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Abstract

In this thesis, we study the optimal local well posedness of Quasi-linear wave equations.
Motivated by the study of the Einstein equations in relativity theory, there are numerous
works dedicated to the local well-posedness issue for this equation. The first works were
oriented to the study of the lifespan and regularity of solutions of such equations, with
more regular initial conditions. In 1980 for instance, Klainerman showed in [Kla80] the
existence of a smooth and unique solution for a non-linear wave equation, provided
that the initial data are regular enough and small enough. In our case, we are interested
in rough initial data, and especially in the minimal regularity we have to impose on
the initial data to ensure that the problem is well-posed. The best positive result in
low dimensions for this class of equations was proved in 2005 by Tataru and Smith in
[ST05]. More precisely, they show that quasilinear wave equation equation is locally
well-posed provided that the initial data are in H>™¢ x H>*¢ in dimension3 + 1, and
in H'Y/4+€ x H7/4¢ in dimension 2 + 1, for any € > 0. In 1998, Lindblad ([Lin98]) gave
a counter-example to local well-posedness for this class of equations in dimension 3 + 1
by exhibiting a quasilinear wave equation and initial data in H® x H? leading to an
instantaneous blow up. This means that the index provided by Tataru and Smith is
sharp in dimension3 + 1.

In this thesis, we provide a counter-example for the dimension 2 + 1. Later, we study
perturbations of the equation and show that the instantaneous blow up is preserved.
Because the index corresponding to the dimension 2 + 1 is 7/4, hence not an integer,
we deal with most of the fractional differentiations involved by using the convolution
formula for |A|S/ 2. To show that the initial data are in the desired space, we make use of
Fourier transform and characterization of the Sobolev spaces via the Fourier transform.
We also introduce the logarithmically modified Sobolev spaces H*(In H) P, in which
our initial condition perfectly fits, and prove for these spaces some lemmas that are
relevant to our situation. In order to prove the blow up, the characteristic method is
used. When we study perturbations of the equation, we do not deal with the general
case. However, a dependency to the x, variable is introduced, and we are no longer able
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to find an explicit formula for the characteristics nor the solution. We still use a method
inspired by the characteristics found in the previous case, and show that the behaviour
near the singularity has similarities, leading to a blow up.

To ensure that the whole argument is sound, we first consider a regularization of the
initial condition . and show that a blow up occurs when reaching a time t. that goes
to 0 as € goes to 0. By proving estimates on the domain and the Sobolev norm, we
construct a solution leading to an instantaneous blow up, using a scaling and summing
argument. We will show that for any A > 0, H'V/*(In H)~# < H"V/*~A, This means that
the index 11/4 is sharp.
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Résumé

Dans cette these, Nous nous intéressons au bien-fondé d’'équations d’'ondes quasili-
neaires. Motivés par l'étude des équations d’Einstein intervenant dans la théorie de la
relativité, de nombreux travaux se penchent sur le bien-fondé de ce type d’equations.
Les premiers travaux se pencherent d’abord sur les questions de durée de vie et de ré-
gularité de solutions de telles équations, avec des conditions initiales régulieres. En
1980, Klainerman montre dans [Kla80] l'existence d'une solution unique et réguliere,
sous la condition que les données initiales soient suffisamment réguliéres et petites.
Dans notre cas, nous nous intéressons a des données initiales irréguliéres, et en parti-
culier a la régularité minimale que l'on doit imposer sur les conditions initiales pour
garantir que le probleme est bien posé. Le résultat positif le plus précis en faible di-
mension pour cette classe d’équations a été prouvé en 2005 par Tataru et Smith dans
[STO5]. Plus précisement, ils montrent que l'équation d’onde quasilinéaire est bien
posée lorsque les données initiales appartiennent a H3"¢ x H**¢ en dimension3 + 1,
eta HV/4+€ x H/4*¢ en dimension 2 + 1, pour un € > 0. En 1998, Lindblad ([Lin98])
donne un contre exemple au bon fondement en dimension 3 + 1. Pour ce faire, il choisit
des données initiales appartenant a H> x H? qui meénent & une explosion instantanée
de la solution. Ainsi, l'indice du résultat obtenu par Tataru and Smith est optimal en
dimension3 + 1.

Dans cette these, nous donnons un contre exemple en dimension 2+ 1. Par la suite, nous
étudions la stabilité de l'explosion instantanée lorsque l'on modifie l'équation. Comme
lindice qui correspond a la dimension 2+ 1 est 7 /4, et est donc non entier, nous utilisons

$/2 pour exprimer certaines dérivées fraction-

une formule de type convolution pour |A|
naires. Afin de prouver que les données initiales appartiennent a l'espace souhaité, nous
utilisons la transformée de Fourier ainsi que la caractérisation des espaces de Sobolev
via la transformée de Fourier. Nous introduisons aussi une modification logarithmique
des espaces de Sobolev H*(In H)~P, qui correspond parfaitement a notre condition
initiale. Nous prouvons également des lemmes pertinents et nécessaires concernant ces

espaces. Afin de prouver l'explosition, nous utilisons la méthode des caractéristiques.
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Résumé

Au cours de notre étude des modifications de cette équation, nous ne nous intéressons
au cas général. Néanmoins, une dépendence en la variable x, est introduite, et nous ne
sommes alors plus en mesure de calculer des formules explicites pour les caracteristiques
ou la solution. Nous choisissons néanmoins une methode inspirée par la methode des
caractéristiques du cas précédent, et nous montrons que le comportement de la solution
proche de la singularité est similaire, produisant ainsi une explosion.

Afin de nous assurer que l'argument est formel et correct, nous considérons d’abord
une régularisation de notre condition initiale y . et montrons que l'explosion se produit
lorsque l'on s'approche du temps t., qui tend vers 0 quand € tend vers 0. Nous avons dil
ensuite controler la taille du domaine de dépendance ainsi que la norme Sobolev, ceci
nous permet de construire une solution qui explose instanement. Pour construire cette
solution, nous utilisons un changement de variables et des translations afin de creer
une fonction qui fait intervenir une infinité de y . a la fois. Nous montrons egalement
que pour tout A >0, H'V/*(In H)~F c H'Y/*~*, Ainsi, l'index 11/4 est optimal.

iv
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Introduction

Introduction

We study the well-posedness of Quasi-linear wave equations. We will consider the
following equation

n
Z g (u,u)0,:0,ju=F(u,u'), (t,x)€Sr=[0, T[xR", (.0.1)
i,j=0
where 0,0 = d; and G = (g'/) and F are smooth functions. Also we assume that g is
close to the Minkowski metric m ; i.e.,

n
> g —ml|<1/2. (.0.2)
i,j=0

We will also define the corresponding Cauchy problem,

n
> g ()00 u=Fuu), (t,x)€Sr=[0, T[xR",
52 (.0.3)

(1,000) 1o = (£, )

where 0,0 = 0; and G = (g'/) and F are smooth functions.

We focus on the well-posedness of such equations. Informally, the concept of well-
posedness usually involves existence, uniqueness, and continuity with respect to the
initial conditions. We are interested on the lowest regularity we have to impose on the
Cauchy data in order to ensure that the problem is well-posed.
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If we impose conditions on the form of the equation, one can obtain results in term
of well-posedness. For instance, if we impose restrictions on the quadratic non-
linearities, a condition known as the null condition (introduced by Christodoulou
and Klainermann), global smooth small enough solutions exist in the case n = 3. This
result uses very different method to what we will use. For the case n = 2, one can
reach the same result but further restrictions must also be imposed on the cubic
non-linearities. These topics are for instance discussed in [Kla86]. An application is
for instance the global existence result in the case of the Einstein vacuum equation
provided by Lindblad and Rodnianski in [LRO5]. Such a result had already been proven
in [CK93] by Christodoulou and Klainermann, but the work done in [LRO5] gives the
existence of a global solution under a weak null condition, and leads to a simplified

proof of this result.

Looking now at local well-posedness for rough initial data, it has been shown in
1993 in [KM93] by Klainerman and MacHedon that the vectorial partial differential
equation Dc/)I =F! (u, Du), where F satisfies a null condition (for its Du dependency),
is locally well-posed if we assume that the initial condition is in H® x H~! for s > 2in
dimension 3 + 1. This result has later been improved by Yi Zhou in [Zho97], showing
the well-posedness for s > 7/4 in dimension 3 + 1.

However, some of the arguments are not valid if we consider general quasi-linear wave
equations. For the question of the global well-posedness for smooth initial data, in
[Fri83], J. Fritz provides equations for which every non-trivial solution with compactly
supported Cauchy data blows up in finite time. In our situation, we consider the
local well-posedness of the equation, meaning the existence of a time T > 0 such
that the equation is well-posed on [0, T'[. We will place ourselves in the context of low

regularity functions and the derivatives will have to be understood in the weak sense.

More precisely, we are interested in the smallest possible s such that (.0.1) is well-
posed in the case of the dimension 2 + 1; meaning that if (f, g) € H*(R?) x H*"1(R?),
then there exists a unique local distributional proper solution (see A.1.4) of (.0.1) for
some T > 0 satisfying

(w,0,u) e C ([0, T[; H (R*) x H*1(R?)). (.0.4)

Using Sobolev estimate, one can show that for s > n + 1, the problem is well-posed.
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An improvement have for instance been made by H. Bahouri and J. Y. Chemin in
[BCI99], and in parallel by D. Tataru in [Tat00], where they show the well-posedness of
the equation for s > ”T“ + i, using mainly Strichartz estimates.

Further improvements have been made, and the best result for well-posedness in low
dimension has been made by D. Tataru and H. E Smith in [ST05] and is described by
the next theorem.

Theorem .0.1. /[ST05]

We consider the following Cauchy problem.

Zgij(u)axiaxl’u = Z qij<u>axi uaxf u, (t’ x) €Sr= [0’ T[XIRH’
-~ = (.0.5)

(u, drtt) )10 = (1> 8),
where 0,0 = 0; and G = (g'/) and Q = (q'/) are smooth functions. Also we assume that

g is close to the Minksowski metric m. Note that here, the metric is allowed to depend
on u but not on its derivatives.

The Cauchy problem (.0.5) is locally well-posed in H® x H*~! provided that

n 3 7
§>—+-=- forn=2,

n+1 o
§> 5 forn=3,4,5.

Our aim is to provide a negative result. This is done by finding an equation and an
initial condition such that the resulting Cauchy problem is not well-posed, meaning
that there exists no time T such that the problem is well-posed on [0, T[. Such a
phenomenon is known as instantaneous blow up. A negative result for n = 3 has
already been done by H. Lindblad in [Lin98]. The corresponding index s for his
problem is 3, he hence exhibits the sharpness of the criteria established in [ST05].

First, we need to compute the corresponding index when the functions G and Q are
allowed to also depend on Vu and not only on u.

Corollary .0.2. Introducing the Cauchy problem with a Vu dependency on G and Q as

3
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the following

Zgij(u,Vu)(?xiaxfu - Zqij(u’vu)axiuaxf u, (t,x)eSr=|0, T[XR?)’
I, i (.0.7)
(u,0cu) =0 = (£, 8),

where 00 = 0; and G = (g'/) and Q = (q'7) are smooth functions. Also we assume that

g is close to the Minkowski metric m ;

The Cauchy problem (.0.7) is locally well-posed in H® x H*~! provided that

>n+3+1 fc 2
§>—+— orn=2,
2 4

n4l (.0.8)
s>

+1 forn=3,4,5.

Remark .0.3. By contraposition, if we find an initial condition for (.0.7) such that the
problem is ill-posed for s = 11 /4 in dimension 2 + 1, it means that the problem (.0.5)
is ill-posed for s = 7/4 in dimension 2 + 1. Hence, we have the sharpness of the index
provided in [ST05].

Proof. (Of corollary .0.2)

We consider the problem given by (.0.7). Differentiating the equation with respect to

Xj, we obtain

> l(&kuﬁlgij(u,Vu)) 0i0ju+ > (Oas18" (1, V1)) Opdau- 0idju+ (g (u,Vuu)) 0;0;0ku
i,j a

= Z é’kué’lg Vu)) 0iué‘ju+2 (&i u6a+1qij(u,Vu)) Oju-Orlqlt

+q" (4, Vu)0;0ku- 0ju+q" (u,Vu)ou-0;0,u | (0.9)
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Consequently, the system (.0.9) for every k can be put in the form

Y& (w)aiojv =Yg, (v)oivojv, (.0.10)
i,j ij

where v = (u, Vu). Now, ve H*! 50 (.0.10) is well-posed.

There are two mechanisms that can create a blow up. One of them is a space indepen-
dent blow-up. In a nutshell, the blow up is caused by the underlying ODE that itself
leads to a solution that blows up. Another kind of blow up is caused by the focusing of
the characteristics to a single point, leading to an infinite increase of the derivatives.
Informally, in the case of a blow up at ¢ = T, if we denote by ¢ a characteristic function
and u the solution of the equation, in the fist case, we see a phenomenon of the form
(up to derivatives)

u(¢p) —— 0, ¢ #0, (.0.11)

happening, whereas in the second case, one observes a phenomenon of the form

0p(v) ——0, (.0.12)

for a certain v. This will also lead to a blow up of the derivatives using the chain rule.

Those types of blow up has already been described by Alinhac for instance in [Ali95].

We create a counterexample for the dimension 1 + 2, keeping in mind the intuition
provided in [Lin98]. Our goal is to create a second type (geometric) blow up.

We consider the model equation and the corresponding problem (inspired by Lind-

blad’s counterexample)

{Du = (Du)Du,
(.0.13)
(u,0cu) =0 = (£, 8),

where D = (0y, — 0y).



Introduction

Note that (.0.13) is of the form (.0.1) with

1—-v v 0
g= v —-1—-v 0 |,v=Du. (.0.14)
0 0 -1
Remark .0.4. From a scaling argument, we can see that if s < 2, then the problem is

ill-posed.

Indeed, let u be a solution of (.0.13) that blows up at a time T. (In fact, we will show
the existence of solutions that blow up in a more regular context later on in the thesis.)
Define u.(t,x) = eu(t/e, x/€). Now,

Cue(t,x) = e (Ou)(t/e, x/e) = (Due ) (D u,) (.0.15)

So u, be a solution of (.0.13) and has a lifespan of € T, and

1/2
|[14e(0,)]| g5 = (J £ 2% Viu(x /e, t/e)zdx> =27 u(0,)|| s (.0.16)
xeR?
This quantity goes to 0 in € when s < 2.

The counterexample we produce is in a slightly less regular space than H 11/4 Indeed
we will consider the logarithmic perturbation of H''/4, denoted by H''/*(In H)~# as
the set of functions f such that the L2 norm of |¢|'1/* (L+|In(|E))|P) Z(f)(¢), where
& denotes the Fourier transform, is finite. Our counterexample will belong to the
set H'/4(In H) P with > 1/2. For the functions that we consider, we will show that
this set is located between H'/4~¢ and H'Y/4, for any € > 0. Hence, this proves the
optimality of the index 11/4 in the context of usual Sobolev spaces. It is however
interesting to notice that the function that we create can be defined as a function in
HYW* x H"/4, as it is done in Appendix A.1, for which we expect to witness the same
behaviour, but the method we use to show the blow up can not be applied anymore.
The argument that does not hold in this situation, and the reason why we need slightly
less regularity for the proof to hold, lies in the fact that the point where the blow up
occurs can not be proven to be in the domain of dependence anymore.

In the following, we construct a solution (.0.13) with initial data in H'V/*(In H)~# x
H?/*(In H)~#, that blows up instantly at £ = 0%, as formulated in the following theo-

rem.
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Theorem .0.5. We consider > 1/2. There exists initial data (f,g) € H'V/*(In H)~F x
H/*(In H)~P supported on a compact set, with ||f| | /sy T 118 |H7/4(lnH)_ﬁ arbi-
trarily small, such that (.0.13) does not have any proper solution u such that

(u,0,u)e C ([0, T[; HY*(In H)~F(R?) x H"/*(In H)~P(R?)) forany T > 0.

In fact, we have a slightly stronger result, that is, for this initial condition, for all
A > 0 small enough, (.0.13) does not have any proper solution u such that (u,0;u) €
C ([0, T[; H'Y4=A(®?) x H"/*~}(R?)) forany T > 0.

The fact that the index is not an integer in dimension 2 + 1 raises several issues.
We have to make use of fractional derivatives as well as the Fourier transform to
characterize the belonging of a function to a specific Sobolev spaces. For the loga-
rithmically defined Sobolev spaces, we have to use the characterization using the
Fourier transform. In order to show that the initial condition belongs to the space
H"W*4(In H)~# x H/*(In H)~#, we will hence use the Fourier transform using a dyadic
decomposition of the domain of definition in x. Because of the way the function is

defined, small values of x corresponds in some sense to high values of ¢.

To show that the H'V/4(In H)~# x H”/*(In H) P norm of the function diverges, we will
use a convolution integral expression to make our computations. The computations
and ways to exhibit the pathological behavior have been made using the Caputo’s
derivative, the Riemann-Liouville derivative and the Grunwald-Letnikov formula
for fractional derivative in mind. These derivatives involve some counter intuitive
behaviors. Figure 1 shows the fractional differentiation of a symmetric function, that
do not have any symmetry property. Figure 2 shows that the fractional derivative is
not local. In our situation however, we will use the more common following fractional
derivative formula that comes from Fourier analysis, i.e. that for a a multi-index and
¢ g = Hi ¢ gii ’

o*f

ox%

(x) = F 1 ((2mi) &8 F(£)(©) (x). (0.17)

Using the fact that fg = f » g, we will find a more suitable expression in the next

section to manipulate these concepts.
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Figure 1 — Asymmetric Grunwald-Letnikov derivatives of a symmetric function
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Flgure 2 — Non locality of the fractional derivative

Flgure 3 — Fractional differentiation: counter-intuitive behaviours

We define the Riemann-Liouville fractional integral for a €]0, 1]

aD7f(8) = ﬁ L (t—1)* 1 f(1)dr. (.0.18)

We define the Riemann-Liouville fractional derivative using the ,D, * operator. With

8
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a€lo,1],

d’ —(n-a)

= aD; f(1), (.0.19)

DY [ (1)

where 7 is the smallest integer bigger than a.

Next, we define the Caputo fractional derivative of order a > 0:

dr. (.0.20)

t (m)(7)
Cpa (1) = — j !

[(m—a) ), (t—7)eri=m

In, [IW13] for instance, they introduce weak fractional derivatives. The intuitions are
relevant to our situation, however, because we regularize the Cauchy data, we will

only consider C*(R?) functions.

We can observe on figure 1 that the Grunwald-Letnikov’s derivative possesses a "shift
to the left" behaviour, before catching up for every integer order. The link with the
definition provided in (.0.17) is that the definition coming from (.0.17) is the average
of the derivative with the shift to the left, and the derivative with the shift to the right
(going from —oo to ?). It is a bit more clear why the Sobolev spaces coincide under the
right assumptions. The stated results come from [Li18], [GL18] and [AT11].

In our context, we need globally defined functions, as well as functions that vanish
sufficiently fast at infinity, in order to define fractional derivatives. Again, we will use
the definition of the fractional derivative provided by (.0.17).

In the next section, we introduce the notations and the definitions we will use.

Notations

First, for an integrable function f : R” — R, we denote by f : R” — R the function

F (&) =f(&)= Rnf(y)e‘m”<y“f>cly- (.0.21)



Introduction

We also define the Sobolev norm denoted by || - || (rn)s as

1Oy = | PO (0.22)

and the corresponding Sobolev space H* (R™) of functions such that this norm is finite.

When s is an integer, the following holds

(21)° j €S (1,6) P = f V(0| dx, (0.23)
R7 R

where VSu = (0} u, ..., 0y u).

We also define the notion of domain of dependence of the corresponding notations.

Definition .0.6. LetQ — R, x R? be an open set equipped with a Lorentzian metric g ik
satisfying (.0.2). It is a domain of dependence for g if the closure of the causal past Ay
of each (t',x') € Q is contained in Q, with z€ Ay  iff it can be joined to (t',x") by a
Lipschitz continuous curve (t,x(t)) satisfying

ZZ] ..(x)dxiﬁx) (.0.24)
ijzogl’f dt dt = o

almost everywhere.
For a domain Q € R'*", we denote by Q, the set

Q;={(1,x)eQ, t=1}. (.0.25)

Also, for a set Q € R'*2, we denote (the dependence in Q is not explicitly written)

air(x)={yeR, (t,x1,x2)eQ}|. (.0.26)

Remark .0.7. Ifwe consider the Lorentzian metric that defines the linear wave equation,
the causal past of a point is its associated light cone.

We will make free use of the Huygens principle, meaning that for a solution u defined

10
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on a domain of dependence Q) corresponding to the Lorentzian metric involved the
equation, the values of u on the set Q; only depend of the value of u on the set Q.
This will be useful as we will first solve the equation for a locally defined function, and
later create an extension of the initial condition. The computation previously made

will remain valid in the corresponding domain of dependence.

For a a multi-index, we will use the following definition for fractional derivative

L (x)= 5 (2ni) € F()(O) (). (029

0x%

11






I1l-posedness of the quasilinear wave

equation in two spatial dimensions in
H"Y4(InH)P.
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In this chapter, we provide an initial condition that shows the ill-posedness of equation
(.0.1) in the local sense. We introduce a specific equation that is of the form (.0.1),
and an initial condition y. The equation that we will consider is (.0.13). To properly
show the ill-posedness, we first regularize the initial condition and show that the
corresponding solution blows up in the Sobolev norm when ¢t — ¢, with z, — 0, and
then we create an initial data that leads to an instantaneous blow up by a scaling and

summing argument.

15






Strategy and control of the initial

condition

In this chapter, we quickly explain the strategy of the proof, and we later show that the
initial condition belongs to the desired space, i.e. H''/4(In H)~#. We also go through

technical lemmas that we will need later to perform the proof of the blow up.

I.1 Explicit resolution and preliminary results
We will first solve the equation using the characteristic method.
We consider the equation (.0.13) and look at solutions of the form u(¢,x) = u; (¢, x1).

The equation in one space dimension can be factored as the following.

((at+ax1) + U(axl _at» (axl _81‘) u=0

(L.1.1)
u(0,x1)=0, J;u(0,x1)=—x(x1)
where v = (Jx, — 0;) u; which is equivalent when v # 1 to
1+v
(at + axl) (Ox, — 1)t =0. (L1.2)
—v

17



Chapter I. Strategy and control of the initial condition

Now, this partial differential equation can be explicitly solved. Introducing ¢ such that

»0,y) =1y,
1+ u(,9(t,y)) (I.1.3)
) = T g(ny)
we obtain
0
E(V(t,cb(t»y))):O = v(t,¢9(t,y)) =x(y) Vt. (I.1.4)

Now, this gives us an explicit formula for ¢,

1+x(y)

. (I.1.5)
1—x(y)

d(ty)=y+t

We will consider the Cauchy problem corresponding to the two following choices for
the initial condition. First, we consider for @ > 0 € R (the conditions that a has to

satisfy will appear later through the proof)

X1

vo(x1,x2) = x(x1) = —J IIn(s)|%ds, (1.1.6)
0

which will be the initial value that corresponds to an instantaneous blow up of the

solution. But we will work with the regularized initial condition
X1
Vo,e(X1,%2) = xe(x1) = J we(s)|In(s)|ds, 1.1.7)
0
where

1>vy.(x)>0fore/2 <x<e,

we(x) =0forx <eg/2,

) We(x)=1forx>e¢ (I.1.8)
C
3C >0, yy(x)| < .
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I1.2. Introduction of the logarithmic perturbation of /° and related lemmas

This resolution holds whenever the solution depends only on x;. We will consider
initial conditions defined on R? entirely, but that coincides with (I.1.6) or (I.1.7) on a
set Q.

We choose

Qo= {(xl,xz)lxl >0,|xz| < ﬂp} N [0;1] < |0 1] , (1.1.9)

|In(x;) 2 2

and we take Q to be the largest domain of dependence (defined in Definition .0.6) for

the metric whose inverse is given by

2 2
> 8 (t,x)0x, 06, = 07— Y02 — v(t,x1) (0 — 0x, )P, (1.1.10)
i,j=0 i=1

and such that Q n {t = 0} = Q. We correspondingly define Q; = {(x1,x2)|(#,x1,x2) €
Q} and a;(x;) to be the width of Q; at x;.

I.2 Introduction of the logarithmic perturbation of H*

and related lemmas

In this chapter, we will introduce logarithmic perturbations of the spaces H 7/4 and
H"/* namely H”/*(In H)~# and H"/*(In H)~# that will contain functions slightly less
(provided that = 0) regular than H/* and H”/*. We will show preliminary lemmas,
and then we will show that we can find an extension of our function on R? that has a
uniformly bounded norm in this space. We define the space H*(In H)# as the set of

all functions such that the norm

¢I°

2 —|F(f) — 2,
18 gniy-s = 1) s

2

S
:JJ ‘f‘ ﬁJJ 621n61x1eZznfzxzf(xl,XZ)dxldxz dé dé,,
¢uéeR? | (14 |In([S])])" V) Jarxeem
(I.2.11)
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Chapter I. Strategy and control of the initial condition

is finite. Similarly, we define the space H”/*(In H)~# as the set of all functions such
that the norm

2 _ (1+|5‘2)S/2 2
||f|| s(lnH)fﬁ_Hg(f)' 1+’1n(‘€‘)’ﬁ||L2

&1,626R? (1 + |ln(|€|)|ﬁ)2 x1,%2€R

(I.2.12)

is finite.

We will first show that HS € H*(In H)~# < H*~*. This first lemma is for L' functions.

Lemmal.2.1. Let f bea function in L' (R?). For any nonnegative s and B, for any small

enough positive A, we have the following properties.

D 1111 <20 = 11F gy <

i) ||l iy < 0= 11| s < .

Proof. First, we note that because f is in L!(R?), & f) is globally bounded, indeed,

\F (f)(&)] = UJ eZin(xlflerzfz)f(xl’x2)dxldx2
xl,xze[Rz

<ff )
xl,xgelRiz

<||fllpnge)- 1.2.13)

Now, we show (). Consider f such that || f|| ;s < o0. Because 1+ |In(|¢|)| > 1 for any
¢, we have
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I1.2. Introduction of the logarithmic perturbation of /° and related lemmas

_ 1 2
1y JLl,ezeRz (1+ |In(|&])|#) (F()Cne)

25 2 2
< J L L EOE R I,

(I.2.14)

Now, we show (ii). Consider f such that || f|| ;s < co. Take r(A, B) such that [£| > r
implies (1 -+ |In(|¢])[P)? < |¢|**. We then have

2s
- [ | fez||§||u (F(f) ()

— |‘f|2$ ’6’25 )
- |E|<r(4,8) |'f|2;L< 61’52 €[> r(1,B) mg,l (f)(fl,%tz))

< IBO.rAB)]-Ir( B (I, + f [ TR E )
)

15
<CAB)-IF ()lloo + 1] s ry—p < 0 (1.2.15)

We now state a second lemma, that is more relevant to our situation.
Lemma 1.2.2. Let f € L?. Let B and s be two nonnegative real numbers, A a small

enough real number and K a compact subset of R?. If f is supported in K, then we have
the two following:

O 111l <%= 1 sy -0 < %

i) £ equnrny-0 < 0= 11l jgea < 0.

