
 
 

 

 
Atmosphere 2021, 12, 1319. https://doi.org/10.3390/atmos12101319 www.mdpi.com/journal/atmosphere 

Article 

On the Apparent Non-Uniqueness of the Electromagnetic Field 
Components of Return Strokes Revisited 
Vernon Cooray 1, Gerald Cooray 2, Marcos Rubinstein 3 and Farhad Rachidi 4,* 

1 Department of Electrical Engineering, Uppsala University, 752 37 Uppsala, Sweden;  
vernon.cooray@angstrom.uu.se 

2 Great Ormond Street Hospital (GOSH), Great Ormond Street, London WC1N 3JH, UK; gerald.cooray@ki.se 
3 Institute for Information and Communication Technologies, University of Applied Sciences and Arts West-

ern Switzerland, 1401 Yverdon-les-Bains, Switzerland; marcos.rubinstein@heig-vd.ch 
4 Electromagnetic Compatibility Laboratory, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, 

Switzerland 
* Correspondence: farhad.rachidi@epfl.ch 

Abstract: Recent research work shows that there are four procedures that can be used to calculate 
the electromagnetic fields from a current source. These different procedures, even though produc-
ing the same total field, give rise to field components that differ from one procedure to another. This 
has led to the understanding that the various field terms that constitute the total field cannot be 
uniquely determined. In this paper, it is shown that all four field expressions can be reduced to a 
single field expression, and the various field terms arising from acceleration, uniformly moving, 
and stationary charges can be uniquely determined. The differences in the field terms arising from 
different techniques are caused by the different ways of summing up the contribution to the total 
electric field coming from the accelerating, moving, and stationary charges. 
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1. Introduction 
The students of electromagnetic theory are introduced, as a standard, to electromag-

netic fields generated by an electric dipole when they are taught about the electromagnetic 
radiation [1]. It is shown that the dipole electric fields can be separated into electrostatic, 
induction, and radiation terms, even though one cannot assign any clear physical signifi-
cance to these field terms except for the radiation. An interesting question that one can 
raise in this context is the following: Are these field components non-unique, or is there 
another way to express the total fields so that the physical processes that give rise to the 
dipole fields become apparent? A similar problem exists in the case of calculating the elec-
tromagnetic fields of more complex sources, for example, the return strokes in lightning 
flashes. 

In lightning research, return stroke models are utilized to estimate the electromag-
netic fields at different distances generated by return strokes. These return stroke models 
specify the spatial and temporal variation of the charge and current associated with the 
return stroke. Once this information is specified, it is possible to calculate the electromag-
netic fields using Maxwell’s equations (e.g., [2–7]). However, once the spatial–temporal 
distributions of the return stroke charge and current are specified, there are several ways 
that the Maxwell’s equations can be utilized in calculating the electromagnetic fields. At 
present, there are four methods developed in the literature to evaluate the electromagnetic 
fields once the spatial and temporal distribution of the current are given [8,9]. These are 
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known as the dipole (Lorentz) technique, the continuity equation technique, and two ver-
sions of the procedures based on moving and accelerating charges. All these techniques 
give rise to the same total field, but the various components that constitute that total field 
are apparently different in each technique. On the other hand, the processes that generate 
different field components in an electromagnetic field are clearly specified in classical elec-
trodynamics. For example, the electric and magnetic fields generated by any time-varying 
spatial distribution of currents and charges can be separated into two parts [1]: the radia-
tion fields and the Coulomb fields. The radiation fields are generated by accelerating 
charges, and the Coulomb fields are generated by stationary and uniformly moving 
charges. In the case of uniformly moving charges, the Coulomb field has to be modified 
to take into account the charge movement, and these modified Coulomb fields are known 
as velocity fields. Given these clear specifications as to the cause of electromagnetic fields, 
it is interesting to investigate why the various field components associated with the total 
fields differ from each other in different techniques, whereas the physical processes that 
generate the electromagnetic fields are the same irrespective of which technique is used 
in extracting the electromagnetic field. For this reason, we have decided to take a closer 
look at this problem, and the results of this investigation are presented here. Even though 
the presented derivations and the associated discussion concern the specific case of light-
ning-generated fields, the results of the paper can be extended to any type of source. 

