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Abstract
Programming has changed; programming languages have not. Modern software embraced

reusable software components, i.e., public libraries, and runs in the cloud, on machines that

co-locate applications from many different sources. This new programming paradigm leads to

an unsafe world in which compromising a single public library or cloud server can potentially

grant an attacker access to the sensitive data of tens or hundreds of applications.

Meanwhile, programming languages have not yet provided the mechanisms to address the

insecurity and fragility inherent in modern software: (1) programs run in a single trust domain,

thereby permitting unverified public library code to access their sensitive information and

(2) the underlying operating system or hypervisor is able to access a program’s sensitive

information.

In this thesis, I present two programming abstractions and mechanisms that address these

challenges. The first is secured routines, which protect user code and data from untrusted and

potentially privileged code. The second is enclosures, a programming abstraction that splits

a program into isolated trust domains, allowing safe execution of unverified public libraries.

This research highlights the need for new software and hardware mechanisms to provide

fine-grained (within an address space) isolation so that programs can be safely constructed

from untrusted pieces of code and run in untrusted environments.
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Résumé
La programmation a changé, mais pas les langages de programmation. Les programmes

modernes englobent des composants logiciels réutilisables, appelées librairies publiques,

et s’exécutent dans le Cloud, sur des machines qui regroupent des applications provenant

de différentes sources. Ce nouveau paradigme de programmation conduit à un monde peu

sûr, dans lequel la compromission d’une seule librairie publique ou d’un seul serveur dans

le Cloud peut potentiellement permettre à un individu d’accéder aux données sensibles de

dizaines ou de centaines d’applications.

Entre-temps, les langages de programmation n’ont toujours pas évolués afin de fournir les

mécanismes permettant de remédier à l’insécurité et à la fragilité inhérentes aux logiciels

modernes : (1) les programmes s’exécutent dans un seul domaine de confiance, permettant

ainsi au code de librairies publiques non vérifié d’accéder à l’ensemble des informations

sensibles et (2) le système d’exploitation ou l’hyperviseur sous-jacent est capable d’accéder

aux informations sensibles d’un programme.

Dans cette thèse, je présente deux abstractions et mécanismes de programmation qui ré-

pondent à ces défis. La première s’appelle secured routine et protège le code et les données de

l’utilisateur contre le code non fiable, même s’il exécute avec un niveau de privilège supérieur.

La seconde, enclosure, est une abstraction de programmation qui divise un programme en

domaines de confiance isolés, permettant l’exécution sécurisée de librairies publiques non

vérifiées. Cette recherche met en évidence la nécessité de développer de nouveaux méca-

nismes logiciels et matériels pour fournir une isolation fine (dans un espace d’adresse) afin

que les programmes puissent être construits en toute sécurité à partir de morceaux de code

non fiables et exécutés dans des environnements potentiellement sous le contrôle d’individus

mal intentionnés.
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1 Introduction

Computer scientists did not wait for Facebook to “move fast and break things”. Hacking is

in our DNA and enabled the new field of Computer Science to make massive leaps forward

rapidly. It took only 30 years to go from the first Turing-complete computer [11], which

weighted over 5 tons, to the first highly successful mass-produced personal microcomputer,

designed by a 27 years old hacker [5]. Half a century later, we are at a stage where our coffee

machines, dish washers, or even lightbulbs pack more compute power and better connectivity

than the technologies that broke the Enigma machine [17] or took us to the Moon.

Paradoxically, our systems and programming languages have not diverged a lot from the ones

designed in the 1960’s [35]. These were built to prioritize performance over security, in an era

with limited hardware computational power and memory capacities, where most machines

were under the control of a single entity, reserved to tech-savy users, and not on a world-wide

network. Today, electronic devices are everywhere, used by everyone, are inter-connected

by the Internet, and hold valuable private data. With this shift in paradigm, our systems and

programming languages are starting to show their inability to address the growing security

and privacy concerns of their users. Central to this disconnect between modern needs and

legacy designs is one abstraction: the process.

Processes appeared in the 1960s and are still, nowadays, the main unit of scheduling and

isolation in our systems. Processes enable concurrent and, on multi-core platforms, parallel

execution of isolated programs potentially servicing multiple users.

The process is a schedulable unit of work, i.e., an instance of a running program. Originally,

especially on UNIX systems and due to the limitations of the hardware at the time, programs

were small pieces of software, focused on providing one particular task, such as a shell or a pass

of a compiler, that had to fit within the scarce memory resources at the time and embodied

one independent step of an overall computation pipeline. Brian Kernighan and Rob Pike

summarize this by describing the UNIX philosophy as “the idea that the power of a system

comes more from the relationship among programs than from the programs themselves” [127].
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The process is also the unit of isolation in the system. In MULTICS [168], the process abstrac-

tion is described as being intimately linked to the concept of address space, i.e., each process

runs in its own address space, independent from other address spaces.

Half a century later, the process is still the main unit of execution and isolation in computer

systems. Google’s Chromium browser, for example, leverages the process abstraction to

sandbox rendering engines instances corresponding to different tabs and plugins [55]. The

world, however, has changed and isolation requirements have evolved. Hardware improved,

memory and cache resources got significantly larger, and, today, a single program running

in a process can correspond to millions of lines of code, include dozens of libraries from

various (unverified) origins, and occupy gigabytes of virtual memory. Programs are further

connected to the Internet, deployed in the Cloud, on distant servers that belong to a foreign

entity, and generate and have access to large amounts of sensitive data. All of this raises new

concerns regarding the security of our systems and the way in which they are built, highlighting

the inadequacy of relying on a decades-old isolation abstraction that we abused and which

strained away from its original intended usage.

In this thesis, we focus on the modern security challenges within a process’s address space,

show that this decades old-abstraction, by itself, is not sufficient and too coarse-grained to

provide the necessary isolation guarantees, and introduce new programming primitives to

address this issue.

1.1 An Outdated Trust Model

The trust model embodied by modern systems is a vestigial reminder of a time where software

security and the notion of trust therein closely corresponded to the process abstraction.

Programming used to be simple. A programmer would write an application, compile it, and

execute the resulting binary on a machine under his control, running the operating system

of his choice. From the application’s point of view, all code executing inside the application

was provided by the developer and was equally trusted with access to the program’s resources.

The underlying operating system was trusted with access to the program’s resources and

relied upon to guarantee the application’s isolation from other processes running on the same

machine.

Interactions with the outside, e.g., user-supplied arguments or data, were considered to be the

main vector of attacks leading to a potential exploit and security breach, i.e., unauthorized

access, usage, modification, or leakage of sensitive resources. Malicious individuals exploited

these interactions to trigger logical or memory corruption bugs [180]. Corresponding efforts

were deployed to detect [64], mitigate [61, 164, 190], or prevent [153] corruptions by various

communities, including hardware, system, languages, and application developers.

This decades-old trust model, represented in Figure 1.1, mistakenly leads us to assume that

attacks happen during the lifetime of an application, i.e., at run time, following an interaction
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Figure 1.1 – The process centric trust model on current systems.

with an untrusted principal that corrupts/subverts the application. While often the case, this

simplistic view of software security overlooks another serious threat to modern security and

privacy, i.e., attacks that come from within the application itself or the underlying system,

potentially pre-dating its deployment and execution, and do not require any interaction with

an untrusted entity.

As early as 1984, Ken Thompson warned programmers about the security implications of the

increasing complexity of software [181] and more specifically the chain of trust necessary

to bring an application to life. In his seminal Turing Award lecture, Reflections on Trusting

Trust, Ken Thompson describes how a Trojan horse in a compiler’s binary can automatically

insert a backdoor in any compiled program, without being detected at the source code level.

A similar attack happened recently, as a hacker compromised a server distributing PHP and

inserted a backdoor in the programming language [91]. More related, some compiler bugs can

lead to the unintentional insertion of vulnerabilities in otherwise correct application code [37,

53, 72]. One such example—that can be qualified as an instance of the correctness-security

gap [95]— is the insecure compiler optimization that treated sensitive data scrubbing as dead

stores and removes the corresponding instructions [37]. Anyone auditing the application’s

source code would assume sensitive data was properly zeroed-out and would probably not

bother inspecting the generated machine-code, thus leaving sensitive information available

in memory for anyone to read.

Thompson’s lecture foresightfully warned that one cannot “trust code that you did not totally

create yourself”. As software development evolved to predominantly use public libraries, also

known as packages; extensive runtimes; complex frameworks; and run on top of complex

monolithic systems, code written directly by a developer only represents an overwhelmingly
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small fraction of any application’s code.

Challenge 1: The current trust model for software is inherited from monolithic systems’ process

abstractions and assumes that threats come from interactions with external principals, thus

failing to consider threats originating from the way in which applications are built and deployed.

The next two sections focus on the description of threats delivered by an application’s building

blocks, i.e., packages, and the systems they are deployed on.

1.2 Heterogeneous Trust in Applications

Programming has changed. Modern software development embraced reusable software com-

ponents, i.e., public libraries. Today’s applications are built upon open-source libraries (aka

packages) offering diverse functionality that increase programmer productivity and accel-

erate development cycles. Modern languages facilitate code sharing by providing tools to

automatically publish, find, download, install, and use these packages [48–50, 111]. In the

extreme, any modern application can be viewed as a collection of public packages orches-

trated by application-specific code. These packages themselves are built in exactly the same

way and require their own dependencies to be downloaded and installed, unbeknownst to

the programmer. For example, the popular Python package matplotlib [27] requires seven

public packages to be installed, among which numpy [28], a package with over one thousand

contributors and a total of 300K lines of code, half of which are written in C.

Unfortunately, packages often come with few, if any, guarantees. They are not formally verified,

their developers are typically unknown, their transitive dependencies hard to explore, and,

most importantly, they execute in the proccess, and thus trust domain, as application-specific

code. For the moment, package versionning seems to be the only real mechanism provided

by package managers [47, 50, 111], but defaults to the most recently published version if

not explicitely specified by developers. Thompson’s observation thus becomes dramatically

worrying, as only a small part of any application is written (or at least inspected) by the

programmer himself, and any of the tens or hundreds of package dependencies [158, 159] can

be used as a vector to insert a backdoor to access, modify, or steal sensitive information.

Malevolent individuals quickly capitalized on such a simple attack vector [77–82,134,145,206].

Rather than focusing on the complex exploitation of a potential memory corruption bug or

trying to subvert a language’s compiler, which is usually published and distributed by a trusted

entity, attackers can simply compromise the often less well guarded and audited popular

public packages. An astonishingly common attack consists in publishing a modified clone of a

valid package under a homoglyph or a slightly different name (often corresponding to common

typing mistakes or expected names) [145]. For example, in 2019, a Python programmer

discovered that PyPi [26], a Python package manager, was hosting a backdoored clone of

dateutil under the name python3-dateutil. It was a malicious package that downloaded

and ran an exploit binary hosted on a remote server. A more complex attack, similar to the PHP
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one described above, consists in compromising a programmer’s online account (e.g., Github)

to gain access to her repositories and introduce the desired backdoor. Recent research showed

that gaining unallowed access to twenty high-level developers accounts could compromise

half of the npm ecosystem [206].

Packages, despite being a vector for attacks, present interesting characteristics that could make

a solution possible. First, they encapsulate a unit of trust, i.e., a trust domain representing

the package’s publisher. Second, they are software components meant to be reused across

various applications and are thus supposed to be context-unaware, i.e., they do not need to

know about the environment in which they execute and other parts of the application. Third,

packages declare the code and data dependencies they require in order to properly implement

their functionality. To properly function, packages require access to their own dependencies

and arguments passed to them by the program, i.e., a subset of the entire program’s resources.

Modern applications’ trust model is more complex than it used to be, as it includes diverse,

potentially malicious, components for which the programmer has heterogeneous levels of trust

and which should only be allowed access to subsets of a program’s resources. Programmers

currently do not have tools to control, at a fine granularity, which components can access,

modify, or leak sensitive application information at run time. Programmers cannot trust their

own applications and the problem sadly does not stop here.

Challenge 2: Modern software requires intra-address-space isolation mechanisms to limit

untrusted components’ access to a program’s sensitive resources.

1.3 Heterogeneous Trust in Systems

The early 2000s saw the rise in popularity and rapid growth of Cloud services. Tech Giants,

such as Amazon [1], Microsoft [24], and Google [19], made their infrastructures available for

rent to other entities, ranging from companies as big as Netflix [40] to individual developers

looking for flexible remote development environments [2] or access to specific hardware [7].

Cloud services expose different models (e.g., IaaS, PaaS, SaaS, FaaS), with increasing levels

of abstractions [8, 10, 25]. At its heart, the Cloud allows users to set aside the intricacies of

IT infrastructure setups, reduce their deployment costs, scale their services at a push of a

button, and more generally focus on their core business. Cloud service providers compete

not only on pricing and performance, but also on the higher-level services they offer, their

ease-of-use, and the extensibility of the ecosystem they propose (e.g., elastic load balancing [9],

fault tolerant deployments [18], lambdas [10] etc.).

Cloud services, while facilitating application deployment, scaling, and monitoring, come at a

cost. Application developers and users have to implicitly extend their trust to the Cloud service

providers, becoming susceptible to (1) vulnerabilities within the hypervisor [14], (2) exploits in

libraries and Software as a Service (SaaS) infrastructures [12, 13, 15], (3) malicious employees

with physical and administrative access to Cloud machines [85], and (4) intrusive surveillance

5



Chapter 1. Introduction

from governments [20, 36, 41]. According to a recent report by Ermetic [97], nearly 80% of the

surveyed companies suffered a data breach in their Cloud-deployed systems within the last

two years. Being able to guarantee the confidentiality and integrity of sensitive data comes out

as a top priority among the vast majority of the participants and this can only be truly achieved

if the potential threat of a compromised hypervisor is taken into account. Unfortunately,

providing such strong guarantees in an adverserial environment is hard, requires establishing

a root of trust and secured primites (e.g., certificates for authentication and cryptographic

keys for communication), and necessitates a level of expertise that most Cloud users do not

have.

Challenge 3: In modern software deployments, the operating system and, more generally,

privileged code can no longer be trusted.

1.4 Programming Languages Fall Behind

Programming has changed; programming languages did not. Modern software is going

through a trust crisis. Programmers do not have any control over which parts of their applica-

tions or the systems hosting them can access, modify, or leak sensitive information. Despite

the heterogeneous levels of trust that exist within applications and systems, programming

languages still execute code from various origins inside the same address space, with uni-

form access to the program’s resources. Some programming languages provide a simulacrum

of isolation, more accurately described as information hiding, facilitating implementation

modularity and often based on the type system. Examples include allowing object or package

attributes and methods to be private and inheritance rules in certain PLs. This, however, is a

weak form of isolation as most languages (1) allow unsafe behaviors to bypass the language’s

attribute modifiers, (2) provide a form of meta-programming to inspect code and data at run

time despite type restrictions, (3) support interoperations with unsafe languages such as C/C++

that are unbothered by access restrictions, and (4) rely on the assumption that privileged code

is trusted. Languages do not expose reliable mechanisms to restrict a package’s access to a

program’s resources, especially in the presence of unsafe code, or abstractions to protect parts

of an application from a potentially compromised host.

Nevertheless, programming languages have the potential to be the ideal layer to best ex-

press trust related policies. Trust is a relative notion highly dependent on the programmer’s

intent and is hence better addressed by the developer at the application level, i.e., inside

the application’s code. In modern programming languages, public libraries are well-defined

components that have clear boundaries in user code. Package dependencies are usually

explicit, i.e., written as import statements, and can be leveraged to construct the package

dependence graph of an applications. Compilers could therefore be extended to automatically

instrument application code to enforce user-defined restrictions at package boundaries, thus

creating sub-compartments inside the application with differentiated access to the program’s

resources.
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Challenge 4: Programming languages only provide a weak form of intra-address space isolation

unable to address the potential danger embodied by public libraries or compromised privileged

code.

Opportunity 1: Programming languages can be extended with programming primitives to

allow developers to address trust challenges within their applications. Implementing such

mechanisms as a language extension has the following benefits: (1) it allows programmers to

state their isolation requirements, (2) it is malleable and does not require modifications to the

host, (3) it is backward compatible with legacy applications, and (4) it transparently abstracts

the underlying mechanisms used to enforce isolation.

While programming languages provide the expressibility and flexibility to describe intra-

address-space isolation requirements, there is still a need to identify efficient mechanisms

able to enforce such user-defined access rights, even in the presence of unsafe and unverifed

code or software running at higher privilege levels. In the next section, we explore the modern

opportunities provided by hardware security extensions.

1.5 Hardware Extension Opportunities

Hardware manufacturers slowly caught on the need to provide intra-address space isolation

guarantees and expose a form of virtual memory management to user code. Recent hardware

extensions such as Intel VT-x [185] (2005), Intel MPK [124] (2015), ARM Trustzone [30] (2013),

Intel SGX [21] (2015), AMD SEV [39] (2016)/ AMD SEV-SNP [44] (2020), and the announced

Intel TDX extension [125] (2020) present interesting foundations that could be used to address

the trust crisis faced by modern software. In this section, we provide an overview of selected

hardware extensions and highlight how they might help answer the challenges listed previously.

We focus on Intel technologies as they are commonly available on commodity machines and

are the ones explored in this thesis.

Intel VT-x: In 2005, Intel introduced hardware support for Extended Page Tables (EPT) with

the Intel Virtualization Technology Extension [185] (VT-x). Intel VT-x extends the x86 ISA to

facilitate user space hypervisor implementations and provide fast translation, in hardware,

between guest and host addresses. The technology virtualizes privileged instructions and the

registers for privileged code executing in non-root mode, thus reducing the guest OS’s need

for hypervisor intervention.

Intel VT-x, although marketed from a performance point-of-view (fast virtualization), can be

considered as a security extension. In Cloud services, virtual machines are a common unit of

deployment and ensure isolation between different users on multi-tenant platforms. As such,

they must provide both strong isolation guarantees and low overheads.

Intel VT-x can be used to implement process-level virtualization, as in Dune [68]. This finer-

grained form of memory management enables user-code to define in-application compart-
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ments and implement a form of sandboxing with strong isolation guarantees enforced in

hardware. In recent research work, Intel VT-x has been used in a multitude of areas to pro-

vide in-address space isolation. For example, Intel VT-x can protect and isolate hypervi-

sors [175, 191], security monitors [174], kernel submodules [92, 155, 175, 179], or portions of

applications [68, 144, 151] in specific frameworks.

On Linux, the Kernel-based Virtual Machine (KVM) module [45] exposes Intel VT-x and slightly

simplifies the process of creating virtual machines via ioctl calls to its driver. Still, the

technology requires careful configuration of the virtualized environment by expert engineers

able to understand the various execution modes, setup the interrupt descriptor tables, and

register memory mappings. In terms of performance, VM entries and exits, i.e., transitions

between the guest and the host, cost several microseconds and should be avoided on latency

critical paths.

Intel MPK: Intel Memory Protection Keys [124] (MPK) is a recent hardware extension, only

available on server-grade machines at the moment. With Intel MPK, page table entries are

tagged with one of 16 available keys. A user-writable register, PKRU, encodes user-defined

access rights for each key. This technology exposes a form of memory access right management

to user code. System calls are provided to allocate and delete keys and tag memory regions.

A switch between two MPK-defined compartments simply consists in a write to the PKRU

register. Compared to Intel VT-x used for process virtualization, MPK exposes an easier-to-

use API, as it does not require complex configuration of low-level hardware constructs (e.g.,

execution mode, interrupt descriptor tables, etc.). Instead, Intel MPK only concerns itself

with differentiated access rights to memory regions. Its interface is fairly simple and closely

resembles mprotect. Intel MPK is, however, less flexible and provides weaker guarantees than

Intel VT-x. First, the small number of available keys limits the direct adoption of Intel MPK

as a mechanism to treat every single application’s package as a separate trust domain. Some

related work, such as libmpk [163], circumvent this limitation by virtualizing keys, at the cost of

overheads induced by re-tagging page table entries. Second, the lack of protection of the PKRU

register is both an advantage, as it allows switching between user-defined domains without

requiring a mode switch, and a security concern, as other techniques (e.g., static analysis of

deployed code [118,186]) must ensure that PKRU is only accessed by the intended code. Third,

despite focusing on access right management, Intel MPK provides an incomplete solution as

it only considers read and write access rights. A page marked as executable, for example, can

only be made unreadable and thus does not prevent certain forms of return-oriented attacks

invoking code outside of a compartment.

In recent related work, Intel MPK is used to create segregated memory allocation pools [186],

isolate dataplanes [118], or implement intra-address space data encapsulation [131].

Intel SGX: Trusted Execution Environments (TEEs) are often presented as being the solution

to the problem of trust for programs running on untrusted machines. They come in different

flavors depending on hardware architectures (e.g., Intel, ARM, AMD, and RISC-V processors).
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These technologies have common features: (1) the introduction of a secure execution environ-

ment for trusted code, unaccessible from the untrusted host or applications, and (2) relying on

the CPU as the root of trust of the system. Around that common base, architectures differ in

the programming models and set of hardware features they expose. To name a few, attestation

of loaded code and data in the trusted domain [21], encryption of trusted memory [21, 39],

integrity protection [21,44], register protection [3], and the ability to support different privilege

levels [30, 39] or virtualization [3, 39, 44, 125] in secure mode of execution seem to be the main

points of dissimilarity. In the next paragraph, we focus on Intel SGX.

Intel Software Guard Extension [21] (SGX) is Intel’s implementation of a user-mode Trusted

Execution Environment (TEE). Conceptually, Intel SGX provides intra-address space isolation

of trusted user code and data executing inside an enclave by preventing accesses (reads,

writes, and execution) from the untrusted part of an application or code running at a higher

privilege level. While promising, Intel SGX lacks a clear programming model and requires

highly skilled engineers who understand low-level technological intricacies and account for

security pitfalls [58, 160]. Similar to Intel VT-x, Intel SGX requires non trivial configuration to

register enclave memory pages and their content, define appropriate thread control structures

(TCS), and handle transitions. Unlike Intel VT-x, the enclave’s execution environment does not

support the full x86 ISA and precludes certain instructions, such as rdtsc and syscall and

thus requires trusted user code to be adapted to this restrictive environment. It further has

non-trivial performance pitfalls, e.g., enclaves entries and exits are several orders of magnitude

more expensive than syscalls. The literature contains several interesting papers that explore

the various higher-level abstractions, including operating systems [67, 83], containers [63],

and compiler-driven partitioning of applications code [107, 138], that directly integrate with

SGX and lower the bar to using these technologies. However, despite having been available for

more than half a decade on commodity hardware, SGX is still seldomly adopted in practice.

While research projects provide promising abstractions to protect trusted code execution,

these solutions are not production-ready yet and still have non-negligible limitations, either

in terms of performance or supported functionalities.

The next step of confidential computing seems to be heading towards confidential virtual

machines, in the vein of AMD SEV [39] and Intel TDX [125]. Confidential virtual machines are

an attempt, by hardware manufacturers, to provide a coarser-grained solution to the problem

of trust in the Cloud than the one exposed by Intel SGX. These technologies allow Cloud

users to automatically deploy their entire stack, including their applications and selected

operating system, to a confidential execution environment inaccessible to a hypervisor. While

potentially simpler to use than Intel SGX (which requires adapting application’s code or

deploying complex execution frameworks), confidential VMs put an entire operating system

inside the Trusted Computing Base (TCB), thereby exposing a greater attack surface. There

is also a paradox in the overall approach: the basic assumption is that users do not trust

the Cloud service provider and try to protect against the hypervisor, but they trust the guest

operating system. Where does the guest OS image come from? Oftentimes, Cloud services

provide their own OS images for new VMs, instrumented or extended to bridge the semantic
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gap [59, 60] between the guest OS and the hypervisor or provide flexible VM management.

All these hardware extensions introduce new opportunities to modify the decades old trust

model embedded in the process abstraction. They provide mechanisms flexible enough to

implement various programming models with intra-address space partitioning at different

granularities. The question is now: what is the best way to employ these extensions and

address modern software trust crisis? One obviously desirable feature for such a solution

would consider the heterogeneity of hardware extensions and be compatible with different

hardware setups (e.g., Intel, AMD, and ARM). Another requirement is to hide the intricacies

of the hardware technology and provide high-level solutions easily adoptable by non-expert

developers.

