Abstract

Fast advances in soft robotics and tissue engineering demand for new soft materials whose mechanical properties can be interchangeably and locally varied, thereby enabling, for example, the design of soft joints within an integral material. Inspired by nature, we introduce a competitive ligand-mediated approach to selectively and interchangeably reinforce metal-coordinated hydrogels. This is achieved by reinforcing carboxylate-containing hydrogels with Fe3+ ions. Key to achieving a homogeneous, predictable reinforcement of the hydrogels is the presence of weak complexation agents that delay the formation of metal-complexes within the hydrogels, thereby allowing a homogeneous distribution of the metal ions. The resulting metal-reinforced hydrogels show a compressive modulus of up to 2.5 MPa, while being able to withstand pressures as high as 0.6 MPa without appreciable damage. Competitive ligand exchanges offer an additional advantage: they enable non-linear compositional changes that, for example, allow the formation of joints within these hydrogels. These features open up new possibilities to extend the field of use of metal reinforced hydrogels to load-bearing applications that are omnipresent for example in soft robots and actuators.

Details