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Abstract:
The task of optimally designing and scheduling energy systems with a high share of renewable energies is complex and
computationally demanding. A widespread method for tackling this task is to apply mixed integer linear programming
(MILP). Even though the branch-and-bound algorithms used for solving these programs have seen significant improve-
ments in the last years, many problems cannot be solved without further time series aggregation (TSA) methods.
State of the art approaches tackle TSA by using well known machine learning techniques to cluster yearly input data to typi-
cal periods. However, latter algorithms are usually evaluated by indicators on the performance of the algorithms themselves
rather than the MILP optimization model. Furthermore, the selection of the optimal number of typical periods is commonly
a subjective imposition of thresholds on these performance indicators. The issue of computational effort is eased by this
generally accepted algorithm, but is still limited by the size of the problem, especially the number of integer decisions.
This paper aims at proposing a algorithm for systematically reducing the input data for MILP optimization models and
choosing the appropriate size. Contrary to most existing studies, the focus is on the impact on the objective function as
well as the integer decision rather than on the quality of the clustering algorithm. The subject is addressed by exploiting the
two-stage character of optimal design and scheduling of the system by sequentially performing k-medoids clustering. The
demonstration of the algorithm on two case studies shows that a few typical periods are sufficient to achieve near optimal
decisions. Multi objective optimization (MOO) is performed to assess the quality of the data reduction. The proposed
approach is outperforming state of the art algorithms for TSA by reducing CPU time of more than 40%. The case study
furthermore reveals that the runtime of the MOO can be reduced by approximately 90% while diverting less than 2 % on
Pareto optimal solutions.
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1. Introduction
The energy sector is currently facing multiple transforming forces. In context of rising concerns for anthro-
pogenic CO2 emissions, the integration of renewable energy sources is becoming an increasingly widespread
solution for reducing the carbon footprint of energy systems [1]. Decentralization and the increasing volatility
in energy generation highlight the importance of strategically planning the interaction between building energy
systems and the electricity power grid. The optimal integration of renewable resources in energy systems is a
complex task as both aspects, optimal scheduling of operation as well as strategic planning of system design
have to be considered side by side. Energy system optimization using Mixed-Integer Linear Programming
(MILP), where an integer represents the decision for or against installing a technology, is a widely adapted
framework. The mismatch between non-dispatchable renewable energy sources and typical demand profiles
additionally require the consideration of time series with resolutions of several minutes to maximal one hour.
The challenge of the simultaneous inclusion of integer decisions, a project horizon of several decades as well
as hourly time series result in not only the need of a large amount of data but also to computational extensive
problems. To make the problem computationally tractable, simplifications can be either made in the spatio-
temporal, that is reducing input data, or techno-economic dimension, corresponding to reducing complexity of
component modelling [2]. This work focuses on the spatio-temporal reduction. The state of the art is briefly
discussed in the following section.

1.1. State of the art
The aggregation of time series to typical periods is specifically popular, as patterns occur naturally in the supply
and demand of energy, which arise in the time dimension through hourly, daily and seasonal cycles. A recent
comprehensive review by Hoffman et al. [2] analyze Time Series Aggregation (TSA) methods for modeling
energy systems applied in 130 different publications. Schütz et al. [3] compare different aggregation methods
for the selection of typical demand days, such as k-means, k-medians, k-centers, k-medoids, seasonal and
monthly based classification. Both studies [2,3] show that the more intuitive aggregation methods of seasons



or months lead to significantly larger errors than the machine learning methods for the same computation
time. Algorithms within the latter category performed similarly well, although k-medoids were most reliable for
approximating costs. Schütz et al. [3] show that the typically applied assessment of the aggregation by using
Sum of Squared Errors (SSE) is not sufficiently suitable for energy system synthesis problems.
State of the art approaches in modelling complex energy systems almost exclusively apply performance in-
dicators of the algorithm themselves such as SSE, Root Mean Square Deviation (RMSD), Mean Average
Percentage Error (MAPE) or silhouette index for defining the length and amount of typical periods [4–6]. This
algorithm does not provide sufficient guarantee of aggregation quality with respect to the optimal objective
value and unit choices. Therefore, Brodrick et al. [7] consider the change of unit decision while increasing the
amount of typical periods next to the SSE of the k-means algorithm. Bahl et al. [8] developed a systematic
method for bounding the error of the aggregation in the objective function. This has laid the foundation for
a rigorous formulation of time series relaxation and aggregation comprising a method for effectively including
seasonal storage [9,10]. The mathematically rigorous formulation [9] creates an upper and lower bound of the
objective function and iterates the procedure by increasing the resolution of TSA until an optimally gap crite-
rion is met. The lower bound is found by solving a relaxed problem, whereas the upper bound is generated by
solving the Operating Problem (OP) with the full time series on predefined unit sizes provided by the solution
of the aggregated input data [9].

