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Abstract— In this paper, we address the problem of synthesiz-
ing decentralized current controllers for grid-feeding converters
of current-controlled distributed generation units (CDGUs) in
dc microgrids (MGs). Notably, a plug-and-play (PnP) design
procedure is proposed to achieve grid-feeding current tracking
while preserving the collective MG stability. Through the
presented control scheme, seamless addition/removal of each
CDGU to/from the MG is ensured, with no need to update
controllers of neighboring CDGUs and to know the information
of the MG. At the mathematical level, the set of control coef-
ficients guaranteeing the aforementioned features is explicitly
characterized in terms of simple inequalities. The inequality
set only depends on the local parameters. Moreover, the proof
of the MG closed-loop stability exploits structured Lyapunov
functions, the LaSalle invariance theorem and properties of
graph Laplacians. Finally, theoretical results are validated by
hardware-in-loop simulation tests.

I. INTRODUCTION

With the increasing penetration of renewable energies into
modern electric systems, the concept of microgrid (MG)
receives increasing attention from both electric industry and
academia. A MG is an autonomous electrical network com-
posed of interconnected renewable energy sources (RESes),
energy storage systems (ESSes) and different types of loads,
which can operate in either grid-connected or islanded mode
[1]. To be specific, in ac MGs, power converters can be
classified into the grid-forming converter whose main task
is to provide voltage support and the grid-feeding converter
whose main task is to supply most of the loads [2], and
the same classification can also be applied for dc MGs.
Meanwhile, during the past decade, dc MGs (which are
studied in this paper) have been recognized as more and more
attractive due to higher efficiency, more natural interface to
many types of RESes and ESSes [3], [4].

For grid-forming converters, several methods, including
voltage-current (V-I) droop controller [5], PnP controller [6],
[7], are proposed to provide voltage support in dc MGs. The
key challenge for V-I droop controller is that the design of
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droop coefficients should take into account the specific MG
topologies and the value of line impedances [8], [9], [10]. For
PnP controllers, the synthesis of a PnP controller requires to
solve a convex optimization problem, if unfeasible, the plug-
in/out of two corresponding converters must be denied. The
proposed controllers mentioned above are only applied for
grid-forming converters which are used as the interface for
ESSes. However, grid-feeding converters for CDGUs should
be also considered when RESes such as photovoltaic (PV)
source are interfaced with dc MGs. The current-based PnP
controller should be designed for grid-feeding converters to
track current reference given by e.g. maximum power point
tracking (MPPT) algorithm. Moreover, the current stabiliza-
tion should also be guaranteed. In [11], a current-based PI
primary droop controller is proposed considering the constant
current load. In addition, even though several literature [12],
[13], [14] considered the problem of energy management
operation between RESes and ESSes, to the best of our
knowledge, the stability problem of interconnected grid-
feeding converters has received little attention from the point
view of system level.

In this paper, we propose a PnP scalable procedure
for designing local regulators for grid-feeding converters
of CDGUs, aiming to achieve offset-free output current
tracking. In order to guarantee the current stability of the
MG composed by CDGUs, the control coefficients of each
controller should fulfill simple inequalities which are only
related to the local parameter of CDGUs. Hence, different
from the method in [6], [7], no optimization problem need
to be solved for designing local regulators; moreover, we
show that the design of local controllers capable to stabilize
the whole MG is always feasible, independently of the
CDGU parameters. Similarly in [7], the proof of closed-
loop asymptotic stability of using the proposed controller for
CDGUs exploit structured Lyapunov functions, the LaSalle
invariance theorem and properties of graph Laplacians. This
shows that these tools offer a feasible theoretical framework
for analyzing different kinds of MGs equipped with various
types of PnP decentralized controllers. Finally, theoretical
results are validated by hardware-in-loop (HiL) tests.

II. GRID-FEEDING CONVERTERS OF
CURRENT-CONTROLLED DGUS IN DC MICROGRIDS

A. Electrical model of CDGUs

In this subsection, the electrical model for CDGUs is
described. The control objective for CDGU is to feed current
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Fig. 1: Electrical scheme of CDGU i and current-based PnP
controller.
for the MG through a series RL filter according to the
current reference. The electrical scheme of the i-th CDGU
is represented within upper part of Fig. 1. It is assumed
that loads including both the resistive load and other current
disturbance (IL) are unknown.

