This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2021.3118091, IEEE Robotics

and Automation Letters

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION.

Distributed Predictive Drone Swarms in Cluttered
Environments

Enrica Soria, Student Member, IEEE Fabrizio Schiano, Member, IEEE,
and Dario Floreano, Senior Member, IEEE

Abstract—Recent works in aerial robotics show that the self-
organized and cohesive flight of swarms can emerge from the
exchange of purely local information between neighboring agents.
However, most of the current swarm models are not capable of
flight in densely cluttered environments. Predictive models have
the potential to incorporate safe collision avoidance capabilities
and give the agents the ability to anticipate and synchronize their
trajectories in real-time. Here, we propose a distributed predictive
swarm model that generates self-organized, safe, and cohesive
trajectories by solving an optimization problem in real-time. In
simulation, we show that our method is scalable to large numbers
of agents and suitable for deployment in different environments,
specifically a forest and a funnel-like environment. Furthermore,
our results show that the agents are capable of collision-free flight
with noisy sensor measurements for a noise level of up to 70%
of the magnitude of the agent safety distance. Real-world experi-
ments with a swarm of up to 16 quadrotors in an indoor artificial
environment validate our method. Supplementary Materials can
be found at https://doi.org/10.5281/zenodo.5245214.

Index Terms—Swarm Robotics, Aerial Systems: Perception
and Autonomy, Multi-robot systems

I. INTRODUCTION

HE synergistic flight of multiple aerial robots can enable

many real-world applications in industries such as map-
ping, agriculture, search and rescue, and construction [1[]-[5].
However, to bring drone swarms from research laboratories
to the real world, they should be capable of integrating the
environment safely [6]—-[8].

Natural collectives, such as fish or birds, show that coor-
dinated navigation can be achieved by decentralized decision-
making [9]-[12]. Indeed, their motion can be explained with
a set of simple rules based on local exchange of information,
such as repulsion that steers an agent away from its neighbors,
cohesion that models attraction to the group, migration that
orients its motion in a preferred direction, and additionally
repulsion from obstacles that makes it avoid collisions with
the environment [13]]. Decentralized control presents a key
advantage for the swarm compared to centralized control.
While the latter relies on a central computing node, the
former is shared among all agents, thereby improving ro-
bustness against one individual’s failure [2]], [7], [[14], [15].
Additionally, in decentralized control strategies, each agent’s

Manuscript received: June 11, 2021; Revised: August 26, 2021; Accepted:
September 28, 2021.

This paper was recommended for publication by Editor M. Ani Hsieh upon
evaluation of the Associate Editor and Reviewers’ comments.

The authors are with the Laboratory of Intelligent Systems (LIS), Ecole
Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
https://lis.epfl.ch

Corresponding author: lenrica.soria@epfl.ch

Digital Object Identifier (DOI): see top of this page.

o

o »f‘

Figure 1: Self-organized predictive swarm flying in an artificial
forest. Picture of a swarm of 16 drones flying in a forest-like
environment in our indoor experimental facility. A supplementary
video of our experiments is found at https://youtu.be/1Vgljdw2Ruk.

decisions only depend on a limited number of neighbors and
are therefore independent of the swarm size. This aspect allows
the simultaneous deployment of possibly tens or hundreds of
agents with the same hardware computational resources.

A variety of swarm models based on the above rules have
been successfully implemented on aerial robots by reproduc-
ing the swarm rules with artificial potential fields [[15]-[18].
However, reliable obstacle avoidance capabilities are hard to
obtain for real drone swarms, and they are neglected by
these works. In other work, obstacle avoidance is modeled
with artificial repulsive potentials located around the obsta-
cles [14], [19]. This approach does not explicitly consider
the physical limitations of the robots and, in certain settings,
these limitations can result in infeasible control inputs that
lead to unexpected collisions. In practice, this issue is solved
by finding parameter values (i.e., preferred speed, cohesion,
repulsion, and other coefficients) adapted to the environment
and swarm configurations (i.e., size, number, and density of
the obstacles) [[14]], [20].

Recent works suggest that predictive controllers can im-
prove the safety of aerial swarms by predicting and optimizing
the agents’ future behavior in an iterative process [21]-
[23[]. Model Predictive Control (MPC) computes the control
action of a system as the solution to an optimization problem
that explicitly accounts for the robot dynamics and actuation
constraints. Moreover, the computations can be shared among
all agents according to a Distributed MPC (DMPC) formu-
lation. With DMPC, every robot solves an optimal problem
locally and then communicates its solution to the others to
allow global coordination. Following this control scheme,
multiple drones can reliably avoid reciprocal collisions when

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://lis.epfl.ch
mailto:enrica.soria@epfl.ch

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2021.3118091, IEEE Robotics

and Automation Letters

i — -
S ——— N— P
S~ R N—
N
—
A—
4 ~
start area
N~
X z
Y

(a) Forest-like environment

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION.

