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“Wir steigen nicht auf Berge, um Gipfel zu erreichen,
sondern heimzukehren in eine Welt, die uns als neue Chance,

als ein nochmals geschenktes Leben erscheint.”

“We do not climb mountains to reach summits,
but to return home to a world that appears to us as a new opportunity,

as a life given once again.”

— Reinhold Messner





Abstract

Shell elements derived from the Kirchhoff-Love theory have experienced a renaissance
in the Finite Element community since the advent of isogeometric analysis. Despite

numerous promising advancements in the field, several questions need to be addressed to
establish isogeometric Kirchhoff-Love shells as an industry standard. In particular, it is
known that the direct simulation of trimmed multi-patch shell models requires particular
care, both from the point of view of the geometry as well as from the analysis side.

This thesis focuses on the latter. Specifically, our goal is to develop accurate and robust
algorithms for the analysis of trimmed surfaces. To achieve this, we address several
important aspects: (i) we systematically study the beneficial effect of local refinement for
the proper resolution of localized features of the geometry/solution on complex trimming
patterns, (ii) we devise a novel a-posteriori error estimator tailored to Kirchhoff plates
and Kirchhoff-Love shells which allows us to develop a fully adaptive computational
framework, (iii) we present a locking- and parameter-free coupling strategy adapted from
the penalty method for achieving the required C1-continuity across patches and (iv) we
provide a preliminary study on the impact of trimming on the critical time step in the
scope of explicit Kirchhoff-Love shell dynamics.

We numerically verify and assess the performance of the aforementioned methods on
an extensive selection of benchmarks defined on trimmed domains. We systematically
observe an increase in accuracy compared to other established approaches. Specifically,
our methods are constructed to attain the optimal accuracy of splines.

To conclude, we test the capabilities of our computational framework on several engi-
neering structures by performing a static shell analysis on, e.g. the B-pillar of a car and
the blade of a wind turbine.
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Résumé

Les éléments coque dérivés de la théorie de Kirchhoff-Love ont connu une renaissance
dans la communauté des éléments finis depuis l’avènement de l’analyse isogéomé-

trique. Malgré de nombreuses avancées prometteuses dans ce domaine, plusieurs questions
doivent être abordées pour que les coques isogéométriques de Kirchhoff-Love deviennent
une norme industrielle. En particulier, il est connu que la simulation directe de modèles
de coques multi-patch trimmées nécessite une attention particulière, tant du point de
vue de la géométrie que de l’analyse.

Cette thèse se concentre sur ce dernier point. Plus précisément, notre objectif est de déve-
lopper des algorithmes précis et robustes pour l’analyse des surfaces trimmées. A cette fin,
nous abordons plusieurs aspects importants : (i) nous étudions systématiquement l’effet
bénéfique du raffinement local pour la résolution correcte de caractéristiques localisées
de la géométrie/solution sur des modèles trimmées complexes, (ii) nous concevons un
nouvel estimateur d’erreur a-posteriori adapté aux plaques de Kirchhoff et aux coques
de Kirchhoff-Love qui nous permet de développer une methode de calcul entièrement
adaptative, (iii) nous présentons une stratégie de couplage sans locking et sans paramètre,
adaptée de la méthode penalty, pour obtenir la continuité C1 requise à travers les patches,
et (iv) nous fournissons une étude préliminaire de l’impact du trimming sur le pas de
temps critique dans le cadre de la dynamique explicite des coques de Kirchhoff-Love.

Nous vérifions et évaluons numériquement les performances des méthodes susmentionnées
sur une vaste sélection de tests benchmark définis sur des domaines trimmées. Nous
observons systématiquement une augmentation de la précision par rapport aux autres
approches établies. Plus précisément, nos méthodes sont construites pour atteindre la
précision optimale des splines.

Pour conclure, nous testons les capacités de notre methode de calcul sur plusieurs
structures d’ingénierie en effectuant une analyse statique de coque sur, par exemple, le
pilier B d’une voiture et la pale d’une éolienne.

iii





Zusammenfassung

Schalenelemente, die von der Kirchhoff-Love-Theorie abgeleitet sind, haben seit
dem Aufkommen der isogeometrischen Analyse eine Renaissance in der Finite-

Elemente-Gemeinschaft erlebt. Trotz zahlreicher vielversprechender Fortschritte auf
diesem Gebiet müssen noch einige Fragen geklärt werden, um isogeometrische Kirchhoff-
Love-Schalen als Industriestandard zu etablieren. Insbesondere ist bekannt, dass die
direkte Simulation von getrimmten mehrflächigen Modellen besondere Sorgfalt erfordert,
sowohl aus Sicht der Geometrie als auch aus Sicht der Analyse.

Diese Dissertation konzentriert sich auf Letzteres. Unser Ziel ist es, genaue und zuver-
lässige Algorithmen für die Analyse von getrimmten Oberflächen zu entwickeln. Um
dies zu erreichen, behandeln wir mehrere wichtige Aspekte: (i) wir untersuchen systema-
tisch den Effekt der lokalen Verfeinerung für die korrekte Auflösung von lokalisierten
Details der Geometrie/Lösung auf komplexen getrimmten Modellen, (ii) wir entwickeln
einen neuartigen, auf Kirchhoff-Platten und Kirchhoff-Love-Schalen zugeschnittenen
a-posteriori-Fehlerschätzer, der es uns erlaubt, ein vollständig adaptives Framework zu
entwickeln, (iii) wir stellen eine locking- und parameterfreie Kopplungsstrategie vor, die
an die Penalty-Methode angepasst ist, um die geforderte C1-Kontinuität über Patches
hinweg zu erreichen, und (iv) wir liefern eine Studie über die Auswirkung des Trimmings
auf den kritischen Zeitschritt im Rahmen der expliziten Kirchhoff-Love-Schalendynamik.

Durch eine umfassende Testreihe, die auf getrimmten Geometrien definiert ist, wird die
Wirksamkeit der oben genannten Methoden numerisch verifiziert und bewertet. Wir
beobachten systematisch eine Steigerung der Approximationsgenauigkeit im Vergleich zu
anderen etablierten Ansätzen. Insbesondere sind unsere Methoden so entwickelt, dass sie
die optimale Genauigkeit von Splines erreichen.

Abschließend testen wir die Anwendbarkeit unseres Berechnungsverfahrens an verschie-
denen technischen Strukturen, indem wir eine statische Schalenanalyse durchführen, z. B.
an der B-Säule eines Autos und dem Rotorblatt einer Windturbine.
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1 Introduction

1.1 Motivation

Shell structures are omnipresent in the natural realm and are widespread in many areas
of engineering, see Figure 1.1 for an example taken from civil engineering. This is
linked to the fact that shell structures are excellent at carrying weight through their
curvature. Specifically, transversal loads can be withstand via in-plane tension and
compression of the structure. Thanks to this feature, shells can be efficiently designed
to maximize the so-called stiffness-to-weight ratio. This optimization process naturally
causes one dimension of the body, typically labeled as thickness, to be much smaller in
comparison to the others. Many shell formulations exploit this feature and are based
on the dimensionality-reduction of the underlying full three-dimensional problem to a
two-dimensional model. Inherently, the intrinsic slenderness of these structures yields
an extremely sensitive mechanical response. This mechanical sensitivity is inherited by
the corresponding computational models, rendering the devise of accurate and reliable
algorithms particularly challenging. Quoting [Ramm and Wall, 2004], physics and
numerics are deeply intertwined for shell structures. Therefore, it should come as no
surprise that numerous different shell formulations have been developed over the years.
Historically, the first shell formulation is attributed to [Love, 1888], based on the kinematic
assumptions presented in [Kirchhoff, 1850]. Another fundamental theory can be traced
back to the work in [Reissner, 1945; Mindlin, 1951], which, opposed to Kirchhoff-type
theories, does not neglect the effects related to transverse shear deformations. Generally
speaking, the Kirchhoff-Love formulation is considered accurate for thin shells. On the
contrary, the Reissner-Mindlin theory is appropriate for the description of moderately
thick structures. As a rule of thumb, engineers use a value of the slenderness equal to 20
to mark the limit between thick and thin shells. These two pioneering theories have given
birth to a variety of formulations, where the interested reader is referred to [Bischoff
et al., 2004; Reddy, 2006] and reference therein for a general overview.

The advent of the Finite Element Method (FEM) [Hrennikoff, 1941; Courant, 1943],
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Introduction

(a) Rolex Learning Center at EPFL, Lausanne. (b) Olympiastadion in Munich.

Figure 1.1 – Examples of shell structures found in civil engineering. Pictures retrieved
from https://commons.wikimedia.org under the Creative Commons license.

which gained momentum together with the advancement of computers, has revolutionized
all fields of engineering. The core idea of FEM is to decompose the continuum into a finite
number of elements. In two dimensions, structures are typically described by a collection
of triangles and/or quadrilaterals. By employing the so-called isoparametric paradigm,
the same functions used to describe the geometry are employed to approximate the
solution field, where the typical choice consists of linear C0 polynomials. Historically, this
has hindered the development of shell elements of Kirchhoff type, since their formulations
in primal form require global C1-continuity to be well-defined. This is the reason why
Reissner-Mindlin elements and variants thereof are predominant in commercial FEM
softwares. However, two important aspects needs to be addressed:

• the description of curved surfaces by means of planar geometries introduces artificial
geometrical imperfections. As mentioned above, the mechanical response of shells
is particularly susceptible to small changes. This also introduce a mismatch
between the Finite Element world and Computer-Aided Design, where the geometric
modeling of free-forms is typically performed using smooth functions, namely B-
splines and Non-Uniform Rational B-splines (NURBS) [Bézier, 1977; Piegl and
Tiller, 1995].

• Notoriously, Reissner-Mindlin shell elements suffer from numerical locking in the
thin regime. The literature on the subject is rich, e.g. we refer to [Belytschko
et al., 1985; Babuška and Suri, 1992a,b; Arnold and Brezzi, 1997; Bletzinger et al.,
2000]. However, a unified remedy to locking is still an active area of research, see
for instance [Zou et al., 2021] and references therein for recent advancements in the
field.

With the goal of mitigating the issues mentioned in the first point, isogeometric analysis
(IGA) was introduced in the seminal paper [Hughes et al., 2005]. The main idea of IGA
is to improve the interoperability between numerical simulations and CAD by employing
the same mathematical objects used in the geometry description for the discretization
of partial differential equations (PDEs). This shift in paradigm has paved the way for

2



1.1. Motivation

an extensive amount of research, where the reader is referred to [Hughes et al., 2005;
Cottrell et al., 2009; Hughes, 2017] for a detailed review of the method and its recent
state-of-the-art, while its mathematical foundations can be found [Bazilevs et al., 2006;
Beirão da Veiga et al., 2014]. In particular, IGA has created a major impact on shells
research. Classical formulations of the Kirchoff-Love type are governed by fourth-order
PDEs. As mentioned above, this results in a global C1-continuity requirement which
poses severe challenges to traditional finite element technologies. These obstacles are
easily overcome within one isogeometric patch thanks to the higher continuity of B-
splines, allowing to discretize higher-order PDEs directly in their primal form. We refer
to [Kiendl et al., 2009, 2015, 2016] for a review of the method and several extensions in
the scope of rotation-free isogeometric Kirchhoff-Love shells, whereas other applications
to Kirchhoff plates can be found in [Reali and Gómez, 2015; Niiranen et al., 2017].
Moreover, several other spline technologies have been successfully applied to the analysis
of Kirchhoff-Love shells, for instance T-splines [Bazilevs et al., 2012; Casquero et al.,
2017, 2020], subdivision surfaces [Cirak et al., 2000], extended IGA [Nguyen-Thanh et al.,
2015], PHT- and RHT-splines [Nguyen-Thanh et al., 2011, 2017], LR-splines [Proserpio
et al., 2020], and recently extended B-splines [Schöllhammer et al., 2020].

Regarding the second point, the Kirchhoff-Love formulation has the clear advantage of
avoiding shear-locking a-priori thanks to its kinematic assumptions. However, other
sources of locking are still present, such as membrane and constraint-related lock-
ing [Bieber et al., 2018; Rafetseder and Zulehner, 2019; Guo et al., 2021], and they should
be carefully considered by practitioners when interpreting the results of a numerical
simulation.

The objective of this thesis is to deepen and improve the current understanding of
isogeometric Kirchhoff-Love shells. Specifically, we want to develop accurate and reliable
algorithms that enhance the applicability of Kirchhoff-Love shells to complex, industrial
problems. To this end, we focus on several aspects which we briefly outline in the
following.

• The proper treatment of trimmed surfaces needs careful consideration, see [Marussig
and Hughes, 2018] for a review of the state-of-the-art and open challenges related
to trimming. We recall that trimming is a standard operation for modeling complex
shapes in commercial CAD softwares. Similarly to immersed methods, trimmed
shape functions do not conform with the physical boundary. Consequently, a
systematic way to treat trimming-related effects is pivotal to the development
of any isogeometric framework. To tackle this, we study the benefits of local
refinement in the analysis of trimmed shells.

• Additionally, complex geometries are typically described by multiple, non-
conforming patches which demands a suitable coupling strategy to achieve the
required C1-continuity in the context of Kirchhoff-Love shells. To achieve this, we

3



Introduction

devise a penalty-like coupling strategy which avoids interface locking by construction
and mitigates some well-known drawbacks of standard penalty methods.

• Lastly, we explore the realm of adaptivity on trimmed domains. Specifically, we
devise a novel error estimator suitable for fourth-order PDEs which allows us to
automatically steer an adaptive shell simulation on trimmed domains.

For each of our proposed methods, we thoroughly assess their performance on an extensive
series of benchmarks. We systematically observe superior accuracy per-degree-of-freedom
compared to other relevant approaches in the literature. Furthermore, we typically obtain
considerable speed-ups when comparing the runtime. Finally, to test the potential of
our framework in an industrial setting, we perform a static shell analysis of various
models of engineering interest. These structures span several applications from civil
engineering, where we consider a simplified model of the roof of the Rolex Learning
Center, to mechanical engineering, where we study the B-pillar of a car and the blade of
a wind turbine.

1.2 Outline

This thesis is structured as follows.

Chapter 2 provides a general overview of the Finite Element Method. In this chapter,
we introduce the basic notation and mathematical foundations used throughout the rest
of this manuscript. To this end, the problem of linear elasticity in its strong and weak
formulations, respectively, is introduced. Then, we provide some fundamental results
on the existence and uniqueness of the solution. We continue by outlining the Galerkin
approximation, which constitutes the basis for the derivation of the Finite Element
Method. We then rigorously describe several basic notions related to FEM. At the end of
the chapter, we formalize the concept of convergence of the finite element approximation
to the exact solution and we provide some classical a-priori estimates.

In Chapter 3, we provide an in-depth derivation of the Kirchhoff plate and Kirchhoff-Love
shell formulations, respectively. Specifically, their weak and strong formulations are
outlined. This allows us to introduce the terminology and framework related to plates
and shells needed in the remainder of this thesis. Lastly, for ease of implementation, we
summarize all the defining operators of the Kirchhoff-Love formulation in index notation.1

Chapter 4 introduces the concepts of B-splines and their role in the geometric design of
structures. Furthermore, we review their role as building blocks, i.e. the shape functions,
employed in isogeometric analysis. Here, we also recall the notion of B-Representation and

1In accordance with the Springer Copyright Transfer Statement, parts of this chapter are adapted
from [Coradello et al., 2021b]. The main scientific research as well as the textual elaboration of the
publication was performed by the author of this work.
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1.2. Outline

trimming, two concepts that facilitate the description of complex (volumetric) geometries
in modern CAD softwares. Building upon this, we briefly describe how trimming limits a
direct simulation of trimmed surface in the scope of IGA. As a possible remedy, we review
a solution based on the local reparametrization of the cut elements. Then, we introduce
two variants of B-splines, namely hierarchical and truncated hierarchical B-splines, that
enable the local refinement of the basis. This allows us to directly discretize the Kirchhoff
plate and Kirchhoff-Love shell formulation, respectively, using a standard Galerkin
procedure. Lastly, we present several numerical experiments that show the benefits of
using local refinement for the isogeometric analysis of trimmed shells, especially when
complex trimming patterns and small features are present in the design.2

In Chapter 5 we introduce the notion of a-posteriori error estimation in the finite element
world. Specifically, we briefly review several main families of estimators present in the
literature. Then, we focus on the development of a new error estimator readily applicable
to Kirchhoff plates and Kirchhoff-Love shells and we discuss its extension to the trimmed
case. This allows us to introduce the concept of error-driven adaptive simulation. We
conclude the chapter by assessing the performance of the proposed method on an extensive
series of benchmark problems. Lastly, we show the applicability of the estimator to
industrial problems by performing an adaptive shell analysis of the B-pillar of a car.3

Chapter 6 presents a novel coupling strategy for enforcing displacement and rotational
continuity, respectively, between non-conforming, trimmed isogeometric patches. Specif-
ically, we formalize this penalty-like strategy by analyzing the underlying perturbed
saddle-point problem. This allows us to devise a method that avoids interface locking
a-priori and that attains the optimal rates of convergence achievable by B-splines. We
then proceed to verify numerically the proposed coupling strategy on several benchmark
problems described by multi-patch plates and shells. Lastly, we apply our framework to
the static shell analysis of the DTU 10 MW Reference wind turbine blade.4

In Chapter 7 we provide some preliminary results on the behavior of the critical time
step in the scope of explicit trimmed analysis of Kirchhoff-Love shells. Specifically, we
shed some light on the appearance of spurious pairs of eigenvalues/eigenvectors that
deteriorate the low frequency part of the spectrum. We also present a stabilization

2In accordance with the Springer Copyright Transfer Statement, parts of this chapter are adapted
from [Coradello et al., 2020b]. The main scientific research and the textual elaboration of the publication
have been equally developed in close collaboration between the first two authors Luca Coradello and
Davide D’Angella. The co-authors of the first two authors confirm that the contributions of both Luca
Coradello and Davide D’Angella were essential in this joint publication. Parts of [Coradello et al., 2020b]
have been included in the dissertations of both first two authors with the approval of all co-authors.

3In accordance with the Elsevier publishing agreement, parts of this chapter are adapted from [Antolin
et al., 2020; Coradello et al., 2020a]. The main scientific research as well as the textual elaboration of the
publication was performed by the author of this work.

4In accordance with the Springer Copyright Transfer Statement, parts of this chapter are adapted
from [Coradello et al., 2021b]. The main scientific research as well as the textual elaboration of the
publication was performed by the author of this work.
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Introduction

technique that could potentially mitigate the issue when small trimmed elements are
present.

Finally, in Chapter 8 we systematically draw some conclusions on the main contributions
of this thesis. Then, several limitations are highlighted and possible future research
directions are discussed.

1.3 Implementation aspects

Several different libraries and softwares are used in this thesis and, for the sake of
completeness, are listed in the following.

The numerical examples in Chapter 4 are obtained with AdHoC++, a high-performance,
object-oriented, high-order Finite Element library written in C++. This is a research
code developed at the Chair for Computation in Engineering at the Technical University
of Munich.

The methods described in Chapters 5 to 7 are implemented on top of the open-source
and free Octave/Matlab package GeoPDEs5 [Vázquez, 2016]. Additionally, the
reparametrization of trimmed elements for integration purposes is obtained with the
in-house tool presented in [Antolin et al., 2019]. This tool makes use of the open-source
mesh generator Gmsh6 [Geuzaine and Remacle, 2009] and its associated geometric kernel
OpenCASCADE7 [OpenCASCADE, 2018].

Throughout this thesis, complex CAD models are handled in the commercial software
Rhinoceros8 [McNeel et al., 2010]. The aforementioned models are exported in STEP
format [ISO 10303-11, 1994] and are read into our framework via Python wrappers
built on top of pyOCCT 9 [Laughlin, 2020], a collection of bindings to OpenCASCADE.

5http://rafavzqz.github.io/geopdes/
6https://gmsh.info/
7https://www.opencascade.com/
8https://www.rhino3d.com/
9https://github.com/trelau/pyOCCT
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2 A review of the Finite Element
Method

In this chapter we review some fundamentals of the Finite Element Method (FEM).
In particular, we lie the mathematical foundations that describe numerous physical
phenomena in their differential and variational form, respectively. To exemplify these
concepts, we analyze in details the problem of linear elasticity. Then, we address the
concept of existence and uniqueness of the solution of the corresponding boundary value
problem. Next, we describe the standard finite element terminology and we summarize
the key steps required to construct a finite element discretization. Finally, we provide
some classical results of a-priori convergence of the method with respect to the analytical
solution. The notation and derivation used in this chapter follow closely [Hughes, 2000;
Holzapfel, 2001; Ciarlet, 2002; Brenner and Scott, 2008; Quarteroni and Valli, 2008].

2.1 Mathematical foundations of the problem of elasticity

In this work, we make the assumption that object can be modeled as a continuum. This
macroscopic view yields highly accurate results for the typical length scales considered in
many engineering applications. For a detail review of continuum mechanics, we refer the
reader to [Holzapfel, 2001]. This mathematical framework allows for the description of
physical phenomena by leveraging the notion of field, e.g. a quantity of interest associated
with every point in space and time. Following standard nomenclature, we refer to a field
as scalar, vector or tensor if it is represented by a zeroth, first or higher order tensor,
respectively. In the following derivation, we will use the problem of linear elasticity as a
recurring example, where the typical fields of interests are displacements and stresses.
We remark that, although the terminology will be specific to linear elasticity, the abstract
framework introduced in the following can be directly applied to a wide range of problems
from physics and engineering.
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Chapter 2. A review of the Finite Element Method

2.1.1 The strong formulation of elasticity

Let us consider an arbitrary, bounded, open and connected body Ω ⊂ R3 and its Lipschitz-
continuous boundary ∂Ω. As typically done, we can define a conservation or balance law
over this volume as a function of time. In particular, let us associate to any spatial point
x at any given instant t a mass density ρ = ρ(x, t) and a velocity field u̇ = u̇(x, t), where
u denotes the displacement of the body and the dot indicates differentiation with respect
to time. We can now introduce the conservation of linear momentum L in integral form
as:

L̇(t) =
∫

Ω
ρü dΩ = F (t) , (2.1)

where F (t) denotes the total external force applied to the body and ü stands for the
corresponding acceleration field. Let us also define a vector field b = b(x, t) ∈

[
L2(Ω)

]3

which represents the body force in Ω and a traction vector t = t(x, t) ∈
[
L2(∂Ω)

]3
which

denotes the force acting on the boundary surface ∂Ω. With these definitions at hand,
F (t) can be rewritten as:

F (t) =
∫

Ω
b dΩ +

∫

∂Ω
tdγ . (2.2)

Now, let us assume that there exists a tensor field σ = σ(x, t) such that:

t = σ · n , (2.3)

where n denotes the unit normal vector to ∂Ω and σ is the so-called Cauchy stress tensor.
We highlight that σ is symmetric, where the symmetry of the latter can be shown from
the balance of angular momentum, for further details we refer to [Holzapfel, 2001]. By
leveraging the divergence theorem and the relation in Equation (2.3) we can convert the
surface integral in Equation (2.2) to a volume integral as:

∫

∂Ω
tdγ =

∫

∂Ω
σndγ =

∫

Ω
∇ · σ dΩ . (2.4)

By substituting the result obtained in Equation (2.4) into Equation (2.1) we get:
∫

Ω
(∇ · σ + b− ρü) dΩ = 0 . (2.5)

Given the arbitrariness of Ω we can write the equation of motion in its classical differential
form:

∇ · σ + b = ρü ∀x ∈ Ω , ∀t ∈ [0,+∞] . (2.6)

In this work, we assume that inertial effects are negligible and therefore we will work in
the realm of elastostatics. Consequently, the result presented in Equation (2.6) can be
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2.1. Mathematical foundations of the problem of elasticity

simplified to:

∇ · σ + b = 0 ∀x ∈ Ω , (2.7)

which describes the equilibrium of a body in the absence of accelerations acting on it.
Equation (2.7) is commonly referred to as the strong form of the problem.

Now, let us assume a suitable decomposition of the boundary ∂Ω into two disjoint parts
ΓD and ΓN , representing the Dirichlet and Neumann part of the boundary, respectively.
Further, it holds that ∂Ω = ΓD ∪ ΓN and ∅ = ΓD ∩ ΓN . Given a prescribed traction
force t̃ ∈

[
L2(ΓN )

]3
on ΓN and a prescribed displacement ũ ∈

[
H

1
2 (ΓD)

]3
on ΓD, the

strong form is complemented by the following set of boundary conditions:

σ · n = t̃ ∀x ∈ ΓN (2.8a)
u = ũ ∀x ∈ ΓD . (2.8b)

2.1.2 The weak formulation of elasticity

Now, let us define the following space:

S =
{
u ∈

[
H1(Ω)

]3 ∣∣∣u = ũ on ΓD
}

:=
[
H1
ũ(Ω)

]3
, (2.9)

where ΓD is a subset of ∂Ω with strictly positive measure. The members of S are typically
referred to as trial functions in the literature. Similarly, we can define the space of test
functions as:

V =
{
v ∈

[
H1(Ω)

]3 ∣∣∣v = 0 on ΓD
}

:=
[
H1

ΓD(Ω)
]3
, (2.10)

which represents the homogeneous counterpart of S, where the statement v = 0 on ΓD
means that the trace of v is vanishing on ΓD. We also remark that if ΓD = ∂Ω, we will
simply use the notation

[
H1

0 (Ω)
]3. Now, we can multiply Equation (2.7) by the test

functions v and integrate over the domain Ω, which yields:
∫

Ω
v · (∇ · σ) dΩ +

∫

Ω
v · b dΩ = 0 . (2.11)

Given that v is square-integrable, the following holds true:

∇ · (v · σ) = v · (∇ · σ) +∇v : σ . (2.12)

Consequently, Equation (2.11) can be rewritten as:
∫

Ω
∇ · (v · σ) dΩ−

∫

Ω
∇v : σ dΩ +

∫

Ω
v · bdΩ = 0 . (2.13)

9



Chapter 2. A review of the Finite Element Method

By leveraging the divergence theorem, the first integral can be reformulated as follows:
∫

Ω
∇ · (v · σ) dΩ =

∫

∂Γ
v · σ · ndγ =

∫

ΓD
v · σ · ndγ

︸ ︷︷ ︸
=0

+
∫

ΓN
v · σ · ndγ , (2.14)

where the integral on the Dirichlet portion of the boundary vanishes due to the choice of
test functions. Then, by using the boundary condition in Equation (2.8a) and the result
in Equation (2.14) we obtain:

∫

Ω
∇v : σ dΩ =

∫

Ω
v · b dΩ +

∫

ΓN
v · t̃dγ . (2.15)

Now, let us introduce the linearized strain tensor ε as:

ε(u) = 1
2
(
∇u+∇u>

)
, (2.16)

where higher-order terms have been neglected. Furthermore, we assume that the body
deforms in the linear elastic regime, meaning that there exists a constitutive relation
between the stress and strain tensors of the form:

σ(u) = C : ε(u) , (2.17)

where C denotes the fourth-order material tensor. If we consider an isotropic linear
elastic material, its components read:

Cijkl = λδijδkl + µ (δikδjl + δilδjk) , (2.18)

where λ and µ denote the first and second Lamé parameters, respectively, and δ represents
the standard Kronecker delta. We recall that C can be equivalently defined in terms of
the Young’s modulus E and the Poisson’s ratio ν by using the following relationships:

λ = Eν

(1 + ν)(1− 2ν) , (2.19a)

µ = E

2(1 + ν) . (2.19b)

With these definitions and by exploiting the symmetry of the stress tensor σ, the integrand
on the left-hand-side of Equation (2.15) can be rewritten in terms of the strain tensor:

∇v : σ = 1
2
(
∇v : σ +∇v> : σ>

)
= 1

2
(
∇v : σ +∇v> : σ

)
= ε(v) : σ . (2.20)
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2.2. Some fundamentals of functional analysis

Finally, the weak formulation of the problem of linear elasticity can be stated as:

Find u ∈ H1
ũ(Ω) such that:

a(u,v) = f(u) ∀v ∈
[
H1

ΓD(Ω)
]3
, (2.21)

where a is a symmetric, coercive and continuous bilinear form and f is a continuous
linear form. They can be expanded, respectively, as follows:

a(u,v) =
∫

Ω
σ(u) : ε(v) dΩ (2.22a)

f(v) =
∫

Ω
v · b dΩ +

∫

ΓN
v · t̃dγ . (2.22b)

2.2 Some fundamentals of functional analysis

In the following, we summarize some classical results of functional analysis that show
the existence and uniqueness of the solution u. This abstract framework constitutes the
mathematical foundations upon which numerical methods have been successfully devised.
For the sake of simplicity, let us first consider the case S = V =

[
H1

ΓD(Ω)
]3
. We can now

state the following fundamental result.

Theorem 2.1 (Lax-Milgram lemma [Quarteroni and Valli, 2008, Theorem 5.1.1])
Let V be a (real) Hilbert space, endowed with the norm ‖·‖, a(u,v) : V × V → R a
bilinear form and f(v) : V → R a linear continuous functional, i.e., f ∈ V ′, where V ′

denotes the dual space of V . Assume moreover that a(·, ·) is continuous, i.e.,

∃γ > 0 : |a(w,v)| ≤ γ ‖w‖ ‖v‖ ∀w,v ∈ V , (2.23)

and coercive, i.e.,

∃α > 0 : |a(v,v)| ≥ α ‖v‖2 ∀v ∈ V . (2.24)

Then, there exists a unique u ∈ V solution to Equation (2.21) and:

‖u‖ ≤ 1
α
‖f‖V ′ . (2.25)

The result in Equation (2.25) states that the solution u continuously depends on the input
data f , resulting in the well-posedeness of the underlying problem. The Lax-Milgram
lemma can be extended to the more general case S 6= V as follows.

Theorem 2.2 ([Quarteroni and Valli, 2008, Theorem 5.1.2]) Let S and V be two
(real) Hilbert spaces, with norms ||| · ||| and ‖·‖, respectively. Assume that there exist two
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Chapter 2. A review of the Finite Element Method

positive constants α and γ such that the bilinear form a : S × V → R satisfies:

|a(w,v)| ≤ γ|||w||| ‖v‖ ∀w ∈ S, ∀v ∈ V , (2.26)

sup
v∈V, v 6=0

a(w,v)
‖v‖

≥ α|||w||| ∀w ∈ S , (2.27)

sup
w∈S

a(w,v) > 0 ∀v ∈ V, v 6= 0 . (2.28)

Then, for any f ∈ V ′, there exists a unique solution u ∈ S of Equation (2.21) which
satisfies:

|||u||| ≤ 1
α
‖f‖V ′ . (2.29)

Assuming that the material tensor C is bounded away from zero and infinity, the Lax-
Milgram lemma guarantees the existence and uniqueness of the solution to the elasticity
problem. For further details and a rigorous proof, the interested reader is referred
to [Ciarlet, 2002; Brenner and Scott, 2008; Quarteroni and Valli, 2008].

2.3 The Galerkin approximation

It is well-known that finding a closed-form solution of Equation (2.21) can be achieved only
in simplified scenarios. As a consequence, an enormous amount of effort has been put into
the development of methods that suitably approximate the solution of Equation (2.21).
These techniques are based on a discretization of the variational problem in a way that
exploits the computational power of modern computers. In the scope of computational
mechanics, one of the most prominent approaches is the so-called (Bubnov-)Galerkin
approximation, which we summarize in the following.

Let us first define the following spaces:

Sh ⊂ S (2.30a)
Vh ⊂ V , (2.30b)

which denote the finite-dimensional counterpart of the previously introduced test and
trial spaces. Before proceeding, we need to address the unbalance of these function
spaces in case of inhomogeneous Dirichlet boundary conditions. Following the derivation
in [Hughes, 2000], for every function vh ∈ Vh we can construct a corresponding function
uh ∈ Sh as follows:

uh = vh + qh , (2.31)

where qh satisfied the prescribed essential boundary conditions. With this definition, the
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2.3. The Galerkin approximation

Galerkin approximation of Equation (2.21) reads:

Find uh = vh + qh, where vh ∈ V h such that:
a(wh,vh) = f(wh)− a(wh, qh) ∀wh ∈ Vh . (2.32)

Here, we report another important convergence result.