1.2. Gaps and contribution
As previous literature review reveals, machine learning algorithms for data reduction techniques are not very
well integrated in the optimization technique of complex energy systems. Thus, this paper proposes a new
iterative procedure of TSA for complex energy systems by evaluating the clustering on the objective function
as well as on integer variables.

Figure 1: Procedure of time series aggregation with relevant steps highlighted in red

Figure 1 gives an overview of the general steps involved in TSA, specifying which approach is used in this
paper and highlighting the steps that are varied and analyzed. In previous section, k- medoids algorithm is
identified as most reliable for economic evaluation of energy systems. Hence, k-medoids algorithm is chosen
as aggregation method in step 2 (compare Figure 1).

2. Materials and methods
The aim of this work is to bridge the gap between well established machine learning techniques and the
optimization framework of complex energy systems. Therefore, the iterative procedure of reducing data is
described at first (Section 2.1.), before the application case of a building energy model is introduced (Section
2.2.).

2.1. Time series aggregation (TSA)
An overview of the proposed algorithm is displayed in Figure 2. It consists of two parts, of which the first
focuses on the objective function evaluation, whereas the second evaluates the integer decision variables.
Furthermore, it defines not one solution for the choice of unit design, but a list of solutions named as the
”solution space”.

2.1.1. Algorithm part 1
The first part is characterized by an iterative process with two separate convergence criteria on the value of the
objective function. With every iteration the percentage change between the solution of the Aggregated Problem
(AP) based on k-medoid clustering between n and n-1 clusters is calculated. Only when the first convergence
criterion, |εa| ≥ APn−APn−1

APn
, is met, the OP on the full time series but with fixed unit sizes is solved. Then the

second convergence criterion |εb| ≥ OPn−APn
APn

is evaluated and the iteration continues with the calculation of
both problems until the second criterion is met. Then finally, the sizing and selection variables are added as a
result to the solution space.

2.1.2. Algorithm part 2
The second part is introduced after arriving at n clusters which provide the first element in the solution space.
It consists of recalculating the AP for another m steps with increasing amounts of typical periods. The purpose
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Figure 2: Overview of the proposed iterative procedure for systematic input data reduction

is to compare the integer decisions and possibly add new elements to the solution space that provide different
unit choices, but have a similar value of the objective function. Depending on the type of energy system and
the amount of possibilities available for unit decisions, the integer variables might remain still the same after
n+ m iterations. In this case, the procedure stops with n+1 typical periods.

2.1.3. Tuning parameter
The following list details the definition and a possible choice of tuning parameters:

• Convergence criterion |εa| ≥ APn−APn−1
APn

: Variation between the solution of the aggregated problem be-
tween n and n-1 clusters; εa = 5%.

• Convergence criterion |εb| ≥ OPn−APn
APn

: Variation between the solution of the aggregated problem of n clus-
ters and the non-aggregated operating problem with fixed unit decisions from the aggregated synthesis;
εb = 5%.

• Amount of additional iterations comparing unit decisions m: The amount of additional aggregated syn-
thesis solutions that are tested for; m = 3.

The tuning choice of m specifically can be made depending on the problem complexity and amount of possible
integer decisions that could provide similar results.

2.1.4. Comparison to the state of the art
In contrast to comparable work in multiple objective optimization of energy systems with a high share of re-
newable energies, the selection of the appropriate number of typical periods is not based on Key Performance
Indicator (KPI) from the machine learning algorithm in this procedure unlike [5, 6, 11, 12]. It is furthermore
evaluated on the performance of the model of the energy system itself. The proposed procedure is similar to
the method developed by Bahl et al. [8] and further refined in [9]. Two main distinctions are elaborated that
make the method simpler and computationally more efficient:

1. Usage of two convergence criteria: This framework proposes two separate convergence criteria with the
benefit of skipping the calculation of the computationally intensive second stage, the operating problem
on the full time series, for most iterations.

