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Abstract
A traditional machine learning pipeline involves collecting massive amounts of data cen-

trally on a server and training models to fit the data. However, increasing concerns about

the privacy and security of user’s data, combined with the sheer growth in the data sizes has

incentivized looking beyond such traditional centralized approaches. Collaborative learning

(which encompasses distributed, federated, and decentralized learning) proposes instead for

a network of data holders to collaborate together to train models without transmitting any

data. This new paradigm minimizes data exposure, but inherently faces some fundamen-

tal challenges. In this thesis, we bring to bear the framework of stochastic optimization to

formalize and develop new algorithms for these challenges. This serves not only to develop

novel solutions, but also to test the utility of the optimization lens in modern deep learning.

We study three fundamental problems. Firstly, collaborative training replaces a one-time

transmission of raw data with repeated rounds of communicating partially trained models.

However, this quickly runs against bandwidth constraints when dealing with large models.

We propose to solve this bandwidth constraint using compressed communication. Next,

collaborative training leverages the computation power of the data holders directly. How-

ever, this is not as reliable as using a data center with only a subset of them available at any

given time. Thus, we require new algorithms which can efficiently utilize unreliable local

computation of the data holders. Finally, collaborative training allows any data holder to

participate in the training process, without being able to inspect their data or local compu-

tation. This may potentially open the system to malicious or faulty agents who seek to derail

the training. We develop algorithms with Byzantine robustness which are guaranteed to be

resilient to such attackers.

Keywords: Machine learning, optimization, collaborative learning, distributed learning, fed-

erated learning, Byzantine robustness.
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Résumé
Une procédure d’apprentissage automatique traditionnelle implique la collecte de quantités

massives de données de manière centralisée sur un serveur et l’apprentissage de modèles à

partir de ces données. Cependant, les inquiétudes croissantes concernant la confidentialité

et la sécurité des données des utilisateurs, combinées à l’augmentation de la taille des don-

nées, ont incité à regarder au-delà de ces approches centralisées traditionnelles. L’appren-

tissage collaboratif (qui englobe l’apprentissage distribué, fédéré et décentralisé) propose

plutôt à un réseau de détenteurs de données de collaborer ensemble pour former des mo-

dèles sans transmettre de données. Ce nouveau paradigme minimise l’exposition des don-

nées, mais est confronté à des défis fondamentaux. Dans cette thèse, nous utilisons l’optimi-

sation stochastique pour formaliser et développer de nouveaux algorithmes afin de relever

ces défis. Cela sert non seulement à développer de nouvelles solutions, mais aussi à tester

l’utilité des notions classiques d’optimisation dans l’apprentissage profond moderne.

Nous étudions trois problèmes fondamentaux. Premièrement, l’apprentissage collaboratif

remplace une transmission unique de données brutes par des cycles répétés de commu-

nication de modèles partiellement entraînés. Cependant, ces communications se heurtent

rapidement aux contraintes de bande passante lorsqu’il s’agit de grands modèles. Nous pro-

posons de résoudre cette contrainte via la compression des communications. Deuxième-

ment, l’apprentissage collaboratif exploite directement la puissance de calcul des détenteurs

de données. Avec seulement un sous-ensemble d’entre eux disponible à un moment donné,

cela n’est pas aussi fiable que d’utiliser un centre de données. Ainsi, nous avons besoin de

nouveaux algorithmes capables d’utiliser efficacement le calcul local et peu fiable des dé-

tenteurs de données. Enfin, l’apprentissage collaboratif permet à tout détenteur de données

de participer au processus d‘apprentissage, sans avoir connaissance des données ou des cal-

culs locaux. Cela peut potentiellement exposer le système à des agents malveillants ou dé-

fectueux qui cherchent à faire échouer l’apprentissage. Nous développons des algorithmes à

la robustesse Byzantine garantissant leur résistance à de tels attaquants.

Mots clés : Machine learning, optimisation, apprentissage collaboratif, apprentissage distri-

bué, apprentissage fédéré, robustesse Byzantine.
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Chapter 1. Introduction

Modern machine learning has enjoyed immense success stories such as using CNNs for skin

cancer classification (Esteva et al., 2017), GPT-3 for natural language understanding (Brown

et al., 2020), AlphaFold for predicting protein folding (Senior et al., 2020), etc. However, all of

these achievements have been predicated on collecting large amounts of user data and train-

ing immense models in a centralized datacenter (aka centralized training). For example, the

GPT-3 model has 175 billion parameters and is trained on 500 billion words crawled from the

internet (Crawl, 2020). Further improvement in prediction performance seems to necessitate

using even bigger models and training datasets (Kaplan et al., 2020). However, this raises se-

rious questions about the data being utilized in such centralized training—who owns it? was

is it obtained with consent? how is it being stored? etc.

Collaborative learning presents an alternative training approach where multiple data holders

collaborate with each other to train a machine learning model on their combined datasets,

without ever communicating their raw data. This is a more democratic approach to machine

learning with data holders retaining their ownership rights. The data holders could be edge

devices such as mobile phones, organizations such as hospitals, or even companies within

a consortium. They want to learn a joint objective on their sensitive datasets such as train-

ing a speech recognition model from voice recordings on mobile phones, or learning cancer

markers from genomic data by hospitals, or identifying money laundering from bank trans-

actions by a bank consortium. To encapsulate a wide variety of such use cases, we propose

the following broad definition of collaborative learning:

Collaborative learning is a machine learning paradigm where multiple data

holders collaborate in solving a machine learning problem. This can occur either

under the coordination of a central server (in which case we refer to it as federated

learning), or via direct peer to peer communication (called decentralized learn-

ing). The training utilizes the local compute of the data holders (called clients or

workers) instead of a central datacenter. Further, their raw data is stored locally

and not exchanged or transferred; instead, only focused updates intended for im-

mediate aggregation are communicated.

We note three important characteristics of collaborative learning: i) the data never leaves the

data holders—thus they retain full ownership throughout the process, ii) data can only be

used in the training if the data holder actively chooses to participate in the process thus en-

suring consent, and finally iii) the training objective is defined right at the start, ensuring that

the data usage is tied to a specific use case. The latter is especially important since meaning-

ful consent of data usage needs to be tied to a concrete use-case. This principle also underlies

the core ‘data minimization’ requirement in GDPR legislation (ICO, 2021).

A real world analogy for the collaborative training setting vs. the centralized training setting

is as follows1. Suppose my land lord decides to install a video camera in my living room. They

1This example is inspired by a talk of Blaise Agüera y Arcas.
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tell me the video feed is being fed into a machine learning model in the cloud which detects

movement and turns off the lights when the room is not being used. Contrast this setup

with a simple motion detector which can also achieve the same goal of detecting motion and

turning off/on the lights. With the former approach, I have no idea where the video recording

is being stored, how long it is stored for, how securely it is being stored, or for what other

purposes the recordings are being used for. In the latter setup, I can be guaranteed that no

data leaves my house and further no data other than what is absolutely required for the task at

hand is being collected. Consent to smart lights can not be construed to imply consenting to

indefinite and undisclosed storage of recordings. This is similar to the collaborative training

setting—consent of participation is tied to a specific machine learning objective, with no

movement of raw data.

While collaborative learning is undoubtedly a better paradigm than the centralized approach,

it comes with a host of challenges. In this thesis, we examine three fundamental roadblocks

which need to be overcome for wide scale adoption: i) compressing the inter-client com-

munication during training so that model sizes are not limited by the bandwidth, ii) training

algorithms which can efficiently leverage the often unreliable local computation available

on the clients, and iii) designing robust systems which can withstand potentially malicious

attackers or simply buggy clients who may seek to derail convergence.

Compressed communication. In collaborative learning, each client iteratively partially

trains a model using its local data, which is then communicated to a server or directly to

other clients. However, as we noted, modern machine learning models can be immense with

their growth in size outpacing even Moore’s law (AI, 2018). In such cases, communication

(more specifically bandwidth) becomes the bottleneck. A simple way to alleviate this would

be to use lossy compression and only send approximations of the update. E.g. we can send

only the signs of the parameter updates (called SignSGD), or only the k largest parameters by

magnitude (called Top-k). However, we will see that a naive application of such methods is

problematic. We show counter-examples (both theoretical and real world) where they fail to

converge, and further even if they converge they may not generalize. We then demonstrate

(theoretically and empirically) that using error-feedback, i.e. incorporating the error made

by the compression operator into the next step, overcomes both these issues.

Then, we incorporate real world system constraints into the error-feedback framework to

come up with a practical highly performant algorithm. This is achieved by designing a novel

low rank compressor which uses power iterations and combining it with modern optimiz-

ers such as momentum and Adam. Crucially, our compressor involves only matrix multipli-

cations (hence can leverage GPUs for fast encoding/decoding), and is also linear (hence is

compatible with all-reduce). We show that our method works ‘out of the box’ without requir-

ing additional hyper-parameter tuning, and is ready for adoption in practice.

Unreliable local computation. A second core feature of collaborative learning is that most

of the training occurs directly on the clients themselves using local computational resources.
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However, only a few clients will likely be available at any given time. Factors such as time

zones would likely dictate when clients are available–e.g. mobiles phones will only be avail-

able when they are charging and not being used (typically in the night), and hospitals may

only participate during working hours when the system can be supervised. Bad network

(data) connections may further cause unforeseen dropouts. Thus, the key challenge we face

is to design algorithms which can efficiently leverage the local compute power of the (some-

time) available clients.

We show that FedAvg (the de facto standard method for federated learning) suffers from

‘client-drift’ when the clients are heterogeneous (non-iid), resulting in unstable and slow

convergence. Instead, we propose a new algorithm (SCAFFOLD) which uses control variates

(variance reduction) to correct for the ‘client-drift’ in its local updates. We show (theoretically

and empirically) that SCAFFOLD is unaffected by heterogeneity or unavailability of clients.

We further propose a more practical algorithmic framework (Mime). Mime i) mitigates client

drift similar to SCAFFOLD, but also ii) adapts an arbitrary centralized optimization algorithm

such as momentum and Adam to FL in a principled manner. We theoretically prove that

Mime is provably faster than any centralized method–the first such result, and also perform a

thorough experimental evaluation.

Byzantine robustness. The third facet of collaborative learning is that no one can inspect

any data holder’s raw data or even local processing. This may open up the system to poten-

tially malicious (or simply faulty) participants who may derail the training. Byzantine robust-

ness seeks to develop algorithms which are resilient to such attackers. Such robustness also

ensures that no single data holder has a disproportionately large control on the output of the

collaborative training.

First, we examine existing aggregation rules and show realistic examples where they fail to

converge even in the absence of any Byzantine attackers. This, we show, is because traditional

definitions of robustness do not suffice for our setting. We introduce a more fine-grained

definition of robust aggregator and give a new iterative clipping procedure which satisfies it.

Our procedure is efficient, and compatible with secure aggregation and all-reduce.

Secondly, we show that even if the aggregation rules may succeed in limiting the influence

of the attackers in a single round, the attackers can couple their attacks across time eventu-

ally leading to divergence of any memory-less systems. This implies that in order to ensure

Byzantine robustness, it is necessary to profile workers using past updates. We then show that

simply incorporation local momentum is sufficient to overcome such time-coupled attacks.

This is the first provably robust method for the standard stochastic optimization setting.

Finally, we study the effect of data heterogeneity. To handle such settings, we propose a sim-

ple resampling scheme that adapts existing robust algorithms to heterogeneous datasets at a

negligible computational cost. We demonstrate (theoretically and experimentally) that com-

bining resampling with existing robust algorithms is effective against challenging attacks.

Our work also shows that having over-parameterized models, when combined with robust
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aggregation rules, is very beneficial for heterogeneous Byzantine robust optimization.

Organization. The thesis consists of three parts, each dealing with one of the problem de-

scribed above. Each part then consists of two chapters, the first of which presents a largely

theoretical investigation into the problem and proposing solutions to a possibly simplified

version. The second chapter then takes a more practical look, trying to incorporate real world

system constraints and characteristics yielding algorithms which are actually useful in real

world collaborative learning. Each of these chapter maps to a paper written by the author

(with other collaborators). Chapters also start with a preface, consisting of a summary of

the work and list of author contributions using the CRediT framework (Brand et al., 2015).

The appendices (which contain any missing proofs, additional experiments, etc.) for all the

chapter are collected at the end in the fourth part.
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2 Fixing gradient compression using
error feedback

2.1 Preface

Contribution and sources. This chapter is largely based on (Karimireddy et al., 2019), with

improved theoretical rates using techniques from (Stich and Karimireddy, 2020). Ideation,

theory, experiment design, and most of the writing was done by the author. The detailed

individual contributions are listed below using the CRediT framework (Brand et al., 2015):

SPK (author): Conceptualization, Methodology, Formal analysis, Software (20%), Writing –

original draft preparation (90%)

Quentin Rebjock: Software (80%), Writing – original draft preparation (10%)

Sebastian Stich: Writing – review and editing

Martin Jaggi: Writing – review and editing, Administration, Supervision .

Summary. As machine learning models and datasets grow bigger outpacing Moore’s law,

distributed training using multiple workers (GPUs / TPUs) is fast becoming a necessity. How-

ever, this leads to communication between the different workers (instead of computation or

storage) becoming the bottleneck. Gradient compression methods are popular strategies to

overcome such communication bottlenecks.

In this chapter, we examine these techniques through the lens of stochastic optimization and

show that a naive application of communication compression (e.g. SIGNSGDor Top-k) may

not work. We show counter-examples (both theoretical and real world) where they fail to

converge, and further even if they converge they may not generalize. We then demonstrate

(theoretically and empirically) that using error-feedback, i.e. incorporating the error made

by the compression operator into the next step, overcomes both these issues.

Since our initial work, numerous follow up papers (cf. Xu et al. (2020) for a survey) have

repeatedly corroborated our conclusions–using error-feedback with biased compressors re-

tains the train and test accuracy while using only a fraction of the communication.
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2.2 Introduction

Stochastic optimization algorithms (Bottou, 2010) which are amenable to large-scale par-

allelization, taking advantage of massive computational resources (Krizhevsky et al., 2012;

Dean et al., 2012) have been at the core of significant recent progress in deep learning (Schmid-

huber, 2015; LeCun et al., 2015). One such example is the SIGNSGD algorithm and its vari-

ants, c.f. (Seide et al., 2014; Bernstein et al., 2018, 2019).

To minimize a continuous (possibly) non-convex function f : Rd → R, the classic stochastic

gradient algorithm (SGD) (Robbins and Monro, 1951) performs iterations of the form

x t+1 := x t −γg t , (SGD)

where γ ∈ R is the step-size (or learning-rate) and g t is the stochastic gradient such that

E[g t ] =∇ f (x t ).

Methods performing updates only based on the sign of each coordinate of the gradient have

recently gaining popularity for training deep learning models (Seide et al., 2014; Carlson et al.,

2015; Wen et al., 2017; Balles and Hennig, 2018; Bernstein et al., 2018; Zaheer et al., 2018; Liu

et al., 2018). For example, the update step of SIGNSGD is given by:

x t+1 := x t −γsign(g t ) . (SIGNSGD)

Such sign-based algorithms are particularly interesting since they can be viewed through two

lenses: as i) approximations of adaptive gradient methods such as ADAM (Balles and Hen-

nig, 2018), and also a ii) communication efficient gradient compression scheme (Seide et al.,

2014). However, we show that a severe handicap of sign-based algorithms is that they do

not converge in general. To substantiate this claim, we present in this work simple convex

counter-examples where SIGNSGD cannot converge. The main reasons being that the sign

operator loses information about, i.e. ‘forgets’, i) the magnitude, as well as ii) the direction of

g t . We present an elegant solution that provably fixes these problems of SIGNSGD, namely

algorithms with error-feedback.

Error-feedback. We demonstrate that the aforementioned problems of SIGNSGD can be

fixed by i) scaling the signed vector by the norm of the gradient to ensure the magnitude of

the gradient is not forgotten, and ii) locally storing the difference between the actual and

compressed gradient, and iii) adding it back into the next step so that the correct direction is

not forgotten. We call our ‘fixed’ method EF-SIGNSGD (Algorithm 1).

In Algorithm 1, e t denotes the accumulated error from all quantization/compression steps.

This residual error is added to the gradient step γg t to obtain the corrected direction p t .

When compressing p t , the signed vector is again scaled by ‖p t‖1 and hence does not lose

information about the magnitude. Note that our algorithm does not introduce any additional

parameters and requires only the step-size γ.

10



2.3. Significance and related work

Algorithm 1 EF-SIGNSGD (SIGNSGD with Error-Feedb.)

1: Input: learning rate γ, initial iterate x0 ∈Rd , e0 = 0
2: for t = 0, . . . ,T −1 do
3: g t := stochasticGradient(x t )
4: p t := γg t +e t . error correction
5: ∆t := (‖p t‖1/d)sign(p t ) . compression
6: x t+1 := x t −∆t . update iterate
7: e t+1 := p t −∆t . update residual error
8: end for

Our contributions. We show that naively using biased gradient compression schemes (such

as e.g. SIGNSGD) can lead to algorithms which may not generalize or even converge. We show

both theoretically and experimentally that simply adding error-feedback solves such prob-

lems and recovers the performance of full SGD, thereby saving on communication costs. We

state our results for SIGNSGD to ease our exposition but our positive results are valid for gen-

eral compression schemes, and our counterexamples extend to SIGNSGD with momentum,

multiple worker settings, and even other biased compression schemes. More specifically our

contributions are:

1. We construct a simple convex non-smooth counterexample where SIGNSGD cannot con-

verge, even with the full batch (sub)-gradient and tuning the step-size. Another coun-

terexample for a wide class of smooth convex functions proves that SIGNSGD with stochas-

tic gradients cannot converge with batch-size one.

2. We prove that by incorporating error-feedback, SIGNSGD—as well as any other gradi-

ent compression schemes—always converge. Further, our theoretical analysis for non-

convex smooth functions recovers the same rate as SGD, i.e. we get compression for free.

3. We show that our algorithm EF-SIGNSGD which incorporates error-feedback approaches

the linear span of the past gradients. Therefore, unlike SIGNSGD, EF-SIGNSGD converges

to the max-margin solution in over-parameterized least-squares. This provides a theoret-

ical justification for why EF-SIGNSGD can be expected to have better generalization.

4. We show extensive experiments on CIFAR10 and CIFAR100 using Resnet and VGG ar-

chitectures demonstrating that EF-SIGNSGD indeed significantly outperforms SIGNSGD,

and matches SGD both on test as well as train datasets while reducing communication by

a factor of ∼ 30×.

2.3 Significance and related work

Relation to adaptive methods. Introduced in (Kingma and Ba, 2014), ADAM has gained

immense popularity as the algorithm of choice for adaptive stochastic optimization for its

perceived lack of need for parameter-tuning. However since, the convergence (Reddi et al.,
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2018) as well the generalization performance (Wilson et al., 2017) of such adaptive algorithms

has been called into question. Understanding when ADAM performs poorly and providing

a principled ‘fix’ for these cases is crucial given its importance as the algorithm of choice

for many researchers. It was recently noted by Balles and Hennig (2018) that the behavior of

ADAM is in fact identical to that of SIGNSGD with momentum: More formally, the SIGNSGDM

algorithm (referred to as ’signum’ by Bernstein et al. (2018, 2019)) adds momentum to the

SIGNSGD update as:

mt+1 := g t +βmt

x t+1 := x t −γsign(mt+1) .
(SIGNSGDM)

for parameterβ> 0. This connection between signed methods and fast stochastic algorithms

is not surprising since sign-based gradient methods were first studied as a way to speed up

SGD (Riedmiller and Braun, 1993). Given their similarity, understanding the behavior of

SIGNSGD and SIGNSGDM can help shed light on the convergence of ADAM.

Relation to gradient compression methods. As the size of the models keeps getting big-

ger, the training process can often take days or even weeks (Dean et al., 2012). This process

can be significantly accelerated by massive parallelization (Li et al., 2014; Goyal et al., 2017).

However, at these scales communication of the gradients between the machines becomes

a bottleneck hindering us from making full use of the impressive computational resources

available in today’s data centers (Chilimbi et al., 2014; Seide et al., 2014; Strom, 2015). A sim-

ple solution to alleviate this bottleneck is to compress the gradient and reduce the number

of bits transmitted. While the analyses of such methods have largely been restricted to un-

biased compression schemes (Alistarh et al., 2017; Wen et al., 2017; Wang et al., 2018), bi-

ased schemes which perform extreme compression practically perform much better (Seide

et al., 2014; Strom, 2015; Lin et al., 2018)—often without any loss in convergence or accuracy.

Of these, (Seide et al., 2014; Strom, 2015; Wen et al., 2017) are all sign-based compression

schemes. Interestingly, all the practical works (Seide et al., 2014; Strom, 2015; Lin et al., 2018)

use some form of error-feedback.

Error-feedback. The idea of error-feedback was, as far as we are aware, first introduced in

1-bit SGD (Seide et al., 2014; Strom, 2015). The algorithm 1-bit SGD is very similar to our EF-

SIGNSGD algorithm, but tailored for the specific recurrent network studied there. (Wu et al.,

2018) analyze unbiased compressors with a form of error-feedback involving two additional

hyper-parameters and restricted to quadtratic functions. Though not presented as such, the

‘momentum correction’ used in (Lin et al., 2018) is a variant of error-feedback. However the

error-feedback is not on the vanilla SGD algorithm, but on SGD with momentum. As far as

we are aware, Karimireddy et al. (2018a); Lu et al. (2020) were the first to provide an analysis

of the error feedback mechanism. They use it to design inexact accelerated methods. Stich

et al. (2018) utilized similar techniques to analyze error feedback with compressed stochastic

gradients (they call it ‘memory’) in the strongly convex case. Our convergence results can be

seen as a further extension to the non-convex, and non-smooth convex cases.
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2.4. Counterexamples for signSGD

Generalization of deep learning methods. Deep networks are almost always over-parameterized

and are known to be able to fit arbitrary data and always achieve zero training error (Zhang

et al., 2017). This ability of deep networks to generalize well on real data, while simultane-

ously being able to fit arbitrary data has recently received a lot of attention (e.g. Soudry et al.

(2018); Dinh et al. (2017); Zhang et al. (2018); Arpit et al. (2017); Kawaguchi et al. (2017)).

SIGNSGD and ADAM are empirically known to generalize worse than SGD (Wilson et al.,

2017; Balles and Hennig, 2018). A number of recent papers try close this gap for ADAM. Luo

et al. (2019) show that by bounding the adaptive step-sizes in ADAM leads to closing the gen-

eralization gap. They require new hyper-parameters on top of ADAM to adaptively tune these

bounds on the step-sizes. Chen and Gu (2019) interpolate between SGD and ADAM using a

new hyper-parameter p and show that tuning this can recover performance of SGD. Zaheer

et al. (2018) introduce a new adaptive algorithm which is closer to Adagrad (Duchi et al.,

2011). Similarly, well-tuned ADAM (where all the hyper-parameters and not just the learning

rate are tuned) is also known to close the generalization gap (Gugger and Howard, 2018). In

all of these algorithms, new hyper-parameters are introduced which essentially control the

effect of the adaptivity. Thus they require additional tuning while the improvement upon tra-

ditional SGD is questionable. We are not aware of other work bridging the generalization gap

in sign-based methods.

2.4 Counterexamples for signSGD

In this section we study the limitations of SIGNSGD. Under benign conditions—for example

if i) the function f is smooth, and ii) the stochastic noise is gaussian or an extemely large

batch-size is used (equal to the total number of iterations)—the algorithm can be shown to

converge (Bernstein et al., 2018, 2019). However, we show that SIGNSGD does not converge

under more standard assumptions. We demonstrate this first on a few pedagogic examples

and later also for realistic and general sum-structured loss functions.

If we use a fixed step-sizeγ≥ 0, SIGNSGD does not converge even for simple one-dimensional

linear functions. Counterexample 1. For x ∈R consider the constrained problem

min
x∈[−1,1]

[
f (x) := 1

4 x
]

,

with minimum at x? =−1. Assume stochastic gradients are given as (note that f (x) = 1
4 (4x −

x −x −x))

g =
4, with prob. 1

4

−1, with prob. 3
4

with E[g ] =∇ f (x) .

For SGD with any step-size γ,

Et [ f (xt+1)] = 1

4

(
xt −γE[g ]

)= f (xt )− γ

16
.
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Figure 2.1 – The gradients g (in solid black), signed gradient direction s = sign(g ) (in dashed
black), and the error e (in red) are plotted for ε= 0.5. SIGNSGD moves only along s =±(1,−1)
while the error e is ignored.

On the other hand, for SIGNSGD with any fixed γ,

Et [ f (xt+1)] = 1

4

(
xt −γE[sign(g )]

)= f (xt )+ γ

8
,

i.e. the objective function increases in expectation for γ≥ 0.

Remark 1. In the above example, we exploit that the sign operator loses track of the magnitude

of the stochastic gradient. Also note that our noise is bimodal. The counter-examples for the

convergence of ADAM (Reddi et al., 2018; Luo et al., 2019) also use similar ideas. Such examples

were previouslyt noted for SIGNSGD by (Bernstein et al., 2019).

In the example above the step-size γ was fixed. However increasing batch-size or tuning the

step-size may still allow convergence. Next we show that even with adaptive step-sizes (e.g.

decreasing, or adaptively chosen optimal step-sizes) SIGNSGD does not converge. This even

holds if the full (sub)-gradient is available (non-stochastic case).

Counterexample 2. For x ∈ R2 consider the following non-smooth convex problem with

x? = (0,0)>:
min
x∈R2

[
f (x) := ε|x1 +x2|+ |x1 −x2|

]
,

for parameter 0 < ε< 1 and subgradient

g (x) = sign(x1 +x2) ·ε
(

1

1

)
+ sign(x1 −x2)

(
1

−1

)
.

See Fig. 2.1. The iterates of SIGNSGD started at x0 = (1,1)> lie along the line x1 +x2 = 2. Note

that for any x s.t. x1+x2 > 0, sign(g (x))=±(1,−1)>, and hence x1+x2 remains constant among

the iterations of SIGNSGD. Consequently, for any step-size sequence γt , f (x t ) ≥ f (x0).

Remark 2. In this example, we exploit the fact that the sign operator is a biased approximation

of the gradient—it consistently ignores the direction e = ε(1,1)> (see Fig 2.1). Tuning the step-

size would not help either.
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2.5. Convergence with error feedback

Algorithm 2 EF-SGD (Compr. SGD with Error-Feedback)

1: Input: learning rate γ, compressor C (·), x0 ∈Rd

2: Initialize: e0 = 0 ∈Rd

3: for t = 0, . . . ,T −1 do
4: g t := stochasticGradient(x t )
5: p t := γg t +e t . error correction
6: ∆t :=C (p t ) . compression
7: x t+1 := x t −∆t . update iterate
8: e t+1 := p t −∆t . update residual error
9: end for

One might wonder if the smooth-case is easier. Unfortunately, the previous example can

easily be extended to show that SIGNSGD with stochastic gradients may not converge even

for smooth functions.

Counterexample 3. For x ∈ R2 consider the following least-squares problem with x? =
(0,0)>:

min
x∈R2

[
f (x) := (〈a1, x〉)2 + (〈a2, x〉)2] , where

a1,2 :=±(1,−1)+ε(1,1) ,

for parameter 0 < ε < 1 and stochastic gradient g (x) = ∇x (〈a1, x〉)2 with prob. 1
2 and g (x) =

∇x (〈a2, x〉)2 with prob. 1
2 . The stochastic gradient is then either ea1 or ea2 for some scalar e.

Exactly as in the non-smooth case, for x0 = (1,1)>, the sign of the gradient sign(g ) =±(1,−1).

Hence SIGNSGD with any step-size sequence remains stuck along the line x1 + x2 = 2 and

f (x t ) ≥ f (x0) a.s.

We can generalize the above counter-example to arbitrary dimensions and loss functions.

Theorem I. Suppose that scalar loss functions {li : R → R}n
i=1 and data-points {ai }n

i=1 ∈ Rd

for d ≥ 2 satisfy: i) f (x) := ∑n
i=1 li (〈ai , x〉) has a unique optimum at x?, and ii) there exists

s ∈ {−1,1}d such that sign(ai ) = ±s for all i . Then SIGNSGD with batch-size 1 and stochastic

gradients g (x) = ∇x li (〈ai , x〉) for i chosen uniformly at random does not converge to x? a.s.

for any adaptive sequence of step-sizes, even with random initialization.

2.5 Convergence with error feedback

We show the rather surprising result that incorporating error-feedback is sufficient to ensure

that the algorithm converges at a rate which matches that of SGD. In this section we consider

a general gradient compression scheme.

2.5.1 Setup

We generalize the notion of a compressor from (Stich et al., 2018).
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Chapter 2. Fixing gradient compression using error feedback

Assumption A (Compressor). An operator C : Rd → Rd is a δ-approximate compressor over

Q for δ ∈ (0,1] if

‖C (x)−x‖2
2 ≤ (1−δ)‖x‖2

2, ∀x ∈Q .

Note that δ= 1 implies that C (x) = x . Examples of compressors include: i) the sign operator,

ii) top-k which selects k coordinates with the largest absolute value while zero-ing out the

rest (Lin et al., 2018; Stich et al., 2018), iii) k-PCA which approximates a matrix X with its top

k eigenvectors (Wang et al., 2018). Randomized compressors satisfying the assumption in

expectation are also allowed.

We employ standard assumptions of smoothness of the loss function and the variance of the

stochastic gradient.

Assumption B (Smoothness). A function f : Rd →R is L-smooth if for all x , y ∈Rd the follow-

ing holds: ∣∣ f (y)− (
f (x)+〈∇ f (x), y −x

〉)∣∣≤ L

2

∥∥y −x
∥∥2

2 .

Assumption C (Variance bound). For any x , our query for a stochastic gradient returns g such

that
E[g ] =∇ f (x) , E

∥∥g −∇ f (x)
∥∥2

2 ≤σ2 , and
∥∥∇ f (x)

∥∥2 ≤ M 2 .

We now state a key lemma that shows that the residual errors maintained in Algorithm 2 do

not accumulate too much.

Lemma 3 (Error is bounded). Given that Assumptions A and C hold for all t . Then at any

iteration t of EF-SGD, the norm of the error e t in Algorithm 2 is bounded:

E‖e t‖2
2 ≤

2(1−δ)

δ2 γ2(2M 2 +δσ2) , ∀t ≥ 0.

If δ= 1, then ‖e t‖ = 0 and the error is zero as expected.

2.5.2 Rate of convergence

Given these assumptions, we can formally state our theorem followed by a sketch of the

proof.

Theorem II (Non-convex convergence of EF-SGD). Let {x t }t≥0 denote the iterates of Algo-

rithm 2 for any step-size γ ∈ [0,4δ/L(δ+4(
p

1−δ)]. Under Assumptions A, B, and C,

min
t∈[T ]

E[‖∇ f (x t )‖2] ≤ 2 f0

γ(T +1)
+6γLσ2 ,

with f0 := f (x0)− f ?.

Proof Sketch. Intuitively, the condition that C (·) is a δ-approximate compressor implies that

at each iteration a δ-fraction of the gradient information is sent. The rest is added to e t to be
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2.5. Convergence with error feedback

transmitted later. Eventually, all the gradient information is transmitted—albeit with a delay

which depends on δ. Thus EF-SGD can intuitively be viewed as a delayed gradient method.

If the function is smooth, the gradient does not change quickly and so the delay does not

significantly matter.

More formally, consider the error-corrected sequence x̃ t which represents x t with the ‘de-

layed’ information added:
x̃ t := x t −e t .

It satisfies the recurrence

x̃ t+1 = x t −e t+1 −C (p t ) = x t −p t = x̃ t −γg t .

If x t was exactly equal to x̃ t (i.e. there was zero ‘delay’), then we could proceed with the stan-

dard proof of SGD. We instead rely on Lemma 3 which shows x̃ t ≈ x t and on the smoothness

of f which shows ∇ f (x t ) ≈∇ f (x̃ t ).

Remark 4. If we substitute γ= min
(

4δ
L(δ+4(

p
1−δ)

,
√

f0

Lσ2(T+1)

)
in Theorem II, we get

min
t∈[T ]

E[‖∇ f (x t )‖2] ≤O

√
L f0σ2

T +1
+ L f0

δ(T +1)


In the above rate, the compression factor δ only appears in the higher order O (1/T ) term. For

comparison, SGD under the exact same assumptions achieves

min
t∈[T ]

E[‖∇ f (x t )‖2] ≤O

√
L f0σ2

T +1
+ L f0

(T +1)

 .

This means that after T ≥O (1/δ) iterations the second term becomes negligible and the rate of

convergence catches up with full SGD—this is usually true after just the first few epochs. Thus

we prove that compressing the gradient does not change the asymptotic rate of SGD.

Remark 5. The use of error-feedback was motivated by our counter-examples for biased com-

pression schemes. However our rates show that even if using an unbiased compression (e.g.

QSGD (Alistarh et al., 2017)), using error-feedback gives significantly better rates. Suppose we

are given an unbiased compressor cU (·) such that E[U (x)] = x and E
[‖U (x)‖2

2

]≤ k‖x‖2. Then

without feedback, using standard analysis (e.g. (Alistarh et al., 2017)) the algorithm converges

k times slower:

min
t∈[T ]

E[‖∇ f (x t )‖2] ≤O

√
kL f0σ2

T +1
+ L f0

(T +1)

 .

Instead, if we use C (x) = 1
k U (x) with error-feedback, we would achieve

min
t∈[T ]

E[‖∇ f (x t )‖2] ≤O

√
L f0σ2

T +1
+ kL f0

(T +1)

 ,
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Chapter 2. Fixing gradient compression using error feedback

thereby pushing the dependence on k into the higher order O (1/T ) term.

Our counter-examples showed that biased compressors may not converge for non-smooth

functions. Below we prove that adding error-feedback ensures convergence under standard

assumptions even for non-smooth functions.

Theorem III (Non-smooth convergence of EF-SGD). Let {x t }t≥0 denote the iterates of Algo-

rithm 2 for any step-size γ> 0 and define x̄ t = 1
T

∑T
t=0 x t . Given that f is convex and Assump-

tions A and C hold,

E[ f (x̄ t )]− f ? ≤ ‖x0 −x?‖2

2γ(T +1)
+γ(M 2 +σ2)

(
1

2
+ 2

p
1−δ
δ

)
.

Remark 6. By picking the optimal γ=O (1/
p

T ), we see that

E[ f (x̄ t )]− f ? ≤ ‖x0 −x?‖
p

M 2 +σ2

2
p

T +1

√
1+ 4

p
1−δ
δ

.

For comparison, the rate of convergence under the same assumptions for SGD is

E[ f (x̄ t )]− f ? ≤ ‖x0 −x?‖
p

M 2 +σ2

2
p

T +1
.

For non-smooth functions, unlike in the smooth case, the compression quality δ appears di-

rectly in the leading term of the convergence rate. This is to be expected since we can no longer

assume that ∇ f (x̃ t ) ≈∇ f (x t ), which formed the crux of our argument for the smooth case.

Remark 7. Consider the top-1 compressor which just picks the coordinate with the largest

absolute value, and zeroes out everything else. It is obvious that top-1 is a 1
d -approximate

compressor (cf. (Stich et al., 2018, Lemma A.1)). Running EF-SGD with C as top-1 results in a

greedy coordinate algorithm. This is the first result we are aware which shows the convergence

of a greedy-coordinate type algorithm on non-smooth functions.

2.5.3 Convergence of EF-SIGNSGD

What do our proven rates imply for EF-SIGNSGD (Algorithm 1), the method of our interest

here?

Lemma 8 (Compressed sign). The operator C (v ) := ‖v‖1
d sign(v ) is a

φ(v ) = ‖v‖2
1

d‖v‖2
2

compressor.

We refer to the quantity φ(v ) as the density of v . If the vector v had only one non-zero ele-

ment, the value of δ for EF-SIGNSGD could be as bad as 1/d . However, in deep learning the
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Figure 2.2 – The densityφ(·) for the stochastic gradients g t and the error-corrected stochastic
gradients g t +e t for VGG19 on CIFAR10 and batchsize 128 (See Sec. 2.7). Minimum value of
φ(g t +e t ) is greater than 0.13.

gradients are usually dense and hence φ(v ) is much larger (see Fig. 2.2). Note that for our

convergence rates, it is not the density of the gradient g t which matters but the density of the

error-corrected gradient g t +e t . Faster convergence than SGD? (Kingma and Ba, 2014) and

(Bernstein et al., 2018) note that different coordinates of the stochastic gradient g may have

different variances. In standard SGD, the learning rate γwould be reduced to account for the

maximum of these coordinate-wise variances since otherwise the path might be dominated

by the noise in these sparse coordinates. Instead, using coordinate-wise learning-rates like

ADAM does, or using only the coordinate-wise sign of g as SIGNSGD does, might mitigate

the effect of such ‘bad’ coordinates by effectively scaling down the noisy coordinates. This is

purported to be the reason why ADAM and SIGNSGD can be faster than SGD on train dataset.

In EF-SIGNSGD, the noise from the ‘bad’ coordinates gets accumulated in the error-term e t

and is not forgotten or scaled down. Thus, if there are ‘bad’ coordinates whose variance

slows down convergence of SGD, EF-SIGNSGD should be similarly slow. Confirming this,

in a toy experiment with sparse noise (Appendix 9.1.1), SGD and EF-SIGNSGD converge at

the same slower rate, whereas SIGNSGD is faster. However, our real world experiments con-

tradict this—even with the feedback, EF-SIGNSGD is consistently faster than SGD, SIGNSGD,

and SIGNSGDM on training data. Thus the coordinate-wise variance adaption explanation

proposed by (Bernstein et al., 2018; Kingma and Ba, 2014) does not explain the faster conver-

gence of EF-SIGNSGD, and is probably an incomplete explanation of why sign based methods

or adaptive methods are faster than SGD!

2.6 Effect of SignSGD on generalization

So far our discussion has mostly focused on the convergence of the methods i.e. their per-

formance on training data. However for deep-learning, we actually care about their perfor-

mance on test data i.e. their generalization. It has been observed that the optimization algo-

rithm being used significantly impacts the properties of the optima reached (Im et al., 2016;

Li et al., 2018a). For instance, ADAM and SIGNSGD are known to generalize poorly compared

with SGD (Wilson et al., 2017; Balles and Hennig, 2018).
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Chapter 2. Fixing gradient compression using error feedback

The proposed explanation for this phenomenon is that in an over-parameterized setting,

SGD reaches the ‘max-margin’ solution wheras ADAM and SIGNSGD do not (Zhang et al.,

2017; Wilson et al., 2017), and (Balles and Hennig, 2018). As with the issues in convergence,

the issues of SIGNSGD with generalization also turn out to be related to the biased nature of

the sign operator. We explore how error-feedback may also alleviate the issues with general-

ization for any compression operator.

2.6.1 Distance to gradient span

Like (Zhang et al., 2017; Wilson et al., 2017), we consider an over-parameterized least-squares

problem

min
x∈Rd

[
f (x) := ∥∥Ax − y

∥∥2
2

]
,

where A ∈ Rn×d for d > n is the data matrix and y ∈ {−1,1}n is the set of labels. The set of

solutions X? := {x : f (x) = 0} of this problem forms a subspace in Rd . Of particular interest is

the solution with smallest norm:

argmin
x : ∈X ?

‖x‖2 = A† y = A>(
A A>)−1

y ,

as this corresponds to the maximum margin solution in the dual.

Maximizing margin is known to have a regularizing effect and is said to improve generaliza-

tion (Valiant, 1984; Cortes and Vapnik, 1995).

The key property that SGD (with or without momentum) trivially satisfies is that the iterates

always lie in the linear span of the gradients.

Lemma 9. Given any over-parameterized least-squares problem, suppose that the iterates of

the algorithm always lie in the linear span of the gradients and it converges to a 0 loss solution.

This solution corresponds to the minimum norm/maximum margin solution.

If we instead use a biased compressor (e.g. SIGNSGD), it is clear that the iterate may not lie

in the span of the gradients. In fact it is easy to construct examples where this happens for

SIGNSGD (Balles and Hennig, 2018), as well as top-k sparsification (Gunasekar et al., 2018),

perhaps explaining the poor generalization of these schemes. Error-feedback is able to over-

come this issue as well.

Theorem IV. Suppose that we run Algorithm 2 for t iterations starting from x0 = 0. Let G t =
[g>

0 , . . . , g>
t−1] ∈ Rd×t denote the matrix of the stochastic gradients and let ΠG t : Rn → Im(G t )

denote the projection onto the range of G t .∥∥x t −ΠG t (x t )
∥∥2

2 ≤ ‖e t‖2
2 .

Here e t is the error as defined in Algorithm 2. The theorem follows directly from observing
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Figure 2.3 – Left shows the distance of the iterate from the linear span of the gradients
‖x t −ΠG t (x t )‖. The middle and the right plots show the train and test loss. SIGNSGD and
SIGNSGDM have a high distance to the span, and do not generalize (test loss is higher than
0.8). Distance of EF-SIGNSGD to the linear span (and the test loss) goes to 0.

that (x t+1 +e t+1) = (x0 +∑t
i=0γg i ) , and hence lies in the linear span of the gradients.

Remark 10. Theorem IV along with Lemma 3 implies that the iterates of Algorithm 2 are al-

ways close to the linear span of the gradients.∥∥x t −ΠG t (x t )
∥∥2

2 ≤
4γ2(1−δ)

δ2 max
i∈[t ]

‖g i‖2 .

This distance further reduces as the algorithm progresses since the the step-size γ is typically

reduced.

2.6.2 Simulations

We compare the generalization of the four algorithms with full batch gradient: i) SGD ii)

SIGNSGD, iii) SIGNSGDM, and iv) EF-SIGNSGD. The data is generated as in (Wilson et al.,

2017) and is randomly split into test and train. The step-size γ and (where applicable) the

momentum parameter β are tuned to obtain fastest convergence, but the results are repre-

sentative across parameter choices.

In all four cases (Fig. 2.3), the train loss quickly goes to 0. The distance to the linear span of

gradients is quite large for SIGNSGD and SIGNSGDM. For EF-SIGNSGD, exactly as predicted

by our theory, it first increases to a certain limit and then goes to 0 as the algorithm converges.

The test error, almost exactly corresponding to the distance ‖x t −ΠG t (x t )‖, goes down to 0.

SIGNSGDM oscillates significantly because of the momentum term, however the conclusion

remains unchanged—the best test error is higher than 0.8. This indicates that using error-

feedback might result in generalization performance comparable with SGD.

2.7 Experiments

We run experiments on deep networks to test the validity of our insights. The results con-

firm that i) EF-SIGNSGD with error feedback always outperforms the standard SIGNSGD and

SIGNSGDM, ii) the generalization gap of SIGNSGD and SIGNSGDM vs. SGD gets larger for
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Chapter 2. Fixing gradient compression using error feedback

smaller batch sizes, iii) the performance of EF-SIGNSGD on the other hand is much closer to

SGD, and iv) SIGNSGD behaves erratically when using small batch-sizes.

2.7.1 Experimental setup

All our experiments used the PyTorch framework (Paszke et al., 2019) on the CIFAR-10/100

dataset (Krizhevsky et al., 2009). Each experiment is repeated three times and the results are

reported in Fig 2.4. Additional details and experiments can be found in Appendix 9.1.

Algorithms: We experimentally compared the following four algorithms: i) SGDM which

is SGD with momentum, ii) (scaled)SIGNSGD with step-size scaled by the L1-norm of the

gradient, iii) SIGNSGDM which is SIGNSGD using momentum, and iv) EF-SIGNSGD (Alg. 1).

The scaled SIGNSGD performs the update

x t+1 := x t −γ
‖g t‖1

d
sign(g t ) .

We chose to include this in our experiments since we wanted to isolate the effects of error-

feedback from that of scaling. Further we drop the unscaled SIGNSGD from our discussion

here since it was observed to perform worse than the scaled version. As is standard in com-

pression schemes (Seide et al., 2014; Lin et al., 2018; Wang et al., 2018), we apply our compres-

sion layer-wise. Thus the net communication for the (scaled) SIGNSGD and EF-SIGNSGD is∑l
i=1(di +32) bits where di is the dimension of layer i , and l is the total number of layers. If

the total number of parameters is much larger than the number of layers, then the cost of the

extra 32l bits is negligible—usually the number of parameters is three orders of magnitude

more than the number of layers.

All algorithms are run for 200 epochs. The learning-rate is decimated at 100 epochs and then

again at 150 epochs. The initial learning rate is tuned manually (see Appendix 9.1) for all algo-

rithms using batch-size 128. For the smaller batch-sizes, the learning-rate is proportionally

reduced as suggested in (Goyal et al., 2017). The momentum parameter β (where applicable)

was fixed to 0.9 and weight decay was left to the default value of 5×10−4.

Models: We use the VGG+BN+Dropout network on CIFAR-10 (VGG19) from (Simonyan

and Zisserman, 2014) and Resnet+BN+Dropout network (Resnet18) from (He et al., 2016a).

We adopt the standard data augmentation scheme and preprocessing scheme (He et al.,

2016a,b). Our code builds upon on an open source library.1

2.7.2 Results

The results of the experiments for Resnet18 on Cifar100 are shown in Fig. 2.4 and Table 2.1.

Results for VGG19 on Cifar10 are also similar and can be found in the Appendix. We make

four main observations:

1github.com/kuangliu/pytorch-cifar
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Figure 2.4 – Experimental results showing the train and test accuracy percentages on CIFAR-
100 using Resnet18 for different batch-sizes. The solid curves represent the mean value and
shaded region spans one standard deviation obtained over three replications. Note that the
scale of the y-axis varies across the plots. EF-SIGNSGD consistently and significantly outper-
forms the other sign-based methods, closely matching the performance of SGDM.

Batch-size SGDM SIGNSGD SIGNSGDM EF-SIGNSGD
128 75.35 -2.21 -3.15 -0.92
32 76.22 -3.04 -3.57 -0.79
8 74.91 -36.35 -6.6 -0.64

Table 2.1 – Generalization gap on CIFAR-100 using Resnet18 for different batch-sizes. For
SGDM we report the best mean test accuracy percentage, and for the other algorithms we
report their difference to the SGDM accuracy (i.e. the generalization gap). EF-SIGNSGD has
a much smaller gap.

EF-SIGNSGD is faster than SGDM on train. On the train dataset, both the accuracy and

the losses (Fig. 9.2) is better for EF-SIGNSGD than for SGD for all batch-sizes and models

(Fig. 9.3). In fact even SIGNSGD is faster than SGDM on the train dataset on VGG19 (Fig. 9.3)

for batch-size 128. As we note in Section 2.5.3, the result that the scaled sign methods are

also faster than SGD (and in fact faster than even the without feedback algorithms) overturns

previously understood intuition (cf. (Kingma and Ba, 2014; Bernstein et al., 2018)) for why

SIGNSGD and other adaptive methods outperform SGD—i.e. restricting the effect of a some

‘bad’ coordinates with high variance may not be the main reason why sign based methods

are faster than SGD on train.

EF-SIGNSGD almost matches SGDM on test. On the test dataset (Table 2.1), the accuracy

and the loss is much closer to SGD than the other sign methods across batch-sizes and mod-

els (Tables 9.2, 9.3). The generalization gap (both in accuracy and loss) reduces with decreas-

ing batch-size. We believe this is because the learning-rate was scaled proportional to the

batch-size and hence smaller learning-rates lead to smaller generalization gap, as was theo-
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Chapter 2. Fixing gradient compression using error feedback

retically noted in Remark 10.

SIGNSGD performs poorly for small batch-sizes. The performance of SIGNSGD is always

worse than EF-SIGNSGD indicating that scaling is insufficient and that error-feedback is cru-

cial for performance. Further all metrics (train and test, loss and accuracy) increasingly be-

come worse as the batch-size decreases indicating that SIGNSGD is indeed a brittle algo-

rithm. In fact for batch-size 8, the algorithm becomes extremely unstable.

SIGNSGDM performs poorly on some datasets and for smaller batch-sizes. We were sur-

prised that the training performance of SIGNSGDM is significantly worse than even SIGNSGD

on CIFAR-100 for batch-sizes 128 and 32. On CIFAR-10, on the other hand, SIGNSGDM man-

ages to be faster than SGDM (though still slower than EF-SIGNSGD). We believe this may be

due to SIGNSGDM being sensitive to the weight-decay parameter as was noted in (Bernstein

et al., 2018). We do not tune the weight-decay parameter and leave it to its default value for all

methods (including EF-SIGNSGD). Further the generalization gap of SIGNSGDM gets worse

for decreasing batch-sizes with a significant 6.6% drop in accuracy for batch-size 8.

2.8 Conclusion

We study the effect of biased compressors on the convergence and generalization of stochas-

tic gradient algorithms for non-convex optimization. We have shown that biased compres-

sors if naively used can lead to bad generalization, and even non-convergence. We then show

that using error-feedback all such adverse effects can be mitigated. Our theory and experi-

ments indicate that using error-feedback, our compressed gradient algorithm EF-SGD enjoys

the same rate of convergence as original SGD—thereby giving compression for free. We be-

lieve this should have a large impact in the design of future compressed gradient schemes

for distributed and decentralized learning. Further, given the relation between sign-based

methods and ADAM, we believe that our results will be relevant for better understanding the

performance and limitations of adaptive methods. Finally, in this work we only consider the

single worker case. Developing a practical and scalable algorithm for multiple workers is a

fruitful direction for future work.
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3 PowerSGD: Practical Gradient Com-
pression

3.1 Preface

Contribution and sources. This chapter is an extension of (Vogels et al., 2019). We addition-

ally analyze here the convergence of error feedback when combined with momentum. Initial

idea, theory, and design of the experiments was carried by the author. Thijs Vogels coded and

ran all the experiments, and did a large portion of the writing. The excellent visualizations

are also by TV. Detailed individual contributions:

SPK (author): Conceptualization, Methodology (50%), Formal analysis, Writing (30%)

Thijs Vogels: Software, Data visualization, Methodology (50%), Writing (70%)

Martin Jaggi: Writing – review and editing, Administration, Supervision .

Summary. Gradient compression was introduced to alleviate the communication bottle-

neck and speed up distributed training. However, upon testing in realistic settings, we find

that most compression techniques are flawed: i) they suffer a large drop in accuracy, or ii) are

slower than vanilla SGD in terms of the wall-clock time.

In this chapter, we incorporate real world system constraints into the error-feedback frame-

work, reducing communication by (100×) and wall-clock time by (2×). This is achieved by

designing a novel low rank compressor which uses power iterations and combining it with

modern optimizers such as momentum and Adam. Crucially, our compressor involves only

matrix multiplications (hence can leverage GPUs for fast encoding/decoding), and is also lin-

ear (hence is compatible with all-reduce). We show that our method works ‘out of the box’

without requiring additional hyper-parameter tuning, and is ready for adoption in practice.

Since its introduction, our method remains the state of the art for practical communication

compression (cf. Agarwal et al. (2021) for a recent evaluation) and has found wide-spread

adoption. It is the default compression method in PyTorch (DDP), the most popular deep

learning framework, and was also a crucial part of training DALLE (Ramesh et al., 2021) where

PowerSGD was used to train a 1 billion parameter model with 64 GPUs.
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3.2 Introduction

Synchronous data-parallel SGD is the most common method for accelerating training of deep

learning models (Dean et al., 2012; Iandola et al., 2016; Goyal et al., 2017). Because the gra-

dient vectors of such models can be large, the time required to share those gradients across

workers limits the scalability of deep learning training (Seide et al., 2014; Iandola et al., 2016;

Lin et al., 2018).

Previous work proposes lossy gradient compression as a solution to this issue. Notable ex-

amples include replacing the coordinates of the gradient with only their sign (Seide et al.,

2014; Carlson et al., 2015; Bernstein et al., 2018, 2019; Karimireddy et al., 2019), quantizing

the individual coordinates (Alistarh et al., 2017; Wen et al., 2017), and low-rank approxima-

tion of the gradient (Wang et al., 2018). While these works demonstrate speedups over full-

precision SGD in some settings, we find that their speedups vanish with a fast network and

highly optimized communication backend, even on commodity hardware. Some prior work

also suffers from degraded test accuracy compared to SGD. We combine three observations

to fix these issues: i) Linear compressor operators achieve scalability by enabling aggregation

using all-reduce. ii) Error feedback ensures convergence with general biased compressors.

iii) Low-rank updates enable aggressive compression without sacrificing quality.

First, we explore the properties of various gradient compression schemes for SGD and iden-

tify which ones are crucial for high scalability. In particular, we note that currently proposed

gradient compressors are not linear. Their compressed messages cannot be added up hi-

erarchically, unlike raw gradients. This prevents current compressed SGD algorithms from

aggregating gradients using an efficient reduce operation and instead require a gather oper-

ation. Current deep learning frameworks rely either solely or predominantly on all-reduce,

which is key to why regular SGD scales well with fast communication hardware (cf. Awan

et al., 2018; Panda et al., 2019).

Secondly, it was recently shown that using error feedback (i.e. storing the difference between

the computed and compressed gradient, and reinserting it at the next iteration) improves

both convergence and generalization for compression schemes (Karimireddy et al., 2019).

This can enable general biased gradient compression schemes to reach the target test accu-

racy.

Thirdly, there is growing evidence that the generalization ability of modern over-parameterized

deep learning models is related to low-rankedness (Arora et al., 2018; Martin and Mahoney,

2018; Collins et al., 2018). Using a low-rank update (as we do) can be viewed as implicitly per-

forming spectral regularization (Gunasekar et al., 2018) and hence can be expected to have

good generalization properties (Yoshida and Miyato, 2017). Further, (Wang et al., 2018) show

that the eigenspectrum of the stochastic gradients for deep learning models decays, suggest-

ing that a rank-based schemes can get away with aggressive compression without sacrificing

convergence.
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Figure 3.1 – Compression schemes compared in this paper. Left: Interpretation of a layer’s
gradient as a matrix. Coordinate values are color coded (positive, negative). Right: The out-
put of various compression schemeson the same input. Implementation details arein Ap-
pendix 10.7.

In this work, we design POWERSGD with the above observations in mind. POWERSGD com-

putes a low-rank approximation of the gradient using a generalized power iteration (known as

subspace iteration (Stewart and Miller, 1975)). The approximation is computationally light-

weight, avoiding any prohibitively expensive Singular Value Decomposition. To improve the

quality of the efficient approximation, we warm-start the power iteration by reusing the ap-

proximation from the previous optimization step. Using all-reduce gradient aggregation, we

empirically demonstrate that POWERSGD achieves wall-clock speedups over regular SGD in

a 16-GPU setting, even with the optimized NCCL communication backend on a fast network

(and is the only algorithm to do so.) By compressing gradients more than 120×, we reduce

communication time (including coding and decoding) by 54% for RESNET18 on CIFAR10 and

by 90% for an LSTM on WIKITEXT-2. End-to-end wall-clock training time to full test quality

is reduced by 24% for RESNET18 and by 55% for the LSTM.

3.3 Related work

Gradient compression. A variety of compression schemes (Figure 3.1) have been proposed:

(Alistarh et al., 2017) and (Wen et al., 2017) quantize each gradient coordinate; (Seide et al.,

2014; Carlson et al., 2015; Bernstein et al., 2018, 2019) and (Karimireddy et al., 2019) replace

each coordinate of the gradient with its sign; (Lin et al., 2018; Stich et al., 2018) and (Wangni

et al., 2018) use the largest few coordinates; and (Konečnỳ et al., 2016) and (Wang et al., 2018)

use a low-rank approximation.

Spectral Atomo by (Wang et al., 2018) is perhaps the closest to our work. It performs impor-

tance sampling of the gradient’s singular vectors and is an unbiased compression scheme. It

requires, however, a full Singular Value Decomposition every iteration and is hence compu-

tationally impractical.

Commutative compression and addition. (Yu et al., 2018) stress that commutability of

compression with gradient addition enables efficient aggregation with ring all-reduce. Most

compressors, however, lack this property. Yu et al. utilize temporally-consistent correlations

between gradients coordinates to compress them linearly. POWERSGD has a similar property

that we call ‘linearity’.
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Error feedback. First introduced in (Seide et al., 2014) and analyzed in (Stich et al., 2018)

for the convex case, error feedback involves computing the difference between a worker’s

gradient and the compressed gradient (i.e. error) and adding it back to the next gradient

(feedback). (Karimireddy et al., 2019) and (Stich and Karimireddy, 2020) further develop and

generalize the framework of error feedback with improved rates. In the non-convex setting,

(Karimireddy et al., 2019) show that error feedback is crucial both for convergence and gener-

alization when using biased compressors (e.g. sign or top-K ). In general, biased compression

schemes equipped with error feedback tend to out-perform their unbiased counterparts. The

practical algorithm by (Lin et al., 2018) is also as an approximate top-K compressor with error

feedback.

Low-rank methods. Recent works argue that in modern over-parameterized deep networks,

the final model learnt has a ‘low stable rank’ (Martin and Mahoney, 2018; Li et al., 2018c). This

can partially explain their impressive generalization properties despite being substantially

overparameterized (Arora et al., 2018). Adding explicit spectral regularization has shown to

further improve the performance of such models (Mazumder et al., 2010; Yoshida and Miy-

ato, 2017). Using a low-rank update (as we do) can be viewed as implicitly performing a

similar regularization (Gunasekar et al., 2018). If the target matrices are known to be exactly

low-ranked (instead of just low stable rank), (Yurtsever et al., 2017) show that it is sometimes

possible to converge to the optima using low rank approximations of the gradients without

the need for error feedback.

3.4 Method

In data-parallel optimization of machine learning models, a number of W workers share

the same model parameters x ∈ Rd . They iteratively update x by computing independent

stochastic gradients, aggregating these gradients by averaging1, and updating the model pa-

rameters based on this aggregate.

POWERSGD compression We approximate each layer in the model independently. The pa-

rameters of fully-connected layers (dense matrix multiplication) and their gradients have an

inherent matrix structure. The parameters of convolutional layers can be naturally inter-

preted as fully-connected layers applied repeatedly over a 2D grid of inputs. Practically, this

amounts to flattening input and kernel dimensions in the 4D gradient tensors. Neural net-

works also contain bias vectors, but these typically constitute a tiny fraction of the parameter

space and can be aggregated uncompressed.

For each parameter’s gradient M ∈ Rn×m , the aim of rank-r matrix approximation is to find

matrices P ∈ Rn×r and Q ∈ Rm×r such that PQ> approximates M well. POWERSGD uses a

single step of subspace iteration—power iteration generalized to r > 1—to compute such

an approximation. This involves performing one right multiplication, one left multiplica-

1(Bernstein et al., 2019) propose Signum which aggregates 1-bit gradients by majority voting instead of aver-
aging.
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Algorithm 3 Rank-r POWERSGD compression

1: The update vector ∆w is treated as a list of tensors corresponding to individual model
parameters. Vector-shaped parameters (biases) are aggregated uncompressed. Other pa-
rameters are reshaped into matrices. The functions below operate on such matrices in-
dependently. For each matrix M ∈Rn×m , a corresponding Q ∈Rm×r is initialized from an
iid standard normal distribution.

2: function COMPRESS+AGGREGATE(update matrix M ∈Rn×m , previous Q ∈Rm×r )
3: P ← MQ
4: P ← ALL REDUCE MEAN(P ) .Now, P = 1

W (M1 + . . .+MW )Q
5: P̂ ← ORTHOGONALIZE(P ) .Orthonormal columns
6: Q ← M>P̂
7: Q ← ALL REDUCE MEAN(Q) .Now, Q = 1

W (M1 + . . .+MW )>P̂
8: return the compressed representation (P̂ ,Q).
9: end function

10: function DECOMPRESS(P̂ ∈Rn×r , Q ∈Rm×r )
11: return P̂Q>

12: end function

tion, and an orthogonalization. We use the Gram-Schmidt procedure to orthogonalize our

matrices since they have very few columns (1–4), and this is the most expensive part of the

compression procedure. Further, we ‘warm-start’ the subspace iteration by reusing the ap-

proximation computed at the previous step. With the inclusion of warm-start, a single step

of subspace iteration yields a factorization M ∼ PQ> with the same performance as the best

rank-r approximation from an expensive Singular Value Decomposition.

Efficient aggregation between workers In data-parallel optimization, we want to approxi-

mate the average of the worker’s gradients. Suppose POWERSGD operates on a list of cor-

responding gradients [M1 . . . MW ] from W workers. Both occurrences of M in the algorithm

are a (linear) matrix multiplication followed by a (linear) mean reduction over workers. This

introduces a practical invariance: execution on 1 worker with batch size B ×W is equivalent

to execution on W workers with batch size B each. We call this property ‘linearity’. Refer to

Appendix 3.5.1 for more details.

(a) Gather (b) Reduce

An important benefit of the POWERSGD’s linear-

ity is that it can be implemented using the all-

reduce protocol as opposed to needing a gather

operation. To illustrate the difference, suppose

that we want to compute the sum of W matrices∑W
i=1 Mi for W = 4. The all-reduce method can

use associativity of addition to rewrite the com-

putation as (M1 +M2)+ (M3 +M4). This enables a divide-and-conquer approach and allows

the summation task to be split over multiple workers, as illustrated on the right. With W

workers, both the computation and the communication time scale as O (logW ) for all-reduce,

compared to O (W ) for all-gather.
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In addition to improved scaling, all-reduce communication is preferred over a parameter-

server setting because it avoids double compression. With a parameter server, both the ‘clients

→ server’ and ‘server → clients’ communication have to be compressed (Bernstein et al.,

2019; Seide et al., 2014). We avoid this by merging compression and aggregation into one

step.

Error-feedback SGD Since the POWERSGD scheme is biased (i.e. compressing and decom-

pressing a random gradient does not yield the original in expectation), we use error feed-

back (Seide et al., 2014; Karimireddy et al., 2019). Our version of error feedback (Algorithm 4)

extends the original by introducing post-compression momentum. This simple extension al-

lows us to reuse the same learning rate and hyper-parameters as those tuned for SGD with

momentum.

Algorithm 4 Distributed Error-feedback SGD with Momentum

1: hyperparameters: learning rate γ, momentum parameter λ
2: initialize model parameters x ∈Rd , momentum m ← 0 ∈Rd , replicated across workers
3: at each worker w = 1, . . . ,W do
4: initialize memory ew ← 0 ∈Rd

5: for each iterate t = 0, . . . do
6: Compute a stochastic gradient g w ∈Rd .
7: ∆w ← g w +ew . Incorporate error-feedback into update
8: C (∆w )← COMPRESS(∆w )
9: ew ←∆w −DECOMPRESS(C (∆w )) .Memorize local errors

10: C (∆) ← AGGREGATE(C (∆1), . . . ,C (∆W )) . Exchange gradients
11: ∆′ ← DECOMPRESS(C (∆)) . Reconstruct an update ∈Rd

12: m ←λm +∆′

13: x ← x −γ (∆′+m)
14: end for
15: end at

3.5 Theoretical Analysis of POWERSGD

The proof of convergence of EF-SGD with momentum can be derived by incoporating a few

key changes to the proof of (Karimireddy et al., 2019): i) we are in a multi-worker setting, and

ii) we incorporate the techniques introduced by (Ghadimi and Lan, 2016) to handle the addi-

tional momentum. Further, ‖·‖2 unless otherwise specified is always the standard euclidean

norm for vectors, and is the Frobenius norm for matrices.

Suppose that we want to minimize a continuous (possibly) non-convex function f : Rd →R:

f ? = min
x∈Rd

f (x) .

The classic stochastic gradient algorithm (SGD) (Robbins and Monro, 1951) when adapted to
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the distributed optimization setting performs iterations of the form

x t+1 := x t −γg t , where (3.1)

g t =
1

W

W∑
w=1

g t ,w and E[g t ] =∇ f (x t ) .

Here γ ∈R is the step-size (or learning-rate) and g t ,w is the stochastic gradient computed by

the wth worker for w ∈ {1, . . . ,W } workers.

Now EF-SGD (Algorithm 4) when run on the W workers with step-size γ and momentum

parameter λ can be rewritten making the dependence on iteration t explicit as follows:

∆′
t = DECOMPRESS(COMPRESS(g t +e t )) ,

mt+1 =∆′
t +λmt ,

x t+1 = x t −γ(∆′
t +mt+1) , and

e t+1 = (g t +e t )−∆′
t .

(3.2)

3.5.1 Single/multi worker equivalence

The difference between the update as written in (3.2) and Algorithm 4 is that the error com-

putation and compression is performed on the aggregated gradient g t instead of on the in-

dividual workers’ gradients g t ,w . While in general these are not equivalent, the linearity of

POWERSGD ensures that these are indeed equivalent. This implies that POWERSGD has the

neat property that the algorithm is equivalent if run on W workers or a single worker with a

larger batch-size. This does not hold for most other schemes (e.g. sign based compression

schemes, QSGD, etc.).

Lemma 11 (Equivalence of single worker and multi worker updates). The updates in POW-

ERSGD (i.e. Algorithm 4 using Compressor 3) are equivalent to the updates (3.2).

3.5.2 Convergence of multi-worker error feedback with momentum

With Lemma 3.5.1, we can restrict our analysis to updates (3.2) and forget about the differ-

ence between the single worker and multi-worker case.

Theorem V (Non-convex convergence of EF-SGD). Let us run T steps of Algorithm 4 with

momentum parameter λ ∈ [0,1) and effective step-size γ̃≤ 1
2L . Then the following holds given

standard assumptions:

1

T +1

T∑
t=0

E[‖∇ f (x t )‖2] ≤ 4( f (x0)− f ?)

γ̃(T +1)
+ 4γ̃σ2

W
+ γ̃2C ,
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where

γ̃= γ
(
1+ 1

1−λ
)

, C = 8L2B 2
(

4(1−δ)

δ
+ λ

(1−λ)(2−λ)

)
,

and f ? is the optimum value of f .

Note that the condition on the ‘effective’ steps-size γ̃ ≤ 1
2L implies a condition on the true

step-size γ≤ 2−λ
2L(2−λ) .

Remark 12 (No dependence on δ or λ). The asymptotic rate does not depend on either the

compression quality δ, nor on the momentum term λ. With an appropriate choice of the step-

sie, we obtain a rate of

1

T +1

T∑
t=0

E[‖∇ f (x t )‖2] ≤O

(√
L f0σ2

W (T +1)
+ C

T +1

)
.

Since δ andλ only affect the faster C /T term, they have no bearing on the asymptotic rate of the

algorithm. This is similar to what was noted by (Karimireddy et al., 2019) when using EF-SGD

without the momentum, and matches the rate of vanilla SGD.

Remark 13 (Scaling with workers W ). The rate in Theorem V also shows that if we increase

the number of workers W , we get a linear decrease in the variance. As long as the first term

is dominant (i.e. T is large enough), this implies linear speed-up with increasing number of

workers.

3.6 Ablation study of POWERSGD

In this section, we consider different aspects of POWERSGD in isolation and hope to empiri-

cally understand: i) the effect of using error feedback, ii) the effect of ‘warm-start’, and iii) the

trade-off between test accuracy and compression rate with varying approximation rank.

3.6.1 Effect of error feedback

Using error-feedback SGD as a base algorithm for POWERSGD has two advantages. First, it

enables our use of a biased compressor. Secondly, EF-SGD improves convergence and ob-

tains better test accuracy (Karimireddy et al., 2019).

To illustrate the improved test accuracy, we compare POWERSGD—a biased compressor with

error feedback—against an unbiased low-rank approximation. To approximate a matrix M ∈
Rn×m , the unbiased rank-r approximator samples a random matrix U ∈Rm×r such that E[UU>] =
Im and outputs (MU ,U ) as the low-rank approximation. This scheme is unbiased since

E[(MU )U>] = M E[UU>] = M I = M .

POWERSGD is the natural biased counterpart of this unbiased scheme. Table 3.1 demon-
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Table 3.1 – Rank-based compression with and
without error feedback. The biased POWERSGD
outperforms an unbiased linear rank-r compressor
on test accuracy.

Algorithm Test accuracy Data/epoch

SGD 94.3% 1023 MB
Rank-1 POWERSGD 93.6% 4 MB
Rank-2 POWERSGD 94.4% 8 MB
Unbiased Rank 1 71.2% 3 MB
Unbiased Rank 2 75.9% 4 MB

Table 3.2 – Best rank-2 approxima-
tion vs. POWERSGD. Warm-start im-
proves test accuracy, even matching
the performance of the best rank-2
approximation.

Algorithm Test accuracy

Best approximation 94.4%
Warm start (default) 94.4%
Without warm start 94.0%

strates that our biased approximator with error feedback outperforms the unbiased operator

on image classification.

3.6.2 Effect of warm-start

POWERSGD does not compute the best rank-r approximation of a gradient matrix, but uses

a cheaper, low-fidelity approximation based on power iteration. Comparing the time per

batch of POWERSGD and Spectral Atomo in Table 3.6, we see the importance of avoiding a

Singular Value Decomposition. With gradients shaped as in POWERSGD, computing the SVD

of a stochastic gradient takes 673ms, the equivalent of computing 6 mini-batch gradients. In

contrast, one full step of rank-2 POWERSGD, including communication between 16 workers,

takes only 105ms.

Given that we only use a single step of power iteration, the quality of the approximation

suffers—compare the test accuracy of ‘without warm start’ and ‘best approximation’ in Ta-

ble 3.2. A key feature of POWERSGD is the warm start strategy which reuses previously com-

puted matrix approximations to initialize the power iteration algorithm. If the matrix on

which we perform power iteration remains constant, then this recovers the best rank-r ap-

proximation (see Theorem XXV in the Appendix). We argue that this strategy sometimes

makes sense even if the underlying matrices are varying.

Suppose we approximate the sequence of gradient matrices {Mt } at timesteps t . At timestep

t , we leverage the previous factorization Mt−1 ≈ Pt−1Q>
t−1. If Mt ≈ Mt−1 then we would bene-

fit from reusing Pt−1 and Qt−1 as our starting point. While this is unlikely to be true, if Mt and

Mt−1 are stochastic approximations of the full gradient, we can expect that E[Mt ] ≈ E[Mt−1]

since the function is smooth and we only take small update steps. The result is akin to Oja’s

algorithm for stochastic power iteration (Oja, 1982), and hence could result in an improved

approximation quality. As we show empirically in Table 3.2, this ‘warm starting’ strategy is

sufficient to close the gap in test accuracy between POWERSGD and the much more expen-

sive best rank-r approximation.
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Table 3.3 – POWERSGD
with varying rank. With
sufficient rank, POW-
ERSGD accelerates train-
ing of a RESNET18 and an
LSTM by reducing com-
munication, achieving
test quality on par with
regular SGD in the same
number of iterations. The
time per batch includes
the forward/backward
pass (constant). See
Section 3.7 for the experi-
mental setup.

Image classification — RESNET18 on CIFAR10

Algorithm Test accuracy Data sent per epoch Time per batch

SGD 94.3% 1023 MB (1×) 312 ms +0%
Rank 1 93.6% 4 MB (243×) 229 ms −26%
Rank 2 94.4% 8 MB (136×) 239 ms −23%
Rank 4 94.5% 14 MB (72×) 260 ms −16%

Language modeling — LSTM on WIKITEXT-2

Algorithm Test perplexity Data sent per epoch Time per batch

SGD 91 7730 MB (1×) 300 ms +0%
Rank 1 102 25 MB (310×) 131 ms −56%
Rank 2 93 38 MB (203×) 141 ms −53%
Rank 4 91 64 MB (120×) 134 ms −55%

Default experimental setting

Dataset CIFAR10
Architecture RESNET18

Number of workers 16
Backend NCCL (fastest in PYTORCH)
Batch size 128×number of workers

Momentum 0.9
Learning rate Tuned for 16 workers — 0.1×16 for SGD. Scaled linearly by the number of workers
LR decay /10 at epoch 150 and 250
LR warmup Linearly within 5 epochs, starting from the single-worker LR
# Epochs 300
Weight decay 10−4,

0 for BatchNorm parameters

Repetitions 3, with varying seeds
Error bars min — max

3.6.3 Effect of varying the rank

POWERSGD allows users to choose the rank of its gradient approximations. The trade-off be-

tween approximation quality and compression, decompression and transfer cost is explored

in Table 3.3. In both the image classification and language modeling tasks we explore, the

test quality achieved by POWERSGD grows with increasing rank. In both cases, it reaches a

quality that is as good, or even slightly better than regular SGD.

3.7 Empirical evaluation of POWERSGD

This section demonstrates the practicality of POWERSGD for distributed optimization of deep

neural networks. We show that the compression scheme of POWERSGD i) is fast and matches

test performance of SGD, ii) scales well with increasing workers even with a sub-optimal com-

munication backend, and iii) significantly reduces training time for larger models.
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Table 3.4 – Comparing different compression operators for Error-feedback SGD in a unified
setting; running 300 epochs of Error-feedback SGD with Momentum (Algorithm 4) with a
learning rate tuned for full-precision SGD on 16 GPUs for CIFAR10. Note that the variations of
POWERSGD with ranks 2 and 7 strike the best balance between the achieved test accuracy and
time per batch (total time for forward, backward, compression, decompression, and gradient
aggregation).

Test accuracy Sent/epoch All-reduce Time/batch

No compression 94.3% 1023 MB 3 312 ms

Medium Rank 7 94.6% 24 MB 3 285 ms
Random Block 93.3% 24 MB 3 243 ms
Random K 94.0% 24 MB 3 540 ms
Sign+Norm 93.9% 32 MB × 429 ms
Top K 94.4% 32 MB × 444 ms

High Rank 2 94.4% 8 MB 3 239 ms
Random Block 87.8% 8 MB 3 240 ms
Random K 92.6% 8 MB 3 534 ms
Top K 93.6% 8 MB × 411 ms

Most of the analysis is performed on CIFAR10, in the setting described in the table on the

right. We verify the generality of POWERSGD by an additional evaluation of an LSTM for

language modeling on WIKITEXT-2. We use 16 GPUs on 8 machines, connected through a

fast (10Gbit/s) network. To obtain meaningful timings, we have aimed to optimize all com-

pared optimizers to a similar level. We provide a list of our performance optimizations in

Appendix 10.8. Throughout these results, we tune the learning rate for full-precision SGD,

and use the same parameters for POWERSGD and other compression algorithms that use er-

ror feedback with momentum. Learning rates for the compared-to Spectral Atomo (Wang

et al., 2018) and Signum (Bernstein et al., 2019) were separately tuned cf. Appendix 10.9.

3.7.1 Comparison with other compressors

Error feedback in compressed optimization enables the use of a multitude of compression

schemes, including biased ones. The potential compression operators illustrated in Fig-

ure 3.1 are compared in Table 3.4. We evaluate compressors based on the test accuracy

achieved and the total time taken to process one mini-batch. The former is a holistic mea-

sure of the accuracy of the compression operator, and the latter is the net time required for a

forward pass, backward pass, gradient compression and decompression and gradient com-

munication. We study two compression regimes—medium and high.

At around 32× compression, achieved by sign-based methods, all compression schemes (other

than Random Block) achieve test accuracy close to full-precision SGD. This implies that all

schemes in this regime (other than Random Block) obtain a good-enough compression qual-

ity. At high compression (128×), POWERSGD particularly stands out as the only method to

achieve the target test accuracy.
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Table 3.5 – Breakdown of time spent (in seconds) in one iteration of RESNET18 training. Be-
cause POWERSGD (Rank 2) uses all-reduce, time spent encoding/decoding gradients is con-
stant.

Forward pass, Backward pass, Gradient exchange, Encoding and decoding.

2 workers 4 workers 8 workers 16 workers
Rank 2
SGD
Signum
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Figure 3.3 – Scaling of POWERSGD on CIFAR10 compared to full-precision SGD and
Signum (Bernstein et al., 2019) on two communication backends. The batch size increases
linearly with the number of workers. We compare training time for one epoch to 1-worker
SGD. Note that the faster NCCL backend used throughout benefits the baselines more than
our method.

In both the medium and high compression settings, the only schemes to be faster than full-

precision SGD are POWERSGD and Random Block. Note that both are simple linear schemes

and hence support all-reduce. While Random K also supports all-reduce, the overhead for

random memory access during both the compression and decompression stages is substan-

tial, making it slower overall than SGD. Thus, on modern GPU-enabled infrastructure, POW-

ERSGD, which relies on matrix multiplication, is faster and much more accurate than the

other compression schemes.