2. Electric Fields Evaluated Using Standard Techniques 
In this section, we will review the various expressions for the electric fields from a 

vertical lightning channel obtained using standard techniques. We will concentrate only 
on the electric fields, but the conclusions to be made in this study are also valid for the 
magnetic fields. 

Thottappillil et al. [7] described two independent approaches to calculate the electro-
magnetic fields from a lightning channel. They also described two other procedures, but 
the resulting field expressions obtained using these two other procedures can be shown 
to be analytically equivalent to the two former procedures. For this reason, those field 
expressions are not considered in the current study. 

Here, we consider a return stroke located over a perfectly conducting ground plane. 
The effect of the ground plane on the electromagnetic fields is taken into account using 
the concept of images. The geometry relevant to the field expressions to be introduced is 
given in Figure 1. The return stroke channel is assumed to be straight and vertical. The 
spatial and temporal distribution of the current flowing along the return stroke channel is 
specified as follows: the current flowing at a point located at a height z along the channel 
is given by i(z,t). The point P, located over the perfectly conducting ground, is the refer-
ence point where the field expressions for the electromagnetic fields are given. The z-axis 
is directed out of the ground plane, and the electric fields directed along the z-axis are 
considered positive. The speed of propagation of the return stroke front at height z is de-
noted by zu which, in general, is a function of z. 
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Figure 1. Geometry relevant to the calculation of electromagnetic fields from a return stroke. 

2.1. Lorentz Condition or Dipole Procedure 
As outlined in [8], this method involves the following steps in deriving the expression 

for the electric field: 
(i) The specification of the current density J of the source. 
(ii) The use of J to find the vector potential A. 
(iii) The use of A and the Lorentz condition to find the scalar potential φ. 
(iv) The computation of the electric field E using A and φ. 

In this technique, the source is described only in terms of the current density, and the 
fields are described in terms of the current. The final expression for the electric field at 
point P based on this technique is given by 
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The three terms in (1) are the well-known static, induction, and radiation compo-
nents. In the above equation, /t t r c′ = − , /r cτ τ′ = − ,  bt  is the time at which the return 
stroke front reaches the height z as observed from the point of observation P, L is the 
length of the return stroke that contributes to the electric field at the point of observation 
at time t, c is the speed of light in free space, and 0ε is the permittivity of free space. Ob-
serve that L is a variable that depends on time and on the observation point. The other 
parameters are defined in Figure 1. 

2.2. Continuity Equation Procedure 
This method involves the following steps as outlined in [8]: 

(i) The specification of the current density J (or charge density ρ of the source). 
(ii) The use of J (or ρ) to find ρ (or J) using the continuity equation. 
(iii) The use of J to find A and ρ to find φ. 
(iv) The computation of the electric field E using A and φ. 

The expression for the electric field resulting from this technique is the following. 
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3. Electric Field Expressions Obtained Using the Concept of Accelerating Charges 
Recently, Cooray and Cooray [9] introduced a new technique to evaluate the electro-

magnetic fields generated by time-varying charge and current distributions. The proce-
dure is based on the field equations pertinent to moving and accelerating charges. Ac-
cording to this procedure, the electromagnetic fields generated by time-varying current 
distributions can be separated into static fields, velocity fields, and radiation fields. In that 
study, the method was used to evaluate the electromagnetic fields of return strokes and 
current pulses propagating along conductors during lightning strikes. In [10], the method 
was utilized to evaluate the dipole fields and the procedure was extended in [11] to study 
the electromagnetic radiation generated by a system of conductors oriented arbitrarily in 
space. In [12], the method was applied to separate the electromagnetic fields of lightning 
return strokes according to the physical processes that give rise to the various field terms. 
In a study published recently, the method was generalized to evaluate the electromagnetic 
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fields from any time-varying current and charge distribution located arbitrarily in space 
[13]. These studies led to the understanding that there are two different ways to write the 
field expressions associated with any given time-varying current distribution. The two 
procedures are named as i) the current discontinuity at the boundary procedure or dis-
continuously moving charge procedure and ii) the current continuity at the boundary pro-
cedure or continuously moving charge procedure [13]. The field expressions resulting 
from these two procedures are given in the next two subsections. 