Proof. The proof of (i) is identical to the proof we made for lemma I1.2.1. The proof
for (ii) will share similarities with the proof of Prop 1.55 in [BCD11] p. 39.
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Chapter I. Strategy and control of the initial condition

We obtain using the Cauchy-Schwartz inequality as well as the Fourier-Plancherel
formula that

FOI< Nl <A/ KNI fl]2 < CyJIK] NI F 2 (1.2.16)

Now, for any positive €, we have

<] v@rf], e

<(12.16) C|B(0,1)] - € *[K]- Hf||L2 JJ[R{

€L+ [In()
28(0,e) [§[25(1+ | In(¢)
2

|€‘Zs s_|_|1n( )|ﬁ>

By2 |
ERHOT

<ok I f 1+\1n< Sl a2

Now, the function r —

[In(r)]

is decreasing on |0, 1[ and bounded on [1, [ which

|In(|¢])? ‘<m (C, “n( )‘ ——). Now, for € such that

means that for any ¢ such that [¢| > €, B

C-|B(0,1)|-€-|K| = %, we obtain

112 < Co L sy < 1.2.18)

and that fe L.

From 1.2.1, we obtain the desired result.

We now state one more lemma. Using this lemma, we will only have to compute
the homogeneous logarithmically modified Sobolev norm as long as our functions
are compactly supported. We will use this lemma later on to show that the initial
condition we consider belongs to H/*(In H)~#.

Lemma 1.2.3. Let s be a nonnegative real number, and f € Lloc If f belongs to
H*(In H)~# and is compactly supported, then f belongs to H*(InH)#.
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I1.2. Introduction of the logarithmic perturbation of /° and related lemmas

Proof. Let f € H*(InH)~# and supported in K, a compact subset of R?. Then, by
lemmal.2.2, fe HY/2, Hence, we have that f e L2, (The proof of this can for instance
be found in [BCD11] p. 39).

Now, we compute the non-homogeneous modified Sobolev norm.

(1+ ¢S
JLGRZ (1+ [In([¢])[P)? ;7P
_ (1+[¢%)° A+1ER)S oo
JJ B(0,1 (1+|1n 1€]) |ﬁ JLERZ\BOI 1+|1n(|5|)| )2 ‘f(f)’

A+ e

<28 , ¢

7R HH) o e ©)
<25 Cllfll 42 Cl sgry 5 1219

Now, we will show a new lemma that we will use later. We express the Sobolev norm as
a convolution-type integral. This type of integrals are widely used for differentiation

of fractional order.

Used together with our previous lemma, it establishes a link between our logarith-
mically modified Sobolev spaces defined via Fourier transform and the fractional

derivative.

Lemmal.2.4. Let A be a small, nonnegative number. Let f : R> — R and w < R? such
that f = 0 outside of w.

Then,

2 f
. _ = C —— i)
] f( )( ax%)m x2)

_ 0?
J |x1 — ¥ 1/2+2 <—];> (¥, x2)dydx,dx;
vl (yxe)ew 0x

1

(I.2.20)
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Chapter I. Strategy and control of the initial condition

Proof.

f
11510y = 5y v

~1/4—2 82f> 1jaa <52f>
) v o2 ) G x2) IV —5 | (x1,x2)d
J£X1,XZ)€R2| XI | <ax% (xl xz) | X1 | ax% (xl x2) X
[
(xl,xg)ele 1
f
a2f W(xl’xZ)
=(x CJJ <—> X1, X J l—dx
(%) x2)ER2 8x.% (x1,%2) Ve |X1 — y[1/2-24

(xly
2 2
|| ( {) ) [ ey (—f) (,%2)
(x1,%2)ew \ OX ¥l (nx)ew 0xy

(I1.2.21)
For (+), we used that
(—8)"2(£)(x) = (27 E)* F(©) (), (12.22)
and that for n > s > 0,
-~ %r n—s
(2m)=* (1¢17) (X)=(2ﬂ)‘sw|xls‘”- (1.2.23)
nz I(35)

In our case, because we integrate only with respect to x;, we obtain from (1.2.22) and
(1.2.23)

f(y)

—1/2—2A _
A = o) | i 1.2.24)
where
F<1—%—2/1)
C(A) = (2m) V2 Ag2A 22 2 (1.2.25)
1/2+421
I'(==—)
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1.3. Proof that (0,u),_o€ H"/*(In H) P

O

1.3 Proof that (0,u),_o€ H/*(InH) ¥

We now introduce the main theorem of this chapter.

Theorem 1.3.1. Let v, be functions such that

-

we(x)=0, x€[0,¢/2],
We(x) =1, x€e 0],
Vx, we(x)€[0,1],

[ 1oewe(x)) < S

ek’

A

(I.3.26)

We consider a, 8,6 such that2a —2 — 8 < —1. For a fixed > 1/2, it is possible to
choose a > 0 and 6 > 0 that satisfy this condition.

With xe : (x1,%2) € Q — — 'y, (s)|In(y)|*dy, there exists he : R* — R such that

he 0, (%1, X2) = xe(x1) and ||h£||H7/4(lnH),ﬁ < o0. Moreover, the bound on the norm
can be chosen to be independent of €.

Proof. First, we define y. on R entirely by

X1
—f we(s)|In(y)|“dy, for x; >0,
Xe: X1 ER— 0 (1.3.27)
0, for x; <0.

We consider a smooth function ¥ : R — [0, 1] such that

w(x)=1, x€[0,1/4],
-0,

(I.3.28)
x=1/2.

w is defined on R~ by setting y(x) = w(—x) for x <0.
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Chapter I. Strategy and control of the initial condition

Define

() = 105 (w)
e(X1,X%2) = xe(x1) ¥ N v(x)). (1.3.29)

We multiply y by a cutoff function in x; and x, that respects geometry of Q, i.e.
&

v (%) =0 when x, > 1,/x1|In(x1)| 7% ; and we multiply y by a simple cutoff

function in x;.

Lastly, we consider a dyadic partition of unity, and A will denote dyadic numbers. Take
a function { : R — [0, 1] such that

ij(x1)=25(%) =;{(%) =1, Vx; eR, (1.3.30)

jez jez
1 . . 1
Supp(ag[12],4-2]]:[1-1,4-/1], (1.3.31)
Vx, {;(x)€[0,1]. (1.3.32)
Now, we define
hpe(X1,X2) = Ca(x1) he (X1, X2), (1.3.33)

and we have

he=Y hie= > e (1.3.34)

In virtue of lemma 1.2.3, we only have to study the homogeneous modified Sobolev

norm, as our function is compactly supported.
Now, we will find an estimate for || A, ;|| /4 (In )5+

First, we compute F (he 2 (+,-)) (€1,&2).
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1.3. Proof that (0,u),_o€ H"/*(In H) P

[Inax)|°

F (hea()) (1,62) = f | e Ry () () el v <?>
= Ll e 2y (x)Ea () ye(x1) Lg e iy (%m)
| ey ) () () [ﬁ T () (ﬁ@)]

= fm e 2y () (x) xe (1) [ﬂg(w) (ﬁQ)} (1.3.35)

[In(x1)[°

Because 1€ — ¢4+ o0, we can chose Cy > 0 such that 1_C—OC° > ﬁ
2

Now, we have fore/2< y<1/2,anda <1

[In(y)|* — alIn(y)|*~" = Co| In(y)|". (1.3.36)

Hence, we have for x; € [1/4,41],

[xe ()| =

|7 wome

s=¢g/2
X1
| imts)e = afinge) e

s=¢/2

1
< —
Co

< CA|In(A)|%. (1.3.37)

Now, we look at

2

|f|7/4
- -9(;%5)(51,52)) . (13.38)

Hh/l’gHiﬂﬂ(lnH)—ﬁ _f ( B
$1,62 (1 + |ln(|€|)|)

6
We will use the fact that Z (¢) (ll?l/(xjf)zl 5) is rapidly decreasing when &, >> %
and that F ({1)(¢1) = F(¢(5))(&1) is rapidly decreasing when &; >> 1 to essentially
. . . In(1)[°
reduce the integration domain to [0, ;] x [0, %]
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Chapter I. Strategy and control of the initial condition

First, we compute the following integral

2

|€|7/4 >
- F (hae) (S, : 1.3.39
L@-l Lzsw ((1+|1n(|<ﬂ)|)l3 (hae)(€1,¢2) ( )
N
We have that

4] \/x—l
Tl < CU AIn(A)|* s | < CAY2 ()0, (13.40)

A/4 |ln(x1)|

And so, we get

2

’6’7/4 )
s (e )
Llsa—l Lgln(gl‘s <(1+\ln(]{])\)ﬁ (hae)(€1.¢2)

In()P° A2

A3 In(A)[2%720 — C|In(A)|?¢2A—0  (1.3.41

<CA™

Now, we will make a precise argument to justify that integrating over the whole space

R? does not give a bigger term in A.

First, we look at

2

Ll Z(h 1.3.42
Lgmuné ng ((1+|1n(|5|)|)ﬁ"f( M)@l»fz)) : (1.3.42)

S

We can write
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1.3. Proof that (0,u),_o€ H"/*(In H) P

JueZinflxlxg(xl)Q(xl)nﬂlﬂﬁg((p) (£>

A/ | In(xy [In(axp)[2
. l i 2imé1x1 | A/ ﬂ ﬂ
= C(f1 L/4e [h(xOQ(xl) |ln(x1)|5g(¢) <|ln(x1)|5)
+xg(x1)53(xl)$g(‘/’) (ﬁ
R e Gl e )
+6 \/')Tl T \/)Tl
+Xg(x1)51(x1)7md(¢) (W)

+ xe(x1)¢a(x1) (2|1n(§61)|25 - |ln(x15)|2‘5+1) (F(¢)) <ﬁ) ] (1.3.43)

Now, the é we gain is going to be smaller than A on our considered set. So now, we
show that we lose at most A when differentiating the involved functions. When we

will integrate flz over the set {; > 1/, we will multiply by % which is not worse than
1

the % we had in the first estimate because of the size of the set.

First,

xe(x1) < C|In(A)|%, (1.3.44)

C’A(xl)=ai(( (%)) (x1)=%(’ (%) <%. (1.3.45)

So, we have

x;<x1>ca<xl>ﬁ9<¢> (LP) ‘ <ClmFVE, 1348

Xg(xl)(;(xl)ﬁg@) <“ﬂ> ‘ < C|In(A)|*%V2, (1.3.47)
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Chapter I. Strategy and control of the initial condition

Xe(x1){a(x1)

1 SR .
O (s )| S CmE Ve s

5 NET o
Xe()Cl)(/’l()ﬂ)m|ln(xl)|6+lg(¢)<|ln(x1>’5>‘<C|ln(ﬂ)| OV/2, (1.3.49)

1 o
206 (S * )

-(,97(4)))’( Vi > < C|In(A)[*%VA. (1.3.50)

[In(x1)[?

By induction and Leibniz differentiation formula, we quickly obtain that

ok A /A .
% (Xs(x1>(/l(X1)—| ln(x1)|6g(('b> (W)> < Ck|ln(/1)| 51 k' (L3.51)

Hence, we have

(J " ey () a) Yz (g) (22s5)|

A/ |In(x1)[? [Inx1))|

<

C
—[In(4)[*PA772. 1 (13.52)
1

Now, we obtain that
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1.3. Proof that (0,u),_o€ H"/*(In H) P

2

|f|7/4 |
lew ((1+|1n(|£|)|)ﬁ 9(h1,£)(§1,.{2)>

C 7/2
gf T%|ln(l)|2“_25/1_7 |§| - AZ
H1-1 6 | In(|¢])[P

C o5 2B
<ﬁﬂt“/2|ln(ﬂt)|2“ 20=26 — cAM?|In(A) 2220 (1.3.53)

Lastly, we hence obtain

[In(2)| "
Vi . A/ X1 A/ X1 — 28—
J J f QZZnEIJQXE(xl)(A(xl)—5g((p) (—5) <C|ln(/1)|2a 295
&=0  J&rJaa [In(xy)| [In ()|
(I.3.54)
Now, we study the expression for ¢, > 2%. We notice that
A/ X1 Ck“n(xl)’k'é
FO) |\ =62 | S ——F0 77— (1.3.55)
In(x)? gk

Here, we can for instance take k = 4 and we first obtain, because C|¢;| = |¢] = C|¢,

on the considered set, and

Hi& fM — N ( NER )>
L . (—<1+|1n<f>|>ﬁ ) s ) (e
<c| ( &7 A2|1nm>|“ﬂ|1nm>|46)2
S e \(+ m(@)F [mA))f 22
7/2
< C|In(A)|?@—80 1™ < C|In(A)|?@—80 ! (1.3.56)

§3 |In(2)[2F 1€2]972]In(2) 1287

and hence,
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Chapter I. Strategy and control of the initial condition

|§|7/2 " 2im¢
e I7TG1 X1 c X X
[y . (e LIM reba)ialx)

N
|In(x7)[0 |ln (x1) |5

gcf C|ln(A)‘2a—65 1 <C (| n( )6> ‘ (/1>’2a—66—2ﬁ
LI [€2|%/2]In(4)[2P VA

< C|In(A)?*972F (1.3.57)

We now study the term

LZZZM leil (Lii/w ezmélxl)(e(xl)()l(xl)ﬁg(@ (%))2

VA
(I.3.58)
Using both (1.3.52) and (1.3.55) and similar techniques, we obtain
41
21'7[51)61 \/xil or ( \/xil )'
e 1) (%)) ——=F —
e el G
[In(4)|* 2252 |In(A)|*
<C : (1.3.59)
S

We first study the set where ¢; > ¢,. We have the following :
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I.4. Lower bound on the width of the domain near the singularity

2

J f B (%wmmeg))

f f : ( &7 rlnwr“—%—%unw“)Z
6> W0 e oa1626  \[In(E])]P & A2&;

A—9’1n(/1) ’2a—2ﬁ+65
< CJJ \1n()t)|5 10 8
&> E1SALE >E 1 6

1 2a—2p+606
<C J In(A)] << |In(A)[?*2P+80  (1.3.60)
§o=

The second part of the integration domain leads to the same result.

Now, we have that

|§|7/4
(1+[In(|g)[)P

F (2 v0)(§1,62) 172 g, ) < Cln(A) 472770, (1.3.61)

Taking the sum over the dyadic numbers A = 2=k with 2a —2 B—6 < —1, we obtain
that g; H/ 4(ln H )_ﬁ . Also, because the constant C does not depend on ¢, we obtain

that the Sobolev norms of g, for € € (0, —1], are uniformly bounded.

I.4 Lower bound on the width of the domain near the
singularity

Lastly, we will use the following result that gives an estimation of a,(¢(t, y)) for small
values of y. Intuitively, the y factor obtained in dimension 1+ 3 now becomes a I ‘(ﬁ” =)
but here we only need the fact that the width obtained at the singularity is strictly

bigger than zero.

Using this result, we will be able to use a cutoff near the singularity in the next chapter.
For this lemma, we consider the initial condition defined by (I.1.7) and with a cutoff as

defined in theorem 1.3.1. We consider ¢, to be the first value such that there exists v,
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Chapter I. Strategy and control of the initial condition

such that ¢ (f,v¢) = 0. The fact that #; and v, exist and ¢, = (“ G )|a) will be shown
in chapter I1.2.

Proposition L.4.1. Let v, € R\{0}, and consider an interval of t of the form J, =

[0, C——=|. Then there exists a positive constants r such that

|In(e )l"[

ao(9(0,7)) ~y—o 22—

: (1.4.62)
|In(y)[°

and forte Jg,

B((6,(1,ve),0),7) = (6,01, %) €\ (@(1,ve) —m)+ G <1} cQp  (L4.63)

provided that the condition

a>26 (I.4.64)

is satisfied.

Proof. (of (1.4.62)) (trivial) Because ¢(0,y) =y,

f
a($(0,y)) = ao(y) = f =2v2—— (1.4.65)
rof<v2r s |In(y)[°
Let us now prove 1.4.63. We assume that |v| < 1/100, and that t < Cr—~7¢ T ( G (This will
be achleved whenever ¢ is small enough, which means we will only consider times

< Croi—7r= T ( I very small, see part 3 for further details.)

We will distinguish three cases, first, we consider curves whose starting point has an

abscissa strictly bigger than xo = £

It follows from definition .0.6 that (¢, x’) € Q if and only if (¢, x}) € Q' and all Lipschitz
continuous curves from (¢, x’) that satisfy (.0.24) intersect the hyperplane ¢ = 0 in the

set {x||x2| [In(x1) |6}
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I.4. Lower bound on the width of the domain near the singularity

Now, let (z(s),x1(s), x2(s)) be a Lipschitz continuous curve parameterized so that

t(s)+x1(s) =s. Note g(s) = x1(s) — t(s). Note that (.0.24) is equivalent to (using the
di

dils) 4 du ()
fact that +552=1),

) (I.4.66)

where R(s) = <dxd;§s)>2.

Now, using this set of new variables s = x;+t, g = x;—tand U(s,q) = u((s—q)/2, (s +
q)/2), (1.1.1) becomes

1 (1.4.67)
U(y,y)=0, Ug(yy)=5x(y)
The characteristics are given by s = constant and g = h(s, y) with
d
%h(s, y)=V(s,h(s,y)), h(y,y)=y. (1.4.68)

Thus, s — V(s, h(s,y)) is constant on the curve and is equal to y(y).

Now assume that the curve is such that q(a) = aand q(b) = h(b,y). With r(s) = 4/ x2,
(e Note that because g(a) = a is equivalent to

Y2a_)
|In(a)[®

is on the edge of the domain Q. Also, the condition g(b) = h(b, y) is equivalent to
x1(b) = ¢(2(b), y).

Ir(b)=r( ‘<J rdeV (1.4.69)

<vVvb—an/q h(b,y) (Using V; < 0)

assume in addition that r(a)? = In ( )

t(a)=0,r(a)?= |1n( )|25 is simply that the point (t(a), x1(a), x2(a)) = (0, a, =5

Now,
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Chapter I. Strategy and control of the initial condition

Now,

a

g(a)— h(b,y) = a—y+ h(y,y)— h(b,) =a—y+f V(s h(s y))ds
y

<< aano
S{pol@ V) <ga U4
Also,
b b—y
b—y =2t+ h(by) —h(y,y) =2t+ | V(s h(s,y)ds < 2t+ oo (1.4.71)
y

Hence vb—a < m <+/2-4/t, because a > y. (It comes from the expression of h
using ¢.)

Now, since a = }r(a)?|In(a)|?°, we obtain that a > ¢/4 implies |In(a)|’ < C|In(e)|°.

Hence, using condition (1.4.64), we obtain

Ir(b) —r(a)| < CVt-v/a<Cr(a)Vt-|In(e)]? < r(a)|In(e)|° %2 < lr(a), (1.4.72)

\S)

r(b)=r(a)—|r(a)—r(b)|=r(a)—2/3r(a) >1/2r(a). (1.4.73)

Meaning that any curve starting with a abscissa bigger than xy does not reach the
inside of a ball centered in (¢ = t,x; = ¢(t,v,),x2 = 0) of a certain radius §;, for a

fixed v, only depending on . However, the radius §; may depend on ¢.

Now, we study the case where the starting abscissa is smaller than xy = £/4.

We will consider the curve € = {(x1, x2)|x2 = + “n'(ig‘g,xo < x) < t/2}.

The distance between the curve ¢ and the point (¢(t:,v¢),0) = (t,0) is given by

f(y) :\/((P(fe,ve)—J/)ZJr“n(z%- (1.4.74)

Now, because for any ¢ < t, for any y, d,¢(t,y) # 0, and 0,¢(t,0) > 0, we obtain
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I.4. Lower bound on the width of the domain near the singularity

that for any ¢ < t, for any y, d,¢(¢,y) > 0. Hence, we obtain the following inequality

(because v, > €/2)

O(t,ve) = d(te/2) = §+ t% = g +t, (1.4.75)

and so we get ¢(Z, V) = § + t.. Now, because y < £/4, we obtain that
€
F(y)=¢(te,ve) =yl = R (1.4.76)

Let us rewrite the condition (.0.6). The metric (g"/) is given by (.0.14), which means
that the inverse is given by

1+v v 0
(gj)=| v —-1+v 0 |. (1.4.77)
0 0 -1

Now, (.0.6) becomes
axl 6)61 2 0x2 2
(14+v)-1+2v = +(—1+v) %) “\ >0, (1.4.78)
t

or after a few steps,

5 [ 0x1 v \? 0X> 2

ot 1—v

Call E the ellipse given by (1.4.79), and C the circle of center (0,0) and radius 1. We
will show that we are in the situation depicted in figure I.1.

Let us prove that E is in fact included in C.
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Chapter I. Strategy and control of the initial condition

Figure I.1

0%z
ot

I

9x
ot

L 2

Let us compute E N C,

v 2

1—U2<x— >+1—v =1
( ) 1—v ( /) (1.4.80)

¥ +y =1

Assuming by symmetry y > 0,
v 2
1—v2<x— >+1—U y2=1

(1.4.80) = ( ) l1—v ( )) (1.4.81)

y=—1—x?

and hence (1—v)*(x — t%)*+ (1 —v)(1 — x*) = 1. Now, the discriminant of this

equation in x is
L (1.4.82)
1-v)?2 1-vl-v o
2v

and the only solution we find is (:57,0) = (—1,0). This means that the ellipse E is

1—v
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I.4. Lower bound on the width of the domain near the singularity

included in the circle C. This means that a curve satisfying (.0.6), satisfies

0xy 2 0x> 2
7 + W <1 (1.4.83)

and hence, any curve satisfying (.0.6) also satisfies

[[(x1(£), %2(2)) — (x1(0), x2(0))| ]2 < t. (1.4.84)

Because d((x1(), x2(t)),C) = t + £, there exists a positive number §3 such that a ball
of radius §, and centered in (¢(¢,v,),0) cannot be reached.

. . 1
S T3
Reducing the domain to x; < n(e) 772

In this chapter, we additionally multiply our initial condition by a cutoff in x;. The
goal is to cut the function way after the point around which the phenomenon occurs,
but to still have a domain that becomes as small as we want when € — 0. We will need
the function to still be in H7/4(ln H)~A, and we also need that the point (v¢,0) is in
the interior of the domain of dependence at the time ¢ = .

For the second part of the requirements, a rough estimate is to notice that the speed
of the information in our problem is at most 1, and ¢, satisfies #; < W This means
1

that if the cutoff modifies the function only for x; > TYGICE thanks to (1.4.84), we

obtain our desired result for € small enough.

Hence, we consider the cutoff (with the previous notations) I (x1) = I (x; - |In(e)|%/?),

where [ is a C* functions on R such that

I(x)=1forx<1,
I(x)=0forx=>2, (1.4.85)
I(x)€[0,1] always.
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Chapter I. Strategy and control of the initial condition

Note that we then have

le(x)=1forx <

1 )
e

2 g
I(x)=0for x> W’ (ii)

le(x) €[0,1] always, (iii)
gkle(xﬁ < Ck )
< - (iv)
¥

(1.4.86)

E|Ck >0,

Il

k
0x}

Now, thanks to (i) and the previous remark, we have that (v,,0) belongs to the interior
of the domain of dependence for ¢ = ¢,.

Now, in the proof of chapter 1.3, because of (i) of (1.4.86), the estimation of

f f ( Ll F(81)(¢ 6))2 (1.4.87)
<A & <|ln(/1)\5 1+|ln(\€])|) 8e 1,62 , 4.

is the same, since [, = 1 on this domain. Lastly, the estimation of the Sobolev norm

for the whole set is also the same, since I, also satisfies (I.3.44) and (I.3.45).
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Blow up of the solution to the regular-
ized problem in H''/*~*(R?).

In this chapter, we consider a regularized version of the initial condition, so the
equation is well-posed and the method we use to compute its expression are sound.

We then construct a counterexample using the statements we have made.

II.1 Strategy

In this chapter, we will consider the initial condition g, whose existence and definition
are provided in theorem 1.3.1 (it was denoted by h, in the proof of the theorem).

5
8e(x1,%2) = xe(x1)- ¥ <%) “p(xy), (IL.1.1)
where
Ye(x) = J ye(s)|In(s)|% ds, (11.1.2)
0

First, we recall that the initial condition is in H”/4(In H)~#, with a norm that can be
bounded uniformly with respect to €. Also, we define

(1, 52) = (M> w(x) (1.1.3)
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Chapter I1. Blow up of the solution to the regularized problem in H''/*~*(R?).

The Cauchy problem

{ (Ju = (Du)D?u,
(IL.1.4)
(1, 2010) 1o = (0, &),

is now well-posed on some interval of the form [0, z![. Then, we define some time £,
for which we start to observe the concentration of the characteristics described in the
first chapter, for some point v,. By this, we mean that ¢, y(tg, v¢) = 0. The Sobolev
norm of the solution will be proven to be unbounded as ¢t — ¢, ; besides the time ¢,
is going to 0 as € — 0. Next, using a scaling argument, we put together a sequence of
these solutions for which the lifespan is going to 0, and such that total initial Sobolev
norm is still finite. For any time ¢ > 0, ¢ will be beyond the lifespan of one of those

solutions, thus leading to an infinite Sobolev norm.

I.2 Blow up when ¢ — ¢, and control of 7, with respect

to €.

Let u, be the solution for ¢ < #, of the Cauchy problem:

{ e = Ve D,
(I1.2.5)
(u,(?[u)|t=0 =(0,—ge),

with v, = Du,. We will prove the following theorem:

Theorem I1.2.1. Let u, be a solution of (11.2.5), and 6 > 0 (conditions on 6, will be
precised later).

Letyl :R— R bea C® function satisfying

wi(x) =1 for¢(te,ve) — 6 < x < P(te,ve) + O
Wi(x) =0 for p(te,ve) +28¢ < x or x < P(te,ve) — 20, (I1.2.6)

0 <wl(x) <1 elsewhere,
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II.2. Blow up when ¢ — ¢, and control of ¢, with respect to €.

andy? :R— R be a C* function satisfying

v2(x)=1for — 6. <x <6,
W2(x) =0 for26. < x or x < —28, (IL.2.7)

0 < w%(x) < 1 elsewhere,

so that he : (t,x1,%2) — ve (£, x1, X)Wl (x1)w2(x2) is localized in a square of width 46,
cut in halfby x1 = ¢p¢(te, ve); and such that he = v, in a square of width 25, cut in half
by x1 =v;e.

We have, for any A > 0 small enough,

]|h£(t)||H7/4_A —> w0 ast— t. (I1.2.8)
X1

Preliminary work

Now, the computations made in the first part are still valid in Q, the domain of depen-
dence such that Q n {t =0} = {(x1,x2)|xek = x}. We also only consider the domain
in time before the blow up. Or, with ¢, computed as previously,

Q={(x1,x,1)|pe(t,€) <x1 <P(1,3),|x2| < ar(x1),t < te}. (I1.2.9)

On this domain, we have that

v(t,¢e(y)) = xe(y), (I1.2.10)

where

oeltry) = y+ (i Xe)

—_—. (I1.2.11)
11— Xe(y>

In the following, we show that ||ve(¢)|| 52 — o0 as £ — f,. This will be used to con-
1

struct the counterexample. Now, we give the expressions of the terms that will be

used.
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Chapter I1. Blow up of the solution to the regularized problem in H''/*~*(R?).

Differentiating I1.2.11 with respect to y and ¢ we compute the derivatives that we will

need,
Xe(y)
Gey(t,y) =14+2t——,
A A
Xe(y)
bery(t,y) =2—0——,
) =2 P .
L)~ rel) + 220 R
(ngyZZIXEy XelY XelY ’
’ (1= xe()?
ber (ty)_zxi!(y)(l—xe(y>>+2x2(y>2
g, ) - .
” (1= xe(y))?
Now y — (l‘ﬂ% is a continuous function on a compact set, it reaches its maximum

M, aty=v.. Call t, = M%, we have the following properties:

¢e,y(t,y) #0fort < t,
Ge,y(te,ve) =0, (I1.2.13)

< ———.
" In(e)le

We have that for y > €, ¢, ,, > 0 which means that v, < e. Note that ¢.(t,-) is an
injection. We choose 1, such that v, is unique and such that ¢, (%, ve) # 0. Note
that we hence have at ¢ = ¢, the following properties for y close enough to v, (we can
choose the §, such that this is satisfied, since it only depends on € and not on t).

d’s,yy(tsrvs) =0,
1C16,Coe >0, Cre(y—Ve) < Peyy(te,y) < Coe(y—ve), (I11.2.14)
1C1e,Co e >0, Cl,e(y_ Vs)z < (Ps,y(tey ,V) < CZ,E(y_ Ve)z-

Remark I1.2.2. The fact that ¢ yy is not of constant sign really is an issue for the
estimation of the Sobolev norm, but we will explain later how we address this issue.
¢e,y however, is of constant sign.
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II.2. Blow up when ¢ — ¢, and control of ¢, with respect to €.

