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Abstract

Wave phenomena manifest in nature as electromagnetic waves, acoustic waves, and

gravitational waves among others. Their descriptions as partial differential equations in

electromagnetics, acoustics, and fluid dynamics are ubiquitous in science and engineering.

Having numerical methods to solve these problems efficiently is therefore of great

importance and value to domains such as aerospace engineering, geophysics, and civil

engineering. Wave problems are characterized by the finite speeds at which waves

propagate and present a series of challenges for the numerical methods aimed at solving

them. This dissertation is concerned with the development and analysis of numerical

algorithms for solving wave problems efficiently using a computer. It contains two

parts:

The first part is concerned with sparse linear systems which stem from discretizations

of such problems. An approximate direct solver is developed, which can be computed

and applied in quasilinear complexity. As such, it can also be used as a preconditioner

to accelerate the computation of solutions using iterative methods. This direct solver is

based on structured Gaussian elimination, using a nested dissection reordering and the

compression of dense, intermediate matrices using rank structured matrix formats. We

motivate the use of these formats and demonstrate their usefulness in our algorithm. The

viability of the method is then verified using a variety of numerical experiments. These

confirm the quasilinear complexity and the applicability of the method.

The second part focuses on the solution of the shallow water equations using the

discontinuous Galerkin method. These equations are used to model tsunamis, storm

surges, and weather phenomena. We aim to model large-scale tsunami events, as would

be required for the development of an early-warning system. This necessitates the

development of a well-balanced numerical scheme, which is efficient, flexible, and robust.

We analyze the well-balanced property in the context of discontinuous Galerkin methods

and how it can be obtained. Another problem that arises with the shallow water equations

is the presence of dry areas. We introduce methods to handle these in a well-balanced,

and physically consistent manner. The resulting method is validated using tests in one

dimension, as well as simulations on the surface of the Earth. The latter are compared to

real-world data obtained from buoys and satellites, which demonstrate the applicability

and accuracy of our method.

Keywords: partial differential equations, sparse linear system, hierarchical matrices, low-

rank approximation, HSS matrices, nested dissection, structured elimination, Gaussian

elimination, multifrontal method, iterative solver, preconditioner, Poisson problem,

Helmholtz problem, elastic wave equation, shallow water equations, discontinuous

Galerkin method, wetting/drying, well-balanced schemes, tsunami simulation



Zusammenfassung

Wellenphänomene kommen in der Natur unter anderem als elektromagnetische Wel-

len, akustische Wellen und Gravitationswellen vor. Ihre Beschreibung als partielle

Differenzialgleichungen in den Bereichen des Elektromagnetismus, Akustik und der

Fluiddynamik sind daher allgegenwärtig in den Natur- und Ingenieurwissenschaften.

Numerische Methoden zur effizienten Lösung dieser Probleme sind daher unschätzbar

wertvoll für Domänen wie z.B. die Luft- und Raumfahrttechnik, die Geophysik und

das Bauingenieurwesen. Eine wichtige Eigenschaft dieser Wellenphänomene ist die

begrenzte Geschwindigkeit, mit der sich die Wellen ausbreiten. Wellenprobleme stellen

eine Reihe an Herausforderungen an die assoziierten numerischen Methoden. Diese

Dissertation beschäftigt sich mit der Entwicklung und Analyse numerischer Methoden

und Algorithmen zur effizienten Lösung von partiellen Differenzialgleichungen, die

Wellenphänomene beschreiben, mithilfe eines Computers. Sie besteht aus zwei Teilen:

Der erste Teil beschäftigt sich mit dünnbesetzten Gleichungssystemen, wie sie bei

der Diskretisierung von solchen Problemen vorkommen. Es wird ein approximativer

Löser vorgestellt, welcher in quasi-linearer Zeit berechnet und angewendet werden

kann. Der Löser kann daher auch, als Präkonditionierer angewandt werden, um die

Konvergenzraten iterativer Löser zu beschleunigen. Unser Löser basiert auf struktu-

rierten Gauß-Eliminationsverfahren anhand von verschachtelter Unterteilung und der

Kompression von dichtbesetzten Matrizen anhand von hierarchischen Matrizen. Wir

motivieren und zeigen die Nützlichkeit von hierarchischen Matrizen in der Entwicklung

effizienter Lösungsverfahren. Anschließend demonstrieren wir the Anwendbarkeit und

die Komplexität unseres Lösers mithilfe von numerischen Experimenten.

Im zweiten Teil stellen wir diskontinuierliche Galerkin Methoden zur Lösung der

Flachwassergleichungen vor. Diese Gleichungen werden zur Modellierung von Tsunamis,

Sturmfluten und anderer Wetterphänomene verwendet. Wir entwickeln ein Modell zur

Simulation von Tsunamiphänomenen, wie es für die Entwicklung eines Frühwarnsystems

notwendig ist. Dies benötigt die Entwicklung eines numerischen Verfahrens, welches

gewisse stationäre Gleichgewichte exakt erhält. Diese Eigenschaft die wichtig ist, um

die Plausibilität der Lösungen zu gewährleisten. Wir analysieren diskontinuierliche

Galerkin Verfahren unter diesem Aspekt und entwickeln darüber hinaus Methoden zur

Behandlung der Phasengrenzen. Im Anschluss verifizieren wir unsere Methoden anhand

von Beispielen in einer Dimension und Simulationen auf der Oberfläche der Erde, welche

wir mit Satellitendaten und Bojendaten vergleichen.

Schlüsselwörter: partielle Differentialgleichungen, dünnbesetzte Gleichungssysteme,

hierarchische Matrizen, niedrig-Rang Approximation, hierarchisch semi-separable Ma-

trizen, verschachtelte Unterteilung, strukturierte Gauß-Elimination, Iterative Löser,

Präkonditionierer, Poisson-Gleichung, Helmholtz-Gleichung, elastische Wellengleichung,

Flachwassergleichung, diskontinuierliche Galerkin Verfahren, Phasengrenzen, wohl-

balancierte Methoden, Tsunami Simulation



Résumé

La physique des ondes apparaît dans la Nature entre autres sous forme d’ondes électro-

magnétiques, d’ondes sonores ou encore d’ondes gravitationnelles. Les équations aux

dérivées partielles correspondantes à ces phénomènes sont omniprésentes en sciences

et dans leurs applications industrielles. Pour cette raison, il est très utile d’avoir des

méthodes numériques permettant résoudre ces problèmes efficacement pour des applica-

tions allant de l’ingénierie aérospatiale, à la géophysique en passant par l’ingénierie civile.

Une des caractéristiques de ces problèmes est la nature finie de la vitesse de propagation

des ondes. Les méthodes numériques dédiées à leur résolution sont aussi confrontés

à une multitude de difficultés. Cette thèse a pour but le développement et l’analyse

d’algorithmes numériques permettant de résoudre efficacement certains problèmes de

propagation d’ondes au moyen d’ordinateurs. Elle se compose de deux parties :

La première partie considère les systèmes linéaires creux qui sont obtenus suite à la

discrétisation de certains problèmes mentionnés ci-dessus. Une méthode consistant à

résoudre une approximation du système linéaire avec un solveur direct est développée.

Elle possède une complexité quasi-linéaire. En tant que telle, elle peut aussi servir de

préconditionneur pour réduire le temps de calcul de méthodes itératives. Le solveur

direct approché repose sur une méthode structurée du Pivot de Gauss, en utilisant une

méthode de dissection emboîtée qui réordonne et compresse des matrices intermédiaires

denses selon une structure dépendante de leur rang. Nous justifions l’utilisation de ces

structures particulières. Nous montrons leur utilité dans notre algorithme. La réussite

de la méthode est ensuite vérifiée au travers de plusieurs expériences numériques. Elles

confirment la complexité quasi-linéaire et l’efficacité de la méthode.

La seconde partie étudie les solutions des équations de Barré de Saint-Venant ou équations

des écoulements en eau peu profonde en utilisant une méthode de Galerkin discontinue.

Ces équations sont utilisées pour modéliser les tsunamis, les ondes de tempêtes et des

phénomènes météorologiques similaires. Nous avons pour but de modéliser l’apparition

de tsunamis à large échelle, ce qui est nécessaire pour le développement dun système

dalarme prévisionnel. Pour cela, il est nécessaire de développer une méthode numérique

flexible, efficace, robuste qui, en particulier, préserve la stabilité lorsque le système est

dans un état stationnaire (schéma équilibré). Nous analysons cette propriété de stabilité

spécifiquement dans le contexte de méthodes de Galerkin discontinues et nous montrons

comment celle-ci peut être obtenue systématiquement. Un autre problème découlant

des équations en eau peu profonde est la présence de régions sèches. Nous introduisons

des méthodes pour traiter ces régions de manière conservative et cohérente du point

de vue physique. Le modèle est validé en une dimension, puis avec des simulations

sur la surface terrestre. Ces dernières sont comparées avec des données expérimentales

obtenues par des bouées et des satellites. Ces résultats montrent l’efficacité et la précision

de cette méthode.

Mots-clés : équations au dérivées partielles, système linéaire creux, matrices hiérar-

chiques, approximation de bas rang, matrices hiérarchiques semi-séparables, dissection

emboîtée, élimination structurée, pivot de Gauss, méthode multifrontale, solveur itéra-

tif, préconditionneur, problème de Poisson, équation de Helmholtz, équation d’onde

élastique, équations de Barré de Saint-Venant, méthode de Galerkin discontinue, mouilla-

ge/séchage, schéma de conservation, simulation de tsunami.



Preface

Numerical analysis is the study of algorithms

for the problems of continuous mathematics

- Lloyd N. Trefethen [1]

This thesis contains two parts - one on hierarchical preconditioners for large linear

systems and one on discontinuous Galerkin methods for the shallow water equations.

They are connected - the continuous problems that we design algorithms for are wave

problems. Apart from that, I have decided to keep them as separate as possible, such

that both parts can stand on their own. This is intended to aid the reader who is more

interested in one topic over the other.

The first part focuses on efficient preconditioners, as well as sparse direct solvers for wave

problems and elliptic problems in particular. It introduces some fundamental concepts

on finite element approximation, low-rank approximation, sparse direct solvers, iterative

solvers and hierarchical matrices, before explaining our work on hierarchical solvers

and preconditioners for elliptic problems. The second part on the other hand, focuses on

the shallow water equations and the discontinuous Galerkin method. We discuss some

important notions on well-balanced methods and wetting-drying, before we move on to

design a method intended for large-scale ocean, tsunami, and storm surge modeling.

The work as presented here has either been published or submitted for publication in the

following articles:

[2] Boris Bonev, Jan S. Hesthaven, Francis X. Giraldo, and Michal A. Kopera. ‘Discontin-

uous Galerkin scheme for the spherical shallow water equations with applications

to tsunami modeling and prediction’. In: Journal of Computational Physics (2018)

[3] Mahya Hajihassanpour, Boris Bonev, and Jan S. Hesthaven. ‘A comparative study

of earthquake source models in high-order accurate tsunami simulations’. In: Ocean
Modelling 141.August (Sept. 2019)

[4] Boris Bonev and Jan S. Hesthaven. ‘A hierarchical preconditioner for wave problems

in quasilinear complexity’. In: 513966 (May 2021). arXiv: 2105.07791

To skip directly to our contributions on preconditioning for wave problems, I suggest

reading Chapter 7 and Chapter 8. For our contributions to numerical schemes for the

schallow water equations, I suggest reading Chapter 11, Chapter 12 and Chapter 13.

Research should be reproducible wherever possible. Moreover, the best way of under-

standing algorithms is often to implement and play with them. Most of the codes related

to this thesis have been made available at github.com/bonevbs. I have made an effort to

reference relevant sections to the codes wherever possible. The reader is encouraged to

use the hyperlinks provided on the side to check them out.

Boris Bonev

https://arxiv.org/abs/2105.07791
https://github.com/bonevbs
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The continuous problems of physics that we are concerned with are

wave problems, which are modelled within the more general field of

partial differential equations (PDEs). Wave problems play an important

role in physics and engineering and present a wealth of interesting

phenomena such as scattering, dispersion and shock waves. The most

basic mathematical description of wave phenomena is the (linear) wave

equation

utt − c2∇2u � f , (1.1)

subject to suitable initial and boundary conditions. Here, u : Ω×[0,∞) →
R is the solution, defined for a coordinate x in the d-dimensional spatial

domainΩ ⊆ Rd
and a time t in the domain [0,∞). utt denotes the second

partial derivative with respect to time ∂2u/∂t2
and the Laplacian ∇2

is

taken with respect to the spatial coordinates x. The constant c denotes

the wave propagation speed and f is a function that acts as forcing term

for the equation. In one dimension, for instance, the wave equation (1.1)

describes the motion of a vibrating guitar string. In two dimensions, it

describes the movement of fluid surfaces, e.g. water waves.

1.1 Some related problems

A classical approach to solve the wave equation is to exploit its linearity

and use the Fourier transform

u(t) � 1

2π

∫ ∞

−∞
ũ(ω) exp(iωt)dω, (1.2)

which yields the frequency-domain version of (1.1)

−ω2ũ2 − c2∇2ũ � ˜f .

Here, ω is the angular frequency, and ũ , ˜f denote the Fourier transforms

(in time, x is kept constant) of u , f . We drop the tilde ~and introduce the

wavenumber κ � ω/c for simplicity. This yields our first elliptic PDE,

the Helmholtz problem:

Problem 1.1.1 (Helmholtz problem) LetΩ ⊂ Rd
be an open, bounded

Lipschitz domain and ΓD , ΓN ⊆ ∂Ω such that ΓD ∪ ΓN � ∂Ω and

ΓD ∩ ΓN � ∅. Find u : Ω × [0,∞) → R, such that

−∇2u − κ2u � f inΩ, (1.3a)

u � gD on ΓD , (1.3b)

∇u · n̂ � gN on ΓN , (1.3c)

subject to suitable boundary data gD : ΓD → R and gN : ΓN → R.

By setting κ � 0, we recover the related Poisson problem:
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Figure 1.1: Numerical solutions to the

Helmholtz equation onΩ � [−1, 1]2 with

f � 1. We chose a finite element discretiza-

tion with p � 1 and h � 1/80.

1: Pressure waves are characterized by

the displacement being aligned with the

direction of wave propagation. The dis-

placement in shear waves is perpendicular

to the propagation of the wave.

Problem 1.1.2 (Poisson problem) LetΩ, ΓD , ΓN be as in Problem 1.1.1.

Then, find u : Ω × [0,∞) → R, such that

−∇2u � f inΩ, (1.4a)

u � gD on ΓD , (1.4b)

n̂ · ∇u � gN on ΓN , (1.4c)

subject to suitable boundary data gD , gN on ΓD , ΓN .

Both problems are related in the sense that the homogeneous Helmholtz

problem 1.1.1 is the eigenvalue problem of the Poisson problem, where κ2

corresponds to the eigenvalue of the Laplacian. Therefore, if a wavenum-

ber coincides with the square-root of an eigenvalue of the Laplacian,

the Helmholtz problem 1.1.1 becomes singular. Figure 1.1 depicts some

numerically computed solutions to the two-dimensional Helmholtz prob-

lem on the square domain Ω � [−1, 1]2 with f � 1 and homogeneous

boundary conditions.

We observe that with increasing wavenumber, the solutions become

more and more oscillatory. It is often useful to refer to the wavelength of

the problem, which is λ � 2π/κ.

Another way to understand the Poisson problem 1.1.2 is as the steady-

state solution to the wave problem (1.1). Therefore, it can describe e.g.

the constant displacement of a string under tension. This bring us to the

elastic wave equations in an inhomogeneous but isotropic medium

utt − ∇ · σ(u) � f , (1.5)

to which suitable boundary conditions must be specified. Now, u , f :

Ω×[0,∞) → Rd
are vector-valued functions and the symbol σ(·)denotes

the d-by-d Cauchy stress tensor given by

σ(u) � λ(∇ · u)I + µ(∇u + (∇u)ᵀ), (1.6)

where λ, µ : Ω → R are the Lamé parameters of the material and I
denotes the d-by-d identity matrix. These equations can be understood as

one possible generalization of the wave equation (1.1). The characteristic

property of the elastic wave equation is that it permits both pressure and

shear waves and are therefore able to describe waves in both solids and

fluids.
1

As for the wave equation (1.1), we recover the associated elliptic problem

by considering the steady-state problem.

Problem 1.1.3 (Steady-state elastic waves) Let Ω, ΓD , ΓN be as in

Problem 1.1.1. Then, find u : Ω × [0,∞) → R, such that

−∇ · σ(u) � f inΩ, (1.7a)

u � gD on ΓD , (1.7b)

σ(u) · n̂ � gN on ΓN , (1.7c)

subject to suitable boundary data gD , gN on ΓD , ΓN .
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2: Discussion on the correct choice of

function spaces V and the existence and

uniqueness of solutions therein can be

found in [7].

3: Under certain assumptions, one can

show that this formulation is equivalent

to the differential formulation. This again

depends mainly on the choice of solution

space V . For details see [6–9].

Or, once again, we can use the Fourier transform (1.2) and recover the

frequency-domain elastic wave equation.

Problem 1.1.4 (Frequency-domain elastic waves) LetΩ, ΓD , ΓN be as

in Problem 1.1.1. Then, find u : Ω × [0,∞) → R, such that

−∇ · σ(u) − ρ ω2u � f inΩ, (1.8a)

u � gD on ΓD , (1.8b)

σ(u) · n̂ � gN on ΓN , (1.8c)

subject to suitable boundary data gD , gN on ΓD , ΓN .

These equations have their applications in fields ranging from geophysics

to civil engineering. They are frequently used to model seismic waves

and are the basis for seismic imaging techniques such as full waveform

inversion [5].

1.2 Finite element approximation

One of the most ubiquitous methods in science and engineering for the

solution of partial differential equations is the finite element method

(FEM) [6].

We are concerned with finding the numerical solution of second-order

elliptic problems of the form

Lu � f inΩ, (1.9a)

u � gD on ΓD , (1.9b)

∇u · n̂ � gN on ΓN , (1.9c)

on open, bounded Lipschitz domainsΩ ⊂ Rd
subject to suitable bound-

ary data gD and gn on the Dirichlet and Neumann boundaries ΓD , ΓN ,

respectively, with ΓD ∪ ΓN � ∂Ω and ΓD ∩ ΓN � ∅. The unit outward

normal vector on the boundary ∂Ω is denoted by n̂. We are particularly

interested in second-order elliptic operators of the form

Lu � −∇ · (A∇u + bu) + c · ∇u + du , (1.10)

where A, b , c , d are coefficients with suitable dimensions and variable in

space.

To formulate a finite element method, we consider a variational version

of the problem in some Hilbert space V .
2 3

Then, the variational

formulation is: Find u ∈ V , such that

∀v ∈ V : a(u , v) � l(v), (1.11)

where

a(u , v) � 〈v ,Lu〉 �
∫
Ω

vLu dx (1.12)

is a bilinear form on V × V and

l(v) � 〈v , f 〉 �
∫
Ω

v f dx (1.13)
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Figure 1.2: Triangular mesh on a guitar

shaped domain.

4: If the basis is instead constructed glob-

ally, the methods are typically called spec-

tral element methods (SEM). Another im-

portant family of methods are boundary

element methods (BEM), which instead

formulate the problem on the boundary,

so that instead of the domainΩ, the bound-

ary of the domain ∂Ω is discretized.

a linear form on V . An important requirement here is that the solution

space V must satisfy the boundary conditions or the problem may not

be well-defined (or equivalent to (1.9)). Let us restrict ourselves to the

Helmholtz problem (1.3) with homogeneous boundary Dirichlet data

gD � 0 everywhere (ΓD � ∂Ω). For this special case, the bilinear form

(1.12) is

a(u , v) �
∫
Ω

∇v · ∇u − κ2v · u dx. (1.14)

To discretize the problem, we choose a finite sub-vector space Vh ⊂ V
which is a good approximation of V . Here, it is common to use the

subscript letter “h” to denote the approximating space. h usually refers

to the smallest lengthscale, that is resolved by Vh . What does it mean

to have a “good” approximating space? It usually means that we can

control the approximation error ‖v − vh ‖V , by choosing an appropriate

h:

inf

vh∈Vh

‖v − vh ‖V → 0 for h → 0. (1.15)

We then proceed to approximate the variational problem (1.11) to

Problem 1.2.1 (Galerkin formulation) Find uh ∈ Vh , such that

∀vh ∈ Vh : a(uh , vh) � l(vh). (1.16)

This is recognized as the Galerkin projection, requiring that the residual

u − uh is orthogonal to Vh , i.e.

a(u − uh , vh) � a(u , vh) − a(uh , vh) � l(vh) − l(vh) � 0.

In other words, the error is minimized within Vh and therefore, getting a

good approximation is fundamentally determined by the choice of Vh .

A common strategy for constructing Vh is to discretize the computational

domain by forming a mesh and then constructing a basis for Vh on that

mesh. In that setting, h typically denotes the maximum diameter of an

element in the mesh. Figure 1.2 depicts such a triangularization of a

guitar shaped domain.

To construct a basis for Vh � span{ϕ
1
, ϕ

2
, . . . , ϕn}, basis functions are

typically constructed on a element-to-element basis.
4

We skip the details

of this step and instead note that there are two major approaches here.

The first one is to construct basis functions locally which result in a

discontinuous approximation space. These methods are therefore called

discontinuous Galerkin (DG) methods. The alternative, and the classical

approach for elliptic problems, is to enforce continuity up to a certain

degree at the element interfaces. Therefore, such methods are called

continuous Galerkin (CG) methods.

Thus, we assume that a basis {ϕ
1
, ϕ

2
, . . . , ϕn} of polynomial order p

has been constructed. We can then assume that the solution uh can be

represented in this basis, i.e.

uh �

n∑
j�1

u jϕ j . (1.17)
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0 1,000 2,000

0

1,000

2,000

nnz � 25760

Figure 1.3: Sparsity pattern of a fi-

nite element discretization (discontinuous

Galerkin) of the Helmholtz problem on the

square domain Ω � [−1, 1]2 with p � 1

and h � 1/20. This results in a matrix of

order 2401 with 25760 non-zero entries.

5: For a definition of the bandwidth of a

matrix see Definition 3.3.1.

Here, we use u � [u
1
, u

2
, . . . , un]ᵀ to denote the coefficients of uh in

the basis of {ϕ j}nj . Inserting this and the basis for Vh into the Galerkin

formulation (1.16) then yields

∀i ∈ 1, 2 . . . , n :

n∑
j�1

u j a(ϕ j , ϕi) � l(ϕi). (1.18)

For the Helmholtz problem with constant wavenumber and homoge-

neous Dirichlet boundaries this yields the linear system

Su − κ2Mu � M f , (1.19)

with the mass matrix

Mi j �

∫
Ωh

ϕiϕ j dx (1.20)

and the stiffness matrix

Si j �

∫
Ωh

∇ϕi∇ϕ j dx. (1.21)

The right-hand side vector f contains the coefficients for a representation

of f in Vh . Thus, the finite element approximation is a systematic approach

to convert continuously formulated problems into discrete systems of

linear equations of the form

Ax � b , (1.22)

which makes them computationally tractable. For our example we have

A � S − κ2M , a matrix of order n, x � u is the vector of unknowns and

b � M f is the right-hand side.

The Galerkin matrix A represents a discrete representative of our original,

continuous operator L. Because the chosen basis functions are compactly

supported, we can expect the matrix A to be sparse, however, its band-

width is of order n1−1/d
. Figure 1.3 depicts the sparsity pattern of such a

matrix.
5

Many relevant engineering and scientific computing problems

are solved using finite element approximation, and therefore result in a

sparse linear system of the form (1.22). These problems are often large,

which requires efficient algorithms to solve them. It is therefore crucial

to design efficient algorithms, which can tackle the challenges posed by

these problems.

1.3 Green’s function

An alternative way of solving (1.9) is through the method of fundamental

solutions. Loosely speaking, we say that the problem has a fundamental

solution if there exists a map G, which maps any suitable right-hand side

to the solution u:

u(x) � G f �

∫
Ω

g(x , y) f (y)dy. (1.23)

Then, the kernel function g(x , y) is called the Green’s function of the

associated problem. What does the Green’s function look like? Inserting



1 Motivation 7

6: The Dirac delta is defined as the func-

tion (in the distributional sense), that sat-

isfies

δ(ϕ) �
∫
Ω

δ(y)ϕ(y)dy � ϕ(0),

for any test function ϕ ∈ C∞
0
(Ω).

Table 1.1: Overview of some Green’s func-

tions g(x , y) � G(x− y) of various elliptic

operators in various domains. Vanishing

boundary conditions were used for the

Laplace equations and radiating bound-

ary conditions for the Helmholtz problems

[10].

operator L G(r)
−∇2

in R2 1

2π ln ‖r ‖
−∇2

in R3 1

4π‖r ‖
−∇2 − κ2

in R2 i
4
H(1)

0
(κ‖r ‖) 7

−∇2 − κ2

in R3 exp(iκ‖r ‖)
4π‖r ‖

7: H(1)ν denotes the Hankel function of the

first kind.

(1.23) into the problem (1.9) yields

LG f � L
∫
Ω

g(x , y) f (y)dy

�

∫
Ω

Lg(x , y) f (y)dy !

� f (x).

This property is satisfied by the Dirac delta δ(x) 6

and we therefore

require

Lg(x , y) � δ(x − y). (1.24)

A more detailed and rigorous introduction to fundamental solutions

and Green’s functions can be found in [7, 8, 10]. It is important to note

that, much like any other solution of the PDE, the Green’s function will

depend on the boundary conditions that are chosen. This renders the

method of fundamental solutions impractical for applications involving

complex geometries and boundary conditions.

However, it is intuitive that the operator G must share some properties

with the inverse of the Galerkin matrix A−1

. This is one of the central

ideas of the methods presented in Chapter 5, and it is therefore useful

to consider the properties of the Green’s function, if it is known for

the problem at hand. Table 1.1 provides an overview over some of the

Green’s functions that are relevant for our applications.
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A big portion of this work relies on low-rank approximation. To set the

stage, we give a brief overview of linear algebra preliminaries. Most

of the theory that is covered is a rough sketch and there are numerous

excellent works on each of the subjects. These are referenced on the side.

Section 2.1 is concerned with the basic notions of linear algebra, leading

up to the subject of low-rank approximation, discussed in Section 2.3.

2.1 Linear algebra basics

Let us introduce our notation. Scalars are typeset in lowercase italic

Roman or Greek letters (a , x , β, ...). Vectors and matrices are denoted

with bold letters, where lowercase bold italic Roman and Greek letters

(u , v ,ω...) indicate vectors and uppercase bold Roman or Greek letters

(A, B,Ω...) stand for matrices. The bold letter 0 will denote matrices

and vectors of all zeroes, whose dimensions, unless otherwise specified,

will be evident from the context. We will use 1 to denote the vector

of all ones and the bold letter I to denote the identity matrix, whose

dimensions again will be evident from the context in which they appear.

The transpose of a matrix is denoted by the superscript
ᵀ
, and similarly,

the conjugate transpose by the superscript
∗
. The j-th basis vector of the

Euclidian space is denoted as e j , i.e. e
1
� [1, 0, 0, . . . ]ᵀ, e

2
� [0, 1, 0, . . . ]ᵀ,

etc. Finally, we will often use both notations A(I , J) and AI J to denote

submatrices corresponding to the index sets I and J. Sometimes it will be

convenient to apply the Matlab-style notation A(:, j), to denote entire

columns of A. For the sake of convenience, we may specify the index

sets I in standard mathematical notation, i.e. I � {i
1
, i

2
, . . .}, but actually

mean an index vector [i
1
, i

2
, . . . ]ᵀ, so that the indices appear in the

intended order.

Rank and nullity

We begin with some basic definitions related to matrices. Matrices

generalize linear maps T : V → W over finite vector spaces V,W . As

such, it is convenient to introduce the notion of

Definition 2.1.1 (Rank and Nullity) Let V,W be finite dimensional vector
spaces and let T : V →W be a linear transform. We define

rank T � dim range T (2.1)

and
nullity T � dim null T (2.2)

With these notions in place, we proceed to the fundamental rank-nullity
theorem:
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Theorem 2.1.1 (Rank-nullity theorem) Let V,W be finite vector spaces
and let T : V →W be a linear transform. Then

rank T + nullity T � dim V. (2.3)

This is useful as it offers insight into how we might decompose the linear

transform T. Imagine for instance a matrix A and the linear transform

induced by A, which maps v ∈ V to Av ∈ W . Theorem 2.1.1 tells us that

we can identify linear subspaces of V containing all vectors that do not

get mapped to 0 by A. This becomes important in the context of low-rank

approximation and Theorem 2.1.3.

Important properties of matrices

We introduce some important definitions related to matrices. The goal

here is to give an overview and to fix notation. For more details, as well

as proofs for the theorems we refer the reader to [1, 11–13].

Definition 2.1.2 (Spectral norm) Let A ∈ Cm×n . We define the spectral
norm

‖A‖
2
� max

x∈Cn

‖Ax‖
2

‖x‖
2

. (2.4)

In general, if we do not specify a subscript and write ‖·‖, we mean the

spectral or Euclidian norm.

Definition 2.1.3 (Inner product) The inner product for matrices is

〈A, B〉 � tr AB∗ , (2.5)

where A, B ∈ Cm×n .

The inner-product induces the inner-product norm, which for matrices

is the Frobenius norm.

Definition 2.1.4 (Frobenius norm) The Frobenius norm is defined as

‖A‖2F � tr A∗A � tr AA∗ �
∑
i , j
|Ai j |2. (2.6)

An important class of matrices are unitary/orthogonal matrices.

Definition 2.1.5 (Unitary/orthogonal matrices) A matrix U ∈ Cn×n is
called unitary iff U ∗U � UU ∗ � I. Similarly, a matrix Q ∈ Rn×n is called
orthogonal iff QᵀQ � QQᵀ

� I.

Definition 2.1.6 (Unitarily invariant norm) We say a norm ‖·‖is unitarily
invariant, if ‖UA‖ � ‖A‖ holds for any unitary matrix U and any A.

Both the Frobenius norm ‖·‖
F

and the spectral norm ‖·‖
2

are unitarily

invariant.

Our main goal is to find solutions to the linear system (1.22). We introduce

the notion of invertible matrices, which are the main focus of this

work.
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1: The symbol κ is used interchangably for

both the condition number of a matrix and

the wavenumber. To distinguish between

them, we write κ(·) as a function of a

matrix, whenever we refer to the condition

number.

Definition 2.1.7 (Invertible matrix) Let A ∈ Cn×n . Then A is called
invertible if there exists a matrix A−1 ∈ Cn×n , such that AA−1

� A−1A � I.

A square matrix is invertible, iff it has full rank.

A useful indicator, that is related to the inverse of a matrix is the spectral

condition number.
1

Definition 2.1.8 (Spectral condition number) Given an invertible matrix
A, the condition number is defined as

κ(A) � ‖A−1‖
2
‖A‖

2
. (2.7)

For the purpose of analyzing matrices, we will often use the spectral

decomposition.

Definition 2.1.9 (Diagonalizable matrix) Let A ∈ Cn×n be a square
matrix. Then, A is called diagonalizable, if there exists an invertible matrix
P ∈ Cn×n and a diagonal matrix Λ � diag(λ

1
, λ

2
, . . . , λn) ∈ Cn×n such

that
A � PΛP−1. (2.8)

(2.8) is also the spectral- or eigendecomposition of A. The column vectors of
P are then called the eigenvectors of A. Similarly, λi are called eigenvalues
and the set Λ � {λi}ni�1

is called the spectrum of A.

If a matrix is diagonalizable by a unitary matrix P, we call A unitarily

diagonalizable.

Definition 2.1.10 (Normal matrices) The matrix A is called normal iff
A∗A � AA∗.

Proposition 2.1.2 A matrix A is normal iff there exists a unitary matrix U
and a diagonal matrix Λ, such that A � UΛU ∗.

Singular value decomposition

As we have mentioned earlier, we may want to decompose the matrix A
and identify the subspace of V , which does not get mapped to 0. This

is achieved by the singular value decomposition (SVD), which has many

useful apllications beyond identifying the range and null space of a

matrix:

Theorem 2.1.3 (Singular Value Decomposition) Let A ∈ Cm×n and
m ≥ n. Then there exist unitary matrices U ∈ Cm×m and V ∈ Cn×n such
that

A � UΣV ∗ , with Σ �


σ

1

. . .

σn
0


∈ Rm×n , (2.9)

where σ
1
≥ σ

2
≥ · · · ≥ σn ≥ 0.
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The diagonal entries σi � Σii are called the singular values of A. If they

are ordered as in Theorem 2.1.3, then Σ is uniquely defined. The column

vectors of U and V are called the left- and right-singular vectors of

A. In the case of a real matrix A ∈ Rm×n
, U and V are real-valued as

well.

Theorem 2.1.4 ‖A‖
2
� σ

1
and ‖A‖F �

√
σ2

1
+ σ2

2
· · · + σ2

n .

Theorem 2.1.5 The non-zero singular values of A are the square roots of the
non-zero eigenvalues of AA∗ and A∗A.

An important way of understanding the singular value decomposition is

to understand it as a sum of rank-1 matrices

A �

n∑
j�1

σ j u j v
∗
j , (2.10)

where u j and v j are the columns of U and V respectively. We can

identify the range and null space of A using the singular value decompo-

sition:

Theorem 2.1.6 The rank of A is the number of non-zero singular values.

Theorem 2.1.7 range A � span{u
1
, u

2
, . . . , uk} and

null A � span{vk+1
, vk+2

, . . . , vn}, where k � rank A.

An important Theorem connecting the singular values to the inner

product, is Von Neumman’s trace inequality:

Theorem 2.1.8 (Von Neumann’s trace inequality) For A, B ∈ Rm×n

with m ≥ n with singular values σ
1
(A) ≥ σ

2
(A) ≥ · · · ≥ σn(A), and

σ
1
(B) ≥ σ

2
(B) ≥ · · · ≥ σn(B), we have

| 〈A, B〉| ≤ σ
1
(A)σ

1
(B) + σ

2
(A)σ

2
(B) + · · · + σn(A)σn(B). (2.11)

An important consequence is

‖A − B‖2
F
� |〈A − B,A − B〉| � ‖A‖2

F
− 2〈A, B〉 + ‖B‖2

F

≥
n∑

j�1

(σ j(A) − σ j(B))2. (2.12)

Corollary 2.1.9 (Interlacing property) Let Ak denote the matrix containing
the first k columns of A ∈ Cm×n . Then

σ j(A) ≥ σ j(Ak) ≥ σ j+n−k(A) for j � 1, 2, . . . , k (2.13)

The interlacing property follows from the interlacing properties of the

eigenvalues of AA∗ [12].
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Table 2.1: Computational complexity of

common matrix factorizations using dense

matrices A ∈ Cm×n
with m > n or m � n.

operation complexity

A � UΣV ∗ O(mn2)
A � PΛP−1 O(n3) 2

A � QR O(mn2)
A � LU O(n3)
A � QUQ∗ O(n3)

2: Due to the equivalence of finding the

eigenvalues of a matrix and polynomial

rootfinding, there cannot be an algorithm

that will compute the spectral decomposi-

tion to arbitrary precision in a fixed num-

ber of steps for matrices of order n ≤ 5.

The iterative algorithms referred to, con-

verge to the desired accuracy quickly such

that the stated accuracy is observed in

practice [1, pp. 194].

3: Sparsity can be defined as the num-

ber of zero entries in relation to the total

number of entries in the matrix:

1 − nnz A
mn

.

Other matrix factorizations

We provide a short overview of some other important matrix factoriza-

tions, which will be useful.

Theorem 2.1.10 (QR factorization) Let A ∈ Cm×n and m ≥ n. Then,
there exists a unitary matrix Q ∈ Cm×m , such that

A � QR with R �

[
R

1

0

]
� , (2.14)

where R and R
1
∈ Cn×n are upper triangular matrices.

From an algorithmic point of view, the QR decomposition is perhaps the

most important matrix factorization as it is used just about anywhere.

As such, we will be returning to the QR factorization in Section 2.3.

Another notable factorization which is the interpolative decomposition,

which represents the original matrix using a subset of the columns of

A:

Theorem 2.1.11 (Interpolative decomposition) Let A ∈ Cm×n be a matrix
of rank k. Then, there exists an index set J � [ j

1
, j

2
, . . . , jk] and a matrix

X ∈ Ck×n , such that
A � A(:, J)X , (2.15)

where X satisfies X(:, J) � I and ∀i , j : |X(i , j)| ≤ 1.

The interpolative decomposition proves useful for computing low-rank

representations of matrices using columns of the original matrix A. In

practice, the selection of an optimal set J of columns is an NP-hard

problem and can therefore not be computed in polynomial time. The

condition on the bound on entries in X can be relaxed to 2 rather than 1,

which allows such decompositions to be computed in polynomial time

using rank-revealing QR factorizations (See Section 2.4).

Finally, we introduce the Schur decomposition:

Theorem 2.1.12 (Schur decomposition) Let A ∈ Cn×n be a square matrix.
Then, there exists a unitary matrix Q ∈ Cn×n , such that

A � QUQ∗ , (2.16)

where U ∈ Cn×n is an upper triangular matrix.

We have not yet specified algorithms to compute these factorizations.

Introductions to numerical algorithms for the computation of such

factorizations are presented in [1, 12]. An overview of the computational

complexity of these algorithms is found in Table 2.1.

2.2 Sparse matrices

A powerful concept when dealing with large matrices is sparsity. A great

amount of relevant problems in science and engineering have a high

degree of sparsity.
3
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4: When speaking about the complexity

of algorithms for sparse matrices, it is of-

ten convenient to consider the maximum

number of non-zero entries per column,

which we denote with n
nz

.

Definition 2.2.1 (Sparse matrices) et A ∈ Cm×n . We call A a sparse
matrix if Ai j � 0 for most entries (i , j) ∈ {1, . . . ,m} × {1, . . . , n}. The
collection of all non-zero indices {(i , j) ∈ s .t .Ai j , 0} is called the sparsity
structure or sparsity pattern of A. nnz A denotes the total number of non-zero
entries in A.

The naive way of storing a sparse matrix comes in the form of a coordinate

list (COO format), in which we store the sparsity pattern as a list of

indices (i , j) and a list for the entry values Ai j . It is easy to see that this

format requires only O(nnz A) storage to store the matrix. Similarly,

computing a matrix-vector product x → Ax only requires us to sum

over the contributions of each non-zero entry and therefore costs only

O(nnz A) flops.

Other operations, however, have become considerably more difficult.

One such operation is the extraction of a submatrix A(I , J), where

I � {i
1
, i

2
, . . . , ik} and J � { j

1
, j

2
, . . . , jl} are some index sets. This

requires us to go over each entry in A and compare it to the indices in I
and J which makes the complexity of accessing a submatrix O(n

nz
kl). 4

Even if we were to organize I and J into binary-search trees (BST) [14],

this operation would still require O(n
nz

k log kl log l) operations. This is

an important point here, as many of the algorithms for sparse matrices

involve search algorithms, as there is no a-priori way of knowing where

to find the relevant entries.

A powerful concept in search algorithms is to keep datastructures sorted

at all times, so that accessing them becomes highly efficient [14]. This

idea is effectively realized in the compressed sparse column (CSC)

and compressed sparse row (CSR) formats. Figure 2.1 illustrates the

representation of a sparse matrix in CSC format. This representation

further compresses the storage by storing a list of pointers colptr, which

indicate where the information for each column is stored. The row indices

and (non-zero) values are stored in the arrays rowind and values. If

we were to access column j, we can directly “jump” to the relevant

portion of rowind and values. This is done by retrieving the pointers

colptr[j] and colptr[j+1], which tell us which section of rowind and

values contain the information belonging to column j. This improves

performance for many algorithms, as it significantly reduces the number

of entries over which we have to search.

colptr: 1 6 8 10 10 12 . . .

rowind: 1 3 4 8 9 2 4 1 3 4 8 . . .

values: A11 A31 A41 A81 A91 A22 A42 A13 A33 A45 A85 . . .
Figure 2.1: Illustration of sparse matrix

representation in compressed sparse col-

umn (CSC) format.

We leave the discussion of sparse matrices at that, as many of the

algorithms either rely on the specific structure of A or the datastructure

used to store it. Chapter 3 discusses methods for computing solutions of

linear systems, where the matrix is sparse.
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Table 2.2: Computational complexity of

common operations using low-rank matri-

ces. A and B are n × n low-rank matrices

of rank k and x is a n-dimensional vector.

operation complexity

x → Ax O(kn)
B→ A + B O(kn)
B→ AB O(kn)

5: In most cases we will denote kε with k
to simplify notation.

Figure 2.2: Low-rank approximation of

the EPFL logo with a rank of k � 10. Some

smearing occurs around the letter “P”,

but otherwise the low-rank approxima-

tion does a good job of approximating the

original picture.

2.3 Low-rank matrices

Unfortunately, not all problems allow for sparse representations of

their matrices. However, in some cases, we may exploit that the matrix

A ∈ Cm×n
has a low rank k and therefore admits a representation

A � UV ∗ , (2.17)

where the matrices U ∈ Cm×k
and V ∈ Cn×k

are called the generators

of A. This representation follows directly from (2.10) and has many

algorithmic advantages, i.e. the storage cost is O(k(m + n)), as opposed

to O(mn) if the matrix is stored as a dense matrix. Depending on the

rank k, this has the potential to yield significant speed-up in common

arithmetic operations such as matrix-vector multiplications. Table 2.2

provides an overview of the computational cost of common arithmetic

operations using this representation.

Thus, the question arises in which cases such a representation exists

and how it may be computed. We introduce the notion of numerical

rank.

Definition 2.3.1 (Numerical rank) For a given tolerance ε ∈ R>0
, the

numerical rank of A is the smallest integer kε, which permits a matrix Ã of
rank kε to approximate A, such that

‖A − Ã‖ ≤ ε. (2.18)

The class of matrices that satisfy (2.18) are much more relevant in practice

than matrices that are actually of low-rank up to machine precision.
5

Let us assume that we have somehow obtained a matrix A, which we

know to be of low numerical rank. In this case how should we obtain

the representation (2.17)? Theorem 2.3.1 provides the answer to this

question.

Definition 2.3.2 (Rank-k truncation) Consider the singular value de-
composition (2.9) of a matrix A. For a positive integer k ≤ n, we call

Ak � UkΣkV ∗k (2.19)

the rank-k truncation of A, with Uk � [u
1
, u

2
, . . . , uk], Vk � [v

1
, v

2
, . . . , vk]

and Σk � diag(σ
1
, σ

2
, . . . , σk).

Theorem 2.3.1 (Eckart-Young-Mirsky) For any unitarily invariant norm
‖·‖, the best rank-k approximation of a matrix A ∈ Cm × n is its rank-k
truncation:

‖A − Ak ‖ � min

Ã∈Cm×n

rank(Ã)�k

‖A − Ã‖. (2.20)

The proof for the Frobenius norm ‖·‖
F

follows by inserting the truncation

into Equation 2.12. Similar proofs can be constructed for the general case

by bounding the norm ‖A − Ã‖ from below [13].
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6: σ
min
(A) and σ

max
(A) denote the mini-

mum and maximum singular values of A
respectively.

7: The terms “rank-revealing” is usually

used to refer to algorithms that produce

QR factorizations that satisfy (2.24).

8: One of the main practical issues with

algorithms for low-rank approximations

is that the ranks of matrices tend to in-

crease with each operation. For instance,

if we add two matrices C � A + B, we

have rank(C) ≤ rank(A)+ rank(B). In the

worst case, the resulting rank of C may be

fairly large. However, in practice it may

be closer to C ≈ max(rank(A), rank(B)).
This is, however, not reflected by the com-

puted representation. As a consequence,

one has to frequently use recompression.

2.4 Rank-revealing QR factorization

The question then arises, which algorithm should be used to compute

low-rank representations of the form (2.17). The SVD will clearly give

us the best answer. However, it is expensive to compute and we may

wish to terminate the computation early if the numerical rank k is much

smaller than the dimensions of the matrix.

Let us revisit the QR-factorization. However this time, we consider the

pivoted version

AΠ � QR �
[
Q

1
Q

2

] [
R

11
R

12

0 R
22

]
, (2.21)

whereΠ denotes a permutation matrix for the columns of A. We have

chosen to partition Q and R to expose the first k columns of Q and the

corresponding upper-triangular block R
11

of order k.