Theorem 2.3 ([Quarteroni and Valli, 2008, Theorem 5.2.1]) Under the assump-
tions of Theorem 2.1 there exists a unique solution uh to Equation (2.32), which further-
more is stable since:

‖uh‖ ≤
1
α
‖f‖V ′ . (2.33)

Moreover, if u is the solution of Equation (2.21), it follows:

‖u− uh‖ ≤
γ

α
inf

wh∈Vh
‖u−wh‖ . (2.34)

This estimate shows the convergence of the Galerkin approximation to the true solution
of the underlying problem and it is commonly referred to as Céa’s lemma in the literature.
Moreover, it states that the approximated solution uh is the best approximation of u in
Vh. Due to the symmetry of the bilinear form a, a(·, ·) represents an inner product on V
which induces the following norm:

‖v‖E(Ω) =
√
a(v,v) , (2.35)

defining the so-called energy norm, which stems from the underlying physical inter-
pretation of a. This allows us to restate Céa’s lemma in terms of the energy norm as
follows:

‖u− uh‖E(Ω) ≤ ‖u−wh‖E(Ω) ∀wh ∈ Vh . (2.36)

This result can also be interpreted geometrically; indeed uh is the a-orthogonal projection
of the exact solution u onto the finite-dimensional subspace Vh, see e.g. [Ciarlet, 2002]
for further details. Now, we need to further characterize the finite-dimensional space Vh.
In particular, Vh is spanned by a finite number of basis N = [N1, N2, . . . , Nn], where n
represents the dimension of Vh. This implies that every member wh of Vh can be written
as a linear combination of the basis functions and their corresponding coefficients as
follows:

wh =
n∑

i=1
Nic̃i = Nc̃ , (2.37)

where c̃ ∈ Rn denotes the vector collecting the coefficients c̃i of the linear combination.
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Chapter 2. A review of the Finite Element Method

Accordingly, Equation (2.32) can be rewritten in a discrete form as:

Find ũh ∈ Rn such that:
a(Nic̃i, Nj ũj) = f(Nic̃i) ∀c̃ ∈ Rn , (2.38)

where we consider the homogeneous case qh = 0 for simplicity of notation and where
the Einstein summation convention applies. If inhomogeneous essential conditions are
prescribed, it suffices to recover the sought solution from Equation (2.31). By exploiting
the linearity of a and f and by recalling that the coefficients ci are arbitrary we get:

a(Ni, Nj)ũj = f(Ni) . (2.39)

This result can be expressed in matrix form:

Kũ = f , (2.40)

where K commonly denotes the stiffness matrix, f represents the load vector and ũ is
the vector of solution coefficients.

2.4 Characterization of the Finite Element space

As highlighted in the previous section, the choice of Vh is pivotal to the devise of the
Galerkin approximation. In particular, the choice of basis N should allow to develop
a systematic routine for tackling arbitrarily complex problem. Therefore, the following
properties are essential:

• geometrical flexibility,

• suitable for a computer-based implementation,

• robust convergence based on rigorous error estimates.

The main ingredients needed to achieve these features are summarized in the following.

The Finite Element mesh

The first step in a traditional Finite Element routine deals with the construction of a
suitable mesh. This procedure consists in sub-dividing the domain Ω into a finite number
of polyhedra, where, following the definitions provided in [Quarteroni and Valli, 2008]:

Ω =
⋃

K∈T
K , (2.41)

where:
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K̂ = [0, 1]2

FK2

K1

K3

K4K2

vertex
side
face

Figure 2.1 – Example of Finite Element mesh T .

• each K is a polyhedron with K̊ 6= ∅;

• K̊i ∩ K̊j = ∅ for each distinct K̊i, K̊j ∈ T ;

• if Ki ∩Kj 6= ∅ (Ki and Kj distinct elements of T ) then F is a common face, side,
or vertex of K1 and K2.

• diam(K) ≤ h for each K ∈ T , where:

h = max
K′∈T

diam(K ′) . (2.42)

T is also commonly called a triangulation of Ω in the literature. However, since this
thesis focuses only on quadrilateral elements, we will use the term mesh in the remaining
of this manuscript to avoid confusion. In order to automatize the procedure, we assume
that each element K is obtained starting from a reference polyhedron K̂, which is then
mapped onto K via a bijective mapping FK : K̂ → K. In particular, we restrict ourselves
to the case where K̂ is the unit square [0, 1]2. Finally, the key components of a Finite
Element mesh are depicted in Figure 2.1.

The Finite Element space

Once we have constructed a suitable description of the geometry, we are ready to define
the finite dimensional space Vh ⊂ V needed in Equation (2.32). The fundamental
observation is that functions vh ∈ Vh are piecewise polynomials and therefore, for each
element K ∈ T , the space:

P := {vh|K ;vh ∈ Vh} (2.43)
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Chapter 2. A review of the Finite Element Method

consists of polynomials [Ciarlet, 2002; Quarteroni and Valli, 2008]. This property turns
out to be crucial for the convergence of FEM. To develop a systematic strategy, let us first
define the polynomial space of degree p ∈ N on the reference element K̂ as [Ainsworth
and Oden, 1997]:

P̂(p) = span{N̂1, N̂2, . . . , N̂n(p)} , (2.44)

where N̂i represent the standard basis functions, representing a collection of linearly
independent polynomials up to degree p defined on the parametric element K̂. Given
the geometric mapping FK , the basis functions can be pushed forward to the physical
element K:

Ni = N̂i ◦ F−1
K i = 1, . . . , n(p) , (2.45)

which allows us to define the space of polynomials over K as:

P = span{Ni} . (2.46)

Following [Ciarlet, 2002; Brenner and Scott, 2008], let us provide the definition of a finite
element.

Definition 2.1 Let

• K be a bounded closed set with nonempty interior and piecewise smooth boundary.

• P be a finite-dimensional space of functions on K (the space of shape functions)
and

• N = {φ1, φ2, . . . , φn(p)} be a basis for P ′ (the set of nodal variables).

Then (K,P,N ) is called a finite element.

Thanks to Definition 2.1, we can finally characterize Vh as:

Vh = {vh ∈ C0(Ω) : vh|K ∈ P(K) , ∀K ∈ T } . (2.47)

To fix ideas, an example is provided in Figure 2.2.

Remark 2.1 We highlight that in many engineering applications of interest, we need
additional continuity requirements on the space Vh. Of particular interest to this thesis
are Kirchhoff plates and Kirchhoff-Love shells, which demand for global C1-continuity of
the basis functions. This aspect will be addressed in details in a later chapter.
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K̂

N̂1 N̂2

FK2

K1

N1 N2

K2

N3

K3

N4

K4

N5

Figure 2.2 – Example of one-dimensional shape functions N̂i and Ni on the parametric
element and corresponding physical elements, respectively, associated with a polynomial
degree p = 1.

2.5 Some results on the convergence of the Finite Element
Method

In the following, we summarize some classical a priori estimates on the convergence
behavior of FEM. In particular, we provide an upper bound on the error eh = u− uh
between the true solution of the continuous problem and its discrete counterpart. First
of all, we need to define the notion of convergence of the discrete solution, which can be
expressed as:

lim
h→0
‖u− uh‖ = 0 , (2.48)

where ‖·‖ denotes the norm associated with the space V . In words, convergence holds if
the error measured in the V -norm tends to zero under mesh refinement. Then, we note
that Céa’s lemma allows us to shift the problem of estimating the numerical error to a
problem in approximation theory. Indeed, we want to measure the distance:

d(u, Vh) = inf
wh∈Vh

‖u−wh‖ , (2.49)

between a function u ∈ V and a finite-dimensional subspace Vh ⊂ V . Given suitable
assumptions on the smoothness of u, it can be proven that the a priori error bound is
given as:

‖u− uh‖ ≤ C(u)hβ , (2.50)
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where

h = max
K∈T

hK (2.51)

denotes the maximum mesh size and C is a constant independent of h and for some
exponent β > 0. Let us now further characterize this error bound with respect to the
smoothness of the solution and to the norm chosen to measure the error. For the sake
of brevity, here we provide only the most relevant results for this thesis, where for a
rigorous mathematical derivation we refer to [Ciarlet, 2002].

Theorem 2.4 ([Ciarlet, 2002, Theorem 3.1.6]) Let there be given a regular affine
family of finite elements (K,PK ,NK) whose reference finite element (K̂, P̂, N̂ ) satisfies
the following inclusions for some integers m ≥ 0 and k ≥ 0 and for some numbers
p, q ∈ [1,∞]:

W k+1,p(K̂) ↪→ C s(K̂) , (2.52a)
W k+1,p(K̂) ↪→Wm,q(K̂) , (2.52b)
Pk(K̂) ⊂ P̂ ⊂Wm,q(K̂) , (2.52c)

where we use the standard notation Wm,p(Ω) to denote the Sobolev space consisting of
those functions v ∈ Lp(Ω) such that all their partial (distributional) derivatives ∂βv
satisfying |β| ≤ m belong to space Lp(Ω). Under these assumptions, there exists a
constant C(K̂, P̂, N̂ ) such that, for all finite elements K in the family, and for all
functions v ∈W k+1,p(K),

‖v −ΠKv‖m,q,K ≤ C(K̂, P̂, N̂ )(meas(K))(1/q)−(1/p)hk+1−m
K |v|k+1,p,K . (2.53)

Building upon this result of approximation theory and extending it to the entire domain
Ω, we can finally write a more compact and practical form of the estimate provided
in Equation (2.53):

‖u− uh‖Hs(Ω) ≤ Ch
l−s ‖u‖Hr(Ω) r > s , (2.54)

where r represents the regularity of the exact solution and l is defined as l = min (r, p+ 1).
In our numerical results, we will often use this estimate to verify the optimal convergence
behavior of a numerical scheme. We remark that the aforementioned result holds for
h→ 0, meaning that in practice we need to select a fine enough mesh such that the error
behaves asymptotically.
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3 The Kirchhoff plate and
Kirchhoff-Love shell problems

In this chapter we describe the governing equations associated with Kirchhoff plates
and Kirchhoff-Love shells, respectively. At first, analogously to the derivation followed
in Chapter 2, we provide the strong formulations of the respective problems. Then, we
state the equations in their variational form, where the standard Galerkin discretization is
employed in both cases. We recall that Kirchhoff-type theories are dimensionally-reduced
approaches based on a two-dimensional description of the underlying physics. This
simplification is justified when objects exhibits one dimension significantly smaller than
the others, which is commonly denoted as thickness direction. From a practical point of
view, this allows us to describe the mechanical response of the structure only in terms of
quantities defined on its mid surface, thereby reducing the computational complexity.
The full three-dimensional behavior is then recovered by leveraging suitable kinematic
assumptions. We remark that the notation and derivation presented in this chapter
follow [Kiendl et al., 2009; Kiendl, 2011; Reali and Gómez, 2015; Schillinger et al., 2016;
Benzaken et al., 2021].

3.1 The Kirchhoff plate problem

Historically, the first plate theory is attributed to [Kirchhoff, 1850], which laid the
theoretical foundations for many modern plate formulations. In the following, we review
its main aspects and recast its derivation into the finite element framework.

3.1.1 The strong formulation

Let us introduce the bending-dominated Kirchhoff plate problem, governed by the fourth-
order bi-Laplace differential operator. With this assumption, the sought solution field is a
scalar value associated with the deflection of structure. Let us recall the definition of the
computational domain as an open set Ω ⊂ R3 with a sufficiently smooth boundary ∂Ω,
such that the normalized normal vector n and the unit tangent vector t are well-defined
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Figure 3.1 – Example of a plate geometry. The normal and tangent vectors n and t,
respectively, have been separated for visualization purposes.

(almost) everywhere, see Figure 3.1 for an example. Additionally, we assume that the
boundary Γ = ∂Ω can be decomposed into Γ = Γu ∪ ΓQ and Γ = Γφ ∪ ΓM , such that
Γu ∩ ΓQ = ∅ and Γφ ∩ ΓM = ∅, respectively. These conditions are related to the
energetically conjugated nature of the deflection u and the transverse shear Q, and
the rotations φ and bending moments M , respectively. Moreover, we introduce the
set of corners χ ⊂ Γ along the domain boundary, where the normal vector presents a
discontinuity. This set can be further split into a Neumann part χN = χ ∩ (ΓQ ∪ ΓM )
and a Dirichlet part χD = χ ∩ (Γu ∪ Γφ), respectively. We can formulate the strong form
of the problem as follows:

D∆2u = g in Ω , (3.1a)
u = ũ on Γu , (3.1b)

−∇u · n = φ̃ on Γφ , (3.1c)
νD∆u+ (1− ν)Dn · (∇∇u)n = M̃ on ΓM , (3.1d)
D(∇(∆u) + (1− ν)Ψ(u) ) · n = Q̃ on ΓQ , (3.1e)

JMs(u)K = S̃ on χN , (3.1f)

where u represents the deflection of the plate, D its bending stiffness, ν is the Poisson’s
ratio and Ms denotes the twisting moment. Further, let us assume that g ∈ L2(Ω) is
the given load per unit area in the thickness direction, ũ ∈ H3/2(Γu), φ̃ ∈ H1/2(Γφ),
M̃ ∈ L2(ΓM ) and Q̃ ∈ L2(ΓQ) are the prescribed deflection, rotation, bending moments
and effective shear, respectively. Moreover, for every corner in χN , S̃ ∈ R is the
corresponding corner force, which is defined based on the associated applied twisting
moment M̃s as follows:

S̃ = JM̃sK where JM̃sK = lim
ε→0

(
M̃s(x+ εt)− M̃s(x− εt)

)
. (3.2)
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3.2. The Kirchhoff-Love shell problem

Then, assuming an homogeneous and isotropic material, the bending stiffness D is defined
as:

D = Et3

12(1− ν2) , (3.3)

where t denotes the thickness of the plate, which without loss of generality we suppose
to be a constant in Ω. Furthermore, the differential operator Ψ(·) reads:

Ψ(·) =
[
∂3(·)
∂x∂2y

,
∂3(·)
∂2x∂y

]>
. (3.4)

3.1.2 The weak formulation

Using standard variational calculus, the weak form of problem (3.1) reads: find u ∈ V

such that

a(u, v) = F (v) ∀v ∈ V , (3.5)

where V ⊂ H2(Ω) denotes an infinite-dimensional space that depends in general on the
boundary conditions of the problem at hand, for further details we refer to [Ciarlet, 2002].
Then, the bilinear form a : V × V → R can be expanded as follows:

a(u, v) =
∫

Ω
D
[
(1− ν)∇(∇v) : ∇(∇u) + ν∆v∆u

]
dΩ , (3.6)

and similarly the linear functional F : V → R reads:

F (v) =
∫

Ω
gv dΩ +

∫

ΓM
M̃
∂v

∂n
dγ +

∫

ΓQ
Q̃v dγ +

∑

e∈χN

(
S̃v
∣∣∣
e

)
. (3.7)

It can be shown that (3.5) satisfies the conditions of the Lax-Milgram theorem, therefore
u ∈ V is the unique solution of the variational problem (3.5).

3.2 The Kirchhoff-Love shell problem

The first paper on a shell theory based on the kinematics assumptions of Kirchhoff can
be traced back to [Love, 1888]. We highlight that these assumptions are generally valid
for thin shells, where heuristically a structure is considered thin if its slenderness (defined
as the ratio between the curvature radius and the thickness of the shell) is greater than
20. Similarly to the plate, here we review the Kirchhoff-Love formulation with a focus on
its computer-based implementation.
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Figure 3.2 – Example of a shell mid-surface and its curvilinear coordinate frame.

3.2.1 Some fundamentals of differential geometry

Let us review some fundamentals of differential geometry needed to describe the Kirchhoff-
Love equations defined on a manifold, following closely the notation in [Benzaken et al.,
2021]. Let us consider the mid-surface Ω ∈ R3 of our shell structure, which represents
a manifold immersed in Euclidean space, and its Lipschitz-continuous boundary ∂Ω.
Recalling the spline geometric mapping of the mid surface F : Ω̂ → Ω, the in-plane
covariant basis vectors aα are defined as follows:

aα(ξ, η) = F,α(ξ, η) , (3.8)

where the comma is used to indicate differentiation with respect to the corresponding
curvilinear coordinate. Hereafter, we also use the convention that Greek indices (e.g.
α, β, γ) take the values [1, 2] while Latin indices (e.g. i, j, k) represent the values [1, 2, 3].
Now, the unit normal vector to the mid surface of the shell a3 is computed as the
normalized cross-product of the in-plane vectors aα:

a3 = a1 × a2
||a1 × a2||

, (3.9)

where an example is depicted in Figure 3.2. Then, let us introduce the covariant metric
coefficients as:

aαβ = aα · aβ , (3.10)

where it is straightforward to verify the symmetry of a, i.e. aαβ = aβα. Now, the
contravariant basis vectors are defined via the following algebraic relationship:

aα · aβ = δαβ , (3.11)
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3.2. The Kirchhoff-Love shell problem

where the corresponding covariant and contravariant metric coefficients are linked by the
inverse operator:

[
aαβ

]
=
[
aαβ

]−1
. (3.12)

With these coefficients the contravariant basis vectors can be obtained as:

aα = aαγaγ . (3.13)

We now define the in-plane normal vector n = nαaα to the boundary ∂Ω, where nα
denotes its contravariant components. We highlight that n is contained in the tangent
plane to the shell. Similarly, we can define the tangent vector t = tαaα where it holds
n = t× a3, see Figure 3.2 for an example. Then, we denote by b the second fundamental
form of the surface, whose components are given as:

bαβ = a3 · aα,β , (3.14)

where

aα,β = F,αβ , (3.15)

is well-defined due to the smoothness assumption on the geometric mapping. Furthermore,
c indicates the third fundamental form of the manifold and reads:

cαβ = bγα bγβ , (3.16)

where the index of the curvature tensor can be raised via the following formula:

bβα = aαγ bγβ . (3.17)

Under our assumptions on the differentiability of F, it is easy to verify that also the
second and third fundamental forms of the surface are symmetric. Then, we define the
Christoffel symbols of the second kind:

Γγαβ = aγ · aα,β , (3.18)

which express the coefficients of the Levi-Civita connection in a coordinate basis associated
with the manifold. This quantity is a pseudo third-order tensor whose lower indices are
symmetric, i.e. Γγαβ = Γγβα, due to the torsion-free property of the Levi-Civita connection.
In the following derivation, we will also make use of the first derivatives of the Christoffel
symbols, which read:

Γλαβ,µ = −ΓλνµΓναβ + bαβb
λ
µ + aλ · aα,βµ . (3.19)
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Chapter 3. The Kirchhoff plate and Kirchhoff-Love shell problems

Finally, we define the transformation which maps Cartesian components to curvilinear
ones as:

Qiβ = ei · aβ and Qi3 = ei · a3 , (3.20)

where ei represent the standard Euclidean basis.

3.2.2 A review of continuum mechanics

In order to describe quantities of interest in the full three-dimensional body, the definitions
presented above must be suitably extended in the thickness direction. This can be readily
achieved as follows:

X(ξ, η, ζ) = F(ξ, η) + ζ a3(ξ, η) , (3.21)

which provides a parametrized representation of the shell. In the following, this represents
the so-called reference or undeformed configuration of the continuum. The out-of-plane
coordinate ζ in the thickness direction takes values in the range [−t/2, t/2], where
we recall that t denotes the thickness of the structure. Consequently, the curvilinear
coordinates frame attached to the shell reads:

Gα = X,α =
(
δαβ − ζ bβα

)
aβ and G3 = X,3 = a3 . (3.22)

At this point, we introduce the actual or deformed configuration of the body and we denote
it by X . Furthermore, we assume there exists a smooth bijective function with maps the
reference configuration into the deformed one. An important quantity in mechanics, the
deformation gradient, is defined as the tensor describing the latter mapping and reads:

F := ∂X
∂X = ∂X

ξi
ξi

∂X = Gi ⊗Gi , (3.23)

where G denotes the curvilinear coordinate frame in the deformed configuration. In our
derivation we employ the Green-Lagrange strain tensor, which is given by:

E = 1
2
(
(Gi ⊗Gi) · (Gj ⊗Gj)− I

)
= 1

2 (Gij −Gij) = EijGi ⊗Gj , (3.24)

where I represents the second order identity tensor and Gij and Gij denote the covariant
metric coefficients in the current and reference configurations, respectively. Let us
explicitly state the dependency of the coefficients Eij on the full displacement field U.
Indeed, we can write:

Gi = ∂X
∂ξi

= (X + U)
∂ξi

= Gi + U,i . (3.25)
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3.2. The Kirchhoff-Love shell problem

By substituting this result into Equation (3.24), we obtain the following definition of the
components of the Green-Lagrange strain tensor:

Eij = 1
2 (U,i ·Gj + U,j ·Gi + U,i ·U,j) . (3.26)

In the scope of this work we use the linearized version of Equation (3.26), where the
higher order displacement contribution is neglected. Therefore, Equation (3.26) can be
simplified to:

εij = 1
2 (U,i ·Gj + U,j ·Gi) , (3.27)

which describes the components of the standard strain tensor of linear elasticity introduced
in Equation (2.16), associated with a curvilinear reference frame. We are now ready to
introduce the Kirchhoff-Love assumptions on the kinematics of the shell. In particular,
the normals to the structure should remain straight and normal during deformation.
Consequently, transversal shear strains are neglected. In particular, let us describe the
displacement field by quantity defined on the mid-surface as:

U(ξ, η, ζ) = u(ξ, η) + ζθ(u(ξ, η)) , (3.28)

where θ represents the rotation of the normal vector a3. By employing the Kirchhoff-
Love assumption that transverse shearing is disregarded ab-initio, we can introduce the
following constraint on the rotation field:

θ(u) = −a3 · ∇?(u) , (3.29)

where ∇?(−) represents the surface gradient, defined as [Brand, 1947]:

∇?(−) = ∂(−)
∂ξα

⊗ aα . (3.30)

Similarly, we introduce the surface divergence operator ∇? · (−):

∇? · (−) = ∂(−)
∂ξα

· aα . (3.31)

With these definitions, we can define the strain operators related to the membrane and
bending action, respectively, as:

α(u) = P · sym (∇?(u)) · P , (3.32)

and

β(u) = −P · sym (a3 · ∇?∇?(u)) · P , (3.33)
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Chapter 3. The Kirchhoff plate and Kirchhoff-Love shell problems

where P = I−a3⊗a3 denotes the in-plane projector and the operator sym(·) returns the
symmetric part of the input tensor. Consequently, the linearized Green-Lagrange strain
tensor defined in Equation (3.27) can be decomposed into a membrane and bending part,
respectively, as:

ε(u) = α(u) + ζ β(u) . (3.34)

Similarly to linear elasticity, let us now introduce a constitutive law between strains and
stresses. In particular, we can write the energetically conjugate stress measure to the
Green-Lagrange strain, the Cauchy stress tensor, via:

σ(u) = C : α(u) + ζ C : β(u) , (3.35)

where the fourth-order tensor C for homogeneous materials can be expressed in curvilinear
coordinates as:

C = Cαβλµaα ⊗ aβ ⊗ aλ ⊗ aµ with Cαβλµ = E

2(1 + v)

(
aαλaβµ + aαµaβλ + 2v

1− va
αβaλµ

)
.

(3.36)

Now, if we analytically integrate through the thickness, we can define the membrane
stress resultant:

A(u) =
∫ t/2

−t/2
σ(u)dζ = tC : α(u) , (3.37)

and the bending stress resultant:

B(u) =
∫ t/2

−t/2
ζ σ(u)dζ = t3

12C : β(u) , (3.38)

respectively. This results follow from our assumption of a constant thickness and a linear
stress distribution through the thickness of the shell. Lastly, let us introduce the bending
moment Bnn(u) = n ·B(u) · n and the twisting moment Bnt(u) = n ·B(u) · t.

3.2.3 The weak formulation

Let us now introduce the weak formulation of the Kirchhoff-Love problem. First, let us
define the space:

V = {v = vαaα + v3a3 | vα ∈
[
H1(Ω)

]2
, v3 ∈ H2(Ω)} . (3.39)

Analogously to the case of plates, let us split the boundary Γ = ∂Ω into a part associated
with Dirichlet-type boundary conditions ΓD = Γu ∪ Γθ and a part corresponding to
Neumann-type boundary conditions ΓN = ΓT ∪ ΓBnn such that Γ = ΓD ∪ ΓN . It also
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3.2. The Kirchhoff-Love shell problem

holds that Γu ∩ ΓT = ∅ and Γθ ∩ ΓBnn = ∅ due to the energetically conjugate nature of
applied displacements and transverse shear, and applied rotations and bending moments,
respectively. Let us also assume an applied body force f̃ = (f̃αaα + f̃3a3) ∈ [L2(Ω)]d, a
prescribed bending moment B̃nn ∈ L2(ΓBnn), a prescribed Ersatz force T̃ ∈ L2(ΓT) and
a given corner force S̃ ∈ R for all corners in χN . We recall that the corner forces are
linked to the jump of the prescribed twisting moments B̃nt as follows:

S̃ = JB̃ntK where JB̃ntK = lim
ε→0

(
B̃nt(x+ εt)− B̃nt(x− εt)

)
, (3.40)

where x denotes the location of the corresponding corner. By leveraging the notation
previously introduced and variational calculus, the weak formulation of the Kirchhoff-Love
shell reads, find u ∈ V such that:

a(u,v) = f(v) ∀v ∈ V , (3.41)

where the choice of infinite-dimensional space V ⊂ V depends in general on the boundary
conditions of the problem at hand. The bilinear form a can be expanded as follows:

a(u,v) =
∫

Ω
A(u) : α(v)dΩ +

∫

Ω
B(u) : β(v)dΩ . (3.42)

Similarly, the linear functional f reads:

f(v) =
∫

Ω
f̃ · vdΩ +

∫

ΓT

T̃ · vdΓ +
∫

ΓBnn
B̃nnθn(v)dΓ +

∑

e∈χN

(
S̃v3

∣∣∣
e

)
, (3.43)

where θn denotes the normal rotation.

3.2.4 The strong formulation

For the sake of completeness, let us also introduce the strong form of the Kirchhoff-Love
problem. Given a prescribed displacement ũ = ũαaα + ũ3a3 such that ũα ∈ H

1
2 (Γu) and

ũ3 ∈ H
3
2 (Γu) and a prescribed normal rotation θ̃n ∈ H

1
2 (Γθ), we seek the displacement

field u : Ω→ R3 such that:

P · [∇? · (b ·B(u)) · b−∇? ·A(u)] = f̃α in Ω (3.44a)
B(u) : c−∇? · (P · (∇? ·B(u)))−A(u) : b = f̃3 in Ω (3.44b)

u = ũ on Γu (3.44c)
θn(u) = θ̃n on Γθ (3.44d)
T(u) = T̃ on ΓT (3.44e)

Bnn(u) = B̃nn on ΓBnn (3.44f)
JBnt(u)K = S̃ on χN , (3.44g)

27



Chapter 3. The Kirchhoff plate and Kirchhoff-Love shell problems

where b and c denote the second and third differential forms given in Equations (3.14)
and (3.16), respectively. We recall that the Ersatz force is defined as [Benzaken et al.,
2021]:

T(u) = A(u) · n− b ·
(
B(u) · n+ tBnt(u)

)
+
((
∇? ·B(u)

)
· n+ ∂Bnt(u)

∂t

)
a3 .

(3.45)

3.2.5 Extension to laminate composites

Let us consider a thin composite shell defined as a sequence of orthotropic plies, which
can be described by the classical theory of laminated plates [Reddy, 1999; Kiendl, 2011].
Consequently, the bilinear form in (3.41) must be modified as explained in the following.
Let us consider a stacking of plies, numbered by an index n = 1, . . . , P , where P denotes
the total number of plies. For each ply we can define the material tensor Cn, obtained
by transforming the corresponding orthotropic ply tensor from the local ply coordinates
to the shell curvilinear reference frame, as:

Cn = T >(φ)Cort
n T (φ) , (3.46)

where Cort
n depends on the Young’s moduli E1 and E2, the corresponding Poisson’s ratios

ν12 and ν21 and the shear modulus G12. Namely, it can be expressed in matrix form as:

Cort
n =




E1
(1− ν12ν21)

ν21E1
(1− ν12ν21) 0

ν12E2
(1− ν12ν21)

E1
(1− ν12ν21) 0

0 0 G12



, (3.47)

where it holds ν21E1 = ν12E2 due to the symmetry of the resulting material tensor.
Furthermore, the transformation matrix T (φ) depends on the fiber angle φ and reads:

T (φ) =




cos2(φ) sin2(φ) sin(φ) cos(φ)
sin2(φ) cos2(φ) − sin(φ) cos(φ)

−2 sin(φ) cos(φ) 2 sin(φ) cos(φ) cos2(φ)− sin2(φ)


 , (3.48)

which maps quantities defined in the ply local coordinate system to the shell reference
frame, see Figure 3.3 for an example. Now, following the classical theory of laminates,
the homogenized extensional stiffness A, the coupling stiffness B and the bending stiffness
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Figure 3.3 – Example of a laminate with its corresponding ply, shell and Cartesian
coordinate systems, respectively.

D are computed, respectively, as:

A =
∫ t/2

−t/2
Cdζ =

P∑

n=1
Cntn ,

B =
∫ t/2

−t/2
ζ Cdζ =

P∑

n=1
Cntnzn ,

D =
∫ t/2

−t/2
ζ2 Cdζ =

P∑

n=1
Cn

(
tnz

2
n + t3n

12

)
, (3.49)

where tn indicates the thickness of the n-th ply and zn denotes the distance between the
centroid of the n-th ply and the mid-plane of the shell, where an example is depicted
in Figure 3.4. Then, the bilinear form associated with a thin laminate shell reads:

ζ

ply centerline

shell mid-plane

z n

t n

Figure 3.4 – Example of a laminate along the thickness direction ζ formed by a non-
uniform and non-symmetric ply sequence.
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a(u,v) =
∫

Ω

(
A : α(u) + B : β(u)

)
: α(v)dΩ

+
∫

Ω

(
B : α(u) + D : β(u)

)
: β(v)dΩ , (3.50)

where for further details we refer to [Kiendl, 2011] and references therein.

3.2.6 Implementational details

The derivation presented thus far employs tensorial quantities. In order to implement the
latter within a computer routine, we need to explicitly express the components of these
quantities. In the notation presented below, we follow closely the derivation in [Benzaken
et al., 2021, Appendix C]. Recalling the transformation map in Equation (3.20), the
components of the membrane strain read:

αβγ = 1
2
[
Qiβui,γ +Qiγui,β

]
, (3.51)

where we have expressed the displacement field in the Cartesian reference frame as
u = uiei. Using the constitutive relationship, the components of the membrane stress
can be written as:

Aαβ(u) = Cαβγδαγδ(u) . (3.52)

Similarly, the component of the bending strain are given as:

βαγ = −1
2Q

i
3
[
ui|αγ + ui|γα

]
, (3.53)

where we make use of the following definition of the second covariant derivatives of the
displacements:

ui|αβ = ui,αγ − Γγαβui,γ , (3.54)

to compact the notation. The components of the bending stress can be again obtained
from the constitutive law:

Bαβ(u) = Cαβγδβγδ(u) . (3.55)

Then, given the rotation vector θ(u) = −Qi3ui,αaα, the normal and twisting rotations
can be expressed as:

θn(u) = −Qi3ui,αnα and θt(u) = −Qi3ui,αtα , (3.56)

respectively. We recall that here nα and tα denote the contravariant components of
the normal and tangent vectors, respectively. Analogously, the bending and twisting
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moments read:

Bnn(u) = nαnβB
αβ(u) and Bnt(u) = nαtβB

αβ(u) , (3.57)

respectively. Finally, we introduce the components of the Ersatz force, which can be split
into its in-plane part:

Tα(u) = Aαβ(u)nβ − bα·λBλβ(u)nβ −Bnt(u)bα·λtλ , (3.58)

and its out-of-plane components:

T3(u) = nαB
αβ
··β (u) + nα|λB

αβ(u)tβtλ + nαB
αβ
··|λ(u)tβtλ + nαB

αβ(u)tβ|λtλ , (3.59)

respectively, where we have introduced the · notation for tensors to specify the correct
index ordering. Furthermore, the covariant derivative of the bending stress reads:

Bαβ
··|ν(u) = Cαβλµβλµ|ν(u) , (3.60)

where the covariant derivative of the bending strain is given by:

βαβ|v(u) = 1
2
[
Λiλ
(
bλ·vui|αβ + bλ·vui|βα

)
− Λi3

(
ui|αβµ + ui|βαµ

)]
. (3.61)

Lastly, the third-order covariant derivative of the displacements can be written as:

ui|αβµ(u) = ui,αβµ − ui,λΓλαβ,µ − Γλαβui,λµ − Γλαµui|λβ − Γλβµui|αλ , (3.62)

where the derivatives of the Christoffel symbols are given in Equation (3.19). With these
definitions at hand, the Kirchhoff-Love shell problem can be readily implemented into a
finite element code.