3.7.2 Scalability of POWERSGD

Here we investigate how POWERSGD scales with an increasing number of workers, shedding

light on what we can expect if we use a significantly larger number of workers. Addition-

ally, we investigate how these results depend on the choice of communication backend. We

benchmark POWERSGD against SGD and Signum (signSGD with majority vote) from (Bern-

stein et al., 2019) which we believe is the current state-of-the-art for distributed algorithms.

Table 3.5 provides a detailed breakdown of the time spent for each mini-batch (i.e. one step)

into the forward pass, backward pass, gradient exchange (communication), and compres-
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Table 3.6 – Results on CIFAR10.
Contrary to rank-2 Spectral
Atomo (Wang et al., 2018)
and Signum (Bernstein et al.,
2019), POWERSGD achieves
the same test accuracy as full-
precision SGD within the de-
fault epoch budget.

Algorithm Test accuracy Data/epoch Time per batch

SGD 94.3% 1023 MB 312 ms +0%
Atomo 92.6% 113 MB 948 ms +204%
Signum 93.6% 32 MB 301 ms −3%
Rank 2 94.4% 8 MB 239 ms −23%

Table 3.7 – In language mod-
eling, rank-4 POWERSGD
achieves the target test accu-
racy and provides a significant
speedup over SGD.

Algorithm Test perplexity Data/epoch Time per batch

SGD 91 7730 MB 300 ms +0%
Signum 142 242 MB 424 ms +41%
Rank 4 91 64 MB 134 ms −55%

sion/decompression. The time spent in the forward and backward pass is constant across all

algorithms and numbers of workers. Since both SGD and POWERSGD use all-reduce, the gra-

dient communication time (solid green in Table 3.5) scales gracefully with increasing number

of workers. Signum—which uses all-gather instead of all-reduce—has a steeper increase. It

has comparable time to POWERSGD for 4 workers but becomes more expensive for 16 work-

ers.

There is another, more subtle, consequence of all-reduce vs. all-gather on the decoding

times. In all-reduce, the aggregation step and the communication step happen simultane-

ously. Each worker receives a pre-aggregated gradient, making the cost of decompression

independent of the number of workers. On the other hand, in all-gather, a worker receives W

compressed gradients that need to be individually decompressed and aggregated (either us-

ing majority vote or averaging). The time for decompression with all-gather therefore scales

linearly with number of workers. This shows when comparing the hatcheted regions in Ta-

ble 3.5. This observation speaks to the importance of the reduce operation for scalability.

We next study two different backends—the more optimized NCCL and the slower GLOO. All

three methods scale reasonably well with the optimized NCCL backend, although Signum

has a slope less than 1 in the log-log plot, indicating sub-linear scaling. On the slower GLOO

backend, POWERSGD is notably the only method that retains excellent scaling due to its high

compression rate.

3.7.3 Other tasks and methods

In Table 3.6, we compare POWERSGD against the state-of-the-art compressed optimization

algorithms Signum and Spectral Atomo. The cost of performing a full SVD at each step ren-

ders Spectral Atomo impractical in a high-performance setting, especially considering that it

fails to match the test accuracies of the other methods. Signum performs much better, prov-
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ing a minor speedup over SGD. POWERSGD is the fastest and most accurate of the compared

methods.

The advantage of POWERSGD truly shows when using really large models, i.e. where the

communication actually becomes a bottleneck. To verify this, we run Signum, full-precision

SGD, and POWERSGD to train an LSTM on a language modeling task which has a substan-

tially larger model size than RESNET18 (see Appendix 10.6). To match the test score of full-

precision SGD, we needed to use a rank-4 approximation (see Section 3.6.3). POWERSGD re-

duces communication by 90% and the overall running time by 55%, while Signum becomes

slower than full-precision SGD and also obtains a worse test score.

Convergence curves on test accuracy corresponding to Tables 3.3, 3.6 and 3.7 are provided in

Appendix 10.3. In those figures, you can read our improvements in time-to-accuracy for any

target accuracy. We also provide a case study on using PowerSGD for a novel task (language

modeling with transformers on WIKITEXT-2) and more workers (32) on the public cloud in

Appendix 10.4.

3.8 Conclusion

Gradient compression is a promising approach to tackling the communication bottleneck in

synchronous distributed optimization. Thus far, however, it has not found widespread adop-

tion because existing compression schemes either run slower than SGD with optimized all-

reduce gradient aggregation, or more importantly do not reach the same test performance.

We see POWERSGD as the first practical gradient compression method, and believe it is ready

for adaptation in practice.

The key to the practicality of POWERSGD is its linear compression scheme that is cheap to

compute and allows for all-reduce gradient aggregation, while simultaneously matching the

test performance of full-precision SGD. This speedup gained over SGD actually increases for

larger models such as those commonly found in NLP. Further, as a result of our modifications

to the error feedback algorithm, POWERSGD is a plug-in replacement for SGD with momen-

tum, avoiding the need for additional hyper-parameter tuning. We expect that these prop-

erties of POWERSGD will enable training of even larger models with even more workers than

what is possible with full-precision SGD.
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4 SCAFFOLD: Stochastic Controlled
Averaging for Federated Learning

4.1 Preface

Contribution and sources. This chapter reproduces (Karimireddy et al., 2020b). The theory,

experiments, and writing were carried out mostly by the author. Satyen Kale provided crucial

help in the running of the experiments. Detailed individual contributions:

SPK (author): Conceptualization, Methodology, Formal analysis, Software, Writing – original

draft preparation

Satyen Kale: Supervision, Administration, Writing – review and editing, Running Experiments

Mehryar Mohri: Supervision, Administration, Writing – review and editing

Sashank Reddi: Supervision, Writing – review and editing

Sebastian Stich: Writing – review and editing

Ananda Theertha Suresh: Writing – review and editing .

Summary. Increasing concerns about scalability and data privacy have lead to the popular-

ity of federated learning where training is performed directly on the edge devices without any

transmission of data. However, this comes with very high latency and unreliability—which

cannot be alleviated by communication compression. Instead, popular methods (such as

FEDAVG) use multiple local updates between communication rounds on the available de-

vices to compensate for the high latencies. However, in spite of recent research efforts, its

performance is not well understood.

Using the framework of stochastic optimization, we fully characterize the convergence of

FEDAVG and prove that it suffers from ‘client-drift’ when the data is heterogeneous (non-

iid), resulting in unstable and slow convergence. As a solution, we propose a new algorithm

(SCAFFOLD) which uses control variates (variance reduction) to correct for the ‘client-drift’

in its local updates. We show (theoretically and empirically) that SCAFFOLD is unaffected

by heterogeneity or unavailability of clients.

The concept of client drift has since become an accepted phenomenon, with SCAFFOLD

inspiring a large number of follow up solutions (cf. (Wang et al., 2021) for a survey).
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4.2 Introduction

Federated learning has emerged as an important paradigm in modern large-scale machine

learning. Unlike in traditional centralized learning where models are trained using large

datasets stored in a central server (Dean et al., 2012; Iandola et al., 2016; Goyal et al., 2017),

in federated learning, the training data remains distributed over a large number of clients,

which may be phones, network sensors, hospitals, or alternative local information sources

(Konečnỳ et al., 2016; McMahan et al., 2017; Mohri et al., 2019; Kairouz et al., 2019). A cen-

tralized model (referred to as server model) is then trained without ever transmitting client

data over the network, thereby ensuring a basic level of privacy. In this work, we investigate

stochastic optimization algorithms for federated learning.

The key challenges for federated optimization are 1) dealing with unreliable and relatively

slow network connections between the server and the clients, 2) only a small subset of clients

being available for training at a given time, and 3) large heterogeneity (non-iid-ness) in the

data present on the different clients (Konečnỳ et al., 2016). The most popular algorithm for

this setting is FEDAVG (McMahan et al., 2017). FEDAVG tackles the communication bottle-

neck by performing multiple local updates on the available clients before communicating to

the server. While it has shown success in certain applications, its performance on heteroge-

neous data is still an active area of research (Li et al., 2018b; Yu et al., 2019b; Li et al., 2019c;

Haddadpour and Mahdavi, 2019; Khaled et al., 2020). We prove that indeed such heterogene-

ity has a large effect on FEDAVG—it introduces a drift in the updates of each client resulting

in slow and unstable convergence. Further, we show that this client-drift persists even if full

batch gradients are used and all clients participate throughout the training.

As a solution, we propose a new Stochastic Controlled Averaging algorithm (SCAFFOLD)

which tries to correct for this client-drift. Intuitively, SCAFFOLD estimates the update di-

rection for the server model (c) and the update direction for each client c i .1 The difference

(c − c i ) is then an estimate of the client-drift which is used to correct the local update. This

strategy successfully overcomes heterogeneity and converges in significantly fewer rounds of

communication. Alternatively, one can see heterogeneity as introducing ‘client-variance’ in

the updates across the different clients and SCAFFOLD then performs ‘client-variance re-

duction’ (Schmidt et al., 2017; Johnson and Zhang, 2013; Defazio et al., 2014). We use this

viewpoint to show that SCAFFOLD is relatively unaffected by client sampling.

Finally, while accommodating heterogeneity is important, it is equally important that a method

can take advantage of similarities in the client data. We prove that SCAFFOLD indeed has

such a property, requiring fewer rounds of communication when the clients are more similar.

Contributions. We summarize our main results below.

• We derive tighter convergence rates for FEDAVG than previously known for convex and

1We refer to these estimates as control variates and the resulting correction technique as stochastic controlled
averaging.
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4.2. Introduction

Table 4.1 – Summary of notation used in the paper

N , S, and i total num., sampled num., and index of clients
R, r number, index of communication rounds
K , k number, index of local update steps

xr aggregated server model after round r
y r

i ,k i th client’s model in round r and step k

c r , c r
i control variate of server, i th client after round r

non-convex functions with client sampling and heterogeneous data.

• We give matching lower bounds to prove that even with no client sampling and full batch

gradients, FEDAVG can be slower than SGD due to client-drift.

• We propose a new Stochastic Controlled Averaging algorithm (SCAFFOLD) which cor-

rects for this client-drift. We prove that SCAFFOLD is at least as fast as SGD and con-

verges for arbitrarily heterogeneous data.

• We show SCAFFOLD can additionally take advantage of similarity between the clients to

further reduce the communication required, proving the advantage of taking local steps

over large-batch SGD for the first time.

• We prove that SCAFFOLD is relatively unaffected by the client sampling obtaining vari-

ance reduced rates, making it especially suitable for federated learning.

Finally, we confirm our theoretical results on simulated and real datasets (extended MNIST

by Cohen et al. (2017)).

Related work. For identical clients, FEDAVG coincides with parallel SGD analyzed by (Zinke-

vich et al., 2010) who proved asymptotic convergence. Stich (2019a) and, more recently Stich

and Karimireddy (2019); Patel and Dieuleveut (2019); Khaled et al. (2020), gave a sharper anal-

ysis of the same method, under the name of local SGD, also for identical functions. However,

there still remains a gap between their upper bounds and the lower bound of Woodworth

et al. (2018). The analysis of FEDAVG for heterogeneous clients is more delicate due to the

afore-mentioned client-drift, first empirically observed by Zhao et al. (2018). Several analy-

ses bound this drift by assuming bounded gradients (Wang et al., 2019; Yu et al., 2019b), or

view it as additional noise (Khaled et al., 2020), or assume that the client optima are ε-close

(Li et al., 2018b; Haddadpour and Mahdavi, 2019). In a concurrent work, (Liang et al., 2019)

propose to use variance reduction to deal with client heterogeneity but still show rates slower

than SGD and do not support client sampling. Our method SCAFFOLD can also be seen as

an improved version of the distributed optimization algorithm DANE by (Shamir et al., 2014),

where a fixed number of (stochastic) gradient steps are used in place of a proximal point up-

date. A more in-depth discussion of related work is given in Appendix 12.1. We summarize

the complexities of different methods for heterogeneous clients in Table 4.2.
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Table 4.2 – Number of communication rounds required to reach ε accuracy for µ strongly
convex and non-convex functions (log factors are ignored). Set µ= ε for general convex rates.
(G ,B) bounds gradient dissimilarity (A1), and δ bounds Hessian dissimilarity (A2). Our rates
for FEDAVG are more general and tighter than others, even matching the lower bound. How-
ever, SGD is still faster (B ≥ 1). SCAFFOLD does not require any assumptions, is faster than
SGD, and is robust to client sampling. Further, when clients become more similar (small δ),
SCAFFOLD converges even faster.

Method Strongly convex Non-convex Sampling Assumptions

SGD (large batch) σ2

µN K ε + 1
µ

σ2

N K ε2 + 1
ε

× –

FedAvg

(Li et al., 2019c) σ2

µ2N K ε
+ G2K

µ2ε
– × (G ,0)-BGD

(Yu et al., 2019b) – σ2

N K ε2 + G2N K
ε

× (G ,0)-BGD

(Khaled et al., 2020) σ2+G2

µN K ε + σ+G
µ
p
ε
+ N B 2

µ – × (G ,B)-BGD

Ours (Thm. VI)1 M 2

µSK ε + G
µ
p
ε
+ B 2

µ
M 2

SK ε2 + G
ε3/2 + B 2

ε X (G ,B)-BGD

Lower-bound (Thm. VII) Ω( σ2

µN K ε + Gp
µε ) ? × (G ,1)-BGD

FedProx (Li et al., 2018b)2 B 2

µ
B 2

ε
(weakly convex) X σ= 0, (0,B)-BGD

DANE (Shamir et al., 2014)2,3 δ2

µ2 – × σ= 0, δ-BHD

VRL-SGD (Liang et al., 2019) – Nσ2

K ε2 + N
ε

× –

SCAFFOLD

Theorem VIII σ2

µSK ε + 1
µ + N

S
σ2

SK ε2 + 1
ε ( N

S )
2
3 X –

Theorem IX3 σ2

µN K ε + 1
µK + δ

µ
σ2

N K ε2 + 1
K ε + δ

ε × δ-BHD

1 M 2 :=σ2 +K (1− S
N )G2. Note that M 2

S = σ2

N when no sampling (S = N ).
2 proximal point method i.e. K À 1.
3 proved only for quadratic functions.

4.3 Setup

We formalize the problem as minimizing a sum of stochastic functions, with only access to

stochastic samples:

min
x∈Rd

{
f (x) := 1

N

N∑
i=1

(
fi (x) := Eζi [ fi (x ;ζi )]

)}
.

The functions fi represents the loss function on client i . All our results can be easily extended

to the weighted case.

We assume that f is bounded from below by f ? and fi is β-smooth. Further, we assume

gi (x) := ∇ fi (x ;ζi ) is an unbiased stochastic gradient of fi with variance bounded by σ2. For

some results, we assume µ ≥ 0 (strong) convexity. Note that σ only bounds the variance

within clients. We also define two non-standard terminology below.
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4.4. Convergence of FedAvg

(A1) (G ,B)-BGD or bounded gradient dissimilarity: there exist constants G ≥ 0 and B ≥ 1

such that 1

N

N∑
i=1

‖∇ fi (x)‖2 ≤G2 +B 2‖∇ f (x)‖2 , ∀x .

If { fi } are convex, we can relax the assumption to

1

N

N∑
i=1

‖∇ fi (x)‖2 ≤G2 +2βB 2( f (x)− f ?) , ∀x .

(A2) δ-BHD or bounded Hessian dissimilarity:

‖∇2 fi (x)−∇2 f (x)‖ ≤ δ , ∀x .

Further, fi is δ-weakly convex i.e. ∇2 fi (x) º−δI .

The assumptions A1 and A2 are orthogonal—it is possible to have G = 0 and δ= 2β, or δ= 0

but G À 1.

4.4 Convergence of FedAvg

In this section we review FEDAVG and improve its convergence analysis by deriving tighter

rates than known before. The scheme consists of two main parts: local updates to the model

(4.1), and aggregating the client updates to update the server model (4.2). In each round,

a subset of clients S ⊆ [N ] are sampled uniformly. Each of these clients i ∈ S copies the

current sever model y i = x and performs K local updates of the form:

y i ← y i −ηl gi (y i ) . (4.1)

Here ηl is the local step-size. Then the clients’ updates (y i − x) are aggregated to form the

new server model using a global step-size ηg as:

x ← x + ηg

|S |
∑

i∈S

(y i −x) . (4.2)

4.4.1 Rate of convergence

We now state our novel convergence results for functions with bounded dissimilarity (proofs

in Appendix 12.4.2).

Theorem VI. For β-smooth functions { fi } which satisfy (A1), the output of FEDAVG has ex-

pected error smaller than ε in each of the below three cases for some values of ηl and ηg , with

the following bound on R

• µ Strongly convex:

R = Õ

(
σ2

µK Sε
+ (

1− S
N

) G2

µSε
+

√
βG

µ
p
ε
+ B 2β

µ

)
,
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• General convex:

R =O

(
σ2D2

K Sε2 + (
1− S

N

)G2D2

Sε2 +
√
βG

ε
3
2

+ B 2βD2

ε

)
,

• Non-convex:

R =O

(
βσ2F

K Sε2 + (
1− S

N

)G2F

Sε2 +
√
βG

ε
3
2

+ B 2βF

ε

)
,

where D := ‖x0 −x?‖2 and F := f (x0)− f ?.

The exact values of ηl and ηg decreasewith the number of rounds R and can be found in the

proofs in the Appendix. It is illuminating to compare our rates with those of the simpler iid.

case i.e. with G = 0 and B = 1. Our strongly-convex rates become σ2

µSK ε + 1
µ . In comparison,

the best previously known rate for this case was by Stich and Karimireddy (2019) who show

a rate of σ2

µSK ε + S
µ . The main source of improvement in the rates came from the use of two

separate step-sizes (ηl and ηg ). By having a larger global step-size ηg , we can use a smaller

local step-size ηl thereby reducing the client-drift while still ensuring progress. However,

even our improved rates do not match the lower-bound for the identical case of σ2

µSK ε + 1
Kµ

(Woodworth et al., 2018). We bridge this gap for quadratic functions in Section 4.7.

We now compare FEDAVG to two other algorithms FedProx by (Li et al., 2018b) (aka EASGD by

(Zhang et al., 2015)) and to SGD. Suppose that G = 0 and σ= 0 i.e. we use full batch gradients

and all clients have very similar optima. In such a case, FEDAVG has a complexity of B 2

µ which

is identical to that of FedProx (Li et al., 2018b). Thus, FedProx does not have any theoretical

advantage.

Next, suppose that all clients participate (no sampling) with S = N and there is no variance

σ = 0. Then, the above for strongly-convex case simplifies to G
µ
p
ε
+ B 2

µ . In comparison, ex-

tending the proof of (Khaled et al., 2020) using our techniques gives a worse dependence

on G of G2

µK Nε + G
µ
p
ε

. Similarly, for the non-convex case, our rates are tighter and have bet-

ter dependence on G than (Yu et al., 2019b). However, simply running SGD in this setting

would give a communication complexity of β
µ which is faster, and independent of similarity

assumptions. In the next section we examine the necessity of such similarity assumptions.

4.4.2 Lower bounding the effect of heterogeneity

We now show that when the functions { fi } are distinct, the local updates of FEDAVG on each

client experiences drift thereby slowing down convergence. We show that the amount of this

client drift, and hence the slowdown in the rate of convergence, is exactly determined by the

gradient dissimilarity parameter G in (A1).

We now examine the mechanism by which the client-drift arises (see Fig. 4.1). Let x? be the

global optimum of f (x) and x?i be the optimum of each client’s loss function fi (x). In the case

of heterogeneous data, it is quite likely that each of these x?i is far away from the other, and

from the global optimum x?. Even if all the clients start from the same point x , each of the y i
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4.5. SCAFFOLD algorithm

x

y 1

client 1

y 2 client 2
x?2

x?1

x?

server

client update

client drift

server update

SGD update

true opt.

client opt.

Figure 4.1 – Client-drift in FEDAVG is illustrated for 2 clients with 3 local steps (N = 2, K = 3).
The local updates y i (in blue) move towards the individual client optima x?i (orange square).
The server updates (in red) move towards 1

N

∑
i x?i instead of to the true optimum x? (black

square).

will move towards their client optimum x?i . This means that the average of the client updates

(which is the server update) moves towards 1
N

∑N
i=1 x?i . This difference between 1

N

∑N
i=1 x?i

and the true optimum x? is exactly the cause of client-drift. To counter this drift, FEDAVG

is forced to use much smaller step-sizes which in turn hurts convergence. We can formalize

this argument to prove a lower-bound (see Appendix 12.4.4 for proof).

Theorem VII. For any positive constants G and µ, there exist µ-strongly convex functions sat-

isfying A1 for which FEDAVG with K ≥ 2, σ= 0 and N = S has an error

f (xr )− f (x?) ≥Ω
(

G2

µR2

)
.

This implies that the Gp
ε

term is unavoidable even if there is no stochasticity. Further, because

FEDAVG uses RK N stochastic gradients, we also have the statistical lower-bound of σ2

µK Nε .

Together, these lower bounds prove that the rate derived in Theorem VI is nearly optimal

(up to dependence on µ). In the next section, we introduce a new method SCAFFOLD to

mitigate this client-drift.

4.5 SCAFFOLD algorithm

In this section we first describe SCAFFOLD and then discuss how it solves the problem of

client-drift.

Method. SCAFFOLD has three main steps: local updates to the client model (4.3), local

updates to the client control variate (4.4), and aggregating the updates (4.5). We describe

each in more detail.

Along with the server model x , SCAFFOLD maintains a state for each client (client control

variate c i ) and for the server (server control variate c). These are initialized to ensure that
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Algorithm 5 SCAFFOLD: Stochastic Controlled Averaging for federated learning

1: server input: initial x and c , and global step-size ηg

2: client i ’s input: c i , and local step-size ηl

3: for each round r = 1, . . . ,R do
4: sample clients S ⊆ {1, . . . , N }
5: communicate (x ,c) to all clients i ∈S

6: for each client i ∈S in parallel do
7: initialize local model y i ← x
8: for k = 1, . . . ,K do
9: compute mini-batch gradient gi (y i )

10: y i ← y i −ηl (gi (y i )−c i +c)
11: end for
12: c+

i ← (i) gi (x), or (ii) c i −c + 1
Kηl

(x − y i )

13: communicate (∆y i ,∆c i ) ← (y i −x ,c+
i −c i )

14: c i ← c+
i

15: end for
16: (∆x ,∆c) ← 1

|S |
∑

i∈S (∆y i ,∆c i )

17: x ← x +ηg∆x and c ← c + |S |
N ∆c

18: end for

c = 1
N

∑
c i and can safely all be initialized to 0. In each round of communication, the server

parameters (x ,c) are communicated to the participating clients S ⊂ [N ]. Each participating

client i ∈S initializes its local model with the server model y i ← x . Then it makes a pass over

its local data performing K updates of the form:

y i ← y i −ηl (gi (y i )+c −c i ) . (4.3)

Then, the local control variate c i is also updated. For this, we provide two options:

c+
i ←

Option I. gi (x) ,or

Option II. c i −c + 1
Kηl

(x − y i ) .
(4.4)

Option I involves making an additional pass over the local data to compute the gradient at

the server model x . Option II instead re-uses the previously computed gradients to update

the control variate. Option I can be more stable than II depending on the application, but

II is cheaper to compute and usually suffices (all our experiments use Option II). The client

updates are then aggregated and used to update the server parameters:

x ← x + ηg

|S |
∑

i∈S

(y i −x) ,

c ← c + 1

N

∑
i∈S

(c+
i −c i ) .

(4.5)

This finishes one round of communication. Note that the clients in SCAFFOLD are state-

ful and retain the value of c i across multiple rounds. Further, if c i is always set to 0, then
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x

x?1

x?

correction

local gradient

y 1 client update

Figure 4.2 – Update steps of SCAFFOLD on a single client. The local gradient (dashed black)
points to x?1 (orange square), but the correction term (c − c i ) (in red) ensures the update
moves towards the true optimum x? (black square).

SCAFFOLD becomes equivalent to FEDAVG. The full details are summarized in Algorithm 5.

Usefulness of control variates.

If communication cost was not a concern, the ideal update on client i would be

y i ← y i +
1

N

∑
j

g j (y i ) . (4.6)

Such an update essentially computes an unbiased gradient of f and hence becomes equiv-

alent to running FEDAVG in the iid case (which has excellent performance). Unfortunately

such an update requires communicating with all clients for every update step. SCAFFOLD

instead uses control variates such that

c j ≈ g j (y i ) and c ≈ 1

N

∑
j

g j (y i ) .

Then, SCAFFOLD (4.3) mimics the ideal update (4.6) with

(gi (y i )−c i +c) ≈ 1

N

∑
j

g j (y i ) .

Thus, the local updates of SCAFFOLD remain synchronized and converge for arbitrarily het-

erogeneous clients.

4.6 Convergence of SCAFFOLD

We state the rate of SCAFFOLD without making any assumption on the similarity between

the functions. See Appendix 12.5 for the full proof.

Theorem VIII. For any β-smooth functions { fi }, the output of SCAFFOLD has expected er-

ror smaller than ε for in each of the below three cases for some values of ηl and ηg , with the

following bound on R

• µ Strongly convex:

R = Õ

(
σ2

µK Sε
+ β

µ
+ N

S

)
,
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• General convex:

R = Õ

(
σ2D2

K Sε2 + βD2

ε
+ N F

S

)
,

• Non-convex:

R =O

(
βσ2F

K Sε2 +
(

N

S

) 2
3 βF

ε

)
,

where D := ‖x0 −x?‖2 and F := f (x0)− f ?.

The exact values of ηl and ηg decreasewith the number of rounds R and can be found in

the proofs in the Appendix. Let us first examine the rates without client sampling (S = N ).

For the strongly convex case, the number of rounds becomes σ2

µN K ε + 1
µ . This rate holds for

arbitrarily heterogeneous clients unlike Theorem VI and further matches that of SGD with

K times larger batch-size, proving that SCAFFOLD is at least as fast as SGD. These rates

also match known lower-bounds for distributed optimization (Arjevani and Shamir, 2015)

(up to acceleration) and are unimprovable in general. However in certain cases SCAFFOLD

is provably faster than SGD. We show this fact in Section 4.7.

Now let σ = 0. Then our rates in the strongly-convex case are 1
µ + N

S and
( N

S

) 2
3 1
ε in the non-

convex case. These exactly match the rates of SAGA (Defazio et al., 2014; Reddi et al., 2016c).

In fact, when σ= 0, K = 1 and S = 1, the update of SCAFFOLD with option I reduces to SAGA

where in each round consists of sampling one client fi . Thus SCAFFOLD can be seen as an

extension of variance reduction techniques for federated learning, and one could similarly

extend SARAH (Nguyen et al., 2017), SPIDER (Fang et al., 2018), etc. Note that standard SGD

with client sampling is provably slower and converges at a sub-linear rate even with σ= 0.

Proof sketch. For simplicity, assume that σ= 0 and consider the ideal update of (4.6) which

uses the full gradient ∇ f (y) every step. Clearly, this would converge at a linear rate even with

S = 1. FEDAVG would instead use an update ∇ fi (y). The difference between the ideal update

(4.6) and the FEDAVG update (4.1) is ‖∇ fi (y)−∇ f (y)‖. We need a bound on the gradient-

dissimilarity as in (A1) to bound this error. SCAFFOLD instead uses the update∇ fi (y)−c i+c ,

and the difference from ideal update becomes∑
i
‖(∇ fi (y)−c i +c)−∇ f (y)‖2 ≤∑

i
‖c i −∇ fi (y)‖2 .

Thus, the error is independent of how similar or dissimilar the functions fi are, and instead

only depends on the quality of our approximation c i ≈ ∇ fi (y). Since fi is smooth, we can

expect that the gradient ∇ fi (y) does not change too fast and hence is easy to approximate.

Appendix 12.5 translates this intuition into a formal proof.
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4.7 Usefulness of local steps

In this section we investigate when and why taking local steps might be useful over simply

computing a large-batch gradient in distributed optimization. We will show that when the

functions across the clients share some similarity, local steps can take advantage of this and

converge faster. For this we consider quadratic functions and express their similarity with the

δ parameter introduced in (A2).

Theorem IX. For any β-smooth quadratic functions { fi } with δ bounded Hessian dissimilarity

(A2), the output of SCAFFOLD with S = N (no sampling) has error smaller than ε in each of

the following two cases with ηg = 1, some value of ηl , and R satisfying

• Strongly convex:

R = Õ

(
βσ2

µK Nε
+ β+δK

µK

)
,

• Weakly convex:

R =O

(
βσ2F

K Nε2 + (β+δK )F

K ε

)
,

where we define F := ( f (x0)− f ?).

Here again the exact value of ηl decreases with the number of rounds R and can be found

in the proofs in the Appendix. When σ = 0 and K is large, the complexity of SCAFFOLD

becomes δ
µ . In contrast DANE, which being a proximal point method also uses large K , re-

quires ( δµ )2 rounds (Shamir et al., 2014) which is significantly slower, or needs an additional

backtracking-line search to match the rates of SCAFFOLD (Yuan and Li, 2019). Further, The-

orem IX is the first result to demonstrate improvement due to similairty for non-convex func-

tions as far as we are aware.

Suppose that { fi } are identical. Recall that δ in (A2) measures the Hessian dissimilarity be-

tween functions and so δ = 0 for this case. Then Theorem IX shows that the complexity of

SCAFFOLD is σ2

µK Nε+ 1
µK which (up to acceleration) matches the i.i.d. lower bound of (Wood-

worth et al., 2018). In contrast, SGD with K times larger batch-size would require σ2

µK Nε + 1
µ

(note the absence of K in the second term). Thus, for identical functions, SCAFFOLD (and

in fact even FEDAVG) improves linearly with increasing number of local steps. In the other

extreme, if the functions are arbitrarily different, we may have δ= 2β. In this case, the com-

plexity of SCAFFOLD and large-batch SGD match the lower bound of Arjevani and Shamir

(2015) for the heterogeneous case.

The above insights can be generalized to when the functions are only somewhat similar. If

the Hessians are δ-close and σ = 0, then the complexity is β+δK
µK . This bound implies that

the optimum number of local steps one should use is K = β
δ . Picking a smaller K increases

the communication required whereas increasing it further would only waste computational

resources. While this result is intuitive—if the functions are more ‘similar’, local steps are
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Figure 4.3 – SGD (dashed black), FedAvg (above), and SCAFFOLD (below) on simulated data.
FedAvg gets worse as local steps increases with K = 10 (red) worse than K = 2 (orange). It
also gets slower as gradient-dissimilarity (G) increases (to the right). SCAFFOLD significantly
improves with more local steps, with K = 10 (blue) faster than K = 2 (light blue) and SGD. Its
performance is identical as we vary heterogeneity (G).

more useful—Theorem IX shows that it is the similarity of the Hessians which matters. This

is surprising since the Hessians of { fi } may be identical even if their individual optima x?i are

arbitrarily far away from each other and the gradient-dissimilarity (A1) is unbounded.

Proof sketch. Consider a simplified SCAFFOLD update withσ= 0 and no sampling (S = N ):

y i = y i −η(∇ fi (y i )+∇ f (x)−∇ fi (x)) .

We would ideally want to perform the update y i = y i −η∇ f (y i ) using the full gradient ∇ f (y i ).

We reinterpret the correction term of SCAFFOLD (c − c i ) as performing the following first

order correction to the local gradient ∇ fi (y i ) to make it closer to the full gradient ∇ f (y i ):

∇ fi (y i )−∇ fi (x)︸ ︷︷ ︸
≈∇2 fi (x)(y i−x)

+ ∇ f (x)︸ ︷︷ ︸
≈∇ f (y i )+∇2 f (x)(x−y i )

≈∇ f (y i )+ (∇2 fi (x)−∇2 f (x))(y i −x)

≈∇ f (y i )+δ(y i −x)

Thus the SCAFFOLD update approximates the ideal update up to an error δ. This intuition is

proved formally for quadratic functions in Appendix 12.6. Generalizing these results to other

functions is a challenging open problem.

4.8 Experiments

We run experiments on both simulated and real datasets to confirm our theory. Our main

findings are i) SCAFFOLD consistently outperforms SGD and FEDAVG across all parameter

regimes, and ii) the benefit (or harm) of local steps depends on both the algorithm and the

similarity of the clients data.
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4.8.1 Setup

Our simulated experiments uses N = 2 quadratic functions based on our lower-bounds in

Theorem VII. We use full-batch gradients (σ= 0) and no client sampling. Our real world ex-

periments run logistic regression (convex) and 2 layer fully connected network (non-convex)

on the EMNIST (Cohen et al., 2017). We divide this dataset among N = 100 clients as follows:

for s% similar data we allocate to each client s% i.i.d. data and the remaining (100− s)% by

sorting according to label (cf. Hsu et al. (2019)).

We consider four algorithms: SGD, FEDAVG SCAFFOLD and FEDPROX with SGD as the local

solver (Li et al., 2018b). On each client SGD uses the full local data to compute a single up-

date, whereas the other algorithms take 5 steps per epoch (batch size is 0.2 of local data). We

always use global step-size ηg = 1 and tune the local step-size ηl individually for each algo-

rithm. SCAFFOLD uses option II (no extra gradient computations) and FEDPROX has fixed

regularization = 1 to keep comparison fair. Additional tuning of the regularization parameter

may sometimes yield improved empirical performance.

4.8.2 Simulated results

The results are summarized in Fig. 4.3. Our simulated data has Hessian difference δ= 1 (A2)

and β = 1. We vary the gradient heterogeneity (A1) as G ∈ [1,10,100]. For all valued of G ,

FEDAVG gets slower as we increase the number of local steps. This is explained by the fact that

client-drift increases as we increase the number of local steps, hindering progress. Further,

as we increase G , FEDAVG continues to slow down exactly as dictated by Thms. VI and VII.

Note that when heterogeneity is small (G =β= 1), FEDAVG can be competitive with SGD.

SCAFFOLD is consistently faster than SGD, with K = 2 being twice as fast and K = 10 about 5

times faster. Further, its convergence is completely unaffected by G , confirming our theory in

Thm. VIII. The former observation that we do not see linear improvement with K is explained

by Thm. IX since we have δ> 0. This sub linear improvement is still significantly faster than

both SGD and FEDAVG.

4.8.3 EMNIST results

We run extensive experiments on the EMNIST dataset to measure the interplay between

the algorithm, number of epochs (local updates), number of participating clients, and the

client similarity. Table 4.3 measures the benefit (or harm) of using more local steps, Table 4.4

studies the resilience to client sampling, and Table 4.5 reports preliminary results on neural

networks. We are mainly concerned with minimizing the number of communication rounds.

We observe that

SCAFFOLD is consistently the best. Across all range of values tried, we observe that SCAF-

FOLD outperforms SGD, FEDAVG, and FEDPROX. The latter FEDPROX is always slower than
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Table 4.3 – Communication rounds to reach 0.5 test accuracy for logistic regression on EM-
NIST as we vary number of epochs. 1k+ indicates 0.5 accuracy was not reached even after
1k rounds, and similarly an arrowhead indicates that the barplot extends beyond the table.
1 epoch for local update methods corresponds to 5 local steps (0.2 batch size), and 20% of
clients are sampled each round. We fix µ= 1 for FEDPROX and use variant (ii) for SCAFFOLD
to ensure all methods are comparable. Across all parameters (epochs and similarity), SCAF-
FOLD is the fastest method. When similarity is 0 (sorted data), FEDAVG consistently gets
worse as we increase the number of epochs, quickly becoming slower than SGD. SCAFFOLD
initially gets worse and later stabilizes, but is always at least as fast as SGD. As similarity in-
creases (i.e. data is more shuffled), both FEDAVG and SCAFFOLD significantly outperform
SGD though SCAFFOLD is still better than FEDAVG. Further, with higher similarity, both
methods benefit from increasing number of epochs.

Epochs 0% similarity (sorted) 10% similarity 100% similarity (i.i.d.)
Num. of rounds Speedup Num. of rounds Speedup Num. of rounds Speedup

SGD 1 317 (1×) 365 (1×) 416 (1×)

SCAFFOLD1 77 (4.1×) 62 (5.9×) 60 (6.9×)

5 152 (2.1×) 20 (18.2×) 10 (41.6×)

10 286 (1.1×) 16 (22.8×) 7 (59.4×)

20 266 (1.2×) 11 (33.2×) 4 (104×)

FedAvg 1 258 (1.2×) 74 (4.9×) 83 (5×)

5 428 (0.7×) 34 (10.7×) 10 (41.6×)

10 711 (0.4×) 25 (14.6×) 6 (69.3×)

20 1k+ (< 0.3×) 18 (20.3×) 4 (104×)

FedProx 1 1k+ (< 0.3×) 979 (0.4×) 459 (0.9×)

5 1k+ (< 0.3×) 794 (0.5×) 351 (1.2×)

10 1k+ (< 0.3×) 894 (0.4×) 308 (1.4×)

20 1k+ (< 0.3×) 916 (0.4×) 351 (1.2×)

the other local update methods, though in some cases it outperforms SGD. Note that it is pos-

sible to improve FEDPROX by carefully tuning the regularization parameter (Li et al., 2018b).

FEDAVG is always slower than SCAFFOLD and faster than FEDPROX.

SCAFFOLD > SGD > FedAvg for heterogeneous clients. When similarity is 0%, FEDAVG gets

slower with increasing local steps. If we take more than 5 epochs, its performance is worse

than SGD’s. SCAFFOLD initially worsens as we increase the number of epochs but then

flattens. However, its performance is always better than that of SGD, confirming that it can

handle heterogeneous data.

SCAFFOLD and FedAvg get faster with more similarity, but not SGD. As similarity of the

clients increases, the performance of SGD remains relatively constant. On the other hand,

SCAFFOLD and FEDAVG get significantly faster as similarity increases. Further, local steps

become much more useful, showing monotonic improvement with the increase in number

of epochs. This is because with increasing the i.i.d.ness of the data, both the gradient and

Hessian dissimilarity decrease.
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Table 4.4 – Communication rounds to reach 0.45 test accuracy for logistic regression on EM-
NIST as we vary the number of sampled clients. Number of epochs is kept fixed to 5. SCAF-
FOLD is consistently faster than FEDAVG. As we decrease the number of clients sampled
in each round, the increase in number of rounds is sub-linear. This slow-down is better for
more similar clients.

Clients 0% similarity 10% similarity

SCAFFOLD 20% 143 (1.0×) 9 (1.0×)
5% 290 (2.0×) 13 (1.4×)
1% 790 (5.5×) 28 (3.1×)

FEDAVG 20% 179 (1.0×) 12 (1.0×)
5% 334 (1.9×) 17 (1.4×)
1% 1k+ (5.6+×) 35 (2.9×)

Table 4.5 – Best test accuracy after 1k rounds with 2-layer fully connected neural network
(non-convex) on EMNIST trained with 5 epochs per round (25 steps) for the local methods,
and 20% of clients sampled each round. SCAFFOLD has the best accuracy and SGD has
the least. SCAFFOLD again outperforms other methods. SGD is unaffected by similarity,
whereas the local methods improve with client similarity.

0% similarity 10% similarity

SGD 0.766 0.764
FEDAVG 0.787 0.828
SCAFFOLD 0.801 0.842

SCAFFOLD is resilient to client sampling. As we decrease the fraction of clients sampled,

SCAFFOLD ,and FEDAVG only show a sub-linear slow-down. They are more resilient to sam-

pling in the case of higher similarity.

SCAFFOLD outperforms FedAvg on non-convex experiments. We see that SCAFFOLD is

better than FEDAVG in terms of final test accuracy reached, though interestingly FEDAVG

seems better than SGD even when similarity is 0. However, much more extensive experi-

ments (beyond current scope) are needed before drawing conclusions.

4.9 Conclusion

Our work studied the impact of heterogeneity on the performance of optimization methods

for federated learning. Our careful theoretical analysis showed that FEDAVG can be severely

hampered by gradient dissimilarity, and can be even slower than SGD. We then proposed a

new stochastic algorithm (SCAFFOLD) which overcomes gradient dissimilarity using con-

trol variates. We demonstrated the effectiveness of SCAFFOLD via strong convergence guar-

antees and empirical evaluations. Further, we showed that while SCAFFOLD is always at
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least as fast as SGD, it can be much faster depending on the Hessian dissimilarity in our data.

Thus, different algorithms can take advantage of (and are limited by) different notions of dis-

similarity. We believe that characterizing and isolating various dissimilarities present in real

world data can lead to further new algorithms and significant impact on distributed, feder-

ated, and decentralized learning.
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5 Mime: mimicking centralized al-
gorithms in cross-device federated
learning
5.1 Preface

Contribution and sources. This chapter reproduces (Karimireddy et al., 2020a). Ideation,

theory, and writing were carried out mostly by SPK. SPK wrote an initial version of the code-

base, which was significantly built upon and improved by Ananda Theertha Suresh and Satyen

Kale. Their help was crucial in running the large scale experiments presented here, whereas

the smaller scale experiments use the initial codebase. SK also polished the manuscript sig-

nificantly. Detailed individual contributions:

SPK (author): Conceptualization, Methodology, Formal analysis, Software (33%), Writing

Martin Jaggi: Writing – review and editing

Satyen Kale: Supervision, Administration, Writing – review and editing, Software (33%)

Mehryar Mohri: Supervision, Administration, Writing – review and editing

Sashank Reddi: Writing – review and editing

Sebastian Stich: Writing – review and editing

Ananda Theertha Suresh: Supervision, Software (33%), Writing – review and editing .

Summary. While significant research has gone into developing better federated learning

(FL) algorithms, most of them (including SCAFFOLD) require storing N (number of clients)

copies of the model and make a large number of passes over the clients. This make them

impractical for real world setting where N may be 100k+, and we may never see the same

client twice. Further, algorithmic innovations such as momentum and adaptivity are crucial

for practical deep learning and need to be incorporated into FL.

In this chapter, we formulate cross-device FL as a stochastic optimization with potentially in-

finite clients, and propose a general algorithmic framework (MIME) for it. MIME i) mitigates

client drift similar to SCAFFOLD, but also ii) adapts an arbitrary centralized optimization al-

gorithm such as momentum and Adam to FL in a principled manner. We theoretically prove

that MIME is provably faster than any centralized method–the first such result, and also per-

form a thorough experimental evaluation. Our work is open sourced at github.com/google/fedjax,

and is currently being tested for real world deployment at Google.
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5.2 Introduction

Federated learning (FL) is an increasingly important large-scale learning framework where

the training data remains distributed over a large number of clients, which may be mobile

phones or network sensors (Konečnỳ et al., 2016; McMahan et al., 2017; Mohri et al., 2019;

Kairouz et al., 2019). A server then orchestrates the clients to train a single model, here re-

ferred to as a server model, without ever transmitting client data over the network, thereby

providing some basic levels of data privacy and security.

Two important settings are distinguished in FL (Kairouz et al., 2019, Table 1): the cross-device

and the cross-silo settings. The cross-silo setting corresponds to a relatively small number of

reliable clients, typically organizations, such as medical or financial institutions. In contrast,

in the cross-device federated learning setting, the number of clients may be extremely large

and include, for example, all 3.5 billion active android phones (Holst, 2019). Thus, in that

setting, we may never make even a single pass over the entire clients’ data during training.

The cross-device setting is further characterized by resource-poor clients communicating

over a highly unreliable network. Together, the essential features of this setting give rise to

unique challenges not present in the cross-silo setting. In this work, we are interested in the

more challenging cross-device setting, for which we will formalize and study stochastic op-

timization algorithms. Importantly, recent advances in FL optimization, such as SCAFFOLD

(Karimireddy et al., 2020b) or FedDyn (Acar et al., 2021), are not anymore applicable since

they are designed for the cross-silo setting.

The problem. The de facto standard algorithm for the cross-device setting is FEDAVG (McMa-

han et al., 2017), which performs multiple SGD updates on the available clients before com-

municating to the server. While this approach can reduce the frequency of communication

required, performing multiple steps on the same client can lead to ‘over-fitting’ to its atypi-

cal local data, a phenomenon known as client drift (Karimireddy et al., 2020b). This in turn

leads to slower convergence and can, somewhat counter-intuitively, require larger total com-

munication (Woodworth et al., 2020a). Despite significant attention received from the opti-

mization community, the communication complexity of heterogeneous cross-device has not

improved upon that of simple centralized methods, which take no local steps (aka SERVER-

ONLY methods). Furthermore, algorithmic innovations such as momentum (Sutskever et al.,

2013; Cutkosky and Orabona, 2019), adaptivity (Kingma and Ba, 2014; Zaheer et al., 2018;

Zhang et al., 2019b), and clipping (You et al., 2017, 2019; Zhang et al., 2020) are critical to the

success of deep learning applications. The lack of a theoretical understanding of the impact

of multiple client steps has also hindered adapting these techniques in a principled manner

into the client updates, in order to replace the vanilla SGD update of FEDAVG.

To overcome such deficiencies, we propose a new framework, MIME, that mitigates client

drift and can adapt an arbitrary centralized optimization algorithm, e.g. SGD with momen-

tum or Adam, to the federated setting. In each local client update, MIME uses global op-

timizer state, e.g. momentum or adaptive learning rates, and an SVRG-style correction to
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mimic the updates of the centralized algorithm run on i.i.d. data. This optimizer state is

computed only at the server level and kept fixed throughout the local steps, thereby avoiding

overfitting to the atypical local data of any single client.

Contributions. We summarize our main results below.

• MIME framework. We formalize the cross-device federated learning problem, and pro-

pose a new framework MIME that can adapt arbitrary centralized algorithms to this set-

ting.

• Convergence result. We prove a result showing that MIME successfully reduces client

drift. We also prove that the convergence of any generic algorithm in the centralized set-

ting translates convergence of its MIME version in the federated setting.

• Speed-up over centralized methods. By carefully tracking the bias introduced due to

multiple local steps, we prove that MIME with momentum-based variance reduction (MVR)

can beat a lower bound for centralized methods, thus breaking a fundamental barrier.

This is the first such result in FL, and also the first general result showing asymptotic

speed-up due to local steps.

• Empirical validation. We propose a simpler variant, MIMELITE, with an empirical perfor-

mance similar to MIME. We report the results of thorough experimental analysis demon-

strating that both MIME and MIMELITE indeed converge faster than FEDAVG.

Related work.

Analysis of FEDAVG: Much of the recent work in federated learning has focused on analyz-

ing FEDAVG. For identical clients, FEDAVG coincides with parallel SGD, for which (Zinkevich

et al., 2010) derived an analysis with asymptotic convergence. Sharper and more refined anal-

yses of the same method, sometimes called local SGD, were provided by (Stich, 2019a), and

more recently by (Stich and Karimireddy, 2019), (Patel and Dieuleveut, 2019), (Khaled et al.,

2020), and (Woodworth et al., 2020b), for identical functions. Their analysis was extended to

heterogeneous clients in (Wang et al., 2019; Yu et al., 2019b; Karimireddy et al., 2020b; Khaled

et al., 2020; Koloskova et al., 2020). (Charles and Konečnỳ, 2020) derived a tight characteriza-

tion of FedAvg with quadratic functions and demonstrated the sensitivity of the algorithm to

both client and server step sizes. Matching upper and lower bounds were recently given by

(Karimireddy et al., 2020b) and (Woodworth et al., 2020a) for general functions, proving that

FEDAVG can be slower than even SGD for heterogeneous data, due to the client-drift.

Comparison to SCAFFOLD: For the cross-silo setting where the number of clients is rela-

tively low, (Karimireddy et al., 2020b) proposed the SCAFFOLD algorithm, which uses control-

variates (similar to SVRG) to correct for client drift. However, their algorithm crucially re-

lies on stateful clients which repeatedly participate in the training process. FedDyn (Acar

et al., 2021) reduces the communication requirements, but also requires persistent stateful

clients. In contrast, we focus on the cross-device setting where clients may be visited only

once during training and where they are stateless (and thus SCAFFOLD and FedDyn are inap-

plicable). This is akin to the difference between the finite-sum (corresponding to cross-silo)
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and stochastic (cross-device) settings in traditional centralized optimization (Lei and Jordan,

2017).

Comparison to FedAvg and variants: (Hsu et al., 2019) and (Wang et al., 2020c) observed that

using server momentum significantly improves over vanilla FEDAVG. This idea was gener-

alized by (Reddi et al., 2020), who replaced the server update with an arbitrary optimizer,

e.g. Adam. However, these methods only modify the server update while using SGD for the

client updates. MIME, on the other hand, ensures that every local client update resembles

the optimizer e.g. MIME would apply momentum in every client update and not just at the

server level. Beyond this, (Li et al., 2018b) proposed to add a regularizer to ensure client up-

dates remain close. However, this may slow down convergence (cf.(Karimireddy et al., 2020b;

Wang et al., 2020b)). Other orthogonal directions which can be combined with MIME include

tackling computation heterogeneity, where some clients perform many more updates than

others (Wang et al., 2020b), improving fairness by modifying the objective (Mohri et al., 2019;

Li et al., 2019b), incorporating differential privacy (Geyer et al., 2017; Agarwal et al., 2018;

Thakkar et al., 2020), Byzantine adversaries (Pillutla et al., 2019; Wang et al., 2020a; Karim-

ireddy et al., 2021b,a), secure aggregation (Bonawitz et al., 2017; He et al., 2020), etc. We defer

additional discussion to the extensive surveys by (Kairouz et al., 2019; Wang et al., 2021).

5.3 Problem setup

This section formalizes the problem of cross-device federated learning (Kairouz et al., 2019).

Cross-device FL is characterized by a large number of client devices like mobile phones which

may potentially connect to the server at most once. Due to their transient nature, it is not pos-

sible to store any state on the clients, precluding an algorithm like SCAFFOLD. Furthermore,

each client has only a few samples, and there is wide heterogeneity in the samples across

clients. Finally, communication is a major bottleneck and a key metric for optimization in

this setting is the number of communication rounds.

Thus, our objective will be to minimize the following quantity within the fewest number of

client-server communication rounds:

f (x) = Ei∼D

[
fi (x) := 1

ni

ni∑
ν=1

fi (x ;ζi ,ν)
]

. (5.1)

Here, fi denotes the loss function of client i and {ζi ,1, . . . ,ζi ,ni } its local data. Since the number

of clients is extremely large, while the size of each local data is rather modest, we represent

the former as an expectation and the latter as a finite sum. In each round, the algorithm sam-

ples a subset of clients (of size S) and performs some updates to the server model. Due to

the transient and heterogeneous nature of the clients, it is easy to see that the problem be-

comes intractable with arbitrarily dissimilar clients. Thus, it is necessary to assume bounded

dissimilarity across clients.
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(A1) G2-BGV or bounded inter-client gradient variance: there exists G ≥ 0 such that

Ei∼D[‖∇ fi (x)−∇ f (x)‖2] ≤G2 , ∀x .

Next, we also characterize the variance in the Hessians.

(A2) δ-BHV or bounded Hessian variance: Almost surely, the loss function of any client i

satisfies

‖∇2 fi (x ;ζ)−∇2 f (x)‖ ≤ δ , ∀x .

This is in contrast to the usual smoothness assumption that can be stated as:

(A2*) L-smooth: ‖∇2 fi (x ;ζ)‖ ≤ L , ∀x , a.s. for any i .

Note that if fi (x ;ζ) is L-smooth then (A2) is satisfied with δ ≤ 2L, and hence (A2) is weaker

than (A2*). In realistic examples we expect the clients to be similar and hence that δ¿¿¿ L. In

addition, we assume that f (x) is bounded from below by f ? and is L-smooth, as is standard.

5.4 How momentum can help reduce client drift

x?

x?1

x?2

x t
mt

x t+1x t

x t+1

mt

FEDAVG updates MIME updates

Figure 5.1 – Client-drift in FEDAVG (left) and MIME (right) is illustrated for 2 clients with 3
local steps and momentum parameter β = 0.5. The local SGD updates of FEDAVG (shown

using arrows for client 1 and client2) move towards the average of client optima
x?1 +x?2

2 which
can be quite different from the true global optimum x?. Server momentum only speeds up
the convergence to the wrong point in this case. In contrast, MIME uses unbiased momentum
and applies it locally at every update. This keeps the updates of MIME closer to the true
optimum x?.

In this section we examine the tension between reducing communication by running mul-

tiple client updates each round, and degradation in performance due to client drift (Karim-

ireddy et al., 2020b). To simplify the discussion, we assume a single client is sampled each

round and that clients use full-batch gradients. Server-only approach. A simple way to
avoid the issue of client drift is to take no local steps. We sample a client i ∼D and run SGD
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with momentum (SGDm) with momentum parameter β and step size η:

x t = x t−1 −η ((1−β)∇ fi (x t−1)+βmt−1) ,

mt = (1−β)∇ fi (x t−1)+βmt−1 .
(5.2)

Here, the gradient ∇ fi (x t ) is unbiased i.e. E[∇ fi (x t )] = ∇ f (x t ) and hence we are guaranteed

convergence. However, this strategy can be communication-intensive and we are likely to

spend all our time waiting for communication with very little time spent on computing the

gradients.

FEDAVG approach. To reduce the overall communication rounds required, we need to make

more progress in each round of communication. Starting from y 0 = x t−1, FEDAVG (McMahan

et al., 2017) runs multiple SGD steps on the sampled client i ∼D

y k = y k−1 −η∇ fi (y k−1) for k ∈ [K ] , (5.3)

and then a pseudo-gradient g̃ t =−(y K − x t ) replaces ∇ fi (x t−1) in the SGDm algorithm (5.2).

This is referred to as server-momentum since it is computed and applied only at the server

level (Hsu et al., 2019). However, such updates give rise to client-drift resulting in perfor-

mance worse than the naïve server-only strategy (5.2). This is because by using multiple

local updates, (5.3) starts over-fitting to the local client data, optimizing fi (x) instead of the

actual global objective f (x). The net effect is that FEDAVG moves towards an incorrect point

(see Fig 5.1, left). If K is sufficiently large, approximately

y K  x?i , where x?i := argmin
x

fi (x)

⇒ Ei∼D[g̃ t ] (x t −Ei∼D[x?i ]) .

Further, the server momentum is based on g̃ t and hence is also biased. Thus, it cannot cor-

rect for the client drift. We next see how a different way of using momentum can mitigate

client drift.

Mime approach. FEDAVG experiences client drift because both the momentum and the

client updates are biased. To fix the former, we compute momentum using only global opti-

mizer state as in (5.2) using the sampled client i ∼D:

mt = (1−β)∇ fi (x t−1)+βmt−1 . (5.4)

To reduce the bias in the local updates, we will apply this unbiased momentum every step

k ∈ [K ]:

y k = y k−1 −η((1−β)∇ fi (y k−1)+βmt−1) . (5.5)

Note that the momentum term is kept fixed during the local updates i.e. there is no local

momentum used, only global momentum is applied locally. Since mt−1 is a moving average
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Algorithm 6 Mime and MimeLite

input: initial x and s, learning rate η and base algorithm B = (U ,V )
for each round t = 1, · · · ,T do

sample subset S of clients
communicate (x , s) to all clients i ∈S

communicate c ← 1
|S |

∑
j∈S ∇ f j (x) (only Mime)

for each client i ∈S in parallel do
initialize local model y i ← x
for k = 1, · · · ,K do

sample mini-batch ζ from local data
g i ←∇ fi (y i ;ζ)−∇ fi (x ;ζ)+c (Mime)

g i ←∇ fi (y i ;ζ) (MimeLite)
update y i ← y i −ηU (g i , s)

end for
compute full local-batch gradient ∇ fi (x)
communicate (y i ,∇ fi (x))

end for
s ← V

(
1

|S |
∑

i∈S ∇ fi (x), s
)

(update optimizer state)

x ← 1
|S |

∑
i∈S y i (update server parameters)

end for

of unbiased gradients computed over multiple clients, it intuitively is a good approximation

of the general direction of the updates. By taking a convex combination of the local gradient

with mt−1, the update (5.5) is potentially also less biased. In this way MIME combines the

communication benefits of taking multiple local steps and prevents client-drift (see Fig 5.1,

right). Appendix 5.7 makes this intuition precise.

5.5 Mime framework

In this section we describe how to adapt an arbitrary centralized optimizer (referred to as the

“base” algorithm) which may have internal state (e.g. momentum in SGD) to the federated

learning problem (5.1) while ensuring there is no client-drift.

Algorithm 6 describes our framework. We develop two variants, MIME and MIMELITE, which

consist of three components i) a base algorithm we are seeking to mimic, ii) how we compute

the global (server) optimizer state, and iii) the local client updates.

Base algorithm. We assume the centralized base algorithm we are imitating can be decom-

posed into two steps: an update step U which updates the parameters x , and a optimizer

state update step V (·) which keeps track of global optimizer state s. Each step of the base al-

gorithm B = (U ,V ) uses a gradient g to update the parameter x and the optimizer state s as
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follows:

x ← x −ηU (g , s) ,

s ← V (g , s) .
(BASEALG)

As an example, consider SGD with momentum (SGDm). The state in SGDm is the momen-

tum mt . SGDm uses the following update steps:

x t = x t−1 −η ((1−β)∇ fi (x t−1)+βmt−1) ,

mt = (1−β)∇ fi (x t−1)+βmt−1 .

Thus, SGDm can be represented in the above generic form with U (g , s) = (1−β)g +βs and

V (g , s) = (1−β)g +βs. See Appendix for how other algorithms like Adam, Adagrad, etc. can

be represented in this manner. We keep the update U to be linear in the gradient g , whereas

V can be more complicated. This implies that while the parameter update step U is relatively

resilient to receiving a biased gradient g while V can be much more sensitive.

Compute optimizer state globally, apply locally. When updating the optimizer state of the

base algorithm, we use only the gradient computed at the server parameters. Further, they

remain fixed throughout the local updates of the clients. This ensures that these optimizer

state remain unbiased and representative of the global function f (·). At the end of the round,

the server performs

s ← V
(

1
|S |

∑
i∈S ∇ fi (x), s

)
,

∇ fi (x) = 1
ni

∑ni
ν=1∇ fi (x ;ζi ,ν) . (OPTSTATE)

Note that we use full-batch gradients computed at the server parameters x , not client pa-

rameters y i . Local client updates. Each client i ∈ S performs K updates using U of the

base algorithm and a minibatch gradient. There are two variants possible corresponding to

MIME and MIMELITE differentiated using colored boxes. Starting from y i ← x , repeat the

following K times

y i ← y i −ηU (g i , s) (CLTSTEP)

where g i ←∇ fi (y i ;ζ) for MIMELITE, and g i ←∇ fi (y i ;ζ)−∇ fi (x ;ζ)+ 1
|S |

∑
j∈S ∇ f j (x) for

MIME. MIMELITE simply uses the local minibatch gradient whereas MIME uses an SVRG

style correction (Johnson and Zhang, 2013). This is done to reduce the noise from sampling

a local mini-batch. While this correction yields faster rates in theory (and in practice for

convex problems), in deep learning applications we found that MIMELITE closely matches

the performance of MIME.

Finally, there are two modifications made in practical FL: we weight all averages across the

clients by the number of datapoints ni (McMahan et al., 2017), and we perform K epochs

instead of K steps (Wang et al., 2020b).
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5.6 Theoretical analysis of Mime

Table 5.1 summarizes the rates of MIME (highlighted in blue) and MIMELITE (highlighted in

green) and compares them to SERVER-ONLY methods when using SGD, Adam and momen-

tum methods as the base algorithms. We will first examine the convergence of MIME and

MIMELITE with a generic base optimizer and show that its properties are preserved in the fed-

erated setting. We then examine a specific momentum based base optimizer, and prove that

Mime and MimeLite can be asymptotically faster than the best server-only method. This is

the first result to prove the usefulness of local steps and demonstrate asymptotic speed-ups.

5.6.1 Convergence with a generic base optimizer

We will prove a generic reduction result demonstrating that if the underlying base algorithm

converges, and is robust to slight perturbations, then MIME and MIMELITE also preserve

the convergence of the algorithm when applied to the federated setting with additinoal lo-

cal steps.

Theorem X. Suppose that we have G2 inter-client gradient variance (A1), L-smooth { fi } (A2*),

andσ2 intra-client gradient variance. Further, suppose that the updater U of our base-optimizer

B = (U ,V ) satisfies i) linearity: U (g 1 +g 2) =U (g 1)+U (g 2), and ii) Lipschitzness: ‖U (g )‖ ≤
B‖g‖ for some B ≥ 0. Then, running MIME or MIMELITE with K local updates and step-size

η is equivalent to running a centralized algorithm with step-size η̃ := Kη≤ 1
2LB , and updates

x t ← x t−1 − η̃U (g t + e t , s t−1) , and

s t ← V (g t , s t−1) , where we have

Et [g t ] =∇ f (x t−1), Et‖g t −∇ f (x t−1)‖2 ≤G2/S, and

1
B 2L2η̃2 Et‖ e t ‖2 ≤

Et‖g t‖2 MIME ,

Et‖g t‖2 +G2 + σ2

K MIMELITE .

Here, we have proven that MIME and MIMELITE truly mimic the centralized base algorithm

with very small perturbations—the magnitude of e t is O (η̃2). The key to the result is the lin-

earity of the parameter update step U ( · ). By separating the base optimizer into a very simple

parameter step U and a more complicated optimizer state update step V , we can ensure

that commonly used algorithms such as momentum, Adam, Adagrad, and others all satisfy

this property. Armed with this general reduction, we can easily obtain specific convergence

results.

Corollary XI ((Mime/MimeLite) with SGD). Given that the conditions in Theorem X are sat-

isfied, let us run T rounds with K local steps using SGD as the base optimizer and output xout.

This output satisfies E‖∇ f (xout)‖2 ≤ ε for F := f (x0)− f ?, G̃2 :=G2 +σ2/K and

• µ-PL inequality: η= Õ
( 1
µK T

)
, and
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Table 5.1 – Number of communication rounds required to reach ‖∇ f (x)‖2 ≤ ε (log fac-
tors are ignored) with S clients sampled each round. All analyses except SCAFFOLD as-
sume G2 bounded gradient dissimilarity (A1). All analyses assume L-smooth losses, except
MimeLiteMVR and MimeMVR, which only assume δ bounded Hessian dissimilarity (A2).
Convergence of SCAFFOLD depends on the total number of clients N which is potentially
infinite. FEDAVG and MIMELITE are slightly slower than the server-only methods due to ad-
ditional drift terms in most cases. MIME is the fastest and either matches or improves upon
the optimal statistical rates (first term in the rates). In fact, MimeMVR and MimeLiteMVR
beat lower bounds for any server-only method when δ¿ L.

Algorithm Non-convex µ-PL inequality

SCAFFOLDa (Karimireddy et al., 2020b)
(N

S

) 2
3 L
ε

N
S + L

µ

SGD
SERVER-ONLY (Ghadimi and Lan, 2013) LG2

Sε2 + L
ε

G2

µSε + L
µ

MimeLiteSGD≡ FedSGD c LG2

Sε2 + L2G
ε3/2 + L

ε
G2

µSε + LG
µ
p
ε
+ L

µ

MimeSGD LG2

Sε2 + L
ε

G2

µSε + L
µ

ADAM
SERVER-ONLY (Zaheer et al., 2018)b L

ε−G2/S
–

MimeLiteAdambc L
p

S
ε−G2/S

–

MimeAdamb L
ε−G2/S

–

Momentum Variance Reduction (MVR)
SERVER-ONLY (Cutkosky and Orabona, 2019) LGp

Sε3/2 + L
ε

–

MimeLiteMVRd δ(G+σ)
ε3/2 + G2+σ2

ε
+ δ

ε
–

MimeMVRd δGp
Sε3/2 + G2

Sε + δ
ε

–

SERVER-ONLY lower bound (Arjevani et al., 2019) Ω
( LGp

Sε3/2 + G2

Sε + L
ε

)
Ω

(G2

Sε

)
a Num. clients (N ) can be same order as num. total rounds or even ∞, making the bounds
vacuous.
b Adam requires large batch-size S ≥G2/ε to converge (Reddi et al., 2018; Zaheer et al., 2018).
Convergence of FedAdam with client sampling is unknown ((Reddi et al., 2020) only analyze
with full client participation).
c Requires K ≥σ2/G2 number of local updates. Typically, intra-client variance is small (σ2.
G2).
d Requires K ≥ L/δ number of local updates. Faster than the lower bound (and hence any
SERVER-ONLY algorithm) when δ¿ L i.e. our methods can take advantage of Hessian simi-
larity, whereas SERVER-ONLY methods cannot. In worst case, δ≈ L and all methods are com-
parable.

T =
Õ

(
LG2

µSε + LF
µ log

(1
ε

))
MIME ,

Õ
(

LG̃2

µSε + LG̃
µ
p
ε
+ LF

µ log
(1
ε

))
MIMELITE .
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• Non-convex: for η=O
(√ F S

LG̃2T K 2

)
, and

T =
O

(
LG2F

Sε2 + LF
ε

)
MIME ,

O
(

LG̃2F
Sε2 + L2G̃F

ε3/2 + LF
ε

)
MIMELITE .

If we take a sufficient number of local steps K ≥ G2/σ2, then we have G̃ = O (G) in the above

rates. On comparing with the rates in Table 5.1 for SERVER-ONLY SGD, we see that MIME

exactly matches its rates. MIMELITE matches the asymptotic term but has a few higher order

terms. Note that when using SGD as the base optimizer, MIMELITE becomes exactly the same

as FEDAVG and hence has the same rate of convergence.

Corollary XII ((Mime/MimeLite) with Adam). Suppose that the conditions in Theorem X are

satisfied, and further |∇ j fi (x)| ≤ H for any coordinate j ∈ [d ]. Then let us run T rounds using

Adam as the base optimizer with K local steps, β1 = 0, ε0 > 0, η ≤ ε2
0/K L(H + ε0), and any

β2 ∈ [0,1). Output xout chosen randomly from {x1, . . . , xT } satisfies E‖∇ f (xout)‖2 ≤ ε for

T =


O

(
LF (H+ε0)2

ε2
0(ε−G̃2/S)

)
MIME Adam ,

O
(

LF (H+ε0)2
p

S
ε2

0(ε−G̃2/S)

)
MIMELITE Adam .

where F := f (x0)− f ?, G̃2 :=G2 +σ2/K .

Note that here ε0 represents a small positive parameter used in Adam for regularization, and

is different from the accuracy ε. Similar to the SERVER-ONLY analysis of Adam (Zaheer et al.,

2018), we assume β1 = 0 and that batch size is large enough such that S ≥ G2/ε. A similar

analysis can also be carried out for AdaGrad, and other novel variants of Adam (Liu et al.,

2019).

5.6.2 Circumventing server-only lower bounds

The rates obtained above, while providing a safety-check, do not beat those of the SERVER-

ONLY approach. The previous best rates for cross-device FL correspond to MimeLiteSGD

which is O ( LG2

Sε2 + L2G
ε3/2 ) (Khaled et al., 2020; Koloskova et al., 2020; Woodworth et al., 2020a).

While, using a separate server-learning rate can remove the effect of the second term (Karim-

ireddy et al., 2019), this at best matches the rate of SERVER-ONLY SGD O ( LG2

Sε2 ). This is signifi-

cantly slower than simply using momentum based variance reduction (MVR) as in in the FL

setting (SERVER-ONLY MVR) which has a communication complexity of O ( LGp
Sε3/2 ) (Cutkosky

and Orabona, 2019). Thus, even though the main reason for studying local-step methods

was to improve the communication complexity, none thus far show such improvement. The

above difficulty of beating SERVER-ONLY may not be surprising given the two sets of strong

lower bounds known.
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Necessity of local steps. Firstly, (Arjevani et al., 2019) show a gradient oracle lower bound

of Ω( LGp
Sε3/2 ). This matches the complexity of MVR, and hence at first glance it seems that

SERVER-ONLY MVR is optimal. However, the lower bound is really only on the number of

gradients computed and not on the number of clients sampled (sample complexity) (Foster

et al., 2019), or number of rounds of communication required. In particular, multiple local

updates which increases number of gradients computed without needing additional com-

munication offers us a potential way to side-step such lower bounds. A careful analysis of the

bias introduced as a result of such local steps is a key part of our analysis.

Necessity of δ-BHD. A second set of lower bounds directly study the number of communica-

tion rounds required in heterogeneous optimization (Arjevani and Shamir, 2015; Woodworth

et al., 2020a). These results prove that there exist settings where local steps provide no ad-

vantage and SERVER-ONLY methods are optimal. This however contradicts real world exper-

imental evidence (McMahan et al., 2017). As before, the disparity arises due to the contrived

settings considered by the lower bounds. For distributed optimization (with full client partic-

ipation) and convex quadratic objectives, δ-BHD (A2) was shown to be a sufficient (Shamir

et al., 2014; Reddi et al., 2016b) and necessary (Arjevani and Shamir, 2015) condition to cir-

cumvent these lower bounds and yield highly performant methods. We similarly leverage

δ-BHD (A2) to design novel methods which significantly extend prior results to i) all smooth

non-convex functions (not just quadratics), and ii) cross-device FL with client sampling.

We now state our convergence results with momentum based variance reduction (MVR) as

the base-algorithm since it is known to be optimal in the SERVER-ONLY setting.

Theorem XIII. For L-smooth f with G2 gradient dissimilarity (A1), δ Hessian dissimilarity

(A2) and F := ( f (x0)− f ?), let us run MVR as the base algorithm for T rounds with K ≥ L/δ

local steps and generate an output xout. This output satisfies E‖∇ f (xout)‖2 ≤ ε for

• MimeMVR : η=O
(
min

( 1
δK , ( SF

G2T K 3 )1/3
))

, momentum β= 1−O ( δ2S2/3

(TG2)2/3 ), and

T =O
( δGFp

Sε3/2
+ G2

Sε
+ δF

ε

)
.

• MimeLiteMVR : η=O
(
min

( 1
δK , ( F

Ĝ2T K 3 )1/3
))

, momentum β= 1−O ( δ2

(T Ĝ2)2/3 ), and

T =O
(δĜF

ε3/2
+ Ĝ2

ε
+ δF

ε

)
.

Here, we define Ĝ2 :=G2 +σ2 and the expectation in E‖∇ f (xout)‖2 ≤ ε is taken both over the

sampling of the clients during the running of the algorithm, the sampling of the mini-batches

in local updates, and the choice of xout (which is chosen randomly from the client iterates y i ).

Remarkably, the rates of our methods are independent of L and only depend on δ. Thus,

when δ≤ L and δ≤ L/S for MimeMVR and MimeLiteMVR, the rates beat the server only lower

bound ofΩ( LGp
Sε3/2 ). In fact, if the Hessian variance is small and δ≈ 0, our methods only need

O (1/ε) rounds to communicate. Intuitively, our results show that local steps are very useful
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when heterogeneity (represented by δ) is smaller than optimization difficulty (captured by

smoothness constant L).

MimeMVR uses a momentum parameter β of the order of (1−O (TG2)−2/3) i.e. as T increases,

β asymptotically approaches 1. In contrast, previous analyses of distributed momentum (e.g.

(Yu et al., 2019a)) prove rates of the form G2

S(1−β)ε2 , which are worse than that of standard SGD

by a factor of 1
1−β . Thus, ours is also the first result which theoretically showcases the useful-

ness of using large momentum in distributed and federated learning.

Our analysis is highly non-trivial and involves two crucial ingredients: i) computing the mo-

mentum at the server level to ensure that it remains unbiased and then applying it locally

during every client update to reduce variance, and ii) carefully keeping track of the bias in-

troduced via additional local steps. Our experiments (Sec. 5.8) verify our theoretical insights

are indeed applicable in deep learning settings as well.

5.7 Proof sketch

In this section, we give proof sketches of the main components of Theorem XIII: i) how mo-

mentum reduces the effect of client drift, ii) how local steps can take advantage of Hessian

similarity, and iii) why the SVRG correction improves constants.

Improving the statistical term via momentum. Note that the statistical (first) term in The-

orem XIII without momentum (β= 0) for the convex case is LG2

µSε . This is (up to constants) op-

timal and cannot be improved. For the non-convex case however using β= 0 gives the usual

rate of LG2

Sε2 . However, this can be improved to
(

(1+δ)G2F
Sε2

)3/4
using momentum. This matches

a similar improvement in the centralized setting (Cutkosky and Orabona, 2019; Tran-Dinh

et al., 2019) and is in fact optimal (Arjevani et al., 2019). Let us examine why momentum im-

proves the statistical term. Assume that we sample a single client it in round t and that we

use full-batch gradients. Also let the local client update at step k round t be of the form

y ← y −ηd k . (5.6)

The ideal choice of update is of course d?
k =∇ f (y) but however this is unattainable. Instead,

MIME with momentum β= 1−a uses d SGDm
k = m̃k ← a∇ fi (y)+(1−a)mt−1 where mt−1 is the

momentum computed at the server. The variance of this update can then be bounded as

E‖m̃k −∇ f (y)‖2. a2E‖∇ fi t (y)−∇ f (y)‖2 + (1−a)E‖mt−1 −∇ f (y)‖2

≈ a2G2 + (1−a)E‖mt−1 −∇ f (x t−2)‖2 ≈ aG2 .

The last step follows by unrolling the recursion on the variance of m. We also assumed that

η is small enough that y ≈ x t−2. This way, momentum can reduce the variance of the update

from G2 to (aG2) by using past gradients computed on different clients. To formalize the

above sketch requires slightly modifying the momentum algorithm similar to (Cutkosky and

Orabona, 2019).
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Improving the optimization term via local steps. The optimization (second) term in The-

orem XIII for the convex case is δK+L
µK and for the non-convex case (with or without momen-

tum) is δK+L
εK . In contrast, the optimization term of the server-only methods is L/µ and L/ε

respectively. Since in most cases δ¿ L, the former can be significantly smaller than the latter.

This rate also suggests that the best choice of number of local updates is L/δ i.e. we should

perform more client updates when they have more similar Hessians. This generalizes results

of (Karimireddy et al., 2020b) from quadratics to all functions.

This improvement is due to a careful analysis of the bias in the gradients computed during

the local update steps. Note that for client parameters y k−1, the gradient E[∇ fi t (y k−1)] 6=
E[∇ f (y k−1)] since y k−1 was also computed using the same loss function fi t . In fact, only the

first gradient computed at x t−1 is unbiased. Dropping the subscripts k and t , we can bound

this bias as:

E[∇ fi (y)−∇ f (y)] = E[∇ fi (y)−∇ fi (x)︸ ︷︷ ︸
≈∇2 fi (x)(y−x)

+∇ f (x)−∇ f (y i )︸ ︷︷ ︸
≈∇2 f (x)(x−y i )

]+Ei [∇ fi (x)]−∇ f (x)︸ ︷︷ ︸
=0 since unbiased

≈ E[(∇2 fi (x)−∇2 f (x))(y i −x)] ≈ δE[(y i −x)] .

Thus, the Hessian dissimilarity (A2) control the bias, and hence the usefulness of local up-

dates. This intuition can be made formal in the Appendix.

Mini-batches via SVRG correction. In our previous discussion about momentum and lo-

cal steps, we assumed that the clients compute full batch gradients and that only one client

is sampled per round. However, in practice a large number (S) of clients are sampled and

further the clients use mini-batch gradients. The SVRG correction reduces this within-client

variance since

Var
(
∇ fi (y i ;ζ)−∇ fi (x ;ζ)+ 1

|S |
∑

i∈S ∇ fi (x)
)
. L2‖y i −x‖2 + G2

S
≈ G2

S
.

Here, we used the smoothness of fi (·;ζ) and assumed that y i ≈ x since we don’t move too far

within a single round. Thus, the SVRG correction allows us to use minibatch gradients in the

local updates while still ensuring that the variance is of the order G2/S.

5.8 Experimental analysis on real world datasets

We run experiments on natively federated datasets to confirm our theory and accurately

measure real world performance. Our main findings are i) MIME and MIMELITE consistently

outperform FEDAVG, and ii) momentum and adaptivity significantly improves performance.

5.8.1 Setup

Algorithms. We consider three (meta) algorithms: FEDAVG, MIME, and MIMELITE. Each of

these adapt four base optimizers: SGD, momentum, Adam, and Adagrad.
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Figure 5.2 – Mime, MimeLite, FedAvg, Scaffold, FedProx, and Loc-Mime with
SGD+momentum using 10 local epochs, run on EMNIST62 and a 2 hidden layer (300u-100)
MLP. (Left) Mime and MimeLite are nearly identical and outperform the rest (7× faster).
(Center) Mime makes better use of momentum than FedAvg, with a large increase in per-
formance. (Right) Locally adapting momentum slows down convergence and makes it more
unstable.