Challenge 5: Hardware manufacturers provide various extensions that allow to modify the

isolation model inside a process address-space. These technologies are however hard to use, lack

a clear programming model, and each come with their own vendor-specific subtleties.

Opportunity 2: Hardware extensions provide mechanisms enforcing intra-address space isola-

tion. More specifically, these mechanisms allow to (1) protect users sensitive information from

malicious privileged code, and (2) restrict public packages’ access to a program’s resources, even

when they are written in unsafe languages.

1.6 Thesis Statement

Above we identified five challenges and two opportunities in the trust crisis that modern

software is facing. The high-level goal of this thesis is to explore the opportunities presented

by hardware security extensions to make trust a manipulable programming primitive exposed

to developers.

We first propose a programming abstraction to easily isolate trusted parts of the application.

Second, we consider the problem of safely leveraging unverified public libraries by allowing

developers to restrict access to the program’s resources when invoking their functionalities.

For both of these, we take a language-level approach, provide high level programming abstrac-

tions that transparently leverage hardware extensions to guarantee the desired intra-address

space isolation. Finally, we take a step back and consider a software only solution that pro-

vides a flexible environment in which researchers can design and experiment with isolation

abstractions.

Thesis Statement

Programming has changed, leading software into a seemingly inextricable trust crisis. As the

way in which applications are built and deployed drastically changed to include entities with

heterogeneous levels of trust, programming languages need to evolve to provide the proper
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primitives allowing developers to correctly control which parts of their applications and systems

can access, modify, and leak their private information. The combination of programming lan-

guages compiler techniques and recent hardware security extensions provides an unprecedented

opportunity to construct easy-to-use and powerful higher-level abstractions able to address the

problem of trust faced by modern software.

1.7 Thesis Contributions

In this thesis, I provide simple, easy-to-use programming abstractions that enable program-

mers to take into account the heterogeneous levels of trust that exist within their applications

and the systems on top of which they are deployed. Trust is a relative notion better handled by

the programmer herself and, thus, our proposed solutions should empower users and let them

make isolation decisions, best expressed at the source code level. I present two programming

abstractions and a software execution framework to help address these challenges.

Specifically, this thesis contributes the following two implemented, evaluated, and published

systems:

• Secured Routines: Language-based Construction of Trusted Execution Environments

The secured routine abstraction allows programmers to protect code and data from

untrusted, potentially higher-privileged, code. Secured routines are a language-level

approach to supporting Trusted Execution Environments. The abstraction closely in-

tegrates with the Go programming language, enables to easily leverage TEEs in legacy

applications with minimal code refactoring, abstracts away the intricacies of the under-

lying hardware technology, and is designed to circumvent the hurdles and limitations

of the hardware mechanism while providing good run time performance. The secured

routine programming model replaces expensive enclave crossings with typed mes-

sage passing and enhances memory isolation between trusted and untrusted code by

preventing cross-domain memory references.

• Enclosure: Language-Based Restriction of Untrusted Libraries

The enclosure abstraction splits a program into isolated trust domains and allows safe

execution of unverified public libraries with limited access to the program’s resources.

Enclosures define a restricted execution environment which, by default, only grants

access to the enclosed’s code package dependencies derived from the package depen-

dence graph and precludes system calls. Programmers can further extend or restrict the

enclosure’s accessible memory, at the granularity of packages, and selectively enable

system calls. Enclosures can be ported to any programming language by leveraging

LITTERBOX, our enclosure backend library that exposes a high-level language-agnostic

API and implements isolation enforcement by leveraging hardware extensions.

This thesis further presents a discussion of the compatibility between these programming
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abstractions, reflections on the process trust model and how hardware security extensions

modify it, and describes an ongoing research effort:

• Tyche: Software is the new Hardware Tyche is a secured execution framework that

implements and allows to compose isolation primitives for modern software. Hardware

security extensions are hard to use, not amenable to modifications, constrained by the

slow iteration pace of hardware development, and do not compose well. Tyche provides

an environment to emulate hardware extensions in software, modify and compose them,

and experiment with new primitives. At its heart, Tyche relies on security-oriented

virtual ISAs to enforce trust domains isolation and control their accesses to a program’s

resources. Interactions between trust domains are only allowed via typed gates and

controlled by a Trusted Intermediary.

This thesis highlights the need for new software and hardware mechanisms to provide fine-

grained (within an address space) isolation so that programs can be safely constructed from

untrusted pieces of code and run in untrusted environments.

1.8 Thesis Organization

The rest of this thesis is organised as follows:

Chapter 2 presents the secured routine [107] abstraction that executes user-level threads in a

trusted execution environment unaccessible by untrusted software. This Chapter contains the

paper published at ATC19, extended with an afterthought section.

Chapter 3 introduces enclosures [106], a programming abstraction that defines restricted exe-

cution scopes with limited access to a program’s resources, expressed at package-granularity.

This Chapter contains the paper published at ASPLOS21, extended with an afterthought

section.

Chapter 4 reflects upon the composability of secured routines and enclosures and describes

the challenges faced when trying to combine different hardware security extensions. This

Chapter is an unpublished, original reflection on the work presented in the two papers pub-

lished previously.

Chapter 5 describes, at a conceptual level, how hardware security extensions used in this

thesis modify the trust model embodied by the process and suggests alternative approaches,

notably in software.

Chapter 6 introduces Tyche, our current (unpublished) research effort that aims at providing

an extensible safe execution framework in software to explore isolation schemes, means

of establishing cooperation between mutually distrustful entities, and quickly develop new

language and compiler approaches to address the problem of trust for modern software.
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Chapter 7 contains future work and considers new programming languages and hardware

opportunities, as well as a software refactoring of existing hypervisors to address the problem

of trust in the Cloud.

Chapter 8 concludes this thesis.

1.8.1 Bibliographic Notes

This thesis was conducted under the supervision of my advisors Prof. Edouard Bugnion and

Prof. James R. Larus, and parts of it were published in collaboration with Prof. Mathias Payer

and my then colleague, Dr. Marios Kogias. The following publications are included in this

thesis:

• Secured Routines: Language-based construction of trusted execution environments

Adrien Ghosn, James R. Larus, Edouard Bugnion.

In 2019 USENIX Annual Technical Conference (ATC19).

• Enclosure: Language-based restriction of untrusted libraries

Adrien Ghosn, Marios Kogias, Mathias Payer, James R. Larus, Edouard Bugnion.

In Proceedings of the 26th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS21).

The following published work is outside of the scope of this thesis and will not be presented:

• R2P2: Making RPCs first-class datacenter citizens

Marios Kogias, George Prekas, Adrien Ghosn, Jonas Fietz, Edouard Bugnion.

In 2019 USENIX Annual Technical Conference (ATC19).

13





2 Secured Routines: Language-based
Construction of Trusted Execution
Environments
Trusted Execution Environments (TEEs), such as Intel SGX enclaves, use hardware to ensure

the confidentiality and integrity of operations on sensitive data. While the technology is

available on many processors, the complexity of its programming model and its performance

overhead have limited adoption. TEEs provide a new and valuable hardware functionality

that has no obvious analogue in programming languages, which means that developers must

manually partition their application into trusted and untrusted components.

This paper describes an approach that fully integrates trusted execution into a language. We

extend the Go language to allow a programmer to execute a goroutine within an enclave, to

use low-overhead channels to communicate between the trusted and untrusted environments,

and to rely on a compiler to automatically extract the secure code and data. Our prototype

compiler and runtime, GOTEE, is a backward-compatible fork of the Go compiler.

The evaluation shows that our compiler-driven code and data partitioning efficiently executes

both microbenchmarks and applications. On the former, GOTEE achieves a 5.2× throughput

and a 2.3× latency improvement over the Intel SGX SDK. Our case studies, a Go ssh server, the

Go tls package, and a secured keystore inspired by the go-ethereum project, demonstrate that

minor source-code modifications suffice to provide confidentiality and integrity guarantees

with only moderate performance overheads.

2.1 Introduction

Our era is defined by the emergence of a digital society in which established notions of privacy,

confidentiality, and trust are undercut by the shortcomings of today’s technology, which is

increasingly reliant on cloud computing. In the cloud, developers and users implicitly trust the

cloud provider but are still susceptible to: (1) hardware and firmware flaws, such as the recent

Meltdown [141] and Spectre [129] attacks, (2) vulnerabilities within the hypervisor [14], (3)

exploits in libraries and Software as a Service (SaaS) infrastructures [12,13,15,16], (4) malicious

employees with physical and administrative access to both computer and storage resources,
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and (5) intrusive or extra-territorial government surveillance [36, 41, 70].

To address these concerns, processor vendors, following ARM’s lead [30], introduced Trusted

Execution Environments (TEEs), a hardware mechanism based on memory encryption and

attestation that isolates program execution and state from the underlying operating system,

hypervisor, firmware, I/O devices, and even people with physical access to a machine. TEEs

have been portrayed as the solution to the problem of trust in the cloud [63, 67, 137, 203].

In particular, Intel SGX [22] partitions hardware and software into two trust domains: a

CPU, trusted code deployed by a particular user, and a specified region of memory form

the trusted domain, while the remainder of the hardware and software form the untrusted

domain. SGX enclaves execute trusted user code in a trusted domain, protected against

accesses by privileged code, untrusted user software, and other enclaves deployed on the

machine. Entering an enclave guarantees, through hardware, the confidentiality and integrity

of the enclave’s code, data, and execution.

Despite SGX’s availability on current-generation processors, uptake has been slow, probably

due to the absence of support on server-grade CPUs, the difficulty of programming enclaves,

their performance overhead, and the need to refactor applications. Before 2019, the private

messaging application Signal [148] was one of the few applications to adopt enclaves and

Microsoft Azure also was the first to offer a cloud solution to expose SGX features [146, 167].

A major challenge is that this new technology lacks a clear programming model. Previous

solutions fall into two broad categories: (1) run complete user applications in the trusted

domain [63, 67] and (2) separate the portions of a program that require trusted execution [23,

29,138]. Solutions in the first category provide an abstraction, such as an operating system [67]

or a container [63], to execute unmodified applications in an enclave. The other alternative

requires a developer to identify and partition [23, 29, 172], or provide annotations that a

program analysis tool can use to partition [138], an application into trusted and untrusted

components. None of these prior approaches integrates the TEE into language-specific

abstractions and semantics.

This paper describes an approach that fully integrates trusted execution into a modern pro-

gramming language in an appropriate manner. We extend the Go language to allow a program-

mer to execute a goroutine within an enclave, to use low-overhead channels to communicate

between the trusted and untrusted environments, and to rely on the compiler to automatically

extract the code and data necessary to run the enclave. Our solution provides language support

for trusted execution that is idiomatically compatible with the Go programming language.

We introduce secured routines, a new language-based feature that hides the hardware intri-

cacies with little overhead. A secured routine is a user-level thread that executes a closure,

i.e., a function call, in the enclave at the request of untrusted code. The secured routine

abstraction cleanly distinguishes trusted and untrusted code. Communications between the

two domains are possible solely via cross-domain channels, an extension to native Go channels

that deep-copies values to prevent cross-domain pointer references.
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GOTEE extends the Go programming language with a single keyword, gosecure, to identify

secured routines. GOTEE is an open-source fork of golang/go [57]. Starting from gosecure
calls, the compiler identifies the minimal code required within the enclave and extracts it into

a statically-linked trusted binary. Trusted and untrusted domains have their own runtime,

memory management, and scheduler. GOTEE coordinates interactions between trusted and

untrusted code, replaces control transfers between these domains with inexpensive synchro-

nized data transfers using strongly-typed cross-domain channels.

Our contributions include:

• A language-based, expressive, strongly-typed, high-performance, remote-execution

model for TEEs that strengthens isolation between trusted and untrusted code.

• A practical implementation of these ideas using the Go programming language and

runtime. Our evaluation using microbenchmarks demonstrates that an enclave core

serving secured routines can achieve 5.2× the throughput of domain-crossing control

transfers.

• A demonstration that secured routines provide an expressive model to implement

secured applications: we partitioned the tls module (a built-in Go library), protected a

full ssh server, and extended the go-ethereum keystore (a popular cryptocurrency client)

to isolate all operations that access private keys and certificates without a significant

loss of performance.

We describe the necessary background (§2.2), the secured routine abstraction (§2.3), the

implementation of GOTEE (§2.4), and evaluate it using both microbenchmarks and three

security-sensitive applications (§2.5). Finally, we discuss possible architectural improvements

in §2.6, related work in §2.7, and conclude in §2.8.

2.2 Background

2.2.1 Intel Software Guard Extension

Intel Software Guard Extension (SGX) [22], introduced in 2015 with Intel’s sixth generation Sky-

lake processor, allows user-level creation of enclaves. These are contiguous regions of virtual

memory, protected against outside access and modification, even by software running at high

privilege levels or by I/O devices. This section describes Intel SGXv1, i.e., the implementation

available on common Intel CPUs a the time this research was conducted (2018).

Figure 2.1 illustrates the partition of a process between secure, trusted code and data and

non-secure, untrusted code and data. SGX enforces an asymmetric trust model: the enclave

has access to the entire memory, while untrusted code is unable to access or modify enclave
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Figure 2.1 – Trusted Execution Environments with Intel SGX.

memory. SGX further ensures that control from the untrusted domain enters the enclave only

at pre-approved entry points. In SGX, Intel provides the root of trust, in hardware and via

cryptographic signatures, ensuring the validity of the initial state of the enclave and allowing

attestation with a remote entity.

SGX reserves, at boot time, a contiguous portion of physical memory, called the Processor

Reserved Memory (PRM). The available SGX-enabled CPUs at the time this research was

conducted (2018) have a maximal EPC size of 128 MB. A 94 MB subset of this region, called

the Enclave Page Cache (EPC), is used to allocate enclave memory pages. The integrity of

the EPC is ensured through Merkle trees implemented in hardware [38]. The EPC size is a

hard limitation on the amount of code and data that can be loaded into an enclave without

incurring expensive page evictions to regular DRAM [67, 205]. The CPU’s Memory Encryption

Engine (MEE) ensures confidentiality by encrypting cache lines evicted to memory and by

decrypting them as they are brought into the CPU running in enclave mode; this reduces the

available memory bandwidth by 4× [205].

Creation of an enclave requires the execution of a complex instruction sequence using new

instructions such as ecreate, eadd, eextend, and einit that respectively create the enclave;

define its resources together with their initial state and access rights; and finally initialize the

enclave. The number of concurrent threads allowed inside the enclave corresponds to the

number of eadded Thread Control Structures (TCS) and is fixed at enclave initialization.

After enclave initialization, user-level software uses the eenter instruction to perform an
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ecall, a control transfer to a pre-defined location within the enclave (Figure 2.1). The eexit
instruction allows to perform ocalls, i.e., a voluntary control transfer to untrusted code. SGX

also supports asynchronous enclave exits (AEX) to service interrupts and exceptions, which

is necessary since the enclave forbids privileged instructions. An AEX saves the current state

of the enclave within the EPC, restores the untrusted context, and transfers control to the

operating system handler. The untrusted code resumes enclave execution by performing an

eresume.

Finally, SGX provides a remote attestation mechanism that allows developers to verify the

integrity of the software in the enclave. As part of enclave creation, developers need to provide

a measurement of the enclave, i.e., a signed hash of the SGX instructions and arguments

used to instantiate the enclave, as well as of selected portions of the enclave’s code and data.

A remote party can compare this measurement with its expected, precomputed value and

proceed with the enclave’s execution only if the two values match.

2.2.2 Building Secured Systems

One approach to utilizing SGX is to run all of an application in the enclave. The literature

contains examples of complex abstractions—including a Windows library OS, Haven [67];

a Linux OS, Graphene [83]; and a container platform, SCONE [63]—running in SGX. While

convenient for developers and effective at reducing expensive enclave crossings [205], this

approach has significant drawbacks: (1) it greatly expands the amount of code running inside

the enclave, which puts pressure on system resources and incurs pervasive memory decryption

overheads and (2) it brings into the enclave code and third-party libraries—not necessarily

used, understood, or validated—which can facilitate attacks on the enclave (e.g., ROP [173]).

Another approach necessitates a deeper understanding of an application, as it requires split-

ting the application’s code and data into trusted and untrusted portions, following the Intel

SGX Software Development Kit (SDK ) [23] model. This SDK is a set of C/C++ libraries and

tools that enable programmers to create and deploy enclaves. The Intel SGX SDK exposes

an API similar to the SGX instructions. Trusted and untrusted code and data reside within

distinct source files. A configuration file describes the required ecalls and ocalls functions.

The compilation process first invokes an IDL compiler to generate boilerplate code and then

compiles the enclave code as a position-independent binary with all dependencies statically

linked, invokes a signing tool on this .so to meter the enclave’s code, and finally compiles the

untrusted application code as a regular executable.

SCONE [63] and Eleos [161] both rely on message passing to implement asynchronous system

calls and avoid expensive enclave exits. Following the same approach, Intel recently pub-

lished switchless [43], a (under-development) mini-framework that provides a simple C++

messaging mechanism on top of the SDK.

Asylo [112] is a C++ framework, compatible with gRPC [113], that abstracts TEE technologies
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behind a concise API and a set of C++ classes. From a practical point-of-view, Asylo is an

improved version of Intel’s SDK that exposes a smaller API, requires less boilerplate code,

supports different TEE implementations, and provides transparent support to perform system

calls from the enclave.

Glamdring [138] automates code partitioning, as it only requires a developer to mark data

that needs to be protected. It then relies on static analysis to determine the portion of code

that accesses this data and needs to run within the enclave. As an optimization, Glamdring

uses heuristics to enlarge the trusted code base and limit the number of expensive enclave

crossings. This can help balance a trade-off between EPC memory consumption and the

number of domain crossings. Glamdring provides less fine-grained control over code par-

titioning than the Intel SGX SDK, but hides the technology’s intricacies and exposes a very

simple programming model.

2.2.3 SGX Limitations

The SGX technology, and its implementation on current Skylake processors, presents major

performance challenges: while the magnitude of these overheads may change in the future

with refinement of the processor’s micro-architecture, or by adding dedicated silicon, these

overheads are, to some extent, tied to the mechanisms providing confidentiality and integrity

in the SGX design.

The limited EPC working set and the reduced memory bandwidth are inherent in the design.

Similarly, the control-flow transitions between the trusted and untrusted execution (i.e., ecalls,

ocalls, and AEX) are expensive because of TLB shootdowns, CPU state changes, and cache

flushes needed to mitigate foreshadow attacks [76]. These domain crossings are an order

of magnitude more expensive than a system call [205], between ∼2µs [205] and ∼3.5µs on

our hardware. This corresponds to a throughput of less than 1M enclave entries per second

with four cores performing ecalls in parallel (see §2.5.2). Keep in mind that system calls

within an enclave require a domain crossing, as SGX is limited to user-level execution, and as

a consequence these calls also become an order of magnitude more expensive.

Put together, these limitations require a programmer to worry about the size of the trusted

code base and the trusted working set, to reduce the exposed attack surface as well as the

frequency of EPC page evictions; to optimize the application for cache locality; to understand

precisely the threading model of the application; and to minimize domain crossings, system

calls, interrupts, and signals.

2.3 Design

The secured routine extension to Go enables GOTEE to partition an application’s code, data, and

execution between trusted and untrusted domains, while cross-domain channels reinforce
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memory isolation and enable cross-domain communication and cooperation. This section

presents a high-level description of the design and semantics of GOTEE’s extensions.

2.3.1 Threat Model

We follow the threat model of other work in SGX [63, 67, 83, 138] in which an adversary tries to

access confidential data or to damage the SGX enclave’s integrity. The attacker has administra-

tive access to the machine and control over both hardware and software, and may modify any

code or data in untrusted memory, including the operating system and the hypervisor. We

consider Iago attacks [84] for GOTEE’s runtime and system call interposition mechanism in

Section 2.4.3.

Denial-of-service attacks, a known limitation of SGX [89], and hardware side channels (e.g.,

based on caches, page faults, or branch shadowing) are out of scope. We assume a correct

underlying implementation of SGX that provides confidentiality and integrity for enclave code

and data.

2.3.2 Quick Overview of Golang

The Go programming language (golang) is a modern, memory-safe, garbage-collected, structurally-

typed, compiled, systems programming language. Go supports concurrency based on the

Communicating Sequential Processes (CSP) model [120]. The unit of execution within a Go

program is called a goroutine, a user-level thread executing a closure that is created by prefix-

ing a function call with the go keyword. Goroutines are multiplexed and scheduled on a pool

of operating system threads, using a cooperative scheduling model implemented by the Go

runtime. Goroutines communicate and synchronize using channels, which are synchronized,

typed message queues with copy and blocking read/write semantics.

2.3.3 Secured Routines & Cross-domain Channels

From a programming point of view, a secured routine provides a simple and familiar ab-

straction that allows a programmer to execute a goroutine within an enclave and to use

cross-domain channels to communicate between the trusted and untrusted environments.

Listing 2.1 presents a sample program that secures a secret encryption key, secretKey, within

the enclave. The TrustedEncryption function uses the gosecure keyword to spawn a

secured routine that creates the key within the enclave. A subsequent gosecure call spawns

an encryption server, EncryptServer, within the enclave. The untrusted code sends the

message to the server (line 25) and gets back the encrypted result (line 26).

The programmer relies on gosecure to inform the compiler how to partition the code between

trusted and untrusted domains. The compiler determines the functions that can be reached
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1 var secretKey *Key
2 func generateSymKey ( * io . Reader ) *Key { . . . }
3

4 func InitSymKey (done chan bool ) {
5 fmt . Pr int ln ( ‘ ‘ Creating a new secret key ‘ ‘ )
6 secretKey = generateSymKey ( rand . Reader )
7 done <− true
8 }
9

10 func EncryptServer ( request , reply chan [ ] byte ) {
11 for {
12 msg := <− request
13 reply <− secretKey . Encrypt (msg)
14 }
15 }
16

17 func TrustedEncryption (msg [ ] byte ) [ ] byte {
18 done := make( chan bool )
19 gosecure InitSymKey (done)
20 _ = <− done
21 request := make( chan [ ] byte )
22 reply := make( chan [ ] byte )
23 msg := [ ] byte ( ‘ ‘ The quick brown fox . . . ‘ ‘ )
24 gosecure EncryptServer ( request , reply )
25 request <− msg
26 res := <− reply
27 fmt . Pr int ln ( ‘ ‘ Encryption done ‘ ‘ )
28 return res
29 }

Listing 2.1 – Using secured routines to isolate a secret key within the TEE.

by the execution within the enclave, in this example InitSymKey, EncryptServer and their

dependencies fmt.Println, generateSymKey, *Key.Encrypt, etc. GOTEE compiles these

functions into a statically-linked executable.

Unlike prior work [23, 29, 138], secured routine’s code partitioning does not require disjoint

trusted and untrusted code. Functions can exist in both environments, e.g., the function

fmt.Println in Listing 2.1.

GOTEE hardens memory isolation between trusted and untrusted domains, as compared with

the SGX hardware model, in three ways. First, each domain manages its own set of symbols,

data, and global variables independently, allowing them to have distinct copies of data and

globals. This also differs from Glamdring [138], where the trusted and untrusted namespaces

cannot overlap.

Second, GOTEE allows only cross-domain channels across the trusted boundary. Cross-domain

channels are an extension to the native Go channels allowing secured communications across

domains with deep-copy semantics. Cross-domain channels are declared and used like regular

go channels. However, they provide deep-copy semantics to prevent pointers from crossing

a domain boundary. For example, in Listing 2.1, the msg byte slice received at line 12 is an
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in-enclave copy of the untrusted one sent at line 25.

Third, function arguments passed to secured routines, with the exception of cross-domain

channels, are deep-copied inside the enclave by GOTEE’s runtime. The deep-copy mecha-

nism can be seen as a marshalling step similar to the one needed to send complex objects

or structures over a network. GOTEE emits compilation warnings if a deep-copy, due to a

secured routine or a cross-domain channel, requires to dereference a pointer supplied as an

argument, i.e., if a memory access outside of the argument frame is required. The mechanism

automatically tracks copied objects to detect cyclic references, can enforce limitation on the

per-copy amount of bytes consumed, and implements defensive checks (e.g., accounts for

TOCTOU attacks and ensures that memory references are within the bounds of the sending

domain).