~——y

start area

(b) Funnel-like environment

Figure 2: Modelling of the environment. On the left, |2a shows the modeling of the forest-like environment filled with cylindrical obstacles.
On the right, |2b|shows the funnel-like environment made of two curved surfaces that gradually reduce the flight volume towards the migration
point. In both environments, the allowed flight workspace is set to [8.5,8.5,1.1] m® and the migration point is in pmie = [7.5,0,0.6] m). The
swarm flies from the start region (pink cube) in the foreground of the scene towards the migration point (orange sphere) in the background.

assigned intersecting trajectories [21]]. This approach is ex-
tended in [22]], where the authors present a DMPC motion
planner that allows the real-time and collision-free trajectory
generation for swarms of up to 20 drones with a single off-
board computer. Their on-demand Collision Avoidance (CA)
method reduces the computation and travel time compared to
Buffered Voronoi Cells (BVC) CA methods [24], [25]]. These
works show the remarkable potential of modern optimization-
based motion planners for solving CA problems of collective
systems, although they are designed for individual point-to-
point transitions and do not generate self-organized cohesive
flight similar to biological swarms.

In our previous work [20]], we showed that the collective
behavior of biological swarms could be reproduced with
an NMPC (Nonlinear MPC) model. The results indicated
improved safety and flight synchronization at different obstacle
densities, inter-agent distances, and speeds compared to purely
reactive approaches based on artificial potential fields [[14].
However, the centralized nature of this model allowed the
real-time control of only five drones and prevented it from
scaling to a large number of drones. Also, the non-convex
formulation of the optimization problem required using a
computationally expensive scheme based on SQP (Sequential
Quadratic Programming) [26]).

Here, we present a novel and scalable DMPC swarm model
that allows a safe and cohesive flight of aerial swarms in
cluttered environments (Fig. [I). We show its scalability in
the swarm size and its robustness to noise by systematically
analyzing the swarm performance at different agents number
and noise levels. The swarm performance is studied and
compared for two different environments: a forest and funnel-
like environment. We also compare the performance of the
presented DMPC swarm model with different reciprocal CA
methods, i.e., BVC, on-demand, and continuous CA. Finally,
we validate the proposed algorithm in real-world experiments
with up to 16 palm-sized quadrotors.

II. METHODS

We consider a swarm composed of N agents labeled by
i€V =1{1,...,N} and a set of M static obstacles labeled

by m € M = {1,...,M} (Fig.). The swarm can be
modeled with a directed sensing graph G = (V, £), where
the vertex set) represents the agents, and the edge set
€ C V x V contains the pairs of agents (i,7) for which
agent ¢ can sense agent j. The state of the ¢-th agent is
represented by x; = (p;, v;) € R® and is made of its position
p; € R? and velocity v; € R?. In the following, k denotes
the index of a discrete time step with duration d¢. In our
DMPC scheme, at every step k, each agent ¢ computes its
neighborhood N;* = {j € V | (i, j) € €} according to the
topological metric, which is defined as the set of the n nearest
neighbors of agent i at time & [27]. If we indicate with |- | the
cardinality of a set, then |N*| = n is fixed for all instants
k, although the neighbors in the set may vary at different
k. Then, the agents determine their optimal trajectory w.r.t.
their neighbors by solving a constrained optimization problem
over a fixed time window called the prediction horizon and
denoted as Tp = P dt, P € NT (Fig. [3a). The optimization
problem aims at minimizing a cost function, which encodes
the swarm rules, under constraints that include the dynamic
limitations of the agent and the trajectory smoothness. The
swarm rules comprise the migration, which steers the agents
towards a common goal, the regulation of the inter-agent
distance, which consists of cohesion and agents’ reciprocal
avoidance, and obstacle avoidance, which steers the agents
away from obstacles. Additionally, the control effort rule
minimizes the energy spent on maneuvering.

A. Model of a flying agent

Every agent of the swarm obeys a discrete linear system:
xi(k+1) = Ajx;(k) + Bu;(k) (D

where A; and B; are constant matrices modeling the dynamics
of the Crazyflie 2.1 quadrotor with an underlying position
controller. To account for the dynamic feasibility, we limit
the position commands by the dimensions of the environment
and the acceleration by constant vectors. Hence, it holds
Pmin < ul(k) < DPmax and Qmin < az(k) < Qmax-

To quantify the effects of noisy sensor measurements on
the flight performance, we model the noise on the agents’

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2021.3118091, IEEE Robotics

and Automation Letters

SORIA et al.: 1I-D

5 o T

P
r .
margin-agent

rsaf—agent rco//—agenr

— —

coh dsaf-agent dcor!—agenr

(a) Inter-agent distances

s H a1 X N oY < rmargm—f:s
agent j @_?‘* _____ et
A2 .
agent i ‘%_—'_._'_; ______ 20
o,
T, obstacle m

(b) Agent’s predicted trajectory

Figure 3: Schematic overview of the method. In|3a inter-agent distance parameters: on the left, the cohesion distance dcon = 1.30 m (i.e.,
the maximum allowed distance between neighboring drones), in the middle, the safety distance da- agent = = 0.30 m, and on the right, the
collision distance dcolt-agent = 0.14 m. In @ illustration of the predicted trajectory for the focal agent i. At every time step k, the focal agent
i determines the neighbor set N, then computes the distance to the migration point, the relative distances to its neighbors, and potential
obstacle collisions over the horizon Tp = 3.0 s. Agents’ cohesion and reciprocal avoidance with the proposed continuous CA method are

enforced over T = 1.8 s. Trajectory replanning happens every 0.2 s.

positions with a random normal distribution with zero average
and equal standard deviation in the three dimensions, op.

