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Abstract

String sorting is a fundamental kernel of string matching and database index construction; yet, it has not been studied as
extensively as fixed-length keys sorting. Because processing variable-length keys in hardware is challenging, it is no surprise
that no hardware-accelerated string sorters have been proposed yet. In this paper, we present Parallel Hybrid Super Scalar
String Sample Sort (pHS?) on Intel HARPv2, a heterogeneous CPU-FPGA system with a server-grade CPU. Our pHS>
extends pS>, the state-of-the-art string sorting algorithm for multi-core shared memory CPUs, by adding multiple processing
elements (PEs) on the FPGA. Each PE accelerates one instance of the most effectively parallelizable among the dominant
kernels of pS> by up to 33% compared to a single Intel Xeon Broadwell core despite a clock frequency that is 17 times
slower. Furthermore, we extended the job scheduling mechanism of pS> to schedule the accelerable kernel not only among
available CPU cores but also on our PEs, while retaining the complex high-level control flow and the sorting of the smaller
data sets on the CPU. Overall, we accelerate the entire algorithm by up to 10% with respect to the 28-thread software baseline
running on the Xeon processor and by up to 36% at lower thread counts. Finally, we generalize our results assuming pS> as
representative of software that is heavily optimized for modern multi-core CPUs and investigate the performance and energy
advantage that an FPGA in a datacenter setting can offer to regular RTL users compared to additional CPU cores.

Keywords String sorting - FPGA - HARP - Heterogeneous computing

1 Introduction

Sorting is one of the most studied problems in computer
science [1] and a fundamental building block of countless
algorithms and applications [2-5]. Especially in its simplest
and yet most common form of fixed-length key (e.g.,
integer) sorting, a plethora of highly optimized parallel
implementations have been proposed on multiple compute
platform: CPUs [6], GPUs [7, 8], and FPGAs [9-11]. While
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FPGAs generally provide the best performance per watt
[10], the maximum dataset size is often bound by the
amount of on-chip memory [9, 12], which is limited to a
few tens of megabytes and cannot be expanded. In addition,
many sorting algorithms are based on recursion, which
cannot be directly implemented in hardware.

Compared to fixed-length sorting, many fewer solutions
have been proposed for sorting variable-length strings
lexicographically. This is a building block of suffix sorting,
used in string matching, and database index construction
[13]. Parallel string sorting algorithms have been proposed
on CPUs [14] and GPUs [15], however, to the best of our
knowledge, no hardware accelerator for this problem has
been made available yet. Indeed, handling variable-length
keys in hardware is not only challenging per se but also
involves key comparisons that can become expensive as
keys are arbitrarily long.

Previous work [16-19] has shown that heterogeneous
CPU-FPGA platforms can benefit from the best of both
worlds: flexibility and high performance on serial tasks
execution from CPUs paired with energy efficiency and
massive parallelism from FPGAs. Heterogeneous platforms,
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originally targeting embedded systems, are now colonizing
datacenters as well [20, 21]. In this context, the competition
for performance is much stiffer than it has ever been in
the embedded world because here processors have easily
a dozen physical cores that run at clock speeds up to an
order of magnitude faster than FPGAs and exploit all of the
best microarchitectural techniques known (instruction-level
parallelism, speculation, simultaneous multithreading, etc.).
Therefore, a high-performance software developer may
wonder to what extent FPGAs can contribute to significantly
accelerate highly studied and optimized applications and, if
so0, at which price in terms of silicon real-estate and energy
consumption. The results of the Catapult project [21] are
well known and very encouraging, but are the result of
years of work by arguably one of the most skilled group
of engineers in the field. What can be expected from a few
months of averagely skilled hardware designers’ work?

In this paper, we present a hybrid CPU-FPGA parallel
string sorter implemented on the Intel’s HARPv2 experi-
mental platform. Our implementation is based on the open-
source state-of-the-art parallel algorithm for string sorting
on multi-core CPUs, Parallel Super Scalar String Sample
Sort (pSS) [13]. Besides the interest of this solution for the
specific problem of string sorting, we believe that pS? is rep-
resentative of modern CPU-optimized algorithms because
of 1) its large codebase (about 4,000 lines of C++ code), 2)
its irregular structure (compared to the straightforwardness
of the problem), and 3) its opportunistic blend of multiple
sort algorithms to obtain the best performance in the largest
possible set of scenarios. Moreover, pS? is also representa-
tive of the code quality that experienced software program-
mers can produce—e.g., exploiting in every possible way
the actual dimensions and properties of processor caches.
We accelerated what is arguably the single most effectively
parallelizable and time-consuming kernel—which, despite
its relative conceptual simplicity, took considerable devel-
opment and testing time to port on the FPGA. We succeeded
on having a processing element on the FPGA compute its
job faster than a CPU core, even when taking into account
all data transfers and despite the fact that some neces-
sary data preparation remains in software. We integrated
the hardware kernel into the job scheduling mechanism of
the original software (originally meant to dispatch jobs to
CPU cores and now dispatching them to both CPUs and
our processing elements) to build what we think is the first
FPGA-based system for parallel string sorting whose max-
imum dataset size is not bounded by the FPGA on-chip
memory. We study the speedup that our FPGA accelera-
tor achieves versus the speedup that every processor core
brings, and use this to understand the potentials of FPGAs
in datacentres for regular users who do have the competence
to design hardware in RTL but can afford only a few months
of effort to compete with highly optimized software.
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2 Preliminaries

After introducing some terminology that we will use
throughout the paper, we introduce S° and pS>, upon which
we built our hybrid pHS>. We finally present some details
about the memory layout of the strings in the input dataset
that have important consequences on the performance,
which will be discussed in Section 4.

