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Abstract. The generation of energetic trapped ions is important for experiments

investigating their confinement in 3D magnetic fields, for plasma heating, for studies

into unwanted drive of instabilities, and improved transport regimes. An effective way

to generate such energetic ions is with ion cyclotron resonance heating. SCENIC is

a tool built to self consistently model the magnetic equilibrium, the radio frequency

wave, and the minority distribution function in steady state. In this paper the impact

of higher order finite Larmor radius corrections in the dielectric tensor will be described.

The RF electric field and the power deposition in the new hot model are compared

against the previously used warm model for several JET plasmas. Considerable

differences are found in some of the scenarios. The new version of the wave code

LEMan also supports the direct use of particle-in-cell marker data to compute the

dielectric tensor. An expression for the dielectric tensor is derived, and it is applied

to a test case in JET. The power deposition profile agrees very well with that of a

Maxwellian reference case, which is promising for future applications. Moreover, a full

SCENIC run shows a significantly enhanced fast ion tail. In a demonstration of the

novel features of LEMan, it is also applied to minority heating in the intrinsically 3D

plasma of W7-X.

Keywords: ICRF, ion cyclotron heating, hot plasma, stellarator, Wendelstein 7-X, fast

ion confinement, anisotropy

1. Introduction

Radio waves in the ion cyclotron range of frequencies (ICRF) are used routinely for

heating, suppressing sawteeth, preventing impurity accumulation and driving current

in fusion plasmas. Moreover, ICRF is known to generate long tails in the distribution

function of resonant ions, see e.g. Refs. [1, 2, 3, 4]. These fast ion tails often have a

large temperature anisotropy T⊥/T‖, which affects the RF power deposition, and also

the magnetic equilibrium [5, 6]. In addition, plasmas with significant radio wave heating



can also increase the fusion reaction rate [7, 8].

Accurate modelling of ICRF heating is therefore important for designing exper-

iments, explaining experimental findings, and extrapolating to future fusion reactors.

Early models started out with a cold plasma description, which can model wave prop-

agation but fails at describing RF power deposition. The wave damping has to be

included ad hoc. One step higher in complexity is to include a non-zero thermal mo-

tion parallel to the background magnetic field. This “smooths” out the singularity in

the dielectric tensor at the cyclotron resonance, and replaces this contribution with the

plasma dispersion function. The approach is able to describe Landau and fundamental

cyclotron resonance but it still neglects corrections due to finite Larmor radius (FLR)

effects, which can contribute considerably to the wave propagation and absorption de-

pending on the heating scheme. These effects include e.g. higher harmonic heating,

electron transit time magnetic pumping (eTTMP) and the damping of the right handed

polarised fast wave by fast ions. Inclusion of such effects requires at least a first order

warm plasma description. In this paper a plasma model will be referred to as “warm” if

a truncated expansion in FLR parameter is used, “hot” is reserved for models without

truncation.

In addition, it is important to model the RF wave self consistently with the distri-

bution function of the resonant species, which is often non-Maxwellian. The evolution

of this distribution depends on the RF electric field, which itself depends on the dis-

tribution through the dielectric tensor. Modelling the simultaneous time evolution of

both quantities is not feasible with current computational resources because the time

scale for the wave to propagate throughout the system is orders of magnitude smaller

than the collisional time scale, which is the time required for the distribution function

to change considerably. However, the main interest is not time evolution itself, but the

equilibrium distribution and the corresponding electric field. This final state can be

obtained much more efficiently by iteratively solving for the RF electric field and the

distribution function. This approach has been adopted by coupling RF codes to Fokker-

Planck/Monte Carlo codes, e.g. SELFO [9], AORSA-CQL3D [10], CYRANO-BATCH

[11], TORIC-SSFPQL [12] and SCENIC [13], see table 1.

The focus of the present paper is to describe how the LEMan code (part of SCENIC)

has been upgraded to model collisionless damping near arbitrary cyclotron harmonics

for a selection of different minority distribution functions. Recently, a hot plasma de-

scription has been explored by LEMan for a Maxwellian distribution in Ref. [14]. But

of particular interest is the modified Bi-Maxwellian from Ref. [15]. Unlike a regular

Bi-Maxwellian, this analytic distribution satisfies the Fokker-Planck equation to low-

est order and it models the effect of the concentration of bounce points along the line

of resonance. This form of Bi-Maxwellian has been implemented in the full SCENIC

package for ICRH modelling. Recently, this distribution has also been used in Ref. [16]



for a study on tungsten accumulation using SCENIC. An integral form of the dielectric

tensor is presented, which is suitable for numerical evaluation. Instead of using a general

numerical velocity space integral, this form is optimised for the modified Bi-Maxwellian.

Its implementation in LEMan is compared against several other dielectric tensor models.

In addition an analytic expression for a dielectric tensor is derived that can use particle

in cell (PIC) data directly. Example cases in JET for both of these dielectric tensors

are included.

Note that formally the plasma response is an integral operator in configuration

space. However, to make it more tractable this has been simplified considerably in LE-

Man by assuming that locally a single wave vector dominates. This replaces the integral

operator by a matrix that represents the conductivity tensor. It is therefore relatively

easy to adopt a description valid to all orders in Larmor radius because the rest of the

code is independent of how the matrix is computed. However, this limits the description

to scenarios where the fast wave is by far the dominant mode. Therefore LEMan cannot

be applied to scenarios where mode conversion plays a considerable role. However, the

strength of LEMan is its ability to model 3D geometries such as tokamaks with a kink

mode perturbation and stellarators, which need not be stellarator-symmetric (analo-

gous to up-down asymmetry in tokamaks). In addition, LEMan is integrated into the

SCENIC code package (comprised of ANIMEC [17], LEMan and VENUS-LEVIS [18]),

which allows a self consistent computation of the magnetic equilibrium, the RF wave

field, and the minority distribution function. This is not the first coupled code package,

many others have been developed over the years, with varying levels of model reduction,

see table 1. A common reduction in the Fokker-Planck/Monte-Carlo codes is to average

the particle orbits over a bounce period. The evolution of the minority distribution

function in SCENIC is done with VENUS-LEVIS, which is a 4D (or 6D) orbit tracing

code, without any type of bounce averaging, see Section 5.1. It thus includes finite

orbit width (FOW) effects, which are known to broaden the collisional power deposition

profile. Additionally, FOW effects also lead to increased particle losses, especially in the

high energy range [19].

The paper is organised as follows: In Section 2 the basic equations will be presented

and two new dielectric tensors will be derived. This derivation is valid to all orders in

Larmor radius, and to arbitrary order in cyclotron harmonic. In Section 3 a comparison

will be made between a warm plasma model and the newly implemented hot model for

various heating schemes and distribution functions in JET. Several heating schemes will

be examined in more detail. In Section 4 the PIC dielectric tensor will be compared

against a reference case in JET. After that a full SCENIC run will be performed for a

selected JET case in Section 5. A simulation of minority heating in the W7-X stellarator

will be presented in Section 6. Lastly, concluding and summarising comments are

reserved for Section 7.



Table 1: Summary of several coupled 2D & 3D ICRF full-wave codes, not an exhaustive

list. MC = mode conversion, FEM = finite element method.

RF Code Numerical Approach Geometry FLR

effects

MC Coupled to

AORSA

[20]

Fourier collocation

method

tokamak/

stellara-

tor

All orders Yes CQL3D [10]

TORIC

[21, 22]

radial FEM, toroidal

and poloidal modes

tokamak truncated Yes SSFPQL [12]

EVE [23] radial FEM, toroidal

and poloidal modes

tokamak truncated Yes SPOT[24]

CYRANO

[25, 26]

radial FEM, toroidal

and poloidal modes

tokamak truncated Yes BATCH [27]

LION

[28]

radial and poloidal

FEM, toroidal modes

tokamak All orders No FIDO

(SELFO

[9, 29])

LEMan radial FEM, toroidal

and poloidal modes

tokamak/

stellara-

tor

All orders No VENUS-

LEVIS

(SCENIC)

2. The dielectric tensor

Required for the calculation of wave propagation and damping is the dielectric tensor,

which encodes the properties of the plasma and magnetic equilibrium. This section

serves to derive it.

