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Abstract— Consensusability of multi-agent systems
(MASs) certifies the existence of a distributed controller
capable of driving the states of each subsystem to a
consensus value. We study the consensusability of linear
interconnected MASs (LIMASs) where, as in several real-
world applications, subsystems are physically coupled. We
show that consensusability is related to the simultaneous
stabilizability of multiple LTI systems, and present a novel
sufficient condition in form of a linear program for verifying
this property. We also derive several necessary and suffi-
cient consensusability conditions for LIMASs in terms of
parameters of the subsystem matrices and the eigenvalues
of the physical and communication graph Laplacians. The
results show that weak physical couplings among sub-
systems and densely-connected physical and communi-
cation graphs are favorable for consensusability. Finally,
we validate our results through simulations of networks of
supercapacitors and DC microgrids.

Index Terms— consensus, cyber-physical systems, dis-
tributed algorithms/control, networked control systems,
stability.

|. INTRODUCTION

Consensus theory for multi-agent systems (MASs) finds ap-
plications in several fields, ranging from cooperative robotics
to power systems [1]. Consensusability of MASs refers to the
existence of a distributed protocol, using only locally available
information, from a predefined class such that the MAS can
achieve consensus. As such, it is a binary property. For
linear MASs, consensusability has been extensively studied
in the past decades. For example, the authors in [2] show
that a continuous-time linear MAS can reach consensus if the
dynamics of each agent is controllable and the communication
topology is connected. The work [3] shows that, for discrete-
time linear MASs, consensusability is guaranteed if the un-
stable eigenvalues of the agent state matrix verifies certain
conditions related to the eigenvalues of the communication
graph Laplacian. For consensus of MASs with switching
topologies, [4] shows that if the Lyapunov exponent of agent
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dynamics is less than a suitably defined synchronizability
exponent of the switching topology, the MAS can achieve
consensus. The authors of [5] and [6] study consensus in
presence of communication channels affected by fading and
packet dropouts, and show that the consensusability condition
is closely related to the statistics of the noisy communication
channel, the eigenvalues of the communication graph Lapla-
cian, and the instability degree of the agent dynamics. The
works [7] and [8] consider MASs affected by communication
delays and provide upper bounds on delays for guaranteeing
consensusability.

The above research works assume that agents in MASs are
coupled through a cyber layer only (i.e., a communication
network) and not through physical interactions. This is not the
case in several real-world applications such as power networks
and microgrids, where nodes are physically interconnected
and, consequently, their dynamics are coupled [9]. Other
examples of interconnected MASs include flow networks,
production systems, and traffic networks [10], [11]. This
raises the issue of studying how physical couplings affect
consensusability.

This problem has been considered in [12]-[14]. The authors
of [12] focus on consensus of multiple linear systems with
uncertain subsystem interconnections for tracking a refer-
ence. They propose a distributed adaptive controller based
on hierarchical decomposition and prove that the consensus
error converges to a compact set if physical interconnec-
tions are sufficiently weak. Leader-follower tracking problems
for linear interconnected MASs (LIMASs) are considered
in [13]. Interactions between systems are treated as dynamic
uncertainties and are described in terms of integral quadratic
constraints. Two methods are proposed to design consensus-
like tracking protocols. Sufficient conditions to guarantee that
the system tracks the leader are obtained in terms of the
feasibility of linear matrix inequalities (LMIs). The authors
of [14] investigate the state consensus problem of a general
LIMAS. They propose a linear consensus protocol and derive a
sufficient and necessary criterion to guarantee convergence to
consensus, which is expressed in terms of the Hurwitz stability
of a matrix constructed from the parameters of the agents
and the protocols. However, the aforementioned works lack
a quantitative analysis of the relations of this property with
physical interconnection and communication graphs.

In this paper, we study the consensusability of LIMASs
equipped with linear distributed controllers, while providing
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analytic characterizations on how the physical and cyber
couplings impact on it. In particular, we consider homogeneous
LIMASSs, whose subsystems have identical dynamics and con-
trol gains (see Section II). Moreover, we direct our attention to
LIMASSs consisting of single-input subsystems interconnected
via physical coupling with a Laplacian structure. The contri-
butions of this paper to the existing literature are given as
follows. First, we show that the consensusability problem for
LIMASS is related to a simultaneous stabilizability problem.
Second, we present a linear-programming-based sufficient con-
dition for verifying the simultaneous stabilizability of multiple
LTI systems, which provides a simple alternative to existing
methods relying on convex programming. Third, we present
several sufficient conditions, as well as a necessary condition,
for the consensusability of LIMASs. Our results illustrate how
consensusability is influenced by physical and communication
coupling among subsystems.

A preliminary version of this work has been presented
in [15]. With respect to it, this paper has several differences.
In addition to providing proofs for Theorems 2-4, new tests
for the simultaneous stabilizability of multiple LTI systems are
developed. Based on these results, this paper also provides new
sufficient conditions for consensusability. Finally, simulation
results have been completely revisited and include applications
to microgrids.

The paper is organized as follows. In Section II, we in-
troduce LIMASs and provide the problem formulation. In
Section III, we discuss the simultaneous stabilization problem
of multiple LTI systems. Consensusability analysis of LIMASs
is presented in Section IV. Simulation results are given in
Section V and concluding remarks are presented in Section VI.

A. Notation

The operator | - | applied to a set determines its cardinality,
while used with matrices or vectors it defines their component-
wise absolute value. For a symmetric matrix A € R™*",
A > 0 (A > 0) denotes that it is positive (semi-) definite.
When used with vectors, inequalities are meant component-
wise. p(.) represents the spectral radius of its argument. The
symbol B; denotes the unit disk in the complex plane. A
polynomial is called Schur if all of its roots are in ;. The
symbol ® represents the Kronecker product. With a slight
abuse of notation, it is similarly defined for subspaces, i.e.,
for two subspaces X and Y, X @ Y = {z @ ylz € X,y € Y}.
1, € R® and 0,, € R”™ represent column vectors with all
elements equal to one and zero, respectively. Oy x,, € RN xn
and I, € R™*™ denote a matrix that consists of all zero
elements and an identity matrix, respectively. H' denotes the
(N —1)-dimensional subspace of R"Y comprising vectors with
zero average, i.e., H! = {v € RN[1 v = 0}. H! is the
1-dimensional subspace orthogonal to H!, composed of N-
dimensional vectors of identical elements, i.e., Hi 1 H! and
H! = {alyla € R}. Then, H' & H! = RY, where &
denotes the direct subspace sum. The set {—1,1}™*" with
cardinality 2™™ consists of all the different m x n matrices
comprising elements —1 and 1. V' = col{v,...,vy} denotes
a matrix composed of column concatenation of vectors v;,
i={1,...,N}

B. Preliminaries on algebraic graph theory

An undirected weighted graph of N nodes is defined as G =
(V. W,E), where V = {1,2,..., N} is the set of nodes, & C
V x V is the set of edges, and W is a diagonal matrix with the
weight of the corresponding edge in each diagonal entry. The
set of neighbors of node i is defined as N; = {j|(4,5) € £}. A
path p;; is an ordered sequence of consecutive edges such that
every edge in the sequence is in &, the first edge starts from
node ¢, and the last edge ends in node j. The adjacency matrix
of G is defined as A = [a;;] y,, x> Where a;; = 0 if (i,) ¢ €
or ¢ = j and a;; > 0 is the positive weight of edge (i,7) €
E. The degree of a node ¢ is defined as d; = Zje/\fi aij
along with the degree matrix D = diag (d1,ds,...,dn). The
Laplacian matrix of G is given by £ = D — A. An undirected
graph is connected if there exists a path from every node 7 to
every other node.

