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Abstract— In this paper we propose an efficient procedure
to compute time-varying Robust Control Invariant (RCI) sets
for large-scale systems arising from the interconnection of M
Linear Time-Invariant (LTI) constrained subsystems. In par-
ticular, the associated state-feedback controllers are nonlinear
and decentralized or distributed. Our algorithm is structured
in three stages: the computation of a Control Invariant (CI)
set for each subsystem, the design of coupling attenuation
control terms and the construction of a family or RCI sets
for the overall system affected by disturbances. The last stage,
which is based on the notion of practical invariance, is the
only one requiring centralized computations for analyzing the
stability of an M -th order system. Differently from existing
approaches based on Linear Matrix Inequalities (LMIs), in
case of polytopic constraints our method requires to solve local
Linear Programming (LP) problems.
Key Words: large-scale systems, decentralized control, distributed
control, robust control, invariant sets

I. INTRODUCTION

In last decades, several methods have been proposed for
computing invariant sets, which are particularly relevant to
the study of stability properties. For instance, they provide
a framework to prove stability and constraint satisfaction in
model predictive control [1]. We can categorize approaches
to the computation of invariant sets as follows: (i) methods
for linear systems [2], [3], [4], [5], [6] or nonlinear systems
[7], [8], [9], and (ii) algorithms for Robust Positive Invariant
(RPI) sets [4], [9], [6], nominal invariant sets [8], [6], or CI
and RCI sets [9], [5], [6].

Most of the algorithms proposed in literature are not
scalable, meaning that the computational complexity for
obtaining the desired invariant set can increase considerably
with the total order of the system. One of the reasons, in the
case of polytopic constrained LTI systems, is that existing
methods are based on the enumeration of the vertices of
full-dimensional polytopes. When the order of the system
increases, the number of vertices becomes large and the
computation of invariant sets quickly becomes intractable.
For these reasons new methods with reduced computational
burden are needed for large-scale systems [10], [11], [12],
[13], [14], [15]. An approach to tackle this problem is to first
build local invariant sets Si for each subsystem i = 1, . . . ,M
and then analyze the coupling among subsystems in order to
guarantee that S =

∏M
i=1 Si is invariant for the whole system.

S. Riverso and K. Kouramas is with United Technologies
Research Center Ireland, Ltd. 4th Floor, Penrose Busi-
ness Center, Penrose Wharf, Cork, Republic of Ireland.
(riverss@utrc.utc.com,kouramk@utrc.utc.com)

G. Ferrari-Trecate is with Automatic Control Laboratory,
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For control invariance, an additional goal is to design decen-
tralized or distributed controllers associated to CI and RCI
sets. In this case, the sets themselves are termed decentralized
or distributed after the controllers. These approaches require,
as a preliminary step, to represent the large-scale system as
a family of interacting subsystems, i.e. as a directed graph
where nodes are subsystems and edges are coupling channels
representing the influence of parent subsystems on child
nodes.

the authors propose to compute a CI set as an ellipsoid
described by a matrix P that is block-diagonal and constraint
satisfaction is guaranteed if the initial state of the system is
inside the ellipsoid or, equivalently, if the initial state of each
subsystem is inside the corresponding local ellipsoids. To
achieve control invariance, the authors design a stabilizing
state-feedback decentralized controller through LMIs. The
optimization problem is however centralized and, therefore,
the resulting algorithm is not scalable. In order to reduce
the computational burden, [11] and [13] consider distributed
state-feedback linear controllers and then exploit the notion
of practical invariance [11], [12] to build a family of RCI sets
for the whole system. The main advantage of this approach is
that invariance is implied by the stability of an M -th order
system: this avoids any computation based on the overall
system model that usually has n >> M states.

In [14] the authors propose a plug-and-play decentralized
MPC controller for large-scale LTI systems. In order to
guarantee the stability of the closed-loop system, algorithms
for computing decentralized RCI sets are given. The idea is to
compute a local robust invariant set for each subsystem con-
sidering the coupling terms coming from other subsystems as
disturbances. Obviously, this method might be conservative
because local controllers do not have access to the state of
parent subsystems. RCI sets for large-scale systems have
been also studied in [16], but only for specific subsystems
with network storage dynamics.

In this paper we propose a new procedure for computing
a time-varying family of RCI sets based on the notion of
practical invariance introduced in [11]. However, differently
from [11] and [13], we allow for nonlinear state feedback
controllers. The algorithm is complementary to those in [11]
and [13], in the sense that it can successfully produce RCI
sets when the approaches in [11] and [13] fail (and vice-
versa).