While more restrictive than the original SGX model, GOTEE’s design ensures that enclave code

cannot be subverted or leak secrets by inadvertently dereferencing or writing to an unsafe

memory location. All data that leaves the enclave does so by being explicitly sent over a

cross-domain channel, while all data referenced by the application’s trusted code resides

in the enclave. Worth noting, this specificity of Gotee makes it compatible with other TEE

models [30, 135] that do not provide implicit memory access from an enclave to an untrusted

parent address space.

2.3.4 Runtime Cooperation

The secured routine abstraction requires two separate trust domains to cooperate. More

specifically, it allows the untrusted domain to trigger execution of a closure within the trusted

one. For example, when the untrusted execution reaches line 19 in Listing 2.1, the trusted

runtime spawns a new routine that invokes the InitSymKey(done) closure.

Figure 2.2 presents the general overview of runtime cooperation. Both domains have their

own code and data, their own thread pools to multiplex execution, and their own managed

memory regions that are separately garbage collected. Between the two domains, dedicated

cross-domain channels are used by the runtimes to trigger the execution of secured routines

and to enable enclave system calls. Specifically, and unlike a normal go closure, a secured

routine is implemented by passing its arguments on a dedicated channel not visible to golang
programmers. The trusted runtime verifies the validity of the closure’s entry point before

scheduling it within the enclave. System call interposition operates in a similar manner: the

trusted runtime copies the system call’s arguments into a dedicated, hidden channel; the

untrusted runtime then reissues the system call asynchronously and returns the result over a

private channel.

Since full copy semantics are enforced between the two domains, each garbage collector can

safely manage its own memory space without synchronizing with the other one.
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Figure 2.2 – Channel-based cooperation between runtimes.

2.3.5 Compatibility With SGX

The secured routine abstraction and its design are compatible with the SGX technology and

its performance model:

Minimum trusted code: The code loaded into the trusted domain is automatically extracted

by the compiler and is minimal. This is both security- and resource-efficient as it reduces the

number of EPC pages consumed by the enclave as well as its attack surface.

Control transfers: Control transfers between the two domains are replaced with inexpensive,

synchronized, and typed data transfers via cross-domain channels for both application-level

communication as well as runtime synchronization. The expensive SGX domain crossings

are only necessary in the initialization phase, to block threads when they are idle or in the

stop-the-world GC phase, and to service an EPC miss.

Defensive programming: Cross-domain channels, used to launch closures and to invoke

system calls, perform memory copies and sanitize arguments. Moreover, they are the single

point of interaction between the two trust domains and are therefore easy to augment with

defensive programming techniques.

Thread multiplexing: The SGX environment chooses, at enclave creation time, the number of

threads that can execute simultaneously within the trusted domain. The Go thread pool size

can be fixed at the beginning of the execution to match the number of TCS in the enclave. This,

however, does not impose any limitation on the number of concurrently executing secured
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routines, which means that concurrency is not bounded by this SGX limitation.

System call interposition: The use of channels to communicate and synchronize between

the two runtimes simplifies system call interposition. The runtime detects system calls from

trusted code, performs argument sanitization, copies arguments to untrusted memory buffers,

and sends the system call to the untrusted runtime. Once the system call is serviced, the

enclave runtime can perform additional checks to validate the result before delivering it to the

application.

No global variables or cross-domain references: secured routines reinforce the isolation be-

tween the two domains by prohibiting shared global variables and cross domain memory

references. This forces data sharing to be explicit and passed through either typed communica-

tion channels or typed function arguments, with deep-copy semantics. This design eliminates

implicit sharing and cross-domain references, which pose the risk of mistakenly leaking data

and violating confidentiality.

Secured routines do not provide any guarantee or protection with regards to denial of service

attacks. As with previous work [63, 83, 138], we consider the challenge of bringing secrets into

the enclave to be out-of-scope for this paper. These are known, fundamental limitations of

the SGX technology that GOTEE does not ameliorate.

Compatibility with other TEE designs: The secured routine abstraction is not tied to the SGX

model. From a high-level point-of-view, secured routines and cross-domain channels allow

cooperation between two (memory-isolated) peer environments that communicate solely via

specific channels. The GOTEE compiler can be extended to support other TEE implementations

without requiring application code modifications.

2.4 Implementation

The GOTEE compiler and runtime extend the Go system. This section describes the changes to

the compiler, a new library written in Go that provides SGX support, and the changes to the

runtime environment.

2.4.1 Compiler Support for gosecure

The GOTEE compiler is responsible for partitioning code and data according to the design of

§2.3.3. GOTEE is a backward-compatible extension of the standard Go compiler with a new

keyword gosecure, and an extension to Go channels, cross-domain channels. The changes

are small, consisting of ∼400 modified lines and ∼2000 lines of new code written in pure Go.

Figure 2.3 illustrates the process: GOTEE compiles each instance of gosecure by type-checking

and validating the closures at compile time. The generated code differs slightly from the

standard goroutine support. On the caller side, the closure arguments are sent over a cross-
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Figure 2.3 – The GOTEE compilation pipeline.

domain channel. On the callee side, within the enclave, the runtime library pulls the in-

enclave copy of the closure arguments and a function identifier from the channel, validates the

target function, spawns the corresponding routine with the arguments, and then schedules it.

Compared to a standard goroutine, GOTEE adds a level of indirection, with a write to and read

from a cross-domain channel, and the deep-copy of each argument.

GOTEE records functions with the gosecure keyword as valid targets for the secured routine

abstraction within the enclave. GOTEE then initiates a full compilation for enclave code, using

the Go compiler’s analysis to determine the minimum transitive closure of code reachable

from these functions, as well as the global variables used by this code. The compiler also

creates a main function for the enclave that serves as the eenter entry point and that initializes

the runtime servers for cross-domain cooperation. The result of this compilation step is a

statically-linked, non-relocatable binary to be loaded into the enclave as the trusted code.

GOTEE implements restrictions on the enclave code. First, the compiler detects channels

passed via arguments to secured routines and ensures that these are declared as cross-domain

channels. Second, the compiler inspects secured routine’s target signatures as well as cross-

domain channel types and emits warnings if their deep-copying requires dereferencing point-

ers. Third, GOTEE does not allow function pointers as arguments to secured routines or

cross-domain channels. Finally, GOTEE only allows pure Go code within the enclave and

rejects dependencies on C code and shared libraries.

GOTEE also compiles the untrusted code using the standard Go compiler, without these
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restrictions. As a final step, GOTEE packages the statically linked trusted executable into an

ELF segment of the untrusted binary.

GOTEE can optionally generate a signed measurement of the enclave at compile time and store

it within a dedicated ELF section of the untrusted binary, so as to perform remote attestation

upon deployment. GOTEE also supplies functions to generate a measurement and signature of

the trusted code at run time for debug purposes.

2.4.2 gosec – an SGX Library in Go

The GOTEE compiler includes an SGX library, completely implemented in Go, as a standard Go

package called gosec. It contains ∼1000 lines of code.

Loading an enclave: gosec mirrors the Intel SGX API in that it provides functions to (1) create

an enclave, (2) load a static binary into the enclave, (3) take a measurement of the enclave,

and (4) perform eenter and eresume to the enclave. The gosec package communicates

with the Intel SGX Linux kernel driver via ioctl to execute the privileged SGX instructions,

i.e., ecreate, eadd, and einit. It also communicates with the Intel aes module [89] that

delivers the token required to perform the initialization (einit, see §2.2.1). The gosec package

implements step (2) by parsing the ELF binary and extracting the enclave code. At run time, the

package spawns a new, untrusted, operating system thread to execute an eenter instruction

that starts the enclave. The number of concurrent threads allowed inside the enclave can be

selected by setting an environment variable at compile time. A similar environment variable

is available to limit the number of threads concurrently executing inside an enclave at run

time. By default, the loader adds only two TCS to the enclave: one to execute the user code,

the other to support garbage collection.

Loading and initiliazing an enclave with the early SGX hardware is a series of distinct steps

that involve the SGX driver (to execute privileged instructions), the SGX daemon (to retrieve a

EINITTOKEN cryptographic token), the measurement byte array generated by the gosec library

while creating the enclave [89] (§2.4.1), and the enclave binary itself. First, the enclave’s

memory boundaries are determined by reading the ELF sections of the trusted binary. This

information is used to perform the ecreate call. Then, individual page contents are registered

via the driver, which performs the eadd and eextend accordingly. At the same time, gosec
builds the corresponding measurement byte array, which is then used to retrieve a token from

the SGX aes module daemon. Finally, gosec issues the einit driver call, using the token, to

finalize the enclave.

AEX handler: Some of the asynchronous exits from the enclave, e.g., faults and exceptions, are

handled in two steps. First, they are first passed to the operating system. Then a user-space

AEX handler, implemented in gosec, is called. The handler runs outside of the enclave and

plays a fundamental role in the debugging process. The gosec AEX handler reads a shared

region of memory where the GOTEE runtime dumps information before performing a panic
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or throwing an exception. This, of course, is reliable only for debugging purposes. The same

mechanism allows in-enclave fault handlers to run by letting the AEX handler perform an

eresume if the exit was not triggered by a panic or a GOTEE exception.

2.4.3 GOTEE Runtime

The third component of GOTEE is the runtime library that is statically linked to the enclave code.

It consists of the Go runtime modified to run in an enclave, including its cooperative user-level

thread scheduler and garbage collector, and extensions to allow trusted and untrusted code

to cooperate. It supports cross-domain channels as the sole means of communications with

untrusted code. The code patch consists of ∼760 lines of new code and ∼300 modified ones.

Enclave runtime initialization: GOTEE replaces most of the Go runtime initialization steps.

The gosec package pre-allocates all trusted heap, thread local storage, and memory pools

during the enclave creation as part of the load and initialization sequence. This is necessary

because of the SGX metering requirements. As a result, the entry point of the enclave simply

switches execution onto a protected stack that is part of the enclave and skips over most of

the Go runtime memory allocation steps. After this, the enclave runtime shares most of the

Go runtime, with minor changes to avoid enclave-disallowed instructions such as cpuid or

rdtsc.

Allowing multiple trusted threads: GOTEE lazily spawns enclave threads. During the execu-

tion, when a new thread is required, the current enclave thread first atomically acquires a TCS

from the pool. It then performs an enclave exit and a clone system call before resuming its

enclave execution. While exits and entries are expensive, these are bounded by the maximal

number of TCS allocated for the enclave. The newly created thread performs an eenter and

jumps to the pre-defined enclave entry point to initialize its state before serving secured

routines.

Securing untrusted channels: The channel implementation, as well as the goroutine struc-

ture, were extended to support a secured communication mechanism between the trusted

and untrusted environments. To pass copies of values to and from secured routines, GOTEE

uses buffers allocated within the unprotected memory region. Upon performing a blocking

operation, the trusted runtime allocates an unprotected buffer that will either hold the value

that it writes, thereby allowing an untrusted routine to access it, or be used to receive the

value produced by an untrusted routine’s write to the channel. When unblocked, the secured

routine copies the content of the buffer to the appropriate memory location within the enclave.

For complex types, the enclave performs a deep-copy. This adds an extra step for secured

routines compared to standard Go, which allows direct read/write to the blocked goroutine’s

enqueued address, e.g., a stack, a heap, or a data variable. GOTEE automatically identifies and

instruments cross-domain channels at runtime, hence limiting the effort required to port

existing applications. Communications within the same domain are unaffected.
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Cross-domain synchronization: The two runtimes, and in particular their schedulers, must

cooperate to synchronize access to channels across domains to ensure the timely delivery

of messages. In Go, a blocking operation on a channel deschedules the routine and wraps it

within a special data-structure along with a pointer to the read (write) memory location. In the

case of a cross-domain channel, the wrapper must be accessible from both runtimes. GOTEE’s

enclave runtime manages a private untrusted memory area from which such wrappers are

allocated. A secured routine that needs to enqueue itself will therefore allocate a wrapper,

along with an untrusted memory buffer, and then enqueue itself in the untrusted cross-domain

channel.

The unblocking operations on cross-domain channels also required changes. An untrusted

routine cannot directly reschedule a trusted routine, and vice versa. Instead, unblocking a

routine enqueues it in a ready queue that belongs to the appropriate domain. These queues

are polled by the corresponding runtime’s scheduler. The scheduler ensures that the address

of the goroutine is valid, i.e., that it was registered at creation and is still live, before executing

it. Note that this extra step only applies to cross-domain communications.

Memory management: The GOTEE runtime restricts the amount of available heap memory

because of SGX memory-size limitations. The standard Go runtime assumes a 64-bit address

space with gigabytes of memory and places its runtime heap, spans, and bitmap for memory

management accordingly. During runtime initialization, and throughout code execution, the

Go runtime mmaps portions of the address space corresponding to these regions and frequently

extends them. An enclave’s maximum memory live working-set is 94 MB, and even less if we

want to avoid page evictions. As a result, GOTEE uses a fixed-size heap whose address and

size are computed as a fixed offset from the code and data. The heap size can be set either at

compile time if a measurement is generated or at run time before loading the enclave.

Thread Local Storage: Go relies on thread local storage (TLS) to quickly access runtime

values such as the current routine (G) or the current machine abstraction (M). Go normally

allocates M in the heap and sets it as the TLS base. Changing the TLS base, however, requires

interactions with the untrusted operating system. GOTEE circumvents this problematic case

by preallocating Ms into the enclave’s .bss segment. As all .bss data structures are part of

the garbage collector’s root set (unlike an arbitrary location in memory), this approach allows

the enclave to use the unmodified Go garbage collector and avoids leaking information via

the thread TLS value.

Garbage collection and Stack shrinking: Go performs mark and sweep concurrent garbage

collection. The GC requires a short pause time with all threads blocked at a safe point for

mark and sweep terminations. As a result, secured routines need a way to exit the enclave and

perform a blocking futex sleep. Other than that, the original Go GC is unmodified, and it

executes independently from the untrusted domain’s runtime. Untrusted memory buffers are

allocated and managed by an in-enclave allocation library and are not traced by either GCs.

The trusted runtime keeps references to secured routines blocked on cross-domain channels,
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which both allows a safety check when they are rescheduled and keeps them in the live-set of

objects during garbage collection.

Goroutine stacks can shrink and stack frames can be relocated in memory when the goroutine

is blocked on a channel. In standard Go, the destination location of channel data may be

on the stack, and therefore handled as part of stack relocation. In GOTEE, when a secured

routine is blocked on a cross-domain channel, the destination address points to a location in

untrusted memory, i.e., not on the stack, while the stack pointer used as the final recipient of

the deep-copy is the one updated during stack shrinking.

Mitigating SGX limitations: The current version of SGX disallows several instructions in the

enclave, such as syscall, cpuid, and rdtsc. While these have to be completely avoided

during the runtime initialization, due to the limited environment at that time (no heap or

channels during the early init phases), they can later be emulated. The system call interpo-

sition mechanism allows the enclave to forward system calls to the untrusted runtime. The

same mechanism can be used to execute a rdtsc, with the communication overhead reducing

its accuracy. For the cpuid call, most of the information provided by the instruction is fixed at

enclave creation, which simplifies its emulation.

Go relies on futex calls to implement locking within the runtime. These are optimistic locks,

performing a limited amount of spinning before sleeping. In an enclave, a futex sleep
would require to exit the enclave and re-enter upon a futex wake up, with high overheads.

Instead, in GOTEE, a secured routine that needs to obtain a cross-domain channel lock will spin

until it acquires the lock. Upon an unlock, GOTEE checks if any unsafe thread is sleeping on the

futex. If so, it spawns a dedicated routine to use the system call interposition to perform the

unblocking futex wake up system call. This approach is similar to the one used by standard

Go for blocking system calls, except that GOTEE relies on routines rather than operating system

threads.

Network support: The Go runtime relies on epoll calls, as part of the scheduler’s logic, for

network events. GOTEE extends the scheduler’s implementation to ensure that a single idle

thread at a time is allowed to exit the enclave and perform the epoll call.

Iago Attacks: GOTEE’s runtime is hardened against Iago attacks and only relies on 4 syscalls:

mmap to allocate unsafe memory, checked against enclave boundaries and known unsafe areas;

futex calls for idle threads, which are used to reduce CPU utilization, not mutual exclusion;

and epoll calls performed by idle threads as described above.

On the application side, GOTEE provides a single point of system call interposition which relies

on channels with deep-copy semantics for memory isolation. This currently performs system

call filtering and safety checks on both arguments and results, and could be extended, in the

future, to allow user-defined filtering policies.

Debugging: Debugging code within an enclave is challenging as the AEX user-space exception
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Workload Text Data RO-data Total Main Package De-
pendencies

App LOC
G

O
T

E
E

runtime only 493 25 273 793 - -
hello world +72 +1 +16 +91 ++ fmt, syscall,

strconv, os,
io, reflect,
runtime,
unicode

13

enclave-cert +174 +1 +45 +221 ++ crypto/rsa,
math, bytes,
hash, unicode

75

ssh +1036 +4 +291 +1332 ++ crypto,
gnet, encoding,
golang.org/x/
crypto/*

71

keystore +1165 + 4 +329 +1499 ++ crypto/ecdsa,
crypto/elliptic,
crypto/aes

474

SD
K runtime only 67 2 4 75 - -

hello world +49 +0 +1 +51 - 355

Table 2.1 – Per case-study enclave TCB breakdown in KB, package dependencies, and appli-
cation lines of code (LOC). + and ++ are, respectively, an increase over the baseline runtime
only, and over all previous table entries.

handler provides little information to identify the cause of an asynchronous exit from the

enclave. GOTEE has an optional flag that allows a program to run in a simulation environment

with identical memory layout and run time behavior as the SGX program, but without the SGX

protection mechanisms.

2.5 Evaluation

Our experiments were performed on a Microsoft Azure Cloud Confidential Computing server,

with an Intel(R) Xeon(R) E-2176G CPU @ 3.70GHz with 4 physical cores, configured with

Ubuntu 18.04 LTS running Linux kernel 4.15.0-1036-azure. GOTEE operates with the standard

Intel SGX Linux kernel driver and attestation daemon (aesm). All GOTEE experiments were run

with garbage collection enabled and a single thread servicing secured routines in the enclave.

The purpose of our evaluation is to validate: (1) the effectiveness of secured routines as a way

to partition code (§2.5.1); (2) the performance, latency, and throughput of secured routines

and their cost in comparison to the crossing-oriented approach of the Intel SDK (§2.5.2);

(3) with three case studies, GOTEE’s usability and ability to hide critical secrets within the

enclave by executing a full application in the enclave(§2.5.3), by performing a fine-grained

partitioning of a standard Go package(§2.5.4), and by extending a real-world application with
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a TEE-specific implementation(§2.5.5).

2.5.1 Code Size

We first evaluate the impact of secured routines on the enclave code size. To this end, we add

a baseline hello world benchmark that invokes fmt.Println in the enclave, and compare

it to the Intel SDK C++ hello world code sample.

Table 2.1 shows, for each case study, (1) the size of the enclave code measured as an increase

on the baseline size of GOTEE runtime for the enclave, (2) the main Go package dependencies,

and (3) the application lines of code. Entries in the table are sorted such that each case study

only reports extra packages imported compared to previous lines.

First, we observe that both the Go runtime and the generated code are larger than the C++.

Second, the ssh-server is responsible for the greatest increase, in TCB size, over the runtime

baseline, due to its numerous dependencies. This result is expected as this particular case

study does not leverage the fine-grain partitioning provided by GOTEE and simply puts the

entire application code inside the enclave. The keystore prototype only adds a few crypto

subpackages to the TCB dependencies.

On the other hand, Table 2.1 also shows the difference in source-code level complexity between

GOTEE and the Intel SDK. In hello world, the lack of transparent forwarding of system

calls in the SDK requires a programmer to forgo printf in the enclave and instead: (1) call

sprintf to write to an intermediate buffer, (2) define and ocall with the IDL compiler,

and (3) use it to issue a write system call. Additionally, programmers are still responsible

for properly implementing all the boilerplate code required to define, create, and load the

enclave. As a result, the C++/SDK hello world consists of 355 LOC, 13 files, requires 85 lines

of configuration, and 161 lines of Makefile.

By comparison, the GOTEE 13 lines of code hello world compiles with the gotee build
command.

2.5.2 Microbenchmarks

This evaluation uses the following microbenchmarks:

• syscall-lat: from within a trusted closure, execute a getuid() system call in a loop;

report the mean latency.

• gosecure+block-lat: spawn a trusted closure and wait for a response over a private

cross-domain channel; report end-to-end median latency.

• gosecure-server-lat: a single secured routine performs blocking writes to a cross-

domain channel in a loop. An untrusted routine measures the latency of performing a
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bench-name Go GOTEE SDK
syscall (getuid) 0.23 1.35 3.69
gosecure+block 0.30 1.5 3.50
gosecure-server 0.20 0.60 -

Table 2.2 – Latency microbenchmarks in µs.

read on the same channel. The difference between this measurement and gosecure+block-

lat corresponds to the runtime overhead required to trigger a secured routine.

• gosecure-tput: multiple untrusted goroutines concurrently spawn a trusted closure

and wait for a response over a private cross-domain channel.

• gosecure-server-tput: a single trusted closure receives requests on a public cross-

domain channel from multiple concurrent untrusted goroutines and replies individually

on private channels, effectively bypassing the runtime cooperation required to spawn

new secured routines.

GOTEE latencies: Table 2.2 compares the latencies of basic operations in Go, GOTEE, and, when

applicable, the equivalent C++ implementation with the Intel SGX SDK. All experiments report

the median (mean for syscall-lat) over 500K iterations.

The latency to spawn a secured routine and have it write to a private channel is 1.5µs. The

equivalent standard Go program has a latency of 0.30µs, suggesting that GOTEE runtime

cooperation and SGX memory overheads have an impact of ∼1.2µs (5.0×). We believe that the

implementation can be optimized to reduce contention on cross domain events and runtime

cooperation overheads. Still, GOTEE shows a 2.3× improvement over the Intel SDK latency,

which requires a full crossing (eenter followed by eexit).

For a trivial system call, that requires going through the syscall interposition mechanism over

channels, GOTEE is able to achieve a 2.7× improvement over the Intel SDK crossing-oriented

approach.

Note, however, that in both cases GOTEE requires a second thread running outside of the

enclave for the untrusted part of the code and to service system calls.

GOTEE throughput: The throughput experiments consist of multiple concurrent requests

to the enclave. For the Intel SDK, different threads perform ecalls in parallel, yielding a

throughput of 281 Kops for one thread and 938 Kops for all four cores.

For GOTEE, Figure 2.4 presents two variants, running with a single thread inside the enclave: (1)

gosecure-tput, the closest in behavior to the Intel SGX SDK, and (2) gosecure-server-tput.

The former shows a throughput improvement of 5.2× (1.46 Mops) over the SDK for a single

core running in the enclave. GOTEE can allow a single enclave thread to achieve 1.6× the

throughput of four cores executing the Intel SDK. GOTEE’s throughput depends on the number

33



Chapter 2. Secured Routines: Language-based Construction of Trusted Execution
Environments

Figure 2.4 – Synchronous closure execution rate for secured routine multiplexed on top of a
single enclave thread.

of concurrent untrusted goroutines (multiplexed on a single thread) performing gosecure calls.

For fewer than three untrusted goroutines, the runtime cooperation requiring to reschedule

the secured routines dispatcher is the main bottleneck. After that, there are enough concurrent

goroutines to avoid blocking the dispatcher.

The second GOTEE experiment shows the benefit of avoiding the secured routine creation

overheads. Its performance degrades, however, as contention on the cross-domain chan-

nel increases; both runtimes compete to obtain the lock and must cooperate to reschedule

unblocked routines. Vanilla Go, which is not subjected to our cooperation overhead or SGX

performance costs, achieves over 4.1Mops.

The garbage collector’s impact on these microbenchmarks is negligible. The Go memory

statistics show that for the full throughput experiment, 21 GC cycles were completed inside the

enclave, with a median pause time of 13µs. However, the total GC pause time only accounts for

0.033% of the application’s available CPU time. In the latency microbenchmark, we measured

a similar median for 2 completed cycles, which accounts for 0.015% of the benchmarks CPU

time.