Also, we recall

IM, <0, 0> x:(¥) > M, 0> x(y) > M., |xe(y)| <|Me| (11.2.15)

Now, using taylor expansions and the expressions given by (I11.2.14) and (I1.2.15) we

write the following inequalities

Cre(ve—y)* + Cree,ry(te, ve) (£ — 1¢)
< ¢£,y(t; .V) < Cz,e(Ve - J/)z + CZ,e(,be,ty(te’Vs)(t_ ts)» (l)
Cre(ve—y) < (Ps,yy(t’ Y) < Coe(ve—y), (ii) (11.2.16)

where (ii) comes from the fact that ¢ ,,(t,y) = é¢5,yy(tg,y). Now, using (11.2.14)
and (I1.2.16), because ¢, ;, < 0 and (¢ — #;) < 0, both components have the same sign,
and we can write

C1’g|,Vg - y|2 + Clyg(tg - t) < |(Pg,y(t, y)| < C2,6|Vg - y|2 + Cz'g(tg - t) y (II.2.17)

and ¢, , < 0 everywhere for ¢ < f.

Informally, we recall that our goal is to obtain lower and upper bounds for the integral
(we omitted the independent variable)

1 ?he ?*he
Lx1)——(y) 11.2.18

45



Chapter I1. Blow up of the solution to the regularized problem in H''/*~*(R?).

We obtain an estimation for the remaining terms.

he (1,31, 22) = We (x1) e (x2) ve (1, x),

coh /

(101, %2) = W) | wd () ve(60) + ¥ () e (632) |,

X1

2h, ) L L X

() =) [ Wl (8 ve(tx0) + 202 (1) ve, (1,30) + 9050 e (1,5) |,
X1

0%h .
= ElCl,e: Coe >0, C1,5W§(x2)ve,x1x1(t,x1) < v < (t:xly xz) < CZ,&Wi(XZ)UE.xlxl(ty xl) (l)
X1
2he 2 .
= EICI,E > 0) (,)T(ty xlyxZ) < CI,S }U/g(XZ)VE,xlxl (t) XI)|, (ll)
X1

(I1.2.19)

where (i) is valid when x; € [z (e, Ve) — O, Pe(te, ve) +0,| and (i) is valid everywhere.

Now we are ready to start the proof of theorem I1.2.1. We will use the formula obtained
in lemma I.2.4 for the expression of the Sobolev norm.
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II.2. Blow up when ¢ — ¢, and control of ¢, with respect to €.

Proof. First, with I, = S;chi_z 5. (w%(xg))z dx,, we define the following three integrals.

¢£(IE:V£)+25£ 20¢ 2 1,,2
Ig(t):f f [(M)me)

1= (te,ve) =28 Jx3=—26, 5361

. J¢£(ts,vs>+2§£ ‘xl . y|—1/2+2/1 (52(1’1//%1/@)
y=he(te,ve) 20, 0x?

Pe(Le,ve)+26¢ 2 (ywl
L (D)
X1 :(l)s(tSvVE)*Z(Ss axl

¢£([5»V£)+26£ (32 v é
J oy — y| A (—( v >) (t,y)dy]dxl
y=¢c(te,ve) =20 axl

Ge(te,ve)—0e 02 (vt
A
X1 =¢£(tsvve)_25e axl

e (te,ve)+26, 2( 1
J %y — y| T2 (—6 (v12p€)> (t,y)dy] dx;
1

Y= (te,ve) =20, 0x

¢e(te,ve)+0e aZV
()
x1=0¢ (te,ve) —6e 8.76% ( 1)

J'(pg (te,ve)+26,

) (t,y, xg)dy} dxdx;
1

('32
stng a7 (53 )
V=0 (te,Ve)—20¢ 1
¢£(t£vvf)+26g 62 1
A

x1=0¢ (te,ve)+0 oxXy
Oe (te,ve)+26¢ B ( vyl )
J ‘xl_y| 1/2+21( qxz )(f,J’)dJ’]dxl
0Xy

y=¢c(te,ve) —20e
— (1M + (1) + (1))
(I1.2.20)

The strategy of this proof will be to find upper bounds for |I}| and |I2| (as t — t,) while
finding a lower bound for I? (as t — f;) going to +co faster than the bounds on |1} |
and |I3| are increasing, thus giving the convergence of I () to +o0 as t — f.
*(vve) |
62
we make the change of variable (not explicitly relabelled) x1 = ¢pe(t,x1) and y =

Because of (I1.2.19), we can study the integrals where

is replaced by Y. Also,

¢¢(t,y), which makes the term ¢, , appear twice.
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Chapter I1. Blow up of the solution to the regularized problem in H''/*~*(R?).

—20¢ —0¢ x1 = ¢e(te,ve) +0¢ +20¢
, - - - - -Tro-T-T--0- s - - - - - T-T7Z7- - - T T -
L he Joowl=1 7 yl=1 he P:t=
—0g - - - - - - ST T T T ol Zaiai il
D G A
Xp=0 & - = — - - - /! 777777 A= 7/ 7777777
// 11/%:1 // ve //,1 Ve // u/l;z‘:l
+6; LTI . Accoacs L= = - - - A
p he 0 wl=1 0 gl=1 - he
420 - - == - = L - - = —/4 —— e Domain of the first
, 4 integral of Iy
e ’ 4 ‘
s , 4 X1 = e (t,ve) Domain of the first
7 P integral of I»
A= X1 A
, Domain of the first
e integral of I3
7
o Note: The domain of I;() does not
X2 X] = Ve follow the line given by ¢,
as t varies, it "moves vertically".
Figure II.1 — Definition of w!, w2, h, I}, I? and I3
g . WeJWE’ &rterte [
Since
ve(t,Pe(t,y)) = xe(¥),
then,

_ )
el Pelb 1) =G )
Ve,xx(t; (/)g(t, y)) = Xe (y)(PE’J’([’ y) - Xe(y)(PE,yy(t, y)

2 y(t,y)

(I1.2.21)

(I1.2.22)

Now by continuity, choose §; so that for z €| (tz,Ve) — 20¢,Pe(te,Ve) + 20¢[, then
<p;§ (z) €]e — e, € + 1|, for a certain range of # close enough to z, of the form |2, z,[.

Hence, we can choose the 6, such that 7. is small enough, and all the results obtained

in the preliminaries hold.
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II.2. Blow up when ¢ — ¢, and control of ¢, with respect to €.

For clarity, call

(1) = ot (Pe(te, ve) —26¢)),
2 =, } e\ler) Ve _65 ’
CE0) = 1 (e rve) =) 11229
(o(t) = ()bg,t((l)&'(tf’vf) +0¢)),
(1) = oot (Pe(te, ve) +26¢)),
and note that for t[} close enough to f,
Ve —Me <CH(E) <C2(t) <ve < O3(t) < C2(t) < Ve +7e. (I1.2.24)

Also by continuity, for ¢ close enough to , there exist two constants {** and {2~ such
that

e <L) < (1) <M <ve <37 <3(1) < (3(t) < Ve +1e. (I1.2.25)

Let us now consider I} (the case of I? is similar).

:( [bey (1, X1)¢ey (1Y)
o Jl =it f ) |pe(t,x1) = et y)[V2~ 21 [Veex(£51) Ve (1 )|

vetne |Pe,y(1,Y)]
Y=Ve—Te ‘(pf(t’ X1) _(pb‘(t’y

< cgj ey (121 e a6, 31) il e (6)
X1=Ve—Te )’

(I1.2.26)

We study the inner integral of (I.2.26) for x; € [V —7¢, (%" ]. Now, both e (pl(ty)|1/2_2’1
e\ A1) —@Pelly

and v,y (¢, y) are unbounded in the second integral, but the regions where they are

unbounded are uniformly disjoint in ¢ because of (I1.2.25), so we split again the

domain.
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Chapter I1. Blow up of the solution to the regularized problem in H''/*~*(R?).

2+
£

V€+n£ 1 1
Ve xx(5Y) <(«1) C J
[ v e A N o ey e

VetTe 1

o
+@f wamwwmm@wmm+@f
y=¢2" Y y=0 “Ps(trxl)_‘pE(t»J’)’l/ZiM

<Cel(i)+ (i) + (iii)] (11.2.27)

In (x1), we used (I1.2.14), (I1.2.16) and (I1.2.22) and the fact that |v, — y| = C, on the
Set [VE - T’E, g—i_].

Now we give a majoration for (i) in (I1.2.27). The case (iii) is trivial.

Remark I1.2.3. For I3(t), the case of (i) is trivial, the (ii) works the same as (ii) for

11(t), and (iii) works the same as (i) for I}(t) that we do now.

Now, using the mean value theorem as well as (I1.2.16), and |c — v¢| = |(§Jr —Ve|, we

obtain

2+ 2+
(e

1 1 € 1
(i><cgf

< CgJ gz G
y=vene |1 — V2722 ¢ (1, ) [1/2~2A y=ve—ne %1 —J’|1/2_2/1(H 2.28)

Now, we study (i7). Using the expression of v, x given by (I1.2.22), and the results
1 or Pe,yy(1,x)

Ge,y(1,x)? Pe,y(t,x)3"

(The other factors being uniformly bounded for a fixed ¢). Indeed, the root of ¢, is

obtained in the preliminary work, it is not clear if the bigger term is

of order 2 in x instead of the root being of order 1 in x for ¢, y,, but the inequalities
also involve a term depending on ¢ in ¢ ,. So we make the computations for both.

Using the expressions from (I1.2.22) and (I1.2.27) as well as the inequalities obtained
in (I1.2.15) and (I1.2.16), we obtain
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II.2. Blow up when ¢ — ¢, and control of ¢, with respect to €.

(27 1 (2* t
iec| ——we eyn(t)]
y=0" ey (£,)] y=0* e,y (2, y)|
3— .
(g ]. (e |y_'V5|
Ce 2 +Ce S (11.2.29)
y=t ([y=veP+ (e =0) 7 Jygt (Jly—vel2+ (e —1))

Now, because we have the following primitives

1 arctan (\%) X 1
f = ’ f 3= (I1.2.30)
(x> +a) Va (x> +a) 2(x2+a)

We obtain that

|(7)+ (ii) + (iii)| < C; (I1.2.31)
(e —1)
Finally, we have the following upper bound for 1} (¢), using |x; — v,| > C,
Ce (% 1 |Pe,yy(£,51)] C
|1 (1) < J l ST <= (1.2.32)
(te—1) X1=Ve—T)¢ |¢£,y(t’ x1)| |¢£,yy(t’ x1)| (te—1)
By symmetry, we also have I3() < (tc_g 5-
Now, we do the estimation for I?(¢).
This one is more complicated because we do not have an upper bound for (quﬂ(% —
e,y\L)

X (¥)Pe,yy(£,x)
(fe,y(t,y))* -~
is changing sign when x is lower or bigger than v,. Also, the second term is not

Indeed, the first term is of constant sign whereas the second term

smaller than the first one. The idea we will use is the following one. In case of an
integer Sobolev norm, the term is squared and is of constant sign. In the case of

this fractional Sobolev norm, the kernel is not a Dirac but concentrates at y = x; as
1
|¢£,y(frc)(xl_3’)|l/2_u )
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Chapter I1. Blow up of the solution to the regularized problem in H''/*~*(R?).

From (I1.2.16), we have

Cre(ve—y) < (ps,yy(t’.)’) < Coe(Ve—Y).

We can write from (I1.2.22)

G 1
f (2+ (2+ |¢ l'xl ¢(t y)|1/2_2/1¢5vy(t’x1)Uxx(t’xl)(p&y(try)Uxx(t’y)
“ f‘i 1 V) 20 ) A Wen(ny)
=0t Jy=g |pe(t,x1) — e (2, ) V2722 | ey (6,31) Pey(8,Y)  Pey(,x1)  Pey(t,y)?
2" () X (x)@eyy(tx1) X' (x1)Peyy(6%1) X' (¥)Peyy(Ly) N (N (i (s
Toeyt) Bep(tm? T Gey(tm? eylyp | TUIHEDHEY)
(11.2.33)

We will show that (iv) >> |(i)|+]|(ii)|+|(iii)| as t — t. Note that we do notstudythe

integrals corresponding to (x1,y) € [(27, 3] x [ve —ne, (21 ] and (x1,y) € [¢5,37] x
[¢ f’g—, ve +1¢| because the method is identical to the one we used for 1.

Flrst we look at (iv). In this case, we have to keep the two integrals together. Because

X Wbeyy(Ly) o X' (y) s ;
S Gey (1) is going to be smaller than Sy For (6] because of ¢, anti-symmetric

properties (with v, as the center). But the weight function will be higher when (x—v,)

and (y — v,) are of the same sign.

A (x1) e yy (1,x1) X' (¥)Pe,yy(L,Y) 1
Pe,y(1,21)? bey(LY)? [P (t,21)— e (1,y)]

pole of i is displayed as a thick line. We see that the part corresponding to a and 6

Denote i(x1,y) =

o I figure 11.2, every

where i > 0 is going to be bigger than the part corresponding to f and y where i < 0.
We also denote

a={(x1,y)e[le" ve] < [¢ ,Ve]}, ={(x1,y) € [ve, (&< [C27 ve}

(I1.2.34)
y={(xy) e[ vel x Ve (01 6 ={(xn,y) € [ve, (7] x [ve, (2]}
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II.2. Blow up when ¢ — ¢, and control of ¢, with respect to €.

y="Ve
y=x1
7,1 <0 0,1=0
X1 ="V
a,i>=( B,i <0

Figure I1.2 — Definition of a, f, y and 6

And we have

(iv) =JLi(xl,y)+JLi(x1,y)—i—JLi(xl,y)—i—fLi(xl,y). (I1.2.35)

We regroup the term 6 and f together. We will show that this term is non-negative,
and also provide a lower bound for it. Without relabelling, we can choose ¢ 2t and 3~

to be symmetric with respect to v.. We denote k. = ( 37 — Ve.

To do our estimate, we will need the following refined approximation for ¢y, yy(t, ¥),
that comes from a Taylor’s expansion.

C(ve—x1)—Cy(ve — x1)2 < Peyy(t,x1) SC(ve —x1) + Co(ve — xl)z. (11.2.36)

]:JJ 1 X' (x1) e yy(,x1) X' (¥)Pe,yy(t,y)
50p |Pe(1,x1) — (1, y) V2724 ey(t,x1)? Pe,y(1,y)?

_JKE JKf X (Ve +¥)@e,yy(t,ve + Y)Y (Ve + x1) e,y (1, Ve + 1)
x1=0Jy=0 |¢)s(t»ve+xl)_(Pe(t»ve+J/)|1/2_2/1¢6,y(t»ve+x1)2¢£,y(t»vs+Y)2

X,(Ve - J’)<Pe,yy(t» Ve — J’)X/(Vs + xl)(»be,yy(t’ Ve +X1)
|pe(t,ve + x1) — pe(t,ve— y)|1/2_27‘(,b€,y(t,v£ = ¥)?e,y(t,ve +x1)?

(I1.2.37)

Now, we write J defined in (I1.2.37) as a difference term, using the approximation
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(I1.2.36).

J=h+T+Js+ ] (I1.2.38)

There exists f a bounded function such that

X (vetx) x1- X' (vet+y)y

Ke Ke
ol
x1=0Jy=0 ’(/’e(t»"£+x1)_</’£(t»V6+J’)‘I/Z_pre,y(t»ve+y>2¢e,y(t»ve+x1)2

3 X(ve—y) vy X (vetx) x
[Pe(t,ve+x1) — e (L, Ve — y)‘l/z_M(Pe.y(t»Ve —¥)2¢e,y(t,ve +x1)?

)

(I1.2.39)

fz=CJK£ JKE X (Vety)-y- ' (Vet+x1) f(ve+x1) a3
=0 Jy=0 | [@e(t,ve + x1) — e (1,ve + y)|V272A e (£, Ve + ¥)2he y (£, Ve + x1)?
/

B X (ve=y)-y- ¥ (ve+x) fve+x) xf
e (£, Ve +x1) — pe(t,ve — J/)‘I/Z_M(PE,)/(I’ Ve = ¥)?Pe,y(t, Ve + x1)?

’

(I1.2.40)

X Vet y) - fvety)- ¥y ¥ (vet+x1) X1

Ke Ke
J3 = CJ J 1/2—21 2 2
x=0Jy=0 | [pe(t, Ve +x1) = Pe(t,ve + )| / ‘PE.y(t’Vs"'J’) ‘Pf.y(t»"s"‘xl)

B X We=y) fvet+y) ¥ X Vet x) x
|pe(8,ve + x1) — Pe(1,ve — ) [V272A ey (1, Ve — ¥)? ey (1, Ve + x1)?

’

(I1.2.41)

and
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Iy = J f X (Vety) fvet+y) ¥ X' (ve+x1)- f(ve+x1)- X7
! x1=0Jy=0 ‘(Pe tvs+x1) Qbe(tyvs+.V)|1/272/1¢£,y(tyvs+.V)2(,b£,y<trvs+x1)2

- X (Ve=y) fVety) ¥ ¥ (et x1) fve+x) x]
|pe(t,ve + x1) _QDE(trvs_J’)|1/2_2A¢&y(trv£_J’)Z(p&y(trvf"‘xl)z

(I1.2.42)

The main contribution will come from J;. We will show later that the contributions

from J,, /5 and J4 are smaller. Let us, for now, focus only on J;. We decompose the
integrand as follows.

1 ¥ (ve+x1)-x1 ¥ (vet+y)y
e (1, Ve + x1) = e (b, ve + y)| V22 ey (1,Ve +31)% ey (£, Ve + y)?
1 X (vetx) x1 ¥ (ve—y)y

- |pe(t,ve + X1) — e (2, Ve _J’)|1/2_2;L (p&,y(t’ve + x1)? (/’e,y(t:"e —¥)?

1 X (etxi)-x1 y'(vety)y
‘(ﬁg(t,vg + xl) _(pg(t,Vg +y)]1/2_2/1 (pg,y(tyvs + x1)2 (,bs,y(t;vs + J’)z

B 1 ¥ (Vet+x1)-x1 ¥ (ve+y)y
‘¢£(tyve+xl)_(pe(trve_Y)‘l/Z_Z/l¢6vy(t’vf+x1) Qb&y(t’vf y>2

1 Y (vetx) a1 ¥ (vety)y
|pe(t,ve+x1) — Pe(t,ve — J/)‘l/z_z’l ‘PS.y(t’Vf +x1)? ¢£,y<t’ Ve +y)?

B 1 X (vetxr) x1 x'(vety)y
‘¢£(I;V£+xl) 7(/)6([’1,87),”1/2—24 ¢£,y(t’vf+x1>2 Qbfyy(t’vs_y)z

1 X (vetx1)-x1 x'(vety)y
e (£,ve +x1) — pe(t,ve — ¥)| V2724 e,y (£, Ve + X1)% e,y (2, Ve — ¥)?

B 1 X (vetx) x1 Y (ve—y)-y
‘¢£(I;Ve+x1) _(Pe(t;ve_J/)P/z_Z/l ¢6,y(trv8+x1>2 ¢€,y(t’ve_y)2

=Dy +Ds+ D3. (11.2.43)
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To shorten a bit the notations, we will denote

@z = [pe(t,ve+x1) = Pe(t,ve £ y)|. (I1.2.44)
For D;, we write
1 1
e (£,ve + x1) — Pe(t, Ve + ¥)| V2724 |pe(t,ve + x1) — Pe(t,ve — )| /2724

40 _ 40

a_—ay al—a’
T Ueah 122a [ 1j2e2h _1zi2AY | [ 1zien  _1j2+2k (11.2.45)

TR () (T

It is clear that D; is nonnegative when x; > y. We now provide a lower bound for
D1, x,<y. We will show that it is positive up to a smaller order term, and provide a lower

bound for the positive term. We hence now consider x; < y.

We write,

a-—ay =[pe(t,ve +x1) = Pe(t,ve — ¥)| = |Pe(6,ve + x1) — Pe(1,ve + )

X1 y
=20 (t,Vet+x1)—Pe (6, ve+Yy)—Pe(t,ve—y) = J Pe,y (1, v;l—s)—f_ Ge,y(t,vets)

s=—y
X1 y
=J ¢£,y(t,vg+s)+f (e, y(t,ve—5) — ey (t,ve+5)). (11.2.46)

S=—X1 S=X1

We will use this idea to provide a lower bound for D;.
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II.2. Blow up when ¢ — ¢, and control of ¢, with respect to €.

a o_
! — ! :J " _(1_2/1) 1 :CJ §3/2+24
a1/2—27t a1_/2—27L 2 §3/2—21 s

S=a—
+

“++S§1=7x1 Ge,y(1,ve+2)
_ Cf §—3/2+24

S=a 4+

a+ Sz_—fx] ¢£,y(l'vf ‘7’) Syz_—xl ((lf;y(l’,vf ‘7’) ¢5y)’(1’vs ‘7’))
N

§32¥2A (i) 1 (i),
=ap+5L o bey(tvetz)

(I1.2.47)

where (i) is nonnegative and (i) is small. First, we make the following upper bound
for |(ii)]. If S;yq (¢e,y(t,ve —8) — e y(t,ve +5)) > 0, then (ii) is nonnegative. Oth-

erwise, we have a | + Sflxl G,y (t,ve +5) + Si/l (e, y(t,Ve—5) — ey (t,ve+3)) < ay +
Sflxl ¢e,y(L, Ve + 5). We then proceed as follows

Ja’-&- +S§1:—x1 ¢e,y(trve+z)+g:xl ((Pe,y(tr"efz)*(/’e,y(theJFZ)) 5—3/2—21

s=ay +Sflxl e,y (t,ve+s)

Jwr _SZ=x1 ((pg,y (tve—2z) —¢E,y(t,vg+z)) 3_3/2+2)L

S=a—

—3/2+21
< /

y
J (e,y(t,ve —2) — e,y (t,ve+2))| - a_ . (11.2.48)

zZ=X1

From the Taylor expansion, we obtain for x, y small enough (only depending on &),

[ @estve=9=pustivers)

zZ=X1

<C (Y —xi+(te— 1)+ (t— 1) (y* —x7)).

(I1.2.49)

This means that we obtain (up to a nonnegative contribution)

(i) < C(y* +xf+ (te— 1) (2 + %) + (1. — 1)?) - TP (I1.2.50)
a
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Chapter I1. Blow up of the solution to the regularized problem in H''/*~*(R?).

We now go on with the lower bound for (7). Using the expression of (i) provided by

(I1.2.47) as well as the mean value theorem, we obtain

C(++S§l=7x1 ¢£,y(t,Vg+Z)
(i) = f §3/2+21
N

X1 1
> en(LVe+2) |- .
szfp AB Z>) Ge(tve+ ) —de(tve—x1)) 2 2"
1

=>Cx ey . (II.2.51)
1(Pe,y( 1) (y + xl)g/zfza . c/)g,y(t, 62)3/2—21
Now, since we have x; < y, we obtain from (I1.2.16)
(pg’y(t, Cl) 2 C(tg_ t), (11.2.52)
and
Be,y(£,02) < C((te— 1)+ 7). (I1.2.53)
Using (I11.2.65) and (II1.2.66) inside of (I11.2.64), we obtain
X1(te— 1t
(i)=C 1(fe—1) (IL.2.54)

(y+x1)3/2—2A . ((tg _ t) + y2)3/2—2/1'

Now, we obtain for D;,
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II.2. Blow up when ¢ — ¢, and control of ¢, with respect to €.

Dy =Dy >y +Dy<y=Dy<y

>CJJ x1 (e — 1) Y(vetx) x Y (vety)-y
- y+x1 )32=21 (1 —t)+y2)3/2*“ Pe,y (Ve +x1)? Pey(1,ve +y)°
<V£+x1)'x1 X/(Ve+y)'y
-C 3/2—21 2
x1=0Jy=x a// (Pey(t Vs+x1) (Pg,y<t,V£+J/)
_cf J Y (vetx) x ' (vety)y
x=0Jy=x a3/2 2’1¢£y(t Ve +X1)% ¢,y (1, Ve + )?
_cJ J )} Y (vetx)m ¥ (vety)y
=0Jy=x 3/2 20 e,y (1, Ve + X1)2 e,y (1, Ve +1)?
_CJ f )V ¥ (vetx)-xn }(vety)y
x=0Jy=x 3/2 20 ey (2, v£+x1) Ge,y(L,Ve+y)?

_CJ' J tg—t X (vetx) x1 ¥ (vet+y)y
x1=0Jy=x a3/2 2 (/’ey(t v£+x1) (p&y(t"’5+y)2

=A; —By—By—B3—Bs—Bs. (11.2.55)

Note that the proof also works for A = 0. We will now show that A; — oo, and that /5,
J3, J4, D2, D3, By, By, B3, B4 and By are of a smaller order. We first consider A;.

Using |¢e,y (2, ¢(x1,¥))| < Mg ((x1)? + (2 — 1)), on y > x1, we have from (I1.2.55) and
the new change of variable (x,y) = (r — z,r + z),

Ke/2 (T (1 —2)(t; — 1) r+z r—z
"o Jemo 3220 ((r+22+(te— )" ((r—2*+(t— 1)
Ke/2 1 (tg_ l‘) r
r—o r1/2-24 ((2r)2+(lfg—lf))ll/2 24 Jz=o

Kg/z _ . 5/2+2/1
>Cgf (Zf o 11/2—2A > e (15/4t)3/1
=0 ((2r)*+ (£ — 1)) (te—1)
Ce

> G (1290
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Chapter I1. Blow up of the solution to the regularized problem in H''/*~*(R?).

We now proceed with B;. The case of B, is similar. We have since ¢,y (¢, x) > (t; — 1),

with the mean value theorem

Ke/2
|Bl‘\ 3/2 2/1J J o rs/z 2/1

r+z r—z

((r+z)2+ (t— t))2 ((r—2)*+ (t — t))2

<G f o r4 Jr i (11.2.57)
T (te—1)32720 g 1222 (2 4 (1o — )P Jamo (r—2)2 4 (e — )2

Now, because

JOO d < ¢ (I1.2.58)
s=0 (sz+(t£—t))2\(tgft)’ e
(I1.2.57) yields
Bi| < C; fxg/z F7/242A _ C. 11250
He (te—1)3/2724 )o_g (r2+ (1, —1))? S (t— t)10/4-2A° e

We now proceed with Bs. The case of B, is similar. We have since ¢, (,x) > (t, — 1),

with the mean value theorem

Ke/2 T— )2
|B3‘\ 3/2 Z/IJ J 3/2 21
le — z=0 r

r+z r—=z

((r+z)2+ (t— t))2 ((r—2)*+ (t — t))2

<LJKE/2 rt Jr i (I1.2.60)
Tt )22 sy V2 2A (2 g (1 — 1) Jamo (- 22 (e —1)F
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II.2. Blow up when ¢ — ¢, and control of ¢, with respect to €.