B. Trajectory parameterization

We model the agents’ trajectories with [Bezier curves in R3
of duration 7j, in the same spirit as [22f], [28]. This parame-
terization allows us to define continuous input trajectories to
the drones from a finite set of control points. A 3-dimensional
Bezier curve of order d is uniquely characterized by a set of
d + 1 control points U = {iig,..., %4} € R3@*1) and the
trajectory of agent i is defined by I(d + 1) control points
U; € R34+D I the following, @; and u; are considered
as function of the new unknown [71 At each time k, we can
rewrite the dynamic feasibility conditions described above as:

Agyn U < bayni)
To obtain smooth trajectories, we impose continuity require-
ments C? on the input curve. Samples of the Bezier curves
and their derivatives are obtained by linear combinations of the
control points. Hence, at each time &, the continuity conditions
translate in linear equality constraints of the form:

Acont,iﬁik = bcont.,i (3)

C. Migration

A migration point pnig € R3 known by all agents orients the
motion of the swarm in a common direction. The advantage of
choosing a migration point over a migration velocity as in [20]
is that, even if the agents’ path is deviated by some obstacles,
the agents will correct their direction to reach the expected
destination. We let (-)(k + m|k) represent the predicted value
of (-)(k 4+ 7) with the information available at time step k.
Then, the migration term is defined as:

Zleg”pz /{i—‘rﬂ'lk‘) pmig“g

=1

“4)

mlg i

where gmig is the weight of the migration behavior.

D. Agents’ reciprocal avoidance

Safety among agents is ensured by requiring neighboring
couples of agents to fly at a distance larger than a safety inter-
agent distance dgg.agent (Fig. [3a). To model the down-wash
effect of the quadrotors, 2-norm distances between agents are
scaled according to a weight matrix F/, with positive diagonal
elements F,, = E,, = 1 and E,, < 1 that defines an
ellipsoidal distance || - ||g. In this paper, we explore three
methods for Collision Avoidance (CA): (i) BVC [24], [25], (ii)
on-demand [22]], and (iii) continuous CA, the method that we
propose. All methods are based on the principle of imposing
hyperplane constraints that limit the available space over which
the agent optimizes its future trajectory to avoid collisions with
its neighbors. In the following, we describe each of them.
BVC CA. In the BVC method, each agent 7 is forced to stay
within its Buffered Voronoi Cell V; for a time 7} corresponding
to the first Bezier curve of its input trajectory. Let d;; = ||p; —
p;||r be the 2-norm scaled distance between agents ¢ and j,
then the Buffered Voronoi Cell of agent ¢ is:
, Vi€ M—}

Y, = { (pi — pj)TE_2(p —Pi) N dyat-agent — dij
®)

di]’ - 2
Condition [3] translates into a linear constraint per each of the
(d + 1) control points of the Bezier curve. For more details
on the BVC method we refer to [22], [24], [25].
On-demand CA. This method is based on an event-triggered
strategy. It assumes communicative agents that share with
their neighbors their predicted actions (i.e., u;(k + w|k), 7 €
{0,..., P — 1}), and imposes constraints only if potential
collisions are detected. On-demand CA only constrains one
sample of the agents’ trajectory, corresponding to the time of
the first detected collision. If agent ¢ detects the first collision
at time ko1 4, then avoidance constraints are enforced with all
its neighbors at that time. Based on the results in [22], we
write the constraints in the input space as:

||ui(kcoll,i|k) - uj(kcoll,i|k)”E > dsaf—agent (6)

which results in collision-free position commands. Then, we
linearize them with a first-order Taylor expansion. For more

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2021.3118091, IEEE Robotics

and Automation Letters

details on the on-demand method we refer to [22].
Continuous CA. In this method, the constraints have the
same formula as in the on-demand method, but they are
enforced over an entire trajectory segment rather than a single
sample. We define the braking time T3 = B dt < Tp
as the minimum time required by an agent that flies at
maximum speed to brake until zero velocity. Continuous
CA constraints for agent ¢ are enforced with the neighbors
j € NF over the horizon Ty. Hence, neighboring agents need
to share their predicted actions over the braking horizon (i.e.,
u;(k+m7|k), m € {0, ..., B—1}). As for on-demand CA, these
constraints are written in the input space. They are:

||uz(k + 7T|k) - u](k + 7T|k)HE Z dsaf—agent (7)

with 7 € {0, ..., B—1}. Because of the larger number of con-
straints, continuous CA leads to more conservative maneuvers
than on-demand CA. Also in this case, we approximate the
constraints with a first-order Taylor expansion.

For all methods, we introduce a set of slack variables € f that
relax the hyperplane constraints and make it more likely for
the optimization problem to find a viable path. Each variable
€;; = 0 indicates the amount by which the avoidance constraint
between agent ¢ and neighbor j is violated. For example, for
continuous CA, the relaxed constraints are:

[wi(k +m|k) —w;(k+7|k) | 5 > datagen — €55 (k +plk) (8)

More generally, for all CA methods, we indicate the set of
linear reciprocal CA constraints for agent ¢ at time k as:

TNT [ok
Asaf agent, z[(Uz) ’ (gz)] < bsaf agent,? (9)
—£7<0 (10)
The cost associated with the violation of these constraints
includes linear and quadratic terms in €;; with constant weights

lsar and ggyr, respectively. For example, for continuous CA, the
total violation cost is:

B—-1
Jsaf agent,i Z Z (lsafeij(k + ﬂ-‘k) + qsafE?j(k + 7T|k))
JEN; m=0

(11
E. Agents’ cohesion

The swarm behavior of cohesion requires neighboring couples
of drones to stay closer than the cohesion distance d.o,. We
introduce slack variables d;; for agent 7 and neighbors j € /\/f
and we formulate the cohesion constraint over the horizon Ty
in the input space as:

llwi(k + 7k) —u;(k + k)| g < deon + 0;5(k + w|k) (12)

If we indicate with A¥ the set of slack variables for agent i
at time k, then the set of cohesion constraints approximated
by a first-order Taylor expansion is denoted as:

Acoh z[(i)T7(Af)] bcohz (13)
—~AF <0 (14)
The cost associated with the violation of the constraints is:
B-1
cohz Z Z cohéu k+77|k) +qc0h5”(k+7r|k))
FjEN; m=0
(15)

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION.

where l.on and geon are constant weights.

