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Abstract— We consider the application of passivity theory to
the problem of voltage stabilization in DC microgrids (DCmGs)
given by the interconnection of Distributed Generation Units
(DGUs), dynamic RL lines, and loads. We first provide a novel
result on stable interconnection of multiple passive systems and
then apply it to DCmGs. More specifically, we consider the
decentralized controllers proposed in [1] synthesized by solving
linear matrix inequalities, which allow addition and removal of
DGUs in a plug-n-play fashion. We show that they passivate
DGUs and combine this property with the inherent passivity of
RL lines for proving voltage stability without Quasi-Stationary-
Line approximations, which are assumed in [1]. Theoretical
results are backed up by simulations in PSCAD.

I. INTRODUCTION

Passivity theory provides one of the most powerful tools
for the analysis of complex systems. It presents a framework
for designing control actions based on considerations related
to the energy of the system, both in linear and nonlinear
cases. Furthermore, passivity theory has strong relations with
Lyapunov stability [2]. We refer the reader to [3], [4], and the
references therein, for a detailed discussion about stabiliza-
tion of nonlinear systems using passivity-based approaches.
For the analysis of large-scale systems, passivity provides a
compositional framework, that is, passivity of a system can
be shown from the passivity of its components and the way
they are interconnected.

A classic result is that the feedback or parallel inter-
connection of two passive systems is still passive [5], [6],
[7]. Compositional arguments have been also provided for
stability analysis of complex interconnected systems [7], [8].
In [7], results about L2-finite-gain stability of interconected
passive systems are provided. However, the interconnections
must fulfill structural constraints so as to satisfy suitable
Riccati inequalities. A more recent reference highlighting
advantages of passivity in networked systems can be found in
[8], where stability and output synchronization is shown for
subsystems interconnected in a Laplacian fashion. Further-
more, [9], [10] explore passivity-based control in network
of dynamical systems, in which subsystems are connected
through dynamic diffusive couplings.

The primary focus of this article is the application of
passivity-based tools to DC microgrids (DCmGs). DCmGs,
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due to higher efficiency, more natural interface to many types
of renewable energy sources and storge systems, and better
compliance with consumer electronics, have gained traction
in recent times [11], [12], [13], [14]. A key challenge in
islanded DCmGs is to ensure voltage stability through de-
centralized control of each DGU [15]. Droop-based voltage
stabilization is a commonly used decentralized approach but
is plagued by load-dependent voltage deviations, propagation
of voltage errors along resistive transmission lines, and
presence of steady state voltage drifts [16], [15]. Plug-n-Play
(PnP) control is an another popular decentralized control
strategy and allows addition or removal of DGUs with
minimal human intervention [17]. Primary controllers with
PnP features have been proposed in [18], [1], [16]. These
regulators, however, are designed under Quasi-Stationary-
Line (QSL) approximation, where line inductances are ne-
glected [19]. Such an approximation is valid for low-voltage
networks with predominantly resistive lines. However, in
medium-voltage and high-voltage DCmGs, the line induc-
tances are substantial and cannot be disregarded [20].

This paper presents a novel result on the stability of
interconnected nonlinear passive systems. We consider a
specific class of skew-symmetric interconnections, which
are not covered by existing contributions in [7] and [8].
Moreover, the interconnections in [9], [10] are special case of
the generic interconnections introduced in this work. These
skew-symmetric interconnections are present in DCmGs,
given as the interconnection of DGUs, loads, and dynamic
RL lines, and find applications in the analysis of voltage
stability. To passivate DGUs, we introduce a decentralized
multivariable PI controller based on [1]. We then apply the
new stability theorem to guarantee voltage stability even for
arbitrarily large inductances.

The main theorem on stable interconnection of passive
systems is derived in section 2. Section 3 presents the model
of DCmG, design of local voltage regulators, and the stability
analysis of the closed-loop mG. Simulations validating theo-
retical results are provided in Section 4. Finally, conclusions
are drawn in Section 5.