2.1 Terminology

In the reminder of the paper, we generally adopt the same
terminology defined by Bingmann et al. for the original pS>
algorithm [13]. A string sorting algorithm classifies a set
S = {s1,..., s} of n strings with N characters in total. A
string s is an array of |s| characters from the alphabet ¥ =
{1, ..., 0}. Given two strings s1 and s2, lcp(sy, s2) denotes
their longest common prefix (LCP), that is, the length of
the longest sequence of initial characters that is shared by
s1 and s (e.g., Iep(‘abacus’, ‘aboriginal’) = 2 as they share
the prefix ‘ab’). D represents the distinguishing prefix size
of S, that is, the minimum number of characters that have
to be inspected in order to determine the lexicographic
ordering of S. For example, D = 8 for S = ‘aboriginal’,
‘article’, ‘abacus’ as sorting requires inspecting at least 8
characters: ‘abo’, ‘ar’, and ‘aba’. Sorting algorithms based
on single character comparisons have a minimum compute
complexity Q(D + nlogn) [13]. String sorting can be
accelerated by using super-alphabets, i.e. by grouping w
characters which are compared and sorted at once.

2.2 Super Scalar String Sample Sort (S°)

S? is a string sorting algorithm based on sample sort. Sample
sort is a generalized quicksort with k - 1 pivots (splitters)
x; < --- < xy—1 which classifies strings into k buckets
by < --. < bg. Splitters are chosen by randomly sampling
ak — 1 strings from the input, sorting them, and then taking
every «-th element, where « is the oversampling factor. By
doing so, the statistical distribution of the splitter set will be
an approximation of that of the input set, resulting in bucket
sizes more uniform than those produced by radix or bucket
sort [22]. The final sorted set is obtained by concatenating
the sorted buckets.

To exploit the word parallelism of the CPU, S° uses a
super-alphabet with w = 8 characters, which fit into a 64-
bit machine word. In the first classification, the common
prefix of the whole set is initialized to / = 0 and the
algorithm considers the first w characters of both the strings
and the splitters. When recursively sorting each bucket b;,
the starting index of the w characters to be compared (/) is
incremented by lep(x;_1, x;) (i.e., the LCP of the splitters
delimiting the bucket), which is a lower bound on the LCP



J Sign Process Syst

of each couple of strings in the bucket. This minimizes
the total number of character comparisons by effectively
reusing as much of the information gained in the upstream
classification as possible.

Splitters are arranged in a search tree and classification
is done by descending the tree. Using a binary search
tree to perform the classification would not reveal much
information if many strings share the same next w
characters. To efficiently handle these cases, equality
buckets are defined for strings whose next w characters are
the same. This is implemented by adding an equality check
between the w characters of interest of splitter and string
at each node. When recursively sorting an equality bucket,
the common prefix / can be increased by w: indeed, the w
characters that have been found to be equal in all strings can
be skipped altogether in the subsequent steps. Therefore,
v = 24 — 1 splitters are arranged in a ternary search tree
and define k = 2v + 1 buckets as shown in Fig. 1. Such
string sample sort with ternary tree and super-alphabet has
runtime complexity O(% logv + nlogn)) [13].

The output of the classification kernel is a bucket
counting vector with k elements containing the number of
strings in each bucket and an oracle vector with one element
per input string, whose element o; contains the index of the
bucket of string s;. After computing a prefix sum of the
bucket counting vector, the string pointers are redistributed
in the respective bucket. The number of splitters v is chosen
to ensure that both the splitter tree (of size w x v bytes) and
the bucket counting array (of size 8 x k = 16v + 8 bytes) fit
in the L2 cache of each processor. For a 256 KB cache, this
results in v = 8191, corresponding to a tree with d = 13
levels.

2.3 Parallel S° (pS°)

pS> spawns one thread for each of the pcpy CPU logical
cores and invokes four different sub-algorithms depending
on the size of the string (sub)set to be sorted S;, where S;
initially corresponds to entire string set S and, as sorting

X1

= X5
> <

(D ()
bo b,) b3) by (b5 (bg

Figure 1 Example of ternary tree with depth d = 2 used during S°
string classification. Based on the result of the comparison with at most
d splitters, each input string is classified into one of 2¢ — 1 buckets
(adapted from Bingmann et al. [13]).

E O
b

progresses, to the buckets that are recursively sorted. The
algorithm selection criteria are summarized in Fig. 2. For
the largest sets with |S;| > a fully parallel version

pcru’

of S described below is used, for 1,, < |S;| < —2

pcru
the sequential S described in Section 2.2 is invoked, for

t; < |Si| < t, a parallel version of caching multikey
quicksort (MKQS) [23] is run, and insertion sort is called
when |S;| < t;, where t,,, = 220 — | Mi and t; = 64 have
been determined empirically by Bingmann et al.!

The fully parallel version of S consists of four
stages: sampling the splitters to generate the ternary tree,
classification, global prefix sum and string redistribution.
Classification is the only parallel stage, where strings in

7 % ISil
max(tm,ﬁ)

jobs?. Global prefix sum starts as soon as all classification
jobs terminate; therefore, the total execution time of the
fully parallel S is determined by the classification job
that is completed last. For each instance of the other sub-
algorithms, as well as for the serial stages of the fully
parallel S3, a single job is created.

For dynamic load balancing, pS® uses a central job queue
polled by all threads. In this way, multiple jobs ready for
processing can be handled in parallel by different threads.
All the sequential jobs use an explicit recursion stack and
implement voluntary work sharing: as soon as another
thread is idle, an atomic global flag is set, which causes
other threads to release the bottom of their stacks (with the
largest subproblems) as independent jobs.