Il. PROBLEM FORMULATION

The interaction among agents in a LIMAS is described
by two undirected graphs with a common set of nodes
V ={1,..., N} associated with subsystems: a physical graph
G, = (V,W,,&,) representing the physical interconnection
among subsystems and a cyber graph G. = (V,W,, &)
representing the communication network. Figure 1 shows an
example LIMAS. In the scope of this work, we assume that
G. is connected; however, the physical graph G, is allowed to
be disconnected. For a subsystem ¢, the set of its neighbors
G, and G, are denoted by N? and NF, respectively.

We consider a homogeneous LIMAS with subsystem dy-
namics described by

Zj :AZ1+AP Z &”(IJ7I1)+BUZ, 1= ].,,N, (1)
JENT
where x; € R™ are the states, u; € R are the scalar control
inputs, a;; = aj; € R5¢ are the symmetric physical intercon-
nection weights, and A, € R"*" is a matrix determining the
physical coupling. We are interested in distributed controllers
given by

UiIKZbij(.Z‘i—ZL’j), Z:L
JENF

N, 2

where K € R'*" is the control gain common to all subsys-
tems and b;; = bj; € Ry denote the symmetric communi-
cation weights in the cyber graph G.. Note that the control
gain K is a design parameter while b;;, G. are assumed to be
given.

Remark 1: Typical examples of LIMASs that can be mod-
eled by (1), (2) are DC microgrids, where distributed gen-
eration units are physically coupled through electric lines
and communication networks are used for obtaining global
coordinated behaviors, such as current sharing and voltage
balancing [16]. A detailed example is provided in Section V.
We note that, in the field of consensus for MASSs, it is common
to assume identical subsystem dynamics as in (1). Such an
assumption is reasonable in several application scenarios,
where the hardware of subsystems is standardized for efficient
serial production. For instance, individual converters in a DC



TURAN et al.: ON CONSENSUSABILITY OF LINEAR INTERCONNECTED MULTI-AGENT SYSTEMS AND SIMULTANEOUS STABILIZATION 3

Fig. 1: Mlustration of a LIMAS. Blue arrows represent physical
couplings among subsystems S;, dashed gray lines indicate
connections between each subsystem and its corresponding
controller, and red arrows represent communication channels
among controllers C;.

microgrid can be chosen as identical, resulting in a homo-
geneous LIMAS. Moreover, using a single static feedback
gain for all subsystems alleviates the burden of designing
different consensus gains for each subsystem, which is critical
in deploying control architectures for large-scale MASs.

By combining (1) and (2), the overall dynamics of the
LIMAS can be compactly written as:

T =(IN®A-L,® A, + L. ® BK)x, 3)
where 7 = [mf,...,x;]T € RY™ is the cumulative state

whereas £, and L. are the Laplacian matrices of G, and
G, respectively. Note that the structure of physical inter-
connections in (1) gives the term £, ® A, in (3) involving
the Laplacian matrix £,. For this reason, the coupling is
termed Laplacian. Physical interconnections hamper the use
of existing methods for analyzing consensusability of MASs.
We define the consensusability problem in LIMASs as follows.
Problem 1: Given the LIMAS (3), provide conditions for the
existence of a static feedback gain K € RY*™ such that the
states of all subsystems converge to a global consensus vector,
ie.,

lim |z;(t) — 0] =0,, Vie, 4

t—o00

for some v € R"™.
To study this problem, we define the average state

a‘céiix»zi(lT(@I )3:
Ni:1 7 N N n I

and the deviation from

_ _T1 T _
= [xlT—xT,...,xL—xT] =r—1y®2Z

. 5
= (<IN]1]1N1;)®In>.T ®)

The dynamics of d can be derived from (3) and (5) as

ST=(IN®A-L,® A, + L. ® BK)Jd. (6)

The consensusability of the LIMAS is, therefore, equivalent
to the stabilizability of (6).
Consider the following properties:
1) the columns of 1y ®1,/ VN span the subspace Hll RR"
2) (H! @ R") L (H} ® R")

They imply that there exists a unitary matrix & =
|:1N/\/N,¢72,H.,¢Ni| where {¢o,...,¢n} form a basis

. N 4T
for H', such that, by defining § = [5;,...,5;} =
(@T ® In) 4, we have

g+: <IN®A—|:

On><n

OnX(Nl)n]
A ®A
O(Nfl)nxn [’P ?

+ |: Onxn On><(]~\f—1)n:| ®BK> S
O(Nfl)nxn L

ﬁp is a positive semidefinite matrix with eigenvalues
{M\p2s--s Ap.n}. Similarly, the positive definite matrix L,
has eigenvalues {Ac2,...,Ac.n}. The transformation in (7)
decomposes the dynamics of § into two noninteracting parts:
61 and [65 ,...,0%] " representing the evolution of § in H} ®
R” and in H! @ R", respectively. Furthermore, we can show
that 6; = 0, by definition. Therefore, d(t) asymptotically

)

converges to zero if and only if the dynamics of [d, , ..., 5;'\—,]-'—
is stable, i.e., the matrix
In 1®A-L,® A, +L.® BK ®)

is Schur stable. As will be shown in Section IV, the stability
of (8) is related to the problem of simultaneous stabilization
of a group of low-dimensional systems. Therefore, in the next
section, we first make a detour and provide novel conditions
for simultaneous stabilization that, besides being useful for
analyzing consensusability, also have an independent value.