2.5.3 A full in-enclave ssh server

GOTEE can be used to port a full application to the enclave. The enclave size breakdown is re-

ported in Table 2.1. The Go programming language provides, under golang.org/x/crypto/ssh,

a fully functional implementation of an ssh-server. This implementation relies on the default

net package. While none of the application logic code for the server was changed, this port

required a few modifications to the net package, which relies on C bindings for socket struc-
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tures in order to stay compatible with the Linux kernel headers. As GOTEE allows only pure Go

code inside the enclave, we created gnet, a new package that redefines relevant C structures

(e.g., struct_sockaddr, struct_in_addr, struct_addrinfo) and constants in pure Go.

This package adds 70 LOC to the native net package.

2.5.4 Webserver with enclave-cert

The loss or leakage of an SSL private certificate can have serious reputational consequences.

However, a private certificate must reside in the memory of the process that handles an SSL

connection. Our case study designs and implements the enclave-cert package, which

isolates within an enclave the two operations that require access to an SSL certificate’s private

key: signing the handshake hash and decrypting the client’s symmetric session key.

We modified the native Go tls package to allocate the server’s private certificate key within

the enclave and to perform these operations in the trusted environment. We did not imple-

ment, in the benchmark, a mechanism to safely deliver the certificate to an attested enclave

(which would be required in a real-world deployment) and focused, instead, on measuring the

overhead of having secured encryption operations solely in the enclave.

The enclave-cert package uses channels to pass encryption and decryption requests to

the enclave. A single secured routine is spawned by the user application when a certificate

is loaded or created. The secured routine then waits on the request channel, performs the

requested decryption, and notifies the untrusted requester.

The code patch consists of 9 additional LOC that add optional request channels to the TLS

certificate structure. The enclave code is in enclave-cert, a new package of 35 LOC that

defines the operations on the private key. The http package is unmodified. Any webserver

application that uses enclave-cert operates like a corresponding Go webserver application.

The separation of functionality between the tls package (which does not depend on GO-

TEE or gosec) and enclave-cert eliminates circular dependencies and ensures backward

compatibility when SGX is not available.

In this experiment, we have an apache-bench client connect repeatedly over https://localhost
to a simple webserver and request a single page load per session. The workload is totally

dominated by the TLS handshakes.

We compare the built-in Go http and tls packages with the modified enclave-cert. The

built-in server achieves an average of 400 reqs/sec, while enclave-cert achieves 353 reqs/sec

(i.e., 88% of native). The apache-bench output shows they have the same mean for connection

and processing time, but enclave-cert has a higher (6×) standard deviation. In fact, the

run time cooperation between trusted and untrusted domains is a source of variability that

impacts the system’s stability and tail latency. A similar experiment with Glamdring [138]

reported only 60% of native throughput due to the cost of frequent enclave crossings.
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2.5.5 Keystore based on go-ethereum

The go-ethereum [98] project is the official implementation of the Ethereum protocol [42] in Go.

A particular feature of the project is the ability to manage ethereum signature keys (ECDSA) as

part of a keystore. The go-ethereum project allows safely encrypting keys with a passphrase

before storing them on disk. The keystore is responsible for loading and decrypting the keys

using the user-provided passphrase. To reduce the window of vulnerability, go-ethereum

zeroes-out, in memory, decrypted keys after signing a hash or a transaction.

As a proof-of-concept, we implemented a simplified version of this keystore with GOTEE. The

keystore executes in the enclave and enables: (1) loading an encrypted private key from the

disk in the enclave, (2) decrypting the private key using a user-provided passphrase (e.g., via

a secured ssh connection), and (3) signing a hash if the user validates it. Our keystore is 500

lines of Go code. The primary benefit of this approach is the elimination of the window of

vulnerability. The keystore can safely keep private keys cached in secure memory. It took a

single developer one day to implement this simplified secured keystore.

The enclave size break down is reported in Table 2.1. The amount of code loaded in the enclave,

more than 1MB, is large compared to other experiments. This is mostly due the embedded

ssh server, the cryptographic libraries, e.g., elliptic curves and AES, and the encoding libraries,

required to unmarshal decrypted private keys.

Along the TLS benchmark, this implementation validates that GOTEE can support popular Go

cryptographic libraries (RSA, AES, and ECDSA) without modifying these packages.

2.6 Discussion

GOTEE demonstrates that language support for TEEs can alleviate SGX limitations and that

the GOTEE programming model can be used to effectively increase the integrity and confiden-

tiality of sensitive server-side computations. At the same time, the viability of SGX, beyond

simple use cases in digital-rights management, as a foundational trust technology is doubtful

given the large number of SGX vulnerabilities found to date and the complexity of the current

architecture. SGX is a complex extension to a complex instruction set with an optimized

implementation. Verifying the correctness of this extension and of its interactions with the

large number of existing instructions is challenging [38,89]. SGX has already been shown to be

vulnerable to side-channel attacks based on caches [73], page faults [196], branch shadow-

ing [136], and processor side-channel attacks (”Foreshadow” [76], a variant of Spectre [129]

and Meltdown [141]).

GOTEE’s increased isolation and decoupling between trusted and untrusted code, as well as the

channel abstraction as the sole mean of communication, allows GOTEE applications to remain

agnostic to the underlying technology’s programming model. GOTEE seems ideally suited to

provide a programming model for more radical TEE designs, that better protect trusted code
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in isolated environments comprising dedicated cores, TLBs, and (larger) dedicated, encrypted

DRAM. One such TEE design could allocate processors and memory at kernel boot time. With

a reserved co-processor, its TLB could be dedicated to an enclave and the responsibility of

managing the virtual address space could shift from the operating system kernel to a kernel

driver, with a small and verifiable implementation. A robust solution would also partition the

cache hierarchy to avoid cache-based side-channel attacks.

2.7 Related Work

A GOTEE-compiled program results in side-by-side execution of two peer environments that

communicate over type-checked, message-passing channels. Using language-based message

passing to isolate parts of a program is similar to the Singularity operating system [123], which

used strongly typed channels as its only communication mechanism among processes and

the kernel.

Program partitioning has been used to transform programs to run sensitive computations on

isolated or secure processors. The Jif/split [202] system used security types and information-

flow analysis to partition programs so that secure computations could be distributed and

executed on trusted processors. Swift [87] partitioned a web app to run its trusted computation

on a server. Wedge [71] was a Linux extension that supported least-privileged partitioning and

execution of programs. The Crowbar tool used static program analysis to partition programs so

that operations could be performed with least privilege. Privtrans [74] partitioned a program

to enforce privilege separation. GOTEE, inspired by these systems, provides a language-base,

compiler-driven code and data partitioning for TEEs that presents a simple programming

model and which could be extended to support other TEE hardware, as well as secured co-

processor or remote execution setups.

TrustScript [108] provides language support for running TypeScript (JavaScript) code in an

enclave. Similar to GOTEE, it relies on keyword annotation of trusted code and uses asyn-

chronous message passing between the trusted and untrusted runtimes. Unlike GOTEE’s

automated, fine-grain partitioning, TrustScript developers must implement all trusted code in

an annotated namespace, and the TrustScript’s security model is unclear.

Glamdring [138] uses data-driven code partitioning between an SGX enclave and an untrusted

environment. The compiler and toolchain try to reduce the number of enclave crossings

by bringing more code into the enclave. GOTEE takes a different approach, as it provides

programmers with fine-grained control over the TCB, a stricter memory isolation between the

two domains, and replaces enclave crossings with channel communications.

The debate on the relative merits of the crossing-oriented abstractions of the Intel SDK and

the communication-oriented abstraction of GOTEE is of course a new twist on the duality of

shared memory and message passing [133]. While numerous systems have been built with

the domain-crossing approach embodied in the Intel SDK (§2.2.2) [29, 67, 138], including a
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solution for the Rust programming language [29], the current implementation of SGX favors

an asynchronous, communication-oriented model, as demonstrated by GOTEE and Intel’s own

recent switchless [43]. Other mentioned solutions [43, 63, 83, 108, 112, 161] rely internally

on message passing to avoid enclave crossings. GOTEE, however, leverages Go channels,

an abstraction that is part of a language, type-safe, and widely used. The cross-domain

channels extend the general channel programming abstraction and enable developers to use

explicit cross-domain communication at the application-level. Internally, this single point of

interaction allows to perform both static and dynamic safety checks in concordance with the

language semantics.

As a general result, GOTEE shows that programming language support, with an appropriate

abstraction and programming model, combines the best of previous approaches, i.e., the

fine-grained automatic partitioning, the message passing model precluding enclave crossings,

as well as a higher level of isolation between the two domains, and provides an interesting

testbed for future extensions, such as information flow control or user-defined system call

filtering.

Microsoft used SGX in conjunction with machine-code modification and verification to ensure

a property called information release confinement that guarantees that attackers can only see

encrypted data [177]. Although their C++ programming model is crossing oriented, GOTEE

would provide a better starting point as they impose and verify safety restriction on the

C++ enclave code that would be unnecessary for a safe language such as Go. Similarly, the

Microsoft VC3 [172] map-reduce system requires and checks at run-time an even stronger set

of control-flow and memory-safety properties, which again are easily satisfied by Go programs.

Finally, there exist software solutions which rely on layered virtualization to remove any trust

dependency from the operating system [90,94,121] or the cloud hypervisor [204]. GOTEE could

provide a complementary application-level isolation.

2.8 Chapter Conclusion

What comes first, the processor or the programming model? Intel’s SGX made a TEE generally

available, and its SDK provides a thin veneer that exposes its hardware features as the pro-

gramming model. As systems are constructed on SGX, it has become increasingly clear that

the most effective use of this TEE is to have it execute only trusted operations and to run the

bulk of an application outside of the enclave. This paper explores a new programming model

to support this style of use. GOTEE provides language support for TEEs. It extends the Go

programming language and uses the Go routine mechanism to invoke a function within the

enclave. Our compiler uses a single annotation to distinguish trusted code and automatically

partition a program and establish cross-domain communication.

GOTEE treats the enclave as a distinct computing entity and uses message passing to copy

arguments to functions, which then execute securely in a distinct, secure domain. This
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alternative model has the advantage of not requiring expensive cross-domain control transfers,

resulting in significantly higher performance than the standard option. Equally important,

it reduces the close coupling between the trusted and untrusted domains and opens the

possibility of new, more easily verified hardware implementations that can better isolate TEE

cores and run faster.

2.9 Afterthoughts

Secured routines was published at the USENIX Annual Technical Conference 2019 (ATC19) [107].

In this section, we take a step back and summarize the lessons learned, 2 years later, and

place our work in perspective by considering the evolution of the technologies, their usage in

practice, and the accumulated feedback we received after the project’s publication.

The secured routine programming model does not make attestation [21,112,114] a central part

of its design and only briefly discusses it in the paper. As described in the paper, attestation can

be added to the gosec library to be automatically performed at enclave load time. Our library

could, for example, accept a configuration file or annotation that defines the local or remote

entity in charge of validating the enclave’s measurement. One might wonder why we did not

enforce a particular attestation scheme within GOTEE, e.g., by providing attested cross-domain

channels, or similar to Asylo [112]’s secured channels on top of gRPC [113], and why it was

not a central part of our design. The answer is simple, we considered that attestation was an

end-to-end problem, with no clear communication scheme, and was too tightly linked to the

application’s own logic. GOTEE is a compiler that supports any pure Go code. As such, it can be

used for both local programs with no network access and for network-facing applications. We

thus did not want to impose, within our programming model, any form of communication with

an external entity that would have required access to IPCs or the network interface. However,

as demonstrated both by the SSH-server and the trusted Go-ethereum wallet experiments,

our programming model supports communication with remote entities and does not impede

on one’s ability to establish secured authenticated communication channels with the enclave.

GOTEE exposes a binary trust model as it assumes only one enclave per application. Theo-

retically, GOTEE could be extended to support multiple enclaves within the same program

address space by, for example, allowing the gosecure keyword to take an enclave identifier

as a parameter. However, we made a decision, early on, to focus on providing only support

for a single trusted domain per application for 3 reasons. First, we wanted to keep the model

simple in order to make it usable by the average programmer. A manichean approach of the

trust model thus seemed like the best option and was easier to reason about. Second, we

knew that this alternative approach would not scale gracefully to tens or hundreds of enclaves.

Each enclave requires its own copy of the modified Go runtime, i.e., ∼800KB for a limited

usable EPC of 128MB, and must be statically linked to a different range of address within the

program’s virtual memory. Third, we believe that splitting enclaves accross processes rather

than craming them within a single address space makes more sense and is, of course, possible
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with GOTEE.

GOTEE, by design, circumvents Intel SGX limitations and performance pittfalls. A valid critic

could thus be made about GOTEE’s timeliness, considering futur iterations of SGX hardware.

For example, Intel SGX version 2 extends the enclave’s execution environment to allow dynamic

updates to the enclave’s memory regions (shrinking and extending), and increases EPC size

to potentially 2TB. We can also expect the cost of transitions to decrease. As a result, GOTEE’s

enforcement of static linking, aggressive dead code elimination (DCE) to reduce memory

consumption in the enclave, and message passing communication could be considered

obsolete as they would no longer be essential to enclave’s execution and performance. We

believe, however, that our design is a principled approach to providing a secured and strong

separation of trust domains and would still be relevant in SGX v2. By relying on cross-domain

channels as the sole mean of communication between trusted and untrusted code, we provide

a single point of interaction that can be carefully implemented and instrumented to avoid

accidental leakage of information and adopt defensive programming checks. We would also

like to point out that hardware development cycles are extremely slow. Intel SGX v2 was

announced before GOTEE’s publication and is only available on certain CPUs from 2019. There

is thus an undeniable need to address the current’s version limitations and support it for the

years to come. We acknowledge, however, that GOTEE would benefit from an improved SGX

implementation, notably by being able to dynamically increase the enclave’s trusted heap at

run time.

A trade-off exists between the freedom and control exposed to the programmer and the

strength of the security guarantees provided by the system. In GOTEE, we made the decision to

implement deep-copy to allow sending complex structures across the trust domain boundary

and rely on compiler emitted warnings to guide the developer’s implementation and high-

light potential pointer de-references. It is therefore the programmer’s responsibility to read

warnings, think about which structures will be copied into the untrusted space, and ensure

that no sensitive information is part of the copied data. In retrospect, we think that a practical

solution should probably be more restrictive and only perform one level of copy, i.e., disallow

types that require pointer de-referencing in the copying process. Put differently, simpler types

might be better to avoid unintended leakage of sensitive data.

Despite being extremely easy to leverage, GOTEE still only appeals to expert engineers. The

vast majority of Cloud users, who are the main target of TEE technologies, do not have the

maturity and expertise (yet) required to adopt a multi-trust domain execution environment.

TEE technologies will take a while to make it into the mainstream world of programming. In

the meantime, a successful TEE-based product should be as simple as a push of a button or

selecting an option in the Cloud service provider’s UI when creating a virtual machine. Users

have a coarse understanding of trust, confidentiality, and integrity and mostly treat the entire

VM as one single domain [97]. Intel, after a few years spent on SGX, has realized this and is

starting to propose confidential virtual machines, similar to other vendors [30, 44, 125]. At the

same time, some companies and startups are trying to provide frameworks to transparently
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lift Cloud applications to TEEs on the current hardware. Anjuna security [4] takes unmodified

applications and deploys them in the client’s selected Cloud platform. While GOTEE is not

relevant to their clients, Anjuna engineers expressed interest in the project as a useful tool to

quickly prototype and test their products or deploy microservices for their infrastructures.

GOTEE is a double-edge sword leading to a paradoxical situation. Simplifying code deployment

inside the enclave also implies that developers pay less attention to what code ends up

executing in the TEE. With secured routines, leveraging any public library inside the enclave

becomes as easy as using it outside of a TEE, as it does not require any source code modification

or instrumentation. As a result, developers might end up including buggy or malicious code

inside the trusted domain. This problem is not specific to TEEs and plagues all modern

software that heavily relies on reusable public components called packages. The next Chapter

focuses on this particular issue and is not tied to TEEs technologies.
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Programming languages and systems have failed to address the security implications of the

increasingly frequent use of public libraries to construct modern software. Most languages

provide tools and online repositories to publish, import, and use libraries; however, this

double-edged sword can incorporate a large quantity of unknown, unchecked, and unverified

code into an application. The risk is real, as demonstrated by malevolent actors who have

repeatedly inserted malware into popular open-source libraries.

This paper proposes a solution: enclosures, a new programming language construct for library

isolation that provides a developer with fine-grain control over the resources that a library

can access, even for libraries with complex inter-library dependencies. The programming

abstraction is language-independent and could be added to most languages. These languages

would then be able to take advantage of hardware isolation mechanisms that are effective

across language boundaries.

The enclosure policies are enforced at run time by LITTERBOX, a language-independent frame-

work that uses hardware mechanisms to provide uniform and robust isolation guarantees,

even for libraries written in unsafe languages. LITTERBOX currently supports both Intel VT-x

(with general-purpose extended page tables) and the emerging Intel Memory Protection Keys

(MPK).

We describe an enclosure implementation for the Go and Python languages. Our evaluation

demonstrates that the Go implementation can protect sensitive data in real-world applications

constructed using complex untrusted libraries with deep dependencies. It requires minimal

code refactoring and incurs acceptable performance overhead. The Python implementation

demonstrates LITTERBOX’s ability to support dynamic languages.

3.1 Introduction

Programming has changed; programming languages have not. Modern software development

has embraced abstraction and reusable software components. Today, applications are built

43



Chapter 3. Enclosure: Language-Based Restriction of Untrusted Libraries

using open-source libraries (aka packages) that offer diverse, tested functionality that increases

programmer productivity. In the extreme, an application can become a collection of libraries

orchestrated by application-specific code. To facilitate code sharing, modern languages

provide tools and online repositories to publish, find, download, access, and update public

libraries, e.g., Python modules [48], Go packages [111], Ruby gems [49], and Rust crates [50].1

Although languages embrace libraries, few, if any, provide mechanisms to address the inse-

curity and fragility inherent in their use: (1) packages come without a formal specification

of what they do, and do not do; (2) their developer is typically unknown, thus untrusted; (3)

they can import other unknown and untrusted packages, and lack traceable dependence

management; and (4) most important, programs run in a single trust domain that does not

isolate code or data from different packages.

In general, a developer’s trust in a public package often appears to be based on its popularity or

a shallow code review. Careful inspection is both impractical, since importing a single package

may incorporate hundreds or thousands of transitively dependent packages [158, 159], or

infeasible, as a package’s code may change frequently. As a result, an application can become

a patchwork of code from untrusted and unverified sources.

Malevolent individuals have been quick to exploit the opportunity to insert malicious code in

popular packages [77, 78, 82, 206], to modify an IDE to insert the code [183], or to substitute

modified clones [79–81,134,145]. These attacks are easy to implement and provide unimpeded

access into hundreds, if not thousands, of applications for malicious code that steals private

information or opens backdoors. For example, malicious Python packages stole SSH and GPG

keys from the local file system [78, 81]. More generally, even legitimate third-party libraries

may implement undocumented functionality that operates outside of its advertised scope.

For example, the Facebook iOS SDK to identify users also shared device information with

Facebook without user consent [200].

Although the systems, programming languages, and security communities have long studied

software isolation [68,71,92,118,122,138,142–144,151,155,174,175,179,186,190,191], previous

approaches do not address the full range of requirements for package isolation and security:

(1) low-level systems abstractions may not match programming language requirements [68,

92, 142, 151, 174, 175, 191] or may require extensive application refactoring [71, 143, 144]; (2)

pure language approaches, e.g., Rust or JavaScript isolates, are limited to a single language and

programs written only in the language; (3) mixed approaches, e.g., Erim [186], Hodor [118],

and Glamdring [138], ignore package structure, are unaware of dependencies among packages,

or lack expressive access rights.

While packages are at the root of security and fragility problems, their unique characteristics

also facilitate solutions. Specifically, packages consist of code and data written to run as part

of any program, which means they must have clearly defined entry points, not be dependent

1Frameworks, such as node.js, also support library repositories. This paper considers them from a language-
specific perspective, e.g., as JavaScript packages.
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on a program’s environment, and explicitly declare and import their dependencies. They can

run in isolation given access to their input data and the packages they depend upon. The clear

boundaries of a package can help partition a program’s memory address space into isolated

regions that prevent code in the package from improperly accessing the rest of the program’s

environment.

We propose a new programming language construct that gives a developer fine-grain control

over the package resources that a computation can access, even for packages with complex

dependencies. It introduces a dynamically-scoped set of restrictions on which parts of the

address space can be accessed and which system calls can be invoked. The abstraction is

language-independent and could be added to most languages. Its implementation relies on

hardware isolation mechanisms that provide trustworthy, fine-grain access control within a

virtual address space [21, 62, 124, 185, 195].

This construct is called an enclosure. It implements an isolation policy for a closure by binding

it to a memory view and a set of permitted system calls, which restricts access to program

resources by the code invoked in the closure, regardless of which package contains it. The

current system starts with a view that limits access only to the resources in the packages

that the closure invokes. A developer can restrict or extend this view by selectively enabling

read, write, or execute access rights for a specific package. The developer can also selectively

allow system calls. The policy is dynamically scoped and applies to all code executed by

the enclosure, which in turn can invoke other enclosures that further restrict the accessible

resources.

LITTERBOX enforces enclosure policies at run time. It is a language-independent framework

that uses hardware mechanisms to provide uniform and robust isolation guarantees, even for

packages written in unsafe languages. LITTERBOX exposes a high-level API that is reusable

across programming languages. The isolation is built on one of several different hardware

technologies, and LITTERBOX hides the hardware complexity.
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This paper makes the following contributions:

• Enclosure is a dynamically scoped programming language construct that imposes user-

defined access policies on code invoked within it. These policies restrict, at package

granularity, what parts of a program (data and code) this code can access and which

system calls it can invoke. Untrusted packages, even those with deep dependence

graphs, can be isolated from sensitive information.

• LITTERBOX is a language-independent framework to enforce enclosure policies with

robust hardware isolation mechanisms. LITTERBOX currently supports both Intel VT-

x (with its general-purpose extended page tables) and the emerging Intel Memory

Protection Keys (MPK).

• We describe an efficient implementation of enclosures and LITTERBOX for the Go lan-

guage. It has low overheads for real-world applications and can drastically reduce a

program’s trusted codebase.

• We describe a prototype implementation of enclosures and LITTERBOX for the dynamic

programming language Python.

• We present experiments demonstrating that the overhead can be as low as 1.02x for real

applications.

LITTERBOX and both language frontends are open-sourced [56].

3.2 Enclosure construct

An enclosure is a programming language construct that enables a developer to restrict code’s

access to program resources to prevent untrusted code from accessing, modifying, or leaking

sensitive data. It limits the code to access only functions and data from specified program

packages (the memory view) and to execute only explicitly allowed system calls. These restric-

tions are dynamically scoped, so they apply to the closure’s body and the code invoked by

it.

3.2.1 Definitions

A package can export four items for use by other packages: (1) functions (code), (2) variables

(mutable data), (3) constants (immutable data), and (4) arena (heap). Variables are either (1)

static variables (e.g., pre-allocated globals) or (2) dynamic variables (dynamically allocated

objects). A package’s functions allocate dynamic variables within the package’s arena.

A program is a collection of packages, organized as a directed package-dependence graph.

This graph is statically determinable from the packages’ import statements. A package Foo
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Figure 3.1 – The rcl enclosure prevents the call to the public package libFX from modify-
ing or leaking sensitive information. The top-right corner shows the application’s package-
dependence graph, with rcl’s natural dependencies in dashed borders, and its extended
read-only view to secrets in dotted borders. Color-coding of variables highlights which
package arena holds the corresponding value.
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has a direct dependence on package Bar if Foo imports Bar. Package Foo has a transitive

dependence on Bar if there is a directed path from Foo to Bar of length greater than 1 in

the graph. A package’s natural dependencies is the set of packages contained in its direct

and transitive dependencies. A package Bar is foreign to Foo if it is not part of Foo’s natural

dependencies.

A closure is a function combined with an environment that holds the bindings for its free

variables. A closure belongs to the package that defines it, and it shares some of the package’s

natural dependencies.