Now, let us imagine that A has low numerical rank, such that σk(A) �
σk+1
(A). After computing the factorization (2.21) and detecting a signif-

icant drop from σ
min
(R

11
) to σ

max
(R

22
), one wonders whether k is the

numerical rank we seek.
6

By the interlacing property for singular values,

we recover

σ
min
(R

11
) ≤ σk(A) (2.22)

and

σ
max
(R

22
) ≥ σk+1

(A). (2.23)

The first inequality tells us that for a general permutationΠ, we may do

a bad job at separating the row space of A from its nullspace. Moreover,

considering the second inequality, we may overestimate the rank if we

base our rank-estimation on σ
max
(R

22
).

Definition 2.4.1 (Rank-revealing QR factorization) Let AΠ � QR be
the QR factorization of AΠ as in (2.21) with

R �

[
R

11
R

12

0 R
22

]
,

where R
11

is the upper triangular block of order k. We call the QR factorization
a rank-revealing QR (RRQR) factorization if it satisfies

σ
min
(R

11
) ≥ σk(A)

p(k , n) , (2.24a)

σ
max
(R

22
) ≤ σk+1

(A)p(k , n), (2.24b)

where p(k , n) is a function that can be bounded by a low-order polynomial in
k and n.

In other words, this property guarantees that if σk(A) � σk+1
(A), it will

be reflected in σ
min
(R

11
) and σ

max
(R

22
) [15].

7

Algorithms that compute rank-revealing QR approximations have their

use in rank-estimation, subspace selection and other relevant problems.

In the context of low-rank approximation, they are not only useful

for revealing the numerical rank of A but also to compute a low-rank

representation of the form (2.17).
8

After computing a rank-revealing
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QR factorization AΠ � QR, we approximate

AΠ ≈ ÃΠ � Q
1

[
R

11
R

12

]
, (2.25)

which is a factorization of the form (2.17) with approximation error

‖A−Ã‖ � ‖R
22
‖. By the properties of the rank-revealing QR factorization,

we know that the error is bounded by the best approximation error times

the function p(k , n), i.e. ‖R
22
‖

2
≤ σk+1

(A)p(k , n).

There are various algorithms for computing rank-revealing QR factor-

izations [15, 16]. Most of these algorithms share the core algorithms of

either using Householder reflectors or Givens rotations to compute the

factorization [12]. The main difference lies in the strategy for pivoting and

computingΠ. Due to the rank-revealing property, these algorithms allow

to be terminated early. This yields a typical cost of O(kmn) operations

and a worst-case complexity of O(mn2) operations, where k is the rank

at which the algorithm halts.

2.5 Random sampling

One of the main problems with the methods presented so far is their

computational cost. While the arithmetic with low-rank matrices is

basically linear, (assuming constant rank k), the compression into low-

rank format is not. In many applications, we may be presented with

a matrix A without having direct access to its entries. Instead we may

have routines to compute matrix-vector products x → Ax and x → A∗x
efficiently. Perhaps we also know that A is of low numerical rank and

therefore admits a low-rank representation (2.17). The question arises of

how we can efficiently compute such representations.

Range approximation

Randomized methods provide a solution to this problem [17]. The core

idea is to use random-sampling to extract the dominant column space Q
of A, such that

‖A −QQ∗A‖ ≤ ε (2.26)

for some tolerance ε and some norm ‖·‖. This is done by forming the

sample matrix S � AΩ, whereΩ is a n × k + p standard Gaussian matrix,

and p is a small positive integer. p is called the oversampling parameter

and is used to control the quality of the approximation.

Definition 2.5.1 (Standard random Gaussian matrix) We callΩ ∈ Rm×n

a random Gaussian matrix if each entryΩi j is drawn independently from the
same standard Gaussian distribution N (0, 1). The columns ofΩ are called
standard Gaussian vectors.

Then, if the singular values of A decay rapidly, S will be a good approx-

imation to the dominant column space of A, and we can extract it by

forming a QR factorization of S.

We consider the simple case where A has exact rank k that is known a

priori. A simple algorithm, that will help us understand randomized
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methods is presented in Algorthm 2.1. One may ask whether Q reliably

procedure Random range finder(A, k)

Draw an n × k + p Gaussian random matrix Ω
Sample A by forming S � AΩ
Form the QR factorization S � QR
return Q

end procedure
Algorithm 2.1: Randomized range finder

for a matrix A ∈ m × n and a fixed rank k.

p is the oversampling parameter [17].

provides a good approximation of the column space. This is indeed

the case, as it can be shown that if Q is computed using Algorithm 2.1

with target rank k ≥ 2 and oversampling parameter p ≥ 2, such that

k + p ≤ min{m , n}, then

‖A −QQ∗A‖ ≤ (1 + 9

√
k + p

√
min{m , n})σk+1

(A) (2.27)

is satisfied with a probability of at least 1− 3p−p
under mild assumptions

on p [17].

Rank estimation via sampling

So far, we have assumed that A is exactly of rank k and that it is known

a priori. In practice, this is rarely the case and we would instead seek

to extract a column space such that (2.26) is met. To do so, we adapt

Algorithm 2.1 to automatically detect the numerical rank of A.

Lemma 2.5.1 Let B ∈ Rm×n with m ≥ n and r a positive integer, as well as
α ∈ R>0

. Then let {ω
1
,ω

2
, . . . ,ωr} denote a collection of independently

drawn standard Gaussian vectors. Then

‖B‖ ≤ α
√

2

π
max

i�1,2,...,r
‖Bωi ‖ (2.28)

with a probability of at least 1 − α−r .

Proof. Because standard Gaussian vectors are invariant with respect to ro-

tation, without loss of generality, we can assume B � diag(σ
1
, σ

2
, . . . , σn),

where σi � σi(B) denote the singular values of B. As a consequence, for

a single standard Gaussian vector ω, we have

P [α‖Bω‖ ≤ ‖B‖] � P
[
α2‖Bω‖2 ≤ ‖B‖2

]
� P

[
α2

n∑
i�1

σ2

iω
2

i ≤ σ
2

1

]
≤ P

[
α2ω2

1
≤ 1

]
�

1√
2π

∫
1/α

−1/α
exp

(
− t2

2

)
dt

≤
√

2

π
α−1.

Then, if we repeat this experiment r times, we find that the probability of

(2.28) is bounded from below by 1− α−r
, which concludes the proof.

Lemma 2.5.1 offers insight into when our approximation satisfies a certain

tolerance with a high probability. On the other hand, it does not tell us
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Figure 2.3: Comparison of rank estimators

on 100 samples of random matrices of

order 100 with σi � 2
−i

, for ε � 2
−16

.

The red histogram depicts the frequency

of ranks estimated using the Frobenius

norm estimator (2.29). The blue histogram

depicts the frequency of ranks estimated

using the spectral norm estimator (2.28)

how accurate this estimate may be. Moreover, there is a good chance

that it will overestimate the rank as it is not a sharp estimate and aims to

bound the norm from above with high probability. This is illustrated in

Figure 2.3, where we depict the estimated ranks of 100 random rank-16

matrices.

Let us again consider the matrix B ∈ Rm×n
with singular value decompo-

sition B � UΣV ∗ and standard Gaussian matrixΩ ∈ Rn×r
with columns

ωi . Then, the estimator

1

r
‖BΩ‖2

F
�

1

r

r∑
i�1

ω∗i (B
∗B)ωi �

r∑
i�1

ω̃∗i (Σ
∗Σ)ω̃i (2.29)

is an unbiased estimator of the Frobenius norm [18]. Here ω̃i � Vωi de-

note rotated standard random vectors, which are also standard Gaussian

vectors. We can verify that the expected value is indeed the square of the

Frobenius norm of B:

E

[
1

r
‖BΩ‖2

F

]
� ‖B‖2

F
. (2.30)

With these estimates, we can return to the random range finder (Algo-

rithm 2.1) and modify it to adaptively choose the rank k, based on a

supplied tolerance (Algorithm 2.2).

procedure Adaptive range finder(A, ε, r)

Set k ← 0

do
Set k ← k + k

step

Draw a n × k Gaussian random matrixΩ
1

Draw a n × r Gaussian random matrixΩ
2

Sample A by forming

[
S

1
S

2

]
� A

[
Ω

1
Ω

2

]
Form the QR factorization S

1
� QR

Form S
2
← S

2
−QQ∗S

2
to compute (A −QQ∗A)Ω

2

Use S
2

to compute the estimator of choice est
while est > ε
return Q, k

end procedure

Algorithm 2.2: Adaptive range finder. The

estimator est can be selected to estimate

the norm in either the spectral or the Frobe-

nius norm.

Randomized interpolative decomposition

The interpolative decomposition (2.15) has a useful property in the

context of random sampling. If we apply the interpolative decomposition

to S∗ � S∗(:, I)X we observe that

AΩ � S � X ∗S(I , :) � X ∗A(I , :)Ω. (2.31)

In other words, we obtain the matrix X ∗ and the index set I, which

are also a valid interpolative decomposition of the original matrix A.

We can compute the interpolative decomposition by using a pivoted

QR-decomposition S∗Π � QR, which yields

S∗ � Q
[
R

1
R

2

]
Π∗ � QR

1

[
I R−1

1
R

2

]
Π︸            ︷︷            ︸

�X

� S∗(:, I)X . (2.32)
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9: The unitary matrix Q does not denote

the matrix from (2.32), but rather the ma-

trix computed using Algorithm 2.1.

The question arises, of how good such a representation might be in

relation to the approximation QQ∗A, where Q is the unitary column

space extracted from the sample matrix S.
9

Thus, assuming span(Q) �
span(S) yields

S � QQ∗S � X ∗S(I , :) � X ∗Q(I , :)Q∗S
⇐⇒ Q � X ∗Q(I , :).

Using this identity, we have

‖A − X ∗A(I , :)‖ ≤ ‖A − X ∗Q(I , :)Q∗A‖ + ‖X ∗Q(I , :)Q∗A − X ∗A(I , :)‖
≤ ‖A −QQ∗A‖ + ‖X ‖‖Q(I , :)Q∗A − A(I , :)‖
≤ (1 + ‖X ‖)‖A −QQ∗A‖.

If we fix ‖·‖ to be the Frobenius norm and assume that S is a m× k matrix

(i.e. p � 0, no oversampling), we have

‖A − X ∗A(I , :)‖
F
≤ (1 +

√
1 + 4k(m − k))‖A −QQ∗A‖

F
, (2.33)

where we have used the properties of X to bound its norm [17].
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Our main focus lies on solving the linear system

Ax � b , (1.22)

where A ∈ Rn×n
is an invertible sparse matrix and b ∈ Rn

is a right-hand

side. This chapter is dedicated to direct methods, which are usually, in

some form or another, equivalent to Gaussian elimination. Gauss did

not have computers at his disposal and so we need to adapt Gaussian

elimination to the setting of modern-day computing. To do so, we exploit

the sparsity and structure of A to construct methods adapted to this

specific problem.

3.1 Graph elimination

The most well-known algorithm in computational linear algebra is likely

to be Gaussian elimination. Applying Gaussian elimination to sparse

linear systems will prove educational in our quest to better understand

the challenges of efficiently solving (1.22).

A sparse matrix A can be understood as the connectivity matrix of

some weighted graph G(A), where two nodes i , j ∈ G are connected iff

A(i , j) , 0.

Definition 3.1.1 The adjacency graph G(A) of a matrix A of dimensions
n × n is a graph(V, E) such that V is a set of n vertices, where vertex i
is associated with the i-th degree of freedom. There is an edge (i , j) ∈ E iff
A(i , j) , 0 and i , j.

The value A(i , j) is then associated with the weight of the corresponding

edge. We ignore these values for now and concentrate on the sparsity

pattern of A. Figure 3.1 depicts a sparse matrix with its corresponding

graph. We observe that for every entry in the matrix, there is an edge in

the graph as we expected. As A has a symmetric sparsity pattern, G can

be represented by an undirected graph, as every entry A(i , j), implies

the existence of the reverse edge A( j, i).

× × × × ×
× × ×

× × ×
× × × ×

× × ×
× × ×
× × × ×





1 2 3 4 5 6 7

1
2
3
4
5
6
7

(a) sparsity pattern of A

1

2

3

4

5

6

7

(b) corresponding graph

Figure 3.1: We can understand sparse ma-

trices as the connectivity matrix of its adja-

cency graph. Here the matrix is symmetric,

so the graph is not directed.
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× × × × ×
× × ×

× × • × • •
× × • × • ×

× × ×
× × • • × •
× • × × • ×




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(a) sparsity pattern after elimination

1

2

3

4

5

6

7

(b) corresponding graph

Figure 3.2: The elimination of degrees of

freedom can be understood as a graph

elimination procedure. The elimination of

node 1 connects nodes 3, 4, 6 and 7 with

eachother. This leads to fill-in, as seen on

the right.

We can now identify Gaussian elimination with the elimination of

graph nodes in G. To illustrate this, let us perform one step of Gaussian

elimination to the matrix A. The elimination of the first degree of freedom

is depicted in Figure 3.2. As node 1 is connected to nodes 3, 4, 6 and 7, we

will add a multiple of the first row to these rows. This will eliminate the

first entries in those rows, thus decoupling node 1 from it’s neighbors 3,

4, 6 and 7. However, this also adds new entries to these rows, which are

depicted as black dots in Figure 3.2. This effect is called fill-in and is one

of the major challenges for the development of sparse direct solvers.

Let us now have a look at the graph of the newly formed matrix. Figure

Figure 3.2 depicts the situation after the first elimination step. We see

that node 1 is now decoupled from the remaining graph. On the other

hand, the fill-in created new edges, connecting nodes 3, 4, 6 and 7 with

eachother. Therefore, we can regard Gaussian elimination for sparse

matrices as a graph elimination algorithm, where nodes are subsequently

isolated from the graph. Whenever we eliminate a node, we have to

connect other nodes, previously connected to the eliminated node, with

eachother. With this example, we begin to understand the problem of

fill-in on a graphical level. At each elimination step, we potentially create

many new edges, depending on how many nodes were connected to the

eliminated node.

3.2 LDR Factorization

Let us formalize the Gaussian elimination procedure. The elimination of

the first degree of freedom can be written as

A �

[
a

11
a

12

a
21

A
22

]
�

[
1 0

a
21
/a

11
I

] [
a

11
0

0 A
22
− a

21
a−1

11
a

12

] [
1 a

12
/a

11

0 I

]
� L̃(1)Ã(1)R̃(1) ,

where I are identity matrices of corresponding size. Instead of eliminating

nodes individually, we can group them into so-called supernodes and
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eliminate entire blocks. The above elimination step then takes the form

A �

[
A

11
A

12

A
21

A
22

]
�

[
I 0

A
21

A−1

11
I

]
︸          ︷︷          ︸

�L̃(1)

[
D(1) 0

0 S(1)

]
︸         ︷︷         ︸

�Ã(1)

[
I A−1

11
A

12

0 I

]
︸          ︷︷          ︸

�R̃(1)

(3.1)

with D(1) � A
11

and S(1) � A
22
− A

21
A−1

11
A

12
, where S(1) is called the

Schur complement. The matrices L̃(1) and R̃(1) are called the left and

right transforms of the factorization and are lower and upper-triangular

matrices. Due to their special structure, they can be trivially inverted by

changing the sign of the off-diagonal block[
I 0

A
21

A−1

11
I

] −1

�

[
I 0

−A
21

A−1

11
I

]
.

We proceed the factorization recursively by applying (3.1) to the Schur

complements S(i). At the i-th iteration, the matrix Ã(i) has the form

Ã(i) �

[
D(i) 0

0 S(i)

]
.

Factoring the Schur complement as

S(i) � L̃(i+1)
[
S(i)

11
0

0 S(i+1)

]
R̃(i+1)

yields the intermediate matrix Ã(i+1)
for the next iteration:

Ã(i) �L(i+1)Ã(i+1)R(i+1)

�


I 0

0 L̃(i+1)




D(i) 0

0 S(i)
11

0
0 S(i+1)



I 0

0 R̃(i+1)

 .
At the next iteration, the diagonal block includes D(i+1)

� diag(D(i) , S(i)
11
)

and we repeat the procedure on S(i+1)
. Starting with Ã(i) � A and

proceeding repeatedly for r steps yields the desired factorization

A � L(1)L(2) . . . L(r)Ã(r)R(r) . . .R(2)R(1) , (3.2)

where
˜A(r) is either diagonal or block-diagonal, depending on whether

we chose to eliminate individual nodes or supernodes. Evaluating the

product L(1)L(2) . . . L(r) yields a lower-triangular matrix and similarly

for the right transforms. As such, we have succeeded in computing a

factorization of the form A � LDR, where D is block-diagonal and L, R
are lower and upper-triangular. Computationally, it is more efficiently

to store the L and R implicitly, i.e., individually and only as off-diagonal

blocks, as this makes the application cheaper and reduces the storage

requirements.
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(a) arrowhead matrix
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(b) permuted arrowhead matrix

Figure 3.3: Elimination of the first node in

the arrowhead matrix results in excessive

fill-in. If we instead permute the first and

last node, we can avoid it altogether.

0 1,000 2,000

0

1,000

2,000

nnz � 135042

Figure 3.4: Sparsity pattern of the L factor

in A � LR for the Helmholtz problem

depicted in Figure 1.3.

1: One might also wish to permute A to

ensure the stability of the Gaussian elimi-

nation [19].

3.3 Fill-in and reorderings

After seeing the graph elimination algorithm in Section 3.1, one might

suspect that the order in which nodes are eliminated plays a big role in

how much fill-in is created. Figure 3.3 illustrates an extreme case, where

the elimination of the first node leads to a dense remainder matrix. In

this example, fill-in can be avoided alltogether by simply permuting

node 1 and node 7. This structure is often referred to as an arrowhead

pattern. Another, less extreme example of fill-in is shown in Figure 3.4,

and depicts the sparsity pattern of the left transform L of the Galerkin

matrix associated with Figure 1.3.

It is often beneficial to seek permutation matricesΠI andΠJ such that

the fill-in is minimized when ΠIAΠJ is factored.
1

This however, is a

NP-hard combinatorial problem [14] as can be seen by considering the

Graph elimination problem discussed earlier in Section 3.1. As such,

we have to resort to heuristics for finding a suitable permutations ΠI
and ΠJ , which reduce (but not necessarily minimize) the fill-in. This

has been a field of intense study and there exist a plethora of strategies

for finding such permutations [14, 19–21]. We discuss two of the most

popular strategies, which are bandwidth-reduction and nested dissection.

In the context of graph elimination, so-

called triangulated graphs are particularly

interesting. A graph is triangulated if any

cycle bigger than 3 has a chord, that is,

an edge joining non-consecutive vertices

within the cycle. It can be shown that these

graphs allow for an elimination reordering

without fill-in [22].

Bandwidth reduction

One intuitive way of reducing fill-in is to concentrate the entries as close

to the diagonal as possible to get a banded matrix. This problem is related

to the graph bandwidth problem, in which we arrange our nodes along

a line and permute them to minimize the longest edge [14].

Definition 3.3.1 (Bandwidth of a matrix) Let A ∈ Cm×n be a matrix
and I � {1, 2 . . . ,m}, J � {1, 2 . . . , n} its index sets. We call the smallest
positive integer w, for which

∀i ∈ I , j ∈ J : |i − j | > w �⇒ A(i , j) � 0 (3.3)

the bandwidth of A.

Let us establish that fill-in can only occur within the bandwidth of the

matrix.
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(a) sparsity pattern ofΠI AΠJ
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(b) sparsity pattern of L

Figure 3.5: Sparsity plots of reordered

Galerkin matrix and associated L factor

after RCM reordering.

Proposition 3.3.1 Let A ∈ Cn×n be a matrix with bandwidth w and let
A � LR, where L and R are lower and upper triangular matrices. Then, L
and R have a bandwidth no bigger than w.

Proof. We can partition A � LR

A �

[
A

11
A

12

A
21

A
22

]
�

[
L

11
L

12

L
21

L
22

]
︸        ︷︷        ︸

�L

[
R

11
R

12

R
21

R
22

]
︸        ︷︷        ︸

�R

,

such that L and R have a compatible block structure and A
21

� L
21

R
11
+

L
22

R
21

. Choose any integer i such that w + 1 ≤ i ≤ n and let A
21

be the

bottom left zero block of dimensions (n − i + 1) × (i − w − 1). Taking L
21

to have the same dimension as A
21

yields

0 � A
21

� L
21

R
11
+ L

22
R

21
� L

21
R

11

as R
21

� 0 is below the diagonal of R. R
11

is the (i − w − 1) × (i − w − 1)
top left triangular block and depends on A

11
. As the condition must be

fulfilled for arbitrary A
11

, we conclude that L
21

� 0 and therefore L has

bandwidth w. A similar argument can be made for R, which concludes

the proof.

Thus, minimizing the bandwidth is likely to decrease the fill-in, although

there is no guarantee. There exist a number of algorithms for the reduction

of the bandwidth of a sparse matrix. The most prominent entries are

Reverse Cuthill-McKee (RCM) and minimum degree reordering [20,

23].

We introduce the Cuthill-McKee algorithm, which constructs permuta-

tionΠ (as an ordered tuple) based on the sparsity pattern G(A).

Definition 3.3.2 Let A ∈ Cn×n and I � {1, 2, . . . , n}. Then, the adjacency
of a set J ⊆ I on A is defined as

adjA(J) � {i ∈ I : ∃ j ∈ J s.t. A(i , j) , 0}. (3.4)

procedure Reverse Cuthill-McKee(A)

Set i � 0

Select a node v with a minimum number of neighbors

SetΠ � Π
0
� {v}

while |Π| < n do
Construct the set of adjacent nodesΠi+1

� adjA(Πi) \Π
SortΠi+1

by earliest occurance of a neighbor inΠ

AppendΠi+1
toΠ

i ← i + 1

end while
ReverseΠ

returnΠ
end procedure

Algorithm 3.1: Reverse Cuthill-McKee

reordering. Constructs a bandwidth-

reducing reorderingΠ based on the spar-

sity pattern of A.

Figure 3.5 depicts the sparsity pattern of the Galerkin matrix (Figure 1.3)

after reordering it with the reverse Cuthill-McKee heuristic. We can see

that RCM succeeds in reducing the bandwidth and therefore the fill-in
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(a) nested dissection on mesh

3

3
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3
2

1
(b) corresponding per-

mutation of the matrix

Figure 3.6: Illustration of a simple nested

dissection on a finite element mesh.

2: We call the nodes of the elimination

tree supernodes.

in the L factor. Compared to the unreordered version in Figure 3.4, it

has lost about a quarter of the fill-in.

Nested dissection

Let us now pursue a different approach. The adjacency graph of a p � 1

finite element matrix is the same as the mesh on which it was constructed.

As a consequence, the adjacency graphs of finite element matrices often

look like the graph depicted in Figure 3.6a.

The core idea of nested dissection is to recursively find separating sets

of indices, which split the adjacency graph into smaller subgraphs. In

Figure 3.6a, we choose the separator 1, which splits the mesh and the

graph, into the left and right subgraphs. We move the associated degrees

of freedom to the end of the matrix, as illustrated in Figure 3.6b.

One way of storing the permutation is as a simple sorted tuple of the

index set I. However, the nested dissection has more structure as it

is hierarchically organized like a tree. We will see later that this can

be exploited for parallel and distributed computations. As such, it is

preferrable to store the reordering in the form of a tree.

Definition 3.3.3 (Elimination tree) Let A be a sparse matrix of order n
and I � {1, 2, . . . , n} its index set. Let E be a tree, where each node µ ∈ E
is associated with an index set Iµ ⊂ I. Then, E is called an elimination tree of
A iff

I all index sets are disjoint: ∀µ , ν : Iµ ∩ Iν � ∅
I the union of all index sets is the entire set,

⋃
µ∈E Iµ � I

I For any two indices i ∈ Iµ , j ∈ Iν with µ > ν, A(i , j) , 0 or
A( j, i) , 0 implies that ν is a descendant of µ. In other words, the
node ν is included in the subtree rooted at node µ.

15
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(a) nested dissection ofΩ
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E

(b) corresponding elimination tree

Figure 3.7: Illustration of a nested dissec-

tion of the computational domainΩ using

separators. The figure on the right depicts

the corresponding post-ordered tree data-

structure E , which induces an elimination

order.

The last property of Definition 3.3.3 guarantees that all fill-in for the node

Iµ has already been summed up, when it is being eliminated. Figure 3.7

depicts a nested dissection and its corresponding elimination tree on the

domainΩ.
2

Algorithm 3.2 summarizes the nested dissection algorithm for computing

an elimination tree E of the degrees of freedom I, based on the adjacency

graph G(A) of the matrix. So far, we have exploited the equivalence

of the finite element mesh and the adjacency graph, which allows us

to use geometric information when choosing the separators. More pre-

cisely, we have used geometric bisection to compute it. We distinguish

between geometric and algebraic nested dissection, depending on how

the separators are chosen. In the latter case, only the adjacency informa-

tion of G(A) is used to compute such a reordering. For geometrically
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procedure Nested dissection(G)

Find an index set I ⊂ vertices(G) which splits G into I and the

disconnected graphs G
1

and G
2

Call E
1
← Nested dissection(G

1
)

Call E
2
← Nested dissection(G

2
)

Create treenode E containing I
Append E

1
and E

2
as children of E

return E
end procedure Algorithm 3.2: General nested dissection

algorithm
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0

1,000

2,000

nnz � 25760

Figure 3.8: Sparsity pattern of the Galerkin

matrix after nested dissection reordering.

σ

µ ν

Figure 3.9: Elimination of the supernode

σ. Contributions from the elimination of

its children µ and ν have to be accounted

for.

chosen separator on meshes such as the one in Figure 3.6a, [21] proves

that the nested dissection algorithm will yield a reordering which mini-

mizes the fill-in. Figure 3.8 shows the reordered Galerkin matrix (Figure

1.3), where geometric nested dissection has been used to compute the

permutation.

3.4 Structured elimination

Let us return to sparse Gaussian elimination. However this time, using

an elimination tree E to guide us through the elimination process. We

assume that the elimination tree is a binary tree as this will considerably

simplify our discussion. The generalization to more general elimination

trees is straightforward albeit involved. We assume we are at node σ in

the elimination tree, which has children nodes µ and ν as illustrated in

Figure 3.9.

In contrast to the block elimination process in Section 3.2, we do not

have to keep the entire Schur complement in memory to compute the

factorization of node σ. Instead, we only have to consider Iσ and the

adjacency of Iσ, which has not yet been eliminated. Let desc(σ) denote

the set of all descendants of σ in E and, similarly, let anc(σ) denote the

set of all ancestors of σ. Then, we define the boundary of σ as the index

set

Bσ �
{

i ∈
⋃
ι∈anc(σ)

I ι : ∃ j ∈ Iσ s.t. A(i , j) , 0 or A( j, i) , 0

}
� adjA(I

σ) \
⋃

ι∈desc(σ)
I ι . (3.5)

We consider the matrix Ã(σ), which is the result of eliminating all indices

in desc(σ). The short-hand notation Ã(σ)ib � Ã(Iσ , Bσ) is used to denote

relevant submatrices of the big matrix Ã(σ). The relevant portion of Ã(σ)

is

Â(σ) �

[
Ã(σ)ii Ã(σ)ib
Ã(σ)bi Ã(σ)bb

]
�

[
I 0

L̂(σ) I

] [
D̂(σ) 0

0 Ŝ(σ)

] [
I R̂(σ)

0 I

]
. (3.6)

Here, we have factored Â(σ) by introducing the diagonal block for

elimination

D̂(σ) � Ã(σ)ii , (3.7)
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3: In some cases, we will instead split the

index set I at the root into some boundary

degrees of freedom and interior degrees

of freedom. In these cases, we will have to

apply the inverse of the resulting top-level

Schur complement.

the left and right factors

L̂(σ) � Ã(σ)bi

(
Ã(σ)ii

) −1

, (3.8a)

R̂(σ) �
(
Ã(σ)ii

) −1Ã(σ)ib , (3.8b)

and the Schur complement

Ŝ(σ) � Ã(σ)bb − Ã(σ)bi

(
Ã(σ)ii

) −1Ã(σ)ib . (3.9)

An important distinction that we make here is that matrices with a “ˆ”

denote intermediate matrices of the factorization. These are local and

small. In other words, these matrices do not have the size of the overall

matrix or the intermediate matrices denoted with a “˜”, which are “big”

matrices. However, these matrices are associated with some indices of

the big matrices A and Ã. To simplify our discussion, we will use global
indices associated with the big matrix A to index the smaller matrices

denoted with a “ˆ”. This allows to handle these smaller matrices while

keeping in mind where they belong in the overall scheme.

Proposition 3.4.1 To fully represent the overall factorization A � LDR, it
is sufficient to store the small matrices D̂(σ), L̂(σ), R̂(σ), as well as their index
sets for each node σ in E .

One way of seeing this is to see how the left transform L̃(σ) can be

constructed from the corresponding small matrix L̂(σ). For any index

(i , j) ∈ Bσ × Iσ, we have L̃(σ)(Bσ , Iσ) � L̂(σ) and for (i , j) < Bσ × Iσ,
L̃(σ)(i , j) � δ(i , j). We recall from Section 3.2 that the left and right

transforms can be inverted by changing the sign of the block below the

diagonal. Consequently, we can apply the inverse of the factorization

as in Algorithm 3.3, which confirms Proposition 3.4.1. It is worth noting

that at the top level, due to the definition of the elimination tree, the

boundary will be the empty set. Therefore, at the top level it suffices to

invert the remaining diagonal block D̂(σ). 3

for all nodes σ ∈ E from the bottom up do
Apply b(Bσ) ← −L̂(σ)b(Iσ) + b(Bσ)

end for
for all nodes σ ∈ E do

Apply b(Iσ) ←
(
D̂(σ)

) −1b(Iσ)
end for
for all nodes σ ∈ E from the top down do

Apply b(Iσ) ← b(Iσ) − R̂(σ)b(Bσ)
end for
return b

Algorithm 3.3: Apply the inverse A−1

�

R−1D−1L−1

to a vector b.

We still need an operation to assemble the intermediate matrix Ã(σ), after

factoring Ã(µ) and Ã(ν). To do so, we introduce the update matrix

Û (σ) � −Ã(σ)bi

(
Ã(σ)ii

) −1Ã(σ)ib , (3.10)

which is added to the corresponding indices of Ã(σ) to form the Schur

complement (3.9). More importantly, Û (σ) contains all of the updates
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of its children nodes, which is a consequence of the properties of the

elimination tree E . To form Â(σ), we have to sum the contributions of

Û (µ) and Û (ν) to the right places in A(σ) and extract the right submatrix.

This can be formalized by introducing the extend-add operator.

Definition 3.4.1 (extend-add) Let A be the matrix to be factored and
I � {1, 2, . . . , n} its index set. Then, let B̂ and Ĉ be matrices associated to
the global index sets IB̂ ⊆ I and IĈ ⊆ I respectively. We define the index
sets I

1
� IB̂ ∩ IĈ , I

2
� IB̂ \ IĈ and I

3
� IĈ \ IB̂ . Up to a permutation, the

extend-add operation is then defined as

B̂ l↔ Ĉ �


B̂(I

1
, I

1
) + Ĉ(I

1
, I

1
) B̂(I

1
, I

2
) Ĉ(I

1
, I

3
)

B̂(I
2
, I

1
) B̂(I

2
, I

2
) 0

Ĉ(I
3
, I

1
) 0 Ĉ(I

3
, I

3
)

 . (3.11)

Using the short-hand notation A(σ)ib � A(Iσ , Bσ) from before, we can now

write

Â(σ) �

[
Ã(σ)ii Ã(σ)ib
Ã(σ)bi Ã(σ)bb

]
l↔ Û (µ) l↔ Û (ν). (3.12)

Instead of forming the Schur complement Ŝ(σ), we can factor

F̂ (σ) �

[
Ã(σ)ii Ã(σ)ib
Ã(σ)bi 0

]
l↔ Û (µ) l↔ Û (ν) , (3.13)

which directly yields the update matrix Û (σ) in place of the Schur

complement. The matrix F̂ (σ) is called a frontal matrix. Sparse direct

solvers, which organize the Gaussian elimination as described are also

called frontal solvers [24]. These methods organize the elimination into a

“front”, hence the name.

We wrap up the discussion of structured, sparse direct solvers by consid-

ering the computational work required to form the factorization. Let us

consider the nested dissection of a d-dimensional domain. In relation to

the overall size n, the top level separator has a size of O(n
d−1

d ) for d ≥ 2.

Consequently, the size of matrices to factor at each level l behaves as

nl ∼ 2
− d−1

d (l−1)n
d−1

d . (3.14)

In other words, the size of the separators is divided by 2
d−1

every d
levels [25]. Assuming that the cost of forming the intermediate matrices

is negligible, the work to be performed at each node is of order O(n3

l ).
Summing over all levels l � 1, 2, . . . , L yields the total amount of work

W ∼
L∑

l�1

2
l−1n3

l ∼
L∑

l�1

(
2
− 2d−3

d
) l−1n3

d−1

d � n3
d−1

d
1 − 2

− 2d−3

d L

1 − 2
− 2d−3

d

�⇒ W . n3
d−1

d . (3.15)

We conclude that in two dimensions, the cost of structured elimination

scales as O(n
3

2 )while in three dimensions the scaling is O(n2).
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In the previous chapter we focused on direct solvers that compute the

solution to the linear system (1.22) in one step. The downside of such

methods is their O(n2) cost in operation count and storage requirement.

Moreover, in many cases we can compute matrix-vector products x →
Ax in O(n) operations without needing to form the matrix. We might be

tempted to exploit this and seek to solve the linear system only using

matrix-vector multiplications. This gives rise to iterative methods. In this

chapter we focus on Krylov subspace methods and GMRES in particular,

as this is the focus of the subsequent work. For a much more in-depth

treatment, we refer the reader to the excellent treatment of this topic in

[1, 11].

4.1 Krylov spaces

Krylov subspace methods are closely related to the subspace- and power

iteration [11]. These algorithms attempt to compute good approximations

to the dominant k eigenvectors of A, by repeatedly applying A to the

same vector.

Definition 4.1.1 (Krylov subspace) Let A ∈ Cn×n and b ∈ Cn . Then,

Kk(A, b) � span

{
b ,Ab , . . . ,Ak−1b

}
(4.1)

is called the k-th Krylov subspace of A and b.

As a consequence, we can write any vector x ∈ Kk(A, b) as a linear

combination of powers of A times b:

x � c
0
b + c

1
Ab + c

2
A2b + . . . ck−1

Ak−1b � p(A)b (4.2)

In other words, x is a polynomial p(z) � c
0
+ c

1
z + c

2
z2

+ . . . ck−1
zk−1

in

A times b.

4.2 The Arnoldi iteration

Let us consider that we would like to compute a basis for the k-th Krylov

subspace Kk(A, x0
) of a given matrix A and starting vector x

0
. One might

imagine that repeatedly multiplying A to x
0

might indeed not be the

best way to go about it, as we would expect vectors to quickly converge

to the eigenvector of the dominant eigenvalue, as in the power-iteration.

Therefore, some form of orthonormalization is needed for the method

to instead converge to the k-dimensional subspace spanned by the first

k dominant eigenvectors. This is the core idea of the Arnoldi method,

which we will introduce in this section.
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A key piece in all of this is the following Lemma, which gives us a hint

of how we might construct an orthogonal basis:

Lemma 4.2.1 Let A ∈ Cn×n , x
0
∈ Cn , and let {q

1
, q

2
, . . . , qk}, as well as

{q
1
, q

2
, . . . , qk , qk+1

}, be bases of Kk(A, x0
) and Kk+1

(A, x
0
), respectively.

Then
Kk+1
(A, x

0
) � span {q

1
, q

2
, . . . , qk ,Aqk}. (4.3)

In other words, once we have an orthonormal set of vectors spanning

Kk(A, x0
), we can simply multiply the last basis vector and orthonormal-

ize the result. This is the Arnoldi iteration, which is given in Algorithm

4.1.

procedure Arnoldi Iteration(A, x
0
)

Set q
1
� x

0
/‖x

0
‖

2
and Q

1
� q

1

for j � 1, 2, . . . , k do
Compute w � Aq j
Compute h j � Q∗j w
Compute q̃ j+1

� w −Q j h j
Set h j+1, j � ‖q̃ j+1

‖
2

Set q j+1
� q̃ j+1

/h j+1, j
Append Q j+1

� [Q j , q j+1
]

end for
end procedure

Algorithm 4.1: Arnoldi iteration.

Compute orthonormal basis Qk+1
of

Kk+1
(A, x

0
)

To better analyze the algorithm, let us take a step back and consider a

matrix A ∈ Cn×n
and its reduction to upper Hessenberg form AQ � QH

where Q is a unitary matrix and H a Hessenberg matrix. As n is typically

very large, we are only interested in the first k columns of AQ � QH . Let

Qk � [q
1
, q

2
, . . . , qk] contain the first k columns of Q. With

˜Hk denoting

the (k + 1) × k upper-left section of H

˜Hk �



h
11

h
12

· · · h
1k

h
21

h
22

. . .
...

. . .
. . . hk−1,k

hk ,k−1
hk ,k

hk+1,k


, (4.4)

we can write the Arnoldi decomposition

AQk � Qk+1

˜Hk , (4.5)

and more precisely,
A



q

1
. . . qk


�


q

1
. . . qk+1



h

11
· · · h

1k

h
21

...
. . .

...
hk+1,k


.
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By taking the last column of (4.5), we find the recurrence relation

Aqk � h
1k q

1
+ · · · + hkk qk + hk+1,k qk+1

,

which connects the new Krylov vector qk+1
to previous iterates. By

rewriting this as

Aqk � Qk hk + hk+1,k qk+1
� Qk hk + q̃k+1

with w � Aqk and

w � Aqk , hk � Q∗k w �


h

1k
...

h
1k

 , q̃k+1
� w −Qk hk , hk+1,k � ‖q̃k+1

‖
2
,

we recover the Gram-Schmidt process, applied to the Krylov vectors w,

and therefore Algorithm 4.1.

4.3 GMRES

Among the iterative solvers for linear systems, the generalized minimum
residual method (GMRES) [26] is a popular choice for nonsymmetric

problems. The idea of GMRES is a simple one: At step k, we seek to find a

vector xk in the Krylov subspace Kk(A, r0
), which minimize the 2-norm

of the residual rk � b − Axk . To this end, we use the Arnoldi method

to compute an orthonormal basis Qk � [q
1
, q

2
, . . . , qk] which spans the

Krylov space.

Thus, we consider the minimization problem

min

x∈x
0
+Kk (A,r0

)
‖b − Ax‖

2
. (4.6)

Let x̃ � x
0
+ Qk y ∈ x

0
+ Kk(A, r0

) with some y ∈ Rk
, and solve the

above above minimization problem. We can then write

‖b − Ax̃‖
2
� ‖r

0
− AQk y‖

2
� ‖r

0
−Qk+1

H̃k y‖
2

� ‖Qk+1
(β

0
e

1
− H̃k y)‖

2
� ‖β

0
e

1
− H̃k y‖

2
(4.7)

where we have used Equation 4.5 and β
0
� ‖r

0
‖

2
. By projecting into the

Krylov subspace, we have reduced the size of the minimization problem

4.6 to (k + 1) × k dimensions:

min

y∈Rk
‖β

0
e

1
− H̃k y‖

2
. (4.8)

The least-squares problem (4.8) is then solved by

yk � β
0
(H̃ ∗k H̃k)−1H̃ ∗k e

1
, (4.9)

which can be computed using the QR decomposition. The Hessenberg

structure of H̃k can be exploited to form the QR decomposition using

k Givens rotations. The complexity of doing so is O(k2) [11, 26]. In

summary, this yields the GMRES Algorithm 4.2, which produces a

solution xk � x
0
+ Qk yk at each iteration of the Arnoldi method 4.1. In
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procedure GMRES(A, b, x
0
)

Set r
0
� b − Ax

0
, β

0
� ‖r

0
‖

2
, q

1
� r

0
/β

0
, Q

1
� q

1

for j � 1, 2, . . . , k do
Compute w � Aq j
Compute h j � Q∗j w
Compute q̃ j+1

� w −Q j h j
Set h j+1, j � ‖q̃ j+1

‖
2

Set q j+1
� q̃ j+1

/h j+1, j
Append Q j+1

� [Q j , q j+1
]

Compute the least-squares solution y j � β0
(H̃ ∗j H̃ j)−1H̃ ∗j e

1

Compute the error β j � ‖r j ‖2 � ‖β
0
e

1
− H̃k y j ‖2

Set x j � x
0
+ Q j y j

end for
return xk

end procedure
Algorithm 4.2: GMRES algorithm. Com-

putes an approximate solution xk � x
0
+

Qk yk to the linear system Ax � b.

practice, we stop the iteration once the error satisfies ‖r j ‖2 � β j ≤ εβ0
,

where ε is a user-specified tolerance. One issue with this most straight-

forward algorithm is that the storage requirement for Qk gradually

increases with increasing k. A simple solution to this is to restart 4.2 after

k iterations, keeping the maximum k low. This is referred to as restarted

GMRES.

4.4 Convergence of GMRES

In the following, we will show how GMRES is fundamentally linked to

a polynomial approximation problem. We consider the k-th iterate of

GMRES xk , which we can write as

xk � x
0
+ Qk yk � x

0
+ qk(A)r0

, (4.10)

where qk is a polynomial of order k − 1, with coefficients c
0
, c

1
, . . . , ck−1

.

The coefficients ck � [c
0
, c

1
, . . . , ck−1

]ᵀ can be obtained from the GMRES

iterate by

ck � K−1

k Qk yk . (4.11)

Kk holds the natural basis vectors of the Krylov subspace Kk(A, r0
)

Kk �
[
r

0
,Ar

0
, . . . ,Ak−1r

0

]
. (4.12)

The residual at the k-th iteration can then be rewritten as

rk � b − Axk � b − Ax
0
− Aqk(A)r0

� (I − Aqk(A))r0
� pk(A)r0

, (4.13)

where pk � 1 − zqk(z) is a polynomial of order k. It is easy to verify

that polynomials of this form verify the property pk(0) � 1. GMRES

minimizes the residual rk , by choosing the coefficients of pk . This means

that GMRES is equivalent to the following polynomial approximation

problem:
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Problem 4.4.1 (GMRES polynomial approximation problem) Find a

polynomial pk ∈ Pk of order k with pk(0) � 1, such that

‖pk(A)r0
‖

2
(4.14)

is minimized.

As Pk ⊆ Pk+1
, it is easy to deduce that the residuals are monotonous

and satisfy rk+1
≤ rk . Moreover, in the limit of k → n, we have rn � 0

as there are enough terms in Pn to interpolate all eigenvalues of the

spectrum. This is, unless GMRES breaks down due to a singular A. This

is of course irrelevant for all practical purposes, as we are interested in

solving the system (1.22) in k � n iterations.

As a consequence, we find that unless r
0

has special properties due to b,

convergence is determined by

‖rk ‖2
‖r

0
‖

2

≤ inf

pk∈Pk
pk (0)�1

‖pk(A)‖2. (4.15)

The key question now becomes what kind of properties A needs to have

to ensure fast convergence of the residuals.

Theorem 4.4.1 Let A be diagonalizable, such that V−1AV � Λ, with some
nonsingular matrix V and a diagonal matrix Λ � diag(λ

1
, λ

2
, . . . , λn).

Let rk denote the residual after k iterations of GMRES with the starting
vector x

0
. Then

‖rk ‖
‖r

0
‖ ≤ κ(V ) inf

pk∈Pk
pk (0)�1

sup

z∈{λ
1
,...,λn }

��pk(z)
��. (4.16)

Proof. As A is diagonalizable, we can write

‖pk(A)‖2 ≤ ‖V ‖2‖pk(Λ)‖2‖V−1‖
2
� κ(V ) sup

z∈{λ
1
,...,λn }

��pk(z)
��, (4.17)

where κ(V ) is the spectral condition number (2.7). Combining this with

(4.15) yields the desired result.

This implies that for a given matrix A, we can expect GMRES to converge

quickly if the condition number κ(V ) is small, i.e. the matrix is close to

normal, or if a properly normalized degree k polynomials can be found,

whose size decays quickly on the spectrum of A. Figure 4.1 shows the

spectra of two randomly generated matrices of order n � 200, A
1

and A
2
.

The spectrum of A
1

is drawn from a random Gaussian centered around

0, while the spectrum of A
2

is drawn from a Gaussian centered around

5. We see that GMRES shows much faster convergence for A
2
, as we

would expect from Theorem 4.4.1. For A
1

on the other hand, the residual

stays more or less of the same magnitude until the final iteration k � 200,

at which point it converges in one step. This is caused by the spectral

properties of A
1

as both matrices have the same κ(V ).
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Figure 4.1: Influence of the spectrum on

the convergence rate of GMRES. The fig-

ure on the left shows the spectra of two

randomly generated matrices A
1

and A
2
,

whose eigenvalues are drawn from Gaus-

sian distribution centered at 0 and 5, re-

spectively. The matrices are then gener-

ated by multiplying them with a randomly

generated, unitary transformation V . The

figure on the right shows the relative resid-

ual ‖rk ‖2/‖r0
‖

2
after each iteration for

both matrices.

