
Equinox: Training (for Free) on a Custom Inference Accelerator
Mario Drumond∗

mario.drumond@codedepot.ch
CodeDepot
Switzerland

Louis Coulon
louis.coulon@epfl.ch

EcoCloud, EPFL
Switzerland

Arash Pourhabibi
arash.pourhabibi@epfl.ch

EcoCloud, EPFL
Switzerland

Ahmet Caner Yüzügüler
ahmet.yuzuguler@epfl.ch

EcoCloud, EPFL
Switzerland

Babak Falsafi
babak.falsafi@epfl.ch

EcoCloud, EPFL
Switzerland

Martin Jaggi
martin.jaggi@epfl.ch

EcoCloud, EPFL
Switzerland

ABSTRACT
DNN inference accelerators executing online services exhibit low
average loads because of service demand variability, leading to poor
resource utilization. Unfortunately, reclaiming idle inference cycles
is difficult as other workloads can not execute on a custom acceler-
ator. With recent proposals for the use of fixed-point arithmetic in
training, there are opportunities for training services to piggyback
on inference accelerators. We make the observation that a key chal-
lenge in doing so is maintaining service-level latency constraints for
inference. We show that relaxing latency constraints in an inference
accelerator with ALU arrays that are batching-optimized achieves
near-optimal throughput for a given area and power envelope while
maintaining inference services’ tail latency goals.

We present Equinox, a custom inference accelerator designed to
piggyback training. Equinox employs a uniform arithmetic encod-
ing to accommodate inference and training and a priority hardware
scheduler with adaptive batching that interleaves training during
idle inference cycles. For a 500𝜇𝑠 inference service time constraint,
Equinox achieves 6.67× higher throughput than a latency-optimal
inference accelerator. Despite not being optimized for training ser-
vices, Equinox achieves up to 78% of the throughput of a dedicated
training accelerator that saturates the available compute resources
and DRAM bandwidth. Finally, Equinox’s controller logic incurs
less than 1% power and area overhead, while the uniform encod-
ing (to enable training) incurs 13% power and 4% area overhead
compared to a fixed-point inference accelerator.

CCS CONCEPTS
• Computer systems organization → Systolic arrays; Neural
networks; Cloud computing.

KEYWORDS
DNN accelerators, DNN inference, systolic arrays

∗This work was done while the author was at EPFL.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO ’21, October 18–22, 2021, Virtual Event, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8557-2/21/10. . . $15.00
https://doi.org/10.1145/3466752.3480057

ACM Reference Format:
Mario Drumond, Louis Coulon, Arash Pourhabibi, Ahmet Caner Yüzügüler,
Babak Falsafi, and Martin Jaggi. 2021. Equinox: Training (for Free) on a
Custom Inference Accelerator. In MICRO’21: 54th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO ’21), October 18–22,
2021, Virtual Event, Greece. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3466752.3480057

1 INTRODUCTION
DNN infrastructure has observed an explosion in investment due
to the increasing popularity of DNNs in online services [16, 18, 22].
Unfortunately, a significant fraction of this investment goes to
waste, as custom inference accelerators face an average request
load of around 30% because of service demand variability [7]. In
general-purpose platforms, idle cycles are reclaimed by co-locating
best-effort workloads with latency-critical ones [11]. As no other
workload can execute on custom inference accelerators, those idle
cycles stay unclaimed, leading to a considerable waste of resources.

While DNN training workloads can be used as best-effort tasks
to reclaim inference idle cycles, the divergence in the requirements
of inference and training workloads poses a significant challenge.
Inference accelerators execute algorithms that can tolerate narrow
fixed-point arithmetic and have small memory footprints which can
be served directly from on-chip memory to achieve high through-
put. Modern inference accelerators such as Graphcore [3] or Brain-
wave [16] have on-chip memory sizes ranging from tens up to
hundreds of megabytes, which is sufficient to accommodate the
memory footprint of state-of-the-art DNN models. Furthermore,
because of tight latency constraints, these accelerators avoid tech-
niques that may delay individual requests, such as batching [1, 16].

In contrast, training accelerators require floating-point arith-
metic, exhibit memory footprints in the range of a few GBs [36]
which cannot be easily accommodated on chip, and have no on-
line latency constraints. As a result, training accelerators employ
ALUs with reduced power efficiency, operate on DRAM-resident
data, and use batching to minimize data movement and maximize
throughput.

Modern inference accelerators—such as GPUs [1], TPUs [2, 5, 21],
and Graphcore [3]—can often perform both inference and train-
ing. Unfortunately, they cannot efficiently train while meeting the
tight latency constraints of inference services. These accelerators
lack the capabilities to quickly switch between inference and train-
ing requests during inference load spikes and sacrifice inference
throughput to accommodate floating-point arithmetic in the ALUs
to support training.

https://doi.org/10.1145/3466752.3480057
https://doi.org/10.1145/3466752.3480057
https://doi.org/10.1145/3466752.3480057

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Mario Drumond, Louis Coulon, Arash Pourhabibi, Ahmet Caner Yüzügüler, Babak Falsafi, and Martin Jaggi

Fortunately, the emergence of novel arithmetic encodings for
DNN training [14, 24, 35] presents an opportunity to piggyback
training on online inference services. Such encodings offer denser
arithmetic without implications on the accuracy, resulting in orders
of magnitude improvement in energy efficiency and computational
density. These encodings lead to ALUs that consume much less
power than the buffers feeding them. Hence, accelerators that em-
ploy them are data movement bound.

The fundamental challenge beyond arithmetic is designing an in-
ference accelerator that piggybacks training while meeting service-
level latency constraints. We make the observation that inference’s
sensitivity to service-level tail latency creates a non-linear rela-
tionship between latency and throughput. Designers rely on batch-
ing [16] to enable weight reuse, minimizing data movement band-
width and power, thereby increasing the power provisioned for
ALUs and throughput under a fixed power budget. When latency
requirements are lax with higher degrees of batching, the on-chip
data movement power is much lower, freeing up power for more
ALUs and throughput, and consequently creating bigger opportu-
nities to piggyback training on inference accelerators. Although
such an accelerator cannot match the performance of a custom
training accelerator, reclaiming idle cycles comes at a low cost,
exposing cheap compute resources to datacenter operators. Finally,
with priority scheduling and adaptive batching, an inference accel-
erator can seamlessly maintain service-level latency guarantees for
inference requests while interleaving training requests.

We use text, image, and speech processing models together with
analytical modeling, detailed cycle-accurate simulation, and syn-
thesis tools for the TSMC 28nm technology to make the following
contributions:

• We quantify the non-linear relationship between throughput
and latency with batching in custom inference accelerators
and show that optimized ALU arrays for a latency window of
50𝜇𝑠 and 500𝜇𝑠 can increase throughput by 5.53× and 6.67×,
respectively, compared to latency-optimal arrays.

• We present Equinox, an inference accelerator designed to
piggyback training to reclaim idle cycles, featuring a uniform
encoding datapath and a priority scheduler that maintains
service-level latency guarantees for inference requests while
interleaving training requests.

• Wepresent cycle-accurate simulation results making the case
that Equinox can achieve up to 78% of a dedicated training
accelerator’s throughput that saturates the available com-
pute resources and DRAM bandwidth. Equinox achieves this
throughput while maintaining a 99th% latency goal for in-
ference services that is within 10× of the mean service time.

• We present synthesis results indicating that Equinox’s con-
troller logic incurs < 1% power and area overheads, and its
numeric encoding incurs a 13% power and 4% area overheads,
respectively, compared to a fixed-point accelerator.

The rest of the paper is organized as follows. We first present the re-
quirements for piggybacking training on inference accelerators (§2).
Then, we present Equinox (§3) and explore its Pareto-optimal space
to trade off latency for throughput and allow training (§4). Next, we
present the methodology (§5) and detailed evaluation for a family
of Equinox accelerators (§6). Finally, we discuss related work (§7)
and conclude (§8).

2 PIGGYBACKING ON INFERENCE
In theory, with a uniform arithmetic encoding, it is possible to
run inference and training services arbitrarily together in a single
custom accelerator. In practice, custom inference and training ac-
celerators, however, have diverse objectives that require conflicting
resource provisioning. Because inference accelerators usually exe-
cute online services, they primarily operate with on-chip memory,
and provision power and organize array processing elements for
lower degrees of parallelism and batching to abide by tight latency
constraints.

In contrast, training accelerators are optimized for maximum
throughput without latency constraints and provision power to
arithmetic density, parallelism with a high degree of batching, and
DRAM bandwidth. In this paper, we focus on custom inference
accelerators that can use their available idle resources for training
without sacrificing latency. A study of how custom training accel-
erators can be used for inference services with a high tolerance for
latency is beyond the scope of this paper.