II1. A SIMULTANEOUS STABILIZATION TEST BASED ON
LINEAR PROGRAMMING

The simultaneous stabilization problem has attracted the
interest of several researchers, especially in the area of ro-
bust control [17]. Despite a number of results for linear
systems [18]—[20], prior work has shown that providing alge-
braic conditions for simultaneous stabilization of more than
three systems is a difficult problem [21]. Extensive effort,
therefore, has been put in developing numerical tests [17],
mainly relying on convex and non-convex programming (CP
and NCP, respectively) [22]-[25]. In this section, we study
the simultaneous stabilization of multiple LTI systems via
linear static feedback. Existing criteria include sufficient and
necessary conditions in terms of NCP [24], [25] and LMI-
based sufficient conditions [23]. In this section, we present
a sufficient condition in terms of linear programming (LP),
which require less computational resources than their CP and
NCP counterparts [26].

We consider M single-input LTI systems described by

fbszzi‘z—i-Bzﬁz, Il=1,...,M, 9)

where #; € R™ are system states and @; € R are control
inputs. In the sequel, we assume that all pairs (4;, B;) are
controllable. A first result is stated in Lemma 1, which relies
on a conservative parameterization of stabilizing controllers
based on Ackermann’s formula [27]. Note that controller pa-
rameterization using Ackermann’s formula has been exploited
for simultaneous stabilization also in [24], [25]; however,
these works provide necessary and sufficient conditions in
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terms of NCPs, which can not be efficiently checked for
very large m and M. Before presenting the lemma, we
introduce the following definitions. For [ = 1,..., M, M; =
[Bi, A1By, . .. ,AZ"”BZ] is the controllability matrix of the
pair (A;, B;), and the last row of its inverse is denoted as

Tim =[0 ... 0 1JM;'. Accordingly, we define
vV, = COI{*Tl;;nIm, —rimA, ., frl,mA;”_l}. (10)
v = —Tl’mAl

We also define T' = col{T,.1,T2,...,Tpom} € RE™Xm

where I, ; are the different vectors in the set {—1,1}!*™.
Lemma 1: For the group of controllable systems (A;, B;),

I =1,..., M, there exists K such that A; + B;K is Schur

stable for every [ if there exists a vector ¢ = [¢] ... c},]T €
RM™ satisfying
Ve=wv, He<h, (11
where
VvlT _‘/QT 0m><m Omxm
V _ Ome V2T _%T Ome
. . . (12)
Omxm O xm V]&—l _VIJ
T

v = [1)2—’[)1,...,1)]»[—’[}]\4_1]

H=1y®D h=1pym

Moreover, if such a c exists, the vectors clTVl +v; are identical
and any of them provides a simultaneously stabilizing gain K.

Proof: We first describe the controller parametrization
for the pair (A;, B;) and later show how to design a simulta-
neously stabilizing controller for all pairs (4;, B;) based on
this parameterization.

In view of Ackermann’s formula, we know that, for the
controllable pair (A;, B;) and a vector collecting desired
closed-loop eigenvalues AP £ [A7,..., AP, ]T € C™, the
state-feedback controller K; = —ry ,,pP (4;) € R1*™ assigns
the eigenvalues of A; + B;K; to the elements of )\ZD , Where
the desired characteristic polynomial pP’(4;) is written as

PP (A1) = (A= N3 Tm) - (A= AT L)

. o . (13)
S A" 4+ m—1 4, + -t + ol

Defining ¢; £ [¢;0 ... cim—1]', one sees that ¢; = g(AP)
is a polynomial function of order m. Therefore, a set K; of
stabilizing controllers K, for (A;, B;) can be parameterized
by AP as K; = {K; = —rmpP (A4)|\P € AP}, where

AP ={\PeCm|A\P eBy Vje{l,...,m} and

D . . . .
Aj are real or in conjugate pairs}

Since the set AP has a complex geometry, the computation
of the set K; is convoluted. To circumvent this problem, we

leverage a classic result on Schur stable polynomials [28]:
AP e AP if

—

m

Z |Cl,j| < ]-7

j=0

(14)

which can equivalently be written as I'c; < 19m. Further
noting that the polynomial p”(4;) is an affine function of

¢; and K; € K is a linear function of plD(Al), we can define
a new set Kj C K; of stabilizing controllers for system [ in
terms of ¢; as Kf = {K; = ¢ V| + v|T¢; < 1am }, where V]
and v; are defined in (10).

Based on the above results, we know that if ﬂf\il K} #
(0, there exists K € ﬂlﬂil Kj simultaneously stabilizing
all (A;, B;) pairs. The above condition is equivalent to the
existence of vectors ¢; € R™ for [ € {1,..., M} such that
Vit = clTHVlH +v41, VI € {L,..., M — 1}, which
yields the feasibility condition given by (11). The proof of the
second part is straightforward as the feasibility of (11) means
that stabilizing control gains K; = ClTV} +ou,l=1,....M
are identical. Therefore, it suffices to pick one. |

Remark 2: In Lemma 1, the only source of conservativity
is the use of the condition in (14) for Schur stability of
polynomials, which is only sufficient for m > 1, and gets
more and more conservative as the system order m increases.
Indeed, (14) is the main novelty of the proposed method,
compared with the necessary and sufficient conditions in [24],
[25]. Therefore, for scalar systems, i.e., m = 1, the results in
Lemma 1 are necessary and sufficient. The conservativity of
this lemma, however, does not increase with the number of
systems M.

We observe that the structure of the equality constraints
in (11) can be further exploited to simplify the redundancies
in the proposed LP. Therefore, in the following, we show that
the result in Lemma 1 can be equivalently cast into a simpler
LP with a smaller number of decision variables.

Theorem 1: For the group of controllable systems (A;, B;),
l=1,..., M, the following hold:

1) The matrices V; in (10) are invertible
2) The matrix V' in (12) has full row rank and its right
inverse V1 is given by

v~ ) (v
Omxm  (V2) (V")
vi= : . :
Osmxm Omxm (VJ\—;—1>71
Ome Ome Ome Ome
5)
Moreover, the null space of V' is spanned by columns of
the matrix
e R e (16)

3) Pairs (A;, B;) are simultaneously stabilizable by a com-
mon gain K if there exists a vector w € R™ such that

HUw < h— HVo. (17)
Furthermore, if such a w exists, the feedback gain
K =wvy + w! (18)

stabilizes (A;, B;) for every I € {1,..., M}.
Proof:

1) We prove that the matrix V; is invertible if the pair
(A;, By) is controllable, by showing that the rows of V]
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2)

3)

are linearly independent. For m = 1 it is trivial. For
m > 1, we denote the rows of the inverse of M; as

Ml_lz[rl—':l rle]T

From the last row of the equality Mfl/\/ll = I,,, one
has that r; ,,B; = Tl,mAlBl == Tl7mA;”_2Bl =0
and rlﬂnA;nlel =1.

