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Abstract
Analyzing and processing data that are siloed and dispersed among multiple distrustful stake-

holders is difficult and can even become impossible when the data are sensitive or confidential.

Current data-protection and privacy regulations (e.g., GDPR) highly restrict the sharing and

outsourcing of personal information among stakeholders that are in different jurisdictions.

Sharing data is, however, required in many domains such as finance and medicine. The

medical sector is a paradigmatic example: Privacy is paramount and data sharing is needed in

numerous applications where data is scarce (e.g., patients with rare diseases) and scattered

among multiple stakeholders around the world. Existing privacy-preserving solutions for

federated analytics rely either (1) on data centralization or outsourcing to a limited number

of entities, which incur multiple security and trust issues, or (2) on the iterative exchange of

cleartext aggregated and optionally obfuscated data, which can leak personal information or

introduce bias in the final result. In this thesis, our goal is (1) to propose privacy-preserving

federated solutions for exploration, and for statistical and machine-learning analyses on data

held by multiple distrustful stakeholders, and (2) to analyze and evaluate the proposed sys-

tems, thus showing that they provide an efficient, secure, scalable, and accurate alternative to

existing solutions for federated analysis by proving their utility in real-world state-of-the-art

biomedical studies. In order to do this, we rely on multiparty homomorphic encryption (MHE).

MHE combines secure multiparty computation (SMC) techniques with homomorphic encryp-

tion (HE) by pooling the advantages of both SMC and HE, i.e., interactivity and flexibility, and

by minimizing their disadvantages, i.e., difficulty in scaling to a large number of parties and

computation complexity.

First, we design UNLYNX, a system that enables privacy-preserving federated data exploration

on a distributed dataset held by multiple data-providers (DPs), where N-1 out of N of the

nodes performing the computations can be malicious. To achieve this, we build interactive

protocols by relying on ElGamal additive homomorphic encryption (AHE) and ensure that

each untrusted-node operation can be publicly verified by means of zero-knowledge proofs

(ZKPs). We then explore how statistics, e.g., standard deviation and variance, can be computed

by relying on AHE and ZKPs through the design of another system named DRYNX. In DRYNX,

we also explore how to limit the influence of an entity that inputs wrong data in the system,

and we propose an efficient federated solution for correctness verification.

We also propose SPINDLE, a solution for secure cooperative gradient descent on federated data

that we instantiate for the privacy-preserving training and oblivious evaluation of generalized

linear models. SPINDLE covers the entire machine-learning workflow, as it enables oblivious
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Abstract

predictions to be performed on a trained model that remains secret. It ensures both data and

model confidentiality in a passive adversarial model in which N-1 out of N DPs can collude.

Finally, we demonstrate that the solutions proposed in this thesis can be efficient enablers for

large-scale, highly sensitive, multi-site biomedical studies. We design and test, by replicating

recent state-of-the-art medical studies, secure workflows for the federated execution of com-

putations that span from analyses with low computational complexity, such as non-parametric

survival analyses often used in oncology, to analyses with high computational complexity

such as one of the key tools for genomic studies, genome-wide association studies (GWAS) on

millions of variants.

Keywords: federated analytics, federated machine learning, multiparty homomorphic encryp-

tion, differential privacy, decentralized systems.
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Résumé
L’analyse de données sensibles, personnelles ou confidentielles qui sont isolées, car stockées

par plusieurs entités qui ne se font pas confiance, est souvent difficile, voire impossible. Les

règles régissant la protection des données et de la vie privée, telle que le RGPD (Règlement gé-

néral de protection des données) actuellement en vigueur dans l’Union Européenne, rendent

le partage de données entre des entités appartenant à des juridictions différentes particulière-

ment difficile. Pourtant, celui-ci est indispensable dans des domaines tels que la médecine

et la finance. Le domaine médical est un exemple paradigmatique dans lequel la protection

de la vie privée est primordiale et le partage des données crucial. En effet, les informations

médicales d’un patient sont souvent éparpillées à travers plusieurs instituts. De plus, les

études médicales nécessitent souvent un grand nombre de sujets et requièrent dès lors le

partage d’informations entre un nombre important d’établissements. L’étude de maladies

rares, par exemple, nécessite souvent la mise en place d’une collaboration internationale entre

une multitude d’instituts.

Il existe deux types principaux de solutions permettant l’analyse de données distribuées tout

en en protégeant la confidentialité. Dans le premier, les informations sont soit centralisées

dans une base de données unique ou partagée sur un nombre limité d’entités. Dans le second,

les données restent en possession de leurs propriétaires qui exécutent des calculs distribués

en échangeant des résultats partiels (qui peuvent être légèrement modifiés à des fins de pro-

tection). Malheureusement, ces deux modèles ont plusieurs défauts. Le premier requiert que

les propriétaires de données fassent confiance à une ou plusieurs entités afin de stocker leurs

données, et ceci sans essayer de les déchiffrer. Dans le second, l’échange de résultats partiels

peut révéler des informations sensibles sur les données utilisées. De plus, lorsque ces résultats

sont partiellement modifiés à des fins de protection, le résultat final peut être trop différent du

résultat original. Dans cette thèse, notre objectif est de (1) proposer des solutions permettant

l’exploration, l’analyse statistique, ainsi que l’apprentissage automatisé sur des données qui

sont distribuées entre plusieurs entités, tout en protégeant la confidentialité de ces données ;

(2) évaluer et analyser ces solutions en démontrant qu’elles sont une alternative viable, efficace

et sécurisée aux systèmes existants. Dans ce but, nous démontrons leur efficacité dans le cas

d’études biomédicales réalisées en collaboration par un grand nombre d’instituts. Nous nous

appuyons sur la cryptographie homomorphique distribuée, nous combinons des protocoles

interactifs de calculs sécurisés et l’encryption homomorphique de façon à additionner leurs

avantages, l’interactivité et la flexibilité, tout en minimisant leurs désavantages : le premier

devient inefficace avec un grand nombre d’entités alors que le second peut avoir un coût de
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Résumé

calcul important.

Premièrement, nous concevons UNLYNX, un système qui permet l’exploration sécurisée

et distribuée de données stockées sur plusieurs entités, dont N-1 sur N peuvent être mal

intentionnées. Pour cela, nous élaborons des protocoles interactifs en utilisant le système

ElGamal d’encryption homomorphique pour l’addition (EHA). De plus, en nous appuyant

sur les preuves à divulgation nulle de connaissance (PDNC), nous nous assurons que chaque

opération exécutée dans le système peut être publiquement vérifiée. Ensuite, nous explorons

comment nous pouvons calculer des statistiques, telles que la déviation standard ou la va-

riance, en nous appuyant sur EHA et PDNC afin de construire un nouveau système appelé

DRYNX. Dans ce second chapitre, nous explorons aussi comment limiter l’influence sur le

résultat final d’une entité qui entrerait, de façon volontaire ou non, de fausses valeurs dans le

système. Nous proposons une solution permettant une vérification efficace et probabiliste

des opérations et valeurs entrées dans le système.

Deuxièmement, nous présentons SPINDLE, une solution permettant l’exécution sécurisée

d’une descente de gradient sur des données distribuées. Nous paramétrons ce système afin

d’entraîner et évaluer de manière confidentielle des modèles linéaires généralisés. SPINDLE

couvre l’entièreté du processus d’apprentissage automatisé car il permet de faire des pré-

dictions sur un modèle qui a été entraîné sans jamais être révélé. Tout ceci est exécuté en

garantissant la confidentialité des données et du modèle entraîné même lorsque toutes les

entités sauf une complotent à l’encontre du système ou de l’entité restante.

Troisièmement, nous démontrons que les solutions proposées dans cette thèse permettent

l’exécution efficace d’études biomédicales à large échelle sur des données distribuées très

sensibles. Nous concevons et testons, en reproduisant des études médicales de pointe, des pro-

cessus sécurisés servant à l’exécution fédérée de calculs qui vont d’analyses à faible complexité,

comme des courbes de survie souvent utilisées en oncologie, à des opérations complexes,

telles qu’une étude d’association pangénomique considérant des millions de variants.

Mots Clés : analyse distribuée, apprentissage automatique distribué, encryption homomor-

phique distribuée, confidentialité différentielle, systèmes distribués.
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Zusammenfassung
Die Analyse von Daten, die verstreut, isoliert und von mehreren Stellen gespeichert werden,

die sich gegenseitig nicht vertrauen, ist schwierig und kann sogar unmöglich werden, wenn es

sich um persönliche, sensible oder vertrauliche Daten handelt. Die aktuellen Datenschutzbe-

stimmungen (z. B. GDPR) schränken die gemeinsame Nutzung und das Outsourcing perso-

nenbezogener Daten zwischen Stakeholdern, die sich in unterschiedlichen Rechtsordnungen

befinden, stark ein. Dennoch ist die gemeinsame Nutzung von Daten in vielen Bereichen wie

der Medizin oder dem Finanzwesen erforderlich. Der medizinische Bereich ist ein besonders

krasses Beispiel, wo der Datenschutz an erster Stelle steht und die gemeinsame Nutzung von

Daten absolut notwendig ist. Medizinische Informationen sind z. B. bei seltenen Krankheiten

schwer zu finden und liegen oft verstreut in mehreren Instituten auf der ganzen Welt.

Lösungen, die eine verteilte Datenanalyse bei gleichzeitigem Schutz der Vertraulichkeit ermög-

lichen, lassen sich in zwei Modelle einteilen. Im ersten Modell werden die Informationen in

einer einzigen Datenbank zentralisiert oder in verschlüsselter Form für eine begrenzte Anzahl

von Einheiten freigegeben. Diese Einheiten können dann zusammenarbeiten, um die Berech-

nungen der Daten durchzuführen. Im zweiten Modell werden die Daten von ihren Besitzern

lokal gespeichert und sie tauschen dann Teilergebnisse aus (die zum Schutz leicht modifiziert

sein können), um gemeinsam eine definierte Berechnung durchzuführen. Leider haben beide

Modelle mehrere Unzulänglichkeiten. Das erste Modell erfordert, dass die Dateneigentümer

einer oder mehreren Entitäten vertrauen, die Daten speichern, ohne zu versuchen, sie zu

entschlüsseln, während im zweiten Modell der Austausch von Teilergebnissen sensible Infor-

mationen preisgeben kann. Wenn Zwischenergebnisse zu Schutzzwecken leicht verändert

werden, kann das Endergebnis zu weit vom ursprünglichen Ergebnis entfernt sein. In dieser

Arbeit ist es unser Ziel, (1) datenschutzfreundliche föderierte Lösungen, für die Exploration

und für statistische und Machine-Learning-Analysen, von Daten vorzuschlagen, die von meh-

reren vertrauenswürdigen Akteuren gehalten werden, und (2) die vorgeschlagenen Systeme zu

analysieren und zu evaluieren und so zu zeigen, dass sie eine effiziente, sichere, skalierbare

und genaue Alternative zu bestehenden Lösungen für föderierte Analysen darstellen. Indem

wir ihren Nutzen in realen biomedizinischen Studien auf dem neuesten Stand der Technik be-

weisen. Um dies zu erreichen, setzen wir auf die homomorphe Mehrparteienverschlüsselung

(MHE). MHE kombiniert sichere Multiparty Computation (SMC)-Techniken mit homomor-

pher Verschlüsselung (HE), indem es die Vorteile von SMC und HE, d.h. Interaktivität und

Flexibilität, vereint und ihre Nachteile, d.h. Schwierigkeiten bei der Skalierung auf eine große

Anzahl von Parteien und Rechenkomplexität, minimiert.
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Zusammenfassung

Zunächst entwarfen wir UNLYNX, ein System, das eine sichere und verteilte Exploration von

Daten ermöglicht, die auf mehreren Entitäten gespeichert sind. UnLynx muss sicher bleiben,

wenn alle bis auf eine der Entitäten bösartig sein könnte. Zu diesem Zweck entwickeln wir

interaktive Protokolle unter Verwendung der homomorphen Verschlüsselung für Addition

(HVA) von ElGamal und stellen sicher, dass jede im System ausgeführte Operation von jeder

Entität mithilfe von Zero-Knowledge-Disclosure-Proofs (ZKDP) verifiziert werden kann. Als

Nächstes untersuchen wir, wie man Statistiken, wie Standardabweichung oder Varianz, auf der

Grundlage von HVA und ZKDP und durch den Aufbau eines neuen Systems namens DRYNX

berechnen kann. In diesem zweiten Kapitel untersuchten wir auch, wie wir den Einfluss

einer Entität, die - freiwillig oder nicht - falsche Werte in das System eingibt, limitieren. Wir

schlagen eine Lösung vor, die eine effiziente probabilistische Überprüfung aller in das System

eingegebenen Operationen und Werte ermöglicht.

Zweitens schlagen wir SPINDLE vor, eine Lösung zur sicheren Durchführung des Gradienten-

abstiegs auf verteilten Daten. Wir parametrisieren dieses System, um generalisierte lineare

Modelle vertraulich zu trainieren und auszuwerten. SPINDLE deckt den gesamten Prozess

des maschinellen Lernens ab, da es auch erlaubt, Vorhersagen über ein trainiertes Modell zu

treffen, ohne dass dieses jemals offengelegt wird. Der gesamte Prozess wird unter Wahrung

der Daten- und Modell-Privatsphäre durchgeführt, selbst wenn alle bis auf eine Entität sich

gegen das System oder die verbleibende Entität verschwören.

Schließlich zeigen wir, dass die in dieser Arbeit vorgeschlagenen Lösungen die effiziente

Durchführung großer biomedizinischer Studien auf hochsensiblen Daten, die auf verschie-

denen Entitäten gespeichert sind, ermöglichen können. Wir entwerfen und testen, indem

wir modernste medizinische Studien replizieren. Wir schlagen sichere Prozesse vor, für die

föderierte Ausführung von Berechnungen, die von Analysen mit geringer Komplexität reichen,

wie z.B. Überlebenskurven, die oft in der Onkologie verwendet werden, bis hin zu komplexen

Operationen, wie z.B. einer genomweiten Assoziationsstudie, die Millionen von Varianten

berücksichtigt.

Schlüsselwörter: föderierte Analyse, föderiertes maschinelles Lernen, homomorphe Mehr-

parteienverschlüsselung, differenzielle Privatsphäre, dezentrales System.
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Introduction

In our increasingly connected and data-driven world, the need to share and analyze data

among multiple entities in a privacy-conscious way has become critical in numerous contexts.

Five concrete examples include (i) medical research, where patients’ sensitive data, from

multiple institutions, need to be shared to enable practitioners to better understand and treat

complex diseases [54], (ii) fraud detection, where a tax authority needs to securely access

foreign bank accounts in order to identify potential tax evaders [82], (iii) public safety, where

security agencies from different countries need to protect their confidential information but

also need to share it in order to design effective anti-terrorism strategies [215], (iv) private

surveys, where institutions need to collect and analyze personal data from citizens or private

companies [25], and (v) commercial collaborations, where corporations do not want to reveal

confidential data but are willing to share some information for mutual benefit, i.e., a balance

has to be found between collaboration and competition [164; 228].

Data analytics, e.g., machine learning, usually requires large and diverse datasets [266] to

produce generalisable and unbiased results with enough statistical power. In all these domains,

assembling sufficiently large datasets has been proven difficult [258] and often requires the

sharing of data among many data providers. This is particularly true in medicine, where

patients’ data are spread among multiple entities. For example, for rare diseases, one hospital

might have only a few patients, whereas a medical study requires hundreds (or thousands) of

them to produce significant results. Data sharing among many entities, which can be located

in multiple countries, is hence required. Recently, as COVID-19 vaccines were distributed

across the world, serious but rare side effects have begun to manifest. Vaccine regulators

are struggling to assess and study these side effects as they do not have an efficient way to

access the victims’ medical data. Cases have spread among multiple countries with different

jurisdictions and medical data, even at the national level, are highly fragmented [54].

A conceptually simple approach to data sharing consists in aggregating large amounts of

data in a centralized database and querying this central repository to analyze the gathered

data (e.g., [8; 92; 236]). However, multiple examples show that a centralization of the data

can have serious consequences, affecting hundreds of millions of individuals [1; 75]; this

was the case with the Equifax breach [75], in which personal information (including social-

security numbers and credit-card information) of more than 143 million consumers (about

40% of the US population) was compromised. Centralized solutions are subject to multiple
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threats as the central database, which stores data from multiple mutually untrusted sources,

constitutes a high-value target for possible attackers and a single point of failure. Existing

solutions for centralized secure databases [23; 113; 122; 194; 235] usually add a cryptographic

layer on top of the query engine or focus exclusively on the data-release privacy, e.g., by using

differential privacy [48]. Most of these solutions, however, have a significant performance

overhead, do not protect the data during the query execution, and still suffer from a single

point of failure. When the data are sensitive and/or personal, they are particularly difficult

to collect from (or share across) multiples entities. Stringent data-protection and privacy

regulations (e.g., GDPR [91] in Europe) strongly restrict the transfer of personal data, even

pseudonymized, across jurisdictions. Hence, it is often impossible to obtain sufficient data

to perform meaningful data analysis, e.g., to train ML models that are key enablers in many

domains (e.g., medical research [164; 110], financial analysis [232]). We note that limited

data inter-operability across different providers is another potential challenge in deploying

federated analytics solutions; this, in practice, can be surmounted by harmonizing the data

across institutions before performing the analysis.

In this context, decentralized data-sharing systems have raised considerable interest and

are key enablers for privacy-conscious big-data analysis. These solutions, in which storage

and computation are distributed among multiple entities, can be referred to as Federated

Analytics (FA) (or federated learning, in the specific context of machine learning). Their

core principle is that data providers keep control of their own data and collaborate, e.g., by

exchanging local aggregated results or model updates, in order to perform statistical analyses

and/or develop machine-learning models, without exchanging their underlying datasets.

Thus, FA offers unprecedented opportunities for exploiting large and diversified volumes of

data spread across multiple institutions. FA facilitates the development and validation of more

generalizable ML algorithms that can yield more accurate and unbiased results.

Despite their clear advantages, the adoption of simple non-secure FA solutions [90; 130; 153;

168; 238] raises important questions about the actual advantage, in terms of eased compliance

to regulations over more conventional data-analysis platforms that rely on data centralization

[8; 92; 236]. In those, the exchanged information, i.e., partial aggregates and model updates,

can still be considered as sensitive (e.g., personal identifying data) [157; 169; 210; 243; 264]. It

has been shown that these exchanged data can, under certain circumstances, leak sensitive

information about the data providers’ datasets, thus lead to re-identification, membership

inference, and feature reconstruction [112; 157; 158; 169; 243; 221; 251; 264; 265]. For example,

Shokri et al. [221] were able to predict the main procedure that a patient underwent in an

hospital, i.e., a highly sensitive fact, by using a dataset containing pseudonimized information

about inpatient stays in several health facilities (e.g., age, stay duration, and location), that

was publicly released by the Texas Department of State Health Services.

In this respect, the computer security and privacy community has proposed several advanced

solutions for privacy-preserving FA based on differential privacy [29; 137], secure multiparty

computation (SMC) [4; 21; 27; 49; 52; 73; 78; 89; 95; 111; 116; 117; 118; 142; 163; 170; 178; 203;
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225; 257; 259], and homomorphic encryption (HE) [10; 30; 43; 55; 102; 121; 124; 126] in order to

protect the exchanged information. Nevertheless, the use of these techniques in FA introduces

important trade-offs among privacy, utility, and computational overheads.

To ensure differential privacy [72; 137; 154; 220] during the FA process, e.g., ML training,

some recent solutions [29; 137] rely on obfuscation techniques to protect the aggregated

data transferred out of data providers. Yet, the use of obfuscation techniques during the

computation process introduces a significant trade-off between data privacy and the accuracy

of the end results, which can be considered unacceptable in multiple domains [201]. The level

of obfuscation needed to protect the aggregated data of each data provider, at each stage of

the computation, often generates a final result that is too noisy to be used to derive useful

conclusions. Moreover, in multiple settings, e.g., for iterative processes such as ML training, it

remains unclear how to set privacy parameters that provide acceptable mitigation of inference

risks [119].

Other approaches rely on SMC [4; 21; 27; 49; 52; 73; 78; 89; 95; 116; 117; 118; 142; 163; 170;

178; 203; 225; 257; 259] where the data are obliviously secret-shared and distributed among

all participating sites or a set of computing parties. Some of these solutions assume that a

majority of the computing parties are honest and do not collude among them, e.g., to retrieve

the users’ original data. These parties then collaborate to perform a joint analysis on the data

without revealing intermediate values. However, the use of SMC-based solutions includes

several drawbacks that hinder their adoption in real-world use-cases: for example, intrinsic

limitations in terms of control over data, high network overheads, and the difficulty to scale to

large numbers of data providers.

Finally, a few solutions [10; 30; 43; 55; 102; 121; 124; 126] rely on the use of HE to enable

participating sites to securely centralize their data in an encrypted form to a third party (e.g.,

cloud provider), who can perform meaningful operations on them without learning anything

about their content. Yet, standard fully homomorphic-encryption schemes, i.e., schemes

enabling arbitrary computations on encrypted data, are still considered non-viable due to

the high computational and storage overheads they introduce. Furthermore, these solutions

introduce a single point of failure because only one entity holds the decryption key. Most of

these systems (and many solutions mentioned before) rely on honest-but-curious or trusted

third-party assumptions that might not provide sufficient guarantees when the data to be

shared are highly sensitive, valuable, influential, or private.

As a result of the immaturity of these secure solutions, it is common practice to rely on only

limiting legal agreements rather than on technical solutions. Stakeholders willing to share

their sensitive data can stipulate data-use agreements with a centralized trusted third-party

that becomes fully responsible for collecting, storing, and managing the data for the whole

ecosystem. Yet, this approach has proven to not be future-proof and to be particularly difficult

to realize on a large scale. Hence, it is more urgent than ever to develop new operational tools

that enable many data providers to protect and efficiently analyze their sensitive data while
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maintaining control over them.

In this thesis, we explore and design privacy-preserving systems that enable a large number

of untrusted data providers to efficiently and collaboratively perform data analytics on their

joint datasets. To this end, we combine secure multiparty computation, HE, and differential

privacy to build on their features while eliminating their respective disadvantages, i.e., diffi-

culty in scaling to large numbers of data providers, computational overhead, by-design bias

introduction on the final result, and restrictive trust assumptions.

Our main contributions are as follows:

Chapter 3 - Federated Data Exploration. We present UNLYNX, a decentralized system for

efficient privacy-preserving data exploration. It enables end-users to perform SQL-like queries

over encrypted distributed data in order to compute useful descriptive statistics (e.g., coun-

t/sum) on a selected subset of data records. The computations are undertaken by a set of

computing nodes that constitute a collective authority whose goal is to verifiably compute

on data held by multiple data providers. UNLYNX guarantees the confidentiality, unlinkabil-

ity between data providers and their data, privacy of the end result, and the correctness of

computations by the computing nodes. Furthermore, to support differentially private queries,

UNLYNX can collectively add noise under encryption. All of this is achieved through a combina-

tion of a set of new distributed and secure protocols that are based on additive homomorphic

cryptography, verifiable shuffling, and zero-knowledge proofs. UNLYNX is highly parallelizable

and modular by design, as it enables multiple security/privacy vs. runtime tradeoffs. Our

evaluation shows that UNLYNX can execute a secure survey on 400,000 personal-data records

that contain 5 encrypted attributes, distributed over 20 independent databases, for a total of

2,000,000 ciphertexts, in 24 minutes on commercial servers.

Chapter 4 - Federated Statistical Analysis. By improving upon and relying on certain tech-

niques introduced in the previous chapter, we propose DRYNX, an operational, decentralized,

and secure system that enables queriers to compute statistical functions and to train and

evaluate simple machine-learning models, e.g., with a small number of features, on data

hosted at different sources (i.e., on distributed datasets). DRYNX not only ensures the same

security properties as UNLYNX (Chapter 3) (i.e., data confidentiality, data providers’ (DPs)

privacy, differential privacy, and computation correctness). But it also ensures that strong

outliers, either maliciously or erroneously input by data providers, cannot influence the re-

sults beyond a certain limit (which we denote by result robustness). Furthermore, DRYNX

enables an efficient and decentralized verification of the input data and of all the system’s

computations, thus it provides auditability in a strong adversarial model in which no entity

has to be individually trusted. DRYNX is highly modular, dynamic, and parallelizable. Our

evaluation shows that it enables the computation of the variance on a dataset (containing

600,000 records) distributed among 10 data providers in less than 1 second. The computations

are distributed among 6 computing nodes, and DRYNX enables the verification of the query

execution’s correctness in less than 4.5 seconds.
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Chapter 5 - Federated Learning. In this chapter, we address the problem of privacy-preserving

distributed learning and the evaluation of machine-learning models by analyzing it in the

widespread MapReduce abstraction that we extend with privacy constraints. We design

SPINDLE (Scalable Privacy-preservINg Distributed LEarning), the first distributed and privacy-

preserving system that covers the complete ML workflow by enabling the execution of a

cooperative gradient-descent and the evaluation of the obtained model and by preserving

data and model confidentiality in a passive-adversary model with up to all-but-one colluding

parties. SPINDLE uses multiparty fully homomorphic encryption to execute parallel high-

depth computations on encrypted data without significant overhead. We rely here on a fully

homomorphic scheme, whereas in Chapters 3 and 4 we use an additive scheme. We notably

build on this evolution to explore the secure and federated execution of more complex com-

putations with higher dimensions. We instantiate SPINDLE for the training and evaluation of

generalized linear models on distributed datasets. And we show that it is able to accurately

(on par with non-secure centrally-trained models) and efficiently (due to a multi-level par-

allelization of the computations) train models that require a high number of iterations on

large input data with thousands of features, distributed among hundreds of data providers.

For instance, it trains a logistic-regression model on a dataset of one million samples with 32

features distributed among 160 data providers in less than three minutes.

Chapter 6 - Federated Analytics for Precision Medicine. In this last chapter, we showcase

the fact that the systems and techniques presented in the previous chapters can be efficient

enablers in the medical domain where the sensitive data must be shared, and where the

computed results must be precise. Using real-world evidence in biomedical research, an

indispensable complement of clinical trials, requires access to large quantities of patient data

that are typically held separately by multiple healthcare institutions. We propose FAMHE, a

novel federated analytics system that, based on multiparty homomorphic encryption, enables

privacy-preserving analyses of distributed datasets by yielding highly accurate results without

revealing any intermediate data. We demonstrate the applicability of FAMHE to essential

biomedical analysis tasks, including Kaplan-Meier survival analysis in oncology and genome-

wide association studies in medical genetics. Using our system, we accurately and efficiently

reproduce two published centralized studies in a federated setting, enabling biomedical

insights that are not possible from individual institutions alone. Our work represents a nec-

essary key step towards overcoming the privacy hurdle in enabling multi-centric scientific

collaborations.

Software. We designed and developed operational prototypes of the systems described in this

thesis. UNLYNX (Chapter 3) is at the core of the MedCo software [155] that is being deployed

across multiple hospitals in Switzerland and beyond [200]. UNLYNX provides the cryptographic

operations and the interactive secure protocols for the MedCo privacy-preserving cohort

exploration and analysis tool on distributed databases. This effort and the integration of

the solutions presented in this thesis are at the core of and supported by two important

collaborative and multi-disciplinary funded projects [63; 155]. SPINDLE (Chapter 5) is at

the origin of the nascent TuneInsight startup that orchestrates collaborations, e.g., trains
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machine-learning models, on sensitive federated data.

Publications & Patents. Chapter 3 contains the findings of [84]. This paper was accepted

and submitted at PETS’17 [189]. It then led to the filing of the patent System and Method

for Providing a Collective Decentralized Authority for Sharing Sensitive Data [81]. In Chapter

4, we describe the contributions of [88], which was accepted in 2020 by the Journal IEEE

Transactions on Information Forensics and Security. Chapter 5 is built on the results of [85].

This paper was accepted and presented at PETS’21 [190]. It set the framework and led to the

publication of the paper entitled POSEIDON: Privacy-Preserving Federated Neural Network

Learning [208], which was accepted at NDSS’21 [171] and which is not covered in this thesis.

Both [85] and [208] resulted in the filing of patents, [86] and [209], respectively. Finally, in

Chapter 6, we describe the conclusions of [87]; it is under revision by Nature Communications

at the time of this writing.

Thesis Outline. In Chapter 1, we introduce multiparty homomorphic encryption and the

other main building blocks of our work. In Chapter 2, we position this thesis with respect to

the state of the art in privacy-preserving data analytics. We propose federated and privacy-

preserving systems for data exploration (in Chapter 3), statistical analysis (in Chapter 4), and

machine learning (in Chapter 5). Finally, we show that the proposed solutions can be used to

enable efficient and accurate federated analytics for precision medecine (in Chapter 6).
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1 Background

We introduce the main building blocks that we built upon in the subsequent chapters. We first

describe the additive homomorphic encryption scheme and techniques defined upon it: zero-

knowledge proofs of correctness and verifiable shuffle, which are used in Chapters 3 and 4.

We then introduce the fully homomorphic encryption scheme and its multiparty construction.

Finally, we introduce differential privacy before summarizing the main notations and symbols

used in this thesis in Tables 1.1 to 1.4.

1.1 Multiparty Additive Homomorphic Encryption

In Chapters 3 and 4, data are encrypted using the probabilistic and additively-homomorphic

ElGamal cryptosystem (ECEG) [74]. ECEG enables an efficient use of zero-knowledge proofs

for correctness [38]. ECEG relies on the difficulty of computing a discrete logarithm in a

finite field; in this case, an Elliptic Curve subgroup of Zp , with p a big prime. The encryption

of a message m ∈ Zp is EΩ(m) = (r B , mB + rΩ), where r is a uniformly-random nonce in

Zp , B is a base point on an elliptic curve G andΩ a public key. The additive homomorphic

property states that EΩ(αm1 +βm2) = αEΩ(m1) + βEΩ(m2) for any messages m1 and m2 and

for any scalars α and β. In order to decrypt a ciphertext (r B , mB + rΩ), the holder of the

corresponding private key ω (Ω=ωB) multiplies r B and ω, yielding ω(r B) = rΩ and subtracts

this point from mB + rΩ. The result mB is then mapped back to m, e.g., by using a hashtable.

We rely on fixed-point representation to encrypt floating values.

Interactive protocols can be used to distribute the computations and the trust among multiple

computing nodes C N s. Each C Ni possesses a private-public key pair (ki , Ki ) where ki is a

uniformly-random scalar in Zp and Ki = ki B is a point on G . The C N s’ collective public key

is K =∑#C N
i=1 Ki . The corresponding secret key k =∑#C N

i=1 ki is never reconstructed such that a

message encrypted by using K can be decrypted only with the participation of all C N s. An

attacker would have to compromise all C N s in order to decrypt a message.

7
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1.2 Zero-Knowledge Proofs

Universally-verifiable zero-knowledge proofs (ZKPs) can be used to ensure computation

integrity and to prove that encrypted data are within given ranges. In Chapters 3 and 4,

we choose to verify computation integrity by using the proofs for general statements about

discrete logarithms, introduced by Camenisch and Stadler [38]. These proofs enable a verifier

to check that the prover knows the discrete logarithms y1 and y2 of the public values Y1 = y1B

and Y2 = y2B and that they satisfy a linear equation

A1 y1 + A2 y2 = A, (1.1)

where A, A1, A2 are public points on G . This is done without revealing any information about

y1 or y2.

The input-range validation is done by relying on the proofs proposed by Camenisch and

Chaabouni [37], with which we can prove that a secret message m lies in a given range [0,ul )

with u and l integers, without disclosing m. The prover writes the base-u decomposition of

its secret value m and commits to the u-ary digits by using the verifier signatures on these

digits. The l created commitments prove to the verifier that m ∈ [0,ul ). We present this proof,

adapted to our framework, in Chapter 4, Algorithm 4.1. Finally, both proofs can be made

non-interactive through the Fiat-Shamir heuristic [80].

1.3 Verifiable Shuffle

To randomly select a value from a public list of noise values and to ensure differential privacy

(see Section 1.5), we rely on a verifiable shuffle [18; 104; 172; 173]. We implemented and use

the verifiable shuffle of ElGamal pairs, described by Neff [173]. This protocol takes as input

a list of χ ElGamal pairs (C1,i , C2,i ) and outputs (C̄1,i , C̄2,i ) pairs such that for all 1 ≤ i ≤ χ,

(C̄1,i ,C̄2,i ) = (C1,υ(i ) + r ′′
υ(i )B ,C2,υ(i ) + r ′′

υ(i )Ω), where r ′′
υ(i ) is a re-randomization factor, υ is a

permutation and Ω is a public key. The permutation υ is used to change the order of the

ElGamal pairs and r ′′
υ(i ) is used to modify the value of the ciphertext encrypting a message m

such that its decryption still outputs m. As a result, an adversary not knowing the decryption

key υ and the r ′′
υ(i ) is unable to link back any ciphertext (C̄1,i ,C̄2,i ) with a ciphertext (C1,i , C2,i ).

Neff provides a method for proving that such a shuffle is done correctly, i.e., that there exists

a permutation υ and re-randomization factors r ′′
i , j such that out put = SHUFFLEυ,r ′′

i , j
(i nput ),

without revealing anything about υ or r ′′
i , j . This is achieved by using honest-verifier zero-

knowledge proofs, introduced by Neff [172; 173].

1.4 Multiparty Fully Homomorphic Encryption

Multiparty Homomorphic Encryption. In Chapter 5, we rely on a multiparty (or distributed)

fully-homomorphic encryption scheme [165] in which the secret key is distributed among the

parties, while the corresponding collective public key pk is known to all of them. Thus, each

party can independently compute on ciphertexts encrypted under pk but all parties have to

8
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collaborate to decrypt a ciphertext. This enables, for example, the data providers (DPs) to

train a collectively encrypted model, that cannot be decrypted as long as one DP is honest

and refuses to participate in the decryption. As we show in Chapter 5, this multiparty scheme

also enables DPs to collectively switch the encryption key of a ciphertext from pk to another

public key without decrypting.

Mouchet et al. [165] propose a multiparty version of the Brakerski Fan-Vercauteren (BFV) lattice-

based homomorphic cryptosystem [79] and introduce interactive (distributed) protocols:

DKeyGen(·) for key generation, DDec(·) for decryption, and DBootstrap(·) for bootstrapping.

We apply an adaptation of this multiparty scheme to the Cheon-Kim-Kim-Song cryptosystem

(CKKS) [47] that enables approximate arithmetic, and whose security is based on the ring

learning with errors (RLWE) problem [150]. CKKS enables arithmetic over CN /2; the plaintext

and ciphertext spaces share the same domain RQ =ZQ [X ]/(X N +1), with N a power of 2. Both

plaintexts and ciphertexts are represented by polynomials of N coefficients (degree N −1) in

this domain. A plaintext/ciphertext encodes a vector v of up to N /2 values.

Parameters: The CKKS parameters are denoted by the tuple (N ,∆,η,mc), where N is the ring

dimension, ∆ is the plaintext scale, or precision, by which any value is multiplied before

being quantized and encrypted/encoded, η is the standard deviation of the noise distribution,

and mc represents a chain of moduli {q0, . . . , qL} such that Πι∈{0,...,τ}qι =Qτ is the ciphertext

modulus at level τ, with QL = Q, the modulus of fresh ciphertexts. Operations on a level-τ

ciphertext 〈v〉 are performed modulo Qτ, with∆ always lower than the current Qτ. Ciphertexts

at level τ are simply vectors of polynomials in RQτ
, that we represent as 〈v〉 when there is

no ambiguity about their level, and use {〈v〉,τ,∆} otherwise. After performing operations

that increase the noise and the plaintext scale, {〈v〉,τ,∆} has to be rescaled (see the ReScale(·)
procedure defined in Table 1.4.2) and the next operations are performed modulo Qτ−1. When

reaching level τb , 〈v〉 has to be bootstrapped. The security of the cryptosystem depends on

the choice of N , Q, and η, which in this work are parameterized to achieve at least 128-bit of

security.

(Distributed) Operations: A vector v of cleartext values can be encrypted with the public

collective key pk and can be decrypted with the collaboration of all DPs (DDec(·) protocol,

in which each DPi uses its secret key ski , where the set of all DPi s’ secret keys is denoted by

{ski }). evk is an evaluation key. The DPs can also change a ciphertext encryption from the

public key pk to another public key pk ′ without decrypting the ciphertext, by relying on the

DKeySwitch(·) protocol. A distributed decryption operation DDec(·) is a special case of the

DKeySwitch(·) where there is no pk ′, i.e., pk ′ is 0. Each DP can independently add, multiply,

rotate (i.e., inner-rotation of v), rescale Rescale(·), or relinearize Relin(·) a vector encrypted

with pk. When two ciphertexts are multiplied together, the result has to be relinearized with

Relin(·) to preserve the ciphertext size. After multiple Rescale(·) operations, 〈v〉 has to be

refreshed by a collective protocol, i.e., DBootstrap(·), which returns a ciphertext at level L. The

dot product ••• of two encrypted vectors of size a can be executed by a multiplication followed

by log2(a) inner-left rotations and additions. We list all the operations that can be performed

9
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independently by the data providers in Scheme 1.4.1 and the interactive protocols in Scheme

1.4.2.

Encrypt: 〈v〉pk = {{〈v〉,τ,∆},L,∆}pk = Enc(pk, v )

Decrypt: v = Dec(sk,〈v〉pk )

Add: {〈v1〉 + 〈v2〉,min(τ,τ′),max(∆,∆′)} = {〈v1〉,τ,∆} + {〈v2〉,τ′,∆′}
Mult: {〈v3〉,min(τ,τ′),∆∆′} = M({〈v1〉,τ,∆} , {〈v2〉,τ′,∆′})

Rot: {〈v ′′′〉,τ,∆} = RotL/R({〈v〉,τ,∆},r,evk)

Rescale: {〈v〉,τ−1,∆′} = ReScale({〈v〉,τ,∆})

Relin: {〈v〉,τ,∆} = Relin({〈v〉,τ,∆},evk)

Bootstrap: {〈v〉,τ,∆} = Bootstrap({〈v〉,0,∆},evk)

Scheme 1.4.1 – CKKS operations.

Distrib. Key Gen: pk,evks = DKeyGen({ski })

Distrib. Bootstrap: {〈v〉,L,∆} = DBootstrap(〈v〉,τb ,∆, {ski })

Distrib. Key Switch: 〈v〉pk ′ = DKeySwitch(〈v〉pk , pk ′, {ski })

Distrib. Decrypt: v = DDec(〈v〉, {ski })nnnnnnnnnnnnnnnnnnnn

Scheme 1.4.2 – Distributed CKKS operations.

1.5 Differential Privacy

Differential privacy is an approach for privacy-preserving reporting results on statistical

datasets, introduced by Dwork [68]. This approach guarantees that a given randomized

statistic, M (DS) = R, computed on a dataset DS, behaves similarly when computed on a

neighbor dataset DS′ that differs from DS in exactly one element. More formally, (ε, δ)-

differential privacy [71] is defined by Pr[M (DS) = R] ≤ exp(ε) ·Pr
[
M (DS′) = R

]+δ, where

ε and δ are privacy parameters: the closer to 0 they are, the higher the privacy level is. (ε,

δ)-differential privacy is often achieved by adding noise to the output of a function f (DS). This

noise can be drawn from the Laplace distribution with mean 0 and scale ∆ f
ε , where ∆ f , the

sensitivity of the original real valued function f , is defined by∆ f = maxD,D ′ || f (DS)− f (DS′)||1.

Other mechanisms, e.g., relying on a Gaussian distribution, have also been proposed [72; 94].

1.6 Blockchains

A blockchain is usually a public, append-only ledger that is distributively maintained by a set

of nodes and serves as an immutable ledger [128; 166]. Blockchains are at the core of many

innovations in a large variety of domains such as cryptocurrencies [166; 247] and health care

[132]. Data are bundled into blocks that are validated through the consensus [40; 256] of the

maintaining nodes. Each block contains a pointer (i.e., a cryptographic hash) to the previous

valid block, a timestamp, a nonce, and application-specific data. The chain of these blocks

10



1.7. Notations

forms the blockchain.