S; are split evenly among p/ =

2.4 Memory System Considerations

The string set is represented as an array of pointers to the
first character of each string. Because of this indirection,
scanning the input dataset is much less cache efficient
than in atomic sorting. During pS° initialization, the string
characters are written to memory contiguously in the same
order as they appear in the file. Initially, the pointers to the
beginning of each string are arranged in memory in the same
order as the string characters. As strings are being sorted,
only the pointers are moved in memory and thus the order of
the strings and characters arrays will differ. As a result, the
performance of the memory system will be higher during
the first sorting step compared to all the following. Indeed,
even though the first 8 characters of each string are not
placed contiguously in memory (unless the string length is
< 8), reads during the first sorting step will be monotonous
and may hit on the same cache line of the previous string,

' The values for #,, and p in the paper [13] and in the released source
code [24] are not consistent. We used the values in the source code as
they provided higher performance in our tests.

2See Footnote 1
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Figure 2 Sorting sub-algorithm
selection in pS> depending on
the size of the string subset S;.
Each box represents a job which
can be processed by a different

thread. Splitter Splitter
sampling sampling
and sorting and sorting
Multi-key | .
é é g quicksort nsertion
\ l (MKQS) sort
Prefix sum Prefix sum
and string and string
redistribution redistribution

or at least take advantage of hardware prefetching. As string
pointers start to be rearranged in memory, reads during
all the subsequent sorting steps become more and more
irregular and have a high chance of cache miss, unless the
dataset is small enough to fit in the cache.

3 Design Methodology

We decided to accelerate the -classification steps of
both the parallel and sequential steps of S> because,
as discussed in Section 4.2, it is one of the two
dominant kernels of the whole sorting algorithm. Moreover,
classification is massively parallel in itself, as each
string can be classified independently. Finally, sample sort
classification can be seen as a generalization of the three-
way partitioning step of MKQS. As a result, it is easier for
a classification accelerator to be extended to also handle
MKQS partitioning in the future rather than the opposite.
Our accelerator contains a number of processing elements
(PEs), each capable of handling the entire classification step
of a single S° job.

3.1 Hardware Platform

HARPv2 (Heterogeneous Architecture Research Program,
version 2) is a shared memory heterogeneous system,
consisting of a 14-core Intel Xeon Broadwell CPU and
an Intel 10AX115N4F4513SG Arria 10 FPGA. The FPGA
logic is divided in an FPGA Interface Unit (FIU) provided
by Intel and an Accelerated Functional Unit (AFU) designed
by us. The FIU implements platform capabilities such as
the interface logic for the links between CPU and FPGA
and exposes a Core Cache Interface (CCI-P) and a Memory
Mapped I/O (MMIO) interface to the AFU, together with
three clocks (100, 200 and 400 MHz) for the AFU logic.
The MMIO interface is used by the CPU to initiate read or
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write transfers to the AFU registers, whereas the AFU reads
and writes 64 byte cache lines from/to the system memory
through CCI-P.

The AFU sees a three-level memory hierarchy: a 64 KB
first level cache inside the FPGA itself and managed by the
FIU, the 35 MB processor’s last level cache (LLC), and the
64 GB system memory. Communication between the FPGA
and the CPU’s LLC is ensured by two PCI-Express and one
QPI physical channels. To access the system memory, the
AFU can use virtual addresses, provided that the buffers that
will be shared with the AFU are allocated using a special
allocator.

3.2 Parallel Hybrid S° (pHS®)

To fully exploit the additional parallelism available for the
parallel S° steps of our hardware-accelerated S° (pHS?), we
replaced pcpy with pcpy + paruy when computing the
threshold for the parallel S° steps and ps (see Section 2.3),
where p4ry is the number of PEs in the AFU.

pS® implements voluntary work sharing to achieve
workload balancing among CPU cores. Ideally, one would
enable the additional processing elements (PEs) on the
FPGA to directly push and pop jobs from the same shared
job queue. However, the current version of CCI-P does not
support the atomic memory operations that are necessary to
use the lock-free job queue. Moreover, the additional PEs
that the AFU introduces can only process a kernel present
in two kinds of jobs: classification jobs from fully parallel
S? steps and sequential S° steps.

Given all the constraints above, we resorted to a sec-
ondary work sharing mechanism inside the two accelerable
S> jobs. An array of AFU workspaces is allocated as a
CPU/AFU shared memory buffer. Whenever a CPU thread
reaches the classification kernel, it checks AFU job count,
an atomic global variable that counts the number of jobs
currently attributed to the AFU. If the AFU job count is
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less than a given maximum value, the job is attributed to
the AFU and the CPU (1) copies the 8 characters of inter-
est of all job’s splitters and strings to one of the AFU
workspaces and (2) sends a job descriptor to the AFU via
MMIO. The job descriptor contains the pointers to the input
splitter and string arrays in the AFU workspace, as well as
to the output oracle buffer. The availability of each AFU
workspace is managed by an array of atomic boolean flags;
sending the job descriptor via MMIO, which requires some
tens of microseconds, is the only operation that requires the
acquisition of a spinlock.

After sending the job descriptor, the CPU thread
enqueues a new polling job to the central job queue. In the
polling job, the CPU will poll a done bit in the respective
AFU workspace: if the job is done, the CPU reads back the
oracle array and proceeds with the prefix sum and string
permutation as in the standard pSS; if not, it enqueues a new
polling job. By using a separate polling job, the CPU thread
can process other jobs in the queue, if any, while the AFU
is busy. We empirically determined 2 X p4fy to be a good
value for the maximum number of jobs that can be assigned
to the AFU.