4.5 Preconditioning

What if we would like to use GMRES but A does not have the properties

described in Section 4.4? This problem is addressed by introducing

preconditioning. Given a linear system (1.22), let us imagine that we can

compute an invertible n × n matrix P, or its inverse P−1

, such that we

can apply it efficiently either to a vector or A. Then, if P−1A has favorable

properties, we can apply GMRES to the preconditioned linear system

P−1Ax � P−1b. (4.18)

This system is often called the left-preconditioned system, as P−1

is

applied from the left. We can also apply our preconditioner from the

right, which yields the right-preconditioned system

AP−1 y � b (4.19a)

x � P−1 y. (4.19b)

It is worth noting that x � P−1 y comes at virtually no cost as we require

P−1

to be applicable at low cost in the first place.

The obvious question is: what is a useful preconditioner? Two extreme

cases come to mind: P � I and P � A. In the former case, applying P−1

is very easy but we have not improved the problem. In the latter case,

applying P−1

is as hard as the original problem and we have therefore

solved the original problem in one iteration. Useful preconditioner lie

somewhere in between these two extreme cases. It seems only natural

then, that many preconditioners are problem-specific and rely on a priori

information.

Let us consider one such problem and give an example of a problem-

specific preconditioner. We seek to solve the Helmholtz problem (1.3)

using a finite element approximation and GMRES. To this end, we

discretize the Helmholtz problem onΩ � [−1, 1]2 using a finite element

discretization of polynomial order p � 1 and mesh width h � 1/50. This

yields a linear system Ax � b of size 2401 with the problem matrix

A � S − κ2M ,

where S, M are the stiffness- and mass-matrices respectively and κ the

wavenumber. Figure 4.2 depicts a fraction of the spectrum of A for the



4 Iterative solvers 35

wavenumbers κ � 12.5 and κ � 25. In both cases, we obtain poor GMRES

convergence, caused by the indefinite spectrum. Following [27, 28], we

now use the shifted Laplacian preconditioner

P � S − κ2(β
1
+ β

2
i)M , (4.20)

with (β
1
, β

2
) � (1, 0.5), to precondition our problem. In contrast to the

original matrix, we observe that the spectrum of the preconditioned

matrix AP−1

is nicely clustered on a circle around 0.5+0i. Unsurprisingly

GMRES fares much better on the preconditioned system, as can be seen

on the right figure. Effectively, the shifted Laplacian approach computes
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Figure 4.2: Influence on the spectrum if

the shifted Laplacian technique is used

to precondition the Helmholtz problem.

The figure on the left shows the spectra of

A and AP−1

respectively. The spectrum

of κ � 12.5 is covered by the spectrum

of κ � 25, however it shows the same

behavior.

a solution to the shifted Helmholtz equation

−∇2u − κ2(β
1
− β

2
i)u � f , (4.21)

where the introduction of a complex component corresponds to the

introduction of a damping term ut to the original wave equation (1.1). If

the complex shift is not too large, we can expect the method to yield a

result that is still useful for preconditioning, yet easy to compute using

an iterative solver. We have not discussed how P−1

can be applied

efficiently. For a detailed treatment, we refer the reader to [27, 28].

The following list offers a short (and incomplete) overview of popular

preconditioning techniques for iterative solvers of linear systems:

Diagonal/Jacobi preconditioner A very simple preconditioning tech-

nique is to simply take the diagonal as a preconditioner: P �

diag(A). More generally, one may choose c ∈ Cn
and P � diag(c),

in the attempt to minimize κ(P−1A).
Incomplete LU factorization Another popular choice is the incomplete

LU decomposition. For sparse matrices, we can compute an in-

complete LU factorization A ≈ LU by simply disregarding fill-in

and only compute entries which lie in the sparsity pattern of the

original matrix. Other variants use a less aggressive approach,

where entries are dropped if their value is below a user-specified

threshold ε.
Gauss-Seidel/Successive over-relaxation This preconditioner is based

on the Gauss-Seidel method, which is another iterative method for

solving linear systems. The idea is to decompose the matrix into

its upper- and lower-triangular parts A � L + U . The resulting

equation x � L−1(b − U x) can be understood as a fixed-point

equation and is solved via fixed-point iteration.
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Multigrid solvers Perhaps the most prominent member in this group

are multigrid methods, which exploit the hierarchical nature of

problems, such as problems arising from PDEs. The core idea of

these methods is to accelerate the convergence of a cheap solver

which solves the solution on a grid with a solution computed on a

coarser grid [11, 26, 29]. One can recursively apply the multigrid

method on this coarser grid until the problem becomes cheap

enough to be solved directly. As a consequence, multigrid methods

can be used both as a solver and as a preconditioner. Typically, we

distinguish between algebraic and geometric multigrid methods,

where the former assumes no prior information and can therefore

be applied without the prior knowledge of a multilevel hierarchy

[26].
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This chapter introduces the notion of hierarchical matrices. Hierarchical

matrices can be regarded as matrix representations of integral operators

such as

G(u) �
∫
Ω

g(x , y)u(y)dy (5.1)

where Ω ⊂ Rd
is a domain of interest embedded in a d-dimensional

space and

g : Rd ×Rd → R (5.2)

is its kernel function, which may be singular along the diagonal x � y.

Notable examples of kernel functions are fundamental solutions or kernel

functions arising in Gaussian processes. These kernel functions are often

non-local and their approximation using a Galerkin method

Gi j � 〈ϕi , Gϕ j〉 ϕi , ϕ j ∈ Vh (5.3)

can therefore be expected to result in a dense matrix. However, if we

consider g on X×Y, where X ⊂ Rd
and Y ⊂ Rd

are sufficiently separated

disjoint domains, g may admit a degenerate approximation of the form

g(x , y) ≈
k−1∑
l�0

pl(x)ql(y) (5.4)

for x ∈ X and y ∈ Y. As a consequence, some blocks in G may admit a

rank-k approximation, which we would like to exploit.

5.1 Approximate separability

We are concerned with the approximation of kernel functions using

low-rank matrices. Our introduction borrows heavily from [30], which

provides a detailed introduction to the topic. As we limit our analysis

to the most important details, we point the reader to [25, 30] for a more

rigorous and detailed treatment of the subject.

Definition 5.1.1 (separable expression) Let gk : Rd × Rd → R and
X,Y ⊂ Rd . We call gk a separable expression in X × Y iff there exist
functions pl , ql , such that

gk(x , y) �
k∑

l�1

pl(x)ql(y) for x ∈ X, y ∈ Y. (5.5)

The number k is called the separation rank of gk .

We are interested in separable approximations to integral operators

of the form (5.5). To this end, we introduce the notion of approximate
separability.
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1: It is worth noting that the expansion

terms pl(x), ql(y)may implicitly depend

on the concrete value chosen for k. If they

do not however, convergence of g(x , y) −
gk (x , y) is equivalent to the convergence

of the infinite series

g(x , y) �
∞∑

l�1

pl(x)ql(y).

2: We use multiindex notation to de-

note multidimensional powers, deriva-

tives, etc. For instance, the notation xα

with the multiindex α ∈ N
d
0

refers to

xα � x
α

1

1
x
α

2

2
. . . x

αd
d , where each com-

ponent xi is mapped to its αi -th power

with the corresponding element in α.

Similar rules apply for the multidimen-

sional derivative ∂αx � ∂
α

1

x
1

∂
α

2

x
2

. . . ∂
αd
xd

, fac-

torialα! � α
1
!α

2
! . . . αd !, etc. The absolute

value of a multiindex denotes the sum of

all entries: |α | � α
1
+ α

2
+ · · · + αd .

Definition 5.1.2 (separable expansion) Let gk be a separable expression
in X×Y. For a small positive number ε > 0, we call gk a separable expansion
of g to accuracy ε, if it satisfies

g(x , y) � gk(x , y) + Rk(x , y) for x ∈ X, y ∈ Y, (5.6)

with
|Rk | ≤ ε.

Clearly, we would like Rk to vanish quickly as we increase k, i.e. Rk → 0

as k → ∞.
1

There are various ways of finding separable expansions.

Popular approaches are Taylor expansions, multipole expansion and

interpolation [25, 30].

Separability with Taylor expansions

A general approach for finiding a separable expansion is to use a Taylor

expansion of the kernel in one of its two variables. Let g ∈ Cm(X × Y).
We choose a point x

0
∈ X and formulate the Taylor expansion

g(x , y) �
∑

α∈Nd
0
,|α |≤m

(x − x
0
)α 1

α!

∂αx g(x
0
, y) + Rk(x , y) (5.7)

in x, where we sum over all multiindices α ∈ Nd
0
, which are below a

certain order |α | ≤ m.
2

Here, the separation rank

k(m , d) � (m + d)(m + d − 1) . . . (m + 1)
d!

�

(
m + d

d

)
(5.8)

is the number of terms in the Taylor approximation (5.7) and therefore a

function of m and the spatial dimension d. We note that we might also

have chosen to expand g(x , y) in y with respect to some point y
0
∈ Y.

Remark 5.1.1 Many kernels of interest have the form g(x , y) � G(r),
where r is the radius vector x − y. In these cases, the expansion can

be performed in r and we obtain a separable expression (5.5) with

polynomial coefficients pl(x) and ql(y).

In the following, we discuss under which assumptions we can expect

the remainder term in (5.7) to vanish exponentially. To understand this

requires some additional properties with respect to the kernel g(·, ·):

To bound the remainder term Rk , we introduce the notion of asymptotical

smoothness:

Definition 5.1.3 (asymptotically smooth kernels) Let g : Rd×Rd → R

and X,Y ⊆ Rd , such that g is defined and arbitrarily often differentiable if
x ∈ X, y ∈ Y and x , y. We call g asymptotically smooth in X × Y if���∂αx ∂βy g(x , y)

��� ≤ C(α + β)! c |α |+|β |
0

‖x − y‖−|α |−|β |−σ (5.9)

for x ∈ X, y ∈ Y, x , y, multiindices satisfying α, β ∈ Nd
0
, α + β , 0

and some constants C, c
0
, σ ∈ R>0

.
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3: A more detailed analysis with sharper

bounds for |Rk | can be found in [30].

In particular, if we consider derivatives only in x, Definition 5.1.3 yields��∂αx g(x , y)
�� ≤ Cα! c |α |

0
‖x − y‖−|α |−σ . (5.10)

Due to the asymptotical smoothness of g, we can write the remainder

term in (5.7) as

Rk �

∞∑
|α |≥m+1

(x − x
0
)α

α!

∂αx g(x
0
, y). (5.11)

Using (5.10) and

∑
|α |�l |(x − x

0
)α | � O(| |x − x

0
| | l), we have

|Rk | ≤ C
∑
|α |≥m+1

c |α |
0

|(x − x
0
)α |

α!

α!‖x
0
− y‖−|α |−σ

�
C

‖x
0
− y‖σ

∑
|α |≥m+1

c |α |
0

‖x
0
− y‖ |α |

|(x − x
0
)α |

�
C

‖x
0
− y‖σ

∞∑
l�m+1

(
c

0

‖x
0
− y‖

) l ∑
|α |�l
|(x − x

0
)α |

≤ C
‖x

0
− y‖σ

∞∑
l�m+1

(
γ‖x − x

0
‖

‖x
0
− y‖

) l

≤ ˜C
∞∑

l�m+1

ϑl ≤ ˜C
ϑm

1 − ϑ , (5.12)

where we have introduced the new constants γ, ˜C ∈ R>0
, which depend

on C, σ, m, x
0
. Therefore, the remainder term Rk vanishes exponentially

3

if ϑ < 1, which is given by

ϑ �
γ‖x − x

0
‖

‖x
0
− y‖ ≤

γmaxx∈X ‖x − x
0
‖

‖x
0
− y‖ .

Consequently, the condition

diam(X) ≤ η dist(X,Y) (5.13)

implies ϑ < ηγ. In combination with previous assumptions ηγ < 1 is

sufficient to guarantee convergence of the separable approximation. A

similar condition can be formulated for y for cases, in which we choose

to expand g(·, ·) in y:

diam(Y) ≤ η dist(X,Y). (5.14)

Definition 5.1.4 (η-admissibility) Let X and Y be d-dimensional subdo-
mains X,Y ⊂ Rd and η ∈ R>0

. We call the pair (X,Y) η-admissible if
(5.13) or (5.14) (or both) are satisfied.

This admissibility condition is depicted in Figure 5.1. A smaller η means

that g will be better-suited for a separable expansion, and therefore an

approximation with the matrix formats that we will introduce in this

chapter.
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X

diam(X)

Y

diam(Y)

dist(X,Y)

Figure 5.1: Illustration of the admissibility

condition.

This brings us to the final theorem of this section, which summarizes the

previous statements

Theorem 5.1.1 Let g : Rd ×Rd → R be an asymptotically smooth kernel
in X,Y ⊆ Rd . Moreover, let X and Y be η-admissible, where η < 1/γ with
the constant γ ∈ R>0

from (5.12). Then, g admits a separable approximation
gk of separation rank k � k(m , d) in X×Y, with an error term that vanishes
exponentially, according to (5.12).

Proof. The proof is given by preceding calculations.

Thus, we have identified sufficient conditions under which we may find

separable approximations of the form (5.7). It is important to note that

those are not necessary conditions as we may have chosen another form

of the separable expression, for instance via interpolation or multipole

expansion [25, 30].

In the following, we state an independent result, which demontrates

a sufficient separability condition for the Green’s function of the two-

dimensional Laplacian in unbounded domains.

Example 5.1.1 (Green’s function of the two-dimensional Laplacian)

The Green’s function of the Laplacian in an unbounded, two-dimensional

domain is given by ln ‖r ‖/2π. Here r � x − y � (r
1
, r

2
)ᵀ denotes the

radius vector. We ignore the constant and set G(r) � ln ‖r ‖. We then

compute its α-th derivative, where α � (α
1
, α

2
) ∈ N2

0
. After some

calculations, we obtain

∂αr G(r) � −(α1
+ α

2
− 1)!

(r2

1
+ r2

2
)α1

+α
2

(
(−1)α1

+α
2(r

1
− ir

2
)α1(ir

1
+ r

2
)α2

+ (i)α1
+α

2(ir
1
− r

2
)α1(r

1
+ ir

2
)α2

)
and consequently,

|∂αr G(r)| ≤ (α1
+ α

2
− 1)!

‖r ‖ |α |
.

Thus, we can bound the remainder term as

|Rk | ≤
∑
|α |≥m+1

|(r − r
0
)α |

α!

|∂αr G(r
0
)|

≤
∑
|α |≥m+1

|(r − r
0
)α |

α
1
+ α

2

(
α

1
+ α

2

α
2

)
1

‖r
0
‖ |α |
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�

∞∑
l�m+1

1

l‖r
0
‖ l

∑
|α |�l

(
α

1
+ α

2

α
2

)
|(r − r

0
)α |

�

∞∑
l�m+1

1

l
‖r − r

0
‖ l

1

‖r
0
‖ l

2

.

We insert r � x − y and r
0
� x

0
− y

0
, where x

0
and y

0
are suitably

chosen expansion centers for both x and y. To ensure exponential

convergence, we must bound the term

ϑ �
‖(x − x

0
) − (y − y

0
)‖

1

‖x
0
− y

0
‖

2

≤
√

2

‖(x − x
0
) − (y − y

0
)‖

2

‖x
0
− y

0
‖

2

≤
√

2

‖(x − x
0
)‖ + ‖(y − y

0
)‖

2

‖x
0
− y

0
‖

2

≤
√

2

diam(X) + diam(Y)
dist(X,Y)

by 1. A valid admissibility condition there would be the η-admissibility

condition with η � 2

√
2. In many cases however, this condition can be

much relaxed, as we can choose x
0

and y
0
.

Separability with multipole expansions

So far, we have motivated the use of separable approximations using

Taylor expansions of asymptotically smooth kernel functions. This ap-

proach is fairly general but seldom practical. An alternative expansion

is the multipole expansion, which is particularly useful in the context of

physically motivated kernel functions [25, 31, 32].

Most Green’s functions of practical relevance are related to the potential

of a single unit charge. The electrostatic field of a unit point charge in

three dimensions is given by

g(x , y) � 1

‖x − y‖
2

, (5.15)

which is the Green’s function of the corresponding Laplace equation in

R3

. We imagine that n charges q j are located at source points y j within

the subdomain Y centered at y
0
. The resulting potential u at the target

location x is then given by

u(x) �
n∑

j�1

q j g(x , y j). (5.16)

A well-known identity for the electrostatic potential (5.15) is its relation

to the generating function of the Legendre polynomials Pk [33, pp. 148].

In particular, we have

1

‖x − y‖
2

�

∞∑
l�0

Pl(cos ϑ(y , x)) ‖x‖
l
2

‖y‖ l+1

2

, (5.17)

where ‖y‖
2
> ‖x‖

2
and ϑ(y , x) is the angle between x and y. We remark

that this expansion in itself is not yet a separable approximation of (5.15)

as the angle depends on both x and y. In two dimensions, we can use
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x0 y0

y0 − x0

X

Y

ϑ

Figure 5.2: Illustration of the situation

in the multipole expansion. The source

points y j are located in the area Y, cen-

tered at y
0
. Similarly, target locations xi

are contained in the subdomain X.

the addition theorem for spherical harmonics [34]

Pl(cos(ϑ
1
+ ϑ

2
)) �

l∑
m�0

Pm
l (cos(ϑ

1
))Pm

l (cos(ϑ
2
)),

where Pm
k denote the associated Legendre polynomials [34]. In three

dimensions, a similar addition theorem for angles on the sphere yields

the spherical harmonics for the multipole expansion (5.17). Inserting the

addition theorem gives us

1

‖x − y‖
2

�

∞∑
l�0

Pl(cos

(
ϑ(x , y

0
) + ϑ(y

0
, y)

)
)
‖y − y

0
‖ l

2

‖x − y
0
‖ l+1

2

,

�

∞∑
l�0

l∑
m�0

Pm
l (cos ϑ(x , y

0
))Pm

l (cos ϑ(y
0
, y))
‖y − y

0
‖ l

2

‖x − y
0
‖ l+1

2

, (5.18)

which is a separable expansion in x and y. Here we have introduced the

point y
0

as the center for our expansion, as illustrated in Figure 5.2. To

make a statement regarding the quality of a truncated expansion of (5.18),

we need to develop error bounds. We point the reader to the original

introduction of the fast multipole method [31] for an extended discussion

on the matter.

Let us imagine that we want to evaluate (5.16) at m target points xi
located in the subdomain X centered at x

0
. This is clearly an O(mn)

operation. Substituting (5.18) into (5.16) yields

u(xi) �
n∑

j�1

q j

∞∑
l�0

l∑
m�0

Pm
l (cos ϑ(x j , y0

))Pm
l (cos ϑ(y

0
, y))
‖y − y

0
‖ l

2

‖x − y
0
‖ l+1

2

≈
∞∑

l�0

1

‖xi − y
0
‖ l+1

2

n∑
j�1

q j

l∑
m�0

Pm
l (cos ϑ(x

0
, y

0
))Pm

l (cos ϑ(y
0
, y j))‖y j − y

0
‖ l

2︸                                                           ︷︷                                                           ︸
�Ql j

≈
k∑

l�0

1

‖xi − y
0
‖ l+1

2

n∑
j�1

q jQl j . (5.19)

We have used the fact that X and Y are well-separated subdomains, which

allowed us to replace the angle ϑ(x j , y0
)with ϑ(x

0
, y

0
). We then proceed

by computing the so-called multipole moments Ql j which contribute

to the approximation of the potential centered at y
0
. In the final step

we have chosen a separation rank k at which we truncate the multipole

expansion. The final result is a separable approximation of rank k, which

reduces the computational cost to O(k(m+n)) operations. Evidently, this

separation rank should be chosen with respect to some error tolerance ε.
We refer the reader again to [31] for a rigorous mathematical treatment

of the subject.

The multipole expansion (5.19) illustrates how separable approximations

can be obtained in practice. In contrast to Taylor expansions, multipole

expansions only span harmonic functions. An order k multipole expan-

sion in three dimensions as discussed here, will have only O(k2) terms,

whereas the corresponding Taylor expansion will have O(k3) terms. This

makes multipole expansions superior to Taylor expansions and lower

truncation errors can be achieved with the same number of terms. The
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hierarchically structured matrices that we present later in this chapter

can be regarded as matrix counterparts to multipole expansions (and the

fast multipole method in particular [35]).

The following example presents an estimation of the separation rank

for multipole expansions of the Helmholtz problem in two and three

dimensions based on results derived in [36].

Example 5.1.2 (Expansion errors for the Green’s function of the

Helmholtz problem in two dimensions) We consider the Green’s

function

g(x , y) � i
4

H(1)
0
(κ‖x − y‖) (5.20)

of the Helmholtz problem (1.3) on the unbounded R2

with radiating

boundary condition. H(1)α (x) denotes the Hankel function of the first

kind, defined as H(1)α (x) � Jα(x) + iYα(x), where Jα(x) and Yα(x) are

the Bessel functions of the first and second kind, respectively. As

in the computations before, we aim to separate the points x and y
into well-separated subdomains. Suppose that p � κ(x

0
− y

0
) and

q � κ(x
0
− y

0
− x + y), where x

0
and y

0
. At the core of the multipole

methods lies the expansion of the Green’s function into an infinite

series. We use Graf’s addition theorem [36]

H(1)
0
(κ‖x − y‖) �

∞∑
l�−∞

H(1)l (p)Jl(q) exp

(
il(ϑp − ϑq)

)
, (5.21)

where we have introduced polar coordinates (p , ϑp) and (q , ϑq) to

specify the vectors p and q. Truncating this expansion at k terms yields

the remainder term

|Rk | .
∞∑

l�k+1

|H(1)l (p)Jl(q)| ≤ max

{p≥p
min
,q≤q

max
}

∞∑
l�k+1

|H(1)l (p)Jl(q)|. (5.22)

As x and y are usually contained in well-separated clusters X and

Y, it makes sense to bound p ≥ p
min

� κ dist(X,Y) and q ≤ q
max

�

κ(diam X + diam Y).

Amini and Profit [36] derive a theoretical error bounds for (5.22) and

an algorithm to compute them. The proper separation rank for a given

tolerance ε > 0 can then be determined by computing the error bound

(5.22) until |Rk | < ε is met. As in the prior analysis, we assume that

the satisfy an η-admissibility condition and fix q � ηp. For η � 0.5
and a fixed tolerance of 2

−20

, Amini and Profit report the separation

rank k to behave roughly as

k ∼ q + 5 log

(
q + π

)
, (5.23)

which grows linearly with the wave number for large κ [36].

5.2 Block cluster trees

For a general matrix A ∈ Rm×n
, consider the row index set I �

{1, 2, . . . ,m} and column index set J � {1, 2, . . . , n}. In the preced-

ing section, we established that separable approximations may be used in
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4: The notation I l
i is slightly redundand as

we do not need to specify the level l in the

tree once we have specified its position

i in the tree. For the sake of clarity, we

will drop the superscript l whenever the

circumstances allow.

5: With a slight abuse of notation, we shall

interchangably refer to nodes in TI either

by their index i or by the concrete index

set I l
i .

I � {1, 2, . . . , 12}

{1, 2, . . . , 6}

{1, 2, 3} {4, 5, 6}

{7, 8, . . . , 12}

{7, 8, 9} {10, 11, 12}
Figure 5.3: Example of a cluster tree gen-

erated by bisecting I � {1, 2, . . . , 12}.

(a) L � 2

(b) L � 3

(c) L � 4

Figure 5.4: Block cluster partitioning gen-

erated from two binary cluster trees and

the admissibility condition |i− j | > 1. This

admissibility can for instance be derived

from the η-admissibility of one dimen-

sional meshes. In admissible blocks are

colored in red, admissible ones in blue.

well-separated domains that satisfy some form of admissibility condition.

Therefore, if A is similar to G we can expect that some blocks of A admit

rank-k approximations.

To find such partitions, we start by hierarchically partitioning the index

sets I and J. Thus, we introduce the notion of cluster trees:

Definition 5.2.1 (cluster tree) Let I � {1, 2, . . . ,m} be an index set and
let TI be a tree of maximal depth L, where each of its nodes I l

i ∈ T is a subset
of I. The superindex l in I l

i denotes the level, starting from the top-level l � 1,
and the subscript i enumerates the node within the tree in post-order. We call
TI a cluster tree iff

I the root node is the entire index set I,
I nodes at each level l are disjoint: ∀i , j : I l

i ∩ I l
j � ∅,

I every node I l
i with children nodes children(i) is the disjoint union of

all its children I l
i �

⋃
c∈children(i) I

l+1

c ,
I each index set I l

i is a contigious range of integers, i.e. indices appear in
incremental order.

The second to last condition ensures that the union of all index sets on a

given level l is a valid partitioning of the entire index set I (assuming

that TI is a balanced tree). The last requirement of having contigious

index sets is an optional one as it can be achieved by simply reordering

the underlying matrix accordingly. As such, there is no loss of generality

and we will assume that this is generally true for the cluster trees that

we consider.
4 5

A straight-forward way of generating cluster trees is bisection. Figure

5.3 depicts a cluster tree of depth 3 of the index set I � {1, 2, . . . , 12}.

Such hierarchical partitions can also be constructed by using the under-

lying geometry. This may lead to better results but it is a much more

involved process as the geometry has to be taken into account. More

details can be found in [25, 30, 37, 38].

We are interested in hierarchically partitioning the matrix A. This is

achieved with block cluster trees:

Definition 5.2.2 (block cluster tree) Let I � {1, 2, . . . ,m} and J �

{1, 2, . . . , n} be index sets and let TI×J be a tree. We call TI×J a block cluster

tree iff:

I I × J is the root of TI×J ,
I any two distinct nodes B l

i , B
l
j ∈ TI×J , i , j that share the same level l

are disjoint: B l
i ∩ B l

j � ∅,
I every node B l

i with children nodes children(i) is the disjoint union of
its children: B l

i �
⋃

c∈children(i) B
l+1

c ,
I for each block B l

i , there exist contigious index sets I l
i and J l

i , such that
B l

i can be expressed as their cartesian product: B l
i � I l

i × J l
i .

Evidently, block cluster trees share many of the properties of cluster trees.

The last property ensures that we are only considering matrix blocks and

not random entries.
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6: In principle, we may construct more

general hierarchical partitionings of I × J,
which may not necessarily be generated

by cluster trees TI and TJ . However, to

the best of our knowledge, such matrix

partitionings are not of practical interest

and for the sake of clarity, we chose to

omit them.

For practical applications, we are particularly interested in block cluster

trees that are constructed from cluster trees of the row and column indices

TI and TJ .
6

We demonstrate the construction of a block cluster tree

from the cluster trees TI and TJ , which we assume to have identical tree

structures. Moreover, we require a suitable admissibility condition, which

tells us whether the block A(I l
i , J

l
j ) admits a low-rank approximation.

Clearly, this admissibility condition is closely related to the admissibility

condition (5.13), (5.14).

Starting from the root node, we construct the block cluster tree recursively.

We proceed as follows: If the current block I l
i × J l

j meets the admissibility

condition, we stop the recursion and return the current block. If it does

not, we subdivide the current block into {I l+1

c × J l+1

d : c ∈ children(i), d ∈
children( j)} and call the routine recursively on these blocks. The subtrees

that are returned are rooted at the current node and the resulting tree is

returned. Algorithm 5.1 summarizes the procedure. Such a construction

procedure block cluster tree(i, j, TI , TJ )

Get row and column clusters I l
i ∈ TI and J l

j ∈ TJ

Create tree node TB with B � I l
i × J l

j at the root

if I l
i × J l

j is not admissible then
for all c ∈ children(i), d ∈ children( j) do

Append Block cluster tree(c , d , TI , TJ) to TB
end for

end if
return TB

end procedure
Algorithm 5.1: Construct a block cluster

tree from TI and TJ

preserves the overall depth of the cluster tree. In practice, we do not have

to store the block cluster tree TI×J as its structure is fully described by TI ,

TJ as well as the admissibility condition σ(I l
i , J

l
j ).

Example 5.2.1 Discrete admissibility condition for the one-dimensional

discretization of the one-dimensional Green’s function.

|i − j | > 1 (5.24)

Figure 5.4 shows the block cluster tree that is derived using this

admissibility condition.

5.3 Hierarchical matrices

This finally brings us to hierarchical matrices, which is the main subject

of this chapter:

Definition 5.3.1 (H-matrices) Let A ∈ Rm×n be a matrix and TI×J a block
cluster tree on I � {1, 2, . . . ,m}, J � {1, 2, . . . , n}. Moreover, let σ be a
suitable admissibility condition and k ∈ N

0
. Then, we call A a hierarchical

matrix (in short H-matrix) of maximum rank k, iff

rank A(B l
i ) ≤ k
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7: Another prominent example of rank-

structured matrices are block low-rank

(BLR) matrices, which are partitioned ma-

trices, with the important difference that

the partitionings are not hierarchical [39].

(a) L � 2

(b) L � 3

(c) L � 4

Figure 5.5: HODLR partitioning gener-

ated from two binary cluster trees and the

strong admissibility condition |i − j | > 0.

Inadmissible blocks are colored in red,

admissible ones in blue.

is satisfied for every admissible block B l
i ∈ TI×J : σ(B l

i ).

The obvious advantage of H-matrices is that they admit accelerated

arithmetic and reduced storage requirements compared to dense matrices,

due to the low-rank property of admissible blocks.
7

As such, they are

often referred to as rank-structured matrices. Similar to sparse matrices,

they exploit structure and data sparsity to improve storage and operation

complexity. H-matrices provide a great deal of flexibility and represent

the most general format among hierarchically rank-structured matrix

formats [30, 37, 40].

While H-matrices offer flexibility, this comes at the cost of performance

and increased difficulty for practical implementation. Without going

into much detail on H-matrices, we shall move on to an import sub-

set of H-matrices, namely hierarchically off-diagonal low-rank (HODLR)
matrices. As the name implies, these are hierarchical matrices, where

the partitioning has been constructed from binary cluster trees with the

simple admissibility condition i , j and i , j are sibling nodes. Such a

hierarchical partitioning is illustrated in Figure 5.5 and the format is

formalized in Definition 5.3.2

Definition 5.3.2 (HODLR matrix) Let A ∈ Rm×n be a matrix and TI ,
TJ binary cluster trees with equal tree structures on I � {1, 2, . . . ,m},
J � {1, 2, . . . , n}. Also, let k ∈ N

0
be a positive integer. Then, we call A

a hierarchically off-diagonal low-rank matrix (in short HODLR matrix) of
off-diagonal rank k, iff

rank A(I l
i , J

l
j ) ≤ k

hold for all disting sibling nodes I l
i ∈ TI , J l

j ∈ TJ , with parent(i) � parent( j)
and i , j. The minimum k for which this is true is called the HODLR rank
of A (with respect to TI , TJ ).

Consequently, HODLR matrices allow a simple recursive representation,

where diagonal matrix blocks can be represented as

A(I l
i , J

l
i ) � A(l)ii �

[
A(l+1)

c
1
,c

1

A(l+1)
c

1
,c

2

A(l+1)
c

2
,c

1

A(l+1)
c

2
,c

2

]
, (5.25)

and c
1
, c

2
are the two children nodes of i in both TI and TJ . The diagonal

blocks are again HODLR matrices, unless they are smaller than some

minimum block size, at which point we simply stop the recursion and

store a dense matrix. We call

β � max

I l
i ∈leaves(TI )

|I l
i | (5.26)

the block size of the partitioning. On the other hand, off-diagonal blocks

A(l)i , j admit a low-rank representation and are stored accordingly:

A(l)i , j � Ũ (l)i

(
Ṽ (l)j

) ∗
, (5.27)

where Ũ (l)i ∈ R
|I l

i |×k , Ṽ (l)j ∈ R
| J l

j |×k
are called its generators.

In a similar fashion to low-rank matrices, we introduce the notion of

approximate HODLR matrices:
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8: Due to this additional hierarchy of the

bases, H-matrices with nested bases are

referred to as H2

-matrices in the literature

[40].

Definition 5.3.3 (approximate HODLR matrix) Let A ∈ Rm×n , k ∈ N
0

and ε > 0. We call A a matrix of approximate HODLR rank k, iff for a given
block-cluster tree, there exists a HODLR matrix Ã with HODLR rank k,
such that

‖A − Ã‖ ≤ ε (5.28)

holds for a suitable norm ‖·‖.

Oftentimes it is more practical to control the error locally, in the sense

that

‖A(I l
i , J

l
j ) − Ã(I l

i , J
l
j )‖ ≤ ε (5.29)

holds true for all low-rank blocks in Ã. For a HODLR matrix with L
levels, controlling each block with ε results in a total approximation error

that is bounded by

‖A − Ã‖ ≤ (2L − 2) ε.

A more interesting choice is to control the relative error locally, such that

‖A(I l
i , J

l
j ) − Ã(I l

i , J
l
j )‖ ≤ ε‖A(I

l
i , J

l
j )‖. (5.30)

If we choose to do so in the Frobenis norm, (5.30) guarantees

‖A − Ã‖
F
≤

√
2

L − 2 ε. (5.31)

5.4 Nested bases

Again, let us consider matrices with HODLR block structure. Let i , j be

sibling nodes at level l and let c
1
, c

2
be the children of i and d

1
, d

2
the

children of j. Moreover, let Ũ (l)i and Ṽ (l)j denote the generators of the

off-diagonal blocks. Then, we call the bases nested, if the generators can

be constructed recursively from its children generators

Ũ (l)i �

[
Ũ (l+1)

c
1

0

0 Ũ (l+1)
c

2

]
U (l)i , (5.32a)

Ṽ (l)j �

[
Ṽ (l+1)

d
1

0

0 Ṽ (l+1)
d

2

]
V (l)j , (5.32b)

with translation matrices U (l)i ∈ R
2k×k

and V (l)j ∈ R
2k×k

.
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The low-rank

block A(I l
i , J

l
j ) can then be factored as

A(I l
i , J

l
j ) � Ũ (l)i B̃(l)i , j

(
Ṽ (l)j

) ∗
, (5.33)

where we have introduced the block B̃(l)i , j ∈ R
k×k

to decouple it from the

bases Ũ (l)i and Ṽ (l)j In our notation, generators with a ∼ denote “tall”

matrices, with the leading dimension corresponding to the blocksize

of the low-rank block (5.33). Therefore, to construct the low-rank block

(5.33), we have to first construct generators, that span its row- and column-

space. To do so, we apply the nestedness property (5.32) recursively

until the leaf level is reached. At the leaf level, we set U (L)i � Ũ (L)i and

V (L)j � Ṽ (L)j .
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9: The structure of hierarchically semi-

separable matrices is related to separable

and semi-separable matrices [41].

(a) HSS block row at level l � 4

(b) HSS block column at level l � 3

Figure 5.7: Illustration of a HSS block row

and a block column.

HODLR matrices with such an additional hierarchy in their generators

are called hierarchically semi-separable (HSS) matrices. A formal definition

follows later in Definition 5.4.1.
9

The nestedness of generators allows

us to represent the HSS matrix A in a recursive manner. We define

B(l)i �

[
0 B̃(l+1)

c
1
,c

2

B̃(l+1)
c

2
,c

1

0

]
,

D(L)i � A(IL
i , J

L
i ),

as well as

U (l) � diag

(
U (l)

1
,U (l)

2
, . . .

)
, (5.34a)

V (l) � diag

(
V (l)

1
,V (l)

2
, . . .

)
, (5.34b)

B(l) � diag

(
B(l)

1
, B(l)

2
, . . .

)
, (5.34c)

D(L) � diag

(
D(L)

1
,D(L)

2
, . . .

)
. (5.34d)

Then A can be expressed via the recursion

A(0) � B(0) , (5.35a)

A(l) � U (l)A(l−1) (V (l)) ∗ + B(l) for l � 1, 2, . . . , L − 1 (5.35b)

A(L) � U (L)A(L−1) (V (L)) ∗ + D(L). (5.35c)

By writing out this recursion, we obtain a telescoping factorization. For a

3-level HSS matrix with balanced cluster trees, this yields

A � U (3)
(
U (2)

(
U (1)B(0)

(
V (1)

) ∗
+B(1)

) (
V (2)

) ∗
+ B(2)

) (
V (3)

) ∗
+ D(3) ,

(5.36)

where the structure of each matrix is illustrated below its symbol. A

matrix A in HSS format is therefore fully defined by specifying its row-

and column-cluster trees TI , TJ , as well as the matrices that appear in

(5.34).

This telescoping factorization reveals an alternative definition of HSS

matrices. We observe in (5.36), that the first row of A−D(3) is spanned by

U (3)
1

. Moreover, we see that this holds for all levels A(l) of the hierarchical

definition (5.35), disregarding the diagonal part. Thus, by requiring that

each HSS block row

A(I l
i , J \ J l

i )

and HSS block column

A(I \ I l
j , J

l
j )

is low-rank, we can ensure that A is a HSS matrix. Figure 5.7 illustrates

HSS block rows and columns. Consequently, we define:

Definition 5.4.1 (HSS matrix) Consider a matrix A ∈ Rm×n with row
indices I, column indices J and corresponding row- and column-cluster trees
TI , TJ , with matching tree structure.
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10: Quasiseparable matrices can be under-

stood as HSS matrices with leaf size 1 and

HSS rank 1 [41]. These matrices include

tridiagonal and semi-separable matrices.

I We select a row partition I l
i ∈ TI at level l. Then the block row

A(I l
i , J \ J l

i ), which omits the diagonal part is called a HSS block row.
Similarly, we call A(I \ I l

j , J
l
j ) a HSS block column.

I We call A a HSS matrix with respect to TI , TJ , if there exists a positive
integer k ∈ N

0
, such that the rank of every HSS block row and block

column is smaller than, or equal to k:

∀I l
i ∈ TI : rank A(I l

i , J \ J l
i ) ≤ k , (5.37a)

∀J l
j ∈ TJ : rank A(I \ I l

j , J
l
j ) ≤ k. (5.37b)

We call the minimum k for which (5.37) is satisfied, the HSS rank of A.

We remark that the HSS rank as introduced here differs from the HODLR

rank, which only takes the rank of off-diagonal blocks into account. This

definition resembles the quasi-separable rank, which is the maximum rank

of any block which lies strictly in the upper or lower triangular part of

the matrix.
10

In practice, we are often more interested in the ranks of

the matrices (5.34), required to represent the matrix. In these cases we

refer to the HODLR rank.

As for HODLR matrices, we are interested in matrices of approximate

HSS rank k:

Definition 5.4.2 (approximate HSS matrix) Let A ∈ Rm×n , k ∈ N
0

and ε > 0. We call A a matrix of approximate HSS rank k, iff for a given
block-cluster tree, there exists a HSS matrix Ã with HSS rank k, such that

‖A − Ã‖ ≤ ε (5.38)

holds for a suitable norm ‖·‖.

It is useful to bound the approximation error by bounding it locally.

For HSS matrices, this is done by controlling the approximation error

for each individual HSS block row and column. Controlling the relative

error means enforcing

‖A(I l
i , J \ J l

i ) − Ã(I l
i , J \ J l

i )‖ ≤ ε‖A(I
l
i , J \ J l

i )‖
‖A(I \ I l

j , J
l
j ) − Ã(I \ I l

j , J
l
j )‖ ≤ ε‖A(I \ I l

j , J
l
j )‖

for each block row and clumn. For the Frobenius norm, this results in

the tighter error bound

‖A − Ã‖
F
≤

√
2

L−1 ε (5.39)

as compared to (5.30).

Tighter error bounds for the spectral norm are reported in [42], however

these bounds require that A and Ã share the same generators. This is the

case if a truncated SVD is used to compute the approximation. In general,

however, it is not the case and it is unclear whether improved error

bounds can be found without making assumptions on the generators [42,

43]. Conversely, it is also possible to show the existence of a HSS rank k

approximant Ã, which satisfies ‖A− Ã‖
2
≤

√
2

L+1 − 4 ε if each HSS block

row and column of A allow a rank-k truncation with an error smaller
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than ε [44]. This however, does not guarantee that we have found this

approximant.
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The focus of this chapter is to introduce some of the many useful al-

gorithms for hierarchical matrices, which will be useful subsequently.

We keep our focus on hierarchical matrices with HODLR/HSS struc-

tures. Many of the algorithms for HODLR matrices can be derived by

formulating algorithms for block matrices of the form

A �

[
A

11
A

12

A
21

A
22

]
(6.1)

and then modifying them to be recursive in A
11

and A
22

. Section 6.1

introduces a number of such algorithms to perform arithmetic using

HODLR matrices. These algorithms serve as a baseline for the HSS

arithmetic presented in Section 6.2.

6.1 HODLR arithmetic

We introduce some algorithms for performing arithmetic with HODLR

matrices. One of the most basic, yet essential operations is the computa-

tion of the matrix-vector product

x → Ax ,

where A is a matrix partitioned according to (6.1) and x a vector of

similar size. Then, Algorithm 6.1 computes the matrix vector product in

a straight-forward manner. As mentioned earlier, we can modify the

procedure Block MatVec(A,x)

Partition x � [x
1
, x

2
]ᵀ

y
1
← A

11
x

1

y
1
← y

1
+ A

12
x

2

y
2
← A

22
x

2

y
2
← y

1
+ A

21
x

1

return y � [y
1
, y

2
]ᵀ

end procedure
Algorithm 6.1: A simple algorithm for the

multiplcation of a two-by-two block ma-

trix A with a vector x.

above algorithm to be called recursively on the diagonal blocks. This

yields Algorithm 6.2. We would like to know the computational cost of

Algorithm 6.2 before we proceed. To determine this, we need to make

some assumptions regarding the HODLR structure of A. Firstly, we

assume that A is square and of order n, i.e. A ∈ Cn×n
. Moreover, we

assume that the HODLR rank is k, i.e., the rank of all off-diagonal blocks

is bounded by k. Finally we have to make an assumption about the depth

of the block cluster tree. As it is unreasonable to continue the hierarchical

partitioning once the size of leaf partitions match the rank k, we assume

that

2
L−1 ≈ n

k
. (6.2)
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procedure HODLR MatVec(A,x)

if A is in HODLR format then
Partition x � [x

1
, x

2
]ᵀ

y
1
← HODLR MatVec(A

11
, x

1
)

y
1
← y

1
+ A

12
x

2

y
2
← HODLR MatVec(A

22
, x

2
)

y
2
← y

2
+ A

21
x

1

return y � [y
1
, y

2
]ᵀ

else
return y � Ax

end if
end procedure

Algorithm 6.2: Algorithm for matrix-

vector multiplication of a HODLR matrix

A with a vector x.

Then, the total amount of work (number of FLOPs) W(n , k) to execute

Algorithm 6.2 amounts to

W(n , k) �
L∑

l�1

2 · 2l−1
n

2
l−1

k +
n2

2
L−1

� 2(L − 1)nk +
n2

2
L−1

� 2nk log

n
k
+ nk � O(kn log n). (6.3)

This is an encouraging result, considering the O(n2) cost of matrix-vector

multiplication with a dense matrix.

Similarly, we construct an algorithm for the addition of two HODLR

matrices A and B with identical block structures. Algorithm 6.3 reveals

procedure HODLR Add(A,B)

if A and B are in HODLR format then
C

11
← HODLR Add(A

11
, B

11
)

C
22
← HODLR Add(A

22
, B

22
)

Perform low-rank addition C
12
← B

12
+ B

12

Perform low-rank addition C
21
← B

12
+ B

21

return C �

[
C

11
C

12

C
21

C
22

]
else

return C � A + B
end if

end procedure
Algorithm 6.3: Algorithm for the addition

of two HODLR matrices A and B with

identical block structure.

one of the main caveats of hierarchical matrix, that is, ranks tend to

grow, when arithmetic is performed. The simple addition of two low-

rank matrices of rank k, in Algorithm 6.3 results in a low-rank matrix

of rank 2k. In practice however, many matrices retain their low-rank

property after arithmetic is performed. Thus, we may need to perform

recompression on each off-diagonal block to maintain the computational

efficiency of our methods.