F. Obstacle avoidance

The obstacle avoidance behavior is produced by requiring the
drones to fly at a safety distance dgyy.ops from the obstacles.
To keep this behavior local, each agent only considers the first
obstacle on the collision course with its predicted trajectory.
In this article, we consider convex obstacles that we model
with 3D ellipsoids with arbitrary axes dimensions. If a drone
1 detects its first collision with obstacle m at instant ke ;
it adds an anti-collision constraint with it to its optimization
problem. We introduce the slack variable (;,, > 0 referred to
agent ¢ and obstacle m and consider the following constraint:
Cim(kcoll,i|k)

) - pm”E > dsaf-obs — (16)

[AG

As done before, we indicate with Zf the obstacle avoidance
slack variables for agent ¢ at time k, and write the first-order
approximation of the above constraint as:

Asa’r obs, ’L[(ULk) (z)]
- 27 <0

< bt (17)

(18)

saf-obs,?

The cost associated with the violation of the constraint is:

Jskélf-()bsyi = lsaf(im(kcoll,”k) + QSaf<i2m<kcoll7i|k) (19)

G. Control effort

The control effort is responsible for minimizing the energy
required by the control commands. It is defined by a weighted
sum of the second squared derivative of the input commands
that penalizes acceleration and deceleration of an agent:

P—-1

J effort,? E Geffort

where Qefrore 15 the weight of the control effort rule.

2

ui(k + m|k) (20)
2

d?
dt?

H. Desired trajectory

To calculate the desired trajectory at each time step k, every
drone ¢ solves the following QP problem, which includes all
the above cost terms and constraints:

. k
min J, + Jk
- ‘ mig,? saf-agent,i
UF.EF Al zk

k k
Jcoh [+ Jsaf—obs,i + Jefforl,i
subject to:
Tk
Adyn,iUi < bdyn,i
Tk
Acont,iUi = bcont,i

Asafagenlz[(ﬁik)Tv(g)] < b

saf-agent, i
Acon s [(OF)T, (AN < b
Alitons il ()T (27T < g
— & <o

~Af <0

-2F<o

2

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2021.3118091, IEEE Robotics

and Automation Letters

0.064

0.056

0.048

0.04

ﬂ 032

oy [m]

ﬂ 024

0.016
0.008

SORIA et al.: TII-A 5
08 0.064
0.75 0.056 03
07 0.048
065 E 0.04 0.25
06 = 0.032
o
055 0.024 02
0.016
05
0.008
045 015
0 0]
04
4 8 12 16 20 24 28 32 36 4 8 12 16 20 24 28 32 36 4 8 12 16 20 24 28 32 36 4 8 12 16 20 24 28 32 36
N N N N
1 09 0.4
10 08 - o= o=0
= . E 03
E o 507 = —o— 0,=0.024
— e o
E s & 06 E o = 0.048
i & £ 02 =0
7 FH_H\.—.—-‘. 05
01
6 04 20 40 0 10 20 30 40

10 20 40 30 40

(a) Mission completion time (b) Avg. trajectory length

10 20

N

(¢) Avg. order (d) Min. inter-agent distance

Figure 4: Swarm performance in forest-like environment. On top, simulation results for swarms with different agent numbers and noise
levels. For each parameter combination (i.e., one bin in the heatmaps), the results show the average of 10 random simulations. Specifically,
[reports the mission completion time 7',] reports the average trajectory length Li, [Ac] reports the average order ®orer, and [&d] reports
the minimum inter-agent distance min(d;;). At the bottom, aggregate average and standard deviation of the same metrics for three different
noise levels: in blue o, = 0 m, in orange o, = 0.024 m, and in yellow o, = 0.048 m. Collisions between agents happen at noise levels
op > 0.056 m. Instead, collisions with the obstacles already happen at o, > 0.040 m.

=
o

+ap=0 m
—.—ap:Cl.GlE m

max

+ap=0.032 m
ap=0.048 m
_._UEZU.Uﬁﬂ]- m

N

Missions completed in T

10 20

N

Figure 5: Number of completed missions in time ¢ < Tax. Number
of completed missions (out of 10 random simulations) for swarms of
different agent numbers N at different noise levels o, flying in the
forest-like environment. We consider the mission completed only if
the swarm gets to the migration point before a maximum time of
Tiax = 20 s. For a noise level o, = 0 m, the swarm could complete
all missions.