3.3 AFU Design

The top level architecture of our AFU is shown in Fig. 3.
Each processing element handles one classification job,
which consists of a set of strings to be classified with a
single splitter tree and corresponds to the workload that, in

Figure 3 System-level
architecture of our AFU. Jobs
are received through the MMIO
interface (1) and dispatched to
an idle PE (2). PEs request
splitters and input strings (3, 4,
5, 6), classifies them and return

pS?, is processed by a CPU thread. The CPU uses MMIO to
enqueue jobs to the jobs FIFO (1), where they are consumed
by the dispatcher whenever a PE is available. Once a PE
receives a job (2), it requests access to the CCI-P interface
via the arbiter (3). The arbiter uses a simple round-robin
policy to provide fair I/O access to each requesting PE. Once
the PE has been granted access to the interface (4), it sends
CCI-P read requests to the read address FIFO for the job
splitters and strings (5), which will be forwarded via the
CCI-P read data channel (6). Classification starts as soon
as the first 64 byte cache line is received. When the oracle
buffers inside the PEs are full, the PE requests the interface
again (7, 8) and sends out the oracles via the write address
FIFO (9) and the CCI-P write data channel (10).

Although the PE could in principle handle a larger super-
alphabet than the CPU as its word-level parallelism is
not locked to 64 bit, doing so would make S> jobs for
the two platforms not compatible with each other. This
would require our dynamic scheduling at job execution
time described in Section 3.2 to be replaced by some
form of early job scheduling at job creation time. Even
if we cannot increase parallelism at character level, we
increased parallelism at string level by classifying multiple
strings concurrently. As shown in Fig. 4, each PE contains
8 classification sub-PEs, one per 8 B string in a 64 B
cache line. Splitters are replicated in four dual port on-chip
memories, each serving two sub-PEs in parallel.

Figure 5 shows the internal structure of a sub-
PE. Between input and output FIFOs, a successive

T
Job
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job descriptors
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6a | SPlitter Splitter Splitter Splitter

memory memory memory memory
] ] — ]
Sub-PE Sub-PE Sub-PE Sub-PE Sub-PE Sub-PE Sub-PE Sub-PE

0 1 2 3 4 5 6 7

P |

Oracle register |

Figure 4 Architecture of one of the PEs shown in Fig. 3. A PE contains eight sub-PEs, each classifying one of the eight strings contained in a 64
B cache line. Splitters are replicated into four dual port on-chip RAMs each shared by two sub-PEs.

approximation register (SAR) is used to descend the
classification tree stored in the splitter memory. Descending
one level requires four cycles as the on-chip memory has a
2-cycle latency and the comparator and the SAR have one
each. Therefore, four strings are classified in an interleaved
fashion in order to fully utilize all the units. The resulting
classification has a latency of 15 clock cycles at 200 MHz

[ String ]
| FIFO |

address

Splitter |data
memory 64 |64

13

Successive
approximation
register

A 13
Y

Bucket resolver

14{

[ Oracle ]
. FIFO |

Comparator

Figure 5 Architecture of one of the sub-PEs shown in Fig. 4. Starting
from the root of the splitter tree, the sub-PE traverses the tree by
iteratively comparing strings to splitters. Based on the result of each
comparison, the successive approximation register updates the address
of the next splitter to fetch. Once the classification is completed, the
bucket resolver computes the oracle index based on the result of the
last comparison. To always fully utilize all functional units, we classify
four strings in an interleaved fashion.
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per string per sub-PE: v = 13 cycles for the tree descent
plus 2 cycles to fill and flush the pipeline. A PE with 8
sub-PEs classifies 8 strings simultaneously and thus has a
latency of 15 cycles per cache line with 8 strings, or 1.875
cycles per string.

Given that the CCI-P interface can supply up to one cache
line per clock cycle, we instantiate multiple PEs to match
computation to I/O throughput. Any time a PE requests the
CCI-P interface, the lock is granted to read the splitter set,
8,192 input strings, or to write 8,192 oracles before being
given to the next requesting PE.

4 Experimental Results

All tests have been performed on the HARP system
described in Section 3.1. The CPU has 28 logical cores
and the system is equipped with 64 GB of RAM.
We compiled our software with gcc 6.3.1 with -02
-march=broadwell. We evaluate our pHS> on three of
the benchmarks that have been used by Bingmann et al. in
the original pS® paper [13] which we take as representative
of datasets with qualitatively different statistics:

— URLSs contains a list of URLs crawled breadth-first
from the pS> authors’ institutional web page. This set
has the largest % as all keys start with either http://
or https:// followed, in many cases, by a small set
of labels such as www, en or de. For a given N, this
dataset is close to the worst case for a string sorting
algorithm as almost all characters must be checked in
order to establish the order of the strings.

—  Wikipedia is the XML dump of all pages of the English
Wikipedia as of June 1st, 2012. While about 25% of
the strings which consist or start with XML tags are
very similar to each other, the remaining 75% of strings
are lines of natural text and have a more uniform
distribution.
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Table 1 Properties of the datasets used to evaluate our system.

n % Avg. string length Parallel S° steps Sequential S3 steps
URLs 161M 96.3% 66.9 12 69
Wikipedia 131M 29.8% 81.9 1 21
Random 617M 58.8% 17.4 1 0

— Random is a list of randomly generated numbers of 16
to 19 digits. Both the digits and the length are uniformly
distributed, which results in an uniform distribution of
keys and thus of bucket sizes.

We consider the first 10 GB of each dataset; we noticed
that the trends are much more dependent on the dataset
statistics than on the dataset size, at least above a few
gigabytes. Table 1 summarizes the main properties of the
datasets, together with the number of parallel and sequential
S? invocations that are called by pS> at 28 threads.

4.1 Resource Utilization

Table 2 shows the resource utilization of the entire FPGA
design and a breakdown of the largest modules of our AFU.
Each PE consumes less than 1% of the ALMs and 7.1%
of the M20K memory blocks of the Arria 10 FPGA. All
other AFU modules have negligible resource utilization.
The main bottleneck for increasing the number of PEs is not
the resource utilization per se but rather timing closure. With
more than 6 PEs in the design, we could not achieve timing
closure with a 200 MHz clock; falling back to the 100 MHz
clock and duplicating the number of PEs was not an option
as 12 PEs would not have fit in the AFU LogicLock region
which has only 70% of the total M20K blocks.