2. Inclusion of unit decision: The second part of the framework includes the consideration of the unit de-
cisions in the process of TSA evaluation, to either confirm convergence of unit decisions or compare
possible solutions based on integer variables.



3. The inclusion of the unit decisions makes it possible to use the TSA on a Multi-Objective Optimization
(MOO) problem.

2.2. Energy system model
The data reduction technique is applied on a MILP approach of the optimal design and scheduling of a building
energy system. The type and the size of the different components are the main decision variables in order to
satisfy space heating, electricity and domestic hot water demand. There are nine technology options to choose
from for each building: a natural gas boiler, an air water heat pump, a Solid Oxide Fuel Cell (SOFC), which
serves as a cogeneration unit, two electrical heaters and two thermal storage tanks, one each for domestic
hot water and space heating demand, a lithium ion battery and Photovoltaic (PV) panels. The building is con-
nected to the fresh water, the natural gas and the electrical power grid.
The space heating demand is impacted by the conductive heat losses through the envelope, the heat capac-
ity of the building, internal heat gains from appliances and people, as well es external heat gains from solar
irradiation. The building mass can serve as thermal storage and the indoor temperature is variable within a
preferred temperature range. This enables the option of heating the building at times of surplus energy, hence
this approach is enabling optimal inclusion of renewable energy. In contrast, the domestic hot water is served
at a fixed supply temperature of 60°C to respect hygienic standards [13]. The electricity demand of the building
is modelled according to Swiss standard norms [13].
Energy balances of the system close the first law of thermodynamics whereas a discretized heat cascade
ensures to respect the second law of thermodynamics. Cyclic constraints reset the indoor temperature and
all thermal and electrical streams to its initial status at the end of each period to ensure that no energy is
accumulated between different typical periods. The reader is transferred to [6] for further insights about the
modeling approach. In the following, the main objective functions of the MILP problem are summarized before
an overview of the case study and connected input data is provided.

2.2.1. Objectives
The MILP problem is defined as minimizing connected expenses. This includes the contribution of Operational
Expenses (OPEX) and Capital Expenses (CAPEX), which are in general conflicting. Thus, a MOO approach
is required. The MOO is implemented using the ε - constraint method, which takes OPEX as main objective
and solves the problem with increasing limits on acceptable CAPEX. The same principle is then repeated
where both objectives invert the position.
The annual OPEX account for the interaction with the local power and gas grid (Equation 1). cel ,+, cel ,− and
cng,+ express purchase and feed-in tariffs, which are time independent in this study. Ḣgr ,+

b,p,t represents the energy
flow of natural gas purchased from the grid for building b at time step t and typical period p; similarly,Ėgr ,+

b,p,t and
Ėgr ,−

b,p,t represent the electricity exchange with the grid. Annual values are integrated over each typical period p
and accounted with their frequency d .

Cop =
∑
b∈B

∑
p∈P

∑
t∈T

(
cel ,+ · Ėgr ,+

b,p,t − cel ,− · Ėgr ,−
b,p,t + cng,+ · Ḣgr ,+

b,p,t

)
· dt · dp (1)

The annual CAPEX consist of the investment and replacement cost (Equation 2a), which are annualized with
the interest rate i and the duration n of project [14]. The investment costs are further described in Equation
2b, where the parameters ic1, ic2 and the baremodule bu describe the linear version of the cost function. The
binary variable yb,u represents the decision to install a unit u in building b, whereas the continuous variable fu
represents the unit size. If the lifetime of a unit lu exceeds the project horizon, it needs to be replaced (Equation
2c). In this study, only lithium batteries and cogeneration units need replacement.