31





4 A review of spline technologies in
CAD and analysis

In this chapter, the main features of B-splines and their role in isogeometric analysis
are summarized, following closely the derivation in [Höllig, 2003; Cottrell et al., 2009].
We recall that B-splines are ubiquitous in Computer Aided Design (CAD), where the
interested reader is referred to the seminal works [de Boor, 1978; Piegl and Tiller, 1995;
Rogers, 2001]. We also introduce the basic concepts underlying the use of B-splines in
CAD, namely the Boundary Representation (B-Rep) of objects and trimming. Moreover,
we address another issue of B-splines which concerns the local refinement capabilities
of the basis. We remark that this limitation stems from the tensor-product nature of
classical B-splines. To overcome this and building upon standard splines, two variants
thereof that allow for local refinement are introduced, namely HB- and T HB-splines,
respectively, where we follow the derivation in [Kraft, 1997; Vuong et al., 2011; Giannelli
et al., 2012, 2013]. We then extend their definition to trimmed surfaces. Lastly, we
show the advantages of employing spline functions for the Galerkin discretization of the
Kirchhoff plate and Kirchhoff-Love shell problems, respectively. In particular, we perform
several numerical experiments to verify the benefits of local refinement for the analysis
of complex trimmed geometries with details at different scales.

4.1 An introduction to B-splines

Starting from two integers p, n ∈ N, let us introduce a non-decreasing sequence of real
values referred to as knot vector, denoted in the following as Ξ = {ξ1, . . . , ξn+p+1}. In
the latter, ξi ∈ R, i = 1, . . . , n+ p+ 1 represent the knots which partition the parameter
space of a patch into elements. Let us also introduce the concept of multiplicity of a
knot, which expresses whether a knot is repeated in the knot vector. We highlight that
the multiplicity is directly linked to the continuity achievable within one patch.

Remark 4.1 Following the common practice in CAD design, in this thesis we only
consider so-called open knot vectors, where the first and last knots are repeated p+1 times.
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In 1D, this entails that spline functions formed by open knot vectors are interpolatory at
the beginning and at the end of their corresponding parameter space.

4.1.1 B-spline basis functions in one dimension

Starting from a knot vector Ξ and a degree p, the corresponding univariate B-spline
basis function bi,p(ξ) are defined recursively via the Cox-de Boor formula [de Boor, 1977]
starting from piecewise constants:

bi,0(ξ) =
{

1 if ξi ≤ ξ < ξi+1
0 otherwise (4.1)

For p > 0, they read as follows:

bi,0(ξ) = ξ − ξi
ξi+p − ξi

bi,p−1(ξ) + ξi+p+1 − ξ
ξi+p+1 − ξi+1

bi+1,p−1(ξ). (4.2)

We remark that for p = 0, 1 this formula provides the same piecewise constant and linear
polynomials, respectively, as those used in standard finite elements. Let us summarize
here the most important properties of the B-spline basis:

• They satisfy the partition of unity, i.e.

n+p+1∑

i=1
bi,p(ξ) = 1 ∀ξ ∈ [ξ1, ξn+p+1] . (4.3)

• The smoothness of each B-spline basis is Cp−k at every knot, where k denotes the
multiplicity of the considered knot, while it is C∞ elsewhere. This feature has
paramount implications in the discretization of higher-order PDEs, e.g. Kirchhoff
plates and Kirchhoff-Love shells.

• Each basis function is non-negative within one patch, i.e., bi,p(ξ) ≥ 0, ∀ξ ∈
[ξ1, ξn+p+1].

• Each basis function has local support, i.e. over p+ 1 knot spans.

To exemplify these concepts, the quadratic B-spline basis associated with a one-
dimensional non-uniform open vector Ξ = [0 0 0 0.2 0.2 0.4 0.6 0.8 1 1 1] is depicted
in Figure 4.1.

4.1.2 Non-Uniform Rational B-splines (NURBS) in one dimension

Although B-splines allow for an easy description of many free-form shapes, a wide
variety of important objects in engineering, such as conical sections, cannot be exactly
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Figure 4.1 – Example of a quadratic B-spline basis associated with the knot vector
Ξ = [0 0 0 0.2 0.2 0.4 0.6 0.8 1 1 1]. Note the reduction of continuity at the repeated
knot.

represented. To overcome this issue, let us introduce the univariate NURBS basis function
ri,p(ξ) as follows:

ri,p(ξ) = bi,p(ξ)wi∑
j bj,p(ξ)wj

, (4.4)

where wi represent the weights associated with the rational function. We highlight
that NURBS inherit must of the favorable properties of their building blocks, i.e. B-
splines. Furthermore, it is straightforward to verify that if all weights are the same, the
corresponding NURBS is equivalent to the underlying B-spline.

Remark 4.2 From a geometrical standpoint, NURBS entities in Rd are often character-
ized by employing a projective transformation of B-splines defined in Rd+1. Although this
construction provides a direct interpretation of NURBS and their (projection) weights,
we prefer the more abstract definition of basis functions given in Equation (4.4), which
fits into the general FEM framework.

4.1.3 B-spline basis functions in multiple dimensions

The definition of multivariate B-splines Bi,p(η) is achieved in a straight-forward manner
using the tensor product of univariate B-splines as:

Bi,p(η) =
d̂∏

j=1
bjij ,pj (ηj) , (4.5)
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(b) Boundary basis function.

Figure 4.2 – Example of multivariate cubic B-splines defined in the parameter space of
dimension d̂ = 2.

where d̂ denotes the dimension of the parameter space. Additionally, the multi-index
i =

{
i1, ..., id̂

}
denotes the position in the tensor product structure and p =

{
p1, ..., pd̂

}

indicates the vector of polynomial degrees, associated with the corresponding parametric
dimension η = (η1, . . . , ηd̂) , respectively. Of particular relevance in this work is the
case d̂ = 2 corresponding to the parametric dimensions η = (η1, η2) = (ξ, η) , where
an example of multivariate B-spline shape functions is provided in Figure 4.2. For
the sake of clarity in our notation, we drop the multi-index i unless explicitly needed.
Furthermore, without loss of generality, we assume that the degree vector p is identical
in each parametric direction and therefore it can be simplified to a single scalar value p.
The latter will be also omitted unless explicitly needed in our exposition. We are now
ready to introduce the following discrete space:

Xh = span
{
b ◦ F−1 | b ∈ B

}
,

which can be exploited for the Galerkin approximation of PDEs.

4.1.4 B-spline curves

Once we have defined the basis functions, B-spline curves are constructed as the linear
combination of the basis and their associated coefficients:

C(ξ) =
∑

i

bi,p(ξ)Pi , (4.6)

where the Pi ∈ Rd are commonly referred to as control points, and d represents the
dimensionality of the physical space. An example of B-spline curve defined with the same
knot vector used in Figure 4.1 is given in Figure 4.3, where we also plot the corresponding
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x

y

(a) B-spline curve, control points and correspond-
ing control polygon.

x

y

K1 K2

K3
K4

K5

(b) B-spline curve and corresponding mesh.

Figure 4.3 – Example of a B-spline curve in the physical space R2 associated with the
knot vector Ξ = [0 0 0 0.2 0.2 0.4 0.6 0.8 1 1 1].

control points, their control polygon and the associated isogeometric mesh. Furthermore,
we highlight the non-interpolatory nature of the control points, which is a distinguishing
feature compared to standard FEM nodes. We remark that many properties of the
B-spline basis are directly inherited by B-spline curves.

4.1.5 B-spline surfaces

Given a bivariate B-spline basis Bi,j(ξ, η) (note that we have expanded the multi-index
i for clarity) and a net of control points Pi,j ∈ Rd, a B-spline surface is defined as the
following linear combination:

S(ξ, η) =
∑

i

∑

j

Bi,j(ξ, η)Pi,j . (4.7)

Many properties of B-spline surfaces follow directly from the basis and its tensor product
nature. For instance, as we are using open knot vectors in each parametric direction, the
vertices of the surface are interpolated. This is clear from the example given in Figure 4.4,
where a surface of degree p = 2 associated with the knot vectors Ξ = [0 0 0 1/3 2/3 1 1 1]
and Ψ = [0 0 0 1 1 1] in the parametric directions ξ and η, respectively, is depicted. For
the sake of conciseness, we skip the extension of the notation to NURBS curves and
surfaces; the interested reader is referred to [Cottrell et al., 2009] for a detailed derivation.

4.1.6 Refinement strategies

The successful application of splines in computations relies on the ability of enriching
their approximation power without changing the underlying geometrical description.
This can be achieved by three different refinement strategies, which we briefly summarize

37



Chapter 4. A review of spline technologies in CAD and analysis

x
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z

(a) B-spline surface, control points net and cor-
responding control polygon.

x

y
z

K1

K2

K3

(b) B-spline surface and corresponding mesh.

Figure 4.4 – Example of a B-spline surface in the physical space R3 associated with the
knot vectors Ξ = [0 0 0 1/3 2/3 1 1 1] and Ψ = [0 0 0 1 1 1].

in the following.

Knot insertion

Given a knot vector Ξ, this strategy entails the construction of a new, augmented knot
vector Ξ̃, such that Ξ ⊂ Ξ̃. In 1D, every new knot introduces a new basis function.
Clearly, this strategy entails similarities with the classical h-refinement in FEM. However,
it is worth noting that knots can also be inserted to reduce the continuity of the basis
for specific applications, which shows the greater flexibility of B-splines compared to
standard C0 finite elements.

Degree elevation

Analogously to p-refinement in FEM, this strategy aims at increasing the polynomial
order of the basis. We remark that the operation of order elevation keeps the existing
continuity of the underlying B-splines untouched. Consequently, the multiplicity of every
knot is increased by one to preserve the original p−mi continuous derivatives. Again,
the difference between p-refinement and degree elevation lies in the flexible inter-element
continuity achievable by B-splines.

k-refinement

The procedure of k-refinement consists in performing first order elevation of the basis
from degree p to p̃, followed by the insertion of a new knot ξ̃i. It is easy to see that now
the basis attains C p̃−1-continuity at the newly inserted knot ξ̃i. A comparison of these
refinement strategies is provided in Figure 4.5, starting from the linear basis associated
with the open knot vector Ξ = [0 0 0.5 1 1].
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(a) Unrefined basis, Ξ = [0 0 0.5 1 1].
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(b) h-refinement, Ξ̃ = [0 0 0.25 0.5 0.75 1 1].
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(c) p-refinement, Ξ̃ = [0 0 0 0.5 0.5 1 1 1].
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(d) k-refinement, Ξ̃ = [0 0 0 0.25 0.5 0.5 0.75 1 1 1].

Figure 4.5 – Comparison of different refinement strategies.
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4.2 Trimming

Trimming is a basic mathematical Boolean operation, which allows for an easy description
of complex geometries and it is regarded as standard in most commercial CAD softwares.
A trimmed surface S ∈ R3 is composed of two parts, an underlying geometry, that de-
scribes the geometric shape, and a set of properly ordered trimming curves Ctrim = {Ci},
that delimit the regions that are clipped. We refer to the latter as trimming loop in
the following. Then, for the analysis, we need the description of these curves in the
parameter space of the corresponding surface, where a typical instance of this framework
is depicted in Figure 4.6. This step is needed in order to build suitable integrations rule
for those elements that are cut. We remark that, since generally the inverse mapping
of Ctrim is not known analytically, its parametric representation Ĉtrim ∈ R2 is only
an approximation of the true trimming curves which depends on the chosen geometric
tolerance. Even for those cases where an analytical solution is available, the resulting
order of Ĉtrim is usually intractable from a computational standpoint [Renner and Weiß,
2004]. Therefore, an approximation is usually found by employing a surface-to-surface
intersection algorithm, for further details we refer to [Hohmeyer, 1992; Farin et al.,
2002]. Despite its simple definition, trimming yields to severe challenges in the context

ξ

η

Ĉtrim

F−1

x

y

z

Ctrim

Figure 4.6 – Example of trimmed surface and its associated trimming loop.

of a smooth Design-Through-Analysis workflow. Indeed, when a trimming operation is
performed within a CAD software, the visualization of the resulting surface is modified
but its underlying mathematical description remains unchanged. Moreover, in general,
trimming operations yield overlapping and/or non-watertight designs, commonly known
as dirty geometries. For a detailed review of trimming and related open challenges in
IGA we refer to [Marussig and Hughes, 2018] and references therein.

4.2.1 Boundary Representation (B-Rep)

B-Rep is the most common representation technique of free-form solid objects in CAD.
The key idea of B-Rep consists in describing a volume by its outer skin, i.e. its bound-
ary [Mäntylä, 1987]. More precisely, we can define a B-Rep as an entity formed by
a geometry and endowed by its associated topological information. In particular, the

40



4.2. Trimming

geometry is described by (trimmed) B-spline/NURBS curves and surfaces, whereas the
topology expresses the relationships existing between these geometrical entities. A brief
summary of the topological information is provided in the following.

Remark 4.3 Although many engineering applications, such as additive manufacturing,
require a full volumetric discretization of the object, B-Reps are clearly suited to be
used in conjunction with dimensionally-reduced models, e.g. plates and shells, for the
analysis. Indeed, these theories require only a description of the mid-surface of the
three-dimensional object, which can be easily obtained in modern CAD softwares.

Topological description

In this work, we make us of the so-called face-edge-vertex B-Rep representation. Analo-
gously to the building blocks forming a finite element mesh, we can define the following
topological entities:

V = {vi | i = 1, . . . , nv} (4.8a)
E = {ej | j = 1, . . . , ne} (4.8b)
F = {fk | k = 1, . . . , nf} , (4.8c)

where V,E and F denote the set of vertices, edges and faces, respectively, and nv, ne and
nf are the corresponding number of vertices, edges and faces in the B-Rep. Each topo-
logical component has a geometric counterpart, namely surfaces S, curves C and points
P, respectively. To fix ideas, an example of a B-Rep structure is provide in Figure 4.7.

f1 f2 f3e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e15

e12

e13

e14

v1

v2 v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

Figure 4.7 – Example of a B-Rep and its topological entities. Shared edges and vertices
are colored in blue and red, respectively. Note that we have separated the faces for
visualization purposes.
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4.2.2 Mathematical framework of trimming

Let us now introduce the basic mathematical setting in the scope of isogeometric methods
defined on trimmed domains, following closely the notation used in [Antolin et al., 2019;
Buffa et al., 2020]. Let us define the untrimmed domain Ω0 ⊂ Rd, described by a spline
map F : Ω̂0 = [0, 1]d̂ → Ω0, where Ω̂0 denotes the corresponding parametric domain. Let
us also introduce Ω1, . . . ,ΩN ⊂ Rd Lipschitz-regular domains that define regions to be
trimmed away from Ω0. We have seen that their boundaries are typically associated with
trimming loops. Then, the physical domain can be written as follows:

Ω = Ω0 \
N⋃

i=1
Ωi , (4.9)

where an example is depicted in Figure 4.8. It is worth highlighting that the trimming

Ω0

Ω1

Ω

Figure 4.8 – Example of a trimmed domain. From the original rectangular domain Ω0
the red domain Ω1 is trimmed away to produce the final domain Ω.

operation does not change the underlying mathematical description of the original domain.
Hence, elements and basis functions are constructed with respect to the non-trimmed
domain Ω0 and the correct physics is handled at the integration level. Given the definition
of our computational domain in (4.9), we can now split its boundary in a part which
coincides with the boundary of the original domain ∂Ω∩∂Ω0 and a trimmed part ∂Ω\∂Ω0.
Contrary to conforming standard element techniques, the imposition of essential boundary
conditions requires additional care in the trimmed case and it is usually performed in a
weak sense. We will clarify this aspect in more details in a later section.

4.2.3 Integration of trimmed elements

The next point to be addressed concerns the integration of those element that are cut by
a trimming curve. In particular, this introduces a discontinuity in the integrand, which
needs to be properly handled by the integration scheme. Several methods have been
proposed in the literature, where the most prominent can be categorized into:
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• adaptive integration schemes, typically based on recursive algorithms, e.g. quadtree
partitioning [Parvizian et al., 2007],

• moment fitting schemes [Müller et al., 2013; Joulaian et al., 2016],

• methods based on a local re-parametrization of the trimmed elements [Kudela
et al., 2015, 2016; Breitenberger et al., 2015; Guo et al., 2018].

In this work we leverage the re-parametrization tool presented in [Antolin et al., 2019] to
properly distribute the integration points. This family of methods relies on the automatic
creation of a high-order integration mesh for those cells that are cut. We highlight that
this mesh is used solely for integration and therefore badly shaped elements are still valid
as long as a non-negative determinant of their corresponding Jacobian is ensured. We
will refer to the latter elements as tiles in the remainder of this work. An example of the
general integration workflow is given in Figure 4.9.

Remark 4.4 For computational efficiency, it is important to find a good balance between
the accuracy of the numerical integration and the number of integration elements that are
generated.

ξ

η

u

v

F−1

FGaussx

y

z

Figure 4.9 – Example of the local re-parametrization algorithm. From the physical
domain Ω, the trimming curves are mapped back into the parameter space of the surface.
Then, a high-order mesh is created for integration. The red surface represents one
integration tile and the blue dots constitute the quadrature nodes.

4.3 Local refinement of spline technologies

Although the refinement strategies introduced for B-splines are paramount for the success
of splines in CAD and analysis, they are not localized, meaning that the refinement
propagates throughout the entire patch. A wide variety of technologies have been
developed that allow for the local refinement of the basis and therefore allow to overcome
the limitations intrinsic to the tensor-product nature of B-splines and NURBS. The most
prominent in the literature are:
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• hierarchical B-splines (HB) [Forsey and Bartels, 1988; Greiner and Hormann, 1997;
Kraft, 1997],

• truncated hierarchical B-splines (T HB) [Giannelli et al., 2012, 2016],

• T-splines [Bazilevs et al., 2010; Scott et al., 2012; Beirão da Veiga et al., 2013],

• subdivision surfaces [Peters and Reif, 2008],

• polynomial splines over T-meshes (PHT-splines) [Deng et al., 2008],

• LR-splines [Dokken et al., 2013; Bressan, 2013],

• ...

In this work, we make use ofHB- and T HB-splines, due to their conceptual simplicity, ease
of implementation and since they are well-understood from a mathematical standpoint.
Indeed, it can be shown that HB and T HB yield a linearly independent basis suitable
for the analysis also in the presence of trimming, where we refer to [Höllig, 2003, Section
4.5] for a proof in the context of hierarchical B-splines.

4.3.1 Hierarchical B-spline basis

Let us now review the fundamental concepts behind the hierarchical B-spline basis.
Here, we summarize the definition of HB given in [Vuong et al., 2011; Kraft, 1997].
Let V 0 ⊂ V 1 ⊂ . . . ⊂ V N be a sequence of N + 1 nested multivariate splines spaces,
determined by their corresponding degree and knot vectors. Then, the B-spline basis
associated with the space V ` of level ` is denoted by B` :=

{
b`i | i = 0, . . . , N ` − 1

}
, where

N ` represents the dimension of V `. Additionally, let us denote by T `0 the mesh associated
with B`, where K ∈ T `0 represents a cell of level `.

Let us also define the set ΩN
0 :=

{
Ω0

0,Ω1
0, . . . ,ΩN

0
}
as a hierarchy of subdomains of depth

N if the following holds:

Ω̂0 = Ω0
0 ⊃ Ω1

0 ⊃ . . . ⊃ ΩN−1
0 ⊃ ΩN

0 = ∅ , (4.10)

and each subdomain Ω`
0 is the union of closed cells of level ` − 1, where Ω0

0 coincides
with the initial parametric domain Ω̂0. The subscript 0 is used to remark that up to
now we refer only to the non-trimmed domain Ω0. We can now define the hierarchical
B-spline basis HB. Given a sequence of spaces

{
V `
}
`=0,...,N

(as defined above) with the

corresponding B-spline bases
{
B`
}
`=0,...,N

and a hierarchy of subdomains ΩN
0 of depth
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N , we define HB as the (N − 1)-th step of the following recursive definition:

HB0 =B0 (4.11)

HB`+1 =
{
b ∈ HB` | supp b 6⊂ Ω`+1

0

}
∪ (4.12)

{
b ∈ B`+1 | supp b ⊂ Ω`+1

0

}
, ` = 0, . . . , N − 2 , (4.13)

where an example is depicted in Figure 4.10. Consequently, we can introduce the

0 1
0

1 b00 b01 b02 b03 b04 b05

K0 K1

B0

0 1
0

1 b10 b16 b19

K2

B1

0 1
0

1 b20 b210 b212 b217

K3 K4 K5 K6 K7 K8

B2

0 1
0

1

K0 K1 K2 K3 K4 K5 K6 K7 K8

HB

Figure 4.10 – Example of HB basis on three levels. Active elements are highlighted in
red, whereas red crosses indicate the location of the knots.

(parametric) mesh of level T̂ `A and the resulting hierarchical mesh T̂0 associated with HB
as:

T̂ `0,A =
{
K ∈ T `0 |K ⊂ Ω`

0 ∧K 6⊂ Ω`+1
0

}
(4.14)

T̂0 =
N−1⋃

`=0
T̂ `0,A . (4.15)

Finally, in the following, we will refer to b as an active function if b ∈ HB and as an active
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function of level ` if b ∈ B`A := HB ∩ B`. An analogous terminology can be introduced
for elements, where we denote K as an active cell if K ∈ T̂0 and as an active cell of level
` if K ∈ T̂ `0,A. For further details we refer to [Garau and Vázquez, 2018].

4.3.2 Truncated hierarchical B-spline basis

We now define the truncated hierarchical B-spline basis T HB, as introduced in [Giannelli
et al., 2012]. The only difference between HB and T HB is that in the latter the
basis functions whose support overlaps finer elements are truncated as described in the
following. This generates a basis that spans the same space as HB, but has in general
better properties from a numerical standpoint. Indeed, T HB:

• have smaller support,

• form a partition of unity,

• possess strongly stable stability constants,

where we refer to [Giannelli et al., 2013] for further details. Let us first introduce the
truncation operator. Namely, exploiting the fact that B-splines of level ` can be written
as a linear combinations of B-splines of level ` + 1 with non-negative coefficients, the
truncation operator with respect to level `+ 1 reads:

trunc`+1(b`i) =
N`+1∑

k=1
c̃ `+1
k (b`i) b`+1

k , (4.16)

where the coefficients are defined by:

c̃ `+1
k (b`i) =





0 if b`+1
k ∈ HB`+1 ∩ B`+1 ,

c`+1
k otherwise,

(4.17)

where c`+1
k are the standard non-negative coefficients of the two-scale relation. They

allow to write a B-spline of level ` as a linear combination of splines of level ` + 1 as
follows:

b`i =
∑

k

c`+1
k (b`i)b`+1

k ∀b`i ∈ B` . (4.18)
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Now, the truncated hierarchical basis T HB is defined as the (N − 1)-th step of the
following recursive algorithm:

T HB0 =B0 (4.19a)

T HB`+1 =
{
trunc`+1(b) | b ∈ T HB` ∧ supp b 6⊂ Ω`+1

0

}
∪

{
b ∈ B`+1 | supp b ⊂ Ω`+1

0

}
, ` = 0, . . . , N − 2 , (4.19b)

where an example defined on the same hierarchical mesh of Figure 4.10 is given in Fig-
ure 4.11. Finally, we can introduce the following discrete space:
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K3 K4 K5 K6 K7 K8
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K0 K1 K2 K3 K4 K5 K6 K7 K8
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K0 K1 K2 K3 K4 K5 K6 K7 K8

ξ

T HB

Figure 4.11 – Example of T HB basis on three levels. Active elements are highlighted in
red, whereas red crosses indicate the location of the knots.
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Xh = span
{
b ◦ F−1 | b ∈ HB

}
= span

{
b ◦ F−1 | b ∈ T HB

}
, (4.20)

which can be directly employed in the Galerkin approximation of PDEs for non-trimmed
domains.

4.3.3 Analysis-suitable Truncated Hierarchical B-splines on trimmed
domains

Let us now trim the aforementioned domain Ω0 as defined in (4.9) and let us make the
assumption that Ω ⊂ Rd is regular enough. In order to define a (truncated) hierarchical
basis suitable for the analysis on Ω, we follow the construction provided in [Höllig,
2003, Section 4.5], which guarantees the linear independence of the basis. Recalling
the definition provided in (4.10) for the non-trimmed case, we introduce a hierarchy of
trimmed subdomains ΩN :=

{
Ω0,Ω1, . . . ,ΩN

}
such that:

Ω̂ = Ω0 ⊃ Ω1 ⊃ . . . ⊃ ΩN−1 ⊃ ΩN = ∅ , (4.21)

where Ω̂ denotes the trimmed parametric domain and N represents the depth of the
hierarchy. Notice that we dropped the subscript in our notation consistently with our
definition of trimmed domain (4.9). Then, let us define the support of a spline function
b restricted to the trimmed domain as:

supp Ω̂(b) := Ω̂ ∩ supp(b) . (4.22)

Now, for every level `, we introduce the corresponding B-spline basis restricted to Ω̂ as:

B`Ω̂ :=
{
b|Ω̂ : b ∈ B` ∧ meas(supp Ω̂(b)) 6= 0

}
. (4.23)

With these definitions, the recursive algorithms for the construction of the HB and
T HB bases on trimmed domains are analogous to those introduced in Sections 4.3.1
and 4.3.2 in the non-trimmed case, where we need to replace the hierarchy of subdomains
with its trimmed counterpart as defined in (4.21), the support of functions with the
definition in (4.22) and the B-spline basis of level `, B`, with its restriction to Ω̂ as
provided in (4.23). At this point, we highlight that it was proved in [Höllig, 2003, Section
4.5] that this construction guarantees the linear independence of the basis in the scope
of hierarchical B-splines. We remark that the truncation operator does not affect this
property (as it only acts reducing the original support) and therefore the same rationale
can be applied to the T HB basis, yielding again a basis that is suitable for the analysis
in the context of trimmed domains. Then, we also modify the definition of parametric
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mesh of level and hierarchical mesh as follows:

T̂ `A =
{
K ∈ T̂ `0,A : meas(K ∩ Ω̂) 6= 0

}
(4.24a)

T̂ =
{
K ∈ T̂0 : meas(K ∩ Ω̂) 6= 0

}
, (4.24b)

from which the physical mesh reads:

T =
{
F(K) : K ∈ T̂

}
. (4.25)

Remark 4.5 We remark that the construction of (hierarchical) B-splines can be per-
formed directly on the physical domain, replacing b by b ◦ F−1, and the subdomains Ω`

0
by F(Ω`

0). The same holds for the trimmed case. When the interpretation is clear from
the context, we will use either one or the other notation interchangeably.

Remark 4.6 Here we provide an algorithm that identifies the active basis functions and
retains the linear independence of the trimmed basis (as previously defined) based on the
standard implementation of (truncated) hierarchical B-splines. This allows for an easier
implementation of the trimmed basis on top of existing isogeometric codes. In particular,
when a trimmed element K is marked for refinement, we also refine all those elements
outside Ω (but inside Ω0) contained in the support of basis functions whose support
incorporate K. We refer to these elements as ‘ghost’ cells. This procedure guarantees
that when all the elements in the support of a function that intersects Ω are refined, those
ones outside Ω will also be refined, and therefore the function will be deactivated. We
summarize a possible implementation in Algorithm 1.

Algorithm 1 Algorithm for avoiding linear dependence of the HB or T HB basis in the
standard implementation.
1: procedure Avoid_linear_dependence(hierarchical mesh T )
2: for each level ` of T do
3: for each K ∈ T ` marked for refinement do
4: Get all functions with support on K
5: Get the supports of these functions
6: Get all ghost cells within these supports
7: Mark the ghost cells for refinement
8: end for
9: end for

10: Refine marked elements
11: end procedure

49



Chapter 4. A review of spline technologies in CAD and analysis

Lastly, we introduce the approximation space defined on the trimmed domain Ω as
follows:

X̃h = span
{
b ◦ F−1 | b ∈ HB

}
= span

{
b ◦ F−1 | b ∈ T HB

}
, (4.26)

where the construction of HB and T HB takes trimming into account as explained in
details above. Analogously to the non-trimmed case, this space can be used for the
Galerkin discretization of PDEs.

4.4 Galerkin discretization of Kirchhoff plates and
Kirchhoff-Love shells

Historically, plate and shells formulations based on Reissner-Mindlin type theories have
been predominant in the finite element world. This can be easily explained by the fact
that these formulations only require C0-continuity between elements, since displacements
and rotations are discretized separately. Therefore, standard linear shape functions
are suffice to fulfill the continuity requirement. On the other hand, we have seen that
Kirchhoff-based formulations require at least C1 inter-element continuity to yield a
well-defined bending operator. This constraint poses severe challenges for their finite
element implementation. Several solutions can be found in the literature, where we
summarize the most relevant in the following. For plates, the C1-continuity requirement
can be relaxed by employing the so-called discrete Kirchhoff concept, see the pioneering
works [Stricklin et al., 1969; Dhatt, 1970] and [Batoz et al., 1980] for its mathematical
foundations and computer-oriented implementation. In these elements, the Kirchhoff
constraint is enforced only at the discrete level, but convergence to the limit Kirchhoff
plate solution is obtained under mesh refinement. Concerning Kirchhoff-Love shells,
given the vast amount of possible simplifications and corresponding formulations, we refer
to the survey [Bischoff et al., 2004]. A conforming discretization of the Kirchhoff-Love
problem in its primal form, meaning based only on displacement degrees-of-freedom,
has been studied in [Cirak et al., 2000] in the context of subdivision surfaces. The first
work using B-splines has been introduced in [Kiendl et al., 2009], where the rotation-free
isogeometric shell element employed in this thesis was outlined. At this point, it should
be clear that B-splines and variants thereof are an ideal candidate for the discretization
of Kirchhoff-Love shells, since the continuity constraint is satisfied automatically within
one patch for splines of degree p ≥ 2 and maximum smoothness. In particular, following
the Galerkin rationale, we can state the discretized counterpart of the weak formulation
in Equation (3.5) associated with the Kirchhoff problem, respectively, as follows. Find
uh ∈ Vh such that:

a(uh, vh) = f(vh) ∀vh ∈ Vh , (4.27)
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where the choice of the discrete space Vh ⊂ Xh or Vh ⊂ X̃h depends in general on the
boundary conditions of the problem at hand. We remark that here the superscript (̃·)
is used to distinguish between the non-trimmed and trimmed case. Similarly for the
Kirchhoff-Love problem, we can write the discrete counterpart of Equation (3.41) as:
find uh ∈ Vh such that:

a(uh,vh) = f(vh) ∀vh ∈ Vh , (4.28)

where again the choice Vh ⊂
[
Xh

]3
or Vh ⊂

[
X̃h

]3
depends on the boundary conditions.

Finally, in both cases, the Galerkin approximation can be conveniently expressed in
matrix form as described in Equation (2.40):

Kũ = f , (4.29)

from which it is clear to see that the unknowns are only related to the deflection or
displacement field, respectively.

4.5 Numerical results

In the following numerical experiments, we show the potential of local refinement in
efficiently capture localized traits of the solution. We remark that refinement is achieved
by employing HB-splines as a basis for the analysis. Furthermore, we numerically verify
that local refinement improves the accuracy of the imposition of weak boundary conditions
(e.g. by means of the penalty method) on complex trimmed boundaries and mitigates
the effect of over-constraining of the solution space in those elements close to trimming
curves where boundary conditions are enforced weakly. Analogous locking effects will also
be studied in depth in the context of multi-patch coupling in a later chapter. Moreover,
we shed some light on the issue of spurious coupling of basis functions arising when
“small” (compared to the element size h) features are present in the geometry (e.g. thin
holes), where again the use of local refinement proves to be an effective remedy. All
results have been obtained by extending the Finite Cell Method (FCM) to the analysis of
thin structures, developing the ideas first introduced in [Rank et al., 2011]and applying
the boundary-conforming adaptive integration scheme described in [Kudela et al., 2015,
2016] to trimmed surfaces, see also [Coradello, 2016]. For the sake of conciseness, we do
not review the FCM here but the interested reader is referred to [Düster et al., 2008;
Parvizian et al., 2007; Schillinger et al., 2012] and references therein.