Considering the definition of V; in (10), we show by
contradiction that {—7; A7} co,... .m—1} are linearly
independent. First, assume that they are linearly de-
pendent. Then, there exists a nonzero vector [ =

[607 e ,ﬁ/rn—l}—r 7& 07n such that
m—1
BV = Z BT mA] = 01xm. (19)
j=0

Multiplying (19) from the right by B; yields that

m—2

j —1
Z BJ rl.,TrLA{Bl +ﬁm—1 rl,'mA;n Bl = O
=0 S —

=0 =1
Thus, 8,,—1 = 0is implied by (19). Then, one can rewrite

(19) by removing the last term:

m—2
—BTVI =Y BirimA] = 01 (20)

j=0
Again, one can multiply (20) from the right with A; B
to obtain

m—1 m—2

Z Bj—lTl,mAgBl = Z Bj—l Tl,mAgBl

= =T

+ Bm—2 7ﬂl,'m14;n_1Bl =Bmn-2=0
=1

By iterating the same procedure, one has that (19) im-
plies 8 = 0,,, which is a contradiction. Therefore, the
matrix V; is invertible.
Given that the matrices V; are invertible, it is straight-
forward to see that the matrix V' has full row rank, i.e.,
rank(V) = (M — 1)m. Therefore, it is possible to find
a right inverse for it. Given the definition of Viin (15),
we can verify that VVT = I(ar—1)m- Moreover, from
rank-nullity theorem, dim(ker(V)) = Mm —rank(V) =
m. As the full-rank matrix ¥ € RM™*™ given in
(16) satisfies V¥ = O(as_1)mxm, we conclude that its
columns form a basis for ker(V).
Lemma 1 shows that the pairs (A4;, B;) are simultaneously
stabilizable if the LP (11) is feasible. Next, we will
prove that the LP in (11) is equivalent to the LP in
(17), which has a smaller number of decision variables
and constraints. Considering point 2) of this theorem, all
solutions c to the equality constraint in (11) can be written
as

c=Vi+ ow 1)

for a free vector w € R™, i.e., w parametrizes all
c solving Ve = wv. On replacing ¢ in the inequality
constraint in (11) and removing the equality constraint,

one obtains the equivalent reduced-order LP in (17).
Furthermore, in view of Lemma 1, for a given solution ¢
to (11), K = ci'—Vl + v is a simultaneously stabilizing
control gain. From the parameterization of ¢ in (21), we
have ¢; = (Vi )T (v}, —v{ +w). Therefore, the common
control gain can be calculated as K = clTVl + v =
var +w', concluding the proof.

|

Remark 3: The LPs (17) and (11) are equivalent in spite of
the reduction of the number of decision variables from Mm to
m and the elimination of equality constraints. As such, the LP
in (17) can be used to check the simultaneous stabilizability
of a larger number of systems compared to (11).

Remark 4: The modified LP formulation (17), compared to
(11), utilizes matrices V' and ¥ which, according to (15) and
(16), can be performed by inverting the m x m matrices V}
associated to individual agents.

Remark 5: As expected, (17) is always feasible if
(A;,B;) = (A,B) for every [, as this condition implies
v = O(p—1)m- Therefore, h — HVty = 1p9m and w =
0,, is a feasible solution to (17). Moreover, Vv changes
continuously with the matrices A; and By if all pairs (A;, B;)
are controllable. As such, the right-hand side of (17) is still
nonnegative if the differences between the pairs (A;, B;) are
sufficiently small, and w = 0,, is still a feasible solution
to (17). Therefore, a group of controllable systems is always
simultaneously stabilizable if the pairs (A;, B;) are sufficiently
similar.

IV. CONDITIONS FOR CONSENSUSABILITY OF LIMASS

In the sequel, we analyze the consensusability of LIMASs
with subsystems of order n = 1 and n > 1 separately. Indeed,
the former case can be studied without restrictive assumptions
while still giving important insight into the consensusability
problem. Instead, the latter case is more difficult to analyze
and requires additional assumptions. Table I summarizes the
results presented in this section along with their applicability
conditions. After presenting our results for these two cases
in Sections IV-A and IV-B, respectively, we discuss the
implications of the results in Section IV-C.

In the sequel, we use the definitions
max;e{2,..,N} /\p,i’ )\p,min £ minie{Q,...,N} )\p,'b )\c,max
max;e{2,...,N} )\c,i: )\c,min £ IniniE{Z,.‘.,N} >\c,i’ Ve
and A, £ Ap,max — Ap,min-

We call the scalar v, > 1 the eigenratio of L., where
Y. = 1 if and only if the graph is complete [3]. A low
eigenratio means the graph is close to a complete graph.
Furthermore, the eigenratio can be decreased by adding edges
to the graph, meaning that a 7. close to 1 generally implies
a densely-connected graph [29]. A, denotes the difference
between the largest and second smallest eigenvalues of L,,.
A low A, value indicates that the eigenvalues of L, are
close to each other, which holds when the eigenratio of the
physical interconnection graph is low, i.e., G, is densely-
connected [3], [29]. A low A, value is also achieved if
eigenvalues of £, are small, and consequently, the physical
coupling between subsystems is weak. Our sufficient and

)\p,max

1> 11>

A Ac,max

Ac,min ’
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necessary consensusability conditions are given in terms of
these quantities.

A. Scalar subsystems

In this subsection, we present results for scalar subsystems.
Without loss of generality, we assume B = 1 and denote
matrices A and K as a and k, respectively. To simplify the
analysis, the matrix A,, is omitted, as it can be lumped into
the weights a;;. Then (8) simplifies to

aly_ — L, + kL. (22)

Next, we present analytical sufficient conditions, which are
based on results on the eigenvalues of the sum of two
Hermitian matrices.

Theorem 2: [Scalar System Consensusability Condition]
The LIMAS (1) with scalar subsystems is consensusable if
either of the following conditions holds

SL XApmin > a — 1 and (ve—1)(I—a+Apmin) <
Ve (2 - A;D)’
S2. Apmax < 14+ a and (e —1)(14+a—Apmax) <

Ve (2= Ap).
Moreover, the control gain k can be selected as k € KT N
R> if S1 is satisfied and £ € K™ N R if S2 is satisfied,

= ).
)

-

Proof:  Since aly_; — L, and kL. are symmetric
matrices, upper and lower bounds on the eigenvalues of their
summation can be found as in Theorems 4.3.7 and 4.3.27
in [30]:

—l—a+ Apmax 1 —a+ Apmin

)

>\c,min Ac,max

—l—a+4+ XApmax 1 —a+ Apmin

)

(23)

Ac,max )\c,mig

Amax (aINfl - Ep + k‘éc) < Amax (GINfl — Ep) + Amax (k[:c)

Amin (aIN—l - Ep + kic) > Amin (GIN_1 - Ep) + Amin (k‘ic)
(24)

Therefore, (22) is Schur stable if & € R satisfies
a — )‘p,min + )\max (kic) <1 and

. (25)
@ = Apmax + Amin (kﬁ) > 1.