Our approach requires to first compute a local CI sets
for each subsystem as it was isolated. Then, in order to
broaden the applicability of the method, the coupling be-
tween subsystems is actively reduced by designing control
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terms utilizing the state of parent subsystems. This task is
optional and, if executed, it leads to distributed controllers
requiring a communication network with the same topology
of the coupling graph. In the last step, similarly to [11] and
[13], we build a family of RCI sets for the whole system
leveraging the notion of practical invariance. In terms of
computations, our procedure requires the solutions of local
LP problems only, plus the stability analysis of an M -th
order system. This is in contrast with the approaches in [11]
and [13] based on loosely-coupled LMIs [13] or centralized
optimization problems [11].

The paper is organized as follows. In Section II, we
introduce large-scale systems and the class of distributed
controllers associated to the RCI sets considered in the
sequel. Then, in Section III, we summarize the results in [6]
for the LP-based computation of CI sets. This method will
be used in Section IV as a part of a more complex procedure
for computing the family of RCI sets. The design procedure
of local controllers and corresponding RCI sets is detailed
in Section V. A simulation example is given in Section VI
and some concluding remarks are provided in Section VII.

Notation. We use a : b for the set of integers {a, a +
1, . . . , b}. The symbol Rn+ stands for the vectors in Rn with
nonnegative elements. The column vector with s components
v1, . . . , vs is v = (v1, . . . , vs). The symbol ⊕ denotes the
Minkowski sum, i.e. A = B ⊕ C if and only if A = {a :
a = b+ c, ∀b ∈ B, ∀c ∈ C}. Moreover,

⊕s
i=1Gi = G1 ⊕

. . .⊕Gs. The symbol 1 denotes a matrix or a column vector
with all elements equal to 1. Given a vector x ∈ Rn and a
set S ⊆ Rn, dist(x,S) = infs∈S ||x− s||. A polyhedron X is
the intersection of finitely many half spaces and a polytope
is a bounded polyhedron. A C-set is a set that is compact,
convex and contains the origin.

Definition 1: Consider the discrete-time system x(t+1) =
f(x(t), u(t), w(t)), with state x(t) ∈ Rn, input u(t) ∈ U ⊆
Rm and disturbance w(t) ∈ W ⊂ Rn. The set X ⊆ Rn is
RCI if ∀x(t) ∈ X there exists u(t) ∈ U such that x(t+ 1) ∈
X, ∀w(t) ∈ W. If the system is autonomous, X is RPI if
x(t) ∈ X ⇒ x(t + 1) ∈ X, ∀w(t) ∈ W. The RPI set X̄
is maximal if it includes every other RPI set. A positively
invariant (resp. CI) set is an RPI (resp. RCI) set when W =
{0}. For an RCI set X, a control law κ(x) such that X is RPI
for x(t + 1) = f(x(t), κ(x(t)), w(t)) is termed associated
to X. The set X ⊆ Rn is a λ-contractive RCI set for system
x(t+ 1) = f(x(t), u(t)), with λ ∈ [0, 1), if ∀x(t) ∈ X there
exist u(t) ∈ U ⊆ Rm such that x(t+ 1) ∈ λX.

II. DISTRIBUTED CONTROLLERS FOR RCI SETS

We consider a discrete-time LTI system

x+ = Ax + Bu + Dw (1)

where x ∈ Rn, u ∈ Rm and w ∈ Rr are the state, the
input and the disturbance, respectively, at time t and x+

stands for x at time t + 1. The state is partitioned into M
state vectors x[i] ∈ Rni , i ∈ M = 1 : M such that x =
(x[1], . . . , x[M ]), and n =

∑
i∈M ni. Similarly, the input and

the disturbance are partitioned into M vectors u[i] ∈ Rmi ,

w[i] ∈ Rri , i ∈ M such that u = (u[1], . . . , u[M ]), m =∑
i∈Mmi, w = (w[1], . . . , w[M ]) and r =

∑
i∈M ri. We

assume the dynamics of the i-th subsystem is given by

Σ[i] : x+
[i] = Aiix[i] +Biu[i] +

∑
j∈Ni

Aijx[j] +Diw[i] (2)

where Aij ∈ Rni×nj , i, j ∈ M, Bi ∈ Rni×mi ,
Di ∈ Rni×ri and Ni is the set of parents of subsys-
tem i defined as Ni = {j ∈ M : Aij 6= 0, i 6=
j}. We note that, since x[i] depends on the local input
u[i] only, subsystems Σ[i] are input-decoupled and then
B = diag(B1, . . . , BM ). Similarly, subsystems Σ[i] are
disturbance-decoupled, hence D = diag(D1, . . . , DM ). We
also define AD = diag(A11, . . . , AMM ) and AC = A−AD,
i.e. AD collects the state transition matrices of every sub-
system and AC collects coupling terms between subsystems.
We assume

x[i] ∈ Xi, u[i] ∈ Ui, w[i] ∈Wi (3)

where Xi ⊆ Rni , Ui ⊆ Rmi and Wi ⊂ Rri .
Next, we introduce a distributed regulator for (1). As it

will be clear in the sequel, this is the controller associated
with the family of RCI sets we will compute. We define for
all i ∈M the following state-feedback law