1. Swarm performance metrics

We assess the performance of the swarm’s flight according to
six different metrics. The mission completion time 7" measures
the time that the swarm requires to complete a mission. A
mission is completed if the swarm average position reaches
the migration point up to a tolerance distance dy, and if,
at the same time, all the drones are within the distance d.,
from their neighbors. The trajectory length L,; measures the
average of the agents’ flown distances until they complete
the mission. The minimum and the maximum inter-agent
distances, min(d;;) and max(d,;), measure the minimum and
the maximum distance among neighboring couples of drones
over the mission. The minimum distance to the obstacles
min(d;,,) measures the minimum distance between all agents
and all obstacles. Finally, the order ®,,4e; measures the average
correlation of the agents’ directed movements. It is often used
to quantify the synchronization of the agents’ flight [10], [[14]],

2 2
= — =
E oo S 5
' — N\ > ~— <
===t
g [o , Z——3
I e _— IS

2 2

g B 7 B
X position [m]

= max(d;) s

— avy(d)

- min(d))
d,

= max(d,)

— avg(d,)
== min(d;)

Distance dj [m]

Distance d m]

w25 % T w5 WS mo F T

ER TP
Time [s]

(b) Noise level o, = 0.048 m

: T\l:fej[s] ®
(a) Noise level op =0 m

Figure 6: Swarm trajectories at different noise levels. Simulated
trajectories and inter-agent distances for a swarm of 16 drones in a
forest-like environment at two noise levels (op = 0 and 0.048 m).
Although we report no collisions in both cases, the trajectories are
visibly smoother at zero noise level (6a) than in the presence of noise
(6B). The bottom row shows the envelope of the distance between
neighboring drones d;;. The plots are grayed out from the mission
completion time 7" until the simulation end time 7inax.

and in formula, it is written as:

X XY

ke{l,.. K} i€V jeNF

(k)v;(k)
[[vi (k) [l[|v

(I)order = (22)

i (Rl

where K = min([T/dt], [Tmax/dt]) and [-] is the ceiling
function.

III. SIMULATION RESULTS

We implemented our swarm model in MATLAB 2020b, and
executed our simulations on a computer equipped with Intel
Core i7-8750H CPU with 12 cores and 16 GB of RAM. For
the solution of the optimization problem, we used the active
set algorithm [29]. The parameter values used in simulation
experiments are detailed in the Supplementary Materials.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2021.3118091, IEEE Robotics

and Automation Letters

6
20
75
15 =
= E
- 2
. ._.__._rf*.!. s
5 6
0 10 20 30 40 o 10 20 30 40
N N

(a) Mission completion time (b) Avg. trajectory length

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION.

0 10 20 30 40 o 10 20 30 40
N N

(c) Avg. order (d) Min. inter-agent distance

Figure 7: Swarm performance comparison in the funnel and forest-like environments. Aggregate results (average and standard deviation
of 10 random simulations) of the swarm performance in the funnel-like (in blue) and forest-like (in light blue) environments at zero noise
level and for different agent numbers /N. For all agent numbers, we report zero agent-agent collisions.

A. Scalability in the agent number and noise robustness

We run swarm simulations for 9 swarm sizes N € {4, 8,
12, 16, 20, 24, 28, 32, 36} and 9 noise levels, o, € {0,
0.008, 0.016, 0.024, 0.032, 0.040, 0.048, 0.056, 0.064} m in
the forest-like environment (Fig. [2a). For every configuration,
we run 10 random simulations and averaged the results. In
the computation of the swarm performance, we only con-
sidered the missions that the swarm could complete within
Trmax = 20 s (Fig. H).

The results show that the coordination of a large swarm
requires a longer time than a small swarm. Analogously, an
increase in the noise level requires extra time for the swarm to
reach the migration point (Fig. #a). The increased mission time
in the presence of noise can be explained by an increment in
the agents’ trajectory lengths (Fig. @ib). Instead, for swarms of
large sizes, the trajectory lengths seem almost stationary for a
given noise level (Fig.[db), necessarily implying a lower speed.
The average swarm order remarkably reduces when the swarm
size and noise level increase (Fig. [Ac). Specifically, when
passing from zero noise level to noise level o, = 0.048 m
the order decreases of about 21 to 32% depending on the
swarm size (Poger ~ 0.83 to 0.68 for N = 4 to 36 at
op = 0 m, while @4y = 0.67 to 0.46 for N = 4 to 36
at o, = 0.048 m). The reduction of order in the presence of
noise, indicating a decrease in the correlation of the agents’
movements, is due to the agents’ need of adjusting their
directions in order to avoid collisions (Fig. [6b). This tendency
increases with the agent number. With no noise, the minimum
inter-agent distance is approximately steady around the safety
value (min(d;;) ~ 0.3 m) independently on the swarm size
(Fig. [Ad). Instead, in the presence of noise, the minimum
distance decreases when the swarm size increases (Fig. fd). On
average, collisions between drones happen from a noise level
op = 0.056 m, which is approximately 70% of the magnitude
of the safety margin rmargin-agent and 80% of agent collision
radius 7coll-agent- Finally, the minimum distance to obstacles
showed the same trend as the minimum inter-agent distance.
We did not observe a significant trend for the maximum inter-
agent distance, which slightly fluctuates above the cohesion
distance (max(d;;) = 1.40 £ 0.09 m on average).

B. Adaptability to different environments

To evaluate the swarm flight quality in different environments,
we simulate our swarm model in a funnel-like environment
(Fig. 2b) for the same swarm sizes as in the forest-like
environment and compare the results.

—&—BVCCA
40 on-demand CA
—&— continuous CA

°
o

min(dij) [m]
o °
N w

o
(=}

0 10 20 30 40 0 10 20 30 40
N N

(a) Mission completion time (b) Min. inter-agent distance

Figure 8: Comparison of collision avoidance methods. Comparison
of the average performance metrics for different CA methods: BVC,
on-demand, and continuous CA. The shown data is the average over
10 random trials for each swarm size.