Since the sign of k changes the expression of Amin (kL)
and )\max(kﬁc), we inspect the two possibilities & > 0 and
k < 0 separately. For k > 0, we have )\min(kfc) = kAc,min
and )\max(kﬁc) = k¢ max, and the conditions (25) simplify to
ke KT NR>o, where KT is as given in (23). This is possible
if KT # () and KTNR>( # (), which directly translate into the
conditions in S1. The result for £ < 0 can be proved similarly,
completing the proof. ]
Remark 6: The only sources of conservativity in Theorem 2
are the upper and lower bounds used in (24). Note that
the equalities in (24) hold when /jp = O(N—1)x(N—1)> 1-€.,
there is no physical coupling. This, in turn, means that the
conditions S1 and S2 are necessary and sufficient when there
is no physical coupling. In this case, Theorem 2 recovers

TABLE I: Summary of Consensusability Results

Result Type Feature Assumptions
Theorem 2 Sufficient Algebraic Test Scalar Subsystems
Corollary 1 Sufficient Linear Program Assumptions 1, 2
Theorem 3 Sufficient Algebraic Test Assumptions 1, 2, 3
Theorem 4 Necessary Algebraic Test Assumptions 1, 2

the necessary and sufficient condition for consensusability of
MASSs in [3].

As discussed later in Section IV-C, conditions S1 and S2 help
understanding the roles of the physical interconnection and
communication graphs in consensusability. We next analyze
the consensusability problem for general subsystems.

B. General subsystems

From (8), the consensusability problem can be seen as the
problem of designing a control gain K = (Iy_; ® K) €
RWV-1Dx(N=1)n with structural constraints to make the matrix

IN—l®A*Zp®Ap+(ZC®B)K

Schur stable. Prior work shows that this problem is difficult
to tackle without focusing on special system structures [31].
Therefore, to facilitate the analysis, we introduce the following
technical assumption.

Assumption I: The Laplacian matrices £, and L. com-
mute.

Remark 7: Assumption 1 is fulfilled when the two Lapla-
cians are equal to each other up to scaling with a constant, i.e.,
L, = BL., B € R>q. Moreover, two Laplacians commute also
when one of them is the Laplacian of a complete graph with
uniform edge weights. Nevertheless, a necessary and sufficient
condition for two generic Laplacians to commute is not yet
available in the literature.

Under Assumption 1, one can simultaneously diagonalize
the two Laplacians £, and L. [30], i.e., a unitary trans-
formation matrix ® can be chosen such that ®TL,®
A, diag (0, A\p2,..., A\pn) and @ L P A, =
diag (0, Ac2, ..., A¢,n). Note that, for each i 2,...,N,
Ap,i and A, ; have the same eigenspace. As such, the diagonal
entries of A, and A., hence A\, ; and \.;, are not necessarily
ordered by their magnitude. Assumption 1 thus allows one to
decouple the dynamics of 0;, 7 € {2, ..., N} from each other:

oF = (A= XA, + A\.iBK)§; Yie{2,...,N}. (26)

Consequently, the consensusability of (3) is equivalent to the
simultaneous stabilizability of (26). The following assumption
is required before further derivations.

Assumption 2: The pairs (A — A, ;Ap, B) are controllable
forallie {2,...,N}.

Remark 8: Assumption 2 is necessary as the controllability
of the pair (A — A, ;A,, B) is not implied by that of the pair
(A, B) in general. We also stress that the controllability of
(A=), Ay, B) implies that of (A— M\, ;Ap, AciB), as Ac;; >
0,vie{2,...,N}.

Defining 4; £ A — Ap,iAp and B = AeiB, 1 €
{2,..., N}, consensusability of LIMAS (3) is equivalent to
the simultaneous stabilizability of pairs (A;, B;), which is
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the problem addressed in Section III. As mentioned in that
section, this problem is difficult to solve in general and we
separate our discussion in two parts. Firstly, a numerical
sufficient condition for consensusability is proposed based on
Theorem 1. Secondly, for special LIMASs with A, = aA
for some scalar o, we give an algebraic sufficient condition
for consensusability in Theorem 3. Finally, in Theorem 4, we
present a necessary condition for the consensusability of (3).

1) Sufficient Conditions: The following corollary presents
an LP-based test for consensusability with generic system
matrices A, A,, and B. The result directly follows from
Theorem 1; therefore, the proof is omitted.

Corollary 1: [Numerical Sufficient Consensusability Con-
dition] Suppose that Assumptions 1 and 2 hold. The LIMAS
(3) is consensusable if there exists a vector w € R"™ satisfying
(17), where the matrices V', v, H, h, V1, and U are computed
as in (11)-(12),(15)-(16), by replacing (A;, B;) with (A4 —
Ap,iAp, Ae,iB). Moreover, if such a w exists, a control gain
achieving consensus is given by K = vy +w .

Next, we provide an analytical sufficient condition for
consensusability of LIMASs. As discussed in Section III, it
is difficult to provide analytical conditions on simultaneous
stabilizability of more than three systems [21]. For this reason,
we limit our analysis to LIMASs verifying the following
condition.

Assumption 3: The physical interconnection matrix A,, sat-
isfies A, = oA, where o € R.

Under this assumption, consensusability is equivalent to the
simultaneous stabilizability of pairs ((1—aA,;)A, A¢i B), i.e.,
A; and B; are now only characterized by scalar multiplications
of common matrices A and B, respectively. This allows for
easier analysis of Schur stability of matrices A; + B; K, for a
given control gain K. For this purpose, we first define o =
1 — @iy Qmax = max; o], amin £ min; ||, A £ amaxA,
and

1
Oc £1-— R 27
[T [A¢ (4)]
where A{(A), A4(A), ... denote the unstable eigenvalues of

A. Moreover, in the sequel, we leverage the results in [32]
stating that if ¢ > o, there exists a matrix P = PT =0
solving the modified algebraic Riccati equation (MARE)

ATPA-¢ATPB(B'PB) ' B'PA-P <0 (28

The following theorem presents an algebraic sufficient con-
dition for consensusability under Assumption 3. Note that,
unlike Corollary 1, following results do not require the knowl-
edge of the eigenvalue pairs (A, ;, A ;) associated to the same
eigenspace.

Theorem 3: [Analytical Sufficient Consensusability Condi-
tion] Suppose that Assumptions 1, 2, and 3 hold. If A is Schur
stable, the LIMAS in (3) is consensusable by using the control
gain K = 0;4,. Besides, if A is not Schur stable, and the
following condition holds

) ) 2
(03 : [e3
max; ; i ming i 2 2
( ©J /\c,j b Ac,j) < Ckmin amaxcc

5 - ., (9)

c,max

the LIMAS in (3) is consensusable by using the con-
trol gain K = —k*(B'PB)"'B"PA where k* =
min; Yi 4m 3,5 2
I Re g T R and P is the solution to the MARE (28)
. . 20 A, k* =22 (k*)?
with o = min, ; P .
Proof: Under Assumptions 1 and 3, consensusability of
(3) is equivalent to the simultaneous stabilizability of

o = (A4 \.;BK)o; Yie{2,...,N}.