A. Preliminaries and notation

1) Algebraic graph theory: We denote by G(V, E ,W) a
weighted digraph, where V = {1, · · · , N} is the node set,
E ⊆ (V×V) is the edge set, and W = {wij ∈ R, (i, j) ∈ E}
is the set of weights. If for all (i, j) ∈ E , one has (j, i) ∈ E ,
then the graph is said to be undirected, otherwise, directed.
For node i ∈ V , N+

i = {j ∈ V : (i, j) ∈ E} denotes the
set of out-neighbors, N−

i = {j ∈ V : (j, i) ∈ E} the set of
in-neighbors, and Ni = N+

i ∪N−
i the set of neighbors. The
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adjacency matrix A ∈ RN×N is defined by

Aij =

{
wij if j ∈ N+

i

0 otherwise
.

All digraphs in this work are assumed to be without self
loops, that is, (i, i) /∈ E .

2) Passivity theory: Consider a control-affine nonlinear
system

Ω =

{
ẋ = q(x, u) = f(x) + g(x)u

y = h(x)
,

where x ∈ Rni , y ∈ R1, and u ∈ R1. The functions q :
Rn × Rp → Rn, f : Rn → Rn, g : Rn → Rn × Rp, and
h : Rn → Rp are twice continuously differentiable, verifying
q(0, 0) = 0, f(0) = 0, and h(0) = 0. Note that inputs and
outputs have the same dimension p.

Definition 1: The nonlinear system Ω is passive [6] if
there exists a continuously-differentiable positive-semidefinte
storage function V : Rn → R, V(x) ≥ 0, V(0) = 0, and a
function S : Rn → R, S(x) ≥ 0 ∀t ≥ 0, such that

V̇(x) ≤ uT y − S(x). (1)

The system Ω is strictly passive if x 6= 0 ⇒ S(x) > 0.

II. INTERCONNECTION OF MULTIPLE PASSIVE SYSTEMS

Consider a set of N subsystems with control-affine dy-
namics

ẋi = fi(xi) + gi(xi)ui

yi = hi(xi)
, (2)

where xi ∈ Rn, ui ∈ Rp, and yi ∈ Rp. For modeling
the interconnections between the subsystems, we introduce a
weighted digraph G(V, E ,W) where each node represents a
subsystem. Suppose that the subsystems are coupled together
through the input

ui =
∑

j∈N+
i

wijyj −
∑

j∈N−
i

wjiyj i = 1, · · · , N, (3)

where wij are scalars. In this article, we focus on these
interconnection structures. Let A be the adjacency matrix
associated with graph G. We define the skew-symmetric
interconnection matrix as

Φ = A−AT . (4)

From (3), it is easy to verify that

u = Φy, (5)

where u = [u1, · · · , uN ]T and y = [y1, · · · , yN ]T are the
vectors of inputs and outputs respectively.

Definition 2: The interconnection between various sub-
systems defined by (3) is called skew symmetric.
Skew-symmetric interactions are found in electrical net-
works. In particular, this is the case in DC microgrids
with heterogeneous components, which will be discussed
further in Section III. We will now present a key property
of subsystems interconnected in a skew-symmetric fashion,

that is, if all the subsystems are passive, then each state xi

converges to the zero-level set of function Si(xi), i ∈ V .
Theorem 1: Consider a set of dynamical subsystems de-

fined by (2) coupled with each other through input (3)
such that the interconnection is skew symmetric. If each
subsystem is input-output passive with a radially unbounded
positive-definite storage function Vi(xi) ∀i ∈ V , then, for all
initial conditions xi(0) ∈ Rni , the state x = [xT

1 , · · · , xT
N ]T

converges, as t → ∞, to the largest invariant set contained
in

E =
{
x =

[
xT
1 . . . xT

N

]T
: Si(xi) = 0, i ∈ V

}
. (6)

Moreover, if all subsystems are strictly passive, then the ori-
gin of (2)-(3) is a globally asymptotically stable equilibrium.

Proof: The reader is deferred to [21] for a complete
proof.