In the funnel-like environment, the swarm flies overall
shorter trajectories to get to the migration point compared to
the forest-like environment (Fig. [7b). As a result, the mission
times are generally shorter (Fig. [7a). The mission completion
time and the average trajectory length present the same trends
in both environments: while the first increases with the agent
number, the second slightly decreases. The order is almost
steady across the swarm sizes (Fig. since all agents fly
consistently along the x-direction. Instead, in the forest-like
environment, the swarm is less ordered due to the obstacle
avoidance maneuvers, and this effect is amplified at large
swarm sizes. Finally, we report zero collisions and the maxi-
mum inter-agent distance stayed below the cohesion distance
for all agent numbers. However, in the funnel environment we
notice a phenomenon of swarm compression characterized by
a decrease of the average inter-agent distance towards the end
of the funnel and due to the reduced volume.

C. Comparison of collision avoidance methods

We compared the performance of the optimization-based
swarm model with the three reciprocal CA methods. In order
to test the algorithms as the agent density increases, we run
10 random simulations in the forest-like environment for all
the swarm sizes. For brevity and clarity, we present here the
results at a fixed noise level (i.e., o, = 0.024 m), although
similar trends can be observed for other noise levels too.
Being the least conservative, on-demand CA leads to the
fastest mission completion times for all swarm sizes (20% and
49% of average time reduction over all swarm sizes compared
to the continuous and BVC methods, respectively (Fig. [8a).
However, continuous CA outperforms the other two methods
in terms of safety. This evidence is supported by the plot of
the minimum inter-agent distance (Fig. [8b). For continuous

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2021.3118091, IEEE Robotics

and Automation Letters

SORIA et al.: IV

Solve time Swarm size Metric Simulation Hardware
8 12 16 20 24 28 32 36 8 agents 16 agents 8 agents 16 agents

Avg [ms] ‘ 93 93 94 098 10.7 113 121 123 16.1 T [s] 9.2 9.0 8.9 8.7
Std [ms] 26 1.7 20 24 3.0 34 44 49 8.4 Lyraj [m)] 5.88 5.47 5.93 5.49
Borger [—] 0.93 0.88 0.88 0.85
Table I: Empirical runtime per agent for different swarm sizes. min(d;;) [m] 0.31 0.26 0.26 0.20
Empirical runtime results (average and standard deviation) for the max(d;j) [m] 1.31 1.26 1.31 1.45
algorithm implementing continuous CA method. The shown data is min(dim) [m] 0.22 0.18 0.09 0.08

the average over 10 random trials.

CA, the minimum inter-agent distance stays close to the safety
value (ranging from 0.30 to 0.23 m for swarms of 4 to 36
agents). Instead, for the other two methods it is significantly
lower (ranging from 0.29 to 0.18 m and from 0.18 to 0.10 m
for swarms of 4 and 36 agents and for the BVC and the on-
demand methods, respectively). Indeed, with the BVC and on-
demand methods we recorded occasional collisions.

D. Computational complexity

We formally analyze the computational complexity of the
presented algorithm with the three reciprocal CA methods
in terms of computation time per agent to build constraints
and solve the QP. In our notation, |/\/;k | indicates the number
of considered neighbors for agent i at time step k, which
is constant and equal to m. The number of reciprocal CA
constraints for each algorithm scales linearly with the number
of neighbors, i.e., O(n). The BVC method adds (d+1)n slack
variables for relaxing the reciprocal avoidance constraints,
where d is the Bezier curve order. The on-demand method adds
only n slack variables and hence has the lowest complexity,
while our method adds Bn new decision variables. Since in
our method the number of variables increases with B, increas-
ing the agents’ maximum speed increases the computational
complexity. Solving a standard QP problem has complexity
O(v3), where v is the number of decision variables, which is
linear in the planning horizon P and the number of neighbor-
ing robots n. Hence, for each robot, the total computational
complexity is O(v?).

Numerical values for the runtime depend on the used
hardware and solver capabilities. Here, we report the empirical
runtime of the algorithm running on the ground station with
continuous CA in the forest-like environment and for different
swarm sizes (Table [[). We expect the runtime per agent to
be independent of the swarm size since we chose agents’
neighborhood to have a fixed cardinality (i.e., n). Instead, we
notice that it increases as we add more agents to the swarm.
We explain this fact with an increase in the swarm density,
which implies more complex QPs to be solved for each agent,
due to its closer proximity to the obstacles, neighbors, and
environment boundaries.

E. Hardware experiments

We implemented the swarm model in Python, where we used
numbeﬂ to speed up the mathematical computations, OSQP to
solve the QP [30], and the Crazyswarm interface to communi-
cate with the Crazyflie 2.1 drones [31]. An Optitrack motion
capture system acquired the drone positions and streamed
them to the ground station. Then, the ground station computed

Ihttps:/mumba.pydata.org/

Table II: Comparison of simulation and hardware swarm per-
formance. Comparison of the performance metrics of two swarms
of 8 and 16 drones between simulation and hardware experiments.

the optimal predicted trajectories online and for all drones in
parallel and broadcast them to the swarm via two radio links.
In our experiments, local communication between drones
is mimicked by the ground station exchanging information
between threads. Instead, full on-board implementation would
require direct communication between neighboring robots.
Moreover, drones should embed sensors to estimate their
relative positions to obstacles and more powerful computers
to solve the optimization problems on-board. The model
parameters are the same as above, except for the migration
point (pmig = [6,0, 1] m) to fit our experimental room.