Table 2 Resource utilization of our FPGA design.

ALMs M20Ks
CCI-P interface 793 (<1%) 0
FIFOs 119 (<1%) 38 (1%)
6 PEs 22,133 (5%) 1,164 (43%)
Total AFU 24,109 (6%) 1,202 (44%)
HARRP infrastructure (FIU) 78,900 (18%) 351 (13%)
Total 103,009 (24%) 1,553 (57%)

No DSPs were used. The AFU breakdown only contains the largest
modules and thus the total AFU resource utilization is larger than
the sum of that of the listed modules. In parenthesis: percentage of
total available resources. Note that the AFU is constrained within a
LogicLock region which contains 78% of ALMs and 70% of M20K
blocks. The maximum number of PEs is not limited by the resource
utilization but by timing closure at 200 MHz

4.2 Profiling of Single Thread pS°®

Figure 6 shows the results of profiling a single thread
execution of p85 on our benchmarks. Classification, which
is the step we accelerate, is either the first or the second
most dominant kernel of the entire application. We expect
the runtime share of classification to increase even further
for larger datasets as more and more string subsets become
larger than f,,. Moreover, our S° classification can easily
be extended in the future to handle MKQS where strings
are essentially classified into three buckets by a single
splitter, whereas extending an MKQS accelerator to handle
classification would require more important adaptations.

4.3 Performance Evaluation

Kernel acceleration Figure 7 compares the runtime of the
classification kernel on a CPU core and on one of our PEs.
We distinguish the case of sequential reads (Fig. 7a) in
the first sorting step from that of random reads (Fig. 7b)
which applies to all subsequent sorting steps for the reasons
discussed in Section 2.4. We only consider datasets bigger
than #,, = 1 Mi as smaller jobs are handled by other sorting
algorithms.

For large n, one PE is 10% and 33% faster than a
Xeon CPU core in the case of sequential and random
reads respectively. String fetching from main memory is
5.6x slower on random than on sequential reads. This
makes string fetching the dominant step of all accelerated
S> jobs that are not part of the first parallel S° step.

8 Classification [Rest of §° MKQS M Insertion Sort
[}

é 100% 14% 21% 20%
5
= 36%

= 40% 42%
:§ 50% 7%

r..a 6% 6%
pe 43% 32% 32%
S
T 0% e
g URLs Random Wikipedia
(s

Figure 6 Profiling of single thread pS> run on our benchmarks. We
accelerate the classification part (dashed green) of S° (dashed green
and white), which is one of the two dominant kernels of the entire
application.
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(a) Sequential reads: string pointers and characters have the
same order in memory. Fetching the string characters involves
non-contiguous but sequential reads.

— N
£ 1,000 \
G N
% N 7§
2 500 \ A
E § \ N
N N N

& N7 \ N
0 1 2 4 8 16

n (Mi)

(b) Random reads: string pointers and characters do not have
the same order. Fetching the string characters involve random
reads.

Figure 7 Classification runtime when executed on the CPU and on a
PE. Strings are extracted from the beginning of the URLs benchmarks.
Writing the splitters takes a negligible time in all cases (10u s). For
n > 16 Mi, a PE is 10% and 33% faster than a Xeon core on sequential
and random reads respectively.

When the classification is done in software, the three stages
(input reading, actual classification, and output writing) are
finely intermixed with each other and their runtime cannot
be measured separately. The overall performance hit on
random reads is nevertheless clearly visible on the software
classification runtime (3x for n = 16 Mi).

As expected, PE execution time and oracle readback
take the same time irrespective of the sparsity of the input
strings. For large n, the PE classification throughput tends
to 2.56 AFU clock cycles per string. If 1.88 cycles are
expected to be for the actual classification (see Section 3.3),
we can estimate that 0.54 of the remaining 0.68 cycles are
for reading the 8 input characters and 0.14 to write the
oracle from/to the CPU/AFU shared memory (8 and 2 bytes
respectively, both accessed sequentially and contiguously),
assuming that read and write bandwidth between PE and
shared memory are equal and if we neglect the partial
overlaps between I/O and classification. With the major
pS® software modifications required to allocate the whole
input dataset and the oracle buffers on the CPU/AFU
shared memory, and if the string pointer indirection was
done by the PE, we could estimate the ideal hardware-
accelerated S’ runtime to be the current one without the
oracle readback time and 0.54 AFU clock cycles per string.
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This would make our PE 33% and 43% faster than a Xeon
core for sequential and random reads respectively, besides
increasing parallelism at a system level by making the CPU
available during the whole accelerated S job. We plan to
implement this improvement as a part of our future work.

pS® Acceleration To isolate the contribution of each of our
modification to the pS> code to the overall performance, we
compare four different scenarios:

1. pS>: original pS>

2. pS>-add_jobs: the same as pS®> where pcpy has been
replaced by pcpu + paru (see Section 3.2), which
results in parallel S invocations with more, smaller
classification jobs.

3. pHS’-block_sequential: the same as pS>-add_jobs where
jobs are dispatched to the PEs whenever possible but the
software thread waits in a polling loop after offloading
the smaller sequential S° jobs and a separate polling
job is enqueued to the central job queue only after
offloading a classification job from a parallel S° step.

4. pHS’-no_block: pHS> as described in Section 3.2.
Compared to pHS®-block_sequential, a separate polling
job is created in every case.

Figure 8a-c show the speedup of whole algorithm
compared to a single thread execution of pS°> and Fig. 8d-f
compared to pS® with the same number of threads, for each
of our benchmarks.