C[i] : u[i] = κi(x[i]) +
∑
j∈Ni

δijKijx[j]. (4)

where κi(·) : Rni → Rmi is a nonlinear function, Kij ∈
Rmi×nj are gain matrices and δij ∈ {0, 1} are binary
variables. Hereafter we assume δij = 0 and Kij = 0 if
j 6∈ Ni. This implies that C[i] depends only on the local
state (x[i]) and the parents’ states (x[j], j ∈ Ni). Binary
parameters δij , j ∈ Ni can be chosen to take advantage of
the knowledge of parents’ states (δij = 1) or not (δij = 0). In
the first (resp. second) case, the control scheme is distributed
(resp. decentralized).

Our main goal is to solve the following problem.
Problem 1: Design RCI local controllers C[i], i ∈M such

that, for a nontrivial set of initial states
(a) the origin of the closed-loop system is nominally

stable, i.e. when W = {0} it holds

||x[i](t)|| → 0 as t→∞ (5)

(b) state and input constraints are fulfilled at all time
instants, i.e.

x[i](t) ∈ Xi, u[i](t) ∈ Ui, ∀t ≥ 0 and ∀w[i](t) ∈Wi.
(6)

Using the collective variables, from (2) and (4) one obtains
the collective closed-loop dynamics

x+ = ADx + Bκ(x) + (AC + BK)x + Dw (7)

where K is composed of matrices δijKij and κ(x) =
(κ(x[1]), . . . , κ(x[M ])).

We equip system (7) with constraints x ∈ X =
∏
i∈M Xi,

u ∈ U =
∏
i∈M Ui and w ∈W =

∏
i∈MWi. In Section IV

we solve Problem 1 under the following assumptions



Assumption 1: The matrix pair (Aii, Bi), i ∈ M is
controllable.

Assumption 2: Constraints Xi, Ui and Wi are C-sets.
From Assumption 2 constraints Xi, Ui and Wi are polytopes
that can be written as

Xi = {x[i] ∈ Rni : cTxi,τx[i] ≤ 1, ∀τ ∈ 1 : τxi } (8a)

Ui = {u[i] ∈ Rmi : cTui,τu[i] ≤ 1, ∀τ ∈ 1 : τui } (8b)

Wi = {w[i] ∈ Rri : cTwi,τw[i] ≤ 1, ∀τ ∈ 1 : τwi }, (8c)

where cxi,τ ∈ Rni , cui,τ ∈ Rmi and cwi,τ ∈ Rri .
In absence of coupling between subsystems (i.e. Aij =

0, i 6= j) and disturbances (i.e. Wi = {0}, ∀i ∈ M)
the controller (4) is decentralized and hence the collective
closed-loop system (7) is composed by decoupled subsys-
tems. Therefore, from [5], Assumptions 1 and 2 guarantee
that there exists a CI set Ωi for each subsystem Σ[i] with
Ni = ∅. This implies that Problem 1-(a) is solvable in a
totally decentralized fashion. Furthermore, since Xi and Ui
are polytopes, from [5] one has that the computation of set
Ωi requires the solution of an LP problem for subsystem
Σ[i] (the precise algorithm is summarized in Section III). In
Section IV we will derive a partially decentralized method
for computing RCI sets (and the associated controllers) in
presence of coupling between subsystems and local distur-
bances. This aim will be achieved by accounting, in a suitable
way, of coupling propagation over the interconnection graph.

III. COMPUTATION OF CI SETS FOR DECOUPLED
SYSTEMS

In this section, we assume that subsystems Σ[i], ∀i ∈M
are decoupled and not affected by disturbances, i.e. Aij = 0,
for i 6= j, j ∈ M and Wi = {0}. In this case, for all
i ∈M we can compute a CI set Si ⊆ Xi and the associated
control law us[i] = κi(x[i]) ∈ Usi ⊆ Ui using the LP-based
procedure proposed in [6]. For the sake of completeness, we
summarize it in the following. As in Section VI of [6], we
define ∀i ∈M the set of variables ζi as

ζi = {s̄[i]
(s,f) ∈ Rni ∀s ∈ A1

i , ∀f ∈ A2
i ;