2.1. The wave equation

Starting from Maxwell’s equations, the magnetic field can be eliminated by combining

Faraday and Ampere’s law,

∇× (∇× E1(r, t)) +
1

c2

∂E1(r, t)

∂t
= −µ0

∂J1(r, t)

∂t
(1)

with E1 the RF electric field, J1 the associated current density, r the position, c the

speed of light, t time, and µ0 the vacuum permeability. In the frequency domain this

wave equation transforms into a Helmholtz type equation,

∇× (∇× Ê1)− ω2

c2
Ê1 = iωµ0Ĵ1 = iωµ0

(
Ĵant + Ĵp

)
(2)



with ω the angular frequency‡, Ĵant the antenna current, and Ĵp the induced plasma

current (also called plasma response). The hat indicates the quantities are in the fre-

quency domain. The challenge is computing the electric field and the plasma current

self consistently. In order to proceed a constitutive relation will be used, i.e. a relation

of the type Ĵp = Ĵp(E1).

On the time scale of the wave 1/ω the effect of particle collisions, sources and

sinks on the distribution function may be neglected. Thus it is sufficient to use the

Vlasov equation. Furthermore, as is typical in the ICRF literature, the wave amplitude

is assumed to be small, and hence the Vlasov equation can be linearised. Integration

along the unperturbed paths yields the first order correction to the distribution function

f1.

f1(r,v, t) = − q

m

∫ t

−∞
dt′ [E1(r′, t′) + v′ ×B1(r′, t′)] · ∇v′f0(r′,v′, t′) (3)

With q the particle charge, m the mass, v the velocity, B1 the RF magnetic field and f0

the background distribution function. The primed quantities describe a path in phase

space, unperturbed by the RF field, ending in (r,v, t). The first moment of f1 yields

the perturbed current density,

Jp(r, t) = q

∫
R3

d3vvf1(r,v, t), (4)

which is a linear function of the electric field under these assumptions. From this

constitutive relation the conductivity tensor (and thus the dielectric tensor as well)

can then be derived. A comprehensive explanation of this topic can be found in e.g.

[30, 31, 32]. So the Helmholtz equation can be written as

∇× (∇× Ê1(r))− ω2

c2
Ê1(r)− iωµ0

∫
R3

d3r′σ̂(r, r− r′) · Ê1(r′) = iωµ0Ĵant(r), (5)

an integro-differential equation, with conductivity kernel σ̂(r, r − r′). The integral

operator indicates that the problem is non-local. In other words, to compute the plasma

response Ĵp(r0) at some point r0 the electric field is required not just at r0 (and/or

an infinitesimal distance away) but also at a finite distance from r0. In a uniform

plasma this operator simplifies to a convolution, however, in the inhomogeneous case

two arguments are required for the kernel: the first is the position for evaluating the

magnetic field and plasma parameters, the second represents the distance with respect

to this reference point. In cold plasma the elements of the conductivity kernel are

proportional to a delta function, thus reducing to a local equation. This does not

happen in warm and hot plasma models because the kernel has a finite width. However,

a pragmatic approach is to bluntly assume that locally at each point a single wave vector

‡ In the common scenario of monochromatic heating, i.e. a single antenna frequency ωant, no

frequencies other than ω = ωant need to be considered because the Helmholtz equation is linear.



keff (r) dominates,

Ĵp(r) =

∫
R3

d3r′

[(
1

2π

)3 ∫
R3

d3kσ̆(r,k)eik·(r−r
′)

]
· Ê1(r′)

≈
∫
R3

d3r′

[(
1

2π

)3 ∫
R3

d3kσ̆(r,keff (r))eik·(r−r
′)

]
· Ê1(r′)

= σ̆(r,keff (r)) · Ê1(r).

(6)

This effective wave vector keff is computed self consistently from the gradient of the

scalar potential, see Appendix B of Ref. [13]. The Helmholtz equation is therefore

written as

∇× (∇× Ê1(r))− ω2

c2
K̆(r,k0(r)) · Ê1(r) = iωµ0Ĵant(r), (7)

where the dielectric tensor is defined in terms of the conductivity tensor as

K̆ = I +
iσ̆

ωε0

, (8)

with ε0 the vacuum permittivity. The approximate solution to Eq. (7) does not

automatically guarantee ∇ · B1 = 0, which can lead to spurious solutions [33]. One

way to deal with this is by casting the Helmholtz equation in potential formulation

[34, 35, 36]. This is the approach taken by LEMan, which is free of numerical pollution,

given that the gauge condition is satisfied. The Coulomb gauge is used, which results

in

∇2Â +
ω2

c2
K̆ · Â +

iω

c2
K̆ · ∇χ̂ = −µ0Ĵant

∇ · (K̆ · ∇χ̂)− iω∇ · (K̆ · Â) = −ρ̂ant/ε0

(9)

with χ̂ the scalar potential, Â the vector potential and ρ̂ant the antenna charge density.

The second line can be obtained from the divergence of the first, and using charge

conservation. Since LEMan adopts a divergence free antenna current ρ̂ant = 0. Eq.

(9) is solved in the weak form using a finite element method in radial direction, and a

Fourier series approach for the two angular directions [36]. In the general case LEMan

solves for the full 3D problem in one simulation. However, in axisymmetric devices the

different toroidal modes of the wave field are decoupled, which allows for a significant

optimisation: The full 3D problem with a total of Ntor toroidal modes can be split up

into Ntor independent 2D simulations. Due to interference the actual wave field is still

3D, but this field can be reconstructed by summing together all Ntor toroidal modes at

the end.

2.2. Derivation of dielectric tensor for modified Bi-Maxwellian

In order to derive the dielectric tensor, the background distribution function f0 needs

to be known, for each species. A “regular”, non-drifting, Bi-Maxwellian can be defined



as follows:

f0(s, v‖, v⊥) =
N(s)

π3/2vT‖(s)v2
T⊥

(s)
exp

[
−

(
v2
‖

v2
T‖

(s)
+

v2
⊥

v2
T⊥

(s)

)]
, (10)

with thermal velocities

vT⊥ =
√

2T⊥/m ≥ 0, vT‖ =
√

2T‖/m ≥ 0. (11)

Here N is the density, T‖ the parallel temperature, T⊥ the perpendicular temperature

and s the radial flux surface label (normalised toroidal flux). However, in order to

satisfy the Fokker-Planck equation to lowest order, a distribution function must have

B · ∇f0 = 0, where B is the background magnetic field. One particular Bi-Maxwellian

that satisfies this constraint is given by Eq. (12) below [15, 37, 17]. Earlier simulations

show that ICRH can result in poloidal density variation of the heated minority species.

It can also form lobes along the trapped-passing boundary in (v‖, v⊥) space [38, 39, 40],

see figure 1 for an example. Contrary to a regular Bi-Maxwellian, this distribution is

able to capture such effects. In addition, it explicitly contains the dependency on the

magnetic field strength BC , the approximate field where the wave-particle resonance

applies, while still being analytically tractable,

f0(s, E, µ) =
N (s)

π3/2v3
T⊥

(s)
exp

[
−
(
µBC

T⊥(s)
+
|E − µBC |
T‖(s)

)]
, (12)

with the magnetic moment µ = mv2
⊥/(2B), energy E = mv2/2. The critical field

BC can in principle depend on s, but is here chosen as a constant. In the context of

ICRF, this critical field indicates the wave-particle resonance (without Doppler shift) of

a chosen species, i.e. where ω = nΩ is satisfied. This relates the antenna frequency ω

to the critical field through BC = mω
n|q| , with Ω, n, the cyclotron frequency and cyclotron

harmonic of a species of choice respectively. The variable N (s) in Eq. (12) is the density

factor, integrating (12) over velocity space gives the “true” density[37]:

N(s, B) = N (s)

√
T‖
T⊥
C(s, B) (13)

C(s, B) =


B/BC

1− (T⊥/T‖)(1−B/BC)
B ≥ BC

B

BC

1 + (T⊥/T‖)(1−B/BC)− 2(T⊥/T‖)
3/2(1−B/BC)3/2

1− (T⊥/T‖)2(1−B/BC)2
B < BC .