Here, an MG composed of N CDGUs is considered. Let
us define the set DC = {1, . . . , N}: we call that two CDGUs
are neighbors if there is a power line connecting them and
denote with NC

i ⊂ DC the subset of neighbors of CDGU i.
The neighboring relation is symmetric which means j ∈ NC

i
implies i ∈ NC

j . Furthermore, let E = {(i, j) : i ∈ DC ,
j ∈ NC

i } collect unordered pairs of indices associated to
lines. The topology of the multiple CDGUs is then described
by the undirected graph Gel with nodes DC and edges E .
From Fig. 1, by applying Kirchoff’s voltage and current laws,
and exploiting QSL approximation of power lines [6], [15],
the model of CDGU i is obtained

CDGU i :



dVi

dt
=

1

Cti
ICti +

∑
j∈Ni

(
Vj

CtiRij
− Vi

CtiRij

)
− 1

Cti
(ILi +

Vi

RLi
)

dICti
dt

= − 1

LC
ti

Vi −
RC

ti

LC
ti

ItiC +
1

LC
ti

VtiC

(1)

where variables Vi, ICti , are the i-th PCC voltage and
filter current, respectively, V Cti represents the command to
the converter, and RCti , L

C
ti and Cti represent the electrical

parameters of converters. The above description can also be
illustrated in Fig. 1. Moreover, Vj is the voltage at the PCC
of each neighboring CDGU j ∈ NC

i and Rij is the resistance
of the power line connecting CDGUs i and j.

Remark 1: In practical applications, grid-feeding convert-
ers need the voltage support from grid-forming converters at
the PCC point in the system [2], [3]. In this paper, we focus
on the design of current controllers for grid-feeding convert-
ers, and analyze the stability of interconnected CDGUs only.
Thus, it is assumed that voltages at the PCC points have
already been supported by the grid-forming devices. This
feature can be guaranteed, for example, by equipping grid-
forming converters with PnP decentralized voltage regulators
(see [7]).

B. State-space model of multiple CDGUs

Dynamics (1) provides the state-space equations:

ΣCDGU[i] :


ẋC[i](t) = ACiix

C
[i](t) +BCi u

C
[i](t) +MC

i d
C
[i](t)

+ ξC[i](t) +ACload,ix
C
[i](t)

zC[i](t) = HC
i x

C
[i](t)

where xC[i] = [Vi, I
C
ti ]
T is the state, uC[i] = V Cti the control

input, dC[i] = ICLi the exogenous input including different
current loads and zC[i] = ICti the controlled variable of the
system. The term ξC[i] =

∑
j∈Ni

ACij(x
C
[j]− x

C
[i]) accounts for

the coupling with each CDGU j ∈ NC
i and the term ACload,i

accounts for the resistive load for each CDGU. The matrices
of ΣCDGU[i] are obtained from (1) as:

AC
ii =

 0 1
Cti

− 1
LC

ti
−RC

ti

LC
ti

 , AC
load,i =

− 1
RLiCti

0

0 0

 , BC
i =

 0

1
LC

ti



AC
ij =

[ 1
RijCti

0

0 0

]
, MC

i =

[
− 1

Cti

0

]
, HC

i =
[
0 1

]
,

Remark 2: To be emphasized, there are two main differ-
ences between the proposed model for CDGU in (1) and
the one proposed in [7]. The first one is that the resistive
load is considered as part of the load. The second one is
that the control variable is changed from voltage in [7] for
grid-forming converters to current in (1) for grid-feeding
converters.

The overall model with multiple CDGUs is given by

ẋC(t) = ACxC(t) + BCuC(t) + MCdC(t)

zC(t) = HCxC(t)
(2)

where xC = (xC[1], . . . , x
C
[N ]) ∈ R2N , uC =

(uC[1], . . . , u
C
[N ]) ∈ RN , dC = (dC[1], . . . , d

C
[N ]) ∈ RN , zC =

(zC[1], . . . , z
C
[N ]) ∈ RN . Matrices AC, BC, MC and HC are

reported in Appendix A of [16].

III. DESIGN OF STABILIZING CURRENT CONTROLLERS

A. Structure of current-based PnP controllers

In order to track with references zC
ref (t), when dC(t) =

d̄C is constant, the CDGU model is augmented with integra-
tors [17]. A necessary condition for making error eC(t) =
zC

ref (t) − zC(t) equal to zero as t → ∞, is that, there are
equilibrium states and inputs x̄C and ūC verifying (2). The
existence of these equilibrium points can be shown following
the proof of Proposition 1 in [6].