4.5.1 On the imposition of weak constraints

In this work, we consider weak constraints applied by means of the penalty method
[Babuška, 1973]. For Kirchhoff-Love shells, a weak displacement and rotational boundary
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condition terms are added to the weak formulation to enforce the corresponding boundary
conditions. Due to the their conceptual simplicity and straightforward implementation,
penalty-type strategies are extensively used for the imposition of boundary conditions
in trimmed shells, e.g. see [Kiendl, 2011; Breitenberger, 2016; Lei et al., 2015; Pasch
et al., 2021] and references therein. Other methods have been successfully applied,
e.g. extensions of the original Nitsche’s method [Nitsche, 1971] have been studied
in [Apostolatos et al., 2015; Guo and Ruess, 2015; Kamensky et al., 2015; Benzaken et al.,
2021]. However, generally speaking, these methods are computationally more involved
since they require the computation of higher-order covariant derivatives. Another family
of strategies is based on the introduction of Lagrange multipliers associated with the
boundary constraints, see e.g. [Apostolatos et al., 2015; Apostolatos, 2019; Hirschler et al.,
2019; Schuß et al., 2019]. It is well-known that mortar methods introduce additional
artificial unknowns into the underlying system of equations to enforce the corresponding
constraints, where the choice of discretization space for these Lagrange multipliers plays
a pivotal role for the robustness of the method. In particular, the inf-sup stability is a
crucial property, see [Boffi et al., 2013] for further details. In our derivation, the discrete
Kirchhoff-Love problem in Equation (4.28) is augmented by suitable penalty terms as:

Find uh ∈ Vh such that
a(uh,vh) + bdisp(uh,vh) + brot(uh,vh) = f(vh) ∀vh ∈ Vh , (4.30)

where:

bdisp(uh,vh) =
∫

Γu
αdisp(uh − ũ) · vh dγ , (4.31a)

brot(uh,vh) =
∫

Γθ
αrot[θn(uh)− θ̃n]θn(vh)dγ , (4.31b)

where αdisp and αrot ∈ R+ are the displacement and rotational penalty parameters,
respectively. Typically, they are scaled with the material properties and element size [Utku
and Carey, 1982], where following [Herrema et al., 2019] we set:

αdisp = δ
Et

h(1− ν2) , (4.32a)

αrot = δ
Et3

12h(1− ν2) , (4.32b)

where δ is a problem independent, user-defined parameter. Furthermore, for non-
uniform refinement, h is heuristically chosen as the smallest element size of the mesh T
which intersects the boundary where the corresponding boundary condition is enforced.
Again, we will analyze this choice more in details in a later chapter in the scope of
coupling multi-patch plates and shells. At this point we highlight that, when imposing
boundary conditions weakly on arbitrarily-shaped trimming curve, it can happen that
the finite element space is not capable of both accurately satisfy the boundary conditions
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and approximate the numerical solution in the proximity of the trimming boundary.
For complicated geometry and/or high penalty parameters αdisp and αrot (without
excessively deteriorating the conditioning of the system matrix), some elements will be
over-constrained. To illustrate this effect we consider the setup depicted in Figure 4.12a,
where a uniformly distributed vertical load f̃ = (0, 0,−100)> is applied on the top surface
of a violin, while clamped conditions are enforced with a penalty term (δ = 106) on
the internal curves, which feature kinks and areas of high curvature. In Figures 4.12b
and 4.12c it can be observed that the displacement and stress are artificially low on
the elements cut by the trimming curve, and these fields spuriously follow the element
boundaries. We remark that this effect is more pronounced in the proximity of complex
trimming patterns. Given a fixed mesh, it is in general desirable to balance the error
in the application of boundary conditions and in the solution approximation. We refer
to [de Prenter et al., 2018] for a discussion in the context of Nietsche’s method. However,
in case it is not practical, or it is not known a priori how to optimally choose the penalty
factors, mesh refinement can be employed to potentially improve accuracy in both interior
and boundary terms by enlarging the finite element space and intersecting the curve with
smaller elements, generally yielding simpler intersections. By doing this, small geometric
features induced by the trimming curves can be selectively resolved. For instance,
in Figures 4.12d and 4.12e the solution and Von Mises stress distribution obtained with
HB-splines of degree p = 2 is shown. This example qualitatively demonstrates the
capability of local refinement to reduce the over-constraining effects linked to the weak
imposition of Dirichlet-type boundary conditions. We compare the resultant Von Mises
stresses for different meshes in Figure 4.13. Figure 4.13b shows the solution obtained
with a uniform mesh of 38 607 dofs. The mesh is chosen to have a number of dofs
similar to the locally refined mesh in Figures 4.12e and 4.13a, which consists of 36 225
dofs. As a reference, Figure 4.13c shows the solution obtained by an overkill mesh with
4 026 378 dofs. Note that the locally refined mesh does not yield spurious low stress on
the constrained curve, similarly to the overkill solution.

4.5.2 Thin holes

In case trimming curves define holes that are “thin” compared to the geometry knot spans,
it can happen that the support of a basis function intersected with the computational
domain Ω is disconnected and composed of several disjoint sub-domains. As an example,
the support of a function with two disjoint physical sub-domains is depicted in red
in Figure 4.15b. This creates an unphysical coupling between the two sides of the hole,
that generally results in an inaccurate mechanical response. These spurious effects become
particularly severe when the local behavior of the structure is strongly determined by the
geometry of the hole, as it is often the case for complex models. For instance, consider
the setup illustrated in Figure 4.15a, where the geometry is modeled via a trimmed
NURBS surface of degree p = 2, which is exported from Rhinoceros together with a
set of 32 trimming curves. It is worth remarking the complexity of the geometry at
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hand, which presents several thin sharp features and kinks in its description. For the
analysis, homogeneous Dirichlet boundary conditions on the displacement are applied
to the outer boundary of the violin via the penalty method, as described above, and a
line load f̃ = (0, 0,−100)> [N/m] is applied to the reentrant tip of the f-hole, such that
the tip is pulled upwards. A direct analysis on the coarse geometry yields an unphysical
response, where the maximum displacement is attained towards the center of the geometry
(see Figure 4.15c), instead of the reentrant tip, as expected from engineering intuition.
In order to mitigate this issue, local refinement can be used to substitute functions
with large support by functions with smaller support. In particular, the removal of the
unphysical coupling is obtained when no support is composed of disjoint physical parts.
To this end, let us consider the refinement procedure presented in Algorithm 2. Here, we
introduce a parameter γ, which represents the extension of the refinement area in the
proximity of a given trimming curve, where an example of the effects of different choices
γ = 0, 1, 2 is depicted in Figure 4.14 for a single level `. Furthermore, the definition of
distance used in the algorithm is based on their position in the tensor product structure.
In particular, if the vectors i = [iξ , iη] and i′ = [i′ξ , i′η] collect the positional indexes of
elements K and K ′, respectively, in the tensor product grid of level, we define:

dist(K,K ′) = ‖i− i′‖∞ , (4.33)

as the distance between the two. Note that for γ = p or higher, only functions of the

Algorithm 2 Refinement towards trimming curves
1: procedure Refine (mesh T , max level `max, Γu and Γθ, γ)
2: for ` = 1 . . . `max do
3: for each active element K ∈ T `A of level ` cut by Γu or Γθ do
4: for each active element K ′ ∈ T `A of level ` do
5: if dist(K,K ′) ≤ γ then
6: mark K ′ for refinement
7: end if
8: end for
9: end for

10: refine marked elements
11: update T
12: end for
13: end procedure

finest level have support on the trimming curve. By direct comparison between the
size of the finest knot spans and the size of the hole, one can obtain the value of `max
that removes the unphysical coupling. For the current example we obtain a decoupling
value `max = 5 and a qualitatively correct response is observed in Figure 4.15d for
γ = p = 2, where the maximum deflection occurs at the reentrant tip. In Figure 4.16a,
the displacement at point A (marked with a blue dot in Figure 4.15b) is shown, where the
latter point of interest is located at one of the geometrical kinks of the trimmed boundary.
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Note the sudden improvement in accuracy of the solution obtained for `max = 5, while
smaller choices of the maximum refinement level yield inaccurate results, since the
spurious coupling is still present in the corresponding HB bases. Then, in Figure 4.16a,
we compare the convergence behavior of the solution obtained by local refinement to the
tensor product refinement constructed by Algorithm 2 with γ = 0 and to a standard
uniform tensor-product refinement, obtained by recursively bisecting every knot span.
The meshes corresponding to local and tensor-product refinements for `max = 5 are
depicted in Figures 4.17a and 4.17b, respectively. In Figure 4.16b we observe that
all strategies converge towards a reference value for the displacement obtained from
an overkill solution, where local refinement achieves a level of accuracy comparable to
uniform refinement with substantially less degrees-of-freedom.

4.5.3 Localized deformations

The example given in Figure 4.15 produces a localized deformation (see Figure 4.15d)
which needs to be properly resolved. We highlight once more that the local refinement
strategy employed to remove the unphysical coupling already gives an approximation that
is comparable to uniform refinement, but with a considerable reduction in dofs, where we
refer to Figures 4.16a and 4.16b, respectively. In Table 4.1, the energy and z-displacement
(at point A) errors are shown with respect to the following reference values Ẽ ≈ 0.2211,
ũz ≈ 7.268 · 10−3 [m]. These values have been obtained with an overkill solution on a
uniformly refined mesh of level lmax = 5. This numerical experiment confirms that local
refinement accurately and efficiently captures both local quantities (such as the solution
at point A) and global quantities (the energy of the system) compared to tensor product
refinement, where in this particular example approximately 5 times less dofs are required
to achieve a comparable level of accuracy.

dofs energy error (1− Eh

Ẽ
)% z-displ. error (1− uhz

ũz
)%

tensor product ref. 193 359 2.07% 1.72%
local ref. 37 215 2.88% 2.29%

Table 4.1 – Comparison of the error in the energy norm and error in the z-displacement at
point A against the number of dofs for tensor product and local refinements, respectively.

4.5.4 From CAD to analysis of an “engineering” structure

This example concerns the simulation of a simplified model, depicted in Figure 4.18a, of
the rooftop of the Rolex Learning Center, the campus library at the École Polytechnique
Fédérale de Lausanne (see Figure 4.18b). Here, we aim at showing the capabilities of the
proposed numerical framework for the analysis of complex structures of architectural
relevance. The geometry is modeled as a trimmed NURBS surface of degree p = 3
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composed of 20× 20 knot spans. A planar map of the building has been used to trace all
the major structural holes. Then, 150 cylinders representing the pillars have been placed
in a 15×10 Cartesian fashion into the model (those falling outside of the physical domain
have been discarded). Their intersection with the surface is used to impose homogeneous
Dirichlet boundary conditions, therefore modeling the static behavior of the supports. Let
us remark the fact that this simplification in the design does not correspond to the actual
placement of the pillars. Additionally, we remark that we are aware of the limitation
of this model, but in the scope of this dissertation it is used as an illustrative example
for the range of applicability of the proposed simulation tool, spanning from complex
geometrical models to architectural designs. Lastly, the material parameters are chosen
as E = 40 · 109 [Pa], ν = 0.15 [−] and t = 0.2 [m] for the Young’s modulus, Poisson’s
ratio, and thickness of the shell, respectively. The roof is subjected to its self-weight,
set to f̃ = (0, 0,−2 · 103)> [N/m2], and in Figure 4.18c the displacement magnitude
field is depicted, where k = 5 levels of hierarchical refinement are used to resolve the
boundary conditions given by the pillars and the trimming curves. A close-up of the
solution in the vicinity of a trimming curve for a coarse uniform tensor-product mesh
and a locally refined mesh is depicted in Figure 4.19. We note a substantial reduction of
over-constraining of the solution field close to the pillars in the locally refined case. On
one hand, this example clearly motivates local refinement, which is needed to resolve the
small scale of the problem (the pillars) while considerably reducing the computational
cost. On the other hand, it shows how all the relevant information needed to impose
boundary conditions can be taken directly from the CAD model, in the spirit of reducing
the gap between analysis and design.

1Pictures retrieved from https://commons.wikimedia.org under the Creative Commons license.
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E = 105 [Pa]
ν = 0.0 [−], t = 0.002 [m]
f̃ = (0, 0,−100)> [N/m2]x

y
z

(a) Boundary conditions: clamped (red wire) and displace-
ment load (arrows).

(b) Displacement magnitude (logarithmic scale)
on unrefined mesh.

(c) Von Mises stress on unrefined mesh.

(d) Displacement magnitude (logarithmic scale)
on a locally refined mesh.

(e) Von Mises stress on a locally refined mesh.

Figure 4.12 – Example of a violin subjected to gravity load. HB-splines of degree p = 2
are used to achieve refinement.
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(a) Von Mises on a locally refined mesh as in
Figure 4.12e.

(b) Von Mises on a uniformly refined mesh such
that the number of dofs is similar to Figure 4.13a.

(c) Von Mises on a overkill mesh.

Figure 4.13 – Comparison of Von Mises stresses around the f-holes for different meshes.

ξ

η

(a) Active cut cells.

ξ

η

(b) γ = 0.

ξ

η

(c) γ = 1.

ξ

η

(d) γ = 2.

Figure 4.14 – Illustration of the influence of marking parameter γ on the refinement.
The active cut cells of level are highlighted in blue, whereas the elements marked for
refinement after performing Algorithm 2 with γ = 0, 1, 2, respectively, are colored in red.
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x

y
z

(a) Applied boundary conditions: homogeneous
Dirichlet (red wire) and distributed load (ar-
rows).

(b) Example of basis function support covering
both sides of a thin hole (p = 2 and maximum
continuity).

(c) Spurious and unphysical solution obtained
from a direct analysis on the CAD model.

(d) Local refinement around the trimming curve
removes the unphysical coupling.

Figure 4.15 – Example problem on a complex trimmed geometry that shows the unphysical
coupling occurring at the sides of thin holes.
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(a) Convergence plot of the numerical solution
at point A, note the sudden change for `max = 5.
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(b) Comparison of the number of dofs as a func-
tion of the refinement parameter `max.

Figure 4.16 – Convergence graphs for the violin example subjected to a line load.
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(a) Locally refined mesh. (b) Local tensor-product mesh.

Figure 4.17 – Meshes obtained by local and local tensor-product refinements by setting
`max = 5.

(a) CAD model (b) Aerial photo1

(c) Displacement magnitude.

Figure 4.18 – Geometric model, actual building and solution of the Rolex Learning Center
subject to its self-weight. For the solution hierarchical B-splines of degree p = 3 and
k = 5 levels of refinement have been used. The geometry contains approximately 150
pillars modeled as the intersection between the untrimmed surface and cylinders directly
in Rhinoceros.
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(a) Displacement plot on a coarse mesh. (b) Displacement plot on locally refined mesh.

(c) Displacement plot on a coarse mesh (logarith-
mic scale).

(d) Displacement plot on a locally refined mesh
(logarithmic scale).

Figure 4.19 – Zoom on the solution in the proximity of a trimming curve for the Rolex
Learning Center example. Note how weakly imposed boundary conditions and geometric
features are efficiently resolved by local refinement.
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5 A-posteriori error estimation

We have seen in Section 2.5 that there exist rigorous a priori error estimates for the finite
element method. Although they constitute the mathematical foundations of FEM and are
paramount for its success, they cannot be used in practical applications since the exact
unknown solution u appears on both side of the inequality in Equation (2.54). Finding
a computable bound on the error falls into the realm of a posteriori error estimation.
Indeed, the main objective of these techniques is to estimate the discretization error
without having any knowledge of the exact solution. This question is clearly crucial in
engineering applications, since for a given mesh we want to (approximately) know the
level of accuracy of the corresponding FE analysis. In this chapter, we review the most
common types of error estimators following the work in [Babuška, 1981; Ainsworth and
Oden, 1997; Grätsch and Bathe, 2005; Verfürth, 2013] and using the equations of linear
elasticity as model problem. Then, we propose a novel error estimator particularly suited
for Kirchhoff plates and Kirchhoff-Love shells based on the evaluation of the residual
equation in a weak sense. Indeed, the proposed method is based on the solution of
an additional residual-like problem, formulated onto a so-called bubble space. We then
proceed to summarize the concept of adaptivity in the scope of FEM. Here, we employ
the procedure introduced in [Babuška and Vogelius, 1984; Babuška and Miller, 1987],
where a feedback loop is described which allows to automatically refine the mesh until a
convergence criterion is reached. In particular, starting from the initial discretization T 1

and corresponding finite element solution u1
h we can define the mesh update as:

T 1 = A(T 1, . . . , T i−1,u1
h, . . . ,u

i−1
h ) , (5.1)

where the transition operator A formally describe the mesh refinement step. We can now
state that an adaptive scheme is called convergent if its associated transition operator
yields a sequence of numerical solutions such that:

∥∥∥u− uih
∥∥∥
E(Ω)

→ 0 for i→∞ . (5.2)
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Lastly, a wide range of numerical experiments both on non-trimmed and trimmed
geometries are presented to assess the performance of the proposed estimator in steering
an adaptive loop.

5.1 Explicit error estimators

The starting point to derive this family of error estimators is the weak formulation of
the error equation:

a(eh,v) = a(u,v)− a(uh,v) = f(v)− a(uh,v) = Rh(v) ∀v ∈ V , (5.3)

where Rh(·) denotes the residual in a weak sense. We can now rewrite the error equation
in an element-wise fashion as:

a(eh,v) =
∑

K∈T

(∫

K
v · b dΩ +

∫

∂K∩ΓN
v · t̃ dγ −

∫

K
σ(u) : ε(v) dΩ

)
∀v ∈ V ,

(5.4)

where ∂K denotes the boundary of element K and we have expanded all the integrals
involved in the right-hand-side of Equation (5.3). We can now perform integration by
parts of the internal energy and rewrite Equation (5.4) as:

a(eh,v) =
∑

K∈T

∫

K
Rv dΩ +

∑

e∈∂T

∫

e
Jv dγ∀v ∈ V , (5.5)

where R denotes the residual in the interior of an element:

R = ∇ · σ(uh) + b , (5.6)

and J represents the jump of the stress across an element edge e:

J =





Jσ(uh) · nK if e * Γ
t̃− σ(uh) · n if e ⊂ ΓN
0 if e ⊂ ΓD

, (5.7)

where with the notation e * Γ we refer to those edges that are shared between elements
K and K ′. At this point we recall the Galerkin orthogonality:

a(eh,vh) = Rh(vh) = 0 ∀vh ∈ Vh , (5.8)

which allows us to rewrite Equation (5.5) as follows:

a(eh,v) =
∑

K∈T

∫

K
R(v −Ih(v)) dΩ +

∑

e∈∂T

∫

e
J(v −Ih(v)) dγ ∀v ∈ V , (5.9)
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where the have employed the Clément interpolant Ih(·) : H1 → Vh [Clément, 1975].
Applying the Cauchy-Schwarz inequality element by element yields:

a(eh,v) ≤
∑

K∈T

∫

K
‖R‖L2(K) ‖v −Ih(v)‖L2(K) dΩ +

∑

e∈∂T

∫

e
‖J‖L2(e) ‖v −Ih(v)‖L2(e) dγ .

(5.10)

We can now introduce the following upper bounds on the error associated with the
Clément interpolant:

‖v −Ih(v)‖L2(K) ≤ C1hK ‖v‖H1(K̃) , (5.11a)

‖v −Ih(v)‖L2(∂K) ≤ C2
√
hK ‖v‖H1(K̃) , (5.11b)

where K̃ denotes the patch associated with element K, formed by all neighboring elements
with a common edge with K, and C1 and C2 are again a constants independent of hK .
Substituting Equation (5.11) into Equation (5.10) yields:

a(eh,v) ≤ ‖v‖H1(K̃)


∑

K∈T
C1h

2
K ‖R‖

2
L2(K) +

∑

e∈∂T
C2hK ‖J‖2L2(e)




1
2

. (5.12)

Using the equivalence of the H1 and energy norms, and plugging eh instead of v, we
obtain:

‖eh‖2E(Ω) ≤
∑

K∈T

[
C1h

2
K ‖R‖

2
L2(K) + C2hK ‖J‖2L2(∂K)

]
, (5.13)

where the two constants C1 and C2 correspond to the element and jump residuals,
respectively. Finally, we can introduce an element-wise error indicator as:

‖eh‖2E(Ω) ≤ η
2 =

∑

K∈T
η2
K where η2

K = C1h
2
K ‖R‖

2
L2(K) + C2hK ‖J‖2L2(∂K) , (5.14)

which, except for constants C1 and C2, provides a computable bound on the error. In
the literature, some effort has been put into finding a way to estimate these constants,
e.g. we refer to [Johnson and Hansbo, 1992; Stein et al., 1994]. However, while providing
a sharp bound is an important property of an error estimator, we will see in the following
that it is not crucial to steer the feedback loop. We can now introduce some desirable
feature of the estimator η. In particular, we say that an estimator is reliable if there
exists a constant C1 such that:

‖eh‖E(Ω) ≤
1
C1
η . (5.15)
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Conversely, we characterize an estimator as efficient if there exists another constant C2
such that:

η ≤ C2 ‖eh‖E(Ω) . (5.16)

If η is both reliable and efficient then it holds:

C1 ‖eh‖E(Ω) ≤ η ≤ C2 ‖eh‖E(Ω) . (5.17)

It is straightforward to see that in this case the estimator behaves asymptotically as the
true error. Lastly, we introduce the so-called effectivity index as follows:

θ =

√∑
K∈T η

2
K

‖eh‖E(Ω)
, (5.18)

which measures how well the estimator approximates the true error, where the optimal
value of θ is one.

5.2 Implicit error estimators

Contrary to explicit estimators, implicit error estimators require the solution of an
additional problem to provide an approximation on the error. To limit the computational
burden of these schemes, the auxiliary problem is typically defined either at element level
or over small patches to preserve the locality and increase the level of parallelism of the
algorithm.

5.2.1 Element residual method

This family of estimators was first studied in [Demkowicz et al., 1984; Bank and Weiser,
1985]. The starting point in the derivation is again the weak formulation of the error,
this time restricted to an element K:

a(eh,v)|K =
∫

K
Rv dΩ +

∫

∂K
v · [σ(u) · n− σ(uh) · n] dγ ∀v ∈ VK , (5.19)

where the discrete space VK over an element is defined as:

VK = {v ∈ [H1(K)]3 : v = 0 on ∂K ∩ ΓD} . (5.20)

Next, we need to distinguish three different cases:

• If ∂K∩ΓD 6= ∅ then we have a zero contribution on the error from the corresponding
Dirichlet boundary condition.
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5.3. Recovery-based error estimators

• If ∂K ∩ ΓN 6= ∅ then we know the exact prescribed traction on the boundary from
the corresponding Neumann boundary condition.

• Else, if ∂K is an interelement boundary, we approximate the exact traction as
follows:

σ(u) · n ≈ σ(uh) · n = 1
2 (σ(uh)|K + σ(uh)|K′) · n , (5.21)

where K ′ denotes the neighbor of K sharing the edge under consideration.

Substituting this result into Equation (5.19) yields the following local problem: find
ψK ∈ VK such that:

a(ψK ,v)|K =
∫

K
Rv dΩ +

∫

∂K\ΓN
v · [σ(uh) · n− σ(uh) · n] dγ +

∫

∂K∩ΓN
v · t̃dγ ∀v ∈ VK ,

(5.22)

which can be solved for the local unknown ψK . With the latter, the error estimator is
defined as:

‖eh‖2E(Ω) ≤
∑

K∈T
η2
K where η2

K = ‖ψK‖2E(K) . (5.23)

The major drawback of this family of estimators is that the well-posedeness of Equa-
tion (5.22) cannot be guaranteed due to the potential incompatibility of the Neumann
data, which poses severe limitations to its applicability. Some remedies have been studied,
where either the space VK is suitably modified or the boundary data are carefully chosen
to ensure compatibility, see for instance [Ainsworth and Oden, 1997] and references
therein.

5.3 Recovery-based error estimators

The next family of error estimators is based on a post-processing step for the gradient
of the numerical solution. The underlying idea is to obtain an enhanced approximation
of the gradient, denoted in the following by ∇uh?, such that the true error can be
approximated as:

‖eh‖2E(Ω) ≈
∫

Ω
[∇uh? −∇uh]2 dΩ . (5.24)

In the following we briefly present a popular scheme to obtain a better approximation of
the numerical gradient, firstly introduced in [Zienkiewicz and Zhu, 1987]. Let us write
the enhanced gradient as a linear combination of coefficients and basis functions φ ∈ Vh
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such that:

∇uh? =
dim(Vh)∑

i=1
(∇uh?)i φi , (5.25)

where the unknown coefficients (∇uh?)i are given by:
∫

Ω
φj (∇uh? −∇uh) dΩ = 0 j = 1, . . . ,dim(Vh) . (5.26)

Expending the integrand on the left-hand-side and rearranging the terms yields the
standard linear system associated with the L2-projection:

dim(Vh)∑

i=1

∫

Ω
φiφj dΩ (∇uh?)i =

∫

Ω
φj∇uh dΩ j = 1, . . . ,dim(Vh) . (5.27)

Once the unknown coefficients are found, the error estimator is defined element-wise as:

‖eh‖2E(Ω) ≈
∑

K∈T
η2
K where η2

K = ‖∇uh? −∇uh‖2L2(K) . (5.28)

Clearly, the performance of this family of error estimators relies heavily on the assumption
that ∇uh? provides a better representation of the true gradient ∇u. For further details
on how to achieve this property, we refer to [Zienkiewicz and Zhu, 1992a,b; Carstensen
and Funken, 2001].

Remark 5.1 A vast amount of literature is dedicated to the study of error estimators.
In the presentation above, only a brief overview of the most relevant families of global a
posteriori error estimators is provided. We highlight that often in engineering applications,
one is interested in local quantities rather than global errors in the energy norm. This
is the realm of research of the so-called goal-oriented estimators, where for an in-depth
discussion on the subject the reader is referred to [Oden and Prudhomme, 2001; Grätsch
and Bathe, 2005, 2006] and references therein.

5.4 A novel error estimator for Kirchhoff plates and
Kirchhoff-Love shells

In the following, we introduce a variant of the family of implicit error estimators studied
in [Bank and Smith, 1993] in the context of the p-version of FEM and we extend its
isogeometric version, successfully applied to T-splines in [Dörfel et al., 2010] and later
to hierarchical B-splines in [Vuong et al., 2011], to elliptic second- and fourth-order
PDEs defined on trimmed domains. Then, we present a possible implementation of the
proposed indicator which makes use of truncated hierarchical B-splines. Let us now
review the method and formulate it into the framework of trimmed hierarchical IGA. Let
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5.4. A novel error estimator for Kirchhoff plates and Kirchhoff-Love shells

us define the finite dimensional solution space Ṽ p
h over a trimmed domain as the span of

T HB-splines basis functions of order p, as defined in Section 4.3. Then, let us denote by
uh ∈ Ṽ p

h the discrete solution of the problem at hand. Now, starting from the degree
and continuity of the aforementioned space Ṽ p

h and for every level `, let us introduce the
B-splines of degree p + 1 and of reduced continuity, denoted as Bp+1,`

red , defined on Q`0
(the rectangular grid of level ` introduced in Section 4.3), where the chosen continuity
depends on the problem at hand (see Remark 5.3). From an algorithmic point of view,
this space is obtained by performing first degree elevation followed by increasing the
multiplicity of the original knots. Now, from all the functions in Bp+1,`

red , we select only a
suitable subset B̃p+1,`

act , which we characterize as:

B̃p+1,`
act = {b ∈ Bp+1,`

red | supp(b) ⊂ K for some K ∈ T̂ `A} . (5.29)

In the following, we refer to these splines as bubble functions, where an example defined
on a single level is depicted in Figure 5.1. We remark that by definition all functions in
B̃p+1,`
act have support on a single element. In fact, the bubble functions on each element

always coincide with a subset of (scaled) Bernstein polynomials, and as a consequence
they can be defined on a single reference element, which is then mapped to the elements
of the mesh, analogously to basis functions in finite elements. We remark that this
reference element is independent of the level in the hierarchy. Then, let assume there
exists a larger space Ṽ p

h ⊂ W̃
p
h ⊂ V such that the following decomposition holds:

W̃ p
h = Ṽ p

h ⊕ Z̃
p+1
h , (5.30)

where Z̃p+1
h is the space (defined over a trimmed geometry) in which we seek a good

estimation of the error eh ≈ e = ‖u− uh‖, in a suitable norm ‖·‖. In our case, we use
the energy norm associated with the problem. In particular, we can characterize Z̃p+1

h in
a multi-level fashion as follows:

Z̃p+1
h =

N⋃

`=0
Z̃p+1
h,` , (5.31)

where

Z̃p+1
h,` = span {b ◦ F−1| b ∈ B̃p+1,`

act } . (5.32)

Namely, Z̃p+1
h,` is the space spanned by active B-splines of level ` obtained by degree

elevation and knot insertion as discussed above, such that their support is compact
and overlaps exactly with one active element (trimmed or non-trimmed) K of level `,
where we postpone the discussion on the required continuity of b to Remark 5.3. We
highlight that, in the trimmed case, we must replace the standard definition of support of
a function with its trimmed counterpart, which was previously denoted as supp Ω̂(·). We
are now ready to define the a posteriori error estimate eh as the solution to the following
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problem: find eh ∈ Z̃p+1
h such that

a(eh, bh) = F (bh)− a(uh, bh) ∀bh ∈ Z̃p+1
h . (5.33)

Notice that due to the compact support property of bh, the linear system corresponding
to the discrete error weak form in Equation (5.33) is block diagonal, where each block
corresponds to a single element, and its size is given by the number of bubble functions.
Lastly, we compute the element-wise error estimator ηK as:

ηK = Ca ‖eh‖E(K) ∀K ∈ T , (5.34)

where ‖·‖E(K) denotes the energy norm restricted to an element K of the hierarchical
mesh T .

Remark 5.2 At this stage, we introduce the heuristic constant Ca which, considering a
wide variety of numerical experiments, seems to be independent from the chosen degree
and from the problem at hand. In the scope of this thesis, we set the value Ca = 3. This
ensures that the true error is not underestimated by our indicator η.

It is worth highlighting that up to this point the derivation is completely independent
from the problem we are solving, in the sense that once bilinear and linear forms and
a suitable bubble space are chosen, the methodology follows the same aforementioned
steps. We will demonstrate this over a variety of elliptic PDEs in our numerical examples.
Moreover, trimming can be treated naturally in this framework at integration level. This
confirms the simplicity of the proposed estimator on trimmed domains and that the
method can be implemented on top of existing isogeometric codes in a straightforward
manner, e.g. see the pseudo-code summarized in Algorithm 3. Furthermore, our technique
is computationally cheap and embarrassingly parallelizable due to the definition of the
disjoint bubble space Z̃p+1

h and the choice of solving Equation (5.33) level-wise over the
hierarchical mesh T . Indeed, we can summarized the properties of the error estimator as
follows:

1. the associated linear system possesses a block-diagonal structure due to the single
element support of bubble functions,

2. small dimension of each block, that are defined element-wise,

3. computation is easily parallelizable.

All the aforementioned features make the proposed method appealing from a computa-
tional point of view.
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Algorithm 3 Bubble error estimator algorithm
1: procedure Estimate_error(numerical solution uh, hierarchical mesh T )
2: Initialize vector η
3: for each level ` of T do
4: Build bubble space Z̃p+1

h,`

5: for each K ∈ T `A do
6: Given uh, solve locally on element K the additional system in Equa-

tion (5.33)
7: Compute the element-wise indicator ηK from Equation (5.34)
8: Store ηK in η
9: end for

10: end for
11: Return η
12: end procedure

A known drawback of this family of estimators is that their reliability and efficiency is
subjected to the saturation assumption onto the underlying augmented space. As noted
in [Bank and Smith, 1993], this assumption is, in general, problem dependent and it can,
potentially, become crucial for the performance of the estimator. However, we highlight
that our focus is to find a good indicator for steering adaptive simulations in the scope
of structural mechanics and all our numerical experiments confirm that the proposed
estimator performs well in this task. Finally, we conclude our discussion on the proposed
error estimator with a series of important remarks.

