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Abstract— The increasing penetration of intermittent distributed
energy resources in power networks calls for novel planning and
control methodologies which hinge on detailed knowledge of the
grid. However, reliable information concerning the system topol-
ogy and parameters may be missing or outdated for temporally
varying electric distribution networks. This paper proposes an on-
line learning procedure to estimate the network admittance matrix
capturing topological information and line parameters. We start off
by providing a recursive identification algorithm exploiting phasor
measurements of voltages and currents. With the goal of accelerat-
ing convergence, we subsequently complement our base algorithm
with a design-of-experiment procedure which maximizes the infor-
mation content of data at each step by computing optimal voltage
excitations. Our approach improves on existing techniques, and its
effectiveness is substantiated by numerical studies on a modified
IEEE testbed.

Index Terms— Power distribution, Power grids, Recursive
estimation, Smart grids, System identification

[. INTRODUCTION

Distribution networks serving as an interface between distribution
substation and end-to-end customers are going through substantial
transformations, attributable to an ever increasing deployment of
demand-side technologies and distributed energy resources (DERs).
While offering many advantages, DERs can compromise grid re-
liability due to added intermittency and creation of reverse power
flows. In order to ensure safe and resilient operation of distribution
systems, comprehensive monitoring and efficient control algorithms
are necessary. Nevertheless, any meaningful grid optimization and
monitoring task entails grid identification, that is gaining knowledge
of grid topology and line parameters.

Research tackling the grid identification problem can broadly be
classified into two main branches. On the one hand, works like [1]-[3]
propose learning algorithms which draw on the statistical properties
of nodal measurements to determine the operational structure and line
impedances. This approach has the major advantage of accounting for
buses with no available measurements (hidden nodes) [2] although
restrictive assumptions are required, e.g. hidden nodes must not
be adjacent to each other. Moreover, methods based on second-
order statistics either make assumptions on the covariance of nodal
injections [1] or assume its foreknowledge [2], [3], and apply only
to radial feeders. The latter restriction is dropped in [3], but only
for the purpose of topology estimation. In a realistic setting, these
assumptions might not be satisfied; more so due to the rise of
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distributed generation and smart grids leading to meshed network
structures.

On the other hand, in [4]-[7], network identification has been
cast into the problem of learning the admittance matrix, where the
position of non-zero elements provides topological information, while
the values of these are related to the electrical parameters of the
lines. Contrary to [1]-[3], this approach requires voltage, current, or
power measurements at each bus of the grid. Nevertheless, it can
be applied to both radial and meshed structures. In particular, Lasso
and its variants have been widely adopted to enforce sparsity of the
admittance matrix. In [5], a compressive sensing approach leads to
a Lasso formulation to recover the connections of each bus. In [6],
a probabilistic graphical model motivates the adoption of Lasso to
identify the non-zero elements of the admittance matrix. However,
no constraint on the symmetric structure of the admittance matrix is
incorporated a priori, leading to an over-parameterized solution twice
estimating each edge. As a partial remedy to this problem, estimates
of the same edge are combined a posteriori. While both [5] and [6]
focus on topology, neither considers the estimation of the electrical
parameters of the lines. Finally, in [7], topology and line parameters
are obtained at once owing to learning the admittance matrix using
Adaptive Lasso. In addition, a procedure to cope with collinearity in
measurements is also proposed.

Different from previously-stated works banking on passively
recorded data, an active data collection paradigm is explored in [8]—
[11]. Grid topology and parameter estimation are complemented with
inverter probing in [9], [10]. Both works, besides assuming a resistive
radial network and employing approximate linearized power-flow
equations, lack a comprehensive framework for the optimal design
of probing injections. A systematic procedure for maximizing the
information content of data samples is explored in [11], wherein
active power setpoints for generator nodes are provided by an
online design-of-experiment (DoE) procedure [12]. Nonetheless, the
proposed identification algorithm assumes the availability of line
power flows, and neglects the structural constraints of the admittance
matrix.