One obtain the integrator dynamics is (as shown in Fig. 1,
setting zCref[i] = IPri,puref,i ·Icap,i, where Icap,i is the maximum
capability of CDGU i and IPri,puref,i is the p.u. reference value.)

v̇C[i](t) = eC[i](t) = zref
C
[i](t)− z

C
[i](t)

= zref
C
[i](t)−H

C
i x

C
[i](t),

(3)



and hence, the augmented CDGU model is

Σ̂CDGU[i] :


˙̂x
C

[i](t) = ÂCii x̂
C
[i](t) + B̂Ci u

C
[i](t) + M̂C

i d̂
C
[i](t)

+ ξ̂C[i](t) + ÂCload,ix̂
C
[i](t)

zC[i](t) = ĤC
i x̂

C
[i](t)

(4)
where x̂C[i] = [[xC[i]]

T , vC[i]]
T ∈ R3 is the state, d̂C[i] =

[dC[i], zref
C
[i]]

T ∈ R2 collects the exogenous signals and ξ̂C[i] =∑
j∈Ni

ÂCij(x̂
C
[j] − x̂

C
[i]). By direct calculation, the matrices

appeared in (4) are as follows

ÂC
ii =

[
AC

ii 0
−HC

i 0

]
, ÂC

ij =

[
AC

ij 0
0 0

]
, ÂC

load,i =

[
AC

load,i 0
0 0

]
,

B̂C
i =

[
BC

i

0

]
, M̂C

i =

[
MC

i 0
0 1

]
, ĤC

i =
[
HC

i 0
]
.

Based on Proposition 2 of [6], the pair (ÂCii , B̂
C
i ) can

be proven to be controllable. Hence, system (4) can be
stabilized.

Given from (4), the overall augmented system is{
˙̂xC(t) = ÂCx̂C(t) + B̂CuC(t) + M̂Cd̂C(t)

zC(t) = ĤCx̂C(t)
(5)

where x̂C and d̂C collect variables x̂C[i] and d̂C[i] respectively,
and matrices ÂC, B̂C, M̂C and ĤC are obtained from
systems (4).

Now each CDGU Σ̂CDGU[i] is equipped with the following
state-feedback controller

CC[i] : uC[i](t) = KC
i x̂

C
[i](t) (6)

where KC
i =

[
kC1,i k

C
2,i k

C
3,i

]
∈ R1×3.

It turns out that, together with the integral action (3),
controllers CC[i], define a multivariable PI regulator, see lower
part of Fig. 1. In particular, the overall control architecture is
decentralized since the computation of uC[i] requires the state
of Σ̂CDGU[i] only. In the following, it is shown that structured
Lyapunov functions can be used to ensure asymptotic sta-
bility of the system with multiple CDGUs with controllers
(6).

B. Conditions for stability of the closed-loop multiple CD-
GUs

Notation. Here, we use P > 0 (resp. P ≥ 0) for
indicating the real symmetric matrix P is positive-definite
(resp. positive-semidefinite).

As in [7], the design of control gains hinges on the use of
separable local Lyapunov function for certifying the closed-
loop stability. Indeed, the structure will also allow us to show
that local stability implies stability of the whole system. Here
after, the candidate Lyapunov function are considered as

V Ci (x̂C[i]) = [x̂C[i]]
TPCi x̂

C
[i] (7)

where positive definite matrices PCi ∈ R3×3 has the structure

PCi =

 ηi 01×2

02×1 PC22,i

 , (8)

where ηi > 0 is a parameter and the entries of PC22,i are
arbitrary and denoted as

PC22,i =

[
pC22,i pC23,i
pC23,i pC33,i

]
. (9)

We also assume that given a constant parameter common to
all CDGUs σ̄ > 0 just for proof process, the parameters ηi
in (8) are set as

ηi = σ̄Cti i ∈ DC . (10)

In absence of coupling terms ξ̂C[i](t), and load terms
ÂCload,ix̂

C
[i](t), one would like to stabilize the closed-loop

CDGU

˙̂x
C

[i](t) = (ÂCii + B̂Ci K
C
i )︸ ︷︷ ︸

FC
i

x̂C[i](t) + M̂C
i d̂

C
[i](t). (11)

By direct calculation, one has

FCi =


0 1

Ct
0

(kC1,i−1)
LC

ti

(kC2,i−R
C
ti)

LC
ti

kC3,i
LC

ti

0 −1 0

 =

 0 FC12,i
FC21,i FC22,i


(12)

From Lyapunov theory, asymptotic stability of (11) can be
certified by the existence of a Lyapunov function as shown
in (7) and

QCi = [FCi ]TPCi + PCi F
C
i (13)

is negative definite. Based on (8) and (12), eq. (13) can be
rewritten as

QCi =[
0 [FC21,i]TPC22,i + ηiFC12,i

[FC12,i]T ηi + PC22,iFC21,i [FC22,i]TPC22,i + PC22,iFC22,i

]
(14)

The next result shows that, Lyapunov theory certifies, at
most, marginal stability of (11).