Remark 5.3 (On the choice of the bubble space) We note that the choice of the
bubble space Z̃p+1

h has to be compatible with the underlying bilinear form. Therefore, for
every level `, we select the continuity of Bp+1,`

red such that all functions are at least C0-
continuous globally for second order problems (such as linear elasticity and the Poisson
problem) and at least C1-continuous for fourth order problems (e.g. Kirchhoff plates
and Kirchhoff-Love shell). This ensures that the bilinear form in Equation (5.33) is
well-defined.

Remark 5.4 (Inhomogeneous boundary conditions) On one hand, we highlight
that whenever inhomogeneous boundary conditions of Neumann-type are applied to the
problem at hand, Equation (5.33) must also contain the corresponding additional terms
in the right-hand-side. This is also true if we apply Dirichlet-type boundary conditions
weakly. In these cases, we augment the bubble space Z̃p+1

h with suitable boundary bubbles
to properly capture the error on the imposition of the corresponding boundary conditions.
These functions must either have non-zero value or non-zero derivatives at the boundary.
An example is depicted in Figure 5.2 for C1-continuous bubbles of degree p = 4, 5, where
the resulting space captures the contribution of inhomogeneous boundary conditions on
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the bending moments and/or weakly enforced rotations. On the other hand, we make
the assumption that the error on the strong imposition of inhomogeneous Dirichlet-type
boundary conditions is negligible and therefore no additional shape functions are needed
for these cases.

Remark 5.5 (The case p = 2 for C1-continuous bubble spaces) For the sake of
completeness, we should highlight that the construction of the bubble space Z̃p+1

h is not
straightforward in the case where the underlying B-splines are quadratic. We propose as
possible remedies:

1. Construction of an additional sub-grid obtained as dyadic refinement of the original
hierarchical mesh and definition of the bubble functions on the corresponding space
defined by the new grid.

2. Introduction of suitable edge functions in the bubble space.

Notice that, although both approaches could be feasible, they add a non-negligible complexity
to the method. In the first case, a new, finer hierarchical grid has to be created at every
iteration of the adaptive loop and numerical integration of (5.33) has to be performed
over it. In the second case, the definition of which edge bubbles have to be considered
in the hierarchical case is not unique and considerably worsen the simplicity of the
method. Indeed, the corresponding linear system would become more difficult to solve
since the element-wise locality of the bubble functions would be lost. Therefore, in light
of these considerations, we will not address further bubble functions of degree p = 2 and
C1-continuity in the scope of this chapter.

Remark 5.6 (Jumps in the residual for fourth-order PDEs) In the last remark,
we notice that, although the residual exhibits jumps across element edges for the dis-
cretization of degree p = 3, in all our computations the estimator behaves still optimally
even if the corresponding jump terms are not accounted for in (5.33). Therefore, from a
practical standpoint, the estimator retains its favorable properties.

5.5 Adaptivity

We have seen that, once an element-wise estimation of the error is available, there exists
a feedback loop that refines the mesh locally towards the regions where the error is bigger.
Here, we summarize the basic concepts needed in our derivation, where for a recent
review of the fundamental concepts underlying adaptive finite element methods we refer
to [Nochetto et al., 2009; Nochetto and Veeser, 2012] and reference therein. Following the

72



5.5. Adaptivity

Ω̂

(a) Bubble basis p+ 1 = 2 associated with an
univariate knot vector Ξ = [0 0 0 1 1 2 2 3 3 3] in
each parametric direction.

Ω̂

(b) Bubble basis p + 1 = 3 associ-
ated with an univariate knot vector Ξ =
[0 0 0 0 1 1 1 2 2 2 3 3 3 3] in each parametric di-
rection.

Figure 5.1 – Example of construction of C0 bubble functions on a trimmed parametric
domain as tensor product of univariate functions for the cases p + 1 = 2, 3. The
corresponding space is suitable for the error estimation of the solution of second-order
PDEs. We remark that we tackle trimming at integration level by reparametrizing those
elements that are cut.

notation in [Buffa and Giannelli, 2017], we split an adaptive algorithm into the following
main four steps:

SOLVE ESTIMATE MARK REFINE

We have already reviewed how to obtain an approximate solution and a suitable error
estimator for the problem at hand. Let us briefly characterize the remaining steps in the
following.

5.5.1 Mark and refine

Following the standard procedure in adaptivity, once the element-wise error ηK has been
computed for all elements of the (trimmed) hierarchical mesh T , we mark elements for
refinement. Several strategies have been proposed in the literature, e.g. see [Babuška
and Rheinboldt, 1978; Johnson, 1990], where the predominant ones are:
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Ω̂

(a) Bubble basis p = 4 associated
with an univariate knot vector
Ξ = [0 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 3] in each
parametric direction.

Ω̂

(b) Bubble basis p = 4 with boundary functions,
associated with an univariate knot vector Ξ =
[0 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 3] in each parametric
direction.

Ω̂

(c) Bubble basis p = 5 associated
with an univariate knot vector
Ξ = [0 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3]
in each parametric direction.

Ω̂

(d) Bubble basis p = 5 with boundary func-
tions, associated with an univariate knot vector
Ξ = [0 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3] in each
parametric direction..

Figure 5.2 – Example of construction of C1 bubble functions as tensor product of
univariate functions for the case p + 1 = 3, 4, where on the left-side only internal
functions are depicted whereas on the right-side also boundary functions are plotted. The
corresponding space is suitable for the error estimation of the solution of fourth-order
PDEs.

1. Maximum strategy, which given a user-defined threshold γ ∈ (0, 1), marks for
refinement all elements such that:

ηK > γ η̃ , where η̃ = max
K′∈T

ηK′ . (5.35)
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2. Dörfler strategy [Dörfler, 1996], which given a user-defined parameter γ ∈ (0, 1),
selects for refinement a set of elementsM⊆ T such that:

ηM ≥ (1− γ)η , (5.36)

where the setM is constructed by taking sequentially the elements with the largest
error contribution until the criterion above is met. This strategy guarantees error
reduction during the adaptive loop.

Unless stated otherwise, in our numerical experiments we use the maximum strategy and
we set γ = 0.5. Once the set of marked elementsM is available, the mesh T needs to be
refined accordingly, see for instance [Morin et al., 2002]. In case of HB and T HB splines,
this step will be discussed further in the following.

5.5.2 Admissible refinement of T

Before actually performing refinement of the corresponding basis, our refine module is
designed to preserve the so-called admissibility (as defined in [Buffa and Giannelli, 2017])
of the hierarchical mesh T between consecutive iterations of the adaptive procedure. Let
us introduce the following definition:

Definition 5.1 ([Buffa et al., 2016]) A mesh T is HB-, respectively T HB-, admis-
sible of class m if the (truncated) hierarchical basis functions in HB(T ) (respectively
T HB(T )) which take non-zero value over any element K ∈ T belong to at most m
consecutive levels.

This step guarantees to keep the number of basis functions acting on any element of the
mesh bounded. Indeed, this bound states that the number of non-zero splines acting on
any element is smaller than m ∏d̂

i=1(p+ 1). From a practical point of view, this means
that we prevent the interaction between functions belonging to very fine and very coarse
levels. From an algorithmic standpoint, this property is guaranteed by the following
refinement module. Let us first define the notion of support extension for hierarchical
meshes.

Definition 5.2 ([Bracco et al., 2018]) The multilevel support extension S(T , k) of
an element K ∈ T `A with respect to level k, with 0 ≤ k ≤ `, is defined as:

S(T , k) = {K ′ ∈ T kA : ∃b ∈ Bk, supp(b) ∩K ′ 6= ∅ ∧ supp(b) ∩K 6= ∅} . (5.37)

Remark 5.7 We highlight that in the trimmed case, this definition should be modified
by taking suppΩ(·) instead of supp(·). For the sake of simplicity, we derive the algorithm
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using the non-trimmed notation, but all results readily apply to the trimmed case by
employing the corresponding proper modifications discussed in Section 4.3.3.

Then, let us also introduce, for ` = 0, . . . , N − 1, the following sub-domains:

ω`HB =
⋃{

K̄ : K ∈ T `A ∧ S(T , `− 1) ⊆ Ω`
}

(5.38a)

ω`T HB =
⋃{

K̄ : K ∈ T `A ∧ S(T , `) ⊆ Ω`
}
. (5.38b)

With these additional sub-domains we can introduce a new definition of admissibility.

Definition 5.3 ([Bracco et al., 2018]) A mesh T is strictly HB-, respectively T HB-,
admissible of class m if it holds that:

Ω` ⊆ ω`−m+1
HB , Ω` ⊆ ω`−m+1

T HB , respectively , (5.39)

for ` = m,m+ 1, . . . , N − 1.

Lastly, we need a definition of neighborhood tailored to hierarchical splines, which reads:

Definition 5.4 ([Bracco et al., 2018]) Given an element K ∈ T ∩ T `A, its HB- and
T HB-neighborhoods with respect to m are respectively defined as:

NHB(T ,K,m) =
{
K ′ ∈ T `−m+1

A : K ′ ∈ S(K, `−m+ 1)
}
, (5.40a)

NT HB(T ,K,m) =
{
K ′ ∈ T `−m+1

A : ∃K ′′ ∈ S(K, `−m+ 2),K ′′ ⊆ K ′
}
, (5.40b)

when `−m+ 1 ≥ 0, and NHB(T ,K,m) = NT HB(T ,K,m) = ∅ for `−m+ 1 < 0.

With these definitions at hand, we summarize in Algorithms 4 and 5 a procedure
that, given as input a strictly admissible hierarchical mesh of class m and the set of
marked elementsM, preserves the (strict) admissibility of the latter during refinement.

Algorithm 4
T = REFINE(T ,M,m)
1: for each element K ∈ T ∩M do
2: T = REFINE_RECURSIVE(T ,K,m)
3: end for
4: Return T

Algorithm 5
T = REFINE_RECURSIVE(T ,K,m)
1: for each element K′ ∈ N (T ,K,m) do
2: T = REFINE_RECURSIVE(T ,K′,m)
3: end for
4: if K has not been subdivided then
5: Subdivide K and update T by replacing
K with its children

6: end if

In our numerical examples, we will set the class of admissibility m to be m = p and
m = p − 1 for second-order and fourth-order PDEs, respectively. We refer the reader
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to [Buffa et al., 2016; Buffa and Giannelli, 2017; Bracco et al., 2018, 2019] for a detailed
mathematical derivation of the concept of admissibility and its application to adaptive
refinement.

The treatment of isolated elements

Finally, we highlight that if we employ a standard mark-by-element strategy, we cannot
ensure an improvement of the solution space for every step of the feedback loop since, to
achieve that, we should either mark p neighbors in each parametric direction or employ
a mark-by-function strategy [Buffa and Garau, 2018]. In particular, isolated refined
elements do not improve the solution space Z̃p+1

h (they do not add any additional degree
of freedom) but only the associated numerical integration is refined. To mitigate this,
we slightly modify the maximum strategy marking algorithm such that once an element
K of level ` is marked for refinement, the algorithm also marks all the direct neighbors
of K ∈ T lA. This approach alleviates the issue while maintaining the locality of the
refinement and providing a classical element-wise point of view.

5.6 Numerical results

We have highlighted in Section 4.5 some of the benefits of using local refinement in the
analysis. Here, we show the advantage of using local refinement in combination with an
error indicator to achieve a fully automatic adaptive loop. Indeed, in the following, we
assess the performance of the proposed bubble error estimator in steering an adaptive
simulation on a wide range of second- and fourth-order elliptic PDEs , namely the Poisson
equation, linear elasticity and Kirchhoff plates and Kirchhoff-Love shells, respectively. For
our benchmarks, we consider both non-trimmed and trimmed geometries. Additionally,
we demonstrate the applicability of our method both for problems which exhibit smooth
and singular solutions. In all cases presented here, the proposed error estimator shows
excellent performance in steering the adaptive simulation, yielding the expected optimal
rates of convergence in the asymptotic regime. Furthermore, the estimator provides an
excellent approximation of the true error.

Remark 5.8 In the trimmed case, to reduce the detrimental effects of trimming on the
conditioning number, we apply a simple diagonal scaling, which can be seen as a Jacobi
preconditioner. Specifically, we apply the preconditioner symmetrically:

DKDx̃ = Df with ũ = Dx̃ , (5.41)

where D denotes the diagonal scaling preconditioner given by:

D = diag
( 1√

K11
,

1√
K22

, . . . ,
1√
Knn

)
, (5.42)
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where Kii , i = 1, . . . , n represent the diagonal entries of the stiffness matrix. This seems
to suffice in all the following numerical experiments. However, we are aware of the
potential limitations of this choice of preconditioner, especially when extremely small
and slender trimmed elements are present. Several possible remedies have been proposed
in the literature, for instance the ghost penalty method [Burman and Hansbo, 2012;
Burman et al., 2015], the extended B-spline method [Höllig et al., 2012; Marussig et al.,
2017, 2018], CutIGA [Elfverson et al., 2018] and preconditioners tailored to trimmed
isogeometric analysis, e.g. [de Prenter et al., 2017; de Prenter et al., 2020a]. For a
more detailed discussion of the conditioning issues stemming from trimming we refer
to [Marussig and Hughes, 2018; de Prenter, 2019] and references therein.

5.6.1 The Poisson problem

We start our numerical investigation from the well-known Poisson equation. Let us
briefly recall the strong form of the problem at hand, which describes the equilibrium of
a temperature-like scalar field u as:

−∆u = f̃ in Ω
u = ũ on ΓD (5.43)

∂u

∂n
= g̃ on ΓN ,

where ΓD ⊂ ∂Ω ∩ ∂Ω0 and ΓN denote the Dirichlet and Neumann part of the boundary
∂Ω, respectively, and it holds ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅. Additionally, f̃ ∈ L2(Ω)
represents the given source term, and ũ ∈ H 1

2 (ΓD) and g̃ ∈ H− 1
2 (ΓN ) the prescribed

Dirichlet and Neumann data, respectively. Following the standard Galerkin derivation,
we can write the discrete weak formulation of Equation (5.43) as follows: find uh ∈ Ṽh
such that

a(uh, vh) = F (vh) ∀vh ∈ Ṽh . (5.44)

The bilinear form a(·, ·) and the linear functional F (·) can be expanded as:

a(uh, vh) =
∫

Ω
∇vh · ∇uh dΩ (5.45a)

F (vh) =
∫

Ω
f̃vh dΩ +

∫

ΓN
g̃ vh dΓ , (5.45b)

respectively. We remark that this problem requires C0-continuity across elements for its
well-posedeness.
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x

y

trimming
curve

ΓN

Ω

ΓD

ΓD ΓD

ε

Figure 5.3 – Problem description for the Poisson singular problem.

Singular problem, line singularity

In this problem, we consider a trimmed computational domain defined by Ω = [0, 1]×
[0, 3

4 + ε], as depicted in Figure 5.3, where ε = 10−5 is chosen. As exact solution, we take
a singular function of the form u = xαyα with α = 2.4. The imposed boundary conditions
are also given in Figure 5.3 and are computed such that they fulfill the exact solution,
as well as the given source term f̃ . We remark that with this choice of parameter it
holds u ∈ H2(Ω) \H3(Ω). From the classical a priori error analysis results presented
in Section 2.5, it is known that this reduction in regularity hinders the rate of convergence
achievable with uniform refinement of the mesh. For our choice of α, optimal rates of
convergence are achieved in case of uniform refinement only for bi-quadratic B-splines
whereas higher degree discretizations suffer from the lack of regularity, see Figure 5.4a.
As shown in Figure 5.4b, it is clear that optimal rates of convergence are recovered for
all degrees p = 2, 3, 4 with an adaptive simulation driven by the proposed estimator.
Moreover, this example highlights the benefits of using an adaptive strategy in terms of
accuracy per degree-of-freedom.

5.6.2 Linear elasticity

Next, we apply the error estimator to the problem of linear elasticity, which we reviewed
in Section 2.1. Analogously to the Poisson problem, global C0-continuity of the basis is
required and, consequently, this constraint is also built into the bubble space Z̃p+1

h .

Infinite plate with a hole

In this example, we analyze the well-known benchmark of an infinite plate with a circular
hole. The geometry and problem setup are depicted in Figure 5.5, where thanks to
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Figure 5.4 – Study of the convergence of the error measured in the H1-norm and the
bubble estimator for the Poisson singular problem. Comparison of uniform and adaptive
refinements.

symmetry only one quarter of the plate is modeled. In particular, we use a Cartesian
mesh trimmed by a curve corresponding to a quarter of a circle (light grey grid and
dashed, red curve in Figure 5.5, respectively). We recall that the displacement u is given
as a function of the polar coordinates (r, θ) and reads [Gould, 1999]:

u(r, θ) =
(
ux
uy

)
= TxR

8µ



(
r
R(κ+ 1) cos(θ) + 2Rr ((1 + κ) cos(θ) + cos(3θ))− 2R3

r3 cos(3θ)
)

(
r
R(κ− 3) sin(θ) + 2Rr ((1− κ) sin(θ) + sin(3θ))− 2R3

r3 sin(3θ)
)

 ,

(5.46)

where κ = 3− 4ν is the so-called Kolosov constant for the plane strain case, µ represents
the second Lamè parameter, Tx is the exact traction applied at infinity and R denotes
the radius of the hole. The solution u is smooth and therefore we expect optimal
rates of convergence for both uniform and adaptive refinements. However, due to the
presence of a hole, a stress concentration appears in the proximity of the bottom left
corner. This feature is correctly detected and resolved by the error estimator, which
yields a faster convergence in the pre-asymptotic regime of the adaptive simulation, as
shown in Figure 5.6. Finally, in Figure 5.7, the hierarchical meshes obtained at various
iterations k = 4, 8, 11, 14 of the adaptive loop are presented, where we remark that, in
the visualization, the triangular elements close to the trimming curve are those provided
by the re-parametrization tool for integration [Antolin et al., 2019]. Here, we notice how
the refinement is at first steered around the hole where the stress concentration is located
and then it gradually propagates into the rest of the computational domain.
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Figure 5.5 – Problem setup and boundary conditions for the plate with a hole benchmark.
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(b) Bubbles estimator.

Figure 5.6 – Study of the convergence of the error measured in the energy norm and
the bubble estimator for the plate with a hole. Comparison of uniform and adaptive
refinements.

5.6.3 Kirchhoff Plates

In the next examples, we assess the behavior of the bubble estimator in the scope of
adaptivity for Kirchhoff plates. For this problem, the bubble space Z̃p+1

h is built such
that the C1-continuity requirement is met.
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(a) Mesh at iteration k = 4. (b) Mesh at iteration k = 8.

(c) Mesh at iteration k = 11. (d) Mesh at iteration k = 14.

Figure 5.7 – Mesh and stress σxx at different steps of the adaptive loop driven by the
bubble error estimator for the plate with a hole benchmark, solution obtained using
T HB-splines of degree p = 2. Results obtained by setting the maximum strategy marking
parameter to γ = 0.55.

Smooth solution on a square plate

In the first plate example, we analyzed the behavior of the bubble error estimator
compared to a classical residual-based type error estimator. We define the computational
domain to be the unit square Ω = [0, 1]2 and we impose the following homogeneous
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(a) Geometry description of the problem.
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(b) Exact solution uex = sin(2πx) sin(2πy).

Figure 5.8 – Geometry, physical parameters and exact solution contour of the square
plate example.

boundary conditions:

u = 0 on ∂Ω , (5.47a)
νD∆u+ (1− ν)Dn · (∇∇u)n = 0 on ∂Ω . (5.47b)

Additionally, the applied load g is constructed such that it fulfills the following manufac-
tured solution uex = sin(2πx) sin(2πy). Namely, g is given by:

g = 64π4 sin(2πx) sin(2πy) . (5.48)

The geometry of the structure, physical parameters and the exact solution are depicted
in Figure 5.8, where the physical constants are chosen such that the flexural rigidity D is
unitary. For the sake of comparison, in the case of Kirchhoff plates only, we drive the
adaptive method by means of both the residual-based and the bubble-based estimators.
To test our implementation, we perform at first uniform refinement for different spline
degrees p = 3, 4, 5 and check the convergence rate of the error in the energy norm and
both estimators against the element size h, as depicted in Figure 5.9 for the bubble and
residual-based, respectively. In all the presented cases the optimal asymptotic rates of
convergence are observed, both for the error and the estimator. Furthermore, we remark
that the bubble estimator provides a better approximation of the real error compared to
the residual-based. Finally, we run the same example letting the bubble and residual-
based estimators drive automatically the adaptive simulation. The results are reported
in Figure 5.10, where the error in energy norm and the estimator are plotted against
the square root of the number of dofs. We observe analogous results to the uniform
refinement case, where for p = 3, 4, 5 the expected asymptotic rates of convergence are
achieved. Also in the adaptive example, the bubble estimator provides a better estimate
of the real error compared to a classical residual-based estimator, yielding an effectivity
index much closer to the optimal value, as shown in Figure 5.11. This statement holds in
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(b) Residual-based estimator.

Figure 5.9 – Study of the convergence of the error measured in the H2 semi-norm, bubble
and residual-based estimators against the mesh size h for different p on a smooth plate
problem (uex = sin(2πx) sin(2πy)). Uniform refinement.

an analogous way for all the presented examples and verifies numerically the efficiency of
the proposed method.

Smooth solution on a rhomboid plate

In the following example we take as computational domain Ω the rhomboid plate described
in Figure 5.12a. The boundary conditions on the deflections and moments (defined on the
entire boundary ∂Ω) and the applied load are manufactured such that the exact solution
uex reads uex = sin(πx) sin(πy). In Figure 5.12b a comparison of the total CPU time
needed to compute the bubble and residual estimators, respectively, is presented. We note
that with our approach we generally gain around one order of magnitude compared to a
classical residual-based estimator, independently of the degree p. The obtained results
in the adaptive case are depicted in Figure 5.13, where we compare the convergence
of the true error and the estimator against the square root of the number of dofs for
the bubble and the residual-based estimators, respectively. Similarly to the previous
example, for different degrees of the discretization p = 3, 4, 5 the expected asymptotic
rates of convergence are attained by both estimators. However, we highlight again that
the bubble indicator performs much better in predicting the true error. This example is
meant to test the robustness of the proposed estimator to element distortion.
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Figure 5.10 – Study of the convergence of the error measured in the H2 semi-norm,
bubble and residual-based estimators against the square root of the number of dofs for
different p on a smooth plate problem (uex = sin(2πx) sin(2πy)). Adaptive refinement.
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Figure 5.11 – Effectivity index θ for the bubble and residual-based estimators against the
square root of the dofs for different p = 3, 4, 5 on the plate problem with smooth solution.
Notice the difference of two orders of magnitude in the scale used for the y-axis.
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Figure 5.12 – Geometry and physical parameters of the rhomboid plate example and
CPU time spent computing the bubble and residual estimators for different discretization
degrees p = 3, 4, 5. We measure the time by using the Matlab built-in commands tic
and toc.
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Figure 5.13 – Study of the convergence of the error measured in the H2 semi-norm,
bubble and residual-based estimators against the square root of the number of dofs for
different p on the rhomboid plate problem (uex = sin(πx) sin(πy)). Adaptive refinement
based on the maximum strategy (γ = 0.5).
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(b) Exact solution uex = xαyβ with
α = β = 2.8.

Figure 5.14 – Geometry, physical parameters and exact solution contour of the singular
square plate example.

Singular solution on a square plate

In the next example, we consider again the computational domain to be a unit square
Ω = [0, 1]2, see Figure 5.14. We set again the physical parameters and the thickness
of the plate such that D = 1 [Pa ·m3]. However, this time the manufactured solution
uex = xαyβ with α = β = 2.8 is constructed such that a singularity is present along the
bottom and the left edges of the plate. In particular, it holds uex ∈ H3(Ω) \H4(Ω). The
applied load g is again constructed such that it fulfills the manufactured solution uex
and it is given as follows:

g =α(α− 1)(α− 2)(α− 3)x(α−4)yβ + β(β − 1)(β − 2)(β − 3)xαy(β−4)+

2
[
αβ(α− 1)(β − 1)x(α−2)y(β−2)

]
. (5.49)

The boundary conditions are also constructed from the exact solution as:

u = uex on ∂Ω , (5.50a)
νD∆u+ (1− ν)Dn · (∇∇u)n = Mex on ∂Ω , (5.50b)

where uex and Mex denote the exact deflection and bending moment, respectively.
Similarly to the singular example presented in the scope of the Poisson problem, the
reduction in regularity of the solution limits the rate of convergence in case of uniform
refinement, even for increasing p. This effect can be clearly seen in Figure 5.15 for
p = 3, 4. Figure 5.15 also shows the results for an adaptive simulation driven by the
bubble estimator, where optimal rates of convergence are recovered by our method and
a significant increase in accuracy per degree-of-freedom is achieved. Additionally, the
obtained mesh at different iterations of the adaptive algorithm are depicted in Figure 5.16,
where it can be seen that the singularities are accurately detected and resolved by the
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estimator.
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Figure 5.15 – Study of the convergence of the error measured in the H2 semi-norm
and bubbles estimator against the square root of the number of dofs for different p
(and associated pb for the bubble space) on the square plate problem with singularity
(uex = xαyβ with α = β = 2.8).

Point load on a rectangular plate

In this example, we test the performance of the proposed error estimator when a point
load is applied as an external force. We perform again our computation on a unit square
Ω = [0, 1]2 and we suppose that the plate is simply supported on the entire boundary
∂Ω, meaning that the deflection and bending moment vanish. Additionally, we apply the
external point load at the center of the structure. There exists an analytical solution for
the deflection under the load, given as an infinite series [Reddy, 2006]:

uex = 4gL2

Dπ4

∞∑

n=1,3,...

∞∑

m=1,3,...

1
(m2 + n2)2 , (5.51)

where g represents the applied external force, L is the length of the plate and D denotes
its flexural stiffness. We set g = −1 [N ], L = 1 [m] and the physical parameters such
that D = 1 [Pa · m3]. Computing (5.51) with an adequate number of terms for the
double Fourier series yields a reference value of uex = −0.011600839735872 . . . [m] for the
deflection. In Figure 5.17a the convergence of the normalized deflection is plotted against
the number of degrees-of-freedom, where the former is defined as |1− uh/uex|. Moreover,
the obtained solution and hierarchical mesh obtained after k = 9 steps of the adaptive
algorithm are depicted in Figure 5.17b. Here, the advantages of using an adaptive scheme
are clearly highlighted, in terms of efficiency and accuracy per degree-of-freedom. For
instance, at around 2500 dofs the adaptive strategy yields a deflection which is already
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(a) Deflection uh and mesh at
iteration k = 3.

(b) Deflection uh and mesh at
iteration k = 5.

(c) Deflection uh and mesh at
iteration k = 8.

(d) Deflection uh and mesh at
iteration k = 10.

(e) Deflection uh and mesh at iteration k = 14 and zoom on the bottom right corner.

Figure 5.16 – Mesh and solution contours at different steps k = 3, 5, 8, 10, 14 of the
adaptive loop driven by the bubble error estimator for the square plate with singular
solution. HB-splines of degree p = 3.
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two orders of magnitude more accurate compare to the results obtained by uniform
refinement.

Remark 5.9 (Regularization of the Dirac delta) It is worth noting that a point
load is modeled as a Dirac delta, which rigorously speaking is a distribution. Therefore,
for the evaluation of the residual in a strong sense, needed in the residual-based estimator,
we cannot directly use it inside our computations but instead we must regularize it. In
our example, this is achieved with a steep Gaussian function. A considerable amount of
literature has been written on how to regularize and correctly integrate the Dirac delta
according to the corresponding application (e.g. we refer to [Waldén, 1999; Tornberg and
Engquist, 2003, 2004; Engquist et al., 2005] and references therein) and although our
approach might not be optimal we feel it suits the purpose of our test case while at the
same time it proves to be easily implementable.
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(a) Study of the convergence of the displacement
under a point load on the square plate example,
adaptive refinement vs. uniform refinement.

(b) Mesh at iteration k = 9 and corresponding
solution obtained by adaptive refinement driven
by the bubble estimator.

Figure 5.17 – Convergence study and numerical solution for the square plate problem
subjected to a point load applied at the center of the plate. HB-splines of degree p = 3.

5.6.4 Kirchhoff-Love shell

In the next series of benchmarks, we test the performance of the proposed method in the
context of trimmed Kirchhoff-Love shells. For this problem, the bubble space Z̃p+1

h must
comply to the C1 requirement. We remark that by solving the residual equation in a
weak sense in a suitable space we bypass completely the computational burden stemming
from the evaluation of higher order derivatives and their jumps across edges, which would
be required in classical residual-based error indicators. This is particular advantageous
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Figure 5.18 – Geometry description and physical parameters of the pinned roof example
(only part of the load is depicted for visualization purposes).

for Kirchhoff-Love shells, where the terms associated with higher derivatives involve the
cumbersome and error-prone task of taking (nested) covariant derivatives of quantities of
interest, see for instance [Maurin et al., 2018; Benzaken et al., 2021].

Gravity load on a pinned roof

In this example, we study the behavior of a structure subjected to its self-weight where
pinned supports are applied to the entire boundary. Specifically, we fix the z-displacement
on the entire ∂Ω and the x- and y-displacement on the curved and straight edges,
respectively. The geometry, boundary conditions and physical parameters are given
in Figure 5.18, where the problem setup (except for the boundary conditions) is taken
from the classical Scordelis-Lo benchmark, e.g. see [Timoshenko and Woinowsky-Krieger,
1959; Belytschko et al., 1985]. The boundary conditions are modified in order to mitigate
the numerical issues stemming from the computation of the reference solution and
corresponding error, since the original problem definition of the Scordelis-Lo roof is
not well-posed, see for instance [Kiendl et al., 2009]. Moreover, the conditioning of
the corresponding linear system causes additional numerical instabilities and loss of
significant digits [Benzaken et al., 2021]. To the best of the authors’ knowledge, there
is no closed-form global solution available in the literature for the problem at hand.
Therefore, all the convergence studies presented in the following assess the behavior
against a reference solution uref

h , which was computed using B-splines of degree p = 8
on a fine uniform mesh with approximately 200 000 degrees-of-freedom. We define this
quantity as:

||ẽ||E(Ω) =
√
a(uref

h − uh,uref
h − uh) ∼ ||u− uh||E(Ω) , (5.52)
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(b) Adaptive refinement.

Figure 5.19 – Study of the convergence of the error in the energy norm for the bubble
estimator employing hierarchical B-splines of degree p = 3, 4, pinned roof example.

where uref
h denotes the reference solution. We highlight that the numerical integration

of ẽ is performed on the finer mesh to properly capture the error. In Figure 5.19 the
convergence behavior of ||ẽ|| is depicted for the case of uniform refinement and adaptive
refinement driven by the bubble estimator, against the number of dofs. We notice
that since the true solution of the problem is regular enough, we obtained the optimal
asymptotic rate of convergence, both for the error in energy norm and the estimator. This
example is thought as a first assessment of the performance of the proposed estimator on
shell geometries.

Remark 5.10 In standard shell benchmarks adopted in the literature, convergence is
usually tested against a reference value for the displacement in some points of interest of
the structure. While this information is relevant in many engineering applications, we
feel that a deeper look into the behavior of derived global quantities, like for instance the
error in energy norm used here, can be useful and mathematically more rigorous.

Point load on the Scordelis-Lo roof

The next example is meant to demonstrate once again the higher accuracy per-degree-of-
freedom achievable using local refinement. The geometrical setup, physical parameters
and boundary conditions are taken as defined in the Scordelis-Lo benchmark and are
given in Figure 5.20a, where the rigid diaphragms at both ends of the cylinder hinder
the displacement in the yz-plane. However, we change the external prescribed loading.
Specifically, we apply a point load of magnitude 105 [N ] in the middle of the structure,
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directed in the negative vertical direction. The convergence behavior of the displacement
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E = 4.32 · 108 [Pa], ν = 0 [−]
thickness t = 0.25 [m]
point load fz = −105 [N ]

(a) Geometry description and physical param-
eters of the Scordelis-Lo roof subjected to a
point load.
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Figure 5.20 – Problem setup and convergence plot for the Scordelis-Lo roof example
under a point load.

under the point load is depicted in Figure 5.20b, where a converged value of uref
h =

[0 , 0 ,−0.206794699852788 . . .]> [m] has been obtained with an overkill solution, which
was computed using B-splines of degree p = 4 on a fine uniform mesh with approximately
200 000 degrees-of-freedom. It can be seen that the solution obtained with an adaptive
simulation based on the bubble estimator is several orders of magnitude more accurate
compared to performing uniform refinement of the patch, for an equal number of dofs.
Finally, in Figure 5.21, the obtained displacement in the z-direction, hierarchical mesh
and Von Mises stress distribution are presented at different steps of the adaptive loop
where we remark that once again the estimator properly captures and resolves the sharp
features of the solution.