Other algorithms for matrix arithmetic using HODLR matrices can be

formulated in a similar fashion [25]. For instance, we can formulate

algorithms for computing AB or A−1B, where A and B are HODLR

matrices with compatible clusters, i.e., the column cluster tree of A
should match the row cluster tree of B.
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1: In the majority of the literature the

block-LDR factorization (3.1) is referred to

as block-LU factorization.

Table 6.1: Computational complexity of

common operations using HODLR ma-

trices. A and B denote HODLR matrices

of order n with compatible cluster trees

and maximal HODLR rank k. x denotes a

vector of suitable size.

operation complexity

x → Ax O(kn log n)
x → A−1x O(k2n log

2 n)
B→ A + B O(k2n log n)
B→ AB O(k2n log

2 n)
B→ A−1B O(k2n log n)

Table 6.2: Computational complexity of

arithmetic using HSS matrices. A and B
denote HSS matrices of order n with com-

patible cluster trees and maximum HSS

rank k. x denotes a vector of suitable size.

operation complexity

x → Ax O(kn)
x → A−1x O(k2n)
B→ A + B O(k2n)
B→ AB O(k2n)
B→ A−1B O(k2n)

An algorithm for the inversion of a two-by-two block matrix can be

achieved using the block-LDR factorization (3.1) and the Schur comple-

ment S
11

� A
11
−A

12
A−1

22
A

21
.

1

Algorithm 6.4 outlines such an algorithm

were

procedure HODLR Inverse(A)

if A is in HODLR format then
X

22
← HODLR Inverse(A

22
)

X
11
← HODLR Inverse(A

11
− A

12
X

22
A

21
)

C ←
[

X
11

−X
11

A
12

X
22

−X
22

A
21

X
11

X
22
+ X

22
A

21
X

11
A

12
X

22

]
Recompress bottom-right block of C
return C

else
return A−1

end if
end procedure

Algorithm 6.4: Algorithm to compute the

inverse of the HODLR matrix A, assuming

that it is.

Table 6.1 provides an overview of the computational complexities of

HODLR arithmetic involving either two HODLR matrices or a HODLR

matrix and a dense vector [45]. We observe that all operations are

quasilinear with dependencies of either n log n or n log
2 n, if we assume

the ranks to be a small constant k � n.

6.2 HSS arithmetic

The log-factors in the complexity of HODLR algorithms are a conse-

quence of the nested tree structure, as we would expect for algorithms

involving tree structures. Nested bases allow to improve upon the quasi-

linear complexities to achieve true linear complexity (assuming that

off-diagonal ranks k are constant). Table 6.2 lists the computational cost

of various arithmetic operations involving HSS matrices. To showcase

how the nested bases can be exploited, we present two of the algorithms,

matrix-vector multiplication and solving linear systems involving HSS

matrices.

HSS matrix-vector multiplication

To formulate an algorithm for HSS matrix-vector multiplications, we

consider the recursive definition (5.35) of a HSS matrix A and apply it to

a vector x. Going from the bottom up, we can split the product b � Ax
into the sequence

y(L) �
(
V (L)

) ∗x , (6.4a)

y(l) �
(
V (l)

) ∗y(l+1) , for l � L − 1, L − 2, . . . , 1 (6.4b)

z(1) � B(0)y(1) , (6.4c)

z(l) � U (l−1)z(l−1)
+ B(l−1)y(l) , for l � 2, . . . , L (6.4d)

b � Ax � U (L)z(L) + D(L)x , (6.4e)
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where (6.4a)-(6.4b) traverse the HSS tree structure from the bottom up

and (6.4c)-(6.4e) do so from top to bottom. Algorithm 6.5 implements

this scheme while simultaneously exploiting the blockdiagonal structure

of the involved matrices.

procedure HSS MatVec(A, x)

for all nodes j from the bottom-up do
if j is a leaf node then

Set y(L)j ←
(
V (L)j

) ∗x(J(L)j )
else

Compute y(l)j ←
(
V (l)j

) ∗ [y(l−1)
c

1

y(l−1)
c

2

]
end if

end for
for all nodes j from top to bottom do

if j is the root node then

Compute

[
z(l+1)

c
1

z(l+1)
c

2

]
←

[
0 B̃(l+1)

c
1
,c

2

B̃(l+1)
c

1
,c

1

0

] [
y(l+1)

c
1

y(l+1)
c

2

]
else if j is not a leaf node then

Compute

[
z(l+1)

c
1

z(l+1)
c

2

]
← U (l)j z(l)j +

[
0 B̃(l+1)

c
1
,c

2

B̃(l+1)
c

1
,c

1

0

] [
y(l+1)

c
1

y(l+1)
c

2

]
end if

end for
for all leaf nodes j do

Set b(IL
j ) ← U (L)j + D(L)j x(JL

j )
end for
return b

end procedure

Algorithm 6.5: Efficient algorithm for

matrix-vector computation x → Ax with

a HSS matrix A. c
1
, c

2
denote the indices

pointing to the children elements of j. An

implementation can be found in [46].

We determine the computational work required to compute the HSS

matrix-vector product as for Algorithm 6.5. Assuming that matrix-vector

multiplication with a dense matrix is a O(mn) operation, summing all

operations in (6.4) yields a total work of

W(n , k) ∼ 2
L−1k

n

2
L−1

+

L−1∑
l�1

2
l−1k2

� nk + k2
2

L−1 − 1

2 − 1

∼ nk

� O(kn). (6.5)

Thus, we have eliminated the log-factor in the computational complexity

courtesy of the nested bases and the resulting re-use of matrix-vector

products. A parallel can be drawn to fast-multipole methods where

such nestedness properties are exploited to obtain linear complexity

algorithms [25, 31].

ULV factorization and solver

As we are solving large linear systems, one of the central arithmetic

operations will be the action of the inverse on a vector x, i.e. x → A−1x, as

well as the application of the inverse on a HSS matrix B with compatible

clustering, B→ A−1B. The core idea has been presented in [47] and, a

modification for the application to HSS matrices has later been presented
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(a) step 0

(b) step 1

(c) step 2

(d) step 3

(e) step 4

Figure 6.1: Illustration of the ULV factor-

ization algorithm for HSS matrices. White

blocks indicate zero blocks. Steps 0-3 show

the reduction procedure if off-diagonal

blocks are compressible. If they are not,

leaf nodes are merged as illustrated in

step 4. The matrices in step 3 and 4 are not

scaled to size.

2: The QL- and LQ-decompositions here

are related to the QR-factorization (2.14),

where L is a lower triangular matrix. These

factorizations can be computed with slight

modifications to the algorithms for com-

puting the QR-factorization.

in [45]. We outline the basic idea of the former and refer the reader to

[47] for a detailed description of the algorithm. We use a balanced HSS

matrix as depicted in Figure 6.1a. The algorithm is recursive and operates

in two modes.

For the first mode, let us assume that we are situated at the leaf level L of

the HSS matrix. We observe that the column generators U (L)i at this level

span the HSS block rows. We assume that ki , the number of columns of

U (L)i is strictly smaller than the number of rows mi . Then, by forming

a QL-decomposition
2

of U (L)i , we find an orthogonal transform Q(L)i ,

such that

Ū (L)i �
(
Q(L)i

) ∗U (L)i �

[
0

Û (L)i

]
, (6.6)

which introduces mi − ki zero rows into the HSS block row. This situation

is illustrated in Figure 6.1b. Simultaneously, the right-hand side b(L)i �

b(JL
i ) has been modified to

(
Q(L)i

) ∗b(L)i �

[
b̌(L)i
?

]
, (6.7)

where we have again exposed the first mi − ki rows b̌(L)i . For each of

the modified diagonal blocks

(
Q(L)i

) ∗D(L)i , we now compute its LQ-

factorization, which yields the orthogonal transform W (L)
i , such that

D̄(L)i �
(
Q(L)i

) ∗D(L)i

(
W (L)

i

) ∗
�

[
D̄(L)i ,1,1 0
D̄(L)i ,2,1 D̄(L)i ,2,2

]
. (6.8)

As for the matrix on the right, it has been partitioned to expose the first

(mi − ki) × (mi − ki) block as in (6.6). To account for the action of W (L)
i

on the off-diagonal blocks, we can simply multiply it onto the shared

generator of the row space of the HSS block column V (L)i , which yields

V̄ (L)i � W (L)
i V (L)i �

[
V̌ (L)i
V̂ (L)i

]
. (6.9)

This transformation has to be taken into account for the vector of un-

knowns x(L)i � x(JL
i ), and we write

W (L)
i x(L)i �

[
x̌(L)i
x̂(L)i

]
, (6.10)

where x̌(L)i corresponds to the first mi − ki rows as usual. Figure 6.1c

depicts the matrix A after the application of W (L)
i at each leaf node. Due

to the introduction of the zero rows, the linear system corresponding to

the first mi − ki rows at each node is

D̄(L)i ,1,1 x̌(L)i � b̌(L)i , (6.11)

which we can solve for x̌(L)i through back-substitution. At this stage, we

have to update the right-hand side b̂(L)i , by multiplying the action of all

x̌(L)i with the corresponding blocks of the modified matrix A, which has
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the form

diag

(
Q(L)i

) ∗A diag

(
W (L)

i

) ∗
. (6.12)

Because the block diagonal matrices conform to the cluster of A, we

observe that this is just another HSS matrix. We introduce the vector x̌,

which holds x̌(L)i at the entries JL
i and zero everywhere else. Then, we

can compute the updated right-hand side

b̄ � diag

(
Q(L)i

) ∗b − diag

(
Q(L)i

) ∗A diag

(
W (L)

i

) ∗ x̌ (6.13)

using the HSS matrix-vector multiplication. Ideally this is done in a

way which exploits the zero-blocks that appear in the product. We can

disregard the first mi − ki rows and form a new linear system

Âx̂ � b̂ , (6.14)

where we have stacked the remaining non-zero rows at each node to

form Â, x̂ and b̂. In particular, we have

b̄ �

[
?

b̂(L)i

]
, (6.15)

where b̂(L)i denotes the ki rows that are to be passed on to the next

step. The matrix Â denotes the modified HSS matrix with diagonal

blocks D̄(L)i ,2,2, and generators Û (L)i , V̂ (L)i on the bottom level. On the other

hand, the blocks B(L)i , j , U (L)i , V (L)i at higher levels in the hierarchy remain

unchanged. The resulting linear system is illustrated in Figure 6.1d. Once

the remaining system is solved and x̂ is known, we can recover the

solution x using (6.10).

This brings us to the second mode, in which ki is equal or larger than

mi . In this case, we can not further reduce A. Instead, we merge the leaf

nodes by setting

D(L−1)
i ←

[
D(L)c

1

U (L)c
1

B̃(L)c
1
,c

2

(V (L)c
2

)∗

U (L)c
2

B̃(L)c
2
,c

1

(V (L)c
1

)∗ D(L)c
1

]
, (6.16a)

U (L−1)
i ←

[
U (L)c

1

U (L)c
2

]
U (L−1)

i , (6.16b)

V (L−1)
i ←

[
V (L)c

1

V (L)c
2

]
V (L−1)

i , (6.16c)

for each node i at level L − 1 with children c
1

and c
2
, which yields a

modified HSS matrix with one less level. This is illustrated in Figure

6.1e. The algorithm proceeds by restarting the recursion and by checking

whether the modified system is reducible. If the matrix is simply one

diagonal block, the recursion terminates and the result is computed

using dense arithmetic. Algorithm 6.6 summarizes all of the above in a

high-level overview.

Starting from this, various algorithms can be formulated. By skipping

the application to the right-hand side (6.13) and the solve steps, we can

formulate an algorithm, which implicitly forms the inverse A−1

to be

applied later. More importantly, we can formulate an algorithm which
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procedure HSS Solve(A, b)

if A is reducible then
for all leaf nodes i do

Reduce to ULV form according to Equations (6.6) to (6.9)

end for
Compute the updated right-hand side b̄ as in Equation 6.13

Form Âx̂ � b̂ according to Equation 6.14

Call x̂ ← HSS Solve(Â, b̂)
Compute x from x̂ according to Equation 6.10

return x
else if A is a full matrix then

return A−1b
else

Prune leaf nodes of A according to Equation 6.16

Call x ← HSS Solve(A, b)
return x

end if
end procedure

Algorithm 6.6: Solves the linear system

where A is a HSS matrix and b a vector

using the implicit ULV factorization. An

implementation can be found in [46].

applies the inverse A−1

to another HSS matrix with compatible tree

clusters, in the sense that A and B have identital row cluster trees [45].

Implementations of this algorithm and the efficient solver can be found

in [45, 46].

6.3 HSS compression

The efficient arithmetic that we have discussed so far becomes irrelevant,

unless we have access to efficient methods for computing the hierarchical

representations of the relevant matrices. There are two main approaches

when it comes to constructing such representations. The first one is

analytical, in the sense that the representation can be constructed from

the underlying analytical expressions of the continuous integral operator

[48]. Such methods are often used in the literature on boundary element

methods and H2

-matrices [40]. Such approaches usually use analytical

expansions such as the multipole expansion to find suitable representa-

tions [40, 48]. This is very problem-specific and generally inapplicable,

especially in the case of weak admissibility conditions, where such ex-

pansions cannot be computed. In many cases, one may suspect that the

matrix can be represented in a hierarchical matrix format, but without

a proof for this. Compression methods aim to find the representation

algebraically, by directly attempting to compute the hierarchical matrix

representation [49]. We present two different algorithms to compute HSS

representations of a matrix.

Direct compression

The first method for compression is a direct method, much in the

same way that a QR-factorization can be used to compute low-rank

representations. Our treatment closely follows the discussion in [49],

where the method was first described.
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7

3

1 2

6

4 5
Figure 6.2: Illustration of numbering in

the HSS hierarchy.

To understand the direct compression algorithm, we start with a concrete

examble of a matrix A, that we partition into a 4 by 4 block matrix

A �


A

11
A

12
A

14
A

15

A
21

A
22

A
24

A
25

A
41

A
42

A
44

A
45

A
51

A
52

A
54

A
55

 , (6.17)

which is numbered according to the post-ordering of the HSS tree

illustrated in Figure 6.2.

Furthermore, we introduce the notation A
3,: to denote the block row

corresponding to node 3, i.e.

A
3,: �

[
A

14
A

15

A
24

A
25

]
,

and so on. In a first step, we determine all the diagonal blocks D
1
� A

11
,

D
2
� A

22
, etc., and set

D � diag(D
1
,D

2
,D

3
,D

4
). (6.18)

Then, we start with node 1 at the leaf level. Using a pivoted QR-

factorization, we can extract a column-space of the first HSS block

row

U
1

[
U ∗

1
A

12
U ∗

1
A

14
U ∗

1
A

15

]
� U

1

[
Ã

12
Ã

14
Ã

15

]
. (6.19)

For an adaptive algorithm, this is done with a rank-revealing QR factor-

ization, such that the numerical rank of the HSS block row is revealed.

As U
1

has the dimensions m
1
× k

1
, the blocks Ã

12
, Ã

14
, Ã

15
are effectively

compressed to have a leading dimension of k
1
. We repeat the same

procedure for the first HSS block column, to extract a row space V
1
, such

that

V
1

[
V ∗

1
A∗

21
V ∗

1
A∗

41
V ∗

1
A∗

51

]
� V

1

[
Ã∗

21
Ã∗

41
Ã∗

51

]
. (6.20)

After processing node 1, A can be written as

A �


U

1

I
I

I




0 Ã
12

Ã
14

Ã
15

Ã
21

0 A
24

A
25

Ã
41

A
42

0 A
45

Ã
51

A
52

A
54

0



V ∗

1

I
I

I

 + D.

We observe that we can safely ignore any previously constructed bases

while proceeding through the compression. Repeating the procedure for

node 2 and taking into account previously compressed parts, we compute

U
2
, V

2
from the compressed HSS block rows and column corresponding

to node 2. This yields

U
2

[
U ∗

2
Ã

21
U ∗

2
A

24
U ∗

1
A

25

]
� U

2

[
B̃

21
Ã

24
Ã

25

]
,

V
2

[
V ∗

1
A∗

12
V ∗

2
A∗

42
V ∗

1
A∗

52

]
� V

1

[
B̃∗

12
Ã∗

42
Ã∗

52

]
,

where we have already identified the blocks B̃
21

and B̃
12

, which make
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up the block B
3
. Consequently, we can rewrite A as

A �


U

1

U
2

I
I




0 B̃
12

Ã
14

Ã
15

B̃
21

0 Ã
24

Ã
25

Ã
41

Ã
42

0 A
45

Ã
51

Ã
52

A
54

0



V ∗

1

V ∗
2

I
I

 + D ,

which already reveals some of the HSS structure. Moreover, we ob-

serve that we can safely ignore any previously constructed bases while

proceeding through the compression.

We move on to node 3, which is the parent of nodes 1 and 2. We extract

the modified HSS block row Ã
3,: and use it to compute the translators

U
3

Ã
3,: �

[
Ã

14
Ã

15

Ã
24

Ã
25

]
� U

3

[
Ā

34
Ā

35

]
.

At this stage we can write A as

A �


U

1

U
2

I
I


©­«

U

3

I
I




0 Ā
34

Ā
34

Ā
43

0 A
45

Ā
53

A
54

0



V ∗

3

I
I


+


B

3

0
0

ª®¬

V ∗

1

V ∗
2

I
I

 + D ,

which partly mirrors the HSS structure shown in (5.36). To continue the

compression for the nodes 4 and 5, we can use the newly compressed

blocks Ā
34

, Ā
35

. We proceed with the compression, by processing nodes

4,5,6 and 7. At the root node 7, there are no HSS block columns or

rows to compress and the method terminates with the extraction of the

off-diagonal blocks B
7
. The procedure is implemented using recursion in

Algorithm 6.7, where we omit the details of how the block columns and

rows are formed as it should be evident from the above discussion.

3: When we overwrite the HSS block rows

and columns, their first/second dimen-

sion has changed, which has to be ac-

counted for.

procedure HSS Compress(A)

Initialize the HSS block structure

for all nodes i in post-order do
if i is a leaf node then

Extract the diagonal block Di
Extract Ui , Vi from HSS block row/column i
Apply U ∗i , V ∗i to the HSS block row/column

3

else
Find children nodes c

1
and c

2

Extract off-diagonal blocks B̃c
1
,c

2

and B̃c
2
,c

1

if i is not the root node then
Extract Ui , Vi from HSS block row/column i
Apply U ∗i , V ∗i to the HSS block row/column

3

end if
end if

end for
return A in HSS format

end procedure
Algorithm 6.7: Direct compression algo-

rithm for HSS matrices. A concrete imple-

mentation can be found in [46].
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This approach to HSS compression is general and will attempt to compress

any matrix A into HSS format. It will also reveal the HSS rank of A,

provided that a rank-revealing QR factorization is used to compute the

steps (6.19) and (6.20). However, its computational complexity is O(n2),
which makes it too expensive for most applications and undermines the

linear complexity arithmetic of HSS matrices.

Much in the same way as HODLR and low-rank approximations require

frequent recompression, this is also the case for HSS matrices. It is

therefore useful to derive a recompression method from the direct

compression Algorithm 6.7, which can be used to recompress matrices

when ranks grow too large. The recompression algorihm is presented in

[49] and implementations can be found in [45, 46].

Randomized compression

In this section we discuss an alternative approach for compression, which

is based on randomized compression and has been first presented in [50].

In most cases, we do not have direct access to the matrix A as assumed

in the previos section. Instead, the matrix is given to us implicitly, in the

sense that we can compute matrix-vector products x → Ax, x → A∗x
and we can access individual entries, i.e. (i , j) → A(i , j). Much like the

randomized methods for low-rank approximation, this method uses

randomized sampling to construct a HSS representation of A. Under the

assumption that the matrix-vector products can be computed in O(n)
operations and assuming that the access to individual entries is a O(1)
operation, we obtain an algorithm which can compress the matrix A in

O(k2n) operations.

To simplify the discussion, we assume that we are given a symmetric

matrix A of order n, which we know to be an HSS matrix of exact HSS

rank k. Let us assume that we have sampled the columns of A using the

m × (k + p) random Gaussian Ω, where p is again a small integer for

oversampling:

S � AΩ. (6.22)

Moreover, let us assume that the diagonal blocks at the leaf level D(L)

are known to us. Then, we observe that we can easily remove the action

of the diagonal block by computing

S(L) � (A − D(L))Ω � S − D(L)Ω. (6.23)

If I
1

are the rows corresponding to the first leaf node in the cluster tree,

we have

S
loc,1 � S(L)(I

1
, :) � A(I

1
, I \ I

1
)Ω(I \ I

1
, :). (6.24)

In other words, we have sampled the first HSS block row of A, which is

spanned by the column generators U (L)
1

. Thus, we can use the techniques

introduced in Chapter 2 to extract the generators. In a similar way,

for non-symmetric matrices, we can obtain the row generators V (L) by

sampling A∗.

The question that arises is how to proceed with the algorithm recursively.

To obtain a sample matrix S(L−1)
of the HSS block rows on the next level,
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we have to eliminate the diagonal element

D(L−1)
� U (L)B(L−1) (V (L)) ∗ + D(L) , (6.25)

which now includes contributions from the off-diagonal blocks B(L−1)
of

the previous level. If we have a way to obtain B(L−1)
, we can therefore

compute

S(L−1)
� (A − D(L−1))Ω � (A − D(L))Ω − (D(L) − D(L−1))Ω
� S(L) −U (L)B(L−1) (V (L)) ∗Ω, (6.26)

to obtain the sample matrix for the next level. Thus, we need to find a

way to determine the entries in the compressed blocks of B(L−1)
after

determining the generators U (L) and V (L). This is where the randomized

interpolative decomposition (2.31) comes into play. By applying the

interpolative decomposition to the transpose of S(L)(I
1
, :) in (6.24), we

select up to k rows
˜I
1
⊆ I

1
, such that

S
loc,1 � U (L)

1
S

loc
( ˜I

1
, :) � U (L)

1
A( ˜I

1
, I \ I

1
)Ω(I \ I

1
, :).

We repeat this for the node 2 to recover U (L)
2

and
˜I
2
. By the nature of the

interpolative decomposition, we find that

S
loc,1 � U (L)

1
A( ˜I

1
, ˜I

2
)
(
U (L)

2

) ∗
Ω(I

2
, :)

+ U (L)
1

A( ˜I
1
, I \ I

3
)
(
U (L)

2

) ∗
Ω(I \ I

3
, :), (6.27)

and, we have succesfully isolated the action of the block associated to

A(I
1
, I

2
). More importantly, we can extract B̃(L)

1,2 by setting

B̃(L)
1,2 � A( ˜I

1
, ˜I

2
), (6.28)

which requires access to only O(k2) entries to determine the action of

the block A(I
1
, I

2
). Moreover, due to the nestedness of the bases, we can

continue the factorization by only considering the selected rows and

columns
˜I
1
∪ ˜I

2
. The method is summarized in Algorithm 6.8. We refer

the reader to [50] for the non-symmetric case and a complete discussion

of the algorithm.

The merit of this algorithm is its low computational cost. It requires O(k)
matrix-vector products and access to O(kn) entries of A. The remaining

operations then require O(k2n) floating point operations. This brings the

overall cost to O(k2n), assuming that the matrix-vector multiplications

can be computed in O(n) operations and that the access to individual

entries is O(1).

In most cases, we are presented with a matrix that we assume to be

compressible, but we do not know its HSS rank k beforehand. In such

cases, it is useful to utilize an adaptive version of the algorithm, which

applies an error estimator to control the quality of the approximation.

A very simple approach using the Frobenius norm estimator (2.29) is

presented in Algorithm 6.9. Here, we simply restart the compression if

the estimator exceeds the specified tolerance ε. The sampling matrix used

to estimate the norm can be reused for the next iteration. This algorithm
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procedure HSS Random Compress(A, k)

Generate initial n × (k + p) random Gaussian matrixΩ
Evaluate S← AΩ via matrix-vector multiplication

for all levels l, starting from L to 1 do
for all nodes i on level l do

if i is a leaf node then
I
loc
← Ii

Ω
loc
← Ω(Ii , :)

S
loc
← S(Ii , :) − A(Ii , Ii)Ωloc

D(l)i ← A(Ii , Ii)
else

Let c
1

and c
2

be the two children of node i
I
loc
←

[
˜Ic

1

, ˜Ic
2

]
Ω

loc
←

[
Ωc

1

Ωc
2

]
S

loc
←

[
Sc

1

− A( ˜Ic
1

, ˜Ic
2

)Ωc
2

Sc
2

− A( ˜Ic
2

, ˜Ic
1

)Ωc
1

]
B(l)i ←

[
0 A( ˜Ic

1

, ˜Ic
2

)
A( ˜Ic

2

, ˜Ic
1

) 0

]
end if
Form interpolative Decomposition S∗ ≈ S∗

loc
(:, Ji)

(
U (l)i

) ∗
Ωi ←

(
U (l)i

) ∗
Ω

loc

Si ← S
loc
(Ji , :)

˜Ii ← I
loc
(Ji)

end for
end for

end procedure
Algorithm 6.8: Randomized HSS com-

pression of a symmetric HSS matrix A
of exact HSS rank k.

Generate initial n × (k + p) random Gaussian matrixΩ
Evaluate S← AΩ via matrix-vector multiplication

Form A
HSS

using S,Ω and access to A
loop

Generate n × r random Gaussian matrix Ω̃
Evaluate S̃← AΩ̃ via matrix-vector multiplication

if ‖S̃ − A
HSS
Ω̃‖2

F
/r ≤ ε2 then

return A
HSS

in HSS format, defined by U (l)i , D(l)i and B(l)i
else

Increase the rank: k ← k + r
UpdateΩ←

[
Ω Ω̃

]
and S←

[
S S̃

]
end if

end loop
Algorithm 6.9: Adaptive version of the

randomized HSS compression algorithm

6.8.

results in a worst-case complexity of O(k3n) and depends largely on

how good the initial guess for k is. More sophisticated approaches which

use local error estimators to estimate the overall error are presented in

[42, 51, 52]. Moreover, restarting approaches can be utilized to not only

re-use the sample matrix from previous steps but also the rows and

columns selected by the interpolative decomposition, as done in [45].

Finally, we note that a fully matrix-free algorithm for the construction of

HSS matrices, purely based on randomized sampling and matrix-vector

products has been proposed [53]. However, this algorithm requires

O(log n) extra matrix-vector products, increasing the overall cost to

O(n log n) assuming linear complexity matrix-vector products.
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Listing 6.1: HssMatrices.jl can be in-

stalled using the package manager Pkg.

using Pkg
Pkg.add("HssMatrices.jl")

0 500 1,000 1,500 2,000

0

500

1,000

1,500

2,000

20
20

21
21

22

22

21
21

20
20

22

22

22

22

Figure 6.3: Result of using the command

plotranks(hssG).

6.4 HssMatrices.jl

The algorithms that we have presented for HSS matrices have been

implemented in the programming language Julia and have been made

available as a Julia package under the name HssMatrices.jl [46]. Its main

purpose is to provide a package for research and development purposes

in the programming language Julia. We give a brief introduction of its

core functionality here.

After installation, we can load it by running using HssMatrices. Let us

construct a simple example matrix hssG, using the direct compression

algorithm:

# A simple example using HssMatrices.jl
using LinearAlgebra
using HssMatrices

g(x,y) = abs(x-y) > 0. ? 1/abs(x-y) : 1.
G = [g(x,y) for x=-1:0.001:1, y=-1:0.001:1]
hssG = hss(G)

In this example, we first generate a discrete representation of the kernel

function g(x , y) � 1/(x − y) in G. The smart constructor hss(G) detects

that G is dense and uses the appropriate algorithm for constructing the

HSS representation. We can visualize the resulting HSS structure by

running

plotranks(hssG)

which yields a result similar to Figure 6.3. We observe that the smart

constructor automatically generates cluster trees for the row- and column-

indices through bisection. If we want more control over the cluster

trees, we can generate them manually and pass them to the constructor.

The command bisection_cluster(2001, leafsize=100) will construct a

cluster tree of length 2001 and maximum leafsize 100 using bisection. We

can pass these cluster trees to the constructor.

rcl = bisection_cluster(2001, leafsize=100)
ccl = bisection_cluster(2001, leafsize=100)
hssG = hss(G, rcl, ccl)

We can also extract the cluster trees of an existing matrix.

clusters(hssG)

We might want to manually specify which algorithm we would like to

use for compression.

hssG = compress(G, rcl, ccl)
hssG = randcompress(G, rcl, ccl, 22)
hssG = randcompress_adaptive(G, rcl, ccl)

The first line is the direct compression Algorithm 6.7, the second one is

the randomized approach (Algorithm 6.8), where a guess for the rank

is specified, and finally the third line is the adaptive version of the

randomized algorithm (Algorithm 6.9).

Due to the functional nature of Julia, we can also specify functions to be

passed on to the constructor. To use the randomized compression, we can

construct a LinearMap object which holds the functions for matrix-vector

multiplication and indexed access. Passing it to the constructor will cause

it to use the efficient algorithm with random sampling, which will then
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4: The performance figures were obtained

on a 2019 MacBook Pro with an Intel i9

Processor clocked at 2.3 GHz and 32GB of

RAM.

call the routines when needed. The following code creates a low-rank

matrix which is then compressed using the randomized algorithm:

U = randn(2001,3);
V = randn(2001,3);
L = LinearMap{Float64}(2001, 2001, (y,_,x) -> U*V'*x, (y,_,x) -> V

*U'*x, (i,j) -> U[i,:]*V[j,:]')
hssL = randcompress_adaptive(L, rcl, ccl)

Alternatively, we could call a specialized constructor to convert the

low-rank matrix into HSS format:

hssL = lowrank2hss(U, V, rcl, ccl)

To check the HSS rank we can run hssrank(hssL) which, unsurprisingly,

returns 3. Another important feature for compression is error control.

We can directly control these parameters and others by passing them to

the constructor.

hssG = hss(G, leafsize=64, atol=1e-6, rtol=1e-6)

Normally, HssMatrices.jl uses default values for these parameters. In

some settings, it is useful to set these parameters once. This can be done

in the following way:

# Example for changing some of the standard parameters
HssMatrices.setopts!(leafsize=64)
HssMatrices.setopts!(atol=1e-9)
HssMatrices.setopts!(rtol=1e-9)
HssMatrices.setopts!(noversampling=10)

Knowing how to generate elementary HSS matrices and how to visualize

them, we are ready to try out some arithmetic. HssMatrices.jl provides

all of the common arithmetic operations that one would expect. We

can define a vector and run the following commands to call the HSS

matrix-vector multiplication and the solve step via ULV factorization.

x = randn(2001,1)
hssA*x
hssA\x

Moreover, HssMatrices.jl implements a number of algorithms for arith-

metic operations using multiple HSS matrices. We can for instance

run:

hssG+hssL
hssG-hssL
hssG*hssL
hssG\hssL
hssL/hssG

One important thing to note is that HssMatrices.jl does not perform re-

compression automatically. Instead, it gives the user control of when and

how to perform recompression. In this way, we avoid over-compressing,

potentially with the wrong tolerances as we assume that the user is aware

of when best to recompress. To perform recompression we can run:

recompress!(hssG, atol=1e-3, rtol=1e-3)

Figure 6.4 shows the performance of selected algorithms implemented in

HssMatrices.jl. In particular, it shows execution times and memory usage

for both compression algorithms, as well as matrix-vector multiplication

and the efficient solver based on the ULV factorization.
4

The experiments

were performed with the matrix K(i , j) � log |xi − x j |, where xi ∈ [0, 1]
is a set of equidistant points on the unit interval. It is clear that all
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Figure 6.4: Timings and memory require-

ments of important HSS algorithms using

HssMatrices.jl.

algorithms apart from the direct compression Algorithm 6.7 achieve

linear complexity as we would expect.

For more information on the library, we invite the reader to take a look

online github.com/bonevbs/HssMatrices.jl [46].

https://github.com/bonevbs/HssMatrices.jl
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In Chapter 3, we saw that the main contributor to the computational

cost of sparse direct solvers is the fill-in that is created during the

factorization. The main idea to pursue is to reduce this cost by using

rank-based approximations. More specifically, the Schur complements

arising in the factorization of matrices stemming from the discretization

of elliptic PDEs are known to be compressible using rank-structured

matrix formats [54–59]. The original idea can be traced back to [32, 55,

57, 60] and since then, variations of this idea have been proposed in the

literature [51, 61–69]. We loosely refer to these methods as hierarchical
approximate solvers as they exploit the hierarchical nature of both the

nested dissection and the rank structure of the fill-in.

In Section 7.1 we offer a rough intuition of why these methods work

before we give an overview of some existing methods in Section 7.2.

A new algorithm is then introduced in Section 7.3, which is the main

contribution of this work. The computational cost of the algorithm is

analyzed in Section 7.4.

7.1 Compressing the fill-in

In Chapter 5 we gained some intuition regarding discrete representations

of Green’s functions and their compressibility using hierarchical matrices.

This is essentially linked to the separability of variables corresponding

to row and column indices in disjoint regions. It is therefore inherently

intuitive that the inverse of the FE Galerkin matrix A−1

, which corre-

sponds to the discrete representation of the Green’s function should be

compressible using hierarchically rank-structured matrices. Bebendorf

and Hackbusch prove that the inverses of Galerkin matrices can indeed

be approximated with H-matrices [54]. [54] also proves useful theoretical

bounds on the off-diagonal ranks of the inverse, based on the quality

of the FE discretization.
1

Similar results are also reported for Schur

complements that arise in the structured factorization of A [55, 58]. We

pursue a purely algebraic approach to motivate the compressibility of

the inverse A−1

and associated Schur complements.

Compressibility of the inverse

The following Lemma introduces a useful relationship between the ranks

of off-diagonal blocks in A and its inverse [70].

Lemma 7.1.1 (Ranks of the block-inverse) Let

A �

[
A

11
A

12

A
21

A
22

]
, B � A−1

�

[
B

11
B

12

B
21

B
22

]
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2: Quasiseparable matrices possess a sim-

ilar property, which can be regarded as

special case of this theorem. Quasisepa-

rable matrices can be understood as HSS

matrices with a leaf size of 1 and HSS rank

1. Consequently, the inverse of a quasisep-

arable matrix is equally quasiseparable.

be invertible block matrices such that A
11
, B

11
∈ Rm

1
×m

1 and A
22
, B

22
∈

Rm
2
×m

2 . Moreover, let A
11

and A
22

be invertible. Then we have

rank B
12

� rank A
12
, (7.1)

rank B
21

� rank A
21
, (7.2)

Proof. As A
11

and A
22

are invertible, the diagonal blocks of B are given

by the inverse of the respective Schur complements

B−1

11
� A

11
− A

12
A−1

22
A

21
, (7.3)

B−1

22
� A

22
− A

21
A−1

11
A

12
. (7.4)

The Schur determinant formula [71, pp. 5] states

det(A) � det(A
11
)det(B−1

22
) � det(A

22
)det(B−1

11
), (7.5)

which implies that the diagonal blocks in B have full rank. Computing

AB � I yields

A
11

B
12
+ A

12
B

22
� 0, (7.6)

A
21

B
11
+ A

22
B

21
� 0, (7.7)

which implies rank A
12

� rank B
12

and rank A
21

� rank B
21

.

Unfortunately, Lemma 7.1.1 is not very useful in finding bounds for a

HODLR matrix A and the off-diagonal ranks of its inverse. The situation

is slightly different with HSS matrices, where the definition of the HSS

rank allows us to prove the following Theorem.

Theorem 7.1.2 (The inverse of HSS matrices) Let A be an invertible
matrices and B � A−1 its inverse. Assume that A is a HSS matrix of HSS
rank k for a given block cluster tree TI×I with invertible diagonal blocks. Then,
the inverse B is also a HSS matrix with clustering according to TI×I and
HSS rank k. 2

Proof. For any diagonal block I l
i × I l

i ∈ TI×I , we can find a permutation

matrixΠwhich exposes the current diagonal block:

ΠAΠ−1

�

[
A(I l

i , I
l
i ) A(I l

i , I \ I l
i )

A(I \ I l
i , I

l
i ) A(I \ I l

i , I \ I l
i )

]
. (7.8)

Applying Lemma 7.1.1 then yields

rank B(I l
i , I \ I l

i ) � rank A(I l
i , I \ I l

i ) ≤ k ,

rank B(I \ I l
i , I

l
i ) � rank A(I \ I l

i , I
l
i ) ≤ k ,

which completes the proof.

To apply this theorem to FE Galerkin matrices, we need to convince

ourselves that these matrices can indeed be compressed into HSS format.

Figure 7.1 shows the Galerkin matrix of a Poisson problem in two

dimensions, compressed into HSS format with two different block cluster

trees. The clustering in Figure 7.1c respects the nested-dissection structure
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Figure 7.1: Stiffness matrix of the two-dimensional Poisson problem. The first figure shows the sparsity pattern due to the nested dissection

reordering. The two figures on the right show it in HSS format using a simple bisection clustering, as well as a conforming clustering on the

right.
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Figure 7.2: Rank structure of the top-level

Schur complement of a Poisson matrix in

two dimensions. In both cases the matri-

ces are compressed as H-matrices with bi-

nary cluster trees using the η-admissibility

condition and a compression tolerance of

ε � 10
−6

.

3: This is equally true for the update ma-

trices (3.10), which have comparable off-

diagonal and HSS ranks as the associated

Schur complements.

of the matrix, whereas the clustering in Figure 7.1b is a straight-forward

bisection cluster. The former yields lower off-diagonal ranks but has

a suboptimal structure compared to the latter. We observe small off-

diagonal ranks, which implies good compressibility. This also implies

that a valid strategy for solving the linear system (1.22) is to compress A
into HSS format, and then solve it using the ULV algorithm 6.6. Such

approaches have been used in situations, in which A can be constructed

directly or efficiently in hierarchical format, such as boundary element

methods (BEM) [40, 72–74]. For FE methods, this has a few drawbacks

however. Chief among them is the missed opprtunity of exploiting the

sparsity of A. Representing A as HSS matrix is in many cases less efficient

than the original, sparse representation. This could be remedied by using

sparse HSS representations. This is not sufficient however, as large zero

blocks are not exploited by the ULV algorithm in the same way as they

are with the structured elimination using nested dissection, as presented

in Section 3.4.

Compressibility of Schur complements

We pursue another idea. Theorem 7.1.2 not only implies that the inverse

is compressible, but also the Schur complements that appear in the

factorization. This can be seen by considering the diagonal blocks of the

inverse, which are the inverses of the associated Schur complements.

As these diagonal blocks are themselves HSS matrices, we know that

their inverses must be HSS as well. We can therefore expect the Schur

complements in the structured factorization of A to be compressible as

well.
3

This property can be further explained by the the properties of the

so-called Dirichlet-to-Neumann operators, which is the integral operator

linked to the Schur complements. A detailed treatment on the matter can

be found in [25].

We investigate the rank structure of the top-level Schur complements as

they appear in the structured elimination. Figure 7.2 shows the Schur

complements for Poisson problems in two dimensions. In the top figure

we use an adaptive clustering to represent it as H-matrix. We generate

the cluster by refining inadmissible blocks into four submatrices. This

procedure is repeated recursively until a minimum block-size is reached.
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Figure 7.3: Rank structure of the top-level

Schur complement of a Poisson matrix in

three dimensions. In both cases the matri-

ces are compressed as H-matrices with bi-

nary cluster trees using the η-admissibility

condition and a compression tolerance of

ε � 10
−6

.
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Figure 7.4: HSS Rank structure of the top-

level Schur complement for the Poisson

matrix in three dimensions. As in previous

examples the matrix is compressed using

a compression tolerance of ε � 10
−6

.

Blocks that remain inadmissible are then represented as dense matrices.

We can clearly see that most blocks in the upper and lower triangular

half of the matrix are admissible, which leads to a good compressibility

also in HSS format. This is illustrated in the bottom figure, which shows

the same matrix, but in HSS format.

The situation becomes somewhat worse in three dimensions. Figure 7.3

depicts the Schur complementss for three-dimensional Poisson problems

and their rank structure in H-format. We observe that many more

blocks on the off-diagonal are not admissible. While we can relax the

admissibility condition to obtain a block diagonal structure, we can

see that many of the resulting blocks have ranks that are too large

to be efficient. Hence, we can expect considerably larger ranks, when

compressing to HSS format as evidenced in Figure 7.4.

While this does not mean that rank-structured techniques are fundamen-

tally ineffective in three dimensions, it does require much larger matrices

for them to become effective.

7.2 Existing methods

As mentioned earlier, the central idea that is pursued here is that the

fill-in is compressible with rank-structured formats. This is an active field

of study and a variety of algorithms have been proposed that exploit

this idea. The key question with these methods is how to efficiently

accumulate the action of the Schur complements which are now repre-

sented in a hierarchically rank-structured format. More precisely, how to

perform the extend-add operation (3.12) and how to compute the fill-in

in compressed format are the two key questions here. Before we proceed

with our algorithm, we give an overview of existing methods, which

aims to point out the differences to our approach.

Arithmetic, based on multifrontal elimination A straight-forward ap-

proach is obtained by replacing dense operations in the multifrontal

elimination with HSS arithmetic. Some entries in this category are

[60, 61, 75]. This requires the development of strategies to form

the fronal matrices and perform the extend-add operation (3.12)

using HSS matrices. In [60], the authors develop algorithms to

permute HSS matrices and extend them with zero blocks. Particular

care has to be taken for situations in which children nodes have

overlaps in their boundaries (3.5). Finally, the HSS blocks need to

be predetermined in a symbolic factorization stage. Consequently,

the algorithm is difficult to implement and not applicable to general

connectivities. In [61], the method is then extended to more general,

unstructured grids. In [75], the authors further integrate the HSS

ULV factorization algorithm 6.6 with the multifrontal method.

This allows them to use reduced representations for intermediate

matrices, which allows them to replace the specialized algorithms

for the HSS extend-add operation with simpler ones. The authors

report a complexity ofO(kn log n) in two dimensions andO(kn4/3)
in three dimensions to compute the factorization.

Arithmetic, based on sequential elimination It is also possible to use

the sequential Gaussian elimination as presented in Section 3.2. In
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[57], a fast direct solver based on sequential Gaussian elimination

and HODLR matrices is proposed. This approach works well on

meshes which can be arranged into concentric annuli, such that the

associated sparsity pattern consists of a tridiagonal and a conical

part [57]. The resulting algorithm requires O(n log
2 n) operations

to solve the system.

Based on random sampling and multifrontal elimination [66, 67, 75]

and equally use structured elimination, however use some form of

randomized sampling and in particular, Algorithm 6.8 to compress

the fill-in. In the case of [75] and [66], the structured extend-add

process is replaced by a “skinny” extend-add operation, which

operates only on the matrix products of the fill-in and a random

matrix. In this way, the fill-in can be reconstructed using ran-

domized compression techniques. [67] similarly makes use of

randomized compression to avoid the extend-add operation, how-

ever we believe there is an oversight concerning the applicability

of the compression algorithm. More precisely, the necessity of

accessing individual entries for compression is not discussed and

it is not evident to us how this could be achieved.

Approximating A first There are also a large number of methods that

attempt to first approximate the matrix A with some hierarchically

structured matrix format, before it is factorized [40, 72–74, 76]. As

these are mostly unrelated to our approach, we do not discuss

them in detail and refer the reader to the original literature.

Our approach can be understood as a hybrid one, as we use both

randomized compression and structured matrix arithmetic to accelerate

the structured Gaussian elimination.

7.3 Approximate factorization

We introduce our algorithm for forming an approximate factorization

A ≈ P � LDR, (7.9)

which can either be used as a fast approximate solver or, alternatively,

as a preconditioner for an iterative method such as GMRES. We are

mainly concerned with the latter, but as we can control the error and

guarantee

‖A − P‖ ≤ ε‖A‖

for a specified ε ∈ R>0
with high probability, we point out that we can

use it as an approximate solver as well. To see how this affects the error

of the solution x, we can turn to a classical result from perturbation

analysis [12]. Solving the perturbed linear system

(A + δF)x̃ � b

with A, F ∈ Rn×n
and δ ∈ R>0

reveals that for any vector norm and

consistent matrix norm, the solution satisfies

‖ x̃ − x‖
‖x‖ ≤ δ‖A−1‖‖F ‖ +O(δ2).
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σ

µ ν

Figure 3.9: Elimination of node σ. Contri-

butions from the children µ and ν have to

be accounted for. (repeated from page 26)

In particular, this means that the solution x̃ � P−1b, computed with the

approximate factorization, satisfies

‖ x̃ − x‖
‖x‖ ≤ ε‖A−1‖‖A‖ +O(ε2) � εκ(A) +O(ε2). (7.10)

Thus, we can control the error in the approximate solution x̃ by controlling

the quality of the approximate factorization P. The caveat is that according

to this error bound, which is conservative, the tolerance ε has to be

adapted to the condition number κ(A), which may lead to a prohibitivly

small ε.