FEDAVG follows (Reddi et al., 2020) who run multiple epochs of SGD on each client sam-

pled, and then aggregate the net client updates. This aggregated update is used as a pseudo-

gradient in the base optimizer (called server optimizer). The learning rate for the server op-

timizer is fixed to 1 as in (Wang et al., 2020c). This is done to ensure all algorithms have the

same number of hyper-parameters.

MIME and MIMELITE follow Algorithm 6 and also run a fixed number of epochs on the client.

However, note that this requires communicating both the full local-batch gradient as well as

the parameter updates doubling the communication required to be sent by the client. For a

fairer comparison, we split the sampled clients in MIME and MIMELITE into two groups–the

first communicates only full local-batch gradient and the latter communicates only param-

eter updates. Thus, all methods have equal client communication to the server. This vari-

ant retains the convergence guarantees up to constants (details in the Appendix). We also

run Loc-MIME where instead of keeping the global optimizer state fixed, we update it locally

within the client. The optimizer state is reset after the round finishes. In all methods, aggre-

gation is weighted by the number of samples on the clients.

Datasets and models. We run five simulations on three real-world federated datasets: EM-

NIST62 with i) a linear classifier, ii) an MLP, and iii) a CNN, iv) a charRNN on Shakespeare,

and v) an LSTM for next word prediction on StackOverflow, all accessed through Tensorflow

Federated (TFF, 2020). The learning rates were individually tuned and other optimizer hyper-

parameters such as β for momentum, β1, β2, ε0 for Adam and AdaGrad were left to their de-

fault values, unless explicitly stated otherwise. We refer to the Appendix for additional setup

details and discussion.

5.8.2 Ablation and comparative study
In order to study the different algorithms, we train a 2 hidden layer (300µ-100) MLP on EM-

NIST62 with 10 local epochs for 1k rounds and use SGD+momentum (with tuned β) as the

base optimizer.
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Mime ≈ MimeLite > FedAvg > SCAFFOLD > FedProx. Fig. 5.2 (left) shows MIME and

MIMELITE have nearly identical performance, and are about 7× faster than FedAvg. This im-

plies our strategy of applying momentum to client updates is faster than simply using server

momentum. FedProx (Li et al., 2018b) uses an additional regularizer µ tuned over [0.1,0.5,1]

(µ = 0 is the same as FedAvg). Regularization does not seem to reduce client drift but still

slows down convergence (Wang et al., 2020b). SCAFFOLD (Karimireddy et al., 2020b) is also

slower than Mime and FedAvg in this setup. This is because in cross-device setting with a

large number of clients (N = 3.4k) means that each client is visited less than 6 times dur-

ing the entire training (20 clients per round for 1k rounds). Hence, the client control variate

stored is quite stale (from about 200 rounds ago) which slows down the convergence.
With momentum > without momentum. Fig. 5.2 (center) examines the impact of mo-

mentum on FedAvg and Mime. Momentum slightly improves the performance of FedAvg,

whereas it has a significant impact on the performance of Mime. This is also in line with our

theory and confirms that Mime’s strategy of applying it locally at every client update makes

better use of momentum.
Fixed > locally updated optimizer state. Finally, we check how the performance of Mime

changes if instead of keeping the momentum fixed throughout a round, we let it change.

The latter is a way to combine global and local momentum. The momentum is reset at the

end of the round ignoring the changes the clients make to it. Fig. 5.2 (right) shows that this

worsens the performance, confirming that it is better to keep the global optimizer state fixed

as predicted by our theory.

Together, the above observations validate all aspects of Mime (and MimeLite) design: com-

pute statistics at the server level, and apply them unchanged at every client update.

5.8.3 Large scale comparison with equal server and client communication
We perform a larger scale study closely matching the setup of (Reddi et al., 2020). For both

MIME and MIMELITE, only half the clients compute and transmit the updated parameters,

and other half transmit the full local-batch gradients. Hence, client to server communication

cost is the same for all methods for all clients. However, MIME and MIMELITE require sending

additional optimization state to the clients. Hence, we also reduce the number of clients

sampled in each round to ensure sum total of communication at each round is 40× model

size for EMNIST and Shakespeare experiments, and 100× model size for the StackOverflow

next word prediction experiment.

Since we only perform 1 local epoch, the hyper-parameters (e.g. epsilon for adaptive meth-

ods) are more carefully chosen following (Reddi et al., 2020), and MIME and MIMELITE use

significantly fewer clients per round, the difference between FEDAVG and MIME is smaller

here. Table 5.2 summarizes the results.

For the image classification tasks of EMNIST62 logistic and EMNIST62 CNN, Mime and MimeLite

with Adam achieve the best performance. Using momentum (both with SGDm, and in Adam)

significantly improves their performance. In contrast, FedAvgAdam is more unstable with

worse performance. This is because FedAvg is excessively sensitive to hyperparameters (see
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Table 5.2 – Validation % accuracies after training for 1000 rounds. Best results for each dataset
is underlined and the best within each base optimizer is bolded. The number of clients sam-
pled per round has been reduced for MIME and MIMELITE to ensure all methods have equal
client and server communication. Final accuracies obtained by MIME and MIMELITE are
competitive with FEDAVG, especially with adaptive base optimizers. FEDAVG seems unstable
with Adam.

EMNIST logistic EMNIST CNN Shakespeare StackOverflow

SGD FedAvgSGD 66.8 85.8 56.7 23.8
MimeLiteSGD 66.8 85.8 56.7 23.8
MimeSGD 67.4 85.3 56.1 12.5

MOMENTUM FedAvgMom 67.4 85.7 55.4 22.2
MimeLiteMom 67.4 86.0 49.8 19.9
MimeMom 67.5 85.9 53.6 19.3

ADAM FedAvgAdam 67.3 85.9 18.5 3.2
MimeLiteAdam 68.0 86.4 54.0 21.5
MimeAdam 68.0 86.6 54.1 22.8

ADAGRAD FedAvgAdagrad 67.6 86.3 55.5 24.2
MimeLiteAdagrad 66.6 85.5 56.8 23.8
MimeAdagrad 67.4 86.3 57.1 14.7

Appendix).

We next consider the character prediction task on Shakespeare dataset, and next word predic-

tion on StackOverflow. Here, the momentum based methods (SGDm and Adam) are slower

than their non-momentum counterparts (SGD and AdaGrad). This is because the mini-batch

gradients in these tasks are sparse, with the gradients corresponding to tokens not in the

mini-batch being zero. This sparsity structure is however destroyed when using momentum

or Adam. For the same reason, Mime which uses an SVRG correction also significantly in-

creases the gradient density.

Discussion. For traditional deep learning tasks such as image classification, we observe that

Mime outperforms MimeLite which in turn outperforms FedAvg. These methods are able to

successfully leverage momentum to improve performance. For tasks where the client gra-

dients are sparse, the SVRG correction used by Mime hinders performance. Adapting our

techniques to work with sparse gradients (à la Yogi (Zaheer et al., 2018)) could lead to further

improvements. Also, note that we reduce communication by naïvely reducing the number

of participating clients per round. More sophisticated approaches to save on client commu-

nication including quantization or sparsification (Suresh et al., 2017; Alistarh et al., 2017), or

even novel algorithmic innovations (Acar et al., 2021) could be explored. Further, server com-

munication could be reduced using memory efficient optimizers e.g. AdaFactor (Shazeer and

Stern, 2018) or SM3 (Anil et al., 2019).
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5.9 Conclusion
Our work initiated a formal study of the cross-device federated learning problem and pro-

vided theoretically justified algorithms. We introduced a new framework MIME which over-

comes the natural client-heterogeneity in such a setting, and can adapt arbitrary centralized

algorithms such as Adam without additional hyper-parameters. We demonstrated the supe-

riority of MIME via strong convergence guarantees and empirical evaluations. Further, we

proved that a particular instance of our method, MimeMVR, beat centralized lower-bounds,

demonstrating that additional local steps can yield asymptotic improvements for the first

time. We believe our analysis will be of independent interest beyond the federated setting

for understanding the sample complexity of non-convex optimization, and for yielding im-

proved analysis of decentralized optimization algorithms.

74



Part IIIByzantine Robustness

75





6 Learning from History for Byzantine
Robust Optimization

6.1 Preface

Contribution and sources. This chapter reproduces (Karimireddy et al., 2021b). The theory,

toy experiments, and writing were carried out mostly by the author. Lie He conducted most

of the experiments. Detailed individual contributions:

SPK (author): Conceptualization, Methodology, Formal analysis, Writing – original draft prepa-

ration (90 %)

Lie He: Software, Writing – original draft preparation (10 %)

Martin Jaggi: Supervision, Administration, Writing – review and editing .

Summary. Collaborative learning (federated or distributed) allows any participant to re-

tain their data and train a model in a collaborative manner. However, this also opens up the

system to potentially malicious (or simply faulty) participants who seek to derail the training.

Byzantine robustness seeks to develop algorithms which are resilient to such attackers. While

this area has received considerable attention given its importance, we identify severe flaws in

existing methods even when the data across the participants is identically distributed.

First, we show realistic examples where current state of the art robust aggregation rules fail to

converge even in the absence of any Byzantine attackers. This, we show, is because traditional

definitions of robustness do not suffice for our setting. We introduce a more fine-grained

definition of robust aggregator and give a new iterative clipping procedure which satisfies it.

Our procedure is efficient, and compatible with secure aggregation and all-reduce.

Secondly, we show that even if the aggregation rules may succeed in limiting the influence

of the attackers in a single round, the attackers can couple their attacks across time eventu-

ally leading to divergence of any memory-less systems. This implies that in order to ensure

Byzantine robustness, it is necessary to profile workers using past updates. We then show that

simply incorporation local momentum is sufficient to overcome such time-coupled attacks.

This is the first provably robust method for the standard stochastic optimization setting.
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6.2 Introduction

“Those who cannot remember the past are condemned to repeat it.” – George

Santayana.

Growing sizes of datasets as well as concerns over data ownership, security, and privacy have

lead to emergence of new machine learning paradigms such as distributed and federated

learning (Kairouz et al., 2019). In both of these settings, a central coordinator orchestrates

many worker nodes in order to train a model over data which remains decentralized across

the workers. While this decentralization improves scalability security and privacy, it also

opens up the training process to manipulation by the workers (Lamport et al., 2019). These

workers may be actively malicious trying to derail the process, or might simply be malfunc-

tioning and hence sending arbitrary messages. Ensuring that our training procedure is robust

to a small fraction of such potentially malicious agents is termed Byzantine robust learning

and is the focus of the current work.

Given the importance of this problem, it has received significant attention from the commu-

nity with early works including (Feng et al., 2014; Blanchard et al., 2017; Chen et al., 2017; Yin

et al., 2018a). Most of these approaches replace the averaging step of distributed or federated

SGD with a robust aggregation rule such as the median. However, a closer inspection reveals

that these procedures are quite brittle: we show that there exist realistic scenarios where they

fail to converge, even if there are no Byzantine attackers and the data distribution is identi-

cal across the workers (i.i.d.). This turns out to be because on their excessive sensitivity to

the distribution of the noise in the gradients. The impractical assumptions made by these

methods are often violated in practice, and lead to the failure of these aggregation rules.

Further, there have been recent state of the art attacks (Baruch et al., 2019; Xie et al., 2020)

which empirically demonstrate a second source of failure. They show that even when current

aggregation rules may succeed in limiting the influence of the attackers in any single round,

they may still diverge when run for multiple rounds. We prove that this is inevitable for a

wide class of methods—any aggregation rule which ignores history can be made to eventually

diverge. This is accomplished by using the inherent noise in the gradients to mask small

perturbations which are undetectable in a single round, but accumulate over time.

Finally, we show how to circumvent both the issues outlines above. We first describe a sim-

ple new aggregator based on iterative centered clipping which is much more robust to the

distribution of the gradient noise. This aggregator is especially interesting since, unlike most

preceding methods, it is very scalable requiring only O (n) computation and communica-

tion per round. Further, it is also compatible with other strategies such as asynchronous

updates (Chen et al., 2016) and secure aggregation (Bonawitz et al., 2017), both of which are

crucial for real world applications. Secondly, we show that the time coupled attacks can easily

be overcome by using worker momentum. Momentum averages the updates of each worker

over time, reducing the variance of the good workers and exposing the time-coupled pertur-
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bations. We prove that our methods obtain optimal rates, and our theory also sheds light on

the role of momentum in decreasing variance and building resilience to Byzantine workers.

Contributions. Our main results are summarized below.

• We show that most state of the art robust aggregators require strong assumptions and can

fail in real settings even in the complete absence of Byzantine workers.

• We prove a strong lower bound showing that any optimization procedure which does not

use history will diverge in the presence of time coupled attacks.

• We propose a simple and efficient aggregation rule based on iterative clipping and prove

its performance under standard assumptions.

• We show that using momentum successfully defends against time-coupled attacks and

provably converges when combined with any Byzantine robust aggregator.

• We incorporate the recent momentum based variance reduction (MVR) with Byzantine

aggregators to obtain optimal rates for robust non-convex optimization.

• We perform extensive numerical experiments validating our techniques and results.

Setup. Let us formalize the robust non-convex stochastic optimization problem in the pres-

ence of a δ fraction of Byzantine workers.

Definition D (δ-robust non-convex optimization). Given some loss function f (x), ε> 0, and

access to n workers we want to find a stationary point x such that E‖∇ f (x)‖2 ≤ ε. The opti-

mization proceeds in rounds where in every round, each worker i ∈ [n] can compute a stochas-

tic gradient gi (y) at any parameter y in parallel. Then, each worker i ∈ [n] sends some message

Mi ,t to the server. The server utilizes these messages to update the parameters and proceeds to

the next round. During this process, we will assume that

• The function f is L-smooth i.e. it satisfies ‖∇ f (x)−∇ f (y)‖ ≤ L‖x − y‖ for any x , y , and is

bounded from below by f ?.

• Each worker i has access to an independent and unbiased stochastic gradient with E[gi (x)|x] =
∇ f (x) and variance bounded by σ2, E‖gi (x)−∇ f (x)‖2 ≤σ2.

• Of the n workers, at least (1−δ)n workers are good (denoted by G ) and will follow the proto-

col faithfully. The rest of the bad or Byzantine workers (denoted by B) may act maliciously

and can communicate arbitrary messages to the server.

• These Byzantine workers are assumed to omniscient i.e. they have access to the computa-

tions made by the rest of the good workers. However, we assume that this set of Byzantine

workers B remains fixed throughout the optimization process.

6.3 Related work

Robust aggregators. Distributed algorithms in the presence of Byzantine agents has a long

history (Lamport et al., 2019) and is becoming increasingly important in modern distribu-

tion and federated machine learning (Kairouz et al., 2019). Most solutions involve replac-

ing the averaging of the updates from the different machines with more robust aggregation
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rules such as coordinate-wise median method (Yin et al., 2018a), geometric median meth-

ods (Blanchard et al., 2017; Chen et al., 2017; Pillutla et al., 2019), majority voting (Bernstein

et al., 2018; Jin et al., 2020) etc. There have also been attempts to use recent breakthroughs in

robust high-dimensional aggregators (Diakonikolas et al., 2018; Su and Xu, 2018; El-Mhamdi

and Guerraoui, 2019; Data and Diggavi, 2020). However, these latter procedures are compu-

tationally expensive (quadratic in dimensions per round) and further it is unclear if the im-

proved guarantees for mean estimation translate to improved performance in the distributed

machine learning settings. Finally, for most of the above approaches, convergence guaran-

tees when provided rely on using an extremely large batch size or strong unrealistic assump-

tions making them practically irrelevant.

Other more heuristic approaches propose to use a penalization or reweighting of the updates

based on reputations (Peng et al., 2020; Li et al., 2019a; Fu et al., 2019; Regatti and Gupta,

2020; Rodríguez-Barroso et al., 2020). These schemes however need to trust that all workers

report correct statistics. In such settings where we have full control over the workers (e.g.

within a datacenter) coding theory based solutions which can correct for the mistakes have

also been proposed (Chen et al., 2018b; Rajput et al., 2019; Gupta and Vaidya, 2019; Konstan-

tinidis and Ramamoorthy, 2020; Data and Diggavi, 2020). These however are not applicable

in federated learning where the data is decentralized across untrusted workers.

Time coupled attacks and defenses. Recently, two state-of-the-art attacks have been pro-

posed which show that the state of the art Byzantine aggregation rules can be easily circum-

vented (Baruch et al., 2019; Xie et al., 2020). The key insight is that while the robust aggre-

gation rules may ensure that the influence of the Byzantine workers in any single round is

limited, the attackers can couple their attacks across the rounds. This way, over many train-

ing rounds the attacker is able to move weights significantly away from the desired direction

and thus achieve the goal of lowering the model quality. Defending against time-coupled

attacks and showing provable guarantees is one of the main concerns of this work.

It is clear that time-coupled attacks need time-coupled defenses. Closest to our work is that

of Alistarh et al. (2018) who use martingale concentration across the rounds to give optimal

Byzantine robust algorithms for convex functions. However, this algorithm is inherently not

applicable to more general non-convex functions. The recent independent work of Allen-Zhu

et al. (2021) extend the method of Alistarh et al. (2018) to non-convex functions as well. How-

ever, they assume that the noise in stochastic gradients is bounded almost surely instead of

the more standard assumption that only the variance is bounded. Theoretically, such strong

assumptions are unlikely to hold (Zhang et al., 2019b) and even Gaussian noise is excluded.

Further, the lower-bounds of (Arjevani et al., 2019) no longer apply, and thus their algorithm

may be sub-optimal. Practically, their algorithm removes suspected workers either perma-

nently (a decision of high risk), or resets the list of suspects at each window boundary (which

is sensitive to the choice of hyperparameters). Having said that, (Allen-Zhu et al., 2021) prove

convergence to a local minimum instead of to a saddle point as we do here. Finally, in another

independent work Mhamdi et al. (2021) empirically observe that using momentum may be
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beneficial, though they provide no theoretical guarantees.

Other concerns. To deploy robust learning for real world applications, many other issues

such as data heterogeneity become important (Kairouz et al., 2019; Karimireddy et al., 2020b).

Robust learning algorithms which assume worker data are i.i.d. may fail in the federated

learning setting (Karimireddy et al., 2021a). Numerous variations have been proposed which

can handle non-iid data with varying degrees of success (Li et al., 2019a; Ghosh et al., 2019;

Chen et al., 2019c; Peng et al., 2020; Data and Diggavi, 2020; ?; El-Mhamdi et al., 2020; Dong

et al., 2020). Further, combining robustness with notions of privacy and security is also a

crucial and challenging problem (He et al., 2020; So et al., 2020a,b; Jin et al., 2020). Such het-

erogeneity is especially challenging and can lead to backdoor attacks (which are orthogonal

to the training attacks discussed here) (Bagdasaryan et al., 2020; Sun et al., 2019; Wang et al.,

2020a) and remains an open challenge.

6.4 Brittleness of existing aggregation rules

In this section, we study the robustness of existing popular Byzantine aggregation rules. Un-

fortunately, we come to a surprising conclusion—most state of the art aggregators require

strong non-realistic restrictions on the noise distribution. We show this frequently does not

hold in practice, and present counter-examples where these aggregators fail even in the com-

plete absence of Byzantine workers. State of the art aggregators such as Krum (Blanchard

et al., 2017), coordinate-wise median (CW) (Yin et al., 2018a),

RFA (Pillutla et al., 2019), Bulyan (Mhamdi et al., 2018), etc. all generalize the scalar notion of

the median to higher dimensions and are hence exhibit different ways of ‘middle-seeking’. At

a high level, these schemes require the noise distribution to be unimodal and highly concen-

trated, discarding any gradients from the tail of the distribution too aggressively as ‘outliers’.

We give a brief summary of these rules below. We use [v ] j to indicate the j th coordinate of

vector v .

Coordinate-wise median:

[CM(x1, . . . , xn)] j = median([x1] j , . . . , [xn] j ) .

RFA (robust federated averaging) aka geometric median:

RFA(x1, . . . , xn) = argmin
v

n∑
i=1

‖v −x i‖2 .

Trimmed Mean: For each coordinate j , compute sorting Π j which sorts the coordinate val-

ues. Compute the average after excluding (‘trimming’) δn largest and smallest values.

[TM(x1, . . . , xn)] j = 1

n −2δn

n−δn∑
i=δn

[xΠ j (i )] j .
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Figure 6.1 – Failure of existing methods on imbalanced MNIST dataset. Only the head classes
(class 1 and 2 here) are learnt, and the rest 8 classes are ignored. See Sec. 6.8.1.

Krum: Krum tries to select a point x i which is closest to the mean after excluding δn + 2

furthest away points. Suppose that S ⊂ [n] of size at least (n −δn −2). Then,

Krum(x1, . . . , xn) = argmin
x i

min
S

∑
j∈S

‖x i −x j‖2
2 .

Counterexample 1. Let us pick n random variables ±1 with uniform probability for some

odd n. These variables have mean 0. Since n is odd, Krum, CW, Bulyan all will necessarily

return either of ±1. This remains true even if we have infinite samples (large n), and if there

are no corruptions. This simple examples illustrates the fragility of such ‘middle-seekers’ to

bimodal noise.

Counterexample 2. Fig. 6.1 illustrates a more realistic example where imbalanced MNIST

dataset causes a similar problem. Here, 0.5 fraction of data corresponds to class 1, 0.25 to

class 2, and so on. The gradients over data of the same class are much closer than those of

a different class. Hence, when we pick n i.i.d. gradients, most them will belong to class 1

or 2 with very few belonging to the rest. Thus, coordinate-wise median, geometric median

and Krum always select the gradient corresponding to classes 1 or 2, ensuring that we only

optimize over these classes ignoring the rest.

Counterexample 3. Middle-seekers can also fail on continuous uni-modal distributions.

Consider,

mean
median

median

ignored

Figure 6.2 – For fat-tailed
distributions, median
based aggregators ignore
the tail. This bias remains
even if we have infinite
samples.

p(x) =
3x−4 for x ≥ 1

0 o.w.

This power-law distribution has mean 1.5 and variance 0.75.

However, since the distribution is skewed, its median is 21/3 ≈
1.26 and is smaller than the mean. This difference per-

sists even with infinite samples showing that with imbalanced

(i.e. skewed) distributions, coordinate-wise median, geometric

median and Krum do not obtain the true optimum. Empirical

evidence suggests that such heavy-tailed distributions abound

in deep learning, making this setting very relevant to practice

(Zhang et al., 2019b).

Theorem XIV (Failure of ‘middle-seekers’). There exist simple
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Figure 6.3 – Failure of permutation invariant algorithms on CIFAR10 dataset with (Baruch
et al., 2019) attack. Comparing to simple average with no attacker (dashed lines), all robust
aggregators (including centered clip) see a significant drop in accuracy against time coupled
attacks. See Sec. 6.8.2.

convex stochastic optimization settings with bounded variance where traditional distributed

SGD converges but coordinate-wise median, RFA, and Krum do not converge to the optimum

almost surely for any number of workers and even if none of them are Byzantine.

Remark 14 (Practical usage). Theorem XIV notes that one must be cautious while using me-

dian or Krum as aggregation rules when we suspect that our data is multi-modal (typically

occurs when using small batch sizes), or if we believe our data to be heavy-tailed (typically

occurs in imbalanced datasets or language tasks). These aggregators may suffice for standard

image recognition tasks with large batch sizes since the noise is nearly Gaussian (Zhang et al.,

2019b).

Median based aggregators have a long and rich history in the field of robust statistics (Minsker

et al., 2015). However, classically the focus of robust statistics has been to design methods

which can withstand a large fraction of Byzantine workers (high break down point δmax) and

not result in infinities (Hubert et al., 2008). It was sufficient for the output to be bounded,

but the quality of the result was not a concern. The counter examples in this section exactly

stem from this issue. We will later define a finer notion of a robust statistic which accounts

for both the quality of the output as well as the breakdown point δmax.

6.5 Necessity of using history

Recent work (Baruch et al., 2019; Xie et al., 2020) has shown a surprising second source vul-

nerability for most currently popular robust aggregators. In this section we take a closer look

at their attack and use our observations to make an even stronger claim—any aggregation

rule which is oblivious of the past cannot converge to the optimum and retains a non-zero

error even after infinite time.

The inner-product manipulation attack as defined by (Baruch et al., 2019; Xie et al., 2020) is

deceptively simple. Their attacks works by hiding small Byzantine perturbations within the
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variance of the good gradients. Since we only have access to noisy stochastic gradients, the

aggregators fail to identify these perturbations. While this perturbation is small in any single

round, these can accumulate over time. We formalize this argument into a lower bound in

Theorem XVI. We show that the key reason why this attack works on algorithms such as CM,

RFA, or Krum is that they are oblivious and do not track information from previous rounds.

Thus, an attacker can couple the perturbations across time eventually leading to divergence.

This is also demonstrated experimentally in Fig. 6.3.

Definition E (Permutation invariant algorithm). Suppose we are given an instance of δ-robust

optimization problem satisfying Definition D. Define the set of stochastic gradients computed

by each of the n workers at some round t to be [g̃ 1,t , . . . , g̃ n,t ]. For a good worker i ∈ G , these

represent the true stochastic gradients whereas for a bad worker j ∈ B, these represent arbi-

trary vectors. The output of any optimization algorithm ALG is a function of these gradients.

A permutation-invariant algorithm is one which for any set of permutations over t rounds

{π1, . . . ,πt }, its output remains unchanged if we permute the gradients.

ALG


[g̃ 1,1, ..., g̃ n,1],

...

[g̃ 1,t , ..., g̃ n,t ]

= ALG


[g̃π1(1),1, ..., g̃π1(n),1],

...

[g̃πt (1),t , ..., g̃πt (n),t ]


Remark 15 (Memoryless methods are permutation invariant). Any algorithm which is ‘mem-

oryless’ i.e. uses only the computations resulting from current round is necessarily permutation-

invariant since the indices corresponding to the stochastic gradient are meaningless. It is only

when these stochastic gradients are tracked over multiple rounds (i.e. we use memory) do the

indices carry information.

Theorem XV (Failure of permutation-invariant methods). Suppose we are given any permu-

tation invariant algorithm ALG as in Definition E, µ ≥ 0, δ ∈ [0,1], and n large enough that

δn ≥ 4(1+ log t ). Then, there exists a δ-robust µ strongly-convex optimization problem satisfy-

ing Definition D, such that the output x̃ t of ALG after t rounds necessarily has error

E[ f (x̃ t )]− f (x?) ≥Ω
(
δσ2

µ

)
.

Nearly all currently popular aggregation rules, including coordinate-wise median, trimmed

mean (Yin et al., 2018a), Krum (Blanchard et al., 2017), Bulyan (Mhamdi et al., 2018), RFA, ge-

ometric median (Ghosh et al., 2019), etc. are permutation invariant and satisfy Definition E.

Theorem XV proves a very startling result—all of them fail to converge to the optimum even

for strongly-convex problems. Further, as µ decreases (the problem becomes less strongly-

convex), the error becomes unbounded.

Remark 16 (Fixed Byzantine workers). The failure of permutation-invariant algorithms also

illustrates the importance of assuming that the indices of Byzantine workers are fixed across

rounds. If a different fraction of workers are allowed to be Byzantine each round, then the lower
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bound in Theorem XV applies to all algorithms and convergence is impossible. While it is in-

deed a valid concern that Byzantine workers may pretend to be someone else (or more generally

perform Sybil attacks where they pretend to be multiple workers), simple mechanisms such as

pre-registering all participants (perhaps using some identification) can circumvent such at-

tacks.

There are very few methods which are not permutation invariant and are not subject to our

lower bound. Examples include Byzantine SGD (Alistarh et al., 2018) which only works for

convex problems, and some heuristic scoring rules such as (Regatti and Gupta, 2020). There

has also been a recent independent work (Allen-Zhu et al., 2021) which utilizes history, but

they have strong requirements on the noise (see Section 6.4 for why this might be an issue)

and are not compatible with our problem setting. See Appendix 13.7.3 for a more detailed

comparison.

6.6 Robust robust aggregation

Past work on Byzantine robust methods have had wildly varying assumptions making an uni-

fied comparison difficult. Perhaps more importantly, this lead to unanticipated failures as we

saw in Sec. 6.4. In this section, we attempt to provide a standardized specification for an ro-

bust aggregator which we believe captures a wide variety of real world behavior i.e. a robust

aggregator which is robust to its assumptions. We then design a simple and efficient clipping

based aggregator which satisfies this notion.

6.6.1 Anatomy of a robust aggregator

Suppose that we are given an aggregation rule AGG( · · · ) and n vectors {x1, . . . , xn}. Among the

given n vectors, let G ⊆ [n] be good (i.e. satisfy some closeness property), and the rest are

Byzantine (and hence can be arbitrary). The ideal aggregator would return 1
|G |

∑
j∈G x j but

this requires exactly identifying the good workers, and hence may not be possible. We will

instead be satisfied if our aggregation rule approximates the ideal update up to some error.

Our notion of a robust aggregator is characterized by two quantities: δmax which denotes the

breakdown point, and a constant c which determines the quality of the solution. We want an

aggregator which has as large δmax and a small c.

Definition F ((δmax,c)-robust aggregator). Suppose that for some δ≤ δmax ≤ 0.5 we are given

n random vectors x1 , . . . , xn such that a good subset G ⊆ [n] of size at least |G | > (1−δ)n are

independent with distance bounded as

E‖x i −x j‖2 ≤ ρ2 ,

for any fixed i , j ∈G . Then, define x̄ := 1
|G |

∑
j∈G x j . The, the robust aggregation rule AGG(x1 , . . . , xn)
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Algorithm 7 AGG - Centered Clipping

1: input: (m1, . . . ,mn), τ, v , L
2: default: L = 1 and v = m̂ (previous round aggreg.)
3: for each iteration l = 1, . . . ,L do
4: c i ← (mi −v )min

(
1, τ

‖mi−v‖
)

5: v ← v + 1
n

∑
i∈[n] c i

6: end for
7: output: v

outputs x̂ such that,
E‖x̂ − x̄‖2 ≤ cδρ2 ,

where the expectation is over the random variables {x i }i∈[n] and randomness in the aggregation

rule AGG.

The error in Definition F is of the order δρ2. Thus, if δ= 0 (no Byzantine workers), we recover

the ideal average of the workers exactly. Further, we recover the exact average x̄ if ρ = 0 (no

variance) since in this case all the good points are identical and are trivial to identify if they

are in the majority (δ≤ δmax ≤ 0.5). We demand that when the fraction of Byzantine workers

is less than the breakdown point δmax, the error of the output degrades gracefully with δ.

However, the error remains positive (δρ2) even with infinite n and seems to indicate that

having additional workers may not help. It turns out that this is unfortunately the price to

pay for not knowing the good subset and is unavoidable. The following theorem is adapted

from standard robust estimation lower bounds (e.g. see Lai et al. (2016)).

Theorem XVI (Limits of robustness). There exist a set of n random vectors x1 , . . . , xn such that

a good subset G ⊆ [n] of size at least |G | ≥ (1−δ)n is i.i.d. satisfying E‖x i − x j‖2 ≤ ρ2 , for any

apriori fixed i , j ∈ G . For these vectors, any aggregation rule x̂ = AGG(x1 , . . . , xn) necessarily

has an error
E‖x̂ −µ‖2 ≥ δρ2 .

Further, the error can be unbounded (∞) if δ≥ 1
2 .

This establishes Definition F as the tightest notion of a robust aggregation oracle possible.

6.6.2 Robust aggregation via centered clipping

Given that most existing aggregation rules fail to satisfy Definition F, one may wonder if any

such rule exists. We propose the following iterative centered clipping (CC) rule: starting from

some point v 0, for l ≥ 0 compute

v l+1 = v l +
1

n

n∑
i=1

(x i −v l )min
(
1,

τl

‖x i −v l‖
)

(CC)
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Remark 17 (Ease of implementation). The centered clipping update is extremely simple to im-

plement requiring O (n) computation and communication per step similar to coordinate-wise

median. This is unlike more complicated mechanisms such as Krum or Bulyan which require

O (n2) computation and are hence less scalable. Further, as we will see later empirically, a single

iteration of CC is often sufficient in practice. This means that the update can be implemented

in an asynchronous manner (Chen et al., 2016), and is compatible with secure aggregation for

federated learning (Bonawitz et al., 2017).

We can formalize the convergence of this procedure.

Theorem XVII (Robustness of centered clipping). Suppose that for δ ≤ 0.1 we are given n

random vectors x1 , . . . , xn such that a good subset G ⊆ [n] of size at least |G | ≥ (1−δ)n are i.i.d.

with variance bounded as E‖x i − x j‖2 ≤ ρ2 for any fixed i , j ∈ G . Then, starting from any v 0

the output of centered clipping after l steps v l satisfies

E‖v l − x̄‖2 ≤ (9.7δ)l 3E‖v 0 − x̄‖2 +4000δρ2 .

Proof Sketch. Suppose that we are given {x1, . . . , xn} with a subset of size at most δn are bad

(denoted by B), and the rest are good (G ). Consider the following simple scenario where

‖x i‖2 ≤ ρ2 almost surely for any i ∈ G . In such a case, a very simple aggregation rule exists:

clip all values to a radius ρ and then compute the average. All the good vectors remain un-

changed. The magnitude of a clipped bad vector is at most ρ and since only a δ of the vectors

are bad, they can move the center by at most ρδ ensuring that our error is δ2ρ2. This is even

better than Definition F, which only requires the error to be smaller than δρ2. Of course there

were two aspects which over-simplified our computations in the above discussion: i) we mea-

sure the pair-wise distance ‖x i − x j‖ between good workers instead of absolute norms, and

ii) we do not have an almost sure bound, but only in expectation.

Corollary XVIII. Starting from any v 0 with an initial error estimate of E‖v 0 − x̄‖2 ≤ B 2, run-

ning CC for l = 100log
(

3B 2/δρ2
)

is a (δmax,c)-robust aggregator as per Definition F with c =
4000 and δmax = 0.1.

Further, if E‖v 0 − x̄‖2 ≤ ρ2 then a single step of CC is a (δmax,c)-robust aggregator.

The above corollary proves that starting from any point v 0 and running enough iterations of

CC is guaranteed to provide a robust estimate. However, if we have a good starting point,

we can prove a much stronger statement—that a single clipping step is sufficient to provide

robustness. We will use this latter part in designing an efficient robust optimization scheme

in the next section.

Note that we have not tried to optimize for the constants in the theorem above—there is room

for improvement in bringing δmax closer to 0.5, as well as in reducing the value of c. This may

need a more careful analysis, or perhaps even a new oracle. We leave such improvements for

future.
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Algorithm 8 Robustness using Momentum

1: input: x , η, β, AGG

2: initialize: mi ← 0 ∀i ∈ [n]
3: for each round t = 1, . . . do
4: server communicates x to workers
5: for each client i ∈G in parallel do
6: compute mini-batch gradient g i (x)
7: compute mi ← (1−β)g i (x)+βmi

8: communicate mi to server
9: end for

10: aggregate m̂ = AGG(m1, . . . ,mn)
11: update x ← x −ηm̂
12: end for

With this, we have addressed the first stumbling block and now have a robust aggregator.

Next, we see how using momentum can defend against time-coupled attacks.

6.7 Robust optimization using momentum

In this section we will show that any Byzantine robust aggregator satisfying Definition F can

be combined with (local) worker momentum, to obtain a Byzantine robust optimization al-

gorithm which successfully defends against time coupled attacks. Every time step t ≥ 1, the

server sends the workers parameters x t−1 and each good worker i ∈G sends back mt ,i com-

puted recursively as below starting from m0,i = 0

mt ,i = (1−βt )g i (x t−1)+βt mt−1,i . (WORKER)

The workers communicate their momentum vector to the server instead of the stochastic

gradients directly since they have a much smaller variance. Byzantine workers may send

arbitrary vectors to the server. The server then uses a Byzantine-resilient aggregation rule

AGG such as (CC) and computes the update

mt = AGG(mt ,1 , . . . , mt ,n)

x t = x t−1 −ηt mt .
(SERVER)

Intuitively, using momentum withβ= (1−α) averages the stochastic gradients of the workers

over their past 1/α gradients. This results in a reduction of the variance of the good workers by

a factor α since their noise is uncoupled. However, the variance of the time-coupled Byzan-

tine perturbations does not reduce and becomes easy to detect.

6.7.1 Rate of convergence

Now we prove a rate of convergence of our Byzantine aggregation algorithm.
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Theorem XIX (Byzantine robust SGDm). Suppose that we are given a δ-robust problem sat-

isfying Def. D and a (δmax,c)-robust aggregation rule satisfying Def. F for δmax ≥ δ. Then,

running WORKER update with step-sizes ηt = min
(√√√√ ( f (x0)− f ?)+ 5cδ

16Lσ
2

20LTσ2
(

2
n +cδ

) , 1
8L

)
and momentum pa-

rameter α1 = 1 and αt = 8Lηt−1 for t ≥ 2 satisfies

1

T

T∑
t=1

E‖∇ f (x t−1)‖2 ≤

16

√
σ2(1+ cδn)

nT

(
10L( f (x0)− f ?)+3cδσ2

)+
32L( f (x0)− f ?)

T
+ 20σ2(1+ cδn)

nT
.

Remark 18 (Convergence rate). The rate of convergence in Theorem XIX is asymptotically (ig-

noring constants and higher order terms) of the order:

1

T

T∑
t=1

E‖∇ f (x t−1)‖2.

√
σ2

T

( 1

n
+δ

)
.

First note that when δ= 0 i.e. when there are no Byzantine adversaries, we recover the optimal

rate of σp
nT

which linearly scales with the number of workers n. In the presence of a δ fraction

of adversaries, the rate has two terms: the first term σp
nT

which linearly scales with the number

of workers n, and a second σ
p
δp

T
which depends on the fraction of adversaries δ but does not

improve with increasing workers. Similar phenomenon occurs in the classical robust mean

estimation setting (Lai et al., 2016) and is unfortunately not possible to improve.

Our algorithm uses step-sizeη and momentum parameterα= (1−β) of the order of
√

1
nTσ2 + δ

Tσ2 .

Here δ represents the fraction of adversarial workers. When there are very few bad work-

ers with δ = O ( 1
n ), the momentum and the step-size parameters can remain as in the non-

Byzantine case. As the number of adversaries increases, δ increases meaning we should use

smaller learning rate and larger momentum. Either when using linear scaling (Goyal et al.,

2017) or square-root scaling (Hoffer et al., 2017), we need to scale both the learning-rate and

momentum parameters as
( 1

n +δ)
instead of the traditional 1

n in the presence of a δ fraction

of adversaries.

The above algorithm and convergence analysis crucially relied on the low variance of the up-

date from the workers using worker momentum. The very high momentum ensures that the

variance of the updates from the workers to the server have a variance of the order
√

σ2

nT + δσ2

T .

Note that this variance asymptotically goes to 0 with T and is significantly smaller than the

variance of the stochastic gradient σ2. This way, the Byzantine adversaries have very little

lee-way to fool the aggregator.
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Figure 6.4 – Robust aggregation rules on imbalanced MNIST where each successive class is a
γ-fraction of the previous. Centered Clip is unaffected by imbalance where as the accuracy
RFA, Krum, and CM corresponds to only learning class 1 and 2 (marked by horizontal gray
dashed line).

6.7.2 Improved convergence using MVR

Recently, a variation of the standard momentum, called momentum based variance reduc-

tion or MVR, was proposed by Tran-Dinh et al. (2019); Cutkosky and Orabona (2019). They

show that by adding a small correction to correct for bias, we can improve SGD’s O (T − 1
2 ) rate

of convergence to O (T − 2
3 ). By combining worker momentum based variance reduction with

a Byzantine robust aggregator, we can obtain a faster Byzantine robust algorithm.

Theorem XX (Byzantine robust MVR). Suppose we are given a δ-robust Byzantine optimiza-

tion problem Def. D. Let us run the MVR algorithm combined with a (δmax,c)-robust aggrega-

tion rule AGGwith δ ≤ δmax, step-size η = minO

(
3
√

f (x0)− f ?

T , 1
4L

)
, and momentum parameter

α=O (L2η2). Then,

1

T

T∑
t=1

E‖∇ f (x t−1)‖2.

(
Lσ

p
cδ+1/n

T

)2/3

.

Note that Theorem XX provides a significant asymptotic speedup over the traditional mo-

mentum used in Theorem XIX and matches the lower bound of (Arjevani et al., 2019) when

δ= 0. This result highlights the versatility of our approach and the ease with which our notion

of a Byzantine oracle can be combined with any state of the art optimization methods.

6.8 Experiments

In this section, we empirically demonstrate the effectiveness of CC and SGDM for Byzantine-

robust learning. We refer to the baseline robust aggregation rules as RFA (Pillutla et al., 2019),

coordinate-wise median (CM), trimmed mean (TM) (Yin et al., 2018a), and Krum (Blanchard

et al., 2017). The inner iteration (T) of RFA is fixed to 3 as suggested in (Pillutla et al., 2019).

Throughout the section, we consider the distributed training for two image classification

tasks, namely MNIST (LeCun et al., 1998) on 16 nodes and CIFAR-10 (Krizhevsky et al., 2009)

on 25 nodes. All experiments are repeated at least 2 times. The detailed setups are deferred

to Section 13.7.1.
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Figure 6.5 – Coordinate median (CM), Robust Federated Aggregation (RFA), Trimmed Mean
(TM), Krum, and Centered Clip (CC) are tested on Cifar10 with 25 workers. Attackers run
inner-product manipulation attack (IPM) (Xie et al., 2020), “a little is enough” (ALIE) (Baruch
et al., 2019), bit-flipping (BF), and label-flipping (LF). IPM uses 11 Byzantine workers while
others use 5. The dashed brown line is average aggregator under no attacks (δ= 0). Momen-
tum generally improves all methods, with larger momentum adding stability. Centered Clip
(CC) consistently has the best performance.
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Figure 6.6 – Final test accuracy of Centered Clip as we vary clipping iterations (l ) and radius
(τ). It is stable across all hyper-parameters, justifying using l = 1 as default.

6.8.1 Failure of “middle seekers”

In this experiment, we demonstrate the challenge stated in Section 6.4 by comparing robust

aggregation rules on imbalanced datasets without attackers. Imbalanced training and test

MNIST dataset are created by sampling classes with exponential decay, that is 1,γ,γ2, . . . ,γK−1

for classes 1 to K (γ ∈ (0,1]). Then we shuffle the dataset and divide it equally into 16 nodes.

The mini-batch for each node is 1.

The experimental results are presented in Fig. 6.4. For drastic decay γ= 0.5, the median and

geometric median based rules can only achieve 75% accuracy which is the portion of class 1

and 2 in the data. This is a practical example of how “middle-seekers” fail. On the other hand,

centered clip CC and trimmed mean have no such bound as they incorporate the gradients
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from tail distributions.

6.8.2 Impact of momentum on robust aggregation rules

The traditional implementation of momentum slightly differs from (WORKER) update and

uses

mt ,i = g i (x t−1)+βmt−1,i . (6.1)

This version is equivalent to running (WORKER) update with a re-scaled learning rate of η/(1−β).

Further, note that our theory predicts that the clipping radius τ should be proportional to the

variance of the updates which in turn depends on the momentum parameter β. We scale τ

by a factor of (1−β) if using (WORKER) update, and leave it constant if using update of the

form (6.1).

In this experiment, we study the the influence of momentum on robust aggregation rules

against various attacks, including bit-flipping (BF), label-flipping (LF), little is enough (Baruch

et al., 2019), and inner product manipulation (Xie et al., 2020). We train ResNet-20 (He et al.,

2016a) on CIFAR-10 for 100 epochs on 25 workers where 5 of them are adversaries. For (Xie

et al., 2020) we use 11 Byzantine workers to amplify the attack. The batch size per worker

is set to 32 and the learning rate is 0.1 before 75th epoch and 0.01 afterwards. Note that the

smaller batch size, e.g. 32, leads to larger variance among good gradients which makes the

attacks in (Baruch et al., 2019; Xie et al., 2020) more challenging.

The results are presented in Fig. 6.5. Momentum generally makes the convergence faster

and better for all aggregators, especially against SOTA attacks (Baruch et al., 2019; Xie et al.,

2020). CC achieves best performance in almost all experiments. More specifically, it performs

especially well on (Baruch et al., 2019; Xie et al., 2020) which is very close to training without

attackers (δ= 0).

6.8.3 Stability of Centered Clip

To demonstrate the impact of two hyperparameters τ, l of centered clip CC, we grid search

τ in [0.1,10,1000] and l in [1,3,5]. The setup is the same as in Sec. 6.8.2 and momentum is

0 to exclude its effect. The final accuracies are presented in Fig. 6.6. Centered clipping is

very stable to the choice of hyperparameters, and can achieve good accuracy even without

momentum.

6.9 Conclusion

The wildly disparate assumptions made in Byzantine robust learning not only makes com-

parison between different results impossible, but can also mask unexpected sources of fail-

ure. In this work, we strongly advocated for providing end to end convergence guarantees
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under realistic assumptions. We provided well-justified notions of a Byzantine robust aggre-

gator and formalized the Byzantine robust stochastic optimization problem. Our theoretical

lens led us to a surprisingly simple yet highly effective pair of strategies: using centered clip-

ping and worker momentum. These strategies were thoroughly tested on a variety of attacks

and shown to consistently outperform all baselines.
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7 Byzantine-Robust Learning on Het-
erogeneous Datasets via Resampling

7.1 Preface

Contribution and sources. This chapter reproduces (Karimireddy et al., 2021a). The theory,

toy experiments, and writing were carried out mostly by the author. Lie He conducted most

of the experiments and came up with the initial idea for using resampling. Detailed individ-

ual contributions:

SPK (author): Conceptualization (50%), Methodology, Formal analysis, Writing – original

draft preparation (70 %)

Lie He: Conceptualization (50%), Software, Writing – original draft preparation (30 %)

Martin Jaggi: Supervision, Administration, Writing – review and editing .

Summary. Algorithms for Byzantine robust distributed or federated learning typically as-

sume that the workers are identical. In such a case, using worker momentum is sufficient to

reduce the variance, and hence the inter-worker heterogeneity. However, in most real world

settings the workers data is heterogeneous (non-iid).

In this chapter, we will see how to design new attacks in such settings which circumvent cur-

rent defenses and lead to significant loss of performance. We then propose a simple resam-

pling scheme that adapts existing robust algorithms to heterogeneous datasets at a negligible

computational cost. We demonstrate (theoretically and experimentally) that combining re-

sampling with existing robust algorithms is effective against challenging attacks. Our work

also shows that having over-parameterized models, when combined with robust aggregation

rules, is very beneficial for heterogeneous Byzantine robust optimization.
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7.2 Introduction

Distributed or federated machine learning, where the data is distributed across multiple

workers, has become an increasingly important learning paradigm both due to growing sizes

of datasets, as well as data privacy concerns. In such a setting, the workers collaborate to

train a single model without directly transmitting their training data (McMahan et al., 2017;

Bonawitz et al., 2019; Kairouz et al., 2019). However, by decentralizing the training across a

vast number of workers we potentially open ourselves to new security threats. Due to the

presence of agents in the network which are actively malicious, or simply due to system and

network failures, some workers may disobey the protocols and send arbitrary messages; such

workers are also known as Byzantine workers (Lamport et al., 2019). Byzantine robust opti-

mization algorithms attempt to combine the updates received from the workers using robust

aggregation rules and ensure that the training is not impacted by the presence of a small

number of malicious workers.

While this problem has received significant recent attention due to its importance, (Blan-

chard et al., 2017; Yin et al., 2018a; Alistarh et al., 2018; Karimireddy et al., 2021b), most of

the current approaches assume that the data present on each different worker has identical

distribution. This assumption is very unrealistic in practice and heterogeneity is inherent in

distributed and federated learning (Kairouz et al., 2019). In this work, we show that existing

Byzantine aggregation rules catastrophically fail with very simple attacks (or sometimes even

with no attacks) in realistic settings. We carefully examine the causes of these failures, and

propose a simple solution which provably solves the Byzantine resilient optimization prob-

lem under heterogeneous workers.

Concretely, our contributions in this work are summarized below

• We show that when the data across workers is heterogeneous, existing aggregation rules

fail to converge, even when no Byzantine adversaries are present. We also propose a sim-

ple new attack, mimic, which explicitly takes advantage of data heterogeneity and circum-

vents median-based defenses. Together, these highlight the fragility of existing methods

in real world settings.

• We then propose a simple fix - a new resampling step which can be used before any ex-

isting aggregation rule. We introduce a formal notion of a robust aggregator (ARAGG)

and prove that existing methods like KRUM, coordinate-wise median (CM), and geomet-

ric median aka robust federated averaging (RFA)—though insufficient on their own—

become provably robust aggregators when augmented with our resampling.

• We combine our notion of robust aggregator (ARAGG) with worker momentum to obtain

optimal rates for Byzantine robust optimization with matching lower bounds. Unfortu-

nately, our lower bounds imply that convergence to an exact optimum may not be pos-

sible due to heterogeneity. We then circumvent this lower bound and show that when

heterogeneity is mild (or when the model is overparameterized), we can in fact converge

to an exact optimum. This is the first result establishing convergence to the optimum for
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heterogeneous Byzantine robust optimization.

• Finally, we evaluate the effect of the proposed techniques (resampling and worker mo-

mentum) against known and new attacks showcasing drastic improvement on realistic

heterogeneously distributed datasets.

Setup and notations. Suppose that of the total n workers, the set of good workers is denoted

by G ⊆ {1, . . . ,n}. Our objective is to minimize

f (x) := 1
|G |

∑
i∈G

{
fi (x) := Eξi

[Fi (x ;ξi )]
}

(7.1)

where fi is the loss function on worker i defined over its own (heterogeneous) data distri-

bution ξi . The (stochastic) gradient computed by a good worker i ∈ G over minibatch ξi is

given as g i (x ,ξi ) := ∇Fi (x ;ξi ). The noise in every stochastic gradient is independent, un-

biased with Eξi
[g i (x ,ξi )] = ∇ fi (x), and has bounded variance Eξi

‖g i (x ,ξi )−∇ fi (x)‖2 ≤ σ2.

Further, we assume that the data heterogeneity across the workers can be bounded as

E j∼G ‖∇ f j (x)−∇ f (x)‖2 ≤G2 , ∀x .

We write g t
i or simply g i instead of g i (x t ,ξt

i ) when there is no ambiguity.

Byzantine attack model. The set of Byzantine workers B ⊂ [n] is fixed over time, with the

remaining workers G being good, i.e. [n] = B ]G . We write δ for the fraction of Byzantine

workers, |B| =: f ≤ δn. The Byzantine workers can deviate arbitrarily from our protocol,

sending any update to the server. Further, they can collude and may even know the states of

all other workers.

7.3 Related work

IID defenses. There has been a significant amount of recent work on the case when all work-

ers have identical data distributions (Blanchard et al., 2017; Chen et al., 2017; Mhamdi et al.,

2018; Alistarh et al., 2018; Mhamdi et al., 2018; Yin et al., 2018a,b; Su and Xu, 2018; Damask-

inos et al., 2019; Karimireddy et al., 2021b). We discuss the most pertinent of these methods

next. Blanchard et al. (2017) initiated the study of Byzantine robust learning and proposed

a distance-based aggregation approach KRUM which selects a worker whose gradient is very

close to at least half the other workers using O (n2) computation, subsequently extended in

(Mhamdi et al., 2018). A different approach involves using the median and its variants–Yin et

al. (Yin et al., 2018a) propose to use and analyze the coordinate-wise median (CM), and Pil-

lutla et al. (Pillutla et al., 2019) use geometric median with a smoothed version of Weiszfeld’s

algorithm. The advantage of these approaches is their linear O (n) computational cost. In

a third approach, (Bernstein et al., 2018) propose to use the signs of gradients and then ag-

gregate them by majority vote, however, (Karimireddy et al., 2019) show that it may fail to

converge. Most recently, (Alistarh et al., 2018; Allen-Zhu et al., 2021; Mhamdi et al., 2021;

Karimireddy et al., 2021b) showcase how to use past gradients to more accurately filter iid
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Byzantine workers. In particular, our work builds on top of Karimireddy et al. (2021b) who

prove that momentum combined with centered clipping can solve the iid Byzantine robust

optimization. Our work can be seen as an extension of theirs to the non-iid case.

IID vs. Non-IID attacks. Many attacks have been devised for distributed training. For the

iid setting, the state-of-the-art attacks are (Baruch et al., 2019; Xie et al., 2020). These are

time-coupled attacks where the attackers introduce a small but consistent bias at every step.

This bias goes undetected in any particular round, but accumulates over time and eventually

leads to divergence, so breaking most prior robust methods. (Karimireddy et al., 2021b) show

that worker momentum provably overcomes such time-coupled attacks in the iid setting.

In contrast, our work focuses on developing attacks (and defenses) which specifically take

advantages of the non-iid setting. The non-iid setting also enables targeted backdoor attacks.

These attacks are designed to take advantage of heavy-tailed data and manipulate model

inference on a small specific subset of data, rather than lower the overall accuracy of training

(Bagdasaryan et al., 2020; Bhagoji et al., 2018). This is a challenging and open problem (Sun

et al., 2019; Wang et al., 2020a). However, our focus is on the overall test/train accuracy of the

trained model and not on a worst-case subset as is considered by backdoor attacks.

Non-IID defenses. To the best of our knowledge, only (Li et al., 2019a; Ghosh et al., 2019;

Sattler et al., 2020; Data and Diggavi, 2020, 2021) explicitly investigate Byzantine robustness

with non-iid workers. (Li et al., 2019a) proposes an SGD variant (RSA) which modifies the

original objective by adding an `1 penalty, though its finite time convergence results seem

incomparable to the standard SGD analysis. (Ghosh et al., 2019; Sattler et al., 2020) assume

that all workers belong to an apriori fixed number of clusters and use an outlier-robust clus-

tering method to recover these clusters. If we assume that the server has the entire training

dataset and can control the distribution of samples to good workers, (Xie et al., 2019; Chen

et al., 2018b; Rajput et al., 2019) show that non-iid-ness can be overcome. Typical examples

of this are centrally-coordinated parallel training of neural networks on public cloud, or vol-

unteer computing (Miura and Harada, 2015). However, none of these methods are applicable

in the standard federated learning setup we consider here. We aim to minimize the original

loss function over workers while respecting the non-iid data locality, i.e. the dataset remains

distributed over the workers in a non-iid fashion and there is no transfer of raw data. This

is partially tackled in (Data and Diggavi, 2020, 2021) who analyze spectral methods for ro-

bust optimization. However, these methods requireΩ(d 2) time (quadratic in the dimension),

making them infeasible for large scale optimization.

In an independent recent work, (Acharya et al., 2021) analyze the performance of a com-

putationally efficient variant of geometric median on non-iid data. Their novel idea is to use

sparsified gradients to simplify the task of identifying the good workers. However, they do not

defend against time coupled attacks (cf. (Karimireddy et al., 2021b)), and their analysis nei-

ther proves convergence to the optimum nor recovers the standard rate of SGD when δ = 0.

In contrast, our analysis of geometric median shows i) how to get optimal robust aggregation

by combining it with resampling, and ii) how worker momentum and overparameterization
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give provable convergence guarantees even against time coupled attacks. Our results are also

much more general, applying to many other aggregators.

7.4 Attacks against existing aggregation schemes

In this section we show that when the data across the workers is heterogeneous (non-iid),

then we can design simple new attacks which take advantage of the heterogeneity, leading to

the failure of existing aggregation schemes. We study three representative and widely used

defenses:

Krum. For i 6= j , let i → j denote that x j belongs to the n − f −2 closest vectors to x i . Then,

KRUM(x1, . . . , xn) := argmin
i

∑
i→ j

‖x i −x j‖2 .

Krum is computationally expensive, requiring O (n2) work by the server (Blanchard et al.,

2017). CM. Coordinate-wise median computes for the kth coordinate:

[CM(x1, . . . , xn)]k := median([x1]k , . . . , [xn]k ) = argmin
i

n∑
j=1

|[x i ]k − [x j ]k | .

Coordinate-wise median is fast to implement requiring only O (n) time (Chen et al., 2017).

RFA. Robust federated averaging (RFA) computes the geometric median

RFA(x1, . . . , xn) := argmin
v

n∑
i=1

‖v −x i‖2 .

While the geometric median has no closed form solution, (Pillutla et al., 2019) approximate

it using multiple iterations of smoothed Weiszfeld algorithm, each of which requires O (n)

computation.

7.4.1 Failure on imbalanced data without Byzantine workers

We show that when the data amongst the workers is imbalanced, existing aggregation rules

fail even in the absence of any Byzantine workers. Algorithms like KRUM select workers who

are representative of a majority of the workers by relying on statistics such as pairwise dif-

ferences between the various worker updates. Our key insight is that when the data across

the workers is heterogeneous, there is no single worker who is representative of the whole

dataset. This is because each worker computes their local gradient over vastly different lo-

cal data. Hence, for convergence it is important to not only select a good (non-Byzantine)

worker, but also ensure that each of the good workers is selected with roughly equal fre-

quency. Hence KRUM suffers a significant loss in performance with heterogeneous data, even

when there are no Byzantine workers.

Example. Suppose that there are 2n + 1 workers with worker i holding (−1)i ∈ {±1}. This

means that the true mean is ≈ 0, but KRUM, CM, and RFA will output ±1. This motivates our
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Table 7.1 – Test accuracy (%) with no Byzan-
tine workers (δ=0) on imbalanced data (α =
500).

Aggr iid non-iid

AVG 98.84±0.08 98.84±0.07
KRUM 98.10±0.14 82.97±3.64
CM 97.82±0.20 80.36±0.04
RFA 98.72±0.11 84.76±0.83
CCLIP 98.76±0.10 98.15±0.19

Table 7.2 – Test accuracy (%) under mimic at-
tack with δ = 0.2 fraction of Byzantine work-
ers.

iid non-iid

AVG 92.6±0.4 92.6±0.4
KRUM 90.4±0.4 39.0±7.4
CM 91.0±0.3 54.2±9.6
RFA 93.1±0.3 76.4±1.6
CCLIP 93.2±0.4 85.5±0.8

next attack.

In Table 7.1, we demonstrate such failures by training on MNIST with n = 20 and δ = 0. We

construct an imbalanced dataset where each successive class has only a fraction of samples

of the previous class. We defer details of the experiments to Section 14.1. As we can see in

Table 7.1, KRUM, CM and RFA match the ideal performance of SGD in the iid case, but only

attain around 80% accuracy in the non-iid case. This corresponds to learning only the top

2–3 classes and ignoring the rest 7–8 classes.

A similar phenomenon was observed when using batch-size 1 in the iid case by (Karimireddy

et al., 2021b). However, in the iid case this can be easily overcome by increasing the batch-

size. In contrast, when the data across the works is non-iid (e.g. split by class), increasing the

batch-size does not make the worker gradients any more similar and there is a big drop in

performance. Finally, note that hitherto new algorithm (CCLIP) maintains its performance

both in the iid and the non-iid setting. We will explore this in more detail in Section 7.5.

7.4.2 Mimic attack on balanced data

Previously, we saw how data imbalance could lead to consistent errors in the aggregation

rules, leading to significant loss in accuracy. In this section, we will propose a new attack

mimic which specifically tries to maximize the perceived data imbalance even if the original

data is balanced.

Figure 7.1 – Error with random vectors with vari-
ance ρ2 = d and δ fraction of Byzantine workers
imitating a fixed good worker (say worker 1 ∈ G ).
RFA performs slightly better than CM and Krum,
but all have higher error than simply averaging
across various settings of δ and ρ.

Example. Each of the good workers i ∈ G ⊆
[n] has an input a x i ∈ {±1}d where each

coordinate is an independent Rademacher

random variable. The inputs then have

mean 0 and variance E‖x i‖2 = ρ2 = d . Now,

the Byzantine attackers j ∈ B have dual

goals: i) escape detection, and ii) increase

data imbalance. For this, we propose the

following simple passive attack: pick some

fixed worker i? ∈G (say 1) and every Byzan-

tine worker j ∈ B outputs x j = x1. It is im-
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possible to detect the attackers since they

imitate an existing good worker, but still cause an imbalance in the data distribution. This

serves as the intuition for our attack.

Mimic attack. All Byzantine workers pick a good worker (say i?) to mimic and copy its output

(x t
i?

). This inserts a consistent bias towards over-emphasizing worker i? and thus under-

representing other workers. Since the attack simply mimics another worker, it is impossible

to distinguish the Byzantine worker from a real worker and hence is cannot be filtered out.

To pick i?, we use an initial phase (I 0 ≈ 1 epoch) to compute a direction z of maximum

variance of the outputs of the good workers:

z = argmax
‖z‖=1

z>
( ∑

t∈I0

∑
i∈G

(x t
i −µ)(x t

i −µ)>
)

z where µ= 1

|G ||I0|
∑

i∈G ,t∈I0

x t
i .

Then we pick a worker i? to mimic by computing

i? = argmax
i∈G

∣∣∣ ∑
t∈I0

z>x t
i

∣∣∣ .

Efficient streaming algorithms for computing z and i? are discussed in Appendix 14.2. This

procedure tries to insert bias along a direction which has the largest across-worker variance.

Table 7.2 shows the effectiveness of mimic attack even when the fraction of Byzantine nodes

is small (i.e. n = 25, |B| = 5). Since the attackers are copying good workers, it is very challeng-

ing to detect them. Note that this attack specifically targets the non-iid nature of the data—all

robust aggregators maintain their performance in the iid setting and only suffer in the non-

iid setting. Their performance is in fact worse than even simply averaging. As predicted by

our example, KRUM and CM have the worst performance and RFA performs slightly better

(though still significantly worse than simply averaging). We will discuss the remarkable per-

formance of CCLIP in the next section.

7.5 Constructing an agnostic robust aggregator using resampling

In Section 7.4 we demonstrated how existing aggregation rules fail in realistic non-iid scenar-

ios, with and without attackers. In this section, we show how using resampling can provably

fix such aggregation rules. The underlying reason for this failure, as we saw previously, is that

the existing methods fixate on the contribution of only the most likely worker, and ignore

the contributions from the rest. To overcome this issue, we propose to use resampling which

‘mixes’ the data from all the workers thereby reducing the chance of any subset of the data

being consistently ignored.
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Algorithm 9 Robust Aggregation (ARAGG) using resampling

1: input {x1, . . . , xn}, s ∈N, aggregation rule AGGR

2: construct {v 1, . . . , v s·n} with v k ← xdk/se // replicate s times
3: pick random permutation π of [s ·n]
4: compute y i ← 1

s

∑s·i
k=s(i−1)+1 vπ(k) for i ∈ [n] // samples with s-replacement

5: output x̂ ← AGGR(y 1, . . . , y n) // aggregate after resampling

7.5.1 Resampling algorithm

Given n inputs x1, . . . , xn , we replicate each of the x i s times and then randomly split them

into n equally sized buckets. This effectively performs s-resampling without replacement

where each x i can be sampled at most s times. Then, the contents of each bucket are av-

eraged to construct {y 1, . . . , y n} which are then input to an agnostic aggregator AGGR. The

details are summarized in Algorithm 9. The key property of our approach is that after resam-

pling, the resulting set of averaged {y 1, . . . , y n} are much more homogeneous (lower variance)

than the original inputs. Thus, when fed into existing aggregation schemes, the chance of

success increases. We formalize this in the following simple lemma.

Lemma 19 (Resampling reduces variance). Suppose we are given n independent (but not

identical) random vectors {x1, . . . , xn} such that a good subset G ⊆ [n] of size at least |G | ≥
n(1−δ) satisfies:

E‖x i −x j‖2 ≤ ρ2 , for any fixed i , j ∈G .

Define x̄ := 1
|G |

∑
j∈G x j . Let the outputs after s-resampling without replacement be {y 1, . . . , y n}.

Then, a subset of the outputs G̃ ⊆ [n] of size at least |G̃ | ≥ n(1−δs) satisfies

E[y i ] = E[x̄] and E‖y i − y j‖ ≤ ρ2/s for any fixed i , j ∈ G̃ .

The expectation in the above lemma is taken both over the random vectors as well as over the

randomness of the resampling procedure.

Remark 20. Lemma 19 proves that after our resampling procedure, we are left with outputs

y i which have i) pairwise variance reduced by s, and ii) potentially s times more Byzantine

vectors. Hence, resampling trades off increasing influence of Byzantine inputs against having

more homogeneous vectors. Using s = 1 simply shuffles the inputs and leaves them otherwise

unchanged.

Instead of sampling without replacement as we do here, one could alternatively also try sam-

pling with replacement. However, this does not give an almost sure bound on the influence

of the Byzantine outputs. We explore this option more in the Appendix.

7.5.2 Agnostic robust aggregation

We now define what it means for an agnostic robust aggregator to succeed.
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Definition G ((δmax,c)-ARAGG). Suppose we are given input {x1, . . . , xn} of which a subset G

of size at least |G | > (1−δ)n for δ≤ δmax ≤ 0.5 and satisfies E‖x i − x j‖2 ≤ ρ2 . Then, the output

x̂ of a Byzantine robust aggregator satisfies:

E‖x̂ − x̄‖2 ≤ cδρ2 where x̂ = ARAGGδ(x1, . . . , xn) .

Further, ARAGG does not need to know ρ2 (only δ), and automatically adapts to any value ρ2.

We require that the robust aggregator is agnostic to the value of ρ2 and automatically adjusts

its output to the current ρ during training. The aggregator can take δ as an input though. This

property is very useful in the context of Byzantine robust optimization since the variance ρ2

keeps changing over the training period, whereas the fraction of Byzantine workers δ remains

constant. This is a major difference from the definition used in (Karimireddy et al., 2021b).

Our robust aggregator is parameterized by δmax ≤ 0.5 which denotes the maximum amount

of Byzantine inputs it can handle, and a constant c which determines its performance. If

δ= 0, i.e. when there are no Byzantine inputs, we are guaranteed to exactly recover the true

average x̄ . Exact recovery is also guaranteed when ρ = 0 since in that case it is easy to identify

the good inputs since they are all equal and in majority. When both ρ > 0 and δ > 0, we

recover the average up to an additive error term.

We next show that aggregators which we saw were not robust in Section 7.4, can be made to

satisfy Definition G by combining with resampling.

Theorem XXI. Suppose we are given n inputs {x1, . . . , xn} satisfying properties in Lemma 19

for δ< δmax. Then, running Algorithm 9 with s = δmax/δ yields the following:

• Krum: E‖KRUM ◦RESAMPLE(x1, . . . , xn)− x̄‖2 ≤O (δρ2) with δmax < 1/4.

• Geometric median: E‖RFA ◦RESAMPLE(x1, . . . , xn)− x̄‖2 ≤O (δρ2) with δmax < 1/2.

• Coordinate-wise median: E‖CM ◦RESAMPLE(x1, . . . , xn)− x̄‖2 ≤O (dδρ2) with δmax < 1/2 .

Thus, all the methods which we saw were broken in Section 7.4 upon combining with re-

sampling satisfy our notion of an agnostic Byzantine robust aggregator (Definition G). This is

because both our resampling procedures as well as the underlying aggregators are indepen-

dent of ρ2. Further, our error is O (δρ2). In contrast, most other analysis only obtain an error

of O (ρ2) (cf. (Acharya et al., 2021)).

The error of CM depends on the dimension d which is problematic when d À n. How-

ever, we suspect this is because we measure stochasticity using Euclidean norms instead of

coordinate-wise. In practice, we found that CM often outperforms KRUM, with RFA outper-

forming them both. Note that we select s = δmax/δ to ensure that after resampling, we have the

maximum amount of Byzantine inputs tolerated by the method with (sδ) = δmax.

Remark 21 (Centered clipping). The centered clipping aggregator ( CCLIP) given a clipping

radius τ and an initial guess v of the average x̄ performs
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Algorithm 10 Robust Optimization using Robust Aggregator

Input: ARAGG, η, β
1: for t = 1, ... do
2: for worker i ∈ [n] in parallel
3: g i ←∇Fi (x ,ξi ) and mi ← (1−β)g i +βmi // worker momentum
4: send mi if i ∈G , else send ∗ if Byzantine

5: m̂ = ARAGG ({m1, . . . ,mn}).
6: x ← x −ηm̂ // update params using robust aggregate
7: end for

CCLIP(x1, . . . , xn) = v + 1

n

∑
i∈[n]

(xn −v )min(1, τ/‖xn −v‖2) .

Karimireddy et al. (2021b) prove that CCLIP even without resampling satisfies Definition G

with δmax = 0.1, and c = O (1). This explains its good performance on non-iid data in Sec-

tion 7.4. However, CCLIP is not agnostic since it requires clipping radius τ as an input which

in turn depends on ρ2. Devising a version of CCLIP which automatically adapts its clipping

radius is an important open question. Empirically however, we observe that simple rules for

setting τ work quite well—we always use τ = 10
1−β in our limited experiments where β is the

coefficient of momentum.

Note that Lemma 19 reduces ρ2 by s but simultaneously increases δ by s. Thus, any robust

aggregator which already satisfies Definition G when combined with resampling leaves the

final error δρ2 unchanged i.e. resampling may not improve an already robust aggregator in

theory. Empirically however, we observe that resampling always improves performance.

While we have shown how to construct a robust aggregator which satisfies some notion of a

robustness, we haven’t yet seen how this affects the Byzantine robust optimization problem.

We investigate this question theoretically in the next section and empirically in Section 7.7. In

fact, we will see that sometimes resampling combined with non-iid data yields better results

than in the iid case.

7.6 Robust non-iid optimization using a robust aggregator

In this section, we study the problem of optimization in the presence of Byzantine workers

and heterogeneity, given access to any robust aggregator satisfying Definition G. We then

show that data heterogeneity makes Byzantine robust optimization especially challenging

and prove lower bounds for the same. Finally, we see how mild heterogeneity, or sufficient

overparameterization can circumvent these lower bounds, obtaining convergence to the op-

timum.
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7.6.1 Algorithm description

In Section 7.5 we saw that resampling could tackle heterogeneity across the workers by re-

ducing G2. However, there still remains varianceσ2 in the gradients within each worker since

each worker uses stochastic gradients. To reduce the effect of this variance, we rely on worker

momentum. Each worker sends their local worker momentum vector mi to be aggregated by

ARAGG instead of g i directly:

mt
i =βmt−1

i + (1−β)g i (x t−1) for every i ∈G ,

x t = x t−1 −ηARAGG(mt
1, . . . ,mt

n) .

This is a non-standard description of momentum, but is equivalent up to a rescaling of the

learning rate η. Intuitively, using worker momentum mi with parameter β averages over
1/(1−β) stochastic gradients g i and reduces the effect of the within-worker-varianceσ2 (Karim-

ireddy et al., 2021b). Note that the resulting {mi } are still heterogeneous across the workers

with variance G2 and this is the key challenge we face.

7.6.2 Convergence rates

We now turn towards proving convergence rates for our resampling aggregation method Al-

gorithm 9 based on any existing aggregator AGGR. We will assume that for any fixed i ∈G , the

stochastic gradients computed satisfy

Eξi
‖g i (x)−∇ fi (x)‖2 ≤σ2 and E j∼G ‖∇ fi (x)−∇ f (x)‖2 ≤G2 , ∀x . (7.2)

This first condition bounds the variance of the stochastic gradient within a worker whereas

the latter is a standard measure of inter-client heterogeneity in federated learning (Yu et al.,

2019b; Khaled et al., 2020; Karimireddy et al., 2020b). Under these conditions, we can prove

the following.

Theorem XXII. Suppose we are given a (δmax,c)-ARAGG satisfying Definition G, and n workers

of which a subset G of size at least |G | ≥ n(1−δ) faithfully follow the algorithm for δ ≤ δmax.

Further, for any good worker i ∈ G let fi be a possibly non-convex function with L-Lipschitz

gradients, and the stochastic gradients on each worker be independent, unbiased and satisfy

(7.2). Then, for F 0 := f (x0)− f ?, the output of Algorithm 10 satisfies

1

T

T∑
t=1

E‖∇ f (x t−1)‖2 ≤O
(
cδG2 +σ

√
LF 0

T
(cδ+ 1/n)+ LF 0

T

)
.

Remark 22 (Unified proofs). Remark 21 shows that CCLIP is a robust aggregator, and Theo-

rem XXI shows KRUM, RFA, and CM on combining with sufficient resampling are all robust ag-

gregators satisfying Definition G. Most of these methods had no end-to-end convergence guar-

antees prior to our results. Thus, Theorem XXII gives the first unified analysis in both the iid

and non-iid settings.
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When δ = 0 i.e. there are no Byzantine workers, the above rate recovers the familiar O ( σp
T n

)

rate which is optimal for non-convex SGD and even has linear speed-up with respect to the

n workers. In contrast, all previous algorithms for non-iid data (e.g. (Data and Diggavi, 2021;

Acharya et al., 2021)) do not recover convergence even when δ = 0. This is also empirically

reflected in Section 7.4.1, where we showed how these algorithms can fail even in the absence

of Byzantine workers (δ= 0).

Further, in the iid case when G = 0 the rate above simplifies to O ( σp
T
·pcδ+ 1/n) which matches

the optimal iid Byzantine robust rates of (Karimireddy et al., 2021b). In both these cases we

converge to the optimum and can make the gradient arbitrarily small. However, when δ> 0

and G > 0, Theorem XXII only shows convergence to a radius of O (
p
δG) and not to the actual

optimum. We will next explore this limitation.

7.6.3 Lower bounds and the challenge of heterogeneity

Suppose worker j sends us an update which looks ‘weird’ and looks very different from the

updates from the rest of the workers. This may be because worker j might be malicious and

their update represents an attempted attack. On the other hand, it is also possible that worker

j is good but simply has highly non-representative data. In the former case the update should

be ignored, whereas in the latter, the update represents a valuable source of specialized data.

However, it is impossible for the server to distinguish between the two situations. This is the

main challenge of Byzantine robust optimization in the face of worker heterogeneity. The

above argument can in fact be formalized to prove the following lower bound.

Theorem XXIII. Given any optimization algorithm ALG, we can find n functions { f1(x), . . . , fn(x)}

of which at least (1−δ)n are good (belong to G ), 1-smooth, µ-strongly convex functions, and

satisfy Ei∼G ‖∇ fi (x)−∇ f (x)‖ ≤G2 such that the output of ALG given access to these n function

has an error at least

E[ f (ALG( f1, . . . , fn))− f ?] ≥Ω
(
δG2

µ

)
and E‖∇ f (ALG( f1, . . . , fn))‖2 ≥Ω(

δG2) .

The expectation above is over the potential randomness of the algorithm. This theorem is

adapted from arguments for iid robust aggregation (Lai et al., 2016; Karimireddy et al., 2021b)

and implies that it is impossible to converge to the true optimum in the presence of Byzantine

workers. Note that the above lower bound is information theoretic in nature and is indepen-

dent of how many gradients are computed or how long the algorithm is run.

Remark 23 (Matches lower bound). Suppose that we satisfy the heterogeneity condition (7.2)

with G2 > 0 and σ = 0. Then, the rate in Theorem XXII can be simplified to O
(
δG2 + 1/T

)
.

While the second term in this decays to 0 with T , the first term remains, implying that we only

converge to a radius of
p
δG around the optimum. However, this matches our lower bound

result from Theorem XXIII and hence is in general unimprovable.
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7.6. Robust non-iid optimization using a robust aggregator

This is a very strong negative result and seems to indicate that Byzantine robustness might

be impossible to achieve in real world federated learning. This would be major stumbling

block for deployment since the system would provably be vulnerable to attackers. We will

next carefully examine the lower bound and will attempt to circumvent it.

7.6.4 Circumventing lower bounds using overparameterization

We previously saw some strong impossibility results posed by heterogeneity. In this section,

we show that while indeed in the worst case being robust under heterogeneity is impossible,

we may still converge to the true optimum under more realistic settings. Let us consider a

different heterogeneity bound in place of (7.2):

E j∼G ‖∇ fi (x)−∇ f (x)‖2 ≤ B 2‖∇ f (x)‖2 , ∀x . (7.3)

Note that at the optimum x? we have ∇ f (x?) = 0, and hence this assumption implies that

∇ f j (x?) = 0 for all j ∈ G . This is satisfied if the model is sufficiently over-parameterized and

typically holds in most realistic settings (Vaswani et al., 2019).

Theorem XXIV. Suppose we are given a (δmax,c)-ARAGG and n workers with loss functions

{ f1, . . . , fn} satisfying the conditions in Theorem XXII with δ≤ δmax and (7.3) for some B 2 < 1
3cδ .