3.1. Current Discontinuity at the Boundary or Discontinuously Moving Charge Procedure 
Assume, as before, that the return stroke channel is straight and vertical. The vertical 

direction coincides with the z-axis. Consider a channel element dz located at height z from 
ground level. One can visualize the current propagation in this element as follows: The 
current is initiated at the bottom of the element and, after propagating along the element, 
it is terminated at the other end of the element. The current and the return stroke speed 
remain the same as it propagates along the channel element. The changes in the current 
or speed as a function of height are taken into account at the boundary of the adjacent 
elements. That is, the current that is being terminated in one element and the speed of 
propagation along that element are slightly different to the current and the speed that are 
being initiated in the adjacent element located above. In other words, the change in the 
current and speed is visualized to take place at the boundaries of the channel elements. 
By making the size of the elements infinitesimal, it is possible to take into account the 
continuous variation of current and speed along the channel. This procedure is depicted 
in Figure 2I. With this picture, one can write down the field terms resulting from the cur-
rent initiation and termination. By treating the whole channel as a sum of small current 
elements, the total field can be obtained by integrating the field terms corresponding to 
the current elements along the channel. The resulting field equations were derived by 
Cooray and Cooray [12], and the resulting electric field separated into radiation, velocity 
and static terms is given by 
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In the field expressions, the first term (Equation (3a)) is the radiation field coming 

from accelerating charges, the second term (Equation (3b)) is the velocity field, and the 
third term (Equation (3c)) is the field term resulting from stationary charges. 
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Figure 2. The difference between the two procedures to evaluate the electromagnetic fields using 
the field expressions for accelerating and moving charges. Each subfigure shows two adjacent chan-
nel elements. In procedure (I), called the current discontinuity at the boundary procedure or the 
discontinuously moving charge procedure, the changes of current and velocity take place at the 
boundary of the two elements, while they remain constant within each volume. In this procedure, 
charges are accumulated at the boundary of the two elements if the current changes in space. In 
procedure (II), which is called the current continuity at the boundary procedure or the continuously 
moving charge procedure, the current and velocity change as they pass through the element but 
remain continuous at the boundary. Thus, no charges are accumulated at the boundary. Adapted 
from [13]. 

3.2. Current Continuity at the Boundary or Continuously Moving Charge Procedure 
Consider again the channel element dz. In this procedure, the current crossing the 

boundary of the element is continuous, and changes in the current take place inside the 
channel element. This procedure is depicted in Figure 2(II). If the source is such that there 
is a current discontinuity at a boundary (i.e., at the point of initiation of a return stroke or 
at the end of the channel), then it has to be treated separately. If the current and the speed 
do not vary with height, then there is no charge accumulation or charge acceleration tak-
ing place inside this channel element. On the other hand, if the current and the speed vary 
within the element, then the charge accumulation and acceleration or deceleration take 
place inside the volume. Accordingly, this element will contribute to the static, the veloc-
ity, and the radiation field terms. The expression for the electric field of the return stroke 
based on this procedure and separated again into radiation, velocity, and static terms is 
given by 
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Note that in this procedure, the current across the boundary of each element is con-

tinuous, with the possible exceptions, as mentioned earlier, of the lower boundary of the 



Atmosphere 2021, 12, 1319 6 of 15 
 

 

channel element at the ground and the upper boundary of the last channel element. This 
discontinuity in the current has to be taken into account separately in the derivation, and 
it will give rise to an additional radiation term. The last term in Equation (4a) is the radi-
ation field resulting from any discontinuity at ground level (this term is also referred to 
as the turn-on term [14]. A discontinuity at the top of the return stroke channel would 
result in a similar expression). In this expression, (0)zu  is the return stroke speed at 
ground level and d is the horizontal distance from the strike point to the point of observa-
tion. 

Observe that even though the field terms were separated purely based on the physi-
cal processes that gives rise to them, the radiation, velocity, and static terms given above 
appear different to the corresponding field expressions obtained using the discontinu-
ously moving charge procedure. 