Now, because

JOO - < (I1.2.61)
s=0 (52+(tg—t))2\(tg—t)’ e
(I1.2.60) yields
C Ke/2  .3/242 C
|B3| < —EJ 5 < £
(te—1)32722 Jico (P24 (te—1))*  (fe —1)3/2+3/4-32
Ce

< = (I1.2.62)

Lastly, we provide the upper bound for Bs. We have since ¢ (t, x) > (. — t), with the

mean value theorem

Ke/2
5
B |\ 3/2 21_[ J 0 r3/2 2/1

r+z r—z
((r+z)2 + (L — t))2 ((r—2)*+(t;— t))2
<Ce(te— t)1/2+2/1f<5/2 1 Jr r—z .
r=0 Y2720 (12 4 (£, — 1))* Jamo ((r —2)2+ (£ — 1))’
(I1.2.63)
Now, because
Joc s < C (11.2.64)
=0 (2+ (te—1))?  (te—1) o
and
o0 S—l/2+2/’l C
< ) (I1.2.65)
J—o (24 (te—1))*  (te—1)7/4
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(I1.2.63) yields

Ke/2 —1/2422
1Bs| < Ce J r Ce

<
(te— )2 22 Jico (P24 (te— 1)) (fe—p)M/2H7/434

Ce

< —( -~ t)9/4_3/1. (I1.2.66)

This concludes the proof for the first difference term D;. Overall, we obtain

Ce

D z———— . 11.2.67
1 (tp — £)11/4-31 ( )
Now, we study D7 and Ds.
For D», we first study the term
1 1
Gey(LVe+Y)? e y(t,ve—y)?
(Pey(t,ve +y) + Pey(£,ve—Y)) - (Pey(t,ve =) — e y(t,ve + )
_ (I1.2.68)

(Ps,y(t’ve + J/)Z(Py(t’ve - J/)z

A Taylor expansion of ¢, gives that ¢,y (1,ve — y) — e y(t,ve +y) = filt,y)y° +
f2(t,y)(t—t:)* where f; and f, are bounded. Because ¢, > 0, we have that

1 B 1 A+ Ry (e —1)?
by (t,ve+ )2 Pey(t,ve—1)2  ¢ey(t,ve+Y)dey(t,ve—y)?
Hh( )Y+ f(ty)(te—1)°
‘:bs,y(t"’e‘f‘J/)Z(,be,y(t,Ve—J/).

(I1.2.69)

The two involved terms are similar. We consider only the first one. We obtain
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II.2. Blow up when ¢ — ¢, and control of ¢, with respect to €.

K/2
D,| <
|D2| < I — 1/2 uf L 0Z1/2 21

(r+z)(r—2z)*

. . (II.2.70)
(r+22+(te— 1) (r—2)?+ (te—1))-((z— 12+ (te — 1))*
Again, we split the domain of z in two parts.
x/2
|D2|\ I — 1/2 21] f 0Z1/2 21
(r—i—z)(r—z)4
((r+2)2+ (e —1))° (( +(te— 1)) (( — )2+ (te— 1))
K/Z
(te — 1) 1/2 mf L r/2Z1/2 21
(r+z)(r—2z)* (1L.2.71)
(r+22+(te—1)°((r—22+(e—1) (2= r2+(—1)"
For the first term, we obtain
Ce K /2 o r/2 1
(. —1)1/2-24 J;—O (r2+(t.—1))° L_o z1/2-24
Ce K/2 pl1/2+22 Ce
< —(te— t)1/2—2/1 Jr:() P+ (-1 < (s t)9/4_3’1’ (I1.2.72)
and for the second term
Cg JK/Z 1 r J*r/Z S4
(te— 0)V2724 Jo_g r1/2=22 (22 4 (4, — 1)) Jomo (2 + (e — 1))?
Ce (I1.2.73)

<—.
(té‘ _ t)9/4—3/1
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Overall, we obtain that | D,| < (t_gm Lastly, for D3, we have to study the term
¥ (ve—y) — ¥ (ve + y). We obtain

X (ve=y) =X (Ve +¥)[ < Ce- [yl (I1.2.74)
With similar computations, the additional y leads to a gain of order (7, — t)l/ 2, Lastly,

for the terms J», J3, J4, the additional terms x;, y, y and x; - y converts into (respec-
tively) a gain of order (. — £)V/2, (t, — 1)'/2, (t. — r)"/? and (£, — 1)".

Overall, we obtain that

JJ i(x1,y) = L& (IL.2.75)
ﬁu6 (tg_t)ll/ﬁlf\?u

and hence

Ce

(iv) > =T

(I1.2.76)

For (i), using the lower bound on ¢, provided by (I1.2.16), we obtain with the same
method (we make the same change of variable and do not separate the domain as

previously)

—1/4 —1/4
Q <J J . 12\4£|x| ]2\/[£|y| < Ce (I1.2.77)
wJy (= )22+ (1= 1) Y24 (L= 1) (1o —1)14/8-20

Also, for (ii), we obtain

(ii><JJ ¢ Melx| V4 M|yt Ce
)y (t; — L‘)I/Z*Z/1 X2+ (te— 1) (2 + (te— 1))2 ~ (t — )1/2+5/8+9/8-22
Ce

< o (11.2.78)

The case of (iii) is similar. Now, using (I1.2.56), (I1.2.76), (I1.2.77) and (I1.2.78), we
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obtain that c
) vz .. .. . €
IZ(t) = (i) + (i) + (iii) + (iv) = —(tg EPTeY (I1.2.79)
Because of (I1.2.32), we get the desired result.
() =1Nt)+ I2(t) + (1) —— . (I1.2.80)
O

Remark I1.2.4. We also obtained a lower bound for the speed at which ||v|| ;72 — 0.

Theorem I1.2.5. . —0ase — 0.

Proof.

_ DL Vs s e o o
rnax{hg(y)— (1_X£(y))2}/hg( )= |In(e)|” — oo (IL.2.81)

By definition of z,, we thus have that t, — 0 as e — 0.

II.3 A scaling argument to construct the solution

In the following, we use a scaling argument to create a sequence of solutions with
summable H''/4 norms, and we choose a & parameter such that the lifespan goes to 0.

Let v(t, x) be a solution of (.0.13). We define for w,y € R,

vp(t,x) =A°v(AY e, AT x). (I1.3.82)

Now,

(Ova) (£, x) = A°APOv(AY £, AT x)

) 2013 ) (I1.3.83)
(DvpD“vy)(t, x) = A“°A°Y(Dv)(AY £, AV x)(D“v) (A £, AV x);
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Chapter I1. Blow up of the solution to the regularized problem in H''/*~*(R?).

so v, is also a solution, provided that

w+y=0. (I1.3.84)

Now, we will make an estimation on the modification of the Sobolev norm due to the
rescaling. Note that without the logarithmic modification, we have (with the change
in variable in x and ¢)

wall e = A2 (A Y422 0] | oy (I1.3.85)

Now, we estimate ||v3|| ;7 /4(1n 1) -6 - We have by definition

B A|2w|AYf|H/2
2 - Al2Y|A1% | F 2

< ()2 (AT) /22 J Lo
gerz (14 [In(|A7¢])])

> ﬁg(u)(f)z, (I1.3.86)

We have the following properties for A <1,

[In(|A7¢])] = [In(AY) +In(|¢])] = [In(&)] for [¢] € (0,1],

for || € [1,A77/2], [In(A7) +1In(|¢])| = =|In(A7)| = |In(|¢])], (I1.3.87)

—_— DN | =~

for [¢] € [A7*",20), [In(A") +In(|¢])| = > [n(|¢])].

\S)

This means that we can already establish

/12y|/1‘—4y |/1|2w|1y§‘11/2
fl<—LzUlel> 24 (1+[In(AY[¢])])?P

< Z(A)Zw(ly)ll/2—2| | V| |H11/4(1nH)—ﬁ- (I1.3.88)

F(v)(©)?
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For the last part, we have

A-Y/2<|é|<A—2r (1+[In(A7[¢])])%P

<J AZYA_4Y/1,2w|A,Y6|11/Zg(U)({)z
AY2<|E|< A2y

F(v)(©)*

11/2
< A2 p20( \ln(;LZY)})Zﬁf 4 7 (v)(§)°

A-r2<|gl<a-2r (1+[In(|¢])])2P

< AP (14 (AP 0]| oy (11:3.89)
Overall, we obtain from (I1.3.88) and (I1.3.89),
7
loall gross o ry-p < 2A° AT (1 +2[I0(AY) )P [ 0]| gaaja g - (I1.3.90)

Now, we will choose the following values for the parameters and apply this result to
the solution u, defined in the previous chapter as the solution of the Cauchy problem
(I1.2.5).

Now, applying this to the solution u, defined in the previous chapter, define

(I1.3.91)

and (u,) the corresponding sequence of solutions.

First, the rescaling in time shortens the lifespan of 1, and we have that the lifespan of
U ), satisfies t4€ = A~ 7t,. Hence, we have by (I1.2.81)

1
<——0. (I1.3.92)
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Now, we can choose any parameter § > 1/2 in our construction. So we can assume for
instance that we have 8 < 3/4.

1 _
|lure ’H11/4(lnH)_ﬁ S 2?(1 +2In(n 4))[3"uO,&‘HHU/‘*(lnH)—ﬁ’ (I1.3.93)

which is in I1(Z).

Now, define i, as a translation of u, in x; such that Supp(i;) n Supp(it;) = J for
i # j (and the domain of dependence do not intersect either), and finally define

oe]
E(1,x) = ) iIn(1, ). (I1.3.94)
n=0

Each function i, is a translation of a function of which the support is included in

2 1,—n° 2 2 _ 1, n sl
x1€[€/2, W] c[3e™", 3] Because the sequence -5 — 3¢~ " isin I*(N), we can

find a sequence of translations such that the projection of the support of L. on the

x) axis is bounded. Now, the width of the domain (the projection on the x, axis) is

-5
iti S S 1 —
bounded by a constant because it is bounded by , / TYCSIEE In ( TGen)” /2> ‘ 0as
n — o0. This means that . has a compact support. In virtue of lemma I.2.3, we hence

obtain

Theorem I1.3.1. L satisfies

HL|t=0||H)1€:/4 <o

aL|t:0
<0 3.
(e (11.3.95)
0
Vt>0, ||—(DL)(t,- =0
| (DL)(8)
Proof. It directly follows from the fact that ¢, — 0 as n — co. O

Remark I1.3.2. The function L. that we created to show the ill-posedness of the equation,
is also of compact support.
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Stability of the blow up with respect

to modifications of the equation or

the initial condition
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In this chapter, we study the stability of the instantaneous blow up phenomenon
exhibited in the previous chapter. Note that such a phenomenon has already been
exhibited for instance by Lindblad in [Lin98] in the case of the third dimension, but its
stability is yet to be studied. In the previous chapter, we created an initial condition
such that the following Cauchy problem is ill-posed.

Cu = DuD? u,
u (MQLW) (11.3.96)
U—0=0 =2 =%
[t=0

where D = 0., — 0;. More precisely, with —y = L defined in chapter II.3 as (I1.3.94),
there exists no time T > 0 and solution u such that

(u,0,u) = C° ([0, T[, H'W*~A(R?) x H"/*~*(R?)) for A > 0. Since our initial condition
belongs to H'V/*4(In H)~# x H'/*(InH)~# (where H*(In H) 7 is defined as in (1.2.12)),
and as stated in (ii) of lemma 1.2.1, we have H*(In H)_ﬁ < H* for any A > 0, this
reveals the sharpness of the index found in [ST05] by Tataru and Smith.

In this chapter, we are interested in modified versions of our model equation that
also lead to a blow up. In chapter III, we will look at a perturbation that modifies the
underlying ODE we find using the characteristic method. More precisely, we introduce
a right hand side of the form ¢ (0, — ;). This method would of course generalize
to any modification of (MQLW) such that the characteristics are the same, and the

underlying ODE satisfies some conditions.

Later, in chapter IV, we introduce a source term with a x, and Vu dependency. The
characteristic method does not longer apply, and we need more refined techniques
to show the instantaneous blow up. We are no longer able to give an explicit formula
for the solution, and we need to characterize the fact that the solution still behaves
in a pathological way, that shares similarities with the singularity that we observed
for the unperturbed equation. The proof is more tedious, but is more interesting in
several ways. First, we see how we can show the blow up using a characteristic method
without an explicit formula for the characteristics nor the value of the function. Also,
because of the x, dependency introduced in the f function, we need to show the blow
up of the function u(t, x1, x,) also depending on x,. Hence, this paves the way for
further generalizations. Lastly, having more control on the way the function blows up
as x, varies would allow us to replace f by other operators using a frequency cutoff on

X2.
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A first modification of the equation

that leads to an instantaneous blow

up

In this chapter, we consider an other Cauchy problem. We will show that this Cauchy

problem also leads to a blow up at time ¢t = 0". The common point between this

example and the previous one is the behaviour of the characteristic curves. However,

this time the characteristics seen as a function of ¢ for a fixed initial starting point

(0, x1, x2) will not be an affine function.

III.1 Definition of the new problem and preliminary re-

sults

We consider the Cauchy problem

) 1+v Y A
<0t+ 6x1>(8t—0x1)u=c(0t—

1—v
au|t:0

ot

==X Ur=0= 0.

With v = (0y, — 0r) u # 1.

We define y. as

(II1.1.1)

(II1.1.2)
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blow up

Where . : R™ — R™ satisfies the following conditions.

-

We(s)=0, Vs< g,

ve(s)=1, Vs>¢,

) 1.1.3
ve(s)€[0,1], VseR™, ( :

, VseR™.

(LIS

LZRE

From now on, we will not always write explicitly the dependency of all functions with
respect to . We consider y to be the extension of y to R? (without explicit relabelling)
as it has been done in theorem 1.3.1. Of course, the computations for y done in chapter
I hold in our case as it is the same initial condition, and as the computations did not

depend on the equation. We only do the part II again.

Now, if we set the condition

1+v
</>t:1

and ¢(0, x) = x, (IM1.1.4)

Using the chain rule and (I1I.1.1), we obtain

Orlv(t,p(t,x))] =cv(t,¢(t,x)). (I11.1.5)

And hence,

v(t,p(t,x)) = e v(0,x) = ey (x). (I11.1.6)

Note that for ¢ = 0, we obtain (I1.2.10). This result combined with (III.1.4) leads to the
following equation for ¢, the characteristic function.

1+ey(x)

Tt)((x)' (II1.1.7)

(9[(/)(t, X) =

Integrating (II1.1.7) with respect to ¢ leads to the following explicit formula for ¢.
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III.1. Definition of the new problem and preliminary results

ct

t 1 cs e 1 d
s=0 l—e X<x> u=1 1—- uX('x) cu

et _
:x+f [i+zx—m}du:x+t+gln(l—m>. (IIL.1.8)

u=1Lcu  c(1-uy(x)) ¢ \1-ey(x)

Remark III.1.1. For comparison sake, note that in the previous case, we could also

write ¢ as
1 (x)
O(t,x)=x+1t+2t . (I1.1.9)
0 e
Also, taking the limit c — 0, we have that
2 1- 2 1
x+t+zln(T{<x()x>)=x+t+Eln ct)((x)
X 1—1_X(x)+o(c)

cry(x)
1—x(x)

2
=X+ t+—ln(1+ +o(c)) =x+ t—i—2t1 +o(c). (IL.1.10)
Cc

Hence, we obtain the previous expression of ¢, given by (I11.1.9).

Now, we will state the main theorem of this chapter.

Theorem II1.1.2. There exists an initial condition, such that the solution u of the

corresponding Cauchy problem (I11.1.1) satisfies

u,_o€ HY4(In H) =P (R?),
=0 (InH)™*(®) (IL1.11)
u(t,") ¢ HV*(InH)"A(R?), vVt >o0.
We will proceed in a similar way as in chapter I We define y.(y) = — {7_ v (s)|In(s)|%ds
and the corresponding regularized problem
1+v
(0 + 70 ) (=) u=c (@ =)
(IM1.1.12)
au|[=0 _
at :_Xf’u|l'=0:0'

First, we prove the following lemma.
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Lemma II1.1.3. There exists t, > 0 such that for any t < t., and for any y € Qy,
¢y(t,y) # 0, and there exists v¢ such that ¢ (te,ve) = 0. Furthermore, t; — 0 ase — 0.

And we will also show the following preliminary results.

LemmaIIl.1.4.

_ 2y (e _2eM[Y" () (1 —e“x(y) +21 ()%e']
Pl D)= ey Pty (1-ex(y))?

2 (=Y (y)
Py =1 N ea )

C2(e 1) [T+ et —2e y ()] X (y) + (1= x(¥) A —e“x(y)x" ()
) == (1= 2 P-ety)

(II1.1.13)
Yy Ve <te, x(y)<0, x'(¥) <0, ¢y(t,y)>0 (L114)

Vy=e Vi<t X"(¥) >0, ¢yy(t,y)>0, Pryy(t,y)>

(py(tg,Vg) = O, (,byy(tg,’Vg) = O, (ptyy(tg,Vg) # O, (,byyy(tg,/\/g> ;é O. (III.]..].S)

Proof. The expressions of ¢y, ¢y, ¢y, are obtained by differentiation of (III.1.4)
with respect to t, y and ry. The expression of ¢, is obtained by differentiation of
(ITI.1.8).

Now, using this expression for ¢, we obtain

a ,ct
boy(t,6) = L)'ez <1/5/In(e)[°, (I1L.1.16)
(1—x2(e)
because
£
lx(e)] < f [In(e/2)|* < 1/10, (II1.1.17)
s=¢/2

for € small enough, which leads to (II1.1.16). Also, this means that for ¢ < 1, and for ¢
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small enough,

(1—x(y))>4/5, (1—e“x(y)) >4/5. (I11.1.18)

Now, we show the existence of . as in Lemma III.1.3.

1
by(t,€)|y=0=1, dry(te) < —g|1n(£)|“. (I11.1.19)

Now that means that there exists 7, < SW such that ¢ (%, €) =0.

Hence, the set {t < 1|3y ¢,(t,y) # 0} is not empty. By continuity, consider ¢, its
minimum, and call v, the corresponding y. Then we have

t5<5w, Gy(te,ve) =0, VE<tey(t,y)>0. (I11.1.20)

Now, we show (I11.1.14).

= ’ wel9lin(s)ds <0. () = —pely) I 0. L2

S=

by(6,¥)1=0=1>0, ¢y(t,y) #0 when t <1, = ¢py(t,y) >0 when t < f.

(I11.1.22)
Vy=e, ¥ (y)=— [_Ta(—ln(y))“_ll > 0. (111.1.23)
Wy>e, ¢yy(ty) >0, (I11.1.24)

Indeed, we plug in (II1.1.23) in the expression of ¢y, given by (III.1.13), as well as
(IIL.1.18), and we obtain the result. We do the same for ¢;, and obtain ¢, > 0.

Lastly, we prove (I1I.1.15).

By definition of (f,v,), it is clear that ¢, (f,Vv¢) = 0. Now, if there exists y, such
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that ¢, (f, y¢) <0, by continuity we would have the existence of ¢, and y, such that
¢y(t., y.) = 0 which would contradict the definition of .. Hence, ¢ (Z, v, ) is a maxi-
mum of ¢,, (for a fixed ¢) and we have ¢, (,Vv¢) = 0.

Now, we consider a root V¢ of ¢, (f, ). we have that

- 3 —2x' (Ve)?ette
7
Gryy(te,Ve) =0=x" (V) = ety )" (IIL.1.25)
Plugging (II.1.25) in the expression of ¢, given by (II.1.13), we obtain
2 ectg -1 2 12 v
Pyy(te,Ve) = — ( ) L) (I11.1.26)

¢ (I=x(¥e))?(1—ehey(Ve))

Using (I11.1.18) again, we obtain ¢, (,V¢) # 0. Then, using ¢, = 0= ¢, # 0, we
obtain by contraposite ¢, = 0= ¢y, # 0.

Now, because for y > ¢, ¢y, > 0, it means that v, < &. We can choose ¥, such that
Oyyy(te,ve) # 0.

O

Remark I11.1.5. Note that these are the key ingredients that were needed to show theo-
rem I1.2.1. We should also in theory show an equivalent of proposition 1.4.1, but this
proof is tedious and also works because ' — 1 ~,_,q ct, which means t. decreases 100
at the same speed as in prop. 1.4.1. The rest is unchanged because y has been chosen to

be the same.

Lastly, our last preliminary work will be to prove the following estimates, that will hold
when y — v, is small enough, and ¢ is close enough to ¢,.

HCgl,C? >0, _Cel<y_"£)2 <¢y(t€»Y) < C?(J’_Vs)z
3Ci,C2>0, Ci(y—ve)® +Cilte— 1) < ¢y (t,y) < CZ(y—ve)* + C(te — 1)
ElC;,CS >0, C;(Ve_Y) <¢yy(te»y) < CS(VE_J’)

(II1.1.27)

This results are quickly obtained using Taylor expansions and (II1.1.14). Now, we do
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II1.2. Proof of the blowup as r — ¢,

not have a lower bound for ¢y, In that situation, we do not have an equivalent of the

property ¢, (t,y) = t—i(pyy(tg, ), because the expression of ¢, is different.

On the right interval, we have that

Ce(ve—y) = Cp(te— 1) <¢yy(ty) < Ce(ve—y) = Ci(te— 1), (IIL.1.28)

this will provide an upper bound for the norm but no lower bound, since the sign of
the two expressions are different.

III.2 Proof of the blowup as r — ¢,
Our next goal is to prove theorem II1.1.2.
We will proceed by using a cutoff around the x corresponding to v, i.e. x = ¢( 1, ve).

First, we start by defining k., as well as the cutoff functions.

Definition IT1.2.1. Lety!:R— R bea C* function satisfying

wi(x) =1 forp(te,ve) — 6 < x < P(te,ve) + O
Wi(x) =0 for p(te,ve) +28¢ < x or x < P(te,ve) — 20, (I11.2.29)

0 <wl(x) <1 elsewhere,

andw? :R— R be a C* function satisfying

y2(x)=1for —6. < x <6,
w2 (x) =0 for26. < x or x < —25, (II1.2.30)

0 < w2(x) <1 elsewhere,

so that hg : (x1,x2) — ve(t,x1, %)Wl (x1)w2(x2) is localized in a square of width 45,
cut in half by x; = ¢(t¢,v,); and such that h, = v, in a square of width 25, cut in half
by x1 =v;e.

Also, we now define I (t), the integral that will diverge at t = t,, thus proving the blow
up of [|ue(2,-)| |H11/4([Rg2)-
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(p(tsvv£)+26£ 265 62 v 1 2
1(6) = el o = | | <M> (tx1,32).

2
x] x1=¢(te,ve) =26, Jxo=—26 axl

lf(/)(tg,w)uég " _y|_1/2+2/1 <52(V1V};1!/§)

5 > (t,y, xg)dy] dx>dx;. (111.2.31)
y=¢(te,ve) —20¢ axl

We compute the involved derivatives of v.

v(6,¢(t,y) = x(y)e”

_ Yy
ve(6,9(1,y)) = ¢ (0,7) (I11.2.32)
TPy (6y) =X (¥)byy(,y))
Uxx(t’(p(t’.)/))_ (¢y(t,y))3
We have the following estimation
he (1,21, X2) =Yg (x1) W2 (x2) ve (1, %),
Ohe /
S (1x1,32) = Y2 (e2) (W () (1, 0) + 9 (o) ves(1, ), |
0%he

o (600, 32)92 () [wh () ve(t 1) + 20 (51 e (£,30) + WE (1) a3 |,

Ux,

2
=3C),C >0, Cry2(x2)vexx(t,X1) < (nTE(t’ x1,X2) < Cowz(X2) Ve, xx (£, x1) (i)
0%
=3C; >0, (QTg(t,xl,xg) < ‘wi(xg)vgyxx(t,xl) , (i)
7%

(II1.2.33)

. O¢
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II1.2. Proof of the blowup as r — ¢,

P (te,ve)+20, 82 v 1
w):KEJ ( (%))(r,xl,xz)-

2
x1=¢(teyvs)_26s axl

W(1e,Vve)+20, 2 1
lj |x) — y|_1/2+2’l (M) (t,y, xg)dy} dx,dx;. (111.2.34)
y=¢(te,ve) —20¢ axl

We now split the domain of the first integral into three, corresponding to the three

following integration domains.

P (te,ve)—0O¢ 62 1
L=k | 5 ( (”‘”f)) (t,x)
20¢

x1=¢(te,ve)— ax%

eve 256‘ 2
-J(I)(l Ve)+ ™ _y|_1/2+2/1 (
Y=¢(1e,ve)—20¢

O(te,ve)+0s 02y
+K5J (—2) (t,xl)
x1=¢(t8vvs)_6£ axl

(,b(tervs)+255 L2422 82
J |361—J/|_/Jr <6 2)(t y)dydx
y=¢(te,ve)—26, X7

([)(tE,Vg)+265 2 1
—I—KEJ (6 (Vlng)) (t,xl)

x1:¢(t£>vs)+6£ axl

G (te,ve)+20,

J |x1—y\1/2+“< G 1f))(t,y)dydxl.

_ 0
y=¢(te,ve)—26, Xy

(vyy)
0% )(t,y)dydxl

(II1.2.35)

The first difference with the previous argument is that the expressions of ¢, ¢, and
¢y are not the same since they depend on the value of v, which itself depends on the
underlying ODE. The second difference, is that the value of v is not the same because
of the underlying ODE, which will have an impact on the computations when we will

show the blow up. Fortunately, it does not make a big difference in the computations.

In the following computations, we use the function {%(¢) that will be defined in the
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coming lemma.

Ig<t)=KgJ

+K |
+K. |

= Ke(I (1) + I (1) + 12 (1))

Pe,y (1, 1) (

(vl
ealton) () (e

82 1
)|¢£(t’y1) _(/)s(try2)|_1/2+u¢£,y<t,y2> ( g;‘éfg)) (6,¢e(t, y2))dydx,
1
52(”))
(t,e(t,11))
0x? !
2
e =l %, (100 (S8 (aute vy
1
2 1
ealton) () (o)
1
62 1
( )|¢8(I’YI) — Pe(t,2)| 7 VH P e (1, 2) ( g;jg)) (6,¢e(1, y2))dydx,
1
(T11.2.36)

Again, we will show that | ()| >> |I;(t)| + |I3(¢)| and L(t) — +0 as t — . We will
use all the following results without proving it, as it is very similar to what we obtained
in (I1.2.24) and (I1.2.25) in the previous chapter.

Lemma II1.2.2. On an interval centered at (t¢,v.), we have the following.

If we define

82

(;(t) = (pt_l((l)(te»ve) - 255),
200 -1 B
cg(t) = (pt_l((p(teyve) 66‘)’ (11.2.37)
Co(t) =, (e, ve) +Oe),
(é(t) = (pt_l((p(te’ve) + 255),



II1.2. Proof of the blowup as r — ¢,

we can choose 6, and t} such that for t €]t}, t.[, we have

Ve—1e < (o (1) <C3(t) <ve <3(8) < C2(t) < Ve +1e. (I11.2.38)

There exists §+ and ( 2* such that for 6. small enough, and t close enough to t.,

Ve—Me <) < () <P <ve < <83(t) <l3(t) <ve+ne.  (I11.2.39)

Let us first do the work for I;(¢). The case of I5(t) is similar.

Using the estimation given by (II1.2.33) and the expression of v, given by (II1.2.32), as
well as (II1.2.38), we obtain

2
|1I:(1)| < ffﬁ A'(x1) X (x)@yy(tx) Jvﬁng M2 et
€ X1=Ve—T1¢ (/)y(t,)ﬂ) (/)y(t,xl)z P € |d)(t’x1)_(p(t’y)|1/2—2/l
" / [,
‘[ x(y)__xCW¢m42yW (111.2.40)
(py(t,y) (/)y(t,y>
We study the inner integral of (I1.2.26) for x € [ve—n¢,{>1]. Now, both 1

[ (t20) =p(t,y)] />34
and v ,,(t,y) are unbounded in the second integral, but the regions where they are

unbounded are uniformly disjoint in ¢ because of (I1.2.25), so we split again the
domain, and use e’ < M,.