Then, for F 0 := f (x0)− f ?, the output of Algorithm 10 satisfies

1

T

T∑
t=1

E‖∇ f (x t−1)‖2 ≤O
( 1

1−3cδB 2 ·
(
σ

√
LF 0

T
(cδ+ 1/n)+ LF 0

T

))
.

Remark 24 (Overparameterization fixes convergence). The rate in Theorem XXIV not only

goes to 0 with T , but also matches that of the optimal iid rate of O ( σp
T
·pcδ+ 1/n) (Karimireddy

et al., 2021b). Thus, using a stronger bound on the heterogeneity allows us to circumvent lower

bounds for the non-iid case and converge to a good solution even in the presence of Byzantine

workers. This is the first result of its kind, and takes a major step towards practical Byzantine

robust methods which work in realistic settings.

In the overparameterized setting, we can be sure that we will able to simultaneously optimize

all worker’s losses. Hence, over time the agreement between all worker’s gradients increases.

This in turn makes any attempts by the attackers to derail training stand out easily, especially

towards the end of the training. To take advantage of this increasing closeness, we need an

aggregator which automatically adapts the quality of its output as the good workers get closer.

Thus, the agnostic robust aggregator is crucial to our overparameterized convergence result.

We empirically demonstrate the effects of overparameterization in Section 14.1.2.

Remark 25 (History-less robustness for cross-device FL). In cross-device federated learning

studied in (Kairouz et al., 2019; Karimireddy et al., 2020a), there may be thousands of work-

ers which are sampled in an online fashion. In this setting, we never see the same worker

twice and so the workers cannot maintain any worker momentum. Instead, in each round
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Chapter 7. Byzantine-Robust Learning on Heterogeneous Datasets via Resampling

Table 7.3 – Table 7.1 + Resampling (s=2).

Aggr iid non-iid

AVG 98.84±0.08 98.84±0.07
KRUM 98.44±0.12 97.79±0.29
CM 98.30±0.15 96.44±0.36
RFA 98.78±0.06 97.82±0.31
CCLIP 98.78±0.07 98.68±0.05

Table 7.4 – Table 7.2 + Resampling (s=2).

Aggr iid non-iid

AVG 92.6±0.4 92.6±0.4
KRUM 92.0±0.3 48.5±0.9
CM 92.2±0.3 76.1±18.4
RFA 93.3±0.3 91.3±0.3
CCLIP 93.3±0.4 91.2±0.3

the sampled workers communicate gradient updates to the server, who then performs robust

aggregation using ARAGG (perhaps with additional server momentum). Theorem XXIV guar-

antees Byzantine robust convergence of this method as well even without worker momentum,

if the local worker variance is small (σ2 = 0) and we are in the overparameterized setting (7.3).

This circumvents the impossibility results in Karimireddy et al. (2021b) who show that without

overparameterization, history is necessary for convergence. Thus, we obtain Byzantine robust

methods for the important cross-device federated learning setup as well.

7.7 Experiments

In this section, we demonstrate the effects of resampling on datasets distributed in a non-iid

fashion. Throughout the section, we illustrate the tasks, attacks, and defenses by an example

of training an MLP on a heterogeneous version of the MNIST dataset (LeCun et al., 1998). In

Section 14.1, we also provide results of similar experiments on Fashion-MNIST (Xiao et al.,

2017). The dataset is sorted by labels and sequentially divided into equal parts among good

workers; Byzantine workers have access to the entire dataset. Implementations are based on

PyTorch (Paszke et al., 2019) and will be made publicly available. We defer details of setup,

implementation, and runtime to Section 14.1.

7.7.1 Resampling against the attacks on non-iid data

In Section 7.4 we have presented how heterogeneous data can lead to failure of existing ro-

bust aggregation rules. Here we apply our proposed resampling with s =2 to the same ag-

gregation rules, showing that resampling overcomes the described failures. Results are pre-

sented in Table 7.3. Comparing Table 7.3 with Table 7.1, resampling improves the aggregators’

top-1 test accuracy on long-tail and non-iid dataset by 10% to 14% and allows them to learn

classes at the tail distribution. For non-iid balanced dataset, resampling also greatly improves

the performance of KRUM and CM and makes RFA and CCLIP close to ideal performance.

Similarly, combining aggregators with resampling also performs much better on non-iid dataset

under mimic attack. In Table 7.4, RFA and CCLIP reach accuracy similar to the iid case, and

the performance of KRUM, and CM are improved by 9% to 25%.
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0

25

50

75

100
Ac

cu
ra

cy
 (%

)

ATK = LF | AGG = KRUM ATK = LF | AGG = CM ATK = LF | AGG = CClip ATK = LF | AGG = RFA

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

ATK = BF | AGG = KRUM ATK = BF | AGG = CM ATK = BF | AGG = CClip ATK = BF | AGG = RFA

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

ATK = Mimic | AGG = KRUM ATK = Mimic | AGG = CM ATK = Mimic | AGG = CClip ATK = Mimic | AGG = RFA

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

ATK = IPM | AGG = KRUM ATK = IPM | AGG = CM ATK = IPM | AGG = CClip ATK = IPM | AGG = RFA

0 200 400 600
Iterations

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

ATK = ALIE | AGG = KRUM

0 200 400 600
Iterations

ATK = ALIE | AGG = CM

0 200 400 600
Iterations

ATK = ALIE | AGG = CClip

0 200 400 600
Iterations

ATK = ALIE | AGG = RFA

Resampling
0
2

Momentum
0.0
0.9

Figure 7.2 – Top-1 test accuracies of KRUM, CM, CCLIP, RFA, under 4 attacks on non-iid
datasets.

7.7.2 Resampling against general Byzantine attacks

In Figure 7.2, we present thorough experiments on non-iid data over 25 workers with 5 Byzan-

tine workers, under different attacks. In each subfigure, we compare an aggregation rule with

its variant with resampling. The aggregation rules compared are KRUM (Blanchard et al.,

2017), CM (Yin et al., 2018a), RFA (Pillutla et al., 2019), CCLIP (Karimireddy et al., 2021b).

Attacks. 4 different kinds of attacks are applied (one per row in the figure): bit flipping (BF),

label flipping (LF), mimic attack, as well as inner product manipulation (IPM) attack (Xie

et al., 2020) and the “a little is enough” (ALIE) attack (Baruch et al., 2019).

• Bit flipping: A Byzantine worker flips the sign bits and sends −∇ f (x) instead of ∇ f (x)

because of problems like hardware failures etc.

• Label flipping: The dataset on workers have corrupted labels. For the MNIST dataset, we

let Byzantine workers transform labels by T (y) := 9− y .

• Mimic: Explained in Section 7.4.2.
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(a) Fixed f =5 IPM attackers, varying s.
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(b) Fixed s=2, varying number f of IPM
attackers.

Figure 7.3 – Top-1 accuracies of CCLIP with varying f and s when training on a cluster of
n=53 nodes

• IPM: The attackers send − ε
|G |

∑
i∈G ∇ f (x i ) where ε controls the strength of the attack.

• ALIE: The attackers estimate the mean µG and standard deviation σG of the good gradi-

ents, and send µG − zσG to the server where z is a small constant controlling the strength

of the attack.

Both IPM and ALIE are the state-of-the-art attacks in the iid distributed learning setups which

takes advantage of the variances among workers. These attacks are much stronger in the non-

iid setup. In the last two row of Figure 7.2 we show that worker momentum and resampling

reduce such variance while momentum alone is not enough. Overall, Figure 7.2 shows that

resampling improves the performances of almost all aggregators under all kinds of attacks.

It is important to note that clipping radius τ of CCLIP is set to 10
1−β for all attacks so that we do

not finetune on each specific attack. This scaling is required because CCLIP is not agnostic.

We defer the discussion on the clipping radius and its scaling to Section 14.1.2.

7.7.3 Resampling hyperparameter

Finally we study the influence of the resampling hyperparameter s and the number of Byzan-

tine workers f , again on the heterogeneous MNIST dataset. We use CCLIP as the base aggre-

gator and apply IPM attack to it on non-iid data. In Figure 7.3a, we compare no resampling

and resampling with s =2,5 and confirm that larger s gives faster convergence but s =2 can

be good enough. The results in Figure 7.3b shows that s=2 still behaves well when increasing

f close to 25%. The complete evaluation of the results are deferred to Section 14.1.

7.7.4 Discussion

In all our experiments, we consistently observe: i) mild resampling (s = 2) improves perfor-

mance, ii) worker momentum further stabilizes training, and finally iii) CCLIP recovers the

ideal performance. Given its ease of implementation, this leads us to strongly recommend

using CCLIP in practical federated learning to safeguard against actively malicious agents or

passive failures. In all our experiments, using a clipping threshold of τ= 10
1−β sufficed. How-
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7.8. Conclusion

ever, given that our experiments are limited to MNIST, it is possible that τ may need to be

tuned in other settings. If the default setting of τ doesn’t work and tuning it is impossible,

RFA combined with resampling and worker momentum also nearly recovers ideal perfor-

mance and can instead be used. However, RFA has a higher computational and communi-

cation cost. Ideally, one would want to adaptively and automatically set the clipping radius

τ so that it works in all instances without any tuning. Designing such a clipping operator as

well as its large scale empirical study is left for future work.

7.8 Conclusion

Heterogeneity poses unique challenges for Byzantine robust optimization. The first chal-

lenge is that existing defenses attempt to pick a “representative” update, which may not exist

in the non-iid setting. This, we showed, can be overcome by using resampling. A second

more fundamental challenge is that it is difficult to distinguish between a “weird” but good

worker from an actually Byzantine attacker. In fact, we proved strong impossibility results

in such a setting. For this we showed how overparameterization (which is prevalent in real

world deep learning) provides a solution, ensuring convergence to the optimum even in the

presence of attackers. Together, our results represent a major breakthrough and yield the first

practical provably Byzantine robust algorithms for the non-iid setting.
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Chapter 8. Conclusion

In this thesis, we have presented solutions for learning with compressed communication,

using local computation of the clients, and ensuring Byzantine robustness. However these

problems are far from solved and will require substantially more work before collaborative

learning catches up with its centralized counterpart. Below we explore three direct exten-

sions of the work presented in the thesis.

Direction 1. Model-agnostic communication protocols. Current collaborative learning meth-

ods, each user trains a model on their local data and communicates the updated parameters,

which are then simply averaged to aggregate the information (McMahan et al., 2017). While

this may suffice in convex settings, due to the highly non-convex nature of deep learning

this averaging step may result in a poorly performing parameters even if the individual user’s

parameters were accurate (Al-Shedivat et al., 2020). Further, perhaps even more fundamen-

tally, averaging of the parameters only makes sense if every user has the exact same model

architecture. The goal of this direction is to develop novel model-independent communica-

tion protocols enabling each user to use models best suited to their individual datasets and

hardware resources. Our intermediate tasks would be:

a. Collaborative learning using mutual knowledge transfer: Given access to excess unla-

belled data, each user can synthesize a dataset using the trained models of their peers.

Retraining on this larger dataset has been proven to successfully transfers knowledge be-

tween them (Zhang et al., 2015). This step can be incorporated into the traditional fed-

erated and decentralized learning setup to enable model-independent protocols. Addi-

tionally, recent theoretical progress in understanding distillation methods (Menon et al.,

2020; Mobahi et al., 2020) can be extended to incorporate collaborative training, provid-

ing end-to-end learning guarantees.

b. Knowledge transfer using adversarial training: Traditional knowledge transfer protocols

crucially rely on access to unlabelled data. Instead, one could directly minimize the dis-

crepancies in the predictions between the models on adversarially chosen inputs. This

mimics a similar state-of-the-art strategy in adversarial robustness (Zhang et al., 2019a).

Here too, providing formal guarantees would be a desirable additional goal.

Direction 2. Personalized collaborative learning and transfer learning. Insisting on using the

same parameters for all users in collaborative learning results typically can lead to poor per-

formance for users with heterogeneous datasets (Hsieh et al., 2019). Further, this often leads

to the performance being unequally distributed, with low-resource users having significantly

worse accuracy (Yu et al., 2020). The goal of this direction is to develop principled techniques

for enabling users to personalize models to their particular datasets and use cases. The inter-

mediate tasks would be

a. Notions of heterogeneity. Notions such as label discrepancy (Mansour et al., 2009) and

task-diversity (Tripuraneni et al., 2020) have been used to characterize performance in

heterogeneous multi-task learning and domain adaptation. These notions could be gen-

eralized to develop a precise definition of heterogeneity which can tightly characterize
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the performance of collaborative learning.

b. Minimizing heterogeneity via personalization. Once a precise characterization of hetero-

geneity is available, it can be leveraged to analyze the benefits of currently proposed al-

gorithms (Chen et al., 2018a; Jiang et al., 2019; Mansour et al., 2020). Further, it could lead

to the development of novel methods which directly minimize heterogeneity adapting

techniques from discrepancy minimization (Cortes et al., 2019).

Direction 3. Robust and secure collaborative learning framework. Malicious agents can

attempt to derail the training process as we saw, or can additionally attempt to uncover sen-

sitive information from other participants (Nasr et al., 2019). This direction aims to develop a

unified framework which protects against both such attacks, enabling privacy-sensitive users

(e.g. hospitals) to embrace collaborative learning. The intermediate tasks would be

a. Combine robustness, secure aggregation and differential privacy. Defenses against Byzan-

tine adversaries (Blanchard et al., 2017; Pillutla et al., 2019) aim to ensure convergence

even in the face of malicious interference, and secure aggregation with differential pri-

vacy is used to protect against information leakage (Bonawitz et al., 2017). Building upon

i) our initial attempt to combine general robust aggregators with secure aggregation (He

et al., 2020), ii) our recent breakthrough in designing extremely simple robust aggregators

(Karimireddy et al., 2021b), and iii) novel differential privacy schemes (Pichapati et al.,

2019), a unified trusted framework with end-to-end learning guarantees may be devel-

oped.

b. Improve robustness and privacy using personalization. Heterogeneity amongst the users

leads to increased vulnerability to malicious agents since it becomes harder to distinguish

an honest but atypical user from a malicious agent. Combining results from direction 2b

with 3a could provide a potential solution.

The above only represent a smattering of direct extensions we are currently exploring. How-

ever, the topic of collaborative learning is vast and largely unexplored. As advanced machine

learning algorithms become more tightly integrated into our daily lives, their interactions

with society as well as among themselves is giving rise to rich ecosystem. To be able to un-

derstand as well as shape such ecosystems will require combining our understanding of AI

algorithms with tools from game theory, economics, and social sciences–areas well versed

with studying complex human interactions. This goes well beyond the current scope of ma-

chine learning research which focuses narrowly on developing better models on individual

datasets, but rather requires taking a holistic view of the emergent machine behavior. Care-

fully designing such machine learning systems and studying their behavior is, I believe, one

of the most pressing problems we currently face and one which is just beginning to be stud-

ied.
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9 Appendix for Error Feedback

9.1 Additional Experiments

In this section we give the full experimental details and results.

9.1.1 Convergence under sparse noise
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Figure 9.1 – A simple toy problem where SIGNSGD and (scaled)SIGNSGD are faster than both
SGD and EF-SIGNSGD. The experiment is repeated 100 times with mean indicated by the
solid line and the shaded region spans one standard deviation. As in (Bernstein et al., 2018),
the loss is f (x) = 1

2‖x‖2
2 for x ∈ R100, with gradient ∇ f (x) = x . The stochastic gradient is con-

structed by adding Gaussian noise N (0,1002) to only the first coordinate of the gradient. The
best learning-rate for SGD and EF-SIGNSGD was found to be 0.001, and for SIGNSGD and
(scaled)SIGNSGD was 0.01. The conclusion of this toy experiment directly contradicts the
results of our real-world experiments (Section 2.7) where EF-SIGNSGD is faster during train-
ing than both SGD and SIGNSGD. This shows that the sparse noisy coordinate explanation
proposed by (Bernstein et al., 2018) is probably an incorrect explanation for the speed of sign
based methods during training.
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Chapter 9. Appendix for Error Feedback

9.1.2 Description of models and datasets

The cifar dataset. The CIFAR 10 and 100 training and testing datasets was loaded using

the default Pytorch torchvision api1. Data augmentation consisting of random 32×32 crops

(padding 4) and horizontal flips was performed. Both sets were normalized over each sepa-

rate channel.

VGG (on CIFAR 10). We used VGG19 architecture consisting in the following layers:

64 -> 64 -> M -> 128 -> 128 -> M -> 256 -> 256 -> 256 -> 256 -> M -> 512 -> 512 -> 512 -> 512 ->

M -> 512 -> 512 -> 512 -> 512 -> M

where M denotes max pool layers (kernel 2 and stride 2), and each of the number n (either

of 64/128/256/512) represents a two dimensional convolution layer with n channels a kernel

of 3 and a padding of 1. All of them are followed by a batch normalization layer. Everywhere,

ReLU activation is used.

Resnet (on CIFAR 100). We used a standard Resnet18 architecture with one convolution fol-

lowed by four blocks and one dense layer 2.

9.1.3 Learning rate tuning

For all the experiments, the learning rate was divided by 10 at epochs 100 and again at 150.

We tuned the initial learning rate on batchsize 128. The learning rates for batchsize 32 and 8

were scaled down by 4 and 16 respectivley. To tune the initial learning rate, the algorithm was

run with the same constant learingrate for 100 epochs. Then the learning rate which resulted

in the best (i.e. smallest) test loss is chosen. The search space of possible learning rates was

taken to be 9 values equally spaced in logarithmic scale over 10−5 to 101 (inclusive).

The numbers below are rounded values (2 significant digits) of the actual learning rates:

1.0×10−5,5.6×10−5,3.2×10−4,1.8×10−3,1.0×10−2,5.6×10−2,3.2×10−1,1.8×100,1.0×101 .

The best learning rate for each of the method is shown in table 9.1.

Algorithm Resnet18 VGG19
SGDM 1.0×10−2 1.0×10−2

SIGNSGD 5.6×10−2 5.6×10−2

Signum 3.2×10−4 5.6×10−5

EF-SIGNSGD 5.6×10−2 5.6×10−2

Table 9.1 – The best initial learning rates for the four algorithms for batch size 128 on VGG19
(CIFAR 10 data) and Resnet18 (CIFAR 100 data).

1https://pytorch.org/docs/stable/torchvision/index.html
2https://github.com/kuangliu/pytorch-cifar/blob/master/models/resnet.py
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9.1. Additional Experiments

9.1.4 Experiments with Resnet

We report the complete results (including the losses) for Resnet in Fig. 9.2.
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Figure 9.2 – Experimental results showing the loss values and accuracy percentages on the
train and test datasets, on CIFAR-100 using Resnet18 for different batch-sizes. The solid
curves represent the mean value and shaded region spans one standard deviation obtained
over three repetitions. Note that the scale of the y-axis varies across the plots. The losses be-
have very similar to the accuracies—EF-SIGNSGD consistently and significantly outperforms
the other sign-based methods, is faster than SGDM on train, and closely matches SGDM on
test.

9.1.5 Experiments with VGG

We report the complete results (including the losses) for VGG in Fig. 9.3.
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Figure 9.3 – Experimental results showing the loss values and accuracy percentages on the
train and test datasets, on CIFAR-10 using VGG19 for different batch-sizes. The solid curves
represent the mean value and shaded region spans one standard deviation obtained over
three repetitions. Note that the scale of the y-axis varies across the plots. The plots for
VGG19 behave very similarly to that of Resnet18, except that Signum performs better on
the train dataset. On the test dataset, Signum and the other algorithms behave exactly as
in Resnet. Here too, EF-SIGNSGD consistently and significantly outperforms the other sign-
based methods, is faster than SGDM on train, and also closely matches the test performance
of SGDM.
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9.2. Missing Proofs

Algorithm
SGDM scaled SIGNSGD Signum EF-SIGNSGD

Batch
size

128 75.35 -2.21 -3.15 -0.92
32 76.22 -3.04 -3.57 -0.79
8 74.91 -36.35 -6.6 -0.64

Table 9.2 – Generalization gap on CIFAR-100 using Resnet18 for different batch-sizes. For
SGDM we report the best mean test accuracy percentage, and for the other algorithms we
report their difference to the SGDM accuracy (i.e. the generalization gap). EF-SIGNSGD has
a much smaller gap which decreases with decreasing batchsize. The generalization gap of
Signum and SIGNSGD increases as the batchsize decreases.

Algorithm
SGDM scaled SIGNSGD Signum EF-SIGNSGD

Batch
size

128 93.38 -1.31 -0.94 -0.68
32 93.42 -1.49 -1.54 -0.71
8 93.09 -20.22 -2.75 -0.27

Table 9.3 – Generalization gap on CIFAR-10 using VGG19 for different batch-sizes. For SGDM

we report the best mean test accuracy percentage, and for the other algorithms we report
their difference to the SGDM accuracy (i.e. the generalization gap). EF-SIGNSGD has a much
smaller gap which decreases with decreasing batchsize. The generalization gap of Signum
and SIGNSGD increases as the batchsize decreases.

9.1.6 Data generation process (Section 2.6.2)

The data is generated as in Section 3.3 of (Wilson et al., 2017). We fix n = 200 (the number

of data points) and d = 6n (dimension) in the below process. Each entry of the target label

vector y ∈ {−1,1}n is uniformly set as −1 or 1. Then the j th coordinate (column) of the i th

data point (row) in the data matrix A ∈Rn×d is filled as follows:

Ai , j =



yi j = 1,

1 j = 2,3,

1 j = 4+5(i −1), . . . ,4+5(i −1)+2(1− yi ) ,

0 otherwise.

Then the data matrix A and labels y are randomly (and equally) split between the train and

the test dataset. Hence there are 100 data points each of dimension 1200 in the test and train.

9.2 Missing Proofs

In this section we fill out the proofs of claims, lemmas, and theorems made in the main paper.
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9.2.1 Proof of counter-example (Theorem I)

The stochastic gradient at iteration t is of the form

g t = ai t l ′i t
(
〈

ai t , x
〉

) .

This means that

sign(g t ) = sign(ai t ) · sign(l ′i t
(
〈

ai t , x
〉

)) =±s .

Thus x t+1 = x t ±γs and the iterates of SIGNSGD can only move along the direction s. Then,

SIGNSGD can converge only if there exists γ? ∈R such that

x0 = x?+γ?s .

Since the measure of this set in Rd for d ≥ 2 is 0, we can conclude that SIGNSGD will not

converge to x? almost surely.

9.2.2 Proof of bounded error (Lemma 3)

By definition of the error sequence,

‖e t+1‖2 = ‖C (p t )−p t‖2
2 ≤ (1−δ)‖p t‖2

2 = (1−δ)‖e t +γg t‖2
2 .

In the inequality above we used that C (·) is a δ-approximate compressor. Let us separate the

independent stochastic noise in the above equation using

E‖e t +γg t‖2
2 = E‖e t +γ∇ f (x t )‖2

2 +γ2E‖g t −∇ f (x t )‖2 ≤ E‖e t +γ∇ f (x t )‖2
2 +γ2σ2 .

We thus have a recurrence relation on the bound of e t . Using Young’s ineuqality, we have that

for any η> 0:

(1−δ)E‖e t+γ∇ f (x t )‖2
2+(1−δ)σ2 ≤ (1−δ)(1+η)‖e t‖2

2+γ2(1−δ)(1+1/η)‖∇ f (x t )‖2
2+(1−δ)γ2σ2 .

Let us pick η= δ
2(1−δ) such that 1+1/η= (2−δ)/δ≤ 2/δ, and (1−δ)(1+η) = (1− δ

2 ). Plugging

this in the above gives

E‖e t+1‖2 ≤ (1− δ
2 )‖e t‖2

2 + 2γ2(1−δ)
δ ‖∇ f (x t )‖2

2 + (1−δ)γ2σ2

≤ (1− δ
2 )‖e t‖2

2 + (1−δ)γ2( 2
δM 2 +σ2) .

Here on is simple algebraic computations to solve the recurrence relation above.

E‖e t+1‖2 ≤
∞∑

i=0
[1− δ

2
]iγ2(1−δ)γ2( 2

δM 2 +σ2) = 2(1−δ)

δ2 γ2(2M 2 +δσ2) .
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9.2.3 Proof of non-convex convergence of EF-SIGNSGD (Theorem II)

As outlined in the proof sketch, the analysis considers the actual sequence {x t } as an approx-

imation to the sequence {x̃ t }, where x̃ t = x t −e t . It satisfies the recurence

x̃ t+1 = x t −e t+1 −C (p t ) = x t −p t = x̃ t −γg t .

Since the function f is L-smooth,

Et
[

f (x̃ t+1)
]≤ f (x̃ t )+〈∇ f (x̃ t ),Et [x̃ t+1 − x̃ t ]

〉+ L

2
Et

[‖x̃ t+1 − x̃ t‖2
2

]
= f (x̃ t )−γ〈∇ f (x̃ t ),Et

[
g t

]〉+ Lγ2

2
Et

[∥∥g t

∥∥2
2

]
≤ f (x̃ t )−γ〈∇ f (x̃ t ),∇ f (x t )

〉+ Lγ2σ2

2
+ Lγ2

2
‖∇ f (x t )‖2 .

In the above we need to get rid of ∇ f (x̃ t ) since we never encounter it in the algorithm. We

can do so using an alternate definition of smoothness of f :

‖∇ f (x)−∇ f (y)‖2 ≤ L‖x − y‖2 .

Using the above with x = x t and y = x̃ t we continue as

Et
[

f (x̃ t+1)
]≤ f (x̃ t )−γ〈∇ f (x t ),∇ f (x t )

〉+ Lγ2σ2

2
+γ〈∇ f (x t )−∇ f (x̃ t ),∇ f (x t )

〉+ Lγ2

2
‖∇ f (x t )‖2

≤ f (x̃ t )−γ‖∇ f (x t )‖2
2 +

Lγ2σ2

2
+ (

γρ

2
+ Lγ2

2
)‖∇ f (x t )‖2

2 +
γ

2ρ
‖∇ f (x t )−∇ f (x̃ t )‖2

2

≤ f (x̃ t )−γ‖∇ f (x t )‖2
2 +

Lγ2σ2

2
+ (

γρ

2
+ Lγ2

2
)‖∇ f (x t )‖2

2 +
γL2

2ρ
‖x t − x̃ t‖2

2

≤ f (x̃ t )−γ
(
1− ρ

2
− Lγ

2

)
‖∇ f (x t )‖2

2 +
Lγ2σ2

2
+ γL2

2ρ
‖e t‖2

2 .

In the second inequality follows from the mean-value inequality and holds for any ρ > 0. The

proof of Lemma 3 gives us a recursive bound on the norm of e t as

E‖e t+1‖2 ≤ (1− δ
2 )‖e t‖2

2 + 2γ2(1−δ)
δ ‖∇ f (x t )‖2

2 + (1−δ)γ2σ2

Scale this by γL2

ρδ to get

2γL2

2ρδ
E‖e t+1‖2 ≤ 2γL2

2ρδ
‖e t‖2

2 +
2γ3L2(1−δ)

ρδ2 ‖∇ f (x t )‖2
2 +

γ3L2(1−δ)

ρδ
σ2 − γL2

2ρ
‖e t‖2

2 .
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Adding this to the previously derived bound on f (x t+1) gives(
Et

[
f (x̃ t+1)

]+ 2γL2

2ρδ E‖e t+1‖2
)
−

(
f (x̃ t )+ 2γL2

2ρδ E‖e t‖2
)

≤−γ
(
1− ρ

2
− Lγ

2
− 2γ2L2(1−δ)

ρδ2

)
‖∇ f (x t )‖2

2 +
Lγ2σ2

2
+ γ3L2σ2

2ρ

4(1−δ)

δ

=−γ
(
1−Lγ( 1

2 + 2(
p

1−δ
δ )

)
‖∇ f (x t )‖2

2 +Lγ2σ2( 1
2 +2

p
1−δ) .

The last step used ρ = 2γL
p

1−δ
δ . Now, suppose that we use a step-size γ≤ 4δ/L(δ+4(

p
1−δ).

This gives Lγ( 1
2 + 2(

p
1−δ
δ ) ≤ 1

4 . Further, recall that e0 = 0. Thus, rearranging the terms and

averaging over t gives

1

T +1

T∑
t=0

‖∇ f (x t )‖2
2 ≤

2

γ
·
(

1

T +1

T∑
t=0

(
E
[

f (x̃ t )+ 2γL2

2ρδ ‖e t‖2
]
−E

[
f (x̃ t+1)+ 2γL2

2ρδ ‖e t+1‖2
])

+3Lγ2σ2
)

≤ 2( f (x0)− f ?)

γ(T +1)
+6γLσ2 .

TThis gives the result in Theorem II.

9.2.4 Proof of convex convergence of EF-SIGNSGD (Theorem III)

As in the proof of Theorem II, we start by considering the sequence {x̃ t } where x̃ t = x t − e t .

As we saw, x̃ t+1 = x̃ t −γg t . Suppose that x?t is an optimum solution. We will abuse notation

here and use ∂ f (x) to mean any subgradient of f at x .

Et
[‖x̃ t+1 −x?‖2]= Et

[‖x̃ t −γg t −x?‖2]
= ‖x̃ t −x?‖2 +γ2Et

[‖g t‖2]−2γ
〈
Et

[
g t

]
, x̃ t −x?

〉
≤ ‖x̃ t −x?‖2 +γ2(M 2 +σ2)−2γ

〈
∂ f (x t ), x̃ t −x?

〉
.

We do not want x̃ t appearing in the right side of the equation and so we will replace it with

x t and use Lemma 3 to bound the error:

Et
[‖x̃ t+1 −x?‖2]≤ ‖x̃ t −x?‖2 +γ2(M 2 +σ2)−2γ

〈
∂ f (x t ), x t −x?

〉+2γ
〈
∂ f (x t ), x t − x̃ t

〉
= ‖x̃ t −x?‖2 +γ2(M 2 +σ2)−2γ

〈
∂ f (x t ), x t −x?

〉−2γ
〈
∂ f (x t ),e t

〉
≤ ‖x̃ t −x?‖2 +γ2(M 2 +σ2)−2γ

〈
∂ f (x t ), x t −x?

〉+2γ‖∂ f (x t )‖‖e t‖

≤ ‖x̃ t −x?‖2 +γ2(M 2 +σ2)−2γ
〈
∂ f (x t ), x t −x?

〉+ 2γ2

δ

√
2(1−δ)(2M 2 +δσ2)‖∂ f (x t )‖ .

We use Cauchy-Shwarzch in the third step, and Lemma 3 in the last step. We will use the

loose bound ‖∂ f (x t )‖ ≤ σ. This is the key difference between the non-smooth case and the

smooth (and strongly-convex) case considered in (Stich et al., 2018). In the smooth case,
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the term ‖∇ f (x t )‖2 can be bounded by the error f (x t )− f ?. This implies that the last term

in the equation above goes to 0 faster than γ2, allowing the asymptotic rate to not depend

on the compression quality δ. However, this is not true in the non-smooth case making the

dependence of the rate on δ unavoidable. We now have

Et
[‖x̃ t+1 −x?‖2]≤ ‖x̃ t−x?‖2+γ2(M 2+σ2)−2γ

〈
∂ f (x t ), x t −x?

〉+2γ2

δ
M

√
2(1−δ)(2M 2 +δσ2) .

(9.1)

Recall that e0 = 0 and so x̃0 = x0. Rearranging the terms and averaging, we get

1

T +1

T∑
t=0

E
[〈
∂ f (x t ), x t −x?

〉]≤ 1

2γ(T +1)

T∑
t=0

(
E
[‖x̃ t −x?‖2]−E[‖x̃ t+1 −x?‖2])

+ γ

2
(σ2 +M 2)+ 2γM

√
(1−δ)(M 2 +σ2)

δ

≤ ‖x0 −x?‖2

2γ(T +1)
+γ(σ2 +M 2)

1

2
+ 2M

δ

√
1−δ

M 2 +σ2


≤ ‖x0 −x?‖2

2γ(T +1)
+γ(σ2 +M 2)

(
1

2
+ 2

p
1−δ
δ

)
.

To finish the proof, we have to simply use the convexity of f twice on the left hand side of the

above inequality:

1

T +1

T∑
t=0

E
[〈
∂ f (x t ), x t −x?

〉]≥ 1

T +1

T∑
t=0

f (x t )− f (x?) ≥ f (
1

T +1

T∑
t=0

x t )− f (x?) = f (x̄T )− f (x?) .

For the standard rate of SGD in remark 6, we just set δ= 1.

9.2.5 Proof relating linear span of gradients to pseudo-inverse (Lemma 9)

Recall that A ∈ Rn×d for n < d . Assume without loss of generality that the rows of A are

linearly independent and hence A is of rank n. The stochastic gradient for f (x) = ‖Ax −b‖2

is of the form
∑
αi Ai ,: where Ai ,: indicates the i th column of A. If x t is in the linear span of

the stochastic gradients, then there exists a vector αt ∈Rn such that

x t = A>αt .

Suppose x? is the solution reached. Then Ax? = b and also x? = A>α? for some α?. Hence

α? must satisfy

A A>α? = b .
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Since the rank of A is n, the matrix A A> ∈ Rn×n is full-rank and invertible. This means that

there exists an unique solution to α? and x?:

α? = (
A A>)−1

b and x? = A>α? = A>(
A A>)−1

b .
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10 Appendix for PowerSGD

10.1 Discussions of convergence

10.1.1 Eigen compression

Assumption H (Eigen compression). Consider any matrix M = g t +et encountered during the

run of Algorithm 4 such that M is of rank R. Further, suppose that Cr (M) is the best rank-r

approximation of M i.e.

Cr (M) = argmin
C

‖M −C‖2 .

Then we assume that there exists a δe,r > 0 such that

‖M −Cr (M)‖2 ≤ (1−δe,r )‖M‖2 a.s.

We state the below standard fact from linear algebra.

Remark 26 (Best rank-r approximation). Suppose we are given a matrix M of rank n whose

singular value decomposition is

M =
n∑

i=1
σi ui v>

i ,

where the singular-values (σi ) are sorted in descending order. Then the best rank-r approxi-

mation of M for r ≤ n is

Cr (M) = (
r∑

i=1
σi ui v>

t )Q ,

where Q ∈Rr×r is an orthogonal matrix, and further the quality of its approximation is bounded

by

‖M −Cr (M)‖2 =
(

1−
∑r

i=1σ
2
i∑n

i=1σ
2
i

)
‖M‖2 .

Thus if we used Algorithm 4 with exact rank-r approximation of the gradients, we would

converge at rate dictated by the eigen-spectrum of the gradients. If the singular values are
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‘top-heavy’ i.e. the largest r values are significantly larger than the rest, then a rank-r ap-

proximation is quite accurate. As demonstrated in (Wang et al., 2018), the eigen-spectrum

of stochastic gradients in common deep learning tasks is indeed ‘top-heavy’. Thus we can

expect δe,r to be bounded away from 0 even for very small r (e.g. 1 or 2). Of course comput-

ing the actual top eigenvectors of the stochastic gradients is very computationally expensive,

and more-over is not linear (and hence does not support reduce).

10.1.2 Subspace iteration

The key innovation in POWERSGD is to use only a single step of subspace (or power) iter-

ation to give a fast low rank approximation (Stewart and Miller, 1975) to the given matrix,

which in our case is a stochastic gradient. However, a single step of subspace iteration in

general does not result in an adequate low-rank approximation of the input matrix. To com-

bat this, and to at the same time reduce the variance of the stochastic gradient approximation

compared to the full (deterministic) gradient, we propose the reuse of the low-rank approx-

imation from the previous iteration as the starting point for the current iteration. This is in

spite of the target matrices which are trying to approximate are changing, as the parameters

evolve. Nevertheless, reuse here is justified because the full gradient does not change very

fast (the gradient is Lipschitz by assumption) and we only perform a tiny update at each step,

so can be assumed to be stationary within a small number of steps. Intuitively, by linearity

of the subspace operation, the sequence of subspace steps with the reuse then is converging

to the eigenvector of the averaged stochastic gradients over these steps, thus having a lower

variance than the analogue without re-use, which has no such averaging effect.

For simplicity, we assume all matrices to be square and symmetric in this sub-section. These

insights can be generalized to arbitrary matrices but with a substantial increase in complex-

ity of exposition. Here, we simply note that for any non-square matrix A, we can instead

consider

Ã =
[

0 A

A> 0

]
which is symmetric and has the same eigenvectors and eigenvalues as the original matrix

A—see (Stewart, 1976) for more details on handling such cases.

We can now state an informal theorem about the convergence of subspace iteration.

Theorem XXV. Suppose that we run subspace iteration as in (10.1) on a fixed matrix At = M.

Also let M = ∑n
i=1σi ui u>

i be the eigen decomposition of M with σ1 ≥ . . .σr > σr+1 ≥ ·· · ≥ σn .

Then there exists an orthogonal matrix Q ∈Rr×r such that

lim
t=∞X t = [u1, . . . ,ur ]Q .

In other words, (10.1) recovers the best rank-r approximation of M as long as there is a gap

between the σr and σr+1 eigenvalues.
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Suppose that at each iteration we receive a matrix At ∈ Rn×n whose expectation is the same

fixed matrix M ∈ Rn×n . Starting from an orthonormalized X0 ∈ Rn×r (i.e. X >
0 X0 = Ir ), the

rank-r subspace iteration algorithm performs the following update:

X t+1 = ORTHOGONALIZE(At X t ) . (10.1)

The final output of the algorithm (i.e.) the matrix approximation is (AT+1XT )X >
T . This closely

resembles the method of POWERSGD as outlines in Algorithm 3. We recommend (Arbenz,

2016) for an in-depth analysis of the (non-varying) subspace iteration algorithm.

Remark 27 (Orthogonalization is a linear operation). We recall some more facts from linear

algebra. For any square matrix B, there exists an orthogonal matrix Q and a triangular matrix

R such that QQ> = I and B =QR. This is true e.g. if we use Gram–Schmidt procedure to ortho-

normalize B: Suppose ORTHOGONALIZE(B) uses the Gram–Schmidt procedure to orthogonalize

B. Then there exists a triangular matrix R such that

ORTHOGONALIZE(B) = BR−1 .

10.1.3 Proof that Orthogonalization is a linear operation (Remark 27)

It is easy to see that for any orthogonal matrix Q, the matrix [u1, . . . ,ur ]Q is also orthogonal,

and further is the fixed point of (10.1). In fact all rank-r matrices which are fixed points of

(10.1) are of this form.

We will use the observation in Remark 27 to rewrite the update (10.1) in a more convient

fashion. There exist tringular matrices R0, . . . ,Rt such that

X t+1 = ORTHOGONALIZE(At X t ) = At X t R−1
t = (At At−1 · · · A0)X0(R−1

0 R−1
1 · · ·R−1

t ) .

Thus X t+1 can alternatively be written as

X t+1 = ORTHOGONALIZE((At At−1 · · · A0)X0) = ORTHOGONALIZE(M t+1X0) .

Here we assumed that the matrix was fixed i.e. At = M . Let us further assume that X0 has a

non-zero support on the first r eigenvectors of M . Then, a gap in the eigenvalues σr > σr+1

implies that ORTHOGONALIZE(M t+1X0) converges to [u1, . . . ,ur ]Q. We refer to Chapter 7.2 of

(Arbenz, 2016) for the actual proof of this fact.

10.1.4 Proof of Single/multi worker equivalence (Lemma 3.5.1)

Consider the update performed by POWERSGD for abrtiary vectors {v w }. Let C (v w ) be the

compressed version of v w for w ∈ {1, . . . ,W }. Then by design of POWERSGD , the following
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holds:

DECOMPRESS(AGGREGATE(C (v 1), . . . ,C (vW ))) = DECOMPRESS(C (
1

W

∑
w

v w )) .

This implies that running the algorithm on multiple workers, or running it on a single worker

with a larger batch-size is identical. In particular,

DECOMPRESS(AGGREGATE(C (g t ,1 +e t ,1), . . . ,C (g t ,W +e t ,W )))

= DECOMPRESS(C (
1

W

∑
w

g t ,w +e t ,w ))

= DECOMPRESS(
1

W
C (g t +e t )) .

10.1.5 Proof of convergence (Theorem V)

Let us first state some standard assumptions we need for our proof.

Assumption I (L-smooth function). The function f is assumed to be L-smooth and for any

x , y the following holds:

f (y)− f (x) ≤ 〈∇ f (x), y −x〉+ L

2
‖y −x‖2 , and

‖∇ f (x)−∇ f (y)‖ ≤ L‖x − y‖ .

The second definition of smoothness is stronger and implies the first.

Assumption J (δ-approximate compressor (Karimireddy et al., 2019)). Consider any g t + e t

encountered during the run of Algorithm 4. We assume there exists a δ> 0 such that

‖∆′
t − (g t +e t )‖ ≤ (1−δ)‖g t +e t‖2 .

Assumption K (Moment bounds). For all iterations t while running Algorithm 4 with W

workers, there exist constants σ and B such that

Et [‖g t −∇ f (x t )‖2] ≤ σ2

W
, and max

(
Et [‖g t‖2 , Et [‖∆′

t‖2]
)≤ B 2 .

The key idea behind the convergence proof of (Karimireddy et al., 2019; Stich et al., 2018)

is the use of an auxillary sequence {x̃ t }. We will use a different sequence than the one in

those papers. This is because of the presence of Nesterov momentum in (4) which makes the

effective step-size larger.
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We define x̃0 := x0 and then inductively for any t ≥ 0 as

x̃ t+1 = x̃ t −γ
(
1+ 1

1−λ
)

g t . (10.2)

Note that here we use the stochastic gradient computed at x t (instead of at x̃ t as in (3.1)).

Lemma 28 (Real and virtual sequence relation). For the real sequence {x t } as defined in (3.2)

and virtual sequence {x̃ t } as in (10.2), the following holds almost surely:

x̃ t = x t + γ

1−λ ((2−λ)e t +λmt ) .

Proof. This follows from a careful manipulation of the respective definitions in (3.2). First

from the definition of the error e t+1 we have:

e t+1 = (g t +e t )−∆′
t ⇒∆t = g t + (e t −e t+1) .

Then from the definition of the momentum sequence, mt+1 we have:

(1−λ)mt+1 = mt+1 −λmt+1 =λ(mt −mt+1)+γ∆′
t .

Now, using these relations in the update relation of x t gives:

x t+1 = x t −γ(∆′
t +mt+1)

= x t −γ
(
∆′

t +
1

1−λ∆
′
t +

λ

1−λ (mt −mt+1)

)
= x t −γ

(
2−λ
1−λ (g t +e t −e t+1)+ λ

1−λ (mt −mt+1)

)
= x t + γ

1−λ ((2−λ)e t +λmt )−γ2−λ
1−λg t −

γ

1−λ ((2−λ)e t+1 +λmt+1) .

This shows that the following relation closely resembling the update of {x̃ t } holds:

x t+1 + γ

1−λ ((2−λ)e t+1 +λmt+1) = x t + γ

1−λ ((2−λ)e t +λmt )−γ2−λ
1−λg t .

We will finish our proof by induction. For t = 0, m0 = 0, e0 = 0 and x̃0 = x0. Hence the claim

holds for t = 0. Assuming it holds for some t ≥ 0,

x t+1 + γ

1−λ ((2−λ)e t+1 +λmt+1) = x t + γ

1−λ ((2−λ)e t +λmt )−γ2−λ
1−λg t

= x̃ t −γ2−λ
1−λg t

= x̃ t+1 .

Thus we have an inductive proof of our claim.
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Lemma 29 (Distance between virtual and real sequences). For the updates of Algorithm 4,

given assumptions J and K we have:

E‖x̃ t −x t‖2 ≤ 2γ2B 2

(1−λ)2

(
4(1−δ)(2−λ)2

δ2 + λ2

(1−λ)2

)
.

Proof. First let us obtain a bound on the norm of the momentum:

‖mt+1‖2 = ‖λmt +∆′
t‖

≤ λ2

η
‖mt‖2 + 1

1−η‖∆
′
t‖2

≤
t∑

i=0
[λ2/η]t−i 1

1−η‖∆
′
t‖2 .

The first inequality above used Young’s inequality and holds for any η ∈ (0,1). Next we use

assumption K about bounded moments as:

E[‖mt+1‖2] ≤
t∑

i=0
[λ2/η]t−i 1

1−η E[‖∆′
t‖2]

≤
t∑

i=0
[λ2/η]t−i 1

1−ηB 2

≤
∞∑

i=0
[λ2/η]i 1

1−ηB 2

= B 2

(1−λ2/η)(1−η)

= B 2

(1−λ)2 .

We used η = λ in the final step. Next we recall Lemma 3 from (Karimireddy et al., 2019) to

claim that Assumption J and K imply:

E[e t ]2 ≤ 4(1−δ)B 2

δ2 .

Using the derived inequalities in Lemma 28, we get

E‖x̃ t −x t‖2 = E
∥∥∥ γ

1−λ ((2−λ)e t +λmt )
∥∥∥2

≤ 2γ2(2−λ)2

(1−λ)2 E‖e t‖2 + 2γ2λ2

(1−λ)2 E‖mt‖2

≤ 2γ2(2−λ)2

(1−λ)2

4(1−δ)B 2

δ2 + 2γ2λ2

(1−λ)2

B 2

(1−λ)2

= 2γ2B 2

(1−λ)2

(
4(1−δ)(2−λ)2

δ2 + λ2

(1−λ)2

)
.
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10.1. Discussions of convergence

We are finally ready to prove the main theorem on convergence of Error-Feedback SGD when

including momentum.

Proof of main theorem. Consider the virtual sequence x̃ t as defined as in (10.2):

x̃ t+1 = x̃ t − γ̃g t .

We will view the actual sequence {x t } as being an approximation of the actual sequence x t .

Using Assumption I, the following statements hold almost surely:

Et [ f (x̃ t+1)− f (x̃ t )] ≤ E[
〈∇ f (x̃ t ), x̃ t+1 − x̃ t

〉
]+ L

2
E[‖x̃ t+1 − x̃ t‖2]

=−γ̃〈∇ f (x̃ t ),E[g t ]
〉+ Lγ̃2

2
E[‖g t‖2]

=−γ̃〈∇ f (x̃ t ),∇ f (x t )
〉+ Lγ̃2

2
‖∇ f (x t )‖2 + Lγ̃2σ2

2W

=
(

Lγ̃2

2
− γ̃

)
‖∇ f (x t )‖2 + γ̃〈∇ f (x t ),∇ f (x t )−∇ f (x̃ t )

〉+ Lγ̃2σ2

2W

≤
(

Lγ̃2

2
− γ̃

)
‖∇ f (x t )‖2 + γ̃

4
‖∇ f (x t )‖2 + γ̃‖∇ f (x t )−∇ f (x̃ t )‖2 + Lγ̃2σ2

2W
.

The last step follows from the mean-value inequality. We never really encounter the gradient

∇ f (x̃ t ) during the course of the algorithm and so cannot directly control it. We can instead

replace this term using the second notion of smoothness from assumption I and Lemma 29:

‖∇ f (x̃ t )−∇ f (x t )‖2 ≤ L2‖x̃ t −x t‖2 ≤ 2L2γ2B 2

(1−λ)2

(
4(1−δ)(2−λ)2

δ2 + λ2

(1−λ)2

)
.

Recall that 2Lγ̃≤ 1. We thus have

Et [ f (x̃ t+1)− f (x̃ t )] ≤
(

Lγ̃2

2
− γ̃+ γ̃

4

)
‖∇ f (x t )‖2 + γ̃2L2γ2B 2

(1−λ)2

(
4(1−δ)(2−λ)2

δ2 + λ2

(1−λ)2

)
+ Lγ̃2σ2

2W

≤− γ̃
4
‖∇ f (x t )‖2 + γ̃32L2B 2

(
4(1−δ)

δ2 + λ2

(1−λ)2(2−λ)2

)
+ Lγ̃2σ2

2W

=− γ̃
4
‖∇ f (x t )‖2 + γ̃3 + γ̃2 Lσ2

2W
.

Shifting the gradient term to the left and averaging over T gives:

1

T +1

T∑
t=0

E[‖∇ f (x t )‖2] ≤ 4

γ̃(T +1)

( T∑
t=0

f (x̃ t )− f (x̃ t+1

)
+ γ̃4σ2

W
+ γ̃2C

= 4( f (x0)− f ?)

γ̃(T +1)
+ 4γ̃σ2

W
+ γ̃2C .
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This finishes the proof of the theorem.

10.2 Cluster specifications

• 8 nodes

• GPUs: 2× Nvidia GeForce GTX Titan X with 12 GB memory per node

• GPU connection: traversing PCIe and the SMP interconnect between NUMA nodes

• CPU: Intel Xeon E5-2680 v3 @ 2.50Ghz, 48 cores

• System memory: 251GiB

• Ethernet: 10Gbit/s SFI/SFP+

• Fat tree network topology

• Runing PYTORCH 1.1 on Anaconda Python 3.7

Timings of collective communication operations

The figure below shows timings for the NCCL backend, which is the default in our experi-

ments, and the GLOO backend. Note that NCCL does not support the ‘gather’ operation in

PYTORCHat the time of writing.
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10.3 Convergence curves
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Figure 10.1 – Convergence curves of POWERSGD with varying rank. This figure is meant to
give context to the final results and timings presented in Table 3.3. In two different tasks,
POWERSGD with high enough rank can achieve the test quality of full-precision SGD with
lower wall-clock duration. Contrary to Table 3.3, these timings include testing overhead at
the end of each epoch, checkpointing, and other bookkeeping. Shaded areas show the min—
max values over 3 replications of the experiments.
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Image classification on CIFAR10
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Figure 10.2 – Convergence curves comparing POWERSGD to the Signum optimizer (Bernstein
et al., 2019) (with tuned learning rate). Out of the compared methods, Signum came out as
the most competitive. This figure is meant to give context to the final results and timings
presented in Table 3.6. Contrary to Table 3.3, these timings include testing overhead at the
end of each epoch, checkpointing, and other bookkeeping. Shaded areas show the min—max
values over 3 replications of the experiments.
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10.4 Language Modeling with Transformers

In this case study, we assess PowerSGD’s universality and ease of tuning. We implemented

PowerSGD communication in Facebook AI Research’s fairseq library (Ott et al., 2019). We

trained fairseq’s language modeling example1 with transformers (Baevski and Auli, 2019) on

Google’s public cloud. The communication infrastructure, hardware, number of workers

(32), and model architecture are all different from any experiments we have conducted be-

fore. See Table 10.1 for details.

The results of our experiments for various ranks are shown in Figure 10.3 and Table 10.2. For

this task, we need a higher rank than previously (32 vs 4) to achieve a validation loss comptet-

itive to uncompressed SGD. We hypothesize this may be due differences in architecture to the

cosine learning rate schedule. Nevertheless, even at this higher rank, we achieve a time-to-

accuracy (to loss = 5) of around 1.5× and a compression ratio of 14×. These numbers could

probably be further improved by re-tuning learning-rate-related hyperparameters.

Table 10.1 – Experimental setting for the experiments in Appendix 10.4

Dataset WikiText-103
Architecture Transformer-based (Baevski and Auli, 2019)
Framework & defaults https://github.com/pytorch/fairseq/tree/920b85d4bd39e181229db5639c701c854c83ec5c/

examples/language_model

Number of workers 32
Backend NCCL (fastest in PYTORCH)
Hardware n1-standard-8 nodes on Google Cloud with 1 Nvidia Tesla K80 GPU

Hyperparameters Taken from the example, not re-tuned,
with minor changes for the higher number of workers and different GPU memory:

lr period updates 16875
max update 17875
max tokens (valid) 1536 (to fit on a K80 gpu)
tokens per sample 1536 (to fit on a K80 gpu)
warmup updates 1000
update freq [1] — don’t aggregate multiple mini-batches locally

Optimizer original: Nesterov accelerated gradient, we just added PowerSGD for communication
Learning rate original cosine schedule from the example

Float precision 32-bit (16-bit is unavailable on the K80)

Repetitions 1

1https://github.com/pytorch/fairseq/tree/920b85d4bd39e181229db5639c701c854c83ec5c/examples/
language_model
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Figure 10.3 – Language Modeling on WIKITEXT-2 with Transformers. With a large enough
rank, POWERSGD can roughly match the validation loss of full-precision SGD in the same
number of iterations. A speedup of 1.5× in time-to-accuracy (loss=5) is achieved with a rank
of 16.

Table 10.2 – POWERSGD for Language Modeling with Transformers. With rank 32, POW-
ERSGD achieves similar validation loss to uncompressed SGD in the same number of update
steps. At this rank, the compression ratio is 14× and we can train the model in 12h compared
to 20h for the baseline.

Compression Total training time Compression ratio Validation loss

for 17875 updates at 17875 updates

Uncompressed 20h 1× 4.92

Rank 4 11h 105× 5.58

Rank 8 11h 55× 5.19

Rank 16 12h 28× 5.03

Rank 32 13h 14× 4.97

4h 8h 12h 16h 20h

Forward pass Backward pass Gradient exchange including computation
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10.5 The need for error feedback
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Figure 10.4 – PowerSGD with and without error feedback compared. While rank-4 POW-
ERSGD achieves the same test accuracy as full-precision SGD, the same method without er-
ror feedback does not converge to a good accuracy at all. Both experiments use the same
learning rate that was tuned for full-precision SGD.
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10.6 Network parameters

Table 10.3 – Parameters in the ResNet18 architecture and their shapes. The table shows the
per-tensor compression ratio achieved by rank-r POWERSGD.

Parameter Gradient tensor shape Matrix shape Uncompressed Compression

layer4.1.conv2 512×512×3×3 512×4608 9216 KB 461/r ×
layer4.0.conv2 512×512×3×3 512×4608 9216 KB 461/r ×
layer4.1.conv1 512×512×3×3 512×4608 9216 KB 461/r ×
layer4.0.conv1 512×256×3×3 512×2304 4608 KB 419/r ×
layer3.1.conv2 256×256×3×3 256×2304 2304 KB 230/r ×
layer3.1.conv1 256×256×3×3 256×2304 2304 KB 230/r ×
layer3.0.conv2 256×256×3×3 256×2304 2304 KB 230/r ×
layer3.0.conv1 256×128×3×3 256×1152 1152 KB 209/r ×
layer2.1.conv2 128×128×3×3 128×1152 576 KB 115/r ×
layer2.1.conv1 128×128×3×3 128×1152 576 KB 115/r ×
layer2.0.conv2 128×128×3×3 128×1152 576 KB 115/r ×
layer4.0.shortcut.0 512×256×1×1 512×256 512 KB 171/r ×
layer2.0.conv1 128×64×3×3 128×576 288 KB 105/r ×
layer1.1.conv1 64×64×3×3 64×576 144 KB 58/r ×
layer1.1.conv2 64×64×3×3 64×576 144 KB 58/r ×
layer1.0.conv2 64×64×3×3 64×576 144 KB 58/r ×
layer1.0.conv1 64×64×3×3 64×576 144 KB 58/r ×
layer3.0.shortcut.0 256×128×1×1 256×128 128 KB 85/r ×
layer2.0.shortcut.0 128×64×1×1 128×64 32 KB 43/r ×
linear 10×512 10×512 20 KB 10/r ×
conv1 64×3×3×3 64×27 7 KB 19/r ×
Bias vectors (total) 38 KB None

Total 43 MB 243/r ×
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Table 10.4 – Parameters in the LSTM architecture and their shapes. The table shows the per-
tensor compression ratio achieved by rank-r POWERSGD.

Parameter Gradient tensor shape Matrix shape Uncompressed Compression

encoder 28869×650 28869×650 73300 KB 636/r ×
rnn-ih-l0 2600×650 2600×650 6602 KB 520/r ×
rnn-hh-l0 2600×650 2600×650 6602 KB 520/r ×
rnn-ih-l1 2600×650 2600×650 6602 KB 520/r ×
rnn-hh-l1 2600×650 2600×650 6602 KB 520/r ×
rnn-ih-l2 2600×650 2600×650 6602 KB 520/r ×
rnn-hh-l2 2600×650 2600×650 6602 KB 520/r ×
Bias vectors (total) 174 KB None

Total 110 MB 310/r ×

10.7 Compressor implementation details

10.7.1 Random Block

This implements compression for error-feedback with momentum (Algorithm 4).

Algorithm 11 Random Block compression

1: function COMPRESS(update matrix M ∈Rn×m)

2: Treat M as a vector of length nm.

3: Sample an index s uniformly between 0 and nm−1, using the same seed on all workers.

4: The block length b is set to (m +n)r to match rank-r POWERSGD.

5: return A consequtive memory slice S = M(s : s +b).

6: end function

7: function AGGREGATE+DECOMPRESS(worker’s slices S1 . . .SW )

8: M̂ ← 0 ∈Rn×m

9: M̂(s : s +b) ← 1
W

∑W
i=1 Si . using all-reduce

10: return M̂

11: end function

10.7.2 Random K

This implements compression for error-feedback with momentum (Algorithm 4).
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Algorithm 12 Random K compression

1: function COMPRESS(update matrix M ∈Rn×m)

2: Treat M as a vector of length nm.

3: The number of samples b is set to (m +n)r to match rank-r POWERSGD.

4: Sample a set of b indices I without replacement, using the same seed on all workers.

5: return Looked up values S = M(I ).

6: end function

7: function AGGREGATE+DECOMPRESS(worker’s values S1 . . .SW )

8: M̂ ← 0 ∈Rn×m

9: M̂(I ) ← 1
W

∑W
i=1 Si . using all-reduce

10: return M̂

11: end function

Sampling of indices We sample random indices on the CPU using Numpy. This operation is

relatively expensive. Together with the many random lookups, this explains why Random K

compression is significantly slower than Random Block compression.

10.7.3 Sign+Norm

This implements compression for error-feedback with momentum (Algorithm 4).

Algorithm 13 Sign+Norm compression

1: function COMPRESS(update matrix M ∈Rn×m)

2: Compute the signs S ∈ {−1,1}n×m of M

3: Compute the L1 norm ` of M .

4: return (`, S)

5: end function

6: function AGGREGATE+DECOMPRESS(worker’s norms `1 . . .`W and signs S1 . . .SW )

7: return 1
W

∑W
i=1

`i
nm Si . Executed on all workers using NCCL’s all-gather

8: end function

Because PYTORCH does not natively support data types smaller than 8 bits per scalar, we use

a C++ extension (Bernstein et al., 2019) to actually send single bits to other workers. The em-

ployed all-gather operation from NCCL is faster than aggregation using a parameter server

using GLOO. We cannot implement a parameter server in NCCL due to lack of a ‘gather’

operation.

10.7.4 Top K

This implements compression for error-feedback with momentum (Algorithm 4).

144



10.7. Compressor implementation details

Algorithm 14 Top K compression

1: function COMPRESS(update matrix M ∈Rn×m)

2: Treat M as a vector of length nm.

3: The number of samples b is set to (m +n)r to match rank-r POWERSGD.

4: Construct a list of b indices I corresponding to the top absolute values in M .

5: return Looked up values S = M(I ) and indices I .

6: end function

7: function AGGREGATE+DECOMPRESS(worker’s values S1 . . .SW and indices I1 . . . IW )

8: M̂ ← 0 ∈Rn×m

9: for worker index i in 1, . . . ,W do

10: M̂(Ii ) ← 1
W Si . using all-gather in NCCL

11: end for

12: return M̂

13: end function

The employed all-gather operation from NCCL is faster than aggregation using a parame-

ter server using GLOO. We cannot implement a parameter server in NCCL due to lack of a

‘gather’ operation.

10.7.5 Signum

This is our implementation of the Signum compression algorithm by (Bernstein et al., 2019).

We run it in its original form, without error feedback, with momentum of 0.9, and a learning

rate tuned based on 5 experiments in the 16-worker setting.

Algorithm 15 Signum compression

1: function COMPRESS(update matrix M ∈Rn×m)

2: Compute the signs S ∈ {−1,1}n×m of M

3: return S

4: end function

5: function AGGREGATE+DECOMPRESS(worker’s signs S1 . . .SW )

6: return SIGN(
∑W

i=1 Si ) .Majority vote, on all workers using NCCL’s all-gather

7: end function

Because PYTORCH does not natively support data types smaller than 8 bits per number, we

use a C++ extension (Zhao, 2019) to actually send single bits to other workers. The employed

all-gather operation from NCCL is faster than aggregation using a parameter server using

GLOO. We cannot implement a parameter server in NCCL due to lack of a ‘gather’ operation.

145



Chapter 10. Appendix for PowerSGD

10.7.6 Atomo

This is our implementation of the Spectral Atomo algorithm presented by (Wang et al., 2018).

We run it in its original form, without error feedback, with momentum of 0.9, and a learning

rate tuned based on 4 experiments in the 16-worker setting.

Matix shape Atomo differs from POWERSGD in how it treats tensors as matrices. This results

in lower compression at the same rank.

Number of sampled components Atomo decomposes gradient matrices M using a Singular

Value Decomposition into M ∼∑
i Ui :Si i V >

i : and importance-samples components from this

summation based on probabilities derived from the absolute singular values Si i . The proba-

bilities are such, that the expected number of samples components is equal to the target rank

r , but there is no guarantee. We modify the algorithm to always use exactly r components,

to allow for faster communication. We achieve this by repeating the sampling procedure un-

til the number of selected components is r . This has no significant impact on the runtime

performance.

Algorithm 16 Rank-r Spectral-Atomo compression

1: function COMPRESS(update matrix M ∈Rn×m)

2: U ,S,V ← SVD(M). . on CPU using Numpy, faster than PYTORCH

3: Compute Atomo probabilities p1 . . . pk from S11, . . .Skk . . see (Wang et al., 2018).

4: Sampling: include index i independently with probability pi .

5: Repeat sampling until a set of r indices C is selected. . our modification (see above)

6: return
{
(Ui : ·Si i /pi ,Vi :) | i ∈C

}
as two matrices U ′ ∈Rn×r and V ′ ∈Rm×r .

7: end function

8: function AGGREGATE+DECOMPRESS(rank-r approximations (U ′
1,V ′

1) . . . (U ′
W ,V ′

W ) for each

worker)

9: return
∑W

i=1 U ′
i V ′>

i . using all-gather in NCCL

10: end function

The employed all-gather operation from NCCL is faster than aggregation using a parame-

ter server using GLOO. We cannot implement a parameter server in NCCL due to lack of a

‘gather’ operation.

10.7.7 Best-approximation POWERSGD

This variant is the same as POWERSGD (Algorithm 3), but with more steps of subspace itera-

tion, and without reuse of previous steps. We find that 4 steps of subspace iterations (8 matrix

multiplications) is enough to converge to the best low-rank approximation of gradient matri-

ces, when measuring final test accuracy achieved by POWERSGD.
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10.8 Performance optimizations

Because we compare timings, we have aimed to optimize all compared optimizers to a simi-

lar level. For sign-based methods, we used a publicly available C++ library by (Bernstein et al.,

2019) to efficiently pack the signs into bitmaps, an operation which is not supported by PY-

TORCH natively. For Atomo, we have benchmarked the SVD operation on the GPU and CPU,

and chose the faster CPU implementation. For all methods, we pack all gradient tensors into

one flat buffer to reduce the number of communications. Where possible, we overlay com-

munication with computation. Algorithms that do not support all-reduce are implemented

using NCCL’s all-gather, which is faster than a parameter server with GLOO.2

10.9 Learning rate tuning

For each task and each optimization algorithm without error feedback, learning rates were

tuned separately. For algorithms based on error feedback with momentum, we use the learn-

ing rate tuned for SGD.

Learning rates are defined as rates for 1 worker, and scaled linearly with 5-epoch warmup to

the number of workers (16 by default). We tune them in the 16-worker setting.

We determine the best learning rate by comparing test accuracy of one replication after run-

ning the full number of epochs. We start training with 3 different learning rates, a factor 2

apart, based on commonly used rates for the optimizer, and if the best learning rate is either

the lower or higher end, we extended the range.

For CIFAR10, the rates considered for SGD were [0.05, 0.1, 0.2], we chose 0.1. For rank-2 Spec-

tral Atomo, we considered [0.025, 0.05, 0.1, 0.2] and chose 0.1. For Signum, we considered

[2e-5, 5e-5, 1e-4, 2e-4] and chose 5e-5.

For WIKITEXT-2, the rates considered for SGD were [0.6, 1.25, 2.5, 5, 10], we chose 1.25. For

Signum, we considered [2e-4, 1e-1, 5e-5, 1e-5, 1e-6], and chose 1e-5.

We have not tuned the momentum parameter or L2, weight decay parameters or learning

rate schedule for any experiment.

2‘reduce’+‘gather’ (parameter server communication) with GLOO takes longer than all-gather with NCCL, as
shown in Appendix 10.2. NCCL in PYTORCH currently lacks support for a ‘gather’ operator.

147





11 Appendix for SCAFFOLD

11.1 Related work and significance

Federated learning. As stated earlier, federated learning involves learning a centralized

model from distributed client data. This centralized model benefits from all client data and

can often result in a beneficial performance e.g. in including next word prediction (Hard

et al., 2018; Yang et al., 2018), emoji prediction (Ramaswamy et al., 2019), decoder models

(Chen et al., 2019b), vocabulary estimation (Chen et al., 2019a), low latency vehicle-to-vehicle

communication (Samarakoon et al., 2018), and predictive models in health (Brisimi et al.,

2018). Nevertheless, federated learning raises several types of issues and has been the topic of

multiple research efforts studying the issues of generalization and fairness (Mohri et al., 2019;

Li et al., 2019b), the design of more efficient communication strategies (Konečnỳ et al., 2016;

Suresh et al., 2017; Stich et al., 2018; Karimireddy et al., 2019; Basu et al., 2019), the study of

lower bounds (Woodworth et al., 2018), differential privacy guarantees (Agarwal et al., 2018),

security (Bonawitz et al., 2017), etc. We refer to Kairouz et al. (2019) for an in-depth survey of

this area.

Convergence of FEDAVG For identical clients, FEDAVG coincides with parallel SGD analyzed

by (Zinkevich et al., 2010) who proved asymptotic convergence. Stich (2019a) and, more re-

cently Stich and Karimireddy (2019); Patel and Dieuleveut (2019); Khaled et al. (2020), gave a

sharper analysis of the same method, under the name of local SGD, also for identical func-

tions. However, there still remains a gap between their upper bounds and the lower bound

of Woodworth et al. (2018). The analysis of FEDAVG for heterogeneous clients is more deli-

cate due to the afore-mentioned client-drift, first empirically observed by Zhao et al. (2018).

Several analyses bound this drift by assuming bounded gradients (Wang et al., 2019; Yu et al.,

2019b), or view it as additional noise (Khaled et al., 2020), or assume that the client optima

are ε-close (Li et al., 2018b; Haddadpour and Mahdavi, 2019). In a concurrent work, (Liang

et al., 2019) propose to use variance reduction to deal with client heterogeneity but still show

rates slower than SGD. We summarize the communication complexities of different methods

for heterogeneous clients in Table 4.2.
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Variance reduction. The use of control variates is a classical technique to reduce variance

in Monte Carlo sampling methods (cf. (Glasserman, 2013)). In optimization, they were used

for finite-sum minimization by SVRG (Johnson and Zhang, 2013; Zhang et al., 2013a) and

then in SAGA (Defazio et al., 2014) to simplify the linearly convergent method SAG (Schmidt

et al., 2017). Numerous variations and extensions of the technique are studied in (Hanzely

and Richtárik, 2019). Starting from (Reddi et al., 2016a), control variates have also frequently

been used to reduce variance in finite-sum non-convex settings (Reddi et al., 2016c; Nguyen

et al., 2018; Fang et al., 2018; Tran-Dinh et al., 2019). Further, they are used to obtain linearly

converging decentralized algorithms under the guise of ‘gradient-tracking’ in (Shi et al., 2015;

Nedich et al., 2016) and for gradient compression as ‘compressed-differences’ in (Mishchenko

et al., 2019). Our method can be viewed as seeking to remove the ‘client-variance’ in the gradi-

ents across the clients, though there still remains additional stochasticity as in (Kulunchakov

and Mairal, 2019), which is important in deep learning (Defazio and Bottou, 2019).

Distributed optimization. The problem of client-drift we described is a common phe-

nomenon in distributed optimization. In fact, classic techniques such as ADMM mitigate

this drift, though they are not applicable in federated learning. For well structured convex

problems, CoCoA (Smith et al., 2018) and its extensions (Karimireddy et al., 2018c) use the

dual variable as the control variates, enabling flexible distributed methods. This can also

be extended to include second order information (Dünner et al., 2018; Karimireddy et al.,

2018b). DANE by (Shamir et al., 2014) obtain a closely related primal only algorithm, which

was later accelerated by Reddi et al. (2016b) and recently extended to federated learning (Li

et al., 2020). SCAFFOLD CAN BE VIEWED AS AN IMPROVED VERSION OF DANE WHERE A FIXED

NUMBER OF (STOCHASTIC) GRADIENT STEPS ARE USED IN PLACE OF A PROXIMAL POINT UPDATE.

IN A SIMILAR SPIRIT, DISTRIBUTED VARIANCE REDUCTION TECHNIQUES HAVE BEEN PROPOSED

FOR THE FINITE-SUM CASE (LEE ET AL., 2015; KONEČNỲ ET AL., 2016; CEN ET AL., 2019).

HOWEVER, THESE METHODS ARE RESTRICTED TO FINITE-SUMS AND ARE NOT APPLICABLE TO

THE STOCHASTIC SETTING STUDIED HERE.

11.2 Technicalities

WE EXAMINE SOME ADDITIONAL DEFINITIONS AND INTRODUCE SOME TECHNICAL LEMMAS.

11.2.1 Additional definitions

WE MAKE PRECISE A FEW DEFINITIONS AND EXPLAIN SOME OF THEIR IMPLICATIONS.

(A3) fi IS µ-CONVEX FOR µ≥ 0 AND SATISFIES:

〈∇ fi (x), y −x〉 ≤−
(

fi (x)− fi (y)+ µ

2
‖x − y‖2

)
, FOR ANY i , x , y .

HERE, WE ALLOW THAT µ = 0 ( WE REFER TO THIS CASE AS THE GENERAL CONVEX CASE AS
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OPPOSED TO STRONGLY CONVEX). IT IS ALSO POSSIBLE TO GENERALIZE ALL PROOFS HERE

TO THE WEAKER NOTION OF PL-STRONG CONVEXITY (KARIMI ET AL., 2016).

(A4) gi (x) :=∇ fi (x ;ζi ) IS UNBIASED STOCHASTIC GRADIENT OF fi WITH BOUNDED VARIANCE

Eζi [‖gi (x)−∇ fi (x)‖2] ≤σ2 , FOR ANY i , x .

NOTE THAT (A4) ONLY BOUNDS THE VARIANCE WITHIN THE SAME CLIENT, BUT NOT THE

VARIANCE ACROSS THE CLIENTS.

(A5) { fi } ARE β-SMOOTH AND SATISFY:

‖∇ fi (x)−∇ fi (y)‖ ≤β‖x − y‖ , FOR ANY i , x , y . (11.1)

THE ASSUMPTION (A5) ALSO IMPLIES THE FOLLOWING QUADRATIC UPPER BOUND ON fi

fi (y) ≤ fi (x)+〈∇ fi (x), y −x〉+ β

2
‖y −x‖2 . (11.2)

IF ADDITIONALLY THE FUNCTION { fi } ARE CONVEX AND x? IS AN OPTIMUM OF f , (A5) IMPLIES

( VIA NESTEROV (2018), THEOREM 2.1.5)

1

2βN

N∑
i=1

‖∇ fi (x)−∇ fi (x?)‖2 ≤ f (x)− f ? . (11.3)

FURTHER, IF fi IS TWICE-DIFFERENTIABLE, (A5) IMPLIES THAT ‖∇2 fi (x)‖ ≤β FOR ANY x .

11.2.2 Some technical lemmas

NOW WE COVER SOME TECHNICAL LEMMAS WHICH ARE USEFUL FOR COMPUTATIONS LATER ON.

THE TWO LEMMAS BELOW ARE USEFUL TO UNROLL RECURSIONS AND DERIVE CONVERGENCE

RATES. THE FIRST ONE IS A SLIGHTLY IMPROVED (AND SIMPLIFIED) VERSION OF (STICH, 2019B,

THEOREM 2). IT IS STRAIGHTFORWARD TO REMOVE THE ADDITIONAL LOGARITHMIC TERMS IF

WE USE A VARYING STEP-SIZE (KULUNCHAKOV AND MAIRAL, 2019, LEMMA 13).

Lemma 30 (linear convergence rate). For every non-negative sequence {dr−1}r≥1 and any pa-

rameters µ> 0, ηmax ∈ (0,1/µ], c ≥ 0, R ≥ 1
2ηmaxµ

, there exists a constant step-size η≤ ηmax and

weights wr := (1−µη)1−r such that for WR :=∑R+1
r=1 wr ,

ΨR := 1

WR

R+1∑
r=1

(
wr

η

(
1−µη)

dr−1 − wr

η
dr + cηwr

)
= Õ

(
µd0 exp

(−µηmaxR
)+ c

µR

)
.

Proof. By substituting the value of wr , we observe that we end up with a telescoping sum and
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estimate

ΨR = 1

ηWR

R+1∑
r=1

(wr−1dr−1 −wr dr )+ cη

WR

R+1∑
r=1

wr ≤ d0

ηWR
+ cη .

When R ≥ 1
2µη , (1−µη)R ≤ exp(−µηR) ≤ 2

3 . For such an R, we can lower bound ηWR using

ηWR = η(1−µη)−R
R∑

r=0
(1−µη)r = η(1−µη)−R 1− (1−µη)R

µη
≥ (1−µη)−R 1

3µ
.

This proves that for all R ≥ 1
2µη ,

ΨR ≤ 3µd0(1−µη)R + cη≤ 3µdo exp(−µηR)+ cη .

The lemma now follows by carefully tuning η. Consider the following two cases depending

on the magnitude of R and ηmax:

• Suppose 1
2µR ≤ ηmax ≤ log(max(1,µ2Rd0/c))

µR . Then we can choose η= ηmax,

ΨR ≤ 3µd0 exp
[−µηmaxR

]+ cηmax ≤ 3µd0 exp
[−µηmaxR

]+ Õ

(
c

µR

)
.

• Instead if ηmax > log(max(1,µ2Rd0/c))
µR , we pick η= log(max(1,µ2Rd0/c))

µR to claim that

ΨR ≤ 3µd0 exp
[− log(max(1,µ2Rd0/c))

]+ Õ

(
c

µR

)
≤ Õ

(
c

µR

)
.

THE NEXT LEMMA IS AN EXTENSION OF (STICH AND KARIMIREDDY, 2019, LEMMA 13), (KU-

LUNCHAKOV AND MAIRAL, 2019, LEMMA 13) AND IS USEFUL TO DERIVE CONVERGENCE RATES

FOR GENERAL CONVEX FUNCTIONS (µ= 0) AND NON-CONVEX FUNCTIONS.

Lemma 31 (sub-linear convergence rate). For every non-negative sequence {dr−1}r≥1 and any

parameters ηmax ≥ 0, c ≥ 0, R ≥ 0, there exists a constant step-size η≤ ηmax and weights wr = 1

such that,

ΨR := 1

R +1

R+1∑
r=1

(
dr−1

η
− dr

η
+ c1η+ c2η

2
)
≤ d0

ηmax(R +1)
+ 2

√
c1d0p

R +1
+2

(
d0

R +1

) 2
3

c
1
3
2 .

Proof. Unrolling the sum, we can simplify

ΨR ≤ d0

η(R +1)
+ c1η+ c2η

2 .

Similar to the strongly convex case (Lemma 55), we distinguish the following cases:
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• When R +1 ≤ d0

c1η
2
max

, and R +1 ≤ d0

c2η
3
max

we pick η= ηmax to claim

ΨR ≤ d0

ηmax(R +1)
+ c1ηmax + c2η

2
max ≤

d0

ηmax(R +1)
+

√
c1d0p
R +1

+
(

d0

R +1

) 2
3

c
1
3
2 .

• In the other case, we haveη2
max ≥ d0

c1(R+1) orη3
max ≥ d0

c2(R+1) . We chooseη= min

{√
d0

c1(R+1) , 3
√

d0
c2(R+1)

}
to prove

ΨR ≤ d0

η(R +1)
+ cη= 2

√
c1d0p

R +1
+2

3

√
d 2

0 c2

(R +1)2 .