To understand the challenges in piggybacking training on online
inference services, we first consider the key objectives in designing
a custom inference accelerator. We then present the requirements
to enable using idle cycles in inference and accommodate training
tasks without violating the inference accelerator’s design objectives.

2.1 Design Objectives for Inference
Inference accelerators are conventionally designed to maximize
throughput while honoring tight latency requirements for online
services. A salient characteristic of inference workloads is their
tolerance to a narrow fixed-point numeric encoding [16, 22]. Such
an encoding results in up to an order of magnitude improvement
in ALU silicon density (relative to floating point) [10], in memory
capacity [16], and data movement bandwidth and power [32]. For
example, Microsoft’s Brainwave uses a variation of block floating
point to process CNNs, RNNs and Transformers [16, 30], and TPUv1
uses 8- and 16-bit fixed point [22], allowing both to achieve superior
throughput and lower latency than the state of the art at the time
they were introduced.

Another key characteristic of inference workloads is their small
memory footprint enabling designers to provision a larger fraction
of overall power for ALUs and higher throughput. Indeed, in infer-
ence, the footprint is dominated by model weights, which are often
small enough (a few KBs to 100s MBs) to fit entirely on chip [3, 16]
with off-chip memory only present to accommodate the less fre-
quent case of larger models (e.g., Brainwave [16], NVIDIA’s T4 [1]).
Consequently, data movement in inference accounts for a small
fraction of the overall accelerator power budget as on-chip memory
accesses consume little power (up to three orders of magnitude less,
relative to off-chip accesses [10]). Both Graphcore [3] and Brain-
wave [16] are designs that exploit large on-chip memories with
10s-100s MBs worth of capacity for inference models.

While inference services lend themselves well to designs with
high computational density, they are often online and have tight la-
tency constraints. Inference is usually part of a multi-tiered service
where a user query triggers a sequence of sub-query fan-outs, span-
ning hundreds or thousands of servers [8, 18]. That fan-out effect
places tight bounds on the tail response latency of each tier [22, 29].

Equinox: Training (for Free) on a Custom Inference Accelerator MICRO ’21, October 18–22, 2021, Virtual Event, Greece

PE PE

PE PE

PE PE

PE PE

Weights

PE PE PE PE PE PE PE PE PE

PE

PE

PE

PE

PE

PE

PE PE PE PE

Weights

Ac
tiv

at
io
ns

Ac
tiv

at
io
ns

(a)

(b)

PE

PE

PE

PE

PE

PE PE PE PE PE

Figure 1: Two ALU arrays with the same power budget: (a) a
systolic array with minimal latency similar to a vector pro-
cessor (e.g., Brainwave [16]), and (b) a systolic array for batch
jobs which trades off latency for throughput (e.g., TPU [22]).

Inference’s sensitivity to service-level tail latency creates a non-
intuitive relationship between latency and throughput and a dilemma
for designers. To increase effective throughput given a fixed power
budget, designers improve weight reuse by batching [16], minimiz-
ing data movement bandwidth and power, thereby increasing the
power provisioned for ALUs and throughput. At one end of the
design space, when latency requirements are tight, lower degrees
of batching result in a cap on the accelerator throughput because of
the power provisioned to on-chip memory. At the other end, when
latency requirements are lax with higher degrees of batching, on-
chip data movement power becomes negligible, freeing up power
for ALUs and throughput.

Figure 1 illustrates this non-linear relationship between latency
and throughput. The accelerator on the top with the highest la-
tency constraints incorporates only a single row of ALUs without
batching but requires a wide path to on-chip memory. In contrast,
the accelerator on the bottom incorporates multiple rows of nar-
rower ALUs with batching to trade off a bit of increase in latency
(the height of the array) for a much larger increase in the total
number of ALUs and throughput. The latter means that relaxing
the constraints on tail latency a bit can lead to large increases in
throughput and consequently, opportunities to piggyback training.

2.2 Accommodating Training
Inference accelerators are deployed at scale to accommodate on-
line services but face around 30% average load because of service
demand variability [7]. Unlike general-purpose servers, custom
accelerators cannot execute other tasks while idle. The objective is
to identify opportunities to recover these wasted cycles, evaluate
the bounds of throughput achieved for training using these cycles,
and present a design to do so. We now focus on the key challenges
in accommodating training on custom inference accelerators.

A key challenge is that training algorithms, the most prominent
of which is stochastic gradient descent (SGD), are sensitive to nu-
meric encoding. Early attempts to use narrow fixed-point encodings
in training have resulted in reduced accuracy or slower conver-
gence [17]. Recent custom accelerators have adopted bfloat16 [2, 5]
as an encoding, which is an improvement over both single- and

30 60 90
Epoch

0

25

50

75

100

Va
lid

at
io

n
Er

ro
r fp32

hbfp8

(a) Validation error of Restnet50
trained on the ImageNet dataset

0 250 500 750 1000
Epoch

0

200

400

600

800

Va
lid

at
io

n
Pe

rp
le

xi
ty fp32

hbfp8

(b) Validation perplexity of BERT
trained on the Wikipedia dataset

Figure 2: The convergence rate and final error rate of hbfp8
is similar to single-precision floating point (fp32).

half-precision floating point, but it is still less efficient than fixed
point [10].

Fortunately, recent work [14, 24, 30, 35] offers arithmetic en-
coding for training that is nearly as dense as fixed point while
maintaining accuracy and convergence. In this paper, without loss
of generality, we use hybrid block floating point (HBFP) [14], which
employs fixed-point arithmetic (e.g., 8-bit mantissa) for all matrix
operations while matching the accuracy and convergence rate of
single-precision floating point (i.e., fp32). Figure 2a depicts the con-
vergence rate of hbfp8 (i.e., HBFP using 8-bit mantissa) and fp32
presented in [14] for Resnet50 [27] on the ImageNet dataset [31].
Figure 2b presents the perplexity of a Bert-base [12] model trained
with a dataset consisting of text scraped off of Wikipedia using both
hbfp8 and fp32. Finally, we evaluate bfloat16, which is the state of
the art in custom accelerators, as a reference encoding.

To piggyback training, the accelerator must also host inference
and training services simultaneously, which may lead to resource
contention. As in multithreaded CPUs, the accelerator requires
space sharing in the buffers and time-sharing in the execution units
for the two services. Because training relies on fetching data from
off-chip memory due to its large memory footprint (e.g., a few
GBs [36]) and long-distance dependencies in SGD’s backpropaga-
tion, on-chip buffers are used only to stage operands right before
computation. As such, training’s staging buffers require only a
small fraction (i.e., less than 2%) of the on-chip buffer space.

Similarly, as in multithreaded CPUs, resource contention in the
execution units could impact inference’s service-level latency con-
straints. We make the observation that training is fundamentally
bound by off-chip memory bandwidth and, to offset the bandwidth
limitation, it requires a prohibitively high degree of batching well
beyond what is affordable by custom accelerators. Therefore, with
practical degrees of batching in inference accelerators, we expect
contention for on-chip resources between inference and training
to be relatively low. We show, in §4, how optimal batching and
sizing of array dimensions can help a custom inference accelerator
achieve high throughput with a minimal impact on latency.

Finally, DRAM latency is orders of magnitude longer than ALU
array latencies. Therefore it is relatively easy to schedule idle slots in
the array for training. To minimize the impact on inference service
times, a custom accelerator can incorporate a priority scheduler
that monitors incoming requests and schedules DRAM accesses
and array idle slots with priority given to inference requests. We
show that scheduling requests in software may negatively impact

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Mario Drumond, Louis Coulon, Arash Pourhabibi, Ahmet Caner Yüzügüler, Babak Falsafi, and Martin Jaggi

Modified to
support
training

Not modified
SIMD Unit

Activation
Buffer

Weight
Buffer

Host
Interface

im
2c

ol

Matrix
Multiply Unit

(MMU)
DRAM

Interface

Request
Dispatcher

Instruction
Dispatcher

To all
blocksInstruction

Buffer
PE PE PE···

nxn Systolic Array

w-wide Processing
Elements

PE PE PE···

PE PE PE···

···

·
·

·

·
·

·

Systolic
Array

Systolic
Array

m Systolic Arrays

From Weight Buffer

···

To SIMD Unit

Systolic
Array

Fr
om

 A
ct

iv
at

io
n

Bu
ffe

r

·
·

·

Figure 3: The anatomy of an Equinox accelerator. Shaded blocks indicate components enhanced to support training.

queuing delays due to the longer turnaround time in scheduling
and instead present a hardware priority scheduler implemented
with minimal logic.

