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Abstract1

Building Performance Simulation (BPS), a2

useful tool to assess the operational perform-3

ance of buildings and systems, can often be4

computationally expensive. The use of BPS is5

cumbersome for problems where the speed of6

response is important, e.g., real-time control,7

uncertainty quantification, parametric explor-8

ation, or stock modelling. Emulators, such as9

those based on regression, offer a faster substi-10

tute, but their reliability can be questionable.11

This paper proposes seven tests to check if an12

emulator is a suitable replacement for simula-13

tion in practice. The tests are categorized us-14

ing four criteria: accuracy, speed, generalisab-15

ility, and ease of use. The tests can be included16

in the process of setting up an emulator-based17

workflow. A use case is provided for emulat-18

ors based on linear and non-linear regression19

(Gaussian Process models). This work aims to20

enable a practitioner to reliably conduct per-21

formance assessment for buildings using emu-22

lators.23

Keywords— non-linear regression, building24

simulation, test suite, regression model25
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1 Introduction 26

Building Performance Simulation (BPS) is a tool 27

to quantify the impact of decisions about a build- 28

ing’s design, specification, or operation on its per- 29

formance, i.e., changes in thermal or visual condi- 30

tions, energy use, or other physical quantities. This 31

is useful when measured data cannot be obtained 32

from a real building and its systems, or when the 33

systems being modelled are too complex for manual 34

calculations. BPS provides estimates of building 35

performance under hypothetical conditions such as 36

a future climate, changes in building operations, or 37

the impact of retrofits. The ensembles of physics- 38

based equations that make up BPS are usually de- 39

terministic: given a set of inputs, simulators will 40

always give the same outputs. These outputs are 41

also precise, i.e., simulators do not typically estim- 42

ate the uncertainty in outputs. A BPS program 43

can often be computationally-expensive and many 44

design exercises require hundreds of runs for each 45

decision, both of which are difficult to implement 46

in practice and slow down decision-making. Im- 47

portant use cases where the simulator’s speed of 48

response is consequential include: 49

• Monte Carlo (MC) sampling for uncertainty or 50

sensitivity quantification – simulating a build- 51

ing or system with several plausible values of 52

an unknown or poorly characterised input like 53

weather, 54

• parametric design exploration – testing the 55

impact of several different variations of the 56
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design or specification of a component like57

window sizes,58

• stock modelling – estimating the performance59

of large groups of buildings, like modelling60

housing archetypes at an urban or national61

scale,62

• early design phase exploration – when several63

consequential decisions must be made while it64

is impractical to set up a full simulation for65

each decision since too many aspects of the66

final building design are unknown.67

To be practical in time-bound decision-making68

workflows, either individual simulations must be69

sped up or computational power increased suffi-70

ciently. While big datasets have been analysed71

with supercomputers for some applications [e.g., 1],72

most users only have access to single computers or73

small-scale cloud services like JEPlus 1 or NREL’s74

PAT 2. This means that individual simulations75

must be sped up. Options exist in most simula-76

tion programs to use simpler variants of underlying77

algorithms, these achieve only limited efficiencies.78

One option for speeding up individual estimates is79

the use of so-called emulators, alternative models80

that estimate the same quantities as the original81

BPS. How an emulator may be judged to be a suit-82

able replacement for a simulator is the problem ad-83

dressed in this paper.84

Emulators replace, and usually simplify, the85

complex ensemble of physics-based equations that86

make up a simulator. The inputs for emulators87

need not be exactly the same as those used by88

physics-based simulators. For regression models,89

these inputs are called features. That is, those90

quantifiable features or characteristics of a dataset91

that can be used to characterise the variety or vari-92

ance seen in the dataset. If the dataset is then rep-93

resentative of the physical system being examined,94

the features can be said to describe the physical95

system as well.96

While the use of emulators is motivated by the97

need to reduce computational burden, an emulator98

must accurately represent the physical behaviour99

1www.jeplus.org
2http://nrel.github.io/
OpenStudio-user-documentation/reference/
parametric_analysis_tool_2/

of the building systems being modelled to be use- 100

ful. That is, the difference between predictions of 101

performance by an emulator and simulator should 102

be acceptably low. The objective of this work is to 103

provide a set of tests that can be used to determ- 104

ine whether a simpler, faster mathematical model 105

(an emulator) is a suitable and viable substitute for 106

BPS. 107

This paper lays the groundwork for a test suite 108

to evaluate emulators for a given problem, along 109

with its application to a simple problem of predict- 110

ing energy use. This could be extended with the 111

development of a catalogue of results using com- 112

mon design problems and emulators showing, for 113

example, how emulators will improve solutions for 114

some problems and not for others, where they are 115

more applicable, and whether the selection of spe- 116

cific emulators/algorithms can be generalised to a 117

class of problems. The original code used for this 118

paper is available online3, and is open for imple- 119

mentation in tools. 120

To reduce computational time without com- 121

promising the usefulness of performance estimates, 122

any replacement for BPS must be (i) accurate, 123

(ii) fast, (iii) generalisable, and (iv) easy to use 124

and setup. These criteria can be used to judge 125

whether an emulator is a sufficiently useful replace- 126

ment for a simulator. In this paper, we provide 127

a suite of seven tests that can be used to evalu- 128

ate emulators against these criteria. Namely, the 129

model should fulfil the following conditions, further 130

developed in Section 3.1: 131

(1) error compared to simulator outputs is accept- 132

ably low, 133

(2) performance improves with more training data 134

(lower error), 135

(3) performance improves with more complex or 136

varied training data, 137

(4) performance does not degrade (error does not 138

increase) too much for a specific test case, 139

(5) performance is consistent across different test 140

data sets, 141

(6) emulator is computationally cheaper than a 142

simulator, 143

3www.github.com/author/repository
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(7) performs appreciably better (lower error) than144

a simpler model.145

These tests can be used to both identify whether146

a specific emulator is usable or not (pass/fail) and147

to compare different emulators, e.g., ranking can-148

didates by error on the test data. The tests are149

not a substitute for expert judgement and may give150

conflicting answers, e.g., a model may generalise151

poorly (test 5) but perform very well for a specific152

test case (test 4), a model may show very low error153

(tests 2-5) but have an unacceptably high compu-154

tational burden (test 6), etc. It is also possible for a155

model to fail on a particular test, e.g., failing to per-156

form consistently well across different test data sets157

(test 5). It is difficult to offer a generalisable rule in158

these cases, and users must consider the nature of159

the problem. What is important to a given problem160

determines the importance of a given test: gener-161

alisability, accuracy, speed, or ease. An emulator162

should do well on tests 6 and 7, since there is little163

point to replacing a simulator with a more expens-164

ive emulator or using a complex emulator when a165

simple one will do.166

In the next section, we describe possible candid-167

ates for emulators, existing work, and introduce168

regression models. After that, Section 3 lays out169

the context for how and when these emulators are170

useful, and the example dataset used in this pa-171

per. This example dataset consists of four subsets172

named Breadth (B), Depth (D), Home (H), and173

Urban (U). Each subset will be used to demonstrate174

a different test. In Section 4, we show a use case:175

applying a class of models known as Gaussian Pro-176

cess (GP) Regression to the example dataset. Note177

that the use of GP regression or the specific data-178

set have no bearing on the test suite itself; they179

are only convenient examples chosen in this paper180

to illustrate the applicability of the tests. Finally,181

we conclude with a discussion of possible use cases182

and limitations of this approach. We discuss how183

the tests are generally applicable, and the use case184

is meant to serve as an example for how the pro-185

posed test suite may work in practice.186

2 Background187

In this section we outline the mathematical back-188

ground for the models and tests, as well as existing189

work and how it relates to this paper. 190

BPS is best characterised as a non-linear, 191

stochastic, causal system [2]. Linear regression 192

models are popular emulators [e.g. 3] since they 193

are easy to fit, use and interpret, but they could 194

be inaccurate since the simulator they are trying 195

to model is a non-linear system itself. For such 196

non-linear systems, emulators based on non-linear 197

regression are more appropriate. 198

2.1 Simulators 199

A typical simulation uses, as inputs, parameters 200

such as building geometry; building envelope char- 201

acteristics; Heating, Ventilation, and Air Condi- 202

tioning (HVAC) system specifications; operation 203

schedules and control strategies. We denote a set 204

of inputs with a vector θ containing all these para- 205

meters. To assess the performance of a building 206

design θ, a BPS simulation also requires plausible 207

operating conditions that the building might exper- 208

ience, e.g., local weather and internal heat gains 209

from lighting, occupants and equipment loads. We 210

denote these operating conditions by a vector z. 211

The set of inputs, therefore, is equal to θ and z 212

which we denote by x := {θ, z}. 213

Given an input vector x, the goal of BPS is to
estimate performance indicators, such as temper-
ature trends, comfort indicators, energy demand,
etc. In this paper, we use a common BPS problem:
predicting the energy performance of a building as
the sum of the hour-by-hour energy demand (power
draw) over the year. This gives us a scalar energy
output which we denote by y. Denoting the sim-
ulator by a function f that takes x as input and
outputs y, we can express the Simulator as:

y = fs(x), where x = {θ, z}. (1)