NEXT, WE STATE A RELAXED TRIANGLE INEQUALITY TRUE FOR THE SQUARED `2 NORM.

Lemma 32 (relaxed triangle inequality). Let {v 1, . . . , vτ} be τ vectors in Rd . Then the following

are true:

1. ‖v i +v j‖2 ≤ (1+a)‖v i‖2 + (1+ 1
a )‖v j‖2 for any a > 0, and

2. ‖∑τ
i=1 v i‖2 ≤ τ∑τ

i=1‖v i‖2.

Proof. The proof of the first statement for any a > 0 follows from the identity:

‖v i +v j‖2 = (1+a)‖v i‖2 + (1+ 1
a )‖v j‖2 −‖pav i + 1p

a
v j‖2 .

For the second inequality, we use the convexity of x →‖x‖2 and Jensen’s inequality∥∥∥∥1

τ

τ∑
i=1

v i

∥∥∥∥2

≤ 1

τ

τ∑
i=1

∥∥v i
∥∥2 .

NEXT WE STATE AN ELEMENTARY LEMMA ABOUT EXPECTATIONS OF NORMS OF RANDOM VEC-

TORS.

Lemma 33 (separating mean and variance). Let {Ξ1, . . . ,Ξτ} be τ random variables in Rd

which are not necessarily independent. First suppose that their mean is E[Ξi ] = ξi and variance

is bounded as E[‖Ξi −ξi‖2] ≤σ2. Then, the following holds

E[‖
τ∑

i=1
Ξi‖2] ≤ ‖

τ∑
i=1

ξi‖2 +τ2σ2 .

Now instead suppose that their conditional mean is E[Ξi |Ξi−1, . . .Ξ1] = ξi i.e. the variables

{Ξi −ξi } form a martingale difference sequence, and the variance is bounded by E[‖Ξi −ξi‖2] ≤
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σ2 as before. Then we can show the tighter bound

E[‖
τ∑

i=1
Ξi‖2] ≤ 2‖

τ∑
i=1

ξi‖2 +2τσ2 .

Proof. For any random variable X , E[X 2] = (E[X −E[X ]])2 + (E[X ])2 implying

E[‖
τ∑

i=1
Ξi‖2] = ‖

τ∑
i=1

ξi‖2 +E[‖
τ∑

i=1
Ξi −ξi‖2] .

Expanding the above expression using relaxed triangle inequality (Lemma 57) proves the first

claim:

E[‖
τ∑

i=1
Ξi −ξi‖2] ≤ τ

τ∑
i=1

E[‖Ξi −ξi‖2] ≤ τ2σ2 .

For the second statement, ξi is not deterministic and depends onΞi−1, . . . ,Ξ1. Hence we have

to resort to the cruder relaxed triangle inequality to claim

E[‖
τ∑

i=1
Ξi‖2] ≤ 2‖

τ∑
i=1

ξi‖2 +2E[‖
τ∑

i=1
Ξi −ξi‖2]

and then use the tighter expansion of the second term:

E[‖
τ∑

i=1
Ξi −ξi‖2] =∑

i , j
E
[
(Ξi −ξi )>(Ξ j −ξ j )

]=∑
i
E
[‖Ξi −ξi‖2]≤ τσ2 .

The cross terms in the above expression have zero mean since {Ξi − ξi } form a martingale

difference sequence.

11.3 Properties of convex functions

WE NOW STUDY TWO LEMMAS WHICH HOLD FOR ANY SMOOTH AND STRONGLY-CONVEX FUNC-

TIONS. THE FIRST IS A GENERALIZATION OF THE STANDARD STRONG CONVEXITY INEQUALITY

(A3), BUT CAN HANDLE GRADIENTS COMPUTED AT SLIGHTLY PERTURBED POINTS.

Lemma 34 (perturbed strong convexity). The following holds for anyβ-smooth andµ-strongly

convex function h, and any x , y , z in the domain of h:

〈∇h(x), z − y〉 ≥ h(z)−h(y)+ µ

4
‖y − z‖2 −β‖z −x‖2 .

Proof. Given any x , y , and z , we get the following two inequalities using smoothness and
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strong convexity of h:

〈∇h(x), z −x〉 ≥ h(z)−h(x)− β

2
‖z −x‖2

〈∇h(x), x − y〉 ≥ h(x)−h(y)+ µ

2
‖y −x‖2 .

Further, applying the relaxed triangle inequality gives

µ

2
‖y −x‖2 ≥ µ

4
‖y − z‖2 − µ

2
‖x − z‖2 .

Combining all the inequalities together we have

〈∇h(x), z − y〉 ≥ h(z)−h(y)+ µ

4
‖y − z‖2 − β+µ

2
‖z −x‖2 .

The lemma follows since β≥µ.

HERE, WE SEE THAT A GRADIENT STEP IS A CONTRACTIVE OPERATOR.

Lemma 35 (contractive mapping). For anyβ-smooth andµ-strongly convex function h, points

x , y in the domain of h, and step-size η≤ 1
β , the following is true

‖x −η∇h(x)− y +η∇h(y)‖2 ≤ (1−µη)‖x − y‖2 .

Proof.

‖x −η∇h(x)− y +η∇h(y)‖2 = ‖x − y‖2 +η2‖∇h(x)−∇h(y)‖2 −2η
〈∇h(x)−∇h(y), x − y

〉
(A5)≤ ‖x − y‖2 + (η2β−2η)

〈∇h(x)−∇h(y), x − y
〉

.

Recall our bound on the step-size η≤ 1
β which implies that (η2β−2η) ≤−η. Finally, apply the

µ-strong convexity of h to get

−η〈∇h(x)−∇h(y), x − y
〉≤−ηµ‖x − y‖2 .

11.4 Convergence of FEDAVG

WE OUTLINE THE FEDAVG METHOD IN ALGORITHM 18. IN ROUND r WE SAMPLE S r ⊆ [N ]

CLIENTS WITH |S r | = S AND THEN PERFORM THE FOLLOWING UPDATES:

• STARTING FROM THE SHARED GLOBAL PARAMETERS y r
i ,0 = xr−1, WE UPDATE THE LOCAL PA-

RAMETERS FOR k ∈ [K ]

y r
i ,k = y r

i ,k−1 −ηl gi (y r
i ,k−1) . (11.4)
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Algorithm 17 FEDAVG: Federated Averaging

1: server input: initial x , and global step-size ηg

2: client i ’s input: local step-size ηl

3: for each round r = 1, . . . ,R do
4: sample clients S ⊆ {1, . . . , N }
5: communicate x to all clients i ∈S

6: for each client i ∈S in parallel do
7: initialize local model y i ← x
8: for k = 1, . . . ,K do
9: compute mini-batch gradient gi (y i )

10: y i ← y i −ηl gi (y i )
11: end for
12: communicate ∆y i ← y i −x
13: end for
14: ∆x ← 1

|S |
∑

i∈S ∆y i
15: x ← x +ηg∆x
16: end for

• COMPUTE THE NEW GLOBAL PARAMETERS USING ONLY UPDATES FROM THE CLIENTS i ∈S r

AND A GLOBAL STEP-SIZE ηg :

xr = xr−1 + ηg

S

∑
i∈S r

(y r
i ,K −xr−1) . (11.5)

FINALLY, FOR SOME WEIGHTS {wr }, WE OUTPUT

x̄R = xr−1 WITH PROBABILITY
wr∑
τ wτ

FOR r ∈ {1, . . . ,R +1} . (11.6)

11.4.1 Bounding heterogeneity

RECALL OUR BOUND ON THE GRADIENT DISSIMILARITY:

1

N

N∑
i=1

‖∇ fi (x)‖2 ≤G2 +B 2‖∇ f (x)‖2 . (11.7)

IF { fi } ARE CONVEX, WE CAN RELAX THE ASSUMPTION TO

1

N

N∑
i=1

‖∇ fi (x)‖2 ≤G2 +2βB 2( f (x)− f ?) . (11.8)

WE DEFINED TWO VARIANTS OF THE BOUNDS ON THE HETEROGENEITY DEPENDING OF WHETHER

THE FUNCTIONS ARE CONVEX OR NOT. SUPPOSE THAT THE FUNCTIONS f IS INDEED CONVEX AS

IN (A3) AND β-SMOOTH AS IN (A5), THEN IT IS STRAIGHTFORWARD TO SEE THAT (12.7) IMPLIES

(12.8). THUS FOR CONVEX FUNCTIONS, (A1) IS MILDLY WEAKER. SUPPOSE THAT THE FUNC-
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TIONS { f1, . . . , fN } ARE CONVEX AND β-SMOOTH. THEN (12.8) IS SATISFIED WITH B 2 = 2 SINCE

1

N

N∑
i=1

‖∇ fi (x)‖2 ≤ 2

N

N∑
i=1

‖∇ fi (x?)‖2 + 2

N

N∑
i=1

‖∇ fi (x)−∇ fi (x?)‖2

(12.3)≤ 2

N

N∑
i=1

‖∇ fi (x?)‖2

︸ ︷︷ ︸
=: σ2

f

+4β( f (x)− f ?) .

THUS, (G ,B)-BGD (12.8) IS EQUIVALENT TO THE HETEROGENEITY ASSUMPTION OF (MISHCHENKO

ET AL., 2019) WITH G2 =σ2
f . INSTEAD, IF WE HAVE THE STRONGER ASSUMPTION (A1) BUT THE

FUNCTIONS ARE POSSIBLY NON-CONVEX, THEN G = ε CORRESPONDS TO THE LOCAL DISSIM-

ILARITY DEFINED IN (LI ET AL., 2018B). NOTE THAT ASSUMING G IS NEGLIGIBLE IS QUITE

STRONG AND CORRESPONDS TO THE STRONG-GROWTH CONDITION (VASWANI ET AL., 2019).

11.4.2 Rates of convergence (Theorem VI)

WE FIRST RESTATE THEOREM VI WITH SOME ADDITIONAL DETAILS AND THEN SEE ITS PROOF.

Theorem XXVI. Suppose that the functions { fi } satisfies assumptions A4, A5, and A1. Then,

in each of the following cases, there exist weights {wr } and local step-sizes ηl such that for any

ηg ≥ 1 the output of FEDAVG (12.6) x̄R satisfies

• Strongly convex: fi satisfies (A3) for µ> 0, ηl ≤ 1
8(1+B 2)βKηg

, R ≥ 8(1+B 2)β
µ then

E[ f (x̄R )]− f (x?) ≤ Õ

(
M 2

µRK S
+ βG2

µ2R2 +µD2 exp(− µ

16(1+B 2)βR)

)
,

• General convex: fi satisfies (A3) for µ= 0, ηl ≤ 1
(1+B 2)8βKηg

, R ≥ 1 then

E[ f (x̄R )]− f (x?) ≤O

(
MDp
RK S

+ D4/3(βG2)1/3

(R +1)2/3
+ B 2βD2)

R

)
,

• Non-convex: fi satisfies (A1) and ηl ≤ 1
(1+B 2)8βKηg

, then

E[‖∇ f (x̄R )‖2] ≤O

(
βM

p
Fp

RK S
+ F 2/3(βG2)1/3

(R +1)2/3
+ B 2βF

R

)
,

where M 2 :=σ2(1+ S
η2

g
)+K (1− S

N )G2, D := ‖x0 −x?‖, and F := f (x0)− f ?.
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11.4.3 Proof of convergence

WE WILL ONLY PROVE THE RATE OF CONVERGENCE FOR CONVEX FUNCTIONS HERE. THE CORRE-

SPONDING RATES FOR NON-CONVEX FUNCTIONS ARE EASY TO DERIVE FOLLOWING THE TECH-

NIQUES IN THE REST OF THE PAPER.

Lemma 36. (one round progress) Suppose our functions satisfies assumptions (A1) and (A3)–

(A5). For any step-size satisfying ηl ≤ 1
(1+B 2)8βKηg

and effective step-size η̃ := Kηgηl , the up-

dates of FEDAVG satisfy

E‖xr −x?‖2 ≤ (1− µη̃
2 )E‖xr−1−x?‖2+( 1

K S )η̃2σ2+(1− S
N ) 4η̃2

S G2−η̃(E[ f (xr−1)]− f (x?))+3βη̃Er ,

where Er is the drift caused by the local updates on the clients defined to be

Er := 1

K N

K∑
k=1

N∑
i=1

Er [
∥∥∥y r

i ,k −xr−1
∥∥∥2

] .

Proof. We start with the observation that the updates (12.4) and (12.5) imply that the server

update in round r can be written as below (dropping the superscripts everywhere)

∆x =− η̃

K S

∑
k,i∈S

gi (y i ,k−1) and E[∆x] =− η̃

K N

∑
k,i
E[∇ fi (y i ,k−1)] .

We adopt the convention that summations are always over k ∈ [K ] or i ∈ [N ] unless otherwise

stated. Expanding using above observing, we proceed as1

Er−1‖x +∆x −x?‖2 = ‖x −x?‖2 − 2η̃

K N

∑
k,i

〈∇ fi (y i ,k−1), x −x?〉+ η̃2Er−1

∥∥∥∥ 1

K S

∑
k,i∈S

gi (y i ,k−1)

∥∥∥∥2

Lem. 58≤ ‖x −x?‖2− 2η̃

K N

∑
k,i

〈∇ fi (y i ,k−1), x −x?〉︸ ︷︷ ︸
A1

+ η̃2Er−1

∥∥∥∥ 1

K S

∑
k,i∈S

∇ fi (y i ,k−1)

∥∥∥∥2

︸ ︷︷ ︸
A2

+ η̃
2σ2

K S
.

We can directly apply Lemma 59 with h = fi , x = y i ,k−1, y = x?, and z = x to the first term A1

A1 = 2η̃

K N

∑
k,i

〈∇ fi (y i ,k−1), x?−x
〉

≤ 2η̃

K N

∑
k,i

(
fi (x?)− fi (x)+β‖y i ,k−1 −x‖2 − µ

4
‖x −x?‖2

)
=−2η̃

(
f (x)− f (x?)+ µ

4
‖x −x?‖2

)
+2βη̃E .

1We use the notation Er−1[ · ] to mean conditioned on filtration r i.e. on all the randomness generated prior to
round r .
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For the second term A2, we repeatedly apply the relaxed triangle inequality (Lemma 58)

A2 = η̃2Er−1

∥∥∥∥ 1

K S

∑
k,i∈S

∇ fi (y i ,k−1)−∇ fi (x)+∇ fi (x)

∥∥∥∥2

≤ 2η̃2Er−1

∥∥∥∥ 1

K S

∑
k,i∈S

∇ fi (y i ,k−1)−∇ fi (x)

∥∥∥∥2

+2η̃2Er−1

∥∥∥∥ 1

S

∑
i∈S

∇ fi (x)

∥∥∥∥2

≤ 2η̃2

K N

∑
i ,k
Er−1‖∇ fi (y i ,k−1)−∇ fi (x)‖2 +2η̃2Er−1

∥∥∥∥ 1

S

∑
i∈S

∇ fi (x)−∇ f (x)+∇ f (x)

∥∥∥∥2

≤ 2η̃2β2

K N

∑
i ,k
Er−1‖y i ,k−1 −x‖2 +2η̃2‖∇ f (x)‖2 + (1− S

N )4η̃2 1

SN

∑
i
‖∇ fi (x)‖2

≤ 2η̃2β2E +8η̃2β(B 2 +1)( f (x)− f (x?))+ (1− S
N ) 4η̃2

S G2

The last step used Assumption (G ,B)-BGD assumption (12.8) that 1
N

∑N
i=1‖∇ fi (x)‖2 ≤ G2 +

2βB 2( f (x)− f ?). The extra (1− S
N improvement we get is due to sampling the functions { fi }

without replacement. Plugging back the bounds on A1 and A2,

Er−1‖x +∆x −x?‖2 ≤ (1− µη̃
2 )‖x −x?‖2 − (2η̃−8βη̃2(B 2 +1))( f (x)− f (x?))

+ (1+ η̃β)2βη̃E + 1
K S η̃

2σ2 + (1− S
N ) 4η̃2

S G2 .

The lemma now follows by observing that 8βη̃(B 2 +1) ≤ 1 and that B ≥ 0.

Lemma 37. (bounded drift) Suppose our functions satisfies assumptions (A1) and (A3)–(A5).

Then the updates of FEDAVG for any step-size satisfying ηl ≤ 1
(1+B 2)8βKηg

have bounded drift:

3βη̃Er ≤ 2η̃
3 (E[ f (xr−1)])− f (x?)+ η̃2σ2

2Kη2
g
+18βη̃3G2 .

Proof. If K = 1, the lemma trivially holds since y i ,0 = x for all i ∈ [N ] and Er = 0. Assume

K ≥ 2 here on. Recall that the local update made on client i is y i ,k = y i ,k−1 −ηl gi (y i ,k−1).
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Then,

E‖y i ,k −x‖2 = E‖y i ,k−1 −x −ηl gi (y i ,k−1)‖2

≤ E‖y i ,k−1 −x −ηl∇ fi (y i ,k−1)‖2 +η2
lσ

2

≤ (1+ 1
K−1 )E‖y i ,k−1 −x‖2 +Kη2

l ‖∇ fi (y i ,k−1)‖2 +η2
lσ

2

= (1+ 1
K−1 )E‖y i ,k−1 −x‖2 + η̃2

ηg K
‖∇ fi (y i ,k−1)‖2 + η̃2σ2

K 2η2
g

≤ (1+ 1
K−1 )E‖y i ,k−1 −x‖2 + 2η̃2

ηg K
‖∇ fi (y i ,k−1)−∇ fi (x)‖2 + 2η̃2

ηg K
‖∇ fi (x)‖2 + η̃2σ2

K 2η2
g

≤ (1+ 1
K−1 +

2η̃2β2

ηg K )E‖y i ,k−1 −x‖2 + 2η̃2

ηg K
‖∇ fi (x)‖2 + η̃2σ2

K 2η2
g

≤ (1+ 2
(K−1) )E‖y i ,k−1 −x‖2 + 2η̃2

ηg K
‖∇ fi (x)‖2 + η̃2σ2

K 2η2
g

.

In the above proof we separated the mean and the variance in the first inequality, then used

the relaxed triangle inequality with a = 1
K−1 in the next inequality. Next equality uses the defi-

nition of η̃, and the rest follow from the Lipschitzness of the gradient. Unrolling the recursion

above,

E‖y i ,k −x‖2 ≤
k−1∑
τ=1

(
2η̃2

ηg K
‖∇ fi (x)‖2 + η̃2σ2

K 2η2
g

)(1+ 2
(K−1) )τ

≤ (
2η̃2

ηg K
‖∇ fi (x)‖2 + η̃2σ2

K 2η2
g

)3K .

Averaging over i and k, multiplying by 3βη̃ and then using Assumption A1,

3βη̃Er ≤ 1

N

∑
i

18βη̃3‖∇ fi (x)‖2 + 3βη̃3σ2

Kη2
g

≤ 18βη̃3G2 + 3βη̃3σ2

Kη2
g

+36β2η̃3B 2( f (x)− f (x?))

The lemma now follows from our assumption that 8(B 2 +1)βη̃≤ 1.

PROOF OF THEOREMS VI, XXX ADDING THE STATEMENTS OF LEMMAS 61 AND 62, WE GET

E‖x +∆x −x?‖2 ≤ (1− µη̃
2 )E‖x −x?‖2 + ( 1

K S )η̃2σ2 + (1− S
N ) 4η̃2

S G2 − η̃(E[ f (x)]− f (x?))

+ 2η̃
3 (E[ f (x)])− f (x?)+ η̃2σ2

2Kη2
g
+18βη̃3G2

= (1− µη̃
2 )E‖x −x?‖2 − η̃

3 (E[ f (x)]− f (x?))+ η̃2
(
σ2

K S (1+ S
η2

g
)+ 4G2

S (1− S
N )+18βη̃G2

)
.
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MOVING THE ( f (x)− f (x?)) TERM AND DIVIDING THROUGHOUT BY
η̃
3 , WE GET THE FOLLOWING

BOUND FOR ANY η̃≤ 1
8(1+B 2)β

E[ f (xr−1)]− f (x?) ≤ 3
η̃ (1−µη̃

2 )‖xr−1−x?‖2− 3
η̃‖xr −x?‖2+3η̃

(
σ2

K S (1+ S
η2

g
)+ 4G2

S (1− S
N )+18βη̃G2

)
.

IF µ= 0 (GENERAL CONVEX), WE CAN DIRECTLY APPLY LEMMA 56. OTHERWISE, BY AVERAGING

USING WEIGHTS wr = (1− µη̃
2 )1−r AND USING THE SAME WEIGHTS TO PICK OUTPUT x̄R , WE CAN

SIMPLIFY THE ABOVE RECURSIVE BOUND (SEE PROOF OF LEM. 55) TO PROVE THAT FOR ANY η̃

SATISFYING 1
µR ≤ η̃≤ 1

8(1+B 2)β

E[ f (x̄R )]− f (x?) ≤ 3‖x0 −x?‖2︸ ︷︷ ︸
=:d

µexp(− η̃
2µR)+ η̃(2σ2

K S (1+ S
η2

g
)+ 8G2

S (1− S
N )︸ ︷︷ ︸

=:c1

)+ η̃2(36βG2︸ ︷︷ ︸
=:c2

)

NOW, THE CHOICE OF η̃= min
{

log(max(1,µ2Rd/c1))
µR , 1

(1+B 2)8β

}
YIELDS THE DESIRED RATE.THE PROOF

OF THE NON-CONVEX CASE IS VERY SIMILAR AND ALSO RELIES ON LEMMA 56.

11.4.4 Lower bound for FEDAVG (Theorem VII)

WE FIRST FORMALIZE THE CLASS OF ALGORITHMS WE LOOK AT BEFORE PROVING OUT LOWER

BOUND.

(A6) WE ASSUME THAT FEDAVG IS RUN WITH ηg = 1, K > 1, AND ARBITRARY POSSIBLY ADAPTIVE

POSITIVE STEP-SIZES {η1, . . . ,ηR } ARE USED WITH ηr ≤ 1
µ AND FIXED WITHIN A ROUND FOR

ALL CLIENTS. FURTHER, THE SERVER UPDATE IS A CONVEX COMBINATION OF THE CLIENT

UPDATES WITH NON-ADAPTIVE WEIGHTS.

NOTE THAT WE ONLY PROVE THE LOWER BOUND HERE FOR ηg = 1. IN FACT, BY TAKING ηg

INFINITELY LARGE AND SCALING ηl ∝ 1
Kηg

SUCH THAT THE EFFECTIVE STEP SIZE η̃ = ηlηg K

REMAINS CONSTANT, FEDAVG REDUCES TO THE SIMPLE LARGE BATCH SGD METHOD. HENCE,

PROVING A LOWER BOUND FOR ARBITRARY ηg IS NOT POSSIBLE, BUT ALSO IS OF QUESTIONABLE

RELEVANCE. FURTHER, NOTE THAT WHEN σ2 = 0, THE UPPER BOUND IN THEOREM XXX USES

ηg = 1 AND HENCE THE LOWER BOUND SERVES TO SHOW THAT OUR ANALYSIS IS TIGHT.

BELOW WE STATE A MORE FORMAL VERSION OF THEOREM VII.

Theorem XXVII. For any positive constants G, µ, there exist µ-strongly convex functions satis-

fying A1 for which that the output of FEDAVG satisfying A6 has the error for any r ≥ 1:

f (xr )− f (x?) ≥Ω(
min

(
f (x0)− f (x?),

G2

µR2

))
.
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Proof. Consider the following simple one-dimensional functions for any given µ and G :

f1(x) :=µx2 +Gx, and f2(x) :=−Gx ,

with f (x) = 1
2 ( f1(x)+ f2(x)) = µ

2 x2 and optimum at x = 0. Clearly f is µ-strongly convex and

further f1 and f2 satisfy A1 with B = 3. Note that we chose f2 to be a linear function (not

strongly convex) to simplify computations. The calculations made here can be extended with

slightly more work for ( f̃2 = µ
2 x2 −Gx) (e.g. see Theorem 1 of (Safran and Shamir, 2019)).

Let us start FEDAVG from x0 > 0. A single local update for f1 and f2 in round r ≥ 1 is respec-

tively

y1 = y1 −ηr (2µx +G) and y2 = y2 +ηr G .

Then, straightforward computations show that the update at the end of round r is of the

following form for some averaging weight α ∈ [0,1]

xr = xr−1((1−α)(1−2µηr )K +α)+ηr G
K−1∑
τ=0

(α− (1−α)(1−2µηr )τ) .

Since α was picked obliviously, we can assume that α ≤ 0.5. If indeed α > 0.5, we can swap

the definitions of f1 and f2 and the sign of x0. With this, we can simplify as

xr ≥ xr−1 (1−2µηr )K +1

2
+ ηr G

2

K−1∑
τ=0

(1− (1−2µηr )τ)

≥ xr−1(1−2µηr )K + ηr G

2

K−1∑
τ=0

(1− (1−2µηr )τ) .

Observe that in the above expression, the right hand side is increasing with ηr —this repre-

sents the effect of the client drift and increases the error as the step-size increases. The left

hand side decreases with ηr —this is the usual convergence observed due to taking gradient

steps. The rest of the proof is to show that even with a careful balancing of the two terms, the

effect of G cannot be removed. Lemma 63 performs exactly such a computation to prove that

for any r ≥ 1,

xr ≥ c min(x0,
G

µR
) .

We finish the proof by noting that f (xr ) = µ
2 (xr )2.

Lemma 38. Suppose that for all r ≥ 1, ηr ≤ 1
µ and the following is true:

xr ≥ xr−1(1−2µηr )K + ηr G

2

K−1∑
τ=0

(1− (1−2µηr )τ) .

Then, there exists a constant c > 0 such that for any sequence of step-sizes {ηr }:

xr ≥ c min(x0,
G

µR
)

162



11.4. Convergence of FEDAVG

Proof. Define γr =µηr R(K −1). Such a γr exists and is positive since K ≥ 2. Then, γr satisfies

(1−2µηr )
K−1

2 = (1− 2γr

R(K −1)
)

K−1
2 ≤ exp(−γr /R) .

We then have

xr ≥ xr−1(1−2µηr )K + ηr G

2

K−1∑
τ=0

(1− (1−2µηr )τ)

≥ xr−1(1−2µηr )K + ηr G

2

K−1∑
τ=(K−1)/2

(1− (1−2µηr )τ)

≥ xr−1(1−2µηr )K + γr G

4µ
(1−exp(−γr /R)) .

The second inequality follows because ηr ≤ 1
µ implies that (1− (1−2µηr )τ) is always positive.

If γr ≥ R/8, then we have a constant c1 ∈ (0,1/32) which satisfies

xr ≥ c1G

µ
. (11.9)

On the other hand, if γr < R/8, we have a tighter inequality

(1−2µηr )
K−1

2 = (1− 2γr

R(K −1)
)

K−1
2 ≤ 1− γr

R
,

implying that

xr ≥ xr−1
(
1− 2γr

R(K −1)

)K

+ γ2
r G

4Rµ

≥ xr−1(1− 4γr

R
)+ γ2

r G

4µR
. (11.10)

The last step used Bernoulli’s inequality and the fact that K −1 ≤ K /2 for K ≥ 2. Observe that

in the above expression, the right hand side is increasing with γr —this represents the effect of

the client drift and increases the error as the step-size increases. The left hand side decreases

with γr —this is the usual convergence observed due to taking gradient steps. The rest of the

proof is to show that even with a careful balancing of the two terms, the effect of G cannot be

removed.

Suppose that all rounds after r0 ≥ 0 have a small step-size i.e. γr ≤ R/8 for all r > r0 and hence

satisfies (12.10). Then we will prove via induction that

xr ≥ min(cr xr0 ,
G

256µR
), for constants cr := (1− 1

2R )r−r0 . (11.11)
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For r = r0, (12.11) is trivially satisfied. Now for r > r0,

xr ≥ xr−1(1− 4γr

R
)+ γ2

r G

4µR

≥ min

(
xr−1(1− 1

2R ) ,
G

256µR

)
= min

(
cr xr0 ,

G

256µR

)
.

The first step is because of (12.10) and the last step uses the induction hypothesis. The second

step considers two cases for γr : either γr ≤ 1
8 and (1− 1

2R ) ≥ (1− 1
2R ), or γ2

r ≥ 1
64 . Finally note

that cr ≥ 1
2 using Bernoulli’s inequality. We have hence proved

xR ≥ min

(
1

2
xr0 ,

G

256µR

)

Now suppose γr0 > R/8. Then (12.9) implies that xR ≥ cG
µR for some constant c > 0. If instead

no such r0 ≥ 1 exists, then we can set r0 = 0. Now finally observe that the previous proof did

not make any assumption on R, and in fact the inequality stated above holds for all r ≥ 1.

11.5 Convergence of SCAFFOLD

WE FIRST RESTATE THE CONVERGENCE THEOREM MORE FORMALLY, THEN PROVE THE RESULT

FOR THE CONVEX CASE, AND THEN FOR NON-CONVEX CASE. THROUGHOUT THE PROOF, WE

WILL FOCUS ON THE HARDER OPTION II. THE PROOFS FOR SCAFFOLD WITH OPTION I ARE

NEARLY IDENTICAL AND SO WE SKIP THEM.

Theorem XXVIII. Suppose that the functions { fi } satisfies assumptions A4 and A5. Then, in

each of the following cases, there exist weights {wr } and local step-sizes ηl such that for any

ηg ≥ 1 the output (12.16) of SCAFFOLD SATISFIES:

• STRONGLY CONVEX: fi SATISFIES (A3) FOR µ> 0, ηl ≤ min
(

1
81βKηg

, S
15µN Kηg

)
, R ≥ max( 162β

µ , 30N
S )

THEN

E[ f (x̄R )]− f (x?) ≤ Õ

(
σ2

µRK S
(1+ S

η2
g

)+ Nµ

S
D̃2 exp

(
−min

{
S

30N
,

µ

162β

}
R

))
.

• GENERAL CONVEX: fi SATISFIES (A3) FOR µ= 0, ηl ≤ 1
81βKηg

, R ≥ 1 THEN

E[ f (x̄R )]− f (x?) ≤O

(
σD̃p
RK S

(√
1+ S

η2
g

)
+

√
N

S

βD̃2

R

)
,
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• NON-CONVEX: ηl ≤ 1
24Kηgβ

( S
N

) 2
3 , AND R ≥ 1, THEN

E[‖∇ f (x̄R )‖2] ≤O

(
σ
p

Fp
RK S

(√
1+ N

η2
g

)
+ βF

R

(
N

S

) 2
3

)
.

HERE D̃2 := (‖x0 −x?‖2 + 1
2Nβ2

∑N
i=1‖c 0

i −∇ fi (x?)‖2) AND F := ( f (x0)− f (x?)).

Remark 39. Note that the D̃2 defined above involves an additional term 1
2Nβ2

∑N
i=1‖c 0

i −∇ fi (x?)‖2.

This is standard in variance reduction methods (Johnson and Zhang, 2013; Defazio et al., 2014;

Hanzely and Richtárik, 2019). Theoretically, we will use a warm-start strategy to set c 0
i and in

the first N /S rounds, we compute c 0
i = g i (x0) over a batch size of size K . Then, using smooth-

ness of fi , we can bound this additional term as

1
2Nβ2

N∑
i=1

‖c 0
i −∇ fi (x?)‖2 ≤ 1

β
( f (x0)− f ?)+ σ2

Kβ2 ≤ D2 + σ2

Kβ2 .

Thus, the asymptotic rates of SCAFFOLD FOR GENERAL CONVEX FUNCTIONS ONLY INCURS AN

ADDITIVE TERM OF THE ORDER OF O(
√

N
S

1
R ). FOR STRONGLY CONVEX FUNCTIONS, WE ONLY

SEE THE AFFECTS IN THE LOGARITHMIC TERMS.

Remark 40. When σ = 0 i.e. when clients compute full gradients, the communication com-

plexity of SCAFFOLD is: i) for strongly convex case it is Õ
(

N
S + β

µ

)
, ii) for general convex func-

tions it is O
(√

N
S
β
R

)
, 2 and iii) for non-convex functions it is O

(
N
S

2/3 β
R

)
. In comparison, the

follow up work of FedDyn (Acar et al., 2021) proves communication complexity matching ours

in the convex and strongly convex settings, but a worse O
(

N
S
β
R

)
complexity in the non-convex

settings (all when σ= 0).

WE WILL REWRITE SCAFFOLD USING NOTATION WHICH IS CONVENIENT FOR THE PROOFS: {y i }

REPRESENT THE CLIENT MODELS, x IS THE AGGREGATE SERVER MODEL, AND c i AND c ARE THE

CLIENT AND SERVER CONTROL VARIATES. FOR AN EQUIVALENT DESCRIPTION WHICH IS EAS-

IER TO IMPLEMENT, WE REFER TO ALGORITHM 5. THE SERVER MAINTAINS A GLOBAL CONTROL

VARIATE c AS BEFORE AND EACH CLIENT MAINTAINS ITS OWN CONTROL VARIATE c i . IN ROUND

r , A SUBSET OF CLIENTS S r OF SIZE S ARE SAMPLED UNIFORMLY FROM {1, . . . , N }. SUPPOSE

THAT every CLIENT PERFORMS THE FOLLOWING UPDATES

• STARTING FROM THE SHARED GLOBAL PARAMETERS y 0
i ,r = xr−1, WE UPDATE THE LOCAL PA-

RAMETERS FOR k ∈ [K ]

y r
i ,k = y r

i ,k−1 −ηl v r
i ,k , WHERE v r

i ,k := gi (y r
i ,k−1)−c r−1

i +c r−1 (11.12)

2 A previous version of the paper showed a worse dependence of O
(

N
S
β
R

)
due to sub-optimal choice of step-

size η.
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• UPDATE THE CONTROL ITERATES USING (OPTION II):

c̃ r
i = c r−1 −c r−1

i + 1
Kηl

(xr−1 −xr
i ,K ) = 1

K

K∑
k=1

gi (y r
i ,k−1) . (11.13)

WE UPDATE THE LOCAL CONTROL VARIATES ONLY FOR CLIENTS i ∈S r

c r
i =

c̃ r
i IF i ∈S r

c r−1
i OTHERWISE.

(11.14)

• COMPUTE THE NEW GLOBAL PARAMETERS AND GLOBAL CONTROL VARIATE USING ONLY UP-

DATES FROM THE CLIENTS i ∈S r :

xr = xr−1 + ηg

S

∑
i∈S r

(y r
i ,K −xr−1) AND c r = 1

N

N∑
i=1

c r
i =

1

N

( ∑
i∈S r

c r
i +

∑
j∉S r

c r−1
j

)
. (11.15)

FINALLY, FOR SOME WEIGHTS {wr }, WE OUTPUT

x̄R = xr−1 WITH PROBABILITY
wr∑
τ wτ

FOR r ∈ {1, . . . ,R +1} . (11.16)

NOTE THAT THE CLIENTS ARE AGNOSTIC TO THE SAMPLING AND THEIR UPDATES ARE IDEN-

TICAL TO WHEN ALL CLIENTS ARE PARTICIPATING. ALSO NOTE THAT THE CONTROL VARIATE

CHOICE (12.13) CORRESPONDS TO (OPTION II) OF ALGORITHM 5. FURTHER, THE UPDATES OF

THE CLIENTS i ∉S r IS FORGOTTEN AND IS DEFINED ONLY TO MAKE THE PROOFS EASIER. WHILE

ACTUALLY IMPLEMENTING THE METHOD, ONLY CLIENTS i ∈S r PARTICIPATE AND THE REST RE-

MAIN INACTIVE (SEE ALGORITHM 5).

11.5.1 Convergence of SCAFFOLD FOR CONVEX FUNCTIONS ( THEOREM VIII)

WE WILL FIRST BOUND THE VARIANCE OF SCAFFOLD UPDATE IN LEMMA 66, THEN SEE HOW

SAMPLING OF CLIENTS EFFECTS OUR CONTROL VARIATES IN LEMMA 67, AND FINALLY BOUND

THE AMOUNT OF CLIENT-DRIFT IN LEMMA 68. WE WILL THEN USE THESE THREE LEMMAS TO

PROVE THE PROGRESS IN A SINGLE ROUND IN LEMMA 69. COMBINING THIS PROGRESS WITH

LEMMAS 55 AND 56 GIVES US THE DESIRED RATES.

ADDITIONAL DEFINITIONS. BEFORE PROCEEDING WITH THE PROOF OF OUR LEMMAS, WE NEED

SOME ADDITIONAL DEFINITIONS OF THE VARIOUS ERRORS WE TRACK. AS BEFORE, WE DEFINE

THE EFFECTIVE STEP-SIZE TO BE

η̃ := Kηlηg .

WE DEFINE CLIENT-DRIFT TO BE HOW MUCH THE CLIENTS MOVE FROM THEIR STARTING POINT:

Er := 1

K N

K∑
k=1

N∑
i=1

E[‖y r
i ,k −xr−1‖2] . (11.17)
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BECAUSE WE ARE SAMPLING THE CLIENTS, NOT ALL THE CLIENT CONTROL-VARIATES GET UP-

DATED EVERY ROUND. THIS LEADS TO SOME ‘LAG’ WHICH WE CALL CONTROL-LAG:

Cr := 1

N

N∑
j=1

E‖E[c r
i ]−∇ fi (x?)‖2 . (11.18)

VARIANCE OF SERVER UPDATE. WE STUDY HOW THE VARIANCE OF THE SERVER UPDATE CAN

BE BOUNDED.

Lemma 41. For updates (12.12)—(12.15), we can bound the variance of the server update in

any round r and any η̃ := ηlηg K ≥ 0 as follows

E[‖xr −xr−1‖2] ≤ 8βη̃2(E[ f (xr−1)]− f (x?))+8η̃2Cr−1 +4η̃2β2Er + 12η̃2σ2

K S
.

Proof. The server update in round r can be written as follows (dropping the superscript r

everywhere)

E‖∆x‖2 = E∥∥− η̃

K S

∑
k,i∈S

v i ,k
∥∥2 = E∥∥ η̃

K S

∑
k,i∈S

(gi (y i ,k−1)+c −c i )
∥∥2 ,

which can then be expanded as

E‖∆x‖2 ≤ E∥∥ η̃

K S

∑
k,i∈S

(gi (y i ,k−1)+c −c i )
∥∥2

≤ 4E
∥∥ η̃

K S

∑
k,i∈S

gi (y i ,k−1)−∇ fi (x)
∥∥2 +4η̃2E‖c‖2 +4E

∥∥ η̃

K S

∑
k,i∈S

∇ fi (x?)−c i
∥∥2

+4E
∥∥ η̃

K S

∑
k,i∈S

∇ fi (x)−∇ fi (x?)
∥∥2

(12.3)≤ 4E
∥∥ η̃

K S

∑
k,i∈S

gi (y i ,k−1)−∇ fi (x)
∥∥2 +4η̃2E‖c‖2 +4E

∥∥ η̃
S

∑
i∈S

∇ fi (x?)−c i
∥∥2

+8βη̃2(E[ f (x)]− f (x?))

≤ 4E
∥∥ η̃

K S

∑
k,i∈S

∇ fi (y i ,k−1)−∇ fi (x)
∥∥2 +4η̃2‖E[c]‖2 +4

∥∥ η̃
S

∑
i∈S

∇ fi (x?)−E[c i ]
∥∥2

+8βη̃2(E[ f (x)]− f (x?))+ 12η̃2σ2

K S
.

The inequality before the last used the smoothness of { fi }. The last inequality which separates

the mean and the variance is an application of Lemma 58: the variance of ( 1
K S

∑
k,i∈S gi (y i ,k−1))

is bounded by σ2/K S. Similarly, c j as defined in (12.13) for any j ∈ [N ] has variance smaller

than σ2/K and hence the variance of ( 1
S

∑
i∈S c i ) is smaller than σ2/K S.
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Using Lemma 57.2 twice to simplify:

E‖∆x‖2 ≤ 4η̃2

K N

∑
k,i
E
∥∥∇ fi (y i ,k−1)−∇ fi (x)

∥∥2 +4η̃2‖E[c]‖2 + 4η̃2

N

∑
i

∥∥∇ fi (x?)−E[c i ]
∥∥2

+8βη̃2(E[ f (x)]− f (x?))+ 12η̃2σ2

K S

≤ 4η̃2

K N

∑
k,i
E
∥∥∇ fi (y i ,k−1)−∇ fi (x)

∥∥2

︸ ︷︷ ︸
T1

+8η̃2

N

∑
i

∥∥∇ fi (x?)−E[c i ]
∥∥2

+8βη̃2(E[ f (x)]− f (x?))+ 12η̃2σ2

K S
.

The second step follows because c = 1
N

∑
i c i . Since the gradient of fi is β-Lipschitz, T1 ≤

β24η̃2

K N

∑
k,i E

∥∥y i ,k−1 − x
∥∥2 = 4η̃2β2E . The definition of the error in the control variate Cr−1 :=

1
N

∑N
j=1E‖E[c i ]−∇ fi (x?)‖2 completes the proof.

CHANGE IN CONTROL LAG. WE HAVE PREVIOUSLY RELATED THE VARIANCE OF THE SERVER UP-

DATE TO THE CONTROL LAG. WE NOW EXAMINE HOW THE CONTROL-LAG GROWS EACH ROUND.

Lemma 42. For updates (12.12)—(12.15) with the control update (12.13) and assumptions

A3–A5, the following holds true for any η̃ := ηlηg K ∈ [0,1/β]:

Cr ≤ (1− S
N )Cr−1 + S

N

(
4β(E[ f (xr−1)]− f (x?))+2β2Er

)
.

Proof. Recall that after round r , the control update rule (12.13) implies that c r
i is set as per

c r
i =

c r−1
i if i ∉ S r i.e. with probability (1− S

N ). ,
1
K

∑K
k=1 gi (y r

i ,k−1) with probability S
N .

Taking expectations on both sides yields

E[c r
i ] = (1− S

N )E[c r−1
i ]+ S

K N

∑K
k=1E[∇ fi (y r

i ,k−1)] , ∀ i ∈ [N ] .

Plugging the above expression in the definition of Cr we get

Cr = 1

N

N∑
i=1

‖E[c r
i ]−∇ fi (x?)‖2

= 1

N

N∑
i=1

‖(1− S
N )(E[c r−1

i ]−∇ fi (x?))+ S
N ( 1

K

∑K
k=1E[∇ fi (y r

i ,k−1)]−∇ fi (x?))‖2

≤ (1− S
N )Cr−1 + S

N 2K

∑K
k=1E‖∇ fi (y r

i ,k−1)−∇ fi (x?)‖2 .

The final step applied Jensen’s inequality twice. We can then further simplify using the re-
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laxed triangle inequality as

Er−1[Cr ] ≤
(
1− S

N

)
Cr−1 + S

N 2K

∑
i ,k
E‖∇ fi (y r

i ,k−1)−∇ fi (x?)‖2

≤
(
1− S

N

)
Cr−1 + 2S

N 2

∑
i
E‖∇ fi (xr−1)−∇ fi (x?)‖2 + 2S

N 2K

∑
i ,k
E‖∇ fi (y r

i ,k−1)−∇ fi (xr−1)‖2

(12.1)≤
(
1− S

N

)
Cr−1 + 2S

N 2

∑
i
E‖∇ fi (xr−1)−∇ fi (x?)‖2 + 2S

N 2K
β2

∑
i ,k
E‖y r

i ,k−1 −xr−1‖2

(12.3)≤
(
1− S

N

)
Cr−1 + S

N
(4β(E[ f (xr−1)]− f (x?))+β2Er ) .

The last two inequalities follow from smoothness of { fi } and the definition Er = 1
N K β

2 ∑
i ,k E‖y r

i ,k−1−
xr−1‖2.

BOUNDING CLIENT-DRIFT. WE WILL NOW BOUND THE FINAL SOURCE OF ERROR WHICH IS THE

CLIENT-DRIFT.

Lemma 43. Suppose our step-sizes satisfy ηl ≤ 1
81βKηg

and fi satisfies assumptions A3–A5.

Then, for any global ηg ≥ 1 we can bound the drift as

3βη̃Er ≤ 2η̃2

3 Cr−1 + η̃

25η2
g

(E[ f (xr−1)]− f (x?))+ η̃2

Kη2
g
σ2 .

Proof. First, observe that if K = 1, Er = 0 since y i ,0 = x for all i ∈ [N ] and that Cr−1 and the

right hand side are both positive. Thus the lemma is trivially true if K = 1. For K > 1, we

build a recursive bound of the drift.Starting from the definition of the update (12.12) and

then applying the relaxed triangle inequality, we can expand

1

S
Er−1

[ ∑
i∈S

∥∥(y i −ηl v i )−x
∥∥2

]
= 1

S
Er−1

[ ∑
i∈S

∥∥y i −ηl gi (y i )+ηl c −ηl c i −x
∥∥2

]
≤ 1

S
Er−1

[ ∑
i∈S

∥∥y i −ηl∇ fi (y i )+ηl c −ηl c i −x
∥∥2

]
+η2

lσ
2

≤ (1+a)

S
Er−1

[ ∑
i∈S

∥∥y i −ηl∇ fi (y i )+ηl∇ fi (x)−x
∥∥2︸ ︷︷ ︸

T2

]

+ (1+ 1
a )η2

l Er−1

[
1

S

∑
i∈S

‖c −c i +∇ fi (x)‖2
]

︸ ︷︷ ︸
T3

+η2
lσ

2 .

The final step follows from the relaxed triangle inequality (Lemma 57). Applying the contrac-

tive mapping Lemma 60 for ηl ≤ 1/β shows

T2 = 1

S

∑
i∈S

∥∥y i −ηl∇ fi (y i )+ηl∇ fi (x)−x
∥∥2 ≤ ∥∥y i −x

∥∥2 .
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Once again using our relaxed triangle inequality to expand the other term T3, we get

T3 = Er−1

[
1

S

∑
i∈S

‖c −c i +∇ fi (x)‖2
]

= 1

N

N∑
j=1

‖c −c i +∇ fi (x)‖2

= 1

N

N∑
j=1

‖c −c i +∇ fi (x?)+∇ fi (x)−∇ fi (x?)‖2

≤ 3‖c‖2 + 3

N

N∑
j=1

‖c i −∇ fi (x?)‖2 + 3

N

N∑
j=1

‖∇ fi (x)−∇ fi (x?)‖2

≤ 6

N

N∑
j=1

‖c i −∇ fi (x?)‖2 + 3

N

N∑
j=1

‖∇ fi (x)−∇ fi (x?)‖2

≤ 6

N

N∑
j=1

‖c i −∇ fi (x?)‖2 +6β( f (x)− f (x?)) .

The last step used the smoothness of fi . Combining the bounds on T2 and T3 in the original

inequality and using a = 1
K−1 gives

1

N

∑
i
E
∥∥y i ,k −x

∥∥2 ≤ (1+ 1
K−1 )

N

∑
i
E
∥∥y i ,k−1 −x

∥∥2 +η2
lσ

2

+6η2
l Kβ( f (x)− f (x?))+ 6Kη2

l

N

∑
i
E‖c i −∇ fi (x?)‖2 .

Recall that with the choice of c i in (12.13), the variance of ci is less than σ2

K . Separating its

mean and variance gives

1

N

∑
i
E
∥∥y i ,k −x

∥∥2 ≤
(
1+ 1

K −1

)
1

N

∑
i
E
∥∥y i ,k−1 −x

∥∥2 +7η2
lσ

2+

6η2
l Kβ( f (x)− f (x?))+ 6Kη2

l

N

∑
i
‖E[c i ]−∇ fi (x?)‖2 (11.19)

Unrolling the recursion (12.19), we get the following for any k ∈ {1, . . . ,K }

1

N

∑
i
E
∥∥y i ,k −x

∥∥2 ≤ (
6Kβη2

l ( f (x)− f (x?))+6Kη2
l Cr−1 +7βη2

lσ
2)(k−1∑

τ=0
(1+ 1

K−1 )τ
)

≤ (
6Kβη2

l ( f (x)− f (x?))+6Kη2
l Cr−1 +7βη2

lσ
2)(K −1)((1+ 1

K−1 )K −1)

≤ (
6Kβη2

l ( f (x)− f (x?))+6Kη2
l Cr−1 +7βη2

lσ
2)3K

≤ 18K 2βη2
l ( f (x)− f (x?))+18K 2η2

l Cr−1 +21Kβη2
lσ

2 .
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The inequality (K −1)((1+ 1
K−1 )K −1) ≤ 3K can be verified for K = 2,3 manually. For K ≥ 4,

(K −1)((1+ 1
K−1 )K −1) < K (exp( K

K−1 )−1) ≤ K (exp( 4
3 )−1) < 3K .

Again averaging over k and multiplying by 3β yields

3βEr ≤ 54K 2β2η2
l ( f (x)− f (x?))+54K 2βη2

l Cr−1 +63βKη2
lσ

2

= 1
η2

g

(
54β2η̃2( f (x)− f (x?))+54βη̃2Cr−1 +63βη̃2 σ2

K

)
≤ 1

η2
g

(
1

25 ( f (x)− f (x?))+ 2
3 η̃Cr−1 + η̃σ2

K

)
.

The equality follows from the definition η̃ = Kηlηg , and the final inequality uses the bound

that η̃≤ 1
81β .

PROGRESS IN ONE ROUND. NOW THAT WE HAVE A BOUND ON ALL ERRORS, WE CAN DESCRIBE

OUR PROGRESS.

Lemma 44. Suppose assumptions A3–A5 are true. Then the following holds for any step-sizes

satisfying ηg ≥ 1, ηl ≤ min
(

1
81βKηg

, S
15µN Kηg

)
, and effective step-size η̃ := Kηgηl

E
[
‖xr −x?‖2 + 9N η̃2

S Cr

]
≤ (1−µη̃

2 )
(
E‖xr−1 −x?‖2 + 9N η̃2

S Cr−1

)
−η̃(E[ f (xr−1)]− f (x?))+12η̃2

K S (1+ S
η2

g
)σ2 .

Proof. Starting from our server update equation,

∆x =− η̃

K S

∑
k,i∈S

(gi (y i ,k−1)+c −c i ), and E[∆x] =− η̃

K N

∑
k,i

gi (y i ,k−1) .

We can then apply Lemma 66 to bound the second moment of the server update as

Er−1‖x +∆x −x?‖2 = Er−1‖x −x?‖2 − 2η̃

K S
Er−1

∑
k,i∈S

〈∇ fi (y i ,k−1), x −x?〉+Er−1
∥∥∆x

∥∥2

≤ 2η̃

K S
Er−1

∑
k,i∈S

〈∇ fi (y i ,k−1), x?−x〉︸ ︷︷ ︸
T4

+Er−1‖x −x?‖2

+8βη̃2(E[ f (xr−1)]− f (x?))+8η̃2Cr−1 +4η̃2β2E + 12η̃2σ2

K S
.

The term T4 can be bounded by using perturbed strong-convexity (Lemma 59) with h = fi ,
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x = y i ,k−1, y = x?, and z = x to get

E[T4] = 2η̃

K S
E

∑
k,i∈S

〈∇ fi (y i ,k−1), x?−x
〉

≤ 2η̃

K S
E

∑
k,i∈S

(
fi (x?)− fi (x)+β‖y i ,k−1 −x‖2 − µ

4
‖x −x?‖2

)
=−2η̃E

(
f (x)− f (x?)+ µ

4
‖x −x?‖2

)
+2βη̃E .

Plugging T4 back, we can further simplify the expression to get

E‖x +∆x −x?‖2 ≤ E‖x −x?‖2 −2η̃
(

f (x)− f (x?)+ µ

4
‖x −x?‖2

)
+2βη̃E

+ 12η̃2σ2

K S
+8βη̃2(E[ f (xr−1)]− f (x?))+8η̃2Cr−1 +4η̃2β2E

= (1− µη̃
2 )‖x −x?‖2 + (8βη̃2 −2η̃)( f (x)− f (x?))

+ 12η̃2σ2

K S
+ (2βη̃+4β2η̃2)E +8η̃2Cr−1 .

We can use Lemma 67 (scaled by 9η̃2 N
S ) to bound the control-lag

9η̃2 N
S Cr ≤ (1− µη̃

2 )9η̃2 N
S Cr−1 +9(µη̃N

2S −1)η̃2Cr−1 +9η̃2(4β(E[ f (xr−1)]− f (x?))+2β2E
)

Now recall that Lemma 68 bounds the client-drift:

3βη̃Er ≤ 2η̃2

3 Cr−1 + η̃

25η2
g

(E[ f (xr−1)]− f (x?))+ η̃2

Kη2
g
σ2 .

Adding all three inequalities together,

E‖x +∆x −x?‖2 + 9η̃2NCr

S
≤ (1− µη̃

2
)

(
E‖x −x?‖2 + 9η̃2NCr−1

S

)
+ (44βη̃2 − 49

25
η̃)( f (x)− f (x?))

+ 12η̃2σ2

K S
(1+ S

η2
g

)+ (22β2η̃2 −βη̃)E + ( 9µη̃N
2S − 1

3 )η̃2Cr−1

Finally, the lemma follows from noting that η̃ ≤ 1
81β implies 44β2η̃2 ≤ 24

25 β̃ and η̃ ≤ S
15µN im-

plies 9µη̃N
2S ≤ 1

3 .

THE FINAL RATE FOR STRONGLY CONVEX FOLLOWS SIMPLY BY UNROLLING THE RECURSIVE BOUND

IN LEMMA 69 USING LEMMA 55. ALSO NOTE THAT IF c0
i = gi (x0), THEN

η̃N
S C0 CAN BE BOUNDED

IN TERMS OF FUNCTION SUB-OPTIMALITY F . FOR THE GENERAL CONVEX SETTING, AVERAGING
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OVER r IN LEMMA 69 WITH µ= 0 GIVES

1

R

R∑
r=1

E[ f (xr−1)]− f (x?) ≤ 1

η̃R
‖x0 −x?‖2 + 9N η̃

SR
C0 + 12η̃

K S
(1+ S

η2
g

)σ2

≤ 4‖x0 −x?‖σ
√

3(1+S/η2
g )

RK S

+
√

N

S

‖x0 −x?‖2 +9C0

R
+ 81β‖x0 −x?‖2

R
. .

THE LAST STEP FOLLOWS FROM USING A STEP SIZE OF η̃= min

 1
81β ,

√
S
N , ‖x0−x?‖

σ

√
K S

12R(1+ S
η2

g

.

11.5.2 Convergence of SCAFFOLD FOR NON-CONVEX FUNCTIONS ( THEOREM VIII)

WE NOW ANALYZE THE MOST GENERAL CASE OF SCAFFOLD WITH OPTION II ON FUNCTIONS

WHICH ARE POTENTIALLY NON-CONVEX. JUST AS IN THE NON-CONVEX PROOF, WE WILL FIRST

BOUND THE VARIANCE OF THE SERVER UPDATE IN LEMMA 70, THE CHANGE IN CONTROL LAG

IN LEMMA 71 AND FINALLY WE BOUND THE CLIENT-DRIFT IN LEMMA 72. COMBINING THESE

THREE TOGETHER GIVES US THE PROGRESS MADE IN ONE ROUND IN LEMMA 73. THE FINAL

RATE IS DERIVED FROM THE PROGRESS MADE USING LEMMA 56.

ADDITIONAL NOTATION. RECALL THAT IN ROUND r , WE UPDATE THE CONTROL VARIATE AS

(12.13)

c r
i =

 1
K

∑K
k=1 gi (y r

i ,k−1) IF i ∈S r ,

c r−1
i OTHERWISE .

WE INTRODUCE THE FOLLOWING NOTATION TO KEEP TRACK OF THE ‘LAG’ IN THE UPDATE OF

THE CONTROL VARIATE: DEFINE A SEQUENCE OF PARAMETERS {αr−1
i ,k−1} SUCH THAT FOR ANY

i ∈ [N ] AND k ∈ [K ] WE HAVE α0
i ,k−1 := x0 AND FOR r ≥ 1,

αr
i ,k−1 :=

y r
i ,k−1 IF i ∈S r ,

αr−1
i ,k−1 OTHERWISE .

(11.20)

BY THE UPDATE RULE FOR CONTROL VARIATES (12.13) AND THE DEFINITION OF {αr−1
i ,k−1} ABOVE,

THE FOLLOWING PROPERTY ALWAYS HOLDS:

c r
i =

1

K

K∑
k=1

gi (αr
i ,k−1) .

WE CAN THEN DEFINE THE FOLLOWING Ξr TO BE THE ERROR IN CONTROL VARIATE FOR ROUND

r :

Ξr := 1

K N

K∑
k=1

N∑
i=1

E‖αr
i ,k−1 −xr ‖2 . (11.21)
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ALSO RECALL THE CLOSELY RELATED DEFINITION OF CLIENT DRIFT CAUSED BY LOCAL UPDATES:

Er := 1

K N

K∑
k=1

N∑
i=1

E[‖y r
i ,k −xr−1‖2] .

VARIANCE OF SERVER UPDATE. LET US ANALYZE HOW THE CONTROL VARIATES EFFECT THE

VARIANCE OF THE AGGREGATE SERVER UPDATE.

Lemma 45. For updates (12.12)—(12.15)and assumptions A4 and A5, the following holds true

for any η̃ := ηlηg K ∈ [0,1/β]:

E‖Er−1[xr ]−xr−1‖2 ≤ 2η̃2β2Er +2η̃2E‖∇ f (xr−1)‖2 , and

E‖xr −xr−1‖2 ≤ 4η̃2β2Er +8η̃2β2Ξr−1 +4η̃2E‖∇ f (xr−1)‖2 + 9η̃2σ2

K S
.

Proof. Recall that that the server update satisfies

E[∆x] =− η̃

K N

∑
k,i
E[gi (y i ,k−1)] .

From the definition of αr−1
i ,k−1 and dropping the superscript everywhere we have

∆x =− η̃

K S

∑
k,i∈S

(gi (y i ,k−1)+c −c i ) where c i = 1

K

∑
k

gi (αi ,k−1) .

Taking norm on both sides and separating mean and variance, we proceed as

E‖∆x‖2 = E‖− η̃

K S

∑
k,i∈S

(gi (y i ,k−1)− gi (αi ,k−1)+c −c i )‖2

≤ E
∥∥∥∥− η̃

K S

∑
k,i∈S

(∇ fi (y i ,k−1)+E[c]−E[c i ])

∥∥∥∥2

+ 9η̃2σ2

K S

≤ E
[
η̃2

K S

∑
k,i∈S

∥∥∥∥∇ fi (y i ,k−1)+E[c]−E[c i ]

∥∥∥∥2]
+ 9η̃2σ2

K S

= η̃2

K N

∑
k,i
E

∥∥∥∥(∇ fi (y i ,k−1)−∇ fi (x))+ (E[c]−∇ f (x))+∇ f (x)− (E[c i ]−∇ fi (x))

∥∥∥∥2

+ 9η̃2σ2

K S

≤ 4η̃2

K N

∑
k,i
E‖∇ fi (y i ,k−1)−∇ fi (x)‖2 + 8η̃2

K N

∑
k,i
E‖∇ fi (αi ,k−1)−∇ fi (x)‖2

+4η̃2E‖∇ f (x)‖2 + 9η̃2σ2

K S

≤ 4η̃2β2Er +8β2η̃2Ξr−1 +4η̃2E‖∇ f (x)‖2 + 9η̃2σ2

K S
.

In the first inequality, note that the three random variables— 1
K S

∑
k,i∈S gi (y i ,k ), 1

S

∑
i∈S c i ,

and c—may not be independent but each have variance smaller than σ2

K S and so we can ap-
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ply Lemma 58. The rest of the inequalities follow from repeated applications of the relaxed

triangle inequality, β-Lipschitzness of fi , and the definition of Ξr−1 (12.21). This proves the

second statement. The first statement follows from our expression of Er−1[∆x] and similar

computations.

LAG IN THE CONTROL VARIATES. WE NOW ANALYZE THE ‘LAG’ IN THE CONTROL VARIATES

DUE TO US SAMPLING ONLY A SMALL SUBSET OF CLIENTS EACH ROUND. BECAUSE WE CAN-

NOT RELY ON CONVEXITY ANYMORE BUT ONLY ON THE LIPSCHITZNESS OF THE GRADIENTS, THE

CONTROL-LAG INCREASES FASTER IN THE NON-CONVEX CASE.

Lemma 46. For updates (12.12)—(12.15) and assumptions A4, A5, the following holds true for

any η̃≤ 1
24β ( S

N )α for α ∈ [ 1
2 ,1] where η̃ := ηlηg K :

Ξr ≤ (1− 17S
36N )Ξr−1 + 1

48β2 ( S
N )2α−1‖∇ f (xr−1)‖2 + 97

48 ( S
N )2α−1Er + ( S

Nβ2 )
σ2

32K S
.

Proof. The proof proceeds similar to that of Lemma 67 except that we cannot rely on convex-

ity. Recall that after round r , the definition of αr
i ,k−1 (12.20) implies that

ES r [αr
i ,k−1] = (1− S

N )αr−1
i ,k−1 + S

N y r
i ,k−1 .

Plugging the above expression in the definition of Ξr we get

Ξr = 1

K N

∑
i ,k
E‖αr

i ,k−1 −xr ‖2

=
(
1− S

N

)
· 1

K N

∑
i
E‖αr−1

i ,k−1 −xr ‖2

︸ ︷︷ ︸
T5

+ S

N
· 1

K N

∑
k,i
E‖y r

i ,k−1 −xr ‖2

︸ ︷︷ ︸
T6

.

We can expand the second term T6 with the relaxed triangle inequality to claim

T6 ≤ 2(Er +E‖∆xr ‖2) .

We will expand the first term T5 to claim for a constant b ≥ 0 to be chosen later

T5 = 1

K N

∑
i
E(‖αr−1

i ,k−1 −xr−1‖2 +‖∆xr ‖2 +Er−1

〈
∆xr ,αr−1

i ,k−1 −xr−1
〉

)

≤ 1

K N

∑
i
E(‖αr−1

i ,k−1 −xr−1‖2 +‖∆xr ‖2 + 1
b ‖Er−1[∆xr ]‖2 +b‖αr−1

i ,k−1 −xr−1‖2)

where we used Young’s inequality which holds for any b ≥ 0. Combining the bounds for T5
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and T6,

Ξr ≤
(
1− S

N

)
(1+b)Ξr−1 +2 S

N Er +2E‖∆xr ‖2 + 1
b E‖Er−1[∆xr ]‖2

≤ (
(
1− S

N

)
(1+b)+16η̃2β2)Ξr−1 + ( 2S

N +8η̃2β2 +2 1
b η̃

2β2)Er + (8+2 1
b )η̃2E‖∇ f (x)‖2)+ 18η̃2σ2

K S

The last inequality applied Lemma 70. Verify that with choice of b = S
2(N−S) , we have

(
1− S

N

)
(1+

b) ≤ (1 − S
2N ) and 1

b ≤ 2N
S . Plugging these values along with the bound on the step-size

16β2η̃2 ≤ 1
36 ( S

N )2α ≤ S
36N completes the lemma.

BOUNDING THE DRIFT. WE WILL NEXT BOUND THE CLIENT DRIFT Er . FOR THIS, CONVEXITY

IS NOT CRUCIAL AND WE WILL RECOVER A VERY SIMILAR RESULT TO LEMMA 68 ONLY USE THE

LIPSCHITZNESS OF THE GRADIENT.

Lemma 47. Suppose our step-sizes satisfy ηl ≤ 1
24βKηg

and fi satisfies assumptions A4–A5.

Then, for any global ηg ≥ 1 we can bound the drift as

5
3β

2η̃Er ≤ 5
3β

3η̃2Ξr−1 + η̃

24η2
g
E‖∇ f (xr−1)‖2 + η̃2β

4Kη2
g
σ2 .

Proof. First, observe that if K = 1, Er = 0 since y i ,0 = x for all i ∈ [N ] and that Ξr−1 and

the right hand side are both positive. Thus the Lemma is trivially true if K = 1 and we will

henceforth assume K ≥ 2. Starting from the update rule (12.12) for i ∈ [N ] and k ∈ [K ]

E‖y i ,k −x‖2 = E‖y i ,k−1 −ηl (gi (y i ,k−1)+c −c i )−x‖2

≤ E‖y i ,k−1 −ηl (∇ fi (y i ,k−1)+c −c i )−x‖2 +η2
lσ

2

≤ (1+ 1
K−1 )E‖y i ,k−1 −x‖2 +Kη2

l E‖∇ fi (y i ,k−1)+c −c i‖2 +η2
lσ

2

= (1+ 1
K−1 )E‖y i ,k−1 −x‖2 +η2

lσ
2

+Kη2
l E‖∇ fi (y i ,k−1)−∇ fi (x)+ (c −∇ f (x))+∇ f (x)− (c i −∇ fi (x)‖2

≤ (1+ 1
K−1 )E‖y i ,k−1 −x‖2 +4Kη2

l E‖∇ fi (y i ,k−1)−∇ fi (x)‖2 +η2
lσ

2

+4Kη2
l E‖c −∇ f (x)‖2 +4Kη2

l E‖∇ f (x)‖2 +4Kη2
l E‖c i −∇ fi (x)‖2

≤ (1+ 1
K−1 +4Kβ2η2

l )E‖y i ,k−1 −x‖2 +η2
lσ

2 +4Kη2
l E‖∇ f (x)‖2

+4Kη2
l E‖c −∇ f (x)‖2 +4Kη2

l E‖c i −∇ fi (x)‖2

The inequalities above follow from repeated application of the relaxed triangle inequalities

and the β-Lipschitzness of fi . Averaging the above over i , the definition of c = 1
N

∑
i c i and
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Ξr−1 (12.21) gives

1

N

∑
i
E‖y i ,k −x‖2 ≤ (1+ 1

K−1 +4Kβ2η2
l )

1

N

∑
i
E‖y i ,k−1 −x‖2

+η2
lσ

2 +4Kη2
l E‖∇ f (x)‖2 +8Kη2

lβ
2Ξr−1

≤ (
η2

lσ
2 +4Kη2

l E‖∇ f (x)‖2 +8Kη2
lβ

2Ξr−1
)(k−1∑
τ=0

(1+ 1
K−1 +4Kβ2η2

l )τ
)

=
(
η̃2σ2

K 2η2
g
+ 4η̃2

Kη2
g
E‖∇ f (x)‖2 + 8η̃2β2

Kη2
g
Ξr−1

)(
k−1∑
τ=0

(1+ 1
K−1 +

4β2η̃2

Kη2
g

)τ
)

≤
(

η̃σ2

24βK 2η2
g
+ 1

144β2Kη2
g
E‖∇ f (x)‖2 + η̃β

3Kη2
g
Ξr−1

)
3K .

The last inequality used the bound on the step-sizeβη̃≤ 1
24 . Averaging over k and multiplying

both sides by 5
3β

2η̃ yields the lemma statement.

PROGRESS MADE IN EACH ROUND. GIVEN THAT WE CAN BOUND ALL SOURCES OF ERROR, WE

CAN FINALLY PROVE THE PROGRESS MADE IN EACH ROUND.

Lemma 48. Suppose the updates (12.12)—(12.15) satisfy assumptions A4–A5. For any effective

step-size η̃ := Kηgηl satisfying η̃≤ 1
24β

( S
N

) 2
3 ,

(
E[ f (xr )]+12β3η̃2 N

S Ξr

)
≤

(
E[ f (xr−1)]+12β3η̃2 N

S Ξr−1

)
+ 5βη̃2σ2

K S
(1+ S

η2
g

)− η̃

14
E‖∇ f (xr−1)‖2 .

Proof. Starting from the smoothness of f and taking conditional expectation gives

Er−1[ f (x +∆x)] ≤ f (x)+〈∇ f (x),Er−1[∆x]〉+ β

2
Er−1‖∆x‖2 .

We as usual dropped the superscript everywhere. Recall that the server update can be written

as

∆x =− η̃

K S

∑
k,i∈S

(gi (y i ,k−1)+c −c i ), and ES [∆x] =− η̃

K N

∑
k,i

gi (y i ,k−1) .
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Substituting this in the previous inequality and applying Lemma 70 to bound E[‖∆x‖2] gives

E[ f (x +∆x)]− f (x) ≤− η̃

K N

∑
k,i

〈∇ f (x),E[∇ fi (y i ,k−1)]〉+ β

2
E‖∆x‖2

≤− η̃

K N

∑
k,i

〈∇ f (x),E[∇ fi (y i ,k−1)]〉+

2η̃2β3Er +4η̃2β3Ξr−1 +2βη̃2E‖∇ f (x)‖2 + 9βη̃2σ2

2K S

≤− η̃
2
‖∇ f (x)‖2 + η̃

2

∑
i ,k
E

∥∥∥∥ 1

K N

∑
i ,k

∇ fi (y i ,k−1)−∇ f (x)

∥∥∥∥2

+

2η̃2β3Er +4η̃2β3Ξr−1 +2βη̃2E‖∇ f (x)‖2 + 9βη̃2σ2

2K S

≤− η̃
2
‖∇ f (x)‖2 + η̃

2K N

∑
i ,k
E

∥∥∥∥∇ fi (y i ,k−1)−∇ fi (x)

∥∥∥∥2

+

2η̃2β3Er +4η̃2β3Ξr−1 +2βη̃2E‖∇ f (x)‖2 + 9βη̃2σ2

2K S

≤−( η̃2 −2βη̃2)‖∇ f (x)‖2 + ( η̃2 +2βη̃2)β2Er +4β3η̃2Ξr−1 + 9βη̃2σ2

2K S
.

The third inequality follows from the observation that −ab = 1
2 ((b − a)2 − a2)− 1

2 b2 ≤ 1
2 ((b −

a)2 −a2) for any a,b ∈ R, and the last from the β-Lipschitzness of fi . Now we use Lemma 71

to bound Ξr as

12β3η̃2 N
S Ξr ≤ 12β3η̃2 N

S

(
(1− 17S

36N )Ξr−1 + 1
48β2 ( S

N )2α−1‖∇ f (xr−1)‖2 + 97
48 ( S

N )2α−1Er + ( S
Nβ2 )

σ2

32K S

)
= 12β3η̃2 N

S Ξr−1 − 17
3 β

3η̃2Ξr−1 + 1
4βη̃

2( N
S )2−2α‖∇ f (x)‖2 + 97

4 β
3η̃2( N

S )2−2αEr + 3βη̃2σ2

8K S
.

Also recall that Lemma 72 states that

5
3β

2η̃Er ≤ 5
3β

3η̃2Ξr−1 + η̃

24η2
g
E‖∇ f (xr−1)‖2 + η̃2β

4Kη2
g
σ2 .

Adding these bounds on Ξr and Er to that of E[ f (x +∆x)] gives

(E[ f (x +∆x)]+12β3η̃2 N
S Ξr ) ≤ (E[ f (x)]+12β3η̃2 N

S Ξr−1)+ ( 5
3 − 17

3 )β3η̃2Ξr−1

−( η̃2 −2βη̃2− 1
4βη̃

2( N
S )2−2α)‖∇ f (x)‖2+( η̃2 −

5η̃
3 +2βη̃2+ 97

4 βη̃
2( N

S )2−2α)β2Er + 39βη̃2σ2

8K S (1+ S
η2

g
) .

By our choice of α = 2
3 and plugging in the bound on step-size βη̃( N

S )2−2α ≤ 1
24 proves the

lemma.

THE NON-CONVEX RATE OF CONVERGENCE NOW FOLLOWS BY UNROLLING THE RECURSION IN

LEMMA 73 AND SELECTING AN APPROPRIATE STEP-SIZE η̃ AS IN LEMMA 56. FINALLY NOTE THAT

IF WE INITIALIZE c 0
i = gi (x0) THEN WE HAVE Ξ0 = 0.
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11.6 Usefulness of local steps (Theorem IX)

LET US STATE OUR RATES OF CONVERGENCE FOR SCAFFOLD WHICH INTERPOLATES BETWEEN

IDENTICAL AND COMPLETELY HETEROGENEOUS CLIENTS. IN THIS SECTION, WE ALWAYS SET

ηg = 1 AND ASSUME ALL CLIENTS PARTICIPATE (S = N ).

Theorem XXIX. Suppose that the functions { fi } are quadratic and satisfy assumptions A4, A5

and additionally A2. Then, for global step-size ηg = 1 in each of the following cases, there exist

probabilities {pr
k } and local step-size ηl such that the output (12.23) of SCAFFOLD WHEN RUN

WITH NO CLIENT SAMPLING (S = N ) USING UPDATE (12.22) SATISFIES:

• STRONGLY CONVEX: fi SATISFIES (A3) FOR µ> 0, ηl ≤ min( 1
10β , 1

22δK , 1
10µK ), R ≥ max( 20β

µ , 44δK+20µK
µ ,20K )

THEN

E[‖∇ f (x̄R )‖2] ≤ Õ

(
βσ2

µRK N
+µD2 exp

(
− µ

20β+44δK +20µK
RK

))
.

• GENERAL CONVEX: f SATISFIES ∇2 f º−δI , ηl ≤ min( 1
10β , 1

22δK ), AND R ≥ 1, THEN

E[‖∇ f (x̄R )‖2] ≤O

(
σ

√
β( f (x0)− f ?)p

RK N
+ (β+δK )( f (x0)− f ?)

RK

)
.

NOTE THAT IF δ= 0, WE MATCH (UP TO ACCELERATION) THE LOWER BOUND IN (WOODWORTH

ET AL., 2018). WHILE CERTAINLY δ = 0 WHEN THE FUNCTIONS ARE IDENTICAL AS STUDIED

IN (WOODWORTH ET AL., 2018), OUR UPPER-BOUND IS SIGNIFICANTLY STRONGER SINCE IT IS

POSSIBLE THAT δ = 0 EVEN FOR HIGHLY HETEROGENEOUS FUNCTIONS. FOR EXAMPLE, OBJEC-

TIVE PERTURBATION (CHAUDHURI ET AL., 2011; KIFER ET AL., 2012) IS AN OPTIMAL MECHA-

NISM TO ACHIEVE DIFFERENTIAL PRIVACY FOR SMOOTH CONVEX OBJECTIVES (BASSILY ET AL.,

2014). INTUITIVELY, OBJECTIVE PERTURBATION RELIES ON MASKING EACH CLIENT’S GRADI-

ENTS BY ADDING A LARGE RANDOM LINEAR TERM TO THE OBJECTIVE FUNCTION. IN SUCH A

CASE, WE WOULD HAVE HIGH GRADIENT DISSIMILARITY BUT NO HESSIAN DISSIMILARITY.

OUR NON-CONVEX CONVERGENCE RATES ARE THE FIRST OF THEIR KIND AS FAR AS WE ARE

AWARE—NO PREVIOUS WORK SHOWS HOW ONE CAN TAKE ADVANTAGE OF SIMILARITY FOR NON-

CONVEX FUNCTIONS. HOWEVER, WE SHOULD NOTE THAT NON-CONVEX QUADRATICS DO NOT

HAVE A GLOBAL LOWER-BOUND ON THE FUNCTION VALUE f ?. WE WILL INSTEAD ASSUME THAT

f ? ALMOST SURELY LOWER-BOUNDS THE VALUE OF f (xR ), IMPLICITLY ASSUMING THAT THE

ITERATES REMAIN BOUNDED.

OUTLINE. IN THE REST OF THIS SECTION, WE WILL FOCUS ON PROVING THEOREM XXXIII.

WE WILL SHOW HOW TO BOUND VARIANCE IN LEMMA 77, BOUND THE AMOUNT OF DRIFT IN

LEMMA 76, AND SHOW PROGRESS MADE IN ONE STEP IN LEMMA 78. IN ALL OF THESE WE DO

NOT USE CONVEXITY, BUT STRONGLY RELY ON THE FUNCTIONS BEING QUADRATICS. THEN WE

COMBINE THESE TO DERIVE THE PROGRESS MADE BY THE SERVER IN ONE ROUND—FOR THIS WE

NEED weak-CONVEXITY TO ARGUE THAT AVERAGING THE PARAMETERS DOES NOT HURT CON-
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VERGENCE TOO MUCH. AS BEFORE, IT IS STRAIGHT-FORWARD TO DERIVE RATES OF CONVER-

GENCE FROM THE ONE-ROUND PROGRESS USING LEMMAS 55 AND 56.