III. APPLICATION OF PASSIVITY THEORY TO MGS

In this section, we describe the electric model of a DCmG
comprising of multiple DGUs connected to each other via
power lines. In particular, we adopt the model in [18] which
allows for general DCmG topologies.

Line 6

Line 7

Line 8 Line 9

Line 10

Line 11

DGU 1 DGU 2

DGU 3

DGU 4

DGU 5

Fig. 1: A representative diagram of the DCmG network.

DC Microgrid Model: The electric interconnections in a
DCmG are modeled as a directed connected graph G =
(V, E). V is partitioned into two sets: D = {1, . . . , N}
represents the DGUs and L = {N + 1, · · · ,M + N} is
the set of power lines. Each DGU is interfaced with the
DCmG through a point of common coupling (PCC). For
simplicity, it is assumed that the loads are connected to
the DGU terminals. Indeed, even if load buses are located
elsewhere, they can be mapped to PCC using Kron reduction
[22]. We refer the reader to Figure 1 for a representative
DCmG diagram. Since each DGU is directly connected only
to the lines, all edges in E have one node in D and other in L,
making G a bipartite graph [23]. The orientation of each edge
represents the reference direction of positive currents which
is arbitrarily assigned. It is evident that a line cannot have
only in-neighbors or out-neighbors as the current entering a
line must leave it. Indeed, each node in L is always connected
to two different nodes in D through two directed edges. We
define a matrix B ∈ RN×M , with DGUs along rows and



lines along columns, as

Bil :


1 l ∈ N+

i

−1 l ∈ N−
i or l ∈ N+

i,r

0 otherwise

, i ∈ D, l ∈ N . (7)

Dynamic model of power line: The power lines are repre-
sented by the π-equivalent model of the transmission line
[24]. The electric scheme of the lth power line connecting
DGUs i and j is shown in Figure 2. By applying Krichoff’s
voltage law (KVL) on the lth power-line, one obtains

Σ̂Line
[l] :

{
dIl
dt

= −Rl

Ll
Il +

1

Ll

∑
i∈Nl

BilVi , (8)

where the variables Vi and Il represent the voltage at
PCCi and the current flowing through the lth power line
respectively.

Dynamic model of the DGU: The DGU comprises a DC
voltage source (usually generated by a renewable resource), a
Buck converter, and a series RL filter. The ith DGU feeds a
local load at PCCi and is connected to other DGUs through
power lines. A schematic electric diagram of the ith DGU
along with load, connecting line(s), loads, and local PnP
voltage controller is represented in Figure 2. On applying
KCL and KVL on the DGU side at PCCi, we obtain

ΣDGU
[i] :


Cti

dVi

dt
= Iti − ILi − I∗i

Lti
dIti
dt

= −Vi −RtiIti + Vti

, i ∈ D, (9)

where I∗i , a function of line currents, is the net-current
injected into the mG and is given by

I∗i =
∑
l∈N+

i

BilIl +
∑

l∈N−
i

BilIl =
∑
l∈Ni

BilIl, l ∈ L. (10)

In (9), ILi is the load current, Vti is the command to the
Buck converter, and Iti is the filter current. The terms Rti ∈
R>0, Lti ∈ R>0, and Cti ∈ R>0 are the internal resistance,
inductance, and capacitance of the DGU converter.

Buck i Vti

Rti Lti Iti

Cti

Rij Il
Lij VjVi

ILi

PCCi

DGU i Power line l

∫ -
+

V ref, i
Ki

Fig. 2: Electric Scheme of ith DGU along with load, con-
necting line(s), and local PnP voltage controller.