3 EQUINOX
In this section, we present Equinox, an inference accelerator de-
signed to piggyback training. We first describe a baseline inference
accelerator, and then present the enhancements to the baseline
design to support training.

3.1 Baseline Inference Accelerator
Figure 3 depicts the anatomy of our baseline inference accelera-
tor (e.g., TPU [22]). Much like other discrete accelerators, a host
interface connects the accelerator to the host and network/storage
peripherals through a standard I/O fabric (e.g., PCIe). The host in-
terface enables both service installation and client request/response
for installed services. Service installation consists of loading the
code and model and launching the accelerator, after which the
accelerator operates autonomously.

The service specifies the model through a custom instruction set
architecture (ISA) described in detail in [13]. The accelerator imple-
ments all instructions necessary for popular inference services (e.g.,
RNN, MLP, and CNN) including matrix-vector multiplication, con-
volution, vector-vector operations, activation, batch normalization,
and pooling. The ISA also includes instructions to move data among
the DRAM, the network buffers, and the accelerator’s datapath.

The accelerator’s datapath (Figure 3) is composed of a matrix
multiply unit (MMU), a SIMD unit for vector-vector operations, an
im2col unit, activation and weight buffers, and a DRAM interface.
The MMU consists of a row of𝑚 systolic arrays, each with 𝑛 × 𝑛
processing elements (PEs) processing 𝑤 values connected to the
weight and activation buffers. The PEs operate on 2-D tiles, whose
size is a function of the dimensions of the matrix multiply unit in
the datapath. We later show in §4 how the three parameters, 𝑛,𝑤 ,
and𝑚, collectively, enable systolic arrays to balance their latency
and throughput. The im2col unit lowers convolutions to matrix
multiplication.

Figure 4 shows how a matrix multiplication is divided into tiles.
In the figure, the first 𝑛 ∗𝑤 rows of the activation matrix and the
first 𝑛 ∗𝑤 columns of the weight matrix are divided into 𝑥 tiles with
𝑛 ∗𝑤 side each. As shown in the Figure, each instruction addresses
a single activation tile and 𝑚 weight tiles, producing 𝑚 tiles. To
produce an output tile, the we use 𝑥 instructions, each of which

processes an entire activation tile row and an𝑚 weight tile rows.
We also use 𝑥 instructions to add the intermediate output tiles,
producing the final tiles.

The SIMD unit performs vector-vector operations similar to the
activation unit in TPU [22] and includes a register file to store
intermediate vectors and accumulated values. It fetches operands
from either the register file or the MMU’s output, and writes its
results into the activation buffer.

The activation and weight buffers are organized into banks. The
weight buffers have direct connectivity between each bank and
a corresponding systolic array. The activation buffer banks have
broadcast connectivity to all arrays (Figure 3), implemented through
a ring. The activation buffer banks each have a read port facing
the systolic arrays, a read-write port facing the DRAM and host
interfaces, and a write port facing the SIMD unit. The weight buffer
banks each have a read port facing the systolic arrays and a read-
write port shared by the DRAM and host interfaces.

Figure 5 depicts the anatomy of the accelerator’s front-end. Upon
service installation, the request dispatcher copies the weights and
instructions into their respective buffers. Upon service launch, the
request dispatcher monitors the request queue and forwards ar-
riving requests to the instruction dispatcher. Much like TPU, our
baseline accelerator supports batching to reduce data movement.
The request dispatcher gathers arriving requests in a batch forma-
tion buffer and notifies the instruction dispatcher upon a full batch
formation.

To reduce the impact of batch formation on latency, we imple-
ment adaptive batching. The request controller issues incomplete
batches when batch formation time exceeds a threshold (defined
at installation time) by padding the input arrays [8] with dummy
requests whose results are disposed. We compare adaptive batching
with a static batching policy in §6, and show how adaptive batching
minimizes batch formation’s impact on latency when the load is
low at the cost of wasting execution resources.

The instruction dispatcher, shown at the bottom of Figure 5,
features a controller which keeps track of instruction issue and
completion. The controller generates addresses for the instruction
buffer, which forwards instructions to the decoder unit. The latter
generates control signals for the datapath. Arithmetic instructions
are decoded into signals issued to the execution units, and data
movement instructions are decoded into control signals issued to
theDRAMand host interfaces aswell as other blocks in the datapath.
The dispatcher has an instruction completion unit to keep track of
responses received from the datapath.

Equinox: Training (for Free) on a Custom Inference Accelerator MICRO ’21, October 18–22, 2021, Virtual Event, Greece

1,1 1,2 … 1,x

X =

m weight tiles

processed in parallel

Matrix

multiplication tile

n
*
w

Activation Matrix Weight Matrix Output Matrix

1,1

1,1 1,2 … 1,m

2,1 2,2 … 2,m

… … … …

x,1 x,2 … x,m

1,1 1,2 … 1,x

Figure 4: Division of a matrix multiplication into tiles.

3.2 Enhancements for Training
We now describe the enhancements that Equinox introduces to the
base inference accelerator. These enhancements are not meant to
create a full-blown custom training accelerator; in contrast, they are
only there to piggyback training on an inference accelerator. The
boxes shaded in gray in Figures 3 and 5 indicate the mechanisms
that are enhanced to support training.

The first enhancement is in the accelerator’s ISA and datapath.
We overload the SIMD unit’s instructions to add support for de-
rivative and loss calculations required by training. We also add
arithmetic support for training to the datapath. Finally, we evaluate
two versions of the MMU, one using bfloat16 [2, 5] as a state-of-
the-art reference for custom accelerators and one using hbfp8 [14],
which offers dramatically higher density. Because the area and
power of the SIMD unit is relatively small compared to the rest of
the datapath and the unit’s density is not critical, we use bfloat16
for the SIMD unit in both versions.

The MMU and the buffers, however, are fundamentally different
across the two datapath versions. The bfloat16 version uses the
16-bit numeric encoding in all buffers and systolic array multipliers,
and single-precision floating point for the accumulators, which is
common in DNN accelerators [2, 4, 5] to maintain high accuracy.
The hbfp8 version, in contrast, uses block floating point in the
systolic arrays and buffers, where each operand consists of a block
of 8-bit mantissa sharing a single 12-bit exponent. As such, all
buffers are modified to store, read and write a block as an operand.

In block floating point, matrix multiplication can be implemented
as a fixed-point multiplication of the tiles and an addition of the
two exponents. To implement this in the systolic array we use
8-bit multipliers and 25-bit accumulators, both operating in fixed
point. Each systolic array also has an adder and a FIFO buffer to
compute, store, and synchronize the exponents of the operands.
Upon completion of the multiplication, the block floating-point
values are converted to bfloat16 for use by the SIMD unit. The
SIMD results are finally converted back to block floating point and
written back to the activation buffer.

The next enhancement is in the request dispatcher to support
hosting inference and training services simultaneously. Equinox
keeps dedicated hardware contexts for each service, which con-
sists of a request queue and an instruction counter. Contexts are
only visible to the accelerator’s controllers, leaving the datapath
oblivious to the interleaving of services. Each context has exclusive
space in the buffers, allocated at installation time. Training requests
also arrive in batches and therefore bypass batch formation in the
front-end.

Inference
Request
Queue

Training
Request
Queue

Batch
Formation

BufferRequest
Controller

Instruction
Controller

Instruction
Buffer

Decoder

······

Instruction
Completion Unit

Requests
available

Queue
selection

Instruction
issued/

completed ID

Instruction address

Request
Dispatcher

Inference
Queue Size

Instruction
Dispatcher

Instructions

Modified to
support
training

Not modified

Figure 5: Equinox’s front-end consisting of a request dis-
patcher (top) and an instruction dispatcher (bottom). Shaded
blocks indicate components enhanced to support training.

The instruction controller is also modified to maintain infer-
ence latency guarantees in the presence of training services. The
controller schedules instructions from both inference and train-
ing services, giving priority to inference requests by following a
round-robin policy only when inference queuing is low. To bound
queuing delays to conform to service-level latency constraints, the
controller monitors the incoming inference load for spikes by com-
paring the queue size against a maximum threshold defined at the
installation time. When the inference load surpasses this threshold,
the controller stops servicing training requests, dedicating all of
the accelerator’s execution resources to inference requests. The
round-robin scheduling resumes when the inference load spike
subsides.

4 OPTIMAL ARRAY DESIGN
In this section, we first identify the key parameters impacting the ac-
celerator’s design space, then present a preliminary design space ex-
ploration revealing a Pareto-optimal frontier of throughput against
latency using analytical models for area, power and performance.
Once we narrow down the design space to a few Pareto-optimal
points, we evaluate them using detailed cycle-accurate simulation
and synthesis in §6.