All the foregoing works adopt an offline approach, in the sense
that they pivot on a batch of previously collected data to esti-
mate grid topology and/or parameters. Distribution networks, unlike
transmission networks, oftentimes undergo topological changes for
maintenance, load balancing, and fault isolation. Furthermore, fu-
ture distribution systems are envisaged as reconfigurable networks,
wherein certain sections — just like microgrids — connect or disconnect
to improve dispatch of DERs [13]-[15]. In the event of a topology
change (often localised), a batch method shall discard valuable data,
await new samples, and re-run the estimation afresh. On the contrary,
an online, recursive identification methodology, encoding the relevant
information carried by past data samples in its parameters, can
provide new network topology and parameter estimates quickly and
autonomously.

A. Paper Contributions and Organization

This article focuses on AC power distribution networks and
introduces an online learning procedure, entirely based on nodal



measurements, for estimating the admittance matrix, which embeds
detailed information about grid topology and line parameters. The
main novelties of this paper are on two fronts. First, different from
previous works such as [4], [7], we propose an online recursive
identification algorithm to estimate the admittance matrix, capable of
automatically adapting the estimation in case of undetected changes
in topology or faults. When the admittance matrix is symmetric
or/and Laplacian, our algorithm does away with redundant parameters
by means of a transformation matrix. Second, we tap into the
principles of optimal DoE and discuss an approach to compute
suitable generator voltages which, when complemented with the base
recursive algorithm, accelerates the admittance matrix estimation.
Methodological contributions are complemented by a simulation
example demonstrating that our method can outperform existing
schemes.

The remainder of Section [l] introduces relevant preliminaries and
notation. Section [[I] recaps network models and motivates the grid
identification problem. Section |]lI| describes the recursive estimation
algorithm whereas optimal DoE procedure is discussed in Section[[V]
Proposed algorithms are validated via numerical studies in Section[V]
Finally, conclusions are drawn in Section [Z[l

B. Preliminaries and Notation

Sets, vectors, matrices, and random variables: let j = V-1
represent the imaginary unit. For a finite set V, |V| denotes its
cardinality. An (m,n) matrix is one with m rows and n columns.
Given x € C", T is its complex conjugate and [z] the associated
diagonal matrix of order n. Throughout, 1,, and 0y, are n-dimensional
vectors of all ones and zeros, whereas [, and O x., represent
(n,n) identity and (m, n) zero matrices, respectively. The unit vector
ei, 1 =1,...,nis the it" column of I,,. For a matrix A, A' denotes
its transpose, A its Hermitian (complex conjugate) transpose, and
A; its it" column vector. The Kronecker product between matrices
A and B is A ® B. A positive definite matrix A and a positive
semidefinite matrix B verify A > 0 and A > 0, respectively. We let
N (z, A) designate a Gaussian random vector of dimension n, where
x is the mean vector and A the covariance matrix.

Matrix vectorization operators: We indicate by vec(4) =
[A] ---A}]T the mn-dimensional stacked column vector. Further-
more, if A is a square matrix, then the half-vectorization operator
vech(A) provides the n(n + 1)/2-dimensional vector obtained by
eliminating all supradiagonal elements of A from vec(A). Further-
more, ve(A) is the n(n — 1)/2-dimensional vector obtained by
removing diagonal elements of A from — vech(A).

[I. NETWORK MODELING AND PROBLEM FORMULATION

In this section, we review relevant algebraic models for AC power
networks, and detail the grid identification problem.

A. Distribution Network Modelling

An electric distribution network is modeled as an undirected,
weighted, and connected graph G(V,E,W), where the nodes in
V ={1,2,...,n} represent buses, either generating units or loads,
and edges represent power lines, each connecting two distinct buses
and modeled after the standard lumped m—model [16]. To each
edge (i,k) € & we associate a complex weight equal to the line
admittance y;. = g;r + Jbjx € W, where g;;, > 0 is the line
conductance and b;; € R the line susceptance. The network is then
completely represented by the admittance matrix Y € C™*", with
elements Y;, = —y;, for i # k and Y, = E?:L#k Yik + Ys.i»
where y5 ; € C is the shunt element at the it" bus. If the network

GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2021

does not include phase-shifting transformers and power lines are not
compensated by series capacitors, Y is symmetric. In addition, Y is
Laplacian if the shunt elements y, ; are not present [17], [18]: this
happens, for instance, in small- and medium-sized networks, with
line lengths less than 60 km.