J‘VSJFTI.S eth ( ) (§+ 1
1% » t’y < * M J
ymvemne |0(8,x10) — gt ) /22A T EE TS (e, x0) — g, y) 1228

oyt venstplt ) M [ !
+MEJ Gy(L,Y) Ve xx(E,P(L,y +M6f
e 1P o olnm) gy

< M [(i)+ (ii)+ (iii)] (1IL2.41)

€

In (1), we used (I11.2.32), (I11.1.27) and (II1.1.28) and the fact that v, — y| = C, on the
set [ve — 1, (5T].
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Now we give a majoration for (i) in (II1.2.41). The case (iii) is trivial.

Now, using the mean value theorem as well as (I11.1.27), and ¢ — v,| = |{ 2t _ve|, we
obtain

o 1 1 e 1
‘(i)|<M£ 1/2—22 1/2 2/1<M£ 1/2 2/1<
y=ve—ne |01 — Y|V22 ¢ (1, ¢) /2~ y=ve—ne [%1 = y|1/3~
(II1.2.42)

M,.

Now, we study (ii) using the expression of v y, given by (II1.2.32), and the results
obtained in the preliminary work. We need to compute the estimates for the two
terms separately.

Using the expressions from (I11.2.32) and (I11.2.41) as well as the inequalities obtained
in (IT1.1.27) and (II1.1.28), we obtain

G 1 o t,
1(i7)| <MEJ T3 +M£J 2 %y (L)) y)3| <
y:(£+ |(;by(t’J’)| y:(£+ “Py(t»y)’
a 1 a —Ve|+ (te—t
M, > +Mgf y—ve| + (e~ 1) 5 (111.2.43)
y=2t ([y=vel* + (te — 1)) y=2 (|y—vel2 + (e — 1))
Now, because we have the following primitives
1 arctan (\%) X 1
f _ , J - , (I11.2.44)
(x> +a) Va (x> +a)? 2(x*>+a)
We obtain that
. 1
(1) + (ii) + (iii)| < C¢ (I11.2.45)
(te — 1)
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II1.2. Proof of the blowup as r — ¢,

Finally, we have the following upper bound for 1} (¢), using |x; — v,| > C,

C. (% 1 |y (£,21)] C
IHNp)| < —= J l LY ]< £ . (I11.2.46)
AR P NS | oy TR P ey 1 Ay
By symmetry, we also have I2 () < (tfj 5-
Now, we exhibit a lower bound for I2(z).
We can write from (I11.2.32) and (I11.2.33),
J( J'Vs+77£ 1
£, X1)Vyx(t, X L,y)vxx(1,
et dymven, () — gl ez P A Pl 2B 6 V)6
f J o ! ') X)) X'a) X dyy(ny)
=0 Jy=vene |[(,x1) = (8, y) V2722 | dy(6,x1) y(t,y)  dy(t,x1)  dy(t,y)?
i ’ t, ’ t,x) t,
X (y) x'(x1)Pyy( 2x1)+7((x1>¢yy( le)X(J’)¢yy<zJ/) — (i) +(if)+(iiD)+(iv)
(/’y(t’J/) (:by(t’xl) ‘Py(trxl) (/’y(t’J/)
(I11.2.47)

We will show that (iv) >> |(i)| + |(ii)| + |(iii)| as ¢ — .

We will have to do additional steps in comparison with chapter II. Indeed, from I11.1.27
and doing a method similar to what we did with ¢, we can not infer any lower bound
for the norm of ¢,,,,.

First, we perform a Taylor expansion of ¢, as a function of R? near (te,Ve).
Gyy(t,y) = CHy—ve) + Co(te— 1)+ (y—ve)* fit,y) + (y—ve) (e — 1) fo(1, )
+(te—t)* fa(t,y) = CHy —ve) + C3(t. — 1) + g(t,y), (111.2.48)

where fi, f>, f5 € L*(w), for some open set w containing (z, v, ) and depending only
one.
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First, we look at (iv). Again, because of (y — v, ) antisymmetric properties but the
fact that

T 1) 3] will concentrate the weight near x; = y, we have to split the
A1) ’

domain into four parts, using the same idea as in chapter II.

, B={(x1,y)€ [V&CE_] X [Ve —Me,Vel}
1)

={(x1,y)€ [Va(i_] X [Ve, Ve +1el}
(II1.2.49)

a={(x1,y)e [Cg—i_"’a*] X [Ve —Ne,Vel}
Y ={(x1,y) € [{Z",ve] X [Ve,ve + 1]}

y="e
y=x1
Y,i <0 6,i =0
X1 ="V
a,i>=( B,i<0

Figure III.1 — Definition of , 8, y and 6

And we have

(iv) :JLi(xl,y)+JLi(x1,y)+JLi(x1,y)+JLi(x1,y). (II1.2.50)

We first consider the first two terms of ¢, in (II1.2.48) only, and look at the contri-
bution of g later on. Call i(x;, y) the corresponding integrand. This also defines the
corresponding integrals (iv); and (iv),.

We will regroup the integral corresponding to 6 and . The symmetric case (y and «)
is identical. First, we remark that by (II1.2.48), we have the two following inequalities
(following a change of variables)
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1

i(x1,y) = C
JLuﬁ bu.) JLU;; \qb(t,v£+x1)_¢(t,vg+y)‘1/2—u
X1 y

()2 + (1 —1)" (y2 + (1 —1))*

2C, (te—1)x1
+JLUI3 (1, ve + x1) — P8, ve + y) V2722 (13 + (1 — 1))2 (2 + (te — 1))?

2C; (te—1t)y
+”6uﬁ (£, ve + x1) = P(1,ve + ) [V272A (xf + (8 — 1)) 2 (12 + (L — 1))

+” 2 (t—1)°
50p | (Ve +x1) — P(t,ve + y) V2722 (x2 + (1 — 1)) 2(y2 + (1. — 1))?
(I11.2.51)
and
7 1
JLuﬁl(Xl,Y) < CSJLU[; |p(t,ve + x1) —(/)(t,vg—f—y)|1/2—2/1

. ) Y
((x1)2+ (te— 1))* (¥ + (e — 1))

N f f 2C} (t.— )%,
50 DL ve +51) — D1 ve + )22 (4 (e~ 0)2(F+ (1 — 1))

+JJ 2C; (te—1)y
sup [D(1, Ve +x1) = (1, ve + )| /2722 (xF + (e — 1))2(y* + (e — 1))?
+JJ 2C! (te —1)?
6up [D(1, Ve +x1) = (1, Ve + )| V/272A (xf + (e — 1)) 2 (¥* + (e — 1))*
(II1.2.52)

Hence, we will considerate separately the first term involved in (I11.2.51) and (I11.2.52),
and the three others terms. The aforementioned term will give a lower bound and will
be the term of the highest order. The three other terms will be of a smaller order. We
first proceed with a upper bound of the three last terms.

Using [¢(z, ¢(x, y))| = Ce(te — 1),
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” 2C; (e — 1)]x1]
sup |¢( tve+x1) P(1,ve + )24 (xF + (te — 1))2(y2 + (1 — 1))?

JJ Ce(te—1t) 1 | x| 1
pup (1= )12 [x— y 22 (2 4 (16— )2 (7 + (1~ 1))?

Somar i (] | W)m ([ wrtam) :
o 13
| (L (¥*+ (;g_ ,:))6)

(tg _ t)l/zfz/l
<G <Ce
(tg _ l->4/3+ll/6 (tg _ l—>8/3721

(I11.2.53)

We will show later on that our first term is greater than C, /(. — £)'/4=C*, Note that
our margin is only (z, — t)l/ 12 For the second cross term, one can replace x by y in
(II1.2.53). Now we do the last term of (III.2.51) and (II.2.52).

ff 2C, (te —1)?
pus [p(t,ve +x1) = (8, ve + )| V224 (] + (e — 1))*(y* + (te — 1))?

JJ 2C; tg—t) 1 1 1
pus (te— 012728 [x— y[V2=24 (2 4 (1= 1) (42 + (1~ 1))2

ﬁu5|x—y|3/4‘3" o (¥4 (t—1))°

(o)

(tg _ t)3/2+2/1 1
e () Cer 13/6—27
(t.—1) (t.—1)

<Ce

(I11.2.54)

Remark I11.2.3. Note that for estimates such as (1), we explicitly compute the anti-
derivative. We do not write it because it is long and not so relevant. For instance, a

. 1 .
primitive Of(x2+a)6 is
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II1.2. Proof of the blowup as r — ¢,

X
63arctan (75) . 315x% 4+ 1470ax” + 2688a*x° 4 2370a° x> + 965a* x
25642 1280a5x1° + 640048 x8 + 128004 x® + 1280048 x* + 6400a°x2 + 128040’

and we use

—

JCE—% 1 <JOO 1 _ 637
0 (P4 (te=1))° " Jo (P+(L—1)° s512(,— )%

For the integrals that can not be computed explicitly, we proceed with a change of
X

V (te—1)’

variable x =

Now we deal with the first term of (II11.2.51) and (II1.2.52). We hence consider the term

J= JJ 1 Yx)x ¥y
sup |t x1) — p(1,y) V2722 dy (1, x1) ¢y (1, y)?

:JKE JKE X Vet y) y-X (vet+x1) x1
0=0Jy=0 | [p(t,ve +x1) = p(1,ve + ¥)| V222 (1, Ve + x1)2¢y (1, Ve + y)?
X (Ve—y)y- X (Vve+x1) 51

— (II1.2.55)
9(6,ve + 1)~ p(,ve— 3) V22 (6ve — )20y (1,76 +x1)2

From now on, the computations will be identical to a part that have been done for (iv)
in the previous chapter. We have included it in order to show that the computations
still hold.

We similarly decompose the integrand as follows.
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1 X (vetx)-x ¥'(vet+y)y
(1, ve+x1) — (8, ve + y) V2722 Py (6,ve +x1)% Py (6,ve +y)?
B 1 X (vetx)-x Y'(ve—y)-y
|p(8,ve +x1) = p(1,ve — y) V2724 Py (1,ve + x1)% ¢y (1,ve — y)?
1 X (vetx)-x Y'(vet+y)y

(1, Ve +x1) —P(1,ve + y)[ V272 y(t,ve + 1)2 Py (1,ve + )

1 X (vetx) x x'(vety):
|B(t,ve +x1) — P(t,ve — y) V2721 py (1, ve +x1)2 ¢y (1, vg+y

1 X (Vetxr)-x X' (ve+y)y
|p(1, Ve +x1) = p(1,ve — y)| V2722 Py (1,ve + x1)? Py (1, Ve + y)?

1 X (vetx)-x x vg+y
[p(2,ve+x1) — (1, ve — y)| V2722 by (£, ve +x1)* Py (t,ve —

1 X (Vetxr)-x X' (ve+y)-y
(2, ve +x1) — P(t,ve — y) V2724 py(£,ve + x1)% by (1, ve — y)?

1 X(etx) x ' (Vve—y)-y
(8, ve +x1) = p(t,ve — ) |[V2722 hy(8,ve +21)2 dy (8, ve — y)?

= D1+ Dy + D3. (II1.2.56)

To shorten a bit the notations, we will denote

ar =|Pe(t,ve+x1) —Pe(t,ve T ). (I11.2.57)

For D;, we write
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1 1
e (t,ve + x1) — pe(t,ve + ¥) V2724 e (t,ve + x1) — Pe(t,ve — y)| /224
47 4L
a_—ay al —a”
= + (II1.2.58)
1/2—24 1/2—2A ( 1/2+42A 1/242A 1/2421 1/2421
a/ a’ <a+ +a’ ) <a+ +a’ >

It is clear that D, is nonnegative when x; > y. We now provide a lower bound for
D1, x, <y- We will show that it is positive up to a smaller order term, and provide a lower

bound for the positive term. We hence now consider x; < y.

We wrrite,

a— =ty = |Pe(t,ve + x1) = Pe(t,ve — y)| = [Pe(t,ve + x1) — Pe (L, ve + y)

y
=2 (t,Ve+x1)—Pe (1, Ve+y)—Pe(t,ve—y) = J ()be,y(t’ve"‘s)_f ‘/’ay(t’vs‘H)

s=—y

X1

. fq Ge,y(t,ve+s) + fy (Pe,y(£,ve —§) — pey (£, Ve +5)).  (11.2.59)

S=—X1 S=X1

We will use this idea to provide a lower bound for D, .

1 1 JM 1 1 s
S
g/ gl 2 §3/2—21 s

S=a—
+

ay +S§1=7x1 Ge,y(L,ve+2)
_c f §—3/2+21

S=a 4+

a++.“§1=7x ¢E,y(th£+z)+SZ=X (ng,y(I,VE—Z)—(,DE,)/(Z',VE-FZ))
+Cf ! ! sT32Y2A () 1 (i),
N

=4 +S§1:—x1 Ge,y(t,vet+2)

(I11.2.60)

where (i) is nonnegative and (i) is small. First, we make the following upper bound
for [(ii)]. If S%l (¢e,y(t,ve —8) — e y(t,ve +5)) > 0, then (ii) is nonnegative. Oth-
erwise, we have a + Sflz_xl e,y (1, Ve +5) + Sz=x1 (e, y(t,ve—3) — ey (1, Ve +5)) <
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a;+ (!  Pe,y(1,ve + ). We then proceed as follows

S=—X

qu +S§1:7xl qbg,y(t,vg—i-z)—i-ﬁ:xl (qbg,y(t,vg—z)—(pg’y(t,v£+z)) 322
S
s

=“++Silx1 Ge,y(Lve+s)

Ja— _Si’:xl ((Pﬂ,y(tlvs_z) — e,y (t,Ve +Z))
N

§3/2+21

=a_

< L YA 26

fy (Pe,y(t,ve —2) — Pe,y(t,ve + 2))

Z=X1

From the Taylor expansion, we obtain for x, y small enough (only depending on ¢€),

y
J ((/bg,y(t,vg —5) — e y(t,ve + s))‘ <G (y4 —x‘f + (te — t)2 + (te — t)(y2 — xz)) .
o (I11.2.62)

This means that we obtain (up to a nonnegative contribution)

1
()| <C(y* +xf+ (e — 1) (T +¥7) + (2. — 1)%) - —ar (I11.2.63)
a

We now go on with the lower bound for (7). Using the expression of (i) provided by
(II1.2.60) as well as the mean value theorem, we obtain

§3/2+21

J‘XI (Pg,y(t, Vet Z)) ] 1

z=—x1 (‘Ps(’f’vs"‘w_(ps(t»vf_xl))g)/z_u.
1

Y+ X1 3/2—27L,(/,)E t,cy)3/2—20
'y

a++S;1:_x1 (Ps,y(t,Vg-i-Z)
-
S

=4

Y

(II1.2.64)

= Cxl(Pe,y([y Cl) :
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Now, since we have x; < y, we obtain from (I1.2.16)

Ge,y(t,c1)=C(t: — 1), (I11.2.65)

and

Be,y(t,02) <C((te — 1)+ 7). (I11.2.66)

Using (I11.2.65) and (I11.2.66) inside of (I11.2.64), we obtain

x1(te —1t)

)= C .
(@) (y4x1)3/2720 . (£, — 1) + y?)3/2-22

(II1.2.67)

Now, we obtain for D1,

D Dxl y+Dx1<y>Dxl

>CJJ x1(te — 1) X(vetx)-x1 Y (vety)y
- y (y+x)%2720 (2 —t)+y2)3/2—“ Pe,y (Ve +x1)? Pey(1,ve +y)?

J J X (vetx) i Y'(vety)y
-C .
x0=0Jy=x a3/ —2A4 (Pey(t Ve+x1) (Pg,y<t,V£+J/)

X (vetx)-x ¥ (vet+y)y
-C 3/2—2A 2
X1= y=x1 a/ (ng(t V5+X1) (Pg,y(t,‘/g_’_y)

_cJ J ) Y (vetx)-m ¥ (ety)y
x1=0Jy=x; 3/2 22 (Pey(t V£+x1) ¢s,y(t,ve+Y)2

_CJ f ) ¥ X vetxi) x Y (vety)y
x1=0Jy=x; 3/2 2h ey (8, Vs"‘xl) Ge,y(t,ve+y)?

_CJ' J tg—t X (vetx) x1 ¥ (vet+y)-y
x1=0Jy=x a3/2 2 (/’ey(t v£+x1) (p&y(t"’5+y)2

=A; —B;—By—B3—Bs— Bs. (Il1.2.68)

Note that the proof also works for A = 0. We will now show that A; — oo, and that /5,
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J3, J4, D2, D3, By, By, B3, B4 and Bs are of a smaller order. We first consider A;.

Using | e,y (£, ¢(x1,¥))| < M ((x1)? + (£ — t)), on y > x1, we have from (I1.2.68) and
the new change of variable (x,y) = (r — z,7 + z),

- Ke/2 (T (r—z)(t;— 1) r+z r—z
Al = CE B _ r3/2_2/1 2 7/2—21 2 2
r=0 Jz=0 ((r+2)%+(t:— 1)) (r—z)*+ (t.— 1))
Kel2 (te — 1) r
>Cgf — — J (r—z)2
—o rl/2—22 ((2r)2+(tg—t))u/2 22 ) o

e/ (te— 1) r¥22 Ce-(t:— 1)
> Ce 2 11/2—22 > 15/4—31
r=0 ((2r)*+(tz— 1)) (t=1)
Ce

Z et (I11.2.69)

We now proceed with By. The case of B is similar. We have since ¢, ,(t,x) > (f; — t),
with the mean value theorem

Ke/2
B <
[Bi] < [, — 3/2 ZAJ L 0 r3/2 2/1

r+z r—=z

(U+zf+(&—0f(@—zf+(&—ﬂf

\S]

< Ce Ke/2 T4 r 2z -
= _ £\3/2—21 | 1/2—2A (12 . 2| 2 B . (II1.2.70)
(tg t) r=0 I (r +(t£ t)) 2=0 ((r z) +(,¢€ t))

Now, because

(Il1.2.71)

© s C
L:o (24 (tz— 1)) Ste-0’

94



II1.2. Proof of the blowup as r — ¢,

(II1.2.70) yields

‘Bl| <

C. Ke/2 F7/2+2A C,
(II1.2.72)

e < '
(te—1)5/2720 )i (P24 (t,— 1)) (te—1)10/4-22

We now proceed with Bs. The case of By is similar. We have since ¢, ,(,x) > (tc — 1),

with the mean value theorem

PP S o S )
NS —pe2n )y |y 32
r+z r—z

((r+2)°+(t.— t))2 ((r—z)°+(t. — t))2

< G J e r° Jr i (II1.2.73)
T (te— )22 g 222 (24 (1 — 1) Jemo (r—2)2 4 (e — )2

Now, because

J B S < C (I11.2.74)
=0 (s2+ (t.— )2 (te—1) -
(II1.2.73) yields
_ CE KE/Z r3/2+21 _ CE
|Bs| < _A32—24 | (2 N2 S (4 _ £\3/2+3/4—3A
(e —1) =0 (r24+(te—1))*>  (t:—1)
Ce
(I11.2.75)

<———.
(tg _ l»)9/4—3/1

Lastly, we provide the upper bound for Bs. We have since ¢, (t, x) > (. — t), with the

mean value theorem
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Ke/2 0T (1, — 1)
|B5‘\ 3/2 ZAJ J I r3/2 2/1
r+z r—2z
((r+2)°+(t— t))2 ((r—2)*+ (t: — t))2
Ke/2 r B
<Cg-(t£—t)1/2+27‘J 1 zf r—z 5
r=0 P22 (124 (6= 1))" Jemo (r = 2)2 + (1 — 1))
(I11.2.76)
Now, because
foo - < (111.2.77)
o (4 (te—1)F (1)’ 2
and
o0 3—1/2+2/1 C
J 5 < , (I11.2.78)
(II1.2.76) yields
C Ke/2  p—1/2421 C
|Bs| < J J 5 < £
(te—0)12722 Jico (124 (te—1))*  (te—1)1/2H7/4732
< Ce (I11.2.79)
This concludes the proof for the first difference term D,. Overall, we obtain
Ce
D> ————— (I11.2.80)

(tg _ t)11/4—3/1
Now, we study Dy and Ds.

For D», we first study the term
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1 1
‘/’y(tv"e"‘J’)z - (/’y(t"’s_y)z
_ (by(t,ve+y)+Py(t,ve—y)) - (dy(t,ve—y) = Py(t,ve +¥))
Gy(t,ve+y)2Py(t,ve—y)? '

(I1I1.2.81)

ATaylor expansion of ¢, gives that ¢, (£, ve—y)—py (1, ve+y) = fi(t,y) Y+ fo(t, y) (te—
t)? where fi and f, are bounded. Because ¢y = 0, we have that

1 B 1 Ay Y+ R y) (1)
Oy(t,ve+y)?  y(t,ve—p)2  Gy(t,ve+y)py(t,ve—y)?
A0+ h(Ly) (e —1)
Gy(t,ve+y)2Py(t,ve—y)

(I11.2.82)

The two involved terms are similar. We consider only the first one. We obtain

Ke/2
|D2|\ f, — 1/2 2Af J 0Z1/2 21

(r+z)(r—2z)*

. 5 5. (1I1.2.83)
(r+2)?+(te—1)"-((r—2+(te = 1)) - (2= 1)+ (t: — 1))
Again, we split the domain of z in two parts.
Ke/2
|D2|\ f, — 1/2 Zﬁf J 0Z1/2 21
(r+z)(r—z)4
((r+2)2+ (1 — 1))* (( +(t.— 1)) ((= —r)2+(te—t))2
Ke/2
(t;— 1) 1/2 ZAJ JZ r/2Z1/2 21
4
(rt2)(r=z) (I11.2.84)

(r+2)2+ (6 — 1) ((r—2)? +(te—t))'((z—r)2+(ts—f))z'
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For the first term, we obtain

Cg JKE/Z r5 J‘T’/Z 1
(te— V2722 )i (124 (£, —1))° J oo 21/2-22
C, JKE/Z F11/2-22 C.

< < , (I11.2.85
(tzs_t)l/zimL r=0 (r2+(t€_t))5 (te_t)g/zligﬂL ( )
and for the second term
C{;‘ JKE/Z 1 r JT/Z S4
(te — 0)V2724 Jimg 12722 (p2 4 (1, — 1))* Js=0 (82 + (£ — 1))°
Ce
(I11.2.86)

<——.
(te—1)%/4

Overall, we obtain that |D,| < G Lastly, for D3, we have to study the term

Ce
Eit)9/4 °

¥ (ve —y) — ¥’ (ve + y). We obtain

X (ve—y) =¥ (ve +y)| < Ce- |y (I11.2.87)

With similar computations, the additional y leads to a gain of order (z, — t)l/ 2,

Overall, we obtain that

Ce

(iv)=>

The last tasks now are to show that (i), (ii) and (iii) are smaller than (iv);, and lastly
that the contribution of g, i.e. (iv); is of a smaller order in (. — ¢)~!. We make the
same change of variable again, so now we have (x,y) € [(*~ — v, 3" —v¢]? = 1. For
(i), we have
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. X' (ve+x)x"(ve +y)
@]= U J D6 ve t 1) — @1, ve + )22 <¢y<t,w+x>¢y<we+w>‘

1 1 1
<C€J J (t —1)/2 2 x yWHA (4 (1= 1)) (7 + (1 = 1)

e = 1/2 21 <J J o y|3/4 3%)2/3 U <2+<;g—r>>3)1/3

0 1/3 C,
(Jo (v +(fe*f)) ) s (e —t)1/2+5/6+5/6 21 (tg_l«)l?)/ﬁ—z/l'

(I11.2.89)

For (ii), we obtain using the triangular inequality on (III.1.28) for the term involving

¢yY’

|(ii)|—UJ ! X (Ve + X)X (VEJFJ’)‘/’yy(f»VEJFJ’)’
00 1 1) Bve i IET Gy (vt X)9,(1,ve 4 9P
(e —1)

<C JJ 1 1 ¥+
s — )1/2=20 5 _ y[1/2-21 (52 _ 2 2
e — 1) |x =yl (24 (L= 1) (y2 + (e — 1))

2/3 1 1/3
SHolder 717521 (e — 1/2 21 (JJV y|3/4 31) <J0 (x2+(tg—t))3)

. f (y+(te—1)*\"° < Ce Ce (I11.2.90)
0 (y +( . — ))6 (tg_t>1/2+5/6+4/3721 (tg_t)g/\%fz/l' o

The case of (iii) is identical.

Now, using the expression of g provided by (I11.2.48), we obtain

18(6,1)| <Ce(ly—vel*+(te— 1) |y —ve| + (£ — 1)%). (I11.2.91)

Hence, from (I11.2.91) we get

1g(t,x)g(t,y)| < > Cely—velM1|x — B (e — )tk (111.2.92)
k1 +ko=2,ks+ky=2
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Hence, for the second part of (i v), we obtain with the same change of variable

y=te 1 g(,x)g(t,y)x' (¥ (y)
=0 \qb (2, x) — (1, y)!”“* Py(t,x)%Py(1,y)?

l. o t ko+ky ki 4,k3

S Z 1/2 21 JJ 1/2 2/1 2 CExz yz 2"
ki +ko—2 ks kg2 (T = 1) [x—yl (2% + (te = 1))?(y* + (te — 1))
(I11.2.93)
Now, using the same techniques again, (I11.2.93) gives
Z l. _ t ko+ky JJ ngkl ykg
1/2 21 x— y|1/2 24 (x2+ (1, — 1))2(y2 + (1 — 1))2

k1+ky=2,k3+ks=

(l' - l' ko +ky /3
<Ce Z ( 1/2 22 fj\x y!3/4 31

k1+ky=2,k3+ks=
UOO K )1/3 (J y*e )1/3 (I11.2.94)
x=0 (X2 +(t — 1)) y=0 (Y2 +(t—1))? o

Note that x’ < C;x/ when i < j.

Now, we distinguish three cases.

If ky + k4 > 2, then we obtain from (I11.2.94)

/3
. 1.54+21 1 ’
1(iv)2] < Ce(te — t) (”m

' (f:o (x4 (;g — t))3> ; (LO:O G2+ (ig ~ t))3> " < (&_CW. (I11.2.95)
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Now, if k, + k4 = 1, then either k; > 1 or k3 > 1. Then, (I11.2.94) gives

/3
. 0.5+214 1 ?
(i< catre= 0o ([ [ ——s

| (ino (x% + ()i - t))3) ) (L: (2 + (;5 —~ t))3) : < ﬁ

Lastly, if ko + k4 = 0, then k; = k3 =2 and

2/3
. —0.5+21
‘(1U>2’<C£([g <Jj|x y|3/4 3/1)

| (Lio (x2 + (Ji— t))s) ) <Lzo (2 + (J;g — t))3> ; < ﬁ

Now, we finally have from (I11.2.88), (I11.2.95), (I11.2.96) and (I11.2.97),

. . . Ce
v)=z(v)—|(iv)| =z —7-
( ) ( )1 ‘( )2’ (t57t)11/4
And thus the corresponding lower bound for I2(¢)
C
() = (iv); —|(iv)s] = ————r.
( ) ( )1 ‘( ) ’ ([E—[)11/4

(I11.2.96)

(I1I1.2.97)

(I11.2.98)

(I11.2.99)

We can later use a scaling and summing argument similar to the one we use in chapter

I1.3. Doing so, we obtain an initial condition such that the solution instantly blows up

att=0+.
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I\Y4 Introducing a source term with a x,
dependency

In this chapter, we discuss the stability of the blow up with respect to the addition of a
source term in the equation. This case is a study of the stability with respect to the
equation, but can also be seen as a next step toward the stability of the phenomenon
by perturbations depending on x, as well. Indeed, using spectral cutoffs of u with
respect to its second space variable, it may be possible that we can reduce the general
stability to this case, for a fixed range of frequencies. This case is more tedious as we
no longer have an explicit resolution, but it also deeper as we show that the function
has to behave in a pathological way. We will also see that we can, in some sense, show
that the solution will locally share similarities with the function that we previously

computed for the problem without the x, dependency.