A. Design of local voltage controllers

The main objective of local controllers is to ensure that
the voltage at PCCi tracks a reference voltage Vref,i usually
provided by a higher-level controller. If the voltages are not
stabilized, they can increase beyond a critical level, resulting
in damage to the connected loads. A necessary condition
to track a reference voltage is to steer the error e[i](t) =
Vref,i(t) − Vi(t) to zero as t → ∞. For this purpose, as in
[1], we augment each DGU with an integrator

dvi
dt

= e[i](t) = Vref,i(t)− Vi(t), (11)

and subsequently equip it with a state-feedback controller

C[i] : Vti(t) = K[i]x̂[i](t), (12)

where x̂[i] = [Vi Iti vi]
T ∈ R3 is the state of augmented

DGU and Ki = [k1,i k2,i k3,i] ∈ R1×3 is the feedback
gain. It turns out that, together with the integral action
(11), controllers C[i] define a multivariable PI regulator (see
Figure 2). From (9)-(12), the closed-loop DGU model is
obtained as

Σ̂DGU
[i] :



dVi

dt
=

1

Cti
Iti −

1

Cti
ILi −

1

Cti
I∗i

dIti
dt

= αiVi + βiIti + γivi

dvi
dt

= −Vi + Vref,i

, (13)

where αi =
(ki,1−1)

Lti
, βi =

(ki,2−Rti)
Lti

, and γi =
ki,3

Lti
. In

particular, the control architecture is decentralized since the
computation of Vti requires the state of Σ̂DGU

[i] only. It is
important to highlight that, in general, decentralized design
of local regulators can fail to guarantee voltage stability of
the whole mG [18], [1]. This is due to the fact that DGUs
interact with grid through I∗i which in turn is a function of
PCC voltages and line currents.

B. Stability of the mG

When DGUs are equipped with controllers (12), the whole
mG can be stabilized. We will exploit skew-symmetric
interactions and passivity to guarantee the stability of the
origin of DCmG described by (8), (10), and (13). The system
(13) can be equivalently written as

Σ̂DGU
[i] : ˙̂x[i] = f̂[i](x̂[i]) + ĝ[i](x̂[i])û[i] + ϕ[i], (14)

where f̂[i](x̂[i]) = Â[i]x̂[i] ∈ R3, ĝ[i](x̂[i]) = B̂[i] ∈ R3,
ϕ[i] =

[
−C−1

ti ĪLi 0 Vref,i

]T ∈ R3, ŷ[i] = ĥ[i](x̂[i]) = Vi,
and û[i] = −I∗i . Matrices Â[i], B̂[i] are defined as

Â[i] =

 0 1
Cti

0

αi βi γi
−1 0 0

 , and B̂[i] =

 1
Cti

0
0

 .

Similarly, from (8), one has

Σ̂Line
[l] : ˙̂x[l] = f̂[l](x̂[l]) + ĝ[l](x̂[l])û[l], (15)



where x̂[l] = Il, f̂[l](x̂[l]) = Rl

Ll
Il, ĝ[l](x̂[l]) = 1

Ll
, ŷ[l] =

ĥ[l](x̂[l]) = Il, and û[l] =
∑

i∈Nl
BilVi.

Our main aim is to apply Theorem 1 which requires
control-affine dynamics defined in (2). The vector ϕ[i] in
(14), varying for different choices of constant exogenous
inputs Vref,i and ĪLi, must be removed to match the form in
(2). Note that equations (14) and (15), defining the closed-
loop dynamics of the DCmG, are linear. Therefore, the
stability of equilibrium in the absence of ϕ[i] is equivalent to
the stability of all the equilibria generated for different (yet
constant) ϕ[i]. One obtains the DCmG dynamics as

Σ̂DGU
[i] : ˙̂x[i] = f̂[i](x̂[i]) + ĝ[i](x̂[i])û[i]

Σ̂Line
[l] : ˙̂x[l] = f̂[l](x̂[l]) + ĝ[l](x̂[l])û[l]

, i ∈ D, l ∈ L. (16)

We are now in a position to apply Theorem 1. The next
lemma, in essence, shows that if one can prove passivity
of lines and closed-loop DGUs, then one can localize the
asymptotic behavior of the states.

Lemma 1: Under the assumption that there exist positive-
definite storage functions V̂[i](x̂[i]) and V̂[l](x̂[l]) for all i ∈
D, l ∈ L such that Σ̂DGU

[i] and Σ̂Line
[l] in (14) are passive, then

the state x̂ =
[
x̂[1], · · · , x̂[N+M ]

]T
asymptotically converges

to the largest invariant set in

E =
{
x̂[i], x̂[l] : Ŝ[i](x̂[i]) = 0, Ŝ[l](x̂[l]) = 0, i ∈ D, l ∈ L

}
.