Firstly, we recall the following elementary properties of
the positive definite matrix PCi and the negative semi-definite
matrix QCi .

Proposition 1: [7] If Q = QT ≤ 0 and an element qii on
the diagonal verified qii = 0, then:

(i) the matrix Q cannot be negative definite;
(ii) the i-th row and column have zero entries.

Proposition 2: Matrices PCi > 0 and QCi ≤ 0 verifying
(8) and (14) have the following structure:

PCi =


ηi 0 0

0 pC22,i 0

0 0
kC3,i
LC

ti
pC22,i

 ,

QCi =


0 0 0

0 2
(kC2,i−R

C
ti)

LC
ti

pC22,i 0

0 0 0

 .
(15)



Moreover, for having PCi > 0, QCi ≤ 0 and QCi 6= 0, the
control coefficients must verify

kC1,i < 1

kC2,i < RCti

kC3,i > 0

(16)

Proof: Based on (9) and (12), the upper right block of
(14) can be written as

[FC21,i]TPC22,i + ηiFC12,i
=
[

(kC1,i−1)
LC

ti
pC22,i + 1

Cti
ηi

(kC1,i−1)
LC

ti
pC23,i

] (17)

Based on Proposition 1, (17) should be equal to zero vector
which means 

(kC1,i − 1)

LCti
pC22,i = − 1

Cti
ηi

(kC1,i − 1)

LCti
pC23,i = 0

(18a)

(18b)

Because ηi is positive, one has{
kC1,i < 1

pC23,i = 0

(19a)

(19b)

From (19), the lower right block of (14) can be rewritten as

[FC22,i]TPC22,i + PC22,iFC22,i

=

 2
(kC2,i−R

C
ti)

LC
ti

pC22,i −pC33,i +
kC3,i
LC

ti
pC22,i

−pC33,i +
kC3,i
LC

ti
pC22,i 0

 (20)

Again based on Proposition 1, the off diagonal entities of
(20) must be equal to zero which means

kC3,i
LCti

pC22,i = pC33,i (21)

Furthermore, based on (19b), (21) and PCi > 0

kC3,i > 0 (22)

Finally, for verifying QCi 6= 0, one has

kC2,i < RCti (23)

Thus, PCi in (15) can be derived by substituting (19b) and
(21) into (8) and then QCi in (15) can be derived from (20)
and (21), finally (19a), (23) and (22) consist of the set (16)
for control coefficients.

An immediate consequence of Proposition 2 is the follow-
ing results which will be exploited for proving the stability
of the whole system through the LaSalle theorem.

Lemma 1: Let gi(wi) = wTi Q
C
i wi. Under the Proposition

2, ∀i ∈ DC , only vectors w̄i in the form

w̄i =
[
αi 0 βi

]T
with αi, βi ∈ R, fulfill

gi(w̄i) = w̄Ti Q
C
i w̄i = 0. (24)

Now the overall closed-loop model with multiple CDGUs
is considered as{

˙̂x
C

(t) = (ÂC + B̂CKC)x̂C(t) + M̂Cd̂C(t)

zC(t) = ĤCx̂C(t)
(25)

obtained by combining (5) and (6), with KC =
diag(KC

1 , . . . ,K
C
N ). Also the collective Lyapunov function

VC(x̂C) =

N∑
i=1

VCi (x̂C[i]) = [x̂C]
T
PCx̂C (26)

is considered, where PC = diag(PC1 , . . . , P
C
N ).

One has V̇C(x̂C) = [x̂C]
T
QCx̂C where

QC = (ÂC + B̂CKC)TPC + PC(ÂC + B̂CKC).

A consequence of Proposition 2 is that, the matrix QC cannot
be negative definite. At most, one has

QC ≤ 0. (27)

Moreover, even if QCi ≤ 0 holds for all i ∈ DC , the
inequality (27) might be violated because of the nonzero
coupling terms ÂCij and load terms ÂCload,i in matrix ÂC.