The swarms of 8 and 16 drones reach the migration
point in comparable times and cover comparable distances
(see Table [l). However, the trajectory lengths in hardware
experiments are slightly longer than in simulation because
of the small positional errors in real-world experiments. The
average order decreases when passing from 8 to 16 drones
(Porger = 0.88 and 0.85, respectively). This result follows the
simulation experiments (®oger = 0.93 and 0.88 for 8 and 16
agents, respectively) and confirms the above statistic results
in the forest-like environment: larger swarms decrease their
order to insure collision avoidance in cluttered environments.
The minimum inter-agent distance remains above the collision
threshold in all cases. However, it decreases when increasing
the swarm size (min(d;;) = 0.26 and 0.20 m for the swarms
of 8 and 16 drones, respectively). Finally, the agents do not
collide with obstacles.

IV. CONCLUSION

In this article, we described a distributed MPC model for aerial
swarms that results in self-organized, safe, and cohesive flight
in cluttered environments. The proposed DMPC algorithm
with the continuous collision avoidance method generates
collection-free trajectories even in the presence of sensor noise
at levels up to 70% of the magnitude of the agent safety margin
distance. We validated the proposed algorithm in two types of
simulated environments with obstacles, and on 16 palm-sized
drones flying in a real forest-like indoor environment.

While this work paves the way for large and safe decen-
tralized aerial drone swarms, future work should focus on the
challenges for a full on-board implementation. Work in this
direction will address communication issues for large multi-
agent systems such as communication delays, packets losses,
interference, and synchronization.

Additionally, future work will explore swarm navigation in
non-convex configuration space. In the presence of concave
obstacles, the current obstacle avoidance strategy may lead
to deadlocks due to the presence of local minima. Hence,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2021.3118091, IEEE Robotics

and Automation Letters

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION.

e

==
==

(b) Time t =4 s

(¢) Timet =8 s

Figure 9: Experimental results with 16 drones in a forest-like environment. Snapshots at three instants (from left to right, t = 0, 4, 8 s)
of a swarm of 16 drones flying from the start area (in the foreground) to the migration point (in the background).

the integration of alternative techniques based on topological
planning as in should be investigated to solve this issue.

ACKNOWLEDGMENTS

We gratefully acknowledge Y. Lian, J. Yuning, and Prof. C.
Jones for the helpful discussions. We thank M. Pfister, A. De
Bortoli and F. Schilling for their support technical advice. This
work was supported by the Swiss National Science Foundation
(SNSF) with grant number 200020_188457 and the European
Union’s Horizon 2020 programme under grant agreement ID:
871479 AERIAL-CORE.

[1]

[2]

[3]

[4]

[51

[6]

[71
[8]

[91

[10]
[11]
[12]

[13]

[14]

[15]

REFERENCES

S. Chung, A. A. Paranjape, P. Dames, S. Shen, and V. Kumar, “A Survey
on Aerial Swarm Robotics,” IEEE Trans. Robot. (T-RO), vol. 34, no. 4,
pp- 837-855, 2018.

K. N. McGuire, C. D. Wagter, K. Tuyls, H. J. Kappen, and G. C. H. E.
de Croon, “Minimal navigation solution for a swarm of tiny flying robots
to explore an unknown environment,” Sci. Robot, vol. 4, no. 35, p.
eaaw9710, 2019.

T. Stirling, J. Roberts, J.-C. Zufferey, and D. Floreano, “Indoor naviga-
tion with a swarm of flying robots,” in IEEE Int. Conf. Robot. Autom.
(ICRA), 2012, pp. 4641-4647.

F. Augugliaro, S. Lupashin, M. Hamer, C. Male, M. Hehn, M. W.
Mueller, J. S. Willmann, F. Gramazio, M. Kohler, and R. D’ Andrea, “The
Flight Assembled Architecture installation: Cooperative construction
with flying machines,” IEEE Control Syst., vol. 34, no. 4, pp. 46-64,
2014.

A. Tagliabue, M. Kamel, R. Siegwart, and J. Nieto, “Robust collaborative
object transportation using multiple MAVs,” Int. J. Robot. Res., vol. 38,
no. 9, pp. 1020-1044, 2019.

D. Floreano and R. J. Wood, “Science, technology and the future of
small autonomous drones,” Nature, vol. 521, no. 7553, pp. 460466,
2015.

E. R. Hunt and S. Hauert, “A checklist for safe robot swarms,” Nat.
Mach. Intell., vol. 2, no. 8, pp. 420422, 2020.

M. Coppola, K. N. McGuire, C. De Wagter, and G. C. H. E. de Croon, “A
Survey on Swarming With Micro Air Vehicles: Fundamental Challenges
and Constraints,” Front. Robot. Al, vol. 7, 2020.

G. Dell’Ariccia, G. Dell’Omo, D. P. Wolfer, and H.-P. Lipp, “Flock
flying improves pigeons’ homing: GPS track analysis of individual flyers
versus small groups,” Anim. Behav., vol. 76, no. 4, pp. 1165-1172, 2008.
M. Nagy, Z. Akos, D. Biro, and T. Vicsek, “Hierarchical group dynamics
in pigeon flocks,” Nature, vol. 464, no. 7290, pp. 890-893, 2010.