Trimmed Scordelis-Lo roof with an elliptic hole

In this numerical example, we take again the geometry and material properties as defined
in the well-known Scordelis-Lo roof benchmark. Again, we impose rigid diaphragm
boundary conditions at both curved ends of the cylindrical structure, where we hinder
the displacement in the xz-plane as defined by the coordinate system of Figure 5.22.
Then, we trim out a circular hole in the parameter space of the surface, as depicted
in Figure 5.22. We recall that, analogously to the original setup, the structure is subjected
to its self-weight and we set its value to fz = −90 [N/m2]. To the best of the authors’
knowledge there is no analytical solution in closed form for this problem, therefore we
perform a convergence study of the error measured in the energy norm against a reference
solution obtained with bi-quintic B-splines defined on a uniform mesh with 62 456 active
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(a) Solution uz and mesh at it-
eration k = 3.

(b) Solution uz and mesh at it-
eration k = 5.

(c) Solution uz and mesh at it-
eration k = 9.

(d) Von Mises at iteration k = 3. (e) Von Mises at iteration k = 5. (f) Von Mises at iteration k = 9.

(g) Solution uz and mesh at iteration k = 11.

Figure 5.21 – Mesh, solution uz and Von Mises stress at different steps of the adaptive
loop driven by the bubble error estimator for the Scordelis-Lo roof subjected to a point
load, solution obtained employing hierarchical B-splines of degree p = 3.
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elements. The results are depicted in Figure 5.23 for THB-splines of degree p = 3, 4,
where uniform and adaptive refinement are analyzed. In both cases, we observe optimal
rates of convergence of the error and a similar level of accuracy between the uniform
and the adaptive strategy. This is due to the fact that this problem exhibits a smooth
solution.
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E = 4.32 · 108 [Pa]
ν = 0.0 [−], t = 0.25 [m]
fz = −90 [N/m2]

f

Figure 5.22 – Geometry and physical parameters of the Scordelis-Lo roof with an elliptic
hole (only part of the gravity load is shown for visualization purposes).
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(a) Uniform refinement.
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(b) Adaptive refinement.

Figure 5.23 – Study of the convergence of the (approximated) error measured in the
energy norm and the bubble estimator for the Scordelis-Lo roof with a hole. Comparison
of uniform and adaptive refinements.
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Trimmed Scordelis-Lo roof with holes under a point load

In this numerical test, we use again the same geometrical and material properties as
defined in the Scordelis-Lo roof benchmark. This time, we trim the structure with four
holes defined in the parametric space of the surface as circles, as depicted in Figure 5.24.
As in the example above, both curved ends are supported by rigid diaphragms boundary
conditions (the displacement in the xz-plane is set to zero, with respect to the coordinate
system defined in Figure 5.24). Additionally, the roof is subjected to a point load in
the vertical direction, defined as fz = −105 [N ], applied at the center of the structure.
A reference displacement urefz at the location under the point load has been obtained
with a fine, uniformly refined mesh of bi-cubic B-splines with 53 216 active elements.
In Figure 5.25g the convergence results for the uniform and the adaptive refinement
are compared, where on the y−axis we plot the quantity |1− uz/urefz |, evaluated at the
center of the structure. We notice that the adaptive strategy achieves a solution that is
several order of magnitudes more accurate than uniform refinement for the same number
of degrees of freedom. This result confirms the superior efficiency of our error-driven
strategy in the presence of singularities. Lastly, in Figures 5.25a to 5.25f we present
the numerical solution uz and corresponding Von Mises stress at different iterations
k = 3, 6, 8 of the adaptive simulation. Remarkably, the refinement is driven not only in
the region where the load is applied but also in those areas around the holes where stress
concentrations are expected.
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r r
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E = 4.32 · 108 [Pa]
ν = 0.0 [−], t = 0.25 [m]
fz = −105 [N ]

Figure 5.24 – Geometry and physical parameters of the Scordelis-Lo roof with four holes.

B-pillar of a car

In the last example of this chapter, we model the B-pillar of a car in the commercial
CAD software Rhinoceros.The geometry (courtesy of Honda R&D Co.1) is defined
as a trimmed, single-patch B-spline surface of degree p = 3 composed of 30 and 180
knot spans in the two parametric directions, respectively. The structure is considered

1https://global.honda
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(a) Mesh and uz at iteration
k = 3.

(b) Mesh and uz at iteration
k = 6.

(c) Mesh and uz at iteration
k = 8.

(d) Von Mises at iteration k = 3. (e) Von Mises at iteration k = 6. (f) Von Mises at iteration k = 8.
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(g) Convergence of the normalized quantity |1− uz/uref
z |.

Figure 5.25 – Mesh, solution and Von Mises stress at different steps k = 3, 6, 8 of the
adaptive loop driven by the bubble error estimator for the Scordelis-Lo roof with holes
subjected to a point load, solution obtained employing T HB-splines of degree p = 3
(a-f). Convergence plot of the normalized displacement at the center of the structure.
Comparison of uniform and adaptive refinements (g).
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fixed on the entire external boundary (all displacement components are set to zero) and
is loaded with a circular, uniformly distributed force of radius r = 0.01 [m] in the y-
direction, see Figure 5.26a. This example demonstrates the applicability of our approach
to the adaptive analysis of complex shell structures of industrial relevance, modeled
and exported directly from a commercial CAD software. In Figures 5.26b to 5.26f the
numerical solution at several steps k = 5, 7, 9, 11 of the adaptive loop and the Von Mises
stress obtained with truncated hierarchical B-splines of degree p = 3 are depicted. It
is worth noting how the estimator correctly refines the circular area around the load,
particularly at the boundary of the circle where a sharp change in boundary conditions is
present. Furthermore, it also detects and refines stress concentrations in the proximity of
the trimmed holes and regions of high curvature of the geometry, where higher bending
stresses are expected.
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(a) Problem setup. (b) Mesh and solution uy at
iteration k = 5.

(c) Mesh and solution uy at
iteration k = 7.

(d) Mesh and solution uy at
iteration k = 9.

(e) Mesh and solution uy at iteration
k = 11.

(f) Von Mises at iteration
k = 11.

Figure 5.26 – Geometry of the B-pillar and mesh, solution and Von Mises stress at
different steps of the adaptive loop driven by the bubble error estimator for the B-pillar
example, solution obtained employing truncated hierarchical B-splines of degree p = 3.
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6 Coupling of multi-patch Kirchhoff
plates and Kirchhoff-Love shells

In the previous chapters we have studied a variety of numerical examples defined on a
single isogeometric patch. Although the flexibility of B-splines combined with trimming
allows for the geometrical description and analysis of relatively complex geometries,
this framework is not powerful enough to handle arbitrary structures of engineering
relevance. Specifically, structures used in the industry are typically described by multiple,
non-conforming, trimmed patches which, in turn, calls for a suitable coupling strategy to
achieve the required C1-continuity in the context of Kirchhoff plates and Kirchhoff-Love
shells. Similarly to the nomenclature introduced in [Herrema et al., 2019], we distinguish
between C0- or displacement continuity and C1- or rotational continuity. The latter is
not restricted to smooth interfaces but will also refer in the following to patches meeting
at an arbitrary angle, which is preserved during deformation. This scenario is commonly
encountered in complex engineering applications. Analogously to the case of boundary
conditions presented in Section 4.5, three methods are predominantly employed to achieve
displacement and rotational continuity in a weak sense and they are briefly outlined in
the following. Mortar-type methods have been presented for patch coupling in [Horger
et al., 2019; Hirschler et al., 2019] in the scope of Kirchhoff plates and Kirchhoff-Love
shells, respectively, and have been generalized to arbitrary smoothness in [Dittmann et al.,
2019]. It is well-known that mortar methods introduce additional artificial unknowns
into the underlying system of equations to enforce the corresponding constraints, where
the choice of discretization space for these Lagrange multipliers plays a pivotal role for
the robustness of the method. Specifically, the inf-sup condition turns out to be crucial
for developing stable algorithms, see [Boffi et al., 2013] for further details. Another
widespread coupling technique relies on Nitsche’s method, where the reader is referred
to [Guo and Ruess, 2015; Nguyen-Thanh et al., 2017; Guo et al., 2018]. This family
of methods is variationally consistent and, generally speaking, it is more robust with
respect to the choice of parameters compared to classical penalty approaches. However,
Nitsche-type algorithms are computationally less favorable as their implementation is
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problem-dependent and requires the computation of higher-order derivatives. In the case
of shells, we highlight that these derivatives are defined on a manifold, which significantly
increases the complexity. Lastly, penalty-like methods are widely spread throughout
numerous areas of engineering due to their versatility and ease of implementation. A
variant thereof named bending strip was firstly studied in [Kiendl et al., 2010] in the scope
of Kirchhoff-Love shells coupled along matching interfaces. Several other penalty-like
approaches able to treat non-conforming discretization have followed, where the reader
is referred to [Breitenberger et al., 2015; Duong et al., 2017]. For a comprehensive
comparison of the performance of these three methodologies we refer to [Apostolatos,
2019]. In this chapter, we extend our notation to the case of multiple isogeometric
patches. Then, we introduce a novel penalty-like coupling strategy for Kirchhoff plates
and Kirchhoff-Love shells based on the L2-projection of the coupling terms onto a
suitable degree-reduces space defined on the corresponding interface. This choice yields
an inherently locking-free strategy. Moreover, the penalty parameters are automatically
defined by the problem setup, namely material properties, geometry of the structure and
underlying discretization and they are suitably built to retain the higher-order accuracy
of B-splines. Then, for conforming Kirchhoff plates, we address the ill-conditioning issues
stemming from our choice of super-penalty parameters. Specifically, we adapt the block
preconditioner based on an inexact Schur Complement Reduction (SCR) studied in [Liu
and Marsden, 2019; Liu et al., 2020; Pegolotti et al., 2021] and we combine it with
a preconditioner tailored to the isogeometric discretization of Kirchhoff plates, where
we exploit the tensor product structure of B-splines and an efficient algorithm for the
solution of the arising Sylvester-like system; for a detailed derivation we refer to [Sangalli
and Tani, 2016; Montardini et al., 2018b; Loli et al., 2019]. Lastly, we verify numerically
the robustness of the proposed methodology on a series of non-trimmed and trimmed
examples and we compare it with other penalty-like methods.

6.1 The projected super-penalty method

In this section, motivated by the work presented in [Brivadis et al., 2015] in the context of
isogeometric mortar methods, we devise a coupling strategy based on the L2-projection
of the displacement and rotational coupling terms at the interface. Typically, they are
defined in terms of the degree p of the solution space related to the corresponding patch,
onto a reduced space of B-splines of degree p−2 defined on the so-called active side of the
interface. This procedure mitigates the locking phenomena due to the over-constraint of
the solution space in the proximity of the corresponding coupling interface. This type of
locking is analogous to what we observed for the weak imposition of boundary conditions.
We remark that our method shares some similarities with the penalty coupling proposed
in [Leonetti et al., 2020].

102



6.1. The projected super-penalty method

6.1.1 The multi-patch setting

Following closely the notation introduced in [Brivadis et al., 2015], let us split the
computational domain Ω into N non-overlapping subdomains Ωi such that:

Ω =
N⋃

i=1
Ωi , where Ωi ∩ Ωj = ∅ for i 6= j . (6.1)

In CAD terminology, Ω is a B-Rep, i.e. a collection of trimmed surfaces endowed with
their topological information. By leveraging the topology, we can then define the interface
γ` between two adjacent trimmed patches Ωm,Ωn, 1 ≤ m,n ≤ N as a common edge
between their faces, see Figure 6.1 for an example on shell structure composed of four
trimmed patches. Note that two surfaces can share more than one edge. For completeness,
in Figure 6.2 we depict an example in the case of two conforming plates. Then, the
skeleton Γ is defined as the union of all common interfaces and reads:

Γ =
L⋃

`=1
γ` , (6.2)

where L denotes the total number of interfaces and ` is an ordered index such that
1 ≤ ` ≤ L.

Remark 6.1 By a slight abuse of notation, γ` can represent both a trimmed or a non-
trimmed coupling interface.

Further, let us introduce the cross-points cs as the intersection of at least three shared
edges and let us label them with an ordered index cs, s = 1, . . . , S, see again Figure 6.1
for an illustration.

Remark 6.2 It is well-known that CAD softwares provide only an approximation of the
true common edge γ` which depends on the chosen tolerance. For the sake of simplicity,
in our derivation we assume exactness, or equivalently watertightness, of the geometric
representation. From a computational standpoint, if the B-Rep is not watertight we
perform a closest point projection of the relevant quantities, such as quadrature points
and interface knots, onto the coupling edge. For further details we refer to [Bazilevs et al.,
2012].

For Kirchhoff plates, let us define um as the value of the deflection restricted to Ωm,
and similarly un the value of the primary field on the neighboring subdomain Ωn.
Consequently, for each interface γ` shared by Ωm and Ωn we can write the following
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Figure 6.1 – Example of four subdomains Ωi, i = 1, . . . , 4 with their coupling interfaces
γ`, ` = 1, . . . , 5, highlighted in red, and one corresponding cross-point cs, s = 1, rep-
resented by blue dots. Note that we have separated the subdomains for visualization
purposes.

coupling conditions:

um − un = 0 on γ` , (6.3a)
∇um · nm +∇un · nn = 0 on γ` , (6.3b)

which can be rewritten using the standard jump and normal jump operators, respectively,
as:

JuK = 0 on γ` , (6.4a)
J∇uKn = 0 on γ` . (6.4b)

Similarly for Kirchhoff-Love shells, let us denote by um the value of the displacement
field restricted to Ωm, and similarly un the value of the primary field on the neighboring
subdomain Ωn. Then, for each interface γ` the following coupling conditions must be
satisfied:

um − un = 0 on γ` , (6.5a)
θn(um) + θn(un) = 0 on γ` . (6.5b)
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Figure 6.2 – Example of two subdomains Ωi, i = 1, 2 with their coupling interface γ`, ` = 1,
highlighted in red, and their corresponding normal vectors ni, i = 1, 2. Note that we
have separated the subdomains for visualization purposes.

Again, these equations can be rewritten by leveraging the jump operator as:

JuK = 0 on γ` , (6.6a)
Jθn(u)K = 0 on γ` . (6.6b)

6.1.2 The projected super-penalty formulation

In the following, we directly formulate our coupling strategy within the scope of trimming.
We remark that the conforming case can be viewed as a subset of the trimmed case and
therefore all concepts can be readily transferred. Let us now introduce for each patch Ωi

the following space:

Zi,h = span{b ∈
[
Sph(Ωi)

]d
} . (6.7)

Additionally, we denote by Vi,h ⊂ Zi,h the finite-dimensional space given by the span
of splines associated with subdomain Ωi, where the exact definition of Vi,h depends on
the set of boundary conditions of the problem at hand. This allows us to introduce the
following finite-dimensional space,

Vh =
{
v ∈ L2(Ω) | v ∈ Vi,h ∀i = 1, . . . , N and v is continuous in cs, s = 1, . . . , S

}
,

(6.8)

where we highlight the C0-continuity requirement at the cross-points cs. Furthermore, for
each interface γ`, we introduce the associated knot vector Ξ`. The latter is constructed
as follows. First, we arbitrarily choose one of the neighboring patches as active. Then,
we build Ξ` by intersecting the knot lines of the active patch and γ`. We highlight that
this operation can be performed directly in the parameter space of the active surface,
since the B-Rep structure provides a representation of γ` in the parameter space of both
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surfaces. For each surface, we denote the latter representation by γ̂`(Ω̂i), see Figure 6.4
for an example.

Remark 6.3 At this stage, in the spirit of developing a simple and efficient method,
we disregard the internal knots of the coupling curve for the construction of Ξ`. We
highlight that the number of these knots depends on the chosen tolerance in the CAD
model, with this number being potentially large. We are aware that this choice could
potentially yield a loss of optimality of the method, but for smooth interfaces this effect
is negligible. We verify this numerically on two trimmed patches in Figure 6.3, coupled
along a C1-continuous quadratic B-spline curve. Indeed, for p = 2, 3 the results are
practically indistinguishable, whereas only minor differences are present for the case
p = 4. Although outside the scope of this work, finding a simple way to remove this source
of sub-optimality constitutes a future research direction.

Then, we build the isogeometric space Sp−2
h (γ`) leveraging the p/p− 2 pairing. Assuming

B-splines of maximum smoothness, this space is obtained by removing from Ξ` the first
and last two knots, where an illustrative example is given in Figure 6.4 for bivariate
B-splines of degree p = 2 and corresponding p− 2 = 0 degree-reduced splines defined on
the interface knot vector Ξ` = [0 1/3 2/3 1].

Remark 6.4 The p/p− 2 pairing has been proven to be inf-sup stable in the context of
isogeometric mortar methods in [Brivadis et al., 2015]. Although its stability for trimmed
geometries has not been rigorously studied, we verify numerically its applicability to the
coupling of trimmed Kirchhoff plate and Kirchhoff-Love shells.

Lastly, let us define the following space:

Qh =
{
µ ∈ L2(Γ) |µ ∈ Sp−2

h (γ`) ∀` = 1, . . . , L
}
, (6.9)

which is used to characterize the Lagrange multipliers associated with the coupling
conditions.

The Kirchhoff-Love shell saddle point problem

We are now ready to define the discretized version of the singularly-perturbed saddle
point problem associated with the Kirchhoff-Love shell. Without loss of generality, let us
consider homogeneous Neumann-type boundary conditions. Then, the saddle problem
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Ω1 Ω2

E = 106 [Pa]
t = 0.1 [m]
ν = 0.3 [−]

(a) Initial discretization. The trimmed interface is represented by the dashed red
line. Blue dots denote the location of the B-spline curve knots.
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(b) Error H2, without knots.
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(c) Error H2, with knots.

Figure 6.3 – Influence of internal knots of the coupling curve on a two trimmed plates
example.

reads: find (uh,λ1,h, λ2,h) ∈ Vh × [Qh]d ×Qh such that:

N∑

i=1

(∫

Ωi
A(uh) : α(vh) +B(uh) : β(vh)

)
+

+
L∑

`=1

(∫

γ`
JvhK · λ1,h +

∫

γ`
Jθn(vh)Kλ2,h

)
= (f ,vh) ∀vh ∈ Vh , (6.10a)

L∑

`=1

(∫

γ`
JuhK · µ1,h −

1
α`disp

∫

γ`
λ1,h · µ1,h

)
= 0 ∀µ1,h ∈ [Qh]d , (6.10b)

L∑

`=1

(∫

γ`
Jθn(uh)Kµ2,h −

1
α`rot

∫

γ`
λ2,hµ2,h

)
= 0 ∀µ2,h ∈ Qh , (6.10c)

where we have introduced the parameters α`disp and α`rot corresponding to the displace-
ments and normal rotations, respectively. As highlighted in [Herrema et al., 2019; Pasch
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et al., 2021], these coefficients depend in general on the problem definition, e.g. the
material parameters, the thickness of the shell, the applied boundary conditions, the
mesh size and discretization degree, where a precise definition of our parameters will
be provided in a later section. Let us now eliminate the Lagrange multipliers and
rewrite (6.10a) only in terms of the displacement field. In particular, rearranging the
second and third equations we obtain:

λ1,h|γ` = α`dispΠ`JuhK , (6.11a)
λ2,h|γ` = α`rotΠ` Jθn(uh)K , (6.11b)

where, with a slight abuse of notation, Π` stands for the L2-projection, defined on the
interface γ`, onto the degree-reduced space

[
Sp−2
h (γ`)

]d
related to the displacements

and onto the space Sp−2
h (γ`) associated with the normal rotations, respectively. By

substituting Equation (6.11) into the first line of (6.10) and leveraging the properties of
the L2-projection, we obtain:

ap(uh,vh) =
N∑

i=1
a(i)(uh,vh)+

+
L∑

`=1

(∫

γ`
α

(`)
dispΠ`JvhK ·Π`JuhK +

∫

γ`
α

(`)
rotΠ`Jθn(vh)K Π`Jθn(uh)K

)
. (6.12)

These coupling terms weakly impose the transmission conditions in (6.6) on the displace-
ments and normal rotations, respectively.

Remark 6.5 From a computational standpoint, we rewrite the coupling term associated
with the rotations in (6.12) as defined in [Herrema et al., 2019], where the constraint
is recast into two complementary terms. This ensures a non-zero penalty contribution
for patches meeting at an arbitrary angle. Then, the L2-projection of these terms is
performed. For further details, we refer to [Herrema et al., 2019] and references therein.

Now, let us further characterize the aforementioned projection from a computational
viewpoint. Let us consider a generic function u ∈ Vh defined as the linear combination of
basis functions and their corresponding coefficients û as:

u =
∑

i

Biûi i = 1, . . . ,dim(Vh) . (6.13)

Similarly, its projection Π`(u) onto the space Sp−2
h (γ`) can be written as another linear

combination of spline functions and their associated coefficients ũ:

Π`(u) =
∑

j

bj ũj j = 1, . . . ,dim(Sp−2
h (γ`)) . (6.14)
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The orthogonality of the projection can now be expressed as:
∫

γ`
Π`(u)b =

∫

γ`
ub ∀b ∈ Sp−2

h (γ`) , (6.15)

which can be rewritten in matrix form by substituting Equations (6.13) and (6.14)
into Equation (6.15) as follows:

Mũ = Fû , (6.16)

where M denotes the mass matrix associated with the degree-reduced basis and F
represents the right-hand-side matrix corresponding to the inner product between the
basis functions in Sp−2

h (γ`) and Vh, respectively. In particular, for the projection of the
displacement term introduced in Equation (6.11), Fdisp is defined as the inner product
between the splines in

[
Sp−2
h (γ`)

]d
and the jump of the basis functions in Vh. Analogously

for the rotational term, Frot is assembled as the inner product between the basis functions
in Sp−2

h (γ`) and the jump of discrete normal rotations in Vh. Similarly, we distinguish
between the mass matrix M associated with the splines in Sp−2

h (γ`) and its vectorial
counterpart M corresponding to the functions in

[
Sp−2
h (γ`)

]d
. With these definitions at

hand, we summarize the computation of the projected terms in Algorithm 6.

Algorithm 6 Computation of the penalty terms in Equation (6.12).
1: procedure Computation of the penalty terms
2: for each interface γ` in Γ do
3: Build the spaces Sp−2

h (γ`) and
[
Sp−2
h (γ`)

]d

4: Build the intersection mesh for integration
5: ũdisp ← solve Equation (6.16) with M and Fdisp
6: ũrot ← solve Equation (6.16) withM and Frot
7: K = K + α

(`)
dispũ

>
dispMũdisp

8: K = K + α
(`)
rotũ

>
rotMũrot

9: end for
10: end procedure

Lastly, we remark that the solution of Equation (6.16) is computationally inexpensive
for B-splines of degree p = 2, 3 associated with a reduced space of degree p− 2 = 0, 1,
respectively, for which the mass matrix is either diagonal or can be lumped.
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The Kirchhoff plate saddle point problem

The same procedure used above can be applied to Kirchhoff plates. First, let us introduce
the space:

Xi,h = span{b ∈ Sph(Ωi)} , (6.17)

where, with a slight abuse of notation, we denote by Vi,h ⊂ Xi,h the finite-dimensional
space given by the span of splines associated with subdomain Ωi. Again, the exact
definition of Vi,h depends on the prescribed boundary conditions. Consequently, let us to
introduce the following finite-dimensional space,

Vh =
{
v ∈ L2(Ω) | v ∈ Vi,h ∀i = 1, . . . , N and v is continuous in cs, s = 1, . . . , S

}
.

(6.18)

Then, the discrete singularly-perturbed Kirchhoff plate problem in mixed form reads:
find (uh, λ1,h, λ2,h) ∈ Vh ×Qh ×Qh such that:

N∑

i=1

∫

Ωi
D
[
(1− ν)∇(∇vh) : ∇(∇uh) + ν∆vh∆uh

]
+

+
L∑

`=1

(∫

γ`
JvhKλ1,h +

∫

γ`
J∇vhKn λ2,h

)
= (f, vh) ∀vh ∈ Vh , (6.19a)

L∑

`=1

(∫

γ`
JuhKµ1,h −

1
α`defl

∫

γ`
λ1,hµ1,h

)
= 0 ∀µ1,h ∈ Qh , (6.19b)

L∑

`=1

(∫

γ`
J∇uhKn µ2,h −

1
α`rot

∫

γ`
λ2,hµ2,h

)
= 0 ∀µ2,h ∈ Qh , (6.19c)

where α`defl and α`rot are again “large” parameters related to the deflections and rotations,
respectively. Similarly as before, we can formally eliminate the Lagrange multipliers and
recast (6.19) into its primal form. Specifically, we can write:

λ1,h|γ` = α`deflΠ`JuhK

λ2,h|γ` = α`rotΠ` J∇uhKn , (6.20a)

where Π` : L2(γ`)→ Sp−2
h (γ`) denotes the L2-projection, associated with the interface

γ`, onto the reduced space Sp−2
h (γ`). Finally, employing the previous results and the

properties of the L2-projection, the resulting discretized bilinear form, augmented by
suitable penalty terms that weakly enforce the coupling conditions (6.4), reads: find
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6.1. The projected super-penalty method

uh ∈ Vh such that:

N∑

i=1

∫

Ωi
D
[
(1− ν)∇(∇vh) : ∇(∇uh) + ν∆vh∆uh

]
+

+
L∑

`=1

(
α`defl

∫

γ`
Π`JuhKΠ`JvhK + α`rot

∫

γ`
Π` J∇uhKn Π` J∇vhKn

)
= (f, vh) ∀vh ∈ Vh .

(6.21a)

Selection of penalty parameters

It is well-known that the perturbed problem (6.10) is variationally consistent only if we
select α`disp = α`rot → ∞ ` = 1, . . . , L. However, the well-posedness of the underlying
problem is insensitive to the choice of the parameters α`disp and α`rot. Therefore, our
method is inherently free from boundary locking, independently of the choice of penalty
values. This allows us to select α`disp and α`rot to guarantee the high-order convergence
rates achievable by B-splines. Furthermore, in the spirit of developing a parameter-free
penalty method, we modify the choice proposed in [Herrema et al., 2019], scaling the
displacement and rotation penalty parameters by the physical constants of the underlying
problem, the local mesh size, the spline degree and the geometry. For homogeneous
isotropic materials they read:

α`disp = (|γ`|)β−1 Et

(h`)β(1− ν2) , (6.22a)

α`rot = (|γ`|)β−1 Et3

12(h`)β(1− ν2) , (6.22b)

where the measure of γ` serves as a characteristic length and the exponent β is chosen
solely to ensure the optimal convergence of the method. Therefore, it must be a function
of the degree p of the underlying discretization. Numerically we have observed that
the scaling factor β = p− 1 in (6.22) is necessary to attain optimal convergence of the
method in the H2 norm, whereas for a scaling of β = p we noticed optimality in the H2

and H1 norms. Finally, a factor of β = p+ 1 provides optimality in the H2, H1 and L2

norms. If not stated otherwise, we will use β = p+ 1 in all our numerical examples. In
case of orthotropic laminates, we adapt the minimum strategy presented in [Herrema
et al., 2019], where the minimum local stiffness between adjacent patches Ωm and Ωn is
used. Consequently, the penalty parameters are defined as:

α`disp = (|γ`|)β−1 min(maxi,j(A(m)
ij ), maxi,j(A(n)

ij ))
(h`)β

α`rot = (|γ`|)β−1 min(maxi,j(D(m)
ij ), maxi,j(D(n)

ij ))
(h`)β

. (6.23)
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Note that all of these parameters are known and depend only on the problem definition,
meaning that no user-defined factor is required. Moreover, it is straightforward to check
that the penalty terms are dimensionally consistent with respect to their corresponding
energy contribution in the weak forms (6.12) and (6.21), respectively.

Remark 6.6 Clearly, the choice of β influences the condition number of the associated
system matrix. This, together with small trimmed elements, can potentially yield ill-
conditioned systems of equations and, consequently, loss of accuracy due to numerical
round-off errors. In the context of trimmed single-patch shells, a possible remedy based
on extended B-splines has been studied in [Schöllhammer et al., 2020]. Furthermore, in
the scope of immersed methods, an ad-hoc multigrid preconditioner has been developed
in [de Prenter et al., 2020b]. In all trimmed examples presented in this chapter, we
employ again a direct solver where the stiffness matrix is preconditioned by a simple
diagonal scaling. This seems to suffice for the level of accuracy reached in our numerical
experiments. We remark that a thorough study of the condition number in the context
of trimmed multi-patch Kirchhoff-Love shells constitutes a future research direction.
Conversely, for conforming Kirchhoff plates, we present an ad-hoc preconditioner that
mitigates the issue.

Cross-points modification

In the literature of mortar methods, it is well-known that the treatment of cross-points
requires extra considerations, see [Dittmann et al., 2020] and references therein for a
discussion in the context of mortar coupling of isogeometric multi-patches. Analogously,
our method also inherits the need for a cross-points modification. Indeed, in order to
retain optimality of the method, a linear constraint must be imposed to the control
variables meeting at the cross-point to ensure C0-continuity. An example with four
patches is depicted in Figure 6.5, where in Figure 6.5a we depict the dofs associated with
each coupling interface and in Figure 6.5b we visualize the imposition of the constraint. To
explain the procedure, let us start from the following unconstrained system of equations:

Auh = f . (6.24)

Now, the constraint can be incorporated easily into the standard linear system in a fully
algebraic fashion, where a possible implementation is presented in Algorithm 7.
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Algorithm 7 Algorithm for applying a C0 constraint at a cross-point.
1: procedure Apply_C0_constraint(vector of dofs at cross-points ucp)
2: Label one dof in ucp as active
3: Label the remaining dofs in ucp as inactive
4: Build the rectangular matrix C representing the linear active-inactive constraints

(see (6.25))
5: Solve the reduced system Âûh = f̂ , where Â = C>AC and f̂ = C>f
6: Recover the solution uh from uh = Cûh
7: end procedure

The construction of the rectangular matrix C is best explained with an example. Let
us assume that the dofs at the cross-point are numbered as ucp = [ucp1 ucp2 ucp3 ucp4].
Now, without loss of generality, we pick ucp1 as the active control point and the rest as
inactive nodes. Then, the constraint can be expressed via the matrix C as follows:

uh =




u1
...

ucp1
...

ucp2
...

ucp3
...

ucp4
...

undof




=

u1 . . . ucp1 . . . undof





u1 1 0 0 0 0
... . . .

ucp1 0 0 . . . 1 0 . . . 0
... . . .

ucp2 0 0 . . . 1 0 . . . 0
... . . .

ucp3 0 0 . . . 1 0 . . . 0
... . . .

ucp4 0 0 . . . 1 0 . . . 0
... . . .

undof 0 0 0 0 1

·




u1
...

ucp1
...

undof




= Cûh , (6.25)

where ndof denotes the total number of degrees-of-freedom in the system. This procedure
eliminates the unknowns associated with the inactive nodes from the system.

Remark 6.7 Note that, as we only require C0-continuity at the cross-point, the valence
of the point does not pose any additional conceptual challenge to the method.

In case of geometrically non-conforming1 or trimmed coupling interfaces, it is not
possible to strongly impose the constraint with the method presented above. Possible
remedies include enforcing the constraint weakly via the penalty method or via Lagrange

1Similarly to [Brivadis et al., 2015], we define an interface as geometrically conforming if the pull-back
with respect to both active and inactive domains is an entire edge of each parametric domain Ω̂i.
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multipliers [Felippa, 2003]. For robustness and ease of implementation, we employ the
penalty method. Specifically, the unconstrained system in Equation (6.24) is modified as
explained in the following. For simplicity, let us consider the constraint ucp1 = ucp2, the
generalization to more dofs is straightforward. Now, we can write the penalty matrix
associated with the constraint as:

α

[
1 −1
−1 1

] [
ucp1
ucp2

]
= 0 , (6.26)

where α denotes the penalty parameter. This contribution can be then assembled into the
global stiffness matrix. In our case, each dof involved in the definition of the constraint
is scaled by its corresponding basis functions as:

B1ucp1 + B2ucp2 + . . .+ Bnucpn = 0 . (6.27)

Consequently, the penalty stiffness in Equation (6.26) is modified as follows:

α
[
B1 B2 . . . Bn

]




B1
B2
. . .