4. Electromagnetic Field Expressions Corresponding to the Transmission Line Model 
of Return Strokes 

In the analysis to follow, we will discuss the similarities and differences of the differ-
ent techniques described in the previous section by adopting a simple model for lightning 
return stroke, namely the transmission line model [15]. The equations pertaining to the 
different considered techniques presented in Section 3 will be particularized for the trans-
mission line model. 

In the transmission line model, the return stroke current travels upwards with con-
stant speed and without attenuation. This model selection will not compromise the gen-
erality of the results to be obtained because, as we will show later, any given spatial and 
temporal current distribution can be described as a sum of current pulses moving with 
constant speed without attenuation and whose origins are distributed in space and time. 
Let us now particularize the general field expressions given earlier to the case of the trans-
mission line model. In the transmission line model, the spatial and temporal distribution 
of the return stroke is given by 
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In the above equation, i(0,t) (for brevity, we write this as i(t) in the rest of the paper) 

is the current at the channel base and v is the constant speed of propagation of the current 
pulse. One can simplify the field expressions obtained in the continuity equation method 
and in the continuously moving charge method by substituting the above expression for 
the current in the field equations. The resulting field equations are given below. However, 
observe, as we will show later, that the field expressions corresponding to the Lorentz 
condition method or the discontinuously moving charge method remain the same under 
the transmission line model approximation. 

4.1. Dipole Procedure (Lorentz Condition) 
The expression for the electric field obtained using the dipole procedure in the case 

of the transmission line model is given by Equation (1) except that i(z,t) should be replaced 
by i(t−z/v). The resulting equation with / /t t z v r c′ = − −  is:  

2

3
0 0

1 2 3sin( ) ( )
2

b

L t

z
t

E t i d dz
r

θ τ τ
πε

− ′=  
2

2
0 0

1 2 3sin ( )
2

L

i t dz
cR

θ
πε

− ′+ 
2

2
0 0

1 sin ( )
2

L i t dz
tc R

θ
πε

′∂−
∂  (6) 

 
 

4.2. Continuity Equation Procedure 
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In the case of the transmission line model [8,16] ( , ) (0, / ) /z t i t z v vρ ′ ′= − . Substituting 
this in the field expression (2) and using straightforward trigonometric manipulations, we 
obtain 
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Note that all the field terms are now given in terms of the channel-base current. 

4.3. Discontinuously Moving Charge Procedure 
In the case of the transmission line model, the field equations pertinent to this proce-

dure can be written as follows. 
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4.4. Continuously Moving Charge Procedure 
In the case of the transmission line model, it is a simple matter to show that the field 

expressions reduce to 
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, 0z stat =E   (9c) 

Note that in the case of the transmission line model, the static term and the first three 
terms of the radiation field reduce to zero. 

5. Discussion 
Based on the Lorentz method, the continuity equation method, the discontinuously 

moving charge method, and the continuously moving charge method, we have four ex-
pressions for the electric field generated by return strokes. These are the four independent 
methods of obtaining electromagnetic fields from the return stroke available in the litera-
ture. These expressions are given by Equations (1)–(4a–c) for the general case and Equa-
tions (6)–(9a–c), respectively, for a return stroke represented by the transmission line 
model. Even though the field expressions obtained by these different procedures appear 
different from each other, it is possible to show that they can be transformed into each 
other, demonstrating that the apparent non-uniqueness of the field components is due to 
the different ways of summing up the contributions to the total field arising from the ac-
celerating, moving, and stationary charges. 

First consider the field expression obtained using the discontinuously moving charge 
procedure. The expression for the total electric field is given by Equation (8a–c). In this 
expression, the electric fields generated by accelerating charges, uniformly moving 
charges, and stationary charges are given separately as Equations (8a)–(8c), respectively. 
This equation has been derived and studied in detail in [10,12], and it is shown that Equa-
tion (8a–c) is analytically identical to Equation (6) derived using the Lorentz condition or 
the dipole procedure. Actually, this was proved to be the case for any general current 
distribution (i.e., for the field expressions given by Equations (1) and (3a–c)) in these pub-
lications. However, when converting Equation (8a–c) into (6) (or (3a–c) into (1)), the terms 
corresponding to different underlying physical processes have to be combined with each 
other, and the one-to-one correspondence between the electric field terms and the physical 
processes is lost. Moreover, observe also that the speed of propagation of the current ap-
pears only in the integration limits in Equation (1) (or (6)), as opposed to Equation (8a–c) 
(or (3a–c)), in which the speed appears also directly in the integrand. 