(30)

It is straightforward to see that, if A is Schur stable, so are
«; A; therefore, the LIMAS (3) is consensusable with the
control gain K = 01 xy,.

Next, we will show that when A is not Schur stable, and
if (29) holds, the LIMAS (3) is consensusable by the control
gain designed in the theorem. For this purpose, we will first
show in the sequel that if (29) holds, we have
. 20 A jK* — )\z)j(k"‘)2

1]

¥:J ar2nax

> o, @31

Defining a function f(k) £ max;; |k —

straightforward to calculate its optimizer

« L
chj| > 0, it is

e 7}
- + max, ; Ao

min; j -
2

k* = arg mkin flk) =
Moreover, one can show that

Q;
Acyj
therefore, it directly follows that

2
2 B 7 SO e
. ; maxs j )\Cij MmN 5 )\c‘lj
minmax | k — = : .
ko i Acyj 2

Thus, in view of (29), we have

(% « — (o

* 7 nin ¢ c
k < mi: max .
7 )\c,j

2
arg mkin max <k - ) = arg mkin fk) =k

(2]

(32)

Noticing that

2
* Q5 N ;
Azyj <k - >\cj> = (204 ik — )‘i,j(k 2) + a2,

we get

2
max Ai,j (k* - ) > —min <2ai)\c,jk‘* - /\g,j(k*)z) + QZiin-

¥ Ac,j i,
(33)
Furthermore, from the fact that
2 * (] 2 * 7
R (155 ) 2t (-5 )
and using (32), (33), we can obtain
- Hlln (2047;)\07]']43* - )\Ej(k*)2) + aIQnin < Oér2nin - arznaxo-c‘
1,7 >
(34)

This inequality is equivalent to (31); therefore, a solution P
to the MARE (28) exists with

20\ ik — N2 (k*)?
O'ZHIIII QiAc,j C,j( ) N

©J a%nax

Oec.
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20 Ae, i k¥ =22, (K*)?
Further, defining o; £ a—() , we see that o < 0y

holds by definition. Therefore YB( also satlsﬁes the following
for each 1,

ATPA-0;ATPB(BTPB) ' BTPA-P <0

which further implies

aﬁaxATfuy+(AixkﬂQ-m%Achf
_1 (35)
ATPB (BTPB) BTPA—P<0.

This is equivalent to the existence of P > 0 and K =
—k*(BTPB)~'BT PA such that

(;A+ A ;BK)" P(a;A+ A, ;BK)

for all s € {2,..., N}. Therefore, the systems (30) are simul-
taneously stabilizable, which further shows that the LIMAS
(3) is consensusable by the designed controller. ]

The algebraic conditions in Theorem 3 are easily verifi-
able and do not require to solve any optimization problem.
Moreover, they provide important insights about the effects
of physical interconnection and communication graphs on
consensusability, as discussed in Section IV-C. We stress that,
this result is conservative because the derivations (31)-(34)
consider the worst-case scenario in terms of eigenvalue pairs
(Ap,i» Ac,i). Indeed, without physical couplings (o = 0), the
inequality (29) cannot recover the sufficient and necessary
condition for consensusability of MASs proposed in [3].

2) Necessary Conditions: We now provide algebraic neces-
sary conditions for the consensusability of the LIMAS in (3),
which will allow us to identify features of the LIMAS disfa-
voring consensusability. We note that the following theorem
does not require Assumption 3.

Theorem 4: [Necessary Consensusability Condition] Sup-
pose that Assumptions 1 and 2 hold. If the LIMAS in (3) is
consensusable, at least one of the following conditions N1-N3
holds:

NI1. max; | det(A1)| <1,

N2. max; |det(A;)| > 1 and min; |det(A;)| < 1 and (36),
N3. min; |det(A;)| > 1 and (36) and (37),

where A; = A — A, ;A, and

—P=<0,

A+, (36)

max | det(A;)] — 1 < 7. min | det(
K3 3

A;)| — 1) < max | det(4;)| + 1. (37)

Proof: The proof is a modification of the proof of Lemma

3.1 in [3]. Under Assumption 2, without loss of generality,

each pair (A — A,;Ap, B) can be written in controllable

canonical form

7e(min| det(

0 1 0 0
A-NaA,=| = e g ]
e 0o ... 0 1 0
*ai’l 70,1"2 N *ai’n 1
where |a; 1] = |det(A — A, ;A,)|. Given a simultaneously

stabilizing feedback gain K = [k1,...,kn], one can see
that | det(Ae ;)| = |ai1 — Ac,ik1| for the closed-loop matrix
Agi = A — NiAp + AiBK. Since K is selected to

stabilize (A — X\, ;Ap, Ac;B) for all i € {2,..., N}, it holds
that p(Aq ;) < 1. Therefore, it holds that |det(Ay ;)| =
Hj Aj(Aas) < 1, yielding |a;1 — Aciki| < 1, which can
be further manipulated to give
|ai,1| -1 \ai,1| + 1
)\c [ )\c 7 .
This implies that ﬂ (M, %) # (); therefore,

Ae,i c

< k1] <

max |ai’1‘ — < min |ai’1‘ + 1.
( )\c,i i )\c,i

Below, we will show that the above inequality implies that
at least one of the conditions N1-N3 holds. We start by
noting that, the left-hand side of (38) can either be negative or
nonnegative. In the former case, (38) is always satisfied and it
holds that max; |a; 1| < 1, yielding the condition N1. On the
contrary, when the left-hand side of (38) is nonnegative,

(38)

|ai_,1| -1 |ai71\ -1 - max; \ai,1| -1
max —-———— 2> Imnax =
2 )‘c,i T Hlan )‘c,j )\c,max
and
) laia] +1 < min 1% min; |a; 1| + 1
i e i ming A j Ac,min

hold. Therefore, combining these inequalities with (38), one
gets (36). In addition, we note that

|aia] =1
max ————— > max
i Ac,i i

which means that (38) implies

min; |a;j ] —1

)
>\c,i

inj |ajq| —1 ; 1
max PGl =1 e+ 1
z )\c,i g c,i

(39)
We again make the distinction of two cases where min; |a; 1|—
1 is negative or nonnegative. When the former holds, (39)
is always satisfied. Hence, combining min; |a; | < 1 with
max; ;1] > 1 and (36), one forms the condition N2.
Otherwise, when it is nonnegative, one can show that

minj |aj,1\ -1 o minj |aj71| -1

z c,i )\c,min

We can also derive an upper bound to the term on the right-
hand side of (39) as

n M < min : =

i C,i i )\c,i
Incorporating the last two equations with (39), we get (37).
Finally, condition N3 is obtained by combining (36) and (37)
with min; |a; 1| > 1. [ |

Note that the conditions N1-N3 involve only the three quan-
tities, max; | det(A;)|, min; | det(A;)|, and ~., making them
easy to verify. These conditions also provide an understanding
of how these variables effect consensusability, as discussed
in the next section. Finally, observe that N3 reduces to the
necessary and sufficient condition for the consensusability of
MASs provided in [3] when physical couplings are absent,
i.e., when A, = 0,,s,.