1.7 Notations

Symbol Description
Q, DP , S, spacesp Querier, Data Provider, set of DPs with cardinality |S| acespai

DPR Root of the tree formed by the DPs
n, ni Nbr. of data samples total and per DPi

FA Federated Analytics
ML Machine Learning

MHE Multiparty Homomorphic Encryption
SMC Secure Multiparty Computation
SIMD Single Instruction, Multiple Data
ZKPs Zero-Knowledge Proofs

Table 1.1 – Table of Recurrent Symbols. (Part 1)

Chapters 3 & 4
C N Computing Node

G , B , Zp p Elliptic curve (EC), base point on G , EC subgroup, prime
EΩ(m) = (C1,C2) ElGamal encryption of message m under keyΩ,
= (r B , mB + rΩ) nonce r

K C N s’ public collective key
(ki , Ki ) C Ni ’s private and public keys

A, A1, A2, Yi , yi ZKPs public (uppercase) and discrete log. values
C DP , (ε, δ, θ) Collective Differential Privacy & privacy parameters

DDT , DRO Distributed Deterministic Tagging, Random Obfuscation

Chapter 4
HDS, PDS Hospitals & Patients Data Sharing

V N , NV N , fh Verifying Node, nbr. of V N s and threshold of honest V N s
π, ρ, r̄i linear combination, encoding, records

Vi = [vi ,1, ..., vi ,l ], ci Vector, count
C T A, C T O, C T K S Collective Tree Aggregation, Obfuscation, Key Switch

[bl ,bu], [0,ul ) Range, default range
pver , pversub Probability of verification for proof and sub-proof

T , Tsub Verification thresholds for proofs and sub-proofs
P fh Probability that fh honest V N s verify the proof

Table 1.2 – Table of Recurrent Symbols. (Part 2)
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Chapter 5
Xn×c , yn Training dataset with c features, n samples, and label vector

(X (i ), y (i )), (X ′′′, ·) DPi ’s part of the dataset and querier’s evaluation data
y ′′′, cl , |cl | Predictions’ output, set of class labels and its cardinality

X [φ, ·], X [·,φ] φth line and column of X
y[φ] Element of vector y
P (·) Protection mechanism

B ∈ X ,b Random mini-batch of b rows

W (·, j )
G Global model at iteration j

W (i , j ,l ) DPi ’s local model at global iteration j , and local iteration l
W (i , j ) DPi ’s local model at global iteration j

wG , w , w (i ,0) Vector of global, local weights and initial local weights of DPi

l p, g , z Learning parameters, nbr. of global and local iterations
σ(·), d Activation function, approximation degree
α, ρ Learning and elastic rates

sk, pk, evk Secret, public and evaluation keys
••• Dot product

I (·) Model dependent function, e.g., identity
〈v〉, |ct | Encrypted vector v and size of fresh ciphertext ct

RQτ
=ZQτ

[X ]/(X N +1) Domain of a plaintext/ciphertext at level τ
N , Q, L Ring dimension, fresh ciphertext modulus, nbr. of available levels
τb Minimum level for Dbootstrap(·)
η Standard deviation of the noise distribution

∆, mc, qτ Plaintext Scale, Chain of moduli variables, modulo of level τ

Table 1.3 – Table of Recurrent Symbols. (Part 3)

Chapter 6
t j Time when at least one event happened
d j Nbr. of events at time t j

n j spa Nbr. of individuals known to have survived (or at risk) spa
Ŝ(t ) Kaplan-Meier estimator

T Nbr. of data points
w , p Model coefficients/weights, Nbr. patients
f , v Nbr. of features, Nbr. of variants

X ∈Rp× f , y ∈R(p×1) Covariates matrix, phenotype/label
V ∈Rp×v Variants’ matrix
u ∈Rp×1 Vector of 1 variant value for all patients

pval P-value
pnor m Cumulative distribution function (CDF)

of the standard normal distribution
w[ f +2], y ′, MSE Weight corresponding to the variant

y ′ Prediction vector
MSE Mean-squared error

G J Gauss-Jordan method

Table 1.4 – Table of Recurrent Symbols. (Part 4)
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2 Related Work

In this chapter, we discuss the state of the art in privacy-preserving data analytics: data explo-

ration and analysis, and federated learning. We also describe some real-world applications of

privacy-preserving tools for data analytics in the biomedical domain.

The solutions we propose in this thesis, similarly to standard cleartext non-secure solutions,

trade off accuracy with performance but not with privacy. Contrarily to differential privacy-

based solutions, they do not, by default, introduce bias in the computed results. Whereas

cryptography-based solutions (SMC or HE) are limited in the number of computing parties,

our solutions efficiently scale to large numbers of data providers in strong threat models.

2.1 Centralized & Hardware-Based Solutions for Data Exploration

and Statistical Analysis

Centralized systems for privacy-preserving data sharing [13; 62; 145; 194] and trusted-hardware-

based solutions [181; 213] usually require one entity, i.e., a central entity or a hardware provider,

to be trusted; this constitutes a single point of failure. Even though these systems can be more

efficient than their decentralized counterparts, they often require a centralization or out-

sourcing of the data storage, which goes against regulations or is cumbersome to achieve [25]

and can be inappropriate for sensitive data. Centralized solutions for medical data sharing

[8; 92; 236], for example, have received limited adoption due to their inability to address

these concerns [41; 195; 249; 248]. In our solutions, we avoid these issues by decentralizing

data-storage, computation, and correctness verification, thus efficiently distributing trust. Fur-

thermore, even in the presence of trusted hardware, side-channel attacks, based on memory

and network access patterns, have proven to be effective in many scenarios [53; 143; 180; 250].

This shows the immaturity of deploying such systems - at their current stage - in order to

address critical challenges such as secure data sharing. Instead, our solutions are based on

well-established cryptographic techniques that rely on standard security models with math-

ematically proven properties. Their strong security guarantees, coupled with their ability

to efficiently support thousands of data providers, make our solutions ready for immediate

deployment in operational environments.
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2.2 Federated Solutions for Data Exploration and Statistical Analy-

sis

To alleviate the trust assumptions of centralized solutions, distributed (or federated) ap-

proaches were proposed.

Non-secure Approaches. In the database-research community, various architectures were

proposed for efficient data-sharing and distributed-data management among different institu-

tions. For example, PeerDB [176] is a peer-to-peer (P2P) distributed data-sharing system that

offers capabilities for data management, content-based search and a flexible configuration of

network topology. Yang et al. [253] propose a hybrid P2P system for distributed data-sharing

that combines the efficiency of structured P2P networks and the flexibility of unstructured

ones. Duan et al. [67] propose P4P (Peers for Privacy) for privacy-preserving data mining

by employing a hybrid architecture that integrates the popular client-server paradigm and

decentralizes the computation among a server and a number of peers. The framework as-

sumes an adversary model with a number of constraints, such as a well-protected server and

non-collusion between server and peers. These solutions, as opposed to ours, provide almost

no security or privacy guarantees for dealing with sensitive data.

Secure Multiparty Computation. In order to execute queries and compute statistics on

distributed datasets, multiple decentralized solutions [15; 21; 27; 78; 89; 111; 116; 142; 156;

170; 203; 220; 225; 252; 257; 259] rely on techniques that have a high expressive power, such as

secret sharing and garbled circuits. These solutions are often flexible in the computations they

offer but usually assume (a) a limited number of honest-but-curious computing parties and

(b) no collusion or a two-party model. For example, Cho et al. [49] design a three-party (i.e.,

3 computing nodes, servers or cloud-providers) secret-sharing-based solution that enables

GWAS execution yet does not reveal information on the input data. A fundamental issue with

data-secret sharing, however, is that data providers cannot store and manage their own data;

instead, this is handled by the computing nodes. Storing sensitive data at a computing node

might not be desirable, or even possible, especially if this computing node is physically in

a different country or jurisdiction than the original data holder. Moreover, state-of-the-art

garbled circuits libraries cannot appropriately address computations that involve more than

two-to-four participants (e.g., [21; 142; 170; 225]). Our solutions are designed to be inherently

parallelizable in order to guarantee efficient sharing of sensitive data among any number of

data providers with strong security guarantees.

In Chapters 3 and 4, we explore how the systems’ computations can be publicly and efficiently

verified. This feature is usually not provided by the aforementioned solutions. Although these

solutions might efficiently distribute trust, their strong honesty assumptions are risky when

the data or the computed statistics are highly sensitive. Bater et al. [15] enable the evaluation

of various SQL queries on datasets hosted by a set of distrustful data providers, but both

the data providers and the computing entity are trusted to follow the protocol. Corrigan-

Gibbs and Boneh [52] propose Prio, a system that ensures privacy, as long as one computing
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entity out of |S| is honest; but it guarantees end results robustness only in the case where the

involved parties are all honest-but-curious. Furthermore, Prio does not protect against DPs

colluding among themselves or with the computing nodes. In our solutions, no entity has to

be individually trusted in order to provide both privacy and robustness.

Differential Privacy. In Chapter 3, we propose an efficient protocol that provides differential

privacy guarantees for queries executed on distributed databases. This solution, as most

other existing solutions, relies on the addition of some noise that is derived from a probability

distribution such that the final result respects differential privacy. Anandan et al. [9], Narayan

et al. [167] and Mohammed et al. [161] propose to use secure two-party computation in

order to jointly generate a probability distribution and obliviously derive a noise value from

it. These approaches are efficient but limited to only two parties. Chen et al. [44] propose

a solution with multiple parties that work together with a trusted proxy in order to add a

distributively created noise. Dwork et al. [70] remove the need for a trusted party by using a

verifiable secret-sharing of noise values that are then combined in order to generate the noise.

Nevertheless, secret sharing imposes that at least two-thirds of the parties are honest, whereas

our protocol is secure in an Anytrust Model [246].

Homomorphic Encryption. Systems relying on homomorphic encryption [44; 64; 103; 126;

148; 178; 186; 202] are often limited in the functionalities they offer (e.g., sum only). They

present high-performance overhead in comparison with their less secure counterparts or still

rely on honest-but-curious parties. In this work, we show how to overcome these limitations

and propose systems that enable secure computations of multiple operations in a strong

threat model.

2.3 Federated Solutions for Machine Learning

Multiple federated-learning solutions [90; 168; 218; 238] were proposed. In those, the data

providers keep their data locally and share only aggregates or training model updates with a

central server. For example, DataSHIELD [90] and Vantage6 [238] are generic platforms that

translate local commands, e.g., in R, to federated computations, thus enabling distributed data

analysis and machine learning (ML). However, multiple research contributions [157; 169; 243]

show that these aggregates can still reveal significant information about the data providers’

data. For example, Nasirigerdeh et al. propose sPLINK [168], a federated instantiation of the

PLINK [193] software to perform a GWAS. With sPLINK, the data providers’ partial covariance

matrices (i.e., intermediate results) are revealed to the server that aggregates these matrices in

order to perform the models training. Although the original data X is not actually transferred,

some information about the original data can be inferred from the covariance matrix X T X

computed by the aggregating server. In Chapter 6, we show how the covariance matrix can be

collectively and obliviously computed by exchanging encrypted data such that the models

can be trained without revealing any intermediate data.

Privacy-Preserving Training of Machine-Learning Models. Some works focus on securely

outsourcing the training of linear ML models to the cloud, typically by using homomorphic
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encryption (HE) techniques [10; 30; 55; 102; 124; 126; 191]. For instance, Graepel et al. [102]

outsource the training of a linear classifier by employing somewhat HE [79], whereas Aono et

al. [10] approximate logistic regression and outsource its computation to the cloud by using

additive HE [185]. Jiang et al. [121] present a framework for outsourcing logistic regression

training to public clouds by combining HE with hardware-based security techniques (i.e.,

Software Guard Extensions). In our work, we consider a substantially different setting where

the sensitive data are distributed among multiple (untrusted) data providers.

In line with the research direction of privacy-preserving distributed learning, most works

operate on the two-computing-nodes model, where data owners encrypt or secret share their

data among two non-colluding computing nodes that are responsible for the computations.

For instance, Nikolaenko et al. [178] combine additive homomorphic encryption (AHE) and

Yao’s garbled circuits [255] to enable ridge regression on data that are horizontally partitioned

among multiple data providers. Gascon et al. [89] extend the work of Nikolaenko et al. in

the case of vertically partitioned datasets and improve its computation time by employing a

novel conjugate gradient descent (GD) method. Whereas, Giacomelli et al. [95] further reduce

computation and communication overheads by using only AHE. Akavia et al. [4] improve

the performance of the protocols of Giacomelli et al. [95] by performing linear regression

on packed encrypted data. Mohassel and Zhang [163] develop techniques to handle secure

arithmetic operations on decimal numbers, and they employ stochastic GD that, along with

multi-party-computation-friendly alternatives for non-linear activation functions, supports

the training of logistic regression and neural network models. Schoppmann et al. [212] propose

data structures that exploit data sparsity in order to develop secure computation protocols for

nearest neighbors, naive Bayes, and logistic regression classification. Our work differs from

these approaches, as it does not restrict to the two non-colluding computing-node model,

and it focuses instead on |S|-party systems, with |S|>2.

Other distributed and privacy-preserving machine-learning (ML) approaches employ a three-

computing-nodes model and rely on secret-sharing techniques to train linear regressions [26],

logistic regressions [49], and neural networks [162; 240]. However, such solutions are tailored to

the three-party computing-node model and assume an honest majority among the computing

parties. An honest majority is also required in the recent work of Rachuri and Suresh [199]

who improve on the performance of Mohassel and Rindal [162] by extending its techniques

to the four-party setting. Other works focus on the training of ML models among |S|-parties

(|S|> 4), with stronger security assumptions, i.e., each party trusts itself. As already mentioned,

Corrigan-Gibbs and Boneh [52] present Prio that relies on secret-sharing to enable the training

of linear models, and Zheng et al. propose a general-purpose SMC-based collaborative

platform [262] and Helen [263], a system that uses HE [185] and verifiable secret sharing [56]

to execute ADMM [35] (alternating direction method of multipliers, a convex optimization

approach for distributed data), which supports regularized linear models. In Chapter 4, we

employ HE, along with encoding techniques, to enable the training of basic regression models

and to provide auditability with the use of zero-knowledge proofs. In Chapters 5 and 6, we

show how to further build on previous results to enable better scalability in terms of the
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number of model’s features, size of the dataset, and number of data providers; and we offer

richer functionalities by relying on the generic and widely-applicable SGD.

Another line of research considers the use of differential privacy for training ML models. Early

works [3; 42] focus on a centralized setting where a trusted party holds the data, trains the

ML model, and performs the noise addition. Differential privacy has also been envisioned in

distributed settings, where to collectively train a model, multiple parties exchange or send

differentially private model parameters to a central server [29; 64; 93; 114; 137; 220]. However,

the training of an accurate collective model requires very high-privacy budgets, hence it is

unclear what privacy protection is achieved in practice [112; 119; 243]. Some works consider

hybrid approaches where differential privacy is combined with HE [125; 188], or multi-party

computation techniques [120; 234]. We consider differential privacy to be an orthogonal

approach; we show in our work how these techniques can be combined with our solutions to

protect the final result, e.g., protect the resulting models and their predictions from inference

attacks [83; 221].

Privacy-Preserving Prediction on ML Models. Another line of work is focused on privacy-

preserving ML prediction, where a party (e.g., a cloud provider) holds a trained ML model

on which another party (e.g., a client) wants to evaluate its private input. In this setting, Bost

et al. [32] use additive HE techniques to evaluate naive Bayes and decision-tree classifiers,

whereas Gilad-Bachrach et al. [96] employ fully homomorphic encryption (FHE) [31] to per-

form prediction on a small neural network. The computation overhead of these approaches

has been further optimized by using multi-party computation (MPC) techniques [204; 206], or

by combining HE and MPC [123; 144; 196]. Riazi et al. [205] evaluate deep neural networks by

employing garbled circuits and oblivious transfer, in combination with binary neural networks.

Boemer et al. [24] propose nGraph-HE2, a compiler that enables service providers to deploy

their trained ML models in a privacy-preserving manner. Their method uses HE, or a hybrid

scheme that combines HE with MPC, to compile ML models that are trained with well-known

frameworks such as TensorFlow [2] and PyTorch [187]. The scope of our work is broader than

these approaches, as we account not only for the private evaluation of machine-learning

models but also for their privacy-preserving training in the distributed setting.
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3 Federated Data Exploration

3.1 Introduction

In this chapter, we present UNLYNX, a new decentralized operational solution for efficiently

protecting and querying a large amount of sensitive data that is distributed across a multitude

of data providers. UNLYNX does not present a single point of failure and has the ability to

scale up to large numbers of data providers. It achieves this while guaranteeing (i) data

confidentiality at rest and during processing, (ii) unlinkability between data providers and

their data, (iii) correctness of secure computations, and (iv) private release of end-results.

UNLYNX is a decentralized system where data providers are able to share their sensitive data

without having to trust one single entity to protect their privacy and data confidentiality. In

fact, trust is distributed among multiple entities that constitute a collective authority [230].

UNLYNX achieves two distinct types of decentralization. The first is the decentralization of the

data, i.e., there is no central repository for all data. Each data provider can store its data on its

own premises thus maintaining control over them. The second is the decentralization of the

computations, i.e., there is no central authority responsible for all the computations. Instead,

a group of collective-authority computing nodes is responsible for securely processing data

from the different data providers.

In particular, UNLYNX enables the end-user to perform SQL-like queries over encrypted

distributed data, to compute useful descriptive statistics (e.g., count/sum) on a selected

subset of data records in a privacy-preserving way. This subset selection is based on a set of

Boolean conditions. Although these operations represent only a subset of those supported by

alternative approaches based on SMC or trusted third parties, it is also true that such a subset

is enough to solve many data-sharing scenarios, e.g., cohort exploration. Moreover, contrary

to alternative approaches, our solution is highly parallelizable by design and can scale to large

numbers of data providers with millions of data records.

In UNLYNX, during the secure processing, data are homomorphically encrypted under a

collective key and shuffled by a set of computing nodes, hence preventing any entity in the

19



Chapter 3. Federated Data Exploration

ecosystem from linking data back to their respective owners. By generating deterministically

encrypted tags from probabilistically encrypted records, UNLYNX is also able to filter encrypted

records according to the set of Boolean conditions defined in the query. Finally, to prevent

inferences based on the end result and to satisfy formal privacy notions (e.g., differential

privacy), UNLYNX provides a mechanism enabling the collective-authority computing nodes

to obliviously perturb the end result with noise (unknown to any party) sampled from a known

probability distribution. All computations performed by UNLYNX can be verified through the

use of cryptographic zero-knowledge proofs.

To evaluate the performance of UNLYNX, we built a working prototype implemented as a

modular system where the different security features are represented by independent modules

that can be activated depending on the application domain and on the privacy/efficiency

requirements. An experimental evaluation, in a realistic simulation environment, shows that

our prototype scales almost linearly with respect to the amount of data to be shared and the

size of the collective authority. A query - with 2 Boolean conditions and 1 grouping criteria,

over 400,000 records distributed among 20 data providers, and processed by 3 independent

computing nodes - can be executed in less than 24 minutes under the assumption of a strong

adversary. By relaxing this assumption (e.g., by considering honest-but-curious computing

nodes and deactivating some of the security modules) the execution time of the same query

can be reduced to, at best, 2.5 minutes.

Contributions

We make the following contributions:

• A flexible, decentralized, strongest-link security system for privacy-conscious data shar-

ing among a multitude of distributed data providers, built on top of well-established

security and privacy techniques, and secure even in a strong adversary model.

• A novel use of collective authorities combined with the use of homomorphic encryption

and zero-knowledge proofs.

• A set of new secure and distributed protocols enabling deterministic tagging, key switch-

ing and collective aggregating that, combined with a verifiable shuffle enable a set of

collective-authority computing nodes to compute on distributed sensitive data and

produce zero-knowledge proofs of their work.

• A novel distributed protocol that enables collective-authority servers to obliviously

perturb an aggregate query end-result in order to satisfy formal notions of privacy (e.g.,

differential privacy) and to mitigate inference attacks from a malicious querier.

• A thorough evaluation of our modular system and of the different privacy/efficiency

tradeoffs in a realistic simulation environment.
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3.2 System Overview

We introduce our system model and discuss UNLYNX’s functionality, security/privacy and

performance requirements. Then we sketch our threat model.

3.2.1 System Model

Our system, as depicted in Figure 3.1, consists of |S| data providers DP1, . . . , DP|S|, |C N |
computing nodes C N1, . . . , C N|C N | and a querier Q1. Together, the computing nodes form a

collective authority (CA) for privacy-preserving data sharing. The DPs combined constitute

a distributed database that is used to answer queries. The querier and each of the DPs

independently choose one computing node in the CA to communicate with. They can change

this choice at any time. Data providers generate and/or store data that can pertain to either

one or several individuals.

Q

DP1
DP2

DP3
DP4

DP5

DP6

DP7

DP8DP9

DP10

S1

S2

S3
CN

CN

CN3

Figure 3.1 – Data providers (in blue), collective-authority computing nodes (in green) and
querier (in red). In this example, |C N | = 3 and |S| = 10. The arrows show the information
communication flow.

We assume a public immutable distributed ledger DL that is collectively managed by the

computing nodes and contains a complete view of the system, the access rights of the queriers,

a list of available DPs, the query history and the system’s global variables, such as the privacy

parameters. Any change in the topology or querier access rights triggers an update of the

public ledger.

We now discuss the functionality that UNLYNX must provide along with its security/privacy

and performance requirements.

1There can be several queriers in the system, but as they do not interact with each other, without loss of
generality, we consider the protocol for a single one.
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Functionality. UNLYNX should permit SQL queries of the form ‘SELECT SUM(∗)/COUNT(∗
) FROM DP1, . . . ,DPl WHERE ∗ AND/OR ∗ GROUP BY ∗’ and we consider that ‘∗’ denotes an

arbitrary number of attributes. We refer to the attributes involved in the WHERE clause and

GROUP BY statement as filtering attributes. These queries can be executed on the distributed

databases held by a set of l chosen DPs. Depending on its permission level, a querier can be

limited to some types of queries. Finally, in some specific cases, UNLYNX can also provide

the possibility of ‘SELECT ∗’ queries. This would, for example, enable DPs to query and

decrypt their own database. However, this type of query is not suited for secure data-sharing

as it cannot be done on a distributed database held by multiple DPs, while ensuring data

confidentiality and privacy. We further discuss this in Appendix A.2.

Security and privacy. UNLYNX should be able to filter query responses based on the Boolean

conditions of the query, i.e. attributes in the WHERE clause, and to group responses according

to the GROUP BY statement without revealing any information about any of the attributes or

to which groups the responses belong to. The confidentiality of raw data must be protected at

rest and during processing. Moreover, no entity should be able to trace a query response back

to its provider, i.e. unlinkability between DPs and their data must be guaranteed. UNLYNX’s

primary goals are to enable data sharing, ensure the DPs’ privacy and avoid any data leakage.

Hence, UNLYNX does not intend to protect queriers’ privacy. UNLYNX should permit any entity

to check the correctness of the system’s computations and it should ensure that any entity

that computes incorrectly can be identified and excluded from future computations. UNLYNX

must ensure (ε, δ)-differential privacy for any individual sharing his data. Finally, it should

guarantee that only the querier is able to decrypt the result of its query.

Performance. We require UNLYNX to scale linearly with the number of DPs, the amount of

data and the size of the CA. It should also provide a shorter response time by relaxing some of

the security/privacy requirements.

3.2.2 Threat Model

We define UNLYNX’s threat model by discussing the role of each entity in the system.

Collective authority computing nodes. We assume an Anytrust Model [246] for the CA com-

puting nodes. In other words, to achieve the functionality and the security/privacy guarantees

described in Section 3.2.1, UNLYNX does not require any particular computing node to be glob-

ally trusted or to be honest-but-curious. Instead, as long as there exists at least one computing

node that is not malicious, these properties are guaranteed.

Data providers. We assume DPs to be honest-but-curious and discuss the impact of having

malicious DPs in Section 3.4. UNLYNX does not protect against false information coming from

the DPs, i.e., we do not ensure data integrity coming from the DPs. However, in Section 3.5, we

propose a mechanism that enables computing nodes to verify that an input is within a range

of values, hence mitigating the effect of DPs sending altered data. Each DP can independently
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choose one computing node in the CA to trust, i.e., each DP can choose a different computing

node. Finally, a DP cannot collude with any other entity.

Queriers. We assume queriers to be malicious. They can try to infer sensitive information

about DPs and can collude between themselves or with a subset of the CA computing nodes.

We assume that all network communication is authenticated and encrypted. This can be

ensured by standard cryptographic techniques, e.g., using TLS protocol. The number of

queries accepted per minute by UNLYNX is limited and if a computing node does not respond,

it can be removed from the CA.

3.3 UnLynx Design

In order to achieve privacy-preserving sharing of sensitive data, we developed a modular

system that enables the use of sub-protocols as building blocks according to security, privacy

and performance requirements. In Section 3.3.1, we describe our decentralized data-sharing

protocol that is depicted in Figure 3.2. This protocol combines sub-protocols that we describe

in more detail in Section 3.3.2.

3.3.1 Decentralized Data-Sharing Protocol

The protocol starts with a querier who wants to retrieve some aggregate information about

sensitive data stored by multiple DPs. The query is sent to a chosen computing node that

broadcasts it to the other computing nodes in the CA. Then, the computing nodes broadcast

the request to all DPs that respond with the requested sensitive data in encrypted form. These

data are securely and privately processed by the computing nodes, before the query result is

sent to the querier, who is then able to decrypt the final result. Table 1.1 contains the main

notation and symbols used in this work.

Step 0. In the initialization phase, each computing node C Ni in the CA creates its own ElGamal

key pair (ki , Ki ). The CA constructs its public key K =∑|C N |
i=1 Ki that is used by data providers to

encrypt their sensitive data. A computing node of the CA generates the probability distribution

that corresponds to the predefined differential privacy parameters of the system, ε and δ, and

it uniformly samples some points from this distribution, based on the probability quantum

parameter θ. We assume that these parameters are chosen before the initialization of our

system. This choice highly depends on the application domain. The resulting samples are

then used as obfuscation noise in Step 6. This process is explained in detail in Section 3.3.2.3.

Step 1. Querier Q sends its query to a computing node C Ni in the CA. An example of a query

could be ‘SELECT SUM(empl oyed) FROMDP1, . . . ,DPd WHERE ag e = EK (46) ANDmar r i ed =
EK (1) GROUP BY g ender ’. In order for the computing nodes to privately process the query,

the attribute values in the WHERE clause are encrypted with the CA’s public key K .
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Collective	
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Figure 3.2 – Decentralized Data Sharing Protocol from beginning (DPs encrypt their data using
the CA’s public key) to end (querier decrypts final aggregate answers using its private key). The
initialization step is executed once at the setup of the system.

Finally, C Ni broadcasts the query to all the other collective-authority computing nodes, and

each of them sends the query to a different set of DPs such that each DP in the FROM clause

receives the query. We assume there is no error during the broadcast, hence there are no

query duplicates. Before forwarding the query to its DPs or to other computing nodes, each

computing node verifies the access rights of the querier in the distributed ledger DL.

Step 2. The DPs select, for each of their data records, the encrypted or clear text values of the

attributes specified in the query and send them back to their respective computing node. If

the query contains a ‘SELECT COUNT’ statement, the DPs append an attribute with value EK (1)

to each of their responses. In order to prevent the computing nodes from knowing the count

value, the DPs add dummy records (containing EK (0)) to their responses. A DP can choose to

not respond to a query, e.g., if it is too intrusive. Each DP digitally signs its set of responses,

publicly logs it in the DL, and appends the signature to its message to ensure authenticity.

If some DPs respond with filtering attributes (attributes involved in the WHERE clause and

GROUP BY statement) in clear text, the computing nodes locally aggregate the responses for

each different combination of filtering attributes, thus reducing the number of responses to

be processed.

Step 3. The CA launches a verifiable shuffle sub-protocol in order to break the link between

the DPs and their data. In particular, each computing node sequentially performs a verifiable

shuffle on the data, as described in Section 1.3. Any clear text data are encrypted during the

verifiable shuffle process. Eventually, each DP’s data will be shuffled among themselves and

with other DPs’ data, once by each computing node.

Step 4. In order to execute the query, all the computing nodes run a distributed deterministic-

tag sub-protocol on the filtering attributes. This protocol appends a deterministic tag to each

filtering attribute of each DP ’s response. In other words, this protocol derives a determin-
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istic value, i.e., a point on an elliptic curve, from a probabilistically-encrypted value. The

derivation of this tag is explained in Section 3.3.2.1. The outputs of this protocol are used to

filter the responses based on the query WHERE clause and to group the responses according

to the GROUP BY statement. For example, if the query is ‘SELECT SUM(empl oyed) FROM
DP1, . . . ,DPd WHERE ag e=EK (46) AND mar r i ed = EK (1) GROUP BY g ender ’, the WHERE clause

is transformed to ‘WHERE ag e=DT (EK (46)) AND mar r i ed=DT (EK (1))’ where DT (x) is the

deterministic tag derived from x. The computing node will then check the query predicate

for each response by verifying if ‘DT (ag er espi j ) == DT (EK (46)) AN D DT (mar r i edr espi j ) ==
DT (EK (1))’ holds. Here, mar r i edr espi j and ag er espi j are the values of the married and age

attributes of DPi ’s response j . If the predicate is not verified, the response is discarded. Finally,

the remaining responses are grouped based on the deterministic tag values derived from their

GROUP BY statement attribute values, and the SUM/COUNT attribute values are aggregated in

each group. This results in one aggregated response per group.

Step 5. The computing nodes perform a collective tree aggregation protocol, presented in

Section 3.3.2.2. When this is done, one computing node has the total aggregate response for

each group, encrypted under the CA’s public key K .

Step 6. The computing node, which originally received the query from the querier, executes

an oblivious results obfuscation sub-protocol and begins by verifying in the public distributed

ledger DL if the same query has already been performed. We assume that no entity can know

that two different queries yield the same results and we discuss how the verification can

be executed with encrypted queries in Section 3.3.2.3. If the same query has already been

executed, the computing node adds the same noise value that was used for the first query to

the results of the new one. This avoids that the original result of a query can be inferred by

repeating the same query and averaging-out the added noise values. If this is not the case, the

computing node is responsible for starting a verifiable shuffle protocol (similar to Step 3) on

the list of noise values generated in the initialization phase. The computing node chooses the

first element in the shuffled list and adds this noise to the query results.

Step 7. The CA launches a key switch sub-protocol to obtain the query results encrypted under

the querier’s public key U , instead of under the CA’s public key K .

Step 8. The total aggregated responses per group are sent to the querier who is able to decrypt

them by using its private key u.

3.3.2 Sub-protocols

Here, we provide details about the distributed deterministic-tag, collective tree aggregation,

distributed results obfuscation, key switch and dynamic collective-authority sub-protocols

that we designed to be independent building blocks. They can be combined to achieve privacy-

conscious data sharing with different levels of security, privacy and performance. For the
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distributed deterministic-tag, distributed results obfuscation and key switch, the collective-

authority computing nodes are organized into a cycle as these sub-protocols are performed

sequentially. For the collective tree aggregation, however, the CA can be organized into a tree

to increase the protocol’s efficiency. After each sub-protocol, we show how zero-knowledge

proofs can be used to guarantee computation integrity.

3.3.2.1 Distributed Deterministic-Tag

The distributed deterministic-tag sub-protocol, or DDT, consists in tagging an ElGamal ci-

phertext of a message x, encrypted using the CA key K , with a deterministic value related

to x without ever decrypting the ciphertext. This sub-protocol is executed in two successive

rounds. We start with EK (x) = (C1, C2) = (r B , x + r K ), the ciphertext tuple corresponding to

an ElGamal encryption of message x that uses the CA’s public key K .

In the first round, each computing node sequentially generates a fresh secret si and adds the

value derived from its secret si B to C2. This eliminates the possibility of having a deterministic

tag of 0 as an output of the protocol when the input message is zero. After this first round,

the encrypted message is (C1, C2) = (r B , x + r K +∑|C N |
i=1 si B). Let (C̃1,0, C̃2,0) = (C1, C2) be a

ciphertext resulting from the first round.

In the second round, each computing node partially and sequentially modifies this ciphertext.

More specifically, when computing node C Ni receives the modified ciphertext (C̃1,i−1, C̃2,i−1)

from computing node C Ni−1, it computes (C̃1,i , C̃2,i ) as

C̃1,i = si C̃1,i−1 (3.1)

and

C̃2,i = si
(
C̃2,i−1 − C̃1,i−1ki

)
(3.2)

Once all of these computations are done, we discard the first component C̃1,|C N | and obtain

C̃2,|C N | = sx +
|C N |∑
i=1

si sB (3.3)

where s = ∏|C N |
i=1 si is a short-term collective secret corresponding to the product of each

computing node’s fresh secret. C̃2,|C N | is the deterministic tag collectively computed from

the original ciphertext (C1,C2). In fact, each computing node C Ni uses the same si for all

the ciphertexts for a given query. Thus, if two messages xa and xb are the same, then the

corresponding tags will be the same. In our case, this sub-protocol is used to verify the query

conditions, the WHERE clause and GROUP BY statement.

Zero-Knowledge Proofs for the distributed deterministic-tag. Each time a computing node

adds a secret value or computes Equations (3.1) and (3.2), it must also compute a zero-

knowledge proof to prove that the computations were done correctly. In the second round,

when computing (C̃1,i , C̃2,i ), computing node C Ni is the prover and any entity can act as a

verifier. Coming back to Equation (1.1) in Section 1.2, which we recall is A1 y1 + A2 y2 = A, it
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is easy to see that for Equation (3.2), y1 = si , y2 = ki si are the discrete logarithms of si B and

ki si B = si Ki , respectively. The points si Ki , si B , A = C̃2,i , A1 = C̃2,i−1 and A2 =−C̃1,i−1 on G are

made public and are part of the proof. The publication of si B also guarantees that computing

node C Ni has used the same secret si for all data during a given query. Similar proofs can

be obtained for the first round of the protocol and for Equation (3.1) and are sketched in

Appendix A.1.

3.3.2.2 Collective Tree Aggregation

Given the ElGamal ciphertext tuples (C1,i , C2,i ) held by each computing node C Ni , the CA will

produce one ciphertext (C1,aggr., C2,aggr.) as an aggregation of all ciphertexts (C1,i , C2,i ). This

aggregation is possible due to the additive homomorphic property of the ElGamal cryptosys-

tem.

In order to improve performance, the CA can be organized into a tree structure, in which each

computing node will wait to receive the ciphertext tuples from its children and sum them

before passing the result on to its own parent.

Zero-knowledge proofs for the collective tree aggregation. Here, a zero-knowledge proof

consists in publishing the ciphertexts and the result of their aggregation. Due to the confi-

dentiality property of the ElGamal cryptosystem, publishing the ciphertexts does not leak any

information about the underlying plaintexts. In order to verify these proofs, a verifier can

simply sum all of the ciphertexts and check that it corresponds to the published output.

3.3.2.3 Distributed Results Obfuscation

The distributed results obfuscation sub-protocol (DRO) enables the CA to collectively and

homomorphically add noise, sampled from a probability distribution satisfying the differential

privacy requirements, to the query results. This ensures (ε, δ)-differential privacy for DPs

without revealing to any entity the amount of noise added. This sub-protocol is composed of

two phases: the initialization phase, executed by the CA in the setup of the system; and the

runtime phase, performed by the computing nodes in order to respond to each query.

In the initialization phase, to generate the probability-distribution curve, a computing node

in the CA uses the globally applicable predefined and publicly available differential privacy

parameter ε. The same computing node uses the predefined probability quantum parameter θ

in order to quantize an approximate representation of the distribution curve. This enables the

computing node to derive a list of noise values and to randomly chose a value that can then be

added to the query result to ensure (ε, δ)-differential privacy. An example of the quantization

of a Laplace distribution with θ = 0.05 is depicted in Figure 3.3. We use the number of quantas

(blue dots) that fit under the curve in order to approximate the distribution and to create the

list of noise values. In our example, the noise value list contains 11 ‘0’s, 4 ‘1’s and ‘-1’s, 2 ‘2’s

and ‘-2’s, and so on.
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Figure 3.3 – Example of a quantization of Laplace distribution that is then used to derive noise
values. The Laplace curve is in red and the quantas are in blue.

In the runtime phase, one computing node starts by verifying if the given query has already

been answered by the system. We assume that no entity can know that two different queries

yield the same results. To compare two queries, the computing node first retrieves, in the

DL, all the queries that have been executed with the same attributes. For each of these, the

computing node verifies if the values for the encrypted attributes match those in the new query.

In order to do this, it subtracts both queries and tags the result and a 0 by executing a DDT

sub-protocol. Finally, the computing node verifies if ∀ j , DT (EK (Qnew, j −Qi , j ) = DT (EK (0)),

where Qi , j is the j th attribute of query i and new is the new query. If all these equalities hold,

the two queries are equal and the computing node adds the same noise to the new query

results. This ensures that the noise cannot be averaged out. If the same query has not already

been answered, the computing node starts the verifiable shuffle sub-protocol, described in

Step 3, on the list of noise values. The re-randomization in the verifiable shuffle sub-protocol

encrypts the clear text noise values. The zero-knowledge proof of the verifiable shuffle ensures

the correctness of the computations. This results in a verifiable encryption and shuffling of

the noise values. Then, the same computing node chooses the first element in the shuffled list

as the noise value to be added. The verifiable shuffle sub-protocol ensures that the noise is

chosen randomly from the proper distribution and that no entity knows its value. This noise is

added to the query results and stored along with the query in the DL.

Zero-knowledge proofs for the distributed results obfuscation. In the initialization phase,

the correctness of the computations can be verified by checking the value of the parameters

and the generated noise values that are all publicly stored in the DL. For the runtime phase, the

integrity of the computations is ensured by the zero-knowledge proofs of both the verifiable

shuffle presented in Section 1.3 and the homomorphic addition described in Section 3.3.2.2.

Given the quantization of the distribution, we prove in the following theorem that the proposed

mechanism still provides (ε, δ)-differential privacy.
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Theorem 3.3.1. Let Laplace(0, b) with b = ∆ f
ε be the Laplace distribution from which the noise

is to be sampled, θ the unit quanta, [−T, T ] the range of integer noises (T is the integer bound),

and L the length of the generated noise list in the initialization phase. Our mechanism M

provides (ε, δ)-differential privacy where δ= 1
L , if we choose θ = 1

2b e−T /b .

Proof. Let w be the noisy output, µ1 the original output for dataset D1, and µ2 the original

output for dataset D2. We have

Pr [M (D1) = w]

Pr [M (D2) = w]
= d 1

2b e−|w−µ1|/b/θe/L

d 1
2b e−|w−µ2|/b/θe/L

≤
1

2b e−|w−µ1|/b/θ+1

d 1
2b e−|w−µ2|/b/θe

≤
1

2b e−|w−µ1|/b/θ
1

2b e−|w−µ2|/b/θ
+ 1

d 1
2b e−|w−µ2|/b/θe

= e(|w−µ2|−|w−µ1|)/b + 1

d 1
2b e−|w−µ2|/b/θe

≤ e |µ1−µ2|/b + 1

d 1
2b e−|w−µ2|/b/θe

≤ eε+ 1

d 1
2b e−|w−µ2|/b/θe .

(3.4)

Therefore, we have

Pr [M (D1) = w] ≤ eεPr [M (D2) = w]+ 1

L
. (3.5)

Both the first equality in Equations 3.4 and inequality 3.5 come from the definition of a random

variable in a Laplace distribution. The last inequality in Equations 3.4 is derived from the

Laplace distribution defined in theorem 3.3.1. When w is at the boundary of M (D1), w might

be the output for D1 but is not a possible output for D2, hence Pr [M (D2) = w] = 0. For

example, if µ1 =µ2 −1, we have M (D1) ∈ [µ1 −T, µ1 +T ], and M (D2) ∈ [µ2 −T, µ2 +T ], and

thus Pr [M (D2) =µ1 −T ] = 0. If we choose θ >= 1
2b e−T /b , then a boundary noise is sampled

with probability 1
L , hence the formula Pr [M (D1) = w ] ≤ eεPr [M (D2) = w ]+ 1

L still holds with

Pr [M (D2) = w ] = 0. Nevertheless, we should choose T large enough such that 1
L is sufficiently

low to achieve strong differential privacy.