(14)

Note, the true density N is not solely a flux surface variable for this distribution, i.e.

there is a B dependence which in turn varies with position (s, θ, ϕ). This feature of

anisotropy is because trapped particles that intersect the resonant surface (B = BC)

tend to align their bounce tips with this layer. Hence the distribution function becomes

distorted over the poloidal cross section. The flux surface averaged density is

〈N〉 = N

√
T‖
T⊥
〈C〉 ≈ N

√
T‖
T⊥

= N(s, BC) (15)



with the averaging operator denoted by angle brackets 〈〉.
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Figure 1: Comparison of the regular and modified Bi-Maxwellian distributions. Contour

plot of f0(s, v‖, v⊥)/f0(s, 0, 0), for BC/B = 1.3 and T⊥/T‖ = 3. The contours of the

regular Bi-Maxwellian form ellipses, while those of the modified distribution only do so

on the high field side.

Analytic expressions for the dielectric tensor for (drifting) Maxwellian or Bi-

Maxwellian distributions are well established. See for instance Ref. [32] for a derivation.

However, no such expression has been derived for the modified Bi-Maxwellian, Eq. (12).

The required integrals for a general f0(v‖, v⊥) are given by Eqs. 4.184-4.191 in Ref.

[32]. The velocity space integration is over v⊥ ∈ [0,∞) , v‖ ∈ (−∞,∞). On the HFS

(B ≥ BC), E−µBC ≥ 0 always, and thus the absolute value bars can be removed from

Eq. (12). The dielectric tensor for Eq. (12) can then be found using substitution into

the known Bi-Maxwellian case, see Eq. (A.4). However, removing the absolute value

bars on the LFS (B < BC) would split the velocity space integral in two pieces. No

analytic expression for this integral was found. The objective therefore has been to cast

the integrals in a form which can be computed numerically with double precision floats.

On the LFS the contribution of the fast ion species to the dielectric tensor element l

can be cast into the following form:

Kl = Υl

∞∑
n=−∞

ςl,n

∫
γ

(
pl,0Mhl(x) + pl,1Nhl(x) +

ql,0Mhl(x) + ql,1Nhl(x)

x− ξn

)
dx

= Υl

∞∑
n=−∞

ςl,n (pl,0Γhl + pl,1∆hl + ql,0Φhl(ξn) + ql,1Ψhl(ξn))

, (16)

with l ∈ {0, 1, 2, 3, 4, 5, 6, 7}. The functions Mhl , Nhl represent integrals over the

perpendicular velocity. The integration over the parallel velocity is done along the path

γ, which goes along the real axis, making an excursion below the pole. The auxiliary

functions are defined as follows:

Γh =

∫ ∞
−∞

Mh(x)dx = 2

∫ ∞
0

Mh(x)dx

∆h =

∫ ∞
−∞

Nh(x)dx = 2

∫ ∞
0

Nh(x)dx

Φh(ξn) =

∫
γ

Mh(x)

x− ξn
dx

Ψh(ξn) =

∫
γ

Nh(x)

x− ξn
dx

(17)



See Appendix A.2 for the definitions of the additional variables and functions.

Computing Φ,Ψ by naively sampling the integrand closer and closer to the singularity

will not work as the values blow up there. Instead, using a series expansion to high

order was also considered, but this led to insurmountable cancellation errors. Notice

that the functions Φh,Ψh in (17) are Hilbert transforms. Libraries exist for numerically

computing the Hilbert transform. A popular method is transforming to the Fourier

domain to get rid of the convolution and transforming back after the multiplication.

However, in this work just one point is required, not a whole spectrum. Fortunately,

transforming to the Fourier domain is not necessary, since the singularity is a removable

one. Meaning that the function is bounded in the neighbourhood of the singularity,

and the value at the singularity can be replaced by its limiting value. In order to see

this, the integral must be rewritten, e.g. for Φh this process is shown in Eq. (18): The

integral over x is first split into a principle value plus a residue, then Mh(ξn) is both

added and subtracted in the numerator. The integral over (x− ξn)−1 drops out§ due to

symmetry, and what is left does no longer blow up near the singularity.

Φh(ξn) =

∫
γ

Mh(x)

x− ξn
dx = PV

∫ ∞
−∞

Mh(x)

x− ξn
dx+ πiM(ξn)

= PV

∫ ∞
−∞

Mh(x)−Mh(ξn)

x− ξn
dx+Mh(ξn)PV

∫ ∞
−∞

1

x− ξn
dx+ πiMh(ξn)

= 2ξnPV

∫ ∞
0

Mh(x)−Mh(ξn)

x2 − (ξn)2
dx+ πiMh(ξn)

(18)

The integral can now be approximated with standard quadrature methods, which is

well within the realm of modern CPU capabilities, even on a 3D grid. In this work the

composite Simpson’s rule is used, for non-uniform grids. The integration limits can be

truncated as for large x, y the integrand becomes negligible. An infinite sum over the

cyclotron harmonic n remains, which in practice has to be truncated. The maximum

value of n can be set by the user of LEMan. However, RF heating scenarios rarely

involve harmonics above n = 3. So the series can be truncated rather quickly. Lastly,

note that it can be shown that for the modified Bi-Maxwellian K6 = K4, K7 = K5.

2.3. PIC dielectric tensor

2.3.1. Background distribution function The expression for the dielectric tensor may

be extended to include a parallel velocity asymmetry (parallel drift velocity), which is

useful for beam populations. However, the parallel velocity will not be uniform on a flux

surface, due to varying pitch angles of ions ionised at a different major radii. There may

be other complicated effects in addition to this that distort the distribution function.

Therefore it may be useful not to assume any analytic distribution. Instead the marker

§ Sidenote: for this ξn needs to be real. However, this was already assumed. If Im(ξn) 6= 0 the original

integral could already be integrated directly as x ∈ R thus there is no singularity. So if ξn ∈ R, after

change of variables the integrand is odd.



information coming from a particle-in-cell model can be used directly. This avoids the

potential quality loss during fitting. Such a PIC distribution will be of the form

f0(r, v‖, v⊥, φ) =
∑
k

wkδ(r− rk)δ(v‖ − v‖,k)
δ(v⊥ − v⊥,k)

v⊥
δ(φ− φk), (19)

with φ the gyro angle and wk the weight of a marker k. Notice the 1/v⊥ that appears

in Eq. (19), which is due to the Jacobian in cylindrical coordinates. I.e. this ensures∫
R3 δ(v − vj)d

3v = 1. What follows next is a series of successive simplifications of

Eq. (19) to make it more tractable. The main interest is not in the microscopic

electromagnetic fields created by these markers. The fine structure below the Debye

length scale is unimportant. Instead the macroscopic (averaged) fields are of interest.

So it makes sense to introduce some smoothing. Averaging over a volume V (r) around

r gives:

f0(r, v‖, v⊥, φ) =
1

V (r)

∑
j

wjδ(v‖ − v‖,j)
δ(v⊥ − v⊥,j)

v⊥
δ(φ− φj) (20)

where
∑

j is now solely over the markers j within this volume. The choice of averaging

volume will be discussed in Section 2.3.2. Furthermore, the shape function δ(v‖ − v‖,j)
can be replaced by an exponential, preserving the norm. The next step is averaging

over the gyro angle,

f0(r, v‖, v⊥) =
1

V (r)

∑
j

wj
1√
πσj

exp

[
−
(
v‖ − v‖,j

σj

)2
]
δ(v⊥ − v⊥,j)

v⊥

1

2π
. (21)

The standard deviation of this exponential is σj/
√

2, and it should be chosen such that

σj �
√

2vT‖ , but not so small that the distribution function would become too noisy

(too many markers required). The subscript j is added to σj, since in general σj could

be marker dependent. The weights sum up to the total number of particles within that

volume, N(r)V (r) =
∑

j wj, giving

f0(r, v‖, v⊥) =
N(r)

2π
∑

j wj

∑
j

wj
1√
πσj

exp

[
−
(
v‖ − v‖,j

σj

)2
]
δ(v⊥ − v⊥,j)

v⊥
. (22)

2.3.2. Choice of averaging volume In order to compute the dielectric tensor in some
point r0, the average distribution f0(r0, v‖, v⊥) is required and therefore an averaging
volume needs to be selected. The volume V (r0) which contains r0 should be chosen as
large as possible to improve statistics, but without destroying nuanced features of the
distribution. The choice therefore depends strongly on the scenario, several examples
are shown in figure 2.