DNN workloads exhibit a varying degree of data reuse along
an accelerator’s dimensions. This difference in behavior affects the

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Mario Drumond, Louis Coulon, Arash Pourhabibi, Ahmet Caner Yüzügüler, Babak Falsafi, and Martin Jaggi

required degree of batching and the relationship between through-
put and latency. The matrix multiply unit (MMU) operates in two
modes, depending on the dimensions of the input matrices. In the
first mode, used for activation matrices with a small height rela-
tive to their length, the MMU broadcasts activations and unicasts
weights across systolic arrays. As such, the MMU reuses activations
both across and within systolic arrays (i.e., across𝑚 and 𝑛 dimen-
sions) but reuses weights only within systolic arrays (i.e., across the
𝑛 dimension). The MMU uses this mode to process models based
on vector-matrix multiplications, which dominate datacenter DNN
workloads—such as RNNs and MLPs [18, 22]. To fully utilize the
MMU, these models must use a minimum batch size of 𝑛.

In the secondmode, used for activation matrices that have a large
height relative to their length, such as those that appear in lowered
convolutions, the MMU broadcasts weights across systolic arrays
and unicasts activations. As a result, these matrices exhibit plenty of
reuse and rarely present a bottleneck from a utilization perspective.
Therefore, we focus our analysis on vector-matrix multiplications
models from this point on.

Much like GPUs, DNN accelerators exhibit high degrees of power
density which may result in dark silicon [3]. To ameliorate the
power density, designers scale down the accelerator’s operating
voltage together with frequency to provision power for larger ALU
arrays. Therefore, frequency (coupled with voltage) is also an im-
portant parameter dictating the overall attainable throughput.

4.1 Analytical Models
Complexity and runtime requirements make it impractical to rely
on cycle-accurate simulation for a large-scale design space explo-
ration. Instead, we use first-order analytical models of dominant
accelerator components, relating the effects of physical constraints
to performance. With latency and throughput as performance met-
rics, our objective is to jointly optimize the accelerator’s dimensions
and frequency to find the best performing designs under power
and area constraints.

We sweep the design space by varying𝑛 and the design frequency.
For a given 𝑛 and frequency, we find the largest values of𝑚 and
𝑤 that are still below the area and power envelopes. Next, we
calculate each design’s throughput and latency with 𝑛,𝑚,𝑤 , and
the frequency. We also calculate area and power to guarantee that
designs are under the power and area constraints.

Besides the ALU arrays and their associated buffers which nat-
urally account for much of an accelerator’s area and power, the
only remaining dominant component in the first-order models is
the DRAM interface.1 For the DRAM interface, we reserve enough
power to accommodate an HBM stack with 1𝑇𝐵/𝑠 bandwidth (the
largest HBM bandwidth commercially available), and enough area
to accommodate the HBM interface.
Area Modeling. We model a 300𝑚𝑚2 die, which is in line with
reported die areas of DNN accelerators [1, 3, 22]; candidate de-
signs that exceed this die area constraint are not considered. To
estimate the required aggregate ALU area, we first synthesize a set
of matrix multiply units (MMUs) with various dimensions using
the Synopsys Design Compiler and TSMC 28nm technology (with
the TCBN28HPMBWP35 Core library and Vdd of 0.9V). We then
1Our cycle-accurate models in section §6 capture all accelerator components.

calculate an ALU’s average area, 𝑎𝑎𝑙𝑢 , for each of bfloat16 and hbfp8
and scale it to match the MMU dimensions of the modeled design.

To estimate the required SRAM area, 𝐴𝑠𝑟𝑎𝑚 , we scale the per-
byte area reported by CACTI 6.5 [26] to the accelerator’s aggregate
SRAM capacity. Because CACTI does not support 28nm, we scale
down the area values from 32nm using the methodology found
in [15]. We assume a capacity of 75𝑀𝐵, which is large enough to
accommodate themajority ofmodels used in datacenter services [16,
22]. Tomodel the DRAM interface area,𝐴𝑑𝑟𝑎𝑚 , we extract estimates
from [33]. Equation 1 calculates the total area of the accelerator.

𝐴 =𝑚𝑛2𝑤𝑎𝑎𝑙𝑢 +𝐴𝑠𝑟𝑎𝑚 +𝐴𝑑𝑟𝑎𝑚 (1)

PowerModeling.We use a first-order model to calculate the accel-
erator’s total power by summing the dynamic and static power of
the ALUs, the SRAM buffers, and the DRAM interface. We assume
a 75𝑊 power envelope, which is in line with reported power bud-
gets of DNN accelerators [22], and eliminate all candidate designs
that exceed this power constraint. We model static power, 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 ,
only for the SRAM buffers because its contribution from ALUs is
negligible.

To model dynamic power, we first estimate the energy consump-
tion in the ALUs and buffers at a fixed frequency point, and then
adjust the base energy values according to the design’s frequency, 𝑓 ,
ranging from 532𝑀𝐻𝑧 to 2.4𝐺𝐻𝑧 using values extracted from [28].
An ALU’s average energy consumption, 𝑒𝑎𝑙𝑢 , is derived from the
same area synthesis methodology (above) and is scaled to match
the modeled MMU dimensions. Similarly, we scale the average per-
byte energy consumption in buffers, 𝑒𝑠𝑟𝑎𝑚 , for various block sizes
reported by CACTI to match the accelerator’s dimensions. Finally,
we extract power estimates from [33] for DRAM accesses, 𝑃𝑑𝑟𝑎𝑚 .
Equation 2 calculates the accelerator’s total power consumption.

𝑃 = 𝑓 ×(𝑚𝑛2𝑤𝑒𝑎𝑙𝑢+𝑒𝑠𝑟𝑎𝑚×(𝑤𝑛+𝑚𝑤𝑛+𝑚𝑛))+𝑃𝑑𝑟𝑎𝑚+𝑃𝑠𝑡𝑎𝑡𝑖𝑐 (2)

Performance Modeling. Equation 3 estimates the maximum in-
ference throughput as a function of the accelerator’s operating
frequency and dimensions. Each ALU performs two operations
(i.e., multiply and accumulate) per cycle. To estimate latency, we
measure service time while processing a batch of 𝑛 inference re-
quests of an LSTM model with 2048 hidden units and 25 steps from
DeepBench [27].

𝑇 = 2𝑚𝑛2𝑤𝑓 (3)

4.2 Analysis
Figure 6 plots the latency against throughput for the modeled ac-
celerators in the design space using (a) hbfp8 and (b) bfloat16 en-
codings. The designs on the Pareto-optimal frontier appear as large
blue dots and the rest as small dots. Table 1 presents the value
of 𝑛, frequency, latency, and throughput for the design points on
the Pareto frontier for four design configurations based on latency
constraints. The value of 𝑛 is related to the batch size in models
that use vector-matrix multiplications. To fully utilize the MMU PE
array, these models must use a batch size of at least 𝑛. We use these
configurations in §6 to evaluate Equinox’s performance.

The Pareto frontier for hbfp8 follows a sub-linear relationship
between latency and throughput for latencies below 50𝜇𝑠 with over
a 5× increase in throughput against a gradual increase in latency

Equinox: Training (for Free) on a Custom Inference Accelerator MICRO ’21, October 18–22, 2021, Virtual Event, Greece

50 100 150 200 250 300 350 400

100

200

300

400

500

Throughput (TOp/s)

La
te

nc
y

(µ
s)

(a) hbfp8

50 100 150 200 250 300 350 400

100

200

300

400

500

Throughput (TOp/s)

La
te

nc
y

(µ
s)

(b) bfloat16

Figure 6: Latency vs. throughput for the modeled accelerators using (a) hbfp8 and (b) bfloat16 encodings.

reaching the knee past 350𝑇𝑂𝑝/𝑠 . Designs before the knee spend
most of their power in on-chip buffers and data movement. This
large fraction of on-chip buffer power is due to the skew in the
array dimension with high-bandwidth connectivity to memory
(Figure 1(a)). Reducing this array dimension shifts a large fraction
of the power for data movement from memory to ALUs in the
second dimension with point-to-point links (Figure 1(b)), increasing
throughput linearly with batch size with tiny increases in latency.

Once the curve reaches the knee, the fraction of power dedicated
to data movement is low, and as such, increases in batch size (𝑛)
lead to reductions in 𝑚 and 𝑤 . The reductions in 𝑚 and 𝑤 lead,
in turn, to ALU arrays with larger columns but rows with similar
size, resulting in little improvement in throughput while greatly
hurting latency. Because the designs at the knee are optimal in
offering throughput at constrained latencies, these designs are great
candidates for Equinox to exploit idle cycles for training services.