11.6.1 Additional notation and assumptions

FOR ANY MATRIX M AND VECTOR v , LET ‖v‖2
M := v>M v . SINCE ALL FUNCTIONS IN THIS SEC-

TION ARE QUADRATICS, WE CAN ASSUME W.L.O.G THEY ARE OF THE FOLLOWING FORM:

fi (x)− fi (x?i ) = 1

2
‖x −x?i ‖2

Ai
FOR i ∈ [N ] , AND f (x) = 1

2
‖x −x?i ‖2

A , FOR ALL x ,

FOR SOME {x?i } AND x?, A := 1
N

∑N
i=1 Ai . WE ALSO ASSUME THAT A IS A SYMMETRIC MATRIX

THOUGH THIS REQUIREMENT IS EASILY RELAXED. NOTE THAT THIS IMPLIES f (x?) = 0 AND THAT

∇ fi (x) = A(x −x?i ). IF { fi } ARE ADDITIONALLY CONVEX, WE HAVE THAT x?i IS THE OPTIMUM OF

fi AND x? THE OPTIMUM OF f . HOWEVER, THIS IS NOT NECESSARILY TRUE IN GENERAL.

WE WILL ALSO FOCUS ON A SIMPLIFIED VERSION OF SCAFFOLD WHERE IN EACH ROUND r ,

CLIENT i PERFORMS THE FOLLOWING UPDATE STARTING FROM y r
i ,0 ← xr−1:

y r
i ,k = y r

i ,k−1 −η(gi (y r
i ,k−1)+∇ f (xr−1)−∇ fi (xr−1)) , I.E.

Er−1,k−1[y r
i ,k ] = y r

i ,k−1 −ηA(y r
i ,k−1 −x?)−η(Ai − A)(y r

i ,k−1 −xr−1)) ,
(11.22)

WHERE THE SECOND PART IS SPECIALIZED TO QUADRATICS AND THE EXPECTATION IS CON-

DITIONED OVER EVERYTHING BEFORE CURRENT STEP k OF ROUND r . AT THE END OF EACH

ROUND, AS BEFORE, xr = 1
N

∑N
i=1 y r

i ,K . THE FINAL OUTPUT OF THE ALGORITHM IS CHOSEN US-

ING PROBABILITIES {pr
k } AS

x̄R = xr
k WITH PROBABILITY pr

k , WHERE xr
k := 1

N

N∑
i=1

y r
i ,k . (11.23)

NOTE THAT WE ARE NOW POSSIBLY OUTPUTTING ITERATES COMPUTED WITHIN A SINGLE ROUND

AND THAT xr = xr
K . BEYOND THIS, THE UPDATE ABOVE DIFFERS FROM OUR USUAL SCAF-

FOLD IN TWO KEY ASPECTS: A) IT USES GRADIENTS COMPUTED AT xr−1 AS CONTROL VARI-

ATES INSTEAD OF THOSE AT EITHER xr−2 (AS IN OPTION I) OR y r−1
i ,k (AS IN OPTION II), AND B)

IT USES FULL BATCH GRADIENTS TO COMPUTE ITS CONTROL VARIATES INSTEAD OF STOCHAS-

TIC GRADIENTS. THE FIRST ISSUE IS EASY TO FIX AND OUR PROOF EXTENDS TO USING BOTH

OPTION I OR OPTION II USING TECHNIQUES IN SECTION 12.5. THE SECOND ISSUE IS MORE

TECHNICAL—USING STOCHASTIC GRADIENTS FOR CONTROL VARIATES COUPLES THE RANDOM-

NESS ACROSS THE CLIENTS IN MAKING THE LOCAL-UPDATES biased. WHILE IT MAY BE POSSI-

BLE TO GET AROUND THIS (CF. (LEI AND JORDAN, 2017; NGUYEN ET AL., 2017; TRAN-DINH

ET AL., 2019)), WE WILL NOT ATTEMPT TO DO SO IN THIS WORK. NOTE THAT IF K LOCAL UP-

DATE STEPS TYPICALLY REPRESENTS RUNNING MULTIPLE EPOCHS ON EACH CLIENT. HENCE ONE

ADDITIONAL EPOCH TO COMPUTE THE CONTROL VARIATE ∇ fi (x) DOES NOT SIGNIFICANTLY ADD

TO THE COST.
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FINALLY, WE DEFINE THE FOLLOWING SEQUENCE OF POSITIVE NUMBERS FOR NOTATION CON-

VENIENCE:

ξr
i ,k :=

(
Er−1[ f (y r

i ,k )]− f (x?)+δ(1+ 1
K )K−k Er−1‖y r

i ,k −xr−1‖2
)

, AND

ξ̃r
i ,k :=

(
[ f (Er−1[y r

i ,k ])]− f (x?)+δ(1+ 1
K )K−k Er−1,k−1‖Er−1[y r

i ,k ]−xr−1‖2
)

.

OBSERVE THAT FOR k = 0, ξr
i ,0 = ξ̃r

i ,0 = f (xr−1)− f (x?).

11.6.2 Lemmas tracking errors

EFFECT OF AVERAGING. WE SEE HOW AVERAGING CAN REDUCE VARIANCE. A SIMILAR ARGU-

MENT WAS USED IN THE SPECIAL CASE OF ONE-SHOT AVERAGING IN (ZHANG ET AL., 2013B).

Lemma 49. Suppose { fi } are quadratic functions and assumption A4 is satisfied. Then let xr
k

and y r
i ,k be vectors in step k and round r generated using (12.22)—(12.23). Then,

Er−1‖∇ f (xr
k )‖2 ≤ 1

N

N∑
i=1

‖∇ f (Er−1[y r
i ,k ])‖2 + 1

N 2

N∑
i=1

Er−1[‖∇ f (y r
i ,k )‖2] .

Proof. Observe that the variables {y i ,k − x} are independent of each other (the only source

of randomness is the local gradient computations). The rest of the proof is exactly that of

Lemma 58. Dropping superscripts everywhere,

Er−1‖A(xr
k −x?)‖2 = Er−1‖ 1

N

∑
i

A(y i ,k −x?)‖2

= Er−1‖ 1
N

∑
i

A(Er−1[y i ,k ]−x?)‖2 +Er−1‖ 1
N

∑
i

A(Er−1[y i ,k ]− y i ,k )‖2

= Er−1‖ 1
N

∑
i

A(Er−1[y i ,k ]−x?)‖2 + 1
N 2

∑
i
Er−1‖A(Er−1[y i ,k ]− y i ,k )‖2

= Er−1‖ 1
N

∑
i

A(Er−1[y i ,k ]−x?)‖2 + 1
N 2

∑
i
Er−1‖A(y i ,k −x?−Er−1[y i ,k −x?])‖2

≤ Er−1‖ 1
N

∑
i

A(Er−1[y i ,k ]−x?)‖2 + 1
N 2

∑
i
Er−1‖A(y i ,k −x?)‖2 .

The third equality was because {y i ,k } are independent of each other conditioned on every-

thing before round r .

WE NEXT SEE THE EFFECT OF AVERAGING ON FUNCTION VALUES.

Lemma 50. Suppose that f is δ general-convex, then we have:

1

N

n∑
i=1

ξr
i ,k ≥ Er−1[ f (xr

k )]− f (x?) , and
1

N

n∑
i=1

ξ̃r
i ,k ≥ f (Er−1[xr

k ])− f (x?) .
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Proof. Since f is δ-general convex, it follows that the function f (z)+δ(1+ 1
K )K−k‖z − x‖2

2 is

convex in z for any k ∈ [K ]. The lemma now follows directly from using convexity and the

definition of xr
k = 1

N y r
i ,k .

BOUNDING DRIFT OF ONE CLIENT. WE SEE HOW THE CLIENT DRIFT OF SCAFFOLD DEPENDS

ON δ.

Lemma 51. For the update (12.22), assuming (A2) and that { fi } are quadratics, the following

holds for any η≤ 1
21δK

Er−1,k−1‖y r
i ,k −xr−1‖2 ≤ (1+ 1

2K )‖y r
i ,k−1 −xr−1‖2 +7Kη2‖∇ f (y r

i ,k−1)‖2 +η2σ2 .

Proof. Starting from the update step (12.22)

Er−1,k−1‖y+
i −x‖2 ≤ ‖y i −x −ηA(y i −x?)−η(Ai − A)(y i −x)‖2 +η2σ2

≤ (1+ 1
7(K−1) )‖(I −η(Ai − A)(y i −x)‖2 +7Kη2‖A(y i −x?)‖2 +η2σ2 .

Note that if K = 1, then the first inequality directly proves the lemma. For the second inequal-

ity, we assumed K ≥ 2 and then applied our relaxed triangle inequality. By assumption A2, we

have the following for ηδ≤ 1

‖(I −η(Ai − A))2‖ = ‖I −η(Ai − A)‖2 ≤ (1+ηδ)2 ≤ 1+3ηδ .

Using the bound on the step-size η≤ 1
21δK gives

Er−1,k−1‖y+
i −x‖2 ≤ (1+ 1

7K )(1+ 1
7(K−1) )‖y i −x‖2 +7Kη2‖A(y i −x?)‖2 +η2σ2

Simple computations now give the Lemma statement for all K ≥ 1.

TRACKING THE VARIANCE. WE WILL SEE HOW TO BOUND THE VARIANCE OF THE OUTPUT.

Lemma 52. Consider the update (12.22) for quadratic { fi } with η ≤ max( 1
2δK , 1

β ). Then, if

further (A2), (A5) and (A4) are satisfied, we have

Er−1 f (xr ) ≤ f (Er−1[xr ])+3Kβσ2

N .

Further if { fi } are strongly convex satisfying (A3), we have

Er−1 f (xr ) ≤ f (Er−1[xr ])+βσ2

N

K∑
k=1

(1−µη)k−1 .

Proof. We can rewrite the update step (12.22) as below:

y i ,k = y i ,k−1 −η(Ai (y i ,k−1 −x?)+ (A− Ai )(x −x?))−ηζi ,k ,
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where by the bounded variance assumption A4, ζi ,k is a random variable satisfying Ek−1,r−1[ζi ,k ] =
0 and Ek−1,r−1‖ζi ,k‖2 ≤σ2. Subtracting x? from both sides and unrolling the recursion gives

y i ,K −x? = (I −ηAi )(y i ,K−1 −x?)−η((A− Ai )(x −x?)+ζi ,K )

= (I −ηAi )K (x −x?)−
K∑

k=1
η(I −ηAi )k−1(ζi ,k + (A− Ai )(x −x?)) .

Similarly, the expected iterate satisfies the same equation without the ζi ,k

Er−1[y i ,K ]−x? = (I −ηAi )K (x −x?)−
K∑

k=1
η(I −ηAi )k−1(A− Ai )(x −x?) .

This implies that the difference satisfies

Er−1[y i ,K ]− y i ,K = η
K∑

k=1
(I −ηAi )k−1ζi ,k .

We can relate this to the function value as follows:

Er−1‖xr
K −x?‖2

A = ‖Er−1[xr
k ]−x?‖2

A +Er−1‖Er−1[xr
k ]−xr

K ‖2
A

= ‖Er−1[xr
k ]−x?‖2

A +Er−1‖ 1
N

∑
i (Er−1[y i ,K ]− y i ,K )‖2

A

= ‖Er−1[xr
k ]−x?‖2

A +η2Er−1‖ 1
N

∑
i ,k (I −ηAi )k−1ζi ,k‖2

A

= ‖Er−1[xr
k ]−x?‖2

A + η2

N 2 Er−1
∑

i ,k‖(I −ηAi )k−1ζi ,k‖2
A

≤ ‖Er−1[xr
k ]−x?‖2

A + βη2

N 2 Er−1
∑

i ,k‖(I −ηAi )k−1ζi ,k‖2
2 .

The last inequality used smoothness of f and the one before that relied on the independence

of ζi ,k . Now, if fi is general convex we have for η≤ 1
2δK that I −ηAi ¹ (1+ 1

2K )I and hence

‖(I −ηAi )k−1ζi ,k‖2
2 ≤σ2(1+ 1

2K )2(k−1) ≤ 3σ2 .

This proves our second statement of the lemma. For strongly convex functions, we have for

η≤ 1
β ,

‖(I −ηAi )k−1ζi ,k‖2
2 ≤σ2(1−ηµ)2(k−1) ≤σ2(1−ηµ)k−1 .

11.6.3 Lemmas showing progress

PROGRESS OF ONE CLIENT IN ONE STEP. NOW WE FOCUS ONLY ON A SINGLE CLIENT AND

MONITOR THEIR PROGRESS.

Lemma 53. Suppose (A2), (A5) and (A4) hold, and { fi } are quadratics. Then, the following

holds for the update (12.22) with η ≤ min( 1
10β , 1

22δK , 1
µK ) with µ = 0 is f is non-convex or
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general-convex

ξr
i ,k ≤ (1− µη

6 )ξr
i ,k−1 −

η
6 Er−1‖∇ f (y r

i ,k−1)‖2 +7βη2σ2, and

ξ̃r
i ,k ≤ (1− µη

6 )ξ̃r
i ,k−1 −

η
6‖∇ f (Er−1[y r

i ,k−1])‖2 .

Proof. Recall that ξr
i ,k ≥ 0 is defined to be

ξr
i ,k :=

(
Er−1[ f (y r

i ,k )]− f (x?)+δ(1+ 1
K )K−k Er−1‖y r

i ,k −xr−1‖2
)

.

Let us start from the local update step (12.22) (dropping unnecessary subscripts and super-

scripts)

Er−1,k−1‖y+
i −x?‖2

A ≤ ‖y i −x?‖2
A −2η

〈
A(y i −x?), A(y i −x?)

〉+2η
〈

(A− Ai )(y i −x), A(y i −x?)
〉

+η2‖A(y i −x?)+ (Ai − A)(y i −x))‖2
A +βη2σ2

≤ ‖y i −x?‖2
A − 3η

2 ‖A(y i −x?)‖2
2 +2η‖(A− Ai )(y i −x)‖2

2

+2η2‖A(y i −x?)‖2
A +2η2‖(Ai − A)(y i −x))‖2

A +βη2σ2

≤ ‖y i −x?‖2
A − ( 3η

2 −2η2β)‖A(y i −x?)‖2
2 +βη2σ2 +δ2(2η2β+2η)‖y i −x‖2

2

≤ ‖y i −x?‖2
A − ( 3η

2 −2η2β)‖A(y i −x?)‖2
2 +βη2σ2 + δ

10K ‖y i −x‖2
2 .

The second to last inequality used that ‖·‖2
A ≤β‖·‖2

2 by (A5) and that ‖(A− Ai )( · )‖2
2 ≤ δ2‖·‖2

2

by (A2). The final inequality used that η ≤ max( 1
10β , 1

22δK ). Now, multiplying Lemma 76 by

δ(1+ 1
K )K−k ≤ 20δ

7 we have

δ(1+ 1
K )K−k Er−1,k−1‖y+

i −x‖2 ≤ δ(1+ 1
K )K−k (1+ 1

2K )‖y i −x‖2 +20δKη2‖A(y i −x?)‖2 +3δη2σ2

≤ δ(1+ 1
K )K−k (1+ 1

2K + 1
10K )‖y i −x‖2 − δ

10K ‖y i −x‖2

+20δKη2‖A(y i −x?)‖2 +3δη2σ2

≤ (1− 1
5K )δ(1+ 1

K )K−k+1(1+ 1
K )‖y i −x‖2 − δ

10K ‖y i −x‖2

+20δKη2‖A(y i −x?)‖2 +3δη2σ2 .

Adding this to our previous equation gives the following recursive bound:(
Er−1,k−1‖y+

i −x?‖2
A +δ(1+ 1

K )K−k Er−1,k−1‖y+
i −x‖2

)
≤(

‖y i −x?‖2
A + (1− 1

5K )δ(1+ 1
K )K−k+1‖y i −x‖2

)
−( 3η

2 −2η2β−20δKη2)‖A(y i−x?)‖2
2+(3δ+β)η2σ2

The bound on our step-size η≤ min( 1
10β , 1

22δK ) implies that 3η
2 −2η2β−20δKη2 ≥ η

3 and recall

that δ≤ 2β. This proves first statement of the lemma for non-strongly convex functions (µ=
0). If additionally f is strongly-convex with µ> 0, we have

η‖A(y i −x?)‖2
2 ≥ µη

2 ‖y i −x?‖2
A + η

2‖A(y i −x?)‖2
2 .
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This can be used to tighten the inequality as follows(
Er−1,k−1‖y+

i −x?‖2
A +δ(1+ 1

K )K−(k−1)Er−1,k−1‖y+
i −x‖2

)
≤(

(1− µη
6 )‖y i −x?‖2

A + (1− 1
5K )δ(1+ 1

K )K−k+1‖y i −x‖2
)
− η

2‖A(y i −x?)‖2
2 +7βη2σ2

If η ≤ 1
µK , then (1− 1

5K ) ≤ (1− µη
6 ) and we have the strongly-convex version of the first state-

ment.

Now for the second statement, recall that ξ̃r
i ,k ≥ 0 was defined to be

ξ̃r
i ,k :=

(
[ f (Er−1[y r

i ,k ])]− f (x?)+δ(1+ 1
K )K−k Er−1‖Er−1[y r

i ,k ]−xr−1‖2
)

.

Observe that for quadratics, Er−1[∇ f (x)] =∇ f (Er−1[x]). This implies that the analysis of ξ̃r
i ,k

is essentially of a deterministic process with σ = 0, proving the second statement. It is also

straightforward to repeat exactly the above argument to formally verify the second statement.

SERVER PROGRESS IN ONE ROUND. NOW WE COMBINE THE PROGRESS MADE BY EACH CLIENT

IN ONE STEP TO CALCULATE THE SERVER PROGRESS.

Lemma 54. Suppose (A2), (A5) and (A4) hold, and { fi } are quadratics. Then, the following

holds for the update (12.22) with η≤ min( 1
10β , 1

21δK , 1
10µK ) and weights wk := (1− µη

6 )1−k :

η

6

K∑
k=1

wk Er−1‖∇ f (xr
k )‖2 ≤ ( f (Er−2[xr−1])− f ?)−wK ( f (Er−1[xr ])− f ?)+

K∑
k=1

wk 8ησ
2

N .

Set µ= 0 if { fi }s are not strongly-convex (is only general-convex).

Proof. Let us do the non-convex (and general convex) case first. By summing over Lemma

78 we have
η

6

K∑
k=1

Er−1‖∇ f (y i ,k )‖2 ≤ ξr
i ,0 −ξr

i ,K +7Kβη2σ2 .

A similar result holds with σ= 0 for Er−1[y i ,k ]. Now, using Lemma 74 we have that

η

6

K∑
k=1

Er−1‖∇ f (xr
k )‖2 ≤ 1

N

N∑
i=1

(ξ̃r
i ,0 + 1

N ξi ,0)︸ ︷︷ ︸
=:θr+

− 1

N

N∑
i=1

(ξ̃r
i ,K + 1

N ξi ,K )︸ ︷︷ ︸
=:θr−

+7Kβη2 σ2

N .

Using Lemma 77, we have that

θr
+ = (1+ 1

N )( f (xr−1)− f (x?)) ≤ f (Er−1[xr ])+ 1
N E f (xr )− (1+ 1

N ) f (x?)+3Kβσ2

N .
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Further, by Lemma 75, we have that

θr
− ≥ f (Er−1[xr ])+ 1

N f (xr )− (1+ 1
N ) f (x?) .

Combining the above gives:

η

6

K∑
k=1

Er−1‖∇ f (xr
k )‖2 ≤ f (Er−2[xr−1])− f (Er−1[xr ])+10βK σ2

N .

proving the second part of the Lemma for weights wk = 1. The proof of strongly convex

follows a very similar argument. Unrolling Lemma 78 using weights wk := (1− µη
6 )1−k gives

η

6

K∑
k=1

wk Er−1‖∇ f (xr
k )‖2 ≤ θr

+−wK θ
r
−+

K∑
k=1

wk 7ησ
2

N .

As in the general-convex case, we can use Lemmas 75, 74 and 77 to prove that

η

6

K∑
k=1

wk Er−1‖∇ f (xr
k )‖2 ≤ ( f (Er−2[xr−1])− f ?)−wK ( f (Er−1[xr ])− f ?)+

K∑
k=1

wk 8ησ
2

N .

DERIVING FINAL RATES. THE PROOF OF THEOREM XXXIII FOLLOWS BY APPROPRIATELY UN-

ROLLING LEMMA 79. FOR GENERAL-CONVEX FUNCTIONS, WE CAN SIMPLY USE LEMMA 56

WITH THE PROBABILITIES SET AS pr
k = 1

K R . FOR STRONGLY-CONVEX FUNCTIONS, WE USE pr
k ∝

(1− µη
6 )1−r k AND FOLLOW THE COMPUTATIONS IN LEMMA 55.
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12 Appendix for Mime

12.1 Related work and significance

FEDERATED LEARNING. AS STATED EARLIER, FEDERATED LEARNING INVOLVES LEARNING A

CENTRALIZED MODEL FROM DISTRIBUTED CLIENT DATA. THIS CENTRALIZED MODEL BENEFITS

FROM ALL CLIENT DATA AND CAN OFTEN RESULT IN A BENEFICIAL PERFORMANCE E.G. IN IN-

CLUDING NEXT WORD PREDICTION (HARD ET AL., 2018; YANG ET AL., 2018), EMOJI PREDIC-

TION (RAMASWAMY ET AL., 2019), DECODER MODELS (CHEN ET AL., 2019B), VOCABULARY

ESTIMATION (CHEN ET AL., 2019A), LOW LATENCY VEHICLE-TO-VEHICLE COMMUNICATION

(SAMARAKOON ET AL., 2018), AND PREDICTIVE MODELS IN HEALTH (BRISIMI ET AL., 2018).

NEVERTHELESS, FEDERATED LEARNING RAISES SEVERAL TYPES OF ISSUES AND HAS BEEN THE

TOPIC OF MULTIPLE RESEARCH EFFORTS STUDYING THE ISSUES OF GENERALIZATION AND FAIR-

NESS (MOHRI ET AL., 2019; LI ET AL., 2019B), THE DESIGN OF MORE EFFICIENT COMMU-

NICATION STRATEGIES (KONEČNỲ ET AL., 2016; SURESH ET AL., 2017; STICH ET AL., 2018;

KARIMIREDDY ET AL., 2019; BASU ET AL., 2019), THE STUDY OF LOWER BOUNDS (WOOD-

WORTH ET AL., 2018), DIFFERENTIAL PRIVACY GUARANTEES (AGARWAL ET AL., 2018), SECU-

RITY (BONAWITZ ET AL., 2017), ETC. WE REFER TO KAIROUZ ET AL. (2019) FOR AN IN-DEPTH

SURVEY OF THIS AREA.

CONVERGENCE OF FEDAVG FOR IDENTICAL CLIENTS, FEDAVG COINCIDES WITH PARALLEL SGD

ANALYZED BY (ZINKEVICH ET AL., 2010) WHO PROVED ASYMPTOTIC CONVERGENCE. STICH

(2019A) AND, MORE RECENTLY STICH AND KARIMIREDDY (2019); PATEL AND DIEULEVEUT

(2019); KHALED ET AL. (2020), GAVE A SHARPER ANALYSIS OF THE SAME METHOD, UNDER

THE NAME OF LOCAL SGD, ALSO FOR IDENTICAL FUNCTIONS. HOWEVER, THERE STILL RE-

MAINS A GAP BETWEEN THEIR UPPER BOUNDS AND THE LOWER BOUND OF WOODWORTH ET AL.

(2018). THE ANALYSIS OF FEDAVG FOR HETEROGENEOUS CLIENTS IS MORE DELICATE DUE TO

THE AFORE-MENTIONED CLIENT-DRIFT, FIRST EMPIRICALLY OBSERVED BY ZHAO ET AL. (2018).

SEVERAL ANALYSES BOUND THIS DRIFT BY ASSUMING BOUNDED GRADIENTS (WANG ET AL.,

2019; YU ET AL., 2019B), OR VIEW IT AS ADDITIONAL NOISE (KHALED ET AL., 2020), OR AS-

SUME THAT THE CLIENT OPTIMA ARE ε-CLOSE (LI ET AL., 2018B; HADDADPOUR AND MAHDAVI,
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2019). IN A CONCURRENT WORK, (LIANG ET AL., 2019) PROPOSE TO USE VARIANCE REDUCTION

TO DEAL WITH CLIENT HETEROGENEITY BUT STILL SHOW RATES SLOWER THAN SGD. WE SUM-

MARIZE THE COMMUNICATION COMPLEXITIES OF DIFFERENT METHODS FOR HETEROGENEOUS

CLIENTS IN TABLE 4.2.

VARIANCE REDUCTION. THE USE OF control variates IS A CLASSICAL TECHNIQUE TO REDUCE

VARIANCE IN MONTE CARLO SAMPLING METHODS (CF. (GLASSERMAN, 2013)). IN OPTIMIZA-

TION, THEY WERE USED FOR FINITE-SUM MINIMIZATION BY SVRG (JOHNSON AND ZHANG,

2013; ZHANG ET AL., 2013A) AND THEN IN SAGA (DEFAZIO ET AL., 2014) TO SIMPLIFY THE

LINEARLY CONVERGENT METHOD SAG (SCHMIDT ET AL., 2017). NUMEROUS VARIATIONS AND

EXTENSIONS OF THE TECHNIQUE ARE STUDIED IN (HANZELY AND RICHTÁRIK, 2019). START-

ING FROM (REDDI ET AL., 2016A), CONTROL VARIATES HAVE ALSO FREQUENTLY BEEN USED

TO REDUCE VARIANCE IN FINITE-SUM NON-CONVEX SETTINGS (REDDI ET AL., 2016C; NGUYEN

ET AL., 2018; FANG ET AL., 2018; TRAN-DINH ET AL., 2019). FURTHER, THEY ARE USED TO OB-

TAIN LINEARLY CONVERGING DECENTRALIZED ALGORITHMS UNDER THE GUISE OF ‘GRADIENT-

TRACKING’ IN (SHI ET AL., 2015; NEDICH ET AL., 2016) AND FOR GRADIENT COMPRESSION AS

‘COMPRESSED-DIFFERENCES’ IN (MISHCHENKO ET AL., 2019). OUR METHOD CAN BE VIEWED

AS SEEKING TO REMOVE THE ‘CLIENT-VARIANCE’ IN THE GRADIENTS ACROSS THE CLIENTS, THOUGH

THERE STILL REMAINS ADDITIONAL STOCHASTICITY AS IN (KULUNCHAKOV AND MAIRAL, 2019),

WHICH IS IMPORTANT IN DEEP LEARNING (DEFAZIO AND BOTTOU, 2019).

DISTRIBUTED OPTIMIZATION. THE PROBLEM OF CLIENT-DRIFT WE DESCRIBED IS A COM-

MON PHENOMENON IN DISTRIBUTED OPTIMIZATION. IN FACT, CLASSIC TECHNIQUES SUCH AS

ADMM MITIGATE THIS DRIFT, THOUGH THEY ARE NOT APPLICABLE IN FEDERATED LEARNING.

FOR WELL STRUCTURED CONVEX PROBLEMS, COCOA (SMITH ET AL., 2018) AND ITS EXTEN-

SIONS (KARIMIREDDY ET AL., 2018C) USE THE DUAL VARIABLE AS THE CONTROL VARIATES, EN-

ABLING FLEXIBLE DISTRIBUTED METHODS. THIS CAN ALSO BE EXTENDED TO INCLUDE SEC-

OND ORDER INFORMATION (DÜNNER ET AL., 2018; KARIMIREDDY ET AL., 2018B). DANE BY

(SHAMIR ET AL., 2014) OBTAIN A CLOSELY RELATED PRIMAL ONLY ALGORITHM, WHICH WAS

LATER ACCELERATED BY REDDI ET AL. (2016B) AND RECENTLY EXTENDED TO FEDERATED LEARN-

ING (LI ET AL., 2020). SCAFFOLD CAN BE VIEWED AS AN IMPROVED VERSION OF DANE WHERE

A FIXED NUMBER OF (STOCHASTIC) GRADIENT STEPS ARE USED IN PLACE OF A PROXIMAL POINT

UPDATE. IN A SIMILAR SPIRIT, DISTRIBUTED VARIANCE REDUCTION TECHNIQUES HAVE BEEN

PROPOSED FOR THE FINITE-SUM CASE (LEE ET AL., 2015; KONEČNỲ ET AL., 2016; CEN ET AL.,

2019). HOWEVER, THESE METHODS ARE RESTRICTED TO FINITE-SUMS AND ARE NOT APPLICA-

BLE TO THE STOCHASTIC SETTING STUDIED HERE.

12.2 Technicalities

WE EXAMINE SOME ADDITIONAL DEFINITIONS AND INTRODUCE SOME TECHNICAL LEMMAS.
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12.2. Technicalities

12.2.1 Additional definitions

WE MAKE PRECISE A FEW DEFINITIONS AND EXPLAIN SOME OF THEIR IMPLICATIONS.

(A3) fi IS µ-CONVEX FOR µ≥ 0 AND SATISFIES:

〈∇ fi (x), y −x〉 ≤−
(

fi (x)− fi (y)+ µ

2
‖x − y‖2

)
, FOR ANY i , x , y .

HERE, WE ALLOW THAT µ = 0 ( WE REFER TO THIS CASE AS THE GENERAL CONVEX CASE AS

OPPOSED TO STRONGLY CONVEX). IT IS ALSO POSSIBLE TO GENERALIZE ALL PROOFS HERE

TO THE WEAKER NOTION OF PL-STRONG CONVEXITY (KARIMI ET AL., 2016).

(A4) gi (x) :=∇ fi (x ;ζi ) IS UNBIASED STOCHASTIC GRADIENT OF fi WITH BOUNDED VARIANCE

Eζi [‖gi (x)−∇ fi (x)‖2] ≤σ2 , FOR ANY i , x .

NOTE THAT (A4) ONLY BOUNDS THE VARIANCE WITHIN THE SAME CLIENT, BUT NOT THE

VARIANCE ACROSS THE CLIENTS.

(A5) { fi } ARE β-SMOOTH AND SATISFY:

‖∇ fi (x)−∇ fi (y)‖ ≤β‖x − y‖ , FOR ANY i , x , y . (12.1)

THE ASSUMPTION (A5) ALSO IMPLIES THE FOLLOWING QUADRATIC UPPER BOUND ON fi

fi (y) ≤ fi (x)+〈∇ fi (x), y −x〉+ β

2
‖y −x‖2 . (12.2)

IF ADDITIONALLY THE FUNCTION { fi } ARE CONVEX AND x? IS AN OPTIMUM OF f , (A5) IMPLIES

( VIA NESTEROV (2018), THEOREM 2.1.5)

1

2βN

N∑
i=1

‖∇ fi (x)−∇ fi (x?)‖2 ≤ f (x)− f ? . (12.3)

FURTHER, IF fi IS TWICE-DIFFERENTIABLE, (A5) IMPLIES THAT ‖∇2 fi (x)‖ ≤β FOR ANY x .

12.2.2 Some technical lemmas

NOW WE COVER SOME TECHNICAL LEMMAS WHICH ARE USEFUL FOR COMPUTATIONS LATER ON.

THE TWO LEMMAS BELOW ARE USEFUL TO UNROLL RECURSIONS AND DERIVE CONVERGENCE

RATES. THE FIRST ONE IS A SLIGHTLY IMPROVED (AND SIMPLIFIED) VERSION OF (STICH, 2019B,

THEOREM 2). IT IS STRAIGHTFORWARD TO REMOVE THE ADDITIONAL LOGARITHMIC TERMS IF

WE USE A VARYING STEP-SIZE (KULUNCHAKOV AND MAIRAL, 2019, LEMMA 13).

Lemma 55 (linear convergence rate). For every non-negative sequence {dr−1}r≥1 and any pa-

rameters µ> 0, ηmax ∈ (0,1/µ], c ≥ 0, R ≥ 1
2ηmaxµ

, there exists a constant step-size η≤ ηmax and
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weights wr := (1−µη)1−r such that for WR :=∑R+1
r=1 wr ,

ΨR := 1

WR

R+1∑
r=1

(
wr

η

(
1−µη)

dr−1 − wr

η
dr + cηwr

)
= Õ

(
µd0 exp

(−µηmaxR
)+ c

µR

)
.

Proof. By substituting the value of wr , we observe that we end up with a telescoping sum and

estimate

ΨR = 1

ηWR

R+1∑
r=1

(wr−1dr−1 −wr dr )+ cη

WR

R+1∑
r=1

wr ≤ d0

ηWR
+ cη .

When R ≥ 1
2µη , (1−µη)R ≤ exp(−µηR) ≤ 2

3 . For such an R, we can lower bound ηWR using

ηWR = η(1−µη)−R
R∑

r=0
(1−µη)r = η(1−µη)−R 1− (1−µη)R

µη
≥ (1−µη)−R 1

3µ
.

This proves that for all R ≥ 1
2µη ,

ΨR ≤ 3µd0(1−µη)R + cη≤ 3µdo exp(−µηR)+ cη .

The lemma now follows by carefully tuning η. Consider the following two cases depending

on the magnitude of R and ηmax:

• Suppose 1
2µR ≤ ηmax ≤ log(max(1,µ2Rd0/c))

µR . Then we can choose η= ηmax,

ΨR ≤ 3µd0 exp
[−µηmaxR

]+ cηmax ≤ 3µd0 exp
[−µηmaxR

]+ Õ

(
c

µR

)
.

• Instead if ηmax > log(max(1,µ2Rd0/c))
µR , we pick η= log(max(1,µ2Rd0/c))

µR to claim that

ΨR ≤ 3µd0 exp
[− log(max(1,µ2Rd0/c))

]+ Õ

(
c

µR

)
≤ Õ

(
c

µR

)
.

THE NEXT LEMMA IS AN EXTENSION OF (STICH AND KARIMIREDDY, 2019, LEMMA 13), (KU-

LUNCHAKOV AND MAIRAL, 2019, LEMMA 13) AND IS USEFUL TO DERIVE CONVERGENCE RATES

FOR GENERAL CONVEX FUNCTIONS (µ= 0) AND NON-CONVEX FUNCTIONS.

Lemma 56 (sub-linear convergence rate). For every non-negative sequence {dr−1}r≥1 and any

parameters ηmax ≥ 0, c ≥ 0, R ≥ 0, there exists a constant step-size η≤ ηmax and weights wr = 1

such that,

ΨR := 1

R +1

R+1∑
r=1

(
dr−1

η
− dr

η
+ c1η+ c2η

2
)
≤ d0

ηmax(R +1)
+ 2

√
c1d0p

R +1
+2

(
d0

R +1

) 2
3

c
1
3
2 .
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Proof. Unrolling the sum, we can simplify

ΨR ≤ d0

η(R +1)
+ c1η+ c2η

2 .

Similar to the strongly convex case (Lemma 55), we distinguish the following cases:

• When R +1 ≤ d0

c1η
2
max

, and R +1 ≤ d0

c2η
3
max

we pick η= ηmax to claim

ΨR ≤ d0

ηmax(R +1)
+ c1ηmax + c2η

2
max ≤

d0

ηmax(R +1)
+

√
c1d0p
R +1

+
(

d0

R +1

) 2
3

c
1
3
2 .

• In the other case, we haveη2
max ≥ d0

c1(R+1) orη3
max ≥ d0

c2(R+1) . We chooseη= min

{√
d0

c1(R+1) , 3
√

d0
c2(R+1)

}
to prove

ΨR ≤ d0

η(R +1)
+ cη= 2

√
c1d0p

R +1
+2

3

√
d 2

0 c2

(R +1)2 .

NEXT, WE STATE A RELAXED TRIANGLE INEQUALITY TRUE FOR THE SQUARED `2 NORM.

Lemma 57 (relaxed triangle inequality). Let {v 1, . . . , vτ} be τ vectors in Rd . Then the following

are true:

1. ‖v i +v j‖2 ≤ (1+a)‖v i‖2 + (1+ 1
a )‖v j‖2 for any a > 0, and

2. ‖∑τ
i=1 v i‖2 ≤ τ∑τ

i=1‖v i‖2.

Proof. The proof of the first statement for any a > 0 follows from the identity:

‖v i +v j‖2 = (1+a)‖v i‖2 + (1+ 1
a )‖v j‖2 −‖pav i + 1p

a
v j‖2 .

For the second inequality, we use the convexity of x →‖x‖2 and Jensen’s inequality∥∥∥∥1

τ

τ∑
i=1

v i

∥∥∥∥2

≤ 1

τ

τ∑
i=1

∥∥v i
∥∥2 .

NEXT WE STATE AN ELEMENTARY LEMMA ABOUT EXPECTATIONS OF NORMS OF RANDOM VEC-

TORS.

Lemma 58 (separating mean and variance). Let {Ξ1, . . . ,Ξτ} be τ random variables in Rd

which are not necessarily independent. First suppose that their mean is E[Ξi ] = ξi and variance
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is bounded as E[‖Ξi −ξi‖2] ≤σ2. Then, the following holds

E[‖
τ∑

i=1
Ξi‖2] ≤ ‖

τ∑
i=1

ξi‖2 +τ2σ2 .

Now instead suppose that their conditional mean is E[Ξi |Ξi−1, . . .Ξ1] = ξi i.e. the variables

{Ξi −ξi } form a martingale difference sequence, and the variance is bounded by E[‖Ξi −ξi‖2] ≤
σ2 as before. Then we can show the tighter bound

E[‖
τ∑

i=1
Ξi‖2] ≤ 2‖

τ∑
i=1

ξi‖2 +2τσ2 .

Proof. For any random variable X , E[X 2] = (E[X −E[X ]])2 + (E[X ])2 implying

E[‖
τ∑

i=1
Ξi‖2] = ‖

τ∑
i=1

ξi‖2 +E[‖
τ∑

i=1
Ξi −ξi‖2] .

Expanding the above expression using relaxed triangle inequality (Lemma 57) proves the first

claim:

E[‖
τ∑

i=1
Ξi −ξi‖2] ≤ τ

τ∑
i=1

E[‖Ξi −ξi‖2] ≤ τ2σ2 .

For the second statement, ξi is not deterministic and depends onΞi−1, . . . ,Ξ1. Hence we have

to resort to the cruder relaxed triangle inequality to claim

E[‖
τ∑

i=1
Ξi‖2] ≤ 2‖

τ∑
i=1

ξi‖2 +2E[‖
τ∑

i=1
Ξi −ξi‖2]

and then use the tighter expansion of the second term:

E[‖
τ∑

i=1
Ξi −ξi‖2] =∑

i , j
E
[
(Ξi −ξi )>(Ξ j −ξ j )

]=∑
i
E
[‖Ξi −ξi‖2]≤ τσ2 .

The cross terms in the above expression have zero mean since {Ξi − ξi } form a martingale

difference sequence.

12.3 Properties of convex functions

WE NOW STUDY TWO LEMMAS WHICH HOLD FOR ANY SMOOTH AND STRONGLY-CONVEX FUNC-

TIONS. THE FIRST IS A GENERALIZATION OF THE STANDARD STRONG CONVEXITY INEQUALITY

(A3), BUT CAN HANDLE GRADIENTS COMPUTED AT SLIGHTLY PERTURBED POINTS.

Lemma 59 (perturbed strong convexity). The following holds for anyβ-smooth andµ-strongly

convex function h, and any x , y , z in the domain of h:

〈∇h(x), z − y〉 ≥ h(z)−h(y)+ µ

4
‖y − z‖2 −β‖z −x‖2 .
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Proof. Given any x , y , and z , we get the following two inequalities using smoothness and

strong convexity of h:

〈∇h(x), z −x〉 ≥ h(z)−h(x)− β

2
‖z −x‖2

〈∇h(x), x − y〉 ≥ h(x)−h(y)+ µ

2
‖y −x‖2 .

Further, applying the relaxed triangle inequality gives

µ

2
‖y −x‖2 ≥ µ

4
‖y − z‖2 − µ

2
‖x − z‖2 .

Combining all the inequalities together we have

〈∇h(x), z − y〉 ≥ h(z)−h(y)+ µ

4
‖y − z‖2 − β+µ

2
‖z −x‖2 .

The lemma follows since β≥µ.

HERE, WE SEE THAT A GRADIENT STEP IS A CONTRACTIVE OPERATOR.

Lemma 60 (contractive mapping). For anyβ-smooth andµ-strongly convex function h, points

x , y in the domain of h, and step-size η≤ 1
β , the following is true

‖x −η∇h(x)− y +η∇h(y)‖2 ≤ (1−µη)‖x − y‖2 .

Proof.

‖x −η∇h(x)− y +η∇h(y)‖2 = ‖x − y‖2 +η2‖∇h(x)−∇h(y)‖2 −2η
〈∇h(x)−∇h(y), x − y

〉
(A5)≤ ‖x − y‖2 + (η2β−2η)

〈∇h(x)−∇h(y), x − y
〉

.

Recall our bound on the step-size η≤ 1
β which implies that (η2β−2η) ≤−η. Finally, apply the

µ-strong convexity of h to get

−η〈∇h(x)−∇h(y), x − y
〉≤−ηµ‖x − y‖2 .

12.4 Convergence of FEDAVG

WE OUTLINE THE FEDAVG METHOD IN ALGORITHM 18. IN ROUND r WE SAMPLE S r ⊆ [N ]

CLIENTS WITH |S r | = S AND THEN PERFORM THE FOLLOWING UPDATES:

• STARTING FROM THE SHARED GLOBAL PARAMETERS y r
i ,0 = xr−1, WE UPDATE THE LOCAL PA-
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Algorithm 18 FEDAVG: Federated Averaging

1: server input: initial x , and global step-size ηg

2: client i ’s input: local step-size ηl

3: for each round r = 1, . . . ,R do
4: sample clients S ⊆ {1, . . . , N }
5: communicate x to all clients i ∈S

6: for each client i ∈S in parallel do
7: initialize local model y i ← x
8: for k = 1, . . . ,K do
9: compute mini-batch gradient gi (y i )

10: y i ← y i −ηl gi (y i )
11: end for
12: communicate ∆y i ← y i −x
13: end for
14: ∆x ← 1

|S |
∑

i∈S ∆y i
15: x ← x +ηg∆x
16: end for

RAMETERS FOR k ∈ [K ]

y r
i ,k = y r

i ,k−1 −ηl gi (y r
i ,k−1) . (12.4)

• COMPUTE THE NEW GLOBAL PARAMETERS USING ONLY UPDATES FROM THE CLIENTS i ∈S r

AND A GLOBAL STEP-SIZE ηg :

xr = xr−1 + ηg

S

∑
i∈S r

(y r
i ,K −xr−1) . (12.5)

FINALLY, FOR SOME WEIGHTS {wr }, WE OUTPUT

x̄R = xr−1 WITH PROBABILITY
wr∑
τ wτ

FOR r ∈ {1, . . . ,R +1} . (12.6)

12.4.1 Bounding heterogeneity

RECALL OUR BOUND ON THE GRADIENT DISSIMILARITY:

1

N

N∑
i=1

‖∇ fi (x)‖2 ≤G2 +B 2‖∇ f (x)‖2 . (12.7)

IF { fi } ARE CONVEX, WE CAN RELAX THE ASSUMPTION TO

1

N

N∑
i=1

‖∇ fi (x)‖2 ≤G2 +2βB 2( f (x)− f ?) . (12.8)

WE DEFINED TWO VARIANTS OF THE BOUNDS ON THE HETEROGENEITY DEPENDING OF WHETHER

THE FUNCTIONS ARE CONVEX OR NOT. SUPPOSE THAT THE FUNCTIONS f IS INDEED CONVEX AS
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IN (A3) AND β-SMOOTH AS IN (A5), THEN IT IS STRAIGHTFORWARD TO SEE THAT (12.7) IMPLIES

(12.8). THUS FOR CONVEX FUNCTIONS, (A1) IS MILDLY WEAKER. SUPPOSE THAT THE FUNC-

TIONS { f1, . . . , fN } ARE CONVEX AND β-SMOOTH. THEN (12.8) IS SATISFIED WITH B 2 = 2 SINCE

1

N

N∑
i=1

‖∇ fi (x)‖2 ≤ 2

N

N∑
i=1

‖∇ fi (x?)‖2 + 2

N

N∑
i=1

‖∇ fi (x)−∇ fi (x?)‖2

(12.3)≤ 2

N

N∑
i=1

‖∇ fi (x?)‖2

︸ ︷︷ ︸
=: σ2

f

+4β( f (x)− f ?) .

THUS, (G ,B)-BGD (12.8) IS EQUIVALENT TO THE HETEROGENEITY ASSUMPTION OF (MISHCHENKO

ET AL., 2019) WITH G2 =σ2
f . INSTEAD, IF WE HAVE THE STRONGER ASSUMPTION (A1) BUT THE

FUNCTIONS ARE POSSIBLY NON-CONVEX, THEN G = ε CORRESPONDS TO THE LOCAL DISSIM-

ILARITY DEFINED IN (LI ET AL., 2018B). NOTE THAT ASSUMING G IS NEGLIGIBLE IS QUITE

STRONG AND CORRESPONDS TO THE STRONG-GROWTH CONDITION (VASWANI ET AL., 2019).

12.4.2 Rates of convergence (Theorem VI)

WE FIRST RESTATE THEOREM VI WITH SOME ADDITIONAL DETAILS AND THEN SEE ITS PROOF.

Theorem XXX. Suppose that the functions { fi } satisfies assumptions A4, A5, and A1. Then, in

each of the following cases, there exist weights {wr } and local step-sizes ηl such that for any

ηg ≥ 1 the output of FEDAVG (12.6) x̄R satisfies

• Strongly convex: fi satisfies (A3) for µ> 0, ηl ≤ 1
8(1+B 2)βKηg

, R ≥ 8(1+B 2)β
µ then

E[ f (x̄R )]− f (x?) ≤ Õ

(
M 2

µRK S
+ βG2

µ2R2 +µD2 exp(− µ

16(1+B 2)βR)

)
,

• General convex: fi satisfies (A3) for µ= 0, ηl ≤ 1
(1+B 2)8βKηg

, R ≥ 1 then

E[ f (x̄R )]− f (x?) ≤O

(
MDp
RK S

+ D4/3(βG2)1/3

(R +1)2/3
+ B 2βD2)

R

)
,

• Non-convex: fi satisfies (A1) and ηl ≤ 1
(1+B 2)8βKηg

, then

E[‖∇ f (x̄R )‖2] ≤O

(
βM

p
Fp

RK S
+ F 2/3(βG2)1/3

(R +1)2/3
+ B 2βF

R

)
,

where M 2 :=σ2(1+ S
η2

g
)+K (1− S

N )G2, D := ‖x0 −x?‖, and F := f (x0)− f ?.
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12.4.3 Proof of convergence

WE WILL ONLY PROVE THE RATE OF CONVERGENCE FOR CONVEX FUNCTIONS HERE. THE CORRE-

SPONDING RATES FOR NON-CONVEX FUNCTIONS ARE EASY TO DERIVE FOLLOWING THE TECH-

NIQUES IN THE REST OF THE PAPER.

Lemma 61. (one round progress) Suppose our functions satisfies assumptions (A1) and (A3)–

(A5). For any step-size satisfying ηl ≤ 1
(1+B 2)8βKηg

and effective step-size η̃ := Kηgηl , the up-

dates of FEDAVG satisfy

E‖xr −x?‖2 ≤ (1− µη̃
2 )E‖xr−1−x?‖2+( 1

K S )η̃2σ2+(1− S
N ) 4η̃2

S G2−η̃(E[ f (xr−1)]− f (x?))+3βη̃Er ,

where Er is the drift caused by the local updates on the clients defined to be

Er := 1

K N

K∑
k=1

N∑
i=1

Er [
∥∥∥y r

i ,k −xr−1
∥∥∥2

] .

Proof. We start with the observation that the updates (12.4) and (12.5) imply that the server

update in round r can be written as below (dropping the superscripts everywhere)

∆x =− η̃

K S

∑
k,i∈S

gi (y i ,k−1) and E[∆x] =− η̃

K N

∑
k,i
E[∇ fi (y i ,k−1)] .

We adopt the convention that summations are always over k ∈ [K ] or i ∈ [N ] unless otherwise

stated. Expanding using above observing, we proceed as1

Er−1‖x +∆x −x?‖2 = ‖x −x?‖2 − 2η̃

K N

∑
k,i

〈∇ fi (y i ,k−1), x −x?〉+ η̃2Er−1

∥∥∥∥ 1

K S

∑
k,i∈S

gi (y i ,k−1)

∥∥∥∥2

Lem. 58≤ ‖x −x?‖2− 2η̃

K N

∑
k,i

〈∇ fi (y i ,k−1), x −x?〉︸ ︷︷ ︸
A1

+ η̃2Er−1

∥∥∥∥ 1

K S

∑
k,i∈S

∇ fi (y i ,k−1)

∥∥∥∥2

︸ ︷︷ ︸
A2

+ η̃
2σ2

K S
.

We can directly apply Lemma 59 with h = fi , x = y i ,k−1, y = x?, and z = x to the first term A1

A1 = 2η̃

K N

∑
k,i

〈∇ fi (y i ,k−1), x?−x
〉

≤ 2η̃

K N

∑
k,i

(
fi (x?)− fi (x)+β‖y i ,k−1 −x‖2 − µ

4
‖x −x?‖2

)
=−2η̃

(
f (x)− f (x?)+ µ

4
‖x −x?‖2

)
+2βη̃E .

1We use the notation Er−1[ · ] to mean conditioned on filtration r i.e. on all the randomness generated prior to
round r .
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For the second term A2, we repeatedly apply the relaxed triangle inequality (Lemma 58)

A2 = η̃2Er−1

∥∥∥∥ 1

K S

∑
k,i∈S

∇ fi (y i ,k−1)−∇ fi (x)+∇ fi (x)

∥∥∥∥2

≤ 2η̃2Er−1

∥∥∥∥ 1

K S

∑
k,i∈S

∇ fi (y i ,k−1)−∇ fi (x)

∥∥∥∥2

+2η̃2Er−1

∥∥∥∥ 1

S

∑
i∈S

∇ fi (x)

∥∥∥∥2

≤ 2η̃2

K N

∑
i ,k
Er−1‖∇ fi (y i ,k−1)−∇ fi (x)‖2 +2η̃2Er−1

∥∥∥∥ 1

S

∑
i∈S

∇ fi (x)−∇ f (x)+∇ f (x)

∥∥∥∥2

≤ 2η̃2β2

K N

∑
i ,k
Er−1‖y i ,k−1 −x‖2 +2η̃2‖∇ f (x)‖2 + (1− S

N )4η̃2 1

SN

∑
i
‖∇ fi (x)‖2

≤ 2η̃2β2E +8η̃2β(B 2 +1)( f (x)− f (x?))+ (1− S
N ) 4η̃2

S G2

The last step used Assumption (G ,B)-BGD assumption (12.8) that 1
N

∑N
i=1‖∇ fi (x)‖2 ≤ G2 +

2βB 2( f (x)− f ?). The extra (1− S
N improvement we get is due to sampling the functions { fi }

without replacement. Plugging back the bounds on A1 and A2,

Er−1‖x +∆x −x?‖2 ≤ (1− µη̃
2 )‖x −x?‖2 − (2η̃−8βη̃2(B 2 +1))( f (x)− f (x?))

+ (1+ η̃β)2βη̃E + 1
K S η̃

2σ2 + (1− S
N ) 4η̃2

S G2 .

The lemma now follows by observing that 8βη̃(B 2 +1) ≤ 1 and that B ≥ 0.

Lemma 62. (bounded drift) Suppose our functions satisfies assumptions (A1) and (A3)–(A5).

Then the updates of FEDAVG for any step-size satisfying ηl ≤ 1
(1+B 2)8βKηg

have bounded drift:

3βη̃Er ≤ 2η̃
3 (E[ f (xr−1)])− f (x?)+ η̃2σ2

2Kη2
g
+18βη̃3G2 .

Proof. If K = 1, the lemma trivially holds since y i ,0 = x for all i ∈ [N ] and Er = 0. Assume

K ≥ 2 here on. Recall that the local update made on client i is y i ,k = y i ,k−1 −ηl gi (y i ,k−1).
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Then,

E‖y i ,k −x‖2 = E‖y i ,k−1 −x −ηl gi (y i ,k−1)‖2

≤ E‖y i ,k−1 −x −ηl∇ fi (y i ,k−1)‖2 +η2
lσ

2

≤ (1+ 1
K−1 )E‖y i ,k−1 −x‖2 +Kη2

l ‖∇ fi (y i ,k−1)‖2 +η2
lσ

2

= (1+ 1
K−1 )E‖y i ,k−1 −x‖2 + η̃2

ηg K
‖∇ fi (y i ,k−1)‖2 + η̃2σ2

K 2η2
g

≤ (1+ 1
K−1 )E‖y i ,k−1 −x‖2 + 2η̃2

ηg K
‖∇ fi (y i ,k−1)−∇ fi (x)‖2 + 2η̃2

ηg K
‖∇ fi (x)‖2 + η̃2σ2

K 2η2
g

≤ (1+ 1
K−1 +

2η̃2β2

ηg K )E‖y i ,k−1 −x‖2 + 2η̃2

ηg K
‖∇ fi (x)‖2 + η̃2σ2

K 2η2
g

≤ (1+ 2
(K−1) )E‖y i ,k−1 −x‖2 + 2η̃2

ηg K
‖∇ fi (x)‖2 + η̃2σ2

K 2η2
g

.

In the above proof we separated the mean and the variance in the first inequality, then used

the relaxed triangle inequality with a = 1
K−1 in the next inequality. Next equality uses the defi-

nition of η̃, and the rest follow from the Lipschitzness of the gradient. Unrolling the recursion

above,

E‖y i ,k −x‖2 ≤
k−1∑
τ=1

(
2η̃2

ηg K
‖∇ fi (x)‖2 + η̃2σ2

K 2η2
g

)(1+ 2
(K−1) )τ

≤ (
2η̃2

ηg K
‖∇ fi (x)‖2 + η̃2σ2

K 2η2
g

)3K .

Averaging over i and k, multiplying by 3βη̃ and then using Assumption A1,

3βη̃Er ≤ 1

N

∑
i

18βη̃3‖∇ fi (x)‖2 + 3βη̃3σ2

Kη2
g

≤ 18βη̃3G2 + 3βη̃3σ2

Kη2
g

+36β2η̃3B 2( f (x)− f (x?))

The lemma now follows from our assumption that 8(B 2 +1)βη̃≤ 1.

PROOF OF THEOREMS VI, XXX ADDING THE STATEMENTS OF LEMMAS 61 AND 62, WE GET

E‖x +∆x −x?‖2 ≤ (1− µη̃
2 )E‖x −x?‖2 + ( 1

K S )η̃2σ2 + (1− S
N ) 4η̃2

S G2 − η̃(E[ f (x)]− f (x?))

+ 2η̃
3 (E[ f (x)])− f (x?)+ η̃2σ2

2Kη2
g
+18βη̃3G2

= (1− µη̃
2 )E‖x −x?‖2 − η̃

3 (E[ f (x)]− f (x?))+ η̃2
(
σ2

K S (1+ S
η2

g
)+ 4G2

S (1− S
N )+18βη̃G2

)
.
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MOVING THE ( f (x)− f (x?)) TERM AND DIVIDING THROUGHOUT BY
η̃
3 , WE GET THE FOLLOWING

BOUND FOR ANY η̃≤ 1
8(1+B 2)β

E[ f (xr−1)]− f (x?) ≤ 3
η̃ (1−µη̃

2 )‖xr−1−x?‖2− 3
η̃‖xr −x?‖2+3η̃

(
σ2

K S (1+ S
η2

g
)+ 4G2

S (1− S
N )+18βη̃G2

)
.

IF µ= 0 (GENERAL CONVEX), WE CAN DIRECTLY APPLY LEMMA 56. OTHERWISE, BY AVERAGING

USING WEIGHTS wr = (1− µη̃
2 )1−r AND USING THE SAME WEIGHTS TO PICK OUTPUT x̄R , WE CAN

SIMPLIFY THE ABOVE RECURSIVE BOUND (SEE PROOF OF LEM. 55) TO PROVE THAT FOR ANY η̃

SATISFYING 1
µR ≤ η̃≤ 1

8(1+B 2)β

E[ f (x̄R )]− f (x?) ≤ 3‖x0 −x?‖2︸ ︷︷ ︸
=:d

µexp(− η̃
2µR)+ η̃(2σ2

K S (1+ S
η2

g
)+ 8G2

S (1− S
N )︸ ︷︷ ︸

=:c1

)+ η̃2(36βG2︸ ︷︷ ︸
=:c2

)

NOW, THE CHOICE OF η̃= min
{

log(max(1,µ2Rd/c1))
µR , 1

(1+B 2)8β

}
YIELDS THE DESIRED RATE.THE PROOF

OF THE NON-CONVEX CASE IS VERY SIMILAR AND ALSO RELIES ON LEMMA 56.

12.4.4 Lower bound for FEDAVG (Theorem VII)

WE FIRST FORMALIZE THE CLASS OF ALGORITHMS WE LOOK AT BEFORE PROVING OUT LOWER

BOUND.

(A6) WE ASSUME THAT FEDAVG IS RUN WITH ηg = 1, K > 1, AND ARBITRARY POSSIBLY ADAPTIVE

POSITIVE STEP-SIZES {η1, . . . ,ηR } ARE USED WITH ηr ≤ 1
µ AND FIXED WITHIN A ROUND FOR

ALL CLIENTS. FURTHER, THE SERVER UPDATE IS A CONVEX COMBINATION OF THE CLIENT

UPDATES WITH NON-ADAPTIVE WEIGHTS.

NOTE THAT WE ONLY PROVE THE LOWER BOUND HERE FOR ηg = 1. IN FACT, BY TAKING ηg

INFINITELY LARGE AND SCALING ηl ∝ 1
Kηg

SUCH THAT THE EFFECTIVE STEP SIZE η̃ = ηlηg K

REMAINS CONSTANT, FEDAVG REDUCES TO THE SIMPLE LARGE BATCH SGD METHOD. HENCE,

PROVING A LOWER BOUND FOR ARBITRARY ηg IS NOT POSSIBLE, BUT ALSO IS OF QUESTIONABLE

RELEVANCE. FURTHER, NOTE THAT WHEN σ2 = 0, THE UPPER BOUND IN THEOREM XXX USES

ηg = 1 AND HENCE THE LOWER BOUND SERVES TO SHOW THAT OUR ANALYSIS IS TIGHT.

BELOW WE STATE A MORE FORMAL VERSION OF THEOREM VII.

Theorem XXXI. For any positive constants G, µ, there exist µ-strongly convex functions satis-

fying A1 for which that the output of FEDAVG satisfying A6 has the error for any r ≥ 1:

f (xr )− f (x?) ≥Ω(
min

(
f (x0)− f (x?),

G2

µR2

))
.
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Proof. Consider the following simple one-dimensional functions for any given µ and G :

f1(x) :=µx2 +Gx, and f2(x) :=−Gx ,

with f (x) = 1
2 ( f1(x)+ f2(x)) = µ

2 x2 and optimum at x = 0. Clearly f is µ-strongly convex and

further f1 and f2 satisfy A1 with B = 3. Note that we chose f2 to be a linear function (not

strongly convex) to simplify computations. The calculations made here can be extended with

slightly more work for ( f̃2 = µ
2 x2 −Gx) (e.g. see Theorem 1 of (Safran and Shamir, 2019)).

Let us start FEDAVG from x0 > 0. A single local update for f1 and f2 in round r ≥ 1 is respec-

tively

y1 = y1 −ηr (2µx +G) and y2 = y2 +ηr G .

Then, straightforward computations show that the update at the end of round r is of the

following form for some averaging weight α ∈ [0,1]

xr = xr−1((1−α)(1−2µηr )K +α)+ηr G
K−1∑
τ=0

(α− (1−α)(1−2µηr )τ) .

Since α was picked obliviously, we can assume that α ≤ 0.5. If indeed α > 0.5, we can swap

the definitions of f1 and f2 and the sign of x0. With this, we can simplify as

xr ≥ xr−1 (1−2µηr )K +1

2
+ ηr G

2

K−1∑
τ=0

(1− (1−2µηr )τ)

≥ xr−1(1−2µηr )K + ηr G

2

K−1∑
τ=0

(1− (1−2µηr )τ) .

Observe that in the above expression, the right hand side is increasing with ηr —this repre-

sents the effect of the client drift and increases the error as the step-size increases. The left

hand side decreases with ηr —this is the usual convergence observed due to taking gradient

steps. The rest of the proof is to show that even with a careful balancing of the two terms, the

effect of G cannot be removed. Lemma 63 performs exactly such a computation to prove that

for any r ≥ 1,

xr ≥ c min(x0,
G

µR
) .

We finish the proof by noting that f (xr ) = µ
2 (xr )2.

Lemma 63. Suppose that for all r ≥ 1, ηr ≤ 1
µ and the following is true:

xr ≥ xr−1(1−2µηr )K + ηr G

2

K−1∑
τ=0

(1− (1−2µηr )τ) .

Then, there exists a constant c > 0 such that for any sequence of step-sizes {ηr }:

xr ≥ c min(x0,
G

µR
)
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Proof. Define γr =µηr R(K −1). Such a γr exists and is positive since K ≥ 2. Then, γr satisfies

(1−2µηr )
K−1

2 = (1− 2γr

R(K −1)
)

K−1
2 ≤ exp(−γr /R) .

We then have

xr ≥ xr−1(1−2µηr )K + ηr G

2

K−1∑
τ=0

(1− (1−2µηr )τ)

≥ xr−1(1−2µηr )K + ηr G

2

K−1∑
τ=(K−1)/2

(1− (1−2µηr )τ)

≥ xr−1(1−2µηr )K + γr G

4µ
(1−exp(−γr /R)) .

The second inequality follows because ηr ≤ 1
µ implies that (1− (1−2µηr )τ) is always positive.

If γr ≥ R/8, then we have a constant c1 ∈ (0,1/32) which satisfies

xr ≥ c1G

µ
. (12.9)

On the other hand, if γr < R/8, we have a tighter inequality

(1−2µηr )
K−1

2 = (1− 2γr

R(K −1)
)

K−1
2 ≤ 1− γr

R
,

implying that

xr ≥ xr−1
(
1− 2γr

R(K −1)

)K

+ γ2
r G

4Rµ

≥ xr−1(1− 4γr

R
)+ γ2

r G

4µR
. (12.10)

The last step used Bernoulli’s inequality and the fact that K −1 ≤ K /2 for K ≥ 2. Observe that

in the above expression, the right hand side is increasing with γr —this represents the effect of

the client drift and increases the error as the step-size increases. The left hand side decreases

with γr —this is the usual convergence observed due to taking gradient steps. The rest of the

proof is to show that even with a careful balancing of the two terms, the effect of G cannot be

removed.

Suppose that all rounds after r0 ≥ 0 have a small step-size i.e. γr ≤ R/8 for all r > r0 and hence

satisfies (12.10). Then we will prove via induction that

xr ≥ min(cr xr0 ,
G

256µR
), for constants cr := (1− 1

2R )r−r0 . (12.11)
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For r = r0, (12.11) is trivially satisfied. Now for r > r0,

xr ≥ xr−1(1− 4γr

R
)+ γ2

r G

4µR

≥ min

(
xr−1(1− 1

2R ) ,
G

256µR

)
= min

(
cr xr0 ,

G

256µR

)
.

The first step is because of (12.10) and the last step uses the induction hypothesis. The second

step considers two cases for γr : either γr ≤ 1
8 and (1− 1

2R ) ≥ (1− 1
2R ), or γ2

r ≥ 1
64 . Finally note

that cr ≥ 1
2 using Bernoulli’s inequality. We have hence proved

xR ≥ min

(
1

2
xr0 ,

G

256µR

)

Now suppose γr0 > R/8. Then (12.9) implies that xR ≥ cG
µR for some constant c > 0. If instead

no such r0 ≥ 1 exists, then we can set r0 = 0. Now finally observe that the previous proof did

not make any assumption on R, and in fact the inequality stated above holds for all r ≥ 1.

12.5 Convergence of SCAFFOLD

WE FIRST RESTATE THE CONVERGENCE THEOREM MORE FORMALLY, THEN PROVE THE RESULT

FOR THE CONVEX CASE, AND THEN FOR NON-CONVEX CASE. THROUGHOUT THE PROOF, WE

WILL FOCUS ON THE HARDER OPTION II. THE PROOFS FOR SCAFFOLD WITH OPTION I ARE

NEARLY IDENTICAL AND SO WE SKIP THEM.

Theorem XXXII. Suppose that the functions { fi } satisfies assumptions A4 and A5. Then, in

each of the following cases, there exist weights {wr } and local step-sizes ηl such that for any

ηg ≥ 1 the output (12.16) of SCAFFOLD SATISFIES:

• STRONGLY CONVEX: fi SATISFIES (A3) FOR µ> 0, ηl ≤ min
(

1
81βKηg

, S
15µN Kηg

)
, R ≥ max( 162β

µ , 30N
S )

THEN

E[ f (x̄R )]− f (x?) ≤ Õ

(
σ2

µRK S
(1+ S

η2
g

)+ Nµ

S
D̃2 exp

(
−min

{
S

30N
,

µ

162β

}
R

))
.

• GENERAL CONVEX: fi SATISFIES (A3) FOR µ= 0, ηl ≤ 1
81βKηg

, R ≥ 1 THEN

E[ f (x̄R )]− f (x?) ≤O

(
σD̃p
RK S

(√
1+ S

η2
g

)
+

√
N

S

βD̃2

R

)
,
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• NON-CONVEX: ηl ≤ 1
24Kηgβ

( S
N

) 2
3 , AND R ≥ 1, THEN

E[‖∇ f (x̄R )‖2] ≤O

(
σ
p

Fp
RK S

(√
1+ N

η2
g

)
+ βF

R

(
N

S

) 2
3

)
.

HERE D̃2 := (‖x0 −x?‖2 + 1
2Nβ2

∑N
i=1‖c 0

i −∇ fi (x?)‖2) AND F := ( f (x0)− f (x?)).

Remark 64. Note that the D̃2 defined above involves an additional term 1
2Nβ2

∑N
i=1‖c 0

i −∇ fi (x?)‖2.

This is standard in variance reduction methods (Johnson and Zhang, 2013; Defazio et al., 2014;

Hanzely and Richtárik, 2019). Theoretically, we will use a warm-start strategy to set c 0
i and in

the first N /S rounds, we compute c 0
i = g i (x0) over a batch size of size K . Then, using smooth-

ness of fi , we can bound this additional term as

1
2Nβ2

N∑
i=1

‖c 0
i −∇ fi (x?)‖2 ≤ 1

β
( f (x0)− f ?)+ σ2

Kβ2 ≤ D2 + σ2

Kβ2 .

Thus, the asymptotic rates of SCAFFOLD FOR GENERAL CONVEX FUNCTIONS ONLY INCURS AN

ADDITIVE TERM OF THE ORDER OF O(
√

N
S

1
R ). FOR STRONGLY CONVEX FUNCTIONS, WE ONLY

SEE THE AFFECTS IN THE LOGARITHMIC TERMS.

Remark 65. When σ = 0 i.e. when clients compute full gradients, the communication com-

plexity of SCAFFOLD is: i) for strongly convex case it is Õ
(

N
S + β

µ

)
, ii) for general convex func-

tions it is O
(√

N
S
β
R

)
, 2 and iii) for non-convex functions it is O

(
N
S

2/3 β
R

)
. In comparison, the

follow up work of FedDyn (Acar et al., 2021) proves communication complexity matching ours

in the convex and strongly convex settings, but a worse O
(

N
S
β
R

)
complexity in the non-convex

settings (all when σ= 0).

WE WILL REWRITE SCAFFOLD USING NOTATION WHICH IS CONVENIENT FOR THE PROOFS: {y i }

REPRESENT THE CLIENT MODELS, x IS THE AGGREGATE SERVER MODEL, AND c i AND c ARE THE

CLIENT AND SERVER CONTROL VARIATES. FOR AN EQUIVALENT DESCRIPTION WHICH IS EAS-

IER TO IMPLEMENT, WE REFER TO ALGORITHM 5. THE SERVER MAINTAINS A GLOBAL CONTROL

VARIATE c AS BEFORE AND EACH CLIENT MAINTAINS ITS OWN CONTROL VARIATE c i . IN ROUND

r , A SUBSET OF CLIENTS S r OF SIZE S ARE SAMPLED UNIFORMLY FROM {1, . . . , N }. SUPPOSE

THAT every CLIENT PERFORMS THE FOLLOWING UPDATES

• STARTING FROM THE SHARED GLOBAL PARAMETERS y 0
i ,r = xr−1, WE UPDATE THE LOCAL PA-

RAMETERS FOR k ∈ [K ]

y r
i ,k = y r

i ,k−1 −ηl v r
i ,k , WHERE v r

i ,k := gi (y r
i ,k−1)−c r−1

i +c r−1 (12.12)

2 A previous version of the paper showed a worse dependence of O
(

N
S
β
R

)
due to sub-optimal choice of step-

size η.
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• UPDATE THE CONTROL ITERATES USING (OPTION II):

c̃ r
i = c r−1 −c r−1

i + 1
Kηl

(xr−1 −xr
i ,K ) = 1

K

K∑
k=1

gi (y r
i ,k−1) . (12.13)

WE UPDATE THE LOCAL CONTROL VARIATES ONLY FOR CLIENTS i ∈S r

c r
i =

c̃ r
i IF i ∈S r

c r−1
i OTHERWISE.

(12.14)

• COMPUTE THE NEW GLOBAL PARAMETERS AND GLOBAL CONTROL VARIATE USING ONLY UP-

DATES FROM THE CLIENTS i ∈S r :

xr = xr−1 + ηg

S

∑
i∈S r

(y r
i ,K −xr−1) AND c r = 1

N

N∑
i=1

c r
i =

1

N

( ∑
i∈S r

c r
i +

∑
j∉S r

c r−1
j

)
. (12.15)

FINALLY, FOR SOME WEIGHTS {wr }, WE OUTPUT

x̄R = xr−1 WITH PROBABILITY
wr∑
τ wτ

FOR r ∈ {1, . . . ,R +1} . (12.16)

NOTE THAT THE CLIENTS ARE AGNOSTIC TO THE SAMPLING AND THEIR UPDATES ARE IDEN-

TICAL TO WHEN ALL CLIENTS ARE PARTICIPATING. ALSO NOTE THAT THE CONTROL VARIATE

CHOICE (12.13) CORRESPONDS TO (OPTION II) OF ALGORITHM 5. FURTHER, THE UPDATES OF

THE CLIENTS i ∉S r IS FORGOTTEN AND IS DEFINED ONLY TO MAKE THE PROOFS EASIER. WHILE

ACTUALLY IMPLEMENTING THE METHOD, ONLY CLIENTS i ∈S r PARTICIPATE AND THE REST RE-

MAIN INACTIVE (SEE ALGORITHM 5).

12.5.1 Convergence of SCAFFOLD FOR CONVEX FUNCTIONS ( THEOREM VIII)

WE WILL FIRST BOUND THE VARIANCE OF SCAFFOLD UPDATE IN LEMMA 66, THEN SEE HOW

SAMPLING OF CLIENTS EFFECTS OUR CONTROL VARIATES IN LEMMA 67, AND FINALLY BOUND

THE AMOUNT OF CLIENT-DRIFT IN LEMMA 68. WE WILL THEN USE THESE THREE LEMMAS TO

PROVE THE PROGRESS IN A SINGLE ROUND IN LEMMA 69. COMBINING THIS PROGRESS WITH

LEMMAS 55 AND 56 GIVES US THE DESIRED RATES.

ADDITIONAL DEFINITIONS. BEFORE PROCEEDING WITH THE PROOF OF OUR LEMMAS, WE NEED

SOME ADDITIONAL DEFINITIONS OF THE VARIOUS ERRORS WE TRACK. AS BEFORE, WE DEFINE

THE EFFECTIVE STEP-SIZE TO BE

η̃ := Kηlηg .

WE DEFINE CLIENT-DRIFT TO BE HOW MUCH THE CLIENTS MOVE FROM THEIR STARTING POINT:

Er := 1

K N

K∑
k=1

N∑
i=1

E[‖y r
i ,k −xr−1‖2] . (12.17)
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BECAUSE WE ARE SAMPLING THE CLIENTS, NOT ALL THE CLIENT CONTROL-VARIATES GET UP-

DATED EVERY ROUND. THIS LEADS TO SOME ‘LAG’ WHICH WE CALL CONTROL-LAG:

Cr := 1

N

N∑
j=1

E‖E[c r
i ]−∇ fi (x?)‖2 . (12.18)

VARIANCE OF SERVER UPDATE. WE STUDY HOW THE VARIANCE OF THE SERVER UPDATE CAN

BE BOUNDED.

Lemma 66. For updates (12.12)—(12.15), we can bound the variance of the server update in

any round r and any η̃ := ηlηg K ≥ 0 as follows

E[‖xr −xr−1‖2] ≤ 8βη̃2(E[ f (xr−1)]− f (x?))+8η̃2Cr−1 +4η̃2β2Er + 12η̃2σ2

K S
.

Proof. The server update in round r can be written as follows (dropping the superscript r

everywhere)

E‖∆x‖2 = E∥∥− η̃

K S

∑
k,i∈S

v i ,k
∥∥2 = E∥∥ η̃

K S

∑
k,i∈S

(gi (y i ,k−1)+c −c i )
∥∥2 ,

which can then be expanded as

E‖∆x‖2 ≤ E∥∥ η̃

K S

∑
k,i∈S

(gi (y i ,k−1)+c −c i )
∥∥2

≤ 4E
∥∥ η̃

K S

∑
k,i∈S

gi (y i ,k−1)−∇ fi (x)
∥∥2 +4η̃2E‖c‖2 +4E

∥∥ η̃

K S

∑
k,i∈S

∇ fi (x?)−c i
∥∥2

+4E
∥∥ η̃

K S

∑
k,i∈S

∇ fi (x)−∇ fi (x?)
∥∥2

(12.3)≤ 4E
∥∥ η̃

K S

∑
k,i∈S

gi (y i ,k−1)−∇ fi (x)
∥∥2 +4η̃2E‖c‖2 +4E

∥∥ η̃
S

∑
i∈S

∇ fi (x?)−c i
∥∥2

+8βη̃2(E[ f (x)]− f (x?))

≤ 4E
∥∥ η̃

K S

∑
k,i∈S

∇ fi (y i ,k−1)−∇ fi (x)
∥∥2 +4η̃2‖E[c]‖2 +4

∥∥ η̃
S

∑
i∈S

∇ fi (x?)−E[c i ]
∥∥2

+8βη̃2(E[ f (x)]− f (x?))+ 12η̃2σ2

K S
.

The inequality before the last used the smoothness of { fi }. The last inequality which separates

the mean and the variance is an application of Lemma 58: the variance of ( 1
K S

∑
k,i∈S gi (y i ,k−1))

is bounded by σ2/K S. Similarly, c j as defined in (12.13) for any j ∈ [N ] has variance smaller

than σ2/K and hence the variance of ( 1
S

∑
i∈S c i ) is smaller than σ2/K S.
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Using Lemma 57.2 twice to simplify:

E‖∆x‖2 ≤ 4η̃2

K N

∑
k,i
E
∥∥∇ fi (y i ,k−1)−∇ fi (x)

∥∥2 +4η̃2‖E[c]‖2 + 4η̃2

N

∑
i

∥∥∇ fi (x?)−E[c i ]
∥∥2

+8βη̃2(E[ f (x)]− f (x?))+ 12η̃2σ2

K S

≤ 4η̃2

K N

∑
k,i
E
∥∥∇ fi (y i ,k−1)−∇ fi (x)

∥∥2

︸ ︷︷ ︸
T1

+8η̃2

N

∑
i

∥∥∇ fi (x?)−E[c i ]
∥∥2

+8βη̃2(E[ f (x)]− f (x?))+ 12η̃2σ2

K S
.

The second step follows because c = 1
N

∑
i c i . Since the gradient of fi is β-Lipschitz, T1 ≤

β24η̃2

K N

∑
k,i E

∥∥y i ,k−1 − x
∥∥2 = 4η̃2β2E . The definition of the error in the control variate Cr−1 :=

1
N

∑N
j=1E‖E[c i ]−∇ fi (x?)‖2 completes the proof.

CHANGE IN CONTROL LAG. WE HAVE PREVIOUSLY RELATED THE VARIANCE OF THE SERVER UP-

DATE TO THE CONTROL LAG. WE NOW EXAMINE HOW THE CONTROL-LAG GROWS EACH ROUND.