(17)
Proof: The input to Σ̂DGU

[i] (14) is

û[i] =
∑
l∈Ni

−Bilŷ[l] =
∑
l∈N+

i

−Bil︸ ︷︷ ︸
wil

ŷ[l] −
∑

l∈N−
i

Bil︸︷︷︸
wli

ŷ[l].

Using (7), one obtains

wil = −1 l ∈ N+
i and wli = −1 l ∈ N−

i . (18)

Also, for line Σ̂Line
[l] ,

û[l] =
∑
i∈Nl

Bilŷ[l] =
∑

i∈N+
l

Bil︸︷︷︸
wli

ŷ[i] −
∑

i∈N−
l

−Bil︸ ︷︷ ︸
wil

ŷ[i].

Note that if i ∈ N+
l , then l ∈ N−

i and Bil = −1.
Conversely, Bil = 1 if i ∈ N−

l . Therefore,

wli = −1 i ∈ N+
l and wil = −1 i ∈ N−

l . (19)

From (18) and (19),

wij = −1, i, j ∈ D ∪ L . (20)

Since û[i] and û[l] correspond to the coupling defined in (3),
the interconnection is skew symmetric with

Φ = A−AT =

[
0 −B
BT 0

]
.

As a direct consequence of Theorem 1, each state x̂[k]

asymptotically converges to the largest invariant set in the
zero-level set E of the function S[k](x̂[k]), k ∈ V .

1) Passivity of DGUs and lines: The passivity of DGUs
and the power lines is essential to guarantee the stability of
DCmG. As shown in [7], the power lines are strictly passive

with a positive-definite storage function V̂[l](x̂[l]) =
1

2
Llx̂

2
[l]

and Ŝ[l](x̂[l]) = Rlx̂
2
[l]. Given the passivity of lines, the next

step is to ensure the passivity of the DGUs. This will be
acheived by desigining the feedback gains K[i] as shown in
[1] and recalled next. Similar to [1], we propose a candidate
storage function of the structure

V̂[i](x̂[i]) =
1

2
x̂T
[i]

[
Cti 0
0 P[i]

]
︸ ︷︷ ︸

P̂[i]∈R3×3

x̂[i], i ∈ D (21)

where P[i] ∈ R2×2. For V̂[i](x̂[i]) > 0, the matrix P̂[i]

must be positive definite. On computing the derivatives of
V̂[i](x̂[i]) along the trajectory of Σ̂DGU

[i] of (16), one obtains

˙̂
V[i](x̂[i]) =

1

2
x̂T
[i]P̂[i]

˙̂x[i] +
1

2
˙̂xT
[i]P̂[i]x̂[i]

= ûT
[i]ŷ[i] − x̂T

[i]Q̂[i](x̂[i])x̂[i]︸ ︷︷ ︸
Ŝ[i](x̂[i])

, (22)

where
Q̂[i] = P̂[i]Â[i] + ÂT

[i]P̂[i]. (23)

For Ŝ[i](x̂[i]) ≥ 0, the matrix Q̂[i] must be positive definite
or positive semidefinite.

Remark 1: By direct computation, one has Q̂[i,11] = 0,
showing that Q̂[i] cannot be positive definite, as its first minor
is not positive. Hence, for the choice of storage function (21),
Σ̂DGU

[i] can never be strictly passive.
The matrix P̂[i] must be positive definite and the gains
K[i] should be chosen in a way such that Q̂[i] is positive
semidefinite. The problem of computing suitable P̂[i] and
K[i] can be cast into a linear matrix inequality and is solved
using numerical optimization. We refer the reader to [1] for
further details.

2) Asymptotic stability analysis: The power lines are
strictly passive and the DGUs can be passivated using
numerical optimization. At this point, one can invoke Lemma
1 to conclude that the states asymptotically converge to the
largest invariant set in E defined by (17). Furthermore, one
can show that this set contains only the origin of the state-
space, hence proving the following result.