In contrast to hbfp8, bfloat16 exhibits high sensitivity to latency
from the start with a linear rather than sub-linear relationship
between latency and throughput reaching the knee almost imme-
diately. Because bfloat16 provisions an order of magnitude more
power in floating-point ALUs, there is little power to be shifted
from on-chip memory to increase batching and throughput. There-
fore, bfloat16 designs can not support batching for latencies below
50𝜇𝑠 and with higher batching degrees mostly shift ALU power
from one dimension to another with no increase in throughput.

Table 1 also shows that while today’s custom accelerators ei-
ther select designs without batching (𝑛 = 1) [16] or those with
high batching degrees (𝑛 >> 100) [22], many designs with mod-
erate batching degrees (𝑛 < 100) offer near-optimal throughput
at a sub-millisecond latency, achieving the best of both worlds.
Finally, we observe that optimal designs have relatively low fre-
quencies, showing that DNN accelerators are mostly power-limited.
Designs with the highest latency constraints favor the lowest fre-
quency (532𝑀𝐻𝑧) because they spend most of their power on data
movement.

5 METHODOLOGY
Simulation.We use an in-house detailed cycle-accurate simulator,
written in Python, to evaluate Equinox’s performance, taking into

account the effects not included in our analytic models in §4. These
include buffer and DRAM access delays, buffer port contention,
operation inter-dependence delays, and queuing. We validate the
simulator’s results against RTL traces. All the blocks shown in Fig-
ure 3 are implemented both in RTL and in the simulator, with both
implementations exhibiting identical timing properties. For DRAM
and host interfaces, we compared the performance of throughput-
and latency-limited models against DRAMSim [34] and verified
that our analytic models estimate latency and throughput with
high accuracy for 512-bit blocks.

Configurations. We use the notation 𝐸𝑞𝑢𝑖𝑛𝑜𝑥𝑐 to refer to the
optimal configuration with a latency constraint of 𝑐 . Therefore,
the four configurations in Table 1 are 𝐸𝑞𝑢𝑖𝑛𝑜𝑥𝑚𝑖𝑛 for the latency-
optimal configuration, 𝐸𝑞𝑢𝑖𝑛𝑜𝑥50𝜇𝑠 and 𝐸𝑞𝑢𝑖𝑛𝑜𝑥500𝜇𝑠 for the accel-
erators with a 50𝜇s and 500𝜇s latency constraint respectively, and
𝐸𝑞𝑢𝑖𝑛𝑜𝑥𝑛𝑜𝑛𝑒 for an accelerator with no latency constraint. In all
configurations, we divide the accelerator’s SRAM among the activa-
tion, weight, instruction buffers, and SIMD register files, allocating
20𝑀𝐵, 50𝑀𝐵, 32𝐾𝐵, and 5𝑀𝐵 to each, respectively. All configu-
rations use adaptive batching and hardware priority scheduling
unless stated otherwise.

Workloads. We use three workloads to evaluate Equinox’s perfor-
mance. The first two are taken from DeepBench, and represent a
machine translation LSTM with 2048 hidden units and 25 steps, and
a speech recognition GRU with 2816 hidden units and 1500 time-
steps [27]. The third workload is a CNN model using Resnet50 [19].
The three models cover a wide range of inference service times.
LSTM has a sub-millisecond service time, while Resnet50 has a ser-
vice time of a few milliseconds, and GRU has a service time of tens
of milliseconds. We use LSTM as our main workload to evaluate
training and inference performance and use the other two only to
do a sensitivity analysis of performance against various models. For
experiments in which Equinox hosts both training and inference
services, we use two independent instances of the LSTM model.

For inference services, we set the batch size large enough to fully
utilize Equinox’s resources, and for training services, we assume a
batch size of 128 when modeling the forward and backward passes.
We assume that distributed training uses a parameter server, which

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Mario Drumond, Louis Coulon, Arash Pourhabibi, Ahmet Caner Yüzügüler, Babak Falsafi, and Martin Jaggi

Table 1: Pareto-optimal designs under various latency constraints.

bfloat16 hbfp8
Latency
constraint

𝑛
Freq.
(𝑀𝐻𝑧)

Service
Time (𝜇𝑠)

Throughput
(𝑇𝑂𝑝/𝑠)

𝑛
Freq.
(𝑀𝐻𝑧)

Service
Time (𝜇𝑠)

Throughput
(𝑇𝑂𝑝/𝑠)

Min. latency
1 532 37.3 23.9

1 532 15.6 60.2
Latency < 50𝜇𝑠 16 532 49.2 333
Latency < 500𝜇𝑠 29 610 386 63.3 143 610 381 390
No constraint 39 610 510 66.7 191 610 509 400

receives gradients, aggregates them, generates an updated model,
and transfers it to Equinox for the next iteration of training. We
simulate synchronous training.

To model the incoming request traffic, we use a load generator
that creates inference requests following Poisson arrival rates while
assuming there are always training requests to be processed. We
set the 99th% latency target of inference services at 10× their mean
service time when being processed by 𝐸𝑞𝑢𝑖𝑛𝑜𝑥500𝜇𝑠 , which is in
line with prior work [9, 29].

Area and Power. In contrast to the methodology used in §4, in our
detailed evaluation, we estimate the area and power of all the blocks,
except for the host interface. We synthesize the compute units and
controllers of 𝐸𝑞𝑢𝑖𝑛𝑜𝑥500𝜇𝑠 using the Synopsys Design Compiler
and TSMC 28nm technology (with the TCBN28HPMBWP35 Core
library and Vdd of 0.9V) and add the power and area for the SRAM
structures using CACTI 6.5 [26]. Because CACTI does not support
28nm, we scale down the values from 32nm using the methodology
found in [15]. We extract area and power of the DRAM interface
from [33].

6 EVALUATION
We now proceed to evaluate Equinox. We first corroborate the con-
clusions of §4. We then evaluate Equinox’s effectiveness in exposing
idle cycles to training services. Next, we show that Equinox’s per-
formance is insensitive to the type of DNN workload it executes.
We then present synthesis results, followed by an evaluation of
Equinox’s scheduling and adaptive batching capabilities.

Inference Performance. Figure 7a shows the inference latency
and throughput for our hbfp8 Equinox configurations. These results
corroborate our analytical model conclusions (§4) with designs
targeting relaxed latency constraints achieving up to 6× higher
throughput compared to minimum latency designs. 𝐸𝑞𝑢𝑖𝑛𝑜𝑥𝑚𝑖𝑛

has the smallest batch size, reaching the lowest 99th% latency
at low load. However, it can only accommodate a limited num-
ber of requests due to the limited parallelism exposed by the
latency-optimized systolic array. 𝐸𝑞𝑢𝑖𝑛𝑜𝑥50𝜇𝑠 relaxes the latency
constraints used in 𝐸𝑞𝑢𝑖𝑛𝑜𝑥𝑚𝑖𝑛 , showing similar characteristics but
reaches a 5× larger throughput.
𝐸𝑞𝑢𝑖𝑛𝑜𝑥500𝜇𝑠 relaxes the latency constraints further with larger

batches to fully utilize the larger systolic array. At low load, because
the scheduler waits for multiple requests to form complete batches
(or extend smaller batches with dummy requests), the 99th% latency
is bound by the scheduler’s waiting time. However, at a higher load,
the scheduler no longer waits and takes full advantage of the higher

degree of parallelism and reaches the highest achievable throughput:
up to 6x higher than the latency-optimized array.

Finally, comparing Figure 7a to Figure 7b, we also corroborate
our analytical model analysis by observing that hbfp8 achieves
up to 5.15× higher throughput compared to bfloat16 under the
same target latency. These results are from timing simulation ac-
counting for all component latencies, pipeline hazards, and queuing
effects (e.g., buffer port contention and dependence stalls), which
the analytical model does not consider.
Equinox Cycle Breakdown. To show how Equinox leverages
training workloads to turn idle cycles into useful cycles, we plot the
cycle usage breakdown of 𝐸𝑞𝑢𝑖𝑛𝑜𝑥500𝜇𝑠 when serving inference at
various loads, both in isolation and when piggybacking training
services. Figure 8 shows a breakdown of all MMU cycles into four
categories: working cycles, cycles spent on computing dummy
requests added to fill incomplete batches, idle cycles, and other
wasted cycles caused by buffer port contention, dependence stalls,
and stalls caused by the mismatch between the dimensions of ALU
arrays and the matrix multiplications executed.