Let us now consider the field expressions obtained using the continuity equation pro-
cedure. The field expression is given by Equation (7). It is possible to show that this equa-
tion is analytically equivalent to the field expression given by Equation (9a–c). This deri-
vation is given in Appendix A. 

The results discussed above show that the four field expressions given in the previ-
ous section can be reduced to two field expressions given either by Equations (6) and (7) 
or (8) and (9). In the latter set, the total field is separated into the field terms generated by 
accelerating charges, moving charges, and stationary charges while, in the former set, i.e., 
Equations (6) and (7), this connection is lost. Now, let us consider Equations (8a–c) and 
(9a–c). Both these equations are derived by analyzing the electromagnetic fields generated 
by accelerating and uniformly moving charges. Since the same charge and current distri-
bution is assumed in both cases, one might wonder why the field equations contain dif-
ferent expressions for the radiation, velocity, and the static terms in the two procedures. 
Indeed, one would expect the same expressions for the different field components ob-
tained using the continuously moving and discontinuously moving charge procedures. 
Actually, as shown in Appendix B, despite the apparent differences, Equations (8a)–(8c) 
are identical to Equations (9a)–(9c). 

The results presented above show that the field terms arising from accelerating 
charges, uniformly moving charges, and static charges pertinent to a given charge and 
current configuration can be uniquely identified. Once these field components are given, 
either directly or indirectly, there are many different ways to sum up these contributions 
and this gives rise to various techniques of electromagnetic field calculations. During this 



Atmosphere 2021, 12, 1319 9 of 15 
 

 

summing up procedure, the one-to-one relationship between the physical processes that 
give rise to the different field components is lost. Thus, different ways of summing up the 
contributions produce different field components giving rise to the notion of non-unique-
ness of the field components arising from different techniques. In this paper, we have 
shown that the field components resulting from different techniques can be converted to 
each other, illustrating that it is the same field components but presented in a different 
way by combining various terms together. For example, in the dipole fields, the various 
field terms are combined according to the way in which the field strength is decreasing 
with distance. In the process, radiation, velocity, and static fields are combined with each 
other, and the resulting field equations do not have any resemblance to the original field 
terms used in the construction. A typical example for this is that of Equations (6) and (8a–
c). 

It is important to point out that our discussion is based on the results obtained for the 
transmission line model, which is a rather simple description of the spatial and temporal 
distribution of the return stroke current. However, any arbitrary charge and current dis-
tribution can be described as a collection of current pulses behaving exactly as in the trans-
mission line model but displaced both spatially and in time. In order to illustrate this, 
consider the case in which a current pulse is moving upwards with constant speed, and it 
is terminated at height z. The same scenario can be obtained by assuming that when the 
current pulse reaches that point, an identical current pulse of opposite polarity will start 
at height z and move upwards with the same speed. Thus, we will have two current pulses 
moving upwards with constant speed, but the total current remains zero above the height 
z. The same technique will work if the speed of the current pulse is changed at height z. 
In this case, we have to initiate two current pulses at height z: one moving upwards with 
the reduced speed and the other moving upwards with the initial speed but with opposite 
polarity. This shows that any arbitrary spatial and temporal variation of the return stroke 
current can be described as a sum of transmission line-type currents having different 
speeds, polarity, and current amplitude initiated at different locations and at different 
times. This makes it possible to extend the results obtained here to any arbitrary current 
and charge distributions. 

6. Conclusions 
In the literature, there are four techniques to calculate the electromagnetic fields from 

lightning. These four techniques result in four expressions for the electromagnetic fields. 
We have shown that the field components extracted using these four techniques can be 
reduced to one single field expression with the total field separated into field terms arising 
from accelerating charges, uniformly moving charges, and stationary charges. We con-
clude that the non-uniqueness of the different field terms arising from different techniques 
is only an apparent feature. 