The results vary greatly depending on the input dataset
and on the number of CPU threads. In URLs, strings
are very similar to each other and, in the first iterations,
most strings are classified in a few large buckets. Indeed,
parallel and sequential sample sort are invoked 81 times
overall, and the fraction of accelerable code is the highest
of all benchmarks. At low thread counts, pHSS-no,bIock on
URLs provides the highest acceleration compared to pS>
that we measured, peaking at 36% at 8 threads. Between
5 and 15 threads, part of the benefit is due to splitting
parallel S° invocations in more classification jobs, and
having additional resources in the FPGA to handle them
with limited overhead on the CPU cores gives further
advantage. On more than 15 threads, pHS>-block_sequential
becomes the best performing algorithm, providing a 6-8%
acceleration compared to the baseline.

On the Wikipedia dataset, pHS>-block_sequential always
outperforms pHS’-no_block except at one thread and has the
highest acceleration at 28 threads (10%). With more than
8 threads, pHS>-no_block is actually slower than pS>, by
20-25% at high thread counts. Increasing the number of
classification jobs does not provide the same clear benefit
as in URLs and is even counter productive at high thread
counts. As for the random dataset, there is no distinction
between the two pHS? versions as there are no sequential S’
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Figure 8 Sorting speedup compared to pS® with one thread (a, b, c)
and to p55 with the same number of threads (d, e, f, note the differ-
ent vertical scales). The data points are the average of 5 runs; error

invocations: the only accelerable jobs are those of the single
parallel S invocation at the beginning of the algorithm. On
this dataset, the AFU provides acceleration on either low
thread counts, or when the thread count exceeds the number
of physical CPU cores.

At low thread counts, the relative increase of parallelism
provided by the 6 PEs is larger than at high thread counts.
In the case of URLSs, increasing the number of classification
jobs seems to be beneficial in itself, perhaps due to the
superlinear runtime complexity of a single string sample
sort (see Section 2.2). This effect may not appear on the
other benchmarks given the smaller number of parallel
S invocations, and any gains may be offset by having
a number of jobs that is not any more divisible by the
number of threads. This results in an increase of runtime
of the slowest thread due to load unbalance, which causes
a slowdown of the overall parallel S° step. The AFU
provides instead additional resources to handle those jobs
with limited overhead on the CPU cores.

Overall, we expected pHS>-no_block to always outper-
form pHS>-block_sequential as the former provides a better
use of parallelism by enabling the thread that transferred the
job data to the AFU to process other jobs while the AFU
is busy. This actually holds when the number of threads is
low and blocking one of them in polling results in a signif-
icant reduction of available computing resources. However,

Threads

(e) Speedup on Wikipedia compared
to pS® with the same number of

(f) Speedup on Random to pS® with
the same number of threads

bars show their standard deviation. Depending on the dataset and on
the number of threads, either pHS>-no_block or pHS’-block_sequential
accelerate pS° by up to 36%.

as the number of threads placing jobs in the queue increases,
the polling job might end up being processed a significant
time after the completion of the classification job by the PE.
This results in (1) the AFU job queue slot being occupied
for longer than necessary, wasting AFU resources and (2)
delaying the creation, and thus the completion, of the 16,381
jobs to sort the sequential job’s buckets. These effects have
a smaller impact on URLs than on Wikipedia because the
number of sequential S jobs in URLs is much greater than
PAFU, Which ensures that there are always enough sequen-
tial S jobs processed by CPU threads whose recursive
subjobs are generated as soon as the classification finishes.

4.4 Cost/benefit of FPGA and CPU Cores

In Section 4.3, we showed that pS> can be accelerated by
either increasing the number of CPU cores or by exploiting
dedicated hardware on the FPGA. In this section, we
discuss costs and benefits of the two approaches in terms of
performance per silicon area and energy consumption.

We strived to estimate parameters that are as realistic
as possible only based on publicly available information.
Table 3 summarizes the results of our analysis. As the
exact CPU model name of the HARPv2 machine was not
available, we used the Intel Xeon E5-2680 v4 which seems
to be the most similar in terms of number of cores, base
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Table 3 Parameters used for our cost/benefit analysis.

CPU (fixed/per core) FPGA
Silicon area (mm?) 306 (96/15) [25] 144 [25, 26]
Equivalent area 5,200 (1,600/250) [27] 1,800 [27]
Power (W) 120 (15/7.5) [28] 21.8

frequency, microarchitecture and caches size. As we did
not have the permissions to read the actual CPU power
consumption during the execution of pS°, we used the TDP
to estimate the power consumption when all cores are used.
We compared the die size and TDP of the 14-core Xeon ES5-
2680 v4 to those of the 10-core Xeon E5-2640 v4 belonging
to the same processor family to estimate area and power
fixed and per core.

As for the FPGA, we estimated its total area by
comparison to that of the CPU die as shown in a press
article about an upcoming Intel CPU-FPGA product [26].
To make a fair comparison between chips manufactured
with different processes, we normalize the physical area to
the area of one million 6T SRAM cells in the respective
process (unit of equivalent area), which is 5,880 pm? and
8,100 um? for the Intel 14 nm and the TSMC 20 nm process
respectively. The actual FPGA power on the HARPv2
system during the execution of our pHS® was measured to
be 21.8 W, of which 13.5 W are due to the transceivers and
is constant irrespective of whether the AFU was running or
not, and 8.3 W are attributed to the core rail that powers the
reprogrammable logic.