IV.1 Definition of the new problem and preliminary re-

sults
We now consider the following modified Cauchy problem.
Oy, u(t, x1,%2) = DuD?u+ f(t,x1,x2,Du)

ou (IV.1.1)
— =—%, U;—o=0.
Ot |t=0 X M=o

Remark IV.1.1. Here, we study the case where f depends on Du but not on u because it
is the most difficult case. The case where f both depends on u and Du is really similar

and does not bring more difficulties.
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Chapter IV. Introducing a source term with a x, dependency

We also define

x(y)=— fy we(s)|In(s)|%ds. (IV.1.2)

s=0

Where ¥, : RT — R satisfies the following conditions.

-

We(s) =0, Vs< g

we(s)=1, Vs>g,

3 IV.1.3
ye(s)e[0,1], VseR™, ( :

, VseR™.

(LIS

LZRE

We consider y to be the extension of y to R? (without explicit relabelling) as it has

been done in theorem 1.3.1. Lastly, we also assume

a

Va,1C, |——
@ ox%

f’ <C. (IV.1.4)

Of course, the computations done in chapter I hold in our case at it is the same initial
condition, and as the computations did not depend on the equation. We only do the

part I again because it is the only part that depends on the equation.

Now, rewriting (IV.1.1), we obtain with v = Du # 1,

1+v f(t,x1,x2,0)

<8t+ 8x1> v= = g(t,x1,%2, V).

1-— 1—v
ou o ) iy (IV.1.5)
(3t|t:0_ A He=0="

where g also satisfies (IV.1.4) as v < 0. We call C, the involved constant.

We now state the main theorem of the chapter.

Theorem IV.1.2. Let u, be the solution of problem (IV.1.1). There exists a time t. such
that

1:(0, <0
{H e(0, )| gp11/a 1 1y -8 (IV.1.6)

||u€(t")‘|H“/4(lnH)_ﬁ) — 00 ast— 1.
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IV.1. Definition of the new problem and preliminary results

Also, we have that

te—0 ase—0. (Iv.1.7)

We now do some preliminary work, later we will prove a technical lemma, and then
we will be able to make the proof of the theorem.

Preliminary work

First, we define ¢ as

$(0,x1,x2) = x1
1+ v(t,¢(t, x1,X2), X2) (IV.1.8)

0tx %) = T ) )

Now, using the chain rule, we obtain from (IV.1.8) and (IV.1.5),

g (v(t,p(t,x1,%2),%2)) = g(t,b(t,x1,%2), X2, V(1, (L, x1,%2), x2)). (IV.1.9)
t

From now on, for clarity’s sake, we will not always specify the variables when there
is no ambiguity. Most of the time, we only precise if the first space variable is x; or
¢(t,x1,x2). Now, we obtain from (IV.1.9).

t

v(p) =x(x1) +J g(r,¢)dr. (IV.1.10)

7=0

Differentiating (IV.1.10) leads to the following expressions for the derivatives of v.

Our B(31) 0y V() = 2 (1) + j axlsb(r,xl)alg(r,xmf Orr (7, 11) 0, (T, 51)238 (1, 31)

T T

0 () = )(’(xl)+ST8x1¢)(T,x1)(31g(T,(/))+ST@xl¢(x1)@x1v(T,xl)ﬁgg(T,xl)
=0y V(¢P) = ax1¢(r,x1) .

(IV.1.11)
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Chapter IV. Introducing a source term with a x, dependency

0% v(e) = m l?(”(xl) +L

' f (P (7, 11))2 0y (7, D) 33018 (1, ) + f &2 (1, 3) 238 (1, 0) 0, (7, 9)

(Cu (1, 31))2 g (1, ) + J &2 ¢z, 11)01g(T, )

+j¥@@hmnf&&ﬁu@@wuwij@@haﬂfwmwn@fﬁﬁn@

o <am</><r,x1>>za§1v(u@agg(r,@]

@2 X1
_ % l)(’()ﬂ) + L Ox (1, %1)018(7, ) + L O, B(T,%1)038(T,0)0x, v(1, )

=A—-B. (IV1.12)

We also compute the derivatives of ¢ that we will need. From (IV.1.8), we get

Prx, (%1) = % (IV.1.13)
Donan () = 2B (1= V(@) +2(v(9)), V1L14)

(1-v(¢))°

At this stage, we will assume that ¢y, x, x, (, V¢) is not 0. This is an important assump-
tion, as assuming ¢y, x, x, (f, ve) = 0 leads to different computations. However, we
consider only this case because the other case is much more similar that the situations
that we have previously studied.

We start with a bootstrap argument to control the function ¢, and show estimates.

We choose v, to be nondecreasing with respect to x. We call ¢y the number (implicitly

depending on ¢) such that y € [0, 7] for x € [¢/2, co]. We consider only times such

that ¢, #0and ¢t < 1/|In|In(e)||.

We can now state the technical lemma.

Lemma IV.1.3. We consider x € [cy,€]. There exists a time t. such that the following
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IV.1. Definition of the new problem and preliminary results

properties are verified.

te—0 ase—0. (IV.1.15)

¢y, >0 Vi<t

H(Vé,vi) s.t. c/)xl(tg,vi,vﬁ)zo

(IV.1.16)

If |px, (8, x1,%2)| <2 for t € [0, 1] < [0, te]| and x € [co, €], then ¢y, (t,x1,x2) < 1 for

te0,t1] and x € [y, €].

0<¢y, <1, Prx, <0 ,VE<1,
ElCE! ‘¢I,x1,x1| < Cg’ln(tg_ t)’

Uy, <0, v<0 (IV.1.17)

Ce(¥'(x1) + C)
’(rbx1| .

ICer |0, (9)] <

Ifx1, X2 and t are sufficiently close to (v.,v?, t.), we have the following estimates.

c! __ 1
(61 = V02 + (k2= V)2 + (L. — 1) ¢y (x1)
CZ
< €
(X1 —=ve)?+ (2 —vE)? + (L — 1)
1 2 ~3 1 1 2 2 3
ElCe’CS’Ce’ (Px1x1(x1)_Ce(xl_V6)+C£<x2_ve)+ce(t€_t)
+ > (= v (= VA (te— 1) fi ikt x1, ), (IV.1.18)
i+j+k=2

icl,c?>o,

where all the involved f functions are bounded near (t, vé, v%) We also have

Celln(t, —t
| \<—8| n(‘gz )|, (IV.1.19)
| |
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Chapter IV. Introducing a source term with a x, dependency

where A is the A involved in (IV.1.12).

Lastly, for € small enough, we have

Cgcpxlxl(xl) C£¢x1x1(x1)2 /
(¢x1<x1))3 (¢x1<x1))3
C£¢x1x1(xl)2 '<B< C8¢x1x1(x1)7(3/.

@) * 7T ()

’

!
Y <B<
2
(IV.1.20)

The first inequality being verified when ¢, x, < 0, and the second being verified when

(lexl = 0.

Proof. We hence assume |y, | < 2.

We have from (IV.1.10) and (IV.1.4) that

[v(o(t,x1))] < [x(x1)[+ Cr< Ce. (IV.1.21)

Also, we have from (IV.1.10) that for ¢ < t;, where #; only depends on f, that

v(t,x1,x2) <1/2. (IV.1.22)

Hence we have from (IV.1.8), (IV.1.22) and (IV.1.21) that

[1+v(t,9)|

<C,. (IV.1.23)
[1—v(t,¢)]

|¢’t| =

We will make use of Gronwall’s inequality in (IV.1.11), we have

1
Vx| X |Ve 1 42— x Ux IV.1.24
b ] < ) [0+ 2 G | Gl V120

108



IV.1. Definition of the new problem and preliminary results

and

1
Vg, b, | < (|In(€)[* + C) 158l < CIn(g)|* eI, (IV.1.25)

Now, looking at (IV.1.11) again, we obtain

— e (x1)[In(x)]* +f <Px1(T,x1:x2)3‘1g+J b, Ux, 038
T T

S L] YOS S W S
10 *Iin([In(e)])| ¥ |in(/In(e)])|

1
C|In(g)|* eMm{m@ED <0, (IV.1.26)

for € small enough. From (IV.1.13), we hence get that ¢, < 0. Because we only
consider times such that ¢, # 0, (IV.1.8) gives by continuity

¢y, > 0. (IV.1.27)

Hence ¢y, <1 on the considered interval. This is the estimate we wanted for ¢, to
make our boostrap argument on ¢,, work. We go on with the other estimates.

Using the same reasoning as for (IV.1.26), we obtain

< vy, < — <. (IV.1.28)

Now, from (IV.1.11), (IV.1.13) and (IV.1.28)

x'(x1)

< ——"=<0. IV.1.29
P S5 p (IV.1.29)

This leads us to the following two conclusions. From (IV.1.2) and (IV.1.3), we have that
x'(€) = —[In(e)[*.

Hence, for € small enough, there exists a time ¢, satisfying (IV.1.15) and (IV.1.16). We
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Chapter IV. Introducing a source term with a x, dependency

also have

4

I < W. (IV.1.30)

Since we have that 7, << Wlll(f)l)\’ our time #, belongs to the set in which we made
our estimate.

Now, because, by a continuity argument, we have that ¢y, (Z;, v}, v2) is a minimum in
(x1,X2), we have that ¢y, x, = ¢, x, = 0. A Taylor expansion leads to

Py (e, %1, X2) = Cep (X1 — vp)? + Cea(x2 — VE)* + Ce (31 — vy ) (X2 — vE)
+o(d((x, %), (Ve ve) ) (IV.1.31)
C23<Ce1Cep C},CE>0.

Now, from (IV.1.31) and using v ab < %b, we obtain

C2,
C E’C <6<1=>‘C5,3(X1 )XZ— ‘<6"\/Cgl xl—v \/ng(xZ—Vz)‘
£,1%¢,2
C A2 2+C _a2\2
< 5| Gerl=ve) ; e2(® Vo) | 1y 3)

Now, from (IV.1.31) and (IV.1.32), we obtain

2—0 2—0
T Cep(x1 — V)P T=—Cea(x2 —v%)?
2 2
<Cg,l(xl—v;)z+C£2(x2—v§)2+Cg,3(x1—vl)(xz—vg)
2+6 2+06
\TCgl(xl—v) +TC52(XZ—V2)2. (IV.1.33)

Hence, using the sign of ¢;,,, we obtain estimate (IV.1.18).

Now, we deal with the terms A and B involved in (IV.1.12). We will go through each
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IV.1. Definition of the new problem and preliminary results

term one by one. With 0 < ¢,, < 1, we obtain

J (¢x (T,xl))zﬁfg(mb)‘ < J C<C. (IV.1.34)

Using (IV.1.25) and 0 < ¢, < 1, we get

j (6,20, (1. 0)23018| < cf@xl)(q)xl b)) < cf c(c+ly) <c(C+Ix)

(IV.1.35)
| @ m2288) < | letc+ )P < o (1V.1.36)
T T
C(C+ |y
J([)xm Uy, 038 <CEJM<Cg|ln(tg—t)|. (IV.1.37)
T T X1
Indeed, (IV.1.18) provides in particular that ([% > G L ik
X1 €
We hence obtain a first estimate for A :
1 2
|A] < 2 Ce + Ce|In(te — 1)+ | Y, Vxyx,038]
X1 T
1 2
ST Ce+ Ce|In(te — )|+ Ce | |pxy|“|Vayny || (IV1.38)
(()bxl) T

We look at the terms involved in B. Using (IV.1.25) and 0 < ¢4, < 1 again, we obtain

< Gy, < Ce. (IV.1.39)

f (pxl alg J (le Ux a3g
T T

This means that

1 C
|Vx1xl| <_2 lCE‘ln(tg_t)+CgJ |Vx1xl|¢§1] +_3€. (IV1.40)
(»bxl T (;bxl

111



Chapter IV. Introducing a source term with a x, dependency

Using Gronwall once again in (IV.1.40), we obtain

C. #5et( C C
Vo] < e T < —Eelkl < =2 (IV.1.41)
X1 X1 X1

Now, inserting (IV.1.41) back in (IV.1.38), we obtain

C 1 Ce|In(t; — 1)|
Al < — lln(tg—t)]—l-LCg(p—x]] <%, (IV.1.42)
1

X1

and hence we have proven (IV.1.19).

Now, we want to be more precise about the term involved in B. Using (IV.1.30), and
0 < ¢, <1, we obtain

1
Jc[)xlﬁlg < CJ |(le‘ < CW —. 0. (IV.1.43)
C(C+ |y
f(/)xlvxl@sg <CJC(C+|X/|)<WZ%(|X/|)- (IV.1.44)

Hence, for € small enough (the constants involved in (IV.1.43) and (IV.1.44) being
absolute constants only depending on the equation), estimates (IV.1.20) holds.

Now, we present a lemma that removes the assumption x; € [co, €]. Essentially, this
will mean that v, € [¢g,€]. In fact, we need slightly more, we need that there is an
openset O =|v, — 8., v, + 0, such that O n [¢/2, ¢y| = . This will ensure that all our
estimates are valid when we will do the cutoff in the next step.

Lemma IV.1.4. For x; such thatw.(x;) < %, thenv, # x;.

Proof. To show this, we will use the estimate (IV.1.30) and show that ¢y, (x1) can not

reach 0 during that time. We consider x; such that y.(x;) < %. By the same Gronwall
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IV.2. Proof of the blowup as 1 — ¢,

estimate as in the previous proof, we obtain

1 a | a
|y Uy | < (C+%)egr‘%é’< %, (IV.1.45)
for € small enough. Now, because (¢x1)|t:o = 1, we have that for all r < W,
In(g)|*
Ox (x1)=1— t—‘ (8) >1/2. (IV.1.46)

O

Remark IV.1.5. Informally, we now have that

) N CE]ln(tg — t>| CEX/(lexl
x1x1 = o ’
11 (pil (lbil

The ~ symbols being a majoration for the first term, and a control of the behaviour
for the second term. The situation is hence closer to the situation we had in the two
previous cases. However, the estimates that we will now use for ¢y, x, and ¢, now

depends on x,, and the estimation will be harder, especially the control of the sign.

IV.2 Proofoftheblowupas:t— .,

We now consider the following cutoffs in x; and x».

Let ! :R — Rbe a C* function satisfying

wl(x)=1for ¢(te,ve) — e < x < P(te,Ve) + 8¢
Wi(x) =0for ¢(te,ve) + 28, < x Or X < P(te,ve) — 26 (Iv.2.47)

0 <wl(x) <1 elsewhere,
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Chapter IV. Introducing a source term with a x, dependency

and ¥2: R — R be a C* function satisfying

y2(x)=1for —6, <x <6,

w2(x) = 0for 28, < x or x < —26, (IV.2.48)

0 < y%(x) <1 elsewhere.

We define h(t,x1,x2) = wl(x1)yp2(x2)v(t, x1, x2). We will show that || A |H7/4([R2) — 0
X1

as t — t;, and use the fact that

1
1,2 _ -
If(t) = Hwew“:vHHZAl(lnH)_ﬂ - sz J;QL |x1 . y‘1/2—2/1 hx1x1<t’ xl’xz)hxlxl (t’y’ XZ).
(Iv.2.49)

This will show theorem IV.1.2.

Proof. We first split the integral in x; in three domains,

O (te,ve)—0e <62 111/18

V2426, 5
(1) =J wg(xz)J
o—v2—26, n=(teve) 20, \  OXF
O(te,ve)+20,
f xl—y|‘1/2‘”( G Z”)(lﬂy)dydxl
y=¢(te,ve)—20 g 1
V§+255 O (te,ve)+06¢
+ W?(xz) < ) t,x1)
Xp=Vv2-26, x1 =¢(te,ve)— axl
O (te,ve)+20,
| 1/2— 27L< t y dydx1

y=¢(te,ve) 26‘g

2
X7
V2425, D(te,ve)+20¢
T R (o
6x1

Xo= vg—265 xX1=¢(te,ve)+0¢
*(vyy)
- 1/2— 2/1( — (t,y)dydx;.
X

V2426,

J*([) Ie,Ve)+28,

y:¢(t£y"£)—25s
V2425, V2426,
[ v xz>+f Vi)t | k)
Xo=v2—26, Xo=V2—26, Xo=V2—28,
(IV.2.50)
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We now consider a fixed x, and study the integrals I} (1, x,), I(t,x2) and I2(t, x2).

Let us make the change of variable x; = ¢(t, x1, x2) (not explicitly relabelled).

(2(t,%2) o2 1
Lt = | D (1,21, %2) ( (”‘”5)) (1 (1,31, %))

x1=C3(t,x2) 8xf

{3 (t,xz2) 02 1
L ot otV (1) ( (”‘”E)) (6, (1,y,x2))dxrdy

y=Chi) 0xy

(g(thZ) (32
+f </>xl<r,x1,xz>( “’)) (6(t,31,%2))

x1=CZ(1,%2) 5)6%

(2(1,x2) 02
L5 o) plesml = P00 (S5 () dmay
1

y=C2(t,x2) 0x

Ce(t,x2) 2 (pwl
+J (le(t)xlrx.Z) (0 ( we)

x1=03(t,x0) 6xf

)ttt

1

(3(t,x2) 52
L7t ot 2 g 1) ( (”Z’E)) (6,6(t,y,x2))dxrdy
1

y=C2(t,x2) 0x

= I}(t,x2) + I2(t, %2) + I (£, %2).
(IV.2.51)

We will use all the following results without proving it, as it is very similar to what we
obtained in the previous chapter.

Lemma IV.2.1. The following holds on an interval centered at (t, vé, 82).

If we define
(1 x2) = 7 (DL, Vi, VE) =266, %),
2 -1 1,2
’ = ErVerVe _66) )
(e(t x2) (/)t ((/)(t v V) xz) (IV.2.52)
cz(t’x2>:(lb[_l(qb(té‘)véyvg)—i_éé‘!xz%
Cg(t,XZ)Z(pt_l((l)(l'g,’\/;,vg)—}—268,)(2),
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For anyn,, we can choose 6, and t} such that for t €]t}, t.[, we have

Ve —1Ne <Lt X2) <C3(t,%2) <ve <C3(t,x0) <{3(t,%2) < Ve +17e. (IV.2.53)

There exists { %* and { E* such that for 6 small enough, and t close enough to t.,

Ve —1Ne <(i,(t,x2) <(§(t,x2) <(§+ < Vg <{§_ <C§(t,x2) <(§(t,x2) <V +1Ne.
(Iv.2.54)

We first study I} (z, x,). The case of I3 (£, x») is similar. Using the expression of (¢, x,)
provided in (IV.2.51), as well as (IV.1.19), (IV.1.18) and (IV.1.20), we obtain

2+
€

() (1414 B) )
butm ) (Al (B ) | R B R

2+
(E (Cg’ln(tg_t>’ Cg|¢x1x1(t,x1,x2)|>

]I;(t,xg)‘<f

X1=Ve—Te

INt,x SJ +
‘ e 2)‘ vl e by (x1) il(xl)
'JVHm (sz“n(tb‘_ 1) n C£¢x1x1(t’y’x2)|>
y=vi—n. (/)xl (_V) ‘?‘61 <y)
1

. |¢(t) xl,Xg) — (/)(t’ y,x2)|1/272/1'
(IV.2.55)

On the considered domain for x;, there is a constant depending only on € such that

Ce|In(te —1)|  Cel|pxyx, (1, %1, %2)]
¢, (11) ¢%, (x1)

< Ce|In(te —1)). (IV.2.56)

Now, we split the domain of the second integral involved in (IV.2.55) into two parts.
1

The firstd i ding to the unbounded f
e first domain corresponding to the unboundedness of Zm——~—-——~

s the

second to the unboundedness of d%x
1
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§+ (§+ ln t— _t- 2
|15 (1, x2))| <Mgf J [In(z: —¢)] )
X1=Vp—ne Jy=vE—1e |¢(t’x1’x2)_¢<t!y’x2)| /
ot Vit+1e ‘ln(tg_ t)‘z
+Me 1\2 2\2
a=vi-ne Jy=02t (¥ —ve)* + (X2 —vg)? + (e — 1)

2+ 1
‘ Yethe |In(te — 0)|((te — 1) + |x2 = ve| +[x1 — Ve])

+ M, f 5
X1 Vé NeJy C% ((y V%‘)Z (xz V%)Z (te t))
< (l) + (ii) + (iii). (IV.2.57)

Now, using the mean value theorem and (IV.1.18), we obtain (fora c € [x1,y] < [v] —
Ne, () for (i)

2+ 2+
(<M. : e |In(t, — 1)|? [In(z, — 1)]?
R 3 1/2—2A . _ yl1/2—24 € \1/2-21°
=vi-ne Jy=vi-ne |[¢x (1€, %2)] X1 =y (te—1)
(IV.2.58)
Now, for (ii), we obtain
24
. ¢ 1 In(z, — 1)|?
(ll)<M5|1ﬂ(tg—t>’2J 1/2<Mg [In{te — )] 72
n=ve (= vg)*+ (te— 1)) (2= vE)2 + (£ — 1))
(IV.2.59)
For (iii), we get
2+
€ 1 In(z, — ¢
(zzz)éMglln(tg—t)]f - <M, In(z —1)| -
x=vt ((x2 —vg)* + (e — 1)) (X2 —Vv2)2+ (L, — 1))
(IV.2.60)

Now, using (IV.2.48), we get
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V24, VEte In(t, — 1)|?
j w4m>0wﬁ<wgf Dm@—0F+ ]
Xo=VZ—ne X2=Vi—1e¢ \/(Xg - Ve) + (tf - t)
In(f;—t In(t — 1)
)] yJé e =0 o
(32 = V32 + (e = 1) (te=1)
By symmetry, we also have that
v2n, Vi, In(t, —t)|?
IR L e A R e .
x2=v§—nE x2=V§—77£ \/(xZ - Ve) + (tf - t)

((x2—Vv2)2+ (£, — t))?’/z] = Me (t.—t)

Now, we exhibit a lower bound for I 3 (t,x2). Using (IV.1.19). We consider the integral

1(t,32) f ‘f”“ x1) — B(x:))(A(y) ~B())
=0t

Ve—Te ‘(P t XI,XZ) (/)(ZL,_]/,.)(,'2)‘1/2_2/1

Vete 1
Jl C“J —ve—ne |1, x1,%2) — (1, , x2) |1/272A [A(X1)A(J/)+A(X1)B(y>

+ B(x1)A(y) +B(x1)B(y)] = (i) + (i) + (iii) + (iv).

(Iv.2.63)

We will show that

[ == [ o [T vt

X ve 20, X2 v£ 20, X2 vz3 20,

V2425,
+ f we(xo)|(ii0)], (IV.2.64)

Xo=v2—26,
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ast— f,.

We now make the additional change of variable (x;,y) = (x; —v},y —v!), and thus

the new domainis t = [(2T —v1,(3~ —v1] x [~ne,n¢]. We first consider the term (i) of

(IV.2.63). We obtain from (IV.1.18) and (IV.1.19),

] <
(8, vE +x1,x2) —cp(t Ve + 1, %) | V272 ¢y (£,vE+ X1, X2) by, (2,VE + 1, x2)

[In(te — 1) [? JJ 1 1
“(te—0)1/2=24 ) [ x — y\l/2 2V x2 4 (xp —vE)2+ (te — 1) Y2+ (X2 —vE)2 + (L. — 1)

< M(H—)/ [ : :
X Holder (t ¢ 1/2—2A ‘xl |3/4 31 x)= 0(x1_|_(x2—\/2)2+<t£_t>)3

» . 1/3 )
| (L (72 + (02— V2)2 + (£ — r>>3)

2
_ Ce|In(t; — t)] 1

< (IV.2.65)
Now, using (IV.2.48) and the inequality (IV.2.65), we obtain
2
fvems w2 () (1)) < Sl e — O ”'2sz !
Xo=VE—20¢ ‘ (e = 0)V272 " Jyy—0 /22 (22 + (£ — 1))5/3
Ce|ln(t. —t)[?
L Gelln(te—OF ) o)

= (£ — t)5/3*21 )

Remark IV.2.2. Here, we used that

[l st
=0 VX (x+a)33  alle’

where B is the Euler integral of the first kind.

For (ii), we obtain using the triangular inequality in (IV.1.18) as well as (IV.1.19) and
(IV.1.20),
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Chapter IV. Introducing a source term with a x, dependency

o< [ ! CelIn(te = 1)l (1v2+ .32
(e E 5] 0y v+ sy ()

_ CelIn( tg—tljf 1 [y[+ [ —vi[ + (te — 1)
(te —)V/2722 ) Jifxs — y|1/2 P+ (e = vE) + (le— 1) (32 + (g —vE)2 + (£ — 1))

 CelIn(z— 1) 28 ( o 1 3
SHolder 750 2/1 Tx. _ y[3/4-31 2 2 3
(te—1) X — ! x1=0 (x2 + (xp —v2)2+ (t — 1))

Ow (y+1v2 =l + (1= 1))° )”3
y=0 (2 + (% =VE)2 + (te—1))°

<C£|1n(tg—t)| 1 1

< (IvV.2.67)
(e =22 (o =22 4 (1= 1)° (ma = v+ (1= 1))
Now, integrating (IV.2.67) with respect to x, and using (IV.2.48) leads to
V2426 0
erele | Ce|lIn(t,—1)| 1
| | "
Xy =v2—28, (fe —1) %=0 (x2 + (t; — 1))
C In(t,— ¢ 1 Celln(t,—t
‘ n( £ )’ < 5‘ n( € )‘ . (I\/.Z.GS)
(t _t>1/2 21 —0 /%o (x2+(t£_t))l3/6 (tg_t)13/6—2/1
Remark IV.2.3. Here, we used that
JOO 1 1 B(33)
x=0 VX (x+a)'3/6 as/3 ’
where B is the Euler integral of the first kind.
The case of (iii) is identical, and we obtain
V2428
eTe0e Celln(t;—t
f w2 (xy)(idi)] < L‘gmj‘ (IV.2.69)
Xo=v2—26, (ts - t) /

Now, we look at (iv) and exhibit a lower bound. We split the integrand A into two
parts, the first part corresponds to terms of order one of ¢, x,, the second corresponds
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IV.2. Proof of the blowup as 1 — ¢,

to the terms of superior orders, as expressed in (IV.1.18). We denote :

<iu>1:“ Clai + C2(xp —v2) + C3 (1 — 1)
|p(t,vE+x1, %) — P8, V2 + y,x2) |1/2724
Cly+C(xp—vE) + CE(te— 1)
P, (V)2 (x1)
(iv) Z_JJ i+jtk=2 (x1) (xz—vz)j(tg—t)kfl-']-’k(t,xl,xZ)
(£, VE+ x1,%2) — (2, V2 + y,x2) | /2727
Cly+Cxp—v2) + Ca(te— 1)
P, (¥)? P (x1)
(iv)ngf Cex1+ C2(x2—v2) + C2(t. — 1)
(£, VL + x1,%2) — p(1, V2 + y,x2) [1/2—22
Zi+j+k:2(J’>i(x2*V§)j(tg—t)kfi,]-,k(t,xl,xz)
| P2 (1), (32)?
(iv 4_ff i+ jak—z (1) (x2 = VE) (te = 1)* i j (2, 21, x2)
|p(t,vE+x1,X%2) — P8, V2 + 3, x2) [1/2-24
Zi+j+k=2()’)i(x2—vg)j(tg—t)kfl-,]-'k(t,xl,xZ)
| G0 (1), (31)2

(Iv.2.70)

We will show that

>>

V2426,
|7 i

Xszgfz(sg

V2426,
j V2 () (i)s

Xo=v2—26,

V2426,
|7 v

Xo= Vg 255

V2426,
f V2 (x) (i)
X2

=v2_25,

n i , asf— L. (IV2.71)

First, we look at (iv);.
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Chapter IV. Introducing a source term with a x, dependency

We more precisely consider the integral

N | X1 y
— . 1vV.2.72
(o f fl|¢><r,vz+x1,x2>—«p(r,v%w,xz)v/z—m o PP 2T

Again, because of (y—v, ) antisymmetric properties but the fact that () ¢>1(t I
AL )T )
will concentrate the weight near x; = y, we have to split the domain into four parts,

using the same idea as in chapter II.

ax, ={(x1,y) €| §+,v5] X [Ve=1e,Vel}, Br,=1{(x1,¥)€ [Ve’(g_] X [Ve —ne, vel}

Yv ={(x1,¥)€ [C2F Vel X [Ve, ve +7el}, Ox, ={(x1,¥)€ [Ve, (371 % [Ve, Ve +1e]}
@ =y, X [VE—286,v2+28;], B=Pux, X [V2—26:,V%+25¢],
Y=Y, X [VE—28:,VE+28:], 6 =0y, x [V:—28:,V2+20,]
(Iv.2.73)

X2

Nt

™ DN

Xo =V

1 X1

X1 =V

Figure IV.1 - Definition of a, 8, y and 6

And we have

(z’v)} = JL i(x1,y)+ JJﬁ i(x1,y)+ JL i(x1,y)+ JL i(x1,y). (IV.2.74)

We also make the change of variable (x1,y) = (x; — v}, y — vl) without relabelling the
set nor the variables.
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IV.2. Proof of the blowup as 1 — ¢,

We will regroup the integral corresponding to 6 and . The symmetric case (y and
a) is identical. Because it is very similar to the computation we did in the previous
chapters, we will skip a few details. We consider the term

S
sup [p(t,x1) — P(1,y) V2722 (1, x1)% Py (£, )

_ y-x1
Ll=o Jy=o (1, ve+x1) —P(1,ve+ ¥) V2724 (1, ve + x1)2y (1, v, + y)?

y-x1

N 1/2—22 2 z | Av.2.75)
(1, ve +x1) = DL, Ve — y)[V222y (8, ve — y)Pdy (2, ve +x1)
We similarly decompose the integrand as follows.