As long as the use of the different techniques for the field calculation is concerned, 
one can adopt the one that suits best the considered application (in terms of ease of appli-
cation, computation time considerations, etc.), since all of them provide the same results 
for the total electromagnetic fields. On the other hand, if the objective is to provide insight 
into the underlying physical processes, the accelerating, uniformly moving, and station-
ary charge field components are recommended. Indeed, these components are directly 
related to the physical processes generating the field, and therefore, they are uniquely 
defined in a given reference frame. 
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Appendix A. Similarity of Field Expressions Given by Equations (7) and (9a–c) 
The aim of this appendix is to show analytically the equivalence between the field 

equations pertinent to the transmission line model derived using the continuity equation 
and the field equations derived using the continuously moving charge procedure. Let us 
start with the field equations pertinent to the continuity equation procedure. These are 
given by Equation (7) as 

 

3
0 0

1 ( )( )
2

L

z
z i tE t dz
vrπε
′

= −  2
0 0

1 ( )
2

L z i t dz
tcr vπε
′∂−

∂ 2
0 0

1 1 ( )
2

L i t dz
tc rπε
′∂−

∂  (A1) 

with 
2 2

/ z dt t z v
c
+′ = − − . 

 
Let us combine the last two terms of the above equation to obtain  
 

3
0 0

1 ( )( )
2

L

z
z i tE t dz
vrπε
′

= −  2 2 2 2 2 1/ 2
0 0

1 1 ( )
2 ( ) ( )

L z i t dz
tcv z d c z dπε
′  ∂− +  ∂+ + 

   (A2) 

 

Now, considering 
2 2

/ z dt t z v
c
+′ = − −  we find that 

 

2 2

1t z
z v c z d

 ′∂  = − − ∂  + 
 (A3) 

 
Let us rewrite the expression for the electric field as follows 
 

3
0 0

1 ( )( )
2

L

z
z i tE t dz
vrπε
′

= −  2 2 2 2 2 1/ 2
0 0

1 1 ( )
2 ( ) ( )

L z i t dz
tcv z d c z dπε
′  ∂− +  ∂+ + 

   

 

2 2 2 2 2 1/2

0 0

2 2

1
( ) ( )1 ( )

2 1

L
z

cv z d c z d
i t dz

z z
v c z d

πε

  +  + +∂   ′−  ∂   − −  +  

  

2 2 2 2 2 1/2

0 0

2 2

1
( ) ( )1 ( )

2 1

L
z

cv z d c z d
i t dz

z z
v c z d

πε

  +  + +∂   ′+  ∂   − −  +  

     (A4) 

  
Note that we have added and subtracted the same term from the equation. Recalling 

that /L vt rv c= − , we can solve the integration resulting in 
 

2 2 2 2 2 1/2

0 0

2 2

1
( ) ( )1 ( )

2 1

L
z

cv z d c z d
i t dz

z z
v c z d

πε

  +  + +∂   ′−  ∂   − −  +  

 2
0

1 ( / )
2

vi t d c
cπε

= − −          (A5) 

 
Thus, the expression for the electric field can be written as 
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3
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1 ( )( )
2
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z
z i tE t dz
vrπε
′

= −  2 2 2 2 2 1/ 2
0 0

1 1 ( )
2 ( ) ( )

L z i t
tcv z d c z dπε
′  ∂− +  ∂+ + 

  

      
2 2 2 2 2 1/2

0 0

2 2

1
( ) ( )1 ( )

2 1

L
z

cv z d c z d
i t dz

z z
v c z d

πε

  +  + +∂   ′+  ∂   − −  +  

 2
0

1 ( / )
2

vi t d c
cπε

− −    (A6) 

 
The next step is to expand the third term into the resulting components. Let Λ    

represents the third term in the above expression for the field. This can be written as 

2 2 2 2 2 1/ 2

0 0

2 2

1
( ) ( )1 ( )

2 1

L
z

cv z d c z di t dz
z z

v c z d

πε

  +  ′ + +∂  Λ =  ∂   − −  +  

    

                        
2 2 2 2 2 1/ 2

0 0

2 2

1
( ) ( )1 ( )

2 1

L
z

cv z d c z d
i t dz

z z
v c z d

πε

  +  + +∂  ′+  ∂   − −  +  

  (A7) 

 
Using the relationship  
 

2 2

1t z
z v c z d

′∂ = − −
∂ +

   (A8) 