At 5% load, not surprisingly, almost 50% of the cycles are idle,
and nearly 40% are wasted computing dummy requests. When train-
ing is added, most of the idle cycles are reclaimed, as the second
bar shows. Unfortunately, the training requests hit bottlenecks un-
related to Equinox, preventing them from reclaiming all the idle
cycles. The cycles spent on dummy requests are, however, unavoid-
able at such a low load, as requests do not arrive fast enough to
form a full batch. At 50% load, adding training pushes the number of
working cycles up to around 80%, almost saturating the accelerator.
At 95% load, the accelerator is saturated, and training requests are
not scheduled at all. Finally, the other stalls are also unavoidable
and remain even as we approach the saturation of the accelerator
resources.
Training Throughput. Figure 9 shows the training throughput of
our hbfp8 Equinox configurations. 𝐸𝑞𝑢𝑖𝑛𝑜𝑥𝑛𝑜𝑛𝑒 , the configuration
with no latency constraint, achieves the highest throughput. In
fact, 𝐸𝑞𝑢𝑖𝑛𝑜𝑥𝑛𝑜𝑛𝑒 saturates the HBM bandwidth when inference
load is below 60%, reaching the maximum achievable throughput
for the LSTM training workload. Other configurations reach lower
throughput values as tighter latency constraints shorten the win-
dow in which inference requests can be interleaved with training.
𝐸𝑞𝑢𝑖𝑛𝑜𝑥500𝜇𝑠 , 𝐸𝑞𝑢𝑖𝑛𝑜𝑥50𝜇𝑠 , and 𝐸𝑞𝑢𝑖𝑛𝑜𝑥𝑚𝑖𝑛 reach 78%, 66% and
19% of the maximum training throughput, respectively. We con-
clude that designs with more relaxed latency constraints are a better
fit for Equinox, reaching close to the maximum available training
throughput.

Equinox: Training (for Free) on a Custom Inference Accelerator MICRO ’21, October 18–22, 2021, Virtual Event, Greece

50 100 150 200 250 300 350 400

1

2

3

4

5
Equinox min
Equinox none
Equinox 50µs
Equinox 500µs
Latency target

Inference Throughput (TOp/s)

99
th

%
 L

at
en

cy
 (m

s)

(a) hbfp8

50 100 150 200 250 300 350 400

1

2

3

4

5
Equinox min
Equinox none
Equinox 500µs
Latency target

Inference Throughput (TOp/s)

99
th

%
 L

at
en

cy
 (m

s)

(b) bfloat16

Figure 7: Equinox’s inference tail latency as a function of its throughput for (a) hbfp8 and (b) bfloat16.

Inf

Inf+Tra
in

0%

20%

40%

60%

80%

100%

Inf

Inf+Tra
in Inf

Inf+Tra
in

Working Dummy requests Idle Other

5% load 50% load 95% load

Pe
rc

en
ta

ge
 o

f c
yc

le
s

Figure 8: Cycle usage breakdown of 𝐸𝑞𝑢𝑖𝑛𝑜𝑥500𝜇𝑠 at various
loads. Inf and Inf+Train configurations without and with
training respectively.

20% 40% 60% 80% 100%

20

40

60

80

100
Equinox min
Equinox none
Equinox 50µs
Equinox 500µs

Inference Load

Tr
ai

ni
ng

 T
hr

ou
gh

pu
t (

TO
p/

s)

Figure 9: Training throughput vs. inference load.

Workload Sensitivity Analysis. Table 2 shows 𝐸𝑞𝑢𝑖𝑛𝑜𝑥500𝜇𝑠 per-
formance when executing various DNN models. First, we observe
that Equinox delivers the same inference throughput for LSTM
and GRU, showing that it is insensitive to the two orders of magni-
tude difference between the latency constraints of the two models.

Table 2: Training and inference performance for various
DNN models. Training throughput is measured with an in-
ference load of 60%. Inference throughput refers to maxi-
mum throughput.

Model
Training

Throughput
(𝑇𝑂𝑝/𝑠)

Inference
Throughput
(𝑇𝑂𝑝/𝑠)

Inference
latency
(𝑚𝑠)

LSTM 83.4 319 0.5
GRU 83.4 319 36.6

Resnet50 18 67 1.32

Similarly, Equinox delivers the same training throughput for both
LSTM and GRU (83.4𝑇𝑂𝑃/𝑠), showing that Equinox can expose
training cycles to workloads with a variety of training execution
times. The third row of the table shows the throughput and la-
tency of Resnet50. In Resnet50, Equinox operates at a fraction of
its maximum inference and training throughputs because Resnet50
features matrix multiplications that do not map well to the large
MMU used in Equinox. This bottleneck has been observed in other
accelerator designs with large MMUs [22], which also exhibit low
throughput for CNNs. Therefore, Equinox behaves like a typical
inference DNN accelerator while also exposing training throughput
to a wide variety of models.

Synthesis Results. Table 3 shows the area and power of the vari-
ous components of 𝐸𝑞𝑢𝑖𝑛𝑜𝑥500𝜇𝑠 . The values closely match the ones
modeled in our design space exploration (§4). We also confirm our
assumption that the MMU, DRAM interface, and buffers dominate
the area and power consumption, taking nearly 95% and 82% of the
total area and power of the chip, respectively. Additionally, 13%
of the power and 4% of the area are consumed by the SIMD unit,
which contains a large register file and a large number of bfloat16
ALUs. The bfloat16 ALUs are introduced because of HBFP. As such,
we consider the area and power of the SIMD units as an overhead
compared to an inference accelerator that employs fixed-point only.

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Mario Drumond, Louis Coulon, Arash Pourhabibi, Ahmet Caner Yüzügüler, Babak Falsafi, and Martin Jaggi

Table 3: Area and power for 𝐸𝑞𝑢𝑖𝑛𝑜𝑥500𝜇𝑠 .

Component Area (𝑚𝑚2) Power (W)

MMU 185.60 36.84
DRAM Interface 46.90 28.60
SIMD Unit 13.43 10.97
Weight Buffer 45.96 4.28
Activation Buffer 18.27 1.07
Request Dispatcher 0.79 0.20
Instruction Dispatcher 0.49 0.14
Others 6.39 3.77
Total 313.85 85.91

50 100 150 200 250 300 350 400

1

2

3

4

5
Inf
Inf+Train+Fair sched.
Inf+Train+Priority sched.
Latency target

Inference Throughput (TOp/s)

99
th

%
 L

at
en

cy
 (m

s)

Figure 10: Equinox’s inference tail latency against
its throughput. Inf, Inf+Train+Fair sched., and
Inf+Train+Priority sched. indicate configurations with-
out training, with training and a fair-share scheduler, and
with training and a priority scheduler respectively.

Finally, we show that the request and instruction dispatchers con-
sume less than 1% of the area and power, confirming that Equinox’s
scheduling mechanisms incur negligible overhead.
Scheduling. To quantify the impact of hosting training services
on inference’s latency and throughput, we compare Equinox’s in-
ference performance with and without training. Figure 10 shows
Equinox’s 99% latency against its throughput while performing
inference under two scheduling policies: fair-share scheduling
(Inf+Train+Fair sched.) and a policy that at high loads schedules
inference requests only (Inf+Train+Priority sched.).

As the figure shows, training introduces a latency overhead
even at low loads. Both scheduling policies behave similarly at
low load, equally dividing the accelerator’s execution resources
between training and inference requests, leading to an increase in
the service time observed by inference requests. However, as infer-
ence load increases, the design with priority scheduling dedicates
more ALU time to inference requests, outperforming the design
with fair scheduling by 1.3× in terms of throughput under latency
constraints and matching the throughput of the inference-only de-
sign. Equinox can host training services while delivering the same
inference throughput as the baseline inference-only accelerator
under the same service-level latency goals.

We also ran experiments to evaluate how Equinox behaves with
software scheduling. Due to the high rate of instruction issue in
Equinox, a software scheduler has to operate at a batch granularity,
which leads to inference requests being queued for a long time,
violating the latency target when training batches are running.
Hence, the software scheduler ends up not scheduling training
batches to maintain the latency target, preventing Equinox from
serving training requests altogether.
Adaptive Batching. To quantify adaptive batching’s impact on
the tail latency of inference requests, we compare the 99th% latency
of 𝐸𝑞𝑢𝑖𝑛𝑜𝑥500𝜇𝑠 serving inference requests with static and adaptive
batching policies at various loads. Figure 11a shows that static
batching performs poorly at low loads, leading to latencies of more
than 10× accelerator’s service time, hence violating the service-
level latency target. The inter-arrival time of requests is so high at
low loads that batch formation dominates the execution time. The
design with adaptive batching, however, bounds batch formation
time leading to a 99th% latency that is close to the accelerator’s
service time when the load is low. Both designs exhibit the same
trend in the presence of higher loads, as requests do not have to
wait much longer for batches to form.