(a) (b) (c)

Figure 2: Three choices of averaging volume for W7-X. In white the LCFS, in colour

the volume V , with blue indicating the radial inside, and red the radial outside. From

left to right: a full flux tube, a filament, and a section of a filament. The size of the

volume has been exaggerated in order to see it more clearly, so not to scale.

Clearly, the variation of f0 is strong in radial direction, and therefore the radial

extension needs to be limited, figure 2a. This is the volume between two flux surfaces,

with r0 lying on the central flux surface. Note, this still has the full 2π poloidal and

toroidal extension, thus inherent differences between the LFS and HFS are averaged

over. Therefore, this is not compatible with the modified Bi-Maxwellian distribution,

Eq. (12), because the density is not a flux function. One level more accurate would be

the filament (flux tube segment) in figure 2b. This is able to distinguish between differ-

ences in the LFS and HFS. Depending on the distribution this too can be inadequate,

e.g. for cases with heating or fuelling that is not uniformly distributed in toroidal angle,

combined with significant toroidal trapping. In this case the volume has to be reduced

even further, as depicted in figure 2c.

Increasing the number of grid points (r0, r1, r2, ...) does not mean that the volumes
shrink, that is because they are allowed to overlap, see figure 3. The volume type and
size is chosen based on physical arguments and available marker count, not the grid
resolution.

s

θ

r0 r1 r2

Figure 3: Cartoon showing three grid points, with their associated averaging volumes

(filament type), in the poloidal plane.

2.3.3. Computing the dielectric tensor The dielectric tensor elements can now be

computed, using Eqs. (4.184-4.191) of Ref. [32]. The following integrals will be



necessary: ∫ ∞
0

g(x)δ′(x− x0)dx = −g′(x0), where x0 > 0 (23)

which is obtained by integration by parts. Secondly,

1√
π

∫ ∞
−∞

xe−x
2

x− z
dx = −1

2
Z ′(z) = 1 + zZ(z) (24)

where Z is the plasma dispersion function defined in Eq. (A.5). In addition, higher

powers in the numerator of the integrand can be rewritten to obtains terms with Z or

Z ′, e.g.:

x2

x− z
=
x(x− z) + zx

x− z
= x+

zx

x− z
, (25)

where the x drops out from the integration as it is odd. Lastly, the second derivative of

the Bessel function can be eliminated from the Bessel equation itself,

z2J ′′n(z) + zJ ′n(z) + (z2 − n2)Jn(z) = 0. (26)

Using the above, the dielectric tensor elements can be written as

Kl =
ω2
p/(ωk‖)∑

j wj

∑
j

wj
v⊥,j

∞∑
n=−∞

(
cm,jZ(ξ̃n,j)−

1

2
dm,jZ

′(ξ̃n,j)

)

=
q2

ε0ωk‖mV

∑
j

wj
v⊥,j

∞∑
n=−∞

(
cm,jZ(ξ̃n,j)−

1

2
dm,jZ

′(ξ̃n,j)

) , (27)

with k‖ the parallel wavenumber. This is just the contribution of one marker species,

if more species exist one has to sum over those too. See the appendix for all of the

coefficients. The plasma frequency ωp is computed using the density, which is obtained

by binning markers in space. So there is no need to compute ω2
p explicitly, instead the

binning volume V can be used as is shown in the second line of Eq. (27). In general,

K6 6= K4, K7 6= K5, so the dielectric tensor is written as:

K̆ =

 K1 +K0 sin2(ψ) K2 −K0 cos(ψ) sin(ψ) K4 cos(ψ) +K5 sin(ψ)

−K2 −K0 cos(ψ) sin(ψ) K1 +K0 cos2(ψ) K4 sin(ψ)−K5 cos(ψ)

K6 cos(ψ)−K7 sin(ψ) K6 sin(ψ) +K7 cos(ψ) K3

 ,(28)

with ψ the wave phase. In order to get a proper representation of the underlying

distribution function it must be sampled sufficiently. This can be achieved by running

the PIC model until steady state is reached, after which marker data will be saved for

each time step. If necessary, more data can be accumulated by simply running the model

for more time steps after reaching steady state. If the time between saving the states is

sufficient the associated marker data can be counted as independent samplings. If not,

it will not yield worse statistics, but it just wastes computing time in the computation

of Eq. (27). A comparison against a Maxwellian distribution is given in Section 4.



3. Comparison of the hot and warm dielectric tensor models

In this Section various different RF heating schemes are compared for JET plasmas,
see table 2. To isolate the effect of the different dielectric tensors, only the wave code
LEMan was ran. Because of axisymmetry the different toroidal modes ntor decouple,
and Eq. (9) can be solved independently for each one. In this Section only the single
most important mode (ntor = 27) is used. Of course this implies that the wave field is
not localised, but spread out along the entire φ direction (2D model). The full SCENIC
suite will be used in Section 5, in which more toroidal modes are included as well.

Table 2: Overview of the four JET cases studied in this paper. Species

concentration in parentheses, N(s)/Ne(s) for the regular (Bi-)Maxwellian, and

analogously N(s, BC)/Ne(s) for the modified Bi-Maxwellian. Note these plasmas are

quasi-neutral because
∑

S qSNS = 0, with S the species, including electrons. And

analogously
∑

S qS 〈NS〉 = 0 for the plasmas with a modified Bi-Maxwellian as minority

distribution.

Case A B C D

Bulk ion species

(N/Ne)
D(0.99) D(0.98) D(0.49), T(0.49) D(0.32),T(0.64)

Minority ion species

(N/Ne or N(s, BC)/Ne(s))
H(0.01) 3He(0.01) 3He(0.01) 9Be(0.01)

All of these JET simulations used ω = B0qmin/mmin (so fundamental on axis heat-

ing), B0 = 2.7 T, 201 poloidal modes and a grid resolution of 250× 400× 20 (radial ×
poloidal × toroidal). Note that LEMan uses both poloidal and toroidal mode numbers,

as well as a poloidal and toroidal grid, see Section 5.1. Typical plasma profiles were

used, see figure C1, with Te = Ti and peak values of Te = 8.7 keV, Ne = 7.8 · 1019m−3.

The simulations presented in this work always used a Maxwellian distribution for the

background species. For the minority species the modified Bi-Maxwellian from Eq. (12)

was used, unless specified otherwise. The regular and modified Bi-Maxwellians used an

anisotropy T⊥/T‖ = 3 and T‖ = Te. In addition, the expansion of the dielectric tensor

is to the same order in k⊥ for all species. So if one species used a warm model, so did

the rest.

Note that the wave model is linear. This means that the coupled power does not

enter the model as an input, and the final solution for the electric field can be scaled

up/down arbitrarily. In this Section the presented electric field (and thereby the RF

power density) have been scaled such that the total absorbed power is 4.5 MW. To

obtain the result for a different coupled power Pc, the corresponding electric field will

need to be multiplied by
√
Pc/4.5MW. However, the orbit tracer VENUS-LEVIS is not



Table 3: Absorbed power fractions (%) on each of the species rounded to two significant

figures. The dielectric tensor model for the minority ions is indicated within parentheses.

Warm here refers the to the limiting case k⊥ → 0. Hot includes FLR effects to all orders.

“Bi-Max” refers to the regular Bi-Maxwellian from Eq. (10), and “mod Bi-Max” is the

distribution from Eq. (12).