Throughout this work, we consider a phase-balanced power net-
work operating in sinusoidal regime. To each bus h € V, we associate
a voltage phasor |v(h)|ej9(h> € C, where [v™)] is the voltage
magnitude and 0") € R the voltage angle, a current injection phasor
|i(h) \ej¢(h) € C, and a complex apparent power sth) = p(h) +jq(h)
with p(h) , q(h) € R. As standard in distribution networks, we assume
the g)oint of common coupling (PCC) to be the slack bus with fixed
|v(0 | = 1 and 6(©) = 0. The remaining buses are classified as
generators S and loads £, such that V = SULU{0}. For notational
simplicity we set |V| = n, |S| = g, and |£| = [, where g,/ > 1. In
active distribution networks, generators are DERs generally interfaced
with inverters equipped with voltage and/or power control [19]. The
current-voltage relation descending directly from Kirchhoff’s and
Ohm’s laws is given by

i=Yw, (O]

where ¢ € C" is the vector of nodal current injections, and v €
C" the vector of nodal voltages [20]. Similarly, one can deduce the
relation between the vectors of nodal complex power injections s and
nodal voltages v as

s = [w](Yv). 2)

B. Identification of AC distribution networks

The identification problem for AC distribution networks, defined
in [4], [7], aims at reconstructing the admittance matrix from a
sequence of voltage and current phasor measurements corresponding
to different steady states of the system. Similar to [4], [7], our work
makes the following assumption.

Assumption 1: The network is fully observable, i.e., voltage and
current measurements are available at each node.

Let ¢ be the number of samples collected up to a certain time instant,
vr € C" and i € C" the vectors of current injections and voltages

for 7 =1,...,t From (I), one can obtain
Iy =YV, (3)
where Vi = [vg,v2,...,0¢] € CH*™, and I = [i1,42,...,0¢] €

CY*™, The admittance matrix Y, encoding both line parameters
and topological information, is typically sparse as each bus is not
connected to all the remaining nodes. Moreover, as explained in
Section Y has other structural properties: for most distribution
networks, which lack phase-shifting transformers and feature short
lines, the following assumption is satisfied.

Assumption 2: The admittance matrix Y is symmetric and Lapla-
cian, that is, Y1,, = Op.
Both the symmetric and Laplacian structures of admittance matrix
greatly reduce the number of entries of Y to be estimated. This
observation is further explored in the subsequent section.

[1l. RECURSIVE ONLINE IDENTIFICATION

In the ideal case of noiseless current and voltage measurements, the
identification of Y reduces to solving the system of linear equations
(B). once enough samples are collected. Unfortunately, ¢PMUs and
other metering devices introduce an error commonly modeled as
white noise [2], [7]. In the following, for sake of simplicity, it is
assumed that the measurement error is distributed as N (On, o21y,),
thus implying that the error at each bus has the same variance. As
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will be clear in the sequel, extensions to different covariance matrices
are immediate.
Upon vectorizing either side of equation (3), one obtains

vec(Iy) = vec(Y'V;) = (VtT ® ]In) vec(Y). @

Regression methods can be used to get a least squares estimate of
vec(Y') — the vector representation of the admittance matrix. Before
diving into the online estimation algorithm for the admittance matrix
Y, we note that vec(Y') comprises n? entries of Y. Being symmetric,
Y has at max n(n+1)/2 non-redundant entries, which further reduce
to n(n—1)/2 under Assumption [2| Redundant entries in vec(Y) can
be eliminated by means of vech(Y') — if Y is symmetric, or ve(Y")
— when Assumption [2] holds. Relevant relations between the matrix
vectorization operators are summarized in the following Lemma.

Lemma 1: Given n, there is a unique (n?,n(n+ 1)/2) matrix D,
called duplication matrix, such that

vec(Y) = Dvech(Y). )

Furthermore, under Assumption [2| there exists a unique (n(n +
1)/2,n(n — 1/2)) matrix T" such that

vech(Y) = T've(Y). (6)
Proof: Existence and uniqueness of D are shown in [21]. The
proof of existence and uniqueness of 1" — as well as formulae to
construct it — can be found in [22, Appendix A]. u
Python and MATLAB codes for constructing D and 7" are available
at [23]. Both 7" and D can be constructed given the number of
nodes in the network n, therefore they must not be estimated from
measurements.
Hereafter, we consider the case where Assumption 2] holds. Using
Lemma [T} we recover the full vectorization of Y as

vec(Y) = Dvech(Y) = DT ve(Y). (7
By combining @) and (7) we get
vee(Iy) = (VtT ® ]In) DT ve(Y). ®)