ū[i]
(s,f) ∈ Rmi ∀s ∈ A3

i , ∀f ∈ A2
i ;

ρ̃
(f1,f2)
i ∈ R ∀f1 ∈ A2

i , ∀f2 ∈ A2
i ;

ψ̃
(r,s)
i ∈ R ∀r ∈ A4

i , ∀s ∈ A3
i ;

γ̃
(r,s)
i ∈ R ∀r ∈ A5

i , ∀s ∈ A3
i ;

α̃i ∈ R;

β̃i ∈ R}

with A1
i = 1 : ki, A2

i = 1 : qi, A3
i = 0 : ki − 1, A4

i = 1 : li
and A5

i = 1 : gi, where ki, qi ∈ N are parameters of the
procedure that can be chosen by the user as well as the set

S̄0
i = convh({s̄[i]

(0,f) ∈ Rni , ∀f ∈ A2
i }), (10)

We assume s̄[i]
(0,1) = 0, thus S̄0

i contains the origin in its
non-empty interior. Let us define the sets

S̄si = convh({s̄[i]
(s,f) ∈ Rni , ∀f ∈ 1 : qi}), ∀s ∈ A1

i

and

Ūssi = convh({ū[i]
(s,f) ∈ Rmi , ∀f ∈ 1 : qi}), ∀s ∈ A3

i

with s̄[i]
(s,1) = 0 and ū[i]

(s,1) = 0. Moreover let us
also consider the following set of affine constraints on the
decision variable ζi

Zi = {ζi : (11a)
α̃i < 1; − α̃i ≤ 0; (11b)

− β̃i ≤ 0; (11c)

s̄[i]
(ki,f1) −

qi∑
f2=1

ρ̃
(f1,f2)
i s̄[i]

(0,f2) = 0; (11d)

− α̃i +

qi∑
f2=1

ρ̃
(f1,f2)
i ≤ 0; (11e)

− ρ̃(f1,f3)
i ≤ 0; (11f)

ki−1∑
s=0

ψ̃
(f4,s)
i ≤ β̃idui,f4 ; (11g)

cTui,f4
ū[i]

(f5,f1) − ψ̃(f4,f5)
i ≤ 0; (11h)

ki−1∑
s=0

γ̃
(f6,s)
i ≤ β̃idxi,f6 ; (11i)

cTxi,f6
s̄[i]

(f5,f1) − γ̃(f6,f5)
i ≤ 0; (11j)

s̄[i]
(f5+1,f1) = Aiis̄[i]

(f5,f1) +Biū[i]
(f5,f1)}. (11k)

∀f1, f3 ∈ A2
i , ∀f4 ∈ A4

i , ∀f5 ∈ A3
i , ∀f6 ∈ A5

i . The relation
between elements of Zi and the control invariant set Si is
established in the next proposition.

Proposition 1 ([6]): Let Assumption 1 and 2 hold. Let
ki ≥ CI(Aii, Bi)

1 and set S̄0
i as in (10). Then

• there exist a feasible point ζi ∈ Zi;
• the set

Si = β̃−1
i

ki−1⊕
s=0

S̄si ⊆ Xi (12)

is CI and the corresponding set Usi is given by

Usi = β̃−1
i

ki−1⊕
s=0

Ūssi ⊆ Ui;

• set Si is a λi-contractive set with λi = δ̃i+α̃i−1

δ̃i
∈ [0, 1)

where δ̃i = minδ{δ |
⊕ki−1

s=0 Ssi ⊆ δS0
i , δ ≥ 1};

• There exists a control law κi(·) associated to Si such
that the origin of x+

[i] = Aiix[i] + Biκi(x[i]) is an
equilibrium point and κi(Si) ⊆ Ui. Furthermore there
exist a Lyapunov function defined on Si certifying the
stability of the origin.

The feasibility problem (11) is an LP problem, since the
constraints in Zi are affine. In Remark 6.3 of [6] the authors
propose to find ζi ∈ Zi while minimizing different cost
functions. In the sequel, we always assume to minimize
α̃i. The definition of sets S̄si , ∀s ∈ 0 : ki, ensures that

1CI(Aii, Bi) is the controllability index of the matrix pair (Aii, Bi).



S̄si contains the origin and hence, since S̄0
i contains the

origin in its nonempty interior, Si contains the origin in its
nonempty interior as well. In the following, we show how to
compute the control law κi(x[i]) appearing in Proposition 1
by exploiting the implicit representation of set Si proposed
in Section VI.B of [6]. Recalling that Si is the Minkowski
sum of ki polytopes and that, for all s ∈ A3

i , polytope S̄si is
described by the convex combination of points s̄[i]

(s,f), we
have

s̃[i]
s ∈ S̄si if ∀f ∈ A2

i ,∃η
(s,f)
i ≥ 0

such that
qi∑
f=1

η
(s,f)
i = 1, s̃[i]

s =

qi∑
f=1

η
(s,f)
i s̄[i]

(s,f).