Well-separated nodes

We return to the task at hand, which is to improve the cost of computing

P � LDR by employing rank-structured approximations. We return to

the discussion in Section 3.4 and the elimination degrees of freedom in

A based on the nested dissection E .

Again, we are located at node σ in the elimination tree as depicted in

Figure 3.9. We remind ourselves of the notation Iσ and Bσ; Iσ are the

degrees of freedom that have been designated for elimination, loosely

referred to as the interior of σ. Bσ is the boundary of σ and contains all

degrees of freedom which receive contributions from the elimination of

σ. We recall that we only have to consider Â(σ), which is the submatrix of

Ã(σ) containing all relevant entries (Iσ and Bσ) and proceed to eliminate

the interior degrees of freedom Iσ by factoring

Â(σ) �

[
Ã(σ)ii Ã(σ)ib
Ã(σ)bi Ã(σ)bb

]
�

[
I 0

L̂(σ) I

] [
D̂(σ) 0

0 Ŝ(σ)

] [
I R̂(σ)

0 I

]
(3.6)

D̂(σ) � Ã(σ)ii , (3.7)

L̂(σ) � Ã(σ)bi

(
Ã(σ)ii

) −1

, (3.8a)

R̂(σ) �
(
Ã(σ)ii

) −1Ã(σ)ib , (3.8b)

Ŝ(σ) � Ã(σ)bb − Ã(σ)bi

(
Ã(σ)ii

) −1Ã(σ)ib , (3.9)

where Ã represents the large intermediate matrix in which all nodes

leading up to σ have been eliminated.

Let us imagine that we are eliminating ν at the leaf level. Forming Â(ν) is

as straight-forward as extracting all entries coreresponding to the interior

Iν and the boundary Bν degrees of freedom from Ã(ν). Because ν is a

leaf node, Ã(ν)ii only contains entries from the original matrix. In general,

this is not the case for Ã(ν)bi , Ã(ν)ib and Ã(ν)bb , as the boundary degrees of

freedom Bν might be shared with its sibling node µ, i.e. Bµ ∩ Bν , ∅.

In the general scenario, we can proceed in one of two ways. The straight-

forward fashion is to eliminate node µ, then node ν and then σ. When

we eliminate ν, the matrix Â(ν) already contains contributions from

the elimination of µ in the parts associated with the boundary. These

contributions come in the form of entries extracted from the Schur

complement Ŝ(µ). The alternative is to use the extend-add formalism (3.11)

introduced in Section 3.4. In this case, we store the update matrices Û (µ)
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Bµ Bν

Iµ Iν

(a) interation of well-separated nodes

Box µ

Box ν
Box σ

(b) nested dissection with boxes

Figure 7.5: Illustration of well-separated

nodes. The top figure shows how the sib-

ling nodes interact with eachother only

through their boundaries. The bottom fig-

ure shows how the nested dissection can

be organized using boxes to generate an

elimination tree with this property.

and Û (ν) to keep track of the contributions from previous eliminations.

These two procedures are mathematically equivalent. However, this

choice has important consequences for algorithmic aspects of the method.

The big advantage of the extend-add formalism is its parallel nature. We

can simultaneously factor the sibling nodes µ and ν without having to

account for the fill-in of the other sibling. Merging their contributions

happens at the parent node σ, when we perform the extend-add operation.

In the former, this happens when we have to extract a submatrix from

the Ŝ(µ), which contributes to Â(σ).

Let us now examine the core idea of compressing the dense fill-in using

rank-structured matrices. This either means that we compress and store

the Schur complements Ŝ(µ) , Ŝ(ν) , Ŝ(σ) or their counterparts, the update

matrices Û (µ) , Û (ν) , Û (σ). It is apparent that there are multiple challenges

to overcome. First of all, we would like to form the factorization (3.6)

efficiently. This we seek to overcome by employing efficient algorithms for

hierarchical matrices. Then there is the challenge of compression, which

we adress later on. Perhaps the biggest challenge is how to assemble the

matrix Â(σ) and integrate the contributions from the children nodes µ
and ν, which are represented in some hierarchical format.

We propose to make a slight constraint to the nested dissection, which

will greatly help our efforts in forming an approximate factorization

efficiently. We propose to consider elimination trees E which have the

well-separated property:

Definition 7.3.1 (well-separated nodes) Let E be a (binary) elimination
tree and µ, ν, σ ∈ E , such that µ and ν are the children of σ as usual. Then,
we call µ and ν well-separated nodes, iff their boundaries Bµ and Bν are
disjoint, i.e.

Bµ ∩ Bν � ∅. (7.11)

Then, we call E a well-separated elimination tree iff all sibling nodes in E are
well-separated.

The concept of well-separated nodes is illustrated in Figure 7.5a. This

property implies that sibling nodes µ and ν only interact with each

other through their disjoint boundaries Bµ ∩ Bν � ∅. In other words, the

elimination of µ modifies only entries that are left unmodified by the

elimination of ν and vice-versa. To generate such an elimination tree, we

modify the nested dissection algorithm to separate the degrees of freedom

using disjoint boxes as illustrated in Figure 7.5b. By identifying boundary

and interior degrees of freedom, we make sure that the elimination tree

satisfies the well-separated property.

We return to the elimination of node σ. Because µ and ν are well-

separated, Bµ and Bν are disjoint, and we can form the four disjoint

index sets

Iσ ∩ Bµ , Iσ ∩ Bν , Bσ ∩ Bµ , Bσ ∩ Bν ,

which forms a partitioning of the indices associated with σ. With this

partitioning, we take a renewed look at the matrix Â(σ), which we can
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Ŝ(µ)
ii

Ŝ(µ)
bb

Ŝ(µ)
ib

Ŝ(µ)
bi

Figure 7.6: HSS block structure of the

Schur complement. This partitioning mir-

rors the structure in the nested dissection

to allow easy extraction of submatrices in

either HSS or low-rank format.

4: We also could have chosen to compress

them in HODLR format.

write as

Â(σ) �


Ŝ(µ)ii Ã(µ,ν)ii Ŝ(µ)ib Ã(µ,ν)ib

Ã(ν,µ)ii Ŝ(ν)ii Ã(ν,µ)ib Ŝ(ν)ib

Ŝ(µ)bi Ã(µ,ν)bi Ŝ(µ)bb Ã(µ,ν)bb

Ã(ν,µ)bi Ŝ(ν)bi Ã(ν,µ)bb Ŝ(ν)bb


(7.12)

Let us specify the newly defined matrices. Ŝ
(
µ
)

and Ŝ(ν) are the Schur

complements that are the result of factoring the children nodes µ and ν.
With an abuse of notation, we will name them with global indices, even

though they are “small” matrices and therefore require local indices.

Then, Ŝ(µ)ib indicates Ŝ(µ)(Iσ ∩Bµ , Bσ ∩Bµ) and so on. Similarly, we write

Ã(µ,ν)ib � A(Iσ ∩ Bµ , Bσ ∩ Bν) to indicate entries taken from the original

matrix. Equation (7.12) makes it evident that there is no overlap between

the Schur complements of the children nodes. We identify the same block

structure as in (3.6) and the corresponding blocks Ã(σ)bb , Ã(σ)bi , Ã(σ)ib and

Ã(σ)ii and write the Schur complement as

Ŝ(σ) � Ã(σ)bb − Ã(σ)bi

(
Ã(σ)ii

) −1Ã(σ)ib

�

[
Ŝ(µ)bb Ã(µ,ν)bb

Ã(ν,µ)bb Ŝ(ν)bb

]
−

[
Ŝ(µ)bi Ã(µ,ν)bi

Ã(ν,µ)bi Ŝ(ν)bi

] [
Ŝ(µ)ii Ã(µ,ν)ii

Ã(ν,µ)ii Ŝ(ν)ii

] −1
[

Ŝ(µ)ib Ã(µ,ν)ib

Ã(ν,µ)ib Ŝ(ν)ib

]
.

(7.13)

This contains all the products we need to form σ, as well as the Schur

complement itself, which we need to pass on to consecutive factorization

steps.

Now, if Ŝ(µ) and Ŝ(ν) are HSS matrices, is becomes apparent that we need

to extract the submatrices which appear in Equation 7.12.
4

To make

this simple, we choose to store the Schur complement of the children

nodes µ, ν using a clustering that conforms to the partitioning Iσ ∩ Bµ,
Bσ∩Bµ of σ. This is illustrated in Figure 7.6. This partitioning exposes the

submatrix that will be eliminated next in the top left block. Consequently,

we can directly access Ŝ(µ)ii and Ŝ(µ)bb as HSS matrices. At the same time,

this permits the off-diagonal blocks Ŝ(µ)ib and Ŝ(µ)bi to be extracted as

low-rank matrices. In the following, we simply assume that the Schur

complements have been compressed in HSS format with the described

partitioning. The compression of Schur complements into HSS format

and their reordering is explained later in this Chapter.

Block elimination

Computing (7.13), and the factors Ŝ(σ), L̂(σ), R̂(σ) requires the efficient

application of the inverse

(
Â(σ)ii

) −1

�

[
Ŝ(µ)ii Ã(µ,ν)ii

Ã(ν,µ)ii Ŝ(ν)ii

] −1

. (7.14)
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Iµ Bµ Bν Iν

(a) discontinuous Galerkin

Iµ Bµ Bν Iν

(b) continuous Galerkin

Figure 7.7: Illustration of the connectiv-

ity between µ and ν for finite element

discretizations. Dashed lines represend in-

teractions between Bµ ∩ Iσ and Bν ∩ Iσ

and correspond to entries in Ã(µ,ν)ii and

Ã(ν,µ)ii .

5: The notation with subscripts i can be

misleading here and one might believe

that Ã(µ,ν)ii should be zero. However, i
refers to the interior of the parent node

σ and therefore, it contains the boundary

interaction of Bµ with Bν .

to the right X →
(
Â(σ)ii

) −1X and to the left X → X
(
Â(σ)ii

) −1

. Given the

invertible block matrix

B �

[
B

11
B

12

B
21

B
22

]
and a right-hand side X , with the corresponding partitioning, we can

apply the inverse to the right by using Algorithm 7.1. We can also

Partition X �

[
X

1

X
2

]
, corresponding to the blocks in B

X
1
← B−1

11
X

1

X
2
← X

2
− B

21
X

1

Form the Schur complement S̃ � B
22
− B

21
B−1

11
B

12

X
2
← S̃−1X

2

X
1
← X

1
− B−1

11
B

12
X

2

return X �

[
X

1

X
2

]
Algorithm 7.1: Right-apply block inverse

of B to X .

construct a similar algorithm to apply the block inverse B−1

to the left. It

is clear that an efficient algorithm requires efficient methods to form the

Schur complement S̃, as well as efficient methods to apply B
11

, B
22

and

S̃.

As mentioned previously, we assume that the Schur complements Ŝ
(
µ
)
,

Ŝ(ν) have the block-structure shown in Figure 7.6, which makes the

blocks Ŝ(µ)ii and Ŝ(ν)ii readily available in HSS format. The off-diagonal

blocks Ã(µ,ν)ii and Ã(ν,µ)ii on the other hand, are submatrices of the original

matrix and therefore sparse. They represent the interactions between

the two children nodes µ and ν, restricted to the interior of σ. 5

If

these matrices can be represented by hierarchical matrices with low

off-diagonal ranks, it will allow us to construct an accelerated algorithm

for the block inverse.

For finite element discretizations in two dimensions, these matrices are

essentially banded. Figure 7.7 depicts the corresponding connectivity for

both discontinuous Galerkin and continuous Galerkin discretizations

in two dimensions. Because the interaction of elements is limited to the

elements directly opposed, we see that the right reordering of Bµ and

Bν will ensure that Ã(µ,ν)ii and Ã(ν,µ)ii are banded. It is important to keep

in mind that Ã(ν,µ)ii only corresponds to the dotted lines in Figure 7.7.

Banded matrices, on the other hand, can be well-approximated with

hierarchical matrices, if their bandwidth is small.
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6: For discontinuous Galerkin discretiza-

tions, we make sure that the blocks IL
i at

the leaf level conform to the elements of

the discretization. This can be done by

choosing a HSS block size β, which cor-

responds to a multiple of the number of

degrees of freedom per element. This also

makes the algorithm robust in the case

that the numbering is not conforming.

We let T
(
µ
)

r , T (ν)c denote the row and column cluster trees of Ŝ
(
µ
)

ii and

Ŝ(ν)ii respectively and assume that they share the same tree structure,

which we might have to enforce algorithmically by pruning the cluster

trees. In two dimension, we can guarantee for all I l
i ∈ T

(
µ
)

r and J l
i ∈ T

(ν)
c

that

rank Ã(µ,ν)ii (I
l
i , J \ J l

i ) ≤ nnz Ã(µ,ν)ii (I
l
i , J \ J l

i ) ≤ n
con
, (7.15a)

rank Ã(µ,ν)ii (I \ I l
i , J

l
i ) ≤ nnz Ã(µ,ν)ii (I \ I l

i , J
l
i ) ≤ n

con
, (7.15b)

where n
con
∈ N

0
is a small constant. This constant depends on the

connectivity of A, and therefore on the chosen discretization of the

problem. In other words, the ranks of each block row and column are

bounded, which makes Ã(µ,ν)ii and Ã(ν,µ)ii HSS matrices of rank n
con

according to Definition 5.4.1. Figure 7.7a illustrates that for discontinuous

Galerkin discretization in two dimensions, this constant can be n
con

� 0,

if the block structures conforms to the elements of the discretization.

Coincidentally, this makes it a block-diagonal matrix. For continuous

Galerkin discretizations in two dimensions, as illustrated in Figure 7.7b,

the ideal case is n
con

� 1.

The situation is more complicated in three dimensions. For discontinuous

Galerkin discretizations in three dimensions, the connectivity is still

similar to the situation depicted in Figure 7.7b, as interactions only occur

through opposing faces. As a consequence, (7.15) still holds with n
con

� 0.

For continuous Galerkin discretizations however, n
con

depends on the

size of the matrix and it is evident, whether a similiar argument could be

recovered to guarantee that Ã(ν,µ)ii is compressible.

Finally, we must take care in the construction of the nested dissection

E , in order to guarantee that the degrees of freedom are numbered

correctly, such that the argument applies. More precisely, we need to

ensure that the nodes are numbered similarly across the interface, such

that the interactions illustrated in Figure 7.7 are clustered around the

diagonal. In practice, however, this can be achieved by simply extending

the nested dissection hierarchy in its depth (see Section 8).
6

To construct

Ã(µ,ν)ii in HSS format, we can simply extract the HSS block diagonal

and check how many non-zero entries remain. We can then compress

the HSS matrix using the efficient HSS compression Algorithm 6.8 or

a custom compression algorithm adapted to the compression of very

sparse matrices.

Hence, for FE Galerkin matrices, Ã(µ,ν)ii and Ã(ν,µ)ii can indeed be expressed

as HSS matrices with low HSS rank. We modify Algorithm 7.1 using HSS

arithmetic to form the intermediate Schur complement S̃ in HSS format.

This requires the compression of Ã(µ,ν)ii and Ã(ν,µ)ii with compatible row

and column clusters among Ŝ(ν)ii , Ã(ν,µ)ii , Ŝ(µ)ii and Ã(µ,ν)ii . The procedure

is described in Algorithm 7.2. The formation of A−1B in HSS format

is based on the efficient inversion using the ULV factorization [45, 47].

This algorithm has a complexity of O(k2n), where n is the corresponding

matrix size and k is the maximum HSS rank encountered. Therefore, the

overall complexity of Algorithm 7.2 is O(k2n).



7 Hierarchical approximate solvers 76

Partition X �

[
X

1

X
2

]
, corresponding to the blocks in Â(σ)ii

Extract clusters T (µ)r , T (µ)c and T (ν)r , T (ν)c of Ŝ(µ)ii and Ŝ(ν)ii

Compress Ã(µ,ν)ii into HSS format, conforming to T (µ)r and T (ν)c

Compress Ã(ν,µ)ii into HSS format, conforming to T (ν)r and T (µ)c

X
1
←

(
Ŝ(µ)ii

) −1X
1

X
2
← X

2
− Â(µ,ν)ii X

1

Form S̃← Ŝ(ν)ii − Ã(ν,µ)ii

(
Ŝ(µ)ii

) −1Ã(µ,ν)ii in HSS form

Compute X
2
← S̃−1X

2

X
1
← X

1
−

(
Ŝ(µ)ii

) −1Â(µ,ν)ii X
2

return X �

[
X

1

X
2

]
Algorithm 7.2: Right-apply the block in-

verse of Â(σ)ii using HSS arithmetic.

Computing the left and right transforms

We move on to the computation of the factors L̂(σ) and R̂(σ). The right

transform is given by

R̂(σ) �
(
Â(σ)ii

) −1Â(σ)ib �

(
Â(σ)ii

) −1

[
Ŝ

(
µ
)

ib Ã
(
µ,ν

)
ib

Ã
(
ν,µ

)
ib Ŝ(ν)ib

]
. (7.16)

A close look at Ã(σ)ib reveals that the diagonal blocks Ŝ
(
µ
)

ib and Ŝ(ν)ib are

low-rank as they are off-diagonal blocks extracted from a HSS matrix.

The off-diagonal blocks Ã
(
µ,ν

)
ib , Ã

(
ν,µ

)
ib , on the other hand, are sparse, as

they reflect interactions between the interior degrees of freedom Iσ ∩ Bµ,
associated with box µ and the boundary degrees of freedom Bσ ∩ Bν

associated with box ν. In two dimensions, it corresponds to interactions in

one point. In three dimensions, this interaction corresponds to interactions

along a line. Consequently, we can expect these blocks to have very few

non-zero entries.

The rank of the right transform rank R̂(σ) can therefore be bounded by

rank R̂(σ) � rank Â(σ)ib

≤ rank Ŝ
(
µ
)

ib + rank Ŝ(ν)ib + rank Ã
(
µ,ν

)
ib + rank Ã

(
ν,µ

)
ib

≤ hssrank Ŝ
(
µ
)
+ hssrank Ŝ(ν) + nnz Ã

(
µ,ν

)
ib + nnz Ã

(
ν,µ

)
ib ,

which implies that R̂(σ) is of low-rank itself if Ã
(
µ,ν

)
ib and Ã

(
ν,µ

)
ib are

sufficiently sparse. Thus L̂(σ) and R̂(σ) are themselves low-rank matrices

with ranks bounded by double the maximum HSS rank encountered

among Schur complements plus a small constant. This low-rank property

is well-known for matrices arising from Galerkin discretizations of elliptic

problems and has been documented and exploited in the literature [68, 77].

Here, we have shown how this property is related to the approximability

of Schur complements using hierarchical matrices, another property

which has been proven for these matrices [54–56].

Consequently, we can store the factors L̂(σ) and R̂(σ) in low-rank format
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7: As the update matrices are low-rank,

it is possible that an improved algorithm

can be designed, which passes on update

matrices instead of Schur complements.

The blocks designated for elimination can

then be compressed and inverted directly.

8: The increased cost for accessing indi-

vidual entries is what increases the cost of

HSS compression to O(k2n log n).

represented by their generators. Moreover, as we can apply both

(
Â(σ)ii

) −1

and Â(σ)ib in linear time, we can use a randomized algorithm to compress

and store their low-rank representations efficiently in O(k3n) time [17].

An alternative is to first form a low-rank representation of Â(σ)ib and then

apply the inverse of Â(σ)ii to the left generator. This is summarized in

Algorithm 7.3, which is more efficient in practice.

Extract X
1
�

[
Ŝ

(
µ
)

ib 0
0 Ŝ(ν)ib

]
in low-rank format

Compress X
2
�

[
0 Ã

(
µ,ν

)
ib

Ã
(
ν,µ

)
ib 0

]
into low-rank format

Add Â(σ)ib ← X
1
+ X

2
and recompress

Form R̂(σ) ←
(
Â(σ)ii

) −1Â(σ)ib by applying

(
Â(σ)ii

) −1

to the generator of

Â(σ)ib
Algorithm 7.3: Form the right transform

R̂(σ) in low-rank format.

Compressing the Schur complement

The final step to complete the factorization of σ in compressed form is to

form the Schur complement (7.13) in HSS format, with a block structure

which conforms to the degrees of freedom of the parent node of σ, as

shown in Figure 7.6. To compute a HSS representation of the Schur

complement (7.13) via random sampling (Algorithm 6.8), we require an

efficient way to compute x → Ŝ(σ)x, x →
(
Ŝ(σ)

) ∗x and Ŝ(σ)(i , j).

The first matrix Â(σ)bb consists of HSS matrices on the diagonal and sparse

matrices on the off-diagonal. Therefore, the cost of performing matrix-

vector multiplications x → Â(σ)bb x is O(kn + n
nz

n), where n
nz

is the

maximum number of non-zero entries per line and k the maximum HSS

rank. On the other hand, the cost of accessing entries is O(log n
nz
), if

(i , j) lies in the sparse blocks and O(k log n) if it lies in the HSS blocks.

The update matrix Û (σ) can be written as

Û (σ) � −Â(σ)bi

(
Â(σ)ii

) −1Â(σ)ib � −Â(σ)bi R̂(σ).

Because both Â(σ)bi and R̂(σ) are low-rank matrices, we can compute their

product in O(k2n) operations. Subsequent matrix-vector products can

be computed in O(kn) time and individual entries can be accessed in

O(k) time.
7

Consequently, we can compress the Schur complement Ŝ(σ)

efficiently using the randomized algorithm in O(k2n log n) operations.
8

Then, the matrix-vector products x → Ŝ(σ)x, x →
(
Ŝ(σ)

) ∗x, as well as the

access to individual entries can be adapted to incorporate permutations of

the degrees of freedom. This allows us to compress the Schur complement

S(σ) with a block structure that exposes the correct submatrices for the

next factorization steps as depicted in Figure 7.6. As such, we have

completed the factorization of σ and we meet all the requirements to

continue with the factorization of the parent node.
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Figure 7.8: The switching level L
HSS

de-

termines the nodes E which are factored

using HSS arithmetic.

Forming the factorization

Just as with the direct solvers presented in Section 3.4, we traverse the

elimination tree E from the bottom up, factoring the nodes in the order

prescribed by the elimination tree.

Most of the time, dense arithmetic outperforms HSS arithmetics when the

matrices involved are small, as there is typically an overhead associated

with the HSS datastructures and algorithms. Therefore, we introduce

a switching level L
HSS

and apply regular, structured elimination using

dense matrices at all nodes at levels l > L
HSS

below the switching level

(see Figure 7.8). At the level at which we switch to HSS arithmetic, we

therefore have to compress dense Schur complements to HSS format,

which can be handled by Algorithm 6.7.

There is an added benefit to extending the elimination tree below the

switching level L
HSS

. The compression of Schur complements to HSS

format can be quite sensitive to the order in which the degrees of freedom

appear. Extending the elimination tree below L
HSS

acts like a nested-

dissection reordering and we observe better compressibility of Schur

complements.

We summarize the factorization procedure in Algorithm 7.4. The

for all nodes σ ∈ E from the bottom up do
if l < L

HSS
then

Form Â(σ)ii by extracting the corresponding blocks

Factor Â(σ)ii so that 7.2 can be applied

Compute L̂(σ) and R̂(σ) in low-rank format

else
Factor Â(σ)ii using dense arithmetic

Form L̂(σ) and R̂(σ) using dense arithmetic

end if
if σ is the root node then

Do nothing

else if l � L
HSS

then
Form Ŝ(σ) densely and compress to HSS form

else if l < L
HSS

then
Form Ŝ(σ) directly in HSS form via Algorithm 6.8

else
Form and store Ŝ(σ) as dense matrix

end if
end for Algorithm 7.4: Compute approximate fac-

torization A ≈ LDR � P.

factorization P � LDR is therefore only formed implicitly. Just as we

have done for the structured direct solver in Section 3.4, we require

an algorithm for applying the inverse P−1

� R−1D−1L−1

efficiently to

a vector. This can be done by using Algorithm 3.3, switching to HSS

arithmetic whenever it is applicable.
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7.4 Complexity of the algorithm

To determine the overall cost of forming the approximate factorization,

let us summarize the computational cost of the various operations

encountered for the factorization of each node. Table 7.1 provides an

overview of the computational complexity of the individual steps that

have to be performed at each node above the switching level. Here,

operation operation count

form Â(σ)bb , Â(σ)bi , Â(σ)ii and Â(σ)ib O(knl log nl)
factor Â(σ)ii O(k2nl)
compute L̂(σ) and R̂(σ) O(k3nl)factorization

compress Ŝ(σ) O(k2nl log nl)
apply

(
Â(σ)ii

) −1 O(knl)
apply L̂(σ) and R̂(σ) O(knl)application

apply Ŝ(σ) O(knl)

Table 7.1: Summary of the computational

cost for the operations involved in the

factorization and application at each node.

we have assumed that the ranks of all low-rank matrices (both L̂(σ)

and R̂(σ), as well as off-diagonal blocks of Ŝ(σ)) can be bounded by the

maximum HSS rank k, which is typically the HSS rank of the top-level

Schur complement. Then, we use nl to denote the size of matrices at

level l. Finally, we have omitted the cost of extracting submatrices from

the sparse matrix A, as this is typically not a main part of the cost of

the overall factorization. We also drop any dependency on the number

of non-zero entries per column n
nz

, which is typically a constant for a

given problem. We point out that this may not be the case however, for

instance if p-refinement is considered. The main cost of the factorization

is either the compression of the Schur complement Ŝ(σ) or the formation

of the left and right transforms L̂(σ) and R̂(σ).

Determining the cost of the factorization is mainly a question of inserting

the updated cost at each node into the original calculation (3.15). All

operations below the switching level L
HSS

are decoupled and therefore,

their asymptotic cost is linear in n. This can be explained by the bottom

level of the hierarchy growing proportionally with the overall size of the

matrix. As such, we focus on the portion of the elimination tree, which

is above the switching level L
HSS

. We recall from (3.14) that the relation

between the overall size and the size of matrices at level l is given by

nl ∼ 2
− d−1

d (l−1)n
d−1

d , which follows from geometric consideration of the

nested dissection.

The overall complexity can be determined by summing over all leaves. For

the factorization, the number of operations at each node isO(k2nl log nl+

k3nl). Therefore, the total number of operations required to form P is

W ∼
L

HSS∑
l�1

2
l−1(k3nl + k2nl log nl)

. n
d−1

d (k3

+ k2

log n)
L

HSS∑
l�1

2

1

d (l−1) ∼ n
d−1

d (k3

+ k2

log n)2
1

d L
HSS

∼ k2n log n + k3n , (7.17)
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9: In practice, the off-diagonal ranks k
have a non-trivial dependency on the over-

all size of the matrix n. This dependency

is problem-dependant and therefore omit-

ted in this discussion. For realistic cost

estimates however, this needs to be taken

into consideration.

where we have used that L
HSS
∼ log n. We conclude that the approximate

factorization P can be formed in quasilinear time O(k2n log n + k3n),
under the assumptions that we have made in Section 7.3 and assuming a

constant rank k.
9

A similar calculation can be carried out for the cost of

applying the preconditioner, which results in the linear complexity of

O(knl).
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We present numerical results obtained with the hierarchical precondition-

er/direct solver. We are mainly interested in investigating three questions.

First of all, we wish to investigate the performance of our method as a

preconditioner, especially with respect to h- and p-refinement as these are

typically valid questions that arise in the practical use of finite elements.

For wave problems, we are also interested in how this method behaves

with increasing wavenumbers, as this is known to be a challenging prob-

lem for preconditioning due to the indefinite nature of the problem. We

are also interested in verifying the computational complexity of forming

and applying the factorization. Finally, we recall that the computational

cost is also a function of the maximum off-diagonal rank k, encountered

in the factorization. As such, we wish to investigate the scaling behavior

of the ranks in the aforementioned scenarios.

As the main goal is to consider the use as a preconditioner, performance

will be mainly measured in terms of GMRES performance. To this end,

we use the restarted version of the GMRES Algorithm 4.2, where the

Arnoldi vectors are recomputed every 10 iterations. We consider the

number of iterations i, required for the relative residual of the solution

xi to meet a specified threshhold ε
sol

, such that

‖P−1Axi − P−1b‖
2
≤ ε

sol
‖P−1b‖

2
. (8.1)

We terminate it once a relative residual smaller than ε
sol

� 10
−9

is

achieved. Alternatively, we terminate the computation if a maximum of

30 GMRES iterations is exceeded.

8.1 Parameters

To avoid discussing parameters for each experiment, let us discuss the

standard parameters that we use for most experiments. Throughout

this chapter we use HSS compression with a tolerance of ε
HSS

� 10
−6

to

compress Schur complements. We use this tolerance both in the absolute

and relative sense. This implies that we keep refining until the tolerance

is met, either in the absolute or the relative sense. In a similar way,

we use 0.5 · ε
HSS

as the tolerance for the compression of the low-rank

approximations of L̂(σ) and R̂(σ). The block-size of the HSS compression

is adapted to match the number of degrees of freedom in each element.

In two dimensions, we use

β � 10

(p + 1)(p + 2)
2

,

which corresponds to the number of degrees of freedom in 10 elements if

a discontinuous Galerkin approximation of order p is used. Similarly,
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we use

β � 180

(p + 1)(p + 2)(p + 3)
6

in three dimensions, corresponding to 180 elements. These choices are

based on our own experiences and are therefore unlikely to be optimal.

For optimized implementations, the block size should ideally be adapted

using a heuristic to guarantee that blocks are only compressed if there is

a performance benefit.

As discretizations, we consider both continuous Galerkin (CG) and

interior penalty discontinuous Galerkin (IPDG), discussed in [78]. The

domain is typically discretized using a triangular mesh and the nested

dissection is generated by recursively bisecting the mesh. For IPDG

formulations, we proceed with this until there are less than 10 elements in

each box, for CG until there are less than 20 elements per box. The depth

of the hierarchy L
HSS

, which determines performance, is typically chosen

to start 4 levels from the bottom of the nested dissection hierarchy. In

this way, we create an adaptive hierarchy which becomes deeper under

h-refinement.

8.2 Poisson problem

We consider the Poisson problem (1.4) on the unit squareΩ ⊂ R2

in two

dimensions, with homogeneous Dirichlet boundary conditions gD � 0

on the entire boundary and right-hand side f � 1.

The first thing that we would like to investigate is how the performance of

the direct solver is affected by h- and p-refinement, as those are the major

mechanisms for increasing the fidelity of finite element approximations.

Moreover, we seek to understand whether we can expect consistent

performance irrespective of whether a continuous or discontinuous

Galerkin approximation is chosen. Figure 8.1 depicts the relative residual

over each GMRES iteration for various discretizations with a polynomial

degree of p � 4. Clearly, the preconditioner does its job and we observe

swift convergence to the solution. From this figure alone, we do not

observe any systematic difference between CG and IPDG discretizations.

To study things systematically, we repeat the above experiment for

various values of 1/h and ε
HSS

and record the number of GMRES
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Figure 8.1: Relative residual for each itera-

tion of the preconditioned GMRES applied

to the Poisson problem. The figure on the

left depicts the case of a CG discretization

with p � 4, the figure on the right shows

results obtained with an IPDG discretiza-

tion of order p � 4.
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Figure 8.2: Preconditioner peformance un-

der h-refinement for the Poisson problem.

All experiments use a polynomial order of

p � 1 and the values for 1/h range from

iterations required to achieve the prescribed tolerance ε
sol

. In addition,

we record the largest rank k
max

encountered in either the off-diagonal

blocks of the Schur complements Ŝ(σ) or the low-rank approximations of

L̂(σ), R̂(σ). This usually corresponds to double the HSS rank of the top-level

Schur complement. Figure 8.2 depicts the results of this study. Right away,

we observe that it is important to control the quality of the compression

via ε
HSS

and to ensure that the approximate factorization does a good job

of approximating A. Moreover, there is an upwards trend in the number

of iterations with decreasing h. This can be explained by the increasing

depth of the hierarchy L
HSS

. More precisely, we introduce errors due

to the approximative nature of the compressed Schur complements.

These cause further errors in the next elimination step and lead to an

accumulation of errors. We can expect this effect to be more pronounced

with increased depth L
HSS

. Consequently, we have to overcome this

effect by adapting the compression tolerance ε
HSS

.

An encouraging trend for the ranks k
max

is that they all seem to converge

towards the same value as we increase the compression accuracy. This

implies that the singular values decay abruptly once this rank is reached

and we therefore do not have to further increase the compression accuracy

to guarantee convergence. It is perhaps even more remarkable that this

value coincides for CG and IPDG discretizations. This suggests that

the nature of the finite element discretization itself does not play an

important role for the performance of our method. Moreover, the growth

of the ranks seem to slow down with increasing n.

To have a complete picture, we repeat the experiment, this time with

p-refinement, which is depicted in Figure 8.3. Similar to what we have

observed for h-refinement, it is clear that we need to control the quality

of the approximation via ε
HSS

, to ensure that the preconditioned GMRES

converges fast. This time around, the ranks grow more substantially, in
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Figure 8.3: Preconditioner peformance un-

der p-refinement for the Poisson prob-

lem. All experiments were performed

with 1/h � 64 and polynomial orders

p � 1, 2, . . . , 6.

1: We remind ourselves that the wave-

length is given by

λ �
2π
κ

�
2πc
ω
.

what appears to be linear growth. Moreover, the behavior is comparable

for both types of discretizations.

Overall, it seems that the method works better with CG discretizations

as with IPDG discretizations. This observation is hardly conclusive,

however, as there are many factors which play into this. This includes the

actual error of the discretization, the spectrum of off-diagonal blocks in

the resulting matrix and the different connectivities in the matrices. We

do remark, however, that the trends seem to be quite similar across the

two types of discretizations and we therefore conjecture that observations

for one type of discretization also have some validity for the other.

8.3 Helmholtz problem

We move onto the Helmholtz problem 1.1.1 and indefinite, elliptic op-

erators. We keep the domain, discretization, boundary conditions and

right-hand side the same as before. The discretization of oscillatory

problems requires some extra care in the choice of p and h. This is mainly

due to the pollution effect, where the finite element error is dominated

by a so-called pollution term, whose contribution can be understood

as the phase difference between the correct solution and its numerical

approximation [79, 80]. We use the rule of thumb for standard techniques,

which is to have a minimum of 10 grid points per wavelength [81].
1

The following results are obtained with preconditioned GMRES for an

IPDG discretization of the Helmholtz problem with p � 2 and h � 1/64

for exponentially increasing wave numbers ranging from κ � 4 to

κ � 64. For all wavenumbers, the preconditioner is able to ensure

fast convergence. This includes the higher wavenumbers, which are

typically more difficult to handle with conventional preconditioning
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Figure 8.5: Relative residual at each it-

eration of preconditioned GMRES for

the IPDG discretization of the Helmholtz

problem 1.3 with h � 1/64 and p � 2. The

tests were performed using 3- and 6-level

hierarchies and a compression tolerance

of ε
HSS
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−6

.
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Figure 8.6: Relative residual at each it-

eration of preconditioned GMRES for

the IPDG discretization of the Helmholtz

problem 1.3 with h � 1/64 and p � 2.

The figure shows results with a decreased

accuracy of ε
HSS

� 10
−4

.

techniques. We make the observation that the performance decreases

as the depth of the hierarchy increases. We have already observed

this indirectly with the Poisson problem, where we saw an upwards

trend when performing h-refinement and the associated increase in the

depth of the nested dissection hierarchies. This is most likely due to the

increased accumulation of errors that comes with deeper hierarchies.

We can amplify this effect by decreasing the compression tolerance to

ε
HSS

� 10
−4

. The results are depicted in Figure 8.6. These results confirm

the notion that the compression tolerance has to be carefully chosen

to ensure an accurate approximation by the preconditioner. This also

depends on the depth of the hierarchy and therefore on the size of the

matrix, as we have already observed for the Poisson problem. Curiously,

it seems that the preconditioner fares better with higher wavenumbers

when it comes to increasingly deep hierarchies.

One of the most pressing questions for wave problems is how the

method performs in the limit of high wavenumbers. Figure 8.7 depicts

the number of GMRES iterations required to achieve a tolerance of

10
−9

, as well as the maximal rank k
max

for exponentially increasing

wavenumbers ranging from κ � 2 to κ � 256. The encouraging part is

that the number of iterations remain constant, even for problems with

very high wavenumbers. As for the ranks, we observe that they slowly

increase as the wavenumbers grow. This relation is roughly linear
2

and the maximum HSS rank of the Schur complements k
max
/2 can be
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are depicted. On the right, the maximum

among HSS ranks of Schur complements
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Figure 8.8: Preconditioner performance

for the Helmholtz problem under h-

refinement. n is the number of degrees

of freedom.
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Figure 8.4: Top-level Schur complements

for the Helmholtz problem with h � 1/64,

p � 2, κ � 32 and ε
HSS

� 10
−6

.

2: Note that the axis for κ is logarithmic

approximated by the relation

max

σ∈E
hssrank(Ŝ(σ)) � k

max

2

≈ 55 + 2

l
λ

� 55 + 2

lκ
2π
, (8.2)

where l is the width of the domain. This result is remarkably consistent

with results stated in [25, 63]. This estimate is also shown in Figure 8.7 as

dashed line. An intuitive explanation for this increase in ranks is that the

dissipative nature of the elliptic operator only applies to high-frequency

components of the solution which are above the frequency of the solution.

An increase in the wavenumber therefore corresponds to less information

which is dissipated and therefore, higher ranks [25].

We proceed to examine the performance for Helmholtz problems under

h- and p-refinement. To this end, we run our experiments with varying

discretizations with a fixed wavenumber of κ � 19.5. Figure 8.8 shows

the number of iterations and the maximal ranks under h-refinement. As

with the Poisson problems, we note that there is only a slight increase in

the number of iterations, which again can be attributed to the increasing

depth of the nested dissection hierarchy. Similarly, we observe only a

slight increase of the ranks, which is roughly logarithmic in relation to

the overall number of degrees of freedom. These results suggest that

the method remains efficient as both ranks and iterations grow slowly

compared to the problem size. This hypothesis is further investigated

in Section 8.4. Figure 8.9 shows results for p-refinement obtained with

varying mesh widths of h � 1/32, h � 1/64 and h � 1/128. We increase

the polynomial degree from 1 to 8 for 1/32, and from 1 to 7 for h � 1/64

and h � 1/128. Again, we observe that the rank growth is approximately

linear in the degrees of freedom.
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Figure 8.9: Preconditioner performance

for the Helmholtz problem under p-

refinement. n is the number of degrees

of freedom.
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Figure 8.10: Solution of the Helmholtz problem 1.3 on a guitar shaped domain. The figure on the left shows the nested dissection reordering.

The remaining figures illustrate solutions obtained with the wave numbers 1, 4 and 8.

So far, we only considered problems formulated on the square domain

Ω � [−1, 1]2. To understand how our method performs on non-standard

domains, we apply it to the Helmholtz problem 1.1.1 formulated on a

guitar shaped domain, shown in Figure 8.10. This domain has a height of

H � 40 and a width of 16. We select an average mesh width of h
0
� H/100

and a polynomial degree of 4. This amounts to a total of 71760 degrees

of freedom. We choose zero Dirichlet boundary conditions gD � 0 on

the exterior of the guitar and zero Neumann boundaries gN � 0 at the

sound hole. The constant right-hand side is kept constant f � 1, which

corresponds to a uniform excitation on the whole domain.

The nested dissection of the domain is depicted on the left of Figure 8.10.

Different colors imply different supernodes in the elimination tree. On

the right, solutions for the wavenumbers κ � 1, 4, 8, 12 are depicted.

We investigate how the method performs with varying wavenumbers.

Figure 8.11 shows the residual history of preconditioned GMRES for

various wavenumbers and for various depths of the preconditioner

hierarchy (the HSS switching level). Figure 8.12 depicts the situation

for a reduced accuracy of ε
HSS

� 10
−5

. This time, the effect observed in
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Figure 8.11: Relative residual for various
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main with h � 1/100 and p � 4 and a

compression tolerance of 10
−6

. In this ex-

ample we only control the compression in

the relative sense.
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Figure 8.12: Relative residual at for vari-

ous wave numbers on the guitar shaped

domain with h � 1/100 and p � 4 and

a compression tolerance of 10
−5

. In this

example we only control the compression

in the relative sense.
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Figure 8.13: Randomly generated hetero-

geneous zones in the case of five different

values for µ.

Figure 8.5 is more pronounced. This emphasizes the need to control the

compression tolerance in order to guarantee good results. An interesting

observation is that this effect seems to affect lower frequencies more

strongly than high frequencies.

Heterogeneous problems

We consider heterogeneous problems in which material coefficients vary

in space. One such example is the heterogeneous Helmholtz problem

−∇ · (µ∇u) − ω2u � f , (8.3)

subject to suitable boundary condition and right-hand side. Here µ :

Ω → R is a material distribution governing the wavespeed c �
√
µ.

This problem can be particularly challenging if there are high contrasts

in the material distribution [82]. One approach to overcome this is to

adapt the nested disection so that separators conform to the high contrast

interfaces. To test this hypothesis, we formulate the heterogeneous

Helmholtz problem on a square domain, with piecewise constant µ. We

choose µ to conform to the elements and generate disparate zones with

different material coefficients. To ensure that these form large coherent

zones, we generate them by picking random points on the unit square

and then growing them outwards like a crystal until they touch. Figure

8.13 depicts such a material distribution with 5 different zones.
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regular dissection conforming dissection

µ ∈ k
max

iters k
max

iters

{0.6861, 0.7533, 1.2181} 77 3 108 4

{10
−1 , 1, 10

1} 78 4 103 4

{10
−2 , 1, 10

2} 77 5 115 4

{0.5585, 1.2581, 1.3635, 1.3395, 0.6693} 77 3 102 4

{10
−2 , 10

−1 , 1, 10
1 , 10

2} 81 5 101 6

{10
−4 , 10

−2 , 1, 10
2 , 10

4} 64 - 76 25

Table 8.1: Comparison of both dissection

methods for the heterogeneous Helmholtz

problem with κ � 16.
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Figure 8.14: Solution of the Helmholtz

problem with heterogeneous material co-

efficients. Both figures depict solutions for

κ � 16 with 3 and 5 zones.

To test both variants of the nested dissection, we use an IPDG dis-

cretization of p � 2 and 1/h � 32 with a constant wavenumber of

κ � 16. We use homogeneous boundary conditions and a constant

right-hand side. Figure 8.14 depicts the numerical solutions with 3 and 5

zones respectvely, where µ takes the values {0.6861, 0.7533, 1.2181} and

{0.5585, 1.2581, 1.3635, 1.3395, 0.6693}.

We compare both methods for generating a nested dissection. To test the

methods, we compare GMRES performance across a range of contrast

ratios for µ. Table 8.1 reports our results for a wavenumber of κ � 16.

We observe that for moderate to high contrast ratios, there is no benefit

of using the conforming dissection method. Conversely, it seems that

the conforming dissection leads to an increase in ranks, which can be

attributed to the separators not being regular in shape. By this we mean

that the separators are far away from being circles, which is known to

reduce the approximability using hierarchical matrices. This is related to

the approximate separability of the Green’s function [59], and its relation

to geometric properties of the underlying domain as discussed in Chapter

5. As a consequence, we can regard the problem as finding a balance

between shape-regularity of the separators and conforming to the high-

contrast interfaces. The results presented in Table 8.1 clearly indicate that

there is little to no payoff for the latter, unless contrasts are very high.

However it is questionable whether such a discretization and problem

formulation makes sense in these situations. Similar experiments were

carried out at various other wavenumbers up to κ � 64, with similar

outcome.

Elastic wave equation

To test our method on systems of partial differential equations, we apply

it to an IPDG discretization of the static elastic wave equations. The

specific type of the discretization can be found in [83, 84]. We consider

a heterogeneous problem on the square domain Ω � Ω
1
∪ Ω

2
, with

Ω
1
� [−1, 0] × [−1, 1] and Ω

2
� (0, 1] × [−1, 1], where the material

parameters are constant in each of the respective subdomains: µ � µ
1
,

λ � λ
1

inΩ
1

and µ � µ
2
, λ � λ

2
inΩ

2
. We choose µ

1
� 1, µ

2
� 2, λ

1
� 1

and λ
2
� 2. As the source term we choose the constant f � [0, 1]ᵀ and

we set zero Dirichlet boundary conditiones on all sides. The mesh is a

regular mesh and conforms to the interface in the center of the domain.