From the data in Fig. 8, we computed the relative speedup
when adding one CPU thread comparing to that of adding
an FPGA with our 6 PEs. When computing the FPGA gain,
we considered the best between the pHS’-block_sequential
and pHSS-no,bIock at each thread count, assuming an ideal
scheduler that can each time select the best policy. We

took the average across the three benchmarks. The results
are shown in Fig. 9a. Adding a CPU core provides the
highest speedup up to four cores; on higher core counts,
the advantage of a CPU core is comparable to that of the
FPGA. Once the results are normalized by the equivalent
area (Fig. 9b), adding a CPU core on the same die is clearly
the best solution, providing up to an order of magnitude
higher speedup per equivalent area than the FPGA. The gap
is even larger when looking at the energy cost of sorting
the dataset (Fig. 9c): the speedup provided by the FPGA
is never enough to compensate for the additional power
consumption it involves, whereas an additional CPU core
can in some instances provide positive energy savings. The
FPGA indeed provides the same speedup of an additional
CPU core but at 7 times the area and 3 times the power cost.

However, this is not really a fair comparison because,
in adding a core, we assumed that the overall fixed
infrastructure for a CPU is already there whereas, to add
our FPGA accelerator, the complete FPGA infrastructure
needs to be added; this accounts for example for the fixed
power consumed by the transceivers which, based on our
measurements, accounts for 60% of the total FPGA power
during the execution of pHS?. Therefore, it seems useful to
contrast the addition of the FPGA to the addition of a core
which cannot fit in the same die, or in general to replace a
CPU die with n cores with two dies with n+ 1 cores overall.
In this case, another CPU core or an FPGA have similar
area and energy cost, at least when the first CPU already
has five or more cores. From another perspective, if the
FPGA was on the same chip and could share the fixed CPU
costs just like an additional CPU core, it could also perform
similarly in terms of area and energy efficiency. Moreover,
considering that in pS> the fraction of parallelizable runtime
for the CPU is close to 100% (any core can independently
process any kinds of available job) and only 30% to 40% for
the FPGA, the FPGA could potentially outperform the CPU

100% 0.4% [ 1+1 core same die [ 1+1 core same die
141 core . 40% .
80% EEm 1 FPCA 0.3% 7734 +1 core +1 die 777 +1 core +1 die
H -1 FPGA 20% N +1 FPGA

60%
0.2%
40%

Speedup

0.1%
20% °

0% 0%

12345678 910111213
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Speedup/equivalent area

(a) Speedup

6 7 8 910111213

(b) Speedup per equivalent unit area
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—20%
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(one million 6T SRAM cells)

Figure 9 Impact of adding an additional CPU core or an FPGA (aver-
age of the three benchmarks). Higher is better on all charts. As the
FPGA is on a separate die, we distinguish the case of an additional
CPU core that fits on the same die or that requires introducing an
additional die. In terms of pure performance, with five or more cores,
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adding the FPGA provides the same speedup as an additional CPU
core. The additional CPU core provides better performance per area
and energy savings but only as long as the core fits in the same die and
it is not necessary to parallelize across multiple dies or even sockets.
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on applications where the FPGA could process kernels that
take a larger fraction of total runtime. Finally, the mix of
FPGA resources that our application needs is biased towards
on-chip memory and only 24% of the available ALMs are
used. If the blend of resources provided by the FPGA better
matches that of the application—for example, if the FPGA
also offered high-density on-chip memories such as eSRAM
or UltraRAM—we can expect the FPGA to provide better
performance per unit area, although it is an open question
whether there is a blend that would be more universally
beneficial for a broad class of accelerators.

5 Related Work
5.1 Parallel String Sorting and Sorting on FPGAs

Besides pS> [13], which is a state-of-the-art string
sorting algorithm for multi-core shared memory machines,
Bingmann et al. also analyzed string sorting parallelization
on NUMA machines [14]. For those architectures, they
proposed to run independent pS> sorters on each NUMA
node and then merging the results with a multiway
mergesort that uses the LCP information from pS> to skip
over common characters during merging. On both shared
memory and NUMA machines, they observed that the
statistical properties of the dataset have a large impact on
the effectiveness of parallelization and that there is no single
best string sorting algorithm for all use cases: for example,
parallel multikey quicksort (pMKQS) and parallel radix
sort outperformed pS® on very uniform datasets such as
Random. This is consistent with fixed-length key sorting
and with our findings on a heterogeneous shared memory
CPU-FPGA machine.

On GPUs, Neelima et al. [15] proposed a parallel
MKQS that uses dynamic parallelism to recursively sort
the partitions as they are created, which result in an
exponentially increasing amount of GPU threads. They
obtain a 6x to 18x speedup with an NVIDIA Tesla
K40C compared to Bingmann’s pMKQS running on a
desktop machine. Deshpande et al. [8] adapted the radix
sort for fixed-length keys provided as a part of the CUDA
Thrust library to handle variable-length keys by iteratively
extracting a fixed number of characters and treating them
as integers, which we see as a form of super-alphabet.
They obtained one order of magnitude of speedup with an
nVidia GTX 580 compared to a dual core Core 2 Duo CPU.
Both works use datasets not larger than a few hundreds of
megabytes.

To the best of our knowledge, no other string sorting
implementations on FPGA or on heterogeneous CPU-
FPGA systems have been proposed. Sorting of fixed-length
keys on FPGA has been extensively studied; however,

none of the solutions we found can be easily extended
to handle variable-length keys as they rely on storing
entire keys on the FPGA on-chip memory and comparing
them at once. Koch et al. [9] proposed a FIFO-based
merge sorter followed by a tree-based merge sorter to
maximize the maximum dataset size that an FPGA can
sort. Although partial runtime reconfiguration and multiple
channels to external memory can further increase the
maximum dataset size, it is still bounded by a function of
the total FPGA on-chip memory. Chen et al. [29] proposed
an architecture based on sample sort to efficiently sort
datasets that do not fit in the FPGA on-chip memory
using a heterogeneous CPU-FPGA system; however, it
can only handle fixed-length keys. At the other end
of the spectrum, Jun et al. [30] proposed an FPGA
accelerator to sort terabyte-sized datasets of fixed-length
keys limited by the flash storage bandwidth. Both Matai
et al. [10] and Chen et al. [31] proposed frameworks
that generate sorting architectures optimized according
to different metrics (area, speed, power). The works
focus on design automation and on simplifying design
space exploration under complex constraints; some of the
generated architectures have been evaluated on datasets
that are at most on the order of hundreds of thousands
of keys.

