SPAI algorithm can be extended straightforwardly. Since the matrices Xk and X0

only differ in a few columns, the algorithm does not iterate over all columns but only over those that have changed.
In other words, only the columns associated to degrees of freedom in the active set must be processed. This feature
leads to a tremendous reduction of the computational expense. The sparse map N̂k essentially consists in columns
of the identity matrix expect for those associated to degrees of freedom in the active set.

However, contrary to the applications considered by Carr et al., the sparsity pattern of the matrices Xk is changing
in an unpredictable way. Hence, we once again used adaptive strategies to capture automatically the sparsity
pattern. Such an operation is expensive but necessary, otherwise the quality of the resulting approximate map is
very poor.

The method was implemented and tested on our application. The initial preconditioner was an LU factorization of
X0. The matrix was kept small such that X0 could be formed explicitly. This was for testing purposes only. For
larger problems, we would consider an incomplete factorization of a sparse approximation of X0.

Experimentally, we found that the map updating led to very good results. The number of GMRES iterations when
using the updated preconditioner Pk grew very slowly with the iterations of the contact algorithm. However, the
computation of the map was fairly expensive due to the changing sparsity pattern. Even though our implementation
of the SAM algorithm could certainly be improved, we believe recomputing an entire factorization from scratch
would still be a lot cheaper for our application. Therefore, this approach was abandoned.

A.7 The null space method

We end this list of attempts with another very promising method called the null space method. It is a well-
established method for the solution of saddle point systems. It belongs to the class of segregated methods which
compute the solution vectors u and λ one after the other contrary to coupled methods, which compute both vectors
simultaneously. Direct or iterative methods may be used to solve the linear systems arising in the method. For our
large scale applications, iterative methods will naturally be used. The method is usually presented in the literature
for symmetric saddle point systems. However, its extension to the nonsymmetric case is straightforward.

Let us reconsider the original saddle point system(
K B

B̃ 0

)(
u
λ

)
=

(
f
d

)
(A.1)

From the equation B̃u = d, the solution vector u can be expressed as u = û+VB̃y where û is a particular solution,

VB̃ is a basis for the kernel (or null space) of B̃ and y is some vector of Rn−m. Substituting back in the first
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equation, we obtain K(û + VB̃y) = f − Bλ. Let VB be a basis for the kernel of BT . Then, pre-multiplying the
equation by V TB , moving known terms to the right-hand side and noticing that V TB B = (BTVB)T = 0, we finally
obtain

V TBKVB̃y = V TB (f −Kû)

Recall from the invertibility conditions of Theorem 3.1 that V TBKVB̃ is invertible. Solving this linear system yields
the vector y from which we immediately deduce u. The solution vector λ can be computed from the least squares
problem

Bλ = f −Ku

or equivalently from the normal equations

BTBλ = BT (f −Ku)

This small linear system can be solved very easily with a direct method if the size of the problem is small enough.
For large problems, iterative methods must again be used. The coefficient matrix is symmetric positive definite and
in such circumstances, the conjugate gradient method is the method of choice. It could be preconditioned with the
sparse approximation B̂T B̂ constructed using once again sparse approximate inverse techniques.

In our case, recalling that d = R12rΓ2 − rΓ1 , an obvious particular solution of B̃u = d is

û =


0
−rΓ1

0
−rΓ2


Usually, a major difficulty in applying the method consists in finding bases VB and VB̃ for the kernels of BT and B̃
respectively. A great body of literature has been dedicated to this problem. However, for our problem such bases
can be immediately deduced from the very simple structure of the matrices BT and B̃ which are expressed as

BT =
(
0 −M1 0 RT21M2

)
B̃ =

(
0 I 0 −R12

)
Thanks to their great sparsity, a basis for their kernels can be constructed straightforwardly. Denoting qk = |DkΩ|
and mk = |DkΓ| for k = 1, 2, we have

VB =


Iq1 0 0
0 0 M−1

1 RT21M2

0 Iq2 0
0 0 Im2

 VB̃ =


Iq1 0 0
0 0 R12

0 Iq2 0
0 0 Im2


Both bases have dimension n −m (with m = m1) but are not orthonormal bases. In fact, such bases are called
fundamental bases. For a conforming mesh, M1 = M2 = M and R12 = R21 = I such that ker(BT ) = ker(B̃).

After a suitable permutation of the rows and columns we obtain the nice looking structure

PVBQ =


Iq1 0 0
0 Iq2 0
0 0 Im2

0 0 QB

 PVB̃Q =


Iq1 0 0
0 Iq2 0
0 0 Im2

0 0 QB̃


with QB = M−1

1 RT21M2 and QB̃ = R12 and P and Q are suitable permutation matrices. As usual, the matrices QB
and QB̃ are very dense and will never be formed explicitly.

Therefore, when solving linear systems with coefficient matrix V TBKVB̃ , we must use iterative methods which avoid
explicitly assembling the bases matrices VB and VB̃ . Interestingly, numerical experiments indicated that the spectral
condition numbers of V TBKVB̃ and K were very similar. This can be expected provided the interpolation is good
enough. Some insight can be drawn from a bound on the spectral norm of the matrix. Indeed,

‖V TBKVB̃‖2 ≤ ‖K‖2‖VB‖2‖VB̃‖2 = λ1(K)
√

(1 + ‖QB‖22)(1 + ‖QB̃‖22)

Nevertheless, GMRES still converged relatively slowly. Therefore, solving such linear systems will in general require
preconditioning. For this purpose, it is interesting to note that the basis matrices VB and VB̃ can be exceedingly
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well approximated by sparse matrices V̂B and V̂B̃ using once again sparse approximate inverse techniques. The

matrix V̂ TBKV̂B̃ can be formed explicitly and was found to be a very good preconditioner. However, solving linear
systems with this matrix is not trivial. The size of the matrix is changing at each iteration of the contact algorithm
and recomputing a factorization will be too expensive.