Since the output depends on z, the choices of oper-
ating conditions is extremely important. The fu-
ture operating conditions are unknown, but can
still be obtained using other sources of informa-
tion. For example, future weather conditions can
assumed to be random draws from a probability
distributions p(z) which can be estimated using
past weather data [4, ch. 2]. A reliable prediction of
performance can then be obtained using the Monte
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Carlo (MC) method:

ŷMC := 1
N

N∑
n=1

fs(θ, z(n)), (2)

where z(1), z(2), . . . ,z(N) are N operating condi-214

tions drawn from a statistical model p̂(z) obtained215

using past weather data. The above quantity gives216

a reliable estimate of the energy performance be-217

cause it accounts for a wide variety of operating218

conditions. A design process built upon such es-219

timates results in a robust building design that is220

less likely to fail under extreme operating condi-221

tions.222

This approach, the MC method, which might223

be time-consuming to complete with a simulator224

since each simulation may itself take hours. Even225

though multiple simulations may be run in parallel,226

the design process itself is sequential and iterative,227

necessitating the repetition of the N simulations228

for each design parameter vector θ investigated. A229

more common practice is to use ‘typical’ (average,230

median, representative) values for z and only per-231

form one or two simulations. This would result in232

performance estimates that are low variance but233

are heavily biased towards typical operating con-234

ditions. A design process relying on such estimate235

will be less robust, since it might miss important236

operating conditions under which a building may237

perform poorly or even break down. Emulators are238

models of the simulator which can predict the out-239

puts of simulations quickly and, therefore, enable240

the use of computationally-expensive techniques in241

several situations.242

2.2 Emulators243

Fitting or training emulators requires overcoming244

three principal challenges: the requirement of a245

large, varied, and representative database for train-246

ing; the time and effort to specify the form and247

compute the parameters of the models; and inflex-248

ibility in real-world application, usually indicated249

by an inability to predict well on test sets [5, 6].250

The emulators we discuss here are based on re-251

gression models and take the following form:252

ŷ = fe(x), (3)
where the emulator is represented by the func-253

tion fe(·), which must be estimated, and ŷ is an254

estimate of the simulator output y. The best estim- 255

ate of fe is that function in the set of functions F 256

that minimizes a cost function, e.g., Mean Squared 257

Error (MSE), 258

f∗
e = arg min

fe∈F
Ep(y,x)

[(
y − fe(x)

)2
]
, (4)

where p(y,x) is the joint distribution of y and x. 259

Since this distribution is unknown, we approximate 260

the expectation using the sample mean over input- 261

output pairs for y and x observed in practice. The 262

set F is usually the set of all continuous and differ- 263

entiable functions. 264

The dataset used to build a regression model 265

should by independent and identically distributed 266

(i.i.d.), though this is difficult to achieve in prac- 267

tice. One naive method is to use past measure- 268

ments of z (if available, e.g., past weather data) 269

as samples from p(z) and run the simulator with 270

these to obtain samples from the distribution of 271

y (e.g., Figure 9). Specifically, given N measure- 272

ments z(n) for n = 1, 2, . . . , N , we can calculate 273

the corresponding energy outputs y(n) by running 274

the simulator. 275

The fitting and testing of regression models to 276

training datasets consists of four steps, as outlined 277

in Figure 1: (A) picking a subset of data of size 278

Ntrain < N ; (B) estimating the hyper-paramet- 279

ers (ψ) with this training dataset; (C) picking an 280

additional set of data of size Npred for prediction; 281

(D) using the model to predict on the test dataset 282

and calculate error of prediction. 283

The structure of linear and non-linear functions, 284

especially the GP regression models used in this 285

paper, is discussed in Appendix A. 286

2.3 Existing Work 287

The existing BPS literature, including our previous 288

work on GP regression [7], focussed on proving the 289

utility of a specific regression method or emulator 290

type to tackle a specific problem in BPS. A large 291

variety of approaches have been proposed for a vari- 292

ety of outputs, and these can be broadly divided 293

into two classes: ‘grey box’ models and regression- 294

based models. The so-called grey box or ‘reduced 295

order’ models, which use simplified physics to ap- 296

proximate performance [8]. These are simple to 297

use but inflexible since a single grey-box model is 298
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(A) Randomly pick a subset of size 
Ntrain to learn hyper-parameters ψ

1, ..., Ntrain 

(B) Estimate hyper-parameters ψ

(C) Randomly pick additional data to 
have Npred examples for prediction

1, ..., Ntrain

TRAINING DATA

(D) Predict test data 
and compute RMSE

TEST DATA

PREDICTION

1, ..., N 1, ..., Ntest 

Ntrain+1, ..., Npred 

Figure 1: A schematic of the method used in this paper
to train and test regression models. (A)-(D) represent
steps in the procedure, while the boxes represent data
sets. When testing on real-world data, we use the term
validation dataset to denote the test dataset.

appropriate only for the specific system it approx-299

imates. The second class of emulators is based on300

regression models, constructed by fitting the model301

to a database of inputs and outputs obtained from302

a simulator or measured data [e.g., 3, 9]. Confus-303

ingly, regression models are also sometimes referred304

to as ‘reduced order’ models.305

Most existing work on emulators to supplement306

BPS uses regression-based models. The published307

work largely focusses on characterising the rela-308

tionship of some performance metric like energy309

consumption for heating or cooling to paramet-310

ers/properties that may be controlled by designers,311

like insulation levels and window area [4, 8, 10, 11].312

Examples of these kinds of studies include those313

that address:314

(i) general uncertainty and sensitivity analysis for315

performance analysis and what-if analyses [4,316

12–14],317

(ii) computational cost, such as energy optimisa-318

tion for large-scale retrofits [9], grid-scale de-319

mand prediction from buildings [15], bench-320

marking [16],321

(iii) lack of sufficient information to run simulat- 322

ors reliably, e.g., prediction of the potential 323

to harvest solar energy for neighbourhoods 324

[17, 18], statistical evaluation of the energy 325

performance of different office designs [19–24], 326

(iv) lack of certainty about future weather, e.g., 327

prediction of indoor conditions using a small 328

number of measured parameters [25], correlat- 329

ing probabilistic climate projections with of- 330

fice cooling demand and overheating analyses 331

in the UK [26–28], development of “climate 332

change amplification coefficients” to estimate 333

resilience [29], 334

(v) calibration of building energy models, and 335

fault detection and control [30–32]. 336

3 Method 337

In this section we described the proposed tests in 338

detail and the dataset used to show how they might 339

be used in practice. These tests are based on gen- 340

eral principles of statistical learning outlined in 341

texts such as Hastie et al. [5], Rasmussen and Wil- 342

liams [33] 343

3.1 Proposed Test Suite 344

As described in Section 1, we use the following four 345

criteria to judge if, for a given problem, an emulator 346

is a good-enough replacement for a simulator: ac- 347

curacy, speed, generalisability, and ease of use. The 348

logic for these criteria relates to the use cases and 349

issues discussed in the preceding sections. There 350

are usually trade-offs between accuracy and gener- 351

alisability, accuracy and speed, and between ease 352

of use and the others. In addition, speed and ease 353

of use are somewhat subjective and based on the 354

problem at hand. 355

The tests that can be used to evaluate these cri- 356

teria are all described here in terms of error, i.e., the 357

difference between values (simulation outputs of in- 358

terest) predicted by an emulator and those output 359

by a simulator for the same input. We will also use 360

the concept of test and train datasets, i.e., data- 361

sets used to fit (train) a regression model and test 362

its performance. These tests are described for use 363

in the process of training a regression model for 364

a given problem. When an emulator is ‘deployed’ 365
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for use in a given problem, it cannot be tested ex-366