3.3.2.4 Key Switch

The key switch sub-protocol enables the conversion of an ElGamal ciphertext of a message

x encrypted under the CA’s public key K to one of the same message x encrypted under any

known public key, e.g., the querier’s public key U , without ever decrypting. The sub-protocol

is described below.

We start with EK (x) = (C1, C2) = (r B , x + r K ), a ciphertext tuple corresponding to the ElGamal

encryption of message x using the CA’s public key K . Let (C̃1,0, C̃2,0) = (0, C2) be the initial
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modified ciphertext tuple. Each computing node partially and sequentially modifies this ele-

ment. More specifically, when computing node C Ni receives (C̃1,i−1, C̃2,i−1) from computing

node C Ni−1, it generates a fresh random nonce vi and computes (C̃1,i , C̃2,i ) as

C̃1,i = C̃1,i−1 + vi B (3.6)

and
C̃2,i = C̃2,i−1 − (r B)ki + viU

= C̃2,i−1 − r Ki + viU .
(3.7)

where v = v1 + . . .+ vm . Once all of these are computed, we obtain the new ciphertext that

corresponds to x encrypted under the public key U , (C̃1,m , C̃2,m) = (vB , x + vU ) from the

original ciphertext (C1, C2). At this point, the ciphertext (C̃1,m , C̃2,m) can be decrypted only by

the holder of the private key u, where U = uB .

Zero-knowledge proofs for the key switch. To prove that the computations have been done

correctly, each time a computing node computes Equations (3.6) and (3.7), it must also

compute a zero-knowledge proof. Again, at each step i , computing node C Ni is the prover

and any entity can be the verifier. Coming back to Equation (1.1) in Section 1.2, it is easy to

see that for Equation (3.7), y1 = ki , y2 = vi are the discrete logarithms of ki B = Ki and vi B ,

respectively. All points Ki , vi B , A = C̃2,i − C̃2,i−1, A1 =−r B and A2 =U are made public and

do not leak any information about underlying secrets. A similar proof can be obtained for

equation (3.6) and is sketched in Appendix A.1.

3.3.2.5 Dynamic Collective Authority

This sub-protocol enables us to add/remove a computing node to/from the collective authority.

On the one hand, adding more computing nodes strengthens the privacy guarantees; on the

other hand, detecting misbehavior, for example through the use of zero-knowledge proofs,

should lead to the culprits’ exclusion from the CA. When a computing node joins/leaves the

CA, this computing node has to collaborate with all the DPs in order to change their data

encryption from the CA’s previous public key to the new one. We assume, here, that the DPs

want to outsource computations and that the joining/leaving computing node participates in

the protocol.

Without loss of generality, let C N|C N | be the computing node that needs to be added/removed.

in order to have its data encrypted under the CA’s new public key Knew, any DP storing

data encrypted using the CA’s previous public key Kprev must execute the following protocol.

When adding a new computing node C N|C N | to the collective authority C N1, . . . ,C N|C N |−1,

Kprev = K1 + . . .+K|C N |−1 and Knew = K1 + . . .+K|C N |. When removing computing node C N|C N |
from C N1, . . . ,C N|C N |, Kprev = K1 + . . .+K|C N | and Knew = K1 + . . .+K|C N |−1. Starting from

a message x encrypted under Kprev, (C1, C2) = (r B , x + r Kprev), computing node C N|C N |
multiplies C1 by its private key k|C N |

C1k|C N | = (r B)k|C N | = r K|C N | (3.8)
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and adds/removes, the result to/from, C2

C̃2 =C2 ± r K|C N | = x + r Kprev ± r K|C N | = x + r Knew. (3.9)

Component C̃1 remains the same, i.e., C̃1 =C1. The result is the new ciphertext tuple (C̃1, C̃2) =
(r B , x + r Knew) corresponding to the same message x encrypted under the CA’s new public

key. Hence, it is possible to expand the CA and update the corresponding encryptions without

needing to decrypt any of the ciphertexts. Finally, the DPs that trusted the computing node

who left the CA can choose another computing node to trust or leave the system.

Zero-knowledge proofs for the dynamic collective authority. Using Equation (1.1) in Section

1.2, we see that for Equation (3.9), y1 = km is the discrete logarithm of kmB = Km . All points Km ,

A = C̃2 −C2 and A1 =−C1 are made public and do not leak any information about underlying

secrets. A similar proof can be obtained for Equation (3.8) and is sketched in Appendix A.1

3.4 Security Analysis

We analyze UNLYNX’s security and privacy by studying each step of our decentralized data-

sharing protocol presented in Section 3.3.1 and by showing, for each step, how UNLYNX

guarantees the security and privacy requirements presented in Section 3.2.1.

Step 0. In the initialization step, each computing node i builds its own key pair (ki , Ki ) and,

as long as one computing node keeps its secret key ki hidden, the CA’s secret key k =∑|C N |
i=1 ki

remains unknown. As a result, data confidentiality is ensured for DPs through the use of

the CA’s public key K = ∑|C N |
i=1 Ki to encrypt their data. The correctness of the noise-value

generation is ensured by the fact that all the parameters and values are stored in a public,

immutable, distributed ledger DL, and the computations can be verified by any entity.

Step 1. UNLYNX rules out unauthorized queries by checking the querier’s permission in the

DL. Moreover, because DPs publicly log the fact that they respond to a query, a computing

node’s malicious behavior, such as excluding a DP from a query or impersonating a DP, will be

caught.

Step 2. Data authenticity is ensured by the DPs’ digital signatures on the responses. Moreover,

UNLYNX enables an optional upper bound that can be used to hide the amount of data sent

by DPs. More specifically, DPs either discard some records or add dummy responses that

consist of responses with the SELECT attributes, all equal to EK (0); and the filtering attributes

uniformly distributed over the range of possible values. This prevents an adversary from

inferring any information (e.g., using traffic analysis) from the amount of data sent by a given

DP .

As described in Section 3.2.2, we consider DPs to be honest-but-curious, which means that

we assume they provide correct responses to a query and do not collude with any other

entity. Otherwise, if malicious DPs collude with the querier or some of the computing nodes,

they could infer some information about other (non-colluding) DPs. Nevertheless, UNLYNX
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would still offer some protection when this is the case. In fact, when colluding with the

querier, malicious DPs would only have access to an approximation of the query results of

their target(s) because of the oblivious noise addition done in Step 6. When colluding with

one or multiple computing nodes, malicious DPs would be able to observe the output of

the Distributed Deterministic Tagging sub-protocol (Step 4). In the worst case, if there were

only malicious DPs connected to a malicious computing node, they would be able to infer

the mapping between an attribute and its deterministic tag. Yet, the data would be shuffled

(Step 3) and mixed with dummy records (Step 2) beforehand. This would still ensure the

unlinkability of the data and the secrecy of the honest DPs responses distribution.

Step 3. Unlinkability is guaranteed by the verifiable shuffle sub-protocol. Data confidentiality

is maintained as the data are never decrypted during the protocol.

Step 4. The tag (sx +∑|C N |
i=1 si sB) is a collective encryption of the filtering attribute x because

each si is known only to computing node C Ni . Hence, the confidentiality of the filtering

attributes is guaranteed. Each step of this protocol is publicly verifiable due to the zero-

knowledge proofs.

Step 5. A misbehaving computing node can be caught due to the zero-knowledge proofs for

homomorphic additions.

Step 6. The input list of noise values is publicly known, and the shuffling and aggregating

operations can be verified. Any entity can check that the noise added is one of the values

in the list, without learning which one. Moreover, the queries are publicly logged and the

same noise is used for identical queries. By providing (ε, δ)-differential privacy, UNLYNX

is resilient against (colluding) queriers/computing nodes trying to infer information from

query outputs and against other types of attacks such as set difference attacks presented by de

Souza et al. [59]. UNLYNX maintains a global privacy budget, defined by Dwork [69], which is

updated at each executed query by computing the sensitivity or the privacy loss of the query

and by subtracting this value to the global budget. In fact, with (ε, δ)-differential privacy, the

privacy loss is additive and the privacy budget imposes a limit on the cumulative values ε and

δ after which new queries are not allowed. How to choose the privacy parameters according

to the application domain and such that they provide a level of privacy sufficiently high while

ensuring that the added noise is not detrimental for data utility and user experience is out of

the scope for this work.

Step 7. Each step of the key switch sub-protocol can be verified and the result can be decrypted

only by the querier. Each computing node can check that the encryption is indeed switched to

the querier’s public key and, if this is not the case, any computing node can block the process.

Step 8. If the querier does not receive the final result from the computing node to which it is

connected, e.g., because the computing node is unresponsive, it can simply send the same

request to another computing node.

In conclusion, data are encrypted during the whole protocol execution, therefore data confi-
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dentiality is guaranteed at each step. All computations are publicly verifiable due to the use of

zero-knowledge proofs. Finally, UNLYNX provides (ε, δ)-differential privacy and unlinkability

between DPs and their data through to the use of new distributed and secure sub-protocols,

namely distributed deterministic-tag, distributed results obfuscation and verifiable shuffle

sub-protocols.

3.5 Discussion & Extensions

By analyzing UNLYNX and its set of protocols, we can identify two potential improvements: (1)

data integrity/input validation and (2) a way to exclude a non-cooperative computing node

from the CA. We propose two new solutions that can be implemented in the next version of

this system.

Input-Range Validation. In this chapter, we assume DPs are honest-but-curious and we do

not ensure the correctness of the data they provide. Nevertheless, to limit the effect of DPs

who introduce invalid data, we propose a set of input-range validation techniques. Adding

input-data validation in UNLYNX is not intended for, and will not help in, situations where a

DP injects much invalid data (many data records), but it can limit the damage to cumulative

query results if only a few of a DP’s records (inadvertently or maliciously) contain invalid

data, e.g., a data-entry error by an organization employee. This would enable us to relax

the assumption that DPs input only correct data. Camenisch et al. [37] present simple and

efficient zero-knowledge proofs to prove that an encrypted value is in a specific range/set. If

the encrypted value is an integer I , a zero-knowledge proof consists of proving that I =∑
I j ·b j

and that each b-ary digit of this integer is between [0, b −1]. For the first part of the proof we

can adapt Equation (1.1), and as for the second part, we can use the set membership proofs

provided by Camenisch et al. [37].

Enabling a Dynamic Collective Authority. In Section 3.3.2.5, we propose a sub-protocol

that enables the system to remove/add a server from/to the CA when this computing node

collaborates. However, this is not always the case and UNLYNX might want to exclude a

misbehaving computing node that refuses to leave.

The first solution is to require the DPs to re-encrypt their data with the CA’s new public key,

assuming that DPs keep off-line backups of their data. When this is not possible, we propose

that a threshold of t (out of |C N |−1) computing nodes reconstruct the secret key of the leaving

computing node C N|C N | through the use of a (t , |C N | − 1)-verifiable secret-sharing (VSS)

scheme [50]. In such a scheme, a potentially dishonest dealer can share C N|C N |’s secret key

k|C N |, among the |C N |−1 remaining computing nodes, in such a way that any t semi-honest

computing nodes can reconstruct k|C N | but any subset of t −1 computing nodes learn nothing

about k|C N |. This secret sharing should be done for all computing nodes when they join the CA.

In this way, when C N|C N | is removed from the CA, its private key can be reconstructed by the

remaining CA computing nodes. This VSS weakens the threat model defined in Section 3.2.2
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but enhances the dynamism of the CA by enabling it to discard a misbehaving or unresponsive

computing node. In fact, by using a (t , |C N |−1)-verifiable secret-sharing scheme, the security

of the scheme is guaranteed, as long as t out of |C N | − 1 computing nodes are honest or

honest-but-curious, instead of only 1 in the Anytrust model.

3.6 Performance Evaluation

We start with a theoretical analysis of UNLYNX’s computation and communication complex-

ities. Then, we discuss our experimental setup and evaluate UNLYNX’s performance. We

consider the performance when producing the results for one single query. We demonstrate

that UNLYNX yields acceptable performance and is scalable with the amount of data and the

size of the CA.

3.6.1 UNLYNX Complexity

We discuss the time and communication complexities for each of our sub-protocols. We

denote by |C N | the number of computing nodes in the CA, r the total number of records sent

by all the DPs, and f and g the number of attributes in the WHERE clause and in the GROUP BY
statement, respectively. The number of different combinations of GROUP BY attributes is

denoted g d and we usually have r >> g d . Finally, t is the size of the noise-values list, and a is

the number of attributes in the query SELECT statement. We discuss the complexity of each

sub-protocol and UNLYNX’s overall complexity.

Verifiable Shuffle. In this sub-protocol, all the ciphertexts have to be shuffled and re-randomized

by all the computing nodes, resulting in a computation and communication complexity of

O (|C N | · r · ( f + g +a)).

Distributed Deterministic Tag. In this sub-protocol, only the attributes in the WHERE clause

and in the GROUP BY statement are processed. Both the computation and communication

complexities are therefore O (|C N | · r · ( f + g )).

Collective Aggregation. Before executing this sub-protocol, the responses are locally filtered

and aggregated by each computing node, which means that the number of responses is

reduced from r to |C N | · g d . Moreover, the size of the responses is reduced from g + f + a

to g + a, as the WHERE clause attributes are no longer useful and can be discarded. The

computing nodes can be organized in a binary tree structure, such that each computing

node aggregates the results of its children and its own. Hence, the computation complexity is

O (log2(|C N |) · g d · (g +a)) and the communication is O ((|C N |−1) · g d · (g +a)).

Distributed Results Obfuscation. Both the computation and communication complexities

of this sub-protocol are O (|C N |·t ) and correspond to the complexity of the noise values shuffle.

Other parts of the protocol incur a negligible workload.

Key Switch. The complexity depends mainly on the number of computing nodes and on the
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size of the responses. Both the computation and communication complexities are O (|C N | ·
g d · (g +a)).

Overall Complexity. The overall complexity of our protocol can be reduced to the complexity

of the verifiable shuffle sub-protocol, that is responsible for most of the computation and

communication.

We recall that even if most of the sub-protocols need to be executed sequentially by the

computing nodes, the computations performed locally by each computing node are highly

parallelizable.

3.6.2 System Implementation

We implemented UNLYNX in Go [100], and the experimental code is publicly available at

https://github.com/LDS/UnLynx [237]. We relied on Go’s native crypto library and the public

advanced crypto DeDiS library [61]. The latter includes an implementation of a verifiable

shuffle of sequences of ElGamal pairs [173] and zero-knowledge proofs for general statements

about discrete logarithms [38]. We used ElGamal encryption on the Ed25519 elliptic curve

[22] with 128 bit security. More specifically, our prototype implements all the sub-protocols

described in Section 3.3. In all of these sub-protocols, we assume the existence of a distributed

ledger for which the implementation is future work. This means that the proofs of correctness

are stored in global variables and the query logging and equality checking are not implemented

yet. The communication between different participants relies on TCP. Finally, in order to allow

for an easy deployment of UNLYNX in different environments, we implemented an application

that automatically handles the creation of the CA on multiple computing nodes and provides

queriers with an easy way to query the system.

3.6.3 System Evaluation

We used Mininet [160] to simulate a realistic virtual network between computing nodes. Each

CA computing node ran on a separate machine and was connected to the others by a 1Gbps

link with a communication delay of 10ms. For each of our computing nodes, we used machines

with two Intel Xeon E5-2680 v3 CPUs with a 2.5GHz frequency, 256GB RAM that supports 24

threads on 12 cores. In our performance evaluation, we study the execution time of Steps 3 to

7 presented in Section 3.3. We do not include the time needed to initialize the system (Step 0)

or for the data providers to encrypt their data since these operations are done once and offline.

The time needed for the querier to build the query (Step 1), for the DPs to send their responses

(Step 2), and for the querier to decrypt the results (Step 8) are also left out. For Step 1 and Step

8, the runtime is negligible in comparison to the whole process, whereas the time needed for

Step 2 depends almost entirely on the communication links between the computing nodes

and the DPs. In the following, we describe the default parameters used in our experiments

and we observe the influence of each parameter on the overall system separately.
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Parameter Default Value
# of computing nodes (|C N |) 3
# of responses in tot. 15,000
# of filtering attributes 2
# of possible groups 10
# of aggregating attributes 10
# of noise values 1,000

Table 3.1 – Default parameter values used for the evaluation of UNLYNX.

We simulated distributed computations on 15,000 responses, evenly distributed among 3

computing nodes. A response was considered to contain 2 filtering attributes, e.g., one in the

WHERE clause and one in the GROUP BY statement, and 10 aggregating attributes. We assume 10

different groups, i.e., GROUP BY attributes can form up to 10 different group combinations. For

example, patients selected on a specific disease (WHERE) can be grouped based on gender and

on 5 age categories, each selected patient therefore belongs to 1 out of 10 possible groups. We

chose to use a list of 1,000 obfuscating noise values. The default parameters are summarized

in Table 3.1. In the following graphs, each measurement is averaged over 10 independent runs.

We begin our evaluation by showing how our decentralized data-sharing protocol is collectively

executed by three computing nodes (C N1, C N2, C N3) with the default parameters described

above. The results are shown in Figure 3.4.

CN

CN

CN

1

2

3

Figure 3.4 – Runtime for the different computing nodes (C N1, C N2, C N3) in the CA.

Recall, each computing node has to run the verifiable shuffle and distributed deterministic-

tag sub-protocols on the data received from their DPs. A computing node can run these two

sub-protocols sequentially, without having to synchronize with the others. Nevertheless, they

are still required to participate in the sub-protocols when requested. As a consequence, both
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sub-protocols can be executed in parallel by the CA, hence we can efficiently distribute the

workload among the computing nodes. Once these first two steps are finished, the computing

node responsible for initially processing the query begins a collective tree aggregation. Finally,

the same computing node sequentially executes the distributed results obfuscation sub-

protocol and then the key switch sub-protocol.

By further analyzing the graph, we see that the first two sub-protocols are the most time

consuming, as they are required to process all the DPs’ responses. In contrast, the last two

sub-protocols are executed significantly faster, as they are only required to process aggregate

responses. The DRO execution time is constant for a given number of computing nodes.

Using these observations, we often group the two first sub-protocols - "Ver. Shuffle + DDT" -

and the three last sub-protocols - "Other" - in our experimental results. Moreover, we always

separate the runtime of the sub-protocols and their respective proofs, as the proofs can be

verified offline. At runtime, computing nodes are required to save all the information needed

(e.g, the ciphertexts and the public values derived from the secret/ephemeral keys used) to

create the proofs in order to be able to generate them when requested.

Finally, we observe that the communication is the most time consuming process and accounts

for 75% of the overall execution time. We now study the scalability of UNLYNX against different

parameters.
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Figure 3.5 – Performance evaluation of UNLYNX (using the default parameters presented in
Table 3.1) with an increasing number of responses. (a) does not include proof creation or
verification. In (b) all proofs from all computing nodes are computed and verified.

Varying the number of responses. To show that UNLYNX scales almost linearly with the total

number of responses, we begin by increasing the number of responses processed by each

computing node in the collective authority.

Figure 3.5b shows the time it takes for all computing nodes to produce all zero-knowledge
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proofs, as well as the time needed for an entity2 to verify these proofs. We do not consider the

time it takes for the computing nodes to publish their proofs and for a verifier to download the

data necessary to verify them.

Results from Figure 3.5a show evidence of UNLYNX’s scalability. In fact, UNLYNX is able to

satisfy a request with 150K responses in less than 73 seconds. However, in Figure 3.5b, we

observe that the zero-knowledge proofs incur a non-negligible computational overhead. For

example, a query with 15K responses is answered in less than 9 seconds when it does not

include proofs, whereas the complete execution takes almost 64 seconds. This represents an

expansion factor of 7.

Varying the response size. We study the runtime of UNLYNX against the number of attributes

in each response. We consider that half of the attributes in a response are filtering attributes.

Figure 3.6a shows that the runtime increases almost linearly with respect to the size of the

responses, and the proofs bear a non-negligible overhead as shown in Figure 3.6b.
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Figure 3.6 – Performance evaluation of UNLYNX (using the default parameters presented
in Table 3.1) with an increasing size of responses. (a) does not include proof creation or
verification. In (b) all proofs from all computing nodes are computed and verified.

Varying the number of groups. We observe UNLYNX’s runtime when increasing the number

of possible groups or, in other words, the number of different combinations of GROUP BY
attributes. This is plotted in Figures 3.7a and 3.7b. As the number of responses is constant, the

execution time for the verifiable shuffle and DDT (Steps 3 and 4) are constant and, combined,

they take less than 9 seconds on average. The proof creation and verification also remain

constant at 29 and 15 seconds, respectively. The runtime, both with and without proofs,

increases with the number of groups but remains within acceptable boundaries. For example,

with 1,000 possible groups, the execution time without proofs takes approximately 9+3.3 = 12.3

seconds.

2We assume that this entity has the same computing power as one of the computing nodes.
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Figure 3.7 – Performance evaluation of UNLYNX (using the default parameters presented
in Table 3.1) with an increasing number of groups. (a) does not include proof creation or
verification. In (b) all proofs from all computing nodes are computed and verified.

Varying the number of computing nodes. We assess the effect of the size of the CA on UNL-

YNX’s runtime. Figure 3.8 shows that the latency increases slightly with an increasing number

of computing nodes. This is explained by the fact that the workload and data are distributed

among a larger number of computing nodes, thus improving the parallelization of UNLYNX.

Nevertheless, adding a computing node increases the number of steps needed to complete

each of the sub-protocols, which hinders the positive effect of improved parallelization.
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3.6.3.1 Storage Overhead

We now discuss the storage overhead induced by ElGamal encryption. We recall that our

encryption relies on an elliptic curve with a security level of 128 bits and that each encrypted

message is a pair of points on the curve. Each point is encoded with 32 bytes, hence each

encrypted message is 64 bytes long. Therefore, the encryption of an integer (4 bytes) in clear

text yields an expansion factor of 64/4 = 16.

For example, assume each DP’s database contains 10,000 lines and 120 columns. Each line

contains data belonging to one individual, and the columns correspond to attributes. Here,

the amount of data stored by each DP is 4.8MB if it is stored in clear, and 73.25MB if it is

encrypted. Finally, storage overhead on each CA computing node is negligible, as data can be

temporarily stored and discarded after locally aggregating the data.

3.6.3.2 Communication Overhead

As shown by our performance evaluation, most of the sub-protocol’s execution time is dedi-

cated to communication. We use the same example as in the previous section and assume

that a query requests 120 columns, half of which are filtering attributes. In this case, each DP

sends 73.25MB to the computing nodes. Considering six DPs, this results in 439.5MB of data

to be processed by the CA. The communication overhead for each sub-protocol is given below.

Verifiable Shuffle. All the data have to be sent through all three computing nodes, resulting in

a communication overhead of 439.5×3 = 1315.5MB.

Distributed Deterministic Tag. In this sub-protocol, only the attributes in the WHERE clause

and in the GROUP BY statement need to be sent, which totals to 439.5
2 ×3 = 659.25MB.

Collective Aggregation. Before executing this sub-protocol, the responses are locally filtered

and aggregated by each computing node. With 10 possible groups, we obtain a commu-

nication overhead of only 0.14MB for when all the filtering attributes are in the GROUP BY
statement (worst case scenario). We recall that WHERE clause attributes can be discarded after

the responses have been filtered.

Distributed Results Obfuscation. The amount of traffic for this sub-protocol depends on the

number of computing nodes and the size of the noise value list that, in this case, is 1,000 clear

text integers. Therefore, for this particular example, we send around 0.004MB ×3 = 0.012MB

of data.

Key Switch. The communication overhead is 0.2MB.

Finally, in order to privately process 439.5MB of data, UNLYNX needs to send 1315.5+659.25+
0.14+0.012+0.2 = 1975.1MB, which is 4.5 times the original amount of data.

In Figure 3.9, we observe the influence of the bandwidth capacity and communication delay
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between the computing nodes. By using the default parameters presented in Table 3.1 and

with 1Gbps links, the maximum communication rate observed was 80Mbps. We show, for

increasing latency, the complete runtime of UNLYNX when the communication rate is not

limited (80Mbps) and when it is reduced to 40Mbps and 20Mbps. As expected, the compu-

tation time is constant, around 1.3 seconds, and the communication time increases with

both the bandwidth and the transmission delay. We observe that when the delay increases,

reducing the bandwidth from 80Mbps to 40Mbps does not have a significant effect on the

overall runtime. This occurs because when the delay increases the maximum communication

rate also decreases.
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Figure 3.9 – Runtime for different values of bandwidth capacity and latency for the links
between the computing nodes.

3.6.3.3 Dynamic Collective Authority

We observe the latency incurred by adding/removing a computing node to/from the CA. We

do not include the time to transfer the data between DPs and computing nodes. We assume

that the computing node leaving/joining the CA is willing to participate in the process. The

results are shown in Figure 3.10 and depict an almost linear increase in runtime with the total

number of ciphertexts collectively held by the DPs.

3.7 Example Application: Secure Survey

To illustrate that UNLYNX is usable in practice, we present a realistic use case of a secure

distributed survey. We also further assess our system’s performance and study the possible

tradeoffs that can be made in order to improve UNLYNX’s response time.

We show that our system could improve and simplify the process of carrying out a survey on

sensitive personal data. In fact, such surveys are usually done on data that are anonymized,
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Figure 3.10 – Runtime for adding/removing a computing node to/from the CA.

hence reducing the precision of the results. Moreover, and as demonstrated by D. Bogdanov

et al. [25], obtaining the permission to access such sensitive data is administratively heavy,

requires the participation of multiple data-protection entities (local government, European

Union, ...) and is extremely time and money consuming. UNLYNX enables us to do a secure

and privacy-preserving survey on data that are encrypted at rest and during computations, and

that remain under the DPs’ control throughout the process. This can tremendously facilitate

the access to data and the achievement of such surveys.

We consider a realistic example where a statistical institute wants to compute the average

salary of the top 20 biotechnology companies in the United States. The query is ‘SELECT AVG(
sal ar i es) FROM C1, ...,C20 WHERE ag e i n [40 : 50] AND ethni ci t y = C aucasi an GROUP BY
g ender ’. A SELECT AVG(∗) query is executed by combining the results of the ‘SELECT SUM(
sal ar i es), COUNT(∗)’ query on the same filtering attributes. In our example, the DPs are

the companies, the querier is the statistical institute and the collective authority corresponds

to three computing nodes handled by the statistical institute, a consortium of the companies

and the US government (who wants to ensure that data are protected). We assume that each

company has 20K employees.

In this scenario, which we refer to as our baseline, all data are encrypted and all the zero-

knowledge proofs are created and verified. Then, we discuss two possible tradeoffs that can

be used in UNLYNX and compare their performance.

The first tradeoff is to consider all computing nodes as non-malicious, hence to not ask for

proofs of correctness. This reduces the runtime by at least 90%, as shown in Figure 3.11. A

verifier can also randomly ask for - and check - part of the proofs or request proofs from

a single computing node. In both cases, this can be done offline and the proof-execution

time decreases proportionally to the amount of omitted proofs. As computing nodes cannot

anticipate which proofs will be verified, they must still compute correctly, if they do not want
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Figure 3.11 – Protocol runtime considering the tradeoffs between security/privacy and effi-
ciency in the case of a secure census.

to be caught cheating.

The second tradeoff is for DPs to have all the filtering-attribute values stored in clear text. This

enables computing nodes to locally aggregate DPs’ responses for each combination of filtering

attributes, thus reducing the number of responses to be processed from the number of records

sent by the DPs to the number of different filtering attribute combinations. The latter usually

being considerably smaller than the former.

In Figure 3.11, we can verify that each of these tradeoffs significantly enhances performance.

Producing and verifying 50% of the proofs at each computing node reduces the execution time

by 45%, whereas having all DPs send clear text filtering attributes reduces it by 99%.

Considering the results shown in Figure 3.11, it becomes obvious that, in order to control

the computation and storage overhead, the categorization of attributes as either sensitive

or non-sensitive is key in deciding what needs to be encrypted. We suggest the following

guidelines for an efficient and privacy-preserving solution.

Non-sensitive attributes (e.g., age, gender or ethnicity). Stored in clear and protected by

privacy-protection techniques yielding, for example, k-anonymity [229].

Sensitive attributes (e.g., salary). Store encrypted under the CA’s public key K .

We provide an example database, Table 3.2, that respects these guidelines where EK (x) refers

to the ElGamal encryption of message x.

Finally, we argue that a response time of 24 minutes, for a secure distributed and privacy-

preserving survey on 400,000 records, is acceptable. We recall that this response time does
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ID Gen. Age Ethnicity ... Salary
P1 F 40 : 50 Caucasian ... EK (100,000)
P2 M 40 : 50 Caucasian ... EK (10,500)
P3 M 30 : 40 Asian ... EK (10,000)
P4 F 30 : 40 Asian ... EK (100,500)

Table 3.2 – Proposed database structure. In this specific example, gender, age and ethnicity are
non-sensitive filtering attributes and are therefore left in clear. To reduce the risk of identity
disclosure, the table values are generalized to satisfy k-anonymity with k = 2 for the quasi-
identifiers age, gender and ethnicity. Salary is a sensitive attribute and is therefore encrypted
under the CA’s public key K

not include Steps 0, 1, 2 and 8, as explained in Section 3.6. In this specific case, if we assume

that (1) DPs machines have the same settings as the computing nodes described in Section

3.6, (2) data are encrypted beforehand and (3) DPs respond all at the same time, then the time

to transmit these data (Step 2) is around 0.4 seconds. This time depends exclusively on the

communication link between the computing nodes and DPs and on the amount of data to be

sent.

In conclusion, if we assume that the filtering attributes, namely age, gender and ethnicity are

stored in clear, protected by anonymization techniques and that the proofs of correctness are

not executed, then UNLYNX’s response time is reduced to 0.4 seconds.

3.8 Conclusion

UNLYNX is a modular decentralized system for privacy-preserving data sharing among multi-

ple data providers. Specifically, we enable a querier to obtain aggregate statistics for different

grouping criteria on a set of different databases. We achieve this through protocols that enable

a number of independent computing nodes to compute on distributed data sets and that

provide proofs of correctness of their work. We further build upon advances in several areas,

such as zero-knowledge proofs and verifiable shuffling, and we bring them all together into

UNLYNX, providing security and privacy guarantees against malicious behavior. Addition-

ally, by introducing a new protocol for distributed obfuscation of results, UNLYNX ensures (ε,

δ)-differential privacy for individuals sharing their data. The performance evaluation of our

prototype shows that it is efficient and almost linearly scalable with the amount of data to be

processed. We provide a realistic use case of a secure distributed survey.
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4.1 Introduction

Improving upon and using some techniques introduced in Chapter 3 (i.e., UNLYNX), we

propose DRYNX, an operational, decentralized and secure system that enables queriers to com-

pute statistical functions and to train and evaluate machine-learning models on data hosted

at different sources, i.e., on distributed datasets. DRYNX ensures data confidentiality, data

providers’ (DPs) privacy and protects individuals’ data from potential inferences stemming

from the release of end results, i.e., it ensures differential privacy. It also provides computation

correctness. Finally, it ensures that strong outliers, either maliciously or erroneously input

by DPs, cannot influence the results beyond a certain limit, and we denote this by results

robustness. DRYNX enables full and lightweight auditability of query execution by relying on

a new efficient distributed solution for storing and probabilistically verifying proofs. These

guarantees are ensured in a strong adversarial model where no entity has to be individually

trusted and a fraction of the system’s entities can be malicious. DRYNX relies on interactive

protocols, homomorphic encryption, zero-knowledge proofs of correctness and distributed

differential privacy. It is scalable, dynamic and modular: Any entity can leave or join the

system at any time and DRYNX offers security features or properties that can be enforced

depending on the application, e.g., differential privacy.

4.1.1 Use Cases

Throughout this chapter, we illustrate DRYNX’s utility in the medical sector, as it is a paradig-

matic example where privacy is paramount and data sharing is needed. Recently, multiple

initiatives have emerged to realize the promise of personalized medicine and to address the

challenges posed by the increasing digitalization of medical data [97; 216; 227]. In this context,

the ability to share highly sensitive medical data while protecting patients’ privacy is becoming

of primary importance. We illustrate the possible use of DRYNX in two specific settings that

cover most medical data sharing scenarios: (1) Hospital Data Sharing (HDS), where multiple

hospitals enable statistical computations and the training of machine-learning models across
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their datasets of patients (e.g., [108; 227]), and (2) Personal Data Sharing (PDS), where a

medical institute runs studies, e.g., on heart issues, by directly computing on data collected

from people’s wearables (e.g., [11; 184]).

In this chapter, we make the following contributions:

• We propose DRYNX, an efficient, modular and parallel system that enables privacy-

preserving statistical queries and the training and evaluation of machine-learning re-

gression models on distributed datasets.

• We present a system that provides data confidentiality and individuals’ privacy, even

in the presence of a strong adversary. It ensures the correctness of the computations,

protects data providers’ privacy and guarantees robustness of query results.

• We propose techniques that enable full and lightweight auditability of query execution.

DRYNX relies on a new efficient distributed solution for storing and verifying proofs

of query validity, computation correctness, and input data ranges. We exemplify and

evaluate the implementation of this solution by using a blockchain.

• We propose and implement an efficient, modular and multi-functionality query-execution

pipeline by

– introducing Collective Tree Obfuscation, a new distributed protocol that enables a

collective and verifiable obfuscation of encrypted data;

– presenting multiple data-encoding techniques that enable distributed compu-

tations of advanced statistics on homomorphically encrypted data. We propose

new encodings, and improvements and adaptations of previously introduced

private-aggregation encodings to our framework and security model;

– adapting an existing zero-knowledge scheme for input-range validation to our

security model;

– proposing a new construction of the key switch protocol (see Section 3.3.2.4)

introduced in Chapter 3, improving both its performance and capabilities.

To the best of our knowledge, DRYNX is the only operational system that provides the afore-

mentioned security and privacy guarantees. DRYNX implementation is fully available at

www.github.com/ldsec/drynx.

Acknowledgements. This work is the result of a collaboration with Dr. Juan R. Troncoso-

Pastoriza, Joao Sa Sousa, and Prof. Jean-Pierre Hubaux. We also thank Dr. Henry Corrigan-

Gibbs for his valuable feedback and the members of the DeDiS lab for their help with software

engineering.
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4.2 System Overview

In this section, we describe the system and threat models, before presenting DRYNX’s func-

tionality and security requirements.

4.2.1 System Model

The system model is represented in Figure 4.1. For simplicity, we describe here the logical

roles in DRYNX, and in Section 4.6 we discuss the fact that a physical node can simultaneously

play multiple roles. A querier Q can execute a statistical query and the training and evaluation

Figure 4.1 – A querier Q, Data Providers DPi , Computing Nodes C Ni and Verifying Nodes
V Ni .

of a machine-learning model on distributed datasets held by DPs. The CNs collectively handle

the computations in the system; i.e., from Q’s perspective, they emulate a central server and

provide answers to her queries. The verifying nodes’ (VNs) role is to provide auditability; they

collectively verify the query execution and immutably store the corresponding proofs. They

enable an auditor, e.g., Q or an external entity, to easily verify (audit) the correctness of the

query execution.

In DRYNX’s typical workflow, the query is defined by the querier Q and is then broadcast to

the CNs and DPs. The DPs answer with their encrypted responses that are then collectively

aggregated and processed by the CNs, before the result is sent to Q. As in Chapter 3, we assume

that the used data formats are sufficiently homogeneous among different DPs and that the

DPs are able to interpret the queries, e.g., there is a common ontology of attributes and the

query-language is agreed-on during system setup.

An exemplifying instantiation of this system model in the HDS scenario (Section 4.1.1) would

feature the CNs as universities that want to enable researchers (Q) to compute on data held by

multiple hospitals (DPs). VNs can be independent or governmental institutions ensuring that

data protection regulations are respected.

We assume that the system’s topology and public information, e.g., public keys, are known by

all entities. Authentication and authorization are out of scope of this chapter and we briefly

discuss them in Section 4.6.
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4.2.2 Threat Model

We assume a stronger threat model than in Chapter 3 as the DPs can be malicious, when we

assume them to be honest-but-curious in Chapter 3. More specifically:

• Queriers. They are considered malicious as they can try to infer information about the

DPs from the queries end results or by colluding with other entities in the system.

• Computing Nodes. We consider an Anytrust model [246], which means that all DRYNX’s

security and privacy guarantees (Section 4.2.4) are ensured, as long as at least one of the

CNs is honest-but-curious (or plain honest).

• Data Providers. The DPs are considered malicious as they can try to produce an incorrect

answer to a query in order to bias the final results. They can also collude with other

nodes to infer information about other DPs or about a query end-results.

• Verifying Nodes. We assume that a threshold number of the VNs is honest. This threshold,

e.g., fh = 2 f +1 out of ft = 3 f +1, where ft is the number of VNs, is defined depending

on the consensus algorithm [40; 256] that is used to ensure a correct and immutable

storage of the proofs’ verification results.

4.2.3 Functional Requirements

DRYNX enables the computation on distributed datasets of any operation in the family of

encodable operations. An encodable operation can be separated in two parts: the DPs’ local

computations and the collective aggregation. In the collective part, the computations are

executed on encrypted data and are thus limited by the homomorphism in the used cryp-

tographic scheme, e.g., additions and/or multiplications. DPs’ computations are executed

locally and are therefore not limited.

Definition 1. An encodable operation f computed among |S| DPs is defined by:

f (r̄ ) ≡π({ρ(r̄i )}|S|i=1),

in which the encoding ρ is defined by

ρ(r̄i ) ≡ (Vi,ci ),

where Vi = [vi ,1, ..., vi ,d ] is a vector of d values computed on a set of ci = |r̄i | records, where

|.| stands for cardinality. r̄ is the set of all distributed datasets’ records, r̄i is the set of records

that belong to DPi , and π is a polynomial combination of the outputs of the encodings ρ. The

encodings are defined as locally computed functions on the subsets (r̄i ) of each DPi . It is also

possible to express an encodable operation as a recursive function:

fk (r̄ ) ≡π({ρ(r̄i , fk−1(r̄ ))}|S|i=1).
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In DRYNX, for any specific operation f , each DPi creates an encoding ρ computed on its set of

records r̄i . Then, π is executed in two parts: the CNs first aggregate all DPs’ encodings outputs

(
∑|S|

i=1{ρ(r̄i )}) and, if needed, the querier post-processes π on the aggregated result (e.g, if π

involves information-preserving operations not executable by the CNs under homomorphic

encryption).

We give here an instantiation of Definition 1 that enables the computation of the average,

and in Section 4.5 we show how an encoding can be instantiated to enable the computa-

tion of: sum, count, frequency count, average, variance, standard deviation, cosine
similarity, min/max, AND/OR and set intersection/union, and the training and evalu-

ation of linear and logistic regression models.

For example, if Q wants to compute the average ( f ) heart rate over multiple patients across

hospitals (HDS (Section 4.1.1)), each hospital (DPi ) answers with the encoding of its (en-

crypted) local sum of each patient’s heart rate (h): ρ(r̄i ) ≡ ([
∑ci

j=1 hi , j ],ci ). These encodings

are then (homomorphically) added across all hospitals, and Q can (decrypt and) compute

the global average by using π=∑|S|
i=1 vi ,1/

∑|S|
i=1 ci . We remark here that whereas ρ and π are

application dependent, the workflow is common to all the possible operations.

Finally, in DRYNX, an auditor can efficiently audit a query execution. Moreover, the proofs

required for auditability are produced such that their creation does not affect the query

runtime.

4.2.4 Security Requirements

DRYNX must ensure:

• Data confidentiality. The data input by the DPs have to remain confidential at any time.

Only Q is able to see the query answer.

• DPs’ privacy. No entity is able to infer information about one single DP or about any

individual storing his data in a DP’s database.

• Query Execution Correctness. We consider the query execution to be correct when both

results robustness and computation correctness requirements are met:

– Results robustness. The query results are protected against strong outliers, either

maliciously or erroneously input by the DPs.

– Computation correctness. Any computation undertaken by the CNs is correctly

executed.

4.3 Drynx Design

To overcome the limitations in existing works and meet the requirements presented in the

previous section, we propose a novel system model in which we enable query auditability by
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introducing VNs. Additionally, DRYNX provides multiple functionalities in a stronger threat

model by relying on DPs that encode locally computed results proven to be within a certain

range before aggregating their results under additive homomorphic encryption. It limits the

trust in DPs by controlling that their results are in these pre-defined ranges. We propose a

system that remains generic and practical while operating in a threat model stronger than

existing works. We discuss now the design of this system.