Lemma 67. For updates (12.12)—(12.15) with the control update (12.13) and assumptions

A3–A5, the following holds true for any η̃ := ηlηg K ∈ [0,1/β]:

Cr ≤ (1− S
N )Cr−1 + S

N

(
4β(E[ f (xr−1)]− f (x?))+2β2Er

)
.

Proof. Recall that after round r , the control update rule (12.13) implies that c r
i is set as per

c r
i =

c r−1
i if i ∉ S r i.e. with probability (1− S

N ). ,
1
K

∑K
k=1 gi (y r

i ,k−1) with probability S
N .

Taking expectations on both sides yields

E[c r
i ] = (1− S

N )E[c r−1
i ]+ S

K N

∑K
k=1E[∇ fi (y r

i ,k−1)] , ∀ i ∈ [N ] .

Plugging the above expression in the definition of Cr we get

Cr = 1

N

N∑
i=1

‖E[c r
i ]−∇ fi (x?)‖2

= 1

N

N∑
i=1

‖(1− S
N )(E[c r−1

i ]−∇ fi (x?))+ S
N ( 1

K

∑K
k=1E[∇ fi (y r

i ,k−1)]−∇ fi (x?))‖2

≤ (1− S
N )Cr−1 + S

N 2K

∑K
k=1E‖∇ fi (y r

i ,k−1)−∇ fi (x?)‖2 .

The final step applied Jensen’s inequality twice. We can then further simplify using the re-
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laxed triangle inequality as

Er−1[Cr ] ≤
(
1− S

N

)
Cr−1 + S

N 2K

∑
i ,k
E‖∇ fi (y r

i ,k−1)−∇ fi (x?)‖2

≤
(
1− S

N

)
Cr−1 + 2S

N 2

∑
i
E‖∇ fi (xr−1)−∇ fi (x?)‖2 + 2S

N 2K

∑
i ,k
E‖∇ fi (y r

i ,k−1)−∇ fi (xr−1)‖2

(12.1)≤
(
1− S

N

)
Cr−1 + 2S

N 2

∑
i
E‖∇ fi (xr−1)−∇ fi (x?)‖2 + 2S

N 2K
β2

∑
i ,k
E‖y r

i ,k−1 −xr−1‖2

(12.3)≤
(
1− S

N

)
Cr−1 + S

N
(4β(E[ f (xr−1)]− f (x?))+β2Er ) .

The last two inequalities follow from smoothness of { fi } and the definition Er = 1
N K β

2 ∑
i ,k E‖y r

i ,k−1−
xr−1‖2.

BOUNDING CLIENT-DRIFT. WE WILL NOW BOUND THE FINAL SOURCE OF ERROR WHICH IS THE

CLIENT-DRIFT.

Lemma 68. Suppose our step-sizes satisfy ηl ≤ 1
81βKηg

and fi satisfies assumptions A3–A5.

Then, for any global ηg ≥ 1 we can bound the drift as

3βη̃Er ≤ 2η̃2

3 Cr−1 + η̃

25η2
g

(E[ f (xr−1)]− f (x?))+ η̃2

Kη2
g
σ2 .

Proof. First, observe that if K = 1, Er = 0 since y i ,0 = x for all i ∈ [N ] and that Cr−1 and the

right hand side are both positive. Thus the lemma is trivially true if K = 1. For K > 1, we

build a recursive bound of the drift.Starting from the definition of the update (12.12) and

then applying the relaxed triangle inequality, we can expand

1

S
Er−1

[ ∑
i∈S

∥∥(y i −ηl v i )−x
∥∥2

]
= 1

S
Er−1

[ ∑
i∈S

∥∥y i −ηl gi (y i )+ηl c −ηl c i −x
∥∥2

]
≤ 1

S
Er−1

[ ∑
i∈S

∥∥y i −ηl∇ fi (y i )+ηl c −ηl c i −x
∥∥2

]
+η2

lσ
2

≤ (1+a)

S
Er−1

[ ∑
i∈S

∥∥y i −ηl∇ fi (y i )+ηl∇ fi (x)−x
∥∥2︸ ︷︷ ︸

T2

]

+ (1+ 1
a )η2

l Er−1

[
1

S

∑
i∈S

‖c −c i +∇ fi (x)‖2
]

︸ ︷︷ ︸
T3

+η2
lσ

2 .

The final step follows from the relaxed triangle inequality (Lemma 57). Applying the contrac-

tive mapping Lemma 60 for ηl ≤ 1/β shows

T2 = 1

S

∑
i∈S

∥∥y i −ηl∇ fi (y i )+ηl∇ fi (x)−x
∥∥2 ≤ ∥∥y i −x

∥∥2 .
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Once again using our relaxed triangle inequality to expand the other term T3, we get

T3 = Er−1

[
1

S

∑
i∈S

‖c −c i +∇ fi (x)‖2
]

= 1

N

N∑
j=1

‖c −c i +∇ fi (x)‖2

= 1

N

N∑
j=1

‖c −c i +∇ fi (x?)+∇ fi (x)−∇ fi (x?)‖2

≤ 3‖c‖2 + 3

N

N∑
j=1

‖c i −∇ fi (x?)‖2 + 3

N

N∑
j=1

‖∇ fi (x)−∇ fi (x?)‖2

≤ 6

N

N∑
j=1

‖c i −∇ fi (x?)‖2 + 3

N

N∑
j=1

‖∇ fi (x)−∇ fi (x?)‖2

≤ 6

N

N∑
j=1

‖c i −∇ fi (x?)‖2 +6β( f (x)− f (x?)) .

The last step used the smoothness of fi . Combining the bounds on T2 and T3 in the original

inequality and using a = 1
K−1 gives

1

N

∑
i
E
∥∥y i ,k −x

∥∥2 ≤ (1+ 1
K−1 )

N

∑
i
E
∥∥y i ,k−1 −x

∥∥2 +η2
lσ

2

+6η2
l Kβ( f (x)− f (x?))+ 6Kη2

l

N

∑
i
E‖c i −∇ fi (x?)‖2 .

Recall that with the choice of c i in (12.13), the variance of ci is less than σ2

K . Separating its

mean and variance gives

1

N

∑
i
E
∥∥y i ,k −x

∥∥2 ≤
(
1+ 1

K −1

)
1

N

∑
i
E
∥∥y i ,k−1 −x

∥∥2 +7η2
lσ

2+

6η2
l Kβ( f (x)− f (x?))+ 6Kη2

l

N

∑
i
‖E[c i ]−∇ fi (x?)‖2 (12.19)

Unrolling the recursion (12.19), we get the following for any k ∈ {1, . . . ,K }

1

N

∑
i
E
∥∥y i ,k −x

∥∥2 ≤ (
6Kβη2

l ( f (x)− f (x?))+6Kη2
l Cr−1 +7βη2

lσ
2)(k−1∑

τ=0
(1+ 1

K−1 )τ
)

≤ (
6Kβη2

l ( f (x)− f (x?))+6Kη2
l Cr−1 +7βη2

lσ
2)(K −1)((1+ 1

K−1 )K −1)

≤ (
6Kβη2

l ( f (x)− f (x?))+6Kη2
l Cr−1 +7βη2

lσ
2)3K

≤ 18K 2βη2
l ( f (x)− f (x?))+18K 2η2

l Cr−1 +21Kβη2
lσ

2 .
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The inequality (K −1)((1+ 1
K−1 )K −1) ≤ 3K can be verified for K = 2,3 manually. For K ≥ 4,

(K −1)((1+ 1
K−1 )K −1) < K (exp( K

K−1 )−1) ≤ K (exp( 4
3 )−1) < 3K .

Again averaging over k and multiplying by 3β yields

3βEr ≤ 54K 2β2η2
l ( f (x)− f (x?))+54K 2βη2

l Cr−1 +63βKη2
lσ

2

= 1
η2

g

(
54β2η̃2( f (x)− f (x?))+54βη̃2Cr−1 +63βη̃2 σ2

K

)
≤ 1

η2
g

(
1

25 ( f (x)− f (x?))+ 2
3 η̃Cr−1 + η̃σ2

K

)
.

The equality follows from the definition η̃ = Kηlηg , and the final inequality uses the bound

that η̃≤ 1
81β .

PROGRESS IN ONE ROUND. NOW THAT WE HAVE A BOUND ON ALL ERRORS, WE CAN DESCRIBE

OUR PROGRESS.

Lemma 69. Suppose assumptions A3–A5 are true. Then the following holds for any step-sizes

satisfying ηg ≥ 1, ηl ≤ min
(

1
81βKηg

, S
15µN Kηg

)
, and effective step-size η̃ := Kηgηl

E
[
‖xr −x?‖2 + 9N η̃2

S Cr

]
≤ (1−µη̃

2 )
(
E‖xr−1 −x?‖2 + 9N η̃2

S Cr−1

)
−η̃(E[ f (xr−1)]− f (x?))+12η̃2

K S (1+ S
η2

g
)σ2 .

Proof. Starting from our server update equation,

∆x =− η̃

K S

∑
k,i∈S

(gi (y i ,k−1)+c −c i ), and E[∆x] =− η̃

K N

∑
k,i

gi (y i ,k−1) .

We can then apply Lemma 66 to bound the second moment of the server update as

Er−1‖x +∆x −x?‖2 = Er−1‖x −x?‖2 − 2η̃

K S
Er−1

∑
k,i∈S

〈∇ fi (y i ,k−1), x −x?〉+Er−1
∥∥∆x

∥∥2

≤ 2η̃

K S
Er−1

∑
k,i∈S

〈∇ fi (y i ,k−1), x?−x〉︸ ︷︷ ︸
T4

+Er−1‖x −x?‖2

+8βη̃2(E[ f (xr−1)]− f (x?))+8η̃2Cr−1 +4η̃2β2E + 12η̃2σ2

K S
.

The term T4 can be bounded by using perturbed strong-convexity (Lemma 59) with h = fi ,
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x = y i ,k−1, y = x?, and z = x to get

E[T4] = 2η̃

K S
E

∑
k,i∈S

〈∇ fi (y i ,k−1), x?−x
〉

≤ 2η̃

K S
E

∑
k,i∈S

(
fi (x?)− fi (x)+β‖y i ,k−1 −x‖2 − µ

4
‖x −x?‖2

)
=−2η̃E

(
f (x)− f (x?)+ µ

4
‖x −x?‖2

)
+2βη̃E .

Plugging T4 back, we can further simplify the expression to get

E‖x +∆x −x?‖2 ≤ E‖x −x?‖2 −2η̃
(

f (x)− f (x?)+ µ

4
‖x −x?‖2

)
+2βη̃E

+ 12η̃2σ2

K S
+8βη̃2(E[ f (xr−1)]− f (x?))+8η̃2Cr−1 +4η̃2β2E

= (1− µη̃
2 )‖x −x?‖2 + (8βη̃2 −2η̃)( f (x)− f (x?))

+ 12η̃2σ2

K S
+ (2βη̃+4β2η̃2)E +8η̃2Cr−1 .

We can use Lemma 67 (scaled by 9η̃2 N
S ) to bound the control-lag

9η̃2 N
S Cr ≤ (1− µη̃

2 )9η̃2 N
S Cr−1 +9(µη̃N

2S −1)η̃2Cr−1 +9η̃2(4β(E[ f (xr−1)]− f (x?))+2β2E
)

Now recall that Lemma 68 bounds the client-drift:

3βη̃Er ≤ 2η̃2

3 Cr−1 + η̃

25η2
g

(E[ f (xr−1)]− f (x?))+ η̃2

Kη2
g
σ2 .

Adding all three inequalities together,

E‖x +∆x −x?‖2 + 9η̃2NCr

S
≤ (1− µη̃

2
)

(
E‖x −x?‖2 + 9η̃2NCr−1

S

)
+ (44βη̃2 − 49

25
η̃)( f (x)− f (x?))

+ 12η̃2σ2

K S
(1+ S

η2
g

)+ (22β2η̃2 −βη̃)E + ( 9µη̃N
2S − 1

3 )η̃2Cr−1

Finally, the lemma follows from noting that η̃ ≤ 1
81β implies 44β2η̃2 ≤ 24

25 β̃ and η̃ ≤ S
15µN im-

plies 9µη̃N
2S ≤ 1

3 .

THE FINAL RATE FOR STRONGLY CONVEX FOLLOWS SIMPLY BY UNROLLING THE RECURSIVE BOUND

IN LEMMA 69 USING LEMMA 55. ALSO NOTE THAT IF c0
i = gi (x0), THEN

η̃N
S C0 CAN BE BOUNDED

IN TERMS OF FUNCTION SUB-OPTIMALITY F . FOR THE GENERAL CONVEX SETTING, AVERAGING
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OVER r IN LEMMA 69 WITH µ= 0 GIVES

1

R

R∑
r=1

E[ f (xr−1)]− f (x?) ≤ 1

η̃R
‖x0 −x?‖2 + 9N η̃

SR
C0 + 12η̃

K S
(1+ S

η2
g

)σ2

≤ 4‖x0 −x?‖σ
√

3(1+S/η2
g )

RK S

+
√

N

S

‖x0 −x?‖2 +9C0

R
+ 81β‖x0 −x?‖2

R
. .

THE LAST STEP FOLLOWS FROM USING A STEP SIZE OF η̃= min

 1
81β ,

√
S
N , ‖x0−x?‖

σ

√
K S

12R(1+ S
η2

g

.

12.5.2 Convergence of SCAFFOLD FOR NON-CONVEX FUNCTIONS ( THEOREM VIII)

WE NOW ANALYZE THE MOST GENERAL CASE OF SCAFFOLD WITH OPTION II ON FUNCTIONS

WHICH ARE POTENTIALLY NON-CONVEX. JUST AS IN THE NON-CONVEX PROOF, WE WILL FIRST

BOUND THE VARIANCE OF THE SERVER UPDATE IN LEMMA 70, THE CHANGE IN CONTROL LAG

IN LEMMA 71 AND FINALLY WE BOUND THE CLIENT-DRIFT IN LEMMA 72. COMBINING THESE

THREE TOGETHER GIVES US THE PROGRESS MADE IN ONE ROUND IN LEMMA 73. THE FINAL

RATE IS DERIVED FROM THE PROGRESS MADE USING LEMMA 56.

ADDITIONAL NOTATION. RECALL THAT IN ROUND r , WE UPDATE THE CONTROL VARIATE AS

(12.13)

c r
i =

 1
K

∑K
k=1 gi (y r

i ,k−1) IF i ∈S r ,

c r−1
i OTHERWISE .

WE INTRODUCE THE FOLLOWING NOTATION TO KEEP TRACK OF THE ‘LAG’ IN THE UPDATE OF

THE CONTROL VARIATE: DEFINE A SEQUENCE OF PARAMETERS {αr−1
i ,k−1} SUCH THAT FOR ANY

i ∈ [N ] AND k ∈ [K ] WE HAVE α0
i ,k−1 := x0 AND FOR r ≥ 1,

αr
i ,k−1 :=

y r
i ,k−1 IF i ∈S r ,

αr−1
i ,k−1 OTHERWISE .

(12.20)

BY THE UPDATE RULE FOR CONTROL VARIATES (12.13) AND THE DEFINITION OF {αr−1
i ,k−1} ABOVE,

THE FOLLOWING PROPERTY ALWAYS HOLDS:

c r
i =

1

K

K∑
k=1

gi (αr
i ,k−1) .

WE CAN THEN DEFINE THE FOLLOWING Ξr TO BE THE ERROR IN CONTROL VARIATE FOR ROUND

r :

Ξr := 1

K N

K∑
k=1

N∑
i=1

E‖αr
i ,k−1 −xr ‖2 . (12.21)
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ALSO RECALL THE CLOSELY RELATED DEFINITION OF CLIENT DRIFT CAUSED BY LOCAL UPDATES:

Er := 1

K N

K∑
k=1

N∑
i=1

E[‖y r
i ,k −xr−1‖2] .

VARIANCE OF SERVER UPDATE. LET US ANALYZE HOW THE CONTROL VARIATES EFFECT THE

VARIANCE OF THE AGGREGATE SERVER UPDATE.

Lemma 70. For updates (12.12)—(12.15)and assumptions A4 and A5, the following holds true

for any η̃ := ηlηg K ∈ [0,1/β]:

E‖Er−1[xr ]−xr−1‖2 ≤ 2η̃2β2Er +2η̃2E‖∇ f (xr−1)‖2 , and

E‖xr −xr−1‖2 ≤ 4η̃2β2Er +8η̃2β2Ξr−1 +4η̃2E‖∇ f (xr−1)‖2 + 9η̃2σ2

K S
.

Proof. Recall that that the server update satisfies

E[∆x] =− η̃

K N

∑
k,i
E[gi (y i ,k−1)] .

From the definition of αr−1
i ,k−1 and dropping the superscript everywhere we have

∆x =− η̃

K S

∑
k,i∈S

(gi (y i ,k−1)+c −c i ) where c i = 1

K

∑
k

gi (αi ,k−1) .

Taking norm on both sides and separating mean and variance, we proceed as

E‖∆x‖2 = E‖− η̃

K S

∑
k,i∈S

(gi (y i ,k−1)− gi (αi ,k−1)+c −c i )‖2

≤ E
∥∥∥∥− η̃

K S

∑
k,i∈S

(∇ fi (y i ,k−1)+E[c]−E[c i ])

∥∥∥∥2

+ 9η̃2σ2

K S

≤ E
[
η̃2

K S

∑
k,i∈S

∥∥∥∥∇ fi (y i ,k−1)+E[c]−E[c i ]

∥∥∥∥2]
+ 9η̃2σ2

K S

= η̃2

K N

∑
k,i
E

∥∥∥∥(∇ fi (y i ,k−1)−∇ fi (x))+ (E[c]−∇ f (x))+∇ f (x)− (E[c i ]−∇ fi (x))

∥∥∥∥2

+ 9η̃2σ2

K S

≤ 4η̃2

K N

∑
k,i
E‖∇ fi (y i ,k−1)−∇ fi (x)‖2 + 8η̃2

K N

∑
k,i
E‖∇ fi (αi ,k−1)−∇ fi (x)‖2

+4η̃2E‖∇ f (x)‖2 + 9η̃2σ2

K S

≤ 4η̃2β2Er +8β2η̃2Ξr−1 +4η̃2E‖∇ f (x)‖2 + 9η̃2σ2

K S
.

In the first inequality, note that the three random variables— 1
K S

∑
k,i∈S gi (y i ,k ), 1

S

∑
i∈S c i ,

and c—may not be independent but each have variance smaller than σ2

K S and so we can ap-
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ply Lemma 58. The rest of the inequalities follow from repeated applications of the relaxed

triangle inequality, β-Lipschitzness of fi , and the definition of Ξr−1 (12.21). This proves the

second statement. The first statement follows from our expression of Er−1[∆x] and similar

computations.

LAG IN THE CONTROL VARIATES. WE NOW ANALYZE THE ‘LAG’ IN THE CONTROL VARIATES

DUE TO US SAMPLING ONLY A SMALL SUBSET OF CLIENTS EACH ROUND. BECAUSE WE CAN-

NOT RELY ON CONVEXITY ANYMORE BUT ONLY ON THE LIPSCHITZNESS OF THE GRADIENTS, THE

CONTROL-LAG INCREASES FASTER IN THE NON-CONVEX CASE.

Lemma 71. For updates (12.12)—(12.15) and assumptions A4, A5, the following holds true for

any η̃≤ 1
24β ( S

N )α for α ∈ [ 1
2 ,1] where η̃ := ηlηg K :

Ξr ≤ (1− 17S
36N )Ξr−1 + 1

48β2 ( S
N )2α−1‖∇ f (xr−1)‖2 + 97

48 ( S
N )2α−1Er + ( S

Nβ2 )
σ2

32K S
.

Proof. The proof proceeds similar to that of Lemma 67 except that we cannot rely on convex-

ity. Recall that after round r , the definition of αr
i ,k−1 (12.20) implies that

ES r [αr
i ,k−1] = (1− S

N )αr−1
i ,k−1 + S

N y r
i ,k−1 .

Plugging the above expression in the definition of Ξr we get

Ξr = 1

K N

∑
i ,k
E‖αr

i ,k−1 −xr ‖2

=
(
1− S

N

)
· 1

K N

∑
i
E‖αr−1

i ,k−1 −xr ‖2

︸ ︷︷ ︸
T5

+ S

N
· 1

K N

∑
k,i
E‖y r

i ,k−1 −xr ‖2

︸ ︷︷ ︸
T6

.

We can expand the second term T6 with the relaxed triangle inequality to claim

T6 ≤ 2(Er +E‖∆xr ‖2) .

We will expand the first term T5 to claim for a constant b ≥ 0 to be chosen later

T5 = 1

K N

∑
i
E(‖αr−1

i ,k−1 −xr−1‖2 +‖∆xr ‖2 +Er−1

〈
∆xr ,αr−1

i ,k−1 −xr−1
〉

)

≤ 1

K N

∑
i
E(‖αr−1

i ,k−1 −xr−1‖2 +‖∆xr ‖2 + 1
b ‖Er−1[∆xr ]‖2 +b‖αr−1

i ,k−1 −xr−1‖2)

where we used Young’s inequality which holds for any b ≥ 0. Combining the bounds for T5
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and T6,

Ξr ≤
(
1− S

N

)
(1+b)Ξr−1 +2 S

N Er +2E‖∆xr ‖2 + 1
b E‖Er−1[∆xr ]‖2

≤ (
(
1− S

N

)
(1+b)+16η̃2β2)Ξr−1 + ( 2S

N +8η̃2β2 +2 1
b η̃

2β2)Er + (8+2 1
b )η̃2E‖∇ f (x)‖2)+ 18η̃2σ2

K S

The last inequality applied Lemma 70. Verify that with choice of b = S
2(N−S) , we have

(
1− S

N

)
(1+

b) ≤ (1 − S
2N ) and 1

b ≤ 2N
S . Plugging these values along with the bound on the step-size

16β2η̃2 ≤ 1
36 ( S

N )2α ≤ S
36N completes the lemma.

BOUNDING THE DRIFT. WE WILL NEXT BOUND THE CLIENT DRIFT Er . FOR THIS, CONVEXITY

IS NOT CRUCIAL AND WE WILL RECOVER A VERY SIMILAR RESULT TO LEMMA 68 ONLY USE THE

LIPSCHITZNESS OF THE GRADIENT.

Lemma 72. Suppose our step-sizes satisfy ηl ≤ 1
24βKηg

and fi satisfies assumptions A4–A5.

Then, for any global ηg ≥ 1 we can bound the drift as

5
3β

2η̃Er ≤ 5
3β

3η̃2Ξr−1 + η̃

24η2
g
E‖∇ f (xr−1)‖2 + η̃2β

4Kη2
g
σ2 .

Proof. First, observe that if K = 1, Er = 0 since y i ,0 = x for all i ∈ [N ] and that Ξr−1 and

the right hand side are both positive. Thus the Lemma is trivially true if K = 1 and we will

henceforth assume K ≥ 2. Starting from the update rule (12.12) for i ∈ [N ] and k ∈ [K ]

E‖y i ,k −x‖2 = E‖y i ,k−1 −ηl (gi (y i ,k−1)+c −c i )−x‖2

≤ E‖y i ,k−1 −ηl (∇ fi (y i ,k−1)+c −c i )−x‖2 +η2
lσ

2

≤ (1+ 1
K−1 )E‖y i ,k−1 −x‖2 +Kη2

l E‖∇ fi (y i ,k−1)+c −c i‖2 +η2
lσ

2

= (1+ 1
K−1 )E‖y i ,k−1 −x‖2 +η2

lσ
2

+Kη2
l E‖∇ fi (y i ,k−1)−∇ fi (x)+ (c −∇ f (x))+∇ f (x)− (c i −∇ fi (x)‖2

≤ (1+ 1
K−1 )E‖y i ,k−1 −x‖2 +4Kη2

l E‖∇ fi (y i ,k−1)−∇ fi (x)‖2 +η2
lσ

2

+4Kη2
l E‖c −∇ f (x)‖2 +4Kη2

l E‖∇ f (x)‖2 +4Kη2
l E‖c i −∇ fi (x)‖2

≤ (1+ 1
K−1 +4Kβ2η2

l )E‖y i ,k−1 −x‖2 +η2
lσ

2 +4Kη2
l E‖∇ f (x)‖2

+4Kη2
l E‖c −∇ f (x)‖2 +4Kη2

l E‖c i −∇ fi (x)‖2

The inequalities above follow from repeated application of the relaxed triangle inequalities

and the β-Lipschitzness of fi . Averaging the above over i , the definition of c = 1
N

∑
i c i and
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Ξr−1 (12.21) gives

1

N

∑
i
E‖y i ,k −x‖2 ≤ (1+ 1

K−1 +4Kβ2η2
l )

1

N

∑
i
E‖y i ,k−1 −x‖2

+η2
lσ

2 +4Kη2
l E‖∇ f (x)‖2 +8Kη2

lβ
2Ξr−1

≤ (
η2

lσ
2 +4Kη2

l E‖∇ f (x)‖2 +8Kη2
lβ

2Ξr−1
)(k−1∑
τ=0

(1+ 1
K−1 +4Kβ2η2

l )τ
)

=
(
η̃2σ2

K 2η2
g
+ 4η̃2

Kη2
g
E‖∇ f (x)‖2 + 8η̃2β2

Kη2
g
Ξr−1

)(
k−1∑
τ=0

(1+ 1
K−1 +

4β2η̃2

Kη2
g

)τ
)

≤
(

η̃σ2

24βK 2η2
g
+ 1

144β2Kη2
g
E‖∇ f (x)‖2 + η̃β

3Kη2
g
Ξr−1

)
3K .

The last inequality used the bound on the step-sizeβη̃≤ 1
24 . Averaging over k and multiplying

both sides by 5
3β

2η̃ yields the lemma statement.

PROGRESS MADE IN EACH ROUND. GIVEN THAT WE CAN BOUND ALL SOURCES OF ERROR, WE

CAN FINALLY PROVE THE PROGRESS MADE IN EACH ROUND.

Lemma 73. Suppose the updates (12.12)—(12.15) satisfy assumptions A4–A5. For any effective

step-size η̃ := Kηgηl satisfying η̃≤ 1
24β

( S
N

) 2
3 ,

(
E[ f (xr )]+12β3η̃2 N

S Ξr

)
≤

(
E[ f (xr−1)]+12β3η̃2 N

S Ξr−1

)
+ 5βη̃2σ2

K S
(1+ S

η2
g

)− η̃

14
E‖∇ f (xr−1)‖2 .

Proof. Starting from the smoothness of f and taking conditional expectation gives

Er−1[ f (x +∆x)] ≤ f (x)+〈∇ f (x),Er−1[∆x]〉+ β

2
Er−1‖∆x‖2 .

We as usual dropped the superscript everywhere. Recall that the server update can be written

as

∆x =− η̃

K S

∑
k,i∈S

(gi (y i ,k−1)+c −c i ), and ES [∆x] =− η̃

K N

∑
k,i

gi (y i ,k−1) .
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Substituting this in the previous inequality and applying Lemma 70 to bound E[‖∆x‖2] gives

E[ f (x +∆x)]− f (x) ≤− η̃

K N

∑
k,i

〈∇ f (x),E[∇ fi (y i ,k−1)]〉+ β

2
E‖∆x‖2

≤− η̃

K N

∑
k,i

〈∇ f (x),E[∇ fi (y i ,k−1)]〉+

2η̃2β3Er +4η̃2β3Ξr−1 +2βη̃2E‖∇ f (x)‖2 + 9βη̃2σ2

2K S

≤− η̃
2
‖∇ f (x)‖2 + η̃

2

∑
i ,k
E

∥∥∥∥ 1

K N

∑
i ,k

∇ fi (y i ,k−1)−∇ f (x)

∥∥∥∥2

+

2η̃2β3Er +4η̃2β3Ξr−1 +2βη̃2E‖∇ f (x)‖2 + 9βη̃2σ2

2K S

≤− η̃
2
‖∇ f (x)‖2 + η̃

2K N

∑
i ,k
E

∥∥∥∥∇ fi (y i ,k−1)−∇ fi (x)

∥∥∥∥2

+

2η̃2β3Er +4η̃2β3Ξr−1 +2βη̃2E‖∇ f (x)‖2 + 9βη̃2σ2

2K S

≤−( η̃2 −2βη̃2)‖∇ f (x)‖2 + ( η̃2 +2βη̃2)β2Er +4β3η̃2Ξr−1 + 9βη̃2σ2

2K S
.

The third inequality follows from the observation that −ab = 1
2 ((b − a)2 − a2)− 1

2 b2 ≤ 1
2 ((b −

a)2 −a2) for any a,b ∈ R, and the last from the β-Lipschitzness of fi . Now we use Lemma 71

to bound Ξr as

12β3η̃2 N
S Ξr ≤ 12β3η̃2 N

S

(
(1− 17S

36N )Ξr−1 + 1
48β2 ( S

N )2α−1‖∇ f (xr−1)‖2 + 97
48 ( S

N )2α−1Er + ( S
Nβ2 )

σ2

32K S

)
= 12β3η̃2 N

S Ξr−1 − 17
3 β

3η̃2Ξr−1 + 1
4βη̃

2( N
S )2−2α‖∇ f (x)‖2 + 97

4 β
3η̃2( N

S )2−2αEr + 3βη̃2σ2

8K S
.

Also recall that Lemma 72 states that

5
3β

2η̃Er ≤ 5
3β

3η̃2Ξr−1 + η̃

24η2
g
E‖∇ f (xr−1)‖2 + η̃2β

4Kη2
g
σ2 .

Adding these bounds on Ξr and Er to that of E[ f (x +∆x)] gives

(E[ f (x +∆x)]+12β3η̃2 N
S Ξr ) ≤ (E[ f (x)]+12β3η̃2 N

S Ξr−1)+ ( 5
3 − 17

3 )β3η̃2Ξr−1

−( η̃2 −2βη̃2− 1
4βη̃

2( N
S )2−2α)‖∇ f (x)‖2+( η̃2 −

5η̃
3 +2βη̃2+ 97

4 βη̃
2( N

S )2−2α)β2Er + 39βη̃2σ2

8K S (1+ S
η2

g
) .

By our choice of α = 2
3 and plugging in the bound on step-size βη̃( N

S )2−2α ≤ 1
24 proves the

lemma.

THE NON-CONVEX RATE OF CONVERGENCE NOW FOLLOWS BY UNROLLING THE RECURSION IN

LEMMA 73 AND SELECTING AN APPROPRIATE STEP-SIZE η̃ AS IN LEMMA 56. FINALLY NOTE THAT

IF WE INITIALIZE c 0
i = gi (x0) THEN WE HAVE Ξ0 = 0.
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12.6 Usefulness of local steps (Theorem IX)

LET US STATE OUR RATES OF CONVERGENCE FOR SCAFFOLD WHICH INTERPOLATES BETWEEN

IDENTICAL AND COMPLETELY HETEROGENEOUS CLIENTS. IN THIS SECTION, WE ALWAYS SET

ηg = 1 AND ASSUME ALL CLIENTS PARTICIPATE (S = N ).

Theorem XXXIII. Suppose that the functions { fi } are quadratic and satisfy assumptions A4,

A5 and additionally A2. Then, for global step-size ηg = 1 in each of the following cases, there

exist probabilities {pr
k } and local step-size ηl such that the output (12.23) of SCAFFOLD WHEN

RUN WITH NO CLIENT SAMPLING (S = N ) USING UPDATE (12.22) SATISFIES:

• STRONGLY CONVEX: fi SATISFIES (A3) FOR µ> 0, ηl ≤ min( 1
10β , 1

22δK , 1
10µK ), R ≥ max( 20β

µ , 44δK+20µK
µ ,20K )

THEN

E[‖∇ f (x̄R )‖2] ≤ Õ

(
βσ2

µRK N
+µD2 exp

(
− µ

20β+44δK +20µK
RK

))
.

• GENERAL CONVEX: f SATISFIES ∇2 f º−δI , ηl ≤ min( 1
10β , 1

22δK ), AND R ≥ 1, THEN

E[‖∇ f (x̄R )‖2] ≤O

(
σ

√
β( f (x0)− f ?)p

RK N
+ (β+δK )( f (x0)− f ?)

RK

)
.

NOTE THAT IF δ= 0, WE MATCH (UP TO ACCELERATION) THE LOWER BOUND IN (WOODWORTH

ET AL., 2018). WHILE CERTAINLY δ = 0 WHEN THE FUNCTIONS ARE IDENTICAL AS STUDIED

IN (WOODWORTH ET AL., 2018), OUR UPPER-BOUND IS SIGNIFICANTLY STRONGER SINCE IT IS

POSSIBLE THAT δ = 0 EVEN FOR HIGHLY HETEROGENEOUS FUNCTIONS. FOR EXAMPLE, OBJEC-

TIVE PERTURBATION (CHAUDHURI ET AL., 2011; KIFER ET AL., 2012) IS AN OPTIMAL MECHA-

NISM TO ACHIEVE DIFFERENTIAL PRIVACY FOR SMOOTH CONVEX OBJECTIVES (BASSILY ET AL.,

2014). INTUITIVELY, OBJECTIVE PERTURBATION RELIES ON MASKING EACH CLIENT’S GRADI-

ENTS BY ADDING A LARGE RANDOM LINEAR TERM TO THE OBJECTIVE FUNCTION. IN SUCH A

CASE, WE WOULD HAVE HIGH GRADIENT DISSIMILARITY BUT NO HESSIAN DISSIMILARITY.

OUR NON-CONVEX CONVERGENCE RATES ARE THE FIRST OF THEIR KIND AS FAR AS WE ARE

AWARE—NO PREVIOUS WORK SHOWS HOW ONE CAN TAKE ADVANTAGE OF SIMILARITY FOR NON-

CONVEX FUNCTIONS. HOWEVER, WE SHOULD NOTE THAT NON-CONVEX QUADRATICS DO NOT

HAVE A GLOBAL LOWER-BOUND ON THE FUNCTION VALUE f ?. WE WILL INSTEAD ASSUME THAT

f ? ALMOST SURELY LOWER-BOUNDS THE VALUE OF f (xR ), IMPLICITLY ASSUMING THAT THE

ITERATES REMAIN BOUNDED.

OUTLINE. IN THE REST OF THIS SECTION, WE WILL FOCUS ON PROVING THEOREM XXXIII.

WE WILL SHOW HOW TO BOUND VARIANCE IN LEMMA 77, BOUND THE AMOUNT OF DRIFT IN

LEMMA 76, AND SHOW PROGRESS MADE IN ONE STEP IN LEMMA 78. IN ALL OF THESE WE DO

NOT USE CONVEXITY, BUT STRONGLY RELY ON THE FUNCTIONS BEING QUADRATICS. THEN WE

COMBINE THESE TO DERIVE THE PROGRESS MADE BY THE SERVER IN ONE ROUND—FOR THIS WE

NEED weak-CONVEXITY TO ARGUE THAT AVERAGING THE PARAMETERS DOES NOT HURT CON-
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VERGENCE TOO MUCH. AS BEFORE, IT IS STRAIGHT-FORWARD TO DERIVE RATES OF CONVER-

GENCE FROM THE ONE-ROUND PROGRESS USING LEMMAS 55 AND 56.

12.6.1 Additional notation and assumptions

FOR ANY MATRIX M AND VECTOR v , LET ‖v‖2
M := v>M v . SINCE ALL FUNCTIONS IN THIS SEC-

TION ARE QUADRATICS, WE CAN ASSUME W.L.O.G THEY ARE OF THE FOLLOWING FORM:

fi (x)− fi (x?i ) = 1

2
‖x −x?i ‖2

Ai
FOR i ∈ [N ] , AND f (x) = 1

2
‖x −x?i ‖2

A , FOR ALL x ,

FOR SOME {x?i } AND x?, A := 1
N

∑N
i=1 Ai . WE ALSO ASSUME THAT A IS A SYMMETRIC MATRIX

THOUGH THIS REQUIREMENT IS EASILY RELAXED. NOTE THAT THIS IMPLIES f (x?) = 0 AND THAT

∇ fi (x) = A(x −x?i ). IF { fi } ARE ADDITIONALLY CONVEX, WE HAVE THAT x?i IS THE OPTIMUM OF

fi AND x? THE OPTIMUM OF f . HOWEVER, THIS IS NOT NECESSARILY TRUE IN GENERAL.

WE WILL ALSO FOCUS ON A SIMPLIFIED VERSION OF SCAFFOLD WHERE IN EACH ROUND r ,

CLIENT i PERFORMS THE FOLLOWING UPDATE STARTING FROM y r
i ,0 ← xr−1:

y r
i ,k = y r

i ,k−1 −η(gi (y r
i ,k−1)+∇ f (xr−1)−∇ fi (xr−1)) , I.E.

Er−1,k−1[y r
i ,k ] = y r

i ,k−1 −ηA(y r
i ,k−1 −x?)−η(Ai − A)(y r

i ,k−1 −xr−1)) ,
(12.22)

WHERE THE SECOND PART IS SPECIALIZED TO QUADRATICS AND THE EXPECTATION IS CON-

DITIONED OVER EVERYTHING BEFORE CURRENT STEP k OF ROUND r . AT THE END OF EACH

ROUND, AS BEFORE, xr = 1
N

∑N
i=1 y r

i ,K . THE FINAL OUTPUT OF THE ALGORITHM IS CHOSEN US-

ING PROBABILITIES {pr
k } AS

x̄R = xr
k WITH PROBABILITY pr

k , WHERE xr
k := 1

N

N∑
i=1

y r
i ,k . (12.23)

NOTE THAT WE ARE NOW POSSIBLY OUTPUTTING ITERATES COMPUTED WITHIN A SINGLE ROUND

AND THAT xr = xr
K . BEYOND THIS, THE UPDATE ABOVE DIFFERS FROM OUR USUAL SCAF-

FOLD IN TWO KEY ASPECTS: A) IT USES GRADIENTS COMPUTED AT xr−1 AS CONTROL VARI-

ATES INSTEAD OF THOSE AT EITHER xr−2 (AS IN OPTION I) OR y r−1
i ,k (AS IN OPTION II), AND B)

IT USES FULL BATCH GRADIENTS TO COMPUTE ITS CONTROL VARIATES INSTEAD OF STOCHAS-

TIC GRADIENTS. THE FIRST ISSUE IS EASY TO FIX AND OUR PROOF EXTENDS TO USING BOTH

OPTION I OR OPTION II USING TECHNIQUES IN SECTION 12.5. THE SECOND ISSUE IS MORE

TECHNICAL—USING STOCHASTIC GRADIENTS FOR CONTROL VARIATES COUPLES THE RANDOM-

NESS ACROSS THE CLIENTS IN MAKING THE LOCAL-UPDATES biased. WHILE IT MAY BE POSSI-

BLE TO GET AROUND THIS (CF. (LEI AND JORDAN, 2017; NGUYEN ET AL., 2017; TRAN-DINH

ET AL., 2019)), WE WILL NOT ATTEMPT TO DO SO IN THIS WORK. NOTE THAT IF K LOCAL UP-

DATE STEPS TYPICALLY REPRESENTS RUNNING MULTIPLE EPOCHS ON EACH CLIENT. HENCE ONE

ADDITIONAL EPOCH TO COMPUTE THE CONTROL VARIATE ∇ fi (x) DOES NOT SIGNIFICANTLY ADD

TO THE COST.
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FINALLY, WE DEFINE THE FOLLOWING SEQUENCE OF POSITIVE NUMBERS FOR NOTATION CON-

VENIENCE:

ξr
i ,k :=

(
Er−1[ f (y r

i ,k )]− f (x?)+δ(1+ 1
K )K−k Er−1‖y r

i ,k −xr−1‖2
)

, AND

ξ̃r
i ,k :=

(
[ f (Er−1[y r

i ,k ])]− f (x?)+δ(1+ 1
K )K−k Er−1,k−1‖Er−1[y r

i ,k ]−xr−1‖2
)

.

OBSERVE THAT FOR k = 0, ξr
i ,0 = ξ̃r

i ,0 = f (xr−1)− f (x?).

12.6.2 Lemmas tracking errors

EFFECT OF AVERAGING. WE SEE HOW AVERAGING CAN REDUCE VARIANCE. A SIMILAR ARGU-

MENT WAS USED IN THE SPECIAL CASE OF ONE-SHOT AVERAGING IN (ZHANG ET AL., 2013B).

Lemma 74. Suppose { fi } are quadratic functions and assumption A4 is satisfied. Then let xr
k

and y r
i ,k be vectors in step k and round r generated using (12.22)—(12.23). Then,

Er−1‖∇ f (xr
k )‖2 ≤ 1

N

N∑
i=1

‖∇ f (Er−1[y r
i ,k ])‖2 + 1

N 2

N∑
i=1

Er−1[‖∇ f (y r
i ,k )‖2] .

Proof. Observe that the variables {y i ,k − x} are independent of each other (the only source

of randomness is the local gradient computations). The rest of the proof is exactly that of

Lemma 58. Dropping superscripts everywhere,

Er−1‖A(xr
k −x?)‖2 = Er−1‖ 1

N

∑
i

A(y i ,k −x?)‖2

= Er−1‖ 1
N

∑
i

A(Er−1[y i ,k ]−x?)‖2 +Er−1‖ 1
N

∑
i

A(Er−1[y i ,k ]− y i ,k )‖2

= Er−1‖ 1
N

∑
i

A(Er−1[y i ,k ]−x?)‖2 + 1
N 2

∑
i
Er−1‖A(Er−1[y i ,k ]− y i ,k )‖2

= Er−1‖ 1
N

∑
i

A(Er−1[y i ,k ]−x?)‖2 + 1
N 2

∑
i
Er−1‖A(y i ,k −x?−Er−1[y i ,k −x?])‖2

≤ Er−1‖ 1
N

∑
i

A(Er−1[y i ,k ]−x?)‖2 + 1
N 2

∑
i
Er−1‖A(y i ,k −x?)‖2 .

The third equality was because {y i ,k } are independent of each other conditioned on every-

thing before round r .

WE NEXT SEE THE EFFECT OF AVERAGING ON FUNCTION VALUES.

Lemma 75. Suppose that f is δ general-convex, then we have:

1

N

n∑
i=1

ξr
i ,k ≥ Er−1[ f (xr

k )]− f (x?) , and
1

N

n∑
i=1

ξ̃r
i ,k ≥ f (Er−1[xr

k ])− f (x?) .
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Proof. Since f is δ-general convex, it follows that the function f (z)+δ(1+ 1
K )K−k‖z − x‖2

2 is

convex in z for any k ∈ [K ]. The lemma now follows directly from using convexity and the

definition of xr
k = 1

N y r
i ,k .

BOUNDING DRIFT OF ONE CLIENT. WE SEE HOW THE CLIENT DRIFT OF SCAFFOLD DEPENDS

ON δ.

Lemma 76. For the update (12.22), assuming (A2) and that { fi } are quadratics, the following

holds for any η≤ 1
21δK

Er−1,k−1‖y r
i ,k −xr−1‖2 ≤ (1+ 1

2K )‖y r
i ,k−1 −xr−1‖2 +7Kη2‖∇ f (y r

i ,k−1)‖2 +η2σ2 .

Proof. Starting from the update step (12.22)

Er−1,k−1‖y+
i −x‖2 ≤ ‖y i −x −ηA(y i −x?)−η(Ai − A)(y i −x)‖2 +η2σ2

≤ (1+ 1
7(K−1) )‖(I −η(Ai − A)(y i −x)‖2 +7Kη2‖A(y i −x?)‖2 +η2σ2 .

Note that if K = 1, then the first inequality directly proves the lemma. For the second inequal-

ity, we assumed K ≥ 2 and then applied our relaxed triangle inequality. By assumption A2, we

have the following for ηδ≤ 1

‖(I −η(Ai − A))2‖ = ‖I −η(Ai − A)‖2 ≤ (1+ηδ)2 ≤ 1+3ηδ .

Using the bound on the step-size η≤ 1
21δK gives

Er−1,k−1‖y+
i −x‖2 ≤ (1+ 1

7K )(1+ 1
7(K−1) )‖y i −x‖2 +7Kη2‖A(y i −x?)‖2 +η2σ2

Simple computations now give the Lemma statement for all K ≥ 1.

TRACKING THE VARIANCE. WE WILL SEE HOW TO BOUND THE VARIANCE OF THE OUTPUT.

Lemma 77. Consider the update (12.22) for quadratic { fi } with η ≤ max( 1
2δK , 1

β ). Then, if

further (A2), (A5) and (A4) are satisfied, we have

Er−1 f (xr ) ≤ f (Er−1[xr ])+3Kβσ2

N .

Further if { fi } are strongly convex satisfying (A3), we have

Er−1 f (xr ) ≤ f (Er−1[xr ])+βσ2

N

K∑
k=1

(1−µη)k−1 .

Proof. We can rewrite the update step (12.22) as below:

y i ,k = y i ,k−1 −η(Ai (y i ,k−1 −x?)+ (A− Ai )(x −x?))−ηζi ,k ,
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where by the bounded variance assumption A4, ζi ,k is a random variable satisfying Ek−1,r−1[ζi ,k ] =
0 and Ek−1,r−1‖ζi ,k‖2 ≤σ2. Subtracting x? from both sides and unrolling the recursion gives

y i ,K −x? = (I −ηAi )(y i ,K−1 −x?)−η((A− Ai )(x −x?)+ζi ,K )

= (I −ηAi )K (x −x?)−
K∑

k=1
η(I −ηAi )k−1(ζi ,k + (A− Ai )(x −x?)) .

Similarly, the expected iterate satisfies the same equation without the ζi ,k

Er−1[y i ,K ]−x? = (I −ηAi )K (x −x?)−
K∑

k=1
η(I −ηAi )k−1(A− Ai )(x −x?) .

This implies that the difference satisfies

Er−1[y i ,K ]− y i ,K = η
K∑

k=1
(I −ηAi )k−1ζi ,k .

We can relate this to the function value as follows:

Er−1‖xr
K −x?‖2

A = ‖Er−1[xr
k ]−x?‖2

A +Er−1‖Er−1[xr
k ]−xr

K ‖2
A

= ‖Er−1[xr
k ]−x?‖2

A +Er−1‖ 1
N

∑
i (Er−1[y i ,K ]− y i ,K )‖2

A

= ‖Er−1[xr
k ]−x?‖2

A +η2Er−1‖ 1
N

∑
i ,k (I −ηAi )k−1ζi ,k‖2

A

= ‖Er−1[xr
k ]−x?‖2

A + η2

N 2 Er−1
∑

i ,k‖(I −ηAi )k−1ζi ,k‖2
A

≤ ‖Er−1[xr
k ]−x?‖2

A + βη2

N 2 Er−1
∑

i ,k‖(I −ηAi )k−1ζi ,k‖2
2 .

The last inequality used smoothness of f and the one before that relied on the independence

of ζi ,k . Now, if fi is general convex we have for η≤ 1
2δK that I −ηAi ¹ (1+ 1

2K )I and hence

‖(I −ηAi )k−1ζi ,k‖2
2 ≤σ2(1+ 1

2K )2(k−1) ≤ 3σ2 .

This proves our second statement of the lemma. For strongly convex functions, we have for

η≤ 1
β ,

‖(I −ηAi )k−1ζi ,k‖2
2 ≤σ2(1−ηµ)2(k−1) ≤σ2(1−ηµ)k−1 .

12.6.3 Lemmas showing progress

PROGRESS OF ONE CLIENT IN ONE STEP. NOW WE FOCUS ONLY ON A SINGLE CLIENT AND

MONITOR THEIR PROGRESS.

Lemma 78. Suppose (A2), (A5) and (A4) hold, and { fi } are quadratics. Then, the following

holds for the update (12.22) with η ≤ min( 1
10β , 1

22δK , 1
µK ) with µ = 0 is f is non-convex or
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general-convex

ξr
i ,k ≤ (1− µη

6 )ξr
i ,k−1 −

η
6 Er−1‖∇ f (y r

i ,k−1)‖2 +7βη2σ2, and

ξ̃r
i ,k ≤ (1− µη

6 )ξ̃r
i ,k−1 −

η
6‖∇ f (Er−1[y r

i ,k−1])‖2 .

Proof. Recall that ξr
i ,k ≥ 0 is defined to be

ξr
i ,k :=

(
Er−1[ f (y r

i ,k )]− f (x?)+δ(1+ 1
K )K−k Er−1‖y r

i ,k −xr−1‖2
)

.

Let us start from the local update step (12.22) (dropping unnecessary subscripts and super-

scripts)

Er−1,k−1‖y+
i −x?‖2

A ≤ ‖y i −x?‖2
A −2η

〈
A(y i −x?), A(y i −x?)

〉+2η
〈

(A− Ai )(y i −x), A(y i −x?)
〉

+η2‖A(y i −x?)+ (Ai − A)(y i −x))‖2
A +βη2σ2

≤ ‖y i −x?‖2
A − 3η

2 ‖A(y i −x?)‖2
2 +2η‖(A− Ai )(y i −x)‖2

2

+2η2‖A(y i −x?)‖2
A +2η2‖(Ai − A)(y i −x))‖2

A +βη2σ2

≤ ‖y i −x?‖2
A − ( 3η

2 −2η2β)‖A(y i −x?)‖2
2 +βη2σ2 +δ2(2η2β+2η)‖y i −x‖2

2

≤ ‖y i −x?‖2
A − ( 3η

2 −2η2β)‖A(y i −x?)‖2
2 +βη2σ2 + δ

10K ‖y i −x‖2
2 .

The second to last inequality used that ‖·‖2
A ≤β‖·‖2

2 by (A5) and that ‖(A− Ai )( · )‖2
2 ≤ δ2‖·‖2

2

by (A2). The final inequality used that η ≤ max( 1
10β , 1

22δK ). Now, multiplying Lemma 76 by

δ(1+ 1
K )K−k ≤ 20δ

7 we have

δ(1+ 1
K )K−k Er−1,k−1‖y+

i −x‖2 ≤ δ(1+ 1
K )K−k (1+ 1

2K )‖y i −x‖2 +20δKη2‖A(y i −x?)‖2 +3δη2σ2

≤ δ(1+ 1
K )K−k (1+ 1

2K + 1
10K )‖y i −x‖2 − δ

10K ‖y i −x‖2

+20δKη2‖A(y i −x?)‖2 +3δη2σ2

≤ (1− 1
5K )δ(1+ 1

K )K−k+1(1+ 1
K )‖y i −x‖2 − δ

10K ‖y i −x‖2

+20δKη2‖A(y i −x?)‖2 +3δη2σ2 .

Adding this to our previous equation gives the following recursive bound:(
Er−1,k−1‖y+

i −x?‖2
A +δ(1+ 1

K )K−k Er−1,k−1‖y+
i −x‖2

)
≤(

‖y i −x?‖2
A + (1− 1

5K )δ(1+ 1
K )K−k+1‖y i −x‖2

)
−( 3η

2 −2η2β−20δKη2)‖A(y i−x?)‖2
2+(3δ+β)η2σ2

The bound on our step-size η≤ min( 1
10β , 1

22δK ) implies that 3η
2 −2η2β−20δKη2 ≥ η

3 and recall

that δ≤ 2β. This proves first statement of the lemma for non-strongly convex functions (µ=
0). If additionally f is strongly-convex with µ> 0, we have

η‖A(y i −x?)‖2
2 ≥ µη

2 ‖y i −x?‖2
A + η

2‖A(y i −x?)‖2
2 .
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This can be used to tighten the inequality as follows(
Er−1,k−1‖y+

i −x?‖2
A +δ(1+ 1

K )K−(k−1)Er−1,k−1‖y+
i −x‖2

)
≤(

(1− µη
6 )‖y i −x?‖2

A + (1− 1
5K )δ(1+ 1

K )K−k+1‖y i −x‖2
)
− η

2‖A(y i −x?)‖2
2 +7βη2σ2

If η ≤ 1
µK , then (1− 1

5K ) ≤ (1− µη
6 ) and we have the strongly-convex version of the first state-

ment.

Now for the second statement, recall that ξ̃r
i ,k ≥ 0 was defined to be

ξ̃r
i ,k :=

(
[ f (Er−1[y r

i ,k ])]− f (x?)+δ(1+ 1
K )K−k Er−1‖Er−1[y r

i ,k ]−xr−1‖2
)

.

Observe that for quadratics, Er−1[∇ f (x)] =∇ f (Er−1[x]). This implies that the analysis of ξ̃r
i ,k

is essentially of a deterministic process with σ = 0, proving the second statement. It is also

straightforward to repeat exactly the above argument to formally verify the second statement.

SERVER PROGRESS IN ONE ROUND. NOW WE COMBINE THE PROGRESS MADE BY EACH CLIENT

IN ONE STEP TO CALCULATE THE SERVER PROGRESS.

Lemma 79. Suppose (A2), (A5) and (A4) hold, and { fi } are quadratics. Then, the following

holds for the update (12.22) with η≤ min( 1
10β , 1

21δK , 1
10µK ) and weights wk := (1− µη

6 )1−k :

η

6

K∑
k=1

wk Er−1‖∇ f (xr
k )‖2 ≤ ( f (Er−2[xr−1])− f ?)−wK ( f (Er−1[xr ])− f ?)+

K∑
k=1

wk 8ησ
2

N .

Set µ= 0 if { fi }s are not strongly-convex (is only general-convex).

Proof. Let us do the non-convex (and general convex) case first. By summing over Lemma

78 we have
η

6

K∑
k=1

Er−1‖∇ f (y i ,k )‖2 ≤ ξr
i ,0 −ξr

i ,K +7Kβη2σ2 .

A similar result holds with σ= 0 for Er−1[y i ,k ]. Now, using Lemma 74 we have that

η

6

K∑
k=1

Er−1‖∇ f (xr
k )‖2 ≤ 1

N

N∑
i=1

(ξ̃r
i ,0 + 1

N ξi ,0)︸ ︷︷ ︸
=:θr+

− 1

N

N∑
i=1

(ξ̃r
i ,K + 1

N ξi ,K )︸ ︷︷ ︸
=:θr−

+7Kβη2 σ2

N .

Using Lemma 77, we have that

θr
+ = (1+ 1

N )( f (xr−1)− f (x?)) ≤ f (Er−1[xr ])+ 1
N E f (xr )− (1+ 1

N ) f (x?)+3Kβσ2

N .
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Further, by Lemma 75, we have that

θr
− ≥ f (Er−1[xr ])+ 1

N f (xr )− (1+ 1
N ) f (x?) .

Combining the above gives:

η

6

K∑
k=1

Er−1‖∇ f (xr
k )‖2 ≤ f (Er−2[xr−1])− f (Er−1[xr ])+10βK σ2

N .

proving the second part of the Lemma for weights wk = 1. The proof of strongly convex

follows a very similar argument. Unrolling Lemma 78 using weights wk := (1− µη
6 )1−k gives

η

6

K∑
k=1

wk Er−1‖∇ f (xr
k )‖2 ≤ θr

+−wK θ
r
−+

K∑
k=1

wk 7ησ
2

N .

As in the general-convex case, we can use Lemmas 75, 74 and 77 to prove that

η

6

K∑
k=1

wk Er−1‖∇ f (xr
k )‖2 ≤ ( f (Er−2[xr−1])− f ?)−wK ( f (Er−1[xr ])− f ?)+

K∑
k=1

wk 8ησ
2

N .

DERIVING FINAL RATES. THE PROOF OF THEOREM XXXIII FOLLOWS BY APPROPRIATELY UN-

ROLLING LEMMA 79. FOR GENERAL-CONVEX FUNCTIONS, WE CAN SIMPLY USE LEMMA 56

WITH THE PROBABILITIES SET AS pr
k = 1

K R . FOR STRONGLY-CONVEX FUNCTIONS, WE USE pr
k ∝

(1− µη
6 )1−r k AND FOLLOW THE COMPUTATIONS IN LEMMA 55.
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13 Appendix for Byzantine robust learn-
ing using history

13.1 Convergence of momentum SGD

HERE WE DESCRIBE THE CONVERGENCE PROOF OF THE NAIVE SGD WITH MOMENTUM ALGO-

RITHM. STARTING FROM A GIVEN x0 AND WITH m0 = 0, WE RUN THE FOLLOWING UPDATES

WITH A SEQUENCE OF MOMENTUM PARAMETERS αt ∈ [0,1] AND STEP-SIZES ηt ≥ 0

mt =αt g (x t−1)+ (1−αt )mt−1

x t = x t−1 −ηt mt .
(SGDM)

WHILE THERE EXIST NUMEROUS PREVIOUS ANALYSES OF SGD WITH MOMENTUM FOR SMOOTH

NON-CONVEX OBJECTIVES, MOST OF THEM RELY ON VIEWING THE SGDM METHOD AS AN AP-

PROXIMATION OF AN UNDERLYING SGD WITHOUT MOMENTUM ALGORITHM—SEE YU ET AL.

(2019A); LIU ET AL. (2020) FOR RECENT EXAMPLES OF THIS VIEWPOINT. BECAUSE THEY VIEW

MOMENTUM AS APPROXIMATING AN SGD PROCESS, THE RATES PROVED ARE NECESSARILY SLOWER

FOR MOMENTUM AND FURTHER THEY CAN ONLY HANDLE CONSTANT VALUES OF α (I.E. THE

MOMENTUM PARAMETER CANNOT DECREASE WITH T ). IN THIS WORK, WE TAKE AN ALTERNATE

VIEWPOINT TO MOMENTUM INSPIRED BY (CUTKOSKY AND ORABONA, 2019; KARIMIREDDY ET AL.,

2020A). WE VIEW THE MOMENTUM UPDATE AS A WAY TO REDUCE THE VARIANCE I.E. BY US-

ING AN EXPONENTIAL AVERAGING OVER MANY INDEPENDENT STOCHASTIC GRADIENTS WE GET

AN ESTIMATE OF THE TRUE FULL GRADIENT WHICH HAS MUCH LESSER VARIANCE ( THOUGH

HIGHER BIAS). THIS WAY, OUR METHOD CAN HANDLE MOMENTUM PARAMETER WHICH IS AL-

MOST 1 (α≈ 1
σ
p

T
). THUS THE RESULTING UPDATE HAS VERY LOW VARIANCE WHICH WILL LATER

BE CRUCIAL FOR DERIVING OPTIMAL ROBUST METHODS.

Theorem XXXIV (Convergence of SGDm). The SGDM algorithm with step-sizeηt = min{ 1
4σ

√
f (x0)− f ?

LT , 1
4L }

and momentum parameter α1 = 1 and αt = 4Lηt−1 for t ≥ 2 satisfies

1

T

T∑
t=1

E‖∇ f (x t−1)‖2 ≤ 80 ·σ
√

L( f (x0)− f ?)

T
+ 4L( f (x0)− f ?)

T
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FIRST, NOTE THAT THE RATE FOR MOMENTUM ALGORITHM IS OF THE ORDER σp
T

WHICH MATCHES

THE OPTIMAL RATE OF SGD FOR SMOOTH NON-CONVEX FUNCTIONS (ARJEVANI ET AL., 2019).

FURTHER, THIS RATE IS ACHIEVED USING VERY HIGH MOMENTUM WITH BOTH α (AND STEP-

SIZES) OF THE ORDER 1
σ
p

T
. ALSO, WHEN σ = 0 I.E. IN THE DETERMINISTIC GRADIENT CASE,

WE RECOVER THE OPTIMAL 1
T RATE (BUT WITH A CONSTANT STEP-SIZE AND MOMENTUM). THIS

IS INTUITIVE SINCE WE DO NOT NEED TO REDUCE THE VARIANCE IN THE DETERMINISTIC CASE

AND SO LARGE MOMENTUM IS UNNECESSARY.

Remark 80 (Large batch generalization). There is some empirical evidence that momentum

is also useful when using extremely large batch sizes (i.e. nearly deterministic gradient) and

helps in closing the generalization gap (Shallue et al., 2018). In contrast, current theory claims

that gradient descent (without momentum) is already optimal for non-convex optimization

(Arjevani et al., 2019). We believe these differences occur because even if using large batches,

there remains stochasticity in the gradient due to data-augmentation. Thus σ > 0 in practice

even when using full batches.

WE FIRST PROVE SOME SUPPORTING LEMMAS BEFORE PROVING THEOREM XXXIV.

Lemma 81. For α1 = 1 and any αt ∈ [0,1] for t ≥ 2, and an L-smooth function f we have that

E1[ f (x1)] ≤ f (x0)− η1

2 ‖∇ f (x0)‖2 + η1

2 σ
2 − η1

2 (1−Lη1)‖m1‖2 and for t ≥ 2

Et [ f (x t )] ≤ f (x t−1)+ ηt

2
‖mt −∇ f (x t−1)‖2 − ηt

2
‖∇ f (x t−1)‖2 − ηt

2
(1−Lηt )‖mt‖2 .

Proof. By the smoothness of the function f and the SGDm update,

f (x t ) ≤ f (x t−1)−ηt 〈∇ f (x t−1),mt 〉+
Lη2

t

2
‖mt‖2

= f (x t−1)+ ηt

2
‖mt −∇ f (x t−1)‖2 − ηt

2
‖∇ f (x t−1)‖2 − ηt

2
(1−Lηt )‖mt‖2 .

Taking conditional expectation on both sides yields the second part of the lemma. The first

part follows from standard descent analysis of SGD.

Lemma 82. Define e t := mt −∇ f (x t−1). Then, using any momentum and step-sizes such that

1 ≥αt ≥ 4Lηt−1 for t ≥ 2, we have for an L-smooth function f that E‖e1‖2 ≤α1σ
2 and for t ≥ 2

E‖e t‖2 ≤ (1− αt
2 )E‖e t−1‖2 +L2η2

t−1(1−αt )(1+ 2
αt

)E‖mt−1‖2 +α2
tσ

2 .
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Proof. Starting from the definition of e t and mt ,

E‖e t‖2 = E‖mt −∇ f (x t−1)‖2

= E‖αt g (x t−1)+ (1−αt )mt−1 −∇ f (x t−1)‖2

≤ (1−αt )2E‖mt−1 −∇ f (x t−1)‖2 +α2
tσ

2

= (1−αt )2E‖(mt−1 −∇ f (x t−2))+ (∇ f (x t−2)−∇ f (x t−1))‖2 +α2
tσ

2

≤ (1−αt )(1+ αt
2 )E‖mt−1 −∇ f (x t−2)‖2 + (1−αt )(1+ 2

αt
)E‖∇ f (x t−2)−∇ f (x t−1)‖2 +α2

tσ
2

≤ (1− αt
2 )E‖e t−1‖2 +L2(1−αt )(1+ 2

αt
)E‖x t−2 −x t−1‖2 +α2

tσ
2

≤ (1− αt
2 )E‖e t−1‖2 +L2η2

t−1(1−αt )(1+ 2
αt

)E‖mt−1‖2 +α2
tσ

2 .

Here the first inequality used the fact that g (x t−1) is an unbiased and independent stochastic

gradient with variance bounded by σ2. The second inequality follows from Fano’s inequality

i.e. ‖x + y‖2 ≤ (1+a)‖x‖2 + (1+ 1
a )‖y‖2 for any a ≥ 0.

WE ARE NOW READY TO PROVE THE CONVERGENCE THEOREM.

PROOF OF THEOREM XXXIV. SCALING LEMMA 81 BY L AND ADDING IT TO LEMMA 82 WE

HAVE FOR ANY t ≥ 2

E L f (x t )+E‖e t‖2 ≤ E L f (x t−1)+ Lηt

2
E‖e t‖2 − Lηt

2
E‖∇ f (x t−1)‖2 − Lηt

2
(1−Lηt )‖mt‖2

+ (1− αt
2 )E‖e t−1‖2 +L2η2

t−1(1−αt )(1+ 2
αt

)E‖mt−1‖2 +α2
tσ

2 .

BY TAKING ηt = ηt−1 = η AND 1 ≥αt ≥ 4Lη

E L( f (x t )− f ?)+
(
1− Lηt

2

)
E‖e t‖2 + Lηt

2 (1−Lηt )‖mt‖2︸ ︷︷ ︸
=:ξt

+Lηt

2 E‖∇ f (x t−1)‖2

≤ E L( f (x t−1)− f ?)+ (
1− αt

2

)
E‖e t−1‖2 +L2η2

t−1(1−αt )(1+ 2
αt

)E‖mt−1‖2 +α2
tσ

2 .

≤ E L( f (x t−1)− f ?)+
(
1− Lηt−1

2

)
E‖e t−1‖2 + Lηt−1

2 (1−Lηt−1)E‖mt−1‖2︸ ︷︷ ︸
=:ξt−1

+α2
tσ

2 .

NOTE THAT FROM THE FIRST PARTS OF LEMMA 81 AND LEMMA 82, WE HAVE

ξ1 ≤ E L( f (x1)− f ?)+
(
1− Lη1

2

)
E‖e1‖2 + Lη1

2 (1−Lη1)‖m1‖2

≤ L( f (x0)− f ?)+σ2 − Lη1

2 E‖∇ f (x0)‖2 .

SUMMING OVER t AND AGAIN REARRANGING GIVES

∑̀
t=1

Lηt E‖∇ f (x t−1)‖2 ≤ L( f (x0)− f ?)+ ∑̀
t=1

α2
tσ

2 .
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BY TAKING ηt = ηt−1 = η AND αt = 4Lη, THIS SIMPLIFIES THE ABOVE INEQUALITY TO

1

T

T∑
t=1

E‖∇ f (x t−1)‖2 ≤ f (x0)− f ?

ηT
+16Lησ2 .

BY TAKING η= min{ 1
4σ

√
f (x0)− f ?

LT , 1
4L } WE PROVE THE THEOREM.

13.2 Proof of Theorem XV - Failure of permutation-invariant meth-

ods

OUR PROOF BUILDS TWO INSTANCES OF A δ-ROBUST OPTIMIZATION PROBLEM SATISFYING DEF-

INITION D AND SHOWS THAT THEY ARE INDISTINGUISHABLE, MEANING THAT WE MAKE A MIS-

TAKE ON AT LEAST ONE OF THEM.

FOR THE FIRST PROBLEM, SET f (1)(x) = µ
2 x2−Gx WITH OPTIMUM AT x? = G

µ FOR SOME G TO BE

DEFINED LATER. IT HAS A GRADIENT ∇ f (1)(x) =µx−G AND WE SET THE STOCHASTIC GRADIENT

FOR SOME δ̃ ∈ [0,1] TO BE DEFINED LATER AS

g (1)(x) =
µx −σδ̃−1/2 WITH PROB. δ̃

µx O.W.

DEFINING G := σδ̃1/2, WE HAVE THAT g (1)(x) IS AN UNBIASED STOCHASTIC GRADIENT. FUR-

THER, ITS VARIANCE IS BOUNDED BY σ2 SINCE E[(g (1)(x)−∇ f (1)(x))2] ≤σ2. IN EACH ROUND t ,

LET EACH WORKER i ∈ [n] DRAW AN I.I.D. SAMPLE FROM THE DISTRIBUTION g (1)(x) AS THEIR

STOCHASTIC GRADIENT. DEFINE Ct ∈ [n] TO BE THE NUMBER OF WORKERS WHOSE STOCHASTIC

GRADIENTS IS THE FIRST SETTING I.E.

Ct = #
{

i ∈ [n] S.T. g (1)
i (xt ) =µxt −σδ̃−1/2

}
.

NOW WE DEFINE THE SECOND PROBLEM. LET f2(x) = µ
2 x2 WITH OPTIMUM AT x? = 0. DEFINE

ITS STOCHASTIC GRADIENT TO ALWAYS BE g (2)(x) =µx . NOW, IN ROUND t EACH WORKER i ∈ [n]

COMPUTES g (2)
i (xt ) = xt . THEN, min(nδ,Ct ) BYZANTINE WORKERS CORRUPT THEIR GRADIENTS

TO INSTEAD BE g (2)
j (xt ) =µxt −σδ̃−1/2.

NOTE THAT Ct IS THE SUM n INDEPENDENT BERNOULLI TRIALS WITH PARAMETER δ̃. THUS, WE

HAVE VIA CHERNOFF’S BOUND THAT FOR ANY γ≥ 2,

Pr[Ct > (1+γ)nδ̃] ≤ exp

(
−γnδ̃

2

)
.

BY PICKING γ = max(2,2(1+ log(T ))/(nδ̃)), WE HAVE THAT Pr[Ct > (1+γ)nδ̃] ≤ 1
2T . BY SET-

TING δ̃= δ/6 AND ASSUMING THAT n IS LARGE ENOUGH SUCH THAT 4(1+ logT ) ≤ δn , WE CAN
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SIMPLIFY (1+γ)nδ̃≥ δn . TAKING AN UNION BOUND OVER ALL VALUES OF t , WE HAVE THAT

Pr
[
Ct ≤ nδ FOR ALL t ∈ [T ]

]≥ 1

2
.

THUS, WITH PROBABILITY AT LEAST 0.5, WE HAVE THAT THE STOCHASTIC GRADIENTS IN PROB-

LEM 1 ARE EXACTLY THE SAME (UP TO PERMUTATION) TO PROBLEM 2. THIS IMPLIES THAT WITH

PROBABILITY 0.5, NO PERMUTATION-INVARIANT ALGORITHM CAN DISTINGUISH BETWEEN THE

TWO SETTINGS, IMPLYING THAT WE NECESSARILY INCUR AN ERROR OF THE ORDER OF THE DIF-

FERENCE BETWEEN THEIR MINIMA

µ

(
G

µ

)2

= σ2δ̃

µ
= σ2δ

6µ
.

13.3 Proof of Theorem XVI (Limits of robust aggregation)

IT IS EASY TO ESTABLISH THE SECOND RESULT SINCE IF δ ≥ 1
2 , IT IS IMPOSSIBLE TO DECIDE

WHICH OF THE SUBSETS IS GOOD. E.G. IF HALF OF THE INPUTS ARE a AND THE OTHER ARE

b , EVEN IF WE KNOW THAT ρ = 0, THE GOOD WORKERS MIGHT CORRESPOND TO EITHER THE a

HALF OR THE b HALF EQUALLY LIKELY. ASSUMING δ ≤ 1
2 , DEFINE THE FOLLOWING BINOMIAL

DISTRIBUTION:

P :=
ρδ−1/2 WITH PROB. δ/2

0 O.W.

SUPPOSE THAT EACH xi FOR ALL i ∈ [n] IS AN IID SAMPLE DRAWN FROM P . CLEARLY WE HAVE

THAT E(xi − x j )2 ≤ ρ2. DEFINE Bn ∈ [n] TO BE THE NUMBER OF SAMPLES WHICH ARE EQUAL TO

ρδ−1/2 ( WITH THE REST BEING 0). NOW CONSIDER A SECOND SCENARIO FOR {xi }: THE ADVER-

SARY SETS min(δn,Bn) OF THE VARIABLES TO ρδ−1/2 AND THE REST OF THE GOOD VARIABLES

ARE 0.

NOTE THAT E[Bn] = nδ/2 AND SO BY MARKOV ’S INEQUALITY WE HAVE THAT Pr[Bn ≤ nδ] ≥
1
2 . SO WITH AT LEAST PROBABILITY 1/2, THE TWO CASES ARE IMPOSSIBLE TO DISTINGUISH.

HOWEVER IN THE FIRST CASE, ALL SAMPLES ARE GOOD WHEREAS IN THE SECOND CASE ONLY

THE 0 SAMPLES ARE GOOD. HENCE, ANY OUTPUT WILL NECESSARILY HAVE AN ERROR OF THE

ORDER OF THE DIFFERENCE BETWEEN THEIR RESPECTIVE x̄ S:

(Ex∼P [x]−0)2 = (ρδ1/2/2)2 = δρ2

4
.

13.4 Proof of Theorem XVII- Robustness of iterative clipping

FIRST, SUPPOSE THAT δ= 0. IN THIS CASE, OUR CHOICE OF CLIPPING RADIUS τl = Õ (ρ/
p
δ) =∞

MEANS THAT WE WILL SIMPLY AVERAGES ALL POINTS. HENCE, WE RECOVER x̄ EXACTLY WITH
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NO ERROR AS REQUIRED. NOW IF δ> 0, THIS MEANS THAT AT LEAST ONE OF THE n WORKERS IS

BYZANTINE AND HENCE δ≥ 1/n. WE CONSIDER THIS CASE IN THE REST OF THE PROOF.

RECALL THAT x̄ = 1
|G |

∑
i∈G x i AND LET US DEFINE µ= E[x j ] FOR ANY FIXED j ∈ G . NOW SINCE

THE GOOD RANDOM VECTORS ARE IID, WE HAVE

E‖x̄ −µ‖2 ≤ ρ2

|G | ≤
2ρ2

n
≤ 2δρ2 .

WE WILL FIRST ANALYZE A SINGLE STEP OF CENTERED CLIPPING ASSUMING WE HAVE ACCESS

TO v SUCH THAT I) v IS INDEPENDENT OF THE SAMPLES {x i |i ∈G }, AND II) E‖v −µ‖2 ≤ O (ρ2).

THEN, WE WILL NEXT SEE HOW TO CONSTRUCT SUCH A v . OUR PROOF IS INSPIRED BY (ZHANG

ET AL., 2019B; GORBUNOV ET AL., 2020) WHO ANALYZE THE BIAS OF CLIPPING UNDER HEAVY-

TAILED NOISE.

13.4.1 Single iteration with good starting point

LET US SUPPOSE THAT AT SOME ROUND l , WE HAVE THE FOLLOWING PROPERTIES:

• WE HAVE A GOOD ESTIMATE OF THE MEAN SATISFYING E‖v l −µ‖2 ≤ B 2
l WHERE Bl IS A

KNOWN DETERMINISTIC CONSTANT.

• THE STARTING POINT v l IS STATISTICALLY INDEPENDENT OF {x i |i ∈G }.

DEFINE INDICATOR VARIABLES 1i ,l := 1{‖v l − x i‖ ≥ τl } WHICH DEFINE THE EVENT THAT THE

VECTOR x i IS CLIPPED, AS WELL THE RESULTING CLIPPED VECTOR

y i ,l := v l + (x i −v l )min

(
1,

τl

‖x i −v l‖
)

.

THE OUTPUT CAN ALSO BE WRITTEN IN THIS NEW NOTATION AS

v l+1 =
1

n

∑
i∈[n]

y i ,l = (1−δ)
1

|G |
∑
i∈G

y i ,l +δ
1

|B|
∑

j∈B

y j ,l .
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THEN THE ERROR CAN BE DECOMPOSED AS FOLLOWS

E‖v l+1 −µ‖2 = E
∥∥∥∥∥(1−δ)

1

|G |
∑
i∈G

y i ,l +δ
1

|B|
∑

j∈B

y j ,l −
1

|G |
∑
i∈G

E[x i ]

∥∥∥∥∥
2

= E
∥∥∥∥∥(1−δ)

1

|G |
∑
i∈G

(y i ,l −E[x i ])+δ 1

|B|
∑

j∈B

(y j ,l −µ)

∥∥∥∥∥
2

≤ 2(1−δ)2E

∥∥∥∥∥ 1

|G |
∑
i∈G

y i ,l −E[x i ]

∥∥∥∥∥
2

+2δ2 1

|B|
∑

j∈B

E
∥∥∥y j ,l −µ

∥∥∥2

= 2(1−δ)2

∥∥∥∥∥ 1

|G |
∑
i∈G

E[y i ,l ]−E[x i ]

∥∥∥∥∥
2

︸ ︷︷ ︸
T1

+2(1−δ)2E

∥∥∥∥∥ 1

|G |
∑
i∈G

y i ,l −E[y i ,l ]

∥∥∥∥∥
2

︸ ︷︷ ︸
T2

+2δ2 1

|B|
∑

j∈B

E
∥∥∥y j ,l −µ

∥∥∥2

︸ ︷︷ ︸
T3

.

THUS, THE ERROR CAN BE DECOMPOSED INTO 3 TERMS: T1 CORRESPONDS TO THE BIAS IN-

TRODUCED BY OUR CLIPPING OPERATION IN THE GOOD WORKERS, T2 IS THE VARIANCE OF THE

CLIPPED GOOD WORKERS, AND FINALLY T3 IS THE ERROR DUE TO THE BAD WORKERS. WE WILL

ANALYZE EACH OF THE THREE ERRORS IN TURN,

T3. FOR ANY BAD INDEX j ∈ B , WE CAN BOUND THE ERROR USING OUR CLIPPING RADIUS AS

FOR ANY PARAMETER γ> 0 AS

E
∥∥∥y j ,l −µ

∥∥∥2 ≤ (1+ 1
γ )E

∥∥∥y j ,l −v l

∥∥∥2 + (1+γ)E
∥∥v l −µ

∥∥2 ≤ (1+γ)τ2
l + (1+ 1

γ )B 2
l .