We test the performance of the preconditioner on the described prob-

lem under h- and p-refinement. Figure 8.15 and Figure 8.16 depict the

respective results which are very similar to the results obtained for the

Helmholtz problem, however with roughly double the ranks. Because

the system has two components, the problem is double the size and we
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Figure 8.15: Preconditioner performance

for the elastic wave equations (1.7) under

h-refinement.
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Figure 8.16: Preconditioner performance

for the elastic wave equations (1.7) under

p-refinement.

have roughly the same relative ranks as in the case of the Helmholtz

problem.

Frequency-domain elastic wave equation

To test our method on more application-oriented problems, we apply it to

IPDG discretizations of the frequency-domain elastic wave equation (1.8).

It corresponds to the eigenvalue problem of the elastic wave equations.

Problems such as these arise in the context of subsurface modeling and

direct waveform inversion [5]. We consider the Marmousi II velocity

model [85], which is a common benchmark test. It models soil deposits

off the coast of Madagascar, measured using seismic imaging techniques

akin to waveform inversion. The original model is 17km wide and

3.5km deep. We use the soil portion of the model and represent it in

the computational domainΩ � [0, 17000] × [−3500,−450]. As boundary

conditions, we choose zero Dirichlet boundary conditions gD � 0 on

the bottom and zero Neumann boundary conditions gN � 0 on the

remaining three sides. As source term we use a dipole of the form

f � (r − rs) exp

‖r − rs ‖2

2R2

,

where r � [x , y]ᵀ is the radius vector, rs � [−1250, 8500]ᵀ the source

location and R � 100 is the width of the dipole.

For our experiments we use two meshes. The first mesh is generated

using a segmentation of the material distributions, to conform to the

sharp interfaces in the material parameters. The other mesh is a simple,

regular mesh. We use meshes with approximately 40 or 80 elements
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Figure 8.17: Material distribution of ρ,

µ and λ for the Marmousi II test case.

The domain is discretized using the IPDG

method with h � 3050/40 and p � 1.

in the vertical direction, which amounts to a total of 54642 or 186868

elements in the case of the conforming mesh. The elimination tree is

again generated by hierarchical subdivision, while keeping the aspect

ratio of the boxes close to one.

For the conforming mesh, the material distributions ρ, µ and λ are

approximated by piecewise constant functions in each element. Figure

8.17 depicts these material distributions on the conforming mesh. For the

regular mesh, the material distributions are approximated within the

discontinuous Galerkin function space on the mesh.

We solve the problem for two frequencies, ω � 2π and ω � 8π. The com-

ponents ux and uy of u are shown for ω � 2π in Figure 8.18. Solving such

−5
0
5

·10−4

u x

−5
0
5

·10−4

u
y

Figure 8.18: x- and y-components of the

solution at a frequency of ω � 2π.

problems can be challenging as it includes many elongated high-contrast

interfaces which are typically hard to precondition. The encouraging

results in Section 2 indicate that we can expect good results without

having to conform to material interfaces with our nested dissection.

Figure 8.19 shows the relative residual at each GMRES iteration for both

frequencies. For the purpose of comparison, we apply the incomplete

LU factorization (ILU) as a preconditioner, as it represents a popular,

general-purpose preconditioning technique. We observe that using our

method, we are able to precondition the problem and achieve a satisfying

convergence rate, while the ILU preconditioner fails. This illustrates the

robustness of the hierarchical preconditioner. The only problem-specific

knowledge that is required is a hierarchical partitioning of the domain. If

this partitioning is badly chosen, the method might fail or deteriorate due

to Schur complements not being compressible. As we have computed

the nested dissection based purely on the aspect ratio of the bounding
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Figure 8.19: Performance of the precondi-

tioner compared to ILU. Number of GM-

RES iterations for ω � 2π and ω � 8π
with non-conforming and conforming dis-

cretizations.

3: All of the following performance fig-

ures were obtained on a 2019 MacBook

Pro with an Intel i9 Processor clocked at

2.3 GHz and 32GB of RAM.

boxes, we have demonstrated that it is quite robust, even if there are

high-contrast interfaces in the domain.

8.4 Scaling and performance

One of the claims that we have made is that the approximate factorization

can be formed in quasilinear time, assuming that the ranks stay more

or less constant. We seek to validate these claims through timings of

our reasonably optimized, single-threaded Julia code.
3

Table 8.2 and

Table 8.3 list timings, as well as memory requirements for forming and

applying the factorization. The experiments were carried out for the two-

dimensional Poisson and Helmholtz problems respectively, on meshes

ranging from h � 1/22 to h � 1/512 with p � 1. The corresponding data

is also depicted in Figure 8.20. We observe that the cost of application,

construction and memory requirements roughly double from row to

row. This is consistent with the (quasi-)linear complexity postulated

in Section 7.4. With increasing problem size, a bigger portion of the

1/h n L
HSS

application factorization memory iters k
max

22 2904 4 0.00311 s 0.03921 s 4.8530e7 B 3 44

32 6144 5 0.00684 s 0.36351 s 1.4575e8 B 3 79

45 12150 7 0.01442 s 0.27612 s 3.5953e8 B 3 81

64 24576 7 0.05801 s 0.50404 s 8.2917e8 B 4 93

90 48600 9 0.10054 s 1.17373 s 1.8655e9 B 4 100

128 98304 9 0.41032 s 2.42477 s 3.9659e9 B 4 106

181 196566 11 0.32823 s 5.50095 s 8.4243e9 B 4 106

256 393216 11 0.64399 s 18.6995 s 1.7571e10 B 4 106

362 786264 13 1.91412 s 40.9561 s 3.6662e10 B 6 106

512 1572864 14 4.00240 s 114.050 s 7.5003e10 B 6 106

Table 8.2: Factorization and application

times, as well as memory consumption for

the Poisson problem under h-refinement

in two dimensions.
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Figure 8.20: Timings and memory re-

quirements of the preconditioner under

h-refinement in two dimensions. The fig-

ure on the left shows factorization times

on the top and application times on the bot-

tom, while the figure on the right shows

memory requirements.

1/h n L
HSS

application factorization memory iters k
max

22 2904 4 0.00318 s 0.04152 s 4.9294e7 B 3 48

32 6144 5 0.00744 s 0.10067 s 1.4819e8 B 3 81

45 12150 7 0.01418 s 0.21265 s 3.6590e8 B 3 84

64 24576 7 0.03072 s 0.51274 s 8.3719e8 B 4 96

90 48600 9 0.10588 s 1.15436 s 1.9002e9 B 4 102

128 98304 9 0.12941 s 2.98963 s 3.9888e9 B 4 106

181 196566 11 0.25293 s 5.99976 s 8.6168e9 B 5 106

256 393216 11 0.64557 s 19.0612 s 1.7669e10 B 5 106

362 786264 13 1.96164 s 42.4397 s 3.6981e10 B 7 106

512 1572864 13 3.69466 s 114.259 s 7.5168e10 B 7 106

Table 8.3: Factorization and application

times, as well as memory consumption

for the Helmholtz problem under h-

refinement in two dimensions.

hierarchy is processed using compressed arithmetic using both HSS and

low-rank matrices, which keeps the cost quasilinear. This comes at the

cost of potentially larger errors due to increased error accumulation,

such that GMRES iterations should also be taken into account. Moreover,

the efficiency of the method is determined by the rank growth, which

we observe to be moderate. For the last three values of h, we observe

a slight increase in the factorization time. This is likely caused by the

high memory requirement, which exceeds the memory of the machine

on which the experiments were done. As a consequence, virtual memory

is used, which comes at a performance penalty. To put matters into

perspective, Table 8.4 lists performance figures for the solver without

any compression, which corresponds to a direct solve exploiting the

nested dissection structure. We observe better performance with the

approximate solver, once matrices are large enough.

For wave problems it is rarely practical to just increase the wavenumber

κ, without also refining the mesh to ensure that the problems are well-

resolved. As we have observed in Section 8.3, we expect the growth of the

off-diagonal ranks to eventually increase the cost beyond the quasilinear

complexity. This would also be in line with what other authors have

observed with similiar methods [25, 62].

Table 8.5 and Table 8.6 list performance figures for the Helmholtz

1/h n application factorization memory

22 2904 0.01844 s 0.02356 s 3.9407e7 B

32 6144 0.00600 s 0.06504 s 1.0078e8 B

45 12150 0.01295 s 0.14313 s 2.2164e8 B

64 24576 0.06674 s 0.32718 s 5.1301e8 B

90 48600 0.06614 s 0.80438 s 1.1045e9 B

128 98304 0.15046 s 1.88804 s 2.4966e9 B

181 196566 0.35345 s 4.23004 s 5.3735e9 B

256 393216 1.25417 s 18.3061 s 1.1774e10 B

362 786264 2.80405 s 52.2744 s 2.5054e10 B

512 1572864 7.44162 s 159.893 s 5.4262e10 B

Table 8.4: Factorization and application

times, as well as memory consumption

using a direct solver for the Helmholtz

problem under h-refinement in two di-

mensions.
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Figure 8.21: Timings and memory require-

ments of the preconditioner under simul-

taneous κ- and h-refinement, keeping κh
constant.

1/h n L
HSS

application factorization memory iters k
max

32 6144 5 0.00616 s 0.06750 s 1.4707e8 B 3 80

45 12150 7 0.01464 s 0.27935 s 3.6654e8 B 4 81

64 24576 7 0.03196 s 0.50203 s 8.4778e8 B 3 94

90 48600 9 0.06308 s 1.20064 s 1.9628e9 B 4 105

128 98304 9 0.13711 s 3.12739 s 4.1334e9 B 4 106

181 196566 11 0.26719 s 5.46857 s 9.0829e9 B 5 106

256 393216 11 0.69663 s 20.3759 s 1.9513e10 B 5 146

362 786264 13 2.11069 s 50.1623 s 4.4535e10 B 7 186

512 1572864 13 4.51857 s 151.391 s 9.7229e10 B 6 266

Table 8.5: Factorization and application

times, as well as memory consumption

for the Helmholtz problem under h-

refinement, while keeping κh � 1/4 con-

stant.

equation under h-refinement, where we also adapt κ to keep κh constant.

The corresponding data is also shown in Figure 8.21 and illustrates

that the cost of factorization is roughly O(n4/3). Memory requirements

appear to grow as O(n log n), with κh � 1/2 requiring more memory

than κh � 1/4, as expected.

Another important question concerning performance is how these meth-

ods fare for three dimensional problem. To shed some light on this, we

revisit the Poisson problem (1.4), this time on Ω � [0, 1]3. Problems in

three dimensions are challenging for a number of reasons. The cost of

direct methods is increased, based on the lower sparsity in three di-

mensions and increase memory requirements. For rank-based methods,

it is known that the compressibility of Schur complements decreases

considerably due to the two-dimensional nature of the separators [25].

We oberved this already in Section 7.1, where we illustrated the same

admissibility condition results in more complex block-structures in three

dimensions. This means that compressed matrices have to be much larger

for the HSS compression to be effective. Consequently, we can expect

that the size of problems to be considered has to be large enough to truly

evaluate the effectiveness of such methods.

We use the adapted compression parameters ε
HSS

� 10
−2

and β �

180(p+1)(p+2)(p+3)/6. Moreover, we switch to compressed arithmetic

only once matrices are four times larger than the HSS blocksize β. The

dissection strategy is kept the same as in two dimensions, where the

1/h n L
HSS

application factorization memory iters k
max

32 6144 5 0.00870 s 0.08765 s 1.4983e8 B 3 82

45 12150 7 0.01629 s 0.19147 s 3.7940e8 B 3 89

64 24576 7 0.03264 s 0.66125 s 8.7951e8 B 3 104

90 48600 9 0.07302 s 1.21613 s 2.0727e9 B 4 106

128 98304 9 0.14631 s 3.08951 s 4.7327e9 B 4 146

181 196566 11 0.39223 s 6.76212 s 1.1205e10 B 5 186

256 393216 11 0.76545 s 24.8398 s 2.5064e10 B 4 226

362 786264 13 2.29401 s 69.9011 s 6.2828e10 B 6 306

512 1572864 13 4.63122 s 225.629 s 1.4390e11 B 6 426

Table 8.6: Factorization and application

times, as well as memory consumption

for the Helmholtz problem under h-

refinement, while keeping κh � 1/2 con-

stant.
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1/h n L
HSS

application factorization memory iters k
max

12 41472 1 0.52092 s 23.6715 s 1.4570e10 B 10 780

16 98304 2 1.89304 s 107.020 s 4.5474e10 B 12 971

20 192000 4 4.41101 s 415.628 s 1.3949e11 B 17 1204

Table 8.7: Factorization and application

times, as well as memory consumption for

the Poisson problem in three dimensions.

These results were obtained with an IPDG

formulation.

separator is drawn in a way which keeps the aspect ratios of the resulting

meshes as balanced as possible. Table 8.7 lists our findings for the three-

dimensional Poisson problem. As expected, we notice that ranks are

much larger, and consequently, memory requirements quickly becomes

an issue for our sequential code. The overall cost to form the approximate

factorization seems to scale as O(n2), whereas the cost of applying it

seems to scale asO(n3/2). This would make the factorization as expensive

as classical structured elimination. These findings are hardly conclusive

however, due to memory limitations and the small size of the matrices

that we consider. Other, similar approaches that combine rank-based

approached with the structured multifrontal elimination report runtimes

that scale as O(n5/3) [65]. The overall trend is consistent with similar

rank-based approaches, which also report a decrease in the performance

when three-dimensional problems are considered [25].

8.5 Codes for reproducibility

The experiments that we have shown here have been made available

online, to allow easy reproducibility. The functionality of these codes is

two-fold. The first part is to generate the problem itself. Thus we require

a code to generate the Galerkin matrix A, together with a suitable right-

hand side b and an elimination tree E derived from a nested dissection

of the computational domain. This functionality has been implemented

in Matlab using the discontinuous Galerkin library nodal-dg and our

custom extension nodal-dg-extensions, which extends the capabilities

to formulate continuous Galerkin problems, generate elimination trees

using nested dissection and more. The second part is the approximate

solver itself, which requires a library for dealing with HSS matrices, as

well as the implementation of the solver. We have developed both Matlab

and Julia implementations for this. Our Matlab implementation hprecon

uses the hierarchical matrix library hm-toolbox for HSS arithmetic [45].

The Julia implementation of the preconditioner, HierarchicalSolvers.jl

is reasonably optimized and makes use of the library HssMatrices.jl, for

HSS matrix arithmetic. An overview of the aforementioned

software and their availability online:

github.com/tcew/nodal-dg
github.com/bonevbs/nodal-dg-
extension
github.com/bonevbs/HssMatrices.jl
github.com/bonevbs/HierarchicalSolvers.jl
github.com/numpi/hm-toolbox
github.com/bonevbs/hprecon

To reproduce the experiments, problems can be generated by using

the respective Matlab codes. To generate a Helmholtz problem with

1/h � 64, p � 1 and a wavenumber of κ � 32 on the square domain, we

can run:

GenMatrixHelmholtz2D("test.mat", 64, 1, 32, "square", 10 )

This will generate the Galerkin matrix A, a suitable right-hand side b
and a nested dissection elimination tree E with leaves not bigger than 10

elements. A, b and E are then stored in "test.mat". To solve the problem

using the approximate solver we can open it in Julia using the routine

read_problem:

https://github.com/tcew/nodal-dg
https://github.com/bonevbs/nodal-dg-extension
https://github.com/bonevbs/nodal-dg-extension
https://github.com/bonevbs/HssMatrices.jl
https://github.com/bonevbs/HierarchicalSolvers.jl
https://github.com/numpi/hm-toolbox
https://github.com/bonevbs/hprecon
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using HierarchicalSolvers
A, b, nd = read_problem("test.mat")

Forming the factorization is then as straight-forward as running:

nd, nd_loc = symfact!(nd)
F = factor(A, nd, nd_loc, swlevel=-4, atol=1e-6, rtol=1e-6);

This constitutes a symbolic factorization step and a second step in

which we form the actual, approximate factorization. Here, swlevel

determines the depth of the hierarchy L
HSS

. A negative value indicates a

depth determined relative to the overall depth of the nested dissection

hierarchy. To do an approximate solve using the factorization, we can

then run:

x = F\b

Of course we are more interested in applying it as a preconditioner. Using

the IterativeSolvers package, we can use it as a right preconditioner for

GMRES:

using IterativeSolvers
x = gmres(A, b; Pr=F, reltol=1e-9, restart=30, maxiter=30)

8.6 Concluding remarks

We have presented a method for computing an approximate factorization

of Galerkin matrices arising from finite element type discretizations of

elliptic PDEs. To make this approach efficient, rank-structured matrices,

and in particular HSS matrices were used to compress the dense fill-in

that occurs during factorization. We were particularly interested in the

performance of such techniques when used as a preconditioner.

We were able to verify the quasilinear complexity of the preconditioner

for two-dimensional prroblems using numerical experiments. We have

observed that three-dimensional problems still pose significant challenges

to these methods due to the increase in ranks which aversely affects the

performance of rank-based methods. For two-dimensional problems we

were able to investigate the scaling behavior for both h- and p-refinement.

We saw that ranks grow roughly logarithmically with respect to the

number of degrees of freedom when h-refinement is performed. For

p-refinement this growth is roughly linear. Both of these observations are

consistent with theoretical results. Moreover, we have investigated the

effect of highly oscillatory problems. While increasing the wavenumber

typically leads to an increase in the ranks, we observe that the method is

robust in the sense that solutions are still computed accurately and fast.

Finally we have tested our method on heterogeneous problems, where

it performed equally robustly, without the need of adapting it to the

geometry.

As with any work there are still open questions. The main questions

here are whether the performance in three dimensions improves if large

enough problems are considered. This might require more efficient

implementations and, in particular, parallel codes. Another important

question regarding three-dimensional problems is whether other rank-

structured formats offer performance benefits over HODLR and HSS

formats.
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Figure 9.1: The Great Wave off Kamigawa.

Depiction of a Tsunami by Hokusai. Pic-

ture taken from Wikimedia commons.
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In the first part of this work we already saw the introduction of the linear

wave equation (1.1). In this second part, we are concerned with numerical

methods for solving the shallow water equations (SWE). Both the linear

wave equation and the shallow water equations belong to the broader

class of problems known as conservation laws and hyperbolic partial

differential equations [7, 86]. As the name implies, conservation laws

are the mathemmatical expression of phenomena involving conserved

quantities and their transport [87–89]. This includes a wide range of

real-world phenomena ranging from fluid dynamics to traffic flow, with

many applications in engineering and science.

Conservation laws can generally be expressed as initial value problems

in the following way:

Problem 9.0.1 (Initial value problem) For a spatial domain x ∈ Ω
and temporal domain t ∈ (0,∞), find a suitable solution q � q(x , t) :

Ω × (0,∞) → Rm
which satisfies

∂t q + ∇ · F(q) � S(x , q) inΩ × (0,∞) (9.1a)

q � q
0

onΩ × {t � 0} , (9.1b)

comprising m conservation laws, an initial condition q
0

: Ω → Rm

and suitable boundary conditions on ∂Ω, which will be specified when

necessary. F(q) and S(x , q) are suitable flux and source functions, and

are specified independently for each problem.

The scalar wave equation (1.1) can be expressed in this form by setting

q � u, F(q) � ±cu and S � f .

The development of methods for solving these PDEs numerically has

been a field of intense study. Various numerical methods such as finite

difference methods, spectral methods and finite volume methods have

been studied extensively with the purpose of efficiently solving these

problems [86, 88, 89]. Our focus is on developing discontinuous Galerkin

(DG) methods for the shallow water equations. These methods are

an interesting option as they combine high-order accuracy with the

geometric flexibility that typically comes from lower-order methods [78,

89, 90]. As such, they offer favorable properties to create computational

models based on the shallow water equations. Such models are invaluable

to study flooding, extreme weather events, and ocean phenomena such

as tsunamis. We aim to create a model capable of simulating large-scale

tsunami events accurately and efficiently, so that it may be used as an

early warning system.

With this in mind, we formulate the shallow water equations on the

surface of the sphere and account for the effects of curvature and rotation.

Designing a numerical scheme for these equations is a challenging task

in itself [91]. Physical accuracy further demands the scheme to be well-

balanced, so that it conserves a certain stationary solution where the

https://commons.wikimedia.org/wiki/File:Tsunami_by_hokusai_19th_century.jpg


9 Motivation 99

water is at rest [92–94]. In the context of tsunami simulations, this is

particularly important, as initial conditions are in general a perturbation

of this steady-state solution. The final challenge is wetting/drying, which

refers to the appearance of dry areas in the solution and associated

numerical problems. This requires the development of methods which

are capable of handling wet-dry transitions in a robust manner, which

does not compromise our well-balanced scheme.

The solutions to the aforementioned challenges are not necessarily

restricted to our treatment of the discontinuous Galerkin method for

the spherical shallow water equations. It does however serve as a good

model problem as we will see later on. To lay the foundations for this,

we introduce the shallow water equations in Section 9.1 and construct a

simple finite volume scheme to solve them numerically in Section 9.2.

9.1 The shallow water equations

In one dimension

Before we move on to a discussion on methods, let us introduce the

shallow water equations. This name can often be misleading as they are

frequently used for tsunami modelling, which involves the simulation of

ocean waves in open waters at depths of up to 11km. At the same time,

they are often used to model weather events, modelling the large-scale

dynamics of atmospheric layers as opposed to modelling water. The

name “shallow water equations” comes from the assumption that the the

vertical depth of the fluid is small compared to the horizontal dimensions

and the wavelengths being studied. Under these assumptions, once

can assume the vertical dynamics to be negligible. This is also referred

to as hydrostatic balance, as vertical pressure gradients are balanced by

gravity. We can then eliminate the vertical velocity component of the

Euler equations by integrating them in the vertical direction [95]. In one

dimension, the result are the shallow water equations

∂t h + ∂x(hu) � 0 (9.2a)

∂t(hu) + ∂x(hu2

+
1

2

gh2) � −gh∂x b (9.2b)

for a suitable domainΩ � [x
0
, x

1
] ⊂ R. The unknown solution consists

of the total column height h, measured from the bottom of the seabed,

and the so-called discharge hu which is the product of the water column

height and the average horizontal velocity of the fluid. b is the height

of the bottom topography measured with respect to an equipotential

surface of the gravitation field (geoid). The sea surface level with respect

to the geoid is therefore given by h + b. Finally, g denotes the vertical

acceleration due to gravity. The terminology of the shallow water problem

is depicted in Figure 9.2.

It is no surprise that the shallow water equations (9.2a) are functionally

equivalent to the isothermal compressible Euler equations. As previously

mentioned, we can derive them by depth-integration. In the resulting

equations, the water depth acts as a density and the discharge can

therefore be understood as the momentum. In this view, the bottom
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Figure 9.2: Illustration of the assumptions

for the shallow water equations in one

dimension.

1: We loosely speak of wave speeds

throughout this chapter. By this we refer

to the phase velocity.

2: We omit any discussion regarding ap-

propriate solution spaces and refer the

reader to [7, 87].

topography acts as pressure field and we can identify the source term to

act like the pressure gradient.

To write the shallow water equations as a conservation law, we notice

that we could have identically written (9.2a) as

∂t

[
h

hu

]
+ ∂x

[
hu

hu2

+
1

2
gh2

]
�

[
0

−gh∂x b

]
, (9.3)

and equivalently (assuming sufficient regularity), we can write

∂t

[
h

hu

]
+

[
0 1

−u2

+ gh 2u

]
︸               ︷︷               ︸

�JF (q)

∂x

[
h

hu

]
�

[
0

−gh∂x b

]
. (9.4)

In the latter, we have introduced the Jacobian JF (q) of the flux function

F(q) to rewrite the equations in a form that is similar to the linear wave

equations. We will see that linearizing the equations indeed yields the

eigenvalues of the flux jacobian as wave speeds.
1

To make the equations dimensionless, we multiply (9.3) by g and in-

troduce the geopotential water column height ϕ � gh, as well as the

geopotential topography τ � gb. We can then write the unknown

solution as

q �

[
ϕ
ϕu

]
(9.5)

and specify the flux F : R2 → R2

and source S : Ω ×R2 → R2

as

F(q) �
[

ϕu
ϕu2

+
1

2
ϕ2

]
(9.6)

and

S(x , q) �
[

0

−ϕ∂xτ

]
. (9.7)

It should be clear that physical solutions only permit positive water

heights ϕ ≥ 0. Moreover, the shallow water equations are a system of

non-linear equations, which allows for shock-formation [87].
2

As we

have assumed that we can describe the layer of water by a function, we

expect the shallow water equations to fail in the description of breaking

waves as depicted in Figure 9.1.

To develop numerical schemes for solving the shallow water equations,

it is useful to study their characteristics. To do so, we look for a curve
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xc(t) such that the solution is constant along this curve, i.e.

d

dt
q(xc(t), t) � 0

�⇒ q(xc(t), t) � q
0
(xc(0)).

This yields

∂t q(xc(t), t) + ∂t xc(t) ∂x q(xc(t), t) � 0,

and by comparing it to (9.4), we notice that for a vanishing source term,

this equation is satisfied if

JF (q(xc(t), t)) ∂x q(xc(t), t) � ∂t xc(t) ∂x q(xc(t), t). (9.8)

In other words, xc(t) is a characteristic curve, i.e., the solution is constant

along xc(t), if ∂t xc(t) is an eigenvalue of the flux Jacobian JF (q). It is

easy to show that the eigenvalues of JF (q) are given by

α± � u ± √ϕ. (9.9)

α± is also called the wave speed of the system as small perturbations of

the solution travel at these speeds across the physical domain. Unlike

elliptic PDEs, hyperbolic PDEs are characterized by the finite speeds at

which information propagates.

As previously noted, many conservation laws permit the formation and

propagation of shock waves, that is, solutions that are not continuously

differentiable. Properly defined, such solutions are called weak solutions
and need to be allowed to make the problem well-posed [7]. Without

going into the details, we remark that this is an important property to

keep in mind and is often a prime factor in the development of numerical

schemes [87].

On the sphere

We are interested in modelling large-scale atmospheric and oceanic phe-

nomena, which can be described by formulating the shallow water equa-

tions on the sphere. We skip the discussion of the two-dimensional shal-

low water equations and formulate them directly on the two-dimensional

sphere x ∈ S2(R) ⊂ R3

of radius R. To do so, we are presented with the

choice of a suitable coordinate system. While the natural choice seems to

be spherical coordinates, it is well-known that the coordinate singular-

ities that are introduced at the poles pose a challenge for construction

of numerical schemes [91]. An alternative way of using coordinates that

conform to the sphere is to use a covariant formulation, directly on local

coordinate systems introduced by the discretization [96]. Finally, there

is also the possibility of avoiding conforming coordinates altogether

and instead use Cartesian coordinates. This requires us to constrain the

velocity vectors to the surface of the sphere, which can be done by using

a Lagrangian forcing term.

We adopt the latter approach as presented in [91]. This approach comes

at the cost of an additional state variable as we have to take three-

dimensional velocities u � [u , v , w]ᵀ. The state vector is therefore
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four-dimensional:

q �


ϕ
ϕu
ϕv
ϕw

 �

[
ϕ
ϕu

]
. (9.10)

To write the spherical shallow water equations as a conservation law

∂t q + ∇ · F(q) � S(x , q), (9.11)

we introduce the flux function

F(q) � fx(q) êx + fy(q) êy + fz(q) êz

�


ϕu

ϕu2

+
1

2
ϕ2

ϕuv
ϕuw

 êx +


ϕv
ϕuv

ϕv2

+
1

2
ϕ2

ϕvw

 êy +


ϕw
ϕuw
ϕvw

ϕw2

+
1

2
ϕ2

 êz , (9.12)

where êx , êy and êz are the unit vectors along the coordinate axes in R3

.

The above notation has to be understood in the sense that scalar-products

with three-dimensional, Cartesian vectors act on the unit vectors. In

particular, this implies

∇ · F(q) � ∂x fx + ∂y fy + ∂z fz . (9.13)

The source term

S �

[
0

S̃

]
only acts on the momentum equations via

S̃(x , q) � C(x , u) − ϕ∇τ(x) + µx. (9.14)

The first term is the Coriolis force

C(x , u) � −
2ωzϕ

R2

x × u (9.15)

induced by the rotation of the sphere, where ω is the angular velocity of

the rotation. Here we have chosen the z-axis to be the axis of rotation for

the sphere. The second term in (9.14) accounts for the pressure gradient

caused by the slope of the bottom topography τ � gb(x). Finally, to

ensure that the fluid does not escape into space, we need to enforce u
to remain tangential to the surface of the sphere. This is done via the

Lagrange multiplier

µ(x , q) � 1

R2

x ·
(
ϕ∇τ + ∇ · ˜F

)
, (9.16)

which projects out any non-tangential change in ϕu. Here,
˜F denotes the

three last components of F acting on the momentum equations.

9.2 A simple scheme

Let us return to the one-dimensional shallow water equations, with

the goal of constructing a simple scheme for solving them. We already



9 Motivation 103

mentioned that one of the main challenges for the numerical solution of

conservation laws is the formation of shocks and the resulting lack of

regularity in the solution. A natural way of dealing with this problem is by

considering an integral formulation of the problem. To do so, we identify

a function space Vh in which we look for numerical approximations to

the solution qh . We require the residual of the numerical solution

∂t qh + ∇ · F(qh) − S(x , qh) (9.17)

to be orthogonal to Vh , which yields the formulation

∀vh ∈ Vh :

∫
Ω

(∂t qh + ∇ · F(qh) − S(x , qh)) vh dx � 0. (9.18)

This formulation is almost the weak formulation of the problem, with

the important difference that there is no time-dependence in the test

functions vh . Instead, we separate the temporal discretization from the

discretization in space. This kind of approach is known as method of
lines.

Finite volume scheme

The important class of finite volume schemes can be derived by choosing

Vh to be space of piecewise constant functions. To do this, we divide the

spatial domainΩ � [x
0
, x

1
] into K non-overlapping cells

Dk
� [xk−1/2 , xk+1/2], (9.19)

such that

Ω ≈ Ωh �

K⋃
k�1

Dk . (9.20)

Here we have introduced the computational domainΩh which approxi-

mates the spatial domainΩ. The index h, which referes to the dependence

of the numerical solution on the spatial discretization is defined as

h � sup

k
diam Dk , (9.21)

and indicates the accuracy of the approximation. We construct the space

of piecewise constant functions as

Vh �

{
v ∈ L2(Ω) : ∀Dk , v |Dk � const.

}
. (9.22)

By inserting this into (9.18) and assuming that the source term is 0, we

get

∀k : ∂t

∫
Dk

q dx � −[F(q)]xk+1/2
xk−1/2 (9.23)

after integration by parts. This expresses that mass and momentum are

conserved across elements. To obtain the finite volumes scheme, we

approximate q using cell averages in each cell. The piecewise constant

functions

ϕk(x) �
{

1 xk−1/2 ≤ x < xk+1/2
0 otherwise

(9.24)
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serve as a basis for Vh . This allows us to write the numerical solution as

qh(x , t) �
K∑

k�1

q̂k(t)ϕk(x). (9.25)

The unknown coefficients q̂k(t) then represent the cell-averages of mass

and momentum in each cell. Inserting the numerical solution qh into

(9.23) yields

∀k : ∂t q̂k
� − 1

|Dk |
[F(qh(x , t))]

xk+1/2
xk−1/2 (9.26)

Using a forward Euler discretization in time, we get

∀k : q̂k ,n+1

� q̂k ,n − ∆t

|Dk |
[
F(qh(x , tn))

] xk+1/2
xk−1/2

(9.27)

where q̂k ,n
� q̂(tn).

The numerical flux

We notice that the evaluation of the flux function in (9.27) is ambiguous

due to potentially different value of qh at the interfaces xk+1/2 , xk−1/2. The

important observation by Godunov [97] was that solving this problem is

akin to solving the Riemann problem

∂t q + ∇ · F(q) � S(x , q) (9.28a)

q(x , tn) �
{

q̂k(tn) x < xk+1/2
q̂k+1(tn) x > xk+1/2

(9.28b)

for t ∈ (tn , tn+1) [98]. Schemes that solve this problem analytically at each

interface are called Godunov schemes. Unfortunately, doing this is a non-

linear operation and can be quite costly depending on the considered

conservation law. For the shallow water equations for instance, the

Riemann problem can have three types of elementary waves, which have

to be taken into consideration [98].

An alternative approach is to introduce an approximate numerical flux

function

F(qh)
��
xk+1/2

≈ F∗(q̂k , q̂k+1), (9.29)

which takes both solutions at the interface into account. In this way, the

numerical flux will be communicating the information between cells. We

can for instance use the local Lax-Friedrichs flux

F∗(q̂k , q̂k+1) � 1

2

(
F(q̂k) + F(q̂k+1)

)
− α

2

(
q̂k+1 − q̂k

)
, (9.30)

which uses the maximum local eigenvalue

α � max{|ûk | +
√
ϕ̂k , |ûk+1

| +
√
ϕ̂k+1
} (9.31)

of the flux Jacobian. It is worth noting that the numerical flux is consistent

with the exact flux function, i.e. the numerical flux becomes exact as the
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3: The difference between the Rusanov

and Lax-Friedrichs scheme is the choice of

wave speeds. If the wave speeds are cho-

sen locally, based on the solution at both

sides, we call the flux a Rusanov or local

Lachs-Friedrichs flux. If instead the global

maximum is considered, the scheme is

called the Lax-Friedrichs scheme. The use

of the globally maximal wavespeed intro-

duces more dissipation into the scheme.

discontinuity at the interface vanishes:

F∗(q , q) � F(q). (9.32)

The Lax-Friedrichs flux greatly simplifies the evaluation of the flux at

interfaces. The disadvantage of such methods is that they introduce

additional dissipation into the scheme [87, 88]. Inserting the numerical

flux into (9.27) gives us the Rusanov scheme
3

for the one-dimensional

shallow water equations:

q̂k(tn+1) � q̂k(tn) − ∆t

|Dk |

(
F∗(q̂k , q̂k+1) − F∗(q̂k−1 , q̂k)

)
. (9.33)

Due to the added dissipation, this scheme is inferior to Godunov schemes.

However, it serves as a baseline for the schemes that we are going to

construct in latter chapters. Before we move on, we remark that the

waves of nearby Riemann problems could interact if the timestep ∆t is

too large. We avoid this by imposing the Courant-Friedrichs-Levi (CFL)

condition

max

k
α
∆t

|Dk |
≤ 1

2

. (9.34)
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The main motivation for developing schemes that differ from finite

volume schemes is to acquire better higher-order convergence rates.

This is possible because solutions are mostly regular apart from some

localized areas in which they have discontinuities. This has lead to the

development of higher order finite difference and finite volume schemes

such as the essentially non-oscillatory (ENO) schemes [87, 89], as well as

the discontinuous Galerkin method, among others. The discontinuous

Galerkin method offers a number of advantages over other methods, i.e.

geometric flexibility and improved parallel efficiency [89, 90, 99].

In this chapter we introduce the discontinuous Galerkin model for solving

the spherical shallow water equations (9.11). In order to introduce the

discontinuous Galerkin method and techniques related to well-balancing

and wetting/drying, we focus on the one-dimensional version of the

scheme before moving on to the spherical case.

10.1 In one dimension

As for the finite volume discretization of the shallow water equations,

we proceed by separately discretizing the scheme in space and in time.

To do so, we reuse the discretization of the finite volume method and

use Dk
� [xk−1/2 , xk+1/2]. Unlike the finite volume solution, which was

represented by a piecewise constant solution, we seek higher-order

accuracy by representing the numerical solution qh as a piecewise

polynomial of order p. Formally we write

qh ∈ Vh(Ω) �
{

v ∈ L2(Ω) : ∀Dk , v |Dk ∈ Pp(Dk)
}
, (10.1)

with Vh(Ω) being the finite element space in which we seek solutions.

Then, we can express the numerical solution as the direct sum

q(x , t) ≈ qh(x , t) �
K⊕

k�1

qk
h(x , t), (10.2)

where qk
h(x , t) ∈ Pp(Dk) is the local polynomial approximation to the

solution in each element Dk
. Theoretically, it is possible to choose a

different polynomial degree p in each element. This is referred to p-

adaptivity. For our applications, we stick to a single polynomial degree

for all cells.

To represent the numerical solution qk
h(x , t), we require a polynomial

basis which spans Vh . Here, we can choose between modal and nodal

representations. The former offer some advantages for the evaluation

of the integrals and associated matrices. Nodal approaches on the other

hand, offer geometrical flexibility and are usually easier to construct and

evaluate.



10 The discontinuous Galerkin method 107

1: We use the tall letter Lk
i (x), as well as

the variable x to distinguish between the

local basis function in Dk
and li(ξ) in the

reference element.

We choose the latter and construct a basis on the reference element

I � [−1, 1]. We consider the Lagrange basis functions

li(ξ) �
p+1∏

j�1, j,i

ξ − ξ j

ξi − ξ j
, (10.3)

which are defined on a set of interpolation points {ξi}
p+1

i�1
⊂ [−1, 1]. The

nodal basis has the useful property

li(ξ j) � δi j , (10.4)

which allows easy evaluation of the function on the interpolation points.

Thus we require a set of points {ξ j}
p+1

j�1
⊂ I with favorable properties for

interpolation [78]. A common choice are the Legendre-Gauss-Lobatto

(LGL) points. We omit the construction of the LGL points and instead

refer the reader to [78]. To construct a basis in the element Dk
, we map

the points {ξ j}
p+1

j�1
via an affine transformation to Dk

. This yields the

local points {xk
j }

p+1

j�1
, from which we can construct a local basis in the

sense that

Lk
i (x) � li(ξ(x)), (10.5)

where ξ(x) is the affine transformation from Dk
into the I. 1

Having constructed the local polynomial bases, we can now represent

the numerical solution locally as

qk
h(x) �

p+1∑
i�1

q̂k
i (t) L

k
i (x), (10.6)

where q̂k
i are the unknown coefficients associated with the solution at

each point xi . In a similar fashion, we express numerical approximations

of the flux Fh(q(x)) and the bottom topography τh(x):

Fh(q(x , t))
��
Dk � F k

h (x) �
p+1∑
i�1

F(q̂k
i (t)) L

k
i (x), (10.7)

τh(x)
��
Dk � τk

h(x) �
p+1∑
i�1

τ(xk
i ) L

k
i (x). (10.8)

We are now ready to re-consider the variational formulation (9.2a). By

restricting the test function space to Vh(Ω), we obtain

∀k , i :

∫
Dk
(∂t qh − F(qh) ∂x) Lk

i (x)dx

� −
[
F(qh) Lk

i (x)
] xk+1/2

xk−1/2
+

∫
Dk

S(x , qh) Lk
i (x)dx

within each cell. This brings us back to the problem of evaluating the

ambiguous flux [F(qh) v(x)]
xk+1/2
xk−1/2 at each cell interface. As for the finite

volume scheme, we overcome this by inserting a numerical flux function

F(q)
��
xk+1/2

≈ F∗(qk
h(xk+1/2), qk+1

h (xk+1/2)), (10.9)

which takes both solutions at the interface into account. To keep things
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simple, we stick to the Rusanov flux (9.30). This gives us the so-called

weak form of the discontinuous Galerkin formulation

∀k , i :

∫
Dk
(∂t qh − F(qh) ∂x) Lk

i (x)dx

� −
[
F∗(q−h , q

+

h ) L
k
i (x)

] xk+1/2

xk−1/2
+

∫
Dk

S(x , qh) Lk
i (x)dx. (10.10)

The short-hand notation q−h refers to the solution on the left side of

the interface, whereas q+

h refers to the solution at the right side of the

respective interface. An alternative, albeit equivalent formulation is the

strong form, which is obtained by integrating the volume integral by

parts:

∀k , i :

∫
Dk
(∂t qh − ∂xF(qh)) Lk

i (x)dx

�

[ (
F(q−h ) − F∗(q−h , q

+

h )
)

Lk
i (x)

] xk+1/2

xk−1/2
+

∫
Dk

S(x , qh) Lk
i (x)dx.

(10.11)

Although these formulations are equivalent up to this point, they are not

equivalent once further terms are replaced by approximations and inte-

grals are solved by quadrature. This plays a key role in the construction

of the well-balanced scheme, which is discussed in Chapter 11.

We replace the solution, flux and source terms by their numerical ap-

proximations (10.6), (10.7) and (10.8), which are effectively interpolated

representations. Replacing them yields

∀k , i :

p+1∑
j�1

∂t q̂k
i

∫
Dk

Lk
i (x)L

k
j (x)dx −

p+1∑
j�1

F(q̂k
j )

∫
Dk

Lk
j (x)∂xLk

i (x)dx

� −
[
F∗(q−h , q

+

h ) L
k
i (x)

] xk+1/2

xk−1/2
+

p+1∑
j�1

q̂k
j τ(x

k
j )ê2

∫
Dk
∂xLk

j (x) L
k
i (x)dx.

(10.12)

for the weak form and alternatively, for the strong form

∀k , i :

p+1∑
j�1

∂t q̂k
i

∫
Dk

Lk
i (x)L

k
j (x)dx +

p+1∑
j�1

F(q̂k
j )

∫
Dk

Lk
j (x)∂xLk

i (x)dx

�

[ (
F(q−h ) − F∗(q−h , q

+

h )
)

Lk
i (x)

] xk+1/2

xk−1/2

+

p+1∑
j�1

q̂k
j τ(x

k
j )ê2

∫
Dk
∂xLk

j (x) L
k
i (x)dx. (10.13)

At this point, we have obtained semi-discrete formulations which are

systems of ordinary differential equations that need to be integrated

in time. It is also common to introduce notations for the matrices that

arise in this formulation. We forego this step as we are mostly interested

in integrating these equations explicitly and a formulation involving

matrices is therefore unnecessary for our discussion. Instead, we simply

remark that the final form of the schemes can be obtained by using the

explicit time-integration techniques which we introduced in Section 10.4.
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Figure 10.1: Comparison of the finite vol-

ume scheme to the discontinuous Galerkin

scheme for the standing wave solution

of the shallow water equations. The red

curve is the analytical solution, and the

curves in blue represent the numerical

solutions.

Finally, the evaluation of the volume integrals requires either the use of

analytic integration or numerical quadrature formula [78, 89, 90]. In one

dimension, this is straight-forward as we are integrating polynomials on

a compact interval of the real axis. To do this numerically, we can use

quadrature formulae for the LGL points, which are exact for integrants

of polynomial order up to 2p − 1 [100]. For our one-dimensional example,

this is the case, considering that the bottom topography is represented in

the chosen finite element space.

We make a simple comparison of the discontinuous Galerkin scheme

(p � 1) to the finite volumes scheme (p � 0). For a standing wave solution,

depicted in Figure 10.1, we compare the results after one oscillation for

meshes with K � 10 and K � 20 elements. As expected, we observe

that the discontinuous Galerkin scheme yields much more accurate

solutions. Moreover, we note that the amplitude is underestimated with

the finite volume scheme. This can be explained with the larger jumps

at the cell interfaces and the associated increase in dissipation from

the numerical flux. This situation is considerably improved with the

piecewise linear approximations of the discontinuous Galerkin solution.

Another important observation is that we can be achieve a higher accuracy

with a lower number of degrees of freedom, due to the smoothness of

the solution. The cases p � 1, K � 10 and p � 0, K � 20 have the

same number of degrees of freedom but the former leads to a better

approximation of the analytical solution.

10.2 On the Sphere

We consider again the formulation of the discontinuous Galerkin scheme,

this time in two-dimensions and for the shallow water equations on the

sphere. Ultimately, this will result in the Runge-Kutta discontinuous

Galerkin scheme as presented in [91], which will serve as the basis for

our model for large-scale geophysical flows [2].
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x

z
y

Dk

ξ

η

Iξ � Ψ(x)

x � Ψ
−1(ξ)

(−1,−1)

(−1,+1) (+1,+1)

(+1,−1)
Figure 10.2: Transformation into the ref-

erence element.

2: For the sake of clarity, we drop the

superscript “k”. Typically it is clear from

the context that we refer to the current

element.

As done above, we express the physical domainΩ by a union of smaller

elements. To do so, we discretize the sphere into a collection M of non-

overlapping quadrilateral, curvilinear elements Dk ∈M such thatΩ ≈
Ωh

⋃K
k�1

Dk
. How this can be achieved in practice is explained in Section

10.3. We represent the numerical solution as qh(x , t) �
⊕K

k�1
qk

h(x , t). To

construct a basis for each element, we introduce the two-dimensional

reference element I � [−1, 1]2. Then, for each element, there exists a

bĳective mapΨ : Dk → I which maps coordinates x ∈ Dk
in the physical

domain to coordinates ξ � [ξ, η]ᵀ � Ψ(x) ∈ I on the reference element.