In DRYNX’s Security Design (Section 4.3.1), we show how we build DRYNX to meet all its security

requirements:

• In Section 4.3.1.1, we introduce a simple query-execution pipeline enabling DRYNX’s

functionalities and protecting data confidentiality.

• In Section 4.3.1.2, we build upon the previously introduced query-execution pipeline

and explain how to ensure DPs’ privacy by introducing the new concept of a neutral

encoding. This enables a DP to privately choose whether to answer a query. We also

explain how DRYNX handles bit-wise operations and maintains DPs’ privacy. Finally,

we introduce distributed differential privacy that is used to ensure that no entity infers

information about a single DP or individual from the query end results.

• In Section 4.3.1.3, we show how we provide auditability in an efficient way by relying

on a set of VNs. We describe how DRYNX ensures results robustness by leveraging on

range proofs and how all DRYNX’s computations can be verified by relying on proofs of

correctness.

In DRYNX’s Optimized Design (Section 4.3.2), we discuss how to optimize DRYNX’s performance:

• In Section 4.3.2.1, we present DRYNX’s full query-execution pipeline. We show how

multiple parts of the query execution and verification can be run concurrently thus

optimize DRYNX’s runtime.

• In Section 4.3.2.2, we introduce a tradeoff between security and performance by enabling

a probabilistic verification of the query execution.

4.3.1 Drynx Security Design

We present DRYNX core security architecture.

4.3.1.1 Data Confidentiality

First, we introduce a confidential distributed data-sharing system (Figure 4.2) that can run the

same operations as DRYNX, but only meets one of the security requirements: data confiden-

tiality.
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We describe the query execution protocol, and sketch the proof of confidentiality for this

system. Afterwards, we describe how to enhance this construction to meet DRYNX’s other

security requirements without breaking data confidentiality.

Figure 4.2 – Confidential System Query Execution.

1. Initialization. Each C Ni ,DPi and Qi generates its own private-public key-pair (ki ,Ki ).

The CNs’ public keys are then summed up in order to create K , the CNs’ public collective

key that is used to encrypt all the processed data.

2. Query. Q formulates the query that is broadcast in clear through the CNs to the DPs.

Although the querier could directly communicate with the DPs, our choice simplifies

the communication scheme and the synchronisation inside the system, as the CNs

have to know the query and receive the DPs inputs to perform the computations in the

remaining steps. The query defines the operation, the attributes on which the operation

is computed, the participating DPs and (optionally) the filtering conditions. DRYNX

works independently of the query language. We illustrate its use with a SQL-like query

to compute the average heart rate among patients for which data are held by |S| DPs:

SELECT average hear t_r ate ON DP1, ..., DP|S|
WHERE pati ent_st ate = ′hy per tensi ve ′

3. Retrieval & Encoding. The DPs compute their local answer by following ρ which is

defined in the operation encoding (Definition 1). For this purpose, they first locally

retrieve the corresponding data.

4. Encryption. The DPs encrypt their encoded answer under K and send the corresponding

ciphertexts back to the CNs.

5. Collective Tree Aggregation (C T A). The CNs collectively aggregate, under additive ho-

momorphic encryption, all DPs’ responses by executing a C T A protocol relying on the

Collective Tree Aggregation protocol defined in Chapter 3 (Section 3.3.2.2). The CNs are
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organized into a tree structure such that each CN waits to receive the aggregation results

from its children and sums them up before passing the result on to its own parent.

6. Collective Tree Key Switching (C T K S). The CNs collectively convert the aggregated result,

encrypted under K , to the same result encrypted under Q’s public key K ′, without ever

decrypting. This protocol (Protocol 4.1) is a new construction of the Key Switching

proposed in Chapter 3. Conceptually, each CN partially decrypts m (i.e., the term

−(C1)ki in the computation in step 2) and re-encrypts it with Q’s public key K ′ (i.e., the

term +αi K ′ in step 2).

Protocol 4.1 Collective Tree Key Switching (CTKS)

Input. EK (m) = (C1, C2) = (r B ,mB + r K ), K ′

Output. EK ′ (m) = (C ′
1,C ′

2) = (r ′B ,mB + r ′K ′)

Protocol.

1. The root C N1 sends C1 down the tree to all CNs.

2. Each C Ni generates a secret uniformly-random nonce αi and computes wi ,1 =αi B and

wi ,2 =−(C1)ki +αi K ′

3. The CNs collectively aggregate (i.e., using C T A) all the wi ,1 and wi ,2.

4. C N1 finally computes (C ′
1,C ′

2) = (
∑

wi ,1,C2 +∑
wi ,2) = (r ′B ,mB + r ′K ′) where r ′ =∑

αi .

In Protocol 4.1, we improve the efficiency of the corresponding protocol introduced in

Chapter 3 (Section 3.3.2.4) by changing the way the ciphertexts are transformed and by

organizing the CNs in a tree structure, thus reducing its execution time. In this structure,

multiple CNs can perform their local operations (3 scalar multiplications and 1 addition)

in parallel, and the C T A requires #C N −1 aggregations and communications between

the nodes. We show the computational complexity of all DRYNX protocols in Table 4.2.

7. Decryption. Q decrypts and decodes the query results.

Security Arguments. We show that, as long as one CN is honest, an adversary who controls

the remaining CNs, DPs and Q cannot break data confidentiality. Without loss of generality,

we assume that at least one DP is honest, as only in this case there is data to protect from the

adversary. We sketch the proof by relying on the real/ideal simulation paradigm [139] and

show that an adversary cannot distinguish a “real” world experiment, in which the adversary

is given “real” data (sent by honest DPs), and an “ideal” world experiment, in which the

adversary is given data (e.g., random) generated by a simulator. It can be shown that the

DPs send encrypted data that are never decrypted before being aggregated and re-encrypted

(C T K S) under Q’s public key. Therefore, due to the cryptosystem’s semantic security, the

adversary cannot distinguish between a simulation and a real experiment. It can be seen that

data confidentiality is thus ensured during end-to-end query execution:
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In Retrieval & Encoding, the DPs operate only on their local data and no external data is seen

by any malicious party. In Encryption, the DPs encrypt their responses with K and these

responses are aggregated, still under encryption, in C T A. The (summed) ciphertexts cannot

be decrypted unless all CNs collude, which is not possible as they follow an Anytrust model.

Finally, in C T K S (Protocol 4.1), a ciphertext is switched from K to Q’s public key such that Q

can decrypt:

• in C T K S Steps: 1-3. The ciphertext is encrypted under K and thus cannot be decrypted

without the collusion of all CNs.

• in C T K S Step: 4. The ciphertext is always (C̃1,C̃2) = (r̃ B ,mB + r̃ K ′) where r̃ =∑t
i=0αi and

0 ≤ t ≤ #C N and can only be decrypted if the t CNs collude with Q, who is the intended

recipient of the message.

4.3.1.2 DPs’ Privacy

As mentioned before, we now build on top of the query-execution pipeline (see Figure 4.2)

proposed in the previous section. In this section, we explain how to ensure DPs’ privacy.

DRYNX complete query-execution is shown later in Figure 4.4. DRYNX protects DPs’ and

individuals’ privacy by ensuring that (a) each DP can privately decide whether to answer a

query, (b) only the result of the operation, as defined by the operation encoding, is disclosed

to Q, and (c) no entity can infer information about a single DP or individual.

Neutral Response. If a DP determines that a query can jeopardize its privacy, it can choose to

not respond, or answer with a neutral response, thus hiding its refusal to participate in the

query without distorting the query results. For this purpose we define neutral response:

Definition 2. A DPi sends a neutral response by defining its response encoding (Definition 1)

by ρ(r̄i ) ≡ (O,0), where O is the neutral vector such that W+O = W with W being any encoding

vector; ci = 0 as DPi computes on 0 records.

In Section 4.5, we describe how a neutral response can be generated for each listed encoding.

Security Arguments. A DP not answering a query would suggest (leak) to other entities that

this query is too sensitive for it. DPs’ responses are always encrypted and, due to the indistin-

guishability property of the underlying cryptosystem, a neutral response is indistinguishable

from a non-neutral one, thus effectively hiding the DP’s refusal.

Privacy-Preserving Bit-wise Operations. In DRYNX, DPs’ responses are summed through the

available additive homomorphism; if these responses are binary, the result of the sum can

leak to Q more than the operation result. For example, when an OR operation is executed over

a set of DPs, Q should only know if the answer is tr ue (1) or f al se (0). Nevertheless, if the

DPs’ responses are naively summed, Q gets the number of DPs that answered ‘1’ and ‘0’. To

overcome this issue, we propose the Collective Tree Obfuscation (C T O) protocol, detailed in

Protocol 4.2. For bit-wise operations, C T O is run between steps C T A and C T K S of the query
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execution. In C T O, the CNs collectively obfuscate a ciphertext by multiplying it with a random

secret.

C T O enables privacy-preserving bit-wise operations in DRYNX as a ‘1’ is obfuscated to a

random value whereas ‘0’ is preserved. To know the result of the operation, Q only checks if

the final value is ‘0’ or not.

Protocol 4.2 Collective Tree Obfuscation (CTO)

Input. EK (m) = (C1, C2) = (r B ,mB + r K )

Output. EK (sm) = (sr B , smB + sr K )

Protocol.

1. Root C N1 sends (C1, C2) down the tree to all CNs.

2. Each C Ni generates a secret uniformly random nonce si and computes (Ĉi ,1,Ĉi ,2) = si · (C1, C2)

3. The CNs collectively aggregate (i.e., using C T A) all the (Ĉi ,1,Ĉi ,2).

4. C N1 obtains EK (sm) = s · (C1, C2) where s =∑
si .

Security Arguments. Protocol 4.2 does not hinder the confidentiality of m and indeed oblivi-

ously and statistically obfuscates m. The confidentiality relies on the cryptosystem’s semantic

security, as m remains encrypted during the whole protocol execution. A multiplicative

blinding of m in Zp is defined by s ·m, where s is a secret scalar value in Zp . The output of

the C T O protocol is the encryption of (
∑

si ) ·m. We can rewrite (
∑

si ) ·m by separating the

contributions of the honest CNs h (at least one CN due to our Anytrust model assumption)

and malicious CNs e: (
∑

i∈h si +∑
i∈e si ) ·m = (

∑
i∈h si ) ·m + (

∑
i∈e si ) ·m. Even if an adversary

knows (
∑

i∈e si ) ·m, the other term (
∑

i∈h si ) ·m ensures a multiplicative blinding of m in Zp .

Distributed Differential Privacy. DRYNX relies on the Collective Differential Privacy (C DP )

Protocol 4.3 Collective Differential Privacy (CDP)

Input. ε (defined in Section 1.5), ∆ f : query sensitivity, and θ: quanta

Output. EK (n̂1, ..., n̂l̃ )

Initialization

1. The distribution LD = Lapl ace(0, ∆ f /ε) is publicly agreed on.

2. LD is publicly sampled, using the quanta θ, to a list of l̃ noise values ñ1, ..., ñl̃ .

Protocol.

1. Each CN privately and sequentially shuffles ñ1, ..., ñl̃ , producing EK (n̂1, ..., n̂l̃ ).

2. First elements of EK (n̂1, ..., n̂l̃ ) are used as oblivious noise values and added to the query result.

protocol, introduced in Chapter 3, to ensure differential privacy, and prevent information

inference about some DPs and/or individuals from the query results. We briefly recall here the
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main steps of the protocol and show in Figure 4.4 where this protocol is integrated in DRYNX’s

complete workflow. The choice of parameters depends on the application’s privacy policy and

is out of the scope of this paper.

Security Arguments. As detailed in Chapter 3, we observe that the list of noise values is verifiably

generated from the differential privacy parameters and that all the CNs privately shuffle the

values.

4.3.1.3 Query Execution Correctness

We first describe how DRYNX provides auditability by enabling an efficient verification of the

query execution correctness. The latter is achieved by guaranteeing results robustness and

computation correctness. The first is ensured by limiting the DPs’ values to be in a specific

range (by means of range proofs) and the second by using ZKPs for all the CNs computations.

Auditability. To provide an efficient solution for the query verification, DRYNX relies on a

set of VNs that verify the query correctness in parallel to its execution and without affecting

its runtime. After each operation, Q, the CNs and DPs create proofs of correct computations

or value range that they sign with their private key (to provide authentication). Their signed

proofs are sent to all the VNs. This enables an efficient query execution as the proof creation

and verification are executed independently from it.

In order to implement this solution, we can rely on the distributed architecture of the VNs

and can provide integrity and immutability by using a blockchain, i.e., the proof blockchain.

This enables the public and immutable storage of both the query and its verification results.

Moreover, it enables an efficient and lightweight verification of the query correctness. An

auditor, e.g., Q, has only to request the block corresponding to the query, to verify the VNs

signatures and to check the query verification results. We detail this in Protocol 4.4 and show

an example of the proof blockchain in Figure 4.3.
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Protocol 4.4 Query Verification

Query

Q:

1. Q signs and broadcasts the query to the VNs.

VNs:

1. Each VN verifies Q’s signature.

2. Each VN deterministically derives the list of expected proofs for the query. It initializes a query-

proofs map that stores the result of the verification for each proof: true, false, not received
(before a predefined timeout).

Query Execution.

DP or CN:

1. A DP or CN executes an operation, then creates, signs and sends the corresponding proof to the

VNs.

VNs:

1. Each VN verifies the prover’s signature.

2. Each VN verifies the proof and stores the result in its query-proofs map.

3. Each VN stores the proof in its local (key, value)-database. The key is uniquely and deterministi-

cally derived from the query, the prover’s ID and the proof type.

End of Query Execution (or timeout).

VNs:

1. One of the VNs (e.g., chosen in a round-robin fashion) gathers all VNs’ query-proofs maps.

2. The same VN creates a block containing the Query Unique ID, the Query and all the query-proofs

maps.

3. The block is sent around such that each VN checks that its query-proofs map and the query are

correctly saved. If this is the case, the VN signs the block.

4. The VNs run a consensus algorithm such that a block signed by a threshold fh of VNs is consis-

tently added to the blockchain. Each VN keeps a local copy of the blockchain.

Figure 4.3 – Proof blockchain. Each block contains Query ID and content, and each VN’s
query-proofs map. RP stands for range proof.

56



4.3. Drynx Design

Security Arguments. If an entity trusts a threshold fh of the VNs, it can verify the query correct

execution by checking the corresponding block in the proof blockchain. The verifier can check

that fh nodes agree on the correctness of the proofs. A block is created for every query, even if

the proofs are wrong, thus enabling any entity to determine which parties were involved in

incorrectly computed queries. Otherwise, as all the proofs are universally verifiable and stored

by all VNs, an auditor, not trusting fh of the VNs, can request the proofs from a subset of them

and check the proofs by itself.

Results Robustness. If the querier defines a query with range boundaries on the DPs’ values,

the DPs are requested to create proofs of range by following the algorithm detailed in Algorithm

4.1. For example, the DPs’ inputs for a statistical query on human height can be limited to

the centimeters range [30,250]. This algorithm is built by adapting the [0,ul )-range proof

scheme proposed by Camenisch et al. [37] to the Anytrust model. In this algorithm, the prover,

i.e., DP, writes its secret value m in base-u and commits to the u-ary digits by using the C Ni s’

signatures on these digits (Ai ,b in Algorithm 4.1). The l created commitments complete the

proof. To adapt this algorithm to the Anytrust model, the DP must compute multiple proof

elements, i.e., c, Vi , j , ai , j , by combining all CNs’ signatures, i.e., Zi , Ai ,b . This ensures that

the DP uses at least one CN’s signature for which it does not know the underlying secret. The

same transformation in [37] can be applied to generalize the proof to any range [bl ,bu).

Security Arguments. Both the correctness and the zero-knowledge property of the range proof

are proven by Camenisch et al. [37].

Algorithm 4.1 Input Range Validation in Anytrust Model

A DP proves that its secret m ∈ [0,ul ), where u and l are two integers. C2 = mB + rΩ corresponds to the
right part of EΩ(m)= (C1,C2). B is the Elliptic-Curve base point, e() is a pairing function (bilinear map
[37]) on an Elliptic Curve and H is a hash function.
Initialization:

1: Each C Ni picks a random xi ∈Zp and computes Zi ← B xi , Ai ,b ← B(xi +b)−1 ∀b ∈Zu .
2: All Zi and Ai ,b are made public.

Proof Creation:

1: DP computes value c = H(B ,C2,
∑

i Zi ) and
2: for each j ∈Zl such that m =∑

j m j u j do
3: Pick three uniformly-random values s j , t j , v j ∈Zp

4: for each computing node C Ni do
5: Vi , j = Ai ,m j v j

6: ai , j ←−s j ·e(Vi , j ,B)+ t j ·e(B ,B)
7: end for
8: zv j ← t j − v j c (mod p) and zm j ← s j −m j c (mod p)
9: end for

10: DP picks n ∈Zp and computes zr = n − r c (mod p) and D ←∑
j Bu j s j +Ωn

11: DP publishes pr oo f = {C2,c, zr , zv j , zm j ,D, ai , j ,Vi , j } ∀ j ∈Zl and ∀i ∈ {1, ...,#C N }.

Proof Verification:

1: Any entity can check that:
D = C2c +Ωzr +∑

j Bu j zm j and ai , j = e(Vi , j , Zi )c − zm j · e(Vi , j ,B)+ zv j · e(B ,B), ∀ j ∈ Zl and ∀i ∈
{1, ..., |C N |}.
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These proofs are universally verifiable and sound in the Anytrust model. The latter comes from

the fact that the elements depending on the CNs’ secrets xi are computed as a combination of

all their public signatures. As at least one C Ni is honest-but-curious, one of the xi is unknown

(not revealed) to the DP (prover).

Computation Correctness. In order to ensure the correctness of the query execution, each

computation executed by a CN has to be proven correct.

• Collective Tree Aggregation. The CNs provide to-be-aggregated input ciphertexts and the

resulting ciphertexts that constitute the ZKP.

• Collective Tree Obfuscation. The CNs produce an obfuscation proof by relying on Expression

(1.1) in Section 1.2. Each C Ni multiplies C by si to obtain the obfuscated ciphertext (C ′
1,C ′

2)

with (a) C ′
1 = si C1 and (b) C ′

2 = si C2. For both equations, y1 = si is the discrete logarithm; we

have the public values A =C ′
1, A1 =C1 for (a) and A =C ′

2, A1 =C2 for (b), which constitute

the proof.

• Collective Differential Privacy. In this protocol, each CN sequentially executes a Neff shuffle

and produces the corresponding ZKP of correctness described in Section 1.3. This proof

basically contains the input and output lists, the public key encrypting the ciphertexts, and

commitment values.

• Collective Tree Key Switching. The CNs create the ZKP by applying Equation (1.1) in Section

1.2, in which we have y1 = ki , y2 =αi , the discrete logarithms of ki B = Ki and αi B , respec-

tively. All points Ki , αi B , A = wi ,2, A1 =−r B and A2 = K ′ are made public and do not leak

any information about the underlying secrets.

Security Arguments. We rely on proofs that are universally verifiable and zero-knowledge.

They do not affect data confidentiality beyond what can be inferred from the proven facts

themselves.

4.3.2 Drynx Optimized Design

We present DRYNX’s final query execution pipeline, before describing how the query verifica-

tion’s performance can be optimized.

4.3.2.1 Full Query Execution Pipeline

We show DRYNX’s full pipeline in Figure 4.4. Query execution and verification are executed

concurrently and multiple steps of the query execution can be executed in parallel. The CNs

aggregate each DP’s response in C T A, as soon as they receive it. The noise generated from the

C DP has to be added after all the results have been aggregated. However, if the differential

privacy parameters are predefined, this protocol can be executed independently from the

other steps or even pre-computed.
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4.3. Drynx Design

Figure 4.4 – DRYNX’s complete optimized query-execution. Arrows represent causal links.
Steps without direct links can be executed independently and dashed steps are optional.

4.3.2.2 Probabilistic Query Verification

To improve the performance of the query verification, we enable a probabilistic verification of

the proofs by the VNs. We show that this strategy still enables a verifier to detect a misbehaving

entity with a high probability, yet considerably improves performance (see Section 4.7). A proof

for a specific operation (e.g., C T K S for a set of ciphertexts S) can have multiple sub-proofs

(e.g., C T K S for one ciphertext C ∈ S). One proof is considered incorrect if one or more of the

sub-proofs is incorrect. We introduce the two thresholds T and Tsub that define the probability

of verifying a single proof and a sub-proof, respectively. We modify the VNs’ operations in step

2 of the Query Execution described in Protocol 4.4, by adding this probabilistic verification

based on T and Tsub . Each VN stores all the proof it receives. It then generates a random value

r ∈ [0,1]; if r < T , it starts the probabilistic verification of the sub-proofs. For each sub-proof,

the same method is applied, using Tsub .

Security Arguments. The probabilistic verification of each proof is redundantly done by each

VN. A proof is verified with a probability pver = 1− (1−T )NV N , where NV N is the number of

VNs, and a sub-proof with a probability pversub = 1− ((1−T )+T (1−Tsub))NV N . The probability

that a proof or a sub-proof is verified by at least fh nodes is

P fh =
NV N∑
i= fh

(NV N
i

)
p i (1−p)NV N−i ,

where p is either pver (for a proof ) or pversub (for a sub-proof ). For example, if NV N = 7, T = 1

and Tsub = 0.3, all the proofs are at least partially verified and each sub-proof is verified by

fh = 5 VNs with P fh = 98.48%. Each sub-proof is thus verified by at least fh of the VNs with a

high probability. Due to the honesty assumption, a sub-proof is at least verified by one honest

VN with a high probability. Moreover, the thresholds T and Tsub can be set to arbitrarily reduce

the probability that one sub-proof is not verified by at least one honest node. Therefore, if

all the VNs that participated in the verification agree on the result, the auditor knows the

proof is correct, otherwise it can either choose to only trust some of the VNs or fetch all proofs
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and verify them itself, as all the proofs are universally verifiable. For example, an auditor can

choose to verify only the proofs that were not checked by any of the VNs she trusts.

4.4 Security Analysis

We employed only existing, peer-reviewed cryptographic schemes and discussed the com-

posability of the security of the different blocks in previous sections. In other words, we first

discussed the security of DRYNX’s simple query-execution pipeline (Figure 4.2) in Section

4.3.1.1 and then explained how we built on top of and integrated new features (Sections

4.3.1.2, 4.3.1.3 and 4.3.2.2) in this pipeline without hindering its security. We corroborate these

arguments with a brief summary of the security analysis.

• Data confidentiality. In Section 4.3.1.1, we sketched the proof for confidentiality in

our simplified system and discussed in Section 4.3.1 how further design choices do

not hinder confidentiality. In summary, data confidentiality is ensured as the data are

always encrypted and no operation, e.g., Z K P creation, affects it.

• DPs’ privacy. DPs can privately decide whether to answer a query, and differential

privacy is ensured for the DPs and individuals, which protects them from potential

inferences stemming from the release of end results. The latter is ensured in DRYNX by

blindly adding noise, sampled from a specific distribution, to the query end results. As

described in Section 4.3.1.2, this noise can be verified to be from a specific distribution

(e.g., Laplacian) and no entity knows which noise value is added.

• Results robustness. This is ensured as all DPs’ values can be verified to be within a certain

range and all CNs’ computations must be proven correct, as depicted in Section 4.3.1.3.

By enforcing the generation of range proofs by DPs, we protect against strong outliers,

maliciously or erroneously input, which can significantly distort the query results. DPs

can still input incorrect values, but their influence on the final result is limited. We give

an intuition on how robust a computation is against such behavior in Section 4.7.2.

• Computation correctness. The proofs of correct computations (Section 4.3.1.3) ensure

that the DPs’ answers are correctly aggregated (C T A) and that the remaining steps

(C T O, C T K S, C DP ) are correctly executed.

4.5 Encodings

We present a set of statistical computations that can be executed in DRYNX. We then explain

how to instantiate encodings (Definition 1) for the training of both linear and logistic regression

machine-learning models. We adapt the logistic regression solution, proposed by Aono et

al. [10], to our framework, thus enabling Q to train this model in a verifiable and privacy-

preserving way, even in the presence of a strong adversary. Some of the encodings are adapted

from the Corrigan-Gibbs and Boneh [52] system and improved upon.
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Numerical Statistics. Table 4.1 lists a set of simple statistics that can be performed with

DRYNX. The sum, mean, variance, std. deviation, cosine similarity (cosim) and R2

operations are executed by requiring the DPs to send the results of their local and partial

statistic computations. As an example, for variance, each DPi locally computes the sum of

the values (records) h j that match the query, (
∑ci

j=1 h j ) where ci is DPi ’s dataset cardinality,

the square of those same values (
∑ci

j=1 h2
j ) and generates ρ(r̄i ) = ([

∑ci

j=1 h j ,
∑ci

j=1 h2
j ],ci ). These

values are independently aggregated among all DPs and the overall variance is computed by Q,

after decryption, using the corresponding π (defined in Table 4.1). For the frequency count,

DPs are expected to send the vector Vi filled with the number of occurrences ( f c) for specific

values. The cosine similarity is computed between two vectors φ and φ̄, where each DPi

holds a subset of the coefficients of each vector.

Operat. ( f ) π (on |S| DPs) ρ

(Vi=[vi ,1,...,vi ,d ],ci )
sum ∑|S|

i=1 vi ,1 ([∑ci
j=1 h j ], ci )

mean
∑|S|

i=1 vi ,1∑|S|
i=1 ci

([∑ci
j=1 h j ], ci )

variance σ2 =
∑|S|

i=1 vi ,2∑|S|
i=1 ci

− (
∑|S|

i=1 vi ,1∑|S|
i=1 ci

)2 ([∑ci
j=1 h j ,

∑ci
j=1 h2

j ],

std. dev. σ=
p
σ2 ci )

AN D/OR
∑|S|

i=1 vi ,1
?=0 ([R j ],ci ) or ([b j ], ci )

min/max l/r m 6=0(∑|S|
i=1 vi ,1,..., ([R j ,1, ..., R j ,d ], ci )∑|S|

i=1 vi ,d ) or ([b j ,1, ..., b j ,d ], ci )
frequ. count ∑|S|

i=1 vi ,1,...,
∑|S|

i=1 vi ,d ([ f c j ,1, ..., f c j ,d ], ci )
set int/un ∑|S|

i=1 vi ,1,...,
∑|S|

i=1 vi ,d ([R j ,1, ..., R j ,d ], ci )
or ([b j ,1, ..., b j ,d ], ci )

cosim s(φ,φ)=
∑|S|

i=1 vi ,1√∑|S|
i=1 vi ,2

√∑|S|
i=1 vi ,3

([∑ci
j=1φ jφ j ,

∑ci
j=1φ

2
j ,

∑ci
j=1φ

2
j ], ci )

R2 1−
∑|S|

i=1 vi ,3

σ2 ([∑ci
j=1 y j ,

∑ci
j=1 y2

j∑ci
j=1(y j−ŷ j )2], ci )

Table 4.1 – Example set of encoding instantiations. All DPs encodings (ρ) are then aggregated
such that Q computes π at the end.

Bit-Wise Statistics. As depicted in Table 4.1, bit-wise operations can be executed in two ways:

Each DPi either (1) sends a random encrypted integer R or (2) sends an encrypted bit b. For

(1), in the OR (resp. AND) case, each DPi is requested to send an encrypted integer EK (Ri ),

where Ri = 0 if the input is 0 (resp. 1), and a random positive integer otherwise. The OR (resp.

AND) expression is tr ue (resp. f al se) if the sum
∑

Ri > 0. Q obtains the final result by testing if

the output is 0 or not. The result of this operation can be erroneous if
∑

Ri ≡ 0 mod(#G), or in

other words, if the order #G of the Elliptic Curve subgroup divides the sum of all DPs’ random

values. This happens only with a probability smaller than 1/(#G −1) (proof in Appendix B.1).

This probability is close to 0 as #G is much bigger than the decryptable plaintext values,

and can be further reduced by repeating the query. Alternatively, in (2) each DPi has to
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send bi , j = 0 or bi , j = 1 encrypted value. This eliminates the error probability but requires

more computations and proofs of correctness, as the DPs have to prove that their values are

in {0,1}, and a C T O protocol (Section 4.3.1.2) has to be executed to preserve privacy. The

min (resp. max) is computed by applying the or operation element-wise among vectors Vi.

Each DPi computes its local min (resp. max) mDPi in a specified range, e.g., [0:100], which is

represented by Vi = [bi ,0, ...,bi ,100]. Each bi , j > mDPi (resp. bi , j < mDPi ) is encoded with a ‘1’

(or random) and a ‘0’ otherwise. The min (resp. max) across all DPs corresponds to the leftmost

(resp. rightmost) position with a ‘1’ in the vector resulting from the OR operation. Similarly,

the set intersection (resp. union) is computed by using the AND (resp. OR) operation

element-wise on the vectors Vi.

Regression Models.

Linear Regressions. We assume a dataset distributed over the DPs with D features x1, ..., xD

and a label value y such that y ≈ c0 + c1 × x1 + c2 × x2 + ...+ cD × xD . DRYNX computes the

least-squares linear fit over all the DPs by building a system of D +1 equations that Q can use

in order to compute the linear regression coefficients c0,c1,c2, ...,cD :
n ∑

xµ,1 ... ∑
xµ,D∑

xµ,1
∑

x2
µ,1 ... ∑

xµ,1xµ,D

... ... ... ...∑
xµ,D

∑
xµ,1xµ,D ... ∑

x2
µ,D




c0

c1

...

cD

≈


∑

yµ∑
yµxµ,1

...∑
yµxµ,D

 (4.1)

where all the sums are between µ= 1 and µ=∑|S|
i=1 ci . Each DPi sends

∑ci

j=1 x j ,η,
∑ci

j=1 x j ,ηx j ,ζ,∑ci

j=1 y j ,
∑ci

j=1 y j x j ,η, ∀η,ζ ∈ {1,2, ...,D}, η 6= ζ.

Logistic Regressions. We consider again a dataset of n records (distributed among the DPs)

with a dimension D where each record x(µ) = (1, x(µ)
1 , · · · , x(µ)

D ) ∈ RD consists of D features and

an offset term of 1, and is associated with a label y (µ) ∈ {0,1}. The original logistic regression

cost function is

J (θ) = 1
n

∑n
µ=1

[
− y (µ) log(hθ(x(µ)))− (1− y (µ)) log(1−hθ(x(µ)))

]
+ l rθ,

where hθ(x) = 1/(1+exp(
∑D
η=0θηxη)) and l rθ = λ

2n

∑D
η=1θ

2
η, λ is the L2-regularization parame-

ter. J (θ) can be approximated by a linear function

Ja(θ) =
[

1
n

∑k
τ=1

∑D
r1,...,rτ=0 aτ(θrτ · · ·θrτ)Aτ,r1,...,rτ −a0

]
+LRθ,

by using the fact that log( 1
1+exp(x) ) ≈∑k

τ=0 aτxτ, where a0, a1, ..., ak can be chosen as the k +1

first coefficients of the Taylor expansion of log( 1
1+exp(x) ), or as the coefficients of the quadratic

approximation that minimizes the area between the original function and its approximation.

The Aτ,r1,··· ,rτ coefficients are defined by

Aτ,r1,··· ,rτ =
∑n
µ=1 a(µ)

τ,r1,··· ,rτ =
∑n
µ=1(y (µ) − y (µ)(−1)τ−1)(x(µ)

r1
· · ·x(µ)

rτ ),

where the a(µ)
τ,r1,··· ,rτ are computed and encrypted by the DPs before being collectively aggre-

gated by the CNs.
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Neutral Response. A neutral response for and and set intersection is O = [1, ...,1], and

O = [0, ...,0] for the other operations mentioned above.

Optimized and Iterative Encoding DRYNX can also be used in order to execute iterative pro-

cesses, e.g., a k-means algorithm. In this case, each iteration can simply be mapped to a query

sent to the system. An iterative process can also be used in order to optimize existing encod-

ings, such as the min and max. In their basic versions, these encodings rely on a d-bit vector in

which each bit represents a value in a predefined range of size d = |bu −bl |. This means that

each DP sends d ciphertexts. This process can be optimized by using a binary-search iterative

process as depicted in Protocol 4.5. In the Range Reduction step, each query only requires one

ciphertext per DP and reduces by half the range of possible answers. This step is repeated until

this range is reduced to a predefined size EL (i.e., entropy limit). It must be noted that the

execution of other iterative processes would work in a similar way: For example, for a k-means

algorithm [107], Q performs one iteration by executing one query that includes the centroids

in clear; the DPs then assign their points to the closest centroid before aggregating their points

by cluster; then, the same operation is repeated among all DPs by using DRYNX typical query

workflow and Q computes the new centroids. As in Protocol 4.5 and as described below, this

algorithm leaks the cleartext intermediate results. We do not address the problem of hiding

the revealed intermediate results, e.g, by using differential privacy, in this chapter.

Protocol 4.5 Iterative Process (max example)

Input. Query = max in r a = [bl ,bu] and EL

Output. Max value

Range Reduction:
1: while |r a| > EL do
2: Q sends SELECT OR (∃v ∈ [b (bl+bu )

2 c,bu]) ON DP1,..,DP|S|
3: if query returns tr ue then
4: r a = [b (bl+bu )

2 c,bu]
5: else
6: r a = [bl ,d (bl+bu )

2 e]
7: end if
8: end while

Final Step:
1: Q sends SELECT MAX [bl ,bu] ON DP1,...,DP|S|

Security Arguments. For all encoding and in each query, Q learns the elements of V (aggregated

over all DPs) and the (approximate) number of samples considered c, as defined by encoding.

For the iterative process, in the Range Reduction, the DPs’ answers remain confidential, but

the range is sent in clear in each query thus revealed to other entities. Q controls the size

of the range of possible values that is leaked by defining an entropy limit EL. In the final

step, the max query is privately executed on the remaining range. This provides a tradeoff

between performance and privacy (that we analyze in Section 4.7). The number of ciphertexts

is lowered to n = g +d d
2g e, g = blog2( d

EL )c as each query reduces by half the range of possible
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answers, which reduces the amount of computations and proofs by a factor d
n . For example, if

Q wants to know the DPs’ minimum value in [0,1000) with EL = 100, the workload is reduced

by a factor of 7.8 and the query leaks a range of 100 possible minimum values.

4.6 Discussion and Extensions

We illustrate multiple extensions for DRYNX by relying on our use cases, HDS and PDS (Section

4.1.1).

Modularity. DRYNX is highly modular and some of its security features can be enabled or

disabled, depending on the application. For example, if results robustness is not required,

input-range validation can be omitted without hindering DRYNX’s execution and the remaining

security guarantees are preserved. The same applies for DPs’ privacy features, e.g., differential

privacy.

For example, in HDS, each hospital (or DP) locally executes the query on multiple patient

records and the range proofs can be omitted if the range of possible values is too broad

or if the hospital is trusted to input correct values. Otherwise, the range boundaries have

to be set accordingly. In this case, the querier has to use her knowledge on the attributes

involved (e.g., age is between 0 and 150) and the information she has on the DPs’ data (e.g.,

DPs have a maximum of X data samples) to define the ranges. In PDS, the ranges for the

input values can be used to enforce tighter bounds (e.g., heart rate can only take values in

[40,100] beats-per-minute) as each DP has one data record.

DRYNX also enables the collective protection of data at rest by having DPs locally encrypt their

data with the CNs’ collective key K . This limits the flexibility of the system as DPs are then

required to pre-compute all necessary inputs (e.g., the square root of the values to enable

the computation of the variance) and the range proofs before entering the encrypted data

in their databases. It also requires a fixed set of CNs, as only they can operate with that

pre-encrypted data.

As mentioned before, DRYNX’s primary goal is to guarantee DPs’ privacy and still enable the

queriers to obtain the results of computations performed over multiple databases. For this,

DRYNX enables optional security and privacy features, such as differential privacy. These fea-

tures can be enabled or disabled depending on the application requirements, hence enabling

multiple trade-offs between security and privacy, performance and accuracy (see below).

Collusion Resistance. Each participant can play multiple roles without hindering DRYNX’s

security. For example, in HDS, a hospital can be a DP and also play the role of a CN, to ensure

its data confidentiality without having to trust any other hospital. It can also be a VN thus take

part in the verification process.

Availability. DRYNX’s privacy and security guarantees hold even in the case where multiple

CNs or DPs become unavailable. Any entity can leave or join the system without hindering
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DRYNX’s operation, as long as they are not involved in a query under execution. In the event of

a CN becoming unresponsive during the query execution, the C T A and C T K S steps cannot

be finalized, as they both require the participation of all CNs. Therefore, in this case, the

process is stopped and Q can request the same query by choosing another set of CNs, e.g.,

by excluding the faulty CN(s). An unresponsive DP only reduces the number of responses

included in the statistic being computed and does not disrupt DRYNX’s process. Standard

mechanisms, e.g., limiting the rate at which queries are accepted, can be implemented in

DRYNX to prevent DDoS attacks.

Accuracy. There are several aspects that can influence output precision in DRYNX. (a) We first

remark that the DPs’ inputs to the system have to be approximated by fixed-point representa-

tion if they are floating values, as explained in Section 1.1.

(b) DRYNX’s encodings and query executions do not intrinsically hinder the accuracy of the

computed results, as all operations are exact, as long as the target function is exactly encodable.

In fact, it is worth noting that the encoding for the logistic regression training is built from an

approximation of the original cost function.

Additionally, (c) the DPs can privately decide whether to answer a query; this choice can

influence the final result. However, the number of samples considered in the computation,

i.e., ci in Definition 1, is always sent to Q, who can then observe if this number changed since

her last query. It also enables her to take an informed decision on the statistical significance of

the results, to accept them or not.

(d) DRYNX can guarantee differential privacy by adding noise to the final result. In this case,

DRYNX returns approximate results, and the accuracy loss depends on the chosen privacy

parameters and the executed operation. The choice of these parameters and the perturbation

introduced in the results is thus orthogonal to this work.

Finally, (e) malicious DPs can try to distort the query result by inputting erroneous values.

DRYNX limits malicious DPs’ influence on the final result by enabling the querier to restrict

the range of possible inputs. This bounds the perturbation that some DPs can generate on

the results. If the inputs were not bounded, one malicious DP could completely distort the

final result by inputting extreme values. It is difficult to provide hard numbers for the accuracy

of DRYNX in the presence of malicious DPs, as it depends on many parameters such as the

executed operation, the chosen input ranges, the number of DPs and data records. Nonethe-

less, in Section 4.7 we show how the use of ranges limits the influence of malicious DPs in two

examples.

Authentication/Authorization. Authentication and authorization fall out of the scope of this

paper, but for the sake of completeness we briefly mention here that DRYNX can integrate

off-the-shelf solutions based on federated or distributed architectures [127; 179; 183].
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4.7 Performance Evaluation

We discuss our experimental setup and evaluate DRYNX’s performance. We show that it scales

almost (in some cases better than) linearly with the number of CNs, VNs and DPs, and we

compare DRYNX against existing solutions. We also discuss multiple security, privacy and

performance tradeoffs.

4.7.1 System Implementation

We implemented DRYNX in Go [98], and our full code is publicly available [88]. We relied

on Go’s native crypto-library and on DeDiS public advanced crypto-libraries [61]. For the

implementation of the proofs’ storage and verification, we use a skipchain [177], which is

made of blockchain-like blocks that, to enable clients to efficiently navigate arbitrarily on

the chain, also contain back-and-forward pointers to older and future blocks. We rely on a

(private) permissioned blockchain [57], as in our examples HDS and PDS (Section 4.1.1), the

participants, i.e., researchers, patients or hospitals, have to be known and authorized. However,

DRYNX works independently of the blockchain type, and a permission-less blockchain can also

be used in a less restrictive scenario. DRYNX relies on additive homomorphic encryption and

works independently of the used Elliptic Curve; we tested it on the Ed25519 [22] and bn256

Elliptic Curves [14]. Both curves provide 128-bit security, and we used bn256 by default as it

enables pairing operations (required for range proofs). As for UNLYNX presented in Chapter 3,

DRYNX’s prototype is built as a modular library of protocols that can be combined in multiple

ways. The communication between different participants relies on TCP with authenticated

channels (through TLS).