1 Y etx) x x'(vet+y)y
|b(t,ve +x1) — P(t,ve + y) V272 py(t,ve +x1)% Py (1, ve + )2

B 1 X (vetxr) x1 y'(ve—y)-y

(2, Ve + 1) — p(t,ve — y) V272 Py (1, ve +21)2 Py (1, ve — y)?
1 X Wetx) x ' (vet+y)y

|p(1,ve +x1) = (1, ve +y) V2724 Py (1, ve + x1)? dy (1, ve +)?

1 X (ve+xr) x1 ¥'(vety)
(1, ve +x1) = p(1,ve — ) |[V272A dy (1, ve + x1)% by (1, V8+y

1 X (vetx) xi ¥ (ve+y)-y
(p(1,ve +x1) = (1, ve — y)|[ V2722 @y (1, ve + x1)? dy (8, ve + )?

1 ¥ (vetx1) x1 ¥ (ve+y)-y
(1, ve+x1) — (2, ve — ) [V2722 Py (6,ve +x1)% Py (£,ve — y)?

=D1+Dy. (IV.2.76)
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Chapter IV. Introducing a source term with a x, dependency

To shorten a bit the notations, we will denote

For D;, we write
1 1
e (t,ve +x1) — Pe(t,ve + Y)[V22A [ e(t,ve +x1) — Pe(t,ve — y>‘1/2—2/1

40 40

a_—ay al —a”
= + (Iv.2.78)
1/2—2A 1/2—2) ( 1/242A 1/2+22 1/2421 1/2421
a; a’ <a+ +a’ ) <a+ +a’ >

It is clear that D; is nonnegative when x; > y. We now provide a lower bound for
D1, x, <y- We will show that it is positive up to a smaller order term, and provide a lower

bound for the positive term. We hence now consider x; < y.

We write,

a——ay =[pe(t,ve +x1) = Pe(t,ve — ¥)| = |Pe(t,ve +x1) — Pe(t,ve + )

X1 y
=20 (t,ve+x1)—Pe(t,Vet+y)—pe(t,ve—y) = J be,y (1, v£+s)—f Ge,y(t,Ve+s)

s=—y
X1 y
=J Qbs,y(t’ve‘i‘s)""f (ey(t,ve — ) — e y(t,ve +5)). (IV2.79)

S=—X1 S=X1

We will use this idea to provide a lower bound for D;.
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IV.2. Proof of the blowup as 1 — ¢,

1 1 J‘“ 1 1 a- _3/2421
- = —(5—20)——=C J s 32
al/Z—Z?L al_/Z—Z)L 2 §3/2—21 —ay

S=a
+

ay +S§1:—x1 Pe,y(t,ve+2)
_ Cf §—3/2+21

S=a 4+
@i+ ey (et D)+ 5T (Pey(tve—2)—dey(tvetz))
—i—Cf 1 1 373/2+2/1:<l-)+(l-i)’
s:a++S§1:_x1 ¢y (t,vetz)

(IV.2.80)

where ( ) is nonnegative and (i) is small. First, we make the following upper bound
for |(ii IfS (¢e,y(t,ve —5) — e,y (t,ve +5)) > 0, then (ii) is nonnegative. Oth-

erwise, we have @+ 5 Pey(tve+5) + 5 (Pey(t,ve—5) = e y(f,ve+5)) <
ar+§1 « Pe.y(L,ve +5). We then proceed as follows

qu +S§1=7xl Ge,y(1,ve+2) +Sg=x1 (([)g,y (t,ve—z) —(,bg,y(t,vg—l-z)) 3_3/2_2;[

s=ay +Silxl Ge,y(tvet+s)

Ja_ 7S§:x1 ((va}’(t’vffz)f(/)e,y(thEJFZ))

§3/2+21

S=a—

—3/242A
< 32424

[ @attve—2-guy(ves2))| a

zZ=X1

(Iv.2.81)

From the Taylor expansion, we obtain for x, y small enough (only depending on ¢),

fy ((l’e,y(t, Ve—S) _(Pe,y(t» Ve+5))

zZ=X1

<C (Y —xi+(t— 1)+ (t— 1) (y* —x7)) .
(IV.2.82)

This means that we obtain (up to a nonnegative contribution)

(0100 xt s (6 0) (4 2) + (6 0)

(IV.2.83)
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Chapter IV. Introducing a source term with a x, dependency

We now go on with the lower bound for (7). Using the expression of (i) provided by
(IV.2.80) as well as the mean value theorem, we obtain

§—3/2+21

a++S;1:_xl (Pe,y(t,Vg-i-z)
(i) = f
S

=4

X

X1 1
e,y Ve + . .
L=—x1¢ y(6Y Z)> (c/),g(t,vg#—y)—(pg(t,v,g—xl))g’/z_z’l

1

=>Cx t,cy)- . (Iv.2.84)
1<Pe.y( 1) (y+ xl>3/2—2/1 . (/)g,y(l‘, 02>3/2—2/1
Now, since we have x; < y, we obtain from (I1.2.16)
and
Be,y(£,02) < C((te — 1) +y%). (IV.2.86)
Using (IV.2.85) and (IV.2.86) inside of (IV.2.84), we obtain
te—1t
(i)=C xle —0) (IV.2.87)

(y+x1)32724 (£ — 1) + Y2 + (xp — v2)2)3/2-24"

Now, we obtain for D;,
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IV.2. Proof of the blowup as 1 — ¢,

= Dyx>y+Dx<y 2 Dx<y

JJ x1 (% — 1) X (vetx) x1 x'(vety)y
y+x1 3/2_2/1 ((t — )+y2)3/2—27t ng,y(t»ve+x1)2 (Pg,y(t,Vngy)z
_CJ J K(vetx) n Y(Vety)y
1=0Jy=x a3/2 22 ey (Ve + x1)2 e,y (1, Ve + ¥)?
Y (vetxr) a1 ¥ (vety)y
-C 3/2—21 2
a=0Jy=x; ¢/ / Be,y(t, Ve +x1)? P,y (1, Ve +y)

_CJ J (te—1)- X y'(vetx) 1 x'(vety)y
10=0Jy=x, 3/2 21 (pgy(t vg—i—xl) (/)E,y(t,vg+y)2

)Y X (etx) - xm Y (vety)y
-C o322 2
x1=0Jy=x; / (,bsy(t V£+x1) (,be,y(tyve"‘.)/)

_CJ J (te—1)* X (vetx) 21 x'(vety)y
xn=0Jy=x 3/2 2h be,y (8, Ve + X1)% e,y (L, ve + 1)

— A — B, —By—B;—B,—Bs. (IV.2.88)

Note that the proof also works for A = 0. We will now show that A; — o0, and that Jy,
J3, J4, D2, By, B, B3, B4 and Bs are of a smaller order. We first consider A;. Here, we
will consider A; because it gives the order of the main contribution, and showing that
the other terms are of a smaller order is similar to what have been previously done. We
will also consider the term B; to show how we deal with the smaller order terms. We

will not consider B; for i > 1 because it is similar to what have been previously done.

Using |y (£, ¢(x1,¥))] < Mg ((x1—vE)? + (x2—v23)? + (t. — 1)), on x; > y, we have
from (IV.2.88) and the new change of variable (x, y) = (r + z,r — z),
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Chapter IV. Introducing a source term with a x, dependency

K27 (r—2)(fe— 1) r otz
A= CgJ— f— r3/2—2A 2 2o 7/2—2A
r=0 Jz=0 (r+z)°+ (x2—v2)2+ (. — 1))
r—z
((r—z)2+(xz—v§)2+(tg— t))2
KE/Z 1 (tg— t) r
> Cg\f — — J (r_z)z
o rl/2—21 ((2r)2+(x2—v§)2+(tg—t))u/z 22 J,_o
e fxg/z (t; — t).r5/2+27L y Ce(te—1)
= E =
r=0 ((gr)2+<x2_vg)2+(t€_[))11/2*21 (£, — £)15/4-34
> Ce . (IV2.89)

(2 —v2)2 + (1 — 1))/

Hence, integrating (IV.2.89) with respect to x, and using the properties of w2 given in
(II1.2.30) yield

V2425, V246,
J JJ W2(x2)i(x1,y, %) J JJ i(x1,¥,%2)
Xo=Vv2—26, Xp=VE—8e¢

fve-i-(sg M,
> . (IV.2.90)
x=v2—bc ((x —Vv2)2 + (tg _ t))11/4 517 (te — t)9/4—3/1

We now proceed with By. The case of B is similar. We have since ¢, ,(t,x) > (f: — t),
with the mean value theorem
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IV.2. Proof of the blowup as 1 — ¢,

Ke/2
|Bl|\ 3/2 2/1f L o ,,3/2 27L

r+z r—z

'«r+zf+(m—4@)+(a—¢» ((r—2)*+ (x2— V32 + (£, — 1))

2

_ Cg fKE/Z r4
T (te—1)32720 g p1/2-20 (52 4 (s — v2)2 4 (p — 1))

4 r—z
: f S (IV2.91)
2=0 ((r—2)?+ (xo —v2)? + (fe — 1))
Now, because
foc > < ¢ (Iv.2.92)
=0 (s2+ (t.— )2 (te—1) o
(IV.2.91) yields
C, 1 Ke/2 p7/2421
|Bif < 224 2\2 J 2
(tE—t)g/ ((xZ_V£> +(t€_t>) r=0 (r2+(tg_t))
< Ce L (IV.2.93)
T (te— )32 (o= 1)+ (k2 —vE)2)
Overall, we obtain
C 1
Bi(x2) < d (IV.2.94)

((te — 1) + (x5 — v2)? VA (e — r)e/A2n

Hence, integrating with respect to x, and using the properties of 2 given in (I11.2.30)
yield

VE+20, C
J By(x) < ——. (IV.2.95)
x2=v§—265 (tg - t)z
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Chapter IV. Introducing a source term with a x, dependency

At the end, we obtain

Ce
f JLug X1,X2,y) = (1, —I)9/4 31° (IV.2.96)

We only studied (iv)]. We now need to do an estimation for all the other terms that

arise when we expand (iv); whose expression is given by (IV.2.70).

First, we look at

. \2 y(xz— ) 1
= . 1V.2.
=] 06 xm2)— 96y, 52) 2 g2, ()9 () a9n

We will use the fact that the integrand is "almost” odd in (x —v},y —v}). We will
now consider four domains t™", ™=, 1=~ and t ™ (for the new variables y = y — v},

x = x—v..) They are defined as

by ={x1,y>0}, 14— ={x1 >0,y <0},

(IV.2.98)
_={x,y<0}, 1+ ={x1<0,y>0}.
We will consider the two integrals
I f f y(x2 —v§)
R 2 2 1/2—21
o U @ (020, (72 [0(x1) — 90| V299

_ y(x2 —vE)
Iz_f Jﬁ:uw Py (X1)2x, ()21 p(x1) — P(y)| /2724

It will be easier to deal with I,. For I, however, we will need some preliminaries. We
first perform the change of variable for the part x; <0,y <0 of the form x = —x,y =
—y. We hence obtain for I;
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IV.2. Proof of the blowup as 1 — ¢,

e[ ] vy |

l%(m NP P T s Sa ey e —¢<—y>\1/2—21} |
(IV.2.100)

1

We simplify (we add and substract O Y 72 s

77—7) and obtain

xz—vg) 1 B 1
h= J t++¢x1 (le( ) l|¢(x1)¢(y)|1/2_27‘ |(b(x)(p(y)|1/2_2/1]

“H |p(— xz(_ ))Il/z—” bel(xl);d)xl(y)z - ¢x1(—x1);¢x1(—w2]

=+ J,. (IV.2.101)

We denote for simplicity

B+ = |p(£x) —p(Ly)|. (IV.2.102)

We consider the following simplification inside J;. Also, we work on the set where
¥y > x by symmetry. Call this set L;’+.

1 1 B — B+ pL— B

1+/2—27L - pl/2-20 - pl/2-2A 1+/z—2;L (ﬁ1/2+2/1+ ﬁ1/2+21) + 1+/2+21+’61/2+21.

(IV.2.103)

Now, because of the symmetry of the problem, f_ — 8, is of a smaller order. Indeed,
considering that the Taylor expansion of ¢,, around v} is of the form (for the old

variable x;)
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Chapter IV. Introducing a source term with a x, dependency

G, (£,VE+y,%2) = Cry* + Co(x2 — vE)* + C3(t: — 1)
+ ALy %) (60— VIR + it y,%)Y° + (1,1, %) (t. — 1)y
+ fa(t, 3, %) (e — ) (X2 — V) + f5(£, 1, X2) (Ve — x2)* + fo (£, 1, X2) (e — £)?
+ fo(t, 3, %2) (Ve — X2) Y%, (IV.2.104)

We now focus exclusively on the first term of (IV.2.103). Call J; the corresponding
integral. We obtain that the term of order 2 in the space variable and in order 1 in the
time variable cancel out. Indeed, for the first part, we have

B —p. N (O ETMER)
ﬁl_/Z—Z/l YZ_M <IB1_/2+2)1_|__ fr/2+2a> a ’61_/2—2)L i/z-z;t <’B1_/2+2/1+_ i/2+2/1)
(IV.2.105)

and since we have, (we assume x < y by symmetry), by (IV.2.104),

Jy (1 (5) =P (=9))| S C(y = )| 22 =V + C(y = x)y° + Cy — ) (8 — 1)?

S=X

+C(y—x)y(te—t) + C(y — x)|x2 — V3| (te — £). (IV.2.106)

Plugging (IV.2.105) and (IV.2.106) into the definition of J; gives

' Cyl2 —V2)(x~ 1) (1) 2o ()
L N e e e
1

(19(y) = p(x)[V/222 4 |p(—x) — p(—y)[1/2+22)

(IV.2.107)

By symmetry, we again assume that y > 0, and perform the change of variable x = r—z,
y=r+z. (z€|0,r]).
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IV.2. Proof of the blowup as 1 — ¢,

Now, we have

(r+2z)(22)*
Ul Cloz — €‘JJ 22)15-20¢ (y)35- 24, (x;)2

JJ Clxo —Vv3|(r + z)(22)
rJz=o (2z)15—21((r+z)2+(x2—v§) +(te = )7 (r = 2)2 + (2 = V22 + (e — 1))

JJ Clxp — 2] (2z)
rJa=0 (22)15-2((r)2 + (xy — V)2 + (£ — 1))
' Clx, —v2|(r)(2)*
_l’_
ﬁJ;w@uwﬂﬂiuwz+cw—v92+uf—wfﬂ*lu 2)2 + (x2— V22 + (£ — 1))
= (i)+(ii). (IV.2.108)

We obtain for (i),

r/2 C<2Z)2.5+2/1
(z)éJC|x2— erf 5 5.5—21
r 2=0 ((r)? + (22 —vg)* + (e — 1))
C
< |x2 . Vz‘ r4.5+2/1
ﬁ N (R O ()
C
< |xp — Vi (IV.2.109)
(=B + (e — o)
Now, integrating with respect to x; yields
C
J V2 (x0)] (IV.2.110)
(t (te— )7/

which is indeed of a smaller order.

Going on with (i), we get
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Chapter IV. Introducing a source term with a x, dependency

ii Clxa —vg[(r)°
( )<L(r)l,S—ZA((r)2+(xz_vg>2+<t£_t))3.5—27t

r

.Jr/z 1
0 ((2)2+ (32— V32 + (e — 1))
J Claxs —vg|(r)° ‘ C
PP ()24 (x — V22 + (£ — 1)) (2 —v2)2+ (e — 1))

C
< . (Iv2.111)

(2 —V2)2 4 (1 — 1))

<

Now, integrating with respect to x; yields

J 1//8 x2)|(ii) ([ _Ct)7/4 (Iv.2.112)

which is indeed of a smaller order.

We go on with J2, which corresponds to the second term in (IV.2.103). Again, we will
use the fact that

B+
“no_pt= f 451, (IV:2.113)
B
and that |+ — B_]| is of a smaller order, as we have previously shown. Indeed, we get

B =B <Al — Bl (B[ (B[ (v2.114)

The proof of this is very similar to what has been done to find the lower bound of I, so
we will not do it explicitly here. At the end, the term is of a smaller order when A > 0.

Now, we go on with the term /> defined in (IV.2.101). We will introduce the two
difference terms
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IV.2. Proof of the blowup as 1 — ¢,

1 1
(/)xl (xl)z(pxl (y)z - (pxl (_x1)2¢xl (_y)2

_( 1 B 1 )
B Gy (X1)2¢2, (1) xy (X1)2Px (—)?

! 1 _ ;1 :2
' (¢xl<xl>2¢xl<—y>2 ) ¢x1<—x1>2¢n<—y>2) ety (ERI)

and define ]21 and ]% as the two corresponding integrals.

Now for ]21, we write the simplication

1 1 _ ((le(_J’>_(le(J’))(‘Pm(_y)"“/)m(J’))'

(pxl (xl)Z(le (y)Z - (pxl (xl)z(pxl (_y)Z - (le (_y)Z(le (J/)z(pxl (xl)z
(Iv.2.116)

Now, using (IV.2.104) inside (IV.2.116), we obtain that

xz—V) P2, (—y) — = (V)]
‘]2 Jjﬁ"* |(/) J/)|1/2 24 ¢x1( )2¢x1 (y)(pxl (xl)z

JJ y(x2 ) [Px, (=) — s, ()] .
L++|(,b x) ¢ )|1/272/l(pxl(_y)(le(y)(le(xl)z

(IV.2.117)

Because the two terms are similar, we only consider the first term of (IV.2.117). We get
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Chapter IV. Introducing a source term with a x, dependency

ff x2_ Vi) [P, (=) — sy (1)
1t |(/) )’1/2_2/1 (rbx1( )Z(rbxl(y)(pxl(xl)z

ff y(—vg) Cy
1+ |(,b y)|1/2_“ (pxl(_y)z(pxl(.)/)(/)M(xl)Z

JJ xg—v) Coy®|x2 — ve|
it M) )‘1/2_2/1 (le(_y)z(le(y)(le (xl)z

-y
JJ xg—vz) C3y|x2 — ve|?
Tt ’(l) ‘)/)‘1/272/1 (le(_y)zd)xl(y)(:bxl (xl)z
) Cylxa —v2[?

A
ot (= (=y) V2722 e, (= )by (1) by (1)
JJ xz—v?) Cs(te— 1)y

ot (= (—y) V2722 iy, (= )2y (V) by (31)2

JJ xg—vz) Co(te — 1)]x2 — V2|
it ’(P y)|1/2_2/l (pxl(_y)z(pxl(y)(pxl(xl)z

JJ xg—vﬁ) Ci(t:—1)
it ’(/) J/)‘l/zizll (le(_y)Z(pxl(y)(pxl (xl)z
:(z)+(iz)+(iii)+(iv)+(v)+(vi)+(vii). (IV.2.118)

Now, the case of (i), (ii), (iii) and (iv) are similar, also (v) and (vi) are similar. This
means that we will only consider (i), (v) and (vii).

For (i), we consider the same change of variable as previously. We obtain

C
TR
JJ (r+2)*xo — V2|
rJz=0 z1/2-2( (o= V224 (te— 1)’ ((r—2)2+ (2 —v2)2 + (t. — 1))

J*JT/Z 4|x2_ 2|
g—
(e —0)V2722 Jp Jamo 21222 (12 4 (x) —v2)2 + (e — 1))

4\x2—v£]

+mﬁjz=r/2 ,-1/2—2/1(r2+(x2_vg)2+(t£_ t))g(("—z)z-i-(xg—vﬁ)z—k(tg— t))z
= ()1 + (i)2. (IV.2.119)

136



IV.2. Proof of the blowup as 1 — ¢,

For (i), we get

) C r4.5+27L‘x2 _ Ve‘
(1< 5
(£ —£)1/2724 J (P2 4+ (V2 — x2)% + (t — 1))°
< ¢ ! (Iv.2.120)
(1 = V2720 (e —2)2 4 (e — 1)
Now, integrating (IV.2.120) with respect to x; yields
J [we(xe)||(0):1] < D )7/4 —— (IV.2.121)

which is of a smaller order.

For (i),, we obtain

. C 35+21|x 2|
(D)2 < (tg—t)l/z_z’lfr (r2+(x2fvg) +(tg—t))

1
'L=0 (22 + (= V222 + (£ — 1))°

C 35+2/1|x 2’ C
s (tf_t)l/Z_Z/lfr(r2+(XZ*Vg) 24 (p—1))° ((XZ—V§)2+<te_t))3/2

C 1
< . (Ivi2.122)

(t;— t)1/2—27t (2 — v%)z +(te— t))9/4_3/1

Now, integrating (IV.2.122) with respect to x; yields

J ye(x)l[(1)2] < B )7/4 — (IV.2.123)

which is of a smaller order. The same result holds for (i7), (iii) and (iv). We go on
and consider now (v). We consider the same change of variable as previously. We
obtain
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Chapter IV. Introducing a source term with a x, dependency

C

<—
V t _l»)l/Z 21

JJ (r+2)%xo— V2| (t: — 1)
rdz=0 21222 ((r + 2)2 + (xp — v )2+(t — ) ((r—2)2+ (x2 — V22 + (t,— 1))’

1/2+2AJJ r?|a — V]
rJz=0 212724 (2 4 (x, — v2)2 +(tg—t))

2|2 — vel

1/2+22
+C( € J;L=r/2 rl/Z’ZA(r2+(x2—V§)2+(tg—t))g((r_ ) —i—(xg—vg) —i—(tg—t))
= (V)1 + (V)2 (IV.2.124)

For (v);, we get

r2.5+2/l |x2

wh<a&—ﬂ““fﬁuu4@—mylétwﬁ

1
< C(ty—1)'/?+% —. (IV.2.125)
(2 = V22 + (£ — 1)) ¥

Now, integrating (IV.2.125) with respect to x; yields

f [we(x2)l|(v)1] < o )7/4 o (IV.2.126)

which is of a smaller order.

For (v),, we obtain
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IV.2. Proof of the blowup as 1 — ¢,

r1.5+2/1’x2 o V%‘

(22 = VB2 + (te— 1))

(V)Z < C(tg . t)1/2+2/lf
r (r2+

1
L:o (22 + (x2 —v2)2 + (£ — 1))’

< C(t, t)1/2+21f rt 2 e — v : ¢
D (r2+ (2o —v2)2 + (e —1))° ((xa—vE)2+ (1. —1))%/2

< C(te— 1)V/2+2A - ! e (V2127)
(2 =ve)? + (te — 1))

Now, integrating (IV.2.127) th respect to x; yields

J [we(x2)||(v)2] < 0 )7/4 0 (IV.2.128)

which is of a smaller order. Lastly, we go on with (vii).

(vzz)<;
t _ t)l/Z 21

ff |x2 —vE|(fe — 1)
rJz=0 21/2-24 ((x, — v2)? (t ) ((r—2)2+ (x2 —v2)2 + (£ — 1))’

3/2+2/1]J |2 — v
rdz=0 212724 (12 4 (xp —v2)2 + (1, — 1))°

| X2 — V|

3/2422
+el ﬁLﬁ/z r12=22 (12 4 (xg —v2)2 + (e — 1)) ((r — 2)2 + (32 — V)2 + (te — 1))’

= (vii)1 + (vii),. (IV.2.129)

For (v);, we get
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r0.5+2/1 ’xz o

Vel

(i < Q=02 | o

1

<C(te—1)3*2 . (IV2.130
e (2 = V224 (1= 1) 71 ( )
Now, integrating (IV.2.130) with respect to x; yields
C C
2 ..
LZ [we(x2)|[(vii)| < DETT== < DT (IV.2.131)

which is of a smaller order.

For (vii),, we obtain

X2 —VE]

vii)y <C(t;—t W““J
(vif) < ) r rV2=20 (12 4 (x —v2)2 + (1, — 1))’

1
'L=o (22 + (g —v2)2 + (te — 1))°

< C(te— t)3/2+2;LJ rE g vy ¢
F(r2+ (= V224 (te—1))° (e —vE)2+ (re — 1))3/2

< C(te—1)%?+% ! —. (IV2.132)
((x2 = VB2 + (8 — 1))
Now, integrating (IV.2.132) with respect to x; yields
WA (vid)e < —— s v2.133)
% ,(I/E 2 2| (l’g_t)?/‘lf?)/l, oo

which is again of a smaller order.
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IV.2. Proof of the blowup as 1 — ¢,

Now, we have established the lower bound for (iv); in (IV.2.70). The last step is to

establish an upper bound for (iv),, (iv)s and (iv)4 to conclude the proof. The case of
(iv), and (iv)s are similar. We start with (iv),.

We decompose as follows

—V2li(t — a2 B
(e Y ” () e vl (e =0 |yl el (1)

it+j+k=2 |¢ txl,xg <p(t,y,x2)|1/2 24 ¢X1(t’x1’x2)2(px1(t’y’xz)z

=a)+ax+a3. (IV.2.134)

We obtain

<C Y JJ (x1)x2 —vel (L —1)* |

it+j+k=2 ’(P t)C1,X2 (t,y,xg)\l/z 24 (:bxl(t’xl’xz)z(pxl(t’y’xz)z

< (tg N t)k71/2+2/1|x2 _Vglj

i
. J f T (x1)"- [y (IV.2.135)
tx =y (1, X1, X%2)% P, (1, ), X2)?