Bn







ucp1
ucp2
. . .

ucpn




= 0 . (6.28)

6.2 A nested preconditioner based on the Schur Comple-
ment Reduction for non-trimmed Kirchhoff plates

In this section, following the notation introduced in [Quarteroni et al., 2000] and building
upon the work presented in [Liu and Marsden, 2019; Liu et al., 2020; Pegolotti et al.,
2021] in the context of elastodynamics and hemodynamics, we present an efficient way
to mitigate the detrimental effects on the condition number stemming from our choice
of super-penalty parameters. This preconditioner is based on the approximate solution
of the block factorization of the system matrix known as Schur Complement Reduction
(SCR). We remind the reader that before performing the algorithm described in the
following, we apply a symmetric diagonal scaling to the system matrix.

6.2.1 The Schur Complement Reduction

We begin by reordering the matrix A ∈ Rndof×ndof stemming from (6.21) in blocks as
follows:

A =
[
Ai,i Bi,Γ
B>i,Γ CΓ,Γ

]
, (6.29)

114



6.2. A nested preconditioner based on the Schur Complement Reduction
for non-trimmed Kirchhoff plates

where the subscripts i and Γ refer to internal and interface dofs, respectively, where an
example is depicted in Figure 6.6. Let us remark that Ai,i is a block-diagonal matrix
where every block is the matrix associated with an homogeneous Dirichlet problem (fully
clamped) on the corresponding patch Ωi. Moreover, with a slight abuse of notation, we
assume that, if needed, A has already been modified to account for the C0-constraint
related to the cross-points. Now, we can perform the following block factorization of A:

A = LDU =
[

I 0
B>i,ΓA−1

i,i I

] [
Ai,i 0
0 SΓ,Γ

] [
I A−1

i,i Bi,Γ
0 I

]
, (6.30)

where we have introduced the Schur complement SΓ,Γ := CΓ,Γ−B>i,ΓA−1
i,i Bi,Γ. Multiplying

by L on both sides we get:
[
Ai,i Bi,Γ
0 SΓ,Γ

] [
xi
xΓ

]
=
[

I 0
B>i,ΓA−1

i,i I

]−1 [ri
rΓ

]
=
[

I 0
−B>i,ΓA−1

i,i I

] [
ri
rΓ

]
=
[

ri
rΓ −B>i,ΓA−1

i,i ri

]
.

(6.31)

We highlight that, up to this point, this factorization is performed in exact algebra. Then,
from (6.31), we can solve for x in a segregated fashion by exploiting Algorithm 8.

Algorithm 8 SCR algorithm
1: procedure Solution of Ax = r based on SCR
2: Solve for an intermediate solution x̂i

Ai,ix̂i = ri (6.32)

3: Update the interface residual rΓ = rΓ −B>i,Γx̂i
4: Solve for the interface solution xΓ from the Schur equation

SΓ,ΓxΓ = rΓ (6.33)

5: Update the internal residual ri = ri −Bi,ΓxΓ
6: Solve for the internal solution xi from

Ai,ixi = ri (6.34)

7: end procedure

In practice, the Schur complement SΓ,Γ is expensive and often infeasible to compute
explicitly. A way around this issue is given in Algorithm 9, where we summarize a
matrix-free procedure to apply the Schur complement to a vector.
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Algorithm 9 Algorithm for applying the Schur complement to a vector
1: procedure Application of SΓ,Γ to a vector xΓ
2: Compute the matrix-vector multiplication x̂Γ = CΓ,ΓxΓ
3: Compute the matrix-vector multiplication xΓ = Bi,ΓxΓ
4: Solve for an intermediate solution x̃Γ from

Ai,ix̃Γ = xΓ (6.35)

5: Compute the matrix-vector multiplication xΓ = B>i,Γx̃Γ
6: Return x̂Γ − xΓ
7: end procedure

Remark 6.8 As noted in [Liu and Marsden, 2019], the cost of the preconditioner is
often dominated by the solution of the Schur system (6.33). To reduce the computational
burden of this step, we use as preconditioner a coarse approximation of the Schur
complement obtained by applying only a few iterations of GMRES to Ai,i for assembling
S̃Γ,Γ = CΓ,Γ−B>i,ΓÃ−1

i,i Bi,Γ. Although this choice works reasonably well for our numerical
examples, we remark that more research is needed to find a robust (both in h and p) and
scalable preconditioner for the Schur complement and, more in general, for fourth-order
PDEs.

6.2.2 Nested block preconditioner strategy based on SCR

The main idea presented in [Liu and Marsden, 2019] is to combine the robustness of the
SCR factorization with the ease of application of a block preconditioners (such as SIMPLE
or variants thereof [Quarteroni et al., 2000]). Indeed, we can build a preconditioner PSCR
based on an approximate factorization of (6.31), where Equations (6.32) to (6.34) are
solved within a prescribed tolerance. Given that PSCR changes its algebraic definition at
every iteration, following [Liu and Marsden, 2019], we employ a flexible GMRES algorithm
(FGMRES) [Saad, 1993] as the iterative method for the most outer solve Ax = r. At
each iteration of FGMRES, we can apply the preconditioner PSCR via Algorithm 8,
where this entails the solution of the blocks Ai,i and SΓ,Γ, respectively. This part of the
algorithm is denoted as intermediate solver. Last, since we do not assemble the Schur
complement explicitly, but we apply its action on a vector through Algorithm 9, we
perform a final solve for Ai,i in (6.35), denoted as inner solver. The final performance
of the preconditioner is therefore determined by the prescribed tolerances for the outer,
intermediate and inner layers, respectively, where the objective is finding a good balance
between the computational cost and the robustness of the method. In the following, we
denote the aforementioned tolerances by ηo, ηt and ηn for the outer, intermediate and
inner layers, respectively.
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A preconditioner based of the Fast Diagonalization (FD) algorithm

Since each outer iteration of the nested preconditioner is based on the solution of three
systems involving the block Ai,i, an efficient and robust preconditioner for this block is
required. In this work we extend the isogeometric preconditioner studied in [Sangalli and
Tani, 2016; Montardini et al., 2018b], based on the Fast Diagonalization algorithm, to
the Kirchhoff plate problem. In the following, we focus our derivation on the single-patch
case. By construction, the extension to the multi-patch case is straightforward since
the block Ai,i is formed by disjoint sub-blocks associated with each patch Ωi. Now,
exploiting the tensor product structure of the B-spline basis at the patch level, let us
introduce the preconditioner PFD in Kronecker form as:

PFD = M1 ⊗K2 +K1 ⊗M2 , (6.36)

where Mk and Kk with k = 1, 2 refer to the one-dimensional, parametric mass and
hessian matrices associated with the k-th parametric dimension, respectively. They can
be expanded as follows:

[Mk]i,j =
∫ 1

0
bi,p(ηk) bj,p(ηk) dηk

[Kk]i,j =
∫ 1

0
b′′i,p(ηk) b′′j,p(ηk) dηk , (6.37)

where b indicates the univariate B-spline basis functions. Then, analogously to [Montardini
et al., 2018a], we partially include the geometry and physical coefficients inside the
preconditioner. In particular, let us denote by C the following function:

C(η) = D
(∣∣∣
∣∣∣J−1

F

∣∣∣
∣∣∣
2

)4
|det (JF)| , (6.38)

where we recall that JF represents the jacobian of the B-spline parametrization F and
D is the flexural stiffness of the plate. Now, as explained in [Montardini et al., 2018a,
Appendix A.3], we perform a separation of variables on C such that we can write:

C(η) ≈ C̃(η) =
[
ω1(η1)τ2(η2) 0

0 τ1(η1)ω2(η2)

]
, (6.39)

where this matrix is evaluated at each quadrature point. Details on the algorithm used to
perform this separation can be found in [Diliberto and Straus, 1951; Wachspress, 2013].
With this, we can modify the preconditioner given in (6.36) to partially account for the
geometry and coefficients information as follows:

PF
FD = M̃1 ⊗ K̃2 + K̃1 ⊗ M̃2 , (6.40)
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where
[
M̃k

]
i,j

=
∫ 1

0
ωk(ηk)bi,p(ηk) bj,p(ηk) dηk

[
K̃k

]
i,j

=
∫ 1

0
τk(ηk)b′′i,p(ηk) b′′j,p(ηk) dηk . (6.41)

Finally, each iteration of the iterative solver requires the solution of the following system:

PF
FDs = r , (6.42)

where r denotes the current residual. Due to the tensor structure of the preconditioner,
we can rewrite (6.42) as a Sylvester matrix equation [Simoncini, 2016]:

M̃2SK̃1 + K̃2SM̃1 = R , (6.43)

where s = vec(S) and r = vec(R).

Remark 6.9 Let us recall that for any matrix Z ∈ Rr×c the operator vec(Z) gives as
output the vector z ∈ Rrc formed by stacking the columns of Z.

Let us now consider the generalized eigendecomposition of the matrix pencils (K̃1, M̃1)
and (K̃2, M̃2), respectively, as:

K̃1U1 = M̃1U1D1

K̃2U2 = M̃2U2D2 . (6.44)

Here, D1 and D2 are diagonal matrices containing the eigenvalues of M̃−1
1 K̃1 and M̃−1

2 K̃2,
respectively. Further, U1 and U2 are defined as:

U>1 M̃1U1 = I

U>2 M̃2U2 = I . (6.45)

With these definitions at hand, we can rewrite (6.40) in Kronecker form as:

(U1 ⊗ U2)−> (D1 ⊗ I + I⊗D2) (U1 ⊗ U2)−1 s = r , (6.46)

where the preconditioner can be efficiently applied via Algorithm 10.
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Algorithm 10 FD method for applying PF
FD

1: procedure Update of the iteration residual via the FD method
2: Compute the generalized eigendecomposition in (6.44)
3: Compute the intermediate result r̃ = (U1 ⊗ U2)> r
4: Compute the intermediate residual s̃ = (D1 ⊗ I + I⊗D2)−1 r̃

5: Return s = (U1 ⊗ U2) s̃
6: end procedure

Remark 6.10 We remark that the application of the nested preconditioner PSCR com-
bined with PF

FD can be implemented in a fully matrix-free framework. Furthermore,
although not investigated in this work, the patch-wise block structure of Ai,i could be
further exploited for parallelization.

For the sake of conciseness, we do not provide here further details of the FD algorithm,
but we refer to [Sangalli and Tani, 2016; Montardini et al., 2018b; Loli et al., 2020, 2021]
for a thorough theoretical and numerical investigation of the method in the scope of
isogeometric analysis.
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Figure 6.4 – Example of the projection setup on a coupling interface for B-splines of
degree p = 2. We arbitrarily select the finer mesh (on Ω1 in this example) to define
the projection space Sp−2

h (γ`), where the intersections between the parametric coupling
curve γ̂1(Ω̂1) and the knot lines of Ω1 are represented by red crosses. Additionally, an
intersection mesh at the interface is created only for integration purposes to properly
compute the projected penalty terms in Equation (6.12). The p+ 1 integration points
are schematically represented by blue dots. Note that we have separated the subdomains
for visualization purposes.
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(a) B-splines involved in the computation of the
coupling terms, where each colored box con-
tains the dofs associated with the corresponding
coupling interface γ`, ` = 1, . . . , 4.
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(b) Cross-point modification, where the black
dots represent the untouched control points as-
sociated with basis functions that give non-zero
contribution to the interface coupling. The
squares are the control variables used to impose
the C0 constraint, where we choose an active
node (the red one) and the rest are labeled as in-
active nodes (the blue ones) and are eliminated
from the system, see Algorithm 7.

Figure 6.5 – Example of the dofs involved in the computation of the coupling integrals
and cross-point modification in a four patches setup.
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Ω1 Ω2Γ = γ1

Dirichlet dofs
internal dofs i

interface dofs Γ

Figure 6.6 – Example of reordering of the dofs in a two patches setup, discretized by
B-splines of degree p = 2, associated with the block system matrix A.
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6.3 Numerical examples

In this section we assess the performance of the proposed coupling technique with several
numerical examples defined both on trimmed and untrimmed, non-conforming, multi-
patch geometries. The analytical shell solutions are taken from the new shell obstacle
course studied in [Benzaken et al., 2021], where the exact manufactured functions are
evaluated in the freely-available Mathematica notebook2 with 100 digits of precision.
Moreover, similarly to [Benzaken et al., 2021], for every element we employ 25 × 25
quadrature points to properly capture the highly non-linearity of the quantities of interest.
The results of these computations are then imported into GeoPDEs. Also, in all examples
taken from [Benzaken et al., 2021], we derive from the manufactured solution and apply
on the entire boundary ∂Ω non-homogeneous Dirichlet boundary conditions for the
displacements and non-homogeneous Neumann boundary conditions for the bending
moments, respectively. Finally, throughout this section, we compare our choice of penalty
factors to a classical approach where the parameters are kept constant and are scaled by
the Young’s modulus:

α`disp = 103E

α`rot = 103E , (6.47)

and to the method proposed in [Herrema et al., 2019]:

α`disp = δ
Et

(h`)(1− ν2)

α`rot = δ
Et3

12(h`)(1− ν2) , (6.48)

where the problem-independent, user-defined parameter δ = 103 has been numerically
validated on an extensive series of benchmarks.

6.3.1 Coupling of Kirchhoff plates

We start by analyzing the coupling of planar surfaces where the underlying physics is
described by the Kirchhoff plate problem.

A non-trimmed four-patches plate example

In this example we consider the computational domain Ω = [0, 2] × [0, 2] depicted
in Figure 6.7, split into four subdomains Ωi, i = 1, . . . , 4. We remark that all meshes
are non-conforming at every coupling interface, as the irrational factor

√
2/100 has been

used to shift the interface knots. The body load and boundary data are computed such

2https://github.com/wdas/shell-obstacle-course
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ν = 0 [−]

(a) Geometry setup and physical parameters.
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(b) Initial discretization.

Figure 6.7 – Problem setup and initial non-conforming, multi-patch discretization for the
curved four patches example.

that the exact deflection is smooth and it reads:

uex = sin(πx) cos(πy) . (6.49)

This setup is used to test the robustness of our method in the case of severe non-
matching discretizations and with respect to the problem parameters. To this end, we
present the convergence results for all combinations of Young’s moduli E = [104, 108] [Pa]
and thickness of the plate t = [0.05, 0.01, 0.005] [m], where we set the Poisson’s ratio
ν = 0 [−]. From the results in Figure 6.8, we observe that the projection strategy shows
robustness with respect to the input parameters and allows for an easy treatment of
locking phenomena, where optimal convergence rates are attained starting from very
coarse meshes. In Figure 6.9 the convergence behavior of the error measured in the H2

norm with and without the imposition of the C0 constraint at the cross-point is plotted.
We observe that the loss of accuracy hinders the convergence for p = 3, 4, whereas
the expected optimal rates of convergence are recovered in all cases when the linear
constraint is imposed to the system. This is further highlighted in Figure 6.10, where the
element-wise H2 error is depicted for a discretization of degree p = 4, without and with
the constraint, respectively. On one hand, we remark how the error is concentrated and
much higher in the elements around the cross-point, spoiling the optimal convergence
when the constraint is not imposed. On the other hand, with the linear constraint,
we recover optimal convergence properties of the method. Finally, for this example
we also analyze the performance of the nested preconditioner. In Table 6.1 we report
the iterations needed by the external solver and in brackets the average number of
intermediate iterations, for several degrees of the discretization p = 2, 3, and we compare
it with a classical diagonally preconditioned conjugate gradient (PCG), a PCG where an
incomplete LU (ILU) is used as preconditioner and a GMRES preconditioned with ILU.
All the results refer to a global tolerance ηo of 10−10 and, for the nested SCR-FGMRES
strategy, the intermediate and inner tolerances ηt and ηn are set to 10−6. Further, the
Schur complement is preconditioned by an approximation S̃Γ,Γ obtained with a maximum
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(a) E = 104, t = 0.05.
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(b) E = 108, t = 0.05.
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(c) E = 104, t = 0.01.
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(d) E = 108, t = 0.01.
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(e) E = 104, t = 0.005.
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(f) E = 108, t = 0.005.

Figure 6.8 – Convergence of the H2 norm of the error on the four patches with curved
interface example, B-splines of degree p = 2, 3. Comparison of a classic penalty method,
the scaled version with respect to the problem parameters proposed in [Herrema et al.,
2019] (scaled) and our projection approach (proj).
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Figure 6.9 – Convergence study of the error in the H2 norm in the non-matching case for
the curved four patches example. Influence of imposing a C0 constraint at the cross-point.
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Figure 6.10 – Element-wise plot of the error in the H2 norm in the non-matching case
for the curved four patches example, B-splines of degree p = 4. Influence of imposing a
C0 constraint at the cross-point, notice the difference of one order of magnitude used in
the two error colorbars.
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of 6 iterations of GMRES. For the sake of completeness, we perform the same test
with the choice of penalty parameters studied in [Herrema et al., 2019]. The results
are summarized in Table 6.2, where we observe no substantial difference regarding the
iterations needed to solve the system compared to the case where our choice of parameters
is employed. This suggests that the proposed preconditioner is robust with respect to
the penalty factors and it is also suitable to precondition systems stemming from other
penalty approaches. In Table 6.3 we study the influence of the intermediate and inner

256el. 1024el. 4096el. 16384el.
Condition number 1.80 · 107 2.03 · 108 2.61 · 109 3.82 · 1010

Diagonally scaled PCG 792 953 −− −−
PCG with ILU 111 980 −− −−
GMRES with ILU 63 174 402 −−
Nested SCR-FGMRES 3(21.6/3.3/20.3) 3(36/6/30.3) 4(51/17.5/40.7) 6(66.5/51/51.3)

(a) p = 2.
256el. 1024el. 4096el. 16384el.

Condition number 8.76 · 107 1.77 · 109 4.09 · 1010 1.60 · 1012

Diagonally scaled PCG 921 −− −− −−
PCG with ILU 53 221 −− −−
GMRES with ILU 35 73 −− −−
Nested SCR-FGMRES 3(26.6/4/24) 3(41.6/9/35) 4(58/25.5/45.7) 6(76.3/68.3/55.3)

(b) p = 3.

Table 6.1 – Condition number of A and number of iterations needed by different iterative
methods, p = 2, 3, as a function of the elements (el.). For the nested SCR-FGMRES, the
numbers in brackets indicate the average number of intermediate iterations needed to
solve Equations (6.32) to (6.34) in Algorithm 8, respectively. Setups marked with – did
not reached convergence within the prescribed 1000 maximum number of iterations.

tolerances on the number of outer iterations required by the FGMRES solver, on a fixed
mesh of 4096 elements, for B-splines of degree p = 2, 3. We note that as the chosen
tolerances become smaller and smaller, we recover the algebraically exact SCR method,
where in the limit the algorithm converges in one iteration. We also remark that finding
an optimal choice for these parameters is, to the best of the authors’ knowledge, still an
open question in the community.

A non-trimmed nine-patches plate geometry

In this example we consider the computational domain Ω = [0, 3] × [0, 3] depicted
in Figure 6.11, divided into nine subdomains Ωi, i = 1 . . . , 9. Similarly to the previous
example, all meshes are non-conforming at every coupling interface, where again an
irrational factor of

√
2/100 has been used to shift the interface knots. Again, the body
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256el. 1024el. 4096el. 16384el.
Condition number 1.21 · 109 3.82 · 109 1.33 · 1010 5.01 · 1010

Diagonally scaled PCG 992 −− −− −−
PCG with ILU 175 −− −− −−
GMRES with ILU 79 209 478 −−
Nested SCR-FGMRES 3(22.3/4/21.6) 3(32/7.3/28.3) 4(44.5/20.2/34.7) 5(63.2/55/50.2)

(a) p = 2.
256el. 1024el. 4096el. 16384el.

Condition number 1.67 · 109 4.79 · 109 1.48 · 1010 5.25 · 1010

Diagonally scaled PCG 778 −− −− −−
PCG with ILU 697 −− −− −−
GMRES with ILU 90 209 −− −−
Nested SCR-FGMRES 3(28.6/5.3/27.3) 3(39.3/13/34.6) 5(55.8/29.4/41) 6(74/73.3/48.3)

(b) p = 3.

Table 6.2 – Condition number of A and number of iterations needed by different iterative
methods, p = 2, 3, as a function of the elements (el.) for the parameters proposed
in [Herrema et al., 2019]. For the nested SCR-FGMRES, the numbers in brackets
indicate the average number of intermediate iterations needed to solve Equations (6.32)
to (6.34) in Algorithm 8, respectively. Setups marked with – did not reached convergence
within the prescribed 1000 maximum number of iterations.

ηt = ηn = 10−4 ηt = ηn = 10−5 ηt = ηn = 10−6 ηt = ηn = 10−8 ηt = ηn = 10−10

p = 2 11 5 4 3 2
p = 3 13 7 4 3 2

Table 6.3 – Influence of the intermediate and inner tolerances ηt and ηn (where we always
set ηt = ηn) on the number of outer iterations needed by the FGMRES solver, p = 2, 3,
on a fixed mesh with 4096 elements.

load and boundary data are derived from the following analytical exact solution:

uex = sin(πx) cos(πy) . (6.50)

Further, we set the Young’s modulus to E = 106 [Pa], the thickness of the plate to
t = 0.01 [m] and the Poisson’s ratio to ν = 0 [−]. The convergence results of the error
measured in the L2, H1 and H2 are presented in Figure 6.12, for splines of degree p = 2, 3.
In this example we test the robustness of the method with respect to:

• floating patches;

• the presence of multiple cross-points where a constraint must be applied.

We again observe the expected asymptotic convergence rates of the error for all norms,
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(a) Geometry setup and physical parameters.
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(b) Initial discretization.

Figure 6.11 – Problem setup and initial non-conforming, multi-patch discretization for
the nine patches example.

where we remark that the method behaves optimally, particularly for very coarse meshes,
where locking phenomena are avoided. Indeed, on one hand, we again notice that a
classical “vanilla” choice of the penalty parameters yield a severe overconstraint of the
solution space, resulting in a loss of accuracy of several order of magnitudes compared to
the projection method. On the other hand, the scaling studied in [Herrema et al., 2019]
leads to better results especially in the energy norm. However, for coarse meshes, we
note that the method still suffers from locking, thus hindering the accuracy achievable
by B-splines.

A non-trimmed three-patches plate example

In this example we consider the computational domain Ω = [0, 2]× [0, 2], split into three
subdomains Ωi, i = 1, 2, 3, see Figure 6.13a. The initial non-conforming discretization
used in the following is depicted in Figure 6.13b, where the interface knots are again
shifted by a factor of

√
2/100 to induce the non-conformity. The peculiarity of this

example is the presence of a geometrically non-conforming interface between the patches,
which is further used to assess the robustness of our method. Similarly to the previous
examples, the exact solution reads:

uex = sin(πx) cos(πy) , (6.51)

from which the applied body load and imposed boundary conditions are derived. Regard-
ing the problem parameters, we set the Young’s modulus to E = 106 [Pa], the thickness
of the plate to t = 0.01 [m] and the Poisson’s ratio to ν = 0 [−]. The convergence results
of the error measured in the L2, H1 and H2 are presented in Figure 6.14, for splines of
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Figure 6.12 – Convergence of the error measured in the L2, H1 and H2 norms in the
non-matching case for nine patches example, B-splines of degree p = 2, 3. Comparison
of a classic penalty method, the scaled version with respect to the problem parameters
proposed in [Herrema et al., 2019] (scaled) and our projection approach (proj).
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Figure 6.13 – Initial configuration and non-conforming discretization for the three patches
example.
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Figure 6.14 – Convergence study of the error measured in the L2, H1 and H2 norms
in the non-matching case for the three patches example, B-splines of degree p = 2, 3.
Comparison of a classic penalty method, the scaled version with respect to the problem
parameters proposed in [Herrema et al., 2019] (scaled) and our projection approach
(proj).

degree p = 2, 3. Analogously to our previous results, our method attains optimal rates
of convergence, even in the presence of a geometrically non-conforming interface. Once
again, this numerical experiment confirms that our method is insensitive to boundary
locking, starting from very coarse discretizations, where a substantial gain in accuracy
per degree-of-freedom is observed.

A flat L-bracket

The last example we present is meant to show the applicability of the method to more
complex multi-patch geometries. Analogously to the example studied in [Benzaken
et al., 2017], we modeled a flat L-bracket with 28 patches coupled along 34 interfaces,
as depicted in Figure 6.15. We apply a constant line load of 100 [N/m] in the negative
z-direction on the upper right edge and we impose clamped boundary conditions on the
entire boundary of the upper left and lower left holes, respectively. Further, we set the
Young’s modulus to E = 200 · 109 [Pa], the thickness of the plate to t = 0.01 [m] and the
Poisson’s ratio to ν = 0 [−]. The solution field obtained with B-splines of degree p = 2, 3
is depicted in Figure 6.16, where we remark the smoothness of the obtained solution,
especially across the coupling interfaces. In Figure 6.17 we also plot the bending stress
tensor m, where its components are defined as:

mij = D (νδijukk + (1− ν)uij) , (6.52)
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and where δij denotes the standard Kronecker delta. We again obtain a smooth stress
field, where no visible spurious oscillations are introduced by the proposed coupling
strategy. Finally, in Figure 6.18, we plot the convergence results of the stress component
m11, evaluated at point A marked in Figure 6.15a, as a function of the number of dofs
on a series of uniformly refined meshes. We note that for the classical penalty approach,
and only for this example, we have tuned the penalty parameters to converge towards the
reference value, where we have set α`defl = 104E ,α`rot = E, ` = 1, . . . , L. This example
highlights once again the gain in accuracy achieved on coarse meshes by the proposed
method, also for point-wise quantities of interest.
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(b) Non-conforming mesh.

Figure 6.15 – Geometry setup and non-conforming discretization for the flat L-bracket
example.
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(a) p = 2. (b) p = 3.

Figure 6.16 – Solution contour for the flat L-bracket example, B-splines of degree p = 2, 3.
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(a) m11, p = 2. (b) m12, p = 2. (c) m22, p = 2.

(d) m11, p = 3. (e) m12, p = 3. (f) m22, p = 3.

Figure 6.17 – Components of the bending stress tensor m for the flat L-bracket example,
B-splines of degree p = 2, 3.
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Figure 6.18 – Convergence study of the stress component m11, evaluated at point A
in Figure 6.13a, for the flat L-bracket example for different B-splines of degree p = 2, 3.
Comparison of a classic penalty method, the scaled version with respect to the problem
parameters proposed in [Herrema et al., 2019] (scaled) and our projection approach
(proj).
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6.3.2 Coupling of Kirchhoff-Love shells

Next, we verify the performance of the coupling strategy on a series of benchmarks in
the scope of Kirchhoff-Love shells.

Four non-trimmed planar patches

The first example is meant to test and verify the implementation of our strategy in a
non-trimmed planar setting. The geometrical setup is the domain Ω = [0, 2] × [0, 2],
subdivided into four non-conforming patches Ωi, i = 1, . . . , 4 coupled along curved
interfaces, see Figure 6.19. To enforce the non-conformity of the latter, the initial interface
knots have been shifted by the irrational factor

√
2/100. In our problem definition, we

set the Young’s modulus E = 106 [Pa], the thickness of the plate t = 0.005 [m] and
the Poisson’s ratio ν = 0.3 [−], respectively. Then, to verify the theoretical orders of
convergence, we compute the approximation error in the L2 and H2 norms with respect
to a manufactured smooth solution of the form:

u ex(x, y, z) =



ux
uy
uz


 =




sin(πx) sin(πy)
sin(πx) sin(πy)
sin(πx) sin(πy)


 . (6.53)

The results are summarized in Figure 6.20, where the convergence of the error measured
in the L2 and H2 norms, respectively, is plotted against the square root of the number
of dofs. We observe that our proposed method attains the expected order of convergence
starting from very coarse meshes, whereas interface locking hinders the convergence
rates of other penalty methods in the pre-asymptotic regime. As a consequence, we
observe a substantial gain of accuracy per degree-of-freedom of the projection strategy,
particularly in the L2 norm. Additionally, we highlight the suboptimal convergence rates
achieved by the method proposed in [Herrema et al., 2019], noticeable in the asymptotic
regime for p = 4. Further, also for p = 4 and the L2 norm, we observe the detrimental
impact of our choice of penalty parameters on the conditioning of the stiffness matrix
and, consequently, on the solution accuracy. This effect can be mitigated by reducing the
exponent β in Equation (6.22), knowing that the method will converge sub-optimally, as
depicted in Figure 6.21. For this reason, we will focus solely on moderate spline degrees
p = 2, 3 in the following numerical experiments.

Multi-patch design of the Scordelis-Lo roof

In this example we asses the performance of our method on the well-known Scordelis-Lo
roof. The geometrical setup, the chosen parameters and the initial non-conforming
multi-patch design, where the roof is split into six subdomains Ωi, i = 1, . . . , 6, are
summarized in Figure 6.22. The structure is supported at both ends of the cylindrical
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(a) Geometry setup and physical parameters.
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(b) Initial discretization.

Figure 6.19 – Problem setup and initial non-trimmed, non-conforming, multi-patch
discretization for the four planar patches example.
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Figure 6.20 – Convergence of the error measured in the L2 and H2 norms in the non-
trimmed, non-matching four patches example for different B-splines of degree p = 2, 3, 4.
Comparison of a classic penalty method, the scaled version with respect to the problem
parameters proposed in [Herrema et al., 2019] (scaled) and our projection approach
(proj).
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Figure 6.21 – Convergence of the error measured in the L2 and H2 norms for the
projection method in the non-trimmed, non-matching four patches example for different
B-splines of degree p = 2, 3, 4. Comparison of various scaling exponent β of the penalty
parameters in Equation (6.22).

roof by so-called rigid diaphragms, which fix the displacement in the y- and z-directions,
respectively. Moreover, the roof is subjected to a uniform gravity load, directed in the
negative z-direction. As studied in [Herrema et al., 2019], we modify the original thickness
of the benchmark problem. In particular, we set the Young’s modulus, the Poisson’s ratio
and the thickness of the structure to 4.32 ·108 [Pa], 0.0 [−] and 0.025 [m], respectively. As
typically done for this problem, we study the convergence of the displacement in the z-
direction at the center of the free edge, where the reference value urefz = −32.01045 is used
for normalization. The results are presented in Figure 6.23b for different penalty methods
and also for the single-patch case. We observe that our approach, the method presented
in [Herrema et al., 2019] and the single patch case show a similar convergence behavior.
However, in case when the penalty parameter is only scaled by the Young’s modulus,
interface locking phenomena arise, and they are particularly severe for quadratic B-splines.
Moreover, in Figure 6.23a, we compare the time needed to compute and assemble the
penalty terms for the aforementioned approaches, where the projection method shows
its computational efficiency. This is linked to the fact that, although the projection
algorithm requires the solution of an additional system, the corresponding coupling terms
involve significantly fewer dofs compared to standard penalty-like methods.

Remark 6.11 Although the Scordelis-Lo roof is a classical benchmark for shell analysis,
it only provides a reference value for the displacement in a point. Therefore, it is not
suited to quantify the order of convergence of a method, but it only serves as verification
of the latter.
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Figure 6.22 – Problem setup for the Scordelis-Lo roof example.
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Figure 6.23 – Convergence of the normalized displacement in the z-direction at the middle
of the free edge and time needed to assemble the penalty contributions, Scordelis-Lo roof
example.
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Figure 6.24 – Problem setup for the L-beam example and L2 norm of the displacement
field obtained with the proposed coupling strategy.