1. Couzin, “Collective minds,” Nature, vol. 445, no. 7129, pp. 715-715,
2007.

M. Yomosa, T. Mizuguchi, G. Vésarhelyi, and M. Nagy, “Coordinated
Behaviour in Pigeon Flocks,” PLOS ONE, vol. 10, no. 10, p. e0140558,
2015.

C. W. Reynolds, “Flocks, herds, and schools: A distributed behavioral
model,” Annual Conf. Comp. Graph Interactive Technol. (SIGGRAPH),
vol. 21, pp. 2543, 1987.

G. Vasarhelyi, C. Viragh, G. Somorjai, T. Nepusz, A. E. Eiben, and
T. Vicsek, “Optimized flocking of autonomous drones in confined
environments,” Science Robot., 2018.

F. Schilling, F. Schiano, and D. Floreano, “Vision-Based Drone Flocking
in Outdoor Environments,” IEEE Robot. Autom. Lett. (RA-L), vol. 6,
no. 2, pp. 2954-2961, 2021.

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

[32]

S. Hauert, S. Leven, M. Varga, F. Ruini, A. Cangelosi, J.-C. Zufferey, and
D. Floreano, “Reynolds Flocking in Reality with Fixed-Wing Robots:
Communication Range vs. Maximum Turning Rate,” in IEEE Int. Conf.
Intel. Rob. Sys. (IROS), 2011.

G. Vasarhelyi, C. Viragh, G. Somorjai, N. Tarcai, T. Szorenyi, T. Nepusz,
and T. Vicsek, “Outdoor flocking and formation flight with autonomous
aerial robots,” in IEEE Int. Conf. Intel. Rob. Sys. (IROS), 2014, pp.
3866-3873.

F. Schilling, J. Lecoeur, F. Schiano, and D. Floreano, “Learning Vision-
based Flight in Drone Swarms by Imitation,” IEEE Robot. Autom. Lett.
(RA-L), vol. 4, pp. 4523-4530, 2019.

P. Petracek, V. Walter, T. Baca, and M. Saska, “Bio-inspired compact
swarms of unmanned aerial vehicles without communication and exter-
nal localization,” Bioinspir. Biomim., 2020.

E. Soria, F. Schiano, and D. Floreano, “Predictive Control of Aerial
Swarms in Cluttered Environments,” Nat. Mach. Intell., 2021.

M. Kamel, J. Alonso-Mora, R. Siegwart, and J. Nieto, “Robust collision
avoidance for multiple micro aerial vehicles using nonlinear model
predictive control,” in IEEE Int. Conf. Intel. Rob. Sys. (IROS), 2017,
pp- 236-243.

C. E. Luis, M. Vukosavljev, and A. P. Schoellig, “Online Trajectory
Generation With Distributed Model Predictive Control for Multi-Robot
Motion Planning,” IEEE Robot. Autom. Lett. (RA-L), vol. 5, no. 2, pp.
604-611, 2020.

H. Cheng, Q. Zhu, Z. Liu, T. Xu, and L. Lin, “Decentralized navigation
of multiple agents based on ORCA and model predictive control,” in
IEEE Int. Conf. Intel. Rob. Sys. (IROS), 2017, pp. 3446-3451.

D. Zhou, Z. Wang, S. Bandyopadhyay, and M. Schwager, “Fast, On-
line Collision Avoidance for Dynamic Vehicles Using Buffered Voronoi
Cells,” IEEE Robot. Autom. Lett. (RA-L), vol. 2, no. 2, pp. 1047-1054,
2017.

B. Senbaglar, W. Honig, and N. Ayanian, “Robust Trajectory Execution
for Multi-robot Teams Using Distributed Real-time Replanning,” in
Distr. Auton. Rob. Sys. Springer International, 2019, pp. 167-181.

V. Kungurtsev and M. Diehl, “Sequential quadratic programming meth-
ods for parametric nonlinear optimization,” Computational Optimization
and Applications, vol. 59, no. 3, pp. 475-509, 2014.

M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Gi-
ardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, and
V. Zdravkovic, “Interaction ruling animal collective behavior depends
on topological rather than metric distance: Evidence from a field study,”
Proc. Natl. Acad. Sci. USA (PNAS), vol. 105, no. 4, pp. 1232-1237,
2008.

R. Van Parys and G. Pipeleers, “Online distributed motion planning for
multi-vehicle systems,” in 2016 European Control Conference (ECC).
IEEE, 2016, pp. 1580-1585.

L. Hei, J. Nocedal, and R. A. Waltz, “A numerical study of active-set and
interior-point methods for bound constrained optimization,” in Modeling,
Simulation and Optimization of Complex Processes. Springer Berlin
Heidelberg, 2008, pp. 273-292.

B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP:
an operator splitting solver for quadratic programs,” Mathematical
Programming Computation, vol. 12, no. 4, pp. 637-672, 2020.

J. A. Preiss, W. Honig, G. S. Sukhatme, and N. Ayanian, “Crazyswarm:
A large nano-quadcopter swarm,” in IEEE Int. Conf. Rob. Autom.
(ICRA), 2017, pp. 3299-3304.

X. Zhou, J. Zhu, H. Zhou, C. Xu, and F. Gao, “EGO-Swarm: A Fully
Autonomous and Decentralized Quadrotor Swarm System in Cluttered
Environments,” arXiv, 2020.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