Adaptive batching uses a threshold value to decide how much
time to wait before issuing an incomplete batch. Figure 11b shows
the effect of this threshold over inference latency. We vary the
threshold values from 2× to 10× the service time. Increasing the
threshold forces the accelerator to wait for longer to form batches,
leading to higher 99th% latency, as shown in the figure. We also
observe that long waits are infrequent because with even relatively
high thresholds (i.e., 10×), we observe that less than 1% of the issued
batches are incomplete.

Finally, Figure 11c shows the training throughput obtained while
varying the adaptive batching threshold. Increasing the threshold
beyond 2× the service time leads to a modest increase in training
throughput without violating the latency goals. However, as we
increase the threshold, batch scheduling incurs long waiting times
with variation in training throughput. As using a threshold of 2× the
service time leads to near-maximum and stable training throughput
without violating the latency goals, we picked this threshold for all
experiments and workloads.

7 RELATEDWORK

DNN Accelerators are built for low latency inference services
and employ low precision arithmetic for efficiency. However, their
arithmetic encoding prevents them from being used for training
services. Microsoft’s Brainwave [16] relies on FPGAs to accelerate
DNNs at low latency. Although we argue that latency minimiza-
tion is a misguided goal for ASIC accelerators, FPGA provisioning
leads to a different conclusion. In FPGAs, ALU and data move-
ment resources are not provisioned by the accelerator designer
but by the FPGA. As such, data movement resources are overpro-
visioned in FPGAs to cater to general-purpose applications. For
instance, one of the FPGAs featured in Brainwave, an Intel Stratix
V D5, features 2014 blocks of M20K SRAM, with a width of up
to 40 bits each. The same FPGA features 3180 18x18 multipliers,
resulting in roughly 1.4 bits of SRAM bandwidth for each multi-
plier bit. Google’s TPU [22], in contrast, is an ASIC design that

Equinox: Training (for Free) on a Custom Inference Accelerator MICRO ’21, October 18–22, 2021, Virtual Event, Greece

20% 40% 60% 80% 100%

1

2

3

4

5

Static batching
Adaptive batching
Latency target

Inference Load

99
th

%
 L

at
en

cy
 (m

s)

(a) Tail latency vs. load with static and adaptive batching

50 100 150 200 250 300 350 400

1

2

3

4

5
2x service time
4x service time
6x service time
8x service time
10x service time
Latency target

Inference Throughput (TOp/s)

99
th

%
 L

at
en

cy
 (m

s)

(b) Tail latency vs. inference throughput

20% 40% 60% 80% 100%

20

40

60

80

100

2x service time
4x service time
6x service time
8x service time
10x service time

Inference Load

Tr
ai

ni
ng

 T
hr

ou
gh

pu
t (

TO
p/

s)

(c) Training throughput as a function of inference load.

Figure 11: Equinox’s adaptive batching policy impact on latency and training throughput. "𝑋× service time" indicates that the
batching mechanism waits for 𝑋× the workload service time before issuing an incomplete batch.

leverages batching to cope with the memory bottleneck. Neither
Brainwave nor TPU have any mechanisms to guarantee latency
SLOs in accelerators. Training accelerators are optimized to pro-
vide high throughput to reduce the long execution time of training
services. Due to the accuracy requirements of training algorithms,
they employ floating-point arithmetic, resulting in lower energy
efficiency and computational density. Some examples of training
accelerators are NVIDIA’s Volta [4] and Google’s TPUv2 [2] and
TPUv3 [5]. All these accelerators feature high bandwidth memory.
Training Arithmetic.While inference has been known to toler-
ate low precision fixed-point arithmetic for a long time, training
algorithms started adopting more efficient arithmetic encodings
only recently. While early works [23] used single-precision floating
point, DNN users quickly learned that DNNs are tolerant to low
precision arithmetic. As such, most recent accelerators use nar-
rower arithmetic, like bfloat16 [6]. We argue that this trend will
continue, with recent work introducing several options for even
more efficient training arithmetic [14, 24, 35]. These innovations
allow for training arithmetic with efficiency in par with inference
arithmetic, acting as an enabler for Equinox. More efficient and
dense arithmetic also leads to a smaller fraction of the accelerator

power being spent on ALUs, emphasizing of accelerator design on
minimizing data movement.

Software Schedulers. Clipper [8] introduces a low-latency predic-
tion serving system, with a control plane for accelerated inference
serving. Clipper assumes a less autonomous DNN accelerator than
Equinox, handling all the control logic in software. We argue that
the control plane needed to enable low-latency inference to exe-
cute with training can be implemented in hardware with low area
and power overhead and low complexity. Equinox also enables
a more autonomous DNN accelerator, capable of running entire
requests instead of individual instructions. This model enables a
Brainwave-like accelerator, reducing latency further.

Task Co-location. Prior work [11, 25] co-locates latency-critical
and best-effort tasks on online servers. Additionally, Facebook [18]
co-locates training and inference services on general-purpose CPUs
during periods of low load. We also leverage a best-effort service to
improve the utilization of compute resources executing a latency-
critical service. However, the challenges in co-locating inference
and training in accelerators are fundamentally different from the
challenges of co-locating in online servers. The biggest challenge

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Mario Drumond, Louis Coulon, Arash Pourhabibi, Ahmet Caner Yüzügüler, Babak Falsafi, and Martin Jaggi

in online servers is identifying the resources contended by each
workload as the mechanisms necessary to enable co-location are
already present in the form of OS/cluster schedulers. Identifying
contended resources in DNN accelerators is trivial. Instead, we tack-
led the challenges in provisioning accelerators silicon resources and
introducing a latency-aware mechanism to specialized accelerators.

Finally, EDGE [20] introduces an event-driven GPU execution
model that provides the basic mechanisms needed for simultaneous
execution of inference and training requests, providing the first
step towards a GPU capable of meeting the latency constraints of
inference services while performing training. Using EDGE, a GPU
is capable of quickly preempting training requests during inference
load spikes. The next step would be to provide DNN-aware resource
scheduling capabilities in GPUs.

8 CONCLUSION
DNN inference accelerators face a low average load due to service
demand variability. Unfortunately, traditional inference accelera-
tors do not have the mechanisms to expose inference idle cycles
to training workloads. In this paper, we introduce Equinox, an in-
ference accelerator that piggybacks training services to reclaim
inference idle cycles. Equinox reconciles the conflicting require-
ments of training and inference and achieves near-optimal inference
throughput while exposing inference idle cycles to training ser-
vices. We show that, with a 500𝜇𝑠 inference service time constraint,
Equinox achieves 6.67× higher throughput than a latency-optimal
accelerator. Equinox also achieves a training throughput that is 78%
of the throughput of a dedicated training accelerator. Finally, we
show that the mechanisms introduced by Equinox lead to an area
and power overheads of less than 1%, while its numeric encoding
incurs 13% power and 4% area overhead compared to a fixed-point
accelerator.

ACKNOWLEDGMENTS
The authors thank the anonymous reviewers and the members of
PARSA at EPFL for their precious comments and feedback. We
would also like to thank Simla Harma for conducting HBFP con-
vergence experiments and sharing the results with us. This work
has been partially funded by a Microsoft JRC Research Grant, a
Qualcomm PhD Fellowship, the CE-EuroLab-4-HPC project, and
the following grants: "Memory-Centric Server Architecture for
Datacenters" and "Hardware/Software Co-Design for In-Memory
Services" from the Swiss National Science Foundation (SNSF).

REFERENCES
[1] 2010. NVIDIA T4 Tensor Core GPU. https://www.nvidia.com/content/dam/en-

zz/Solutions/Data-Center/t4-tensor-core-datasheet.pdf. Accessed: 2019-01-07.
[2] 2017. Cloud TPU. https://cloud.google.com/tpu. Accessed: 2018-01-31.
[3] 2017. Introduction to the IPU architecture. https://www.graphcore.ai/nips2017_

presentations. Accessed: 2019-08-06.
[4] 2018. NVIDIA Volta V100 GPU Accelerator. https://images.nvidia.com/content/

technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf. Accessed:
2018-01-31.

[5] 2018. Tearing Apart Google’s TPU 3.0 AI coprocessor. https://www.nextplatform.
com/2018/05/10/tearing-apart-googles-tpu-3-0-ai-coprocessor. Accessed: 2018-
05-15.

[6] Martn Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manju-
nath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon Murray,
Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,

Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale
Machine Learning. In Proceedings of the 12th Symposium on Operating System
Design and Implementation (OSDI). 265–283.

[7] Luiz Andr Barroso, Urs Hlzle, and Parthasarathy Ranganathan. 2018. The Data-
center as a Computer: Designing Warehouse-Scale Machines, Third Edition. Morgan
& Claypool Publishers.