cept by running a small number validation simula-367

tions. The use of error to train a regression model368

is outlined later in Figure 1, section 2.2, and ap-369

pendix A.2. We begin by summarising the tests370

here and describing their relevance to predicting371

building performance.372

3.1.1 Accuracy373

Accuracy implies that for a given set of inputs, the374

emulator predicts the simulator output well. The375

need to predict simulator outputs accurately is ob-376

vious: if an emulator is not sufficiently accurate,377

it cannot replace the simulator. Given that the378

simulator itself is an estimate of actual perform-379

ance during the lifetime of a building, introducing380

an unacceptably large additional error will degrade381

the utility of simulation-aided decision-making. We382

propose that the accuracy of a model during the383

training process can be assessed using the follow-384

ing tests.385

Test 1: Error on a validation dataset is less than
some acceptable tolerance of error, i.e.,

f∗
e (y − ŷ) ≤ ε, (5)

where y is the output of a simulator and ŷ is the386

output of an emulator for the same input, f(·) is387

some function to aggregate the differences between388

emulator and simulator outputs like Root Mean389

Square Error (RMSE) or Mean Absolute Error390

(MAE), and ε is some acceptable tolerance for the391

error.392

The error tolerance is a decision for the practi-393

tioner, and it may vary based on the context. For394

example, small random errors in the performance of395

individual buildings in a large stock energy model,396

like the Breadth dataset, will make little difference397

to evaluating the effectiveness of large-scale applic-398

ation of retrofit measures. On the other hand, er-399

ror tolerance for the Home dataset, consisting of400

a single-family home, would be considerably smal-401

ler. The tighter the design requirements and lower402

the average consumption, in general, the lower this403

tolerance would be.404

Test 2: Error improves with increased training
data, i.e., as the number of observations available

for training increase, the error on the validation
set reduces. This can be expressed as an inverse
correlation:

f∗
e (y − ŷ) ∝ 1

Ntrain
(6)

where Ntrain is the number of observations in the 405

training dataset. 406

Since the training dataset must be obtained from 407

a simulator, with its attendant computational cost 408

and effort, the increased investment must be justi- 409

fied by improvement in prediction. When applying 410

these tests to our sample dataset in Section 4, we 411

will show how the return on investment can dimin- 412

ish as the size of the training dataset increases. 413

3.1.2 Generalisability 414

Test 3: Error improves with more complex or
varied training data:

f∗
e (y − ŷ) ∝ 1

σ2
x

(7)

where σ2
x is the variance of the features or inputs 415

corresponding to the observations in the training 416

dataset. 417

This test is a check against over-fitting to data- 418

set representing a narrow set of inputs, potentially 419

unrepresentative of the problem. For example, a 420

model trained entirely on variations in window-to- 421

wall ratio while everything else is held constant, 422

like part of the Home dataset, is unlikely to estim- 423

ate changes in insulation levels accurately. If the 424

prediction on the test set improves as the training 425

dataset includes more building or system options, 426

designs, or scenarios, then the user has more confid- 427

ence that the emulator will more accurately predict 428

over the variety of designs and scenarios. 429

The training set must represent the problem to 430

be explored. When a problem is narrowly-defined, 431

i.e., only a limited aspect of design or uncertainty 432

is to be explored, this test may not matter. 433

Test 4: Error does not degrade too much when 434

moving from predicting on a general dataset during 435

training to a validation set that is more specific to 436

the problem at hand. In the context of this paper, 437

this would mean training on the Breadth dataset, 438

and predicting on the Depth dataset. When the 439
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change/increase in error is too much depends on440

the magnitude of the initial training error relative441

to that of the average prediction and the problem442

being studied. If an emulator fails Test 1 on a spe-443

cific validation set for example, i.e., the error sur-444

passes the tolerance set by the user, the emulator445

is likely unsuitable.446

A dataset is more specific if it deals with only
one aspect of a given design problem or exercise.
For example, after training a model on variations
in layouts and several building systems (Breadth
dataset), we task the emulator to predict only on
variations of one system or component in a specific
building (Depth). If the initial error,

f∗
e (y1 − ŷ1) ≤ ε,

then,447

f∗
e (y2 − ŷ2) ≤ ε, (8)

where y1, y2 are outputs from two different valid-448

ation datasets and y2 is the result of testing on a449

validation dataset x2 more specific to a problem450

than x1, the corresponding validation dataset for451

y1.452

Test 5: Error does not degrade too much when453

testing on a more complex validation dataset, i.e.,454

one with more variety of inputs. If the initial error,455

f∗
e (y1 − ŷ1) ≤ ε,

then,456

f∗
e (y2 − ŷ2) ≤ ε, (9)

such that,457

σ2
x2 > σ2

x1,

where y1, y2 are outputs from two different valid-458

ation sets, x1 and x2 respectively, and σ2
x is the459

variance of an input validation set. Here, x1 may460

represent a single archetype building used for train-461

ing a model while x2 would represent a portfolio of462

buildings that should conform to the same arche-463

type but with a variety of designs and systems. For464

example, creating variations on one archetype office465

building by varying the properties of different sys-466

tems as in Depth dataset.467

3.1.3 Speed 468

Test 6: Emulator is computationally cheaper 469

than a simulator. Regardless of the computing 470

infrastructure being used, an emulator should be 471

cheaper, and therefore faster, to run in order to 472

justify accepting the increased error in estimation 473

of output. If an emulator performs particularly well 474

on this test, it may also be suitable for implement- 475

ation in Building Management (Automation) Sys- 476

tems (BMS) controllers for Model Predictive Con- 477

trol (MPC) and similar low-resource applications 478

that require rapid response. The computational 479

complexity of the emulator, 480

Oe(aN b
val) ≤ Os(cNd

val), (10)

where Oe(aN b
val) is the complexity of the emu- 481

lator that scales with the number of observations 482

in the validation dataset with some exponent, and 483

Os(cNd
val) is the complexity of the simulator pre- 484

dicting over the same observations. 485

3.1.4 Ease of use 486

Test 7: Emulator is appreciably better than sim- 487

pler methods. This final test ensures that the 488

simplest method that delivers adequate perform- 489

ance is used. As discussed in Figures 10 and 11 490

and appendix A.1, more complex models will gen- 491

erally tend to overfit to a given dataset. The error 492

of an emulator 493

f∗
e1(y − ŷ) ≤ f∗

e2(y − ŷ), (11)

where f∗
e1(·) is a higher-order model (more complex, 494

more parameters) than f∗
e2(·). Models with fewer 495

parameters are both cheaper to train, so would also 496

be quicker to train and deploy (Equation (10)). 497

3.2 Data 498

To demonstrate the use of the test suite proposed 499

in this paper, we generated a large dataset by sim- 500

ulating numerous combinations of buildings and 501

weather conditions from four different simulation 502

exercises, labelled ‘Breadth’, ‘Depth’, ‘Home’, and 503

‘Urban’. This dataset does not comprehensively 504

represent all the possible use cases for emulators 505

discussed in Section 1, and it does not need to. In- 506

stead, the complete dataset gives enough variety of 507
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Figure 2: The envelope variations simulated for the
single-family home (H). Original figure in Rastogi [4].