Case Electrons H D T 3He 9Be

A (Warm mod Bi-Max) 0.76 99 0.0 - - -

A (Hot Maxwellian) 29 30 41 - - -

A (Hot Bi-Max) 29 29 42 - - -

A (Hot mod Bi-Max) 29 29 42 - - -

B (Warm mod Bi-Max) 1.2 - 3.9 - 95 -

B (Hot Maxwellian) 47 - 2.0 - 51 -

B (Hot Bi-Max) 47 - 2.0 - 51 -

B (Hot mod Bi-Max) 47 - 2.0 - 51 -

C (Warm mod Bi-Max) 1.1 - 4.5 0.0 94 -

C (Hot Maxwellian) 31 - 2.9 15 51 -

C (Hot Bi-Max) 31 - 2.9 15 51 -

C (Hot mod Bi-Max) 31 - 3.0 15 51 -

D (Warm mod Bi-Max) 0.80 - 51 0.18 - 48

D (Hot Maxwellian) 9.5 - 47 0.16 - 43

D (Hot Bi-Max) 9.5 - 47 0.15 - 43

D (Hot mod Bi-Max) 9.1 - 47 0.16 - 43

linear w.r.t. the electric field, hence in Section 5.1 where the full SCENIC suite is used

the coupled power does matter.

The most notable difference between the warm and hot model are the power frac-

tions, which are summarised in table 3. The warm model does not have FLR corrections

(zeroth order in k⊥), which means that higher harmonic heating is not taken into ac-

count. This explains the lack of deuterium heating in case A and tritium heating in case

C. In addition, the electron heating fraction is significantly underestimated in the warm

model. The biggest FLR correction to heating at n = 0 is transit time magnetic pump-

ing (TTMP), which originates from the parallel gradient of the magnetic field ∇‖|B1|,
hence power absorption by this mechanism is proportional to |k⊥ ×E⊥|2. Even though
k2⊥v

2
T⊥

Ω2 � 1 for electrons, TTMP can still be considerable because it uses the much larger

transverse component of E1, not the parallel one as in Landau damping. The power

deposition is shown in more detail for case A in figure 4. The plotted poloidal slices

are located at an arbitrary geometric toroidal angle, 0 in this case for convenience. The



antenna is centred at 293◦, but the exact angle is unimportant in this simulation as just

one toroidal mode is used. All species have a spike in power density on axis, which is

coloured white because it is outside of the colour bar range. The cumulative power in

figure 5 indicates absorbed total power within a flux surface with label ρ =
√
s, divided

by total RF input power. Note that the modelling domain does not extend beyond the

last closed flux surface (LCFS) because of the chosen (fixed boundary) equilibrium. So

the RF antenna‖ is modelled as a sub volume located at ρ < 1, hence all antenna power

is coupled to the plasma in these simulations because no fast wave evanescent layer in

the scrape off layer is considered. Therefore the cumulative power fractions recover the

values from table 3 at the LCFS (ρ = 1).

Differences are also observed in the electric field. Due to the boundary conditions

imposed in the model at ρ = 1, no RF power can leave through the LCFS. This means

that the wave bounces around inside the plasma until it is absorbed. The warm model

lacks some damping mechanisms, which causes the wave to propagate further, as is

seen in figure 6. In addition, the wave field is slightly more focussed in the hot model

w.r.t. the warm model. However, both models suffer from numerical artefacts near

the magnetic axis. A tiny distortion results in a large k⊥ using the gradient method

(described in Appendix B of [13]). The warm model uses a dielectric tensor to zeroth

order in k⊥, so it is unaffected by the value of k⊥. And so the power deposition is

not altered. On the other hand, for the hot model this artefact does propagates into

the dielectric tensor, and therefore into the power deposition as well. However, this

distortion does not significantly impact the total power deposition, due to the volume

effect. This can be seen in the cumulative power, figure 5.

(a) (b)

Figure 6: Left and right handed polarised wave components, in V/m, plotted at a

geometric toroidal angle of 0 for case A. The warm model on the left, the hot model on

the right.

‖ See Section 3.1 of Ref. [41] and Section 3.5 of Ref. [14] for a detailed description of the LEMan

antenna models.



Figure 4: Absorbed power densities on each species in the contour plots for case A, in

MWm−3. The left column is for the warm model, the right for the hot model. Power

on deuterium is not shown for the warm model as it is zero (no 2nd harmonic heating)

up to machine precision errors.
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Figure 5: Cumulative power fractions for each species in case A, versus radial position.

The warm model on the left, the hot model on the right.



In cases A,B and C the electron power is rather high. This is because the minority

species used here is thermal (not fast), and it is only 1%. A higher ion heating fraction

may be obtained at larger concentrations, simply because there are more minority ions

to absorb power. However, at too large minority concentration it is no longer a “minor-

ity”, and polarisation at the fundamental becomes unfavourable. In addition, at large

concentrations the electron power is increased through Landau damping of the mode

converted wave. The latter effect is not included by LEMan. In case B the electron

power is highest, this is because it does not benefit from the second harmonic heating

of case A, C. The bulk deuterium resonates at the fundamental frequency, meaning the

polarisation is unfavourable.

Case D is selected for its enhanced power deposition on ions. The ITER like wall

(ILW) of JET is made partly of beryllium, so the plasma will contain beryllium as

an impurity species. Instead of adding a minority species for RF heating, such native

impurities can be used for fundamental cyclotron heating. In addition a 3-ion scheme

can be constructed by tuning the concentrations of other ion species. This will optimise

the wave polarisation by approximately lining up the L cut-off with the 9Be cyclotron

resonance [42], see the narrow layer of enhanced |E+| in figure 7a. All ion resonances

in the plasma are at the fundamental for this case: From LFS to HFS, the deuterium

resonance is encountered first, followed by the Be and then the T resonance. The

power on T is insignificant because the polarisation is unfavourable, and most power has

already been absorbed by the other species before the wave reaches the HFS resonance,

see figure 8. Deuterium effectively absorbs power because its resonance is close to that of

beryllium, and therefore it also profits from the enhanced polarisation. The simulation is

converged, as is seen in the poloidal spectrum, figure 7b. The Fourier mode amplitudes

of the electric potential depend also on the selected flux surface, therefore the average

and maximum over the radial s grid are shown.
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Figure 7: Left and right handed polarised wave components for case D, in V/m. On

the right the Fourier mode amplitudes (arbitrary units) of the electric potential χ are

shown for the same simulation.
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Figure 8: Absorbed RF power density in MWm−3, for all of the plasma species, case D.

In the right plot the volume averaged power density is shown versus radial coordinate

ρ.

Even though “on-axis” heating of Be was used, the average power is not maximal

exactly at s = 0 in case D. The plasma does work as a lens to some extend for the ICRF

waves, focussing it towards the axis. In addition, the antenna straps are designed to

approximately match the shape of the LCFS. However, it still has a non-zero wavelength,

the resonance layer has a vertical extension, and the interference of the wave with its

reflected signal (from the wall or a cut-off) can displace the maximum.

4. Comparing PIC dielectric tensor against Maxwellian

The JET cases of table 2 used an analytic expression for the distribution function.

However, PIC data can function as a substitute for the minority distribution function,



as was shown in Section 2.3. In order to verify the implementation of Eq. (27) in

LEMAN, it has been applied to JET case A for a Maxwellian distribution function (for

all species). See figure 9 for the power deposition, compared against the corresponding

case from Section 3. Note the negative power in the left most case, as well as in the

second case (close to the axis). A sharp eye will catch that in all cases, including the

reference case, there are regions of negative power outside of the core. But this is just

machine precision noise which can be ignored. From left to right the power fractions

(%) are e(34), D(47), H(19); e(30), D(43), H(28); e(29), D(41), H(30) and e(29), D(41),

H(30). Agreement of the last two cases demonstrates convergence.

Figure 9: D-(H) minority heating, H power density shown. From left to right the

columns correspond to cases with 105, 106, 107 markers using the PIC dielectric tensor,

and the fourth column shows the Maxwellian reference case (no markers). The power

density has be cropped at ±0.1 in arbitrary units. The bottom row of panels shows a

zoom of the core region. No data is available exactly on axis, hence the white dot in

the centre.

VENUS-LEVIS has been used to read in the equilibrium data and initialise a given

number of markers. The binning widths ∆s = 0.01,∆θ = 0.16 rad,∆ϕ =∞ were used.

I.e. toroidal symmetry has been assumed, so no binning in toroidal direction is necessary

which means excellent statistics can be obtained at a reasonable computational cost.

The smoothing parameter σj from Eq. (21) is chosen to be 40 km/s for all markers.

With a sufficient amount of markers the reference case is reproduced, see figure 9. In

this particular case 105 is woefully insufficient, but 106 agrees well with the reference

case. Of course for more exotic distributions a smaller binning width may be required,

as well as a smaller smoothing parameter σj.