 
One can write 
 

2 2 2 2 2 1/2
0 0

1 ( ) 1
2 ( ) ( )

L i t z dz
t cv z d c z dπε

 ′  ∂ Λ = +  ′∂ + +   
  

    
2 2 2 2 2 1/ 2

0 0

2 2

1
( ) ( )1 ( )

2 1

L
z

cv z d c z d
i t dz

z z
v c z d

πε

  +  + +∂  ′+  ∂   − −  +  

  (A9) 

Substituting this into the expression for the field, we obtain 
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1 ( )( )
2

L

z
z i tE t dz
vrπε
′
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2 2 2 2 2 1/ 2

0 0

2 2

1
( ) ( )1 ( )

2 1
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2

0

1 ( / )
2

vi t d c
cπε
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In order to limit the number of expressions to be written, let us write the above equa-

tion as 
 

1
0 0

1( )
2

L

zE t F dz
πε

= −  2
0 0

1
2

L

F dz
πε

+  2
0

1 ( / )
2

vi t d c
cπε

− −   (A11) 
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In the above equation, 1 2

cos( )F i t
vr

θ′= and the function 2F  is given by 
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2
2 2
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vF i t
cvr crv
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θ θ
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( )
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2
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 − 
 

 

( )2
2
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θ
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′
− −

 − 
 

2

( )cos
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i t v
vvr
c

θ

θ

′
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 − 
 

  (A12) 

 
Now, multiplying up and down of the second and the fourth term given above by 

(1 cos / )v cθ− , multiplying 1F   up and down by 2(1 cos / )v cθ− and combining the terms, 
we obtain 

 
2

1 2 2 2
2

1 1( ) (1 ) (cos )
1 cos

v vF F i t
v cc vr

c

θ
θ

′− + = − −
 − 
 

  (A13) 

So, the expression for the electric field reduces to  

2

2 2
0 0 2

( / / ) cos
1( ) 1

2
1 cos

L

z

vi t z v r c
v cE t dz

v c vr
c

θ

πε
θ

 − − −    = − 
   − 
 

 2
0

1 ( / )
2

vi t d c
cπε

− −       (A14) 

 
This expression for the field is identical to the expression derived using the continu-

ously moving charge method. 

Appendix B. Similarity of the Field Expressions Given by Equations (8a–c) and (9a–c) 
In order to prove that the field terms in Equations (8a–c) and (9a–c) are identical to 

each other, it is necessary to go back to the original derivation of Equation (8a–c). First of 
all, observe that the velocity terms are the same in both equations, and we only have to 
prove the identity of the radiation and static fields. Of course, there may be a straightfor-
ward way to show that the field terms are identical, but we were unable to find that 
shortcut. Equation (8a–c) was derived by evaluating the electric field produced by a chan-
nel element using the charge acceleration equations and then summing the contribution 
from all the channel elements. Let us now follow the steps necessary in this derivation. 

Appendix B.1. Electromagnetic Fields Generated by a Channel Element 
Divide the channel into a large number of small elements of length dz. Consider the 

channel element located at height z along the channel. An expanded view of this channel 
element together with the geometry necessary for the mathematical derivation is depicted 
in Figure A1. Then, the first step is to estimate the electromagnetic fields generated by the 
said channel element. We consider the transmission line model of the return stroke and, 
hence, we represent the current flowing along the channel element by ( / )i t z v− . In writ-
ing down the equations corresponding to the field components, we treat the current flow 
along the element in such a way that it is initiated at the bottom of the channel element 
and is absorbed at the upper end. Thus, the current that appears at the bottom of the chan-
nel element at any time t will appear at the top of the channel element after a time delay 
given by the ratio of the length and the speed, dz/v.  

The electromagnetic fields generated by the channel element can be divided into dif-
ferent components as follows: (a) the electric and magnetic radiation fields generated at 
the initiation and termination of the current at the end points of the channel element due 
to charge acceleration and deceleration, respectively; (b) the electric and magnetic velocity 
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fields generated by the movement of charges along the channel element; (c) the static field 
generated by the accumulation of charges at the two ends of the channel element. Let us 
consider these different field components separately. In writing down these field compo-
nents, we will depend heavily on the results published previously by Cooray and Cooray 
[10,12]. 