An enclosure binds a dynamically scoped memory view and set of allowed system calls to a

closure. The memory view defines access rights to the program’s packages by the code invoked

in the closure. By default, enclosures prohibit all system calls and limit memory views to only

the resources in packages in the closure’s natural dependencies. User-defined policies can

selectively authorize system calls and restrict or extend the memory view.

3.2.2 Enclosure Expression

Enclosures are declared with the following syntax:

Stmt ::= with [Policies] ClosureDef

ClosureDef ::= func ( args ) resultType { body }

Policies ::= MemModifiers, SysFilter

MemModifiers ::= ( pkg : U | R | RW | RWX )*

SysFilter ::= none | all | ( net | io | file | mem | ... )*

The enclosure expression returns a closure that is permanently associated with a memory

view and system call filter. The closure can be bound to a variable and reused throughout

the program’s lifetime. The memory view and system call filter will be enforced during every

execution of the closure.

MemModifiers and SysFilter specify the enclosure’s memory view and authorized system

calls, respectively. MemModifiers extend or restrict the closure’s memory view by specifying

access rights, similar to those in the Unix file system, to a package: R grants read-only access to

a package’s data and constants, RW grants read access to its constants and read-write access to

variables, RWX gives full access to its resources: i.e., read for constants, read-write for variables,

and the ability to invoke functions. U unmaps a package, so it is completely inaccessible in the

enclosure.

When an enclosure manipulates data or functions from a foreign package, e.g., passing one

of its functions as a callback, the developer must explicitly specify the policies governing

the closure’s access. Explicit access specifications prevent accidental sharing of the foreign

package’s data.

SysFilter allows programmers to specify which system calls a closure can invoke. System
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Figure 3.2 – Programs resources made available while executing the rcl enclosure defined in
Figure 3.1.

calls are grouped into categories around logical services, e.g., file for filesystem operations,

net for network access, or mem for calls such as mmap and mprotect. A category included in

SysFilter is allowed in the enclosure.

A call to an enclosure triggers a transition into a dynamically scoped environment restricted

by its memory view and system call filter. These transitions are called switches. The closure

runs inside this restrictive environment until it returns, thereby triggering a switch back to

the caller’s environment. Enclosures nest dynamically, but a switch can only enter an equal or

more restrictive environment, preventing an escalation of privileges. It can return to a less

restrictive environment. An enclosure faults if it violates the policies defined by its memory

view and system call filter. A fault stops the execution of the closure and aborts the program.

Figure 3.1 presents an example of an enclosure in a small Go program and its corresponding

directed package-dependence graph. Line 15 defines the rcl enclosure that calls the Invert
function from the public package libFx. The enclosure’s natural dependencies are img and

libFx. The R memory modifier extends rcl’s memory view to include the foreign package

secrets, with read-only access. The none system call filter explicitly prohibits all system calls.

At line 19, the enclosure computes and returns the inverse of the original image. As original
belongs to secrets’ arena, rcl is unable to modify it. Furthermore, rcl’s memory view does

not include main or os, and so it would fault if it tried to access the key private key.

Figure 3.2 shows which resources belong to which package. The enclosure memory view and

system call filter define which access to each package’s resources are permitted. The rcl
closure runs in an execution environment in which these restrictions are enforced.
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3.2.3 Threat Model

We make no assumptions about the logic of the code running inside a restricted environment.

Code from packages running in the environment can be implemented in unsafe languages,

access raw memory, and execute system calls. Enclosures ensure that this code faults if it

tries to access a package outside of its memory view or perform a prohibited system call. The

developer is responsible for declaring enclosures to properly encapsulate untrusted code in

their applications.

Enclosures assume that packages have a well-defined layout, i.e., that their functions, variables

(including heap), and constants can be identified and inspected to verify that they follow the

format allowed by the LITTERBOX backend (see §3.5). In particular, packages cannot share

memory pages. Enforcing this assumption is the responsibility of the compiler and is verified

by LITTERBOX at run time.

We assume that the underlying operating system and hardware are correct. Side channels such

as rowhammer [128] or microarchitectural flaws [129] that modify or leak memory content are

out of scope.

3.3 Enclosure Policies

Enclosures can impose both fine-grain isolation policies on a single function invocation as

well as program-wide policies on all uses of a package. They are similar in many aspects to

program sandboxes: explicit transition into an isolated environment, a possibility of nesting

restrictions, and explicit control of sharing exceptions. Because enclosures nest, they can be

declared at any level of an application (e.g., main program, a framework, or a package), which

allows fine-grained tuning of isolation to the specific requirements of the code invoking the

enclosure.

3.3.1 Default Policy

An enclosure associates a memory view, a collection of packages and respective access rights,

and a system call filter with a closure and the code it invokes. The dynamic scope of this

construct imposes its restrictions on the closure’s natural dependencies, the code in the

packages invoked by the closure. This dynamic behavior not only allows a given package to

be subject to different restrictions when two enclosures use it, but it also allows enclosures’

authors to restrict blackbox code whose source is unknown, unavailable, or too complex to

manually inspect.

By default, enclosures prevent system calls and limit the memory view only to allow access to

resources in a closure’s natural dependencies. This default policy was chosen for its simplicity

and usability. Other designs are possible, for example: disabling access to all packages and

requiring a programmer to supply an allowed package list or allowing access to all packages
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and expecting a denied list. However, both alternatives require in-depth knowledge of a pro-

gram’s package-dependence graph and extensive, brittle annotation. By contrast, enclosure’s

policy allows isolation of a complex subsystem without an understanding of its potentially

complex and evolving dependence graph of transitively invoked packages. It treats packages

as a blackbox, yet provides them with a sufficient environment to run normally.

Enclosure’s default policy disables all system calls. This decision forces programmers to state

their assumption of which system services a package and its dependents might reasonably

execute. Once again, this choice is not intrinsic. The proposed SysFilter syntax could be

changed to allow finer-grained filtering, for example, by filtering on system call arguments.

3.3.2 Program-Wide Policies

Enclosures are a local mechanism that can enforce higher-level, program-wide policies. These

policies are restrictions that apply across the full execution of a program. For example, package

Foo should never have access to package Bar. An enclosure whose memory view unmaps Bar
will enforce this restriction. To impose a program-wide policy, all calls into Foo must be

enclosed. Currently, a programmer must manually insert an enclosure statement at each call

site or provide wrappers for Foo’s functions that encapsulates them in enclosures. A compiler

could automate this process by wrapping all calls into Foo in enclosures that do not allow

access to Bar.

Program-wide policies implemented with enclosures allow enforcement of high-level secu-

rity requirements, such as guaranteeing sensitive information’s confidentiality and integrity.

Confidentiality of a package’s data is enforced by enclosing calls to other untrusted packages

that should not access this information. Alternatively, these packages can be prevented from

leaking information by disabling all system calls. A package’s integrity can be ensured by map-

ping it read-only in the enclosed code. In Figure 3.1, secrets’s confidentiality is guaranteed by

disabling all system calls for rcl and integrity is enforced by making secrets read-only. §3.6

contains other examples, including one showing how enclosures’ non-disruptive integration

with programming languages can implement secured-callbacks.

3.3.3 Limitations

Enclosures have a few inherent limitations.

Because they operate at package granularity, enclosures cannot selectively share a subset of

a package’s code or data. This could present challenges when a particular package holds a

sensitive state and is shared by mutually distrustful packages. A possible solution is to refactor

the program’s code to extract the package’s state and split it into separate packages that can be

independently shared with each distrustful parties.

A second limitation relates to information flow control. As explained above, enclosures can
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enforce the confidentiality of selected data by either not sharing it with untrusted code or

disabling the enclosure’s system calls, thus preventing leakage. However, when enclosed

code requires access to sensitive data and system calls, enclosures cannot guarantee that no

information will be leaked. This is a challenging problem because any system call can be

used as a side-channel to exfiltrate sensitive data shared through the enclosure. Section 3.6.5

provides a specific example of this situation and a mitigation.

Third, as mentioned in §3.2.3, side-channels attacks and microarchitectural flaws are not

addressed.

3.4 LITTERBOX Design

Enclosures consist of two separate parts: (1) frontend language-specific support, provided

by a language’s compiler and runtime, and (2) the backend that uses hardware to enforce a

closure’s memory view and filter system calls.

LITTERBOX is a language-independent backend for enclosures. It supports diverse frontends

with a simple API that offers transparent control over multiple hardware isolation technologies.

Figure 3.3 presents a general overview of how a language frontend interacts with the LITTERBOX

backend to implement enclosures.

3.4.1 LITTERBOX Abstractions

LITTERBOX defines simple system-level abstractions to represent a program’s resources as

sections, packages, and enclosures.

A section is a contiguous, page-aligned virtual memory region in the program’s address space.

Its start address, size, and default access rights (i.e., read (R), write (W), execute (X)) character-

ize it. Sections can be dynamically allocated at run time, e.g., with mmap.

A package is a collection of non-overlapping sections. It has a unique name and typically

contains one or more text (RX), rodata (R), and data (RW) sections. A package’s arena, §3.2.1,

is part of its data sections and is not shared with other packages.

An enclosure consists of a unique identifier, the virtual address of its closure, its memory view

as a set of package names and associated access rights, and its system call filter. The closure

resides in its own text section owned by the package that declares it.

As packages partition the program’s address space, LITTERBOX uses package dependencies

to compute an enclosure’s complete memory view. This operation occurs at startup time for

compiled statically-linked languages and package-load time for dynamic languages.
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Figure 3.3 – Overview: language support for enclosures with frontend extension inside the PL’s
compiler, and runtime hooks to call the language-independent LITTERBOX backend.

53



Chapter 3. Enclosure: Language-Based Restriction of Untrusted Libraries

3.4.2 LITTERBOX API

LITTERBOX exposes a small API to the frontend language implementation. LITTERBOX sup-

ports enclosure-defined operations with four functions: (1) Init, (2) Prolog, (3) Epilog, and

(4) FilterSyscall. It provides two additional functions for language runtimes: (5) Transfer
for dynamic memory management and (6) Execute for user-level scheduling.

A runtime’s initialization code in statically-linked languages or the package import and enclo-

sure-parsing code for dynamic languages calls Init. It takes a description of the program’s

packages and enclosures and computes the memory views. LITTERBOX initializes the un-

derlying hardware to create, for each enclosure memory view, the corresponding restrictive

execution environment.

Prolog and Epilog provide the switch mechanism that allows a program to enter and leave an

enclosure’s execution environment.

FilterSyscall is called when an enclosure attempts to perform a system call. It either permits

the call to execute or rejects it and raises a fault.

Memory allocators require a mechanism to shrink or extend a package’s arena. The Transfer
function dynamically repartitions heap memory by transferring a section from one package

to another. It permits memory allocators to reuse freed memory sections for a subsequent

allocation, even across packages.

Some modern languages, such as Go, provide user-level threading to support concurrent

execution. The language’s runtime implements a scheduler that yields execution from one user

thread to another. Execute enables run-time scheduling of user-level threads by providing a

switch mechanism between two unrelated protection environments. The language’s scheduler

calls Execute to transition from one user thread execution environment to another. Thus, the

scheduler can preempt, block, or resume an enclosure’s execution in the correct execution

environment.

3.5 Implementation

Language support for enclosures requires changes to a programming language’s syntax, com-

piler, and runtime. The full Go extension for enclosures is a 1,000 LOC patch to the Go compiler

and runtime. The patch is modular and self-contained, so it can be easily maintained. The

Python extension prototype is a fork of CPython with 600 LOC changed to introduce a multi-

segmented heap for dynamic memory management. LITTERBOX is 6,500 LOC written in

Go.
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Figure 3.4 – Figure 3.1’s final executable content produced by Go’s frontend support for en-
closures. ELF sections from left to right: .text (RX), .rodata(R), and .data (RW). Dashed
lines represent intra-ELF section page-aligned symbol addresses, and greyed out entry the
frontend’s generated ELF sections for LITTERBOX.

3.5.1 Go Frontend

Parsing: We extend Go’s syntax to accept the with keyword using the syntax in Section 3.2.2.

Enclosure policies are parsed as literals, i.e., string constants. This allows the compiler to vali-

date their satisfiability at compile time. Packages can define init functions to be executed at

package load time, and additional syntactic sugar is needed to tag package import statements

with enclosure policies. This encloses the execution of the package’s init function inside an

enclosure. The parser also registers per-package enclosures and assigns unique identifiers.

Compiling: The compiler relies on the type checker to identify and register an enclosure’s

direct dependencies and insert the Prolog and Epilog calls. It also augments calls to the dy-

namic allocator (mallocgc) with the caller’s package identifier. The compiler outputs one code

object per package that contains the expected .text (functions), .data (global variables), and

.rodata (constants) sections, as well as a .rstrct section containing the package’s enclosures

configurations and direct dependencies.

Linking: The linker has global knowledge of the program’s package-dependence graph and

assembles packages’ code objects into a single executable. For each code object, it extracts the

.rstrct sections, computes every enclosure’s memory view, and marks packages that appear

in at least one enclosure. The linker’s symbol address-assignment algorithm segregates marked

packages resources in separate sections so that no two marked packages overlap. Enclosure

closure functions are isolated into their own memory sections.

The linker outputs three distinguished ELF sections as part of the executable. The .pkgs and
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.rstrct sections hold descriptions of packages and enclosures to be passed to LITTERBOX’s

Init during runtime initialization. A .verif ELF section stores the call-sites to LITTERBOX

hooks, which LITTERBOX uses to filter API calls at run time. Figure 3.4 illustrates the executable

corresponding to Figure 3.1’s program.

Runtime: Go’s dynamic memory allocator divides the heap into class-size sections, called

spans, cached per hardware thread and used to satisfy allocations based on the requested size.

The enclosure-extension adds a level of indirection by dynamically assigning spans to packages’

arenas. After adding a span to a given arena, the runtime calls LITTERBOX’s Transfer.

Go scheduler enclosure-extension maintains a mapping between a routine and the corre-

sponding execution environment and relies on split-stacks to isolate frames preceding the

enclosure’s call. To avoid escalation of privilege attacks, execution environments are transi-

tively inherited by goroutine creation so that user-level threads created inside an enclosure’s

environment continue to execute in the same environment. The scheduler uses the Execute
hook to switch between goroutines associated with different environments. Similarly, garbage

collection needs full access to the program’s resources but executes on top of runtime gorou-

tines associated with a trusted execution environment.

3.5.2 Python Frontend

LITTERBOX can support dynamic programming languages. Our Python prototype is based

on a fork of CPython 3.9.1. Rather than repeating implementation details common to the

Go frontend (parser extension, or instrumenting enclosures bodies), this section focuses on

challenges attributable to: 1) Python’s dynamic behavior, and 2) CPython’s implementation.

Dynamic behavior: Python is a dynamic language that accumulates and processes knowledge

about a program during its execution. Modules (packages) are lazily imported when a file is

parsed and functions are compiled only when needed. As a result, and unlike Go, LITTERBOX

must accept multiple calls to Init, each of which provide only partial information about a

program. CPython’s import mechanism registers modules and their direct dependencies with

LITTERBOX. Similarly, the compiler registers enclosures and their direct dependencies as they

are compiled.

In this dynamic setting, and unlike Go, LITTERBOX, not the compiler, must compute the

transitive dependencies of modules and enclosures full memory views. Furthermore, the

execution of an enclosure can trigger new imports, so LITTERBOX’s default policy makes these

new packages available to the executing enclosure, unless explicitly restricted by user policies.

Python provides little control over dynamic memory allocation. The language does not offer

an equivalent of Go’s new or C’s malloc functions to identify dynamic allocation. Without

explicit allocation, it is difficult for a programmer to encapsulate data in a specific module. To

allow a programmer to express this intent, we implemented localcopy, a function similar to
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Python’s copy.deepcopy, which creates an object copy in the caller’s module.

CPython internals: CPython is the reference implementation for the Python programming

language. It is a highly optimized, complex system that presents some challenges in providing

strong isolation guarantees.

CPython’s default object memory allocator is a singleton whose state resides in global static

variables. Its design is very similar to Go’s, in that it manages mmaped arenas divided into

class-sizes. We made some small changes to encapsulate the allocator’s state in a structure,

which allowed multiple allocator instances to co-exist with non-overlapping arenas. This in

turn enabled us to assign a memory allocator per module and segregate objects allocated by

different modules on distinct memory pages. Our memory allocator further distinguishes

functions (code) and objects (data) in separate arenas within one module. This allows LITTER-

BOX to hide a module’s functions when the module is mapped without execution rights, while

still allowing access to its data.

For performance reasons, CPython co-locates data and metadata, specifically the reference

counting counters in the headers of objects. While efficient, this implementation decision

makes it difficult for an isolation mechanism to enforces read-only semantics on an object,

as it would preclude updating reference counts. Similarly, the CPython generational garbage

collector (GC) embeds a linked list’s next pointer inside object, which might be inaccessi-

ble within an enclosure. To circumvent these problems, our CPython extension performs a

controlled switch to a trusted environment, with full access to program resources, to modify

reference counts in read-only objects or enqueue on the GC linked lists. While sufficient for

a prototype, this approach is expensive as the full cost of two switches is incurred on every

access to read-only objects. In the future, our Python extension will separate objects’ data and

metadata.

3.5.3 LITTERBOX Implementation

LITTERBOX provides support for two hardware-enforced isolation mechanisms: Intel VT-x

(LBV T X ) and Intel MPK (LB MPK ). While these two technologies differ greatly, LITTERBOX

provides a common implementation and only differentiates between the selected hardware for

three operations: (1) creating and enforcing an execution environment (Init, FilterSyscall),

(2) extending a package’s arena (Transfer), and (3) performing a switch between execution

environments (Prolog, Epilog, Execute).

Common Aspects: LITTERBOX validates the configuration passed to Init by ensuring that

sections are aligned and non-overlapping and that the memory views and authorized system

calls can be satisfied. At that point, LITTERBOX performs an important optimization by

clustering the packages across all memory views that have the same access rights. This

clustering creates larger, logical meta-packages that can be efficiently managed. LITTERBOX

derives the set of memory sections and associated access rights that, together with system call
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filters, define the enclosure execution environment description.

LITTERBOX code and data consist of two packages, namely user and super. The user package

is available in all execution environments and provides authorized access to Prolog, Epilog,

Execute, and Transfer hooks. The super package contains the enclosures definitions, the

verification list of allowed call-sites to the API, and the descriptions. It also handles the logic

that validates calls to the LITTERBOX API, modifies execution environments, and performs

switches.

Both hardware implementations use execution environment descriptions to initialize their

underlying hardware and create different execution environments.

LBVTX: Intel Virtualization Technology extension (VT-x) [185] extends the x86 ISA to simplify

hypervisor implementation. It relies on an extended-page-table (EPT) in hardware to map

host virtual (HVA) and guest physical addresses (GPA). It defines VMX root for a hypervisor

with unmodified CPU behavior and non-root mode for guest operating systems with restricted

CPU behavior. The non-root mode has access to the virtual machine’s CR3 register and can

manage its guest virtual (GVA) to GPA mappings.

LBV T X relies on Linux’s Kernel-based Virtual Machine (KVM) module [45] for Intel VT-x to

create a virtual machine (VM) in which the application executes. An execution environment

in the context of LBV T X is a page table mapping that enforces the enclosure description, in

other words, its memory resources are associated with the correct access rights in user-space.

LBV T X creates a separate page table for each enclosure. It also allocates one trusted page table

with user-access to all packages except LITTERBOX’s super to run non-enclosed code. Finally,

super is mapped in the guest kernel address space (non-root kernel mode) and implements

the guest operating system. For simplicity, LBV T X strives to preserve GPA ==GV A == HV A

whenever possible. It only breaks the invariant GPA ==GV A when necessary to circumvent

VT-x’s 40 bits physical address space. Once all execution environments are initialized, LBV T X

enters the VM and resumes the application’s execution in non-root user mode, with the trusted

page table mappings.

To perform a switch, LITTERBOX functions perform a specialized system call to our guest

operating system. The system call handler has access to the super package, and checks that

the call-site to LITTERBOX’s API corresponds to the program’s specifications supplied to the

Init function, which is found in the .verif ELF section. If the transition is authorized, the

guest operating system switches the VM’s CR3 register (the page table root) to the target

execution environment and returns (iret). Using a single VM per application and implement-

ing switches as system calls, rather than instantiating a VM per enclosure, reduces both the

complexity of LITTERBOX management of KVM state and the overhead of switches because a

syscall is less costly than a VM EXIT.

Transfer is also implemented as a system call that updates the relevant execution environ-

ments’ page tables. Similar to switches, the call-site and the validity of the arguments are
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checked before applying the desired modifications.

The handler filters system calls according to the current execution environment’s filter. If

authorized, system calls are passed through to the host [68] via a hypercall (VM EXIT). The

system call is performed in root user mode, which then returns to the VM with the results

(VM RESUME).

A fault triggers a VM EXIT, prints a trace of the root-cause, and stops the program’s execution.

LBMPK: Intel Memory Protection Keys (MPK) [124] extend the x86 ISA to enforce memory page

protections without domain switches. Page table entries are tagged using 4 previously ignored

bits to encode 16 different tags, called keys. A new user-writable and readable register, PKRU,

uses two bits per key (32 bits total) to encode access and write capabilities for pages tagged

with the corresponding keys. Hardware enforces PKRU permissions on data access. The Linux

kernel provides system calls to manage keys, i.e., allocate and free, and the pkey_mprotect
system call to tag a range of addresses with a key.

LB MPK relies on Intel MPK to isolate enclosures. It allocates one key for each meta-package. In

practice, clustering packages results in fewer than 16 meta-packages whose views fit into the

16 keys. Libmpk [163]’s key virtualization could be used to overcome Intel MPK’s limitation

if the need arises. Similar to Erim [186], LB MPK scans the program to ensure that only the

LITTERBOX package modifies the PKRU register. As in LBV T X , all calls to the API are checked

against the verification information stored in super.

An execution environment for LB MPK is simply the PKRU register’s value that encodes access

rights for all meta-packages.

A switch validates the transition using super’s verification and writes the PKRU register.

A transfer is slightly more complicated as it must invoke a pkey_mprotect system call to update

the relevant page table entries’ key.

System calls are filtered by translating the FilterSyscall function into a BPF filter loaded via

seccomp [51, 140], which indexes the current environment (from the PKRU value) to a mask

of permitted system calls. We use a Linux kernel patch [152] to expose the PKRU register to

seccomp. As Intel MPK is an emerging technology, we consider it a reasonable assumption

that future versions of the kernel will incorporate a similar mechanism. An alternative would

be to implement techniques similar to Erim [186] or rely on a BPF map updated upon switches.

A fault in LB MPK stops the program’s execution.

3.6 Evaluation

This evaluation is performed on an Intel(R) Xeon(R) Gold 6132 CPU @ 2.60GHz running

Ubuntu 20.04 LTS with Linux kernel version 5.4.0-42-generic, and a patch [152] to access
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Table 3.1 – Microbenchmarks results in nanoseconds.

Baseline LBMPK LBVTX

call 45 86 924
transfer 0 1002 158
syscall 387 523 4126

PKRU value in seccomp. We report numbers for the Go frontend implementation based on

LITTERBOX. The evaluation is divided into two parts: (1) microbenchmarks to measure the

cost of LITTERBOX’s fundamental operations with both hardware enforcement mechanisms,

and (2) macrobenchmarks to study enclosure’s usage in realistic applications, divided into a

qualitative and quantitative studies.

As a baseline, we report unmodified Go performance, noted as Baseline, where enclosures are

replaced by vanilla closures. LITTERBOX’s Intel MPK hardware enforcement is reported as

LB MPK , and Intel VT-x as LBV T X . All benchmarks run single threaded in order to accurately

quantify the overheads of domain crossings (i.e., switches).

3.6.1 Microbenchmarks

We rely on microbenchmarks to answer the following questions: (1) What is the cost of

performing a call to an enclosure? (2) What is the basic cost of memory management calls to

the transfer LITTERBOX’s hook? (3) What overheads does LITTERBOX impose on system calls?

To answer each of these question, this evaluation uses three microbenchmarks to measure

LITTERBOX’s overheads:

• call: measures the time required to call and return from an empty enclosure.

• transfer: calls LITTERBOX’s Transfer on a 4-page memory section.

• syscall: an enclosure performs a getuid system call in a loop.