In summary, the disadvantages of this PIC approach compared to assuming an

analytic distribution function are:

• It takes more CPU hours to get the same result. The PIC runs took about

13.5, 15.1, 126.7 node hours for 105, 106, 107 markers respectively. The Maxwellian

reference case only took about 0.7 node hours. In the limit of large marker

counts the wall time scales linearly with this count, since computing each marker’s

contribution is independent, thus it is also easy to parallelise. But for relatively

small marker count other parts of the code dominate CPU time. Hence, the small

difference in wall time between the 105 and 106 marker run.

• Noise. As seen in figure 9, the grainy nature of the distribution is visible. But worse,

it can also lead to negative power deposition if the marker count is too low. The

lack of markers is especially prevalent in the region close to the LCFS. However,

this is not very important because the PIC approach will only be applied to the

minority species. Because of its low concentration the minority species only weakly

affects the total dielectric tensor, and therefore the electric field. Secondly, where

the minority density is low, the power absorption is expected to be small as well.

Hence, noise is more detrimental to the core.

• There are more model inputs to include, namely, the smoothing and binning

parameters.

However, an advantage of the PIC approach is that no input profiles of the minority

species are required, just the marker data. So temperature, density (-factor), anisotropy,

etc need not be constant on a flux surface. This means that more physical effects can

be included, given a sufficient marker count.

5. SCENIC iteration in JET

In the previous sections the equilibrium distribution function was assumed to be fixed,

as well as the magnetic equilibrium. However, fast ion populations are known to be

generated by RF and they can affect the magnetic equilibrium, which will be investigated

in this section with SCENIC for JET case A.

5.1. SCENIC code

In this work the code package SCENIC has been used, consisting of three separate

codes: ANIMEC, LEMan and VENUS-LEVIS. SCENIC iterates multiple times until a

converged solution is found. The first code is an anisotropic flavour of VMEC [43]. The

magnetic equilibrium is computed assuming nested magnetic flux surfaces. However,

temperature anisotropy T⊥ 6= T‖ is allowed. This is often the case in ICRF heating

scenarios, where T⊥ > T‖. LEMan is a hybrid code, using finite elements (cubic

polynomials) in the radial direction, and a spectral method in poloidal and toroidal

direction. It computes the electric (and magnetic) field of the RF wave in 2D or 3D,



as well as collisionless power deposition. In order to compute the volume integrals that

appear in the finite element method, certain quantities need to be sampled on a grid.

These include the wave vector, dielectric tensor, antenna current density, and more.

Gaussian quadrature with five points is used for integration in radial direction. This

means that every radial interval is divided into five flux surfaces. Each of these surfaces

is discretised into a given number of points, e.g. 400× 20 (poloidal × toroidal) for JET.

The dielectric tensor is computed on each of these points, using only one, effective,

wave vector per point. The finer the grid, the more accurate the integrals will be, but

the number of grid points need not be equal to mode numbers, as is the case in some

other (pseudo-) spectral full wave codes. VENUS-LEVIS is an orbit tracing code used

to compute the updated equilibrium distribution function f0. It is a stochastic model,

using Monte Carlo kick operators for collisions and interaction with the wave field. It

can run in full 6D mode, or 4D mode (guiding centre position and parallel velocity).

The latter is used for ICRF modelling. Furthermore, it can compute NBI deposition, so

where the neutrals are ionised, and the slowing down population can be modelled. In

addition, collisional power is computed. SCENIC exploits the separation of time scales:

The time required for the RF wave to propagate through the plasma is much smaller

than the time on which the equilibrium distribution function f0 changes. This means

that the wave field can be computed with a frozen in equilibrium distribution function, so

a linear Helmholtz type equation is solved. Once this linear RF electromagnetic field is

computed, its Fourier amplitudes can be assumed frozen in, and the non-linear evolution

of f0 over the scale of milliseconds is done. The combined approach is referred to as

“quasilinear”. This second step is done by VENUS-LEVIS. The bulk of the computation

time for SCENIC is spent in VENUS-LEVIS. This code is written in modern Fortran,

using features from the 2003 standard. It furthermore employs MPI for parallelism.

5.2. SCENIC simulation of D-(H) minority heating in JET

In order to accurately model the toroidal localisation of the RF antenna, more than one

toroidal mode needs to be used. For this purpose the most important modes are sam-

pled from the antenna current spectrum. In case of dipole phasing, which is used here,

the usual modes are ntor = ±13,±27. For VENUS-LEVIS the relative amplitudes are

required, but these too are known from the antenna spectrum, see table 3.2 in Ref.[14].

In order to reach steady state, VENUS-LEVIS simulated 100 ms of physical time,

the last 50 ms are used for analysis. A total number of 2002944 markers were used,

with data recorded every 1 ms. This takes about 5 hours per VENUS-LEVIS run, on

128 Intel Xeon 8160 CPUs (3072 cores total). The coupled RF power is assumed to

be 4.5 MW, which has been scaled down to 40%, i.e. about 1.81 MW, which is the

power fraction of hydrogen. The electric field computed by LEMan is rescaled such that

VENUS-LEVIS retrieves this power deposition. Note, that 40% is larger than what is

found in table 3. This correction is mainly due to the modification of the distribution



function after running VENUS-LEVIS.

The effect of the fast ions on the magnetic equilibrium is taken into account. The

effect is limited because this ANIMEC run used a fixed boundary, i.e. the LCFS is pre-

scribed as a boundary condition. However, the flux surfaces inside can still shift around.

The minority species modifies the pressure tensor, as well as the toroidal current profile.

However, the total toroidal plasma current was fixed to 2.2 MA. One way to gauge the

convergence of SCENIC is the distribution function, see figure 10.
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Figure 10: Energy histogram of H minority ions, after 6 consecutive SCENIC iterations,

200 bins used.

The anisotropy of the fast particles is considerable, see figure 11. Note, the 2D
histograms in figure 11 bin all of the fast H ions in the plasma. The RF wave drives
ions into the MeV range, but most of these high energy particles are deeply trapped.
Moreover, a parallel velocity asymmetry is visible (more particles with v‖ > 0). Note
that even though a symmetric antenna spectrum has been used, this does not in general
imply a symmetric distribution of v‖. One reason is that resonance with different parts
of the mode spectrum happens at different places in the plasma due to the Doppler shift
(ω = k‖v‖ + nΩ). Collisional power is peaked on axis, shown in figure 12. In addition
to direct absorption of the RF power on electrons, they can also gain power through
collisions with the fast ions driven by the wave. Collisional heating of ions and electrons
is approximately equal in this scenario. However, the latter would dominate at larger
antenna power due to the further enhancement of the fast ion tail. Additionally, the fast
ion pressure is not a flux function, see figure 13. As explained before, trapped ions that
intersect the resonant surface approximately line up their bounce points with the surface,
resulting in an accumulation on the LFS. VENUS-LEVIS models the trajectories of these
trapped ions, including the finite orbit width. LEMan is able to inherit these qualities
to some extend by using the marker distribution (or its moments) in its computation of
the dielectric tensor.
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Figure 11: 2D histograms of the fast H minority population, markers with E/Te < 5

are omitted from the left plot. The colourbar shows the number of particles per bin. 40

Bins in energy space, 100 bins for the velocity components and the pitch angle.
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Figure 12: Collisional power density of hydrogen on background species versus radial

position, averaged over angular coordinates.
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Figure 13: Fast ion density (left) and fast ion pressure (right) in the core (averaged

over toroidal angle), protons with kinetic energy less than five times the local electron

temperature are not plotted. The white line indicates the cold plasma resonance

B = BC .