Figure 10.2 shows an illustration of both elements and the mapping

between them. Using this map we can construct a basis on I and then

map it to Dk
. Using the one-dimensional Lagrange polynomials (10.3)

defined on the LGL points on [−1, 1], we form a tensor product-basis of

the form

Lm(ξ) � li(ξ)l j(η), (10.14)

where m � 1, 2, . . . , (p + 1)2 is a unique multiindex associated to each

node ξm � (ξi , η j)with indices i , j � 1, 2, . . . , p + 1. As we can represent

any two poynomials of order up to p in each variable, we have formed a

polynomial basis of mixed order up to 2p. This allows us to represent

the numerical solution as

qk
h(x , t) �

(p+1)2∑
m�1

q̂k
m(t)Lm(x)

�

p+1∑
i�1

p+1∑
j�1

qk
h(x(ξi , η j), t)li(ξ(x))l j

(
η(x)

)
(10.15)

using the nodal values q̂k
j (t) � qk

h(x
k
j , t). With a slight abuse of notation,

we will use Li(x) to denote Li(ξ(x)) and similarly xi � x(ξi). 2

In

this formulation, we do not explicitly define the finite element space

Vh(Ω,M), as it is implicitly defined through the construction of the basis

functions. Due to the transformation onto the sphere, the functions in Vh
are only piecewise polynomials on the reference elements.

With the polynomial representation in place, we consider the problem

of satisfying the conservation law (9.1a). We write the weak form of the

discontinuous Galerkin formulation∫
D
(∂t qh − Fh · ∇ − Sh) Li dx � −

∫
∂D

n̂ · F∗h Li dx , (10.16)

which should be satisfied by qh in each element D ∈M and for every

basis function Li . Alternatively, we can use the strong form of the
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3: Due to the operators arising in two

dimensions, the strong form is also often

referred to as the divergence form. Similarly,

the weak form is referred to as Green’s form.

Galerkin formulation, as∫
D
(∂t qh + ∇ · Fh − Sh) Li dx �

∫
∂D

n̂ · (Fh − F∗h) Li dx (10.17)

to be satisfied by for each element D ∈ M and for each Li . As in the

one-dimensional case, (10.17) is obtained by integrating (10.16) by parts.

3

In both equations, we introduced polynomial approximations for the

flux

Fh(qh) �
(p+1)2∑

j�1

F(qh(x j)) L j(x), (10.18)

and source term

Sh(x , qh) �
(p+1)2∑

j�1

S(x j , qh(x j)) L j(x). (10.19)

As in the one-dimensional case, our solution space Vh is discontinuous

and we require a suitable numerical flux F∗, which connects the solutions

in the individual elements through a single-valued flux. We do this by

evaluating the Rusanov flux

F∗
(
q−h , q

+

h
)
�

1

2

(
Fh(q−h ) + Fh(q+

h )
)
− α

2

(
q+

h − q−h
)
, (10.20)

on each boundary node, with q−h representing the local solution within the

element and q+

h the solution in the neighboring element. To construct the

numerical representation F∗h
(
q−h , q

+

h
)
≈ F∗

(
q−h , q

+

h
)
, we interpolate these

values using the basis function on the boundary nodes. The wavespeed α
represents the maximum local wave speed across the element boundary

and it is obtained as

α � max

{��n̂ · u−h
�� +√

ϕ−h ,
��n̂ · u+

h

�� +√
ϕ+

h

}
. (10.21)

We project the numerical flux onto the normals of the element edges n̂,

effectively evaluating the flux through the edge n̂ · F∗h .

To complete the scheme, we require numerical integration techniques

to evaluate the integrals over curved elements in (10.16) and (10.17). To

do so, we construct quadrature rules QD and Q∂D which approximate

the volume and surface integrals on D and ∂D. We approximate volume

integrals of an integrable function g ∈ L1(D) on the curved element with

the quadrature formula∫
D

g(x)dx �

∫
I

g(ξ)JD(ξ)dξ

≈
p+1∑
i�1

p+1∑
j�1

g(ξi , η j)JD(ξi , η j)ωiω j C QD
[
g(x)

]
, (10.22)

where JD(ξ) is the determinant of the Jacobian ofΨ
−1(ξ). Here, ωi and

ω j are the quadrature weights associated to the Legendre-Gauss-Lobatto

nodes ξi , η j [100]. We remark that the scheme in two dimensions also

requires a quadrature formula for the surface integrals. LGL nodes

provide quadrature points at the edges of the reference element, which
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simplifies the construction of a quadrature rule for these integrals:∫
∂D

g(x)dx �

∫
∂I

g(ξ)J∂D(ξ)dξ

≈
p+1∑
i�1

g(ξi ,−1)J∂D(ξi ,−1)ωi +

p+1∑
j�1

g(1, η j)J∂D(1, η j)ω j

+

p+1∑
i�1

g(ξi , 1)J∂D(ξi , 1)ωi +

p+1∑
j�1

g(−1, η j)J∂D(−1, η j)ω j

CQ∂D
[
g(x)

]
. (10.23)

Here we have introduced J∂D , which is the determinant of the Jabobian

arising from the mapping of edges in the reference element to the edges of

D. As previously noted, the quadrature rules (10.22) and (10.23) provide

exact integration of integrands with polynomial degrees up to 2p − 1

[100]. Due to the transformation onto the curved elements, we cannot

obtain exact integration due to the non-polynomial nature of the Jacobian

determinants.

In what is to follow, we are especially concerned with the practical

differences of using the strong form over the weak form. It is therefore

useful to discuss the discretization of flux and source terms (10.18), (10.19)

in both fomulations in some detail. For the weak form, we write out the

flux term as

Fh ·∇Li �

(p+1)2∑
j�1

(
fx(q̂ j)L j∂xLi + fy(q̂ j)L j∂yLi + fz(q̂ j)L j∂zLi

)
(10.24)

and for the strong form as

(∇ · Fh)Li �

(p+1)2∑
j�1

(
fx(q̂ j)(∂xL j)Li + fy(q̂ j)(∂yL j)Li + fz(q̂ j)(∂zL j)Li

)
.

(10.25)

The difference between the two lies in the derivative acting on either the

test function or on the Lagrange function over which the sum is formed.

This will become important later, when we discuss how to achieve the

well-balanced property in both formulations.

The source term is discretized by first representing the bottom topography

in the finite element space

τh(x) �
(p+1)2∑

i�1

τ(xi)Li(x) (10.26)

by interpolating the topography within each element D. Using this

piecewise polynomial approximation, we construct the numerical ap-

proximation of the source term as

S̃h �

(p+1)2∑
j�1

©­«C(x j , u(x j))L j − ϕ(x j)L j

(p+1)2∑
k�1

τ(xk)∇Lk(x j)
ª®¬. (10.27)

In this formulation, we have omitted the Lagrange multiplier as we can

enforce it directly by projecting the change in velocity onto the sphere
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(a) Icosahedron with inscribed

quadrilaterals.

(b) Resulting mesh on the sphere with

high-order nodes.

Figure 10.3: Generation of icosahedral

meshes on the sphere. The top figure de-

pict the initial icosahedron, where each of

the faces is broken up to generate quadri-

lateral elements. The mesh on the bottom

shows the final mesh including the LGL

nodes on each element.

[91].

10.3 A few words on meshes and adaptivity

So far, we have conveniently ignored how meshes are generated in two

dimensions and in particular on the sphere. A popular choice on the

sphere are cubed sphere meshes, which can be generated by creating a

mesh on the sides of the unit cube and then projecting it onto the sphere

[101]. Related approaches use icosahedra to generate triangle meshes

and hexahedral meshes [102, 103]. In this work we use an icosahedron to

generate the mesh. As all its sides are equilateral triangles, we can generate

“nice” quadrilateral elements by subdividing them at the barycenter [91].

The elements are then projected onto the sphere and LGL nodes are

generated on each curved element. The procedure is illustrated in Figure

10.3. To refine the mesh, we can either subdivide triangular elements

further before quadrilaterals are formed or subdivide the quadrilateral

elements directly. This allows us to refine the mesh either globally or

locally. The latter is particularly useful as we can adjust the mesh to areas

of particular interest. We can do this either statically, refining regions of

interests from the start, or dynamically to better resolve features of the

solution such as shocks.

Locally refining the mesh through subdivisions has the drawback that it

generally results in non-conforming meshes. This means that the edges of

neighboring elements might not be aligned anymore. As a consequence,

hanging nodes, i.e. vertices of the elements located on the edge of another

element but not coinciding with any other vertex, are created. We simplify

our discussion by only considering balanced non-conforming meshes,

by which we mean that the difference in refinement is only one across an

interface. An example of such a mesh is given in Figure 10.4. This has

the consequence that a maximum of three elements can communicate at

each interface. Let us formalize this and explain how we can deal with

such interfaces at which three elements coincide.

Let M0

denote our initial, conforming, non-overlapping partition ofΩ

into quadrilaterals. Subdividing each each element into four children

elements generates a series of conforming partitions M0 ,M1 ,M2 , . . . .
For each of these grids, the superscript refers to the refinement level. We

arrange the elements into a quadtree forest F , such that each element

is connected to its parent from which it was created. At any time, the

active mesh M is represented as a subforest M ⊂ F , such that M is a

balanced, non-overlapping partition ofΩ. The mesh hierarchy and the

active subforest corresponding to the mesh in Figure 10.4 are shown in

Figure 10.5.

To express the interaction of three elements over one edge, we need a way

of handling the numerical flux and the associated surface integrals over

these edges. The principal challenge here is that the high order nodes do

not align on these edges. To resolve this, an intermediate solution with

matching high order points is computed, which allows the calculation of

the numerical flux. We adopt the methods employed in [104, 105], which

are also otherwise known as mortar element methods [106].
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1

4
12 13

14 15

6 7

8 9

10 11

Figure 10.4: Schematic of a mesh contain-

ing various refinement levels. The grid is

balanced in the sense that the difference in

refinement levels of any two neighboring

cells is at most one.

1 2

4 5

12 13 14 15

6 7

3

8 9 10 11

M0:

M1:

M2:

Figure 10.5: Illustration of the mesh hier-

archy corresponding to Figure 10.4. Ele-

ments in blue represent elements that are

currently active in the mesh.

Let D0 ∈M0

and D1 ,D2 ∈M1

be elements interfacing at the common

edge E0

� E1 ∪ E2

, where E1

� ∂D1 ∩ ∂D0

and E2

� ∂D2 ∩ ∂D0

are the

edges of the children elements. The situation is illustrated in Figure 10.6.

For this edge, we have to specify the computation of the three fluxes

F∗,0h (q
0

h , q
1

h ⊕ q2

h), F∗,1h (q
1

h , q
0

h), F∗,2h (q
2

h , q
0

h).

The superscripts for the fluxes indicate the edge and the corresponding

high order nodes on which the numerical flux is represented (See Figure

10.6). Then, we begin by evaluating the fluxes on the high order points of

the children elements

F∗,1h (q
1

h , q
0

h) � F∗h(q
1

h , P
1

0
q0

h), (10.28)

F∗,2h (q
2

h , q
0

h) � F∗h(q
2

h , P
2

0
q0

h), (10.29)

where we have introduced the “scatter” projection operators P1

0
, P2

0
,

which project the polynomial on E0

onto the nodal bases on E1

and

E2

, respectively. Because the polynomial bases are of the same degree,

these projection operators do not change the polynomial itself. We write

out the projection operators to indicate the change of basis. This makes

the computation of the numerical flux (10.20) unambiguous, as both

polynomials in the argument are defined on the same set of nodes.

Similarly, we define the “gather” projection operators P0

1
, P0

2
, which

project polynomials defined on the nodes of the children edges E1

and

E2

onto the nodes of the parent edge E0

. Using these projections, we

define the numerical flux on the parent node as

F∗,0h (q
0

h , q
1

h ⊕ q2

h) �
1

2

(
P0

1
F∗h(P

1

0
q0

h , q
1

h) + P0

2
F∗h(P

2

0
q0

h , q
2

h)
)
. (10.30)

As mentioned before, the flux is first evaluated on the nodes of the children

elements before it is projected back onto the parent edge. Consequently,

it is a piecewise polynomial with 2(p + 1) degrees of freedom. The L2

D0

P1
0

P0
1

P2
0

P0
2

D1

D2

F∗,1
h

F∗,2
h

Figure 10.6: Treatment of the hanging

node in a non-conforming discretization.

The solution on the edge of the parent

element D0

is projected onto the edges of

the children elements for the computation

of the numerical fluxes. This solution is

then projected back to the parent edge.
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projection onto the polynomial basis of the parent edge can be broken

into two individual L2

projections P0

1
, P0

2
from the children elements.

As a result, there is some loss of information as the flux is projected

onto a basis of dimension p + 1. In the context of the mortar element

method, this approach of performing the flux computation on the edge

with the higher approximation order is known as the maximum rule [107].

For more information on adaptive mesh refinement in the context of

discontinuous Galerkin methods, we refer the reader to [104, 105, 108].

10.4 Time integration

By putting everything together and by replacing the integrals with the

quadrature rules (10.22) and (10.23), we obtain the semi-discrete scheme

in the form of a nonlinear system of ordinary differential equations

∂t q̂h(t) � Rh(q̂h(t)), (10.31)

for the vector of unknowns

q̂h �



q̂1

1

...
q̂1

(p+1)2

q̂2

1

...

q̂K
(p+1)2


(10.32)

and the right-hand side Rh(q̂h(t)) defined by the volume integrals of

flux and source terms, as well as surface integrals of flux terms. We have

therefore a problem of the form

d

dt
y � f (t , y), (10.33)

where y(t) is a vector-valued function in time, with the derivative

prescribed by f (t , y). This problem is typically solved numerically by

a multi-stage, multi-step linear method [109]. A popular class among

them are the explicit Runge-Kutta methods. These methods update the

solution yn
at time tn

to the solution yn+1

at time tn+1

� tn
+ ∆t, by

taking the weighted average

yn+1

� yn
+ ∆t

s∑
i�1

bi ki , (10.34)

where ki denote the evaluation of f at different stages, given by

k
1
� f (tn , yn), (10.35a)

k
2
� f (tn

+ c
2
∆t , yn

+ ∆t(a
21

k1)), (10.35b)

... (10.35c)

ks � f (tn
+ cs∆t , yn

+ ∆t(as1
k1 + as2

k2 + · · · + as ,s−1
ks−1)). (10.35d)
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Table 10.1: Butcher Tableaus for a general,

explicit Runge-Kutta scheme.

0

c
2

a
21

...
...

. . .

cs as1
as ,s−1

b
1

. . . bs

−3 −2 −1 0 1

−2

0

2

Re(∆tλ)

Im
(∆

tλ
)

Figure 10.7: Linear stability regions of

the explicit Euler method in blue and

SSPRK(3,3) method in red.

The coefficients that characterize the Runge-Kutta schemes can therefore

be summarized into the so-called Butcher tableau 10.1 [109].

Unsurprisingly, the coefficients bi must satisfy

s∑
i�1

bi � 1,

for the scheme to be consistent. We are also interested in the scheme

converging quickly, such that the truncation error is of order O(∆tr+1),
where r is called the order. We call the scheme an explicit s-stage, order-r
Runge-Kutta scheme. It is known that for explicit schemes, the order is a

lower bound for the number of stages. In other words s ≥ r and s ≥ r + 1

for r > 4 [109, p. 187].

Apart from high order convergence, we are also interested in the proper-

ties of the scheme when errors are introduced. This is generally referred

to as the stability of the scheme. The study of numerical schemes for

solving the ODE system (10.33) is a well-established field and their

stability properties are well-studied [109, 110]. To introduce the concept

of stability, we analyze the explicit Euler scheme, given by

yn+1

� yn
+ f (tn , yn). (10.36)

By linearizing the ODE (10.33), we obtain the system

d

dt
y � Ay , (10.37)

where A is the Jacobian of f with respect to y. As we can transform

this equation using a similarity transform, we can also instead consider

the system in which A is replaced by its Jordan normal form. As this

effectively decouples eigenvectors, we can instead consider the stability

for the method applied to
d

dt y � λy, where λ is an eigenvalues of A. If

we perform n steps of the explicit Euler method, we obtain

yn � (1 + ∆tλ)n y
0
. (10.38)

Simultaneously, we know that the exact solution is exp(n∆tλ)y
0
. Requir-

ing that the numerical approximation stays bounded for solutions which

are bounded, yields the linear stability condition

|1 + ∆tλ | < 1 (10.39)

for eigenvalues λ ≤ 0. In other words, these are the scaled eigenvalues

∆tλ, for which we can expect the numerical scheme give a bounded

result if the solution itself is bounded. These regions are also called the

regions of absolute stability. Figure 10.7 depicts the stability region of the

explicit Euler method (10.39), which is simply the unit circle centered at

−1.

In the context of non-linear partial differential equations and their

semi-discrete forms, the linear stability conditions are often insufficient.

Especially for hyperbolic problems, where solutions may become dis-

continuous, we require methods which guarantees stability in some

non-oscillatory quantity of the solution, such as the maximum norm or

the total variation of the solution [111]. For this reason, a tremendous
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Table 10.2: Butcher Tableau for the

strong-stability preserving Runge-Kutta

3,3 scheme.

0

1 1

1/2 1/4 1/4
1/6 1/6 2/3

amount of effort has been undertaken to develop spatial discretizations

of the flux function ∇ · F(q), which guarantee these stability proper-

ties when coupled with the explicit Euler scheme (10.36). However, for

practical applications, we require higher order methods and the Runge-

Kutta methods (10.34) presented previously, do not retain these stability

properties in general.

This is where the development of strong stability preserving Runge-Kutta

(SSPRK) methods come in [111]. Given the semi-discrete form (10.33) of

our scheme, assume that there exists a maximum time step ∆t
max

, such

that

‖y + ∆t f (y)‖ ≤ ‖y‖ (10.40)

holds for all y, some norm ‖·‖ and if 0 ≤ ∆t ≤ ∆t
max

. Loosely speaking,

we say that a scheme is strong stability preserving with coefficient c, if

the solutions satisfy

‖yn+1‖ ≤ ‖yn ‖ , (10.41)

whenever (10.40) holds and ∆t ≤ c∆t
max

[111]. In particular, we are

interested high-order time-discreitzation methods with this property.

Shu and Osher were the first to introduce such methods [112]. The core

idea of these methods is to search for high-order Runge-Kutta schemes

which can be written as a convex combination of Euler time steps [111,

112]. In latter chapters we will see that such methods benefit us in that

they help us guarantee other properties such as preserving positivity of

the waterheight.

For our purposes we use the popular three-step, third-order strong

stability preserving Runge-Kutta method (SSPRK(3,3)), as presented in

[111]. The coefficients which characterize the scheme are listed in Table

10.2. There are other methods, specifically adapted to discontinuous

Galerkin discretizations such as [113]. For our discussion however, it will

be sufficient to stick to the simple explicit Euler scheme, knowing full

well that any relevant time discretization is a convex combination of

Euler steps. As such, we consider the fully-discrete form

q̂h(t + ∆t) � q̂h(t) + ∆tRh(q̂h(t)). (10.42)



1: As the velocityϕu � 0 disappears, pres-

sure gradients induced by the bottom to-

pography balance the gradients due to the

gravity potential. This condition is equiva-

lent to the condition of hydrostatic balance

[93].
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In this chapter we are concerned with the physical consistency of our

models. A first step towards this goal is the development of well-balanced
schemes. In the context of modelling tsunamis or storm surges, one is

often confronted with situations in which the initial condition can be

regarded as a perturbation of a stationary solution of (9.1a). For water

waves and tsunamis, we can imagine throwing a stone into a lake which

is perfectly at rest. Mathematically, the lake at rest is characterized by

the solution

ϕ � max

(
ϕ

0
− τ, 0

)
, (11.1a)

ϕu � 0. (11.1b)

We can easily verify that the lake at rest solution, which we denote by

q � [ϕ, ϕu]ᵀ, satisfies

∇ · F(q) � S(x , q), (11.2)

both for the one-dimensional and the spherical shallow water equations.

1

To have a physically consistent scheme, it is therefore important to

construct schemes that are able to numerically preserve this steady-state

[92, 93, 114]. Otherwise we can expect spurious waves to be generated,

which pollute the solution that we are interested in. We call schemes that

can preserve this steady-state numerically well-balanced.

11.1 The well-balanced property

We formalize the notion of well-balanced schemes. For nodal schemes,

we can do this in the following way:

Definition 11.1.1 Let qh � [ϕh , ϕuh]
ᵀ denote the numerical representation

of the lake at rest solution, such that

ϕh(xi) �max

{
ϕ

0
− τh(xi), 0

}
, (11.3)

ϕuh(xi) �0, (11.4)

holds on all nodes xi in the computational domain. We call a scheme with
right-hand side Rh(qh) well-balanced, if it exactly preserves the lake at rest
solution, i.e.

Rh(qh) � 0. (11.5)

Exactness in this context refers to machine-precision, as an exact 0

can hardly be guaranteed with floating-point arithmetic. Therefore, we

require Rh(qh) to be of order O(εϕ), where ε is the relative rounding

error of floating point arithmetic. To simplify our analysis, we assume

that floating point arithmetic is performed exactly. This does not hinder
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the accuracy of our analysis as catastrophic cancellation would have to

take place to significantly disturb the well-balanced scheme.

Example 11.1.1 (Finite volume scheme in one dimension) We return to

the simple finite volume scheme in one dimension and check whether

it is well-balanced. To represent the bottom topography in the finite

volume scheme, we represent it as a piecewise constant function:

τh(xk) � τ(xk) � τ̂k .

We can then approximate the gradient of the bottom topography ∂xτ
using centered finite differences

(∂xτ)kh ≈
τ̂k+1 − τ̂k−1

2|Dk |
,

which makes it piecewise constant as well. We borrow the notation from

the discontinuous Galerkin schemes and write the k-th component of

the right-hand side as

Rk
h � − 1

|Dk |

(
1

2

(F(q̂k+1) − F(q̂k−1)) − α
2

(q̂k+1 − 2q̂k
+ q̂k−1)

)
− ê

2
ϕ̂k(∂xτ)kh .

For the scheme to be well-balanced it must satisfy Rk
h � 0, which yields

the discrete momentum balance

1

2|Dk |

(
1

2

(ϕ̂k+1)2 − 1

2

(ϕ̂k−1)2
)
� −ϕ̂k τ̂

k+1 − τ̂k−1

2|Dk |
(11.6)

if uh � 0 is assumed. The lake at rest solution is further characterized

by ϕ+ τ � ϕ
0
� const. By representing this discretely as ϕ̂k

� ϕ
0
− τ̂k

,

we can see that the scheme is not well-balanced in general unless τh is

constant everywhere (i.e. no source term).

11.2 Hydrostatic reconstruction

The preceding example shows that it is not straight-forward to obtain

a well-balanced scheme. For finite volume schemes, we observe that

the main problem lies in the different approaches for discretizing fluxes

and source terms. This can be seen by considering the one-dimensional

hydrostatic balance

∂x

(
1

2

ϕ2

)
� −ϕ∂xτ (11.7a)

⇐⇒ ϕ∂x(ϕ + τ) � 0. (11.7b)

The discrete momentum balance (11.6) corresponds to the discretization

of (11.7a) using central finite differences. This confirms that the problems

stem from the difference in discretizations of the source and flux terms,

respectively.

A possible way of overcoming this is a technique called hydrostatic
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reconstruction, introduced by Audusse et al. [93]. The core idea is to

reconstruct the water surface at the cell interface and compute the

numerical fluxes based on the difference in water surface height as

opposed to water column height. To understand this, let us imagine that

we are at the interface xk+1/2. We compute the maximum of the bottom

topographies

τ̂k+1/2
� max {τ̂k+1 , τ̂k}, (11.8)

and construct the hydrostatic variables

q̂k+1/2−
�

[
ϕ̂k+1/2−

(ϕ̂u)k+1/2−

]
�

[
max {ϕ̂k

+ τ̂k − τ̂k+1/2 , 0}
ϕ̂k+1/2−ûk

]
(11.9)

and similarly,

q̂k−1/2+
�

[
ϕ̂k−1/2+

(ϕ̂u)k−1/2+

]
�

[
max {ϕ̂k

+ τ̂k − τ̂k−1/2 , 0}
ϕ̂k−1/2+ûk

]
(11.10)

where the “-” and “+” at the end of the superscript distinguish between

the left and right sides of the interface. In other words, the hydrostatic

variables reconstruct the water column height related to the closest point

in the bottom topography, while making sure that they do not become

negative. We then replace the numerical flux and source terms with the

hydrostatically corrected numerical fluxes

F•l (q̂
k , q̂k+1

h ) � F∗(q̂k+1/2− , q̂k+1/2+) + 1

2

(
(ϕ̂k)2 − (ϕ̂k+1/2−)2

)
ê

2
,

(11.11a)

F•r (q̂k−1 , q̂k
h) � F∗(q̂k−1/2− , q̂k−1/2+) + 1

2

(
(ϕ̂k)2 − (ϕ̂k−1/2+)2

)
ê

2
.

(11.11b)

Here, the source term has been distributed across the interfaces of the

cell. The hydrostatically corrected scheme is then characterized by the

right-hand side

Rk
h � − 1

|Dk |

(
F•l (q̂

k , q̂k+1

h ) − F•r (q̂k−1 , q̂k
h)

)
. (11.12)

By inserting in the lake at rest solution qh , we verify that the scheme is

well-balanced. In particular, the momentum balance yields

− 1

2|Dk |

(
1

2

(ϕ̂k+1/2+)2 − 1

2

(ϕ̂k−1/2−)2 (11.13)

− 1

2

(ϕ̂k+1/2−)2 + 1

2

(ϕ̂k−1/2+)2
)
� 0, (11.14)

due to ϕ̂k+1/2−
� ϕ̂k+1/2+

and ϕ̂k−1/2−
� ϕ̂k−1/2+

for the lake at rest

solution. The core idea of the hydrostatic reconstruction is to perform an

upwind evaluation of the bottom topography (11.8), to reconstruct the

physically meaningful water column heights at the interface. While we

have shown that this scheme is well-balanced, we have not done any

convergence analysis to prove that it actually solves the shallow water

system (9.2a). We refer the reader to [93] for the convergence analysis



11 Well-balanced schemes 121

2: A problem similar to well-balancing in

shallow water equations appears in aeroa-

coustics, where not conserving the metric

identities discretely results in spurious

waves on the order of magnitude of the

solution [115].

and further details on the hydrostatic reconstruction.

11.3 Well-balanced discontinuous Galerkin
schemes

The core observation for finite volume schemes is that the discretization of

the discontinuous bottom topography and resulting source terms requires

extra care to guarantee well-balancedness. For the discontinuous Galerkin

scheme, we do not consider discontinuities of the bottom topography

to be an issue, as we can apply hydrostatic reconstruction. For the

moment, we therefore assume that the bottom topography is discretized

in a continuous fashion. We consider the weak form. By replacing the

integrals with the quadrature rules, the right-hand side for the weak

form becomes

R(qh) �
∫

D
Fh · ∇Li − Sh Li dx +

∫
∂D

n̂ · F∗h dx

≈QD [Fh · ∇Li − ShLi] +Q∂D
[
n̂ · F∗h Li

]
C Rh(qh). (11.15)

By inserting the numerical representation of the steady-state solution qh ,

we find that the formulation will not be well-balanced in general. Unless

both integrands evaluate to 0 exactly, we need to perform integration

by parts in order to use the balanced property (11.5) of qh . This relies

on exact numerical integration, which is a property that the curvilinear

discretization does not possess. The strong form

R(qh) �
∫

D
(∇ · Fh − Sh) Li dx −

∫
∂D

n̂ ·
(
Fh − F∗h

)
Li dx

≈QD [(∇ · Fh − Sh)Li] −Q∂D
[
n̂ ·

(
Fh − F∗h

)
Li

]
C Rh(qh)

(11.16)

on the other hand, is obtained through integration by parts. Inserting in

the lake at rest solution yields the well-balanced property (11.2) without

relying on exact quadrature. The property that divergence-free fields

remain constant in the strong form is related to the discrete version of

the metric identities. These are a necessary condition for conserving the

divergence-free property of a vector field when it is formulated on a

curved grid. Under a change of basis, it is always the case, however,

discrete representations do not necessarily conserve this property. It

can be shown it is automatically satisfied by the strong form of the

discontinuous Galerkin method [115].
2

Proposition 11.3.1 Let qh satisfy the discrete, nodal balance condition
∇ · Fh(qh) − Sh(qh) � 0. Moreover, let the numerical flux be consistent for
this solution, such that F∗h(q

−
h , q

+

h) � Fh(qh). Then, the strong form of the
discontinuous Galerkin scheme Rh(qh) is well-balanced, regardless of the
exactness of the quadrature rule.

Proof. Inserting qh yields Rh(qh) � QD [0] −Q∂D [0] � 0.

The advantages of the strong form lie in the conditions for Proposition

11.3.1. In other words, to obtain a well-balanced scheme, it is sufficient to
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3: Dry nodes refer to nodes where the

waterheight ϕ is below a certain thresh-

old ϕ
0
. We formalize this in Chapter 12,

which is concerned with the treatment of

such situations. Figure 12.1 illustrates that

the numerical approximation of the water

surface cannot remain constant in the pres-

ence of dry areas unless negative values

are permitted.

guarantee ∇ · Fh(qh) � Sh(qh) and Fh(qh) � F∗h(q
−
h , q

+

h) individually. As

such, we do not need to pay attention to the volume discretization when

we construct a discretization of the surface integrals. This property is

particularly useful in the construction of a well-balanced wetting/drying

method and non-conforming flux-discretizations, as we will see later

on.

Proposition 11.3.2 Let M be a conforming mesh ofΩ and let the approxi-
mation of the bathymetry τh ∈ Vh(Ω,M) be continuous on Ω. Moreover
let ϕ

0
> τh , i.e. there are no dry areas inΩ. The strong form of the scheme,

as presented in Section 10.2 is well-balanced under these assumptions.

Proof. We start by showing F∗h(q
−
h , q

+

h) � Fh(qh). We have uh � 0 and

ϕh � ϕ
0
− τh , which is continuous due to the continuous bathymetry τh .

This implies

F∗h(q
−
h , q

+

h) � F∗h(qh , qh) � Fh(qh)

due to the consistency of the Lax-Friedrichs flux.

In addition, we have to establish ∇ · Fh(qh) � Sh(qh). We can ignore

the Lagrange multiplier as it only projects the change in velocity to the

surface of the sphere. Inserting uh � 0 then reduces the equations to

ϕh∇ϕh � −ϕh∇τh ,

which is trivially satisfied by qh .

11.4 Well-balanced non-conforming meshes

We have shown that the strong form of the discontinuous Galerkin

scheme has inherent advantages over the weak form. If integration is

exact however, this is irrelevant. Consequently, many well-balanced

discontinuous Galerkin schemes in the literature use the weak form

[116–120]. However, the advantages of the strong form go beyond this

as we will see in the following chapters. One particlar advantage lies

in the fact that surface and volume integrals do not have to balance

eachother. Exactly this makes handling non-conforming meshes simpler

and we only require a few changes to the method presented in Section

10.3. In particular, the introduction of non-conforming edges leaves

volume terms unchanged and therefore, we only have to ensure that

Fh(qh) � F∗h(q
−
h , q

+

h).

Let us recall the flux computation across non-conforming edges as

illustrated in Figure 10.6. The computation involves projections onto

the children elements, and back onto the parent edge, as well as the

evaluation of the flux itself. The projection of the polynomial on the

parent edge E0

to the edges of the children elements E1

and E2

is exact

as we are projecting from one polynomial basis of p-th order to another.

Unless there are dry areas, this preserves the lake at rest condition

ϕh + τh � ϕ
0
. Once dry nodes are introduced, we cannot guarantee that

the water surface ϕh + τh remains constant as we cannot allow negative

nodal values.
3

This implies that the nodal lake at rest property (11.3) is

not sustained by the projected solutions P1

0
q0

h and P2

0
q0

h . This is due to

the non-constant water surface and the choice of new nodes to represent
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ϕh and τh . To circumvent this issue, we choose to reconstruct the water

surface using

σh(xi) �
{
ϕh(xi) + τh(xi) ϕh(xi) > ϕtol

ϕ
0

otherwise,

(11.17)

where ϕ
tol

is a minimum water height, below which the solution is

considered dry. The projection is then performed on the reconstructed

variable σh :

P1,∗
0
ϕ0

h(x
1

i ) B max

{
P1

0
σ0

h(x
1

i ) − P1

0
τ0

h(x
1

i ), 0
}
, (11.18)

P1,∗
0
(ϕu)0h(x

1

i ) B P1

0
(ϕu)0h(x

1

i ). (11.19)

This ensures that the projection carries over the nodal lake at rest property

to the children nodes x1

i .

Next, we need to ensure that the analytical and numerical fluxes evaluate

to the same value on the children nodes. The challenge here is that the

bathymetry generally is discontinuous due to the non-conforming mesh.

This implies that the lake at rest solution qh itself is also discontinuous

due to ϕh � ϕ
0
− τh . Because the numerical flux is single-valued it

cannot match the analytic fluxes on both sides simultaneously. We have

encountered this situation previously in the construction of well-balanced

finite volumes schemes. Again, we use the hydrostatic reconstruction as

introduced in [93]. This technique has been applied by [116] to form well-

balanced discontinuous Galerkin schemes with discontinuous bottom

topographies [116, 121]. We form the hydrostatic reconstruction of q±h at

the cell interfaces:

q•,±h �

[
ϕ•,±h
(ϕu)•,±h

]
�

[
max

{
ϕ±h + τ±h − τ

•
h , 0

}
ϕ•,±h u±h

]
, (11.20)

where τ•h is the reconstructed cell interface height

τ•h � max

{
τ−h , τ

+

h

}
. (11.21)

We replace the numerical flux (10.20) with the hydrostatically recon-

structed flux

F•h
(
q−h , q

+

h
)
B F∗h

(
q•,−h , q

•,+
h

)
+

1

2

(
(ϕ−)2 − (ϕ•,−)2

) 
0

êx
êy
êz

 , (11.22)

with source term contributions in the components related to the mo-

mentum balance. This flux is not single-valued, as is necessary for it to

be well-balanced. If we insert the lake at rest solution, we recover the

analytical fluxes F(q±) on both sides of the interface.

The last projection step in (10.30) also requires special treatment, as it

is inexact. Again, we make use of the strong form and evaluate the

difference between numerical and exact fluxes directly on the children

nodes. As such, we perform gather projections on the difference of the
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numerical and analytical fluxes:

1

2

P0

1

(
F•h

(
P1

0
q0

h , q
1

h

)
− Fh

(
P1

0
q0

h

) )
+

1

2

P0

2

(
F•h

(
P2

0
q0

h , q
2

h

)
− Fh

(
P2

0
q0

h

) )
.

(11.23)

For the lake at rest solution, this difference becomes 0 and as such, the

projected flux is also 0, regardless of the accuracy of the projection.

Proposition 11.4.1 Let M be a balanced, non-conforming mesh in Ω and
let ϕh be a lake at rest solution in the sense of (11.3). Then the modifications
(11.17)-(11.23) yield a well-balanced evaluation of flux terms at the non-
conforming interfaces.

Proof. Because the non-conformity of the discretization does not affect the

evaluation of the volume terms, we only have to prove the well-balanced

property of the fluxes.

We have already established that the lake at rest property carries over

to the nodes of the children elements, when the first projection step is

applied on the reconstructed water surface height. As such, the evaluation

of F•h
(
q−h , q

+

h
)

gives the same result as Fh
(
q−h

)
. Hydrostatic reconstruction

gives us ϕ•,−h � ϕ•,+h due to ϕ±h + τ±h � ϕ
0
. Consequently, evaluation of

(11.22) yields

F•h
(
q−h , q

+

h
)
� F∗h

(
q•,−h , q

•,−
h

)
+

1

2

(
(ϕ+)2 − (ϕ•,+)2

) 
0

êx
êy
êz

 � Fh
(
q−h

)
,

where we have utilized the identity of the flux (9.12). For the final

step we perform the gather projection steps on the flux differences

F•h
(
q−h , q

+

h
)
− Fh

(
q−h

)
which are 0, as just demonstrated.

We remark that adaptive mesh refinement requires refinement and

coarsening operations, which compute the representation of the solution

on the updated mesh. For the method to be well-balanced, we require

these operations to conserve the lake at rest property of qh as well.

As these are usually projection operators, we can adapt the methods

presented here. This implies that projections are only applied to the

reconstructed water surface variable σh before converting it back.
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Numerical models for tsunami simulations, storm surge prediction

and inundation modelling all require some way of handling wet-dry

transitions. Loosely speaking, this refers to areas of the physical domain

in which the water column height ϕ goes from 0 to ϕ > 0 or vice-

versa. While this is intuitive to imagine, it poses significant challenges

to numerical schemes. Mathematically speaking, we should consider a

time-dependant domain Ω(t), which encompasses all the areas which

have a non-zero water column height. Doing this numerically would

require constant remeshing, robust handling of topological changes of

Ω(t), as well as the construction of rules and algorithms for evolving the

boundaries ofΩ(t). Consequently, most practical models choose to avoid

this by formulating heuristics for dealing with the wet-dry interface.

These result in a number of problems:

Negative waterheights Once the water column heights become nega-

tive, the character of the shallow water equations changes dramati-

cally. The wavespeeds become complex, which is an indication for

the system becoming ill-posed. We can therefore expect unphysical

results and the scheme to become unstable if negative values are

introduced.

Dealing with small ϕ To evaluate the flux, we need to compute (ϕu)2/ϕ,

which can lead to loss of accuracy if ϕ is close to 0.

Partly dry cells In the context of finite volume methods, wetting/drying

simply means that there will be some cells which can be considered

“dead”. With discontinuous Galerkin methods, this is not the case

anymore and we need a robust way of handling these elements.

Well-balanced property When dealing with these issues, we have to

preserve the lake-at rest solution.

Stability Finally, the methods should result in a stable scheme, which

does not amplify errors indefinitely.

12.1 A survey of existing methods

We give a short survey of existing methods for dealing with these chal-

lenges. Bokhove uses the straight-forward approach of adapting the mesh

to the moving shorelines [122]. The advantage of this method is physical

accuracy as the shallow water equations are only solved where it is ap-

propriate. As previously noted, the drawback is that constant remeshing

is required and while this is straight-forward for one-dimensional prob-

lems as presented, it is considerably more difficult in two dimensions.

A large portion of algorithms proposed in the literature therefore treat

the shoreline as an immersed boundary within the elements. Various

methods exist to ensure positivity of the approximate solution [116, 119,

123]. For discontinuous Galerkin methods Xing et al. propose a method

for maintaining the positivity of cell-averages by using a restriction on

the timesteps [116]. Positivity on the nodes is then ensured by using
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a positivity-preserving limiter, which rescales the polynomial around

the positive average. However these methods [116, 121] are not uncon-

ditionally well-balanced as partly dry cells are neglected. The problem

with these cells is that they introduce artificial gradients and generate

unphysical waves at the wet-dry interface. This effect has also been

observed by others, and is sometimes referred to as numerical storms

[124]. To overcome this Kesserwani et al. propose a reconstruction of

nodal values such that the pressure gradients vanish for the lake at rest

solution [120]. The authors present this method for a piecewise linear

method in one dimension and it is unclear how this approach performs

for higher-order methods. Other approaches cancel gravity in these cells

to eliminate the problem of artificial pressure gradients [118, 125]. This in

turn requires the introduction of dual-valued fluxes to make the scheme

well-balanced. While these methods make the schemes well-balanced,

they are not consistent with the physical model and appear to be re-

stricted to piecewise linear polynomials. Other approaches use artificial

porosity and introduce a fraction indicator to represent how much of the

cell is wet and how much is dry [126, 127]. This allows for implicit time

integration with large timesteps but introduces other problems such as

higher wave speeds in the wet-dry region and a modified shallow water

model. Finally, there is the issue of stability at the wet-dry interface.

Most of the aforementioned algorithms reduce the order of the solution

to linear polynomials and apply a slope limiter to prevent unphysical

discharges [116, 125]. Meister and Ortleb use an implicit scheme with a

modal filter and a shock indicator to stabilize the scheme in the nearly

dry regions [119].

The method that we propose uses the approach presented in [116] to

maintain positivity and combines this with a modified discretization for

partly dry cells [2]. The advantage is that it does not modify the physics

and it is valid for any polynomial degree.

12.2 Maintaining positivity

Before we continue, we require a distinction between wet and dry areas.

We call a node xi dry, if the water height ϕh(xi) is smaller than a certain

tolerance ϕ
tol

. If the opposite is true we call it a wet node. In the context

of discontinuous Galerkin methods, three situations can occur. If an

element D contains only dry nodes, we call it a dry element. If it contains

only wet nodes we call it a wet element. In the case that the element

contains both wet and dry nodes, we call the element semi-dry or partly
dry. As previously noted, these elements require special attention.

We adopt the approach presented in [116] for maining the positivity

of the solution. This method uses timestep retrictions, which is a well-

established approach in the context of finite volume schemes to guaran-

tees positivity of the cell average ϕ
avg

h . In the following, we adapt it to

the spherical shallow-water equations.

Proposition 12.2.1 Let qh(x , tn) denote the numerical solution at time tn
with positive water height on all nodes xi . Assuming exact integration of the
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integrals in (10.17), the cell-averaged water column height

ϕ
avg
h �

∫
D
ϕh(x)dx (12.1)

remains positive after one Euler timestep (10.42), provided the timestep meets
the CFL-like requirement

J∂D

JD
α∆t ≤ ω1

2

(12.2)

everywhere.

Proof. Under the assumption of exact numerical integration, we recover

the evolution of cell averages by inserting Li � 1 and the Euler timestep

discretization in (10.17):∫
D

qh(x , tn+1
)dx �

∫
D

qh(x , tn)dx + ∆t
(∫

D
Sh dx −

∫
∂D

n̂ · F∗h dx
)
.

As we assume exact numerical integration, the strong form and the

weak form are equivalent. We choose the weak form, which reduces

the evolution of cell-averages to the boundary of the domain D. We

introduce F∗ϕ , which denotes the component of the numerical flux acting

on the water height. Then, by replacing the integrals with the quadrature

rules, we obtain

QD[ϕh(x , tn+1
)] � QD

[
ϕh(x , tn+1

)
]

− ∆t Q∂D

[
n̂ · F∗ϕ

(
q−h (x , tn), q+

h (x , tn)
) ]

for the cell-averaged water height. By splitting the quadrature into sums

over the edges and the sum over the interior points, we have

QD[ϕh(x , tn+1
)]

�

p∑
i , j�2

ϕh(ξi , η j , tn)JD(ξi , η j)ωiω j

+

p+1∑
i�1

ϕh(ξi ,−1, tn)JD(ξi ,−1)γiωiω1

− ∆t n̂ · F∗ϕ
(
q−h (ξi ,−1, tn), q+

h (ξi ,−1, tn)
)

J∂D(ξi ,−1)ωi

+

p+1∑
i�1

ϕh(ξi , 1, tn)JD(ξi , 1)γiωiωh

− ∆t n̂ · F∗ϕ
(
q−h (ξi , 1, tn), q+

h (ξi , 1, tn)
)

J∂D(ξi , 1)ωi

+

p+1∑
j�1

ϕh(−1, η j , tn)JD(−1, η j)γjω1
ω j

− ∆t n̂ · F∗ϕ
(
q−h (−1, η j , tn), q+

h (−1, η j , tn)
)

J∂D(−1, η j)ω j

+

p+1∑
j�1

ϕh(1, η j , tn)JD(1, η j)γjωhω j

− ∆t n̂ · F∗ϕ
(
q−h (1, η j , tn), q+

h (1, η j , tn)
)

J∂D(1, η j)ω j
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where

γi �

{
1

2
if i � 1 or i � p + 1,

1 otherwise.

As we assume the solution at tn to have a positive water height every-

where, the first term remains positive. Thus, it is sufficient to show that

the four boundary sums stay positive. By inserting the Lax-Friedrichs

flux (10.20), we rewrite the boundary terms as

ϕ−h

[
JDγω1

− 1

2

∆t J∂D
(
n̂ · u−h + α

) ]
+ ϕ+

h∆t J∂D

[
α
2

− 1

2

n̂ · u+

h

]
,

where we have dropped the indices for simplicity. Due to the definition

of α (10.21), we have |n̂ ·u±h | < α. It follows that the second term is always

positive and that the first term is positive under the condition

JDγω1
≥ J∂Dα∆t ,

which is the sufficient condition to guarantee positive averages ϕ
avg

h .