use cases to demonstrate the test suite proposed in508

this paper. Specific subsets are also used for in-509

dividual tests, e.g., Breadth and Depth for Test 4510

(Section 4.4).511

These combinations results in approximately512

600,000 data points, details of which are in Table 1.513

Each simulation calculated the space heating and514

cooling requirement for the given combination of515

building design and weather. The total energy for516

heating and cooling was divided in each case by517

the area of the building (normalised by area) to518

make the outputs of all the simulations compar-519

able. These simulations are also described in detail520

in separate publications and summarised in Rastogi521

[4, sec. 4.2]4.522

The size of the datasets used in this paper is523

not an indication of the minimum sizes required524

for each test. As the figures show in Section 4, the525

result for a test is usually obvious using a fraction526

of the data shown in this paper for demonstration.527

The Breadth (B) and Depth (D) case studies528

are from the United States Department of Energy529

4The data may be downloaded from
https://doi.org/10.5281/zenodo.291858

(USDOE) commercial buildings reference database 530

[34]. The Breadth dataset consists of 16 different 531

building types. This dataset is a representation of 532

a national or regional building ‘stock’, i.e., a repres- 533

entative sample of buildings. The Depth set con- 534

sists of simulations on one of the building types in 535

the USDOE database: the ‘medium office’. This 536

dataset is a simulation of a design exercise vary- 537

ing envelope properties. These properties were: U- 538

value (practically, changing the thickness of insu- 539

lation material), thermal mass (nominal quantity 540

of internal mass), shading (obtained by varying the 541

depths of overhangs and fins), permeability (chan- 542

ging infiltration levels), and transparency (chan- 543

ging the Window-to-Wall ratio). 544

The Urban case (U) is composed of a set of build- 545

ings constructed over a century (1900-2010) in the 546

centre of Geneva, Switzerland [35]. This case was 547

chosen because it includes the urban context sur- 548

rounding the buildings. We expect the urban con- 549

text to add noise to the data, since we have not 550

included any features that explicitly describe the 551

influence of the surroundings. The buildings were 552

all modelled in at least two variants: with the ori- 553

ginal envelope and with an envelope upgraded to 554

the latest Swiss standards for infiltration, insula- 555

tion, etc. 556

Finally, the single-family home case (H) is an ex- 557

ample of a very simple simulation study, one where 558

we expect the response to be characterized well- 559

enough by a linear regressor. The changes to the 560

house are described in Figure 2. The simulation 561

model of the house is based on an actual home in 562

north-central Germany [36]. 563

The weather data used is of three types: recor- 564

ded data from the Integrated Surface Database5, 565

typical years [38, 39], and synthetic weather time 566

series [4, 40, 41]. 567

5https://www.ncdc.noaa.gov/isd
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Table 1: List of datasets. The size indicated here may be slightly different from the amount of data used in the
scripts due to the presence of invalid data entries. Less than 5% of the entries were invalid in any dataset. Mean
values for annual sum of Heating and Cooling loads were calculated over all valid values in kWh/m2.

Name Size Description Ref. Mean
Heat

Mean
Cool

Breadth
(B)

88,242 USDOE commercial reference build-
ings (all building types)

[4, 34] 131.63 48.97

Home
(H)

77,934 Single-family home, Central European
construction [4, 36, 37] 23.41 74.84

Depth
(D)

445,334 Variations on the medium office build-
ing from the USDOE database

102.90 30.98

Urban
(U)

6,003 Mixed-use buildings in Geneva,
Switzerland (with surrounding build-
ings)

[35] 134.27 0.00

4 Results568

In this section we show the application of the pro-569

posed test suite to judge the suitability of GP re-570

gression models with linear and non-linear kernels,571

using the dataset described in Section 3.2. The ker-572

nels are listed and described in Table 2.573

The fitting and testing of GP models to large574

training datasets consists of four steps, as outlined575

in Figure 1: (A) picking a subset of data of size576

Ntrain < N ; (B) estimating the hyper-parameters577

(ψ) with this training dataset; (C) picking an ad-578

ditional set of data of size Npred for prediction;579

(D) using the model to predict on the test data-580

set and calculate error of prediction. Before be-581

ginning the fitting procedure, we set aside a por-582

tion of the total data available to us as ‘test’ data583

of size Ntest (approx. 60% of the dataset). The584

amount of training data Ntrain used to estimate the585

hyper-parameters (ψ) was varied from 50 to 4000586

for each dataset and model (except for models fit587

to the Urban dataset individually). For a given588

training size Ntrain, we draw that many observa-589

tions from the large overall training set and use it590

to train a model. We repeat this process 100 times591

to obtain an empirical distribution of the RMSE592

of each model’s predictions on the test set. For593

Test 3 (Section 4.3), results from fitting to data-594

sets much larger than 4000 are presented (e.g., Fig-595

ure 5). In this case, for runs with Ntrain > 2000,596

only Ntrain = 2000 was used to calculate hyper-597

parameters, while a separate subset of the training 598

dataset, Npred, was used to fit the model (see Ap- 599

pendix A.4.2 for details). In this case, both Npred 600

and Ntrain are training datasets. This allowed for 601

models fit to much larger datasets than our com- 602

puter could handle if the entire process were carried 603

out with these very large datasets. 604

We use Root Mean Square Error (RMSE), the 605

square root of the MSE term from Equation (4), to 606

quantify errors. An advantage of RMSE is that it 607

has the same units as the original outputs, in this 608

example kWh/m2, which makes it easier to under- 609

stand and judge magnitudes of error. Readers are 610

invited to compare plotted errors against the means 611

of the datasets given in Table 1, and against the 612

overall mean of 51.49 kWh/m2 and 64.31 kWh/m2 613

for annual heating and cooling loads respectively. 614

In the figures, we present the distribution of the 615

RMSE calculated over a hundred subsets of the test 616

set as an additional check on the reliability of a 617

model: if the distribution of RMSE over subsets of 618

a test set is too wide, the model does not reliably 619

represent the range of possible values of inputs to 620

be tested, i.e., the test dataset. The test dataset 621

is entirely separate from the training dataset (Fig- 622

ure 1). The RMSE plotted in each graph below was 623

calculated solely on the test dataset, i.e., test error. 624

Each test is presented as it would be applied to 625

the problem of quantifying the uncertainty in pre- 626

dicted energy use of a building design for space 627

conditioning due to lack of knowledge about fu- 628

9



Table 2: List of models compared in this study.

Model Description

Mean Mean of the outputs yn

Lin-ISO Linear model with isometric kernel
Lin-ARD Linear model with automatic relevance determination
NonLin-ISO Squared-exponential isometric kernel
NonLin-ARD Squared-exponential kernel with automatic relevance determination

ture weather conditions. Each design is intended629

to represent a choice available to a designer at con-630

struction or renovation, and the output of interest631

is the impact of the design choice on annual whole-632

building energy performance over the lifetime of the633

building. The uncertainty would be quantified us-634

ing the MC method, sampling plausible weather635

scenarios and simulating them for a given building636

design to obtain a reliable estimate of energy per-637

formance (Equation (2)). While there is no definit-638

ive number of operating conditions (weather files)639

that must be simulated for an estimate to be reli-640

able, we have found that stable results could be ob-641

tained with about a hundred simulations with ran-642

dom weather conditions per building design. De-643

pending on the complexity of the building designs644

and systems used in this paper, each simulation645

took 15 minutes to almost 2 hours.646

4.1 Test 1: Error on validation set647

The acceptable level of error depends on the prob-648

lem being explored. Fitting regression models al-649

ways involves a trade-off between minimising the650

error on the available training dataset and ensuring651

that this does not overfit the model to the specific652

dataset. This is a form of the bias-variance trade-653

off common to all statistical learning approaches654

[5], as discussed in Section 2.1.655

4.2 Test 2: Error with larger train-656

ing dataset657

This test is unambiguous and straightforward for658

this example: the validation error improves with659

size of training set for all cases described in Table 1.660

For example, see the changes in prediction error661

when predicting heating loads on the Breadth and662

Figure 3: RMSE for heating [top] and cooling [bottom]
models fit to the Breadth database. The (test) errors are
calculated on approx. 52,940 points, and plotted against
the size of the data set used at prediction (same as the
dataset used to learn hyper-parameters in this case, i.e.,
Npred == Ntrain). The lines indicate median errors,
and the filled areas are bounded by the 25th and 75th
percentiles.
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Home datasets, plotted in Figure 4 for each model663