Introducing the following matrices and vectors

Ay = (UI ® ]In) DT, (9a)
A= (V' @L,) DT, (9b)
bt == vec(It), and (9¢)
z = ve(Y), (9d)
the least squares estimation problem at time ¢ writes as
&t = argmin [|by — Agz||”. (10)
u £

The formulation in (T0) equally weights samples at any time instant,
which can be detrimental for time-varying distribution networks and
smart grids [24]. By introducing a forgetting factor A € (0, 1] [25],
we reformulate the estimation problem as

t
Tt = argménZ)\t_’ l2; — Aiac||2 . (11)

i=1
Given an initial guess of the parameter vector Zo and the matrix
Zy == 02 Cov[ig], estimates of & and Z; := o~ 2 Cov][i¢] can be
obtained by the recursive least squares (RLS) algorithm [25, p. 541]:

Bt = &1 + ZeAY (is — Adip—1)
Zy = (AZ Y + AT A !

(12a)
(12b)

—1
=2 i1 = Zia A (NI + 421 A ) AZy).
(12¢)

From z;, one can derive the estimated admittance matrix Yt =
DTzx¢. As shown in Section the complex elements of the ad-
mittance matrix capture both the conductance and the susceptance of
the lines. In a real scenario, existing information or batch data can
be used to improve the initial guess xg and Zg.

The RLS algorithm with constant or bounded forgetting factor
is known to have notable stability and convergence properties [26],
[27]. For noisy measurements, RLS with constant forgetting factor is
consistent under some excitation conditions only when the forgetting
factor is 1 [26]. Otherwise, RLS has limited memory, preventing it
from achieving consistency, which is generally traded off with the
ability to follow changes in the parameters. In order to establish
a basic degree of competency for the RLS estimator (12), we
consider the case of a static network with noise-free measurements.
In Section |V| we present numerical simulations to show how the
identification method can tolerate noise and can adapt its estimation
to changes in network topology.

Classical works establish that, when data are not affected by noise,
the error on the parameters is bounded, and its projection onto
the subspace for which persistent excitation holds — see [27] for a
definition — converges to zero as the number of samples approaches
infinity. Still, the arguments in [27] consider only real-valued, single-
input-single-output settings. Here, we provide convergence results
pertaining to our case, which involves complex inputs, outputs and
parameters, and a multivariate output at each iteration.

Lemma 2: Consider the RLS algorithm (12). Assume that Y is
constant in time — therefore, x = x, V4% is full-rank and measurement
are not affected by noise. Define the error on the parameters ; :=
&t — . For any & and Zog = Z}! > 0, (i) the norm of the error ||Z¢||
is bounded, and (ii) the projection of Z; on the excitation subspace
converges to zero as t approaches infinity.

Proof: See Appendix [ ]

Remark 1: Recursive least squares assumes that the matrix V; is
full-rank. If not, one can still apply the method to learn part of the
admittance matrix, as shown in [7].

Remark 2: RLS algorithm can also be applied to three-phase
unbalanced networks. As detailed in [7], the variables to be measured
are line-to-ground voltages and current injections for each phase of
the nodes, while the admittance matrix to be estimated shares the
properties described in Section [[]

IV. OPTIMAL DESIGN OF EXPERIMENT

While several learning approaches only capitalize on uncontrolled
inputs and outputs, identification algorithms appropriately probing
controllable DERs can improve the estimation of the admittance
matrix. In this work, each DER is assumed to be equipped with
a voltage controller — necessary for networks with high photovoltaic
integration [19]. Targeting these controllers, we henceforth propose a
modified version of the recursive estimation algorithm (T2)) where, at
each iteration, DER voltages are set according to a D-optimal design
[12], the purpose of which is to maximize the determinant of the
Fisher information matrix of the model parameters. With reference
to the least squares problem @) the Fisher information matrix [12]
at time ¢ is F; = (Cov(z¢))~'. As the measurement noise is a



Gaussian vector N'(0p, 02]In), we have

F=02Z7 =020z + Al'Ay). (13)