Even though we have assumed exact numerical integration, this condition

is sufficient to ensure positivity of cell averages in practice. Apart from

their impacts on well-balancedness, the difference between the weak

and strong form are negligible and this condition gives us an idea of

how big the timesteps can be while maintaining positive cell-averages.

Positive cell averages are also retained with higher-order time integration

methods if we utilize convex combinations of Euler timesteps. This is

one of the principle motivators behind Strong stability preserving Runge-

Kutta methods as presented in Section 10.4. Using these time integrators

will therefore preserve the positivity of the cell-averaged water heights

[111, 116].

In the context of a discontinuous Galerkin discretization, we need to

ensure that each nodal value remains positive in addition to the cell

average. To achieve this, a limiter is applied in a post-processing step,

which rescales the solution around the positive cell-averages [116].

As we have established the positivity of the cell-averages, we correct the

nodal values using the positivity limiter presented in [116]. After each

timestep, we rescale the solution in each cell according to

ϕ∗h � θ
(
ϕh − ϕ

avg

h

)
+ ϕ

avg

h , (12.3a)

u∗h � θ
(
uh − uavg

h

)
+ uavg

h , (12.3b)

where

θ �min

{
1,

ϕ
avg

h

ϕ
avg

h − ϕmin

h

}
, (12.4)

ϕmin

h �min

xi∈D

{
ϕh(xi)

}
. (12.5)

The cell-averages ϕ
avg

h and uavg

h can be computed using (10.22). We

observe that the positivity limiter (12.3a) rescales the solution around

the average water height. Finally, as we consider any node with water

height below the threshold ϕ
tol

as a dry node, we need to make sure that



12 Wet/dry transitions 129

the velocity remains 0 at these nodes. For this reason, we set ϕu � 0 at

all nodes with water heights ϕ ≤ ϕ
tol

. This process conserves mass, but

it does not conserve momentum. However it is necessary to maintain

stability and the physical plausibility of the solution.

12.3 Well-balanced wet-dry transitions

Although the combination of timestep restriction and positivity limiter

can handle dry areas, the outcome is not well-balanced. To illustrate

this, let us analyze the situation in one dimension. Figure 12.1 depicts the

lake at rest solution and its numerical approximation. As we can see, we

cannot accurately represent ϕh + τh � const. numerically in partly dry

cells, due to the requirement of positive water heights. Consequently,

the numerical representation of the lake at rest solution (11.3) has a non-

zero slope. We can expect this to introduce artificial pressure gradients

ϕh∇
(
ϕh + τh

)
, in which the solution in the dry areas induces a non-zero

gradient in the wet domain. Clearly, this interaction is not physically

accurate as there should be no interaction between these two domains.

As a consequence, spurious waves are created at the shores and pollute

the domain of interest.

We propose a simple, yet effective approach to mitigate this problem.

To do so, we switch to a local evaluation of the gradient using finite

differences. This allows us to ignore the irrelevant dry areas and eliminate

their influence on the solution. We introduce the finite difference operator

Dξ f (ξi) �



f (ξi+1
)− f (ξi−1

)
ξi+1
−ξi−1

ξi+1
, ξi , ξi−1

are wet nodes

f (ξi+1
)− f (ξi )

ξi+1
−ξi

ξi+1
, ξi are wet, ξi−1

is dry or i − 1 < 1

f (ξi )− f (ξi−1
)

ξi−ξi−1

ξi , ξi−1
are wet, ξi+1

is dry or i + 1 > p + 1

0 otherwise,
(12.6)

which takes the information on neighboring nodes into account only if

they are wet. This finite difference operator (12.6) can be understood as

a way of implicitly imposing boundary conditions within the semi-dry

element. It is consistent with the physical situation as we do not have

any information on what the water surface ϕ + τ should be in the dry

regions to recover the correct gradients in the wet part. We discard this

Ω
c Ω

ϕ + τ

τ

(a) Exact solution

Dk

ϕh + τh

τh

(b) Numerical situation

Figure 12.1: Comparison of the exact and

numerical representations of the lake at

rest solutions. The polynomial approxima-

tion cannot have a vanishing slope unless

unphysical, negative water heights are al-

lowed.
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information by using the local finite difference discretization to compute

the gradient of the water surface.

We can translate the finite difference operators to the physical domain as

we would do for regular differentiation operators:

Dx � ∂xξDξ + ∂xηDη . (12.7)

We define Dy and Dz in a similar fashion. Using these operators we

construct the gradient-like operator

∇h �


Dx
Dy
Dz

 , (12.8)

which replaces the conventional gradient operator for the computation

of ϕh∇h
(
ϕh + τh

)
. We we can now show the well-balancedness of our

modified discretization:

Proposition 12.3.1 Let qh again be the numerical lake at rest solution (11.3)

including dry domains. Then, let Rh(qh), denote the right-hand side (11.16),
where we have replaced∇

(
ϕh + τh

)
with∇h

(
ϕh + τh

)
. The modified scheme

is well-balanced for qh , i.e. Rh(qh) � 0.

Proof. Following the proof of Proposition 11.3.2, it is sufficient to show

the final step

ϕh∇hϕh � −ϕh∇hτh ,

for qh . Due to the linearity of ∇h , this is equivalent to ϕh∇h
(
ϕh + τh

)
� 0.

Inserting ϕh yields

Dξ
(
max

{
ϕ

0
− τh(x(ξi , η j)), 0

}
+ τh(x(ξi , η j))

)
� Dξ

(
ϕ

0
− τh

(
x(ξi , η j)

)
+ τh

(
x(ξi , η j)

) )
� 0.

The first step is permissible as any water height ϕ ≤ ϕ
tol

will be ignored

byDξ anyway. The latter step holds as any finite difference of the constant

function ϕ
0

will yield 0. This is also true for Dη, and consequently for

Dx , Dy and Dz . This means that

∇h
(
ϕh + τh

)
� 0,

which concludes the proof.

To maintain high-order accuracy wherever possible, we switch to this

discretization only if an element contains dry areas. As such, the lower

accuracy introduced by this operator is restricted to the semi-dry cells, in

which one cannot expect high-order accuracy. Furthermore, the number

of such cells is expected to be small.

12.4 A few notes on stability

Before we condlude, we discuss the effect of wetting/drying on the sta-

bility of the scheme. Numerical experiments show that the computation
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of fluxes in the semi-dry cells can be unstable if performed in the wrong

manner. While it might seem attractive to construct the flux term ∂xϕu2

exactly using the derivatives ∂x u and ∂xϕ, this leads to an unstable

scheme. In general, the velocity u is not continuous at the wet-dry inter-

face. Consequently, the evaluation of ∂x u introduces Gibbs oscillations

which render the scheme unstable. For this reason, we evaluate the

derivatives of the flux variables ∂xϕu2

, ∂xϕuv, . . . directly. This is not

exact as flux variables are first approximated by polynomials, however

it avoids the problem of Gibbs oscillations associated with u. This step

introduces an error, as we first approximate the flux using a polynomial

of order p before we evaluate its derivatives.

Finally, high-order discontinuous Galerkin schemes oftentimes require

some sort of artificial dissipation to stabilize the scheme in the presence

of strong gradients and shocks. In the context of the shallow water

equations, this happens in the vicinity of the wet-dry interface where the

water depth is low. The lower water height leads to lower wave speeds

and consequent build-up of water waves. To stabilize the scheme, we

apply a filter, which modifies the solution according to

qF
h �

p∑
i , j�0

σiσ j q̂i jPi(ξ)P j(η), (12.9)

where Pi , P j denote the basis functions of a modal basis in one dimension

and q̂i j denotes the respective coefficient of the solution in the modal

basis. We use Legendre polynomials and filter the solution using the filter

weights σi , which dampen high-order modes. This acts as additional,

artificial viscosity and has a stabilizing effect on the numerical scheme

[78]. We choose an exponential filter with weights

σi � exp

(
−a

(
i/p

) s
)

(12.10)

and set the filter parameters to a � 30 and s � 10. Finally, to ensure

that filtering does not impact the well-balanced property of the scheme,

we perform it on the reconstructed water surface (11.17). Moreover, we

restrict the use of the filter to semi-dry cells. This is done to maintain the

high-order accuracy of the method in wet areas, where we can expect the

solutions to be sufficiently smooth. The entire post-processing procedure

is described in Algorithm 12.1.

Compute the immediate solution qh(x , tn+1
) at time tn+1

.

Reconstruct water surface σh (11.17).

In partly dry elements apply the filter (12.9)

Apply the positivity-preserving limiter (12.3a)

Set u � 0 on all dry nodes.

Algorithm 12.1: Post-processing of partly

dry cells to ensure positivity and stability

of the scheme.



1: A suitable forcing term can be found by

inserting in the solution into the shallow

water equations.
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In this chapter, we present results in one dimension, as well as in two

dimensions on the rotating sphere. To analyze these results, it is useful

to introduce some error norms. A classical one is the relative L2

error

EL2 ,Ω �

‖qh − q‖L2(Ω)
‖q‖L2(Ω)

, (13.1)

whereΩ could also be replaced by a subset of the domain. The solution

q denotes the exact solution approximated by the numerical solution qh .

As there is not always an analytical solution available, we introduce the

relative mass error

Eϕ,Ω �

∫
Ω
ϕh dx −

∫
Ω
ϕ dx∫

Ω
ϕ dx

(13.2)

and energy error

EE,Ω �

∫
Ω

E(qh)dx −
∫
Ω

E(q)dx∫
Ω

E(q)dx
(13.3)

where E(q) denotes the total energy

E(q) B 1

2g

(
ϕ‖u‖2 + ϕ2

+ ϕτ
)
. (13.4)

For the conservation errors, we can replace the reference solution q with

the initial condition q
0
, as both mass and energy are conserved by the

shallow water equations.

13.1 Results in one dimension

Standing wave

Before discussing some common test cases for the shallow water equa-

tions in one dimensions, we investigate the accuracy of the numerical

scheme that we have derived for partly dry cells. To do so, we enforce a

smooth solution ϕ, ϕu ∈ C∞ of the form

ϕ � ϕ
0
+ ϕA cosωt sin κx ,

ϕu � −ϕA
ω
κ

sinωt cos κx ,

with ϕ
0

� 0.3, ϕA � 0.1, ω � π, κ � π. The domain is set to

Ω � [−0.5, 0.5] and exact Dirichlet boundary conditions are used. We

enforce the solution by choosing a suitable right-hand side which yields

this solution.
1

We compare the convergence behavior of the regular

flux discretization to the wetting/drying flux discretization (12.8). The
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Figure 13.1: Convergence behavior for the

standing wave solution. We compare the

accuracy of the wetting/drying flux dis-

cretization on the left to the accuracy of

the regular discontinuous Galerkin dis-

cretization on the right.
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Figure 13.2: Lake at rest solution on a slop-

ing bed at t � 1. We compare the conven-

tional DG method to our well-balanced,

which takes wetting/drying into consid-

eration.

results are shown in Figure 13.1. Instead of using the wetting/drying

discretization only in partly dry cells, we use it on the entire domain

to generate the results on the left. The results on the right depict the

regular discretization as a baseline for comparison. We observe that

the unmodified discontinuous Galerkin scheme achieves high-order

accuracy as we would expect. In contrast, we recover only second order

accuracy with the wetting/drying discretization, even with higher-order

polynomial approximants. We note that the discretization of the flux

term remains unchanged if we choose the finite difference approximation

for a first order discontinuous Galerkin method on a fully wet cell. For

higher order approximations, we do not use the full gradient information

available to us and we only see an improvement in the constant but not

in the order of convergence. Thus, we can be confident that this change

of flux discretization will indeed properly converge to the exact solution,

provided it is sufficiently smooth. In practice, the transition from wet to

dry areas is continuous but not differentiable and we therefore cannot

expect more than first order accuracy using polynomial approximations.

For two-dimensional problems, this loss of accuracy is acceptable how-

ever, as we can expect the number of partly dry elements (located at the

shores) to scale as O(h−1) in contrast to the overall number of elements,

which scales as O(h−2).

Lake at rest on a sloping beach

Let us verify the well-balanced property for one-dimensional problems.

To do so, we will use the lake at rest solution on a linearly sloping bed

with b(x) � 0.5x, g � 9.81,Ω � [−1.5, 1.5] and ϕ
0
� 0.1005g as depicted
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tion errors of the proposed method to a
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logarithmic scale. The error of our method

cannot be displayed as it is exactly 0. En-

ergy conservation errors are shown on the

right.

2: The well-balanced property implies ex-

act conservation of mass and energy in the

case of the associated stationary solution.

in Figure 13.2. We do not apply filtering and use the parameters p � 3,

K � 100, ∆t � 5 · 10
−5

, ϕ
tol

� 10
−4

. As boundary conditions we use the

exact solution on the opposing side of the interface.

Figure 13.2 compares the numerical results obtained with our method

using finite difference approximations in the volume integral, to results

obtained with the conventional DG discretization using the polynomial

derivatives. The latter method corresponds to the positivity-preserving

discontinuous Galerkin discretization presented in [116]. In contrast to

[116], we ensure that the wet-dry interface does not coincide with the

cell interface. This is important as otherwise, we would only be testing

the well-balanced property for completely flooded cells, which is not

sufficient for practical applications. Even with the existence of such a

challenging semi-dry cell, we observe that our method preserves the

lake at rest solution well. This is in contrast to the conventional method,

where we observe artificial waves being created which propagate into

the domain and therefore pollute the solution with spurious waves.

These are especially noticeable in the discharge plot in Figure 13.2, which

shows non-zero discharges from the semi-dry cell to the left. As we have

discussed previously in Section 12.3, this is caused by artificial pressure

gradients. The magnitude of the waves that are created might seem

negligible. However, in our experience, this is not the case when we

move to two dimensional problems. It is therefore clear that the semi-dry

cells require a careful treatment to ensure the well-balanced property of

the scheme.

The wetting/drying discretization (12.6) performs well as seen in Figure

13.2. In particular, we do not observe any spurious changes in the water

surface. For the lake at rest solution, exact integrations implies both

conservation of mass and energy as well as the well-balanced property.

We can therevore use the mass and energy conservation errors to verify

the well-balanced property for our scheme as it is based on integrating

the lake at rest solution exactly. Figure 13.3 displays the relative mass

and energy errors over time for both our scheme and a conventional DG

discretization. While the latter does not conserve either energy or mass,

we observe that our method does so to within machine precision.
2

In fact

the mass error is exactly 0. For the conventional method we observe that

the mass error is initially small while energy errors are accumulated right

away. This is caused by the artificial pressure gradients at the wet-dry

interface as discussed previously. Once these waves begin interacting

with the boundary at t ≈ 0.8, the rate at which mass conservation is
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Figure 13.4: Dam break on a dry bed at

different times. Comparison of the numer-

ical solution with p � 4 and K � 100 to

the analytical solution.

violated begins to increase.

Dam break on a dry domain

We move on to some dynamical test cases. In the next test case we model

a dam break over a dry bed. Initially, we have a water reservoir of height

ϕl � 0.1g on the left half-plane and a dry domain on the right one. We

assume the dam break to be instantaneous and the bottom to be flat, i.e.

τ � 0. The analytical solution (and initial condition) of this problem is

given by

ϕ(x , t) �


ϕl x ≤ xA(t)
4

9

(√
ϕl −

x−x
0

2t

)
2

xA(t) < x < xB(t)
0 x ≥ xB(t)

and

u(x , t) �


0 x ≤ xA(t)
2

3

(√
ϕl +

x−x
0

t

)
xA(t) < x < xB(t)

0 x ≥ xB(t)
,
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Figure 13.5: Convergence for the dam

break solution on a dry bed. The global

L2

error on Ω on the left is compared to

the local L2

error on the right, which is

computed in region [0, 1] on the right. The

solution is fully smooth in this region.

where xA(t) � x
0
− t
√
ϕl and xB(t) � x

0
+ 2t
√
ϕl are the positions of the

kinks in the solution [128]. This problem corresponds to the Riemann

problem with a right state of ϕ � 0, ϕu � 0. This test case is particularly

challenging due to the presence of the rarefaction wave at the wet-dry

interface [98]. Thus, the scheme has to accurately resolve the shock while

maintaining positivity, which can be expected to be challenging. Many

schemes fail at this test case due to stability issues at the wet-dry interface.

For this test case, we use both filtering and the positivity-preserving

limiter and set the dry tolerance to ϕ
tol

� 10
−6

.

Figure 13.4 depicts the numerical solution in comparison to the analytical

solution. The former is computed using p � 4, K � 100, exact boundary

conditions and a timestep of∆t � 5 ·10
−5

. We observe an excellent match

between the solutions, as well as an accurate prediction of the location of

the shore.

We investigate the accuracy of the method and consider the convergence

of the L2

error. The solution is initialized at t � 0.1 and filtering is only

used in the partly dry cells. This is done to eliminate the effect of filtering

as much as possible from the convergence results. Filtering is necessary

on the other hand to yield a stable scheme. The simulation is run until

t � 1 with∆t � 5 ·10
−5

for varying polynomial orders p and mesh widths

h. The wet-dry tolerance ϕ
tol

requires special attention, as it can severely

affect the accuracy if it is set too high or make the scheme unstable if it is

set too low. In our experience, a reciprocal linear relation ϕ
tol

� 10
−4/p

yields satisfying results. This relation can be unnecessarily small as we

have observed much higher tolerances to be possible for small mesh

widths. Figure 13.5 shows the results of the convergence analysis, We

compare the convergence of the relative L2

error on the entire domain

Ω � [−2, 2] to the convergence of the error in the smooth subdomain

[0, 1].

This can be an interesting test as the latter is initially dry but fully wet

at t � 1. Moreover, the solution is a third order polynomial, which

means that we cannot expect more than third order accuracy. While

global convergence rates are limited due to the low regularity of the

solution, we can indeed observe up to third order convergence rates in

the wet areas where the solution is smooth. The convergence rates are not

optimal however, as cubic ansatz functions should theoretically achieve

machine precision accuracy in the smooth part if the scheme is exact. In

practice, this is not possible due to the presence of the wetting/drying

process and the errors associated with the flux discretization in the
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Figure 13.6: Oscillating lake in a parabolic

bed. Comparison of the exact solution to

the numerical solution computed with p �

2 and K � 100.

volume terms (10.18). We can expect errors to propagate into the rest of

the solution, which causes the subobtimal convergence rates. The results

are nontheless encouraging and imply that we can expect higher order

accuracy in wet areas, even if low order errors propagate into these areas.

This is consistent with the behavior of DG methods in the presence of

shocks, where Gibbs oscillations can pollute other areas far way from

the shock [78]. We conclude that high-order accuracy can indeed be

achieved in fully wet areas of the domain even in the presence of wet-dry

transitions.

Oscillating lake

Our final, one-dimensional test case is the oscillating lake in a parabolic

channel

ϕ(x , t) � max

{
ϕ

0
+ 2ϕ

0
α cos(ωt)

(
x − α

2

cos(ωt)
)
− ϕ

0
x2 , 0

}
,

(ϕu)(x , t) � −ϕ(x , t)αω sin(ωt).

This is the analytical solution to the one-dimensional shallow water

equations in a parabolic bed given by τ(x) � ϕ
0
x2

, where ω �
√

2ϕ
0

is the frequency of the oscillation [129]. We choose the parameters
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Figure 13.7: Convergence for the oscillat-

ing lake in a parabolic channel. Global L2

errors on the left are compared to the local

error in a subdomain which remains wet

at all time, on the right.

ϕ
0
� 0.1005g, α � 0.1 and set the domain to [−1.5, 1.5]. Boundary

conditions do not play a role, as the two shore points should never reach

the boundaries of the domain. For this example, filtering is performed

directly on the conserved variables qh as there is no meaningful water

surface to reconstruct. This is because this solution is far from the lake at

rest solution. Figure 13.6 compares the numerical solution, obtained with

p � 2, K � 100, ∆t � 1 · 10
−4

and ϕ
tol

� 10
−4

to the analytical solution.

Although this is a challenging test case, due to the constant wetting

and drying, we observe that the scheme remains stable and properly

reconstructs the shores.

Figure 13.7 depicts the results of the convergence analysis for the os-

cillating lake problem. We compare global errors to local errors for a

subdomain of the solution which remains wet at all times. To this end,

we evaluate the relative L2

error both on the entire domain, as well as

on the subdomain [−0.5, 0.5]. As in the dam break test, we observe that

the convergence of the L2

error on the entire domain is only slightly

higher than 1. Again, this is caused by spatial approximation errors at

the wet-dry interface dominating the global approximation error. We

have to accept this error as we cannot expect to do better than first order

accuracy at the shore. In the smooth part however, the solution lies in the

ansatz space Vh and high-order convergence is possible. The analytical

solution is a quadratic polynomial in space and we observe convergence

up to second order. This is similar to the behavior that we observed with

the dam break case, where we could not achieve errors in the order of

machine precision. Once again, we conclude that this is caused by errors

introduced by the wetting/drying process.

13.2 Results on the sphere

We are finally ready to apply our methods to discretizations of the

spherical shallow water equations, formulated on the rotating sphere.

For all remaining simulations, we set physical constants to the values

of Earth: R � 6.37122 · 10
6

m, g � 9.80616m/s2

and ω � 7.29 · 10
−5

rad/s.

The bottom topography τ � gb(x) is then generated by piecewise linear

interpolation of the ETOPO1 Earth Relief dataset [130]. Moreover, we set

the water surface globally to ϕ
0
� 0m relative to sea level, thus ignoring

tidal effects. This approximation is acceptable as tidal effects are largely

irrelevant for the propagation of tsunamis.
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We use the icosahedral meshes as described in [91] and refine the mesh

uniformly until a prescribed refinement level of L
uni

is reached. Then,

we define a circular region of interest on the sphere defined by{
x ∈ S2(R) | dS2

(
x , x

0

)
≤ ρ

}
.

Here, dS2

(
., x

0

)
is the great-circle distance with respect to a point x

0
on

the sphere. The angle ρ specifies the radius of the area of interest. In this

region, the grid is further refined locally until a desired refinement level

of L
loc

is reached. After static mesh refinement, the bottom topography

data is interpolated onto the locally refined grid in order to obtain

maximally accurate topography data. Throughout our experiments, we

set the filtering and wetting/drying parameters to s � 10, α � 30 and

ϕ
tol

� g · 10m.

Lake at rest solution

We seek to verify the theory developed in Chapter 11 and Chapter 12 by

verifying that the method is well-balanced on non-conforming, curved

meshes. To do so, we construct a non-conforming mesh by refining the

icosahedral mesh in a circular region with radius ρ � 40
◦

and center

x
0

at −10
◦

longitude and −10
◦

latitude. On this mesh, we initialize the

lake at rest solution and run the simulation until t � 10d is reached,

which exceeds the timescale of tsunami events. The results obtained

with various polynomial degrees at t � 5d and t � 10d are listed in

Table 13.1. We see that in all four cases, errors are close to accumulated

roundoff errors, which confirms that the method is well-balanced on

curved, non-conforming grids with bottom topography and dry cells in

the domain.

Adaptive mesh refinement

Before we move to simulations of actual tsunami events, we demonstrate

that the methods for non-conforming discretizations allow for adaptive

mesh refinement in a well-balanced manner. We re-use the same mesh

and generate a tsunami at 0
◦

longitude and 0
◦

latitude. For the initial

shape we choose a Gaussian of the form

ϕ + τ � ϕ
0
+ ϕ

a
exp

(
−
(
dS2

(
x , x

0

)
/ρ

d

)
2

)
,

with a wave height of ϕ
a
� g · 10m and a width of ρ

d
� 0.1rad. We

utilize adaptive mesh refinement every 50 time steps, and adapt the mesh

based on a velocity criterion. According to this criterion, refinement or

coarsening is performed whenever the absolute velocity ‖u‖
2

exceeds or

Table 13.1: Relative errors for the lake at rest solution on the sphere at t � 5d and t � 10d with various polynomial orders.

L2

error EL2 ,Ω
Mass error Eϕ,Ω Energy error EE,Ω

p t � 5d t � 10d t � 5d t � 10d t � 5d t � 10d

1 2.428 · 10
−15

5.015 · 10
−15

0.0 0.0 0.0 0.0

2 7.592 · 10
−13

1.641 · 10
−12 −3.324 · 10

−15

6.980 · 10
−14 −1.000 · 10

−13 −1.239 · 10
−13

3 8.388 · 10
−13

1.828 · 10
−12

2.350 · 10
−14

2.085 · 10
−15 −6.134 · 10

−14 −1.023 · 10
−13

4 6.957 · 10
−13

2.858 · 10
−13 −1.360 · 10

−14 −5.247 · 10
−14 −5.674 · 10

−14 −7.318 · 10
−14
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t � 0d t � 0.05d t � 0.1d

-0.1 0 0.1

Wave amplitude [m]

Figure 13.8: Adaptive simulation of a solitary wave at 0
◦

longitude and 0
◦

latitude. The mesh is refined adaptively using our well-balanced

mesh refinement. The corresponding video clip can be found bonevbs.github.io/files/amr_showcase.mp4.

Front side Back side

Figure 13.9: Mesh for the Tohoku tsunami

simulation using biquartic polynomials i.e.

p � 4. The mesh contains 14238 elements

with 25 collocation points in each element.

falls below the threshold of 0.01m/s. Figure 13.8 depicts the numerical

solution at three different times. We observe that the mesh refinement is

handled in a robust manner without introducing any spurious waves

at non-conforming interfaces. Hence, this technique allows for dynam-

ically refined meshes, while preserving the well-balanced property of

the scheme. This potentially increases the efficiency of the method as

computational effort can be directed towards regions of interests which

require more accuracy.

Tsunami simulations

We seek to validate the capability of the algorithm through numerical

simulations of the 2011 Tohoku tsunami event, which occurred off the

Japanese coast in 2011. As an initial mesh, we use the unrefined icosahedral

mesh and locally refine the area of interest in the Pacific Ocean. We select

the point x
0

at −177
◦

longitude, 12
◦

latitude and refine the initial grid

within a radius of ρ � 55
◦

until a refinement level of L
loc

� 5 is reached.

This amounts to a grid with a total of 14238 elements, most of which

are located within the region of interest in the Pacific Ocean., see Figure

13.9. Using this approach, we can automatically generate meshes that are

adapted to any region of interest and avoid boundary conditions at the

cost of a few extra elements on the back side of the sphere. Moreover, we

https://bonevbs.github.io/files/amr_showcase.mp4


13 Numerical Results 141

1

2

3

4

5

6

7

8

9

10

t � 0d t � 0.1d t � 0.2d

t � 0.3d t � 0.4d t � 0.5d

-10000 0

Bathymetry [m]

-0.1 0 0.1

Wave amplitude [m]

Figure 13.10: High-fidelity simulation of the Tohoku tsunami event with K � 14238 and p � 4. The initial condition is taken to be a static

initial water surface displacement from the lake at rest steady state. The buoys are numbered in ascending order with respect to the tsunami

arrival times: 1 - DART 21418, 2 - DART 21413, 3 - DART 21416, 4 - DART 52402, 5 - DART 52405, 6 - DART 46408, 7 - DART 52403, 8 -

DART 52406, 9 - DART 51407, 10 - DART 46411. The corresponding video clip can be found at bonevbs.github.io/files/tohoku.mp4.

would like to note that this type of mesh avoids the need for boundary

conditions, as needed if an artificial domain truncation was considered.

The initial condition is generated using the Okada model [131] and the

fault parameters of model III presented in [132]. For the moment, we are

not concerned with the tsunami source model and delay the discussion

of Okada soutions and tsunami sources to Section 13.3. For the moment,

we assume an instantaneous slip and calculate the final displacement of

the bottom topography, which is reached 200s after the earthquake has

occurred. The resulting bathymetry displacement is directly translated

to an initial displacement of the water surface.

Starting 200s after the initial earthquake at 2011-3-11 05:49:04 UTC, we

simulate 12h of tsunami propagation. We repeat the simulation twice;

once with biquadratic polynomials p � 2 and a second time with biquartic

polynomials p � 4. The simulations were run on a single core of an Intel

Xeon E5-2643 v3 processor, clocked at 3.40GHz. The simulation took

1h01m for p � 2 and 12h36m for p � 4. Figure 13.10 depicts our results

using biquartic polynomials. We observe that we are able to simulate 12h

of tsunami propagation in a stable manner. Moreover, visual comparison

of both solutions show no significant differences and we can expect our

method to be consistent under p-refinement.

This is further reinforced by our comparison with buoy data. In Figure

https://bonevbs.github.io/files/tohoku.mp4
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Figure 13.11: Comparison of wave ampli-

tudes extracted from DART buoy data

to amplitudes extracted from the simula-

tions.

13.11 we show a comparison of real-world buoy data that was recorded

during the Tsunami event to wave amplitudes extracted from the nu-

merical simulations. We choose 10 buoys, which are part of the DART

tsunami monitoring network [133] as reference. These buoys use pressure

data from the sea bottom to infer the wave amplitudes at the surface.

Their positions are marked as white dots in Figure 13.10. The oscillations

recorded early on by the sensors can therefore be ignored as they are

caused by seismic waves traveling through the Earth’s crust. Moreover,

our simulation does not take tidal effects into account, which we com-

pensate for by subtracting the time-averaged water height from the time

series of the buoy data.

As we can see from Figure 13.11, both simulations are able to accurately

predict arrival times even over long distances. At longer propagation

times, we observe a slight shift of both signals compared to the buoy

data. This phase shift is caused by unresolved bathymetry and becomes

noticeably smaller with the higher resolution simulation. Likewise, the

time series of the buoy data is matched more accurately by the higher-

order simulation. The incremental improvement in the time series from

p � 2 to p � 4 suggests that the method is indeed consistent.

Table 13.2 summarizes the arrival times and states the absolute and rela-

tive errors in the amplitudes of the initial waves for the high-resolution
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buoy arrival time forecast amplitude error relative error

DART 21418 06:13:04 06:13:04 −0.279m −0.149

DART 21413 06:59:16 06:59:16 0.297m 0.382

DART 21416 07:59:16 07:58:05 0.008m 0.024

DART 52402 09:17:52 09:15:28 −0.079m −0.242

DART 52405 09:26:52 09:20:52 −0.016m −0.195

DART 46408 10:20:16 10:18:28 0.054m 0.251

DART 52403 10:31:40 10:25:40 −0.062m −0.505

DART 52406 12:24:48 12:15:28 −0.033m −0.186

DART 51407 13:25:40 13:17:52 −0.129m −0.415

DART 46411 14:57:28 14:50:16 0.020m 0.110

Table 13.2: Comparison of forecasted and

recorded tsunami arrival times. Absolute

and relative errors in the height of the

initial tsunami wave are also stated. The

results are extracted from the refined sim-

ulation using biquartic polynomials i.e.

p � 4.

simulation. As we have already observed in Figure 13.11, arrival times

are quite accurate in the near field but begin to diverge in the far field.

The largest error is smaller than 8 minutes, which is still quite accurate

considering the propagation time of more than 7 hours. Moreover, errors

in the predicted wave amplitudes do not exceed 0.3m even though the

waves propagate over thousands of kilometers. We remark that for both

arrival times and wave amplitudes, the largest errors occur in the signals

of DART 52403 and DART 51407. As previously mentioned, this is most

likely caused by underresolved bathymetry and uncertainties in the

initial condition. DART 51407 is positioned close to the coast of Hawaii

and the tsunami has to travel along the Hawaiian-Emperor seamount

chain to reach it. Because the bathymetry is underresolved, small islands

in the path of the tsunami are missing. This can be expected to have a

noticable effect on the computed solution as these islands would nor-

mally cause reflections that are now missing. This is an interesting effect

as underresolved bathymetry would normally only cause refraction as

long as it is submerged. This only results in a phase error which we can

observe in the buoy data. Once the bathymetry reaches the water surface,

the wavespeed c �
√
ϕ becomes 0 and waves begin to be reflected. The

resulting error is more dramatic than a mere phase shift and we would

expect larger errors. Nevertheless, the time series data in Figure 13.11

indicates that the method is able to capture the physical effects accurately

enough to predict the long-term evolution of the tsunami waves.

Finally, we remark that the proposed method can be easily adapted to

allow well-balanced p-refinement. In this way, we could fully leverage

the flexibility of hp-adaptivity that discontinuous Galerkin methods

have to offer. This opens up the possibility of using elements with low

polynomial order in coastal areas, where h-refinement is preferable due

to the restrictions in accuracy caused by the wetting/drying process.

High-order approximations, on the other hand, retain their advantages

[78, 134] in the wet parts of the domain, as we have seen with the one-

dimensional examples. An hp-adaptive scheme would then allow to

leverage high-order elements in these areas where the solutions can be

expected to be smooth.

13.3 Dynamic source models

In the previous section we have demonstrated the ability to accurately

model tsunami propagation on a large scale. The accuracy of the outcome

is fundamentally related to the quality of the initial conditions that are

used. This raises two questions; namely what kind of source model should

be considered and how the initial condition should be obtained. The latter
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3: Faults refer to the interface between

two blocks of rock. Slips refer to the dis-

placement of opposite sides of the fault.

Typically this happens in an abrupt man-

ner, which causes the earthquake.

question has been covered extensively in the literature and there exist a

variety of methods to do so. The main approach used in the literature

is seismic inversion, where the traces of the seismic waves are used to

reconstruct the original displacement of the sea bed displacement [132].

A notable approach in the context of tsunami simulation is described in

[135], which proposes to use incoming data from buoys in conjunction

with an adjoint model of the discontinuous Galerkin shallow water

model, to directly reconstruct the initial conditions.

For the source model, there are essentially two approaches. The first

approach is to assume that the timescales of the slip process
3

are much

faster than the timescales of the wave propagation. Under this assumption,

we only need to know how the bottom topography is deformed due to the

slip to impose this deformation on the water surface height. We therefore

replace τwith τ′, which is the updated bottom topography due to the slip.

The new water surface height is then ϕ + τ′. In other words, the water

waves had no time to react to the instantaneous change in the bottom

topography and the change in the sea surface height is instantaneous. To

model the deformation of the seabed, one often assumes that it can be

written as a sum of so-called Okada solutions, which model the static

deformation on the surface due to dislocations in the halfspace beneath

it [131, 136]. Consequently, we write the displacement of the seabed as

τ′(x) − τ(x) �
n

faults∑
i�1

Oi(x), (13.5)

where Oi(x) denote the Okada solutions. Each of them is associated

to one single dislocation out of n
faults

dislocations beneath the seabed

surface. These dislocations are therefore called subfaults. We avoid going

into further details on the geophysical models and instead refer the

reader to the original paper [131].

One alternative approach to this static model is to consider a dynamic

rupture model, which allows the bottom topography to vary in time. A

possible approach to model the dynamic fault process is to activate each

Okada solution separately using an individual activation function σi(t)
for each subfault [136, 137]. The resulting time-dependent deformation

of the seabed can therefore be written as

τ′(x , t) − τ(x) � δ(x , t) �
n

faults∑
i�1

σi(t)Oi(x). (13.6)

A possible choice for the activation function is the piecewise linear

activation function

σi(t) �


0 t ≤ t

0,i
t−t

0,i
t
1,i−t

0,i
t
0,i ≤ t ≤ t

1,i

1 t
1,i ≤ t

,

where t
0,i amd t

1,i denote the start and end times of the slip process

occuring at the i-th subfault [137]. In the following, we use this simple

dynamic fault model to evaluate the influence of the seabed dynamics on

the tsunami simulation and resulting predictions. To do so, we compare

results obtained with both dynamic and static source models for the 2011

Tohoku tsunami event, as well as the 2004 Sumatra-Andaman tsunami.
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Figure 13.12: Comparison of wave ampli-

tudes extracted from DART buoy 21418

during the Tohoku tsunami event to wave

amplitudes computed with the static and

dynamic source models. On the right the

signal is zoomed in to better depict the

initial wave.

Comparison of source models for the Tohoku tsunami

We repeat the previous experiment of Section 13.2 and simulate the 2011

Tohoku tsunami event. As source model, we re-use the model from

[132] as before. This time, however, we also use the dynamic parameters

listed in [132] to be able to compare both source models. These models

contain a total number of n
faults

� 190 subfaults and the rupture process

is basically static after 105 seconds. To facilitate this in our model, we

run the simulation at smaller timesteps until the rupture process is

completed.

The resulting simulation is visually indistinguishable to the results shown

in Figure 13.10 and the resulting differences in wave signals is extremely

small. To compare both models, we use the extracted wave signals at

DART buoy positions. Figure 13.12 depicts the signal of DART 21418, as

well as the wave signals extracted from simulations using both source

models. The differences are small and both source models produce almost

identical solutions with only a small difference in the phase.

However, the dynamic source model is able to better approximate the

arrival time with a smaller phase error, while the static model seems

to better predict the amplitude of the initial wave. Similar comparisons

for other buoys in the wave field show similar, but small differences

between both models. From this test case alone we conclude that the static

fault model is good enough and that the dynamic model does not offer

significant improvements. In fact, it is likely that most rupture processes

and tsunami formations can be well-approximated with an instantaneous

slip as the assumption that the change in bottom topography results in

an equally instantaneous change at the water surface, is reasonable for

most scenarios.

Comparison of source models for the Sumatra-Andaman
tsunami

A notable exception to this is the Sumatra-Andaman tsunami, which is

known to have had a notably slow rupture that lasted approximately 10

minutes. Moreover the spatial distribution of the slips spans approxi-

mately 1000 km, resulting in a potentially complex dynamical formation

of the tsunami. While this alone should make it interesting for our

investigation, there is also a larger uncertainty in the initial parame-

ters computed by seismic inversion and various source models have

been proposed in the literature [138–140]. This illustrates the difficulty
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Figure 13.13: High-fidelity discontinu-

ous Galerkin simulation of the Sumatra-

Andaman tsunami with a locally refined

mesh using K � 30378 elements and a

polynomial degree of p � 4.
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Figure 13.14: Location of the subfaults

for the Sumatra-Andaman tsunami. The

red and blue points illustrate the position

of the satellite radio altimetry measure-

ments.

of determining source parameters using seismic inversion. Using one

dataset over another will likely imply that the resulting sources will yield

diverging results when compared to one another [140].

For our purpose, we use fault parameters from [138]. For the dynamic

fault model we use parameters as listed in [139]. Figure 13.14 shows

the the subfaults which are located between the Andaman Islands and

Sumatra in the Bay of Bengal. The subfaults are numbered in increasing

order from south to west, which coincides with the order in which they

are activated. Table 13.3 lists the subfault parameters, complete with their

activation times t
0,i and rise times t

1,i − t
0,i . We observe the slow nature

of the rupture, with more than 580 seconds between the activation of the

first subfault and the last one.

To simulate the Sumatra-Andaman tsunami, we use an icosahedral

mesh and locally refine a circular area of radius ρ � 40
◦

around the

point at 84
◦

longitude and −10
◦

latitude. This results in a mesh with a

total number of K � 30378 elements, where most of them are located

in the Indian Ocean. Figure 13.13 shows the results of the simulation

using a polynomial degree of p � 4 and the dynamic source model. The

simulation is repeated with a static seabed deformation, in which we

impose the final seabed deformation on the sea surface.

As before, we use real-world data as a reference for our results. Because

there is little buoy data available, we use sea surface heights reconstructed

from satellite data. Here, we use radio altimetry data obtained from the

Jason-1 and TOPEX/Poseidon earth observation satellites [141], which

passed over the tsunami from south west to north east, as illustrated in
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Figure 13.15: Comparison of the wave

field cross section to satellite measure-

ments and results obtained by others.

Figure 13.14. As such, it represents a cross section of the wave field, rather

than a wave signal arriving over time at one point. The results are shown

in Figure 13.15 alongside predictions from Fujii and Satake [142], as well

as Gopinathan et al. [139]. Fujii and Satake [142] use a finite difference

method for the linearized shallow water equations, whereas Gopinathan

et al. [139] use a finite volume solver for the non-linear shallow water

equations. We observe good agreement of all methods, especially for

arrival times and amplitudes of the first wave. In the far-field we observe

that the proposed method captures wave amplitudes remarkably well,

with a slight error in phase which can likely be attributed to underresolved

bathymetry.

To quantify the impact of the dynamic source model, we compare the

results to simulation results obtained with a static source. Figure 13.16

depicts a comparison of the aforementioned satellite data to the cor-

responding cross sections in the wavefield, extracted from our two

simulations. Again, for both models, we observe a good match of phase

and amplitude of the leading wave. This time however, the dynamic

source model is able to better predict phase and amplitude, especially for

the leading wave. This is also reflected in the L2

errors of the aforemen-

tioned signals. For the TOPEX/Poseidon data the normalized errors are

0.2775 and 0.1527 for the static and dynamic models respectively. For the

Jason-1 data however, the errors for both models are 0.2047 and 0.2048

and therefore practically identical. While the improvement using the

dynamic method seems small, we have to keep in mind that the satellite

data only provides a one-dimensional extract of the wave-field to assess

the accuracy of the results. As such, we conclude that a dynamic source

Table 13.3: Subfault parameters and activation times for the simulation of the SumatraAndaman tsunami. Subfaults are ordered according

to latitude from south to north.

subfault longitude latitude depth length width strike dip rake slip t
0,i t

1,i − t
0,i

1 95.54 2.13 10 100 150 290 10 71 16.5 0.00 48.5
2 94.5 2.57 10 100 150 310 10 91 0 31.96 48.5
3 93.64 3.33 10 100 150 330 10 104 14.9 136.85 37.5
4 94.5 4.15 10 100 150 340 10 105 29.1 167.62 117.3
5 94.5 5.18 10 100 150 345 10 102 10.4 227.09 138.7
6 94.5 6.12 10 100 150 350 10 100 23.4 254.98 62.1
7 94.5 6.78 10 100 150 330 10 90 9.4 282.41 38.5
8 94.5 7.64 10 100 150 335 10 86 11.5 308.57 111.2
9 94.5 8.60 10 100 150 350 10 99 1.5 334.06 63.9
10 94.5 9.60 10 100 150 0 10 106 12 396.16 51.3
11 94.5 10.66 10 100 150 10 10 115 6.1 433.33 79.0
12 94.5 11.56 10 100 150 10 10 115 25.7 467.73 54.6
13 94.5 12.51 10 100 150 15 10 120 27.2 502.11 76.8
14 94.5 13.51 10 100 150 25 10 130 0 583.82 36.6
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Figure 13.16: Comparison of wave am-

plitudes measured by the Jason-1 and

TOPEX/Poseidon satellites compared to

signals extracted from our simulation us-

ing. On the right the signal is zoomed in

to show the initial wave.

model can indeed improve the predictions of the model in situations

where the rupture process is small.

13.4 Concluding remarks

We have presented an efficient discontinuous Galerkin model for mod-

eling geophysical flows on the rotating sphere using the shallow water

equations. To do so, we have developed well-balanced methods for

wetting/drying as well as grid adaptation. Moreover, we have made a

case for using the strong form of the discontinuous Galerkin formulation,

due to its favorable properties. Using one-dimensional examples and

examples on the sphere, we have verified these methods, proving the

properties that we have previously claimed. In addition to this, we have

validated the approach through real-world examples in the form of

simulations of the 2011 Tohoku tsunami and the 2004 Indian Ocean

tsunami. Finally, we performed a comparison of source models to see

whether they could offer improvements by incorporating dynamic effects

of the rupture process into the existing model.

The developed methods have proven to work well and produce physi-

cally accurate results of predictive value. While the dynamic effects of

tsunami sources may play an important role for slow ruptures, they

can be neglected in most scenarios. It is therefore possible, that other

improvements such as non-hydrostatic corrections are of greater benefits

for these models.

Our contributions relating well-balancing and wetting/drying offer

an interesting choice for discontinuous Galerkin models based on the

shallow water equations and potentially other physical systems. This

includes the Euler equations where near-vacuum solutions pose similar

challenges as drying processes in shallow water systems. To the best of

our knowledge, most alternatives for wetting/drying often incorporate

unphysical assumptions or are simply not well-balanced. Interesting

research avenues are therefore the applicability of these methods to other

systems of conservation laws with similar problems.

The tsunami model that we have developed using these ideas demon-

strates a range of desireable properties for an early warning system.

Not only are the predictions physically accurate but the overall method

is also robust, highly adaptable and efficient due to the well-balanced

mesh refinement. This allows for automatic generation of grids adapted

to the problem, an essential requirement for any early warning system
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that needs to function without human intervention. Moreover, we have

proven that our mildly optimized and non-parallel implementation can

yield physically accurate results faster than real-time, which is another

necessary property for any early warning system. Our implementation

could easily be accelerated further due to the intrinsic flexibility and

parallelity of discontinuous Galerkin methods.
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