type. Compare the errors with those from the664

simplest possible predictive model: the mean of the665

training outputs, ȳtrain.666

4.3 Test 3: Error improves with667

training data variance668

For this test, we combined all datasets to represent669

the case where a complex, varied problem is to be670

modelled and large number of simulation runs are671

available. Ideally, we would like to use all the data672

available for training. However, learning hyper-673

parameters is infeasible for large numbers of data674

points because each step in the learning procedure675

requires the inversion of an Ntrain × Ntrain matrix.676

We use a simple trick to make use of the additional677

data, outlined in Figure 1 and based on the pro-678

posal in Chalupka et al. [42]. We learn the hyper-679

parameters on a dataset of size Ntrain = 2, 000,680

but during prediction we use a much larger data-681

set Npred = 2000, . . . , 12000. Since prediction re-682

quires only one matrix inversion, the latter step is683

still feasible for dataset sizes of about 10,000 on the684

hardware we used for our study.685

In Figure 5, we present the results of fitting and686

testing a non-linear GP model to the whole dataset687

(i.e., all subsets described in Table 1). Thus the dif-688

ferences between the results presented in Figure 3689

and those presented in Figure 5 are that, firstly,690

in the latter figure we use a larger dataset that691

is more representative of real-world outcomes, and692

secondly, we show the additional advantage of us-693

ing a larger dataset for prediction during training694

(Npred > 0 in Step C of Figure 1). In Figure 3,695

the RMSE values were plotted against the num-696

ber of data points used to learn hyper-parameters697

and subsequently fit the model to the same data-698

set. In Figure 5, the RMSE values are plotted699

against the size of the prediction dataset (differ-700

ent from the fixed number used in learning hyper-701

parameters). The solid lines (with shaded curves)702

show the RMSE obtained when 2,000 data points703

are used for learning but a larger set is used dur-704

ing prediction. We see that RMSE decreases as705

the number of data points used for prediction is706

increased. Linear models are not presented here707

since this procedure makes no difference to their708

performance.709

(a) Breadth

(b) Home

Figure 4: Evolution of RMSE for heating loads with
increasing Ntrain. Non-linear models perform better
than linear models for all datasets, and also show more
improvement with increased training data. A separate,
larger dataset was not used for prediction in this case
since the sizes of Ntrain were still tractable.
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Figure 5: These figures show the RMSE for heat-
ing and cooling loads for the combined dataset, plotted
against the size of the training data set used at pre-
diction (Appendix A.4.2). The lines indicate median
errors, and the filled areas are bounded by the 25th and
75th percentiles. The non-linear models outperform lin-
ear models, and the predictions improve with size of
training data set.

We see that the use of non-linear GP models on a 710

large dataset is both feasible and accurate. We will 711

now check the performance of these models on two 712

sets of problems: predicting for a specific building 713

(individual) or on a variety of buildings together. 714

4.4 Test 4: Error on a specific valid- 715

ation set 716

(a)

(b)

Figure 6: Heating [top] and cooling [bottom] predic-
tions when predicting on a specific building. B → D
means training hyper-parameters on the Breadth data-
set and testing on Depth, B + D → D implies training
on a combination of the two and predicting on Depth,
while D → D implies both training and testing on ex-
clusively the Depth dataset.

In many applications, the designer might be in- 717

terested in predicting the performance of only a 718
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specific type of building. In that case, it is possible719

that an emulator trained on a variety of building720

types may not perform well. We show that a non-721

linear model performs well if it has ‘seen’ enough722

buildings that are similar to the one we want to pre-723

dict. The results presented in this section establish724

the satisfactory performance of the GP regression725

models used here for this test.726

We consider the task of predicting the perform-727

ance of a building in the Depth dataset, the results728

of which are shown in Figure 6. This dataset con-729

tains only a specific type of building: a medium-730

sized office. We used 60% of the Depth dataset as731

the test set (Ntest,D∗ = 247, 304). We trained three732

models: the first using only the Breadth dataset733

(Ntrain = Npred = 1000), referred to as ‘B → D∗’ in734

Figure 6; the second using only the Depth dataset735

(Ntrain = Npred = 200), ‘D → D∗’; and the third736

using a combination of the Breadth and Depth737

datasets (1000 data points from Breadth and 200738

data points from Depth), ‘B + D → D∗’.739

We see that when using only the Breadth data-740

set for training and prediction, the model performs741

badly. Adding some points from the Depth data-742

set significantly improves the performance of the743

model, since this addition reduces the influence of744

those points in the Breadth set that do not come745

from the office building. Using only the Depth746

dataset gives the best performance. This shows747

that training an emulator with a small number of748

examples for a specific building is enough to pre-749

dict well for that building (Ntrain = 200 in this750

case). When learning on a variety of buildings751

and predicting on a specific one, the performance752

is poor with naive selection of points during pre-753

diction [left-most bar in each graph]. Performance754

improves by adding simulations from the specific755

building [middle bar]. Performance is best when756

using training data only from that building [right-757

most bar].758

A GP model predicts on a new test point by759

correlating the test inputs to training inputs. The760

kernel is supposed to encode the influence of differ-761

ent training points in predicting the test point: the762

more closely related a group of training points is to763

a test point, the more influence they ought to have764

on the prediction. We find that this is not the case765

for our study when we try to use training points766

exclusively from the Breadth dataset to predict on767

a test set from the Depth dataset. However, the 768

results improve dramatically if new training points 769

are added from the Depth case. This suggests that 770

explicitly encoding, perhaps with a categorical vari- 771

able representing building type/usage, the ‘close- 772

ness’ of a new test point to a subset of training 773

points, should improve prediction. 774

4.5 Test 5: Error on a varied valida- 775

tion set 776

We now present results to show that the non-linear 777

emulators presented here can be trained to obtain 778

accurate predictions for a variety of datasets, e.g., 779

different buildings in different climates. 780

Figure 7 shows the results for all datasets separ- 781

ately using Ntrain = Npred = 4000 data points, of 782

which 60% are used as the test set for each case. We 783

present results for two models: Linear automatic 784

relevance determination (ARD) (lin) and Squared 785

Exponential ARD (non-lin). The RMSE obtained 786

from using the non-linear model is of the same or- 787

der of magnitude for all datasets (1-10 kWh/m2) 788

and uniformly better than RMSE from linear mod- 789

els. These results demonstrate the flexibility of the 790

non-linear model compared to an equivalent linear 791

model. 792

4.6 Test 6: Computational Expense 793

and Time 794

Figure 8 shows the distribution of computer time 795

taken by each simulation in the dataset used for 796

this paper. A single iteration of the Monte Carlo 797

method for a single design, i.e., about 100 simula- 798

tions, would take between 25 and 200 hours (0.9e5 799

to 7.2e5 s). In addition, the time taken for each iter- 800

ation would not change, since the simulations can- 801

not be reused. For comparison, GP regression takes 802

1 microsecond (1e-6 s) to provide one estimate, so 803

each MC iteration would take about 10 milliseconds 804

(1e-3 s). This comparison is for run times, i.e., as- 805

suming that the regression model has already been 806

fitted. As we saw in Sections 4.1 to 4.4, reaching 807

a satisfactory error rate in this example requires a 808

training dataset of at least 1000-1500 simulations. 809

Assuming a fresh start for each problem, a worst 810

case scenario where no knowledge from previous 811

simulations is transferable to a new problem, would 812
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Figure 7: Median RMSE at Ntrain = 4000. The y-axis
uses a log scale. For each dataset, the bar on the left is
for the linear model and on the right for the non-linear
model. Non-linear models perform than linear mod-
els for all datasets. The Urban case was modelled for
Geneva, where buildings do not typically include cooling
systems (air-conditioning).

require the user to use the simulator for some part 813

of the experiment. 814

When accounting for the cost of using an emu- 815

lator, both the cost of obtaining training data (usu- 816

ally from the simulator) and of fitting the model 817

should be included. This means that emulators are 818

not suitable for short and quick design exercises un- 819

less that exercise is part of or similar to a problem 820

for which a model has been trained. This creates a 821

strong incentive for the use of pre-trained libraries 822

of models suitable for specific problems, especially 823

in situations where there is insufficient information 824

to create simulation models (Section 2.3). 825
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Figure 8: Probability Distribution Function (PDF) of
the approximate time taken to run one simulation in
a simulation exercise carried out by the authors using
EnergyPlus v8.8 (https://energyplus.net/).