We also highlight that, in addition to providing sufficient
conditions for consensusability, Theorems 2 and 3 as well as
Corollary 1 also show how to design the controller gain K for
reaching consensus.

max; |(1j 1‘ +1 max; |aj’1| +1

)\c,max
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C. Discussion of the consensusability results

Hereafter, we discuss implications of the results given in
the previous section. Specific comments provided below point
out that consensusability is easier to achieve in LIMASs with

1) weak physical coupling and

2) densely-connected physical and communication graphs.

Specifically, the conditions S1 and S2 in Theorem 2 can
be satisfied only if A, < 2. This is possible if Apmax is
close to Ap min, or if the physical coupling is weak. We also
note that, by assuming A, < 2 and that the first inequality
of S1 is satisfied, 7. values satisfying the second inequality
can always be found in a neighborhood of 7. = 1. Moreover,
this also holds for condition S2, showing that communication
graphs whose Laplacian have eigenvalues that are close to
each other favor consensusability. These conditions imply that
both graphs G,, and G, are densely connected. Therefore, this
feature favors consensusability.

The LP in (17) is easier to solve when the pairs (A;, B;)
are closer to each other, as discussed in Remark 5. With the
definition A; = A — A, ; Ay, it is straightforward to see that
these matrices are close to each other when ||\, ; A4, || is small,
or A\, ; are similar. Analogously, B; = A. ;B are close to each
other when ). ; are similar. These observations point out once
more that the LP in (17) is more likely to be feasible when
the physical interconnection is weak and both physical and
communication graphs are densely connected.

Considering Theorem 3, the condition (29) can be satisfied
only if a2, > a2 o.. Taking into account that o, increases
with apax, the inequality is fulfilled only when aax is
sufficiently small and close to aunin. Note that .y takes
small values for small values of «, i.e., when the effect of
physical coupling is weak. Moreover, amin and qua.x are
close to each other when Ap min and A, max are close. Also
note that the left-hand side of the inequality (29) decreases
as the ratio ﬁ increases, i.e., as the eigenvalues of the
communication graph get closer to each other. Therefore, the
implications of the Theorem 3 match with the observations
made for Theorem 2.

In order to show the role of physical coupling in Theorem 4,
we look at the extreme case A = 0,,«,, for which condition
N1 is not satisfied for strong physical coupling characterized
by large values of | det(Ap)| and A, ;. Similarly, the inequality
(36) is more difficult to satisfy for stronger physical coupling
for fixed 7., since max; |det(A4;)| will be much larger than
min; | det(4;)|. One can also see that, for fixed A;, the
inequality (37) gets more difficult to satisfy as ~. grows,
which corresponds to a decrease in the connectivity of the
communication graph [29]. This, in turn, means that, it is
more difficult to satisfy the condition N3 as the communication
graph gets more sparse.

V. SIMULATION RESULTS

In this section, we present two different sets of simulations
to validate the results in Sections IV-A and IV-B, respectively.

Cluster 1

Cluster 2

(a) Schematic of the network of identical supercapacitors arranged
in multiple clusters. Lines in blue and red represent, respectively,
the physical and communication interconnections.

Sg So

Tvs b
<

(b) Electrical scheme of supercapacitors Sg and Sg in Cluster 3.
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2
FanY
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Fig. 2: Network of identical supercapacitors considered for
simulations in Section V-A.

A. Consensusability of a network of supercapacitors

In recent years, supercapacitors have been popularized as an
alternative to batteries in application domains such as micro-
grids (mGs), transportation systems, and automotive [33], [34].
In some of these applications, a network of multiple superca-
pacitors can be utilized, making it a LIMAS. In the sequel,
we consider a network of identical supercapacitors, which are
arranged in clusters, as shown in Figure 2a. Such a system
represents the scenario where groups of supercapacitors are far
away from each other and no physical interconnection between
them is possible.

As shown in Figure 2b, we model each subsystem % as a
parallel RC circuit with C' = 10F, R = 5k, and a current
source supplying a time-varying current I;. The resistance
models the power leak from the capacitor. Subsystems are cou-
pled through resistive electrical lines (see Figure 2b), whose
resistance values R;; are chosen randomly from the interval
[10,50]Q2. We are interested in the problem of controlling
the charging currents I; such that the voltages across each
supercapacitor reach consensus. In practical applications, this
might be needed to ensure the same voltage level across all
storage devices, as they might feed the same load during
a discharge period (not considered here). We assume that,
the input currents I; are computed using the controller (2),
utilizing the communication network represented in Figure 2a
with unit edge weights. Applying Kirchoff’s current and
voltage laws, the voltage dynamics of the supercapacitor ¢ is
given by

1

1
——V, —
R Z R;;
jen?

CV; = (Vi=Vi)+k D> (Vi=Vj). @0)

JENF

In order to match the model (3), we discretize (40) in time
by using the forward Euler method with a sampling period of
Ts = 0.1ms. We obtain the dynamics

ot = (aly — L)' + kLT)z,



GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2021

V3 —V4 — V5 VS
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0 01 02 03 04 05 06 07 08 09 1
Time (s)
Fig. 3: Voltages of the supercapacitors initialized with random
initial voltages.

where # = [Vi,...,Vo] T, a=1-To gz = 1, LI £ L[,
and L S %Ec. Moreover, £, and L. are the Laplacian
matrices of the physical and communication graphs, respec-
tively. The modified Laplacian matrices £ and L7 account
for the effect of discretization, and are used in the analysis of
consensusability.

On applying Theorem 2 to this system, we see that both
conditions S1 and S2 are satisfied; therefore, any control gain k
in the intervals KT NR>( = [0,4.071x107°) and K" NR o =
(—4.071 x 10%,0) guarantees the achievement of consensus.
We choose k£ = —200 and initialize each supercapacitor with
a random voltage value between 4V and 6V when running
the continuous-time simulations of the LIMAS. As shown
in Figure 3, all voltage levels converge to a common value,
as guaranteed by Theorem 2. In order to see how tight the
computed interval K = (—4.071 x 10%,4.071 x 107°) of
control gains is, we create a fine grid of k values strictly
including K to check the values for which the matrix in (22)
is Schur stable. We find that consensus is reached for £k values
in the interval (—4.071 x 10%,1.532 x 10~%), which is very
close to K. This is expected since L' is close to a zero matrix
due to the small sampling time T (see Remark 6).