In order to derive that QCi ≤ 0 can guarantee (27), the
following decomposition of matrix ÂC is considered

ÂC = ÂC
D + ÂC

Ξ + ÂC
L + ÂC

C, (28)

where ÂC
D = diag(ÂCii , . . . , Â

C
NN ) collects the local dy-

namics only, ÂC
C collects the coupling dynamic represent-

ing the off-diagonal items of matrix ÂC, while ÂC
Ξ =

diag(ÂCξ1, . . . , Â
C
ξN ) and ÂC

L = diag(ÂCload,1, . . . , Â
C
load,N )

with

ÂCξi =


−
∑
j∈Ni

1
RijCti

0 0

0 0 0

0 0 0

 , ÂCload,i =


− 1
RLiCti

0 0

0 0 0

0 0 0


represent the dependence of each local state on the neigh-
boring CDGUs and the local resistive load. According to the
decomposition (28), the inequality (27) is equivalent to

(ÂC
D + B̂CKC)TPC +PC(ÂC

D + B̂CKC)︸ ︷︷ ︸
(a)

+

2(ÂC
Ξ + ÂC

L )PC︸ ︷︷ ︸
(b)

+(ÂC
C)TPC +PCÂC︸ ︷︷ ︸

(c)

≤0.
(29)

The next result shows that (27) can never be violated if (10)
holds.

Proposition 3: If gains KC
i are chosen according to (16),

and (10) is fulfilled, then (27) holds.
Proof: For the proof of Proposition 3, we defer the

reader to [16].
Our next goal is to show asymptotic stability of the system

with multiple CDGUs using the marginal stability result in
Proposition 3 together with LaSalle invariance theorem. To
this purpose, the main result is then given in Theorem 1
which relies on characterizing states x̂C deriving V̇C(x̂C) =
0.



Theorem 1: If (10) holds, and QCi 6= 0 and the graph Gel
is connected and control coefficients are chosen according to
(16), then the origin of (25) is asymptotically stable.

Proof: From Proposition 3, V̇C(x̂C) is negative
semidefinite meaning that (27) holds. We aim at showing
that the origin of the system with multiple CDGUs is also
attractive using the LaSalle invariance Theorem [18]. For
this purpose, the set is computed RC = {xC ∈ R3N :
(xC)TQCxC = 0} by means of the decomposition in (29),
which coincides with

RC = {xC : (xC)
T
((a) + (b) + (c))xC = 0}

= {xC : (xC)
T
(a)xC + (xC)

T
(b)xC + (xC)

T
(c)xC = 0}

= {xC : (xC)
T
(a)xC = 0}︸ ︷︷ ︸

XC
1

∩{xC : (xC)
T
[(b) + (c)]xC = 0}︸ ︷︷ ︸
XC

2

(30)
In particular, the last equality follows from the fact that (a)

and (b)+(c) are negative semidefinite matrices (see the proof
of Proposition 3).

First, based on Lemma 1, the set XC
1 is characterized as

XC
1 = {xC : xC = [ α1 0 β1 | · · · | αN 0 βN ]T , αi, βi ∈ R}

(31)
Then, we focus on the elements of set XC

2 based on
Proposition 3. Since matrix (b) + (c) can be seen as an
”expansion” of a matrix which is negative definite matrix
with zero entries on the second and third rows and columns
of 3× 3 block, by construction, vectors in the form

XC
2 = {xC : xC = [ 0 x̃12 x̃13 | · · · | 0 x̃N2 x̃N3 ]T ,

x̃i2, x̃i3 ∈ R}
(32)

Hence, by merging (31) and (32), and from (30), it derives
that

RC = {x : x = [ 0 0 β1 | · · · | 0 0 βN ]T , βi ∈ R} (33)

Finally, in order to conclude the proof, it should be shown
that the largest invariant set MC ⊆ R is the origin. To this
purpose, (11) is considered, by adding the coupling terms
ξ̂[i] and the resistive load term ÂCload,ix̂

C
i (0), setting load

disturbance d̂C[i] = 0, choosing the initial state x̂C(0) =[
x̂C1 (0)| . . . |x̂CN (0)

]T ∈ RC . In order to find conditions on
the elements of x̂C(0) that must hold for having ˙̂xC ∈ RC ,
one has

˙̂xCi (0) = FC
i x̂

C
i (0) + ÂC

load,ix̂
C
i (0) +

∑
j∈Ni

ÂC
ij

(
x̂Cj (0)− x̂Ci (0)

)
︸ ︷︷ ︸

=0

=
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0 −1 0
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 0
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=


0

kC
3,i

LC
ti
βi

0


for all i ∈ DC . It follows that ˙̂xC(0) ∈ R only if βi = 0.