Now, we use Holder in (IV.2.135),

2/3
< C k—1/2+21 (JJ )
al i+];c—2 e(te —1) |2 — %1 — |3/4 31

| < f J (x)® ) ( f f () )”3
(24 (2 —v2)2 + (£ — 1))° (2 (2= V22 + (te—1))°

< C. (=)™ | 219/65|l_/z. (IV.2.136)
ivjrk=  ((2—=ve)?+(te— 1))

To do this, we studied the two last integrals. In particular, we give the following

141



Chapter IV. Introducing a source term with a x, dependency

estimates.

S| 1/3< Ce
Jo (+a)®) T a6’
(00 3 1/3

G (IV.2.137)
Jo (x2+a)6 = a4/3,

el x6 1/3< Cg
)y Zrap) San

Integrating (IV.2.136) with respect to x, yields

1
“s 7 : (IV.2.138)
Lz it ];sz (te — t)32/12—i/2—j/2—k+1/2-2A

Given the fact that i + j + k = 2, the highest order possible is 26/12, which is indeed

smaller than 9/4 = 27/12. We will now go through a, and a3. Because they are
somehow similar, we will skip a few details.

For a,, we obtain

2/3
B . 1
az < Z Ce(te — f)k 1/ZJFMIJCz —V§|j+1 <JJ |x |3/4—3)L)
.G t|X1—y

i+j+k=2

i 13
.<ff;(xf+(x2—(v§1))j+(t ) (JJ (xF + xz—Ve) +(te—1))° )

k 1/2+2/1\x — v |]+1

< € (IV.2.139)
22/6—i/2
i+j+k=2 ((xz—vg)2+(tg—t)) /6=if2°
Integrating (IV.2.139) with respect to x; yields
J a2 s Z 1 (IV.2.140)
2 h j i * . .
X2 i+ jrkea (fe— £)19/6=i/2=(j+1)/2—k+1/2-2A
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IV.2. Proof of the blowup as 1 — ¢,

Given the fact that i + j + k = 2, the highest order possible is 26/12, which is indeed
smaller than 9/4 = 27/12. We will now go through a, and a3. Because they are
somehow similar, we will skip a few details.

For a3, we obtain

2/3
) . 1
a< D Celte—1)F*! 1/2+“|x2—V§|]UJm)
) _ L X1—Yy

: 1/3
llFe=re ) (=)
C(XF 4 (= vE)2 + (L — + (xp — v2)? +(tgft))

(tg k+1 1/2+27L|x2

vg|f

< 262" (Iv.2.141)
z+]+k 2 ((xz—Ve) +(t.— 1))
Integrating (IV.2.141) with respect to x; yields
< L IvV.2.142
o a2 s Z (t;— t)19/6—i/2—j/2—k—1+1/2—27t' (IV.2.142)

i+j+k=2

Given the fact that i + j + k = 2, the highest order possible is 20/12, which is indeed
smaller than 9/4 = 27/12. We will now go through a, and a3. Because they are
somehow similar, we will skip a few details.

We now look at (iv),, the expression being given by (IV.2.70). We establish an upper
bound.

(iv)s <C, E k1+k2fJ 1 ||| 2| xp — V212
< £ 8
L |p(8,vE+x1,%2) — P2, vE+ y,x0)| V2223, (x1) 3, (¥)

i+ji+ki=
ir+jo+ko=

(te — )btk |1 |7 y) 2| x5 — 2|j1+jz
<Ce Z 1/2 2AJJ|X ‘1/2 2,14) (x) 2( ) (IV.2.143)
i+ j1+k = 1=y x4 Y

i2+j2+k2

Now, we use Holder’s inequality in (IV.2.143) and simplify,
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Chapter IV. Introducing a source term with a x, dependency

: B i+ x| |y]
(iv)s < Ce (te—t)kth 1/2+21|x2_vz|]1+]2JJ
Z € l|x1—J/|1/2_2/1(/7}2c1(x1) ?cl(J’)

i1+ji1+ki=2
g+ jo+lko=2
1 2/3
ki1+ki— A i1+
<D Celte—n)ftRmVE g, g i (”m)
ih1+j1+ki=2 L=y
is+jotko=2
' Joo xi)il 1/3 . foo ySiz 1/3
0 (24 (xp =122+ (t.—1))° 0 (24 (x2—v2)2+(t,—1))°
1 2 € £ y 2 € €
(Iv.2.144)
From (IV.2.144) and (IV.2.137), we have
. C (t o t)k1+k1—1/2+2/1|x2_Vz‘jﬁ-jz
(ll/)4< — 11 3 - u_ 3k
nththki=2((t;— 1)+ (v —x2)2) ¢ ® ((t,— 1)+ (vZ—xp)2) ¢ ®
i2+j2+k2=2
_ Z Cg(tg— t)k1+k1—l/2+2/1|x2_V§|j1+j2
= 2 2_3M
h+ptki=2 ((fe— 1)+ (vi—x2)%)% 7 F
in+jo+ko=2
C.(t-—t ki+ky—1/2+422
< elte—1) (IV.2.145)

22 _hthti+i
in+h+ki=2 ((t; — 1)+ (V2 —x2)%) © 2
io+jo+ko=2

We will distinguish the different cases. First, if k; + k, =0, then i} + i, + j1 + jo =4
and we have

Cg(tg . t)k1+k2—1/2+2/1 B Ce 1
(te— 1)+ (V2= x,)2) 5 TR (1= VI (- )+ (12— 1))
(IV.2.146)

hence, integrating (IV.2.146) yields
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IV.2. Proof of the blowup as 1 — ¢,

J R 1
X2
vt (e = DVERA (1) (v2 - xp)2)10/0
< Ce L IV.2.147
= (te — t)7/6+1/2—2/1 << (£ — t)9/4—3/1' (IV.2.147)
If ky + ko =1, then i; + i2 + j1 + j» = 3 and we have
£< - ) 2_i1+j1+i2+j2 = E( = 2) 9 13/6’ (IV2148)
(te—0)+(V2—x)2)s 2z ((te—1)+ (ve — x2)?)
hence, integrating (IV.2.148) yields
V2426, Celte— t)1/2+2/1
f wg(x2> - - 13/6
ot ((fe— 1)+ (- x)?)
< Ce IV.2.149
S ool << = (IV.2.149)
If ky + ky = 2, then i} + i> + j1 + j» = 2 and we have
Ce(te o t)k1+k2—1/2+2/1 B Ce(te . t)3/2+2/1 V2,150
22 Dtiititis 2 2\16/6’ (IV.2.150)
((te— 1)+ (V2= x)2) ® z ((te — 1) + (v — x2)?)
hence, integrating (IV.2.150) yields
V2426, Ce(te — t)3/2+2/1
Xp=v2—20, (2. — 1) + (vZ—x2)?)
Ce 1
< (IV.2.151)

(tg _ t>4/6—2/1 << (tg _ t)9/4—31'

Now, we deduce from the same computations that the term corresponding to k; + k, =
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Chapter IV. Introducing a source term with a x, dependency

Ce

3 is smaller than e

and that the term corresponding to k; + k» = 4 is bounded.

Now, we use (IV.2.145) to conclude for the term corresponding to (iv), in (IV.2.71).

Ce
<< (IV.2.152)
(tg _ l—)9/4—3/1

V2426,
j W2 () (iv)a

Xo=v2—26,

This concludes this proof.
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\Y4 Introducing a perturbation of the
initial data

In this chapter, we study the stability of the instantaneous blow up exhibited in
chapter I. In chapter II, we introduced a source term and showed that the pathological
behaviour was preserved. Now, we are going to add a perturbation with respect to the
initial data and show that the corresponding Cauchy problem is again ill-posed. More

precisely, we consider the Cauchy problem

(Ju= DuD?u + f(t,x1,x0,u),
ou . (MQLW?2) (V.0.1)

Uj—o= Uy, — =—x(x1)+u
0= T 5 x(x1) + i

and the corresponding regularized Cauchy problem

Cu= DuD2u+f(t,x1,x2, u),

. ou _ (MQLW2), (V.0.2)
U= = Uo, Ep—o = —xe(x1) + i1y,

where y and y,. are defined as in 1.1.6 and (III.1.2) respectively. We will denote
Dii(x1,x2) = 0(x1, x2) = Oy, lip — 1. We also assume the two following conditions

o*f
—a | S6
X

(ii) (dio, it ) € H*(R*) x H*(R?).

(i) Va,

(V.0.3)

In this chapter, we do not go through all the previous computations as they will still
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Chapter V. Introducing a perturbation of the initial data

hold. Instead, we are going to prove an equivalent of lemma IV.1.3 and the result will
follow.

Now, rewritting (V.0.2) with Du = v yields

1+v t, X1, X2,V
(at+ . axl) v= % = g(t,x1,%2, V).

ou (V.0.4)
==X+, U= o

E|t=0

where g also satisfies (i) of (V.0.3) as v < 0. We now state the main theorem of this
chapter.

Theorem V.0.1. Let u. be the solution of problem (V.0.2). There exists a time t. such
that

[[1e (0, )| gr1/a gy < o0
) ) (V.0.5)
||u€<t)')”H11/4(R2)_>OO ast— t.
Also, we have that
le—0 ase—0. (V.0.6)

We first do some preliminary work, and later state and prove an equivalent of lemma
IV.1.3 for this case.

Preliminary work
Asin (I.1.3), we define ¢ (implicitly depending on ¢) as
¢(0,x1,x2) = X1

1+ v(t,¢(t,x1,%2),X2) (V.0.7)
1—v(t,¢(t,x1,%2), %)

Orp(t,x1,X2) =

From (V.0.4) and (IV.1.8), we get

-~

a%(v(t,qb(t, X1,%2),%2)) = g(t,p(t, x1,%2), X2, v(t,P(t, X1, X2), X2)). (V.0.8)

148



From now on, we will not specify every variable, but only if the function is applied to
x1 of ¢(t, x1, x2). Integrating (V.0.8) yields

t

v(p) = x(x1) + 0(x1,x2) +J g(r,¢)dr. (V.0.9)

7=0

Differentiating (V.0.9) leads to the following expressions for the derivatives of v.

Oy P(x1)0x, V() = ¥ (x1)+0xy 17+J 3x1</>(7»x1)518(f’x1)+f Oy (T, %1)0x, v(T, X1)038(T, X1)

_r
8x1¢<7’ xl)

+J Ox, p(7,%1)018(T, ) +J Ox, P(x1)0x, v(r,xl)agg(r,xl)]. (V.0.10)

o u() = [x'<x1>+axlﬁ

Bol9) = s V) 485,04 [ (Gt *aiatma) [ Eptr (e
X1 1 T T

n f (O (1, 30))? 0y 0(T, @) 23018 (1, 9) + j &2 (7, 11) 038 (1, ), (7, )
+ f (O, (7, 31))* 01038 (7,) 0x, (T, ) + f (0x,p(1,%1))% (05, v(7,0))* 058(7, )

T L<axl¢<r,x1>>2aiv<f’¢>53g<""’>]

0%
_% lX’(x1)+ax1 17+f ax1¢(T,XI)alg(T,¢)+f 6x1(p(r,x1)(93g(r,(p)axl U(T,Qb)
X1 1 T -
=A—B. (V0.11)
Again, we have
zvxl(d))
a0 - 0.12
e (0) = T g (V0.12)
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2052 () (1—v(¢h)) +2v§1<¢>.

(= vg)P .

Prxix, (xl) =

We now state the lemma. It is in fact identical to lemma IV.1.3

Lemma V.0.2. There exists a time t, such that the following properties are verified.

te.—0 ase—0. (V.0.14)

¢x, >0 Vi<t

1.2 - (V.0.15)
H(VE’VE) S.L. (le(t&"vg)‘/g) =0
0<¢x1<1; (Pt,x1<0 Vi< t,
Eng, ’(pt,xl,xl‘ < Cg|ln(tg - t)|.
vy, <0, v<0 (V.0.16)

Ce(x'(x1) *CE).

3G, vy <
v (9)] < Z20

Ifx1, X and t are sufficiently close to (v.,v2, t.), we have the following estimates.

c! __ !
(x1 =V + (= V)2 + (te— 1) by (11)
< Ce
(x1 = ve)? + (%2 = vE)2 + (te — 1)
3G, G2, Gy iy (31) = Co (31 —v) + CE (32 = vg) + C(Le — 1)
+ D (v e —vA (e — 0)F fijr(tx1,x2), (V0.17)
i+j+k=2

icl,c?>o,
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where all the involved | functions are bounded near (t,v},v2). We also have

Celln(t, — ¢
| \<—E| n(Ez )|, (V.0.18)
x|

where A is the A involved in (V.0.11).

Lastly, for € small enough, we have

CE(Px]xl(x;) X_/ <B< C6¢x1x1<x;> 2)(/’
(()DXI (XI)) 2 ((le (XI>) (VO].9)

Cf(pxlxl(xg) 2)(/ <B< C8¢x1x1(x13> )(_/
(¢, (x1)) (¢, (x1))” 2

The first inequality being verified when ¢, x, <0, and the second being verified when

(lexl = 0.

We stop here for this case. The rest of the proof should be identical to what have been

done when we added the source term f(t, x1, X2, Vut).
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RYAPPENDIX

A.1 Initial condition in the classical Sobolev space

First, we will consider (I.1.6) and prove the following theorem. In the next section, we
will use this theorem to find an uniform bound on the sobolev norm of an extension
of (I.1.7).

Theorem A.1.1. With g: (x;,x2)€Q+— — ijl:o |In(y)|%dy, there exists § : R* — R such
that g|q, (x1, x2) = g(x1,0) and||§||H7/4(R2) < 0.

First, we show the following technical lemma. We will use it for £ = 0 in this subsection
and for ¢ > 0 in the next section, when we will consider extensions of our functions
defined respectively on Q¢ and Q;.

LemmaA.1.2. Let f:R?> — R and o < R? such that f = 0 outside of w.

Then for t > 0,

’f
. _c T (5,
||f||H;{4(R2) Jf(xhxz)ew (ax%) (x1,%2)

: X1 —y|~1/? az_f dvdx.d
1| — | (x2)dydxzdx
Yl (rx2)ew OXq

(A.1.1)
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Proof.

*f

10y =

_ 02 B 02
T PR
(x1,%2)ER? 0X] 0X]
() - (5F)
= Vi — | (x1,x2)- | =5 | (x1,x2)dx
[I. w5 - (55) m
2L
ox?

X1,%2)

<

X1,X2) - —d
J\val xg ERZ (axl ! 2) LER \/ |

)i
X1 —y
_ 0%
[y G [ (o
(x1,02)€0 \ OX] ¥l (yx2)ew oxXy

For (*), we used that

(—8)"2(f)(x) = (2 E))* F(©)) (x),

and that for s > 0,

Nl

T r(;) ’sfn

2 |JC
mz I(

(2m) " ([€]7°) (x) = (2m)

[\] [
S—

)

(A.1.2)

(A.1.3)

(A.1.4)

In our case, because we integrate only with respect to x;, we obtain from (A.1.3) and

(A.1.4)

vl =c| it/
YER

(A.1.5)

We will also use the following technical lemma. It gives the finiteness of an expression

that will appear when we will show theorem A.1.1.
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Lemma A.1.3. The expression

(A.1.6)

I J |1n<x1)|“lf 2 [In(y)|*~!
a,0 — ’
x1=0 X1 0<xe< \/Tlg y,x2<|ln‘(§y)|5 ym

In(x7)

. . 1 1
is finite fora < g and 6 > 3.

Proof. (of the technical lemma)

We first establish the following estimation.

3 11 x 11 : 11
——dy<J ——dy+f ~dy
sz/z \y—x|y y=x2NVX—=YVY y=x VY —=XY
1

I A Y
<= + y—x—| + y—x—dy
XJy—x/2/X—Y . y?

y=x

< c\% - [2@/36—4@] + : 2VY X,

= YV
1 2
<C—+Cf \/—Zdys
Vx y=x YV

<
Jx

(A.1.7)

Also, we remark that for m < 1,

b b m " .
f |1n(x)W<(f \m(x)y) (b)™ < CH™ ™ |In(b)|™ = Cb|In(b)|™,  (A.L.8)
0 0

where m* =1—m.

Now, for m € [1,2],
b b
f [In(x)|™ < b|In(x)|™ +J In(x)|"" <(a1.8) Ch|In(b)|™. (A.1.9)

0 0
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Now, we split the domain of integration of I as in (A.1.6) in y into two parts, corre-

sponding to the smallness respectively of y and of y — x.

o< f [In(xn)|! f F/Z [In(y)[*~!
@0 = J o |xl ngﬁ y=5 [y\/]x -yl

e
<[ [In(x)|*”! [ f I _ o 2
n=0 %] xzsﬁ y=x1/2 |y]\/]|%1— Y| '

(A.1.10)

Now, we study (*)* of (A.1.10), and use (A.1.8).

(*)1<F [In(x)] " Jxl/z [In(y)]e~!

0n=0 X14/X1 xz\“\(ﬁ)l y=x5 |y|

< J% |1n(3C1)|a71 IIn(x)|% < J% [In(x) [ |In(x2)[ /21
S —_— 2 X
=0 X1v/X1 K<Y n=0 X14/X1 |ln(x1)|5

lin(x)0
1
5 1 20,’—1—6
gf [ In(x1)| . (A1.1D)
X1=0 xl

This integral converges when a < % and 6 > %

Now, for (*)2, we have

3 1 a 3 1
(*)2<J ‘ n(.Xfl)‘ f |ln(xl)|cr—1Jv J -
x1=0 X1 X< YA xzéﬁ y=x/2 J’m

[In(x )|5
<f [In(x) 2210 y/x (3 f In(x
=0 x y=x1/2 y\/|x V| X

)|2¢x 1-6
(A.1.12)

The last inequality holds because of (A.1.7). This integral converges when a < % and
5> 1.
3
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We now prove theorem A.1.1. To do so, we find an extension of the considered function
that is defined globally and has finite Sobolev norm.

Proof. of theorem A.1.1. Let

X1
—J |In(y)|%, forx; =0,
y=0 (A.1.13)

0 forx; <O.

[, x2) —

Let ¢ : R — R be a smooth function such that ¢(x) = 1 for |x| < 1, ¢(x) = 0 for |x| > 1,
and 0 < ¢p(x) <1 for all x in R. Let v : R — R denote a smooth function such that
y(x)=1for|x| <1, y(x)=0for |x|>1 and 0 <y(x) <1forall xeR.

Define

n5 X1)X2
h(x) = fy,(x)-¢ (%) - (x). (A.1.14)

We multiply fy by a cutoff function in x; that almost respect the geometry of Q, i.e.
6
¢ (%) = 0 when x, > %« /x1In(x;)~? ; and we multiply f; by a simple cutoff

function v in x.

Now,

0 In® (x1) %2 B 261n° 1 (x)) —In®(x1) , /In%(x1)xo
<<P (—xl)) = X2 2x1/%1 ¢ ( = ) (A.1.15)

and
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Also,

[ (01, %2) 0 oy =< €%, 3% > g

=< [&7 V2 (€lR) 6 1R > 1, ey (A.1.17)

- L (v(vH)) - (v)

Using this formula, we get that

HK<XI)XZ)HH3/4 [RZ)
e @ (1P (x)x,
chaaaz O 8_361(/)( NG | Vie(a, x2) ] dx (A.1.18)
cof
xeR?

where C is a constant depending only on ¥ and its derivatives. The non-integrability

_1/2i ’111‘6()@))62

xz ax#’( NES

)‘-|V1<(x1,x2)]dx,

of this integral may only occur near x; = 0. Also, when |xp| > 5 |h1—v\3L(l‘) Vi (x1,x2) =0.

Thus, there exists a constant K > 0 such that

0 12601 (x1)| + [ In® (x7)] 1
—x«(x1,x2)| < constant - 5 <K , (A.1.19)
0x1 2|x1 ]+ [In® (x7)| 21|
and
K(x1,%2)| <K ! (A.1.20)
axz bA2)) s Z\xl\' o
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Hence,
IIK(xl»X2)HH3/4 R2)
0 1
<(K+1) f J II/Z—K(xl,JCg) - —dxodx;
x1€[0 \x2|\2|] I“;El ; 0x1 2x1
S (A.1.21)
_1/2 0 1
K+ 1 J f N xz / (Q_K(xl,xz) ——dxodxy
x1€[0,4] x| <1 1 0 X2 2x1

In[® (x1)

=: (i) + (ii)

Let us now find an upper bound for these two quantities. First, we divide (i) into two
terms. We use the formula given by lemma I.2.4. We consider x, y, x, > 0 by symmetry.

f 1
Fibt <y V1Y =l

x1€[0,3] xzsélln‘l{g;l) =(x2)? xlyvly x1|

(A.1.22)
\/7 J xlxly«/]y x|

For the first term, we get

[
x1=0 xzé%‘ln}g‘g (x2)2 X1Y/ X — Y|

1 1

3 1 z 1 VX1

< cj L Iin(x)| < cj In(x)
x1=0 X14/X %<y )‘ x1=0 v/ X1X1 |In(x1)[°

2 1
< J . (A1.23)

=0 X1|In(xp)[0-1

which converges when 6 > 2.
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Now, for the second term, we obtain

D=

o[ | ﬁ L 1,1y,
0 |x2|<%“\‘/lzﬁ) y=x1/2 «/|y—x1|2y 2|JC1|
(2 3y 1

<C| ——— dx;
o |In%(x1)| Jy=x/2 mzy "2 (A.1.24)

r‘2 /X1 1
0 VX1 2]x1]-|1n5(x1)|
i 1

0 xl-\ln5(x1)]

[

N
@)

dx; by (A.1.7)

(-

DN~

N
a

dx1

[

This integral converges whenever 6 > 1.

We continue with (i7).

dy—dx,dx,
2x1

1
ll <K”J J Jz ;L
0=0|x|<5 (I;& y=(2)* /|y = x| V%1

(where K" is a constant depending only on ¢, its derivatives, v and its derivatives)
1

2
<C ( f —dxydx
0=0J]x|<) \/W \/ 2x1 S

(&

\le |5
<[’ [ L ed
X ——axX2ax1
Jri=0Jx|<d lnvlj;&l) «/ 2x1
1
2 A/ |x 1 1
<C Ll dx

(&

si=o [In[9(x1) /X1 230

1

1
< |0 ————an,
1=02x - |Inlx;)|6

(A.1.25)

which converges whenever § > 1.
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Now, we do an estimation of the Sobolev norm of v,k to show that & is in H”/*(R?).

K : = v12(vh X1, %2) - Vh(x1,x)dxodx, = (=
1 e Lﬁmajm L VI VA dndn = )

T2 1m0 (xy)|

(A.1.26)

As we have previously seen, the biggest order terms near x; = 0 are obtained by
differentiating with respect to x;. Hence,

3
,]sz|<l i |Kx1fx1’<L( 2—|7<x1(J/)fx1(y)!dy dx,dx;

)
1
rs 1
+CJ 1J Nz |fo1x1| |K(J/)fx1x1(J/)|dy dxydx,
SN o2 T 1]

(-

—x |le (y)fxl (y>| dy dedxl

+
A
= ?
)
=
e
—_—
=
~
s
B
=
;s
E:
(&
S
oo~
&
=
T )

2 )P Y y—x
f‘% 1
+CJ 1 1 VA % fa| ——— [k (¥) fax (¥)|dy | dx2dx:
xle[o’f] |x2‘<§\ln(x1)|5 Jy=(x2)2 |y_x1|

(A.1.27)
Let us majorate these quantities independently.
Now, we study (i) and split the domain in y into two parts as previously.
f f f”/z InCG)l* 1 [In()[*
x1=0 Jxp< )‘5 (22 X1 -yl Y
(A.1.28)
J J J”Z [In(x)|* 1 |In(y)|”
x1=0Jx \“ = )I‘S y=x1/2 X1 ]xl —y| Y

For the first part, we have that
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J W2 In(x)* 1 [In(y)”
a=0Jos s Jy=(ep2 M1 -yl Y
<F [In(x)® 92 {in(y)|"
=0 FIVIL S Jym(np Y
1 1
5 1 a > 1 2a+1-6
<f2 [In(x)|® |In(xp) % <(A.1.9)J2 | In(x1)| . (A.1.29)
X1= 0 XIf X< ———~ X1=0 xl

|In(x )|5

This integral converges when 6 > % and a < %. For the second part,

1 1
2 1 a 2 1
[o e <o —L ()P

y=x1/2 X14/ |31 = Y| o X1-|In(xp)[®

1
JE J
x1=0Jx<

. . . A 4
Using the previous upper bounds. Since 2a < 1/3, this integral converges for § > 3.

Ve
Iin(xp)[?
(A.1.30)

\/m 2 fxx( )
(ii)gCHKH%OOJ —fxx( )J 1X] - dydx;
In(xp)o 7" y—Xx
nef0,d] | i|ﬁ)| |1( P VYA (A.1.31)
x1 Il
< Cl|x 0 d dx
e [ Tl ey

By the calculus made in lemma A.1.3, this integral converges provided that a < % and
6>1.
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Now, we look at (ii1).

alln(x;)|@ ! x1/2 1 1
il RO (7 L L gyeay ) dxpdn
X y=3A/|ly—x|Y

alln(x)|* ! 2 1 1
vef R (L dnyiay ) aan
xle[o,%] XZQ% 1 5 X1

y=n/2+/|y =2l

(A.1.32)

For the first term, using (A.1.9), we obtain

a—1 prx1/2
#*) < C xl| o — Z|In
I I I Lyl
xle[O,%] ng% \ln(x?)\ﬁ xl\/xT y:xg ¥y

_ 1 _
—lln(xz)oc+l<(jj2 [In(x) [ 0
X14/ X1 h

\/T _ )
% \ln(xll)\‘s =0 .
(A.1.33)
and for the second term, using (A.1.7),
1
a|ln(x;)]?* 1! (2 1
e N I L e
nel0d] <t ee . y=n/2 yv/lx =yl
3 ‘ln(xl)‘Za—l—é
<C . (A1.34)
x1=0 xl

Both those expressions converge when a < % and 6 > %
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Lastly, we do the same for (iv).

%“n\(/xip X1 y:(x2)2 ‘x_y|y

N f f |In(x,)|® f [[x|oo] In(y) |1
ne0 i<t Y1 X1 Jy—y [x—yly

For the first term, we obtain using (A.1.8)

(N<c J f In(x)[® (/2 Il In(y)]**
x1€[0,1/2] x2<§“{x7)|5 X14/X1 y=(x2)2 y
n(xj

1 a 1 2a—6
<Cf J M“n(xz”“gcf [In(x)[77°
nef0,1/2] Jops Lo X14/X x1€[0,1/2] X1

|In(xp)[°

and for the second term, using (A.1.7),

(P<cC f f [In () [2* JI/Z 1
h x1e[0,1/2] Jap <l L X1 y=x1/2 J/\/W

1
2 |in(xp)[®

|ln(x1) |2a—1—6

f [In(x)|* rl/z [rclloo [ In(y)|*~"
$1 s

< Cf
x1€[0,1/2] X1

Again, both those expressions converge when 6 > % and a < %.

Definitions

(A.1.35)

(A.1.36)

(A.1.37)

Definition A.1.4. We say that u is a proper solution, if it is a distributional solution,
and if u is the weak limit of a sequence of smooth solutions u, with data (¢ * f, e * g),
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where p¢(x) = p(£)e™" for some function ¢ satisfying p € C3° and §¢p = 1.
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