Of course, the structure of V TBKVB̃ could be used to build preconditioners. Assuming, the matrices have been
reordered, the product can be expressed as

V TBKVB̃ =

(
I 0
0 XT

B

)(
KΩΩ KΩΓ

KΓΩ KΓΓ

)(
I 0
0 XB̃

)
=

(
KΩΩ KΩΓXB̃

XT
BKΓΩ XT

BKΓΓXB̃

)
with

XB =

(
Im2

QB

)
XB̃ =

(
Im2

QB̃

)
Preconditioners for nonsymmetric saddle point systems could then be used. However, one of the major drawbacks
of this approach is linked to the change of size of the bases between each iteration of the contact algorithm. Thus,
the size of KΩΩ and all other matrices changes. The stiffness matrix would have to be repartitioned at each iteration
of the contact algorithm and once again matrix factorizations would be too costly for solutions to linear systems
with coefficient matrix KΩΩ.

Thus, preconditioning strategies which are more ”black box” must be sought. Nash and Sofer (1996) proposed
several preconditioners for reduced symmetric positive definite matrices of the form ZTKZ. Such linear systems
frequently arise in applications in optimization. One of their simplest preconditioners was based on the approxima-
tion (ZTKZ)−1 ≈WT K̃−1W where WT is a left inverse for Z such that WTZ = I and K̃ is a symmetric positive
definite approximation of K. We assume in addition W is such that WZT ≈ I. Obviously, equality is impossible
because WZT is low rank. Then,

WT K̃−1WZTKZ ≈WT K̃−1KZ

≈WTZ

= In−m

Finding a suitable matrix W satisfying the first requirement is straightforward. For instance choosing WT =
(ZTZ)−1ZT will always satisfy WTZ = I. However, we will consider an even simpler choice. Even though the
matrix V TBKVB̃ arising in our application is nonsymmetric, we will still consider a symmetric positive definite
preconditioner. Using a different partitioning for the reordered bases VB and VB̃ , they can be expressed as

VB =

(
I
RB

)
VB̃ =

(
I
RB̃

)
with

RB =
(
0 0 QB

)
RB̃ =

(
0 0 QB̃

)
For the matrix W , we will consider the very simple choice

W =

(
I
0

)
Note that WT is a left inverse for both VB and VB̃ (WTVB = WTVB̃ = I). Alternatively, we could consider the

nonsymmetric approximation (V TBKVB̃)−1 ≈WT
1 K̃

−1W2 with

W1 = VB̃(V T
B̃
VB̃)−1

W2 = VB(V TB VB)−1

which leads to the approximation

(V TBKVB̃)−1 ≈ (V T
B̃
VB̃)−1V T

B̃
K−1VB(V TB VB)−1

In fact, this preconditioner has been proposed by Elman et al. (2006) in the context of Schur complement precon-
ditioning. Such strategies are used for approximating a Schur complement matrix B̃G−1B or its inverse where G
is some square invertible matrix. As we have seen, such matrices frequently appear in block preconditioners.

In fact, our much simpler preconditioner performed far better. Moreover, applying the preconditioner is very cheap.
Matrix-vector multiplies with W and WT almost come for free. Only one large linear system must be solved for
K̃. If K is invertible, then obviously K̃ = K. If K is singular, we would advise different strategies depending on
the size of the problem.
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• For medium sized problems, linear systems with K̃ can be most efficiently solved by setting K̃ = K + εIn
with ε > 0 small and pre-computing a Cholesky factorization of K̃ at the beginning of the contact algorithm.
This strategy is similar to the one used for our most efficient solution technique.

• For large sized problems, K̃ can be any efficient preconditioner which has already been developed for elasticity
problems.

We must warn against solving iteratively linear systems with the matrix K̃ = K + εIn in the event of a singular
stiffness matrix. Indeed, if K is singular K̃ is invertible but very badly conditioned for ε small. This reason being
that K̃ = K + εIn is simply a shifted matrix. Its eigenvalues are given by λ(K̃) = λ(K) + ε. From now let us
distinguish two cases:

• Assume K is invertible, then

κ(K̃) =
λ1 + ε

λn + ε
≈ λ1

λn

provided λn >> ε. Going for iterative methods in this case would probably be fine.

• Assume K is singular, then

κ(K̃) =
λ1 + ε

ε

The condition number is extremely large for ε = 10−8, the smallest eigenvalue being ε away from zero.
Therefore, an iterative method such as conjugate gradient will surely converge very slowly.

Some numerical testing was done with the preconditioner M = WT K̃−1W for an invertible stiffness matrix. The
right-hand side vector was the vector of all ones and the initial guess was zero. Although extremely simple, the
preconditioner performed remarkably well. Right preconditioned GMRES converged in 18, 27, 35 and 39 iterations
for mesh sizes h = 0.1, h = 0.05, h = 0.01 and h = 0.005 respectively. The restart was fixed to 40 iterations.
A smaller restart of 20 slowed down convergence substantially. GMRES made very little progress in the first few
iterations before progressing rapidly. The very slow increase in the iteration count is very promising for large scale
applications when methods based on Cholesky factorizations are no longer affordable.
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