4.7.2 System Evaluation

We relied on a similar evaluation environment as in Chapter 3. We used Mininet [160] to

simulate a realistic virtual network between the nodes; we restricted the bandwidth of all

connections between nodes to 100Mbps and imposed a latency of 20ms on all communication

links. We evenly distributed the CNs, DPs, VNs and Q on a set of 13 machines that have two

Intel Xeon E5-2680 v3 CPUs with a 2.5GHz frequency that supports 24 threads on 12 cores and

256GB RAM.

We begin our evaluation by studying how the different steps in DRYNX’s pipeline can be

executed in parallel. We then show that DRYNX’s runtime only slightly increases when the

number of records per DP grows (and the number of DPs remains constant).

In our default setup, we consider 6 CNs and 7 VNs. We set the proof verification thresholds

T = 1.0 and Tsub = 0.3 and show, in Section 4.7.2.1, the effect of these thresholds on DRYNX’s

execution time. The joint use of these thresholds ensures that all the proofs are at least partially

verified and that each sub-proof is verified by fh VNs with a probability of 98.5%. We show
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DRYNX’runtime without the C DP protocol as C DP can be pre-computed or run in parallel

with other steps. We notice that the C DP ’s runtime depends on the number of CNs and on the

size l̃ of the list of noise values. This creates a tradeoff between privacy and performance as a

greater l̃ provides a higher privacy level, as it reduces δ= 1/l̃ but also increases the time to

generate and shuffle the list of noise values. With a Laplacian distribution and l̃ = 100, C DP ’s

runtime is 2.9 seconds with an overhead of 8.1 seconds for the proof verification.

4.7.2.1 Drynx Evaluation

Parallel Execution. Figure 4.5 shows the runtime for training a logistic regression model. We

use a randomly-generated dataset of 12 floating-point features and 600,000 records split

among 12 DPs. We remark that the operations are verified in parallel to the query execution;

this parallelization enables Q to obtain the query result as soon as it is computed (denoted by

query execution dashed line). At the end of the verification process, an auditor can check the

query by verifying the signature and the query-proofs map of the corresponding block in the

proofs blockchain, which in this case takes 0.4 seconds. The blocks’ sizes are small as they only

contain the query and the corresponding query-proofs map; in this example one block is 56kB.
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Block Insertion

Figure 4.5 – Logistic regression training with 12 features, 600,000 records and a maxi-
mum of 100 iterations.

Scaling. We show how DRYNX’s execution time evolves with an increasing number of data

records (Figure 4.6a), CNs and DPs (Figure 4.6b) and VNs (Figure 4.6c). Inspired by HDS and

PDS, we simulate the computation of the heart-rate variance (values between [0,256)) over a

set of distributed patients. In Figure 4.6a, we observe that DRYNX scales better with (a) the

number of records per DP (and fixed number of DPs) than (b) with the number of DPs; case

(a) represents HDS, where a DP is an hospital with a database of multiple patients, whereas

case (b) represents PDS, where each patient is a DP (#DPs = #r ecor d s). This is because (a)
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enables the DPs to locally pre-aggregate their data, thus reducing the amount of proofs and

computations. For Figures 4.6b and 4.6c and for the remaining part of the evaluation, we set

the number of DPs to 10 per CN. In HDS, this could correspond to a use case in which some

DPs are hospitals and the others are independent doctors sharing their data. We observe that

DRYNX’s runtime increases with the number of DPs, CNs, and VNs. However, an increasing

number of CNs and VNs also means a higher security level, as the trust is distributed among

more entities.

(a) Variance: increasing number of records. (b) Variance: increasing number of CNs and DPs
with 10 DPs per CN.

(c) Variance: increasing number of VNs.

Figure 4.6 – DRYNX’s scaling.

Operations. Figure 4.7a shows DRYNX’s runtime for all the operations with a large integer

range of [0,220] for each of the DPs’ inputs (the size of the DPs’ inputs is shown below each

operation). We observe that for all operations, the query execution time is always below 1.5

seconds; and the overhead incurred by the proofs verification increases with the size of the

DPs’ inputs. This is expected, as the larger the DPs’ inputs become, the more ciphertexts

there are for the system to process, and the more proofs there are to verify. We also observe

that bit-wise operations take more time when the DPs opt to send a bit value that is then

obfuscated (using the C T O protocol).
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(a) Runtime for different operations with DPs’ inputs
sizes. Range of accepted input values: (0,220).

(b) Variance: proofs verification thresholds.

Figure 4.7 – DRYNX’s operations and verification thresholds.

Verification Thresholds. In Figure 4.7b, we show how the different thresholds on the proofs

verification affect DRYNX’s performance with a variance query. It can be seen that sending the

proofs (communication time is denoted by a dashed line) is the most time consuming part,

and that reducing the thresholds reduces the verification time. For example, by having T = 1

and Tsub = 0.2, we effectively reduce the verification workload by a factor close to 0.8, and a

sub-proof is still verified by fh = 5 of the VNs with a high probability (83.48%).

Malicious DPs. By enforcing DPs’ values to be within a specific range, DRYNX limits the

influence of malicious DPs on the computed statistic. We illustrate this in a simple and

realistic example (using PD H from Section 4.1.1) by computing the average heart rate over

a dataset of 8922 hypertensive patients [146]. The real heart-rate values are limited to be

between 40 bpm (beats per minute) and 100 bpm and, as presented by Lorgis et al. [146],

the average value obtained among honest DPs is ah =70 bpm with a 95% confidence interval

of ±6 bpm. Each patient (DPi ) must send (Vi,ci ) = ([hear t_r ate],count) (Definition 1), in

which hear t_r ate has to be in [40,100] and count in [0,1]. In order to maximize the result’s

distortion, a malicious DP can send an extreme value, which is within the range bounds. We

assume that all malicious DPs collude and send the same value hear t_r ate = e, and that the

computed average is given by am = (h ·ah +e ·d)/(h + c), where h and d are the numbers of

honest and dishonest DPs, and c is the sum of ci sent by malicious DPs. The relative error

is |1− (am/ah)|. We remark that a malicious DP can maximize this error with a valid input

by sending ([100],0). In Figure 4.8, we observe that with 1% of malicious DPs for the range

[40,100], the highest relative error is 1.44%. This error corresponds to 1 bpm, still in the 95%

confidence interval. We observe similar results when the cosine similarity is computed in the

same settings. For this example, we also present the worst-case scenario in which the cosine

similarity computed on the honest DPs is 1 and the malicious DPs input extreme values from

the range of accepted values to reduce the similarity. As shown in Figure 4.8, these numbers

highly depend on the chosen bounds. Even if many other factors influence this error (e.g., the
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computed operation and the distribution of the values), it shows that DRYNX can limit the

power of malicious DPs.
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Figure 4.8 – Average and cosim: influence of malicious DPs.

Iterative Queries. Figure 4.9a depicts how DRYNX’s runtime can be reduced by using multiple

queries to execute a min/max operation in a binary-search style. This represents a tradeoff

between privacy and performance, as each iterative query is sent in clear, leaking the interval

where the min/max value is. We assume that Q sets the entropy limit EL = 100, in other words,

another entity in the system can learn that the min/max is in an interval of at least 100 values.

The precise value is kept private. We observe that the execution time is not improved when

the range is small, but is greatly reduced when the range grows, reaching an execution time

reduction of almost 96% at a range size of 100,000.

(a) max (iterative): increasing range size. (b) Variance: runtime w.r.t. network bandwidth
and delay.

Figure 4.9 – DRYNX Evaluation. In Figure (a), the optimized max aggregates the runtime for all
necessary query executions and the respective proof overheads.

Communication. Figure 4.9b depicts DRYNX’s runtime evolution with respect to both the
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communication delay and bandwidth capacity with a heart rate variance query. We remark

that when the latter is reduced by a factor 100, the runtime increases by a factor 2 or 3. This

shows that our system is more sensitive to communication delay than bandwidth capacity.

DPs answer DPs answer with RV CTA CTO CTKS CDP
QE C.C. - - (CN-1) · A (CN-1)·A + 

(2·CN)·SM 
(CN-1)·A 

(3·CN)·SM 
CN · VS

QE band. DP · 4p 
(1.28kB) 

DP · 4p 
(1.28kB) 

CN · 4p 
(0.768kB) 

2 · CN · 4p 
(1.536kB) 

CN · 6p 
(1.344kB) 

CN · 4p · n 
(76kB)

QV band. 
and 

storage 

DP ·VN 
·(s+4p) 

(15.68kB)

DP · VN · (s + (7 + 2l 
+ 2l · CN)p + l · CN · 
pap + h)    (2.43MB)

CN · V N · 
(s + 4p) 

(9.048kB)

CN ·VN 
·(s+8p+h) 

(16.128kB)

CN ·VN 
·(s+10p+h) 
(18.816kB)

(CN +1)·VN 
·(s+ 13np + h) 

(2.04MB) 

comm.

comm.

Table 4.2 – Communication and Storage costs. DP, VN, CN = number of entities; RV =
Range Validation; QE=query execution; C.C.=computation complexity; QV=query verification;
A=ciphertext addition; SM= scalar multiplication; VS= verifiable shuffle; p= Elliptic Curve
point; s, h and pap are the size of the Schnorr-signature, the hash and the pairing point,
respectively. l comes from the range boundaries and n is the list size in CDP.

Bandwidth. In Table 4.2, we present the computation and bandwidth complexities for 1

ciphertext (i.e., 2 points (2p) on the Elliptic Curve, 2p = 64 bytes) per DP. We use DP, VN,

and CN as the numbers of corresponding entities in the system. s is the size of the Schnorr

signature [80] (s = 96 bytes), h is the hash size (h = 32 bytes), l comes from the range [0,ul ) for

the range proofs (ul = 162, l = 2), pap is a pairing point’s size (pap = 384 bytes) and n is the

number of values that are used in the C DP (n = 100). We do not include the computational

complexity for the local computations executed by the DPs and CNs. We refer to Neff’s work

[173] for the complexity of the verifiable shuffle (V S). We observe that when the number of

CNs and VNs increases, the computational, bandwidth and storage costs increase for all the

steps. As having more CNs or VNs improves the security and the distribution of the workload

in the system, it creates a tradeoff between security, efficiency, and scalability.

4.7.2.2 Comparison with Existing Works

We supplement the related work’s overview in Chapter 2, by presenting here a qualitative and

quantitative comparison with multiple systems that are DRYNX’s closest related works. We

compare DRYNX against SMCQL [15], Prio [52], Boura et al. [34], Aono et al. [10], Kim et al.

[126] and Gazelle [123]. In Table 4.3, we show that DRYNX provides several functionalities

in a strong threat model and achieves results that can rival with other secure and dedicated

approaches, notably in the training of logistic regression models as depicted in Figure 4.3.

DRYNX performs as well or better than its closest related work, Prio, and provides better

security guarantees.

We observe that solutions based exclusively on secret sharing and garbled circuits, namely

SMCQL [15], Prio [52] and Boura et al. [34], offer multiple or advanced functionalities but fail

to provide proofs of correct executions. Systems solely based on homomorphic encryption

(HE), namely Aono et al. [10], Helen [263] and Kim et al. [126], are limited in the functionalities
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SMCQL UnLynx Boura et al. Prio Aono et al. Kim et al. Gazelle Helen Drynx

System 
Properties

Distribution of Trust X ✔ ✔ ✔ X X 2-party ✔ ✔

Distrib. Comput. / Stor. ✔ ✔  ✔  ✔  X X 2-party ✔ ✔

Modular architecture X X ✔ ✔ X X X X ✔

Security 
Guarantees
(assuming 

Drynx’s threat 
model)

Data Confidentiality X ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

DPs’ Privacy X ✔ X X X X X ∼ ✔

Comput. Correctness X ✔ X X X X X ✔ ✔

Results’ Robustness X X X X X X X ✔ ✔

Functionalities

Accuracy|AUC

Statistics ✔ X X ✔ X X X X ✔

Lin. Reg. Training X X ✔ ✔ ∼ ∼ X ✔ ✔

Log. Reg. Training
SPECTF [55]
Pima [48]
LBW [38]
PCS [51]

- X ✔ ∼ ✔

75.4|0.76
75.4|0.87

-
-

✔

-
-

69.3|0.66
69.1|0.75

X X ✔

74.8|0.73
77.5|0.83
70.2|0.73
75.1|0.81

Neural Networks X X X X X X ✔ X X
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System 
Properties

Distribution of Trust X ✔ ✔ ✔ X X 2-party ✔ ✔

Distrib. Comput. / Stor. ✔ ✔  ✔  ✔  X X 2-party ✔ ✔

Modular architecture X X ✔ ✔ X X X X ✔

Security 
Guarantees
(assuming 

Drynx’s threat 
model)

Data Confidentiality X ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

DPs’ Privacy X ✔ X X X X X ∼ ✔

Comput. Correctness X ✔ X X X X X ✔ ✔

Results’ Robustness X X X X X X X ✔ ✔

Functionalities

Accuracy|AUC

Statistics ✔ X X ✔ X X X X ✔

Lin. Reg. Training X X ✔ ✔ ∼ ∼ X ✔ ✔

Log. Reg. Training
SPECTF [55]
Pima [48]
LBW [38]
PCS [51]

- X ✔ ∼ ✔

75.4|0.76
75.4|0.87

-
-

✔

-
-

69.3|0.66
69.1|0.75

X X ✔

74.8|0.73
77.5|0.83
70.2|0.73
75.1|0.81

Neural Networks X X X X X X ✔ X X

[229]
[195]
[149]
[201]

Table 4.3 – Solutions Comparison. For logistic regression, we split the datasets [147; 192;
198; 226] among 10 DPs before standardization and use a scale factor = 102 for fixed-point
representation and a learning rate of 0.1. We split the datasets with 80% for training and 20%
for testing.

they offer. Furthermore, Aono et al. [10] and Kim et al. [126] rely on data centralization.

Gazelle [123] combines HE and garbled circuits and enables complex evaluations of neural

networks, but does not protect DPs’ privacy or provide computation correctness. Contrarily,

DRYNX enables multiple operations while distributing trust, computations, and data storage,

and it provides strict security guarantees in a stronger adversarial model.

We quantitatively compare DRYNX to Prio [52], which is, to the best of our knowledge, the

closest prior work. Prio [52] relies on secret-shared non-interactive proofs that are created by

the DPs to prove the correctness of their inputs to the system and that are collectively verified

by the CNs. Even though both systems have similar functionalities, Prio provides input-range

verification and computation correctness only when all the CNs are honest-but-curious. We

adapted the Gorrigan-Gibbs prototype implementation [197] of Prio to a similar deployment

environment as DRYNX so that both use the same communication settings, thus enabling a

fair comparison. In Figure 4.10, we compare Prio’s runtime in an illustrative example by using

the min operation on the range [0,1000) with increasing number of CNs and DPs, against

multiple settings of DRYNX. This figure shows that DRYNX significantly outperforms Prio when

computing min without using obfuscation (C T O) and thus accepts a small probability of

error (1/(#G )) while avoiding the need for range proofs. If we use obfuscation, DRYNX scales

similarly as Prio, but it must be noted that Drynx performs its operations in a stronger threat

model. When used in Prio’s threat model (delimited by a black line), DRYNX is about two times

faster. This is because each range proof can be sent and verified by a single VN as all VNs are

considered honest-but-curious under Prio’s threat model.

We also remark that we brought multiple improvements on the work presented in Chapter 3
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Figure 4.10 – Comparison with Prio for a min query. The left bars present DRYNX’s execution
time and right bars show Prio’s runtime.

(UNLYNX). DRYNX’s query execution time for the sum is faster than UNLYNX, as we improved

the C T K S protocol by enabling its execution in a tree fashion, thus reducing its execution

complexity from O(#C N ) to O(log (#C N )). Unlike UNLYNX, DRYNX enables the verification of

DPs’ value ranges, which, for the computation of a sum, adds an overhead of only 0.6 seconds

(out of a total time of 2 seconds, as depicted in Figure 4.7a). However, DRYNX enables a faster

scalable verification of proofs by an auditor. After the proofs are verified and the results stored

in the proof blockchain, an auditor can simply request and verify the corresponding block,

which in this case takes approximately 0.4s. In UNLYNX, an auditor has to request the proofs

from each entity and verify them by itself, which takes 1.4s.

4.8 Conclusion

In this chapter, we have proposed DRYNX, a novel system that enables a querier to compute

statistics and train machine-learning models on distributed datasets in a strong adversarial

model where no entity is individually trusted. DRYNX provides query-execution auditability

and ensures the end-to-end confidentiality of the data. It protects the privacy of the data

providers and relies on an immutable and distributed ledger to provide efficient correctness

verification and proofs storage. DRYNX is highly modular, offering configurable tradeoffs

between security, privacy, and efficiency. Finally, DRYNX enables privacy-preserving computa-

tions of widely-used statistics on sensitive and distributed data, thus offering features that are

absolutely needed in crucial areas such as user-behavior analysis or medical research.
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5.1 Introduction

In this chapter, we address the problem of privacy-preserving learning and prediction among

multiple parties, i.e., data providers (DPs), that want to collaborate without sharing their

data with each other. To address this issue, we design a solution that uses the MapReduce

abstraction [60] that is often used to define distributed ML tasks [51; 239]. MapReduce defines

parallel and distributed algorithms in a simple and well-known abstraction: PREPARE (data

preparation), MAP (distributed computations executed independently by multiple nodes or

machines), COMBINE (combination of the MAP results, e.g., aggregation) and REDUCE (compu-

tation on the combined results). We build on and extend this abstraction to determine and

delimit which information, e.g., MAP outputs, have to be protected to design a decentralized

privacy-preserving system for ML training and prediction. The model is locally trained by

the DPs (MAP) and the results are iteratively combined (COMBINE) to update the global model

(REDUCE). As before, we exploit the partitioned (distributed) data to enable DPs to keep control

of their respective data, and we distribute the computation to provide an efficient solution for

the training of ML models on confidential data. After the training, the model is kept secret

from all entities and is obliviously and collectively used to provide predictions on confidential

data that are known only to the entity requesting the prediction. We remark that differential-

privacy-based federated-learning solutions [3; 42; 64; 114; 120; 125; 137; 188; 220; 234] follow

the same model, i.e., they can be defined according to the MapReduce abstraction. However,

most solutions introduce a trade-off between accuracy and privacy [119], and do not provide

data and model confidentiality simultaneously. On the contrary, our solution uses a different

paradigm in which, similarly to non-secure solutions, the accuracy is traded off with the

performance (e.g., number of iterations), but not with privacy.

We propose SPINDLE (Scalable Privacy-preservINg Distributed LEarning), a system that en-

ables the privacy-preserving, distributed (cooperative) execution of the widespread stochastic

mini-batch gradient-descent (SGD) on data that are stored and controlled by multiple DPs.

SPINDLE builds on a state-of-the-art multiparty, lattice-based, quantum-resistant crypto-
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graphic scheme to ensure data and model confidentiality, in the passive-adversary model

in which all-but-one DPs can be dishonest. SPINDLE is meant to be a generic and widely-

applicable system that supports the SGD-based training of many different ML models. This

includes, but is not limited to, support vector machines, graphical models, generalized linear-

models and neural networks [66; 101; 131; 233; 261]. For concreteness and comparison with

existing works, we instantiate SPINDLE for the training of and prediction on generalized lin-

ear models (GLMs) [174], (e.g., linear, logistic and multinomial logistic regressions). GLMs

are easily interpretable, capture complex non-linear relations (e.g., logistic regression), and

are widely-used in many domains such as finance, engineering, environmental studies and

healthcare [141]. In a realistic scenario where a dataset of 11,500 samples and 90 features

is distributed among 10 DPs, SPINDLE efficiently trains a logistic regression model in less

than 54 seconds, achieving an accuracy of 83.9% (See Table 5.2 in Section 5.7), equivalent

to a non-secure centralized solution. The distribution of the workload enables SPINDLE to

efficiently cope with a large number of DPs (parties), as its execution time is practically in-

dependent of it. SPINDLE handles a large number of features, by optimizing the use of the

cryptosystem’s packing capabilities, and by exploiting single-instruction multiple-data (SIMD)

operations. It is able to perform demanding training tasks, with high number of iterations and

thus high-depth computations, by relying on the multiparty cryptoscheme’s ability to collec-

tively refresh a ciphertext with no significant overhead. As shown by our evaluation, these

properties enable SPINDLE to support training on large and complex data such as imaging

or medical datasets. Moreover, SPINDLE scalability over multiple dimensions (features, DPs,

data) represents a notable improvement with respect to DRYNX that we introduced in Chapter

4 and to state-of-the-art secure solutions [263].

In this chapter, we make the following contributions:

• We analyze the problem of privacy-preserving distributed training and of the evaluation

of ML models by extending the widespread MapReduce abstraction with privacy con-

straints. Following this abstraction, we instantiate SPINDLE, the first operational and

efficient distributed system that enables the privacy-preserving execution of a complete

machine-learning workflow through the use of a cooperative gradient descent on a

dataset distributed among many data providers.

• We propose multiple optimizations that enable the efficient use of a quantum-resistant

multiparty (N-party) cryptographic scheme by relying on parallel computations, SIMD

operations, efficient collective operations and optimized polynomial approximations of

the models’ activation functions, e.g., sigmoid and softmax.

• We propose a method for the parameterization of SPINDLE by capturing the relations

among the security and the learning parameters in a graphical model.

• We evaluate SPINDLE against centralized and decentralized secure solutions and demon-

strate its scalability and accuracy.

To the best of our knowledge, SPINDLE is the first operational system that provides the afore-

mentioned features and security guarantees.
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5.2 Secure Federated Training and Evaluation

We first introduce the problem of privacy-preserving distributed training and evaluation of

machine-learning (ML) models. Then, we present a high-level overview and architecture of

a solution that satisfies the security requirements of the presented problem. In Section 5.3,

we present SPINDLE, a system that enables the privacy preserving and distributed execution

of a stochastic gradient-descent. We instantiate our solution for the training and evaluation

of the widely-used Generalized Linear Models [174]. In the rest of this chapter, matrices are

denoted by upper-case-bold characters and vectors by lowercase-bold characters; the i-th row

of a matrix X is depicted as X [i , ·], and its i-th column as X [·, i ]. Similarly, the i-th element of a

vector y is denoted by y[i ]. We provide a list of recurrent symbols in Table 1.3.

5.2.1 Problem Statement

We consider a setting where a dataset (Xn×c , yn), with Xn×c a matrix of n records and c features,

and yn a vector of n labels, is distributed among a set of data providers, i.e., S = {DP1, . . . ,DP|S|}.

The dataset is horizontally partitioned, i.e., each data provider DPi holds a partition of ni

samples (X (i ), y (i )), with
∑|S|

i=1 ni = n. A querier, which can also be a data provider (DP),

requests the training of a ML model on the distributed dataset (Xn×c , yn) or the evaluation of

an already trained model on its input (X ′′′, ·).

We assume that the DPs are willing to contribute their respective data to train and to evaluate

ML models on the distributed dataset. To this end, DPs are all interconnected and organized

in a topology that enables efficient execution of the computations, e.g., in a tree structure

as depicted in Figure 5.1. Even though the DPs wish to collaborate for the execution of ML

workflows, they do not trust each other. As a result, they seek to protect the confidentiality

of their data (used for training and evaluation) and of the collectively learned model. More

formally, we require that the following privacy properties hold in a passive-adversary model in

which all-but-one DPs can collude, i.e., the DPs follow the protocol, but up to |S|−1 DPs might

share among them the information they observe during the execution, to extract information

about the other DPs’ inputs.

(a) Data Confidentiality: The training data of each data provider DPi , i.e., (X (i ), y (i )) and the

querier’s evaluation data (X ′′′, ·) should remain only known to their respective owners. To this

end, data confidentiality is satisfied as long as the involved parties (DPs and querier) do not

obtain any information about other parties’ inputs other than what can be deduced from the

output of the process of training or evaluating a model.
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(b) Model Confidentiality: During the training process, no data provider DPi should gain

more information about the model that is being trained than what it can learn from its own

input data (X (i ), y (i )). During prediction, the querier should not learn anything more about

the model than what it can infer from its input data (X ′′′, ·) and the corresponding predictions

y ′′′.

We remark here that, in contrary to the work presented in Chapter 4, input correctness and

computation correctness are not part of the problem requirements, i.e., we assume that DPs

input correct data and do not perform wrong computations. We discuss possible countermea-

sures against malicious DPs in Section C.4.1.

Figure 5.1 – SPINDLE’s Model. Thick arrows represent a possible (efficient) query-execution
flow.

5.2.2 Solution Overview

To address the problem of privacy-preserving distributed learning, we leverage the MapReduce

abstraction, which is often used to capture the parallel and repetitive nature of distributed

learning tasks [51; 239]. We complement this abstraction with a protection mechanism P (·);

P (x) denotes that value x has to be protected to satisfy data and model confidentiality (Sec-

tion 5.2.1). We present the extended MapReduce abstraction in Protocol 5.1. In PREPARE,

the data providers (DPi ∈ S) pre-process their data (X (i ), y (i )), they agree on the learning

parameters and on one data provider that plays the role of DPR and is then responsible for

the execution of REDUCE.
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Protocol 5.1 Extended MapReduce Abstraction.

TRAINING: S receives query from Querier and outputs P (W (·,g )
G )

1: Each DPi has (X (i ), y (i ))

2: DPs appoint DPR and agree on learning params. – PREPARE

3: Each DPi ∈ S initializes its local model W (i ,0)

4: for j = 1, . . . , g do

5: Each DPi ∈ S computes: – MAP

P (W (i , j )) ← Map((X (i ), y (i )),P (W (·, j−1)
G ),P (W (i , j−1)))

6: Each DPi sends P (W (i , j )) to DPR – COMBINE

7: DPR : P (W (·, j )) ← C (P (W (i , j ))), ∀ DPi ∈ S

8: DPR : P (WG
(·, j ))←Red(P (WG

(·, j−1)),P (W (·, j ))) – REDUCE

9: end for

PREDICTION: DPR receives P (X ′′′) from Querier and uses P (WG
(·,g )) to compute P (y ′′′) that is

sent back to the Querier

In Figure 5.1, DP1 plays DPR ’s role. As explained later, DPR only manipulates protected data

and is subject to the same security constraints as any other DP. We discuss the choice of DPR

and its availability in Appendix C.4. Each DPi then iteratively (g iterations) trains its local

model (P (W (i , j )) at iteration j ) on its data in MAP. For this purpose, DPi relies on its local data,

the current global model P (W (·, j )
G ) and its previous local model P (W (i , j−1)

G ). They combine

their local models in COMBINE (through an application-dependent function C (·)) to obtain the

combination of DPs’ local models at iteration j , i.e., P (W (·, j ). Then, they update the global

model P (W (·, j )
G ) in REDUCE. To capture the complete ML workflow, we extend the MapReduce

architecture with a PREDICTION phase in which predictions P (y ′′′) are computed from the

querier’s protected evaluation data P (X ′′′) by using the (protected) global model P (WG
(·,g ))

obtained during the training.

5.3 SPINDLE Design

Following the extended MapReduce abstraction described in Section 5.2.2, we design a sys-

tem, named SPINDLE, that enables the privacy-preserving execution of the widely applicable

cooperative gradient descent [241; 242] – which is used to minimize many cost functions in

machine-learning [131; 233; 261]. We instantiate this system for the training of and prediction

on Generalized Linear Models [174]. We introduce these concepts in Section 5.3.1. To imple-

ment the protection mechanism P (·), SPINDLE builds on a multiparty fully homomorphic

encryption scheme introduced in Section 1.4. Then, in Section 5.3.2, we describe how SPINDLE

instantiates the phases of the extended MapReduce abstraction and how we address the collec-

tive data-processing on the distributed dataset through secure and interactive protocols. We

demonstrate how training is performed, notably by executing the gradient descent operations
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under homomorphic encryption, and how predictions are executed on encrypted models. We

present the detailed cryptographic operations in Section 5.4 and analyze SPINDLE’s security in

Section 5.6.

5.3.1 Background

Cooperative Gradient-Descent. We rely on a distributed version of the popular mini-batch

stochastic gradient-descent (SGD) [131; 233; 261]. In the standard version of SGD, the goal is

to minimize minw [F (w ) := (1/n)
∑n
φ=1 f (w ; X [φ, ·])], where f (·) is the loss function defined

by the learning model, w ∈ Rc are the model parameters, and X [φ, ·] is the φth data sample

(row) of X . The model is then updated by m iterations w (l ) = w (l−1)−α[ζ(w (l−1); B (l ))], for l =
1, . . . , m, with α the learning rate, B (l ) a randomly sampled sub-matrix of X of size b × c, and

ζ(w ;B ) = B T (σ(B w )− I (ȳ)), where ȳ is the vector of labels corresponding to the batch B . The

activation function σ and I (·) are both model-dependent, e.g., for a logistic regression σ is the

sigmoid and I (·) is the identity.

We rely on the cooperative SGD (CSGD) proposed by Wang and Joshi [241; 242], due to its

properties; in particular: (i) modularity, as it can be synchronous or asynchronous, and

can be combined with classic gradient-descent convergence optimizations such as Nesterov

accelerated SGD [175]; (ii) applicability, as it accommodates any ML model that can be trained

with SGD and enables the distribution of any SGD based solution; (iii) it guarantees a bound

on the error-convergence depending on the distributed parameters; e.g., the number of

iterations and the update function for the global weights [33; 241; 242; 260]; and (iv) it has

been shown to work well even in the case of non-independent-and-identically-distributed

(non-i.i.d.) data partitions [152; 241; 242]. The data providers (DPs), each of which owns a part

of the dataset, locally perform multiple iterations of the SGD before aggregating their model

weights into the global model weights. The global weights are included in subsequent local

DP computations to avoid that they learn, or descend, in the wrong direction. For simplicity,

we present SPINDLE with the synchronous CSGD version, where the DPs perform local model

updates simultaneously. For each DPi , the local update rule at global iteration j and local

iteration l is:

w (i , j ,l )=w (i , j ,l -1) −αζ(w (i , j ,l-1);B (l ))−αρ(w (i , j ,l -1) −w (·, j -1)
G ), (5.1)

where w (·, j−1)
G are the global weights from the last global update iteration j −1,α is the learning

rate and ρ, the elastic rate, is the parameter that controls how much the data providers can

diverge from the global model. The set of DPs S performs z local iterations between each

update of the global model that is updated at global iteration j with a moving average by:

w (·, j )
G = (1−|S|αρ)w (·, j−1)

G +αρ∑|S|
i=0w (i , j ,z). (5.2)

Generalized Linear Models (GLMs). GLMs [174] are a generalization of linear models where

the linear predictor, i.e., the combination X w of the feature matrix X and weights vector w ,

is related to a vector of class labels y by an activation function σ such that E(y) =σ−1(X w),
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where E(y) is the mean of y . In this work, we consider the widely-used linear (i.e., σ(X w) =
X w ), logistic (i.e., σ(X w ) = 1/(1+e−X w )) and multinomial (i.e., σ(X wλ) = e X wλ/(

∑
j∈cl e X w j ),

for λ ∈ cl ) regression models. We remark that for multinomial regression, the weights are

represented as a matrix Wc×|cl |, where c is the number of features, cl is the set of class labels

and |cl | its cardinality. In the rest of the chapter, unless otherwise stated, we define the

operations on a single vector of weights w and we note that in the case of multinomial

regression, they are replicated on the |cl | vectors of weights, i.e., each column of Wc×|cl |.

Multiparty Homomorphic Encryption. For the protection mechanism of SPINDLE, we rely

on the multiparty fully-homomorphic encryption scheme introduced in Section 1.4. With

this scheme, each data provider can independently compute on ciphertexts encrypted under

the collective public key pk but, as the secret is distributed among all DPs, they have to all

collaborate in order to decrypt data. In SPINDLE, the data providers rely on this mechanism

to train a collectively encrypted model before switching its encryption, without decrypting

the data, to the querier’s public key such that only the querier can decrypt the result. This

multiparty scheme is based on the Cheon-Kim-Kim-Song cryptosystem (CKKS) [47] that en-

ables approximate arithmetic, and whose security is based on the ring learning with errors

(RLWE) problem [150]. A plaintext/ciphertext encodes a vector of up to N /2 values, which

enables SPINDLE to efficiently perform parallelized operations on encrypted vectors of values.

As introduced in Section 1.4 and explained in the following sections, SPINDLE also relies on

the multiparty construction of the cryptoscheme to replace heavy cryptographic operations,

e.g., refresh or bootstrap of a ciphertext, by lightweight interactive protocols.

5.3.2 SPINDLE Protocols

We first describe SPINDLE’s operations for training a Generalized Linear Model following

Protocol 5.1. In this case, the model W is a vector of weights that we denote by w , and MAP

corresponds to multiple local iterations of the gradient descent. Recall that in the case of

multinomial regression, all operations are repeated for each label class λ ∈ cl .

5.3.2.1 TRAINING

PREPARE. The data providers (DPs) collectively agree on the training parameters: the max-

imum number of global g and local z iterations, and the learning parameters l p = {α,ρ,b},

where α is the learning rate, ρ the elastic rate, and b the batch size. The DPs also collectively

initialize the cryptographic keys for the distributed CKKS scheme by executing DKeyGen(·)
(see Section 1.4). Then, the DPs initialize their local weights and pre-compute operations that

involve only their input data (αX (i )I (y (i )) and αX (i )T ). We discuss in Appendix C.4 how the

DPs can collaborate to standardize or normalize the distributed dataset (if needed) and check

that their respective inputs are consistent, e.g., they have data distribution homogeneity.
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Protocol 5.2 MAP.

Each DPi outputs 〈w (i , j )〉 ← Map ((X (i ), y (i )), 〈w (·, j−1)
G 〉,〈w (i , j−1)〉)

1: 〈w (i , j ,0)〉 = 〈w (i , j−1)〉
2: for l = 1, . . . , z do

3: Select batch (B , ỹ) of b rows in (X (i ), y (i ))

4: 〈u[k]〉 = B [k, ·]•〈w (i , j ,l−1)〉, for k = 1, . . . , b

5: 〈v [e]〉 =αB [·,e]T •σ(〈u〉), for e = 1, . . . ,c

6: µ[e] =∑b
k=1αB [·,e]T I (ỹ[k]), for e = 1, . . . ,c

7: 〈w (i , j ,l )〉 = 〈w (i , j ,l−1)〉+µ-〈v〉−αρ(〈w (i , j ,l−1)〉−〈wG
(·, j−1)〉)

8: end for

9: 〈w (i , j )〉 = RR(〈w (i , j ,z)〉)

MAP. As depicted in Protocol 5.2, the DPs execute z iterations of the cooperative gradient-

descent local update (Section 5.3.1). The local weights of DPi (i.e., 〈w (i , j ,l−1)〉) are updated

at a global iteration j and a local iteration l by computing the gradient (Protocol 5.2, lines

4, 5, and 6) that is then combined with the current global weights 〈w (·, j−1)
G 〉 (Protocol 5.2,

line 7) following Equation 5.1. Remember that • is the dot product (see Section 1.4. These

computations are performed on batches of b samples and c features. We detailed these

operations between matrices and encrypted vectors in Section 5.4.2. To ensure that the update

of DPi ’s local weights, i.e., the link between the ciphertexts 〈w (i , j−1)〉 = 〈w (i , j ,0)〉 and 〈w (i , j ,z)〉,
does not leak information about the DP’s local data, 〈w (i , j ,z)〉 is re-randomized RR(·) at the end

of MAP (Protocol 5.2, line 8), i.e., DPi adds to it a fresh encryption of 0. Note that in Protocol 5.2,

line 5 the activation function σ(·) is computed on the encrypted vector 〈u〉 (or a matrix 〈U 〉 in

the case of multinomial). The exponential activation functions for logistic (i.e., sigmoid) and

multinomial (i.e., softmax) regressions have to be approximated to polynomial functions to be

evaluated on encrypted data by using the homomorphic properties of CKKS. We rely on a least-

square polynomial approximation (LSPA) for the sigmoid, as it provides an optimal average

mean-square error for uniform inputs in a specific interval, which is a reasonable assumption

when the input distribution is not known. For softmax, we rely on Chebyshev approximation

(CA) to minimize the maximum approximation error and thus avoid that the function diverges

on specific inputs. The approximation intervals can be empirically determined by using

synthetic datasets with distribution similar to the real ones, by computing the minimum and

maximum input values over all DPs and features, or by relying on estimations based on the

data distribution [109].

Algorithm 5.1 takes as input an encrypted vector/matrix 〈u〉 or 〈U 〉 and the type of the re-

gression t (i.e., linear, logistic or multinomial). If t is linear, the protocol simply returns 〈u〉.
Otherwise, if t is logistic, it computes the activated vector 〈σ(u)〉 by using the sigmoid’s LSPA

(apSigmoid(·)). If t is multinomial, it computes the activated matrix 〈σ(U )〉 using the softmax

approximation that is computed by the multiplication of two CAs, one for the nominator

ex (apSoftN(·)) and one for the denominator 1∑
ex j (apSoftD(·)), each computed on different
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Algorithm 5.1 Activation Function σ(·).

Func. σ(〈u〉or 〈U 〉, t ) returns the activated 〈σ(u)〉 or 〈σ(U )〉
1: if t is Linear then
2: 〈σ(u)〉 = 〈u〉
3: else if t is Logistic then
4: 〈σ(u)〉 = apSigmoid(u)
5: else if t is Multinomial, input is a matrix 〈Uc×|cl |〉 then
6: 〈m〉 = apMax(〈U 〉)
7: for λ ∈ cl do
8: 〈U ′′′[λ, ·]〉 = 〈U [λ, ·]〉−〈m〉
9: 〈σ(U [λ, ·])〉=M(apSoftN(〈U ′′′[λ, ·]〉),apSoftD(〈U ′′′[λ, ·]〉))

10: end for
11: end if

intervals. The polynomial approximation computation is detailed in Algorithm C.1 (Appendix

C.1). To avoid an explosion of the exponential values in the softmax, a vector 〈m〉 that contains

the approximated max (apMax(·)) value of each column of 〈U 〉 is subtracted from all input

values, i.e., from each 〈U [λ, :]〉 with λ= 0, ..., |cl |. Similar to softmax, the approximation of the

max function requires two CAs, and is detailed in Appendix C.1.

COMBINE. The MAP outputs of each DPi , i.e., 〈w (i , j )〉, are homomorphically combined as-

cending a tree structure, such that each DPi aggregates its encrypted updated local weights

with those of its children and sends the result to its parent. In this case, the combination

function C (·) is the homomorphic addition operation. At the end of this phase, the DP at the

root of the tree DPR obtains the encrypted combined weights 〈w (·, j )〉.

REDUCE. DPR updates the encrypted global weights 〈w (·, j )
G 〉, as shown in Protocol 5.3. More

precisely, it computes Equation 5.2 by using the encrypted sum of the DPs’ updated local

weights 〈w (·, j )〉 (obtained from COMBINE), the previous global weights 〈w (·, j−1)
G 〉, the pre-

defined elastic rate ρ and the learning rate α. After g iterations of the MAP, COMBINE, and

REDUCE, DPR obtains the encrypted global model 〈w (·,g )
G 〉 and broadcasts it to the rest of the

DPs.

Protocol 5.3 REDUCE.

DPR computes 〈w (·, j )
G 〉← Red(〈w (·, j−1)

G 〉,〈w (·, j )〉,ρ,α)

1: 〈w (·, j )
G 〉 = (1−αρ|S|)〈w (·, j−1)

G 〉+αρ〈w (·, j )〉

5.3.2.2 PREDICTION

The querier’s input data (X ′′′, ·) is encrypted with the collective public key pk. Then, 〈X ′′′〉pk is

multiplied (dot product •) with the weights of the trained model 〈w (·,g )
G 〉 and processed through
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the activation function σ(·) to obtain the encrypted prediction values 〈y ′′′〉 (one prediction per

row of X ′′′). The prediction results encrypted under pk are then collectively switched by the

DPs to the querier public key pk ′ using DKeySwitch(·), so that only the querier can decrypt

〈y ′′′
pk ′〉.

Protocol 5.4 PREDICTION.