6. Minority heating in W7-X

In the previous sections the hot plasma model was studied using the modified Bi-

Maxwellian in 2D magnetic configurations, in this section it will be applied to 3D

plasmas. In order to isolate the wave part of the ICRH problem only LEMan will

be used, not the whole SCENIC suite. Contrary to the tokamak simulations, a different

antenna model was used for W7-X. Instead of decomposing it in toroidal modes, a fully

localised antenna current is used, see Section 3.5 of Ref. [14]. 4He-(H) minority heating

is one of the planned RF schemes for the initial stage of the second operational phase

in W7-X. In addition, it is reasonable to assume some carbon is released from the wall,

which will also absorb power through second harmonic heating. To be able to model

the power fractions accurately in this scenario the hot model is required. A standard

mirror equilibrium with on axis heating (2.5 T) was used, with 1% H, 0.5% 12C6+ and

the rest 4He. Plasma profiles are shown in Appendix C. For the H minority species the

modified Bi-Maxwellian was used with temperature anisotropy of 3. LEMan used 30

poloidal × 300 toroidal modes, spread over 5 separate simulations. The grid resolution

was 200 × 300 × 250 (radial × poloidal × toroidal). The electric field of the wave and

power deposition are depicted in figure 14, figure 15.

It is important to use a sufficient amount of poloidal and toroidal Fourier modes to

achieve proper convergence, see figure 16 for an example spectrum in W7-X. In W7-X

just one RF antenna will be deployed (and is modelled here), this means that the wave

field, and the associate power deposition are highly localised around the antenna, see

figure 14, figure 15. If too few modes are used the electric field of the RF wave will



propagate further into the other 4 periods of the machine and deposit power there as

well. In addition, in the ICRF electrons only resonate with v‖ = ω/k‖, matching the

parallel phase velocity of the wave. In LEMan an effective parallel wave number is

derived from the electric potential χ̂ using the parallel gradient: k‖ = |∇‖χ̂|/|χ̂|. Hav-

ing enough toroidal modes is absolutely vital for getting the power deposition to the

electrons right. Otherwise this effective parallel wave number is too small, and thus

the phase velocity will be too high. Because of the exponential drop off with energy of

the Maxwellian distribution for the electrons, a negligible amount is fast enough to still

resonate. This was not an issue for the JET simulations since only the most important

toroidal modes are used instead of a dense spectrum.

However, in 3D in general all Fourier modes of the RF wave couple together, i.e.

all mode amplitudes have to be solved for simultaneously. Matrix construction in the

spectral code scales as O(N2), with N the number of modes. For large problem sizes the

Gaussian elimination step dominates solution time but this scales even worse, O(N3).

This makes simulations at large N prohibitively expensive. Fortunately, an optimi-

sation is possible for plasmas that have toroidal periodicity, and with an antenna in

one field period only [44]. This means that not all modes couple together: For W7-X

the toroidal modes can be distributed over five independent (interlaced) families. E.g.

the first family has toroidal modes ntor = −150,−145,−140, ..., 145, the second has

ntor = −149,−144,−139, ..., 146 and so on. As all families can run concurrently, the

wall time is just the required run time of one family. But a “monolithic” run, so all

modes in one simulation, would take between 25 and 125 times longer.

Moreover, a scan in H concentration has been performed, see figure 17. The

power on C is about 100 times lower than that on He. This is expected because the

concentration is only 0.5% and in this scheme it only absorbs power through second

harmonic heating¶. Increasing the carbon concentration at the cost of helium (3 He for 1

C) will decrease the ion power fraction. The plasma frequency is not affected but carbon

has a smaller thermal velocity than helium (same temperature assumed), resulting in a

narrower resonance layer. In other words, the effect of the Doppler shift on the power

absorption is less strong for carbon, |Z(ζn,C)/Z(ζn,He)| = |Z(
√

3ζn,He)/Z(ζn,He)| ≤ 1.

As was already explained in Section 3, the ion power fraction can be improved by using

a higher ion temperature, e.g. through the addition of a beam species. Alternatively,

the 4He can be replaced with D to increase the thermal velocity and therefore broaden

the resonance layer. Or a different scheme can be used that is more optimised such as

the JET case D. Furthermore, in these W7-X simulations the electron density is rather

high, which results in considerable damping on electrons close to the antenna. This is

before the wave even encounters the minority resonance. So using off-axis heating, on

¶ In this scheme the effect of carbon impurities is minimal, but that is certainly not always the case.

E.g. in the inverted scheme H-(4He) or H-(D) with carbon it could play a much more significant role. In

those schemes a carbon concentration of a few percent can lead to significant mode conversion [45, 3].



(a)

(b)

Figure 14: Absorbed power density on hydrogen minorities in W7-X on the top. Most

absorption happens right in front of the antenna, which is placed roughly at a geometric

toroidal angle of 8 degrees. On the bottom a plot of the left handed polarised wave

component |E+|. Arbitrary units.



(a) (b)

Figure 15: Zoom of the antenna region. The power deposition on hydrogen is shown on

the left, |E+| on the right. The white surface in the figure (a) highlights a sub volume

where the power density exceeds 0.1 (A.U.). The poloidal slice is placed at a geometric

toroidal angle of 8 degrees, which is approximately bisects the antenna.
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Figure 16: Fourier mode spectrum. Here χ represents the m,n Fourier amplitude of the

electric potential. The maximum of |χ| over the radial domain is plotted.

the LFS, or using more peaked density profiles may result in an improved ion heating

fraction.

7. Conclusion

In many common RF heating scenarios FLR effects play a significant role, as was

observed for the JET cases A, B and C. In order to accurately simulate these cases the

dielectric tensor model of LEMan has been upgraded. It now features a dielectric tensor

for the modified Bi-Maxwellian, accurate to all orders in FLR. The main differences

compared to the warm model are the species power fractions. Secondly, the RF wave

field is more focussed in the hot plasma model. For case D the warm model suffices, as

it involved no higher harmonic heating and electron power was limited.

Moreover, another new dielectric tensor has been presented that can take in PIC

data as a substitute for the minority distribution, avoiding the need to fit the PIC
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concentration of 0, 1, 2, 4 and 8%. The 12C6+ concentration was fixed to 0.5% and
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data. Contrary to the derivation for the modified Bi-Maxwellian, the velocity space

integration was performed analytically. The new dielectric tensor was compared against

a Maxwellian reference case for JET, and was shown to converge correctly. This is

promising for modelling more exotic distribution functions in the future, such as the

NBI slowing down distribution.

The distribution of fast ions was presented for a D-(H) minority heating case in JET.

This was computed self consistently using SCENIC. It was found that the collisional

power is shared approximately equally between background ions and electrons in this

scenario. In the future more JET cases are planned to be investigated with SCENIC,

including advanced heating schemes such as the 3-ion scheme.

Lastly, 4He-(H) minority heating was simulated in W7-X, including C impurities. The

RF power is deposited very close to the antenna, with negligible power and electric field

making it into the other four periods of the device. Of course the minority ions that

are heated by the RF wave do not remain near the antenna and will deposit power

elsewhere. Their confinement properties in the 3D plasma of W7-X are of interest as

well, which will be investigated further with SCENIC in the future.
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Appendix A. K elements modified Bi-Maxwellian

Appendix A.1. High field side

On the HFS (B ≥ BC), E−µBC ≥ 0 always, so the absolute value signs can be removed.

The distribution function on this side can be written as:

f0(v⊥, v‖) =
1

C
NF (v‖)

πv2
T⊥

e
−(v2⊥/v

2
T⊥

)C+

C± =
BC

B
± T⊥
T‖

(
1− BC

B

)
F (v‖) =

1√
πvT‖

e
−v2‖/v

2
T‖

(A.1)

Note, for B ≥ BC , C+ ≥ 0, and for B < BC , C− ≥ 0 always. Eq. (A.1) is sim-

ilar to the distribution function used in Section 4.3.4 of Ref. [32]. Simply replacing

vT⊥ → vT⊥/
√
C+, T⊥ → T⊥/C+, λ→ λ/C+ =

k2⊥v
2
T⊥

2Ω2C+
, and tacking on (CC+)−1 yields the

result. With FLR parameter defined as λ = 1
2
ρ2
T⊥
k2
⊥ =

v2T⊥
k2⊥

2Ω2 . Using N/C = N
√

T‖
T⊥

the

C can be eliminated.