[8] Daniel Crankshaw, Xin Wang 0066, Giulio Zhou, Michael J. Franklin, Joseph E.
Gonzalez, and Ion Stoica. 2017. Clipper: A Low-Latency Online Prediction Serving
System. In Proceedings of the 14th Symposium on Networked Systems Design and
Implementation (NSDI). 613–627.

[9] Alexandros Daglis, Mark Sutherland, and Babak Falsafi. 2019. RPCValet: NI-
Driven Tail-Aware Balancing of 𝜇s-Scale RPCs. In Proceedings of the 24th Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-XXIV). 35–48.

[10] William Dally. 2015. High Performance Hardware for Machine Learn-
ing. https://media.nips.cc/Conferences/2015/tutorialslides/Dally-NIPS-Tutorial-
2015.pdf. Accessed: 2018-01-31.

[11] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: resource-efficient
and QoS-aware cluster management. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-XIX). 127–144.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019.
4171–4186.

[13] Mario Drumond. 2020. ColTraIn: Co-located DNN training and inference. Ph.D.
Dissertation. EPFL.

[14] Mario Drumond, Tao Lin, Martin Jaggi, and Babak Falsafi. 2018. Training DNNs
with Hybrid Block Floating Point. In Proceedings of the Thirty-second Conference
on Neural Information Processing Systems (NeurIPS). 451–461.

[15] Hadi Esmaeilzadeh, Emily R. Blem, Rene St. Amant, Karthikeyan Sankaralingam,
and Doug Burger. 2011. Dark silicon and the end of multicore scaling. In Pro-
ceedings of the 38th International Symposium on Computer Architecture (ISCA).
365–376.

[16] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming
Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan Adams, Mahdi Ghandi,
Stephen Heil, Prerak Patel, Adam Sapek, Gabriel Weisz, Lisa Woods, Sitaram
Lanka, Steven K. Reinhardt, Adrian M. Caulfield, Eric S. Chung, and Doug Burger.
2018. A Configurable Cloud-Scale DNN Processor for Real-Time AI. In Proceedings
of the 45th International Symposium on Computer Architecture (ISCA). 1–14.

[17] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.
2015. Deep Learning with Limited Numerical Precision. In Proceedings of the
Thirty-second International Conference on Machine Learning (ICML). 1737–1746.

[18] Kim M. Hazelwood, Sarah Bird, David M. Brooks, Soumith Chintala, Utku Diril,
Dmytro Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, James
Law, Kevin Lee, Jason Lu, Pieter Noordhuis, Misha Smelyanskiy, Liang Xiong,
and Xiaodong Wang. 2018. Applied Machine Learning at Facebook: A Datacenter
Infrastructure Perspective. In Proceedings of the 24th IEEE Symposium on High-
Performance Computer Architecture (HPCA). 620–629.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 770–778.

[20] Tayler Hicklin Hetherington, Maria Lubeznov, Deval Shah, and Tor M. Aamodt.
2019. EDGE: Event-Driven GPU Execution. In Proceedings of the 28th International
Conference on Parallel Architecture and Compilation Techniques (PACT). 337–353.

[21] Norman P. Jouppi, Doe Hyun Yoon, George Kurian, Sheng Li, Nishant Patil, James
Laudon, Cliff Young, and David Patterson. 2020. A Domain-Specific Supercom-
puter for Training Deep Neural Networks. Commun. ACM (2020), 67–78.

[22] Norman P. Jouppi, Cliff Young, Nishant Patil, David A. Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve
Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle
Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo
Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,
Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance Analysis of
a Tensor Processing Unit. In Proceedings of the 44th International Symposium on
Computer Architecture (ISCA). 1–12.

[23] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images.
Technical report, University of Toronto (2009).

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/t4-tensor-core-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/t4-tensor-core-datasheet.pdf
https://cloud.google.com/tpu
https://www.graphcore.ai/nips2017_presentations
https://www.graphcore.ai/nips2017_presentations
https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf
https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf
https://www.nextplatform.com/2018/05/10/tearing-apart-googles-tpu-3-0-ai-coprocessor
https://www.nextplatform.com/2018/05/10/tearing-apart-googles-tpu-3-0-ai-coprocessor
https://media.nips.cc/Conferences/2015/tutorialslides/Dally-NIPS-Tutorial-2015.pdf
https://media.nips.cc/Conferences/2015/tutorialslides/Dally-NIPS-Tutorial-2015.pdf

Equinox: Training (for Free) on a Custom Inference Accelerator MICRO ’21, October 18–22, 2021, Virtual Event, Greece

[24] Urs Kster, Tristan Webb, Xin Wang, Marcel Nassar, Arjun K. Bansal, William
Constable, Oguz Elibol, Stewart Hall, Luke Hornof, Amir Khosrowshahi, Carey
Kloss, Ruby J. Pai, and Naveen Rao. 2017. Flexpoint: An Adaptive Numerical
Format for Efficient Training of Deep Neural Networks. In Proceedings of the
Thirty-first Conference on Neural Information Processing Systems (NIPS). 1742–
1752.

[25] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and
Christos Kozyrakis. 2015. Heracles: improving resource efficiency at scale. In
Proceedings of the 42nd International Symposium on Computer Architecture (ISCA).
450–462.

[26] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P. Jouppi. 2007.
Optimizing NUCA Organizations and Wiring Alternatives for Large Caches with
CACTI 6.0. In Proceedings of the 40th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). 3–14.

[27] Sharan Narang and Greg Diamos. 2017. Baidu DeepBench. https://github.com/
baidu-research/DeepBench.

[28] Ali Pahlevan, Javier Picorel, Arash Pourhabibi Zarandi, Davide Rossi, Marina
Zapater, Andrea Bartolini, Pablo Garca Del Valle, David Atienza, Luca Benini, and
Babak Falsafi. 2016. Towards near-threshold server processors. In Proceedings
of the 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE).
7–12.

[29] George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS: Achieving
Low Tail Latency for Microsecond-scale Networked Tasks. In Proceedings of the
26th ACM Symposium on Operating Systems Principles (SOSP). 325–341.

[30] Bita Rouhani, Daniel Lo, Ritchie Zhao, Ming Liu, Jeremy Fowers, Kalin Ovtcharov,
Anna Vinogradsky, Sarah Massengill, Lita Yang, Ray Bittner, Alessandro Forin,

Haishan Zhu, Taesik Na, Prerak Patel, Shuai Che, Lok Chand Koppaka, Xia Song,
Subhojit Som, Kaustav Das, Saurabh Tiwary, Steve Reinhardt, Sitaram Lanka,
Eric Chung, and Doug Burger. 2020. Pushing the Limits of Narrow Precision
Inferencing at Cloud Scale with Microsoft Floating Point . NeurIPS 2020 vol. 33,
no. 4, pp. 100-107. (2020).

[31] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein,
Alexander C. Berg, and Fei-Fei Li. 2014. ImageNet Large Scale Visual Recognition
Challenge. CoRR abs/1409.0575 (2014).

[32] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. 2017. Efficient
Processing of Deep Neural Networks: A Tutorial and Survey. Proc. IEEE 105, 12
(2017), 2295–2329.

[33] Kevin Tran. 2016. Start Your HBM/2.5 D Design Today.
[34] David Wang, Brinda Ganesh, Nuengwong Tuaycharoen, Katie Baynes, Aamer

Jaleel, and Bruce Jacob. 2005. DRAMsim: A memory-system simulator. Computer
Architecture News vol. 33, no. 4, pp. 100-107. (2005). https://doi.org/10.1145/
1105734.1105748

[35] Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash
Gopalakrishnan. 2018. Training Deep Neural Networks with 8-bit Floating Point
Numbers. In Proceedings of the Thirty-second Conference on Neural Information
Processing Systems (NeurIPS). 7686–7695.

[36] Hongyu Zhu, Mohamed Akrout, Bojian Zheng, Andrew Pelegris, Anand Ja-
yarajan, Amar Phanishayee, Bianca Schroeder, and Gennady Pekhimenko. 2018.
Benchmarking and Analyzing Deep Neural Network Training. In Proceedings of
the 2018 IEEE International Symposium on Workload Characterization. 88–100.

https://github.com/ baidu-research/DeepBench
https://github.com/ baidu-research/DeepBench
https://doi.org/10.1145/1105734.1105748
https://doi.org/10.1145/1105734.1105748

	Abstract
	1 Introduction
	2 Piggybacking on Inference
	2.1 Design Objectives for Inference
	2.2 Accommodating Training

	3 Equinox
	3.1 Baseline Inference Accelerator
	3.2 Enhancements for Training

	4 Optimal Array Design
	4.1 Analytical Models
	4.2 Analysis

	5 Methodology
	6 Evaluation
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