We note that A¢ depends on the nodal voltages V;; see (Qa). The
D-optimal design is the result of the optimization problem

vi = argmaxdet(F}). (14)
vt

We observe that o does not influence the optimum and can thus

be neglected. Moreover, upon applying the logarithm to the target

function — a common practice for improving numerical properties

[12, Chap. 10], we get

vy = arg I%in —log det()\Z;l1 + Alt-'At). (15)
t
While formulating the DoE problem, we need to take into account
voltage limits for all nodes, as well as the active and reactive power
dispatched by DERs. Furthermore, the power requirements of loads,
expressed by the power flow equations (2), must be satisfied. By
adding these constraints, we get the optimization problem

(vi,p:) = arg min — log det()\Z;llAlt-'At) (16a)
Vt,Pt

subject to: St = [W](M) (16b)

o <o <ol Viey (16¢)

o) <0 < 6l VieVv  (16d)

pF) < pP < pB) VEeS  (16e)

r(r]fi)n < qt(k) < ¢, vk € S, (16f)

where A; depends on V; as in (9a). It is worth noting that the
computation of Z; ! in does not require the inversion of
Zi—1: from (I2B), one has Z;l = )\Z;ll + AH A, which allows
for a recursive update of Z, . We also note that constraint (T6h)
depends on f/t_l, which is the most recent estimate of the unknown
matrix Y. While this approximation makes it difficult to analyze the
properties of the sequence {ift}fio, numerical experiments described
in Section [V] show that such an approach might be only slightly
suboptimal with respect to using the real admittance matrix Y.

Remark 3: We note that the proposed DoE procedure helps
achieve persistent excitation, which implies the information matrix
of the parameters being full rank at each iteration [27]. Indeed, since
DoE aims at maximizing the determinant of the information matrix,
its objective is in contrast with a loss of rank. Therefore, setting
voltages as per (T6) helps satisfying the hypothesis of Lemma [2}
The DoE formulation (T6) is flexible: one can append more con-
straints to the optimization problem to cope with technical limitations.
For example, the voltage of some DERs may be fixed, or power
limitations for certain lines can be introduced. The solution of
problem (T6) is the vector of all nodal voltages; however, voltage
references are provided only to DERs as loads cannot generally be
controlled.

Remark 4: The DoE problem (I6) outputs both voltage magnitude

and active power for each generating unit. In this work, we assume
that the former is directly used as a control reference, however, the
latter can be equivalently adopted in case of power-controlled DERs.
When excited with the power reference signal, the generating units
cause voltage variations in the network [9], [10]: the resulting current-
voltage data can then be utilized in (I2) for the admittance matrix
estimation.
To summarize, given an initial guess of g and ZO, a value of )\, and
active and reactive power demands for loads, the recursive estimation,
enhanced with DoE, can be described by the following steps repeated
at each time t.
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Fig. 1: Modified IEEE 13-bus feeder. Buses @ and O represent
DERs and loads, respectively.

1) Solve the DoE problem (I6) for the nodal voltages vy, using
the current estimation ;1 and Z;_1.

2) Provide the voltage set-point |v; ’(k)\ to DERs k € S.

3) Collect measurements of current and voltage phasors from each
bus i € V.

4) Update the estimates of Z; and Z; using the RLS algorithm @)

V. NUMERICAL RESULTS
A. Setup

We validate the proposed methods on a modified version of the
IEEE 13-bus feeder. In order to test the proposed algorithms on
a meshed network, we add two lines, one connecting bus 6 with
1, and the other bus 7 with 10; see Fig. [I] As all the lines have
negligible capacitance, the network verifies Assumption 2} Distributed
generation is introduced through the addition of DERs to buses 6 and
10, whereas load profiles are extracted from the public Pecan Street
dataset [28]. Since this dataset does not include reactive power, a
random lagging power factor between 0.85 and 0.95 is considered.
Following the procedure adopted in [7], we connect a random number
of customers between 5 and 15 to each node. The granularity of
the measurement is one minute. We use the AC Power flow solver
MATPOWER to derive nodal current and voltage phasors.

We consider three different online estimation methods: (i) RLS1
solely imposing the symmetric structure of Y by adopting the
parametrization « = vech(Y"); (ii) RLS2 forcing a Laplacian struc-
ture of Y as in (@) and (I2); and (iii) RLS2+DoE where the voltages
of DER buses are set according to the DoE procedure presented
in Section The solution of the DoE problem (I6) is computed
using the BFGS interior-point non-convex solver implemented by the
fmincon MATLAB function.