We run each microbenchmark a million times and report the median latency value, in nanosec-

onds, in Table 3.1. These latencies are shared by the Go and Python frontends, as they both

use LITTERBOX’s backend.

call: The cost for the Baseline is 45ns and 86ns and 924ns for LB MPK and LBV T X respectively.

This translates to an overhead of ∼40ns (86-45) per enclosure call for LB MPK and less than 1

µs (924-45) for LBV T X . LB MPK is thus able to perform a single switch in approximately 20ns

by writing the PKRU register. LBV T X switch depends on a system call to change the CR3 register,

so effectively we measure the cost of two system calls.

transfer: The relative performance of each backend changes when it comes to memory

management. LBV T X is able to efficiently transfer a memory span by toggling the presence
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Table 3.2 – Macrobenchmarks results.

Baseline LBMPK LBVTX Benchmark information
raw raw slowdown raw slowdown App TCB #LOC Enclosed #LOC #Stars #Contributors #Public deps

bild 13.25ms 14.88ms 1.12x 13.91ms 1.05x 32 166K 2.9K 15 1
HTTP 16991reqs/s 16738reqs/s 1.02x 9560.14reqs/s 1.77x 31 - - - -
FastHTTP 22867reqs/s 22025reqs/s 1.04x 11375reqs/s 2.01x 76 374K 13.1K 100 3

bits in the corresponding page tables. LB MPK , however, requires a pkey_mprotect system call,

which is ∼6 times slower than LBV T X .

syscall: LB MPK incurs negligible overheads as system call filtering requires a few operations to

accept or reject a system call based on the PKRU value. LBV T X relies on hypercalls to service

system calls and pays the full cost of a VM EXIT of ∼4µs. This approach is similar to other

container technologies such as gVisor [199].

These benchmarks suggest that both implementations impose reasonable overheads when

it comes to an enclosure call, as these can potentially be amortized by the closure’s service

time. While LBV T X more efficiently handles memory sections being transferred between

packages, LB MPK wins when it comes to filtering and executing system calls. Thus, depending

on application characteristics, users can make an informed decision on which version of

LITTERBOX to use.

3.6.2 Macrobenchmarks

This section uses popular Github Go packages to benchmark the performance of small ap-

plications derived from each package’s "hello world" sample, to determine the worst-case

performance overheads of LITTERBOX. In these applications, enclosures are used, in very dif-

ferent ways, to safely leverage the unmodified public package. Table 3.2 reports the achieved

raw performance with Go Baseline, LB MPK , and LBV T X , and respective slowdowns for each

benchmark.

Reducing the application’s TCB: Enclosures drastically reduce the trusted codebase (TCB),

i.e., code executing with full access to the program’s address space and syscall API. As shown

in Table 3.2, each application consists of less than a hundred lines of code (LOC) that import

thousands of LOC from public dependencies. In every macrobenchmark, a single enclosure

declaration, using the default policy, completely encloses public library code and its transitive

dependencies, thus preventing any public package from accessing and leaking sensitive

information held by the application.

Processing Sensitive Images with Bild: Bild [176] is a popular Go Github public package

for parallel image processing. While presenting attractive functionalities, such as an Invert
function for images, bild silently drags-in over 160K lines of code of unverified origin. This is

an daunting quantity of potentially harmful code to examine while writing a simple 32 LOC

application that loads and inverts an image. We declare an enclosure to enclose the call to
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bild’s Invert function. We further disallow all system calls and extend the enclosure memory

view with read-only access to the main package that holds the sensitive image to invert. This

simple benchmark is the textbook example of how sensitive information can be safely exposed

to an untrusted package, while preventing modifications of program state or leakage (e.g., via

system calls).

The benchmark is purely computational and memory-intensive as it allocates and computes

an inverted image. LBV T X shows a mere 5% slowdown. As predicted by microbenchmarks in

§3.6.1, LBV T X overhead to call an enclosure is absorbed by the closure’s service time and its

efficient mechanism for transfers. LB MPK achieves a respectable 12% slowdown, attributable

to the cost of frequent transfers to populate the arena with memory spans of various sizes to

satisfy bild’s dynamic memory allocations.

Securing an HTTP server: Go provides an HTTP server implementation in the net/http
package. A typical concern in web-facing applications with TLS support is to protect private

keys and certificates from potential attacks delivered via user requests. Such attacks can, for

example, attempt to trigger a buffer-overflow in the request-handler to leak sensitive data.

This benchmark defines the request handler as an enclosure with no access to the packages

used by net/http and no system calls. To measure raw overheads, the handler’s logic only

selects a 13KB in-memory static HTML page to service the request. This is a typical use of

enclosures to prevent potentially harmful code from accessing sensitive resources.

Once again, the observations made in §3.6.1 are confirmed. As the benchmark is primarily

dominated by socket operations, LBV T X ’s high overhead in servicing system calls introduces

a 1.77× slowdown. This time, as the enclosure does not perform dynamic memory allocations,

LB MPK is able to perform almost as well as the baseline.

Using a Public HTTP Framework: FastHTTP [187] is an industry-grade Github public Go

package that implements a performance-oriented HTTP server. FastHTTP offers high through-

put, as long as we can trust over a 100 programmers and more than 350K LOC. To prevent

FastHTTP from accessing an application’s sensitive resources, we create and run the server in

an enclosure, only allowed to perform net-related system calls (i.e., socket operations). The

enclosure forwards requests to a trusted handler goroutine via go channels. This benchmark

shows how trusted callbacks can easily be implemented. To measure overheads precisely,

the trusted handler simply returns 13KB static HTML pages as before. In a more realistic de-

ployment, the handler would access a private database or other sensitive information, which

would be completely unavailable to the enclosure running the FastHTTP server.

Similar to the simple HTTP experiment, LB MPK achieves a throughput comparable to the

baseline. We observe a small slowdown that seems to be due to the server’s consumption of

dynamic memory. This cost is however greatly diminished by FastHTTP efficient usage of

memory, e.g., HTTPRequest object reuse across requests. This allows LB MPK to avoid numerous

costly transfers. LBV T X has a 2× slowdown due to system calls. Note that the LBV T X slowdown
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Figure 3.5 – Enclosures isolating the HTTP server and the database driver in a wiki-like web
application.

in FastHTTP is larger that in HTTP. This is not due to an increase in the frequency of system

calls as FastHTTP and HTTP have a similar system call trace. However, FastHTTP service

time to accept connections and parse requests is significantly smaller, while the system call

overhead remains the same.

3.6.3 Usability

We consider a wiki-like web-app [52, 178] that stores its pages in a Postgres database, as

depicted in Figure 3.5. This web-app is written in Go, relies on the deprecated pq [99] public

library as a Postgres driver and on the mux [182] package to route HTTP requests consisting of

GET (read pages) and POST (create a page). Together, pq and mux incorporate 44 public Github

packages as dependencies.

To prevent any public package from subverting our application, we rely on two enclosures that

communicate with trusted code via Go channels.

First, the HTTP server B© consisting of mux and its transitive dependencies is enclosed without

access to the database, the file-system, or the rest of the application holding sensitive infor-

mation, e.g., page templates and the database password. It is however authorized to create

and read 1©/write 8© to its own network sockets. Similar to the FastHTTP experiment, HTTP

handlers forward parsed requests to trusted code on a private Go channel 2©.

Second, pq and its natural dependencies are isolated in an enclosure C©, acting as a proxy server

only allowed to communicate with Postgres via a pre-defined network socket. This enclosure

has no access to the HTTP server’s logic, the file-system, and network operations on other

sockets. This database proxy server accepts SQL requests on a Go channel 3©, communicates

them to Postgres, 4© and 5©, and returns the result to trusted code 6©.
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The trusted code base, i.e., non-enclosed A©, consists of the application’s glue code, responsible

for reading requests forwarded by the enclosed handlers 2©, contacting the enclosed database

proxy server 3©, validating the SQL query result 6©, and generating and forwarding 7© the

HTML response.

The throughput slowdown is similar to the one in the FastHTTP experiment.

3.6.4 Python Enclosures

The CPython extension is an unoptimized prototype. While §3.6.1 presents reasonable over-

heads for LITTERBOX basic operations, we would like to study how the challenges described

in §3.5.2 affect the performance of Python programs. This section quantifies the impact of

these limitations on the Python enclosures performance and provide insight into improving

enclosure on this platform.

Consider a Python program with a single enclosure that encapsulates the use of the matplotlib
module. User sensitive data from a secret module is shared read-only with a closure that

generates a plot from the data and writes the result to disk. The experiment runs using LBV T X

to understand the relative impact of each overhead, including system calls.

We first try a conservative approach where each reference count operation and garbage

collection triggers a switch to a trusted environment before returning to the enclosure, as

described in §3.5.2. This experiment shows a ∼18x increase in execution time for enclosures,

as compared to standard Python. We measure nearly 1M switches due to reference counting

and garbage collection. The delayed initialization of the enclosure environment, including

computation of package dependencies, enclosures memory views, and configuration of the

underlying hardware mechanism (KVM), represents 4.3 percent of the measured slowdown.

System call overheads (requiring a VM exit) account for less than 1 percent of the slowdown.

This can be explained since the system calls (futex and write) have a service time larger than

the system call overhead measured in §3.6.1.

We run a second experiment to simulate changes that allow updating a read-only object’s

reference count without a switch. To do so, the secret module is mapped with read-write

access and switches for reference count operations are disabled. The measured slowdown is

now ∼1.4x and is dominated by the delayed initialization cost. Note that this cost has to be

paid once, at the first invocation of an enclosure and can be amortized if the enclosure is called

multiple times.

From this experiment, we believe that decoupling CPython data and metadata would enable

more efficient support of enclosures and should be the main focus of future work.
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3.6.5 Security

This section shows that enclosures can address the threats from the malicious packages cited in

§3.1 [78–81]. To this end, we re-created Python and Go packages that perform the same attacks

as the original malicious ones. These attacks mostly access local secrets, either within the

program’s memory or on the local file system (e.g., private SSH keys), and attempt to exfiltrate

them via the network or open backdoors on the local system.

Enclosures easily detect and protect against most attacks with a basic configuration, i.e., the

default memory view and limited system calls, while still allowing valid behaviors to run

successfully. However, a few packages [78, 80] presented a challenge. These packages provide

a valid functionality that requires access to a secret and system calls that could be used to

exfiltrate sensitive data. For example, the ssh-decorater package [78] allows SSHing to a given

IP address and executing python commands on the remote server. The public library was,

however, infected with malicious code exfiltrating user credentials to another server, via a

POST request. To prevent this attack, we modify the application code to pass a pre-allocated

socket and private key to the enclosed ssh-decorater public package, therefore enabling

us to disable socket creation and file-system access. Another solution extends the sysfilter

categories to only allow connect system calls to a list of pre-defined IP addresses, allowing

us to grant socket creation and file-system access to ssh-decorater, while preventing it from

contacting a malicious server. Note, however, that the valid remote host can still be used as a

relay to send the credentials to the malicious server.

A similar issue arose with malicious clones of the Python Django framework. To protect against

these, we took an approach similar to the one used in FastHTTP with secured callbacks.

3.7 Discussion

Granularity: Packages’ composition and size make possible effective isolation inside an ap-

plication’s address space. Their coarser granularity is far easier to manage than individual

objects, and better fits the granularity of page-based hardware isolation mechanisms. More-

over, packages can often be clustered into efficient meta-packages, as explained in §3.5.3.

Clustering reduces the number of keys needed to tag an entire address space and, in many

cases, fits into the 16 possible Intel MPK keys.

Explicit scoping: Enclosures utilize dynamic scoping to control the application of restric-

tions on program resources. Enclosures isolate untrusted packages by explicitly enclosing

invocations of their functions. An alternative approach to protect against public packages

could automatically enforce a transition to a restricted execution environment on every single

untrusted package function invocation. This approach is, however, limiting as compared to

enclosures for 3 reasons: 1) it requires modification of untrusted package code, 2) it imposes a

switch per call into a package, prevents programmers from controlling switches, and might

result in large overheads, and 3) enclosures can emulate this approach, as mentioned in §3.3.2.
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Hardware enforcement: As the need for in-application isolation grows, hardware should

evolve to provide efficient, reliable, and easy-to-use enforcement mechanisms. Intel MPK

offers a first-generation solution that exploits unused bits in the PTE to store protection keys on

existing hardware. However, Intel’s decision to permit key modification by unprivileged code is

debatable, especially given system calls’ low cost. An ideal solution would combine MPK’s low

overheads and ease-of-use with VT-x’s robust protection model, scalability to multiple address

spaces (each with 16 keys), and the ability to filter system calls in a protected library operating

system [68]. This last aspect is similar to the gVisor/Sentry mechanism for containers [199].

Capabilities: Capability support, as proposed by CHERI [195] or CODOMs [188], is an at-

tractive approach that offers simplicity, expressiveness, and strong guarantees at the cost of

more substantial hardware changes. LITTERBOX, with its decoupling of the API and hardware

implementations, could support capabilities in the future.

3.8 Related Work

Isolation is the combination of a policy (what is isolated) and mechanism (how is the isolation

enforced). The system may restrict interactions for various reasons, such as limiting error

propagation or constraining untrusted components. LITTERBOX focuses on untrusted pack-

ages that share the same address space as a trusted program. Intra-address space isolation

has been studied along different dimensions, we list here key differentiating factors.

Operating system mechanisms: The most common software isolation mechanism is oper-

ating system processes. While the application and its packages could be partitioned into

separate processes, the cost of IPC and the complexity of argument marshaling along with

the high implementation complexity limit this approach to a few examples such as web

browsers [143].

Previous work proposed incorporating some process isolation and control mechanisms within

an address space [71, 122, 142]. Wedge’s sthreads restrict memory accesses and system call

capabilities associated with a thread [71]. LWC’s light-weight contexts extend this approach

by providing control over the memory view, system call capability, and execution state inside

an object [142]. SMV’s secure memory views provide a more straightforward approach, a

uniquely identified memory domain that can be accessed when it is attached to the current

thread [122]. Common to all these approaches is that they require code refactoring to use the

new mechanisms.

By contrast, enclosures offer a more natural separation that closely integrates with the language.

Unlike LWC, a developer does not need to be aware of all of a package’s transitive dependen-

cies or their layout in memory and can, with a single line of code, completely encapsulate

them. Moreover, LITTERBOX could employ these systems to enforce memory isolation and

syscall filtering. LWC presents an interesting OS abstraction and could provide an alternative

LITTERBOX backend that does not require specialized hardware (e.g., Intel VT-x).
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Virtualization mechanisms: Virtualization enables a hypervisor to apply different access

permissions to a collection of memory pages shared among several virtual machines. These

VMs can encapsulate code running in the same address space, with different access rights.

Dune [68] uses Intel VT-x [185] to virtualize the process abstraction and isolate software

components. SIM [174] with Intel VT-x protects a trusted security monitor running in an un-

trusted guest. Nexen [175] and HyperSafe [191] focus on protecting and isolating hypervisors.

LXD [155], Nooks [179], and Nested Kernel [92] isolate kernel submodules. TrustVisor [151] is

a thin hypervisor that isolates portions of an application. SeCage [144] takes a data-driven

approach, by automatically partitioning an application into security domains, based on the

secrets they access, and isolates them from each other with Intel VT-x.

Unlike Secage, enclosures enforce security domain boundaries based on packages. This sim-

plifies an application’s partitioning, especially for environments where static and dynamic

analysis is hard. Enclosures make it easier for developers to reason about isolated compart-

ments and prevent accidental sharing of sensitive data, e.g., via valid pointer references passed

to the untrusted package. Enclosures further allow fine-grain schemes, such as exposing

sensitive data to untrusted packages, while preventing it from being modified.

Virtualization generally incurs (high) performance overhead due to extended page tables and

hypercalls. Intel MPK provides more specialized hardware support with lower overheads. For

example, Hodor [118] shows that Intel MPK [124] isolates data-plane libraries with far smaller

overheads than Intel VT-x.

Similarly, enclosures based on LITTERBOX support both Intel VT-x and Intel MPK as isolation

backend mechanisms.

Programming language and runtime mechanisms: Programming languages provide infor-

mation hiding and abstraction mechanisms, a weak form of isolation. These are software-

engineering mechanisms meant to decouple components, rather than robust run-time iso-

lation mechanisms. The frequent escapes from unsafe languages or run-time reflection

demonstrates that this cat-and-mouse game is not a real security solution.

Software Fault Isolation (SFI) [190] adds memory isolation to unsafe languages by inserting dy-

namic checks on accesses. Control-Flow Integrity (CFI) [54] guarantees that only valid code ar-

eas can be executed. Together, CFI and SFI guarantee that only a subset of the application may

access the protected memory region. However, these techniques require non-trivial static and

dynamic analyses with non-negligible costs in terms of complexity and overheads. An alterna-

tive solution embodied by NaCl [197], XFI [207], WebAssembly [117], and CloudFlare’s [201]

use of V8 isolates [110] are akin to Proof-Carrying code [157] and enforce restrictions on which

machine instructions can access segmented memory [170].

Enclosures built on top of LITTERBOX combine several of these approaches. Their close

integration in a programming language allows statically delimited memory view boundaries

and control of the generated code. Similar to PCC, the resulting binary abides by a certain
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format, verified by LITTERBOX along call-sites to its API, and leveraged to efficiently apply

hardware-enforced isolation.

Language-based hardware-enforced mechanisms: Isolation can be provided by extend-

ing a language with security domains and enforcing isolation with specialized hardware.

SOOAP [116] is a security analysis framework that relies on annotations to help refactor and

compartmentalize existing applications. It could be used in conjunction with LibMPK [163],

a library that virtualizes and manages MPK keys, to provide strong isolation guarantees.

Erim [186], using Intel MPK, and Shreds [86], using ARM memory domains [62], expose iso-

lated memory pools and associate code allowed to access them. Memsentry [131] provides an

LLVM pass to implement data encapsulation, selectively enforced by MPK or other technolo-

gies. Similarly, Glamdring [138] relies on annotations to mark sensitive data and isolate code

accessing it inside Intel SGX [21] enclaves. Glamdring and enclosures’ specifications differ as

they solve two (different) problems. Enclosures annotate the entry points of top-level packages,

which are the fundamental abstraction they isolate, as secrets are for Glamdring. Gotee [107]

isolates trusted code with its own memory pool inside SGX enclaves. JITGuard [104] relies on

Intel SGX to protect jitted code.

In essence, most of these solutions focus on data encapsulation. Enclosures take a different

approach: (1) resource partitioning closely follows the natural static package-dependence

graph of the program; (2) enclosures promote packages to a higher-level construct embodying

a basic unit of resources programmatically manipulated by developers to be isolated or shared

according to strict policies. Instead of a strict "all-or-nothing" partitioning, enclosures provide

a way to compose packages to form the memory view exposed to a closure.

Hardware extensions: Appropriate hardware support would make it easy to isolate pack-

ages. Multics’s segments [69], implemented on the vintage GE 645, provide fine-grain access

control appropriate for enclosures. More recent work has proposed extensions to modern

processor to control memory accesses within a single address space. Mondrian memory

protection [193] (MMP) implements word-granularity hardware-enforced memory isolation.

Its permission control granularity would be ideal for isolating program objects. IMIX [105] and

MicroStache [154] extend the Intel x86 ISA with instructions to access safe memory regions.

CODOMs [188] tags code pages with keys delimiting the memory resources and privileged

instructions they are allowed to use. Capability Hardware Enhanced RISC Instructions [195]

(CHERI) is a hardware extension that allows fine-grained compartmentalization and enforces

spatial, referential, and temporal memory safety. CHERI operates at the object-level and

requires a deeper understanding and instrumentation of third-party packages than enclosures.

As LITTERBOX exposes a stable high-level API and hides hardware details, any of these tech-

nologies could be added as a hardware-enforced isolation mechanism without requiring

any changes to the application or the programming language itself. CODOMs and CHERI

expressiveness makes them particularly appealing candidates. CHERI could be used as a

non-page based LITTERBOX backend, which would reduce memory fragmentation or allow to
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discriminate access to CPython’s data and metadata while keeping them co-located (§3.6.4).

Enclosures’ most similar project is Verona [115], a recently open-sourced Microsoft project

that introduced a safe, infrastructure programming language. Like enclosures, it provides

linear regions that compartmentalize legacy components by encapsulating their code, data,

and dynamic allocations. The language executes unsafe components in sandboxes and looks

to using CHERI in the future. Unlike enclosure, and to the best of our knowledge, Verona

does not provide developers with a fine-grain method to composing access policies to the

program’s resources on a per code invocation-basis, and requires the application’s main logic

to be rewritten in a different language.

3.9 Chapter Conclusion

Enclosures provide a mechanism to execute untrusted packages inside a restricted environ-

ment, easily tunable by programmers, that limits access to a program’s memory and its system

resources. Using packages, and their transitive dependencies, as the basic unit of share-

able resources results in easy-to-understand and manipulate isolation boundaries within an

application.

Enclosures are language-independent and make no assumptions about the safety of the code.

Instead, LITTERBOX provides support for enclosure policies based on hardware-based isolation

mechanisms.

Our evaluation proves that enclosures can be efficiently added to Go, a language with a complex

runtime, and provide robust isolation guarantees using both Intel VT-x and Intel MPK. Our

Python implementation confirms the generality of the approach and support for dynamic

languages.

3.10 Afterthoughts

Enclosures was published at the Internation Conference on Architectural Support for Program-

ming Languages and Operating Systems 2021 (ASPLOS21) [106]. In this section, we leverage

the feedback received both at the conference and during guest talks given at Microsoft Re-

search and VMWare research to put the paper’s work into perspective, expand on some of the

design choices, their limitations, and the main take aways.

Enclosures ease-of-use and efficiency depends on the application’s modularity. In the paper,

we identified packages as being natural boundaries defining sub-compartments that can be

manipulated independently and encompass a trust domain by construction. This assumption,

however, might not hold in poorly designed projects, with highly connected package depen-

dence graphs and potential circular dependencies. Such instances are rare in Go, as it usually

precludes circular dependencies and most often has a lattice package dependence graph (i.e.,
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main at the top and runtime at the bottom). Even in the presence of highly connected groups

of packages, memory allocations can be extracted to a user-defined package, e.g., by providing

an allocator or copy API, and only require small refactoring efforts.

Enclosures overhead per backend can be hard to predict. In the paper, we showed that LBV T X

incurred high overheads for system calls and that LB MPK was mostly affected by memory

pages transfers between packages. The latter can be hard to predict, as it requires intimate

knowledge of the allocation profile of included libraries, and can be impacted by the language’s

runtime heuristics (e.g., when to trigger a garbage collection). For LBV T X and system calls,

the problem is much more subtle than simply looking at the strace of the program. First,

for system calls with a low service time, the introduced overhead will be more noticeable.

Second, certain system calls exhibit high service time variability, e.g., lock operations can be

extremely fast when contention is low, or arbitrarily long to return if they require blocking.

Third, we observed with the HTTP and Fast-HTTP experiments that two programs with exactly

the same strace can experience very different slowdowns (1.77x and 2.04x). In HTTP, the

application level service time is much higher and thus hides the introduced overheads for

system calls. In Fast-HTTP, user code is optimized and thus, in comparison, presents a bigger

(relative) slowdown. LBV T X ’s overheads are thus a complex function of system call service

times relative to cycles spent in user code.

Compared to secured routines, enclosures do not leverage the type system. The question of

leveraging types as compartments boundaries and enforce access rights to their attributes,

rather than focusing on packages, came up several times while presenting enclosures. Types

would allow finer-grain control of accesses to resources and enable compiler analysis to detect

isolation violations at compile time (rather than run time). This represents a data-centric

approach to isolation, where we would have protected access, modification, and method

invocation to structures or objects attributes. However, the goal for enclosures was to support

as many languages as possible and enable interoperability between languages, including

unsafe ones. As different languages do not have the same type system, and considering that

all components might not be part of the same compilation unit (and thus not amenable to

analysis), we quickly eliminated the option of relying on types. At the same time, I do not

personally believe that types encapsulate trust domains very well. Types define the common

API of data passed between function calls in a program. They therefore spread throughout

the entire program and do not clearly define trust domain boundaries. For example, consider

Figure 3.5: both mux (the web server) and pq (the DB driver) leverage structures representing

a network socket, but should not have access to one another’s structure. Allocations, on

the other hand, present higher degrees of locality and are often accessed/used close to their

allocation sites, with only a few of them escaping their allocation scope (e.g., globals and

objects returned from a function) and even fewer escaping their package.
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Enclosures

4.1 Abstractions Compatibility

From a programming point of view, the secured routine and enclosure abstractions can be

combined to address the heterogeneous levels of trust that exist both within an application

and on the system on top of which it executes. Specifically, portions of the application that

access sensitive information can easily be executed in a Trusted Execution Environment

thanks to secured routines. With GOTEE’s automation, public libraries, e.g., image processing

or ML packages, can be incorporated in the trusted code base to operate on secrets. With

enclosures, a programmer can further control such public libraries’ accesses to secrets and

prevent leakage or unauthorized modification of sensitive data.