Finally, because this LIMAS is consensusable and there
exists a control gain k reaching consensus, Theorem 4 asserts
that at least one of the conditions N1-N3 should hold. Upon
setting A; = a — A\;(L}"), one sees that N1 is satisfied.

B. Consensusability of a DC microgrid

DC microgrids (DCmGs) are electrical networks of dis-
tributed generation units (DGUs) incorporating renewable
energy sources and/or storage devices. They have recently
risen in popularity thanks to the advantages they offer over
traditional power grid in certain application scenarios [9].
A remarkable feature of DCmGs is their ability to run in
islanded mode, i.e., disconnected from the main grid, which
brings about the additional challenge of ensuring their safe and
reliable operation [35]. To this purpose, hiearchical control
structures are commonly used, where primary controllers
regulate the voltages of DGUs and higher-level controllers
enable coordination among DGUs [16], [36]. An example
is provided by secondary controllers for reaching consensus
on DGU states which, in turn, results in current sharing and
voltage balancing [16].

In this section, we consider a DCmG consisting of identical
DGUs that are interconnected as shown in Figure 4a and

(a) Schematic of the DCmG. Blue lines represent the physical
interconnection between DGUSs, realized as resistive power lines.

DGU and Load ¢ Power line ¢j

Buck 7

th

(b) Electrical scheme of i DGU along with load, connecting
line(s), and local primary voltage regulator.

Fig. 4: DCmG considered in Section V-B.

study the consensusability problem. Each DGU is modeled
as a Buck converter with an RLC filter, connecting a voltage
source to a resistive load and neighboring DGUs, as shown
in Figure 4b. Each DGU also includes a primary voltage
controller for steering the voltage value V; at the point of
common coupling (PCC) to the reference value V,.f;. As
depicted in Figure 4b, these primary controllers, developed
in [36], have a static state-feedback structure captured by
the gain Kp, = [kpr1,kpr2, kpr,3] and integral action. On
applying Kirchoff’s voltage and current laws, the dynamics of
the DGU ¢ is written as

. |7 1
CVi=—2-+li= D o= (Vi=V))
L jEN’ip i
Lilyi = (kpra — D)V 4 (kpro — Re) i + kpr3v;
V= —=Vi+ Vier

;4D

where I; is the filter current passing through the inductance
and v; is the integrator state of the primary controller. In this
section, we seek to develop a secondary controller modifying
the voltage references V,..r; of each DGU to achieve consen-
sus on the states of all DGUs in the DCmG. Specifically, we
consider a networked controller given by

Viei = Vees + K Y bij(ai — a;), 42)
JENF

where x; £ [V;, I, v;] T is the state of DGU i and V,op =
48V is a common nominal voltage reference for all DGUs.
We note that DGUs in the DCmG are physically coupled to
each other and the secondary controller (42) is based on a
communication network (inducing the set of neighbors N).
Therefore, after discretizing (41) with forward Euler method
with a sampling period of Ty = 0.1ms, the overall dynamics
of the DCmG can be written as in (3), where the system
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Fig. 5: States of the DGUs in the DCmG equipped with con-
sensus controllers. The zoomed-in figures show that consensus
is achieved very quickly.

matrices are defined as A =13 — T;A,, B=1[0 0 Ts]—r ,
1 1
P B L ) % 00
Act = 71)22_ 71)7“’[2/: t I[J:;S s Ap = 0 0 0
—1 0 0 0 0 0

We use the parameter values R; = 0.2 Q, C; = 2.2 mF,
L =18 mH, Ry, =9 Q, and K, = [-2.13,—-0.16, 13.55]
taken from [36]. Moreover, L, is derived from the physical
interconnection topology in Figure 4a and edge weights 1/R;;,
Vi € {1,...,9}, j € NP, where power line resistances R;;
are selected randomly in the interval [4, 8]Q2. In order to verify
Assumption 1, we assume a complete communication graph
with uniform edge weights. Therefore, £, = Iy — %191;— .
With these definitions, it is easy to verify that Assumption 2
also holds. Hence, Corollary 1 can be utilized.

We construct the necessary matrices as shown in (11)-(12),
(15)-(16) and verify that the LP in (17) is feasible. Hence, a
consensus-enabling controller gain K can be designed. With
this controller in place, we run a simulation from random
initial conditions of DGUs, based on their continuous-time
dynamics in (41). Figure 5 shows that consensus is quickly
reached as Corollary 1 certifies, and the voltages are regulated,
albeit relatively slowly, towards the nominal reference value
of 48V. Furthermore, condition N1 is satisfied, as Theorem 4
guarantees for this consensusable LIMAS.

In order to show the effect of physical coupling on con-
sensusability, we gradually increase A, by scaling down the
line resistances, i.e., we use Rij £ §R;; in the definition of
L, for £ € (0,1). For £ = 0.072, the LP in (17) becomes
infeasible. Similarly, if a DCmG is not consensusable using
the proposed results, weakening its physical coupling could
make it consensusable.

We next investigate whether our consensusability test in
Corollary 1 can be used even when Assumption 1 is not
satisfied. We do this by changing the topology of G.. We see
that the LP in (17) is infeasible for G. with circle and star

topologies and unit edge weights. Moreover, although (17)
is feasible for a complete G, it can become infeasible upon
removal of 2 edges. By keeping the complete topology of
G. and selecting non-uniform edge weights between 0 and
1, we obtain that (17) becomes infeasible as well. This study
reveals that our results depend critically on the satisfaction of
Assumption 1.

VI. CONCLUSIONS AND FUTURE PERSPECTIVES

In this paper, we considered linear MASs with physical
interconnections among subsystems (LIMASs) and studied
their consensusability properties. We show that checking the
consensusability of LIMASs is equivalent to a simultaneous
stabilization problem and present a linear program (LP) based
method for verifying simultaneous stabilization. Based on this
result, we present a numerical sufficient condition for the
consensusability of a LIMAS. Moreover, we propose several
algebraic consensusability conditions that are either sufficient
or necessary. The derived results show that weak physical
coupling and densely-connected physical and communication
graphs are favorable for consensusability.

The presented results in the case of vector dynamics rely on
the assumption that the Laplacians of physical and communi-
cation graphs commute. Eliminating this assumption will be
considered in future works. Another direction for follow-up
research is to study output synchronization for LIMASs.
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