We consider two scenarios to asses the performance of our method
in providing an accurate estimate of the admittance matrix. Scenario
1 looks at a network whose topology does not change over time,
whereas scenario 2 considers time-varying networks. More specif-
ically, scenario 2 simulates a fault between bus 7 and 10, leading
to tripping of connecting line. In scenario 1, we also compare our
online algorithm with two batch approaches: Ordinary Least Squares
(OLS) and Adaptive Lasso [7]. However, batch algorithms are unable
to reveal network changes and therefore cannot be applied in scenario
2. In this respect, scenario 2 illustrates the main value if the online
method proposed in this paper over existing offline approaches.

In order to assess the identification performance, we use the
error metrics Mp = ||Y — Y|z, Mmax = ||Y — Y|/max and
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Mg, provides a relative measure of the identification error.

In all the experiments, we introduce a Gaussian measurement error
N (0n,021,), o = 107° on both the real and the imaginary part of
the measurements, which approximately corresponds to an accuracy
of 0.1% compatible with real metering devices [9]. The recursive
estimation algorithms are initialized with 20 = 01y,(,_1)/2, 6 =
10~% and Zg = KLy (n—1y/2, K = 10%. The forgetting factor is set
to A =0.8.

B. Results

For scenario 1, Table m shows the comparison with benchmarks
after 100 iterations when the estimates provided by all online al-
gorithms no longer improve. The error metrics can be noticed to
be of the same order of magnitude for all methods; although RLS1
and RLS2 achieve poorer performance than OLS and Lasso. This
is expected as both OLS and Lasso are batch estimators making
simultaneous use of all the collected data, while online methods trade
accuracy for the ability to adapt to changes. We also note RLS2+DoE
outperforms all other methods, except for Lasso. All the methods
are capable of estimating both the real and the imaginary part of the
admittance matrix with comparable accuracy. For instance, the largest
relative error of RLS+DoE on a line conductance is 0.42%, on a line
susceptance is 0.33%.

In both scenarios 1 and 2, RLS2+DoE achieves faster convergence
as well as better accuracy than other iterative methods; see Fig. [2]
The downside is the stress on DER voltages, which are subjected
to frequent changes (Fig. ). Nevertheless, due to constraints in the
formulation of the design problem (I6), both voltage set-points and

TABLE |: Error metrics for scenario 1 after 100 samples

realized voltages, stay within the prescribed voltage interval, which
is [0.95,1.05] p.u, as highlighted in Fig. [3] In both scenarios, Mmax
follows the same trend as M until convergence to a low value, thus
ruling out issues about the estimation of specific elements of Y.

In the context of scenario 2, the error in the estimation of Y7 19
(Fig. @) is worth a few comments. Only online algorithms RLSI,
RLS2 and RLS2+DoE are here applicable, thus batch methods are not
discussed. Note that |Y7 10| = 9.8 up to ¢t = 100, and subsequently
drops to zero as a consequence of the simulated fault. All our
recursive implementations are able to quickly adapt to a change in
topology, thus proving the usefulness of online estimation. After mere
two iterations (¢ = 102), the absolute value of the estimated line
admittance is 2.21 for RLS1, 2.11 for RLS2, and 1.1 for RLS2+DoE.
Moreover, after 7 iterations, the estimation is lower than 1 for all the
online algorithms.

C. Sensitivity to voltage noise

In real applications, measurement noise affects both currents
and voltages. A systematic discussion of this scenario is outside
the scope of this paper, as it would require a radical change in
the modelling approach, as discussed in Section [VIl However, we
assess the deterioration in performance experienced by the proposed
algorithms when a zero-mean Gaussian noise with covariance matrix
o2l is applied to both the real and the imaginary part of voltage
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Fig. 3: DER voltages produced by DoE for the first 50 iterations in
scenario 1.
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Fig. 4: Estimation of element Y7 10 in scenario 2.

measurements. As displayed in Fig. 5] all methods suffer from input
noise; however, RLS2+DoE is less affected than the others, and
achieves an acceptable performance even when the noise on voltages
is of the same order of magnitude as that on currents.