Hence we have that x[i] ∈ Si if and only if ∀f ∈ A2
i ,∀s ∈

A3
i there exist η(s,f)

i ∈ R such that

η
(s,f)
i ≥ 0 (13a)
qi∑
f=1

η
(s,f)
i = 1 (13b)

x[i] = β̃−1
i

ki−1∑
s=0

qi∑
f=1

η
(s,f)
i s̄[i]

(s,f). (13c)

In [6] the authors propose also an implicit representation
of controller κi(x[i]) based on the implicit representation (13)
of set Si. The control law κi(·) is computed by solving the
following LP problem

P̄i(x[i]) : min
µ,η

(s,f)
i

µ (14a)

η
(s,f)
i ≥ 0 ∀f ∈ A2

i ,∀s ∈ A3
i (14b)

qi∑
f=1

η
(s,f)
i = µ ∀s ∈ A3

i (14c)

µ ≥ 0 (14d)

x[i] = β̃−1
i

ki−1∑
s=0

qi∑
f=1

η
(s,f)
i s̄[i]

(s,f) (14e)

and setting

κi(x[i]) = β̃−1
i

ki−1∑
s=0

κsi (x[i]), κ
s
i (x[i]) =

qi∑
f=1

η̄
(s,f)
i ū[i]

(s,f)

(15)
where η̄(s,f)

i are the optimizers to (14). According to [17]
we can assume without loss of generality that κ̄i(·) is a
continuous piecewise affine map.

Next we prove a new result for CI sets defined in Proposi-
tion 1: in particular we show that control law κi(x[i]) defined
in (15) is homogeneous. This result will be used in the next
section to exploit a practical robust control invariance. In
[14] a similar result is proposed for RCI sets designed as in
[6].

Lemma 1: For x[i] ∈ Si and ρ ≥ 0 one has

κsi (ρx[i]) = ρκsi (x[i]), ∀s ∈ A3
i

and hence κi(ρx[i]) = ρκi(x[i]).
Proof: Let η̄(s,f)

i , f ∈ A2
i , s ∈ A3

i and µ̄ be the
optimizers to P̄i(x[i]). One can easily verify that η(s,f)

i =

ρη̄
(s,f)
i and µ = ρµ̄ fulfill the constraints (14b)-(14e) for

P̄i(ρx[i]). We show now that these values are also optimal
for P̄i(ρx[i]). By contradiction, assume that η̃(s,f)

i , µ̃ are the
optimizers to P̄i(ρx[i]) giving the optimal cost µ̃ < ρµ̄. One
can easily verify that η(s,f)

i = ρ−1η̃
(s,f)
i and µ = ρ−1µ̃

verify the constraints (14b)-(14e) for P̄i(x[i]) and yield a cost
ρ−1µ̃ < µ̄. This contradicts the optimality of µ̄ for P̄i(x[i]).

IV. PRACTICAL RCI SETS

In this section, we show how to leverage the main results
of [11] and [12] in order to guarantee properties (5) and
(6) for the dynamics (7) equipped with constraints X, U
and W. Indeed, in presence of coupling, Problem 1 can be
solved using the notion of practical Robust Control Invariant
(pRCI) proposed in [11] and [12]. This approach also offers
a computationally affordable, yet conservative, procedure. In
particular in [11], functions κi(x[i]) are constrained to be
linear. In this section, we will propose a notion of pRCI
using the nonlinear controllers Ci in (4).

Given a collection of sets S = {Si, i ∈ M}, Si ⊂ Rni ,
with Si computed as in Proposition 1, and a set Θ ⊂
RM+ , we define a parameterized family of sets S(S,Θ) =
{(θ1S1, . . . , θMSM ) : θ ∈ Θ}, where θ = (θ1, . . . , θM ).
Intuitively, scalars θi can be interpreted as zooming factors.

Definition 2: The family of sets S(S, θ) is pRCI for the
constrained local dynamics given by (2), equipped with local
controller C[i] in (4) and constraints (3), if for all i ∈M and
all (θ1S1, . . . , θMSM ) ∈ S(S,Θ), one has

θiSi ⊆ Xi (16a)

S+
i ⊆ θ

+
i Si (16b)

κi(θiSi)⊕
⊕
j∈Ni

δijKijθjSj ⊆ Ui (16c)

(θ+
1 S1, . . . , θ

+
MSM ) ∈ S(S,Θ). (16d)

where S+
i = AiiθiSi ⊕ Biκi(θiSi) ⊕

⊕
j∈Ni(Aij +

BiδijKij)θjSj ⊕ DiWi. Without loss of generality, we
consider sets Si and Usi defined as Si = {Gis[i] ≤ 1}.