4.7 Test 7: Simplest emulator 826

Non-linear models outperform linear models in all 827

of the results presented here (Figures 3 to 5), and 828

both model types outperform the mean of the train- 829

ing set outputs. The predictions also improve with 830

size of training data set. Non-linear GP-based emu- 831

lators perform equally well when predicting on a 832

diverse set of buildings (Breadth) as a dataset con- 833

sisting of a single building (Depth, Home) or small 834

set of very similar buildings (Urban). 835

5 Discussion 836

In this section we discuss the applicability of this 837

approach, limitations of data-based approaches for 838

emulators, and practical issues around selecting 839

data for training. 840
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5.1 Generalisability of Approach841

Designers and analysts of buildings and their sys-842

tems develop professional judgement and intuition843

about the physics of the systems they study. This844

allows experts to identify common errors in numer-845

ical simulations and improves the reliability of res-846

ults. The approach proposed in this paper pre-847

supposes some knowledge of how appropriate data-848

sets may be acquired. Data-based methods are not849

substitutes for knowledge about the physics of the850

problem. A tool like regression, which does not851

use the physics of BPS, will require users to learn852

new skills in handling and interpreting statistical853

learning models. An example of this is the diffi-854

culty of physically interpreting the dimensions of855

the (mathematical) space of features, i.e., the nu-856

merical representations of the values of different857

building properties or characteristics along numer-858

ical axes. When collecting data on complex prob-859

lems, the characteristics or features of interest may860

be many, which makes it difficult to maintain in-861

tuition about which designs (combinations of fea-862

tures) are similar to others in the feature space.863

This cannot easily be overcome with human judge-864

ment, a problem we encountered in the creation of865

the dataset used here as well. Thus, the use of these866

techniques will benefit from the development of ser-867

vices and tools which suggest methods for efficient868

data-gathering and training. While some progress869

has been made recently in moving more simula-870

tion programs to cloud-based services that remove871

much of the complexity of setting up models for the872

user, the possibility of augmenting these services873

with regression models to improve their utility for874

computationally-intensive problems remains to be875

explored.876

The tests were demonstrated here using a single877

output: energy use for space conditioning. The use878

of these tests could be more complicated for mul-879

tiple outputs of interest, e.g., comfort and energy880

use. Using multiple outputs could be handled with881

additional ranks or weights for different priorities,882

combining the results of the tests for different out-883

puts for a single decision. However, given that the884

tests are comparing outputs from the same phys-885

ical system, it may not always be the case that886

the results of applying these tests to different out-887

puts would be different. Additionally, since the user888

would already have invested the effort to fit mod-889

els at that point, they can also use different models 890

for each output. There is no reason to suppose that 891

different emulators that work for different outputs 892

would deliver inconsistent decisions. 893

5.2 Limitations of Data-driven 894

Methods 895

Data-driven methods are not fail-proof; the model 896

learnt on one dataset does not necessarily translate 897

perfectly to another (Sections 3.1.2, 4.4 and 4.5). 898

An emulator does not incorporate any knowledge 899

about the physics of the problem being simulated, 900

which means that emulators are, by construction, 901

usually less flexible than the simulator. Regression 902

inputs may not be representative or may not ex- 903

plain the variation in the data properly, which leads 904

to inaccurate predictions and the inability to gen- 905

eralise. Finally, the dataset used for training might 906

itself have a systematic bias. That is, a dataset 907

that does not represent the problem properly, or is 908

not a good proxy for real-world problems. 909

The best regression model contains just the 910

right predictive inputs, for the selection of which 911

there are no fixed rules that will apply to every 912

problem. The automatic relevance determina- 913

tion (ARD) procedure [33, sec. 5.1, and references 914

therein] used in this paper allows the user to be- 915

gin with a large set of input variables that might 916

be important to a problem, letting the GP estima- 917

tion procedure trim that number. However, ARD 918

does not necessarily follow the physics of the prob- 919

lem either and may not, therefore, generalise to 920

other problems. It is important to include all of 921

the design parameters (input variables) which are 922

expected to be relevant in the modelling of the en- 923

ergy performance (output). This is both to ensure 924

a good fit to data and relevance to the design prob- 925

lem. Including too many inputs, however, makes 926

it difficult to obtain a good fit with a manageable 927

size of training dataset(the so-called curse of di- 928

mensionality). 929

5.3 Collecting Data for Training 930

The quality of a dataset is determined by how 931

faithfully it represents the true distribution of data 932

p(x, y) (assuming this distribution exists). How- 933

ever, since the true distribution is usually unknown, 934
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it is impossible to measure the quality of a data-935

set objectively. To obtain a good-quality dataset936

of simulations of building designs, we can rely on937

designers (domain experts) who may, for example,938

choose realistic building designs and weather con-939

ditions from their portfolio and experience. The940

quality of dataset is, therefore, defined by the goal941

of the designer. For example, a designer interested942

in predicting performance over a variety of design943

parameters and weather conditions might need to944

acquire a dataset that contains similar examples in945

the training set. On the other hand, a designer who946

is interested in studying only a particular type of947

building might want to limit the dataset to that948

particular building. The results in this paper show949

that if the training dataset is too general, i.e., it950

contains too many examples dissimilar to the one951

considered during prediction, then the emulator952

does not perform well. This underlines the need953

to train separate models on different design prob-954

lems. Thus, the objectives of Test 3 are often in955

conflict with the objectives of Tests 4 and 5.956

In principle, there should be no correlation with,957

or effect of, building type, usage, or location on the958

input variables θ. However, if the training sample is959

taken from realistic buildings in a given climate, the960

distribution of the input variables will be influenced961

by prevailing architectural idioms and other cul-962

tural and practical factors. For example, sampling963

many houses from a single region will not necessar-964

ily cover all possible values of wall conductance (U-965

value), since houses from a region typically follow966

local trends and laws concerning insulation level967

[e.g., 43]. Similarly, while modern office buildings968

may have up to 85% window-to-wall ratio (WWR),969

homes with the same proportion of window area are970

rare. At the other extreme, a value of less than 10%971

WWR is theoretically possible for any kind of build-972

ing, but windowless buildings are so rare as to be973

statistically insignificant. Sampling from a particu-974

lar type of building does not necessarily mean that975

the distribution of input variables will be identical976

to sampling from a different type/usage. In addi-977

tion, each type/usage has cultural or regional limits978

on the values of input variable seen in practice, e.g.,979

buildings will probably not include a layer of insu-980

lation in the walls when it is not appropriate for a981

given climate.982

An example of selection bias is in the Breadth983

dataset used in this paper (Figure 9). There is 984

a preponderance of lower values of annual heating 985

and cooling energy usage because the set has more 986

moderate climates than extreme ones. The climates 987

were selected based on data availability [4], prior- 988

itising cities with several years of recorded data. 989

These tended to be urban areas with major airports 990

in continuous operation for decades either due to 991

large, established populations or strategic reasons. 992

The cities in the database have a combined popu- 993

lation in excess of 200 million, though future work 994

should incorporate weather from a wider selection 995

of world climates. 996

Figure 9: Distribution of simulator outputs (heating
and cooling loads) from the overall dataset. There are
more moderate loads than extreme ones in the dataset.