L-beam

This example is meant to demonstrate the applicability of our approach to couple patches
at an arbitrary angle, where the corresponding rotational constraint keeps the angle
fix during deformation. We consider a beam with an L-section discretized by two non-
conforming patches Ωi, i = 1, 2, as depicted in Figure 6.24. The beam is clamped on one
side and it is subjected to a point load of 10 [N ], directed in the negative z-direction.
Further, we set the Young’s modulus, the Poisson’s ratio and the thickness of the structure
to 107 [Pa], 0.3 [−] and 0.05 [m], respectively. To check the correct imposition of the
rotational constraint, we compute the angle formed by the two patches at the free
corner on a series of uniformly refined meshes. The corresponding results are presented
in Figure 6.25a. We remark that on coarse meshes and for the projection method,
the rotational constraint is imposed in a less “rigid” way compared to other penalty
approaches. This allows to mitigate the effects related to interface locking starting
from coarse meshes. Similarly to the previous example, we observe a faster convergence
behavior of the vertical displacement under the point load when our approach is employed,
see Figure 6.25b, especially compared to a classical penalty method.
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Figure 6.25 – Convergence study of the angle between the patches and the displacement
uz under the point load in the L-beam example, B-splines of degree p = 2, 3. Comparison
of a classic penalty method, the scaled version with respect to the problem parameters
proposed in [Herrema et al., 2019] (scaled) and our projection approach (proj).

Pure bending of three trimmed planar patches

In this example we consider the computational domain Ω = [0, 2]× [0, 1] split into three
trimmed subdomains Ωi, i = 1, 2, 3 as depicted in Figure 6.26. We remark that in this
particular setup, the middle patch is coupled on both sides along trimming interfaces,
defined by quadratic spline curves. The applied boundary conditions and loading function
are again derived from a smooth solution of the form:

u ex(x, y, z) =



ux
uy
uz


 =




0
0

sin(πx) sin(πy)


 . (6.54)

Then, we fix the Young’s modulus and the Poisson’s ratio of the structure to 106 [Pa] and
0.3 [−], respectively. This example confirms the severity of locking interface phenomena,
especially as the shell gets progressively slender. Indeed, we vary the thickness in the
range [0.5 , 0.05 , 0.01] [m], where the results are reported in Figure 6.27. Moreover, we
observe that in the trimmed case these detrimental effects are even more pronounced,
since more basis functions are involved in the imposition of the constraints compared to
the non-trimmed case.

Remark 6.12 In the trimmed case, at any point of a coupling interface γ` and for
each neighboring patch, we have (p+ 1)× (p+ 1) shape functions providing a non-zero
contribution to the penalty matrices. This is in contrast to the non-trimmed case, where
at any point of γ` and for each neighboring patch we have at most (p+ 1), respectively,
2(p+ 1) B-splines involved in the computation of the displacement and rotational coupling
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Pij 11 12 13 21 22 23 31 32 33
x 0 1/3 0 1/2 1/2 1/2 1 2/3 1
y 0 1/2 1 1/3 1/2 2/3 0 1/2 1
z 0 0 0 0 0 0 0 0 0

Table 6.4 – Coordinates of the control points Pij , i, j = 1, . . . , 3 associated with the
astroid domain.
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Figure 6.26 – Problem setup for the trimmed three planar patches example. For the sake
of visualization, the patches have been separated.

Trimmed astroid

This example is adapted from the shell obstacle course presented in [Benzaken et al.,
2021]. We consider the computational domain Ω split into three trimmed subdomains
Ωi, i = 1, 2, 3 as depicted in Figure 6.28. In the same figure, the two trimmed interfaces
γ`, ` = 1, 2 are defined as quadratic B-spline curves. The domain Ω is characterized
by the control points Pij , i, j = 1, . . . , 3 as summarized in Table 6.4, where the indices
i, j are ordered as the parametric coordinates ξ, η represented in Figure 6.28. The load
function and boundary data are computed from the following manufactured solution:

uex(ξ, η) =



ux
uy
uz


 =




(1
2 − η)ξ2(ξ − 1)2η(1− η)

(ξ − 1
2)η2(η − 1)2ξ(1− ξ)

ξ(1− ξ) sin(πξ) sin(πη)


 , (6.55)

where we impose inhomogeneous Dirichlet and Neumann type boundary conditions on
the displacements and on the bending moments, respectively, on the entire boundary
∂Ω. Even though this problem is defined on a planar geometry, meaning that bending
and membrane responses are decoupled, its investigation is still worthwhile since the
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solution u is defined as a function of the parametrization. This drastically complicates
the derivation of the exact quantities and their stable computation. The convergence
results for the error in the L2 and energy norms for several values of the thickness
t = [0.1 , 0.01 , 0.005] [m] are depicted in Figure 6.29. This example confirms that our
projection method mitigates the detrimental effects linked to interface locking, yielding a
significant gain of accuracy per-degrees-of-freedom. This is particularly noticeable as the
thickness of the structure becomes smaller, where, for other penalty techniques, locking
phenomena hinder the optimal convergence in the pre-asymptotic regime.

Trimmed cylinder

This example is again adapted from the shell obstacle course presented in [Benzaken et al.,
2021]. We consider the computational domain Ω split into four trimmed subdomains
Ωi, i = 1, . . . , 4 as depicted in Figure 6.30. The corresponding trimmed interfaces
γ`, ` = 1, . . . , 4 are defined as quadratic B-spline curves. This numerical experiment tests
the applicability of the proposed methodology to the coupling of trimmed multi-patch
surfaces in the presence of cross-points. Similarly to previous examples, the initial
internal knots of patches Ω2 and Ω3 have been shifted by a factor

√
2/100 to achieve

non-conforming discretization at the corresponding trimmed interfaces. Then, we set
the Young’s modulus, the Poisson’s ratio and the thickness of the cylinder to 107 [Pa],
0.3 [−] and 0.001 [m], respectively. The load function and boundary data are computed
from the following manufactured solution:

u ex(ξ, η) = −(ξ − 1)2ξ2η(η − 1)a3 , (6.56)

where a3 denotes the covariant vector in the thickness direction. The convergence
results for the error measured in the L2 and energy norms, respectively, are depicted
in Figure 6.31. Similarly to our previous findings, we observe a faster convergence
behavior of the projection method in the pre-asymptotic regime, where interface locking
is avoided on very coarse meshes. This results in a substantial gain of accuracy per-
degree-of-freedom, which is particularly noticeable for quadratic B-splines.

The DTU 10 MW Reference wind turbine blade

In our last example, we perform an isogeometric shell analysis of the DTU 10 MW
Reference wind turbine blade [Bak et al., 2013], whose design was inspired by the NREL
5 MW reference wind turbine [Jonkman et al., 2009]. The blade is modeled by 20
non-conforming cubic spline surfaces. As noted in [Herrema et al., 2019], a multi-patch
design allows to accurately resolve material discontinuities along the patch interfaces.
The outer shell of the blade and the internal shear webs are depicted in Figure 6.32. In
the same figure, colored regions are used to define the corresponding composite layup,
where each region has a different multi-directional ply stacking sequence and a varying
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thickness distribution along the spanwise direction. We summarize the most relevant
mechanical properties in Table 6.5. Moreover, in Figure 6.33, we show the composite
layup of the leading panels through the thickness as a function of the spanwise coordinate.
For further details on material properties and thickness profiles we refer to [Bak et al.,
2013]. For the analysis, we consider the response of the blade under gravity load, where

Multi-directional ply Uniax Biax Triax Balsa
Young’s modulus E1 41.63 13.92 21.79 0.050 [GPa]
Young’s modulus E2 14.93 13.92 14.67 0.050 [GPa]
Shear modulus G12 5.047 11.50 9.413 0.01667 [GPa]
Poisson’s ratio ν12 0.241 0.533 0.478 0.5 [−]
Shear modulus G13 = G23 5.04698 4.53864 4.53864 0.150 [GPa]
Mass density ρ 1915.5 1845.0 1845.0 110 [kg/m3]

Table 6.5 – Mechanical properties of the multi-directional plies.

the blade is modeled as clamped on the rotor side. The L2 norm of the displacement field
and the corresponding deflection of the blade are depicted in Figure 6.34. The results are
obtained by employing a discretization of quadratic B-splines defined on 89528 elements.
Note that we directly import the geometry used in [Bak et al., 2013] for the structural
analysis.

Remark 6.13 The latter is true for every patch except for webs A, B and C, which are
obtained by linear extrusion of a generating spline, meaning that one linear element suffices
to exactly describe the surface along the corresponding parametric direction. Therefore,
h-refinement is performed along the latter direction by introducing 50 equidistributed
knots.

We remark that all the results on the blade have been obtained by setting the scaling
factor β = p in the penalty terms to limit the impact of the latter on the condition
number of the stiffness matrix.

Simplified topology optimization of webs A and B

This example is meant to show the applicability of the proposed methodology to trimmed
geometries obtained by a simplified topology optimization. Note that this numerical
test is just a showcase of the flexibility of our computational framework and a realistic
topology optimization of the webs is beyond the scope of this work. Furthermore, the
geometric operation described in this section are based on an heuristic engineering
approach. We trimmed away from the original geometry two holes, one close to the center
of the structure and another at the end the web. This design is obtained by adapting
the optimized solution presented in [Albanesi et al., 2020], where the final geometry is
depicted in Figure 6.35. This design results in a reduction of ≈ 20.6% of the original total

143



Chapter 6. Coupling of multi-patch Kirchhoff plates and Kirchhoff-Love
shells

mass of web A. Similarly, we perform the same operations on web B. The L2 norm of
the displacement field and the corresponding deflection of the blade with trimmed webs
are depicted in Figure 6.36, where we observe a reduction of ≈ 2.0% in tip displacement
related to the loss of total mass of the structure. The results are obtained with quadratic
B-splines defined on a total of 84250 active elements.
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(c) L2 norm, t = 0.05.
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(e) L2 norm, t = 0.01.
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Figure 6.27 – Convergence study of the error measured in the H2 and L2 norms
in the trimmed three patches example, B-splines of degree p = 2, 3, thickness
t = [0.5 , 0.05 , 0.01] [m]. Comparison of a classic penalty method, the scaled version with
respect to the problem parameters proposed in [Herrema et al., 2019] (scaled) and our
projection approach (proj). 145
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Figure 6.28 – Problem setup and initial multi-patch geometry for the trimmed astroid
example.
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(e) L2 norm, t = 0.005.
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Figure 6.29 – Convergence study of the error measured in the energy and L2 norms in the
trimmed astroid example, B-splines of degree p = 2, 3, thickness t = [0.1 , 0.01 , 0.005] [m].
Comparison of a classic penalty method, the scaled version with respect to the problem
parameters proposed in [Herrema et al., 2019] (scaled) and our projection approach
(proj).
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Figure 6.30 – Problem setup and initial multi-patch geometry for the trimmed cylinder
example.
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Figure 6.31 – Convergence study of the error measured in the L2 and energy norms for
the trimmed cylinder example, B-splines of degree p = 2, 3. Comparison of a classic
penalty method, the scaled version with respect to the problem parameters proposed
in [Herrema et al., 2019] (scaled) and our projection approach (proj).

148



6.3. Numerical examples

y

z
x

86
.46

[m
]

5.
6
[m

]
x

y

Figure 6.32 – DTU 10 MW blade geometry and depiction of the circumferential regions
used for the composite materials definition.
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Figure 6.33 – Composite layup along the radial direction of the leading panels.

Figure 6.34 – L2 norm of the displacement field on the DTU 10 MW blade subject to
gravitational load, B-splines of degree p = 2, 89528 elements, results warped by a factor
5.
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Figure 6.35 – Design of web A after simplified topology optimization. Zoom on the detail
at the end of the blade.

(a) Full blade. (b) Web A.

Figure 6.36 – L2 norm of the displacement field on the topologically optimized blade
subject to gravitational load, B-splines of degree p = 2, 84250 elements, results warped
by a factor 5.
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7 A note on the critical time step
in isogeometric trimmed explicit
dynamics1

This chapter focuses on the estimation of the critical time step for the explicit dynamics of
trimmed structures. Specifically, starting our investigation from a simple one-dimensional
bar, we shed some lights on the spurious eigenvalues and eigenvectors stemming from:

1. the use of a lumped mass matrix instead of the consistent one,

2. trimming.

We then extend our findings to Kirchhoff plates, where similar results are observed. We
remark that these are preliminary findings and further studies are needed to draw some
definitive conclusions on the impact of trimming in dynamics. Indeed, it is likely that
these spurious modes are not activated by common loading scenarios in many engineering
applications. However, understanding the origin and the role of this mechanism is
important to estimate the resulting accuracy in an explicit simulation. The notation and
the examples presented in this chapter follow closely [Leidinger et al., 2019; Leidinger,
2020].

7.1 Numerical stability of the time integration

Let us start our derivation from the problem of elastodynamics given in Equation (2.6).
If we apply the standard Galerkin procedure, the (linearized) semi-discrete equations of
motions can be written in algebraic form as:

Mü+Ku = f , (7.1)

1Some results presented in this chapter have been obtained in collaboration with Mr. Davide D’Angella
and Dr. Lukas Leidinger. Their contributions are gratefully acknowledged.
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where M denotes the mass matrix of the underlying system and ü represents the
acceleration. Note that we have dropped the superscript tilde for clarity of the notation.
Moreover, for simplicity, damping effects have been neglected. Now, following [Belytschko
et al., 2000], the system of equations given above is diagonalized by exploiting the modal
decomposition. By assuming a separation of variables of the form:

u(t) = ϕ`e
i
√
λh
`
t , (7.2)

and substituting this ansatz into the homogeneous counterpart of Equation (7.1), the
associated eigenvalue problem which governs the free vibrations of a structure reads:

(K − λh`M)ϕ` = 0 ` = 1, 2, . . . , ndof , (7.3)

where we assume that all eigenvalues are non-negative and are sorted as:

0 ≤ λh1 ≤ λh2 ≤ . . . ≤ λhmax , (7.4)

and the eigenvectors verify the following orthonormality condition:

ϕ>` Mϕm = δ`m . (7.5)

Moreover, the set of eigenvectors {ϕ`} forms a basis of Rndof . Consequently, we can write
the solution u as a linear combination of coefficients and eigenvectors as:

u(t) =
ndof∑

`=1
ũ`(t)ϕ` . (7.6)

This allows us to reduce Equation (7.1) to a scalar single-dof initial-value problem,
formulated for every dof in the system, e.g. see [Hughes, 2000] for a detailed derivation.
Assuming a central difference scheme for the time discretization [Sheppard, 1899], we
can now state the following estimation of the critical time step size:

∆tcrit = min
`


 2√

λh`


 = 2√

λhmax

, (7.7)

where the last equality is straightforward to verify. A detailed derivation of the stability
analysis leading to the previous result con be found in [Belytschko et al., 2000].

7.2 A minimal stabilization technique for small cut ele-
ments

In the following, we adapt the minimal stabilization studied in [Buffa et al., 2020] in the
context of Dirichlet boundary conditions imposed via Nitsche’s method to the stiffness
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and mass matrices appearing in Equation (7.3). Let us briefly outline the method here.
Given an user-defined parameter ϑ ∈ (0, 1], let us define the element K ∈ T as a good
element if:

|Ω ∩K|
|K|

≤ ϑ , (7.8)

else K is considered bad. Consequently, we denote by T b and T g the collections of all
bad and good elements in the mesh, respectively. Assuming that for each bad element K
there exists a good neighbor K ′, the stabilization is constructed as follows. For each bad
element K ∈ T b, the spline functions belonging to the good neighbor K ′ are L2-projected
onto the polynomial space Qp(K ′). The latter denotes the space of polynomials on
K ′ of degree p in each parametric direction. Then, their polynomial extension is used
to evaluate the mass and stiffness matrices, respectively, in K. We remark that this
operation is performed locally. For the sake of conciseness, we do not report the full
derivation here but we refer to [Haslinger and Renard, 2009; Buffa et al., 2020; Antolin
et al., 2021] for further details.

7.3 Numerical investigation

In the following numerical examples, we study the behavior of critical time step ∆tcrit
on a series of benchmark problems. Furthermore, we also focus on the appearance of
spurious eigenvalues and eigenvectors in the discrete spectrum. In our investigation, we
distinguish between the consistent mass matrix M c, whose entries are defined as:

M c
ij =

∫

Ω
ρBiBj dΩ , (7.9)

and the so-called (row-sum) lumped mass matrix M `, whose elements read:

M `
jj =

∫

Ω
ρ
∑

i

BiBj dΩ =

→ from the partition of unity.

∫

Ω
ρBj dΩ . (7.10)

For engineering applications, the latter is often preferred from a computational standpoint
since its diagonal structure allows for an easy matrix inversion, where this step turns out
to be the major bottleneck in the central difference scheme.

7.3.1 One-dimensional bar example

In this first example, we reproduce the results presented in [Leidinger, 2020] on a one-
dimensional bar. Similar observations in the non-trimmed case can be found in [Cottrell
et al., 2006; Hughes et al., 2008]. We consider the trimmed computational domain
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Ω = [0, 0.75 + ε], where ε represents the trimming parameter measuring the distance
from the last physical knot, see Figure 7.1. Without loss of generality, we set the Young’s
modulus E = 1, the density of the bar ρ = 1 and the area of the cross section of the
structure A = 1. Then, we apply homogeneous Dirichlet boundary conditions on one end

x

Ω
ε E = 1, ρ = 1

|Ω| = 0.75 + ε

A = 1

Figure 7.1 – Setup of the one-dimensional bar example.

of the bar and homogeneous Neumann on the trimmed one. For a fixed-free ends bar the
analytical eigenvalues read:

λex` = 2`− 1
2

π

|Ω| ` = 1, 2, 3, . . . ,+∞ . (7.11)

Now, we solve the generalized eigenvalue problem given in Equation (7.3) and we compute
the estimated critical time step from Equation (7.7) for B-splines of degree p = 1, . . . , 4
and the consistent mass matrix and lumped mass matrix, respectively. The results on a
fixed mesh with 49 active elements are reported in Figure 7.2 for splines of maximum and
C0-continuity, respectively. Analogously to [Leidinger, 2020], we observe that B-splines
of degree p ≥ 2 and maximum continuity yield a critical time step independent from
the trimming parameter ε when the lumped mass matrix is used. Furthermore, their
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Figure 7.2 – Convergence study of the critical time step for Cp−1 and C0 splines of different
degrees p = 1, . . . , 4, consistent and lumped mass matrices, trimmed one-dimensional
bar.

corresponding normalized spectra are depicted in Figure 7.3. We observe that, in the
case of mass lumping, the approximation of the lower frequencies deteriorates as the
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trimmed element gets smaller. This is caused by spurious eigenvalues (and corresponding
eigenvectors) appearing in the lower part of the spectrum which cause a shift in the
frequency domain, where an example for splines of degree p = 3 and ε = 10−6 is provided
in Figure 7.4. In general, their position depend on the trimming parameter, the mesh
size h and the degree of the discretization p, making the development of an algorithmic
way to detect them difficult. Moreover, the impact of these spurious eigenvalues on the
accuracy of a dynamic simulation is not yet fully understood. Lastly, the critical time
step estimation obtained with the stabilization is reported in Figure 7.5 for B-splines of
degree p = 1, . . . , 4 and maximum and C0-continuity, respectively. In this example, we
set θ such that the trimmed element is always stabilized. For all cases, the stabilized
generalized eigenvalue problem yields a critical time step that is independent from the
trimming parameter, where the use of a lumped mass matrix allows for larger time steps.

Remark 7.1 Although the stabilization solves the dependency of the critical time step
on the trimming parameter, we highlight that spurious eigenvalues and corresponding
eigenfrequencies are still present in the stabilized spectrum.

7.3.2 Two-dimensional rectangular Kirchhoff plate

In the following example, we study the eigenvalues and corresponding eigenvectors on a
trimmed, rectangular, Kirchhoff plate. For the interested reader, the unforced vibration
of thin plates have been thoroughly studied in [Cottrell et al., 2006; Shojaee et al.,
2012] in the context of non-trimmed IGA. We consider the trimmed computational
domain Ω = [0.3 − ε, 0.7 + ε] × [0.0, 0.7 + ε], where again ε represents the trimming
parameter. Without loss of generality, we set the physical parameters of the structure
such that the flexural rigidity D is unitary. As boundary condition, the plate is clamped
at the untrimmed edge corresponding to y = 0. The setup of the problem is depicted
in Figure 7.6. Similarly to the previous example, we compute the estimated critical time
step for B-splines of degree p = 2, . . . , 5 and the consistent mass matrix and lumped mass
matrix, respectively. The results on a fixed mesh with 49 active elements are reported
in Figure 7.7 for splines of maximum and C1-continuity, respectively. Interestingly, we
observe that for B-splines of degree p ≥ 4 and maximum continuity we obtain a critical
time step independent from the trimming parameter ε when the lumped mass matrix is
used. For cubic C2 B-splines, we observe a dependency of the critical time step with an
order of convergence proportional to square root of ε. This dependency is less severe
compared to their reduced-continuity counterpart. Also in Figure 7.7, we report the
results for splines of maximum smoothness where the stabilization is used to mitigate
the effects related to trimming and the stabilization parameter θ = 1 is set. Analogously
to the one-dimensional case, we observe that the critical time step becomes independent
of the trimming parameter for all degrees and for both consistent and lumped mass
matrices, respectively. Furthermore, larger time steps can be used when the lumped mass
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Figure 7.3 – Spectra for Cp−1- and C0-continuous splines of different degrees p = 1, . . . , 4
and various trimming parameters ε = [10−2, 10−4, 10−6], trimmed one-dimensional bar.
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Figure 7.4 – Numerical eigenvectors ϕ1 and ϕ12 corresponding to splines of degree p = 3
and trimming parameter ε = 10−6. Note the spurious, localized eigenvectors stemming
from trimming and the use of the lumped mass matrix.
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Figure 7.5 – Convergence study of the critical time step for Cp−1 and C0 splines of
different degrees p = 1, . . . , 4, stabilized consistent and lumped mass matrices, trimmed
one-dimensional bar.

matrix is employed. Lastly, an example of the spurious modes is depicted in Figure 7.8
for cubic B-splines and ε = 10−2. We remark that the trimming pattern used in this
numerical experiments is pathological, since it creates extremely small elements of size
ε2 at the top corners. These findings could potentially impact the use of Kirchhoff plates
and Kirchhoff-Love shells in explicit dynamics, however further numerical and theoretical
investigations are needed to shed some light on the impact of trimming for the explicit
dynamics simulation of isogeometric Kirchhoff-Love shells. In particular, the effects
of stabilization techniques and weakly-imposed boundary/coupling conditions must be
analyzed in depth.
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Figure 7.6 – Problem setup and trimmed geometry for the rectangular plate example.
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Figure 7.7 – Convergence study of the critical time step for Cp−1- and C1-continuous
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Figure 7.8 – Numerical eigenvectors ϕ2 and ϕ15 corresponding to splines of degree p = 3
and trimming parameter ε = 10−2. Note the spurious, localized eigenvectors stemming
from trimming and the use of the lumped mass matrix.
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7.3.3 Two-dimensional rotating plate

In the last example, we consider the trimmed computational domain
Ω = [0.19, 0.78]× [0.22, 0.78] embedded into the unit square Ω0 = [0, 1]2, where
the untrimmed domain Ω0 is discretized by a fixed mesh of 20 elements in each
parametric direction. This setup takes inspiration from [de Prenter et al., 2017; Buffa
et al., 2020]. The plate is then rotated around its center of mass for a series of angles
αi = iπ/200 , i = 0, . . . , 100, see Figure 7.9 for an example. This setup creates a variety
of trimming patterns, where small cut elements may arise. To quantify how badly
elements are trimmed, let us introduce the smallest volume fraction, which is defined as
η = minK∈T |Ω ∩K|. Then, we set the stabilization parameter θ = 0.5. In Figure 7.10,
we plot the critical time step for splines of degree p = 2, 3 in the non-stabilized and
stabilized cases, respectively, against the volume fraction η, where again a consistent
and a lumped mass matrices are used. Similarly to the examples studied above, the
stabilization mitigates the detrimental effects of badly cut elements. This is particularly
apparent when a consistent mass matrix is used. Indeed, in this case, it is clear that the
stabilized critical time step becomes independent from the volume fraction, allowing for
selecting larger time steps in dynamics.

x

y αi

Ω

Figure 7.9 – Problem setup for the trimmed rotating plate example.

Remark 7.2 Although not reported here, our preliminary observations appear to hold
true also for (trimmed) trivariate B-splines.
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Figure 7.10 – Convergence study of the critical time step for different degrees p = 2, 3,
consistent and lumped mass matrices, without and with stabilization, trimmed rotating
plate.
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8 Concluding remarks and future
outlook

This thesis mainly focuses on increasing and guaranteeing the accuracy of isogeometric
methods for the analysis of trimmed Kirchhoff plates and Kirchhoff-Love shells. In
particular, our aim is to develop an efficient computational framework able to tackle
industrial-like applications. This goal has been pursued by employing several different
methodologies outlined in the following.

8.1 Scientific contributions

Here, we systematically summarize the main scientific contributions of this work. These
findings are based on the following published papers [Antolin et al., 2020; Coradello et al.,
2020a,b, 2021b] and a manuscript currently under review for publication [Coradello et al.,
2021a].

8.1.1 Local refinement of trimmed shells

In the first part of our numerical investigation, we have shown the beneficial effects of
employing local refinement for the analysis of trimmed, complex B-Rep surfaces. In
particular, we have highlighted how the HB and T HB bases mitigate the issues related
to the weak imposition of Dirichlet-type boundary conditions and to the presence of thin
holes. Moreover, we have numerically verified how local refinement can efficiently reduce
and eventually eliminate the spurious effects of over-constraining of the solution space in
the proximity of weakly constrained trimming curves. Furthermore, we have presented
a simple algorithmic way to remove the unphysical coupling of basis functions across
“small” geometrical features. This is an essential starting point for the development of
an efficient framework capable of handling trimmed surfaces with complex features and
details defined at different scales.
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8.1.2 Adaptive simulation of Kirchhoff plates and Kirchhoff-Love shells

Next, we have addressed the issues of:

• efficiently compute an error estimator for fourth-order PDEs,

• steer an adaptive simulation via the aforementioned estimator,

• extend the framework to suitably account for trimming.

Specifically, a novel a posteriori implicit error estimator has been developed and its
performance has been assessed. The evaluation of this estimator is based on the solution
of an additional, residual-like variational problem formulated in the so-called bubble
space. The latter is composed of Bernstein polynomials defined locally on active elements,
constructed in a way such that the C1-continuity constraint is directly built into the
space. We remark that, thanks to this choice of the aforementioned space, the resulting
linear system is in general small, block-diagonal and easily-invertible. Moreover, this
method is suitable for parallelization and straightforward to implement on top of existing
isogeometric codes. More importantly, it is computationally cheap compared to classical
residual-type estimators since it avoids the computation of the residual in a strong
sense. On one hand, this is a major advantage particularly for Kirchhoff-Love shells,
since the evaluation of covariant derivatives is a tedious task, which becomes very
quickly computationally expensive and, for all practical purposes, almost intractable
from a numerical standpoint. On the other hand, with this technique we also avoid the
computation of integral terms involving the evaluation of the jump of the derivatives
across element boundaries. For Kirchhoff plates, a typical speed up of one order of
magnitude has been observed.

This method can be readily extended to incorporate trimming. In particular, all the
aforementioned favorable features carry over to the trimmed case. This allows us to take
another step towards the integration of design and automated adaptive isogeometric
analysis, where we have validated the proposed framework on an extensive series of
benchmark problems. With these investigations, we have numerically proved the reliability
and robustness of the proposed error-driven adaptive framework for the simulation of
various mechanically-relevant PDEs defined on trimmed domains. In particular, the
proposed method systematically achieves superior efficiency and accuracy per-degree-of-
freedom in problems showing sharp features of the solution and/or singularities. Lastly,
its applicability to industrial-like geometries has been demonstrated on the B-pillar of a
car.
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8.1.3 Coupling of Kirchhoff plates and Kirchhoff-Love shells

A further key step to reach the goal of this thesis consists in the proper treatment and
coupling of multi-patch designs. Typically, these geometric models are represented by
a collection of trimmed B-Reps. Therefore, a reliable and accurate coupling strategy
capable of handling trimmed, non-conforming patches is required. To achieve this, we
have developed a method based on the L2-projection of suitable penalty terms at the
corresponding coupling interface onto a degree-reduced space. The choice of this space
is motivated by the stable p/p− 2 pairing studied in the scope of mortar methods. On
one hand, the projection mitigates the detrimental effects related to interface locking
starting from very coarse discretization. On the other hand, it gives us insights into
the proper scaling of the penalty parameters based on the underlying discretization.
Consequently, the proposed coupling method retains the optimal rates of convergence
achievable by B-splines, as demonstrated by our findings on an extensive series of
benchmark problems. Moreover, our approach is fully parameter-free, since the penalty
coefficients are completely determined by the problem setup. The proposed strategy is
particularly suited for spline spaces of moderate degrees p = 2, 3, where the projection
turns out to be computationally efficient and the condition number stemming from
the super-penalty does not yield a significant deterioration of the solution accuracy.
To conclude this part, the applicability of our method to tackle complex structure
of engineering relevance has been studied. In particular, we have performed a static
shell analysis of the DTU 10MW Reference wind turbine blade. Furthermore, since
trimming is naturally incorporated into our methodology, we have carried out a simplified
topology optimization of the internal shear webs. This example demonstrates that the
proposed computational framework is able to efficiently and accurately handle industrial
optimization loops.

8.2 Future outlook

Clearly, this thesis provides some initial insights and a proof-of-concept for the topics
presented above. However, many questions remain unanswered and further investigations
are needed to improve the proposed computational framework. We list some potential
future research directions in the following.

8.2.1 Automatic detection of refinement depth

In the first part of this thesis, a user-defined parameter has been used to determine the
maximum depth of the refinement. In principle, one could algorithmically find a priori
the suitable depth based on the smallest feature of the model. However, this entails
performing a search over the set of trimming loops in order to define a “characteristic
length” of the detail. While this seems a reasonable approach that has to be performed
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only once as a pre-processing step, the difficulty resides in performing this task efficiently.
Moreover, many complex CAD designs present physical and/or artificial small features
that might or might not contribute significantly to the mechanical response. In order to
avoid an unreasonable refinement depth, an automatic de-feature strategy based on the
work in [Buffa et al., 2021] could be employed to determine which features should be
resolved by local refinement.

8.2.2 Possible extensions of the bubble error estimator

In its current implementation, the error estimator does not take into account the residual
caused by the weak imposition of boundary conditions and coupling constraints. To
perform this task, the method should be extended by using the same idea employed for the
imposition of in-homogeneous Neumann boundary conditions, where suitable boundary
bubble functions are added to the space. Furthermore, although some preliminary
results confirm the performance in the presence of small holes, its behavior should be
systematically assessed on a series of geometries with small features.

From a computational standpoint, the current code should be parallelized to take full
advantage of the structure of the linear system stemming from the weak residual equation.
This would increase even further the typical speed-ups observed when comparing the
run-time to a classical residual-type estimator.

8.2.3 Possible extensions of the coupling strategy

For the time being, the coupling strategy has been implemented and tested for geometri-
cally linear Kirchhoff-Love shells. The extension to non-linearities entails the projection
of additional terms which vanish when the reference and deformed configurations coincide.
Clearly, this constitutes an exciting development of the method which would allow the
simulation of more complex mechanical responses.

Additionally, in our numerical experiments we have not thoroughly studied the accuracy
of the stress field along and in the proximity of trimmed coupling interfaces. This aspect
should be further assessed in the future.

Furthermore, to scale the current simulation capabilities beyond a few million degrees of
freedom, a suitable preconditioner for shells is necessary. Based on the work we have
presented for Kirchhoff plates, the nested preconditioner could be formulated in a fully
algebraic fashion without the need of introducing the fast diagonalization algorithm.
Instead, the method could rely on an algebraic multigrid preconditioner, which is typically
regarded as standard in linear algebra packages. Alternatively, one could change approach
and try to adapt the FETI method [Farhat and Roux, 1991] and variants thereof to the
problem at hand.
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8.2.4 Future directions in trimmed explicit dynamics

Clearly, the preliminary results we have presented in the scope of trimmed explicit
dynamics can be expanded in numerous directions. A few interesting questions can be
summarized as follows:

• perform an in-depth study of the effects of the stabilization on the critical time
step for Kirchhoff plates and Kirchhoff-Love shells,

• deeper theoretical understanding of the origin of spurious eigenvalues/eigenvectors
and the role they play in a dynamical simulation,

• study of the impact of the proposed coupling strategy on the critical time step,

• systematically investigate the volumetric case.
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