The code snipet 4.1 shows an example of a secured routine receiving private data from a socket

and processing it inside an enclosure to extract features. The enclosure does not grant the

untrusted ML public library access to the rest of the enclave’s memory, prevents modifications

to the data held in mpkg, and disallows system calls.

More generally, the two abstractions provide orthogonal functionalities that allow them to

easily combine. Secured routines split the application’s address space into two fully separated

domains, trusted (unaccessible by the host) and untrusted, while enclosures enable, within

each of this domains, to restrict resources accessible by a portion of the domain’s code.

Unfortunately, while the proposed abstractions work well with each other at a conceptual

level, the underlying technologies supporting them are more difficult to combine.

4.2 Hardware Incompatibilities

Hardware security extensions, such as Intel SGX [21], are hard to use. In secured routines,

we described all the challenges that came with using Intel SGX or more generally TEEs. Our

abstraction attempts to address the lack of a programming model for such technologies

and exposes a clean easy-to-use language abstraction, which exhibits good performance by
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1 ...
2 func analyzeLoop (addr net.IP , port net.Port) {
3 sock := net. Connect (addr , port)
4 ...
5 bytes := sock. Receive ()
6 data := mpkg.Parse(bytes)
7 with["mpkg:R", "none"] func(d Data) {
8 ...
9 features := ML. Process (d)

10 ...
11 }( data)
12 }
13

14 func main () {
15 ...
16 gosecure analyzeLoop (net.IP {...} , net.Port {...})
17 ...
18 }

Listing 4.1 – A secured routine encapsulates code receiving secret data and safely processes it
inside an enclosure, using an untrusted ML public library to extract features, without granting
it the ability to modify the received data or perform system calls.

carefully avoiding the technology’s hurdles. Similarly, with enclosures, we build a simple

programming abstraction that abstracts away the underlying technologies (Intel MPK [124]

and Intel VT-x [185]), that otherwise require low-level expertise and a non-negligible amount

of configuration to be properly used. While all of these hardware technologies are challenging

to use individually, they seem to be even harder to combine.

Despite the fact that SGX, MPK, and VT-x are all Intel technologies, potentially available on

the same CPU, there is no clear way to conjugate two of these together. Worse, the security

guarantees provided by each of these technologies do not seem to be additive. For example,

consider Intel SGX and Intel MPK. While Intel MPK can be used in the untrusted domain to

create sub-compartments in the application, there is no clear way to leverage the technology

inside the trusted one, i.e., the enclave. Specifically, as the untrusted operating system is

responsible for key allocation and tagging the corresponding page table entries, enclave code

cannot safely rely on MPK to create subcompartments inside the enclave. One could imagine

that page table tags could be part of the enclave’s measurement, and the underlying technology

would produce an error in the trusted CPU if a malicious OS modifies a page table tag at run

time. This solution is however incomplete, as it does not allow re-tagging page table entries

after the enclave’s initialization. Another approach could provide dedicated instructions to

modify and verify tags for a given range of addresses inside the enclave’s memory, from the

trusted domain. This second approach, however, would add complexity to an already complex

technology for the specific case of using Intel MPK inside the enclave, i.e., Intel MPK would

have to be used differently depending on the CPU’s mode of execution. Similarly, Intel VT-x

requires privileged code intervention to setup the underlying EPT and enclaves do not support
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ring 0 code execution (even in non-root mode). A hint towards the intrinsic incompatibility

of Intel SGX and VT-x in their current form is the proposal of Intel TDX [125] extension. Intel

TDX provides hardware support for confidential VMs and can be seen as dedicated silicon

for an execution environment combining the virtualization support of Intel VT-x, with the

confidentiality and integrity of Intel SGX. If the two technologies had been easily composable,

i.e., if enclaves had support for non-root ring 0 code, TDX would be redundant.

4.3 Current Status and Possible Solutions

While secured routines and enclosures are compatible from a programming abstraction point

of view, the underlying technologies employed to provide hardware isolation guarantees are

not. This is a frustrating result that derives partially from the lack of maturity of these hardware

security extensions. There is therefore hope that future iterations on the hardware will address

these compatibility issues. For SGX, for example, Intel announced a version 2 of the hardware

with more flexibility in the management of the enclave’s address space at run time, allowing

dynamic modifications of its memory layout and access rights. Unfortunately, even Intel SGX

version 2 does not allow running non-root ring 0 code inside an enclave thus preventing us

from combining secured routines and enclosures, even on more recent hardware.

Both secured routines and enclosures abstract the underlying hardware intricacies behind

high-level programming abstractions. This allows to easily change the supporting hardware

isolation mechanisms. For enclosures, LitterBox is built to provide a unified API for both

supported backends. In GOTEE, a similar approach could be adopted by the gosec library.

As a result, a potential solution to Intel hardware extensions lack of composability would be

to explore solutions proposed by other hardware vendors, while leaving the programming

abstractions and their semantics unchanged. Recent work on ARM platforms highlighted the

benefits of rethinking the split, in terms of responsibility, between software and hardware and

relying on formal verification to acquire strong levels of trust in the former. Komodo [100]

implements a formally verified monitor for a TEE environment. This monitor manages

the resources attributed to the secure domain, exposes functionalities such as attestation

and dynamic allocation of memory to the trusted domain and could be extended with new

features. The hardware, on the other hand, simply enforces the split of physical resources.

Another example is Keystone [135] on RISC-V processors, which seems to provide a flexible

implementation of TEEs that could be augmented with a mechanism similar to Intel MPK or

VT-x. Keystone provides the notion of trusted memory management plugins that implement

and expose extra features to code executing inside the TEE. One could therefore implement

a mechanism that resembles Intel MPK, in a similar fashion to the enclave’s page eviction

mechanism described in the paper [135]. Keystone further allows both user and supervisor

(privileged) code to run inside the enclave, thus allowing intra-enclave memory management

and system call interposition, two of the features we exploited in Intel VT-x.

Hardware development is slow. It will be several years before processors equiped with more
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flexible technologies become available at scale on commodity machines. The slow pace of

hardware evolution forces us to explore alternative solutions in software able to address the

software trust crisis on the current generation of machines available in the Cloud. This path is

explored in our proposal called Tyche(§6).
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5.1 What is in a process?

The process is the favored abstraction usually synonymous with a program instance running

on top of an operating system. A process encapsulates a program’s resources and run time

attributes, i.e., the program’s memory, file descriptors, and execution state. Processes enable a

form of virtualization of the central processing unit (CPU) and the implementation of time-

sharing [168] as well as multi-tasking. As such, a process represents a unit or group (e.g.,

software threads) of schedulable elements as well as the default isolation mechanism in any

operating system. In other words, a process is both the unit of scheduling and the unit of

isolation in the system.

Looking within a process, the program’s address space can be divided into two parts: (1) the

user space and (2) the kernel space. A common technique consists in mapping the kernel’s

address space at the top of the program’s virtual memory, with super access. A process

executing in kernel mode has full access to the program’s address space, while user code is

limited to the subset of the address space with pages tagged as user accessible. A process thus

defines an asymmetric memory model that embodies the commonly accepted trust model

of modern systems: the kernel is trusted and has full access to the resources it manages on

behalf of a user program’s instance. This is represented on Figure 5.1(a) at a high conceptual

level with the OS managing and accessing resources exposed to the application’s instance.

5.2 Hardware security extensions

In this section, we describe, conceptually, the three hardware extensions used so far in this

thesis, i.e., Intel SGX [21], Intel MPK [124], and Intel VT-x [185], and how they affect the process

abstraction’s trust model described above.

Intel SGX: As a Trusted Execution Environment, Intel SGX [21] provides confidentiality and

integrity for user code and data running inside the enclave. This is achieved, in hardware, by
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Figure 5.1 – From left to right: (a) Process, (b) SGX, (c) MPK, (d) VT-x. Each figure represents
the program’s address space, including the underlying operating system (OS). The OS manages
(M) and has access (A) to the application’s memory resources.

encrypting, integrity protecting, and ignoring unallowed reads and writes to enclave memory

from code running in non-enclave mode, including the OS. However, enclave memory still

requires the proper virtual mappings to be installed by the OS in the process’ page tables.

Conceptually, Intel SGX is a hardware mechanism that provides support to decouple memory

management from accesses within the process abstraction. Specifically, SGX still relies on

the OS to manage the enclave’s virtual memory (including the handling of page faults), but

prevents the OS from accessing the corresponding underlying physical memory pages. This

is represented in Figure 5.1(b). Furthermore, Intel SGX subdivides the user space into two

domains, i.e., (protected) trusted memory and (unprotected) untrusted one. Similar to the

user/kernel space split, it is an asymmetrical memory model that mirrors the trust relationship

between the two domains: untrusted code only has access to untrusted memory, while the

enclave can access both domains’ memory.

Intel MPK: Intel MPK [124] allows user code to create sub-compartments inside the applica-

tion’s address space with different access rights to tagged memory regions.

Conceptually, Intel MPK is a hardware security extension that introduces a mechanism en-

abling a form of memory access right management performed mostly in user-space. User

code decides which memory regions should be tagged with a given MPK key and has access to

the PKRU register allowing to switch between the defined intra-address space compartments

with different memory access rights. Intel MPK is thus a mechanism that delegates a form of

resource access-right management to user code running inside a process. It is worth noting

that Intel MPK only allows to reduce access rights installed by the OS and still relies on the OS

to tag page table entries. It thus does not modify the default process trust model between user

and kernel spaces. Intel MPK is represented in Figure 5.1(c).

Intel VT-x: Intel VT-x [185] differs from the two previous extensions as it was marketed through

a performance argument rather than as a security extension. Intel VT-x provides hardware

support for extended page tables (EPTs), i.e., host virtual to guest physical mappings, in

hardware, as well as exposing privileged instructions and registers, e.g., CR3, to guest operating
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systems. Among the three Intel extensions presented in this thesis, Intel VT-x is the oldest, the

most successful one in terms of adoption, and the only one to primarly target a performance

improvement.

Conceptually, however, Intel VT-x shares some of Intel MPK’s properties. It is a mechanism

that allows to delegate a form of management for a subset of the program’s resources to user

code. This user code is then able to expose and manage resources for a guest operating system

that in turn manages and exposes resources to a guest program. Also similar to Intel MPK,

Intel VT-x does not break the trust model between user and kernel space, i.e., guest page table

access rights can only be equal or a subset of the host’s access rights. Figure 5.1(d) presents

these delegations of management.

Take-aways: All three technologies pertain to intra-address space isolation, i.e., they introduce

a flexibility in the management of resources inside a process. More specifically, they all enable

to create sub-compartments inside the process address space to execute certain components

of the application with differentiated access to the program’s resources. We identify two other

operations performed by these extensions: (1) decoupling management from the ability to

access the managed resources (SGX), and (2) delegating management of resources to user

code.

5.3 A Paradoxical Paradigm

Efficient intra-address space isolation mechanisms are required to address the trust crisis

faced by modern software. Any application can be viewed as a collection of modules, com-

ponents, from disparate provenance and heterogeneous levels of trust, that need to have

restricted access to the program’s resources. In Section 5.2, we highlighted the conceptual

contributions of hardware technologies that provide intra-address space isolation: (1) de-

coupling management from accesses, (2) delegating management of resources to entities

that are not the OS. However, as explained in 4.2, these extensions are not widely adopted,

hard to leverage, and not amenable to composition. They further add complexity to already

hard-to-model architectures, riddled with side-channels [76, 128, 129, 196] that endager even

the proposed security guarantees. A more viable solution to addressing modern software

isolation needs should rely on simpler primitives, easier to reason about, and able to resist

side channel attacks.

Modern hardware security extensions are an attempt at introducing more flexibility in the

process abstraction, breaking its antic and rigid trust model by introducing new isolation

primitives, and reducing the OS prerogatives. It is quite paradoxical to rely on hardware, which

is slow to develop and hard to change, to introduce flexibility in a software abstraction, i.e., the

most malleable element of our execution stack. A more reasonable approach would reconsider

the limitations of the process abstraction, central to current operating system designs, and

propose alternative abstractions before burning new complex extensions in silicon.
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Previous work explored the limitation of the process abstraction, proposed alternative designs

to decouple its role as a schedulable unit from memory isolation [71, 142], and introduced

intra-address space isolation. Other solutions [123,147,156] took a language approach, relying

on programming languages features such as type systems to implement intra-address space

isolation and enforce high-level program-wide security policies. An obvious alternative to

hardware security extensions would thus revisit operating systems to deconstruct the mono-

lithic process abstraction and provide new lighter-weight primitives. Such abstractions need to

provide intra-address space isolation, i.e., the ability to create software compartments inside a

program’s instance, with differentiated access to the program’s resources and low transition

overheads. A second design objective for new OS abstractions requires an efficient mechanism

to safely delegate the management of resources to entities that are not the operating system,

while preserving the OS’ ability to revoke/reclaim resources (akin to what was proposed in

the Exokernel design [96, 126]). This, in particular, would allow to replace technologies such

as Intel MPK or Intel VT-x. Finally, due to the high heterogeneity of trust in applications and

the systems they execute on, new operating system designs should strive to decouple the

management of resources from the ability to access them. Ideally, we would like the operating

system to retain its ability to allocate, manage, and revoke resources from applications, while

guaranteeing it will not be able to access, modify, or leak sensitive information. This is a

challenging problem that can be approached in various ways, both in hardware and software.

As hardware is slow to evolve, we take the software route and highlight a potential approach

based on a software layer of indirection.

5.4 A Software Layer of Indirection

Introducing a level of indirection is system engineers’ oldest and most abused trick in the

book 1. Throughout this thesis, we relied on hardware security extensions as the root isolation

mechanism, due to what we call the native execution assumption. Secured routines and enclo-

sures assume that application code executes natively and implements arbitrary behaviors, e.g.,

raw memory accesses and invokes any instruction. As a result, hardware isolation enforcement

was the only viable solution. But what if, instead, we preclude the execution of native code?

This is far from being a novel idea, it is as old as language virtual machines [139, 166, 171], was

used in related work to secure and optimize full systems [123, 147], and is already leveraged to

safely download, validate, and execute code inside the kernel (e.g., eBPF [51, 150]). Getting

rid of the native execution assumption by executing common software on top of a virtual ISA

would allow to (1) build security and isolation guarantees directly into the ISA, (2) provide the

flexibility required to explore new isolation primitives, and (3) be compatible with legacy code

and hardware platforms.

Recent projects, such as Webassembly [117] (Wasm), propose a basic specification for a

virtual ISA with a focus on security. Wasm differs from language virtual machines, such as

the JVM [139]: it does not provide complex high-level abstractions or features (e.g., Object

1According to Dr. Dave Eckhardt, my OS professor from CMU
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Oriented support, Garbage Collection) reflecting a specific PL’s properties, but rather focuses

on a simple abstraction of an instruction set. Many languages, including C/C++, Java, Go, and

Rust [6] support Wasm as a compilation target.

In the next chapter, we propose to use virtual machines as the basic unit of isolation to

replace both inter and intra address spaces. Rather than proposing yet another virtual ISA, we

focus on the specification of an execution environment that presides over the scheduling of

multiple VMs, mediates their interactions, and allows to independently extend and optimize

the execution environment and each VM’s internal implementation. Isolation is enforced by

each VM as they encapsulate the set of accessible resources of a trust domain and only allow

interactions with the outside world via controlled mediated channels provided by our runtime.

The runtime itself focuses on: (1) initializing VMs and mapping their resources, (2) scheduling

units of execution, and (3) mediating VM interactions.
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Disclaimer: This Chapter describes an ongoing research project in collaboration with Dr. Marios

Kogias and for which we do not have a full prototype yet.

The recent proliferation of hardware security extensions such as Intel SGX [21], TDX [125],

MPK [124], ARM Trustzone [30], and AMD SEV [39], addresses the primary challenge facing

modern software: trust. Unfortunately, so far, adoption has been slow. These security exten-

sions are constrained by ISA backward compatibility, are hard to leverage, slow to evolve, do

not compose well, and lack clear high-level programming models.

In Chapter 5, we suggested that each of these security extensions modifies, in hardware, the

decades-old trust model exposed by the process abstraction to introduce intra-address space

isolation guarantees and breaks the assumption of a trusted host imbued with unrestricted

access to user code and data. We argue, however, that these technologies are still at an early

stage and too inflexible to fully solve the problem of trust. More specifically, we believe that

trust is a problem that requires high-level semantics and complex specification of acceptable

behavior that are simply not expressible with the current hardware mechanisms.

Here, we advocate for a different approach: as we still lack a clear programming model to

address the problem of trust faced by modern software, solutions and isolation primitives

should first be explored in a malleable, easily extensible execution environment that allows

the creation and composition of new isolation guarantees. We propose Tyche, a software

execution environment that composes trust domains running in separate (language) virtual

machines and connects them via a trusted intermediary. We demonstrate how Tyche emulates

and composes existing intra-address space hardware isolation mechanisms and sketch out

how a Wasm [117] embedder provide a base for the implementation of our proposed execution

environment.

We believe that being able to easily extend and modify Tyche will enable a rapid exploration

of isolation solutions, permit experimentation with various programming models, and help

converge on a well-defined set of requirements and primitives that hardware could use to
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address the modern problem of trust.

6.1 Introduction

Hardware vendors have begun offering security features such as Intel MPK [124,163], SGX [21],

ARM Trustzone [30], memory domains [62], and AMD’s SEV [39]. These extensions are partial

solutions to the primary challenge facing modern software: trust. This problem assumes many

forms, but its solutions typically require isolating and reasoning about relationships among

software components, a capability missing from conventional processors. Components – rang-

ing from libraries in a single address space, processes in different address spaces, or complete

virtual machines – need isolation from other components or even from the underlying host.

Hardware offers different mechanisms to isolate these system components.

Researchers enthusiastically welcomed these hardware extensions, which yielded a plethora of

publications [67, 68, 86, 88, 104, 105, 107, 109, 118, 131, 135, 138, 151, 155, 161–163, 175, 179, 186].1

These papers applied these extensions in hypervisors [68, 151, 155, 175, 179], library operating

systems [67, 68, 118], programming languages [104, 107, 109, 138, 162], and browsers [109].

Many of these hardware extensions were immature and (unavoidably) not widely tested

or applied, and quickly exposed their limitations. Researchers had many opportunities to

demonstrate imagination and creativity in formulating ways to circumvent or correct some

of these flaws [107, 118, 161–163, 186]. Unfortunately, side-channel attacks [76, 128, 129] un-

dercut the promised isolation by exposing serious flaws in the processors’ micro-architecture

which rendered the extension’s guarantees, at best, questionable. Paradoxically, Software

mitigations [184], with non-negligible performance slowdowns, were necessary to ensure the

isolation of hardware security extensions, leaving many wondering about the usefulness of

the extensions in the first place.

Considered broadly, recent hardware security extensions, in their current state, are unable

to become widely-used standards in our development and deployment stacks. Trusted Exe-

cution Environments, for example, are seldomly used in practice despite being available in

the Cloud [167], and their programming model is still evolving. After years spent focusing on

providing a TEE at a user-level [21], Intel has recently shifted towards confidential VMS [125],

that encapsulate full VMs rather than just carefully selected portions of application-level code.

Technologies such as Intel MPK [124] are only available on certain high-end microprocessors

and, for the moment, cannot be combined with Intel’s TEE. At the same time, while virtual-

ization is at the heart of modern software deployment in the Cloud and provides the basic

unit of isolation among tenants, most security extensions on commodity hardware fail to

properly integrate with virtualization technologies. In Chapter 4, we described our inability to

combine Intel MPK or Intel SGX with Intel VT-x, thus preventing us from composing secured

routines and enclosures. This incompatibility illustrates an important problem: despite being

1Software developers presumably were less thrilled by another complex ISA feature.
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aware of the problem of trust in modern software, we are still unsure about the appropriate

programming model and primitives to address it.

Moreover, these complex architectural features incur considerable cost. They add complex,

poorly specified semantics on top of already overloaded ISAs, are inflexible and limited in

functionality, incur a long-term burden of backward compatibility, and interoperate in un-

predictable ways. Recent work [65] proposed that CPU vendors could deliver new features as

microcode updates or provide a new privilege level sitting beneath the OS (similar to RISC-V

machine mode [135]) to increase flexibility and mitigate current hardware limitations.

We observe that existing hardware security extensions continue the native ISA assumption, that

a processor executes an arbitrary sequence of instructions, without a higher-level specification

of acceptable or unacceptable behavior. The few exceptions in most processors are low-level

errors, such as divide by zero. Trust extensions attempt to raise the semantic level by coarsely

prohibiting some instruction behaviors; for example, code running in an enclave should,

in general, not interact with code running outside. Unfortunately, the semantics of the

restriction are typically described only in terms of a processor implementation, which is

heavily constrained by compatibility, and consequently may not meet software requirements.

We consider a different approach. We believe that processor implementation is the wrong

level of the system stack to experiment and evolve new features and mechanisms. It is difficult

and time-consuming to implement, extend, and validate new ideas in silicon. Software, by

contrast, is easily malleable and capable of prototyping robust mechanisms with acceptable

performance. Widespread experimentation with software-implemented security mechanisms

can expose opportunities for hardware performance enhancement, which will properly drive

the design of new hardware features.

Several recent trends support the direction of our proposal. First, datacenter networking

has followed a similar path with great success, where switching is now largely defined in

software [132] and endpoints implement low-latency protocols in userspace without support

from NIC vendors [149]. Second, Apple’s emulation layer (with some hardware-support for

strong memory consistency) for their M1 CPU demonstrates that x86 code ran as a virtual

ISA can equal or outperform native code [119]. Finally, WebAssembly [117] (Wasm) is a newly

introduced, virtual ISA aiming to provide verified isolation with acceptable performance

overheads.

In this Chapter, we revisit the problem of isolating mutually distrustful components that make

up an application (§3). This time, rather than providing a single programming abstraction,

we focus on the design of a flexible and extensible execution environment that allows to

explore compartmentalization strategies, understand the isolation requirements of modern

applications, and derive secure interaction mechanisms between trust domains. Specifically,

we aim at providing an execution environment that satisfies the following goals:

• Provide strong, fine-grained intra-address space isolation primitives.
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• Emulate and compose existing hardware security hardware support.

• Support execution on heterogeneous hardware platforms without requiring specific

extensions.

• Be easily extensible via software updates.

We believe that this execution environment would enable us to explore compiler and language-

driven approaches to automatically instrument applications with strong isolation boundaries.

We also hope that this approach will identify the basic mechanisms and abstractions desirable

from hardware. Taken broadly, our approach in this Chapter works in reverse compared to

§2 and §3: rather than providing a programming model for existing hardware security exten-

sions, this chapter defines an execution environment that can help identify better hardware

extensions.

Tyche is a software execution framework for user applications. It relies on virtual machines as

the primary unit of isolation among mutually distrustful domains. The virtual machines run a

virtual ISA and define execution modules that implement isolation guarantees even for software

components written in unsafe languages and running in a shared address space. Tyche

provides a trusted intermediary [169] that enforces modularity by managing and scheduling

the different modules and mediating the interactions among them.

Tyche does not rely on specific hardware features and can be implemented and deployed

on commodity hardware. However, Tyche, as all virtual ISA emulators, would benefit from

proven and well-known architectural features such as segments and call gates [168], which

ironically were both dropped during the x86 architectural transition from 32 to 64-bit and the

introduction of virtualization support [75, 102, 185, 197].

Tyche does not require changes to programs’ source code. A program is compiled to a virtual

ISA to run inside one or several execution modules, i.e., virtual machines with the appro-

priate properties. We sketch an implementation of Tyche-support for a Wasm embedder.