D. Effect of the DoE formulation

As noted in Section [[V] the DoE formulation (&) has to rely
on estimated admittance matrix ?},1, instead of the unknown real
admittance matrix Y. In order to show the effect of such an
approximation on the identification algorithm, we run RLS2+DoE on
scenario 1 by setting ;1 = Y in (T8B). The results in Fig. |§| show
that the procedure based on the real model of the network performs
only marginally better.

VI. CONCLUSIONS

A frequent lack of detailed information such as grid topology
and line parameters motivated the development of this work, which
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Fig. 5: Frobenius norm of estimation error for different levels of
noise on voltage measurements in scenario 1.
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Fig. 6: Comparison between DoE with estimated and actual admit-
tance matrix Y.

presents an online learning procedure for grid identification in AC
networks. In contrast with batch methods for estimating the grid
admittance matrix, our algorithm is online and recursive in nature,
thus capable of adapting to both sudden changes in the network
topology and slow drift in line parameters.

Notwithstanding the applicability of our methods to generic ad-
mittance matrices, we provide a transformation matrix that leverages
the structural properties of symmetric Laplacian matrices. Further-
more, we propose a method based on optimal DoE for improving
convergence of recursive identification algorithms.

Future developments will aim at coming up with novel identifica-
tion techniques for networks where not all nodal electric variables
can be measured. Effort will also be devoted to extending out
identification framework to error-in-variable models, with a view
to properly taking into account all sources of measurement error
[29]. Further work will also explore the utility of grid identification
schemes in the supervisory control of microgrids [14].

APPENDIX |
PROOF OF LEMMA 2

In order to show (i), we start by substituting Z; = &; — = in ([2)
and considering that, in the noise-free case, i = A;x. Then, we get
the recursive formula

N R H, -~

Ty = T4—1 — Z1 Ay AgTy1. (17)
For convenience, we define ¢; := ATy 1 = AsZy_1 — i¢. Next, we
introduce the Lyapunov-like, function W; = :E;'Zt_ 1:Et. Note that
W4 is a real-valued function, as Z; is Hermitian, and so is Z, L By

combining the definition of W; with equations (I7) and (T2b), we
derive

Wi = AWi_1 — el (In — A Z A} ey (18)
It can be shown that I,, — AtZtA!{' > 0; see e.g. Lemma 1 in [26].
Consider now the quantity e (I,, — A; Z; A)e;: it is real and non-
negative because I, — A¢ Z¢ Ay is Hermitian and positive semidefinite.
From (T8), we obtain the inequality

Wt < )\Wt—17 (19)
which one can recursively apply at each ¢ to obtain
Wy < A'W. (20)
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Recalling the definition of Wy and (I2B), we write:

NWo > Wi =@z 1%, Q1)
=z (Azg_ll + A{’At) 4
t
= ;ﬁy (AtZ_l + Z )\t_ZA;-'Ai> Tt
i=1
t
>Mﬁ<%1+2}¢m>h
i=1
Therefore, we conclude that
+§:A* )E: < Wo. (22)
As both Z&l > 0 and Zi:l AEIAZ' > 0, we have:
W75 w8 < Wo (23)
and .
ﬁ(2}¢&>@<wb 24)
i=1
Since &} Zy ' % > mineig(Z; 1) |2 2, equation (23) yields
mineig(ZO_ ) 1E]12 < Wo, (25)

where mineig(X) is the minimal (real) eigenvalue of a Hermitian

In order to show (ii), let G¢ be the square root of 22;:1 A?Ai,
and ige) and i:gu) the projections of Z; onto the subspaces where
persistent excitation holds and does not hold, respectively. Then, (24)
can be written as

12

|G + Gl | < wy (26)
By the reverse triangular inequality, we have:
G G
o H N - [ tmu) ‘ |z < wo™en

BT

We can now apply to the same argument proposed in [27,
Proof of Theorem 1]. Due to part (i) of the proof, the norms of
ige) and igu) are bounded. Moreover, as §:tu is the projection
of Z; onto the subspace where persistent excitation does not hold,
the term (b) of (Z7) is bounded. For the inequality (Z7) to hold,
(a) must also be bounded Yet the lemma in the appendix of
[27] shows that thcge) / x ‘ is unbounded. Therefore, a:( ¢) must
converge to zero for (27) to be verified, proving part (ii). It is worth
noting that the lemma in [27] involves sequences of real positive
semidefinite matrices, but the proof holds without modification for
complex Hermitian positive semidefinite matrices.
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