DPR gets 〈X ′′′
n′×c〉 from Querier and computes 〈y ′′′

n′〉 using 〈w (·,g )
G 〉

1: 〈y ′′′[p]〉 =σ(〈X ′′′[p, ·]〉• 〈w (·,g )
G 〉), for p = 0, ...,n′

2: 〈y ′′′〉pk ′ = DKeySwitch(〈y ′′′〉, pk ′, {ski })

5.4 System Operations

We describe how SPINDLE relies on the properties of the distributed version of CKKS to effi-

ciently address the problem of privacy-preserving distributed learning. We first describe how

we optimize the protocols of Section 5.3.2 by choosing when to execute cryptographic opera-

tions such as rescaling and (distributed) bootstrapping. Then, we discuss how to efficiently

perform the MAP protocol that involves a sequence of vector-matrix-multiplications and the

evaluation of the activation function, in the encrypted domain.

5.4.1 Cryptographic Operations

As explained in Section 1.4, ciphertext multiplications incur the execution of other cryp-

tographic operations hence increase SPINDLE’s computation overhead. This overhead can

rapidly increase when the same ciphertext is involved in sequential operations, i.e., when the

operations’ multiplicative depth is high. As we will describe in Section 5.7, SPINDLE relies on

the Lattigo [159] lattice-based cryptographic library, where a ciphertext addition or multiplica-

tion requires a few ms, whereas Rescale(·), Relin(·), and DBootstrap(·), are 1-order, 2-orders,

and 1.5-orders of magnitude slower than the addition, respectively. These operations can be

computationally heavy, hence their execution in the protocols should be optimized. Note that

we avoid the use of the centralized traditional bootstrapping, as it would require a much more

conservative parameterization for the same security level, resulting in higher computational

overheads (see Section 5.7).

Lazy Rescaling. To maintain the precision of the encrypted values and for efficiency we rescale

a ciphertext {〈v〉,τ,∆} only when ∆ is close to the current ciphertex-level modulus Qτ (see

Section 1.4). Hence, we perform a ReScale(·) only when this condition is met after a series of

consecutive operations.

Relinearization. Letting the ciphertext size increase after every multiplication would add
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to the subsequent operations an overhead that is higher than the relinearization. Hence, to

maintain the ciphertext size and degree constant, a Relin(·) operation is performed after each

ciphertext-ciphertext multiplication. We here note that a Relin(·) operation can be deferred

if doing so incurs in lower computational complexity (e.g., if additions performed after the

ciphertext-ciphertext multiplications reduce the number of ciphertexts to relinearize).

Bootstrapping. In the protocols of Section 5.3.2, we observe that the data providers’ local

weights and the model global weights (〈w〉 and 〈wG〉, resp.) are the only persistent ciphertexts

over multiple computations and iterations. They are therefore the only ciphertexts that need

to be bootstrapped, and we consider three approaches for this. With Local bootstrap (LB),

each data provider (DP) bootstraps (calling a DBootstrap(·) protocol) its local weights, every

time they reach level τb during the MAP local iterations and before the COMBINE. As a result,

the global weights are always combined with fresh encryptions of the local weights and only

need to be bootstrapped after multiple REDUCE. Indeed, REDUCE involves a multiplication

by a constant hence a Rescale(·). With Global bootstrap (GB), we use the interdependency

between the local and global weights, and we bootstrap only the global weights and assign

them directly to the local weights. The bootstrapping is performed on the global weights

during REDUCE. Thus, we modify TRAINING so that MAP operates on the (bootstrapped) global

weights, i.e., 〈w (i , j−1)〉 = 〈wG
(·, j−1)〉, for a DPi at global iteration j . By following this approach,

the number of bootstrap operations is reduced, with respect to the local approach, because it

is performed by only one DP and depends only on the number of global iterations. However, it

modifies the learning method, and it offers less flexibility, as the number of local iterations in

MAP is constrained by the number of ciphertext multiplications required in each iteration and

by the available ciphertext levels. With Hybrid bootstrap (HB), both GB and LB approaches

are combined to reduce the total number of bootstrapping operations. The global weights are

bootstrapped at each global iteration (GB) and the DPs can still perform many local iterations

by relying on the LB. In our experiments (Section 5.7.2), we observed that the effect on the

trained model’s accuracy depends mainly on the data and that, in most cases, enabling DPs to

perform more local iterations (LB and HB) between two global updates yields better accuracy.

Even though LB incurs at least |S| more executions of the DBootstrap(·), the DPs execute

them in parallel and thus amortize the overhead on SPINDLE’s execution time. However, if

the training of a dataset requires frequent global updates, then GB (or HB) achieves a better

trade-off, see Section 5.7.2. Taking into account these cryptographic transformations and the

strategy to optimize their use in SPINDLE, we explain how to optimize the required number of

ciphertext operations.

5.4.2 MAP Vector-Matrix Multiplications

As described in Section 1.4, each CKKS ciphertext encrypts (or packs) a vector of values, e.g.,

8,192 elements if the ring dimension is N = 214. This packing enables us to simultaneously

perform operations on all the vector values, by using a Single-Instruction Multiple Data (SIMD)

approach for parallelization. To execute computations among values stored in different slots of
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Figure 5.2 – Packing approaches ((a) RBA: Row-Based Approach & (b) DA: Diagonal Approach)
for executing Protocol 5.2, lines 4 and 5. We assume that c ·b < N /2 and show an example with
c = b = 4. Dash elements are plaintext values, everything else is encrypted. Dup duplicates and
adds, rowP packs the rows in one ciphertext, RotL(/R)&Addi rotates the encrypted vector by
i ,2i ,4i , . . . to the left(/right) and at each step, aggregates the result with the previous ciphertext,
RotL(/R) j rotates a vector left(/right) by j positions. P2(x) returns the next power of 2 larger
than x.

the same ciphertext, e.g., an inner sum, we rely on ciphertext rotations that have a computation

cost similar to a relinearization (Relin(·)). Recall that for the execution of stochastic gradient-

descent, each local iteration in MAP involves two sequential multiplications between encrypted

vectors and cleartext matrices (Protocol 5.2, lines 4 and 5). As a result, packing is useful

for reducing the number of vector multiplications and rotations needed to perform these

operations. To this end, SPINDLE integrates two packing approaches and automatically selects

the most appropriate approach at each DP during the training. We now describe these two

approaches and how to choose between them, depending on the settings, i.e., the learning
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parameters, the number of features, and the DP computation capabilities. Figure 5.2 depicts

SPINDLE’s packing approaches for a toy example of the computation of 〈u〉 (Protocol 5.2, line 4)

whose result is activated (i.e., σ(〈u〉)) before used in the computation of 〈v〉 (Protocol 5.2, line

5), for a setting with c = b = 4. For clarity, we assume that a vector of c (number of features) or

b (batch size) elements can be encoded in one ciphertext (or plaintext), i.e., max(c,b) ≤ N /2.

Row-Based Approach (RBA). This approach was proposed by Kim et al. [124]. The input

matrices (B and αB T ) are packed row-wise, and multiple rows are packed in one plaintext

((a) in the upper part of Figure 5.2), i.e., the number of plaintexts required to encode the

input matrix is d c·b·2
N e. Each plaintext is then multiplied with a ciphertext containing the

replicated (or duplicated, Dup) weights’ vector (b), such that the number of replicas is equal

to the number of rows in B . The multiplication of all the rows is then performed in a single

operation. To obtain the results of the dot products between each weights’ vector and row of

B , a partial inner sum is performed by adding the resulting ciphertext with rotated versions of

itself (c). The values in between the dot product results are eliminated (i.e., masked) through

a multiplication with a binary vector (d), and the dot product results are duplicated in the

ciphertext (e) such that it can be activated (σ(·)) and used directly for the multiplication with

αX T ( f ). The result is then rotated and added to itself (g ) such that it can be masked (h) to

obtain 〈v〉. As shown in Figure 5.2, the total number of vector multiplications is d c·b·2
N e ·4,

whereas the number of ciphertext rotations is d c·b·2
N e ·2 · (l og2(b)+ l og2(c)). This approach has

a multiplicative depth of am +4, where am denotes the depth of the activation function σ(·).

Diagonal Approach (DA). This approach was presented by Halevi and Shoup [105] as an op-

timized homomorphic vector-matrix-multiplication evaluation. It optimizes the number of

ciphertext rotations by transforming the input plaintext matrix B . In particular, B is diagonal-

ized, and each line is rotated ((a′) in lower part of Figure 5.2) so that they can be independently

multiplied with the (rotated) weights’ vector (b′). The resulting ciphertexts are aggregated and

rotated to obtain 〈u〉 (c ′), and a similar approach is used to compute 〈v〉 after the activation.

As shown in Figure 5.2, DA only executes 2 · ((N1 −1)+ (N2 −1)) rotations on the encrypted

vector, with N1 = P 2(max(c,b))/N2 and N2 = b
√

P 2(max(c,b))c, where P 2(x) returns the next

power of 2 larger than x. This approach involves N1 ·N2 plaintext-ciphertext multiplications on

independent ciphertexts and does not require any masking, which results in a multiplicative

depth of am +2. Therefore, this approach consumes fewer levels than RBA.

In both approaches, the number of rotations and multiplications depends on the batch size

b and the number of features c. DA almost always requires more multiplications than RBA

and uses more rotations after a certain c (e.g., if b = 8, the break-even happens at c = 64).

However, as DA is embarrassingly parallelizable for both multiplications and rotations (with

rotations being the most time-consuming operations), the computations can be amortized on

multiple threads. Taking this into account, SPINDLE automatically chooses, based on c , b, and

the number of available threads, the best approach at each DP. We analyze these trade-offs in

Section 5.7.
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5.4.3 Optimized Activation Function

As described in Section 5.3.2, to enable their execution under FHE, we approximate the sigmoid

(apSigmoid(·)) and softmax (apMax(·), apSoftN(·), apSoftD(·)) activation functions with least-

squares and Chebyshev polynomial approximations (PA), respectively. We adapt the baby-step

giant-step algorithm introduced by Han and Ki [106] to enable the minimum-complexity

computation of degree-d polynomials (multiplicative depth of dl og2(d)e for d ≤ 7, and with

depth dlog2(d)+ 1e otherwise). Protocol C.1 (in Appendix) computes the (element-wise)

exponentiation of the encrypted input vector before recursively computing the polynomial

approximation.

5.5 System Configuration

We discuss how to parameterize SPINDLE by taking into account the interdependencies be-

tween the input data, and the learning and cryptographic parameters. We then discuss two

modular functionalities of SPINDLE, namely data outsourcing and model release.

Parameter Selection. SPINDLE relies on the configuration of (a) cryptographic parameters

that determine its security level, and (b) learning parameters that affect the accuracy of the

training and evaluation of the models. Both are tightly linked, and we capture these relations

in a graph-based model, displayed in Figure 5.3, where vertices and edges represent the

parameters and their interdependence, respectively. For simplicity, we present a directed

graph that depicts our empirical method for choosing the parameters (see Section 1.7 for

notation symbols). We note here that the corresponding non-directed graph is more generic

and simply captures the main relations among the parameters. We observe two main clusters:

the cryptographic parameters on the upper part of the graph (dotted circles), and the learning

parameters (circles) on the lower one. The input data and their intrinsic characteristics, i.e.,

the number of features c or precision (bits of precision required to represent the data), are

connected with both clusters that are also interconnected through the plaintext scale ∆. As

such, there are various ways to configure the overall system parameters.

Xnxc Δ
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Figure 5.3 – System parameters graph. Circles and dotted circles represent learning and
cryptographic parameters, respectively.

In our case, we decide to first choose N (ciphertext polynomial degree), such that at least c

elements can be packed in one ciphertext. Q (ciphertext modulus) and η (fresh encryption

noise) are then fixed to ensure a sufficient level of security (e.g., 128-bits) following the ac-
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cepted parameterization from the homomorphic encryption standard whitepaper [5]. The

scale ∆ is configured to provide enough precision for the input data X , and mc (moduli chain)

and L (number of levels) are set accordingly. The intervals [ai , gi ] used for the approximations

of the activation functions are defined according to X . The approximation degrees d are then

set depending on these intervals and the available number of levels L. The remaining learning

parameters (α, ρ, b, g , m) are agreed upon by the data providers based on their observation

of their part of the dataset. Note that the minimum values for the learning rate α and elastic

rate ρ are limited by the scale ∆, and if they are too small the system might not have enough

precision to handle their multiplication with the input data.

Data Outsourcing. SPINDLE’s protocols (Section 5.3.2) seamlessly work with data providers

(DPs) that either have their input data X in cleartext, or that obtain data 〈X 〉pk encrypted

under the public collective key from their respective owners. In the latter case, SPINDLE

enables both secure data storage and computation outsourcing to always-available untrusted

cloud providers. It distributes the workload among multiple data providers and is still able to

rely on efficient multiparty homomorphic-encryption operations, e.g., DBootstrap(·). We note

that operating on encrypted input data affects the complexity of MAP, as all the multiplication

operations (Protocol 5.2) would happen between ciphertexts, instead of between the cleartext

inputs and ciphertexts.

Model Release. By default, the trained model in SPINDLE is kept secret from any entity,

enabling privacy-preserving predictions on (private) evaluation-data input by the querier and

offering end-to-end model confidentiality. If required by the application setting, SPINDLE can

also reveal the trained model to the querier or to a third party. This is collectively enabled by

the DPs, who perform a DKeySwitch(·).

5.6 Security Analysis

We demonstrate that SPINDLE achieves the data and model confidentiality requirements

defined in Section 5.2.1 by relying on the real/ideal simulation paradigm [139] and showing

that a computationally-bounded adversary that controls up to (|S|−1)-out-of-|S| DPs cannot

distinguish a real world experiment, in which the adversary is given actual data (sent by honest

DP(s)), and an ideal world experiment, in which the adversary is given random data generated

by a simulator.

The semantic security of the CKKS scheme is based on the hardness of the decisional RLWE

problem [47; 140; 150]. The achieved practical bit-security against state-of-the-art attacks

can be computed using Albrecht’s LWE-Estimator [5; 6]. Mouchet et al. [165] prove that their

distributed protocols, i.e., Collective Encryption-Key Generation, Collective Relinearization-

Key Generation (DKeyGen(·)) and Collective Key Switching (DKeySwitch(·) and DDec(·)) are

secure under the simulator paradigm. They show that the distribution of the cryptoscheme

preserves its security in the passive adversary model with all-but-one dishonest DPs, as long
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as the decisional-RLWE problem is hard. Their proofs, which are constructed using the BFV

scheme, generalize to our adaptation of their protocols to CKKS, as they preserve the same

computational assumptions, and the security of CKKS is based on the same hard problem as

BFV. To avoid that information can be inferred on the encrypted values or on the encryption

keys from the processed ciphertexts [136], we rely on existing countermeasures [46; 58; 165]

and add fresh noise sampled from a distribution that has a variance significantly larger than

that of the input ciphertext noise distribution to the processed ciphertext [136]. The security

of DBootstrap(·) is based on Lemma C.2.1 which we state and prove in Appendix C.2.

Proposition 1. Assume that SPINDLE uses CKKS encryptions with parameters (N ,∆,η,mc)

ensuring a post-quantum security level λ. Given a passive adversary corrupting at most |S|−1

parties, SPINDLE achieves data and model confidentiality for training and prediction.

Sketch of the Proof. We consider a real-world simulator S that simulates the view of a

computationally-bounded adversary corrupting |S|−1 parties, i.e., it has access to the inputs

and outputs of |S|−1 parties. In PREPARE and MAP, the data providers (DPs) locally compute on

their data and only exchange encrypted information with each other to perform DKeyGen(·)
and DBootstrap(·). In COMBINE, the DPs’ MAP outputs, encrypted under the public collective

key, are aggregated. These outputs are the encrypted results of multiple local iterations in

which elements derived from each DPi ’s local private data (X (i ), y (i )) are combined with its

encrypted local model 〈w (i ,·)〉 and the current encrypted global model 〈wG〉. This result is

re-randomized (i.e., added to a fresh encryption of 0) to ensure that the outputs of succes-

sive MAP (i.e., the inputs to COMBINE) do not leak any information about the DPs’ data. In

REDUCE, the global model is updated by combining encrypted data, and a DBootstrap(·) is

executed. All the information exchanged by the DPs is encrypted and the DPs rely on the afore-

mentioned CPA-secure-proven protocols. We show in Appendix C.2 that DBootstrap(·) is also

simulatable. In PREDICTION, only encrypted information is exchanged and the security-proven

DKeyswitch(·) protocol is used. We consider two cases: (a) the adversary controls |S|−1 DPs

and (b) it controls the querier and |S| −2 DPs. In (a), the encryption of the querier’s input

data (with the DPs common public key pk) can be simulated by S and SPINDLE ensures Data

Confidentiality of the querier. In (b) the confidentiality of the adversary-controlled-querier’s

data is trivial as there is no information to hide form the adversary. The simulator has access to

the prediction result and can produce all the intermediate (indistinguishable) encryptions that

the adversary sees. Hence, S can simulate all the values communicated during the TRAINING

and PREDICTION by generating random ciphertexts using the parameters (N ,∆,η,mc), such

that the real outputs cannot be distinguished from the ideal ones. The sequential composition

of all cryptographic functions remains simulatable by S , as different random values are used

in each step, and the exchanged ciphertexts are re-randomized, i.e., there is no dependency

between the random values that an adversary can leverage on. Also, the adversary cannot

decrypt collectively encrypted data unless all DPs collude, which would contradict the consid-

ered threat model. Following this, SPINDLE ensures the data and model confidentiality of the

honest party/ies.
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Finally, we note that by design, SPINDLE thwarts active attacks on federated learning [112; 157;

169; 265] and model inversion attacks [83], as intermediate and final model weights are never

revealed during TRAINING.

5.7 System Evaluation

We first analyze the theoretical complexity of SPINDLE before moving to the empirical evalua-

tion of its prototype and its comparison with existing solutions.

5.7.1 Theoretical Analysis

We refer to Table C.1a (Appendix C.3) for the full complexity analysis of SPINDLE’s protocols.

We discuss here its main outcomes.

Communication Complexity. SPINDLE’s communication complexity depends linearly on the

number of data providers |S|, iterations (global g and local z) and the ciphertext size |ct |. In

MAP, the only communication between the DPs is due to the DBootstrap(·), which requires

two rounds of communication of one ciphertext (ct ) between the |S| DPs (i.e., 2 · (|S|−1) · |ct |).

In COMBINE and REDUCE, the DPs exchange one ciphertext in respectively one and two rounds.

Finally, the PREDICTION requires the exchange of one ciphertext between a DP and the querier

and one DKeySwitch(·) operation, i.e., 2 ciphertexts are sent per DP.

Computation Complexity. SPINDLE’s most intensive computational part is MAP; its com-

plexity depends linearly on the number of DPs |S| and the number of iterations, and loga-

rithmically on the number of features c and batch size b; all these parameters depend also

on the dataset size. As shown in Section 5.4.2, the DA packing approach incurs a higher

computation complexity but is embarrassingly parallel and can be more time-efficient than

RBA depending on the available threads. The activation function is the only operation that

requires ciphertext-ciphertext multiplications; its complexity depends logarithmically on

the approximation degree. We empirically study the link between the approximation degree

and the training accuracy in Section 5.7.2. SPINDLE’s other steps and protocols only involve

lightweight operations, i.e., ciphertexts additions and multiplications with plaintext values.

5.7.2 Empirical Evaluation

We implemented SPINDLE in Go [98]. Our implementation builds on top of Lattigo [159],

an open-source Go library for lattice-based cryptography, and Onet [182], an open-source

Go library for building decentralized systems. The communication between data providers

(DPs) is done through TCP with secure channels (using TLS). We evaluate our prototype

on an emulated realistic network, with a bandwidth of 1 Gbps between every two nodes,

using Mininet [160]. We deploy SPINDLE on 5 Linux machines with Intel Xeon E5-2680 v3

CPUs running at 2.5GHz with 24 threads on 12 cores and 256 Giga Bytes RAM, on which
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we evenly distribute the DPs. We first provide SPINDLE’s cryptographic operations micro-

benchmarks before assessing SPINDLE accuracy and performance by testing it on multiple

publicly-available datasets: CalCOFI [36] for linear regression, BCW [19], PIMA [192] and

ESR [77] for logistic regression, and MNIST [134] for multinomial regression (see Appendix C.3

for details on the datasets). We then show SPINDLE’s scalability by using randomly generated

(larger) datasets with up to 8,192 features and 4 million data samples. Our evaluation shows

SPINDLE practicality for large-dimensional datasets, making it suitable for demanding learning

tasks such as the training on imaging or genomic datasets [20; 76; 135].

We employ two sets of security parameters (SP), both ensuring 128-bit security: SP1: (ring

dimension N = 214, fresh ciphertext modulus Q = 2438, η= 3.2, number of levels L = 9, scale∆=
234, degree of the approximated activation function d = 5) and SP2: (N = 213, Q = 2218, η= 3.2,

L = 6, ∆ = 230, d = 3). SP2 is sufficient for linear regression and for specific logistic regression

models that accept a low-degree d approximation. All recurrent symbols are summarized

in Table 1.3. To account for a wider-range of solutions, we rely on SP1, unless otherwise

stated. We employ the local bootstrap approach for all our experiments and for all datasets

in baseline comparison except for ESR and CalCOFI, for which we use global bootstrap, as in

most cases, doing multiple local iterations (z) between two global iterations yields a better

accuracy. We further study the choice of bootstrapping strategy later in this section. Unless

otherwise stated, we employ the diagonal approach (DA) for packing; we compare it with

the row-based approach (RBA) in Figure 5.4a. In all our experiments, we consider SPINDLE’s

total time to train a regression model (including communication) without PREPARE, which is

executed once and mostly involves light plaintext operations. E.g., the complete PREPARE takes

16.5s for a dataset of 40,000 samples distributed among 4 DPs. MAP accounts for up to 99.5% of

SPINDLE’s execution time. As shown in Section 5.4, the DPs perform most of the computations

in MAP, which is the only step with multiple local iterations, involving two matrix-vector

multiplications, which span most (up to 97%) of its execution time. The remaining time

corresponds to the computation of activation function and collective bootstrapping.

Micro-benchmarks. Tables 5.1 show the execution time of each cryptographic operation.

We observe that, as mentioned before, SPINDLE replaces the usually costly bootstrapping

operation by an efficient interactive protocol DBootstrap(·). One of the most recent works

on bootstrapping by Han and Ki [106] introduces a solution that only achieves around 108

bits of security (lower than the recommended 128 bits, due to recent attacks [45; 224]) and

executes a CKKS bootstrapping in 26 seconds with ciphertexts that can encrypt 213 values,

corresponding to SP1, and about 20 seconds for SP2. This is two orders of magnitude slower

than our DBootstrap(·), that achieves 128-bit security with execution times of 0.6 and 0.25

seconds for SP1 and SP2 (with 40 DPs).

Baseline Comparison. To evaluate SPINDLE, we compare its performance (execution time

and accuracy) against an ideal baseline, i.e., a non-privacy-preserving centralized cleartext

solution (CCS) where a DP obtains the full dataset and trains the model on it. We consider

the training time on the complete dataset and use the training batch size b as the number
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Encrypt 0.02

Add 7 · 10−4

Mult 3 · 10−3

Rot 0.08

Relin 0.07

Rescale 0.01

(a) Local Crypto. Ops.

D. Op. 5 DPs 10 DPs 20 DPs 40 DPs

DKeyGen 2.14 3.13 4.20 5.65

DBootstrap 0.26 0.37 0.47 0.61

DKeySwitch 0.26 0.36 0.45 0.57

(b) Distributed Crypto Ops.

Table 5.1 – Micro-benchmarks of the cryptographic operations in seconds with SP1.

of data samples input for the prediction. Moreover, we compare SPINDLE with a distributed

non-privacy-preserving (DNP) solution (cleartext values and exact activation functions), to

show that our cryptographic approach and activation approximations introduce minimal

accuracy degradation. Finally, to demonstrate the benefit of distributed learning approaches,

we compare SPINDLE’s accuracy with a case where one DP independently trains a model only

on its local part of the distributed dataset (Independent Training, IT). In Table 5.2, we show

SPINDLE’s accuracy (Acc.) (resp., Mean Squared Error, MSE) and F1-score (F1) (resp., Mean

Average Error, MAE) for logistic and multinomial (resp., linear) regressions, achieved on the

above datasets when they are split among 10 DPs. Note that in Table 5.2, a linear regression

is used on the CalCOFI dataset and the accuracy metrics are MSE and MAE. In that case, a

DP alone obtains completely inaccurate predictions, i.e., large error values. We refer to Table

C.1b in Appendix C.3 for the learning parameters description. We observe that SPINDLE’s

accuracy loss is very low, up to 0.8%, with respect to a non-private centralized (CCS) solution

where the model is trained on the full dataset (using standard SGD) with a standard Python

library [214]. For instance, on ESR, CCS yields 84.2%, and 83.9% with SPINDLE. Moreover, this

loss is mainly due to the data not being centralized, as SPINDLE consistently achieves almost

the same accuracy as the decentralized non-private (DNP) equivalent. SPINDLE’s total training

time (column T. in Table 5.2) is kept between 1 and 2 orders of magnitude higher than DNP, as

the costly operations on encrypted data are partially amortized by SIMD operations enabled

by the used packing. For instance, the training on the ESR dataset takes almost 3 seconds in

DNP and 53.27 seconds in SPINDLE. We do not report the time for the centralized training

(CCS and IT), as the settings are too different to be fairly comparable. Multinomial regression

requires polynomial approximations of higher degree, i.e., between 15 and 19 (see Table C.1b);

its training on 70,000 records of 784 features (MNIST) is executed in 558 seconds (column T. in

Table 5.2). This time can be reduced to 187.8 seconds by performing 10 logistic regressions

in parallel, one per label class (one-vs-all), at the cost of a 1% loss in accuracy. In all cases,

when a DP independently trains on its part of the dataset (IT), i.e., with 1/10-th of the data,

the achieved accuracy is worse than the one achieved on the entire distributed dataset. As for

prediction (P.), SPINDLE’s prediction on 10 data samples of 90 features (ESR dataset) requires

only 0.35 seconds by packing the input data and executing parallel computations. This time

can be further amortized if more predictions are run in parallel.
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Dataset Vers. Acc./MSE F1/MAE T. P.

CalCOFI
[812,174x2]

CCS, [IT]
DNP
SPINDLE

15.157, [408]
17.679
17.938

3.1, [19.67]
3.45
3.62

−
6.71
65.31

−
2 · 10−4

0.23

PIMA
[768x8]

CCS, [IT]
DNP
SPINDLE

0.784, [0.720]
0.781
0.780

0.680, [0.604]
0.679
0.677

−
0.038
11.28

−
9 · 10−5

0.18

BCW
[699x9]

CCS, [IT]
DNP
SPINDLE

0.962, [0.922]
0.962
0.962

0.947, [0.877]
0.942
0.944

−
0.034
3.25

−
5 · 10−5

0.16

ESR
[11,500x90]

CCS, [IT]
DNP
SPINDLE

0.842, [0.838]
0.840
0.839

0.462, [0.396]
0.460
0.456

−
2.89
53.27

−
8 · 10−5

0.35

MNIST
[70,000 x
784] (multi.)

CCS, [IT]
DNP
SPINDLE

0.873, [0.873]
0.865
0.8617

0.871, [0.832]
0.863
0.86

−
43.95
558

−
0.49
4.33

MNIST
[70,000 x
784] (1 vs. a)

CCS, [IT]
DNP
SPINDLE

0.856, [0.827]
0.853
0.852

0.859, [0.822]
0.858
0.850

−
43.98
187.8

−
0.49
4.33

Table 5.2 – Baseline Comparison with K-fold=5. CCS is a non-private centralized solution,
DNP is a distributed non-privacy preserving approach and IT means independent training,
i.e., a DP using only its local subset of the entire dataset. Time to train (T.) and to predict (P.)
are in seconds. Mean-squared error (MSE) and mean averaged-error (MAE) are given for the
linear regression on CalCOFI. Accuracy and F1-score are given for all the others.

Scalability. We study how SPINDLE’s execution time evolves when increasing the number of:

features (c), data providers (|S|), and dataset samples (n). By default, we set |S| = 5, each DP

having 5,120 data records (synthetically generated) with c = 32 features; we use a batch size b =
256, with g = 5 global iterations, and z = 20 local iterations in MAP. When comparing different

approaches, we ensure that the number of times that the dataset is fully processed is constant,

and we set the learning parameters accordingly. Figure 5.4a displays SPINDLE’s execution

time with an increasing number of features c and shows that it scales logarithmically, in any

of the used approaches. In this setting, we also study the influence of the multi-threading,

the differences between the two packing approaches (Section 5.4.2) and the impact of having

encrypted input data (Section 5.5). When the computations are single-threaded, the row-

based approach (RBA) is more efficient than the diagonal approach (DA) up to c = 128 features,

as RBA incurs fewer multiplications and rotations than DA. In contrast, the diagonal approach

(DA) execution time in one or multiple threads is almost constant up to c = 256 features (with

a batch size b = 256), as its complexity depends mainly on max(c,b) (Section 5.4.2). However,

the DA is embarrassingly parallelizable, and it is always faster when the computations are

executed on 24 threads. As an example, on multiple threads and for 256 features, DA yields

an execution time of 165s against 330s for RBA, and 365s when the input data are encrypted

and using RBA. For both approaches, the parallelization is efficient up to c = 28, where the

maximum thread-utilisation is reached. Afterwards, both approaches scale linearly. When the

data providers have encrypted input data (RBA-E), the execution time increases by 7% with
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(a) SPINDLE’s performance with the nbr. of features (c).

(b) SPINDLE’s performance with the nbr. of DPs (|S|) & records (n).

Figure 5.4 – SPINDLE’s scalability.

respect to RBA.

Figure 5.4b.i shows that when the number of DPs |S| increases and each DP has a fixed amount

of data, SPINDLE’s execution time is constant. This means that SPINDLE scales independently

of |S|. In Figure 5.4b.ii, where |S| increases but the total amount of data remains constant,

SPINDLE’s execution time decreases linearly, as the workload is efficiently distributed among

the DPs. In Figure 5.4b.iii, when |S| is constant and the size of the DPs’ datasets increases,

SPINDLE’s execution time increases linearly with the amount of data. If the batch size can be

increased when the data providers have more records, then SPINDLE’s execution time can be

further reduced. In summary, SPINDLE scales independently of the number of data providers,

and linearly with the DPs’ dataset size. It is able to train models with a high number of features

and thus remains practical for real-world sized datasets. We note that SPINDLE scales similarly

to a DNP solution in the three cases. For example, in the case of Figure 5.4b.ii, DNP ranges

from 0.69 seconds with 5 DPs to 0.42 seconds with 10 DPs, whereas SPINDLE’s execution time

decreases from 150 to 78 seconds.

Bootstrapping & Activation Function Approx. Degree. In Table 5.3, we observe that SPINDLE
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accuracy slightly improves with higher degree approximations of the sigmoid for the activa-

tion function. Relying on LB or HB, which require less global iterations and therefore less

communication, and on low-degree approximations improves SPINDLE execution time but, it

can lower the achieved accuracy. We remark that HB requires less bootstrapping operations,

as the global weights are bootstrapped and assigned to the local weights. However, LB and HB

execution times remain similar as in LB, the DP perform the bootstrappings in parallel.

boot. \activ. 3 5 7

LB 0.837 ; 120 0.839 ; 125 0.839 ; 128

GB 0.843 ; 140 0.843 ; 143 0.844 ; 146

HB 0.844 ; 120 0.846 ; 124 0.846 ; 128

Table 5.3 – SPINDLE accuracy and timing (accuracy; execution time in sec) to train on ESR with
different bootstrapping strategies and degrees of the activation function. LB refers to the local
bootstrap approach, GB the global approach and HB is the hybrid method, i.e., combining LB
and GB.

Comparison with prior art. Here we briefly compare, both qualitatively and quantitatively

(when applicable), SPINDLE against (a) centralized cryptographic approaches (e.g., [39; 124;

126]), (b) cryptographic distributed solutions (e.g., [52; 263]) and (c) federated learning solu-

tions (e.g., [64; 114; 137; 220]). See Appendix C.3 for an extended analysis.

(a) SPINDLE consistently outperforms centralized HE-based solutions (CES) as SPINDLE dis-

tributes the workload among multiple DPs, achieves a high-level of security by using efficient

cryptographic parameters, and replaces, as shown before, the costly centralized bootstrapping

operation by a lightweight interactive protocol.

(b) None of the existing HE-SMC-based distributed solutions [52; 263] provides both data

and model confidentiality, or covers the entire ML workflow (the trained model cannot be

kept secret to perform oblivious predictions) or enables the distributed execution of the gra-

dient descent. Moreover, existing solutions (e.g., [52]) and the system (DRYNX) presented

in the previous chapter, leak more than only the trained model and rely on data encodings

(or approximations) that lower the obtained accuracy, whereas in SPINDLE, we approximate

only the activation functions. Finally, all previous solutions scale quadratically in at least one

dimension, i.e., number of features c , samples n, or DPs |S|, whereas SPINDLE’s execution time

is almost independent of |S|, scales logarithmically with the number of features and linearly

with the dataset size. Purely secret-sharing-based solutions [26; 49] consider substantially

different settings as SPINDLE, as they require the DPs to communicate their data outside their

premises and to a limited number of computing servers (typically, 2 to 4, depending on the

setting). Whereas SPINDLE also works in this configuration, it is not specifically optimized

for 2-4 parties and its execution time would be in the same order of magnitude but slower

than secret-sharing-based solutions. This is due to the computation overhead introduced

by operations on encrypted data. However, unlike secret-sharing-based solutions, SPINDLE

efficiently scales to federated learning settings where many (hundreds of) DPs keep their data

locally and can withstand up to N-1 out of N dishonest DPs.
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(c) In basic federated learning solutions, data owners train and update the model on their

local data and a server aggregates the model updates to obtain the global model [130; 153].

In this setting, the coordinating server has to be fully trusted, as some information can be

inferred from the intermediate models, e.g., extracting participants’ inputs [112; 243; 265] or

membership inference [157; 169]. SPINDLE naturally thwarts federated-learning and model-

inversion attacks, as the intermediate and final weights are never revealed. Federated learning

approaches based on differential privacy (diffP), e.g., [137; 154; 220], train the model while

introducing noise to the intermediate values to mitigate adversarial inferences. These ap-

proaches consider a different paradigm by introducing a tradeoff between privacy and accu-

racy, whereas in SPINDLE security is absolute, and the trade-off (accuracy vs execution time) is

the same as for non-secure solutions, e.g., less training iterations can yield a less precise model.

DiffP approaches can significantly degrade the data utility, and might require a high privacy

budget for which it remains unclear what privacy protection is obtained in practice [119]. In

Appendix C.4, we discuss how membership inference and reconstruction attacks from the

prediction outputs can also be mitigated in SPINDLE by adding differentially-private noise

during the DKeySwitch(·).

5.8 Conclusion

By extending the MapReduce abstraction, we have proposed a generic solution to the problem

of privacy-preserving distributed ML model training and prediction. Our abstraction enables

us to optimize the application of protection primitives from multiparty homomorphic en-

cryption in a MapReduce workflow. We have proposed SPINDLE, a privacy-preserving system

that enables the execution of a distributed stochastic gradient descent and we have instanti-

ated our quantum-resistant solution for the training and oblivious prediction on generalized

linear models. We have shown that SPINDLE achieves accuracy comparable to non-secure

centralized solutions, and it scales independently of the number of DPs and linearly or better

with the size of the DPs’ local datasets and the number of features. This makes it particularly

suitable for difficult and demanding learning tasks that have to be performed on sensitive

data that cannot be shared. This is the case in many domains and particularly in medicine,

where complex sensitive datasets partitioned across medical institutions need to be regularly

analyzed, e.g., Genome Wide Association Studies. SPINDLE achieves better performance than

existing centralized and distributed solutions by leveraging the data providers concurrent

computation on their local data, and using a multiparty encryption scheme that replaces costly

homomorphic operations (e.g., bootstrapping) by efficient collective protocols. To the best of

our knowledge, SPINDLE is the first highly scalable system enabling the distributed execution

of the gradient descent across hundreds of parties and large datasets in a privacy-preserving,

post-quantum, and efficient way.
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6 Federated Analytics for Precision
Medicine

6.1 Introduction

In this chapter, we show that the solutions introduced in this thesis can be applied in the

biomedical domain; this is a paradigmatic example where privacy is paramount and data

sharing is needed. More precisely, we rely on the core method of the previous solutions and

present a new approach to biomedical Federated Analytics (FA) based on Multiparty Homo-

morphic Encryption (MHE) (See Section 1.4) that effectively combines SMC and HE. We call

our approach Federated Analytics with Multiparty Homomorphic Encryption (FAMHE). By

combining the power of HE to perform computations on encrypted data without communica-

tion between the parties, with the benefits of interactive protocols, which can greatly simplify

certain expensive HE operations, we build an efficient system for federated privacy-preserving

FA. Building upon the MHE framework, we introduce a new approach to biomedical FA, where

each participating institution performs local computation and encrypts the intermediate

results by using MHE; the results are then combined (e.g., aggregated) and distributed back to

each institution for further computations. This process is repeated until the desired analysis

is completed. Contrary to diffP-based approaches that rely on obfuscation techniques to

mitigate the leakage in intermediate results, by sharing only encrypted intermediate results,

FAMHE provides full privacy protection, without sacrificing accuracy. By sharing only en-

crypted information, our approach guarantees that, whenever needed, a minimum level of

obfuscation can be applied only to the final result in order to protect it from inference attacks,

instead of being applied to all intermediate results. Furthermore, FAMHE improves over both

SMC and HE approaches by minimizing communication, by scaling to large numbers of data

providers, and by circumventing expensive non-interactive operations (e.g., bootstrapping

in HE). Our work also introduces a range of optimization techniques for FAMHE, including

optimization of the local vs. collective computation balance, ciphertext packing strategies,

and polynomial approximation of complex operations; these techniques are instrumental in

our efficient design of FAMHE solutions for survival analysis and GWAS.

We demonstrate the performance of FAMHE by replicating two published multi-centric studies
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that originally relied on data centralization. These include a study of metastatic cancer patients

and their tumor mutational burden [207], and a host genetics study of HIV-1 infected patients

[151]. By distributing each dataset across multiple data providers and by performing federated

analyses using our approach, we successfully recapitulated the results of both original studies.

Our solutions are efficient in terms of both execution time and communication, e.g., complet-

ing a GWAS over 20K patients and four millions variants in less than five hours. In contrast

to most prior works on biomedical FA, which relied on artificial datasets [29; 115; 116], our

results closely reflect the potential of our approach in real application settings. Furthermore,

our approach has the potential to simplify the requirements for contractual agreements and

the obligations of data controllers that often hinder multi-centric medical studies, because

data processed by using MHE can be considered anonymous data under the General Data-

Protection Regulation (GDPR) [210]. Our work shows that FAMHE is a practical framework

for privacy-preserving FA for biomedical workflows and it has the power to enable a range of

analyses beyond those demonstrated in this chapter.

Acknowledgements. This work is the result of a collaboration with Dr. Juan R. Troncoso-

Pastoriza, Dr. Jean Louis Raisaro, Dr. Michel Cuendet, Joao Sa Sousa, Dr. Hyunghoon Cho,

Prof. Bonnie Berger, Prof. Jacques Fellay, and Prof. Jean-Pierre Hubaux.

6.2 System Overview & Design

We assume similar system and threat models as in previous chapters. We introduce the two

main workflows, survival curves and GWAS, in which we showcase the use of our proposed

framework.

6.2.1 System Model & Proposed Workflow

In FAMHE, we rely on MHE to perform privacy-preserving FA by pooling the advantages of

both interactive protocols and HE and by minimizing their disadvantages. In particular, by

relying on MHE and on the distributed protocols for federated analytics proposed in Chapter

5, our approach enables several sites to compute on their local patient-level data and then

encrypt (Local Computation & Encryption in Figure 6.1) and homomorphically combine their

local results under MHE (Collective Aggregation in Figure 6.1). These local and global steps

can be repeated (Iterate in Figure 6.1), depending on the analytic task. At each new iteration,

participating sites use the encrypted combination of the results of the previous iteration to

compute on their local data without the need of decryption, e.g., gradient descent steps in

the training of a regression model. The collectively encrypted and aggregated final result is

eventually switched (Collective Key Switching in Figure 6.1) from an encryption under the

collective public key to an encryption under the querier’s public key (the blue lock in Figure

6.1) such that only the querier can decrypt. The use of MHE ensures that the secret key of the

underlying HE scheme never exists in full. Instead, the control over the decryption process is

distributed across all participating sites, each one holding a fragment of the decryption key.
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6.2. System Overview & Design

This means that all participating sites have to agree to enable the decryption of any piece of

data, and that no single entity alone can decrypt the data. As described in Section 6.2.2, FAMHE

is secure in a passive adversarial model in which all-but-one data providers can be dishonest

and collude among themselves.