Ccap =
∑
b∈B

i(1 + i)
(1 + i)n − 1

(
C inv

b + Crep
b

)
(2a)

C inv
b =

∑
u∈U

bb,u ·
(
ic1
b,u · yb,u + ic2

b,u · fb,u
)
∀b ∈ B (2b)

Crep
b =

∑
u∈U

∑
r∈R

1

(1 + i)r ·lu
·
(
ic1
b,u · yb,u + ic2

b,u · fb,u
)
∀b ∈ B (2c)

The combination of CAPEX and OPEX leads to the Total Expenses (TOTEX) of the project (Equation 3):

C tot = Cop + Ccap (3)

2.2.2. Case study
Two case studies with different levels of complexity demonstrate the proposed procedure. The first case study
is a typical Swiss building located in the climatic zone of Geneva. The building is a residential, single- family



home with 2 floors and in total 250 m2 heated surface from around 1950. Potential installation of PV Panels
are assumed to be horizontally. On a full time series of one year, this case study leads to over 830 thousand
constrains and 780 thousand variables, among which are almost 9000 binaries.
The second case study includes the very same building plus the 4 neighboring buildings, all residential build-
ings, among which one multi family home and 3 additional single family homes built between 1950-2000 .
Additionally, all allocated roof surfaces are considered for possible PV panel installations, leading to 24 dif-
ferent roofs and their orientations to choose from. The modelling approach of oriented PV panels is reported
in [15]. The second case study on a full time series of one year sums up to over 4.1 million constrains, almost
4 million variables among which are almost 44000 binaries.
Building specific parameters such as the heat transfer coefficient, the heat capacity or the supply and return
temperatures of the heating system are derived from [16]. Typical annual values of the global irradiation and
the external temperature are reported at [17].The k-medoids clustering with the R package wcKMedoids is per-
formed for aggregating one typical year. Furthermore, one extreme cold weather period is added, consisting
of one single time-step.
The problem is formulated in AMPL Version 20191001 and solved with CPLEX 12.9.0.0 on a local machine
with following processor details: Intel(R) Core(TM) i7-8559U CPU @ 2.70GHz. The relative tolerance between
relaxed linear problem and best integer solution is set to mipgap=1e-8. The remaining CPLEX settings are
equal to the default settings reported at [18].

3. Results
In a preprocessing step, Global Irradiation (GHI) and the external temperature (T) are clustered to different
number of k-medoids. The length of one typical period is chosen to be 24h. Figure 3 displays the quality of the
aggregation. The common procedure for selecting amount of typical periods is to define a slope threshold of
the KPIs. A slope threshold of 10 % would lead to around 10 typical periods.

2 8 13
Number of clusters [-]

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Ke
y 

Pe
rfo

rm
an

ce
 in

di
ca

to
r (

KP
I) 

[-]

KPI
RMSD (GHI)
RMSD (T)
LDC (GHI)
LDC (T)

(a)

2 8 13
Number of clusters [-]

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
ea

n 
Av

er
ag

e 
Pe

rc
en

ta
ge

 E
rro

r  
[-]

KPI
MAPE  (GHI)
MAPE  (T)

(b)

2 8 13
Number of clusters [-]

0.03

0.04

0.05

0.06

0.07

0.08

0.09

M
ea

n 
Av

er
ag

e 
Er

ro
r (

M
AE

)  
[-]

KPI
MAE (GHI)
MAE (T)

(c)

Figure 3: Key performance indicators (KPIs) of the k-medoids clustering of global irradiation (GHI) and the external tem-
perature (T). a) Root mean square deviation (RMSD) and difference on the load duration curve (LDC) b) Mean average
percentage error (MAPE) c) Mean average error (MAE).

3.1. Algorithm part 1
First, the AP with an increasing amount of clusters is solved. The objective function TOTEX, which is equally
weighting the two conflicting objectives of the MOO. Figure 4 demonstrates part one of the proposed algorithm
for case study one, a typical residential building. The algorithm starts with two clusters. To be able to observe
the relative change of the objective function, the AP is immediately solved with 3 typical periods. Already after
these 3 clusters the convergence criteria εa is approximately 5 %. The unit decisions are fixed and the full time
series is solved. Similar to the criteria εa, εb is below 5 % and therefore 3 typical periods are chosen as number
of typical clusters for further investigations in the second part of the algorithm. For demonstration purposes,
the aggregated and the operating problem on the full time series is solved up to 12 typical days. After 7 typical



days, the difference of the objective functions, and therefore the second convergence criteria stays even below
1%.
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Figure 4: Demonstration of part 1 of the algorithm, case study 1 Building with objective TOTEX. Impact of different number
of clusters on a) the objective function b) the convergence criteriaεa and εb, as well as deviation of CAPEX and OPEX to
n − 1 clusters.