Wasm provides a virtual ISA with appropriate security features, making it a very attractive

compilation-target to replace native execution of modules written in unsafe languages. We

show that Tyche can emulate existing ISA isolation abstractions and compose them while

providing a flexible testbed to explore new isolation primitives.

Philosophically, Tyche takes an approach similar to Singularity [123], i.e., it is an experimation

to explore new designs ideas, not a solution in itself. Specifically, Tyche’s goals span across

both software and hardware as we hope to identify (1) techniques to automatically partition

applications built from heterogeneous untrusted software components, (2) understand how

to safely allow interactions and pass information between separate trust domains, (3) explore

new trust models, and (4) derive desirable hardware primitives to support such isolation

schemes without hurting performance. The goal of this research is, however, not to burn Tyche

as is into silicon, but rather to understand the set of guarantees better addressed in hardware
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Figure 6.1 – Tyche Overview: user application with modules Foo and Bar running inside a
single process address space in Tyche, managed by the trusted intermediary. Each module
encapsulates a trust domain, with access to code, data, and gates (a)(b)(c).The right-side
depicts the actual process virtual memory layout of all the program’s segments.

or operations that could be sped up with the appropriate silicon support.

6.2 Tyche

Tyche relies on three simple elements, derived from basic systems design principles [169]: (1)

execution modules, (2) gates, and (3) a trusted intermediary. This section describes each of

the elements and the guarantees they must provide. It then sketches how WebAssembly [117]

(Wasm) is used to secure modules written in unsafe languages.

6.2.1 Execution module

An execution module declares pre-defined access rights to a trust domain’s available resources

and ensures they are enforced for the code in the module. A trust domain incarnates a single

unit of trust, usually corresponding to a single principal. The set of resources available to a

trust domain consists of three categories: (1) code, (2) data, and (3) gates. Code is the set of

functions that belong and can run inside the domain. The data is the set of readable (and
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optionally writable) memory accessible by code running inside the domain. Note that the

intersection of different domains’ resources can be non-empty since the same data can be

shared across domains. Gates control interactions with other trust domains. We distinguish

between imported gates, that permit requests of functionality from foreign domains, and

exported gates, that permit other domains to invoke a functionality in the local trust domain.

The execution module is responsible for ensuring a trust domain’s encapsulation. It is the

sandboxing mechanism that exposes and restricts a domain’s access to its own resources. It

also ensures that gates are the sole mean of explicit interaction with other domains.

In Tyche, execution modules are (language) virtual machines [46, 117] that ensure the desired

isolation. Apart from that requirement and the compatibility with Tyche’s execution model, the

virtual machine can implement any virtual ISA or bytecode. The choice to enforce isolation and

restricted access to resources in software is a trade-off that sacrifices performance, compared

to native code execution restricted via hardware, for flexibility in the granularity at which

guarantees are provided and extensibility.

6.2.2 Gates

Gates allow explicit interactions with resources outside of a trust domain. They are typed

interfaces that restrict control transfers between domains. A gate specifies the name and type

signatures of a function that a domain exports as well the form of control transfer it accepts.

The type defines the memory layout of the data that is transferred across the domains when

the gate is invoked. We distinguish between exported gates and imported ones. A domain

exports gates to selectively allow other domains access to the functionality it implements. A

domain imports gates to invoke functionality implemented by other domains. In terms of

semantics, the invocation of gate triggers a synchronous or asynchronous control transfer into

the exporting domain and specifies how typed arguments are transferred across the domains

boundaries (e.g., value or reference passing). We also assume that both the caller and the

callee domain of a gate can uniquely identify the other party.

6.2.3 Trusted Intermediary

The trusted intermediary is the privileged part of Tyche relied upon by all domains to (1)

correctly instantiate the execution modules, (2) bind exported and imported gates, and (3)

enforce their semantics. The trusted intermediary is further trusted not to expose one domain’s

resources to another without the owner’s consent. More generally, it should not access, modify,

or leak a trust domain’s resources.

The trusted intermediary is a mediator between mutually distrustful entities. When a module

invokes an imported gate, it yields control to the trusted intermediary. The intermediary

validates the request, selects the module that exports the appropriate gate, and performs the

control transfer to execute the function in the other domain.
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The trusted intermediary manages and schedules user-level threads which are the unit of

execution and concurrency in Tyche. These user-level threads flow across virtual machines

via gates. The intermediary cooperates with the execution module to keep track of a thread’s

state within a virtual machine, save it upon the invocation of a synchronous gate, and restore

it upon return.

Figure 6.1 depicts a user program in Tyche, running in a single-process address space. Module

Foo invokes the imported gate (a) to synchronously transfer control to Bar’s exported function

(b). Since it is a synchronous call, the trusted intermediary deschedules Foo and schedules Bar
to run Bar’s function exported via (b). Foo’s second segment is shared with Bar as two separate

segments, with read-write (orange) and read-only (green) access rights.

6.2.4 Tyche & Wasm

In Tyche, we plan to use the Wasm ecosystem to support the safe execution of modules

written in unsafe languages (e.g., C), languages for which no virtual machine with the desired

guarantees exists, or binaries for which no source code is available.

Wasm Overview: WebAssembly (Wasm) [117] is a binary instruction format for a stack-based

virtual machine meant to be simple and compact. Most popular languages compilers support

Wasm as a compilation target [6]. Wasm comprises a core specification as well as embedding in-

terfaces. The core specification [31] is a document that defines the semantics of WebAssembly

independent of its embedding, i.e., the environment in which Wasm is leveraged. Embeddings

are consensual interfaces and APIs that specify how to make Wasm interact with various

environments, including JavaScript [32], Web browsers [34], and system call interfaces [33].

The Wasm ISA relies on segmentation to represent mutable memory resources, i.e., contiguous

arrays called linear memories accessed via typed load/store instructions with a tuple (linear
memory id, offset). The Wasm format supports external and imported types (externtype)

or references to functions (externref). Host functions can thus be embedded into a We-

bAssembly module to allow interactions with the surrounding environment or other module

instances.

A Wasm module is the basic unit of code deployment. It defines the module’s functions, tables,

memories, globals, imports, exports, names, types, as well as initialization data. At run time, a

module is instantiated in an embedder, i.e., an execution environment, validated, initialized,

and executed.

Adapting a Wasm embedder to Tyche : We are currently extending the Gasm [198] embedder

to be compatible with Tyche’s execution model. Gasm is a simple virtual machine that runs

Wasm modules to completion. Our current implementation extends the embedder to support

multiple user-level threads executing inside a single module and allows Tyche’s trusted inter-

mediary to preempt their execution. The implementation also relies on externref exposed to
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the module to implement gates. The current prototype executes multiple user-level threads

per virtual machine and handles transitions via gates between execution modules.

6.3 Emulating & Composing Hardware Isolation

This section demonstrates that Tyche can emulate the most common isolation patterns pro-

vided by hardware and security extensions. Figure 6.2 summarizes these implementations. To

demonstrate Tyche’s ability to compose such abstractions, §6.3.3 sketches how to implement

secured routines and enclosures in Tyche and how to compose them.

6.3.1 Common abstractions

Rings: Ring-based isolation are nested trust domains (4 in the x86) that limit code running in

a ring to access only a subset of the memory regions and the instructions available in lower
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rings.

Tyche can implement an arbitrary number of rings. The memory resources are accessible

segments and privileged instructions are gates. Nesting rings therefore: 1) provide access to a

subset of the most privileged ring’s memory segment and 2) limit the gates exposed at each

ring level.

Figure 6.2 (a) depicts Tyche implementation of 4 nested rings. Ring 0 has full access to the

segment, while each subsequent ring is only allowed access to a subset of it. More complicated

schemes, involving multiple memory segments or gaps in the address space, e.g., making the

green region unavailable to ring 1, are also possible.

Processes: A process is an instance of a program execution scheduled by the operating sys-

tem. A process encapsulates the program’s code, data, execution state, and access to system

resources (e.g., file-system, network). Inter-process communication (IPC) occurs through

shared memory regions or IO such as pipes, files, or network messages.

Tyche’s execution modules provide an abstraction similar to processes. They encapsulate a

domain’s code, data, and execution state and can be independently scheduled on different

threads. Access to system resources, pipes, files and network occurs through gates, which

can easily mimic IPCs. Figure 6.2 (b) shows a simple example that mimics two processes with

read-only (R) and read-write (RW) segments and a shared (S) third memory region for IPCs.

6.3.2 Hardware Extensions

Virtualization: Virtualization, as defined by Popek and Goldberg [165], relies on a virtual

machine monitor (VMM) to expose hardware resources to a guest virtual machine (VM).

It ensures that a program running inside a VM behaves as it would on a physical machine

(equivalence), that the VMM has complete control of resources (resource control), and that

most of the guest program runs without VMM intervention (efficiency).

Hardware extensions, such as Intel VT-x, extend ISAs with mechanisms to facilitate and

accelerate the execution of virtual machines, notably by providing extended-page-tables (EPT)

and virtualizing privileged instructions and registers (e.g., CR3) to safely expose them to guest

operating systems.

At its core, virtualization reduces to nested ring isolation. One could run the host kernel in ring

0, the host user in ring 1, the guest kernel in ring 2, and the guest user in ring 3. As described

in §6.3.1, Tyche supports any number of nested rings and thus can provide virtualization and,

similar to Fluke [103], nested virtualization isolation. Equivalence and efficiency properties

are guaranteed by the execution module virtual machine’s implementation. Resource control

is either performed directly by the trusted intermediary, or exposed to a module via gates.

Intel MPK: Intel Memory Protection Keys (MPK) tags page table entries with one of 16 possible
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keys. A user-writable and readable register, PKRU, uses two bits per key (32 bits total) to encode

memory access rights (write|read) enforced by hardware. In essence, Intel MPK restricts access

to memory resources based on the current execution context, encoded in PKRU. The clear

limitations of Intel MPK are: 1) the limited number of keys, and 2) that user code can modify

PKRU and grant itself access to a tagged memory region.

Tyche can mimic Intel MPK by sharing segments with appropriate access rights with a trust

domain and dynamically changing the set of available segments and access permissions at

run time. Figure 6.2 (c) simulates a PKRU register with 3 keys and selectively enable read and

write accesses to the tagged segments for different modules. Tyche can improve upon Intel

MPK by supporting any number of keys and can rely on gates to control whether a domain

can modify its access rights.

Trusted Execution Environments: Trusted Execution Environments (TEEs), such as Intel

SGX [21], ARM Trustzone [30], and AMD SEV [39], provide confidentiality and integrity of user

code and data deployed on potentially compromised Cloud servers (see §1.5).

TEEs split a machine’s resources between two mutually distrustful domains each with their own

CPU (e.g., enclave or non-enclave mode) and memory (e.g., Enclave Page Cache). The same

model can be implemented by physically splitting a machine’s resources, e.g., by relying on a

trusted co-processor private to the trusted application, with its own tamper-proof memory

resources, inaccessible from CPUs executing untrusted code (i.e., the OS).

As described in §6.3.1, Tyche can implement full isolation between two domains, and we could

imagine running untrusted parts of an OS in Tyche (similar to work on trusted hypervisors [90]).

A more literal approach to resource partitioning could run trusted code on separate hardware,

far from the OS’s reach. Inspired by work on GPUs [189], and with Tyche exposing system

resources as gates, trusted code could run directly on a dedicated co-processing unit with

non CPU-accessible on-chip memory and no OS, e.g., an FPGA. Untrusted code runs in Tyche

on the server’s CPU and OS, and uses gate A-C to load encrypted code to a Tyche runtime

flashed on the FPGA, able to decrypt and execute trusted code, and uses gate B to manage it’s

resources without accessing them.

6.3.3 Composing & Nesting Abstractions

To illustrate how various isolation abstractions can be combined in Tyche, we focus on secured

routines and enclosures implementation and combination in our execution environment.

Implementing support for secured routines and enclosures in Tyche is straight forward.

For secured routines [107], trusted code and data are deployed in the secured environment

as described above. Cross domain channels are implemented via gates with copy semantics.

Attestation can be performed by measuring the module’s initial state (e.g., the Wasm mod-

ule corresponding to trusted code and data) and relying on the attached TPM to sign the
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Figure 6.3 – Secured routines leveraging an enclosure to execute an untrusted library safely
inside the TEE. The dashed rectangle corresponds to the TEE.

measurement.

Enclosures [106] support is straight forward as well: for each execution scope defined inside

the application (i.e., default scope and each enclosure scope), we create a different execution

module. An execution module’s resources is the collection of segments and associated access

rights that correspond to the meta-packages accessible by the scope. The actual memory

backing up these segments is shared across execution modules while access rights are enforced

by the VM itself. For system call filtering, we install (i.e., import) the allowed gates that expose

the authorized underlying system resources, or simply filter syscalls at the callee module. A

switch between scopes is implemented through synchronous gates, i.e., an execution module

imports a gate that corresponds to the entry point to another scope (i.e., an enclosure’s

closure). In terms of actual implementation on top of Wasm, the main challenge would be

to implement compiler support for multiple linear memories. We however see an easy path

towards a solution. In Go, at link time, our Go enclosure frontend extension segregates symbols

per meta-packages by assigning a start address and a length for each package section, i.e., data,

rodata, code, and heap (see §3.5.1). An obvious solution is thus to simply replace the start

address with a linear memory id at that stage, and use it during Wasm byte code generation in

place of the virtual address.

Combining secured routines and enclosures is trivial, as it simply entails having multiple

modules in each of the completely isolated high-level trust domains (trusted and untrusted

worlds). Figure 6.3 shows the combination of secured routines and enclosures. The untrusted

application executing on the left side of the Figure uses gate A to trigger the execution of a

secured routine inside the TEE (via the exported gate A’). As per the description of secured

routines, no memory segment is shared between the two domains. Both the untrusted and

trusted domains leverage enclosures, via gates B and C respectively, to isolate portions of the
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memory resources when invoking public libraries.

6.4 Beyond Hardware

Tyche’s flexible design enables the implementation and exploration of more ambitious isola-

tion schemes than the ones constrained by hardware mechanisms.

6.4.1 Securing Applications at Compile/Link time

Tyche can be used to implement safe language inter-operability. Modules running in separate

virtual machines might be written in different languages, providing different safety properties

internally. Interactions between these modules are, however, mediated by Tyche and follow

strict common APIs, while their execution is encapsulated by the surrounding virtual machine.

This property could be used, for example, in GOTEE [107], to provide safe support for C

libraries. In GOTEE, we precluded C interactions as we heavily relied on the strong typing

of the Go programming language (e.g., for cross-domain channels), and disallowed unsafe

memory accesses (e.g., raw pointers) to prevent cross-domain memory references. With

Tyche’s execution environment, the former is required only at the interfaces between languages

(gates), while the latter is enforced by the virtual machine itself (e.g., by executing C code in a

Wasm embedder).

Another use-case for Tyche is the exploration of compiler and linker techniques that would au-

tomatically partition applications at packages boundaries and run them in separate execution

modules. In §3, the programmer is still responsible for identifying and enclosing unsafe parts

of the application, which can be cumbersome. With Tyche, we could study the feasibility of

automating this process and experiment with the granularity at which data is made available

from one package to another (e.g., share single objects rather than a package’s full heap).

6.4.2 Tyche Distributed Deployments

Tyche can be deployed as a distributed system on heterogeneous hardware setups with several

compute units. As explained at the end of §6.3.2, and similar to Swift [87], Tyche can trans-

parently distribute an application’s components on different compute units (e.g., a CPU and

an FPGA). The trusted intermediary is responsible for transparent remote communications

through gates, e.g., by use of an efficient RPC protocol [130]. We could also envision a more

aggressive form of distributed setup, where remote instances of Tyche’s trusted intermediary

cooperate, via network communications, to schedule execution modules transparently.
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6.4.3 Tuning Semantics & Inter-operability

In Tyche, execution modules’ virtual machine implementations can differ as long as they

guarantee the required isolation properties and respect gates types. Each virtual machine can

be independently tuned to use different primitives or abstractions internally. More specifically,

this allows the behavior of the virtualized ISA to vary between modules, be fine-tuned to

the specific VM’s requirements, and selectively enable extra features on a per-VM basis. For

example, unlike Intel CET, shadow stacks can be selectively enabled in VMs that do not provide

control-flow-integrity, thus allowing paying the associated cost only in domains where these

security mechanisms are required.

6.4.4 Granularity & Revocation

Tyche does not impose alignment restrictions on the segments’ start addresses or sizes. In

the limit, this allows, in Wasm, allocating an object in its own linear memory and, similar to

Mondrian memory [193], to provide object-granularity access rights enforcement. Support

for object-granularity isolation enables the implementation of ownership semantics across

execution modules. Gates can transfer an object’s ownership from one execution module to

another and enforce mutual exclusion on said object.

Tyche can expose resource management and revocation safely across modules. Appropriate

gates allow a module to transfer sensitive information into an untrusted module solely for the

duration of a computation and prevent leaks of the information, for example by restricting

the module’s access to the network. The untrusted module could then be destroyed upon

return, preventing it from storing and later leaking the information. Other schemes can be

envisioned, such as relying on real-time timers to determine how long a given resource should

be shared with a concurrently executing module.

6.5 Summary

Hardware manufacturers have a long track record of successfully providing performance

improvements. However, they are yet to prove that they can correctly build support for flexible

software isolation primitives. In this Chapter we proposed to give up on native ISA execution

of user applications to provide solutions to the general problem of trust exhibited by software.

Tyche builds strong isolation guarantees as primitives in the virtual machines running user

code and relies on a trusted intermediary to safely enable module interactions and expose

system resources.
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7 Future Directions

7.1 Opportunities With New Programming Languages & Hardware

In this thesis we exploited the synergy that exists between certain programming languages

abstractions, e.g., user-level threading, typed channels, packages, and hardware security

extensions to address the heterogeneous levels of trust that exist within our applications and

systems. Recent advances in both programming languages and hardware features could bring

interesting new opportunities to design mechanisms to secure our software stack.

Verona [115] is a new safe infrastructure programming language. Verona schedules behaviors,

i.e., pieces of code, on named memory regions. Code executing in a behavior can only access

memory belonging to the acquired regions. One end goal for Verona is to allow the sandboxed

execution of legacy software components, wrapped in a Verona-compatible layer. How this will

be enforced, whether it will involve specific hardware mechanisms or rely on a safe virtual ISA

(e.g., Wasm [117]), is still open. Another interesting problem to consider is whether techniques

we want to explore in Tyche to automatically partition legacy software into trust domains

could also be applied to safely run applications in the model proposed by Verona.

In terms of hardware extensions, CHERI [195], a hardware capability implementation, presents

interesting features to encapsulate unsafe software components [93, 101, 192, 194]. We already

identified CHERI as a promising backend for enclosures (§3.7) that would provide control

at a finer granularity than page-based hardware mechanisms and thus reduce the memory

fragmentation in our implementation. CHERI also seems promising in the context of Tyche. It

could be used as a segmentation mechanism, i.e., CHERI pointers could replace the Wasm

embedder linear memories, with access rights enforcement implemented by the hardware.

This would allow to generate efficient native code whose memory accesses are expressed as

an offset of CHERI pointers, in an approach closer to the one proposed in NaCl [197].
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7.2 Mechanisms to Safely Expose Management of Resources

In this thesis we studied the problem of guaranteeing the confidentiality and integrity of user

code and data deployed on untrusted machines. Generally, this problem is a consequence of

the popularity of Cloud deployments and the increased concern towards user privacy. We are,

however, not convinced that new hardware extensions are required for this, or at least, not in

the form proposed by TEEs.

In Chapter 5, we identified the separation of resource management from the ability to access

them as a desirable feature. The problem of trust in Cloud deployment includes two important

challenges: (1) preventing a curious hypervisor from accessing a user’s resources, and (2)

providing a guarantee to clients that their code and data is properly loaded and protected. Both

of these challenges must be addressed while preserving the hypervisor’s own requirements: (1)

the ability to effect management decisions, and (2) protecting itself from untrusted user code.

We advocate that responsibilities and privileges should be redistributed among the entities

involved in Cloud deployments, e.g., the hypervisor and the guest virtual machines, to provide

stronger guarantees to Cloud users. We believe this is achievable in software, without new

(complex) hardware mechanisms. We draw inspiration from related work [59, 60, 66, 90, 96] to

devise a trusted monitor acting as an intermediary between hypervisors and virtual machines.

Via techniques similar to Virtual Ghost [90] or by de-privileging the hypervisor, we would

reserve the ability to access hardware configuration (e.g., EPT or page table mappings) to

a trusted monitor. The monitor would be a (minimal) trusted intermediary between an

untrusted hypervisor –making placement and management decisions on behalf of the CSP–

and the guest machines deployed by Cloud users. As demonstrated in Komodo [100], trust

in the monitor for all parties involved (the de-privileged hypervisor and the guest) can be

derived from a combination of formal verification and attested measurement (e.g., a signed

boot measurement).

The trusted monitor validates hardware configuration changes with both parties before apply-

ing them. Specifically, it provides two crucial guarantees: (1) the hypervisor can, at any point,

reclaim a resource, and (2) guest machines control how their resources are shared with the

hypervisor or other VMs (e.g., can ensure exclusive access to a physical page or allow selective

sharing with specific VMs).

To orchestrate the cooperation between the hypervisor and guest machines, while ensuring

both of the above guarantees, we rely on hyperupcalls [59]. Hyperupcalls are pieces of software

that belong to the guest machine and can be invoked by the hypervisor to perform a control

transfer into the VM’s environment to execute the associated procedure without involving the

VM’s threads of execution. While they were originally designed to bridge the semantic gap

between hypervisors and guest operating systems, we see in this mechanism an opportunity

to establish a safe mean of cooperation between two mutually distrustful entities. Specifically,

guest machines would ship with hyperupcalls as extensions to the guest operating system,
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similar to related work [66]. These can be measured and their functional correctness can be

validated by the hypervisor before instantiating the VM. These extensions accept as input a

signed token from the hypervisor that represents a desired change in configuration. They

can then either accept the change or refine it with extra requirements such as making a

memory page exclusively accessible by the VM. The token and the VM’s signed refinements

have to be forwarded to the trusted monitor that validates them before applying the desired

changes or reporting an error. Hyperupcalls for resource revocation, e.g., reclaiming a page,

cannot fail but provide the VM with the opportunity to implement defensive measures such

as zeroing-out a page before returning it to the hypervisor. Of course, mechanisms should be

devised to prevent controlled-channel attacks [196] or mitigate them in the implementation of

hyperupcalls. We imagine a set of standard hyperupcalls packaged as an OS extension library,

with a fixed API, that exposes all the management functionalities required by a hypervisor and

removes the burden of providing formally verifiable implementations from the Cloud users.

97





8 Conclusion

In this thesis we focus on the problem of trust faced by modern software. As programming

evolved to incorporate and heavily rely on unverified reusable software components, called

packages, and as applications migrated to the Cloud, programming languages failed to adapt

and provide appropriate abstractions to address the heterogeneous levels of trust that exist

both within an application and on the systems on which they run. Developers do not have the

tools to control which parts of their execution stack can access, modify, or leak their sensitive

information.

We recognized the opportunities presented by recent hardware security extensions that en-

able to operate on the traditional trust model embodied in the process. We proposed new

programming abstractions that closely integrate with these hardware extensions, while mask-

ing their inherent intricacies. Specifically, we presented secured routines, a language-level

approach to supporting trusted execution environments that allows programmers to easily

protect parts of their application’s code from a potentially malicious host. Then, we introduced

enclosures, an abstraction that allows developers to control resources made accessible, at

package-granularity, to portions of their applications. Enclosures allow to safely leverage

unverified public packages and protect an application’s sensitive resources.

The combination of secured routines and enclosures should have allowed to incorporate

complex logic in a trusted execution environment while guaranteeing that public libraries

included in the trusted computing base would not weaken the security of code executing

inside the TEE. Alas, the underlying hardware security extensions in charge of enforcing both

abstractions’ isolation seem, for the moment, too hard to compose. In the light of this result,

we took a step-back and considered the conceptual modifications to the process’ trust model

brought by these hardware technologies. We introduced our current work, Tyche, that explores

the design of an execution environment flexible enough to implement the modern isolation

requirements between mutually distrustful trust domains.
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