These limitations in data quality and represent- 997

ativeness can be overcome by including a large 998

amount of simulated data and/or updating the 999

models using measured data. The flexibility of 1000

regression-based emulators, as demonstrated in this 1001

paper, means that different datasets can be easily 1002

integrated into the model to improve its results. 1003

This is in contrast to the original simulator, where 1004

the results of one simulation do not have any im- 1005

pact on the results of another. 1006

6 Conclusion 1007

This paper has proposed a new test suite for stand- 1008

ardising the evaluation of emulators as suitable re- 1009

placements for building performance simulators in 1010

a variety of use cases, especially uncertainty quan- 1011

tification. The use of emulators is promising for 1012

applications where the speed of response from an 1013

evaluation is important, provided the emulators are 1014
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sufficiently accurate. Thus, the test suite is presen-1015

ted in the context of evaluating an emulator using1016

four criteria: accuracy, generalisability, speed, and1017

ease of use. We do not propose a specific model1018

or class of models for the dataset used here, or1019

any real-world problem exemplified by this dataset.1020

Rather, we show how emulators may be evaluated1021

in a given context, regardless of the structure of the1022

problem or the dataset used to characterise it.1023

As an example of how the test suite may be used,1024

we showed that non-linear models noticeably and1025

consistently outperform linear models in emulating1026

example specific and broad datasets. In all cases,1027

the non-linear regression models show a Root Mean1028

Square Error (RMSE) between 10-15% of the mean1029

model (output from a model which consists of only1030

one term: the mean of the training data). The1031

GP regression models are able to predict well on a1032

dataset consisting of a variety of buildings as well1033

as a dataset consisting of a specific building. We1034

find that the predictive performance of non-linear1035

GP regression models is stable and repeatable. We1036

showed procedures to use large datasets for learn-1037

ing and predicting with the same models on unseen1038

data.1039

Not all steps of a typical process require simu-1040

lation, as designers make several decisions based1041

on meeting existing laws, user needs, and func-1042

tional requirements. The use of numerical simu-1043

lation has expanded considerably with the advent1044

of simulation tools or workflows offered as a service1045

to non-specialists looking to carry out specific ana-1046

lyses [e.g., 44, 45], better diffusion of numerical1047

and computational skills, and better interoperab-1048

ility between the models created by different pro-1049

fessions. However, over-reliance on simulation tools1050

for prediction rather than comparative what-if ana-1051

lyses, and excessive trust in results based on testing1052

under limited operational conditions, e.g., typical1053

weather files, can lead to a severe gap between ex-1054

pected and actual performance. The quantification1055

of a possible cause of this gap can be partially ad-1056

dressed through the use of regression-based emu-1057

lators. The use of these emulators can, in turn,1058

become more systematic and widespread with the1059

adoption of standard operating procedures such as1060

the test suite proposed in this paper.1061

A Regression Models 1062

This appendix discusses the mathematical back- 1063

ground of linear and non-linear regression models. 1064

Details are also included on the structure of GP re- 1065

gression models, how they may be fit to data and 1066

used, and a practical workaround for big datasets. 1067

A.1 Linear and Non-linear Regres- 1068

sion Models 1069

Non-linear regression models are more flexible and 1070

have the potential to model the output of a non- 1071

linear system more accurately. They can also ac- 1072

count for the complex interactions of the large 1073

number of inputs that determine the outputs of 1074

a simulation. However, fitting non-linear models 1075

is computationally challenging, especially when a 1076

large amount of data is available. Ironically, a 1077

large amount of data is almost essential to obtain 1078

a good performance of the non-linear model, other- 1079

wise they might over-fit the data in hand [5, 6]. An- 1080

other issue is that specification of non-linear models 1081

is difficult and requires a lot of effort and domain 1082

expertise. That is, for some problems where ad- 1083

equate data cannot be obtained within the budget- 1084

ary or time allocation of an exercise, or the num- 1085

ber of properties or factors for each test subject is 1086

limited because of the quality of data, non-linear 1087

models may not work [e.g., 3]. Some of these chal- 1088

lenges are described in Section 3.2, exemplified by 1089

the data collected for this paper. 1090

Non-linear regression models use more paramet- 1091

ers than linear models, which increases both the 1092

time to build the model and the size of the train- 1093

ing data set required to calculate the parameters 1094

of a model. For example, a non-linear model such 1095

as an Artificial Neural Network (ANN) could have 1096

millions of parameters, which means that the data- 1097

set required to estimate all parameters must be 1098

of the same order of magnitude. In addition to 1099

the larger number of parameters, the space of pos- 1100

sible non-linear functions that can fit a given data- 1101

set is also larger. Thus, linear models, with fewer 1102

possible functions and fewer parameters to specify 1103

those functions, are simpler and easier to fit. 1104

Linear models are not flexible enough to estimate 1105

non-linear systems such as a building performance 1106

simulator. This means that the estimates of lin- 1107
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ear models are precise but may be inaccurate. The1108

flexibility of non-linear models, on the other hand,1109

means that the data from a non-linear system can1110

be estimated more accurately. However, this flex-1111

ibility could lead to over-fitting the model to the1112

dataset at hand. The practical consequence of this1113

would be a failure to predict well on real-world data1114

different from that included in the training dataset.1115

This problem of generalisability of models could1116

arise from over-fitting to a small amount of data, or1117

an unrepresentative dataset. In the context of BPS,1118

such an unrepresentative dataset could consist, for1119

example, of only one building type or weather (con-1120

text/location). This would make the model inac-1121

curate for other building types or locations. The1122

use of a larger, varied dataset can reduce this prob-1123

lem to some extent (see Figures 10 and 11 for an1124

example), since it would make it more likely that1125

the model would see examples of more real-world1126

situations.1127
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Figure 10: A generic representation of the tendency of
non-linear models to over-fit data from Bishop [6]. In
general, the more complex a model is, the more it will
over-fit the data at hand. The green curve is used to
generate the data and the red curves show a polynomial
fit. Polynomials of progressively higher degrees (M =
0, . . . , 9) fit the data better but are probably over-fitting.

A.2 Linear Models1128

The function fe(·) from Equation (3) may take the
form of a linear model:

ŷl = fl(x) := βTx, (12)

where ŷl is the prediction of the output at input 1129

x obtained using a linear function fl(x) which is 1130

specified using β, a real-valued parameter vector 1131

(of the same size as x). 1132

The parameter β is unknown but can be estim-
ated using a dataset of the input-output pairs, e.g.,
obtained by running many BPS simulations on a
plausible set of building designs θ and its operat-
ing conditions x. In a standard machine-learning
framework, we first collect a large amount of such
data: D := {yn,xn}N

n=1 where n denotes the n’th
BPS simulation. Given a dataset D, we may use
the standard training-testing framework developed
in statistics and machine learning [5] to estimate
β. In this framework, first, the N observations are
split into two mutually-exclusive sets: training and
testing. We denote the training set by Dtrain which
contains Ntrain number of observations. Similarly,
we denote the test set by Dtest which may contain
Ntest. In this paper we use the term validation set
to denote the dataset used for real-world testing of
the model. By construction, N = Ntrain + Ntest.
The training set is used to train the linear model,
i.e., to estimate β∗ by minimizing a cost function,
e.g., a mean-square error as shown below:

β∗ = arg min
β

1
Ntrain

Ntrain∑
n=1

(
yn − βTxn

)2
, (13)

This gives us a linear model f∗
l (x) := βT

∗ x which
can be used to predict the new inputs. The test
set is then used to assess the goodness-of-fit of the
estimator by computing the following cost,

L(f̂∗
l ) = 1

Ntest

Ntest∑
n=1

(
yn − βT

∗ xn

)2
, (14)

This is the test error which could be a faithful 1133

estimate of the real-world prediction error of the 1134

model when Ntest is fairly large and representative 1135

of the real-world problem. 1136

An advantage of a linear model is that train- 1137

ing is easy. Equation (13) has a closed-form solu- 1138

tion which can be obtained by using the ordinary 1139

least-squares method. This method scales well for 1140

medium-sized datasets and can also be extended to 1141

large datasets by using iterative methods such as 1142

stochastic gradient descent [46]. Another advant- 1143

age of the linear model is that it is fairly straight- 1144

forward to specify and interpret. An entry in the 1145
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parameter β is a direct indicator of how important1146

the corresponding entry in input x is for the linear1147

model to predict well. Unfortunately, linear models1148

are not good models of the simulator since the sim-1149

ulator is a non-linear model itself. As a result the1150

test error L(f̂∗
l ) is usually quite large, except for1151

the simplest problems as discussed in Section 2.31152

above.1153

A.3 Non-linear models1154

Estimating the f̂∗
e of Equation (4) is easier for linear1155

regression models since closed-form methods like1156

least-squares may be used [5, 6]. However, estim-1157

ating the same quantity for non-linear models re-1158

quires the use of iterative methods, which is time-1159

consuming. The time to train parameters rises rap-1160

idly with the number of parameters to be estim-1161

ated. As discussed in Section 2.3, several types1162

of non-linear model types have been proposed for1163

BPS. The recently-concluded ASHRAE Great En-1164

ergy Predictor III challenge [47] alone saw 415 solu-1165

tions submitted. Next, we discuss the structure of1166

a non-linear model and the process of fitting it to a1167

given dataset using a general-purpose model type:1168

Gaussian Process (GP) regression.1169

A.4 Gaussian Process Regression1170

We use the framework of GP regression to es-
timate the non-linear function fnl that minimizes
Equation (14). GP regression uses Bayes’ rule to
compute the posterior distribution over fnl given
sample outputs yn [33, ch. 2]. This approach works
directly in the space of fnl and avoids both a direct
estimation of β and also a direct specification of
ϕ(x). Instead, we specify a ‘kernel’ function which
defines the inner product of ϕ as

k(xi,xj) = ϕ(xi)T Σϕ(xj), (15)

where xi and xj are two inputs in our observation
set. In practice, a kernel function is easier to specify
than ϕ, even though it is sometimes unintuitive.
For example, a linear model fl can be specified by
choosing the linear kernel

k(xi,xj) = xT
i Σxj . (16)