The main issue we will address in the sequel is the
following: given S is there any set Θ ⊂ RM+ such that the
family S(S,Θ) is pRCI? As in [11] and [12], we propose
to first derive the dynamics of the scaling factors θi. More
precisely, for all i, j ∈M we set µij as

λi if i = j

minµ≥0{µ : (Aij + δijBiKij)Sj ⊆ µSi} if j ∈ Ni
0 otherwise

(17)
αi = min

β≥0
{β : DiWi ⊆ βSi}. (18)

this allows us to write the collective dynamics of the scaling
factors

θ+ = Tθ + α (19)



where the entries of T ∈ RM×M are Tij = µij and
α = (α1, . . . , αM ). For fulfilling (16), using Lemma 1, let
us define

Θ0 = {θ ∈ RM : ∀i ∈M, θiSi ⊆ Xi
θiUsi ⊕

⊕
j∈Ni

δijKijθjSj ⊆ Ui} (20)

The key assumption for providing a set Θ that makes
S(S,Θ) a pRCI family is the following.

Assumption 3: (i) T is Schur.
(ii) The unique equilibrium point θ̄ of system (19) is such

that θ̄ ∈ Θ0.
(iii) The set Θ is an invariant set for system (19) and

constraint set Θ0, i.e. ∀θ ∈ Θ ⊆ Θ0, θ+ ∈ Θ.
Lemma 2: Let Assumptions 1-3 hold and sets Si, i ∈M

defined as in Proposition 1. Then
(i) there is a non-trivial convex and compact positively

invariant set Θ for system (19) equipped with
constraints θ ∈ Θ0;

(ii) S(S,Θ) is pRCI for (1) with constraints (3).
Proof: Point (i) has been proved in [11] and [12].

Differently from [11] and [12], the proof of robust invariance
of S(S,Θ) is based on Lemma 1. Let θ = (θ1, θ2, . . . , θM ) ∈
Θ. For all i ∈M we can write

θiAiiSi ⊕Biκi(θiSi)⊕
⊕
j∈Ni

(Aij +BiδijKij)θjSj ⊕DiWi

= θi(AiiSi ⊕Biκi(Si))⊕
⊕
j∈Ni

(Aij +BiδijKij)θjSj ⊕DiWi

⊆ λiθiSi ⊕
⊕
j∈Ni

µijθjSi ⊕ αiSi

= (λiθi +
∑
j∈Ni

µij + αi)

= θ+
i Si.

where in the first step we used Lemma 1 and in the second
step we used equations (17) and (18). Since Θ is an invariant
set for system (19), θ+ ∈ Θ and hence (θ+

1 S1, . . . , θ
+
MSM ) ∈

S(S,Θ). Moreover since Θ ⊆ Θ0, state and input constraints
are fulfilled ∀θ ∈ Θ. Therefore S(S,Θ) is pRCI.

Lemma 2 guarantees that

θ(0) ∈ Θ and x[i](0) ∈ θi(0)Si, ∀i ∈M
⇒ x[i](t) ∈ θi(t)Si, ∀i ∈M, ∀t ≥ 0

(21)

Furthermore, as shown in [12], dist(x[i](t), θ̄iSi) → 0 as
t → ∞. In the nominal case, i.e. W = {0}, one has
α = 0 in (19) and then θ̄ = 0. In summary, property (5)
is guaranteed. Also state and input constraints hold since
S(S,Θ) is pRCI. Therefore, Problem 1 is solved if we
can design local controllers C[i] fulfilling the assumptions
of Lemma 2. A design procedure to achieve this goal is
proposed in Section V.

Remark 1: Note that, according to (21), constraints (3)
can be satisfied if x[i](0) ∈ θi(0)Si,∀i ∈ M and θ(0) ∈
Θ. Clearly this is a centralized operation. In order to allow
each controller to locally verify (21), one can compute offline

an inner-box approximation Θ̄ =
∏M
i=1[0, θ̄i] contained in

Θ, therefore each controller must verify locally x[i](0) ∈
θi(0)Si and θi(0) ∈ [0, θ̄i].