1. 2. 3.

4. 5.

Query
Collective 

Aggregation

Local Computation 
& Encryption

Local Computation 
& Encryption

Local Computation 
& Encryption

Local Computation 
& Encryption

Local Computation 
& Encryption

Iterate

Collective Key 
Switching

Decryption

DP

Querier

Computation Done

Figure 6.1 – System Model and FAMHE Workflow. All entities are interconnected (dashed
lines), and the communication links at each step are shown by thick arrows. All entities (data
providers (DPs) and querier) are honest-but-curious and do not trust each other. In 1., the
querier sends the query (in clear) to all the DPs who (2.) locally compute on their cleartext
data and encrypt their results with the collective public key. In 3., the DPs’ encrypted local
results are aggregated. For iterative tasks, this process is repeated (Iterate). In 4., the final
result is then collectively switched by the DPs from the collective public key to the public key
of the querier. In 5., the querier decrypts the final result.

6.2.2 Threat Model

FAMHE supports a network of mutually distrustful medical institutions that act as data providers

(DPs) and hold subjects’ records. An authorized querier (see Figure 6.1) can run queries with-

out threatening the data confidentiality and the subjects’ privacy. The DPs and the querier

are assumed to follow the protocol and to provide correct inputs. All-but-one data providers

can be dishonest, i.e., they can try to infer information about other data providers by using

the protocol’s outputs. We assume that the DPs are available during the complete execution

of a computation. However, to account for unresponsive DPs, FAMHE can use a threshold-

encryption scheme, where the DPs secret-share [217] their secret keys, thus enabling a subset

of the DPs to perform the cryptographic interactive protocols.
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6.2.3 FAMHE Design

In this section, we first discuss the main principles of FAMHE’s design before describing how to

instantiate the previously introduced generic workflow (Figure 6.1) in order to compute, in a

federated and privacy-preserving manner, a Kaplan-Meier survival curve and GWAS.

6.2.3.1 FAMHE’s Design Principles

FAMHE builds upon novel optimization techniques for enabling the efficient execution of

complex iterative workflows (1) by relying on edge-computing and optimizing the use of

computations on the data providers’ cleartext data, (2) by relying on the packing ability of the

MHE scheme to encrypt vector of values in a single ciphertext such that any computation on a

ciphertext is performed simultaneously on all the vector values, i.e., Single Instruction, Multi-

ple Data (SIMD), (3) by further building on this packing property to optimize the sequence

of operations by formatting a computation output correctly for the next operation, (4) by

approximating complex computations such as matrix inversion (i.e., division) by polynomial

functions (additions and multiplications) to efficiently compute them under HE, and (5) by

replacing expensive cryptographic operations by lightweight interactive protocols. Note that

FAMHE avoids the use of centralized complex cryptographic operations that would require a

much more conservative parameterization and would result in higher computational and com-

munication overheads (e.g., due to the use of larger ciphertexts). Therefore, FAMHE efficiently

minimizes the computation and communication costs for a high security level.

As discussed in Section 6.2.3.3, in the case of GWAS, FAMHE efficiently performs multiple

subsequent large-dimensions matrix operations (see Protocols 6.1 and 6.2) by optimizing the

data packing (see Figure D.1 in Appendix D.1) to perform several multiplications in parallel and

minimize the amount of transformations required on the ciphertexts. FAMHE builds on the data

providers’ ability to compute on their cleartext local data and combine them with encrypted

data, thus reducing the overall computation complexity. GWAS also requires non-polynomial

functions, e.g., the inverse of a matrix, to be evaluated on ciphertexts, which is not directly

applicable in HE. In FAMHE, these non-polynomial functions are efficiently approximated by

relying on Chebyshev polynomials. We chose to rely on Chebyshev polynomials instead of

least-square polynomial approximations in order to minimize the maximum approximation

error and thus avoid that the function diverges on specific inputs. We have shown that this

technique accurately approximates non-polynomial functions in the training of generalized

models in Chapter 5, which further shows the generality and applicability of our proposed

framework.

FAMHE combines the aforementioned features to efficiently perform FA with encrypted data.

In GWAS, for example, we rely on the Gauss-Jordan (GJ) method [12] to compute the inverse

of the covariance matrix. We chose this algorithm as it can be efficiently executed by relying

on the aforementioned features: row operations can be efficiently parallelized with SIMD and

divisions are replaced by polynomial approximations.
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6.2.3.2 Multi-centric Kaplan-Meier Survival Analysis Using FAMHE

Kaplan-Meier survival analysis is a widely used method to assess patients’ response (i.e.,

survival) over time to a specific treatment. Survival curves are generally estimated with the

Kaplan-Meier estimator [99]:

Ŝ(t ) = ∏
j , t j≤T

(
1− d j

n j

)
, (6.1)

where t j is a time when at least one event has occured, d j is the number of events at time

t j , and n j is the number of individuals known to have survived (or at risk) just before the

time point t j . A survival curve (see an example in Figure 6.3a) starts at 1 (or 100% at time 0);

each step down is the occurrence of an event (e.g., death of a patient); and ticks indicate the

presence of censored patients, i.e., patients who withdrew from the study. The number of

censored patients at time t j is indicated by c j . As shown in Figure 6.2, to compute this curve

in a federated manner, each data provider i locally computes, encodes and encrypts a vector

of the form n(i )
0 ,c(i )

0 ,d (i )
0 , ...,n(i )

T ,c(i )
T ,d (i )

T containing the values n(i )
j ,c(i )

j ,d (i )
j corresponding to

each time point t j for t j = 0, ...,T . All the DPs’ vectors are then collectively aggregated. The

encryption of the final result is then collectively switched from the collective public key pk to

the querier’s public key that can decrypt the result with its secret key and generate the curve

following Eq. (6.1).
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Figure 6.2 – Secure & Distributed Computation of a Kaplan-Meier Survival Curve. As before, a
yellow lock indicates a collective encryption, and the blue lock indicates an encryption under
the querier’s public key.

6.2.3.3 Multi-centric Genome-Wide Association Studies Using FAMHE

Genome-wide association studies (GWAS) are a fundamental analysis tool in medical genetics

that identifies genetic variants that are statistically associated with given traits, such as disease
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status. GWAS have led to numerous discoveries about human health and biology, and efforts

to collect larger and more diverse cohorts to improve the power of GWAS. Their relevance to

diverse human populations continue to grow. As we progress toward precision medicine and

genetic sequencing becomes more broadly incorporated into routine patient care, large-scale

GWAS that span multiple medical institutions will become increasingly more valuable.

In GWAS, the p-value corresponding to each variant is computed to check for any association

between the variant and the phenotype. This computation is usually performed on a large

number of variants (e.g., four million in Section 6.3) hence requires the parallel training of

many regression models.

We consider a data set of p samples, i.e., patients. We list the main recurrent symbols and

acronyms in Table 1.1. Each patient is described by f features or covariates (with indexes 1 to

f ). Hence, we have a covariate matrix X ∈R(p× f ). Each patient also has a phenotype or label,

i.e., y ∈ R(p×1) and v variant values, i.e., one for each variant considered in the association

test. The v variant values for all p patients form another matrix V ∈ R(p×v). To perform

the GWAS, for each variant i , the matrix X ′ = [1, X ,V [:, i ]] ∈ R(p×( f +2)), i.e., the matrix X is

augmented by a column of 1s (intercept) and the column of one variant i , is constructed.

The vector w ∈ R( f +2) is then obtained by w = (X
′T

X ′)(−1)X
′T

y . The p-value for variant i is

then obtained with pval = 2 · pnor m(−| w[ f +2]√
(MSE(y,y ′)·(X ′T X ′)(−1)[ f +2; f +2]

|) where pnor m is the

cumulative distribution function (CDF) of the standard normal distribution, w[ f +2] is the

weight corresponding to the variant, MSE(y, y ′) is the mean squared error obtained from the

prediction y ′ computed with w , and (X
′T

X ′)(−1)[ f +2; f +2] corresponds to the standard error

of the variant weight.

Although this computation has to be performed for each variant i , we remark that X is

common to all variants. In order to compute (X T X )(−1) only once before adjusting it for each

variant thus obtaining (X
′T

X ′)(−1). We rely on the Shermann-Morrison formula [219] and the

method presented in the report on cryptographic and privacy-preserving primitives (page 52)

of the WITDOM European project [245].

We describe two approaches to perform this workflow in a federated and privacy-preserving,

i.e., under MHE, manner: (i) FAMHE-GWAS, in Protocol 6.1, an approach to perform an exact

GWAS, and (ii) FAMHE-FastGWAS, in Protocol 6.2, a computationally-optimized approximated

approach. In both protocols, each data provider DPi has a subset of pi patients. For efficiency,

the DPs are organized in a tree structure and one DP is chosen as the root of the tree DPR .

We remark that, as any exchanged information is collectively encrypted, this does not have

any security implications. In a Collective Aggregation (CA), each DP encrypts (E()) its local

results with the collective key, aggregates its children DPs’ encrypted results with its encrypted

local results, and sends the sum to its parent DP such that DPR obtains the encrypted result

aggregated among all DPs. We rely on SIMD to parallelize the operations at multiple levels:

among the DPs, among the threads in each DP, and among the values in the ciphertexts. For a

128-bit security level, the computations are performed simultaneously for 512 variants with
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FAMHE-GWAS (Protocol 6.1) and for 8192 with FAMHE-FastGWAS (Protocol 6.2). We describe, in

Figure D.1 (in Appendix), how the (main) values used in both protocols are packed to optimize

the communication and the amount of required operations (multiplications, rotations). As

shown below, we perform permutations, duplications, and rotations on cleartext data that

are held by the DPs (indicated in orange in Figure D.1 in Appendix); we optimize the balance

between cleartext operations and operations on encrypted vectors. Note that rotations on

ciphertexts are almost two orders of magnitude slower than multiplications and additions,

and they should be avoided when possible. As ciphertexts have to be aggregated among DPs,

a tradeoff has to be found between computation cost (e.g., rotations) and data packing, as a

smaller packing density would require the exchange of more ciphertexts.

In both protocols, all operations for v variants are executed in parallel. We highlight (in bold)

the main steps and the aggregated values in the protocol, and we note that DPs’ local data are

in cleartext, whereas all exchanged data are collectively encrypted (E()).

FAMHE-GWAS (Protocol 6.1). Protocol 6.1 depicts FAMHE secure and federated workflow for

the computation of an exact Genome-Wide Association Study. First the covariance matrix

(X T X ) is collectively computed (collective aggregation, CA) by the DPs, before being inversed

in the encrypted domain by one data provider (DPR ) in Step 1. As mentioned before, we rely

on the Gauss-Jordan (GJ) method [12] to compute the inverse of the encrypted covariance

matrix. We chose this algorithm as it requires only row operations that can be efficiently

performed with SIMD. The only operation that is not directly applicable in HE is the division

that we approximated with a Chebyshev polynomial. Note that we avoid any other division

in the protocol by pushing them to the last step that is executed, after decryption, by the

querier Q. For example, in Protocol 6.1, we keep 1/c until decryption. In Step 2, the inversed

matrix is augmented with the variant’s contribution (vector u that contains the variant’s

values for each patient) by following the Shermann-Morrison formula [219] and the method

presented in the report on Cryptographic and Privacy-Preserving Primitives (page 52) of

the WITDOM European project [245]. We remark that, whenever possible, the DPs locally

compute on their cleartext data before securely aggregating their partial results. The matrix W

is made of 3 sub-matrices (W11, W12,W21) that are computed in Step 2. In Step 3, the model

weights (or coefficients, w) are computed such that all elements required to obtain the p-value

corresponding to the variant’s coefficient can be computed in Step 4. In Step 5, the results are

switched (Key Switching, KS) to the querier’s public key such that they can compute the final

result in Step 6.
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Protocol 6.1 FAMHE-GWAS.

Step 1: Inverse of covariance matrix of covariates

1: Each DPi : Xi = [1, Xi ] with Xi ∈R(pi×( f +1))

2: Each DPi computes X T
i Xi with X T

i Xi ∈R(( f +1)×( f +1))

3: CA → E (X T X )

4: DPR : E ((X T X )(−1)) ===G J (E ((X T X ))) and broadcasts

Step 2: Variants contribution

5: For each column u in V do:

6: Each DPi computes uT
i ui , uT

i Xi ×E((X T X )(−1))

7: CA → E (uT u), E (W21) === E (uT X (X T X )(−1)))

8: DPR broadcasts E(uT X (X T X )(−1)))

9: Each DPi computes E(uT X (X T X )(−1)))×X T
i ui

10: CA → E (uT X (X T X )(−1) X T u)

11: DPR computes E ( 1
c ) === E (uT u −−−uT X (X T X )(−1) X T u)

12: Each DPi computes E((X T X )(−1)))×X T
i ui

13: CA → E (W12) === E ((X T X )(−1) X T u)

14: DPR computes E (W11)=E ( 1
c (X T X )(−1) +++W12W21)

15: E (W ) === E
(W11 W12

W21 1

)
Step 3: All coefficients

16: Each DPi computes [Xi ,ui ]T yi

17: CA → E (w ) === E (W ××× [X , u]T y)

Step 4: P-value elements

18: Each DPi : E(y ′
i ) = Xi ×E(w) and E(msei ) = 1

p

∑pi

j=0(E(y ′
i [ j ])− yi [ j ])2

19: CA → E (mse)

Step 5: Key Switching

20: KSQ (E(mse),E( 1
c ,E(w[ f +2])) and send to Q

Step 6: Querier final result

21: Querier decrypts and pval = 2 ·pnor m(−| w[ f +2]p
(mse·c)

|)

FAMHE-FastGWAS (Protocol 6.2). In this protocol, we show how the GWAS can be estimated

hence computed with a lower complexity; this computation is done by avoiding the compu-

tation of the complete inverse matrix of the covariance matrix. We reduce the computation

overhead by obtaining the covariates’ weights w ′ with a lightweight federated gradient-descent

(FGD), by reporting the obtained covariates’ contributions in the phenotype y , which becomes

y ′′. To compute the p-value, we then compute only one element of the covariance inverse

matrix (X
′T

X ′)(−1)[ f +2; f +2], instead of the entire inverse. In Step 2, to perform the feder-

ated gradient descent on an encrypted model, we follow the method described in Chapter 5,

without disclosing any intermediate values. The following steps are similar to Protocol 6.1.

Step 3 corresponds to a partial execution of steps 2 and 3 from Protocol 6.1. In Step 4, we

compute the coefficient that corresponds to the variant and the other elements required to

obtain the p-value.
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Protocol 6.2 FAMHE-FastGWAS.

Step 1: Inverse of covariance matrix of covariates

1: Each DPi : Xi = [1, Xi ] with Xi ∈R(pi×( f +1))

2: Each DPi computes X T
i Xi with X T

i Xi ∈R(( f +1)×( f +1))

3: CA → E (X T X )

4: DPR : E ((X T X )(−1)) ===G J (E ((X T X ))) and broadcasts

Step 2: Covariates coefficients & error

5: E (w [0 : f +++1]) = SGD(X , y) and broadcasts

6: Each DPi : E(y ′′
i ) = yi −E(Xi w[0 : f +1])

7: Each DPi : E(ȳ ′′
i ) = 1

p

∑pi

j=0 E(y ′′
i [ j ])

Step 3: Variants contribution

8: For each: column u in V do:

9: Each DPi computes uT
i ui , uT

i Xi ×E((X T X )(−1))

10: CA → E (uT u), E (W21) === E (uT X (X T X )(−1)))

11: DPR broadcasts E(uT X (X T X )(−1)))

12: Each DPi computes E(uT X (X T X )(−1)))×X T
i ui

13: CA → E (uT X (X T X )(−1) X T u)

Step 4: P-value elements

14: DPR compute E ( 1
c ) === E (uT u −−−uT X (X T X )(−1) X T u)

15: Each DPi : E(ūi ) = 1
p

∑pi

j=0 E(ui [ j ])

16: CA → E (ȳ ′′′′′′), E (ū) and broadcasts

17: Each DPi : E(di ) =∑pi

j=0(ui [ j ]−E(ū))2 and E(ti ) =∑pi

j=0(ui [ j ]−E(ū))(y ′′
i [ j ]−E(ȳ ′′))

18: CA → E (d ), E (t ) and broadcasts

19: Each DPi : E(mse ′i ) =∑pi

j=0(E(d)y ′′
i [ j ]−E(t )u[ j ])2

20: CA → E (mse ′′′)
Step 5: Key Switching

21: KSQ (E(mse ′),E( 1
c ),E(t ),E(d) and send to Q

Step 6: Querier final result

22: Querier decrypts and pval = 2 ·pnor m(−| t/d√
1

d2 (mse ′·c)
|)

6.3 Evaluation

To demonstrate the performance of FAMHE, we test it on the two essential biomedical tasks

introduced in Sections 6.2.3, i.e., Kaplan-Meier survival analysis and GWAS. We present the

results for these two tasks performed on real datasets from two peer-reviewed studies that

were originally conducted by centralizing the data from multiple institutions.

As in Chapter 5, we implemented our solution by building on top of Lattigo [159], an open-

source Go library for lattice-based cryptography, and on Onet [182], an open-source Go library
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for building decentralized systems. The communication between data providers (DPs) is done

through TCP, with secure channels (by using TLS). We evaluate our prototype on an emulated

realistic network, with a bandwidth of 1 Gbps and a delay of 20 ms between every two nodes.

We deploy our solution on 12 Linux machines with Intel Xeon E5-2680 v3 CPUs running at

2.5GHz with 24 threads on 12 cores and 256 Gigabytes of RAM, on which we evenly distribute

the DPs. We choose security parameters to always achieve a security level of 128 bits.

6.3.1 Multi-centric Kaplan-Meier Survival Analysis

In a recent study, Samstein et al. [207] demonstrated that the tumor mutational burden

(TMB) is a predictor of clinical response to immune checkpoint inhibitor (ICI) treatments in

patients with metastatic cancers. To obtain this conclusion, they computed Kaplan-Meier

overall survival (OS) curves of 1,662 advanced-cancer patients treated with ICI and that are

stratified by TMB values. OS was measured from the date of first ICI treatment to time of

death or the last follow-up. In Figure 6.3a, we show the survival curves obtained from the

original centralized study (Centralized, Non-secure) and those obtained through our privacy-

preserving federated workflow of FAMHE executed among three data providers (DPs). Note

that for FAMHE, to illustrate the workflow of federated collaboration, we distributed the dataset

across the DPs, each hosted on a different machine. FAMHE’s analysis is then performed with

each DP having access only to the locally held patient-level data, thus closely reflecting a real

collaboration setting that involves independent healthcare centers. As a result, our federated

solutions circumvent the privacy risks associated with data centralization in the original study.

We observed that FAMHE produces survival curves identical to those of the original non-secure

approach. By using either approach, we are able to derive the key conclusion that the benefits

of ICI increase with TMB.

In Figure 6.3b, we show that FAMHE produces exact results while maintaining computational

efficiency, as the computation of the survival curves shown in Figure 6.3a is executed in less

than 12 seconds, even when the data are scattered among 96 DPs. We also observe that

the execution time is almost independent of the DPs’ dataset size, as the same experiment

performed on a 10x larger dataset (replicated 10x) takes almost exactly the same amount of

time. We show that FAMHE’s execution time remains below 12 seconds for up to 8192 time

points. We note that, in this particular study, the number of time points (instants at which

an event can occur) is smaller than 200, due to the rounding off of survival times to months.

In summary, the FAMHE-based Kaplan-Meier estimator produces precise results and scales

efficiently with the number of time points, each DPs’ dataset size, and with the number of DPs.

We remark that the hazard ratio, which is often computed in survival curve studies, can be

directly estimated by the querier, based on the final result [231]. It is also possible to compute

the hazard ratios directly by following the general workflow of FAMHE described in Figure 6.1.

This requires the training of proportional hazard regression models that are closely related to

generalized linear models [133] that our GWAS solution in the next section also utilizes.
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(b) FAMHE’s runtime with an increasing number of DPs.

Figure 6.3 – Secure and Distributed Reproduction of a Survival-Curve Study. (a): survival
curves generated in a centralized non-secure manner and with FAMHE on the data used by
Samstein et al. [207]. With FAMHE, the original data are split among three data providers, and
the querier obtains exact results. The table in Figure 6.3a displays the number of patients at
risk in a specific time. The exact same numbers are obtained with the centralized, non-secure
solution and with FAMHE. (b): FAMHE execution time for the computation of one (or multiple)
survival curve(s) with a maximum of 8192 time points. For both the aggregation and key
switching (from the collective public key to the querier’s key), most of the execution time is
spent in communication (up to 98%), as the operations on the encrypted data are lightweight
and parallelized on multiple levels, i.e., among the data providers and among the encrypted
values.

6.3.2 Multi-centric Genome-Wide Association Study (GWAS)

Here we demonstrate the potential of FAMHE to enable multi-centric GWAS that fully protect

the privacy of patients’ data throughout the analysis. We evaluated our approach on a GWAS
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dataset from McLaren et al. [151]; they studied the host genetic determinants of HIV-1 viral

load in an infected population of European individuals. It is known that the viral load observed

in an asymptomatic patient after primary infection positively correlates with the rate of disease

progression; this is the basis for the study of how host genetics modulates this phenotype.

We obtained the available data for a subset of the cohort including 1,857 individuals from

the Swiss HIV Cohort Study, with 4,057,178 genotyped variants. The dataset also included 12

covariates that represent ancestry components, which we also used in our experiments to

correct for confounding effects. To test our federated analysis approach, we distributed, in

a manner analogous to the survival analysis experiments, the GWAS dataset across varying

numbers of data providers.

Following the approach of McLaren et al. [151], we performed GWAS using linear regression

of the HIV-1 viral load on each of the more than four million variants, always including

the covariates. To enable this large-scale analysis in a secure and federated manner, we

developed two complementary approaches based on our system: FAMHE-GWAS and FAMHE-

FastGWAS. FAMHE-GWAS performs exact linear regression and incurs no loss of accuracy,

whereas FAMHE-FastGWAS achieves faster runtime through iterative optimization at a small

expense of accuracy. We believe that both modes are practical and that the choice between

them would depend on the study setting.

We compare FAMHE-GWAS and FAMHE-FastGWAS against (i) Original, the centralized non-

secure approach adopted by the original study, albeit on the Swiss HIV Cohort Study datase, (ii)

Meta-analysis [193], a solution in which each DP locally and independently performs GWAS

to obtain summary statistics that are then shared and combined (through weighted-Z test)

across DPs to produce a single statistic for each variant that represents its overall association

with the target phenotype, and (iii) Independent, a solution in which a data provider uses

only its part of the data set to perform GWAS. For all baseline approaches, we used the PLINK

[193] software to perform the analysis. For (i) and (iii), we relied on PLINK 2.0 and its linear

regression (–glm option) based association test. For (ii), we relied on PLINK 1.9 and used the

weighted-Z test approach to perform the meta-analysis. Note that Meta-analysis can also be

securely executed by first encrypting each DP’s local summary statistics then following the

federated-analytics workflow presented in Figure 6.1.

The Manhattan plots visualizing the GWAS results obtained by each method are shown in

Figures 6.4 and 6.5. Both our methods (Figure 6.5), based on FAMHE, produced highly accurate

outputs that are nearly indistinguishable from the Original results (Figure 6.4a). Consequently,

our methods successfully implicated the same genomic regions with genome-wide signifi-

cance found by Original (Figure 6.4a), represented by the strongest associated SNPs rs7637813

on chromosome 3 (nominal p = 7.2×10−8) and rs112243036 on chromosome 6 (p = 7.0×10−21).

Notably, both these SNPs are in close vicinity of the two strongest signals reported by the

original study [151]: rs1015164 with a distance of 9 Kbp and rs59440261 with a distance of

42 Kbp, respectively. The former is found in the major histocompatibility complex (MHC) re-

gion, and the latter is near the CCR5 gene; both have established connections to HIV-1 disease
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(a) Original Approach: Ground-truth obtained on a centralized cleartext dataset by
relying on the PLINK [193] software.
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(b) Meta-analysis Approach: obtained with the PLINK [193] software.
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(c) Independent Approach: obtained, with the PLINK [193] software, by a single DP on
its local subset of the global datsaset.

Figure 6.4 – Baseline GWAS results obtained with different non-secure approaches with 12 DPs
(when applicable). (a) Original is considered as the ground-truth and is obtained on a central-
ized cleartext dataset by relying on the PLINK [193] software. (b) and (c) are also obtained with
PLINK (See Figure D.2 for all DPs independent results). In the original study, genome-wide
signals of association (log10(P ) < 5×10−7, dotted line) were observed on chromosomes 6 and
3.

progression. [151] Although the two previous SNPs were not available in our data subset to

be analyzed, we reasonably posit that our findings capture the same association signals as in

the original study, related through linkage disequilibrium. Regardless, we emphasize that our
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(a) FAMHE-GWAS
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(b) FAMHE-FastGWAS

Figure 6.5 – FAMHE GWAS results obtained with different approaches with 12 DPs. (a) and (b)
are the results obtained with FAMHE-GWAS and FAMHE-FastGWAS, respectively. In our secure
approach, as in the original study, genome-wide signals of association (log10(P ) < 5×10−7,
dotted line) were observed on chromosomes 6 and 3.

federated analysis results closely replicated the centralized analysis of the same dataset we

used in our analysis.

In contrast, the Meta-analysis approach (Figure 6.4b), though successfully applied in many

studies, severely underperformed in our experiments by reporting numerous associations

that are likely spurious. We believe this observation highlights the limitation of meta-analyses

when the sample sizes of individual datasets are limited. Similarly, the Independent approach

(Figure 6.4c) obtained noisy results, which was further compounded by the issue of limited

statistical power (for results obtained by every data provider, see Figure D.2 in Appendix D.2).

We complement these comparisons with Table 6.1 that quantifies the error in the reported

negative logarithm of p-value (-log10(P-val)), as well as the regression weights (w), for all of

the considered approaches compared to Original. We observed that FAMHE-FastGWAS yields

an average absolute error always smaller than 10−2, which ensures accurate identification

of association signals. FAMHE-GWAS further reduces the error by roughly a factor of three

to obtain even more accurate results. Whereas, Meta-analysis and Independent approaches

result in considerably larger errors.
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Indep. Meta-ana. FAMHE-FastGWAS FAMHE-GWAS

-log10(P-val) w -log10(P-val) w -log10(P-val) w -log10(P-val) w

3 DPs all 0.369 0.04 0.448 0.04 6.7e−3 1.5e−3 2.72e−3 7.3e−4

peaks 4.14 0.055 7.9 0.19 0.71 6.61e−3 0.1392 1.88e−7

6 DPs all 0.409 0.0665 0.45 0.041 8.3e−3 1.61e−3 2.78e−3 7.4e−4

peaks 4.86 0.12 7.95 0.195 0.82 6.63e−3 0.1393 2.3e−7

12 DPs all 0.425 0.104 0.453 0.048 9e−3 1.63e−3 2.79e−3 7.7e−4

peaks 6.619 0.126 7.99 0.197 0.848 6.69e−3 0.1399 3.6e−7

Table 6.1 – GWAS Errors. This table displays the absolute averaged error on the logarithm of
the p-values (-log10(P-val)) and on the model weights (w) between Original and federated
approaches. It also shows that one data provider performing the GWAS alone, with only its
local data (Indep.), obtains inaccurate results. For each number of data providers, we report
the error averaged over all positions and the errors on the peaks identified with Original (see
Figure 6.4a).

Figure 6.6 shows that FAMHE scales efficiently in all dimensions: number of data providers,

samples and variants. As displayed by Figure 6.6a, FAMHE’s runtime decreases when the

workload is distributed among more data providers, and it is below one hour for a GWAS

jointly performed by 12 data providers on more than 4 million variants with FAMHE-FastGWAS.

It also shows that in a wide-area network (WAN) where the bandwidth is halved (from 1Gbps

to 500Mbps) and the delay doubled (from 20ms to 40ms), FAMHE execution time increases by

a maximum of 26% over all experiments.

Figures 6.6b and 6.6c show that FAMHE execution time grows linearly with the number of

patients (or samples) and variants. In all experiments, the communication accounts for

between 4 and 55 percent of FAMHE total execution time. As described in Section 6.2.3,

FAMHE computes the p-values of multiple (between 512 and 8192) variants in parallel, due

to the Single Instruction, Multiple Data (SIMD) property of the cryptoscheme and is further

parallelized among the DPs and by multi-threading at each DP. FAMHE is therefore highly

parallelizable, i.e., doubling the number of available threads would almost halve the execution

time. Finally, FAMHE-GWAS, which performs exact linear regression, further reduces the error

(by a factor of 3x compared to FAMHE-FastGWAS), but its execution times are generally higher

than FAMHE-FastGWAS.

These results demonstrate the ability of FAMHE to enable the execution of FA workflows, on

data held by large numbers of data providers who keep their data locally, while allowing for

end-to-end privacy with no loss of accuracy.

6.4 Comparison With Existing Works

Conceptually, FAMHE represents a new approach to federated analytics; it has not been pre-

viously explored for complex biomedical tasks. FAMHE combines the strengths of both con-

ventional federated-learning approaches and cryptographic frameworks for secure compu-
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(a) FAMHE’s scaling with the number of DPs. (b) FAMHE’s scaling with the number of patients.

(c) FAMHE’s scaling with the number of variants. (d) Legend Box

Figure 6.6 – FAMHE Scaling. (a) FAMHE’s scaling with the number of data providers, (b) with
the size of the dataset and (d) with the number of variants considered in the GWAS. (d) is
the legend box for ((a), (b), (c)). In (a), we also observe the effect of a reduced available
bandwidth (from 1Gbps to 500Mbps) and increased communication delay (from 20ms to
40ms) on FAMHE’s execution time. Unless otherwise stated, the original dataset containing
1857 samples and 4 million variants is evenly split among the data providers. By default, the
number of DPs is fixed to 6.

tation. Like federated learning, FAMHE scales to large numbers of data providers and en-

ables non-interactive local computation over each institution’s dataset (available locally in

cleartext), which minimizes the computational and communication burdens that crypto-

graphic solutions [49; 116; 148; 202] typically suffer from. However, FAMHE draws from the

cryptographic framework of MHE to enable secure aggregation and local computation of

intermediate results in an encrypted form. This departs from the existing federated learning

solutions [29; 90; 137; 168; 218; 223] that largely rely on data obfuscation to mitigate leakage

in the intermediate data shared among the institutions. Our approach thus provides more

rigorous privacy protection. In other words, in FAMHE accuracy is traded off only with perfor-

mance, similarly to non-secure federated approaches, but differently from obfuscation-based

solutions, FAMHE’s security is absolute.
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We summarize our comparison of FAMHE with existing works in Table 6.2. We compare

certain existing solutions and FAMHE on multiple criterion: whether (i) patient levels and

(ii) aggregated data are protected, (iii) the data protection satisfies the GDPR definition of

anonymity, (iv) the solutions scale with the number of data providers and computing parties,

(v) a majority of computing parties can be dishonest (without deviating from the protocol), (vi)

the obtained results are the same as if they were computed on a centralized cleartext dataset

(i.e., utility), (vii) the system enables multiple types of computations, and (viii) the solution is

tested in a real application scenario. A "∼" means that the property is partially fulfilled.

Protect. Patient Level GDPR Intermed. Scale w. Passive Preserve Comput. Complex Appl. To
Mecha. Data Protect. Anonym. Val. Protect. Parties Dishonest Utility Flexibility Comput. Real Cases

Majority

AllOfUs [8]
Gen. Eng. [92] None No No No ∼ No Yes Yes Yes Yes
UKBio. [236]

DataSHIELD [90]

Aggr. ∼ No No Yes No ∼ ∼ Yes ∼Vantage6 [238]
SHRINE [222]
Splink [168]

SWARM [244]

Bonomi et al. [29] DiffP Yes No ∼ Yes Yes No No No ∼
Li et al. [137] DiffP Yes No ∼ Yes Yes No No Yes No

Cho et al. [49] SMC Yes Yes Yes No Yes ∼ No Yes Yes

Jagadeesh et al.
SMC Yes Yes Yes No No ∼ No No Yes

[116]

Lu et al. [148] MHE Yes Yes Yes Yes Yes ∼ ∼ No No

FAMHE MHE Yes Yes Yes Yes Yes ∼ ∼ Yes Yes

Table 6.2 – Comparison of existing solutions for biomedical FA.

Quantitative comparison of FAMHE-GWAS and FAMHE-FastGWAS with existing approaches.

FAMHE is specifically designed to benefit from its multiparty construction and to optimize its

use of MHE to efficiently execute secure FA workflows among a large number of data providers

that keep their data locally. As shown in Table 6.3, a non-secure centralized solution based on

PLINK takes 14 seconds when performed by a single data provider on the pooled dataset. As

shown in Figure 6.6a, FAMHE efficiently distributes its workload and achieves an execution

time of 69 minutes when the data are split among 12 DPs for the same computation. A non-

secure federated solution based on PLINK’s meta-analysis method takes around 5 minutes

when executed on 12 DPs but yields very imprecise results. We remark that in the meta-

analysis the DPs exchange information only once at the end and a non-secure solution in

which the DPs collaborate during the process would be slightly slower, e.g., between 5 and

10 minutes, depending on the communication settings. Differential-privacy-based solutions

usually yield the same execution time as non-secure solutions. We estimate that a centralized

HE-based solution would take at least 2228 (with the FastGWAS approach) and 30,781 minutes

(with the GWAS approach), whereas FAMHE respectively takes 69 and 812 minutes when

the same approaches are collaboratively executed by 12 data providers. The centralized
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approach, contrary to FAMHE, cannot distribute the workload among multiple DPs and suffers

from a high overhead brought by centralized cryptographic operations. For example, in a

centralized setting, a ciphertext is refreshed or bootstrapped in 26 seconds [106] for a security

level of 108 bits, whereas the corresponding interactive protocol in FAMHE takes 0.6 seconds

with a better security level of 128 bits. SMC approaches usually target settings with 2 to 4

parties due to a communication cost that becomes prohibitive for higher numbers of parties.

FAMHE also works with 2 to 4 parties but is not specifically optimized for this scenario and its

execution time would be in the same order of magnitude as secret-sharing-based solutions.

However, unlike secret-sharing-based solutions, FAMHE efficiently scales to federated learning

settings where many DPs keep their data locally. Furthermore, by designing an alternative

MHE-friendly algorithm for the same task (e.g. FAMHE-FastGWAS), FAMHE can achieve faster

execution times than SMC even in the setting with a small number of parties.

We summarize this comparison in Table 6.3. The two Decentralized approaches refer to

cleartext adaptations of FAMHE’s approaches. The results for Centralized, Non-Secure and

Meta-analysis, Non-Secure are obtained through experiments with the PLINK software. The

execution times for the Decentralized approaches are inferred from Meta-analysis, Non-Secure

and their communication overheads are deduced from FAMHE’s communication costs from

which we removed the encryption overhead. We also relied on this encryption storage over-

head to estimate Centralized HE communication cost, whereas its execution time is deducted

from our previous observation on the centralized bootstrapping. We estimated the perfor-

mance of SMC by extrapolating the published results of Cho et al. [49]. For a fair comparison,

we considered only the Phase 3 results, i.e., the association tests, for which Cho et al. computed

the χ2 statistics of the generalized Cochran-Armitage trend test corrected for covariates. We

note that, while Cho et al. take a different approach to computing the association results

than FAMHE, the overall workflow is similar and represents a suitable reference point for com-

parison. Since the prior work considered a three-party setting, we expect the real execution

time of SMC to be higher in our setting with 12 DPs. For the communication cost of SMC, we

combined the estimates of both initial data sharing and the main computation step (Phase

3) from the original publication and assumed linear scaling with the number of DPs. FAMHE

measurements are obtained through our experiments.

Centralized, Meta-analysis, Decentralized Decentralized, Centralized HE SMC FAMHE
Non-Secure Non-Secure Non-secure DiffP.

Execution Time (min) 0.24 5 10 10 2228; 30781 320 69; 812

Communication cost (GB) 4 0.5 39; 171 39; 171 12 3144 122; 684

Table 6.3 – Quantitative comparison of existing approaches for biomedical FA. In distributed
cases, the data are split among 12 data providers. The communication cost corresponds to
the amount of data that one DP has to send during the entire process. When two values are
provided, the left one corresponds to an approach equivalent to FastGWAS and the right one
to GWAS.
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6.5 Conclusion

In this chapter, we demonstrate that efficient privacy-preserving federated-analysis workflows

for complex biomedical tasks are attainable. Our efficient solutions for survival analysis

and GWAS, based on FAMHE, accurately reproduced published peer-reviewed studies while

keeping the dataset distributed across multiple sites and ensuring that the shared intermediate-

data do not leak any private information. Alternative approaches based on meta-analysis or

independent analysis of each dataset led to noisy results in our experiments, illustrating the

benefits of our federated solutions. The fact that FAMHE led to practical federated algorithms

for both the statistical calculations required by Kaplan-Meier curves and the large-scale

regression tasks of GWAS reflects the ability of FAMHE to enable a wide range of other analyses

in biomedical research, such as cohort exploration and the training and evaluation of disease

risk prediction models.

The fact that FAMHE shares only encrypted data among the data providers has an important

implication for its suitability to regulatory compliance and its potential to catalyze future

efforts for multi-centric biomedical studies. In recent work, it has been established by pri-

vacy law experts that data processed using MHE can be considered ‘anonymous’ data under

the General Data Protection Regulation (GDPR) [210]. Anonymous data, which refers to

data that require unreasonable efforts to reidentify the source individuals, lies outside the

jurisdiction of GDPR. Therefore, our approach has the potential to significantly simplify the

requirements for contractual agreements and the obligations of data controllers with respect

to regulations that, such as GDPR, often hinder multi-centric medical studies. In contrast, ex-

isting federated-analytics solutions, where the intermediate results are openly shared, present

more complicated paths toward compliance, as intermediate results could still be considered

personal data [157; 169; 243].

In cases where the potential leakage of privacy in the final output of federated analysis is a

concern, differential privacy techniques can be easily incorporated into FAMHE by adding a

small perturbation to the final results before they are revealed. In contrast to the conventional

federated learning approach, which requires each data provider to perturb its local results

before aggregating them with other parties, FAMHE enables the data providers to keep the

local results encrypted and reveals only the final aggregated results. Therefore, FAMHE can

use a smaller amount of added noise and achieve the same level of privacy [125]. Notably,

the choices of differential-privacy parameters suitable for analyses with a high-dimensional

output, such as GWAS, can be challenging, and needs to be further explored.

There are several directions in which our work could be extended to facilitate the adoption of

FAMHE. Although, we reproduced published studies by distributing a pooled dataset across a

group of data providers, jointly analyzing multiple datasets by using FAMHE that could not be

combined otherwise would be a challenging yet important milestone for this endeavour. Our

work demonstrates FAMHE’s applicability on a reliable baseline and constitutes an important

and necessary step towards building trust of our technology and fostering its adoption, thus
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enabling its use for the discovery of new scientific insights. Furthermore, we will extend the

capabilities of FAMHE by developing additional protocols for a broader range of standard

analysis tools and machine-learning algorithms in biomedical research (e.g., proportional-

hazard regression models). A key step in this direction is to make our implementation of FAMHE

easily configurable by practitioners for their own applications. Specifically, connecting FAMHE

to existing user-friendly platforms such as MedCo [155] to make it widely available would

help empower the increasing efforts to launch multi-centric medical studies and accelerate

scientific discoveries.
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7 Conclusion

In this thesis, we have proposed a new approach for privacy-preserving federated data an-

alytics. In order to facilitate their adoption, we have designed secure solutions that behave

(e.g., scale) similarly to federated non-secure approaches for data analysis; they also provide

equivalent flexibility and features. In other words, we have proposed solutions that scale to a

large number of data providers, do not introduce by-design bias in the final results, and enable

data providers to keep control over their data. These features are attained with solutions that

also ensure strong security guarantees in restrictive threat models. Our solutions provide a sim-

ilar trade-off between performance and accuracy, e.g., depending on the number of training

iterations in ML, as non-secure solutions. They do not impose a trade-off between privacy and

accuracy as, for example, in the case of differential privacy-based solutions. The performance

overhead imposed by the added-security in our solutions can be tightly controlled because

our systems are designed to be modular and their security features, e.g., proofs of correctness,

can be enforced or not. We have shown that our solutions follow the same scaling trend with

respect to the number of data providers, the computation complexity, and the input-data sizes,

as non-secure solutions and that they can achieve execution times between 0 and 2 orders of

magnitude slower than insecure solutions.