Since MC ⊆ R, from (33) one has MC = {0}.
Remark 3: The design of stabilizing controller for each

CDGU can be conducted according to (16) in Proposition 2.

In particular, differently from the approach in [7], no opti-
mization problem has to be solved for stabilizing controllers
Indeed, it is enough to choose control coefficient kC1,i, k

C
2,i

and kC3,i from inequality set (16). Note that these inequalities
are always feasible, implying that a stabilizing controller
always exists. Moreover, the inequalities depend only on
the parameter RCti of the CDGU i. Therefore, the control
synthesis is independent of parameters of CDGUs and power
lines which means that controller design can be executed
only once for each CDGU in a plug-and play fashion. From
Theorem 1, local controllers also guarantee stability of the
whole MG. When new CDGUs are plugged in the MG, their
controller are designed as described above, the connectivity
of the electrical graph Gel is preserved and have Theorem 1
applied to the whole MG. Instead, when a CDGU is plugged
out, the electrical graph Gel might be disconnected and split
into two connected graphs. Theorem 1 can still be applied
to show the stability of each sub-MG.

IV. HARDWARE-IN-LOOP TESTS

To verify the effectiveness of proposed controller, real-
time HiL tests are carried out based on dSPACE 1006. By
this way, the time span in the simulation is equals to that in
real system. The real-time simulation model is comprised of
four CDGUs with meshed topology as shown in Fig. 2. The
electrical parameters and control coefficients for each CDGU
are shown in Table I, and the transmission line parameters
are shown in Appendix B of [16].

RES

CDGU 1 CDGU 2

CDGU 4 CDGU 3

L1,2 R1,2

L2,3

R2,3

L3,4R3,4
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VRES Ct1

RL11
C
tR

1
C
tL

Fig. 2: System Configuration of Hardware-in-Loop Test.

TABLE I: Electrical setup parameters and Control coeffi-
cients

Parameters Symbol Value

Output capacitance Ct∗ 2.2 mF
Inductance for CDGU LC

t∗ 0.018 H
Inductor + switch loss resistance for CDGU RC

t∗ 0.2 Ω
Switching frequency fsw 10 kHz

Control Coefficients
kC1,∗ -0.01
kC2,∗ -2.7015
kC3,∗ 40.4018

Each CDGU is started separately with different current ref-
erence. Meanwhile, the voltages at PCC point are supported
by different voltage values which are 47.8V , 47.9V , 48V ,
48.2V for CDGUs 1 − 4. For CDGUs 1 − 4, the current
references are 1A, 2A, 3A, 4A. At T1, four CDGUs are
connected together simultaneously. As shown in Fig. 3b, the
output current can still follow the local references without



oscillations. At T2, the current reference for CDGU 1 is
changed from 1A to 2.5A. At T3, the current reference for
CDGU 2 is changed from 2A to 3.5A. At T4, the current
reference for CDGU 3 is changed from 3A to 4.5A. At T5,
the current reference for CDGU 4 is changed from 4A to
5.5A. As shown in Fig. 3b, the output currents can track the
changed reference. In addition, as shown in Fig. 3a, when
the current references are changed, the PCC voltages are only
affected by little oscillations (approximately 0.05V ) which
means the CDGUs cannot affect the voltage stability in the
system. Furthermore, At T6, CDGU 2 is plugged out of
the system and operated separately. Then at T7, CDGU 2
is plugged in the system. As shown in Fig. 3, the system
can operate stable which illustrates the PnP effectiveness of
proposed controller.
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Fig. 3: Current Tracking and PnP Test: (a). Voltage Perfor-
mance; (b). Current Performance.

V. CONCLUSIONS

The inequality set for control coefficients is found for the
proposed current PnP controller which can guarantee the

stability of the whole system achieving seamless plug-in/out
operation. In the paper, it is assumed that the voltage at PCC
point has already been supported. Actually, the stability proof
considering both the voltage support and current feeding
simultaneously are included in the technical report [16]. By
applying the inequality set as the constraints, the control
performance can be further optimized by the optimization
algorithms.
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