Figure 5 visualizes the algorithm of the second and more complex case study. At three clusters the first
convergence criteria .εa is over 30 % and not satisfactory. Thus, one additional cluster is added for which εa
is reaching 5%. Hence, the OP is solved which leads to εb = 4%. For the second case study 4 typical days
seems appropriate for executing the second part of the algorithm.
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Figure 5: Demonstration of part 1 of the algorithm, case study 5 Buildings with objective TOTEX. Impact of different number
of clusters on a) the objective function b) the convergence criteriaεa and εb, as well as deviation of CAPEX and OPEX to
n − 1 clusters.

3.2. Algorithm part 2
The second part of the algorithm aims at looking at the integer decisions which are chosen for the AP. For
demonstration purposes not only integer decisions are visualised but as the objective is TOTEX, Figure 6 addi-
tionally shows the annual energy which is exchanged with the network and contributes to the objective. For two
clusters an airwater heatpump in combination with electrical heater and thermal storage tanks seems to be the
most economical decision. For three clusters, PV modules are additionally installed. This configuration stays
the same for all further investigated number of clusters. Therefore, the three typical periods can be confirmed
and further used during MOO.
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Figure 6: Overview of unit decision and network operation for the aggregated problem (AP) with different amount of typical
periods for minimizing TOTEX. Case study with 1 residential building.

Figure 7 visualizes part two of the algorithm for the more complex case study of 5 residential buildings with
individual roof orientation. For the suggested amount of four clusters, the unit decisions are air water heat
pumps, additional electrical heaters for peak loads, thermal storage tanks and PV panels. These decisions
stay the same for the observation period of m = 3 and the TSA can be ended with 4 typical periods for the
second case study.
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Figure 7: Overview of unit decision and network operation for the aggregated problem (AP) with different amount of typical
periods for minimizing TOTEX. Case study of a network consisting of 5 residential building with individual PV orientation.

3.3. Multi-criteria decision making
The overall goal is to propose a TSA method which is usable not for only a single run of one objective, but
which can be used for all further investigations in the MOO domain. Therefore, this section is presenting
the performance of the demonstrated TSA in context with the MOO of case study 1. Figure 8a compares
the Pareto curves of the AP to the associated OP on the full time series for the previously resulting 3 typical
periods. Related unit decisions of each Pareto - optimal scenario are displayed in Figure 9. The CAPEX
ranges from approximately 3 CHF/m2 heated surface (Scenario 1) to almost 30 CHF/m2 (Scenario 8). The unit
decision of Scenario 1 is based on natural gas, only using a gas boiler and small thermal storage tanks. For
this Scenario, the AP and its linked OP is almost identical on the Pareto frontier (Figure 8a). In contrast, the
unit decision for Scenario 8 is more diverse and includes renewable energy sources such as PV panels and
an air water- heat pump but also thermal and electrical storage (Figure 9). The performance of these units are
all depending on the weather data or, in terms of the storage, the optimal scheduling within one typical period.
Nevertheless, comparing the OPEX of the AP and the linked OP shows a deviation by only 3%.
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Figure 8: a) CAPEX - OPEX Pareto frontier for case study 1. Aggregated problem (AP) with 10 typical periods (x) and 3
typical periods (•). b) Direct comparison of 9 unit choices in each of the 8 Pareto scenarios with 3 and 10 typical periods.
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Figure 9: Overview of different unit decisions along the Pareto optimal scenarios. Case study 1 with 3 typical periods.

3.4. Comparison to the state of the art
The proposed approach leads to a significantly lower amount of required typical periods compared to the state
of the art procedure, which is based on the selection on KPIs of the machine learning algorithm itself. Using
k-means aggregation method on the annual heating demand, [5] identifies 13 typical days, whereas k-medoids
clustering of the weather data reveals 8 typical days for [6]. For the addressed case study, conventional ap-
proaches would result in approximately 10 typical days. Therefore, this solution is compared to the 3 typical
days obtained from the proposed TSA algorithm. Figure 8a is visualizing the CAPEX - OPEX Pareto front
of case study 1 for 3 and 10 typical periods. Both Pareto curves of the AP are basically identical for lower
scenarios and divert less than 2% for higher investment scenarios. Similar observations are possible for the
associated OPs. This shows that 3 typical typical periods are enough in terms of cost calculation during MOO.
Figure 8b compares the unit sizes, which are chosen at each pareto optimal scenario. Nine unit sizes in eight
Pareto points are directly compared, although different epsilon constraints are identified in the process of both
MOO. It is apparent that most of the 72 unit decisions are identical, even among different scenarios. The
size of PV panels in all 8 Scenarios are identical, similar conclusion is valid for electrical heaters and storage
tanks for space heating. It seems that for higher investment scenarios and a larger number of typical periods,
back-up units for domestic hot water and the batteries are reduced while base-load equipment such as heat
pumps are slightly increasing size. However, for a clean picture, this comparison has to be done comparing
same epsilon constraints for the two MOO approaches.