Theorem 2: If Σ̂DGU
[i] is passive for all i ∈ D, then the

origin of (16) is asymptotically stable.
Proof: The proof is provided in [21] and is omitted due

to space constraints.
Remark 2 (PnP nature of control): From (23), for com-

puting K[i] such that Q̂[i] is positive semidefinite, one needs
the knowledge of matrix Â[i]. It should be noted that Â[i]

depends only on the filter parameters of the ith DGU.
Therefore, controller C[i] can be synthesized in a purely
decentralized fashion. We defer the reader to [1] for detailed
comments about the benefits of this PnP design procedure.



Moreover, controller C[i] is completely independent from the
computation of controllers C[j] , i, j ∈ D.

IV. SIMULATION RESULTS

DGU 1

DGU 2

DGU 3

DGU 4

DGU 5

DGU 6

Fig. 3: Simplified representation mG composed of DGUs.
The connecting power lines are represented by the edges,
where the green and red edges, respectively, represent plug-
ging and unplugging of a DGU.

In this section, we aim to validate the developed passivity-
based framework for analyzing the stability of DCmG
through simulation studies conducted in PSCAD. We con-
sider a scenario similar to one presented in [1]: a meshed
mG composed of 6 DGUs (see Figure 3) with non-identical
electrical parameters. The reader is defered to [1] for pa-
rameter values used in the simulation. Even for simulations
in [1], dynamic RL lines with very low inductances were
used. However, in this setup, the line inductances have
been increased tenfold to demonstrate the usefulness of
the theorem. In our experiments, voltage references Vref,i,
i = 1, . . . , 6 to be tracked at each PCC are set to slightly
different values, hence allowing current flow through power
lines in the asymptotic regime.

1) Plug-in of a new DGU: At the beginning of the
simulation, DGUs 1-5 are connected together while DGU
6 is isolated. At time t = 4 s, we connect Σ̂DGU

[6] to Σ̂DGU
[1]

and Σ̂DGU
[5] . As mentioned in Remark 2, since local regulator

design hinges on parameters of the corresponding DGU only,
the update of the controllers of DGUs 1, 5 and 6 is not
required. In Figure 4, we notice very small deviations of the
output voltages at PCCs 1, 5, and 6 from their references
around the plug-in time.

2) Unplugging of a DGU: At time t = 12 s, we simulate
the disconnection of Σ̂DGU

[3] . There is no need to update the
controllers of DGUs neighboring Σ̂DGU

[6] (in this case, DGUs
1 and 4). As shown in Figure 5, the voltages at PCCs 1 and
4 around the unplugging time, exhibit small deviations from
the corresponding references and are promptly restored by
the control actions.

V. CONCLUSIONS

We presented a passivity-based approach to the problem
of voltage stability in DCmGs. Different from existing works

PCC Voltage
Reference voltage
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47.9
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Time (s)
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(a) Voltage at PCC1.
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Time (s)
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)

(b) Voltage at PCC5.
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48

48.05

48.1

48.15

Time (s)

V
6

(V
)

(c) Voltage at PCC6.

Fig. 4: Performance of the implemented decentralized con-
trollers C[i] during the plug-in of DGU 6 at time t = 4 s.
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(a) Voltage at PCC1.
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V
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)

(b) Voltage at PCC4.

Fig. 5: Performance of the implemented decentralized con-
trollers C[i] during the unplugging of DGU 3 at t = 12 s.



[18], [1], [16], our mG model considers the dynamic nature
of RL lines. The control design is fully decentralized and
allows removal and addition of DGUs in a PnP fashion. Many
interesting future research directions can be taken. The first
one is to consider the application of proposed passivity-based
framework to AC mGs. Another one is the inclusion of more
sophisticated load models like ZIP loads. Finally, the compo-
sitional property of passivity can be exploited for design of
hierarchical control scheme to achieve advanced objectives
like current and power sharing and mG optimization.
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