The non-linear model used in this paper is a
squared exponential function (SqE) kernel function

k(xi,xj) = σ2
f exp

[
− 1

2(xi − xj)T Σ (xi − xj)
]
,

(17)

where σ2
f > 0 is the signal variance. This kernel is 1171

also referred to as the radial basis function (RBF) 1172

kernel in the context of Artificial Neural Networks. 1173

It is possible that emulator fnl is not able to 1174

model the output yn perfectly and, in that case, 1175

we can assume that there is noise in the estima- 1176

tion, i.e., yn = fnl(xn) + εn. Following the stand- 1177

ard practice in GP regression, we assume that εn 1178

are independent Gaussian random variables with 1179

zero mean and noise variance σ2
n. Specifying this 1180

non-linear model requires estimation of the noise 1181

variance σ2
n, the signal variance σ2

f , and Σ. Col- 1182

lectively, these quantities are referred to as “hyper- 1183

parameters” of the GP model, and we denote the 1184

set of hyper-parameters by ψ [33]. 1185

A.4.1 Fitting and Using a GP Model 1186

Building a GP-based emulator requires two tasks. 1187

The first task is to estimate the hyper-parameters. 1188

This is called ‘learning’. The second task is to com- 1189

pute f̂nl(x∗) given a new input x∗ and the estim- 1190

ated hyper-parameters. This is called ‘prediction’. 1191

We first give details of the prediction task. We
wish to compute the predictive distribution of the
output (here: annual energy use, denoted by y∗) at
a new input (here: the set of features that define
a building and weather conditions for that partic-
ular year, denoted by x∗) present in the test data,
i.e., the distribution p(y∗|x∗, D,ψ) where D =
{y1,x1, y2,x2, . . . , yNtrain ,xNtrain} and ψ is the set
of hyper-parameters. For GP regression, this distri-
bution is a Gaussian and has a closed form expres-
sion. This follows from the property that any finite
number of samples drawn from a Gaussian Process
are jointly Gaussian, giving the following expres-
sion for the distribution of y := [y1, y2, . . . , yNtrain ]T
and the y∗ corresponding to x∗:[

y
y∗

]
∼ N

(
0,

[
K + σ2

nI k∗
kT

∗ k∗∗ + σ2
n

])
(18)

where K is a matrix whose (i, j)’th entry is
k(xi,xj), k∗ is a vector whose i’th entry is
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k(xi,x∗), k∗∗ = k(x∗,x∗), and I is an identity
matrix of size Ntrain×Ntrain. Using the above equa-
tion, we can write the expression for the distribu-
tion of y∗ given y by using the conditional distri-
bution for a Gaussian distribution [33, pg. 16]:

p(y∗|x∗, D,ψ) := N (µ∗, σ2
∗), (19)

where µ∗ := kT
∗ (K + σ2

nI)−1y

and σ2
∗ := k∗∗ − kT

∗ (K + σ2
nI)−1k∗.

The computational complexity of these operations1192

is O(N3
train), due to the inversion of the matrixK+1193

σ2
nI. That is, the number of operations required1194

increases by the cube of the number of elements, so1195

adding 2 data points, for example, would require 81196

additional operations.1197

The distribution p(y∗|x∗, Dt,θ) depends on the
specification of ψ. We estimate ψ by maximizing
the log-likelihood: log p(y|X,ψ). This is called the
maximum likelihood estimation (MLE) method.
The closed-form expression for the log-likelihood is

log p(y|X,θ) := − 1
2 log |K + σ2

nI|

− 1
2y

T (K + σ2
nI)−1y − Ntrain

2 log(2π). (20)

This can be optimised with a numerical optimiza-1198

tion method [33]. However, every iteration requires1199

a matrix inversion, which could be costly if the op-1200

timization takes too many iterations. We discuss1201

a method to reduce the computation cost in Ap-1202

pendix A.4.2.1203

GP regression allows the specification of a ‘sig-1204

nal noise’, i.e., the variance of the uncertainty in1205

the data itself (σn in Equation (18)). This noise1206

variance may be fixed to some appropriate value1207

or tuned along with the other hyper-parameters.1208

Given that we are using simulated data, we expect1209

the noise variance to be very low. However, the1210

models are less stable when the signal noise is low1211

because the covariance matrices are frequently non-1212

invertible (Equation (20)). This is because the sig-1213

nal noise acts as a regulariser in this inversion of1214

the covariance matrix K when fitting a GP model.1215

Therefore, a value of nearly zero for the signal noise1216

foregoes the stability accorded by the regulariser.1217

When we set a lower bound, σn ≥ 10−6, the ill-1218

conditioning of the covariance matrices is reduced.1219

A.4.2 Using Big Datasets 1220

Generally speaking, the more data a model sees to 1221

characterize a domain, the better it is able to pre- 1222

dict on unseen data from that domain. Fitting a 1223

GP model involves the inversion of a matrix (the 1224

covariance matrix), whose size is N ×N , where N is 1225

the number of data points. This puts a limit on the 1226

size of dataset that can be considered for learning 1227

hyper-parameters or predicting. It is possible to 1228

work around this limitation by using the so-called 1229

‘sparse’ methods, i.e., methods using sparse repres- 1230

entations of the covariance matrix. However, these 1231

methods invariably reduce the predictive perform- 1232

ance of the model. In this paper, we present a 1233

simple method to extend the amount of data con- 1234

sidered, similar to a proposal in Chalupka et al. 1235

[42]. 1236

The training procedure consists of two steps: 1237

learning hyper-parameters through Maximum Like- 1238

lihood Estimation (MLE) using some training data, 1239

and then predicting the output at test inputs using 1240

the same training data. These two steps corres- 1241

pond to Equations (19) and (20), respectively. The 1242

matrix K from Equation (19) depends on training 1243

data, while the vector k∗ depends on the testing 1244

data. In our experiments, the estimates of hyper- 1245

parameters stabilize with about 1000-2000 training 1246

data points. If we continue with the policy of learn- 1247

ing and predicting using the same dataset, we are 1248

restricted to models trained on about 5,000 points, 1249

because repeatedly inverting matrices (as part of 1250

the MLE step) of size 5,000 or more is impractical 1251

on the hardware available to us. A simple method 1252

to add more data was to increase the size of the 1253

dataset during prediction. 1254

We modified the procedure to reduce run time 1255

by using sets of different sizes for learning and pre- 1256

diction (Figure 1). If learning is carried out on a 1257

smaller set of 2000 points (Ntrain = 2000), i.e., the 1258

matrix K in Equation (20) is defined on a dataset 1259

of 2000 points, estimates of the hyper-parameters 1260

ψ are fixed relatively rapidly. Given this estim- 1261

ate of ψ, we proceed to increase the data size to 1262

Npred > Ntrain for prediction using Equation (19). 1263

Since prediction involves only one matrix inversion, 1264

we were able to handle Npred of size up to 12,000. 1265

This modification to the procedure gives a modest 1266

improvement in the validation error. 1267
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Figure 11: Using N = 15 [left] or N = 100 [right] data
points to fit a polynomial of degree M = 9, shows that
“. . . increasing the size of the data set reduces. . . over-
fitting” [6].
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