V. DESIGN PROCEDURE FOR CONTROLLERS C[i]

In this section, we propose a method to design the
distributed controllers C[i]. The key issue is how to com-
pute suitable gains Kij and binary variables δij such that
Assumption 3 holds. Differently from [11], we propose a
design procedure in order to reduce as possible the number of
centralized operations. The design procedure is summarized
in Algorithm 1 that is composed by three parts.

Algorithm 1
Input: Dynamics (2) and polytopic sets Xi, Ui, Wi, i ∈M
verifying Assumption 1 and 2.
Output: A pRCI family of sets S(S,Θ).

(A) Decentralized steps. For all i ∈M,
(I) compute a λi-contractive set Si for x+

[i] =
Aiix[i] +Biu[i] equipped with constraints Xi and
constraints Ui, solving LP problem Zi and set
µii = λi;

(II) compute αi as in (18).
(B) Distributed steps. For all i ∈M,

(I) if δij = 1, compute the matrix Kij , ∀j ∈ Ni
solving

min
Kij
||Gi(Aij + δijBiKij)G

[
j ||p (22)

where p is a generic norm.
(II) compute µij as in (17).

(C) Centralized steps
(I) if matrix T is not Schur stop;

(II) compute set Θ0 as in (20) and the equilibrium
point θ̄ of system (19). If θ̄ /∈ Θ0 stop;

(III) compute the maximal invariant set Θ∞ of system
(19) equipped with constraint Θ0;

(IV) compute an inner box approximation Θ̄ of Θ∞.

Operations in part (A) can be executed in parallel using
computational resources associated with subsystems, i.e. in
a decentralized fashion. Steps in part (B) have a distributed
nature, meaning that computations are decentralized but they
can be performed only after each system has received suit-
able pieces of information from its parents. Finally, design
steps in part (C) require centralized computations involving
only the M -th order system (19). Next, we comment each
step of Algorithm 1 in details.

A. Part (A)

Step (AI) is the easiest one. The computation of sets Si as
in step (AI) is the major improvement compared to [11] and
[12] and it allows pRCI. The idea of compute set Si as a λi-
contractive set is based on the argument that sets (1−λi)Si



can be used for compensating coupling terms in the dynam-
ics. Remarkably, using the efficient procedures proposed in
Section III, the computation of a set Si amounts to solving
an LP problem. Step (AII) focuses on the computation of
scalars αi. From (18) and (8c), using procedures proposed
in [18], we can compute αi by means of LP problems.

B. Part (B)

For the computation of matrices Kij and parameters µij ,
each system Σ[i] needs to receive the set Sj from neighbors
j ∈ Ni such that δij = 1. In step (BI), if δij = 1, the
computation of matrices Kij , j ∈ Ni is required. Following
the idea proposed in [19], since Kij affects the stability of
matrix T on the off-diagonal terms, we propose to reduce the
magnitude of coupling by minimizing the magnitude of Āij
as in (22), where Gi and G[j allows us to take into account
the size of sets Si and Sj respectively. So far the parameters
δij have been considered fixed. However, if in step (BI) one
obtains Kij = 0 for some j ∈ Ni, it is impossible to reduce
the magnitude of the coupling term Āij and, from controller
C[i], the knowledge of x[j] is useless. This suggests to revise
the choice of δij and set δij = 0. In step (BII), since Si
are polytopes, using procedures proposed in [18] we can
compute scalars µij by means of LP problems.

C. Part (C)

In step (CI) we check the Schurness of matrix T . If the
test fails it is not possible to fulfill Assumption 3-(i) and the
only possibility is to restart the algorithm after increasing the
number of variables δij that are equal to one.

In step (CII), since the sets Si and Xi are polytopes, using
results from [18] the computation of the set Θ0 can be done
as follows

Θ0 =

M∏
i=1

[0, θ̃i]
⋂ ⋂

i=1∈M
Θ̃i

θ̃i = ( max
τ∈1:τ̄i

{sup
s[i]

hTi,τs[i] : Gis[i] ≤ 1})−1

Θ̃i = {θ ∈ RM :
∑
j∈Ni

θ̃uijθj + θ̃uiθi ≤ 1}

θ̃ui = ( max
σ∈1:σ̄i

{sup
us[i]

lTi,σus[i] : Dius[i] ≤ 1})

θ̃uij = ( max
σ∈1:σ̄i

{sup
s[j]

lTi,σδijKijs[j] : Gjs[j] ≤ 1})

(23)

Moreover, in step (CII) we compute the equilibrium point θ̄
of system (19). If θ̄ /∈ Θ0 we can not guarantee Assumption
3 and therefore the algorithm stops. Note that if Wi = {0},
∀i ∈ M, the equilibrium point θ̄ is the origin and hence
θ̄ ∈ Θ0 by construction. According to Assumption 3-(iii),
the set Θ of all feasible contractions θ is computed as an
RPI set for system (19) and constraints θ ∈ Θ0. In particular,
since T is Schur and Θ0 is a polytopic, using results from [2]
we can compute the maximal RPI set Θ∞. As discussed in
Remark 1, a decentralized initialization of state estimators is
possible computing an inner-box approximation Θ̄ contained
in Θ∞. This is done in step (CIV) by solving a suitable LP
problem.