5.2 Heterogeneous CPU-FPGA Platforms

Zhang et al. [18] presented a hybrid CPU-FPGA sorter for
HARPv1. The dataset is split into blocks that are sorted
by a merge sorter on the FPGA; blocks are eventually
merged by the CPU. Computation on the two platforms
can partially overlap as the first blocks can be merged by
the CPU while the FPGA is sorting the next ones. They
obtained 1.9x and a 2.9x speedups compared to FPGA-
and CPU-only implementations. Using the CPU to merge
the blocks effectively makes the maximum dataset size
independent from the FPGA on-chip memory; however, the
on-chip memory still limits the block size, which makes the
runtime dominated by the CPU merge for datasets larger
than 256 MiB. A similar idea of pre-sorting on the FPGA
and merging with the CPU has also been evaluated by Chen
et al. [19] on a Zynq CPU-FPGA platform, obtaining a
similar conclusions that the CPU becomes the bottleneck for
problems that are large compared to the amount of FPGA
on-chip memory. One possible reason is that the CPU merge
algorithms that have been proposed are sequential, which
heavily underutilizes modern multi-core CPUs, especially
those used in datacenters. Our pHS> is built on top of a
state-of-the-art multithreaded sorter that fully exploits the
parallelism of modern CPUs and extends it with additional
specialized processing cores on the FPGA. Moreover, the
maximum dataset size that can be processed by one of our
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PEs is only limited by the system memory and not by the
FPGA on-chip memory.

Umuroglu et al. [16] proposed a hybrid breadth-first
search (BFS) implementation on a Zynq CPU-FPGA
system. By offloading the BFS steps with the largest
frontier to the FPGA and processing the remaining ones
on the CPU, they obtained 7.8x and 2x speedups
compared to CPU- and FPGA-only implementations. Weisz
et al. [17] analyzed pointer chasing on three CPU-FPGA
systems including HARPvI. On single-linked lists with
data payload accessible through a pointer, the best results
are achieved when the CPU performs the indirections to
visit the list nodes and streams the payload pointers to the
FPGA for processing. Both works suggest that the highest
performance on a CPU-FPGA system are achieved when
the CPU is used on irregular and serial computations and
the FPGA on massively parallel processing involving large
amounts of data. These results inspired the high-level CPU-
FPGA partitioning of our pHS?, where we offload the most
parallel kernel operating on the largest data subsets to the
FPGA while the CPU keeps handling recursion and sorting
of small datasets.

Chang et al. [32] presented an FPGA accelerator on
HARPvl for the SMEM seeding algorithm of DNA
sequencing alignment. SMEM involves a large amount of
short, random reads and its bottleneck resides in memory
latency rather than computation. The authors propose a
many-PE architecture that issues as many outstanding reads
as possible to hide the long latency of memory accesses.
Sixteen PEs achieve a 4x speedup on the SMEM kernel
compared to a single CPU core; on the largest CPU thread
count (12 threads), they achieve a 26% speedup on the
SMEM kernel and a 8% speedup on the entire algorithm.
This is the work that is the most similar to ours in that they
also accelerate one of the dominant kernels of a complex,
multithreaded software on a cache-coherent CPU-FPGA
system. However, the FPGA can only service one CPU
thread at a time, which the authors cite as a possible limiting
factor for the acceleration of the entire algorithm. The AFU
of our pHS? can instead accelerate the work coming from as
many CPU threads as there are PEs: we use atomic global
variables on the CPU side to ensure that the CPU does not
send more jobs than the FPGA can handle and we rely on a
dispatcher on the FPGA to allocate the workload to the PEs.
Moreover, the main purpose of using PEs on the FPGA in
Chang et al. is to have as many in-flight random reads as
possible rather than accelerating the computation itself as
in pHS?. Their results suggest that we could expect further
speedups if we were to also delegate the random reads, i.e.
the string indirections, to the FPGA.
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6 Conclusion

We presented pHS?, to our knowledge the first hardware-
accelerated string sorter, which has been implemented on
the Intel HARPv2 CPU-FPGA heterogeneous system. Our
pHS?> extends pS>, a string sorting software that has been
extensively optimized for multi-core shared memory CPUs.
One of our processing elements accelerates one of the
dominant kernels in pS> by up to 33% compared to a single
Xeon core, and 6 PEs accelerate the entire application by up
to 10% compared to pS> running in its fully parallel version
on a 14-core Xeon CPU.

As FPGAs reach the datacenters, customers with RTL
experience but with a limited design time budget may
wonder whether it is more convenient to offload part of
the computations to the tightly integrated FPGA or to rent
more CPU cores. If we consider pS> as an example of a
real world high-performance parallel application involving
a mix of different algorithms, our analysis suggests that
an FPGA on a different chip essentially performs like an
additional CPU core on a separate chip both in terms
of performance per unit area and energy consumption.
Arguably, the conclusion could be different on applications
whose runtime has a larger fraction of FPGA-accelerable
kernels (30% to 40% in pS>), if the CPU offloads to
the FPGA not only parallel computation but also random
memory accesses, if the cost of the FPGA is lowered by
sharing the same CPU fixed infrastructure as an additional
CPU core on the same die would do, or if more resources
can be allocated to further optimize the hardware. At
present, and when developers code in RTL and have
moderate time to develop accelerators, FPGAs are not
yet a clear winner when competing with complex highly
optimized parallel software running on high-performance
CPUs.
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