Contrary to most of existing cryptography-based solutions, our systems scale to a large number

of data providers that can keep their data locally and efficiently collaborate to perform data

analytics that range from simple sums to complex and parallelized ML models training, e.g.,

GWAS. This is made possible by the combination of secure multiparty computation and

homomorphic encryption; this is at the core of all our solutions and enables us to propose

efficient and secure decentralized systems.

We hope that the proposed generic systems, e.g., enabling the widely-applicable gradient

descent, will pave the way to even more flexible secure solutions that will provide high-security

guarantees with a negligible and almost imperceptible cost to the users, thus favoring their

adoption. Moreover, privacy law experts established that data processed using MHE can be

considered ‘anonymous’ and thus lie outside the jurisdiction of the General Data Protection

Regulation (GDPR). Our approach has therefore the potential to significantly simplify the
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requirements for contractual agreements and the obligations of data controllers with respect

to regulations that often hinder data sharing.

In Chapter 3, we have introduced a first system that, by building on multiparty additive

homomorphic encryption (AHE) and differential privacy, enables the privacy-preserving

execution of SQL-like queries on a dataset jointly held by a multitude of data providers. We

have shown that, by designing a modular system, we are able to provide a solution that is

efficient in a strong threat model and whose query-response time can be further reduced

depending on the settings, on the security features, and on the threat model considered, e.g.,

with or without local data encryption and with an honest or malicious threat model.

In Chapter 4, we have further built on the solution proposed in Chapter 3. We designed a

system that provides richer functionalities, e.g., complex statistic computations, and that

preserves and enhances the provided security guarantees. As in Chapter 3, DRYNX is modular

and can be optimized for specific settings or threat models. Furthermore, we have proposed

an efficient and probabilistic method for verifying the system’s inputs and computations, thus

making it fully auditable without affecting its response time, i.e., the query response is sent

independently of the verification that is performed in parallel and a posteriori.

In Chapter 5, we have adapted a state-of-the-art quantum-resistant fully-homomorphic en-

cryption cryptoscheme to our multiparty framework. By relying on this multiparty construc-

tion and computation capabilities, we were able to efficiently perform a federated stochastic

gradient descent on data held by many data providers and to preserve data and model confi-

dentiality. SPINDLE covers the entire ML workflow, as the trained model can remain secret to

perform oblivious predictions. SPINDLE notably optimizes its performance by selecting the

best packing and multiplication method, depending on the input-data dimensions and the

learning parameters, and by replacing costly cryptographic operations, e.g., bootstrapping,

with lightweight interactive protocols.

In Chapter 6, we have shown that the previously introduced framework can be used to ef-

ficiently and accurately perform computationally demanding tasks, such as the training in

parallel of millions of regression models, and that it can be used in domains, such as precision

medicine, where accuracy is crucial. We have demonstrated that, by relying on multiparty

homomorphic encryption, we are able to faithfully and accurately reproduce biomedical

studies, from the computation of survival curves to the execution of a GWAS with more than 4

millions variants, even when the data are distributed among many data providers.

Our approach improves on state-of-the-art secure solutions by scaling to large numbers of

data providers that can keep control of and benefit from their local data and by providing

strong security guarantees, e.g., quantum-resistance, in strong threat models. We provide

these features with solutions that remain modular in terms of enabled-computations (e.g.,

statistics and ML models training) and that can be adapted to many scenarios, as some of their

security features (e.g., differential privacy) can be ensured in a modular way. Our approach

can conceptually be used for any federated computation. We are currently building on this
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work to develop a solution for principal component analysis (e.g., for dimension reduction)

that is a key pre-processing operation in many ML workflows, (e.g., GWAS). We have also

relied on this approach for the training and evaluation of neural-network models [208]. The

extension of our approach, for the efficient training of more complex ML models, is also an

interesting and promising direction for future work. Other crucial directions of research are

towards usability and parametrization of secure systems for federated analytics. In Chapter

5, we have described the intrinsic links between the security (or cryptography) parameters

and the learning parameters, but their setup remains non-trivial and requires the user to

understand both the cryptographic and ML constraints. Learning how to automatize cross-

domain parameters selection in a federated and privacy-preserving manner is a key-step

towards the design of more user-friendly solutions.

In conclusion, we believe that our multiparty homomorphic encryption-based framework

can be used in a multitude of scenarios and applications due to its computational and flexi-

bility features that bring it closer to standard insecure solutions. Personalized and precision

medicine are paradigmatic examples in which our solutions can help to accelerate progress

by providing a combination of analytical and security features that are absolutely needed to

enable large-scale studies and collaborations with sensitive data. We hope to facilitate the

adoption of secure solutions for federated analytics in general by ensuring strong security

guarantees that do not have a negative impact on the usability and the performance for the

users. We believe that our approach can be a key enabler in a multitude of domains in which

data sharing or federated analytics are currently difficult or non-existent due to the sensitivity

of the data.
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A Federated Data Exploration

In this appendix, we extend the explanations, of Chapter 3, on zero-knowledge proofs and the

‘SELECT ∗’ feature of UNLYNX.

A.1 Zero-Knowledge Proofs

We complement the explanation of the zero-knowledge proofs introduced in Section 3.3.2.

Distributed Deterministic-Tag

We recall the distributed deterministic-tag sub-protocol below.

This sub-protocol is made of two consecutive rounds. It starts with EK (x) = (C1, C2) = (r B , x +
r K ), the ciphertext tuple corresponding to an ElGamal encryption of message x that uses the

collective authority’s (CA) public key K .

In the first round, each computing node sequentially generates a fresh secret si and adds the

value derived from its secret si B to C2. This eliminates the possibility to have a deterministic

tag of 0 as an output of the protocol when the input message is zero. After this first round,

the encrypted message is (C1, C2) = (r B , x + r K +∑|C N |
i=1 si B). Let (C̃1,0, C̃2,0) = (C1, C2) be a

ciphertext resulting from the first round.

In the second round, each computing node partially and sequentially modifies this ciphertext.

More specifically, when computing node C Ni receives the modified ciphertext (C̃1,i−1, C̃2,i−1)

from computing node C Ni−1, it computes (C̃1,i , C̃2,i ) as

C̃1,i = si C̃1,i−1 (A.1)

and

C̃2,i = si
(
C̃2,i−1 − C̃1,i−1ki

)
(A.2)

Once all of these computations are done, we discard the first component C̃1,|C N | and obtain

C̃2,|C N | = sx +
|C N |∑
i=1

si sB (A.3)
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where s = ∏|C N |
i=1 si is a short-term collective secret corresponding to the product of each

computing node’s fresh secret. C̃2,|C N | is the deterministic tag collectively computed from the

original ciphertext (C1, C2).

Each time a computing node does the computations in the first round and in Equations

(A.1) and (A.2), it must also compute a zero-knowledge proof to prove that the computations

have been done correctly. In this case, when adding a secret value and when computing

(C̃1,i , C̃2,i ), computing node C Ni is the prover and anybody can act as a verifier. In the first

round, the prover proves that he knows si the discrete logarithm of si B . Coming back to

Equation (1.1) in Section 1.2, it is easy to see that for Equation (A.2), y1 = si , y2 = ki si are

the discrete logarithms of si B and ki si B = si Ki , respectively. The points si Ki , si B , A = C̃2,i ,

A1 = C̃2,i−1 and A2 =−C̃1,i−1 on G are public and are part of the proof. The publication of si B

also guarantees that computing node C Ni has used the same secret si for all data during a

given query. This means that for each query, computing node C Ni will pick a value si that will

be used throughout the query and will be different for the next query.

For Equation (A.1), y1 = si is the discrete logarithm of si C̃1,i−1. The points C̃1,i , si B , A = C̃1,i

and A1 = C̃1,i−1on G are public and are part of the proof.

Key Switch

We recall the key switch sub-protocol below.

We start with EK (x) = (C1, C2) = (r B , x + r K ), a ciphertext tuple corresponding to the ElGamal

encryption of message x using the CA’s public key K . Let (C̃1,0, C̃2,0) = (0, C2, j ) be the initial

modified ciphertext tuple. Each computing node will partially and sequentially modify this

element. Specifically, when computing node C Ni receives (C̃1,i−1, C̃2,i−1) from computing

node C Ni−1, it generates a fresh random nonce vi and computes (C̃1,i , C̃2,i ) as

C̃1,i = C̃1,i−1 + vi B (A.4)

and
C̃2,i = C̃2,i−1 − (r j B)ki + viU

= C̃2,i−1 − r j Ki + viU .
(A.5)

where v = v1 + . . .+ v|C N |.

Each time a computing node does the computations in Equations (A.4) and (A.5), it must also

compute a zero-knowledge proof to prove that the computations have been done correctly.

Again, at each step i , computing node C Ni is the prover and anybody can be the verifier.

Coming back to Equation (1.1) in Section 1.2, it is easy to see that for Equation (A.5), y1 = ki ,

y2 = vi are the discrete logarithms of ki B = Ki and vi B , respectively. All points Ki , vi B ,

A = C̃2,i − C̃2,i−1, A1 = −r j B and A2 = U are made public and do not leak any information

about underlying secrets.

For Equation (A.4), y1 = vi is the discrete logarithm of vi B . All points vi B , A = C̃1,i − C̃1,i−1

and A1 =U are made public and do not leak any information about underlying secrets.
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Dynamic Collective Authority

We recall the sub-protocol allowing to add/remove a computing node from the collective

authority.

Let C N|C N | be the computing node that needs to be added. Any data provider that stored

data encrypted using the CA’s previous public key Kprev must execute the corresponding

sub-protocol in order to have its data encrypted under the CA’s new public key Knew. When

adding a new computing node C N|C N | to the collective authority C N1, . . . ,C N|C N |−1, Kprev =
K1+ . . .+K|C N |−1 and Knew = K1+ . . .+K|C N |. Starting from a message x encrypted under Kprev,

(C1, C2) = (r B , x + r Kprev), computing node C N|C N | multiplies C1 by its private key k|C N |

C1k|C N | = (r B)k|C N | = r K|C N | (A.6)

and adds the result to C2

C̃2 =C2 + r K|C N | = x + r Kprev + r K|C N | = x + r Knew. (A.7)

Component C̃1 remains the same, i.e.,

C̃1 =C1.

Coming back to Equation (1.1) in Section 1.2, we see that for Equation (A.7), y1 = k|C N | is the

discrete logarithm of k|C N |B = K|C N |. All points K|C N |, A = C̃2−C2 and A1 =C1 are made public

and do not leak any information about underlying secrets.

Now, assume a collective authority of |C N | computing nodes C N1, . . . ,C N|C N | and let C N|C N |
be the computing node that needs to be removed. In this case, Kprev = K1 + . . .+K|C N | and

Knew = K1+. . .+K|C N |−1. In order to update the encryption of message x to the CA’s new public

key Knew, computing node C N|C N | must compute C̃2 as

C̃2 =C2 − r K|C N | = x + r Kprev − r K|C N | = x + r Knew. (A.8)

Again, using Equation (1.1) in Section 1.2, we see that for Equation (A.8), y1 = k|C N | is the

discrete logarithm of k|C N |B = K|C N |. All points K|C N |, A = C̃2 −C2 and A1 = −C1 are made

public and do not leak any information about underlying secrets. For Equation (A.6), y1 = k|C N |
is the discrete logarithm of k|C N |r B and the point k|C N |r B is public and do not leak any

information about underlying secrets.

A.2 SELECT query

As mentioned in Section 3.2.1, UNLYNX’s design enables the system to respond to queries of

the form ‘SELECT ∗’. The system would handle this query by executing all the steps of the

Decentralized Data Sharing protocol 3.3.1 except Steps 5 and 6 that would be skipped.
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While this can be useful for a data provider wishing to retrieve/decrypt parts/all of his database,

UNLYNX should not allow these queries on a distributed database held by multiple data

providers. In fact, it is not possible to answer this request while preserving the privacy and

data confidentiality of data providers because differential privacy cannot be ensured on non-

aggregated data. Moreover, an external querier would have access to DP’s raw data. Hence,

our system should only allow this operation for a data provider querying his own database.
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B Federated Statistical Analysis

In this appendix of Chapter 4, we detail the error probability of the bit-wise operations in

DRYNX.

B.1 Error Probability

In Section 4.5, we notice that the result of bit-wise operations, when DPs are requested to

answer with random values Ri s, can be erroneous with a probability smaller than 1/(#G −1).

We demonstrate here this result and provide an expression for the probability of error P|S|
where |S| is the number of DPs.

P|S| = P (
|S|∑

i=1
Ri = 0) =

#G−1∑
a=0

P (
|S|∑

i=1
Ri = 0 |

|S|−1∑
i=1

Ri = a) ·P (
|S|−1∑
i=1

Ri = a)

= P (
|S|∑

i=1
Ri = 0 |

|S|−1∑
i=1

Ri = 0) ·P (
|S|−1∑
i=1

Ri = 0)

+
#G−1∑
a=1

P (
|S|∑

i=1
Ri = 0 |

|S|−1∑
i=1

Ri = a) ·P (
|S|−1∑
i=1

Ri = a)

=
#G−1∑
a=1

P (
|S|∑

i=1
Ri = 0 |

|S|−1∑
i=1

Ri = a) ·P (
|S|−1∑
i=1

Ri = a)

= P (Rn =−a) ·
#G−1∑
a=1

P (
|S|−1∑
i=1

Ri = a)

= 1

#G −1
·

#G−1∑
a=1

P (
|S|−1∑
i=1

Ri = a) = 1

#G −1
· (1−P|S|−1).

We have P|S| = 1
#G−1 · (1−P|S|−1) ≤ 1

#G−1 and P|S| =
|S|∑

i=2
(−1)i · ( 1

#G−1 )i−1.
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In this appendix, we complement Section 5.4.3 in Chapter 5 by detailing how we approximate

non-polynomial functions and how we rely on this technique to approximate the maximum

function. We complement SPINDLE’s security analysis (Section 5.6) by proving the security

of the DBootstrap operation. We provide more details on SPINDLE’s evaluation and propose

some modular extensions that can be integrated in the system.

C.1 Activation Functions

We describe how we evaluate a polynomial approximation and how we approximate the

maximum function.

Algorithm C.1 Encrypted Polynomial Approximation Evaluation AF(·).

Func. AF(〈u〉,d ,r ) outputs 〈a〉 the evaluated poly. approx. of 〈u〉
1: Choose the smallest ω such that 2ω > d and define k = bω/2c
2: Compute {ui } = 〈u1〉,〈u2〉, . . . ,〈u2k -1〉,〈u2k 〉,〈u2k+1〉, . . . , 〈u2ω-1〉 inductively and call

paRecu(r ,d , {ui })
3: Function paRecu(r ,d , {ui }):
4: Choose the smallest ω such that 2ω > d
5: Find polynomials q(〈u〉) and R(〈u〉) with 〈a〉 =

〈u2ω−1〉q(〈u〉)+R(〈u〉) such that
〈a〉 =∑

i=1,2,..,d r [i ]〈ui 〉
6: If d(q),d(R) > 2 :

Evaluate q(〈u〉) = paRecu(r ,d = d(q), {ui })
and R(〈u〉) = paRecu(r ,d = d(R), {ui })

7: Else Return 〈a〉

Polynomial Approximation. Algorithm C.1 inductively computes the (element-wise) ex-

ponentiation of the encrypted input vector 〈u〉: 〈u1〉, 〈u2〉, . . . , 〈u2k−1〉, 〈u2k 〉, 〈u2k+1〉, . . . ,

〈u2ω−1〉 (Algorithm C.1, line 2), where ω is the smallest value satisfying 2ω > d(p(〈u〉)) and

k = bω/2c. Then, it recursively evaluates p(〈u〉) = ∑
i=1,2,3...,d ri 〈ui 〉 = 〈u2ω−1〉q(〈u〉)+R(〈u〉)
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(Algorithm C.1, line 3). Note that p(·), q(·), and R(·) are functions of 〈u〉 and of the approxima-

tion coefficients r , q(·) is the quotient of the division of the actual activation function p(·) by

〈u2ω−1〉, and R(·) is the remainder of the division. d(x) is a function that outputs the degree of

x.

Approximation of the maximum function. Algorithm C.2 computes the approximation of the

maximum function. It takes an encrypted matrix 〈U|cl |×c〉, the approximations intervals [ai , gi ]

and degrees d , and computes an encrypted vector 〈m〉 that contains a close approximation of

the max of each column of 〈U 〉.

Algorithm C.2 Approximation of the max function apMax(·).

〈m〉← apMax(〈U 〉, [ai , gi ],d )
1: 〈u′′′〉 =∑|cl |

λ=0〈U [λ, ·]〉
2: for λ= 1, . . . , |cl | do
3: 〈U [λ, ·]〉 = (〈U [λ, ·]〉−〈u′′′[λ, ·]〉)
4: end for
5: r ← GetAFCoefficients((1/h′)e(x/h), [a1, g1],d [1]), where h,h′ are predefined constants
6: for λ= 1, . . . , |cl | do
7: 〈U ′′′′′′[λ, ·]〉 = AF(〈U [λ, ·]〉,d [1],r )
8: end for
9: 〈o〉 =∑|cl |

λ=0〈U ′′′′′′[λ, ·]〉
10: r ′′′ ← GetAFCoefficients({1/x}, [a2, g2],d [2])
11: 〈o〉 = AF(〈o〉,d [2],r ′′′)
12: for λ= 1, . . . , |cl | do
13: 〈U [λ, ·]〉 = M(〈U [λ, ·]〉,〈U ′′′′′′[λ, ·]〉)
14: end for
15: 〈m〉 =∑|cl |

λ=0(〈U [λ, ·]〉,〈o〉)

C.2 Security of DBootstrap

The original distributed bootstrapping protocol for BFV [79] is presented by Mouchet et al.

[165]. In this protocol, the data providers produce an additive sharing of the encrypted ci-

phertext by masking their share in the decryption, before collectively encrypting their share to

collectively produce a new (fresh) encryption of the same value. We adapted this protocol to

the CKKS scheme [47]. The protocol steps remain the same but the underlying computational

assumptions are different. In fact, in CKKS the shares created by the data providers are not

unconditionally hiding, but statistically or computationally hiding due to the incomplete sup-

port of the used masks. The proof for the protocol’s CKKS version (DBootstrap(·)) follows from

the proof provided by Mouchet et al. in the passive-adversary model of the BFV bootstrapping

protocol with the additional assumption that Lemma C.2.1 is true. This lemma guarantees the

statistical indistinguishablity of the shares in C. The RLWE problem is hard if the adversary is

computationally-bounded, whereas Lemma C.2.1 relies on a statistical argument. However,

both share the same security bound given the same security parameter and DBootstrap(·)
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provides the same computational security as Mouchet et al. [165] original protocol.

Lemma C.2.1. Given the distribution P0 = (a+b) and P1 = c with 0 ≤ a < 2δ and 0 ≤ b,c < 2λ+δ

and b, c uniform, then the distributions P0 and P1 are λ-indistinguishable; i.e., a probabilistic

polynomial adversary A cannot distinguish between both with probability greater than 2−λ:

|Pr[A → 1|P = P1]−Pr[A → 1|P = P0]| ≤ 2−λ.

Proof: We refer to Algesheimer et al. [7] Section 3.2 and Schoenmakers and Tuyls [211], Ap-

pendix A, for the proof of the statistical λ-indistinguishability.

We recall that an encoded message msg of N /2 complex numbers with the CKKS scheme is

an integer polynomial of Z[X ]/(X N +1). Given that ||msg || < 2δ, and a second polynomial M

of N integer coefficients with each coefficient uniformly sampled and bounded by 2λ+δ−1

for a security parameter λ, Lemma C.2.1 suggests that Pr[||msg (i ) +M (i )|| ≥ 2λ+δ] ≤ 2−λ, for

0 ≤ i < N and where i denotes the i th coefficient of the polynomial. That is, the probability of

a coefficient of msg +M to be distinguished from a uniformly sampled integer in [0,2λ+δ) is

bounded by 2−λ. In Mouchet et al. protocol, each party samples its polynomial mask M with

uniform coefficients in [0,2λ+δ).

The parties, however, should have an estimate of the magnitude of msg to derive δ, which can

be derived from the plaintext scale, integer precision and previous homomorphic operations.

The masks Mi are added to the ciphertext at its current level τ in the domain RQτ
during the

switch to the secret-shared domain. To avoid a modular reduction of the masks in RQτ
and

ensure a correct re-encryption at the maximum level L, i.e., in domain RQL , the modulus Qτ

should be large enough for the additions of N masks.

C.3 Evaluation Complement

We first provide the complete complexity analysis of SPINDLE. We describe in more details

the datasets used to assess SPINDLE’s training accuracy and show in Table C.1b an extended

version of Table 5.2 including the learning and approximation parameters.

Theoretical Analysis

In Table C.1a, we provide the complete complexity analysis of SPINDLE. |ct | represents the

maximum size of a ciphertext, i.e., the size of a fresh ciphertext at level L, E and D stand for

encryption and decryption workloads. The DA packing approach incurs a higher computation

complexity (with notably more plaintext-ciphertext multiplications and rescaling (M), and

rotations (R)) but, as shown in Section 5.7.2, it is embarrassingly parallel, i.e., operations can

be amortized by a factor N1 ·N2 (defined in Section 5.4.2) depending on the available threads.

Communication

With the security parameters SP1 (see Section 5.7.2), the size of a ciphertext is 2.6MB and each
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(b) Baseline Comparison with K-fold=5. CCS is a non-private centralized solution, DNP is a distributed non-privacy
preserving approach and IT means independent training, i.e., a DP using only its local subset of the entire dataset.
Time to train (T.) and predict (P.) is in seconds.

Table C.1 – SPINDLE Evaluation.

Evaluation Datasets

For linear regression, we use the CalCOFI dataset (with n = 812,174 records and c = 2 fea-

tures) [36]. It contains oceanographic data (e.g., salinity) that can be used to predict the water

temperature. For logistic regression, we use three different datasets: (a) the Breast Cancer
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Wisconsin dataset (BCW, n = 699, c = 9) [19] contains patients’ data that is employed to predict

the presence of a breast cancer, (b) the PIMA dataset (n = 768, c = 8) [192] contains medical

observations collected from an Indian community that can be used to predict the presence

of diabetes, and (c) the Epileptic Seizure Recognition dataset (ESR, n = 11,500, c = 179) [77]

contains patients’ data that can be used to predict a seizure. For multinomial regression, we

test SPINDLE on the MNIST dataset (n = 70,000, c = 784) [134], where the goal is to identify

single-digits out of grey-scale images. We rely on these datasets to compare SPINDLE with

various baselines.

Comparison with Prior Art

In Table C.2, we perform a qualitative and quantitative comparison of SPINDLE with existing

works. We consider a generic privacy-preserving centralized encrypted solution (CES) and

distributed solutions: Prio [52], which relies on secret sharing, and Helen [263], a solution that

employs a different distributed approach, the Alternating Direction Method of Multipliers

(ADMM) proposed by Boyd et al. [35], to train regularized linear models. CES represents a

centralized solution, similar to existing works [39; 124; 126], in which one DP outsources its

encrypted data to a server that trains and evaluates a model. For a fair comparison, we estimate

the execution time (without communication) of a generic centralized (outsourced) solution

(CES) relying on the non-multiparty CKKS scheme with security parameters that enable packing

of the same number of values in one ciphertext. We use as a reference one of the most recent

works on bootstrapping by Han and Dohyeong [106]. In Helen, the DPs perform the ADMM
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Table C.2 – Comparison with existing solutions on whether the solutions (i) support the
training of non-linear models, (ii) scale in multiple dimensions, and (iii) achieve similar
accuracy as a centralized non-secure approach. |S|, c are the number of DPs and features, ni

the size of each DPi local dataset. Timings for linear (lin.), logistic (log.), multinomial (multi.)
regressions training are in seconds.

optimization locally under a quantum-vulnerable additive HE cryptoscheme, and combine

their results under secret-sharing. ADMM is less widespread than SGD, it is primarily designed

for linear models and does not provide the same stability and convergence guarantees than the

cooperative gradient-descent [33; 241; 242; 260], for which convergence can be derived from
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Appendix C. Federated Learning

SGD. Since Helen’s implementation is not available, we aim at providing an intuition on how it

quantitatively compares with SPINDLE. To this end, we used results reported in Helen [263]

and performed similar experiments in SPINDLE ((2),(3),(4) in Table C.2). We highlight here that

the experiment environment is different, and these results provide only an idea of how these

systems compare. For a fair comparison, we excluded the proof generation time in Helen and

we notice that as SPINDLE, Helen reported similar accuracy results as a non-secure centralized

solution. We observe that SPINDLE scales better than Helen when increasing the number of

data providers |S|, as its execution time is almost the same in ((2) and (3)), and it also scales

better with the number of features (almost 10x better in (4)).

C.4 Modular Extensions

We discuss here a set of extensions that can be (optionally) integrated and combined in SPIN-

DLE depending on the application. We describe how SPINDLE can be extended to withstand

malicious adversaries and support more complex ML models. We also discuss extensions

to SPINDLE that can be employed to support dynamic DPs, optimize the model training and

enable quality control.

C.4.1 Malicious Adversaries

Malicious DPs Interfering with TRAINING. To limit the extent to which a malicious DP could

interfere with its TRAINING, SPINDLE can require from the DPs to publish transcripts of their

computations [88] and to produce proofs of correct inputs. These features combined would

enable SPINDLE to be fully auditable. Mechanisms to avoid model poisoning attacks when

the input data are encrypted (and have to remain confidential) are an open research problem.

However, SPINDLE can partially mitigate this threat by, similarly to what we present in Chapter

4, constraining the DPs’ inputs and requiring zero knowledge proofs of range [16; 17; 138; 254]

from the DPs. This would substantially limit the extent to which a malicious DP could interfere

with SPINDLE’s TRAINING. However, we note that this does not thwart all possible attacks, as,

for example, poisoning attacks would still be possible with in-range input data.

Malicious DPs Interfering with PREDICTION. As for the TRAINING, computation correctness

can be verified through computations’ transcripts published by the DPs. To prevent a malicious

DP from learning a victim querier’s prediction outputs via a replay attack (i.e., reusing the

querier’s encrypted data in a new query), SPINDLE can require queriers to provide signed

proofs of knowledge of the input data [149].

Malicious Querier Inferring Information from PREDICTION’s Output. SPINDLE naturally

covers federated learning attacks [112; 157; 169] and model inversion attacks [83], as the

intermediate and final weights are never revealed. Moreover, SPINDLE can also mitigate

inference attacks, e.g., membership inference [221], by limiting the number of prediction

requests on the trained model. This solution can be improved by adding noise to the prediction
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output to achieve differential privacy guarantees. In fact, a mechanism that ensures differential

privacy can be used for all the outputs of SPINDLE: on the predictions y ′′′ and on the trained

model, if it is released after training (Section 5.5). This would ensure that a passive adversary

(e.g., trying to infer information from the system’s outputs) or an active adversary controlling

a subset of the DPs cannot learn information, e.g., data or local model of honest parties, about

a subset of the DPs. To ensure differential privacy, SPINDLE should add some collectively

generated noise [125], similarly to the solution introduced in Chapter 3 to the query result

before performing DKeySwitch(·). However, the choice of the privacy parameters is not trivial

and is an interesting direction for future work. Furthermore, the use of differential privacy

in dynamic systems presents serious limitations; minimizing the released non-encrypted

information (which also reduces the noise magnitude required to meet a target differential

privacy level) is much more effective and practical. This is the approach taken in SPINDLE,

contrarily to federated learning systems, where the intermediate outputs of each training

iteration are always disclosed.

C.4.2 More Complex ML Models.

We first remark that the extended, privacy-preserving MapReduce abstraction on which we

rely to build SPINDLE can actually capture many of existing solutions for secure distributed ML

training [26; 28; 49; 52; 95; 163; 178; 220; 263], including the training functionality of DRYNX

introduced in Chapter 4. We also remark that, even though we rely on the widely applicable

distributed stochastic gradient descent (SGD), other distributed approaches for training ML

models such as ADMM [35] could also be expressed in the same abstraction. However, by

relying on SGD, we aim at designing a system that can then be extended to other models, as

SGD can be used to minimize many cost functions [131; 233; 261]. In particular, it can be

extended to more complex models such as neural networks, which are usually trained using

SGD [65]. SPINDLE supports any activation function that can be “practically” approximated

by a polynomial; hence, the challenges for its extension to more complex models reside

in trading-off precision for efficiency when approximating non-polynomial functions, and

efficiently packing the data depending on the operations. This is particularly important for

neural networks in which the computations are sequentially performed through multiple

layers. Thus, each SGD iteration would involve higher multiplicative-depth circuits and their

evaluation under encryption. We made a first step towards the privacy-preserving federated

training of neural networks in our subsequent work [208], which is based on the framework

introduced in this chapter.

Threshold-encryption Scheme. To account for unresponsive DPs, SPINDLE can use a threshold-

encryption scheme, where the DPs secret-share [217] their secret keys, thus enabling a subset

of the DPs to perform the cryptographic interactive protocols (DBootstrap(·) or DKeySwitch(·)).

Dynamic Roles. The role of DPR played by one DP has no security implications and only

incurs small computation overhead for one DP. This role can be dynamically assigned (e.g.,
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round robin) at each global iteration or whenever the DP playing DPR becomes unavailable.

Asynchronous Learning & Performance Optimizations. We experimentally observed that

an uneven distribution of the data across DPs does not affect the training accuracy. However,

and as expected, in order to obtain similar accuracy as a centrally trained model, the labels

of the DPs’ local datasets should be similarly distributed. For this, SPINDLE can integrate

optimizations of the stochastic gradient descent (SGD) that can be expressed as a polynomial;

in particular, SGD asynchronous variants that account for imbalances in DPs’ response times

or data distribution, or for sparse networks adaptations (e.g., Koloskova et al. [129]).

To avoid over- or under-fitting, which often happens when the number of training iterations

is predefined, SPINDLE can integrate a collective stop-test protocol. This protocol enables

the DPs to collectively decrypt the absolute difference between the (global) weights of two

subsequent (global) iterations, or a statistic derived from these values. The decrypted value is

compared to a chosen threshold to stop the training.

Data Preparation & Quality Control. As mentioned before, the training on a distributed

dataset can be optimized according to how the data are distributed among the DPs. This

information can also serve for data standardization and quality control, and its leakage can

be mitigated by relying on differential privacy or on HE-based interactive protocols [88].

SPINDLE’s PREPARE phase can be extended to include these solutions and it is up to the

DPs to choose the configuration that achieves the required balance between privacy and

performance.
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In this appendix, we show how the values are packed in ciphertexts, in order to efficiently

perform the GWAS.

D.1 Packing for the Secure & Federated Computation of a GWAS

In Figure D.1, we describe how the values are packed in order to perform the computations of

the main variables used in the protocols 6.1 and 6.2 (Section 6.2.3. We note that 13 covariates

are considered in the study that we replicate [151].

We provide here the main intuition behind the packing of each element (in Figure D.1) and its

high level cost in terms of operations:

1. The inverse computation (line 4 in Protocol 6.1 & 6.2) requires row operations on the

input matrix. The matrix is therefore row-wise encrypted and its rows are duplicated to

enable an efficient use of SIMD and to perform the subsequent operations for multiple

variants simultaneously.

2. The vectors multiplication results are packed such that they are in the right positions

to perform the subtraction in line 11 for Protocol 6.1 and line 14 for Protocol 6.2. This

packing can be performed by the data providers on their cleartext data and does not

require any rotation of encrypted ciphertexts.

3. Each element of the plaintext uT X is replicated to be multiplied with a row of (X T X )(−1)

and the 13 multiplication results are aggregated. This operation does not require any

rotation either.

4. The dot product between the plaintext vector X T u and each encrypted row of W21 is

performed and the result is packed such that it can be used as such in the subsequent

subtraction (line 11 for Protocol 6.1 and line 14 for Protocol 6.2). The dot product

requires log2(vector si ze) rotations. We note here that all vectors are padded with zeros
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Figure D.1 – Optimized Packing for a Simultaneous Computation on v Variants.

such that their size is a power of 2. This is done to minimize the number of rotations

required.

5. As before, the scalar values for v variants are packed to simplify the subsequent subtrac-

tion.

6. As in 4, the dot product is performed between the plaintext vector X T u and each

encrypted row of the matrix (X T X )(−1). The results are then duplicated to prepare the

multiplication of line 14 in Protocol 6.1. This operation requires 2× log2(vector si ze)

rotations.

7. Each of the 13 ciphertexts of W12 is multiplied with W21. This operation does not

140



D.1. Packing for the Secure & Federated Computation of a GWAS

require any rotation as the values have been prepared (packed) for this multiplication

beforehand (in 6).

8. To construct the matrix W for v variants, we include W12 directly in the padding of W11.

Due to W12 packing, this is done in one mask (multiplication with binary vector) and

one addition and does not require any rotation. Similarly, one addition is performed to

include the 1 values in W21.

9. The dot product between each encrypted row of W and [X u]T y is performed such that

the result can be packed to prepare the multiplication of line 17 in Protocol 6.1. This

requires log2(vector /r ow si ze)+ (vector /r ow −1) rotations.

10. All elements are computed for v variants simultaneously.
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D.2 Data Providers Independent Results

Figure D.2 complements Figure 6.4c by showing the independent GWAS result obtained by

each of the 12 data providers on its own subset of the data.

0
10

20

1 4 8 12 16 22
Chromosomes

-lo
g 1
0(
P)

0
10

20

1 4 8 12 16 22
Chromosomes

-lo
g 1
0(
P)

0
10

20

1 4 8 12 16 22
Chromosomes

-lo
g 1
0(
P)

0
10

20

1 4 8 12 16 22
Chromosomes

-lo
g 1
0(
P)

0
10

20

1 4 8 12 16 22
Chromosomes

-lo
g 1
0(
P)

0
10

20

1 4 8 12 16 22
Chromosomes

-lo
g 1
0(
P)

0
10

20

1 4 8 12 16 22
Chromosomes

-lo
g 1
0(
P)

0
10

20

1 4 8 12 16 22
Chromosomes

-lo
g 1
0(
P)

0
10

20

1 4 8 12 16 22
Chromosomes

-lo
g 1
0(
P)

0
10

20

1 4 8 12 16 22
Chromosomes

-lo
g 1
0(
P)

0
10

20

1 4 8 12 16 22
Chromosomes

-lo
g 1
0(
P)

0
10

20

1 4 8 12 16 22
Chromosomes

-lo
g 1
0(
P)

Figure D.2 – Independent GWAS result obtained by each data provider using only its own
subset of the data.

142



Bibliography

[1] A New Data Breach May Have Exposed ... Every American Adult. https://tinyurl.com/

ydz7jpdk, (accessed: 4.02.2019).

[2] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,

G. Irving, M. Isard, et al. Tensorflow: A System for Large-Scale Machine Learning. In

12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 16,

pages 265–283, 2016.

[3] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang.

Deep Learning with Differential Privacy. In ACM Conference on Computer and Commu-

nications Security (CCS), 2016.

[4] A. Akavia, H. Shaul, M. Weiss, and Z. Yakhini. Linear-Regression on Packed Encrypted

Data in the Two-Server Model. In ACM WAHC, 2019.

[5] M. R. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov, S. Halevi,

J. Hoffstein, K. Laine, K. E. Lauter, et al. Homomorphic Encryption Security Standard.

Technical report, HomomorphicEncryption.org, 2018.

[6] M. R. Albrecht, R. Player, and S. Scott. On the Concrete Hardness of Learning with Errors.

J. of Mathematical Cryptology, 2015.

[7] S. V. Algesheimer J., Camenisch J. Efficient Computation Modulo a Shared Secret with

Application to the Generation of Shared Safe-Prime Products. In CRYPTO, 2002.

[8] All of Us Research Program, NIH. https://allofus.nih.gov/, (accessed: 30.01.2021).

[9] B. Anandan and C. Clifton. Laplace Noise Generation for Two-party Computational

Differential Privacy. In 13th Annual Conference on Privacy, Security and Trust (PST),

pages 54–61, 2015.

[10] Y. Aono, T. Hayashi, L. Trieu Phong, and L. Wang. Scalable and Secure Logistic Regression

via Homomorphic Encryption. In Proceedings of the Sixth ACM Conference on Data and

Application Security and Privacy. ACM, 2016.

[11] Apple Watch Heart Monitoring. https://tinyurl.com/y7ctnauc, (accessed: 29.01.2019).

143

https://tinyurl.com/ydz7jpdk
https://tinyurl.com/ydz7jpdk
https://allofus.nih.gov/
https://tinyurl.com/y7ctnauc


Bibliography

[12] K. E. Atkinson. An Introduction to Numerical Analysis. John wiley & sons, 2008.

[13] D. B. Baker, J. Kaye, and S. F. Terry. Privacy, Fairness, and Respect for Individuals. eGEMS

(Generating Evidence & Methods to Improve Patient Outcomes), 4(2), 2016.

[14] P. S. Barreto and M. Naehrig. Pairing-Friendly Elliptic Curves of Prime Order. In Interna-

tional Workshop on Selected Areas in Cryptography. Springer, 2005.

[15] J. Bater, G. Elliott, C. Eggen, S. Goel, A. Kho, and J. Rogers. SMCQL: Secure Querying for

Federated Databases. VLDB, 10(6):673–684, 2017.

[16] C. Baum, I. Damgård, S. Oechsner, and C. Peikert. Efficient Commitments and Zero-

Knowledge Protocols from Ring-SIS with Applications to Lattice-based Threshold Cryp-

tosystems. IACR Cryptology ePrint Archive, 2016:997, 2016.

[17] C. Baum and A. Nof. Concretely-efficient Zero-knowledge Arguments for Arithmetic

Circuits and their Application to Lattice-based Cryptography. In PKC, 2020.

[18] S. Bayer and J. Groth. Efficient Zero-knowledge Argument for Correctness of a Shuffle.

In Annual International Conference on the Theory and Applications of Cryptographic

Techniques, pages 263–280. Springer, 2012.

[19] Breast Cancer Wisconsin (Original). https://archive.ics.uci.edu/ml/datasets/breast+

cancer+wisconsin+(original), (accessed: 14.02.2020).

[20] A. L. Beam and I. S. Kohane. Big Data and Machine Learning in Health Care. Jama, 2018.

[21] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway. Efficient Garbling from a Fixed-

Key Blockcipher. In IEEE Symposium on Security and Privacy (SP), pages 478–492, May

2013.

[22] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. High-speed High-security

Signatures. Journal of Cryptographic Engineering 2, pages 77–89, 2012.

[23] V. Bindschaedler, R. Shokri, and C. A. Gunter. Plausible Deniability for Privacy-preserving

Data Synthesis. VLDB, 10(5), 2017.

[24] F. Boemer, A. Costache, R. Cammarota, and C. Wierzynski. nGraph-HE2: A High-

Throughput Framework for Neural Network Inference on Encrypted Data. In ACM

WAHC, 2019.

[25] D. Bogdanov, L. Kamm, B. Kubo, R. Rebane, V. Sokk, and R. Talviste. Students and

Taxes: a Privacy-Preserving Study Using Secure Computation. In Proceedings on Privacy

Enhancing Technologies Symposium, 2016.

[26] D. Bogdanov, L. Kamm, S. Laur, and V. Sokk. Rmind: a Tool for Cryptographically Secure

Statistical Analysis. IEEE TDSC, 2016.

144

https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)


Bibliography

[27] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A Framework for Fast Privacy-

preserving Computations. In European Symposium on Research in Computer Security,

pages 192–206. Springer, 2008.

[28] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kiddon,
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