Remark 2: We note that, similarly to Section 5 of [19],
the plug-in and unplugging of subsystems do not require
to retune all the controllers C[i], i ∈ M. In particular Part
(A) and Part (C) of Algorithm 1 are executed only for the
plugged-in subsystem and at most for the children of the
plugged-in or unplugged subsystem. Part (C) is the only step
which may require a complete execution. For more details
about plugging-in and unplugging operations we refer the
interested reader to Section 5 of [19].

Remark 3: In this paper we consider that each subsystem
is linearly coupled with his parent subsystems. As shown
in [13], the concept of practical invariance for large-scale
systems can be extended to subsystems nonlinearly intercon-
nected, i.e.

∑
j∈Ni Aijx[j] is replaced with

∑
j∈Ni φi(x[j]),

where φi(·) : Rnj → Rni .

VI. SIMULATION EXAMPLE

A. Example 1

We consider a system composed by 16 masses coupled in
a grid 4×4 through springs and dampers. The description of
the system as well as the values of parameters and constraints
are the same as in Section 5 of [14]. We synthesized
controllers C[i], i ∈M using Algorithm 1 and setting δij = 1
if mass i is coupled with mass j. In Figure 1 we show a
simulation where the control action u[i](t) computed by the
controller C[i], for all i ∈ M, is kept constant during the
sampling interval and applied to the continuous-time system.
Convergence is obtained for all masses to their equilibrium
position while fulfilling input and state constraints. State and
input variables are depicted in Figure 1. Moreover in Figure
1(d) we note that the zooming factors θi converge to the
origin since the masses are not affected by disturbances.
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(a) Displacements of the masses
with respect their equilibrium posi-
tions.
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(b) Velocities, i.e. states x[i,2] and
x[i,4], i ∈ M.
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(c) Inputs u[i], i ∈ M.
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(d) Zooming factors trajectories.

Fig. 1. State and input trajectories of the 16 masses and zooming factor
trajectories.



B. Example 2

We consider that each continuous-time model of the mass
is affected by a disturbance w[i] ∈ Wi = {w[i] ∈ R4 :
||w[i]||∞ ≤ 0.0064}, therefore we can consider errors of
0.8% of the maximum velocity of the mass. In Figure 2 we
note that the zooming factors θi converge to an equilibrium
point θ̄ since the masses are affected by disturbances. In par-
ticular the equilibrium point guarantees that asymptotically
x[i] ∈ θ̄iSi, irrespectively of disturbances.
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Fig. 2. Zooming factors trajectories for Example 2.

VII. CONCLUSIONS

In this paper we have presented an algorithm for the
computation of time-varying RCI sets. Our approach requires
reduced centralized computations and, as such, is suitable
for large-scale systems. The method hinges on the notion
of practical RPI sets and provides, as a byproduct, the
associated decentralized (or distributed) control laws. Each
local controller depends in a linear way on parents’ states.
Future research will focus on relaxing this assumption by
considering the use of fully nonlinear state-feedback laws
and on combining the proposed pRCI sets with the dis-
tributed state estimator proposed in [19] in order to design
an output-feedback robust control invariance family of sets
for LTI large-scale systems.
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[15] A. I. Zečević and D. D. Šiljak, Control of complex systems: Structural
constraints and uncertainty. Berlin, Germany: Springer, Communi-
cations and Control Engineering, 2010.

[16] M. Baric and F. Borrelli, “Decentralized Robust Control Invariance
for a Network of Storage Devices,” IEEE Transactions on Automatic
Control, vol. 57, no. 4, pp. 1018–1024, 2012.

[17] T. Gal, Postoptimal Analyses, Parametric Programming and Related
Topics, 2nd ed. Berlin, Germany: de Gruyter, 1995.

[18] I. Kolmanovsky and E. G. Gilbert, “Theory and computation of dis-
turbance invariant sets for discrete-time linear systems,” Mathematical
Problems in Engineering, vol. 4, no. 4, pp. 317–363, 1998.

[19] S. Riverso, D. Rubini, and G. Ferrari-Trecate, “Distributed bounded-
error state estimation based on practical robust positive invariance,”
International Journal of Control, vol. 88, no. 11, pp. 2277–2290, 2015.