 
Figure A1. Geometry, angles and unit vectors pertinent to the evaluation of electromagnetic fields 
generated by a channel element. The unit vector in the direction of the positive z-axis is denoted by 

za . The unit vectors in the radial directions r , 1r , and 2r   are denoted by ra ,
1r

a ,and
2r

a respec-

tively. The unit vectors θa ,
1θa and

2θa are defined as ( )r r z× ×a a a ,
1 1

( )r r z× ×a a a and

2 2
( )r r z× ×a a a , respectively. Note that the point P can be located anywhere in space. 

Appendix B.1.1. Radiation Field Generated by the Charge Acceleration and Deceleration 
at the Ends of the Channel Element 

The electric radiation field generated by the initiation of the current at the bottom of 
the channel element and by the termination of that current at the top of the channel ele-
ment is given by 

 

1 2

1 1 2 2
2

1 2
1 2

( / / ) sin ( / / / ) sin
cos cos4 1 1

rad
o

i t z v r c i t z v dz v r cvd
v vc r r
c c

θ θ
θ θ

θ θπε

 
 − − − − − = − 

    − −        

e a a           (A15
)

Appendix B.1.2. Electrostatic Field Generated by the Accumulation of Charge at A and B 
As the positive current leaves point A, negative charge accumulates at A, and when 

the current is terminated at B, positive charge is accumulated there. The static Coulomb 
field produced by these stationary charges is given by 

1 1

2

1 2
/ / / / /

2 2
1 2

( / / ) ( / / / )
( )( )
4

t t

z v r c z v dz v r c
stat

o

i z v r c d i z v dz v r c d
i zd t

r r

τ τ τ τ

πε
− − −

 
− − − − − 

 = − − 
 
  

 
1r re a a       

        

(A16
)

Appendix B.2. Electromagnetic Fields Generated by the Lightning Channel 
The radiation and static terms in Equation (8a–c) follow directly from the above two 

equations A15 and A16 once the equations are reduced for the condition that dz is infini-
tesimal and summing up the contribution from all the channel elements by performing 
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the integration along the channel. However, let us keep the above equations in the current 
form and replace the integration along the channel by a summation. Let us consider the 
radiation field. When we take the summation starting from the first element located at the 
bottom of the channel, one can see directly that the radiation coming from the top of the 
first element will be cancelled off with the radiation coming from the bottom of the second 
element, the radiation coming from the top of the second element will be cancelled off 
with the radiation coming from the bottom of the third element, etc. As a result, at any 
point in space, only the radiation term coming from the bottom of the first element will 
survive during the summation. Thus, the radiation field at the surface of a perfectly con-
ducting ground is given by 

2

( / / )
2rad

o

v i t z v d c
dcπε

− −= − ze a . (A17
)

Observe that in the above case, 1r D→ , sin 1θ → and zθ → −a a . This is identical to the 
radiation field in Equation (9a–c). Now, let us consider the static term. As in the radiation 
field, when you take the summation, only the term corresponding to the bottom of the 
first element will survive. However, when we take into account the fact that the lightning 
channel is located above a perfectly conducting ground, this static term will cancel off 
with the corresponding term associated with the image of the element in the perfectly 
conducting ground plane. Thus, the total static field will become equal to zero. That is, 

0stat =e . (A18
)

This analysis shows that all the terms of Equation (8a–c) are identical to the corre-
sponding terms in Equation (9a–c) and that these two equations are identical to each other. 
Just to illustrate this further, we have calculated the electric field at 100 m distance from a 
lightning channel using Equations (8a–c) and (9a–c). The different components and the 
total field obtained from Equations (8a–c) and (9a–c) are depicted in Figure A2. Note that 
as illustrated above, the three field terms are identical in both formulations. 

 
(a) 
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(b) 

Figure A2. Plot of the field components associated with (a) Equation (8a–c) and (b) Equation (9a–c). 
The electric field is calculated at 100 m from the strike point of a lightning return stroke simulated 
by the transmission line model. The current at the channel base is represented by the analytical 
expression given by Nucci et al. [17] to represent subsequent return strokes. The return stroke speed 
used in the calculation is 81.5 10×  m/s. 
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