Figure 10 illustrates the computational benefit of the proposed approach. Applying the method proposed by [9],
the solution of the AP took seconds or up to a few minutes, whereas the solution of OP consistently took about
four times longer. Thus, the proposed framework reaches lower total computational times due to a simple
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Figure 10: Computation time of aggregated time series including unit decisions (black) and the operation problem of the
full time series, without unit decision (blue) a) case study of one building b) case study of 5 buildings.

elimination of time consuming computing steps. Table 1 summarizes the CPU time for the TSA as well as for
the application during the presented MOO and compares it to the respective state of the art. The proposed
method for TSA is reducing the CPU time by 40% and even for 61% for the more complex case study 2. This
demonstrates the benefit of the proposed method especially for complex energy systems. The reduction of the
required typical periods is leading to a decrease in CPU time of around 90% for the presented MOO.

Table 1: Comparison of the proposed approach to the state of the art.

Case study 1 Case study 2

CPU time [s] Comparison[%] CPU time [s] Comparison[%]
TSA State of the art [19] 72 100 2570 100

Proposed approach 43 60 1000 39
MOO State of the art [6] 96 100 2870 100

Proposed approach 9 9 380 13

4. Conclusion
This work analyzes the impact of data reduction techniques on complex energy systems. Energy systems
which include a high share of renewable energies, require a time resolution of a few hours but planning and
designing them needs the consideration of several decades. Literature in the field addresses this issue by using
machine learning techniques to identify typical periods and thus reduce the input space. The presented work
is combining a k-medoids clustering approach with systematic performance evaluation of the MILP framework
of the energy system. Compared to the state of the art, this approach includes the consideration of the integer
decision of the installed technologies in the energy system. Furthermore the CPU time of the TSA is reduced
by more than 40% by substituting computational intensive steps with an additional convergence criteria. The
most interesting results however, are related to the application on MOO. The proposed method leads to a
remarkable reduction in typical periods compared to the selection technique of the state of art in MOO. This
reduces the CPU time by 90%, while the pareto curves are deviating by up to 2-3% in the presented case. The
integer decisions are identical along the curve. Unit sizes require a more detailed investigation to lead to mean-
ingful results, which could further be extended to the inclusion of seasonal storage. One possible extension
of this work is the consideration of not one typical year but the full project horizon for the TSA, which brings
along the challenge of weather prediction subjected to climate change. Furthermore, the impact of extreme
conditions could be addressed by parallel detection of outliers in the aggregation method.

Acronyms
AP Aggregated Problem; CAPEX Capital Expenses; GHI Global Irradiation; KPI Key Performance Indicator;
MAPE Mean Average Percentage Error; MILP Mixed-Integer Linear Programming; MOO Multi-Objective Op-
timization; OP Operating Problem; OPEX Operational Expenses; PV Photovoltaic; RMSD Root Mean Square
Deviation; SOFC Solid Oxide Fuel Cell; SSE Sum of Squared Errors; TOTEX Total Expenses; TSA Time
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Nomenclature

Parameter
εa First convergence criteria -
εb Second convergence criteria -
b Baremodule -
c Energy tariff CHF/kWh
d Duration h
i Interest rate -
ic1 Fixed Investment Cost CHF
ic2 Continuous Investment Cost CHF/ �
l Lifetime yr
n Project horizon yr
Variables
C Cost CHF(/yr)
E Electricity kW(h)
f Sizing variable �
H Natural gas kW
y Decision variable, binary [-]

Sets
B Building b
P Period p
R Replacement r
T Timestep t
U Utility u
Superscripts
+ Supply
− Demand
cap Capital
el Electricity
gr Grid
inv Investment
ng Natural Gas
op Operation
rep Replacement
tot Total
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