So the contribution of one species to the dielectric tensor in hot plasma, for the

(non-relativistic) modified Bi-Maxwellian with no parallel drift velocity, for B > BC is:

K̆ =

 K1 +K0 sin2(ψ) K2 −K0 cos(ψ) sin(ψ) K4 cos(ψ) +K5 sin(ψ)

−K2 −K0 cos(ψ) sin(ψ) K1 +K0 cos2(ψ) K4 sin(ψ)−K5 cos(ψ)

K4 cos(ψ)−K5 sin(ψ) K4 sin(ψ) +K5 cos(ψ) K3

(A.2)

With ψ the phase of the wave vector in the plane perpendicular to B:

kn = k⊥ cosψ, kb = k⊥ sinψ, (A.3)

where kn, kb are the normal and binormal components respectively, see Appendix B of



Ref. [13]. And the elements are:

K0 = 2

√
T‖
T⊥

ω̃2
pe
−λ/C+

ωk‖vT‖C+

∞∑
n=−∞

λ

C+

(In − I ′n)

[
Z(ζn) +

k‖vT‖
ω

(
1− T⊥

T‖C+

)
Z ′(ζn)

2

]

K1 =

√
T‖
T⊥

ω̃2
pe
−λ/C+

ωk‖vT‖C+

∞∑
n=−∞

n2InC+

λ

[
Z(ζn) +

k‖vT‖
ω

(
1− T⊥

T‖C+

)
Z ′(ζn)

2

]

K2 = i

√
T‖
T⊥

εω̃2
pe
−λ/C+

ωk‖vT‖C+

∞∑
n=−∞

n(In − I ′n)

[
Z(ζn) +
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ω

(
1− T⊥

T‖C+

)
Z ′(ζn)

2

]
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√
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ω̃2
pe
−λ/C+

ωk‖vT‖C+

∞∑
n=−∞

Inζn

[
1 +

nΩ

ω

(
1−

T‖C+

T⊥

)]
Z ′(ζn)

K4 =

√
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k⊥ω̃
2
pe
−λ/C+

ωk‖ΩC+

∞∑
n=−∞

nInC+

λ

[
T⊥
T‖C+

− nΩ

ω

(
1− T⊥

T‖C+

)]
Z ′(ζn)

2

K5 = i

√
T‖
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εk⊥ω̃
2
pe
−λ/C+

ωk‖ΩC+

∞∑
n=−∞

(In − I ′n)

[
T⊥
T‖C+

− nΩ

ω

(
1− T⊥

T‖C+
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Z ′(ζn)
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(A.4)

And the plasma dispersion function [46]+ is here defined as:

Z(ζ) =
1√
π

∫ ∞
−∞

e−x
2

x− ζ
dx, Im(ζ) > 0 (A.5)

The derivatives of which can be rewritten using the identity:

Z ′(ζ) = −2(1 + ζZ(ζ)) (A.6)

The modified plasma frequency is ω̃2
p = q2N

ε0m
, where density has been replaced by the

density factor, ε = q/|q| indicates the charge sign, and ζn = ω+nΩ
k‖vT‖

. Note, other books

[31, 30] may use a different definition of ζn, with −n in the numerator. This is also

valid, as long as one is consistent. Symmetry can be used to rewrite it, In(z) = I−n(z).

But care must be taken with terms as K2 which contain a multiplication by n, thus

tacking on another minus. Many other, equivalent forms of these expressions exist, e.g.

the derivatives I ′n(z) can be eliminated with the identity I ′n(z) = n
z
In(z) + In+1(z) or

I ′n(z) = In−1(z)− n
z
In(z). Thus, also I ′n(z) = I ′−n(z). Also note, the T‖, T⊥ are swapped

in K3. The modified Bessel functions in Eq. (A.4) have as argument λ/C+. Note, typ-

ically C and C+ are roughly equal to 1, and thus it is not a big deformation from the

regular Bi-Maxwellian. Note, Eq. (A.4) is just the contribution of the fast species, no

background species are included. To get the total dielectric tensor, sum over those too,

and the identity matrix for the vacuum.

+ This is the Hilbert transform of a Gaussian. Beware, in other literature different definitions of the

plasma dispersion function may be in use!



The modified Bessel functions are required, but these are not exponentially scaled

by the special functions library. So these limiting expressions for large |z| (with

Re(z) > 700) are used to avoid floating point overflow:

In(z) ≈ ez√
2πz

(
1− 4n2 − 1

8z
+ ...

)
≈ ez√

2πz
(A.7)

Using a recurrence relation:

I ′n(z) ≈ ez√
2πz

(
1− 4n2 + 3

8z
+ ...

)
≈ ez√

2πz
(A.8)

The e−z cancels with the ez. For Re(z) < 0 (evanescent region), the zeroth order

warm (k⊥ → 0) expressions are used.

Appendix A.2. Low field side

On the LFS the following even functions are used in Eq. (16):

M1(x) =

∫ ∞
0

ye−|x
2+by2|−y2J2

n (ay) dy

M2(x) =

∫ ∞
0

y2e−|x
2+by2|−y2Jn (ay) J ′n (ay) dy

M3(x) =

∫ ∞
0

ye−|x
2+by2|−y2 [a2y2J ′2n (ay)− n2J2

n (ay)
]
dy

N1(x) =

∫ ∞
0

sign(x2 + by2)ye−|x
2+by2|−y2J2

n (ay) dy

N2(x) =

∫ ∞
0

sign(x2 + by2)y2e−|x
2+by2|−y2Jn (ay) J ′n (ay) dy

N3(x) =

∫ ∞
0

sign(x2 + by2)ye−|x
2+by2|−y2 [a2y2J ′2n (ay)− n2J2

n (ay)
]
dy

(A.9)

With x = v‖/vT‖ , y = v⊥
vT⊥

√
BC

B
, a =

εk⊥vT⊥
Ω

√
B
BC
, a2 = 2λ B

BC
, b =

T⊥
T‖

(
B
BC
− 1
)

, ξn = ζ−εn = ω−nεΩ
kzvT‖

and

sign(x) =


−1, x < 0

0, x = 0

1, x > 0

And
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With η = BC

B
nεΩ
ω
, Λ = T⊥

T‖
(1− η). K6, K7 are not shown because they equal K4, K5

respectively. This can be seen by using the trick from Eq. (25) and dropping the odd

integrand terms because M(x), N(x) are even.

The most expensive part of the computation of M(x), N(x) is calculating the Bessel

functions Jn. However, the amount of evaluations can be minimised by using recurrence

relations. Also symmetry properties can be used. For integer order n:

Jn(−z) = (−1)nJn(z), J−n(z) = (−1)nJn(z) (A.10)

And so:

J2
−n(z) = J2

n(z), J ′2−n(z) = J ′2n (z), J−n(z)J ′−n(z) = Jn(z)J ′n(z) (A.11)

This means that no negative order Bessel functions need to be computed. The Fortran

library for special functions [47] already takes care of this. It also computes the Bessel

function derivatives in the same routine. In addition, significant time can in principle

be saved by computing the Bessel functions once on a y grid, then reusing it for every

x value. This however will not be accurate, as the e−|x
2+by2| term in Eq. (A.9) becomes

a narrow spike for b < 0, x > 1. Therefore it is more efficient to recompute the Bessel

functions for every x value, on a new y grid with refinement around y = x/
√
|b|. Note,

during this derivation it was assumed here that ξn ∈ R, but k⊥ or λ can still be complex.



Appendix B. PIC coefficients

The coefficients for Eq. (27) in full:
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The special case of k⊥ = 0 is handled separately by taking the limit of k⊥ → 0 in

Eq. (B.1). The second derivative of the Bessel function has been rewritten in terms of

Jn(z), J ′n(z) as those are provided directly by the special functions library.

Appendix C. Plasma profiles

In the LEMan only simulations it was assumed that Ti = Te, and the ion densities
have the same profile shape as electrons, but scaled up by a given factor. For JET
and W7-X the used profiles are shown in figure C1. For W7-X the electron profiles
are estimates for what may be achieved in the second operational phase of W7-X:
Ne = Ne,0(0.9(1− s10)2 + 0.1), Ne,0 = 1.5 · 1020m−3, and Te = (3995(1− s) + 5)eV.
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Figure C1: Plasma profiles used in the LEMan simulations. The left panel is for JET,

the right is for W7-X. The left vertical axis corresponds to density, in red (dashed), and

the right vertical corresponds to the temperature, in black (solid).
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