THE FIRST STEP USED YOUNG’S INEQUALITY. FURTHER, THE ERROR DUE TO THE BAD BUYS IS

ALSO SMALLER IF OUR INITIAL ESTIMATION ERROR B 2
l IS SMALL.

T1. WE THEN COMPUTE THE BIAS IN THE UPDATE OF A GOOD WORKER i ∈ G DUE TO THE

CLIPPING OPERATION. LET 1i ,l BE AN INDICATOR VARIABLE DENOTING IF THE i TH WORKER WAS

CLIPPED (I.E. ITS DISTANCE FROM v l EXCEEDING τl ). NOTE THAT IF 1i ,l = 0, WE HAVE THAT

y i ,l = x i . THEN,

E
∥∥y i ,l −x i

∥∥= E1i ,l
∥∥y i ,l −x i ]

∥∥≤ E1i ,l‖v l −x i ]‖ ≤ E1i ,l‖v l −x i‖2

τ

≤ E‖v l −x i‖2

τ
≤

(1+ 1
γ )E‖v l −µ‖2 + (1+γ)E‖x i −µ‖2

τ

≤
(1+ 1

γ )ρ2 + (1+γ)B 2
l

τ
.

USING THIS, WE CAN COMPUTE THE ERROR AS

T1 ≤ 1

|G |
∑
i∈G

∥∥E[y i ,l ]−E[x i ]
∥∥2 ≤ 1

|G |
∑
i∈G

(E
∥∥y i ,l −x i

∥∥)2 ≤
((1+ 1

γ )ρ2 + (1+γ)B 2
l )2

τ2 . (13.1)
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* T2. SINCE v l IS INDEPENDENT OF {x i |i ∈ G }, THE RANDOM VECTORS {y i |i ∈ G } ARE ALSO

INDEPENDENT OF EACH OTHER. WE THEN HAVE,

T2 = E 1

(|G |)2

∑
i∈G

∥∥y i ,l −E[y i ,l ]
∥∥2

≤ E 1

(|G |)2

∑
i∈G

‖x i −E[x i ]‖2

≤ ρ2

|G | ≤
2ρ2

n
≤ 2δρ2 .

THE EQUALITY IN THE FIRST STEP USED THE FACT THAT THE QUANTITIES WERE INDEPENDENT,

AND THE NEXT INEQUALITY FOLLOWS BECAUSE OF THE CONTRACTIVITY OF A CLIPPING (PRO-

JECTION) STEP. THE LAST USED THE FACT THAT |G | ≥ n/2.

COMBINING THE THREE ERROR TERMS, WE HAVE

E‖v l+1 −µ‖2 ≤ 2(1−δ)2
((1+ 1

γ )ρ2 + (1+γ)B 2
l )2

τ2 +2(1−δ)22δρ2 +2δ2
(
(1+γ)τ2

l + (1+ 1
γ )B 2

l

)
= (4(1−δ)δ(1+γ)3/2 +2(1+ 1

γ )δ2)B 2
l +4(1−δ)2δρ2 + (4(1−δ)(1+ 1

γ )
√

1+γ)δρ2

≤ (4(1−δ)δ(1+ 1
3 )3/2 +8δ2)B 2

l +4δρ2 + (16
√

1+ 1
3 )δρ2

≤ (6.158δ(1−δ)+8δ2)B 2
l +22δρ2 .

THE LAST STEP USED γ= 1
3 . THE EQUALITY IN THE SECOND STEP USED A CLIPPING RADIUS OF

τ2
l = 4(1−δ)

(4ρ2 + 4
3 B 2

l )
p

3δ
.

THUS, WE HAVE

‖v l+1 −µ‖2 ≤ (6.158δ(1−δ)+8δ2)B 2
l +22δρ2 ≤ 8δB 2

l +22δρ2 . (13.2)

IN MANY CASES, WE WILL HAVE ACCESS TO A GOOD STARTING POINT SATISFYING B 2
l = O (ρ2).

FOR EXAMPLE, SUPPOSE WE KNEW THAT E‖x i‖2 ≤ bρ2 FOR ANY FIXED i ∈ G . THEN, THEN

B 2
l = bρ2 WITH v l = 0. IN SUCH CASES, THE ABOVE PROOF SHOWS THAT A SINGLE ITERATION OF

CENTERED CLIPPING IS SUFFICIENT TO GIVE A ROBUST AGGREGATOR.

13.4.2 Robustness starting from arbitrary point

IN THIS SECTION, WE WILL GIVE AN ALGORITHM FOR THOSE CASES WHERE WE DO NOT HAVE

ACCESS TO ANY GOOD STARTING POINT. THEN, WE PROCEED AS FOLLOWS: FIRST, WE PARTITION

THE GIVEN DATASET X = {x1, . . . , xn} RANDOMLY INTO X1 AND X2 OF SIZES |X1| = 2n/3 AND

|X2| = n/3. NOTE THAT THE FRACTION OF BYZANTINE WORKERS IN EACH OF THESE IS AT MOST

|B| < δn = 1.5δ︸︷︷︸
=:δ1

|X1| = 3δ︸︷︷︸
=:δ2

|X2|. OUR STRATEGY THEN IS TO COMPUTE v l WITH O (ρ2) ERROR
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USING SET X1, AND THEN RUN A SINGLE STEP OF CENTERED CLIPPING USING DATA X2. BY

(13.2), WE CAN GUARANTEE THAT THE OUTPUT WILL HAVE ERROR O (δρ2).

COMPUTING A GOOD STARTING POINT. STARTING FROM AN ARBITRARY v 0 WITH ERROR E‖v 0−
µ‖2 ≤ B 2

0 , WE WILL REPEATEDLY APPLY CENTERED CLIPPING (CC). CONSIDER ITERATION l ≥ 0

WITH ERROR E‖v l −µ‖2 ≤ B 2
l . THEN, TO ANALYZE THE ERROR OF E‖v l+1 −µ‖2, WE WILL PRO-

CEED EXACTLY AS IN THE SINGLE ITERATION CASE UP TO EQUATION (13.1). HOWEVER, WHILE

ANALYZING THE ERROR OF T2, WE CAN NO LONGER RELY ON {y 1, . . . , y n} BEING INDEPENDENT.

HENCE, THIS STEP INSTEAD BECOMES

T2 ≤ E 1

|G |
∑
i∈G

∥∥y i ,l −E[y i ,l ]
∥∥2

≤ E 1

|G |2
∑
i∈G

‖x i −E[x i ]‖2

≤ ρ2 .

COMBINING THE PREVIOUS BOUNDS FOR THE ERRORS OF T1 AND T3 WITH THE ABOVE YIELDS

E‖v l+1 −µ‖2 ≤ 2(1−δ)2
((1+ 1

γ )ρ2 + (1+γ)B 2
l )2

τ2 +2(1−δ)2ρ2 +2δ2
(
(1+γ)τ2

l + (1+ 1
γ )B 2

l

)
= (4(1−δ)δ(1+γ)3/2 +2(1+ 1

γ )δ2)B 2
l +2(1−δ)2ρ2 + (4(1−δ)(1+ 1

γ )
√

1+γ)δρ2

≤ (4(1−δ)δ(1+ 1
3 )3/2 +8δ2)B 2

l +2ρ2 + (16
√

1+ 1
3 )δρ2

≤ (6.158δ(1−δ)+8δ2)B 2
l + (20δ+2)ρ2

≤ 6.45δB 2
l +5ρ2 .

THE LAST STEP ASSUMED δ≤ 0.15, AND THE STEP BEFORE THAT USED γ= 1
3 . THE EQUALITY IN

THE SECOND STEP USED A CLIPPING RADIUS OF

τ2
l = 4(1−δ)

(4ρ2 + 4
3 B 2

l )
p

3δ
.

NOTE THAT THIS HOLDS FOR any iteration l AND WE DID NOT MAKE ANY ASSUMPTIONS ON v l .

HENCE, WE CAN DEFINE B 2
l+1 = 6.45δB 2

l +5ρ2. WITH THIS, WE CAN GUARANTEE THAT FOR ANY

l ≥ 0, WE HAVE E‖v l −µ‖2 ≤ B 2
l WHERE

B 2
l ≤ (6.45δ)l B 2

0 +154ρ2 FOR δ≤ 0.15. (13.3)

* PUTTING IT TOGETHER. LET US RUN THE ABOVE PROCEDURE FOR l STEPS ON X1 WITH δ1 =
1.5δ. THEN, BY (13.3) WE CAN GUARANTEE THAT v l SATISFIES

B 2
l ≤ (9.7δ)l B 2

0 +154ρ2 FOR δ≤ 0.1.
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SINCE v l WAS COMPUTED ONLY USING X1, IT IS INDEPENDENT OF X2 AND HENCE BY (13.2)

HAS AN ERROR WITH δ2 = 3δ FOR δ≤ 0.1:

E‖v l+1 −µ‖2 ≤ 24δB 2
l +66δρ2

≤ 24δ
(
(9.7δ)l B 2

0 +154ρ2
)
+66δρ2

≤ (9.7δ)l+12.5B 2
0 +3762δρ2 .

NOW, WE CAN FINISH THE PROOF OF THE THEOREM AS

E‖v l+1 − x̄‖2 ≤ (1+ 1
99 )E‖v l+1 −µ‖2 +100E‖µ− x̄‖2

≤ (1+ 1
99 )E‖v l+1 −µ‖2 +100δρ2

≤ (9.7δ)l+13B 2
0 +4000δρ2 .

OUR THEORY CONSIDERS THIS TWO STAGE PROCEDURE ONLY DUE TO A TECHNICALITY. WE

BELIEVE THAT THE SINGLE STAGE METHOD ALSO YIELDS SIMILAR GUARANTEES, AND LEAVE ITS

ANALYSIS (ALONG WITH OBTAINING A BETTER δmax) FOR FUTURE WORK.

13.5 Proof of Theorem XIX - Byzantine-Robust Convergence

WE STATE SEVERAL SUPPORTING LEMMAS BEFORE PROVING OUR MAIN THEOREM XIX.

Lemma 83 (Aggregation error). Given that Definition F holds, and that we use momentum

constant parameter with α1 = 1 and αt = α for t ≥ 2, the error between the ideal average mo-

mentum m̄t and the output of the robust aggregation rule mt for any t ≥ 2 can be bounded

as

E‖mt −m̄t‖2 ≤ 2cδσ2(α+ (1−α)t−1) .

For t = 1 we can simplify the bound as E‖m1 −m̄1‖2 ≤ 2cδσ2.

Proof. Expanding the definition of the worker momentum for any two good workers i , j ∈G ,

E‖mi ,t −m j ,t‖2 = E‖αt (g i (x t−1)−g j (x t−1))+ (1−αt )(mi ,t−1 −m j ,t−1)‖2

≤ E‖(1−αt )(mi ,t−1 −m j ,t−1)‖2 +2α2
tσ

2

≤ (1−αt )E‖mi ,t−1 −m j ,t−1‖2 +2α2
tσ

2 .

Recall that we use α1 = 1 and a fixed momentum αt = α the rest of the steps. Unrolling the

recursion above yields

E‖mi ,t −m j ,t‖2 ≤
(

t∑
`=2

(1−α)t−`
)

2α2σ2 + (1−α)t−12σ2 ≤ 2σ2(α+ (1−α)t−1) .
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The previous computation shows that all the good vectors given to the server are close to

each other with ρ2 = 2σ2(α+(1−α)t−1). Hence, by Definition F the output of the aggregation

rule AGG(mt ,1, . . . , mt ,n) satisfies the lemma statement.

Lemma 84 (Descent bound). For α1 = 1 and any αt ∈ [0,1] for t ≥ 2, ηt ≤ 1
L , and an L-smooth

function f we have for any t ≥ 1

Et [ f (x t )] ≤ f (x t−1)− ηt

2
‖∇ f (x t−1)‖2 +ηt Et‖ē t‖2 +ηt Et‖mt −m̄t‖2 .

where ē t := m̄t −∇ f (x t−1).

Proof. By the smoothness of the function f and the server update,

f (x t ) ≤ f (x t−1)−ηt 〈∇ f (x t−1),mt 〉+
Lη2

t

2
‖mt‖2

≤ f (x t−1)−ηt 〈∇ f (x t−1),mt 〉+ ηt

2
‖mt‖2

= f (x t−1)+ ηt

2
‖mt −∇ f (x t−1)‖2 − ηt

2
‖∇ f (x t−1)‖2

= f (x t−1)+ ηt

2
‖mt ±m̄t −∇ f (x t−1)‖2 − ηt

2
‖∇ f (x t−1)‖2

≤ f (x t−1)+ηt‖ē t‖2 +ηt‖mt −m̄t‖2 − ηt

2
‖∇ f (x t−1)‖2 .

Taking conditional expectation on both sides yields the second part of the lemma.

Lemma 85 (Error bound). Using any constant momentum and step-sizes such that 1 ≥ α ≥
8Lη for t ≥ 2, we have for an L-smooth function f that E‖ē1‖2 ≤ 2σ2

n and for t ≥ 2

E‖ē t‖2 ≤ (1− 2α
5 )E‖ē t−1‖2 + α

10 E‖∇ f (x t−2)‖2 + α
10 E‖mt−1 −m̄t−1‖2 +α2 2σ2

n .

Proof. Using the definitions (13.4) and proceeding as in Lemma 82, we have

E‖ē t‖2 = E‖m̄t −∇ f (x t−1)‖2

= E‖αt ḡ (x t−1)+ (1−αt )m̄t−1 −∇ f (x t−1)‖2

≤ E‖αt∇ f (x t−1)+ (1−αt )m̄t−1 −∇ f (x t−1)‖2 +α2
t

2σ2

n

= (1−αt )2E‖(m̄t−1 −∇ f (x t−2))+ (∇ f (x t−2)−∇ f (x t−1))‖2 +α2
t

2σ2

n

≤ (1−αt )(1+ αt
2 )E‖(m̄t−1 −∇ f (x t−2))‖2 + (1−αt )(1+ 2

αt
)E‖∇ f (x t−2)−∇ f (x t−1)‖2 +α2

t
2σ2

n

≤ (1− αt
2 )E‖ē t−1‖2 + 2L2

αt
E‖x t−2 −x t−1‖2 +α2

t
2σ2

n

= (1− αt
2 )E‖ē t−1‖2 + 2L2η2

t−1
αt

E‖mt−1‖2 +α2
t

2σ2

n .

Note that we have 2σ2

n instead of simply σ2 since we average the momentums (and hence

also the stochastic gradients) over all the good workers (who number at least n/2). Another
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difference is that in the last equality we have the robust aggregate mt−1 instead of the average

momentum m̄t−1. We can proceed as

E‖ē t‖2 ≤ (1− α
2 )E‖ē t−1‖2 + 2L2η2

α E‖mt−1‖2 +α2 2σ2

n

= (1− α
2 )E‖ē t−1‖2 + 2L2η2

α E‖mt−1 ±m̄t−1 ±∇ f (x t−2)‖2 +α2 2σ2

n

≤ (1− α
2 )E‖ē t−1‖2 + 6L2η2

α ‖ē t−1‖2 + 6L2η2

α E‖mt−1 −m̄t−1‖2 + 6L2η2

α E‖∇ f (x t−2)‖2 +α2 2σ2

n .

Our choice of the momentum parameter α implies 64L2η2 ≤α2 and yields the lemma state-

ment.

PROOF OF THEOREM XIX. WE WILL LOOSELY FOLLOW THE PROOF OF VANILLA SGDM PROOF IN

THEOREM XXXIV. RECALL THAT G DENOTES THE GOOD SET AND B DENOTES THE BAD BYZAN-

TINE WORKERS WITH |G | ≤ (1−δ)n AND |B| = n − |G | ≤ δn . DEFINE THE IDEAL MOMENTUM

AND ERROR AS

m̄t := 1

|G |
∑
j∈G

mt , j , ē t := m̄t −∇ f (x t−1) , AND ḡ (x t−1) = 1

|G |
∑
j∈G

g j (x t−1) . (13.4)

NOW SCALE THE MODIFIED ERROR BOUND LEMMA 85 BY
5η
2α AND ADD IT TO THE MODIFIED

DESCENT BOUND LEMMA 84 TAKING EXPECTATIONS ON BOTH SIDES TO GET FOR t ≥ 2

E[ f (x t )]+ 5η
2α E‖ē t‖2 ≤ E[ f (x t−1)]− η

2 E‖∇ f (x t−1)‖2 +ηE‖ē t‖2 +ηE‖mt −m̄t‖2+
5η
2α E‖ē t−1‖2 −ηE‖ē t−1‖2 + η

4 E‖∇ f (x t−2)‖2 + η
4 E‖mt−1 −m̄t−1‖2 +5ηα

σ2

n

REARRANGING THE ABOVE TERMS AND USING THE BOUND IN THE AGGREGATION ERROR LEMMA 83

YIELDS THE RECURSION

E f (x t )− f ?+ ( 5η
2α −η)E‖ē t‖2 + η

4
E‖∇ f (x t−1)‖2︸ ︷︷ ︸

=:ξt

≤ E f (x t−1)− f ?+ ( 5η
2α −η)E‖ē t−1‖2 + η

4
E‖∇ f (x t−2)‖2︸ ︷︷ ︸

=:ξt−1

− η

4
E‖∇ f (x t−1)‖2 + 5ηα

n
σ2 + 5η

4
E‖mt−1 −m̄t−1‖2

≤ ξt−1 − η

4
E‖∇ f (x t−1)‖2

+ 5ηασ2

2

(
2

n
+δ(c + c

α (1−α)t−2)

)
.

FURTHER, SPECIALIZING THE DESCENT BOUND LEMMA 84 AND ERROR BOUND LEMMA 85 FOR
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t = 1 WE HAVE

ξ1 ≤ E f (x1)− f ?+ 3η

2
E‖ē1‖2 + η

4
E‖∇ f (x0)‖2

≤ f (x0)− f ?+ 5η

2
E‖ē1‖2 − η

4
E‖∇ f (x0)‖2 +ηE‖m1 −m̄1‖2

≤ f (x0)− f ?− η

4
E‖∇ f (x0)‖2 + 5ησ2

n
+2cηδσ2 .

SUMMING OVER t AND AGAIN REARRANGING OUR RECURSION FOR ξt GIVES

1

T

T∑
t=1

E‖∇ f (x t−1)‖2 ≤ 4( f (x0)− f ?)

ηT
+ 20σ2

nT
+ 8cδσ2

T

+ 10ασ2

T

T∑
t=1

(
2

n
+δ(c + c

α (1−α)t−2)

)
≤ 4( f (x0)− f ?)

ηT
+ 20σ2

nT
+ 8cδσ2

T

+ 20ασ2

n
+10cδασ2 + 10δcασ2

α2T

= 4( f (x0)− f ?)

ηT
+ 20σ2

nT
+ 8cδσ2

T

+ 160Lησ2

n
+80Lδcησ2 + 5cδσ2

4LηT

≤ 16

√
5σ2(2+ cδn)

nT

(
L( f (x0)− f ?)+ 5cδ

16 σ
2
)

+ 32L( f (x0)− f ?)

T
+ 10cδσ2

T
+ 20σ2

nT
+ 8cδσ2

T
.

SUBSTITUTING THE APPROPRIATE STEP-SIZE η= min

√√√√ f (x0)− f ?+ 5cδ
16Lσ

2

20LTσ2
(

2
n +cδ

) , 1
8L

 FINISHES THE PROOF

OF THE THEOREM.

13.6 Proof of Theorem XX (Momentum based variance reduction)

WE NOW DESCRIBE HOW TO MODIFY THE MOMENTUM METHOD WITH A SMALL CORRECTION

TERM TO IMPROVE ITS CONVERGENCE RATE (CUTKOSKY AND ORABONA, 2019). STARTING FROM

A GIVEN x0 AND WITH d 0 = 0, α1 = 1, WE RUN THE FOLLOWING UPDATES WITH A SEQUENCE OF

MOMENTUM PARAMETERS αt ∈ [0,1] AND STEP-SIZES ηt ≥ 0 FOR t ≥ 2

d t ,i =αt g t ,i (x t−1)+ (1−αt )d t−1,i + (1−αt )(g t ,i (x t−1)−g t ,i (x t−2)) (MVR-WORKER)

NOTE THAT BOTH g t ,i (x t−1) AND g t ,i (x t−2) HERE ARE COMPUTED USING THE SAME STOCHAS-

TIC FUNCTION (SAME BATCH) AS INDICATED BY THE SUBSCRIPT. THE GOOD WORKERS COMMU-
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NICATE d t ,i WHEREAS THE BAD ONES SEND ARBITRARY VECTORS. THEN, THE SERVER PERFORMS

d t = AGG
(
d t ,1, . . . ,d t ,n

)
x t = x t−1 −ηt d t .

(MVR-SERVER)

DEFINE d̄ t := 1
|G |

∑
j∈G d t , j AND ē t := d̄ t −∇ f (x t−1). NOTE THAT SINCE α1 = 1, THE FIRST

STEP CAN BE SIMPLIFIED AS d 1,i = g 1,i (x0). HERE WE ASSUME THAT THE STOCHASTIC GRA-

DIENT CONDITIONED ON ALL PAST HISTORY IS UNBIASED Et [g t ,i (x t−1)] = ∇ f (x t−1) AND HAS

BOUNDED VARIANCE σ2. FURTHER, WE ASSUME THAT THE STOCHASTIC GRADIENTS SATISFY

E‖g t ,i (x t−1)−g t ,i (x t−2)‖2 ≤ L2‖x t−1 −x t−2‖2. THIS IS STRONGER THAN ASSUMING ONLY THAT

THE FULL GRADIENT ∇ f IS LIPSCHITZ.

Lemma 86. For α1 = 1 and any αt ∈ [0,1] for t ≥ 2, ηt ≤ 1
L , and an L-smooth function f we

have that E1[ f (x1)] ≤ f (x0)− ηt

2 ‖∇ f (x0)‖2 + η2
t L
2 σ2 and for t ≥ 2 with ē t := d̄ t −∇ f (x t−1) we

have

Et [ f (x t )] ≤ f (x t−1)− ηt

2
‖∇ f (x t−1)‖2 +η(

Et‖ē t‖2 +Et‖d t − d̄ t‖2) .

THE PROOF IS IDENTICAL TO THAT OF LEMMA 81.

Lemma 87. Using any momentum and step-sizes such that 1 ≥α≥ 16L2η2 for t ≥ 2, we have

i) E[e t ] = 0, and ii) for an L-smooth function f that E‖ē1‖2 ≤ 2σ2/n and for t ≥ 2

E‖ē t‖2 ≤ (1− α
2 )E‖ē t−1‖2 +8L2η2‖∇ f (x t−2)‖2 +2α2σ2/n +4L2η2E‖d t−1 − d̄ t−1‖2 .

Proof. Starting from the definition of ē t+1 and d̄ t ,

ē t = d̄ t −∇ f (x t−1)

=αḡ t (x t−1)+ (1−α)d̄ t−1 + (1−α)(ḡ t (x t−1)− ḡ t (x t−2))−∇ f (x t−1)

= (1−α)(d̄ t−1 −∇ f (x t−2))︸ ︷︷ ︸
T1

+

α(ḡ t (x t−1)−∇ f (x t−1))︸ ︷︷ ︸
T2

+ (1−α)(ḡ t (x t−1)− ḡ t (x t−2)−∇ f (x t−1)+∇ f (x t−2))︸ ︷︷ ︸
T3

.

Note that T1 = (1−α)ē t−1 and that E[T2] = 0,E[T3] = 0. This proves that E[ē t ] = 0. Further,

conditioned on all history Ft (i.e. everything before step t ), we have Et [T2] = 0 and Et [T3] = 0
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and T1 is deterministic. Hence, we can take squared norms on both sides as expand as

E‖ē t‖2 = (1−α)2E‖ē t−1‖2+
E‖α(ḡ t (x t−1)−∇ f (x t−1))+ (1−α)(ḡ t (x t−1)− ḡ t (x t−2)−∇ f (x t−1)+∇ f (x t−2))‖2

≤ (1−α)2E‖ē t−1‖2+
2E‖α(ḡ t (x t−1)−∇ f (x t−1))‖2 +2‖(1−α)(ḡ t (x t−1)− ḡ t (x t−2)−∇ f (x t−1)+∇ f (x t−2))‖2

≤ (1−α)E‖ē t−1‖2 +2α2σ2/n +2(1−α)2E‖ḡ t (x t−1)− ḡ t (x t−2)‖2

≤ (1−α)E‖ē t−1‖2 +2α2σ2/n +2(1−α)2L2E‖x t−1 −x t−2‖2

= (1−α)E‖ē t−1‖2 +2α2σ2/n +4(1−α)2L2η2E‖d̄ t−1‖2 +4(1−α)2L2η2E‖d t−1 − d̄ t−1‖2

≤ (1−α)E‖ē t−1‖2 +2α2σ2/n +8L2η2E‖ē t−1‖2 +8L2η2E‖∇ f (x t−2)‖2 +4L2η2E‖d t−1 − d̄ t−1‖2 .

Here the the third inequality used the expected squared Lipschitzness of g t ( · ), whereas the

rest relied on Young’s inequality and that α ∈ [0,1]. Now the condition on the momentum

implies that 8L2η2 ≤ α
2 , yielding the second statement of the lemma for t ≥ 2. The statement

for e1 follows since d̄ 0 = 0.

Lemma 88 (Aggregation error). Given Definition F holds and we use a momentum constant

parameter α1 = 1 and αt = α ≥ 192L2η2(cδ+1) for t ≥ 2, the error between the ideal average

momentum d̄ t and the robust aggregate d t for any t ≥ 2 can be bounded as

E‖ē t‖2 + cδE‖d i ,t −d j ,t‖2 ≤ (1− α
4 )

(
E‖ē t−1‖2 + cδE‖d i ,t−1 −d j ,t−1‖2)

+ α
16‖∇ f (x t−2)‖2 + (cδ+1/n)4α2σ2

For t = 1, we can simplify the bound to E‖ē1‖2 + cδE‖d i ,2 −d j ,2‖2 ≤ 2σ2(cδ+1/n).

Proof. Expanding the definition of the worker momentum for any two good workers i , j ∈G

for t ≥ 2,

E‖d i ,t −d j ,t‖2 = E‖α(g i (x t−1)−g j (x t−1))+
(1−α)(d i ,t−1 −d j ,t−1)+
(1−α)(g t ,i (x t−1)−g t , j (x t−1)−g t ,i (x t−2)+g t , j (x t−2))‖2

≤ E‖(1−α)(d i ,t−1 −d j ,t−1)‖2 +4α2σ2 +4L2(1−α)2E‖x t−1 −x t−2‖2

≤ (1−α)E‖d i ,t−1 −d j ,t−1‖2 +4α2σ2 +4L2η2E‖d t−1‖2

≤ (1−α)E‖d i ,t−1 −d j ,t−1‖2 +4α2σ2 +12L2η2E‖d t−1 − d̄ t−1‖2

+12L2η2E‖ē t−1‖2 +12L2η2E‖∇ f (x t−2)‖2

≤ (1−α+12cδL2η2)E‖d i ,t−1 −d j ,t−1‖2 +4α2σ2

+12L2η2E‖ē t−1‖2 +12L2η2E‖∇ f (x t−2)‖2 .
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Scale this by cδ and then add the inequality from Lemma 87 to get

E‖ē t‖2 + cδE‖d i ,t −d j ,t‖2 ≤ (1− α
2 )E‖ē t−1‖2 +8L2η2‖∇ f (x t−2)‖2 +2α2σ2/n +4L2η2E‖d t−1 − d̄ t−1‖2

+ (1−α+12cδL2η2)cδE‖d i ,t−1 −d j ,t−1‖2 +4cδα2σ2

+12cδL2η2E‖ē t−1‖2 +12cδL2η2E‖∇ f (x t−2)‖2

≤ (1− α
2 )E‖ē t−1‖2 +8L2η2‖∇ f (x t−2)‖2 +2α2σ2/n

+ (1−α+12cδL2η2 +4L2η2)cδE‖d i ,t−1 −d j ,t−1‖2 +4cδα2σ2

+12cδL2η2E‖ē t−1‖2 +12cδL2η2E‖∇ f (x t−2)‖2

= (1− α
2 +12cδL2η2)E‖ē t−1‖2 + (8L2η2 +12cδL2η2)‖∇ f (x t−2)‖2 + (4cδ+2/n)α2σ2

+ (1−α+12cδL2η2 +4L2η2)cδE‖d i ,t−1 −d j ,t−1‖2

≤ (1− α
4 )

(
E‖ē t−1‖2 + cδE‖d i ,t−1 −d j ,t−1‖2)+ α

16‖∇ f (x t−2)‖2 + (4cδ+2/n)α2σ2 .

Here we used α ≥ 192L2η2(cδ+ 1), and Definition F that E‖d t−1 − d̄ t−1‖2 ≤ cδE‖d i ,t−1 −
d j ,t−1‖2.

WE ARE NOW READY TO PROVE THE CONVERGENCE THEOREM.

Theorem XXXV (Byzantine robust MVR). Let us run the MVR algorithm combined with a ro-

bust aggregation rule AGGwith step-size η = min
(

3
√

f (x0)− f ?

T (1536L2σ2(cδ+1)(cδ+1/n)) , 1
4L

)
and momen-

tum parameter α= 192L2η2(1+ cδ). Then,

1

T

T∑
t=1

E‖∇ f (x t−1)‖2 ≤ 120

(
Lσ

p
(cδ+1/n)(cδ+1)( f (x0)− f ?)

T

) 2
3

+16L( f (x0)− f ?)+32σ2(cδ+1/n)

T
.

Proof. Scaling Lemma 88 by 4η
α and adding it to Lemma 86 we have for any t ≥ 2

(E f (x t )− f ?)+ 4η

α

(
E‖ē t‖2 + cδE‖d i ,t −d j ,t‖2)≤ (E f (x t−1)− f ?)+ 4η

α

(
E‖ē t−1‖2 + cδE‖d i ,t−1 −d j ,t−1‖2)

−η(
E‖ē t−1‖2 + cδE‖d i ,t−1 −d j ,t−1‖2)

− η

2
E‖∇ f (x t−1)‖2 +η(

E‖ē t‖2 + cδE‖d t ,i −d t , j‖2)
+ η

4 E‖∇ f (x t−2)‖2 + (cδ+1/n)16ηασ2 .

Define the constant

ξt := (E f (x t )− f ?)+
(

4η

α
−η

)(
E‖ē t‖2 + cδE‖d i ,t −d j ,t‖2)+ η

4
E‖∇ f (x t−1)‖2 .

Then the previously stated inequality can be rearranged as

η

4
E‖∇ f (x t−1)‖2 ≤ ξt−1 −ξt + (cδ+1/n)16ηασ2 .
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Also note that ξt ≥ 0 for any t and also for t = 1,

ξ1 = E f (x1)− f ?+
(

4η

α
−η

)(
E‖ē t‖2 + cδE‖d i ,t −d j ,t‖2)+ η

4
E‖∇ f (x0)‖2

≤ f (x0)− f ?− η

4
E‖∇ f (x0)‖2 +8ησ2(cδ+1/n) .

Note that here we assumed a batch size of T in the first step to simplify computations. This

does not change the asymptotic rate (multiplies it by 2), similar to (Tran-Dinh et al., 2019).

This is easy to work around by using changing step-sizes/momentum values as shown by

(Cutkosky and Orabona, 2019). Now summing over t and again rearranging gives

1∑`
t=1η

∑̀
t=1

ηE‖∇ f (x t−1)‖2 ≤ 4( f (x0)− f ?)∑`
t=1η

+ 1∑`
t=1η

∑̀
t=1

32(cδ+1/n)ηασ2 .

For simplicity, let us use a constant η= min
(

3
√

f (x0)− f ?

T (1536L2σ2(cδ+1)2) , 1
4L

)
for t ≥ 1 and momentum

parameter α1 = 1 and α= 192L2η2(cδ+1) for t ≥ 2. This simplifies the above inequality to

1

T

T∑
t=1

E‖∇ f (x t−1)‖2 ≤ 4( f (x0)− f ?)

ηT
+6144L2η2(cδ+1)(cδ+1/n)σ2 + 32σ2(cδ+1/n)

T
.

Substituting the appropriate η yields the desired rate.

13.7 Additional Experiments

13.7.1 Experiment setups

General setup

THE DEFAULT EXPERIMENT SETUP IS LISTED IN TABLE 13.1. THE DEFAULT HYPERPARAMETERS

OF THE AGGREGATORS ARE SUMMARIZED AS FOLLOWS

AGGREGATORS HYPERPARAMETERS

KRUM N/A

CM N/A

RFA T = 3

TM b = δ
CC τ= 100

ABOUT FIGURE 6.5. WE HAVE THE FOLLOWING SETUP

• FOR ALL AGGREGATORS EXCEPT MEAN, THERE ARE n = 25 WORKERS AND nδ = 11 OF THEM

ARE BYZANTINE.

• FOR AGGREGATOR MEAN, THERE ARE n = 14 WORKERS AND 0 BYZANTINE WORKERS.

• THE IPM ATTACK HAS STRENGTH OF ε= 0.1.
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• THE ALIE ATTACK HAS A HYPERPARAMETER z WHICH IS COMPUTED ACCORDING TO (BARUCH

ET AL., 2019)

z = max
z

(
φ(z) < n −nδ− s

n −nδ

)
WHERE s = bn

2 +1c−nδ AND φ IS THE CUMULATIVE STANDARD NORMAL FUNCTION. IN OUR

SETUP, THE z ≈ 1.06.

Table 13.1 – Default experimental settings for CIFAR-10 and MNIST.

Dataset CIFAR-10 MNIST
Architecture ResNet-20 (He et al., 2016a) CONV-CONV-DROPOUT-FC-DROPOUT-FC
Training objective Cross entropy loss Negative log likelihood loss
Evaluation objective Top-1 accuracy Top-1 accuracy

Batch size per worker 32 1
Momentum β 0 or 0.9 or 0.99 0
Learning rate 0.1 0.1

256
LR decay 0.1 at epoch 75 No
LR warmup No No
# Epochs / # Iterations 100 Epochs 800 Iterations
Weight decay No No

Repetitions 2, with varying seeds 2, with varying seeds

Constructing datasets

LONG-TAILNESS. THE MNIST DATASET HAS 10 CLASSES EACH WITH SIMILAR AMOUNT OF

SAMPLES. THE LONG-TAILNESS IS ACHIEVED BY SAMPLING CLASS WITH EXPONENTIALLY DE-

CREASING PORTIONS γ ∈ (0,1]. THAT IS, FOR CLASS i = 1, . . . ,10, WE ONLY RANDOMLY SAMPLE

γi PORTION OF ALL SAMPLES IN CLASS i . NOTE THAT THE SAME PROCEDURE HAS TO BE APPLIED

TO THE TEST DATASET.

ABOUT DATASET ON BYZANTINE WORKERS. THE TRAINING SET IS DIVIDED BY THE NUMBER OF

GOOD WORKERS. SO THE GOOD WORKERS HAS TO FULL INFORMATION OF TRAINING DATASET.

THE BYZANTINE WORKER HAS ACCESS TO THE WHOLE TRAINING DATASET.

Running environment

WE SUMMARIZE THE RUNNING ENVIRONMENT OF THIS PAPER AS IN TABLE 13.2.
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Table 13.2 – Runtime hardwares and softwares.

CPU
Model name Intel (R) Xeon (R) Gold 6132 CPU @ 2.60 GHz
# CPU(s) 56
NUMA node(s) 2

GPU
Product Name Tesla V100-SXM2-32GB
CUDA Version 11.0

PyTorch
Version 1.7.1

13.7.2 Exploring local steps between aggregations
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Figure 13.1 – CC with 1, 2, 8, 32, local steps for MNIST dataset.

IN THIS EXPERIMENT, WE COMBINE CC WITH LOCAL SGD AND BENCH MARKED ON MNIST

WITHOUT ATTACKER. THE RESULTS IN FIG. 13.1 SHOWS THAT USING HIGHER LOCAL STEPS IM-

PROVES THE ACCURACY AND CONVERGENCE RATE. IT SUPPORTS THAT CC IS COMPATIBLE WITH

LOCALSGD.

13.7.3 Comparison with (Allen-Zhu et al., 2021)

THE RECENT INDEPENDENT WORK SAFEGUARD (ALLEN-ZHU ET AL., 2021) ALSO USES HISTOR-

ICAL INFORMATION TO DETECT BYZANTINE WORKERS. HOWEVER, AS WE DISCUSSED EARLIER,

THEY ASSUME THAT THE NOISE IN STOCHASTIC GRADIENTS IS BOUNDED ALMOST SURELY IN-

STEAD OF THE MORE STANDARD ASSUMPTION THAT ONLY THE VARIANCE IS BOUNDED. THEO-

RETICALLY, SUCH STRONG ASSUMPTIONS ARE UNLIKELY TO HOLD (ZHANG ET AL., 2019B) AND

EVEN GAUSSIAN NOISE IS EXCLUDED. FURTHER, THE LOWER-BOUNDS OF (ARJEVANI ET AL.,

2019) NO LONGER APPLY, AND THUS THEIR ALGORITHM MAY BE SUB-OPTIMAL. PRACTICALLY,

THEIR ALGORITHM REMOVES SUSPECTED WORKERS EITHER PERMANENTLY (A DECISION OF HIGH

RISK), OR RESETS THE LIST OF SUSPECTS AT EACH WINDOW BOUNDARY ( WHICH IS SENSITIVE TO
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Figure 13.2 – Comparing CC (τ = 100) with Safeguard (Allen-Zhu et al., 2021) (T0 = 1,T1 = 6,
T0 = 20, T1 = 50). The Byzantine workers send to the server vectors from a Gaussian distri-
bution with standard deviation of 108. The “G1” attack inject attack at the 1st iteration while
the “G2000” attack inject attack at the 2000th iteration. There are 10 nodes in total and 4 of
them are Byzantine. The underlying dataset is Cifar10. We use batch size 32 and learning rate
0.1.

THE CHOICE OF HYPERPARAMETERS). HAVING SAID THAT, (ALLEN-ZHU ET AL., 2021) PROVE

CONVERGENCE TO A LOCAL MINIMUM INSTEAD OF TO A SADDLE POINT AS WE DO HERE. IN THIS

SECION, WE CONDUCT FURTHER EMPIRICAL COMPARISON OF SAFEGUARD AND CENTERED CLIP

CC.

FIRST, NOTE THAT ALGORITHM 1 IN (ALLEN-ZHU ET AL., 2021) IS VULNERABLE TO SIMPLE AT-

TACKS, E.G. SENDING AN ARBITRARY VECTOR OF VERY LARGE MAGNITUDE, WHILE CC IS NOT.

THIS IS BECAUSE SAFEGUARD USES INFORMATION FROM THE PREVIOUS STEP TO FILTER IN THE

CURRENT STEP. THIS IS NECESSARY IN ORDER TO MAKE THE ALGORITHM AMENABLE TO ANALY-

SIS. THIS MEANS THAT EVEN IF A BYZANTINE WORKER SENDS A VERY LARGE BAD UPDATE, THE

ALGORITHM WILL APPLY IT ONCE AND FILTER OUT THE WORKER ONLY FROM THE NEXT ROUND

ONWARD. THUS, ALL BYZANTINE WORKERS CAN ENSURE THAT THEIR UPDATE IS INCORPO-

RATED AT LEAST ONCE. WHILE THEORETICALLY THIS MIGHT NOT BE PROBLEMATIC SINCE THE

INFLUENCE OF A SINGLE UPDATE IS LIMITED, IN PRACTICE THIS MEANS THAT THE BYZANTINE

WORKERS CAN PUSH THE TRAINING PROCESS TO ENCOUNTER NaNS, ENSURING NO CHANCE OF

RECOVERY.

TO DEMONSTRATE THE EFFECT, WE APPLY THE GAUSSIAN ATTACK TO SAFEGUARD AND CC AT

t = 1 (G1) AND t = 2000 (G2000). THE GAUSSIAN ATTACKER SENDS TO THE SERVER VEC-

TORS OF GAUSSIAN DISTRIBUTION OF STANDARD DEVIATION 108. SINCE THE WORKERS BE-

HAVE CORRECTLY UNTIL t −1, THEY ALL BELONG TO GOODt AND THEIR UPDATES ARE INCOR-

PORATED. WHILE THE BYZANTINE WORKER IS REMOVED FROM GOODt+1, THE ATTACK ALREADY

SUCCEEDED AND THERE IS NO CHANCE OF RECOVERY. WE SHOW THE EXPERIMENTAL RESULTS

IN FIGURE 13.2. IN CONTRAST, CC (EVEN WITHOUT MOMENTUM) EASILY DEFENDS AGAINST

SUCH ATTACKS.

SECONDLY, SAFEGUARD REQUIRES TUNING ADDITIONAL PARAMETERS (E.G. T0, T1) FOR EACH
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KIND OF ATTACK WHILE CC DOES NOT. FOR EXAMPLE, SAFEGUARD USES T0 = 1, T1 = 2 FOR

BIT-FLIPPING ATTACK (ALLEN-ZHU ET AL., 2021, APPENDIX C.2.1) AND T0 = 2, T1 = 7 FOR

LABEL-FLIPPING ATTACK (ALLEN-ZHU ET AL., 2021, APPENDIX C.2.3). HOWEVER, BY THE

DEFINITION OF BYZANTINE ATTACK, THE ATTACKER IS ALLOWED TO ADAPTIVELY CHANGE AT-

TACKS after TUNING. THIS MAKES IT CRUCIAL TO ENSURE THAT ANY BYZANTINE ROBUST ALGO-

RITHM WORKS WITHOUT ADDITIONAL TUNING. IN CONTRAST, CC USES τ= 100 AND l = 1 FOR

ALL EXPERIMENTS IN THE PAPER UNLESS OTHERWISE CLARIFIED.
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14.1 Experiment setup and additional experiments

14.1.1 Experiment setup

General setup

THE DEFAULT EXPERIMENT SETUP IS LISTED IN TABLE 14.1.

Table 14.1 – Default experimental settings for MNIST

Dataset MNIST
Architecture CONV-CONV-DROPOUT-FC-DROPOUT-FC
Training objective Negative log likelihood loss
Evaluation objective Top-1 accuracy

Batch size 32×number of workers
Momentum 0 or 0.9
Learning rate 0.01
LR decay No
LR warmup No
# Iterations 600 or 4500
Weight decay No

Repetitions 3, with varying seeds
Reported metric Mean test accuracy over the last 150 iterations

BY DEFAULT THE HYPERPARAMETERS OF THE AGGREGATORS ARE SUMMARIZED AS FOLLOWS

AGGREGATORS HYPERPARAMETERS

KRUM N/A

CM N/A

RFA T = 8

TM b = f

CCLIP τ= 10
1−β

Constructing datasets

THE MNIST DATASET HAS 10 CLASSES EACH WITH SIMILAR AMOUNT OF SAMPLES. IN THIS

PART, WE DISCUSS HOW TO PROCESS AND DISTRIBUTE MNIST TO EACH WORKERS IN ORDER TO

ACHIEVE LONG-TAILNESS AND HETEROGENEITY.

LONG-TAILNESS. THE LONG-TAILNESS (*-LT) IS ACHIEVED BY SAMPLING CLASS WITH EX-

PONENTIALLY DECREASING PORTIONS γ ∈ (0,1]. THAT IS, FOR CLASS i ∈ [10], WE ONLY RAN-

DOMLY SAMPLE γi PORTION OF ALL SAMPLES IN CLASS i . WE DEFINE α AS THE RATIO OF THE

LARGEST CLASS OVER THE SMALLEST CLASS, WHICH CAN BE WRITTEN AS α= 1
γ9 . FOR EXAMPLE,

IF γ= 1, THEN ALL CLASSES HAVE SAME AMOUNT OF SAMPLES AND THUS α= 1; IF γ= 0.5 THEN
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α= 29 = 512. NOTE THAT THE SAME PROCEDURE HAS TO BE APPLIED TO THE TEST DATASET.

HETEROGENEITY. STEPS TO CONSTRUCT IID/NON-IID DATASET FROM MNIST DATASET

1. SORT THE TRAINING DATASET BY ITS LABELS.

2. EVENLY DIVIDE THE SORTED TRAINING DATASET INTO CHUNKS OF SAME SIZE. THE NUMBER

OF CHUNKS EQUALS THE NUMBER OF GOOD WORKERS. IF THE LAST CHUNK HAS FEWER

SAMPLES, WE AUGMENT IT WITH SAMPLES FROM ITSELF.

3. SHUFFLE THE SAMPLES WITHIN THE SAME WORKER.

HETEROGENEITY + LONG-TAILNESS. FIRST TRANSFORM THE TRAINING DATASET INTO LONG-

TAIL DATASET, THEN FEED IT TO THE PREVIOUS PROCEDURE TO INTRODUCE HETEROGENEITY.

ABOUT DATASET ON BYZANTINE WORKERS. THE TRAINING SET IS DIVIDED BY THE NUMBER OF

GOOD WORKERS. SO THE GOOD WORKERS HAS TO FULL INFORMATION OF TRAINING DATASET.

THE BYZANTINE WORKER HAS ACCESS TO THE WHOLE TRAINING DATASET.

Setup for each experiment

IN TABLE 14.2, WE LIST THE HYPERPARAMETERS FOR THE EXPERIMENTS.

Table 14.2 – Setups for each experiment.

n f momentum Iters LT NonIID

Table 7.1 20 0 0 4500 α= 1, α= 500 iid/ non-iid
Table 7.2 25 5 0 TBD α= 1 (balanced) iid/ non-iid
Table 7.3 20 0 0 4500 α= 1, α= 500 iid/ non-iid
Table 7.4 25 5 0 TBD α= 1 (balanced) iid/ non-iid
Figure 7.2 25 5 0 / 0.9 600 α= 1 (balanced) non-iid
Figure 7.3 53 5 0 / 0.9 600 α= 1 (balanced) non-iid
Figure 14.1 25 5 0 / 0.5 / 0.9 / 0.99 600 α= 1 (balanced) non-iid
Figure 14.2 25 5 0 / 0.5 / 0.9 / 0.99 1200 α= 1 (balanced) non-iid
Figure 14.3 20 3 0 1200 α= 1 (balanced) non-iid
Figure 14.4 25 5 0 3000 α= 1 (balanced) non-iid
Figure 14.5 24 3 0 1200 α= 1 (balanced) non-iid

IPM ATTACK IN FIGURE 7.2 AND FIGURE 7.3. WE SET THE STRENGTH OF THE ATTACK ε= 0.1.

ALIE ATTACK IN IN FIGURE 7.2. THE HYPERPARAMETER z FOR ALIE IS COMPUTED ACCORD-

ING TO (BARUCH ET AL., 2019)

z = max
z

(
φ(z) < n − f − s

n − f

)
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WHERE s = bn
2 + 1c − f AND φ IS THE CUMULATIVE STANDARD NORMAL FUNCTION. IN OUR

SETUP, THE z ≈ 0.25.

Running environment

WE SUMMARIZE THE RUNNING ENVIRONMENT OF THIS PAPER AS IN TABLE 14.3.

Table 14.3 – Runtime hardwares and softwares.

CPU
Model name Intel (R) Xeon (R) Gold 6132 CPU @ 2.60 GHz
# CPU(s) 56
NUMA node(s) 2

GPU
Product Name Tesla V100-SXM2-32GB
CUDA Version 11.0

PyTorch
Version 1.7.1

THE GPU-HOUR SPENT ON THE EXPERIMENTS ARE ESTIMATED AS FOLLOWS. EACH RUN TAKES

4 GPU MINUTES AND THERE ARE 15 RUNS IN PARALLEL ON GPU.

# RUNS GPU HOURS

TABLE 7.1: 15 * 3 (REPEATS) = 45 0.2

TABLE 7.2: 15 * 3 (REPEATS) = 45 0.2

TABLE 7.3: 15 * 3 (REPEATS) = 45 0.2

TABLE 7.4: 15 * 3 (REPEATS) = 45 0.2

FIGURE 7.2 25 * 4 * 3 (REPEATS) = 300 1.33

FIGURE 7.3 2 * 6 * 3 (REPEATS) = 36 0.16

TOTAL 516 2.29

14.1.2 Additional experiments

Clipping radius scaling

THE RADIUS τ OF CCLIP DEPENDS ON THE NORM OF GOOD GRADIENTS. HOWEVER, PYTORCH

IMPLEMENTS SGD WITH MOMENTUM USING THE FOLLOWING FORMULA

mt
i =βmt−1

i +g i (x t−1) FOR EVERY i ∈G

WHICH MAY LEADS TO THE INCREASE IN THE GRADIENT NORM.
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GRADIENT NORMS. IN FIGURE 14.1 WE PRESENT THE AVERAGED GRADIENT NORM FROM ALL

GOOD WORKERS. HERE WE USE CCLIP AS THE AGGREGATOR AND τ= 1
1−β . THE NORM OF GRA-

DIENTS ARE COMPUTED BEFORE AGGREGATION. EVEN THOUGH THE DATASET ON WORKERS ARE

NON-IID, THE GRADIENT NORMS ARE ROUGHLY OF SAME ORDER. THE GRADIENT DISSIMILAR-

ITY G2 ALSO INCREASES ACCORDINGLY.

0 10
Worker ID

100

101

102

No
rm

 ra
tio

ATK = BF

0 10
Worker ID

ATK = LF

0 10
Worker ID

ATK = mimic

0 10
Worker ID

ATK = IPM

0 10
Worker ID

ATK = ALIE

0.0
0.5
0.9
0.99

Figure 14.1 – The ratio of norm of good gradients with momentum β over no momentum
under different attacks.

SCALED CLIPPING RADIUS. AS THE GRADIENT NORM INCREASES WITH MOMENTUM β, THE

CLIPPING RADIUS SHOULD INCREASE ACCORDINGLY. IN FIGURE 14.2 WE COMPARE 3 SCHEMES:

1) NO SCALING (τ = 10, β = 0); 2) linear SCALING 10
1−β ; 3) sqrt SCALING 10p

1−β . THE NO SCAL-

ING SCHEME CONVERGENCES BUT SLOWER WHILE WITH MOMENTUM. THE LINEAR SCALING IS

USUALLY BETTER THAN sqrt SCALING AND WITH RESAMPLING IT BECOMES MORE STABLE. HOW-

EVER, THE SCALED CLIPPING RADIUS FAILS FOR β= 0.99 UNDER LABEL FLIPPING ATTACK. THIS

IS BECAUSE THE GRADIENT CAN BE VERY LARGE AND G2 DOMINATES. SO IN GENERAL, A LINEAR

SCALING OF CLIPPING RADIUS WITH MOMENTUM β= 0.9 WOULD BE A GOOD CHOICE.
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Figure 14.2 – Convergence of CCLIP with τ = 10, 10
1−β , 10p

1−β for β = 0,0.5,0.9,0.99. The RS

stands for resampling and s is the resampling hyperparameter.

Demonstration of effects of resampling through the selections of KRUM

IN THE MAIN TEXT WE HAVE THEORETICALLY SHOW THAT RESAMPLING HELPS AGGREGATORS

ALLEVIATE THE IMPACT OF NON-IID. IN THIS SECTION WE EMPIRICALLY SHOW THAT AFTER
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RESAMPLING AGGREGATORS CAN INCORPORATE UPDATES MORE EVENLY FROM GOOD WORK-

ERS AND THEREFORE THE PROBLEM OF NON-IID AMONG GOOD WORKERS IS LESS SIGNIFICANT.

SINCE KRUM OUTPUTS THE ID OF THE SELECTED DEVICE, IT IS VERY CONVENIENT TO RECORD

THE FREQUENCY OF EACH WORKER BEING SELECTED. SINCE RESAMPLING REPLICATES EACH

WORKER FOR s TIMES, WE DIVIDE THEIR FREQUENCIES BY s FOR NORMALIZATION. FROM FIG-

URE 14.3, WE CAN SEE THAT WITHOUT RESAMPLING KRUM BASICALLY ALMOST ALWAYS SELECTS

UPDATES FROM BYZANTINE WORKERS WHILE WITH LARGER s , THE SELECTION BECOMES MORE

EVENLY DISTRIBUTED.
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Figure 14.3 – The selected workers of KRUM for resampling coefficient s = 0,2,3. There are 20
workers and the last 3 workers (worker id=17,18,19) are Byzantine with label-flipping attack.

Overparameterization

THE ARCHITECTURE OF THE NEURAL NET USED IN THE EXPERIMENTS CAN BE SCALED TO MAKE

IT OVERPARAMETERIZED. WE ADD MORE PARAMETERS TO THE MODEL BY MULTIPLYING THE

CHANNELS OF 2D Conv LAYER AND FULLY CONNECTED LAYER BY A FACTOR OF ‘SCALE’. SO THE

ORIGINAL MODEL HAS A SCALE OF 1. WE SHOW THE TRAINING LOSSES DECREASE FASTER FOR

OVERPARAMETERIZED MODELS IN FIGURE 14.4. AS WE CAN SEE, THE CONVERGENCE BEHAV-

IORS ARE SIMILAR FOR DIFFERENT MODEL SCALES WITH OVERPARAMETERIZED MODELS HAVING

SMALLER TRAINING LOSS DESPITE THE EXISTENCE OF BYZANTINE WORKERS.
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Figure 14.4 – The training loss of models of different levels of overparameterization.

Bucketing - variant of resampling

A VARIANT OF ALGORITHM 9 IS TO NOT REPEAT THE GRADIENTS FOR s TIMES, BUT RATHER

n GRADIENTS INTO dn/se BUCKETS. THE RESULTS IN FIGURE 14.5 SUGGEST THAT THE CON-

VERGENCE RATE OF BUCKETING AND RESAMPLING IS ALMOST THE SAME. SO AGGREGATORS

CAN BENEFIT MORE FROM BUCKETING AS IT REDUCES THE NUMBER OF INPUT GRADIENTS AND

THEREFORE REDUCE THE COMPLEXITY.
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Figure 14.5 – The convergence SGD with bucketing and resampling under different attacks.
The underlying aggregator is RFA.

Fashion-MNIST

IN THIS SUBSECTION, WE DEMONSTRATE THAT OUR ALGORITHM ALSO WORKS ON MODERN

DATASET LIKE FASHION-MNIST (XIAO ET AL., 2017). SINCE THE FASHION-MNIST IS DE-

SIGNED TO BE A DROP-IN REPLACEMENT OF MNIST, WE CONDUCT EXPERIMENTS ON FASHION-

MNIST WITH 12 WORKERS WHERE 2 OF THEM ARE BYZANTINE. THE RESULTS ARE PRESENTED

IN FIGURE 14.6.
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Figure 14.6 – Test accuracies of KRUM, CM, RFA under 5 kinds of attacks (and without attack)
on non-iid Fashion-MNIST datasets. There are 12 workers and 2 of them are Byzantine ac-
cording to each attack row. Columns show each aggregation rule applied without (red) and
with resampling (blue). Dotted lines for comparison are showing the same method without
any Byzantine workers ( f = 0). For RFA, T1, T8 refers to the number of inner iterations of
Weiszfeld’s algorithm.
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Figure 14.7 – Comparing 3 aggregation rules under 5 kinds of attacks on non-iid datasets.
There are 10 workers and 2 of them are Byzantine. In the grid of experiments, same aggrega-
tion rules are used in the same column and same attacks are applied to the same row. The
aggregation rules are KRUM (Blanchard et al., 2017), CM (Yin et al., 2018a), RFA (Pillutla et al.,
2019). The RFA-T1, T3, T8 refers to the number of inner iterations.

Resampling or fixed grouping

IN (CHEN ET AL., 2017), WORKERS ARE GROUPED AT THE BEGINNING OF TRAINING, AND THEY

ARE TRAINED ON IID DATASETS. IN CONTRAST, RESAMPLING IS PERFORMED EVERY ROUND, AND

APPLIES TO NON-IID DATASETS. IF A BYZANTINE WORKER CAN PREDICT THE RANDOM BITS ON

SERVER, RESAMPLING BECOMES GROUPING IN EACH ROUND WHICH IS STILL STRONGER THAN

(CHEN ET AL., 2017).

IN FIGURE 14.8, WE COMPARE KRUM ◦RESAMPLING WITH VANILLA KRUM AND KRUM WITH

FIXED GROUPING. AS WE CAN SEE, THE FIXED GROUPING HAS BETTER ACCURACY THAN VANILLA

KRUM, BUT WEAKER THAN RESAMPLING AS WE EXPECTED.
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Figure 14.8 – Comparison with no resampling, and fixed grouping for KRUM on non-iid
datasets.

14.2 Implementing the mimic attack

THE SECTION 7.4.2 DESCRIBES THE IDEA AND FORMULATION OF THE MIMIC ATTACK. IN THIS

SECTION, WE DISCUSS HOW TO IMPLEMENT THE MIMIC ATTACK EFFICIENTLY. FIRST, REWRITE

THE MIMIC ATTACK IN ITS ONLINE VERSION AT TIME t ∈I0

z t = argmax
‖z‖=1

ht (z)

WHERE µt = 1
|G |t

∑
τ≤t

∑
i∈G xτi AND

ht (z) = z>
(∑
τ≤t

∑
i∈G

(xτi −µt )(xτi −µt )>
)

z .

THUS WE CAN ITERATIVELY UPDATE µt BY

µt+1 = t

1+ t
µt + 1

1+ t

1

|G |
∑
i∈G

x t+1
i ,

AND THEN

argmax
‖z‖=1

ht+1(z) ≈ t

1+ t
z t + 1

1+ t
argmax
‖z‖=1

z>
(∑

i∈G

(x t+1
i −µt+1)(x t+1

i −µt+1)>
)

z

≈ t

1+ t
z t + 1

1+ t

(∑
i∈G

(x t+1
i −µt+1)(x t+1

i −µt+1)>
)

z t

THE ABOVE ALGORITHM COORESPONDS TO OJA’S METHOD FOR COMPUTING THE TOP EIGEN-

VECTOR IN A STREAMING FASHION (OJA, 1982). THEN, IN EACH SUBSEQUENT ITERATION t , WE

PICK

i t
? = argmax

i∈G

z>x t
i .
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14.3 Constructing a robust aggregator using resampling

14.3.1 Supporting lemmas

WE FIRST START WITH PROVING THE MAIN RESAMPLING LEMMA 19 RESTATED BELOW.

Lemma’ 19. Suppose we are given n independent (but not identical) random vectors {x1, . . . , xn}

such that a good subset G ⊆ [n] of size at least |G | ≥ n(1−δ) satisfies:

E[〈x i , x j 〉] = 〈E[x i ],E[x j ]〉 and E‖x i −x j‖2 ≤ ρ2 , for any fixed i , j ∈G .

Define x̄ := 1
|G |

∑
j∈G x j . Let the outputs after s-resampling without replacement be {y 1, . . . , y n}.

Then, a subset of the outputs G̃ ⊆ [n] of size at least |G̃ | ≥ n(1−δs) satisfy

E[y i ] = E[x̄] and E‖y i − y j‖ ≤
ρ2

s
for any fixed i , j ∈ G̃ .

Proof. Recall that the duplicated vectors v 1, . . . , v s·n were defined to be v k = xdk/se and further

y i =
1

s

s·i∑
k=s(i−1)+1

vπ(k) ,

for some permutation π over [s ·n]. Then, define the new good set

G̃ = {i ∈ [n] | {π(s(i −1)+1), . . . ,π(s · i )} ⊆G .}

G̃ contains the set of all the resampled vectors which are made up of only good vectors i.e. are

uninfluenced by any Byzantine vector. Since |B| ≤ δn and each vector is replicated at most

s times, we have that |G̃ | ≥ (1−δs)n. Now, for any fixed i ∈ G̃ , let us look at the conditional

expectation over the random permutation π we have

Eπ[y i |i ∈ G̃ ] = 1

|G |
∑
j∈G

x j = x̄ .

This yields the first part of the lemma. Now we analyze the variance. Let us define the indices

of x used to compute y i as

Bi := {dπ(s(i −1)+1)/se, . . . ,dπ(s · i )/se} .

Thus, we can write y i = 1
s

∑
k∈Bi

xk . Further, |Bi | = s for any i , and Bi ⊆ G if i ∈ G̃ . With this,
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for any fixed i , j ∈ G̃ the variance can be written as

E
∥∥∥y i − y j

∥∥∥2 = E
∥∥∥∥∥1

s

∑
k∈Bi

xk −
1

s

∑
l∈B j

x l

∥∥∥∥∥
2

= 1

s2 E

∥∥∥∥∥ ∑
k∈Bi \B j

xk −
∑

l∈B j \Bi

x l

∥∥∥∥∥
2

= s −|Bi ∩B j |
s2 ρ2

≤ ρ2

s
.

THIS ADDITIONAL LEMMA ABOUT THE MAXIMUM EXPECTED DISTANCE BETWEEN GOOD WORK-

ERS WILL ALSO BE USEFUL LATER.

Lemma 89 (maximum good distance). Suppose we are given the output of resampling y 1, . . . , y n

which satisfy for any fixed i ∈ G̃ , E[y i ] =µ and E‖y i −µ‖2 ≤ ρ2/s. Then, we have

E

[
max
i∈G̃

‖y i −µ‖2
]
≤ nρ2/s .

Further, there exist instances where

E

[
max
i∈G̃

‖y i −µ‖2
]
≥Ω(nρ2/s) .

Proof. For the upper bound, we simply use

E

[
max
i∈G̃

‖y i −µ‖2
]
≤ ∑

i∈G̃

E‖y i −µ‖2 ≤ nρ2/s .

For the lower bound, let G̃ = [n] and consider y i ∼ ρ̃
p

nBern(p = 1
n ). This means y i is ei-

ther 0 or ρ̃
p

n. Further, its variance is clearly bounded by ρ̃2. Upon drawing n samples, the

probability of seeing at least 1 y j = ρ̃
p

n is

1−Pr(y i = 0 ∀i ∈ [n]) = 1− (1− 1
n )n ≥ 1− 1/e ≥ 0.5.

Thus, with probability at least 0.5 we have

max
i∈[n]

‖y i −µ‖2 ≥ nρ̃2/2.

This directly proves our lower bound by defining ρ̃2 := ρ2/s. Note that this lemma can be

tightened if we make stronger assumptions on the noise such as E‖y i −µ‖r ≤ (ρ/
p

s)r for some
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large r ≥ 2. However, we focus on using standard stochastic assumptions (r = 2) in this work.

14.3.2 Proofs of robustness

LET {y 1 . . . , y n} BE THE RESAMPLED VECTORS WITH RESAMPLING USING s = δmax
δ . BY LEMMA 19,

WE HAVE THAT THERE IS A G̃ ⊆ [n] OF SIZE |G̃ | > n(1−δmax) WHICH SATISFIES FOR ANY FIXED

i , j ∈ G̃

E‖y i − y j‖2 ≤ δρ2

δmax
=: ρ̃2 .

THIS OBSERVATION WILL BE COMBINED WITH EACH OF THE ALGORITHMS TO OBTAIN ROBUST-

NESS GUARANTEES.

ROBUSTNESS OF KRUM. WE NOW PROVE THAT KRUM WHEN COMBINED WITH RESAMPLING

IS A ROBUST AGGREGATOR. WE CAN REWRITE THE OUTPUT OF KRUM AS THE FOLLOWING FOR

δmax = 1/4−ν FOR SOME ARBITRARILY SMALL POSITIVE NUMBER ν ∈ (0,1/4):

KRUM(y 1, . . . , y n) = argmin
y i

min
|S |=3n/4

max
j∈S

‖y i − y j‖ .

LET S ? AND k? BE THE QUANTITIES WHICH MINIMIZE THE OPTIMIZATION PROBLEM SOLVED

BY KRUM.

THE MAIN DIFFICULTY OF ANALYZING KRUM IS THAT EVEN IF WE SUCCEED IN SELECTING A k? ∈
G̃ , k? DEPENDS ON THE SAMPLING. HENCE, WE CANNOT CLAIM THAT THE ERROR IS BOUNDED

BY ρ̃2 I.E 1

E‖y k? − y j‖2 � ρ̃2 FOR SOME FIXED j ∈ G̃ .

THIS IS BECAUSE THE VARIANCE IS BOUNDED BY ρ̃2 ONLY FOR A fixed I, AND NOT A DATA DE-

PENDENT k?. INSTEAD, WE WILL HAVE TO RELY ON LEMMA 89 THAT

E‖y k? − y j‖2 ≤ Emax
i∈G̃

‖y i − y j‖2 ≤ nρ̃2 .

LEMMA 89 SHOWS THAT THIS INEQUALITY IS ESSENTIALLY TIGHT AND HENCE RELYING ON IT

NECESSARILY INCURS AN EXTRA FACTOR OF n WHICH CAN BE VERY LARGE. INSTEAD, WE SHOW

AN ALTERNATE ANALYSIS WHICH WORKS FOR A SMALLER BREAKDOWN POINT OF δmax = 1/4, BUT

does not INCUR THE EXTRA n FACTOR.

FOR ANY GOOD INPUT i ∈ G̃ , WE HAVE

‖y k? − x̄‖2 ≤ 2‖y k? − y i‖2 +2‖y i − x̄‖2

⇒ 2‖y k? − y i‖2 ≥ ‖y k? − x̄‖2 −2‖y i − x̄‖2 .

1This issue was incorrectly overlooked in the original analysis of Krum (Blanchard et al., 2017)
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FURTHER, FOR A BAD WORKER j ∈ B̃ WE CAN WRITE

2‖y k? − y j‖2 ≥ ‖y j − x̄‖2 −2‖y k? − x̄‖2 .

COMBINING BOTH AND SUMMING OVER S ?,∑
i∈S ?

2‖y k? − y i‖2 = ∑
i∈G̃∩S ?

2‖y k? − y i‖2 + ∑
j∈B̃∩S ?

2‖y k? − y j‖2

≥ ∑
j∈B̃∩S ?

‖y j − x̄‖2 −2
∑

i∈G̃∩S ?

‖y i − x̄‖2

+ (|G̃ ∩S ?|−2|B̃∩S ?|)‖y k? − x̄‖2 .

WE CAN REARRANGE THE ABOVE EQUATION AS

‖y k? − x̄‖2 ≤ 1

(|G̃ ∩S ?|−2|B̃∩S ?|) (
∑

i∈S ?

2‖y k? − y i‖2 + ∑
i∈G̃∩S ?

2‖y i − x̄‖2)

≤ 1

(|S ?|−3|B̃|) (
∑

i∈S ?

2‖y k? − y i‖2 + ∑
i∈G̃∩S ?

2‖y i − x̄‖2)

≤ 1

(|S ?|−3|B̃|) (2min
k,S

∑
i∈S

‖y k − y i‖2 + ∑
i∈G̃

2‖y i − x̄‖2)

TAKING EXPECTATION NOW ON BOTH SIDES YIELDS

E‖y k? − x̄‖2 ≤ 3nρ̃2

|S ?|−3|B̃| .

NOW, RECALL THAT WE USED A RESAMPLING VALUE OF s = δmax/δ WHERE FOR KRUM WE HAVE

δmax = 1/4−ν. THEN, THE NUMBER OF BYZANTINE WORKERS CAN BE BOUNDED AS |B̃| ≤ n(1/4−
δ). THIS GIVES THE FINAL RESULT THAT

E‖y k? − x̄‖2 ≤ 3nρ̃2

3n/4−3(n/4−νn)
= ρ̃2

ν
≤ 1

ν(1/4−ν)
δρ2 .

THUS, KRUM WITH RESAMPLING INDEED SATISFIES DEFINITION G WITH δmax = (1/4−ν) AND

c = 1/(ν(1/4−ν)).

ROBUSTNESS OF GEOMETRIC MEDIAN. GEOMETRIC MEDIAN COMPUTES THE MINIMUM OF

THE FOLLOWING OPTIMIZATION PROBLEM

y? = argmin
y

∑
i∈[n]

‖y − y i‖2 .

WE WILL ADAPT LEMMA 24 OF COHEN ET AL. (2016), WHICH ITSELF IS BASED ON (MINSKER
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ET AL., 2015). FOR A GOOD WORKER i ∈ G̃ AND BAD WORKER j ∈ B̃ :

‖y?− y i‖2 ≥ ‖y?− x̄‖2 −‖y i − x̄‖2 FOR i ∈ G̃ , AND

‖y?− y j‖2 ≥ ‖y j − x̄‖2 −‖y?− x̄‖2 FOR j ∈ B̃ .

SUMMING THIS OVER ALL WORKERS WE HAVE∑
i∈[n]

‖y?− y i‖ ≥ (|G̃ |− |B̃|)‖y?− x̄‖+ ∑
j∈B̃

‖y j − x̄‖− ∑
i∈G̃

‖y i − x̄‖

⇒‖y?− x̄‖ ≤ 1

(|G̃ |− |B̃|)

 ∑
i∈[n]

‖y?− y i‖−
∑

j∈B̃

‖y j − x̄‖+ ∑
i∈G̃

‖y i − x̄‖


= 1

(|G̃ |− |B̃|)

min
y

∑
i∈[n]

‖y − y i‖−
∑

j∈B̃

‖y j − x̄‖+ ∑
i∈G̃

‖y i − x̄‖


≤ 2

(|G̃ |− |B̃|)

(∑
i∈G̃

‖y i − x̄‖
)

.

THE LAST STEP WE SUBSTITUTED y = x̄ . SQUARING BOTH SIDES, EXPANDING, AND THEN TAK-

ING EXPECTATION GIVES

E‖y?− x̄‖2 ≤ 4

(|G̃ |− |B̃|)2
E

(∑
i∈G̃

E‖y i − x̄‖
)2

≤ 4

(|G̃ |− |B̃|)2

(
|G̃ | ∑

i∈G̃

E‖y i − x̄‖2

)

≤ 4|G̃ |2
(n −2|B̃|)2

ρ̃2 .

NOW, RECALL THAT WE USED A RESAMPLING VALUE OF s = δmax/δ WHERE FOR KRUM WE HAVE

δmax = 1/2−ν. THEN, THE NUMBER OF BYZANTINE WORKERS CAN BE BOUNDED AS |B̃| ≤ n(1/2−
ν). THIS GIVES THE FINAL RESULT THAT

E‖y?− x̄‖2 ≤ 4n2

4n2ν2 ρ̃
2 ≤ ρ̃2

ν2 ≤ 1

ν(1/2−ν)
δρ2 .

THUS, GEOMETRIC MEDIAN WITH RESAMPLING INDEED SATISFIES DEFINITION G WITH δmax =
(1/2 −ν) AND c = 1/(ν(1/2 −ν)). NOTE THAT GEOMETRIC MEDIAN HAS BETTER THEORETICAL

PERFORMANCE THAN KRUM.

ROBUSTNESS OF COORDINATE-WISE MEDIAN. THE PROOF OF COORDINATE-WISE MEDIAN

LARGELY FOLLOWS THAT OF THE GEOMETRIC MEDIAN. FIRST, WE NOTE THAT WE CAN SEPARATE

OUT THE OBJECTIVE BY COORDINATES

E‖CM(y 1, . . . , y n)− x̄‖2 =
d∑

l=1
E
(
CM([y 1]l , . . . , [y n]l )− [x̄]l

)2 .
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THEN NOTE THAT, FOR ANY FIXED COORDINATE l ∈ [d ] AND FIXED GOOD WORKER i ∈ G , WE

HAVE E([y i ]l − [x̄]l )2 ≤ E‖y i − x̄‖2 ≤ ρ̃2. THUS, WE CAN SIMPLY ANALYZE COORDINATE-WISE

MEDIAN AS d SEPARATE (GEOMETRIC) MEDIAN PROBLEMS ON SCALARS. THUS FOR ANY FIXED

COORDINATE l ∈ [d ], WE HAVE

E
(
CM([y 1]l , . . . , [y n]l )− [x̄]l

)2 ≤ ρ̃2

ν2 ⇒ E‖CM(y 1, . . . , y n)− x̄‖2 ≤ d ρ̃2

ν2 ≤ d

ν(1/2−ν)
δρ2 .

THUS, COORDINATE-WISE MEDIAN WITH RESAMPLING INDEED SATISFIES DEFINITION G WITH

δmax = (1/2−ν) AND c = d/(ν(1/2−ν)).

14.4 Lower bounds on non-iid data (Proof of Theorem XXIII)

OUR PROOF BUILDS TWO SETS OF FUNCTIONS { f 1
i (x) | i ∈ G 1} AND { f 2

i (x) | i ∈ G 2} AND WILL

SHOW THAT IN THE PRESENCE OF δ-FRACTION OF BYZANTINE WORKERS, NO ALGORITHM CAN

DISTINGUISH BETWEEN THEM. SINCE THE PROBLEMS HAVE DIFFERENT OPTIMA, THIS MEANS

THAT THE ALGORITHM NECESSARILY HAS AN ERROR ON AT LEAST ONE OF THEM.

FOR THE FIRST SET OF FUNCTIONS, LET THERE BE no BAD WORKERS AND HENCE G 1 = [n].

THEN, WE DEFINE THE FOLLOWING FUNCTIONS FOR ANY i ∈ [n]:

f 1
i (x) =


µ
2 x2 −Gδ̂−1/2x FOR i ∈ {1, . . . ,δn}
µ
2 x2 FOR i ∈ {δn +1, . . . ,n} .

DEFINING G :=Gδ1/2, THE AVERAGE FUNCTION WHICH IS OUR OBJECTIVE IS

f 1(x) = 1

n

n∑
i=1

f 1
i (x) = µ

2
x2 −Gx .

THE OPTIMUM OF OUR f 1(x) IS AT x = G
µ . NOTE THAT THE GRADIENT HETEROGENEITY AMONGST

THESE WORKERS IS BOUNDED AS

Ei∼[n]‖∇ f 1
i (x)−∇ f 1(x)‖2 ≤ Ei∼[n]‖∇ f 1

i (x)−µx‖2 = δ(Gδ−1/2)2 =G2 .

NOW, WE DEFINE THE SECOND SET OF FUNCTIONS. HERE, SUPPOSE THAT WE HAVE δn BYZAN-

TINE ATTACKERS WITH B2 = {1, . . . ,δn}. THEN, THE FUNCTIONS OF THE GOOD WORKERS ARE

DEFINED AS

f 2
i (x) = µ

2
x2 FOR i ∈G 2 = {δn +1, . . . ,n} .

WE THEN HAVE THAT THE SECOND AVERAGE OBJECTIVE IS

f 2(x) = 1

|G 2|
∑

i∈G 2

f 2
i (x) = µ

2
x2 .

HERE, WE HAVE GRADIENT HETEROGENEITY OF 0 AND HENCE IS SMALLER THAN G2. THE OPTI-
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MUM OF f 2(x) IS AT x = 0. THE BYZANTINE ATTACKERS SIMPLY IMITATE AS IF THEY HAVE THE

FUNCTIONS:

f 2
j (x) = µ

2
x2 −Gδ−1/2x FOR j ∈B2 = {1, . . . ,δn} .

NOTE THAT THE SET OF FUNCTIONS, { f 1
1 (x), . . . , f 1

n (x)} IS EXACTLY IDENTICAL TO THE SET { f 2
1 (x), . . . , f 2

n (x)}.

ONLY THE IDENTITY OF THE GOOD WORKERS G 1 AND G 2 ARE DIFFERENT, LEADING TO DIFFER-

ENT OBJECTIVE FUNCTIONS f 1(x) AND f 2(x). HOWEVER, SINCE THE ALGORITHM DOES NOT

HAVE ACCESS TO G , ITS OUTPUT ON EACH OF THEM IS IDENTICAL I.E.

x OUT = ALG( f 1
1 (x), . . . , f 1

n (x)) = ALG( f 2
1 (x), . . . , f 2

n (x)) .

HOWEVER, THE LEADS TO MAKING A LARGE ERROR IN LEAST ONE OF f 1 AND f 2 SINCE THEY

HAVE DIFFERENT OPTIMUM. THIS PROVES A LOWER BOUND ERROR OF

max
k∈{1,2}

f k (x OUT)− f k (x?) ≥µ
(

G

2µ

)2

= δG2

4µ
.

SIMILARLY, WE CAN ALSO BOUND THE GRADIENT NORM ERROR BOUND AS

max
k∈{1,2}

‖∇ f k (x OUT)‖2 ≥µ2
(

G

2µ

)2

= δG2

4
.

14.5 Convergence of robust optimization on non-iid data (Theo-

rems XXII and XXIV)

WE WILL PROVE A MORE GENERAL CONVERGENCE THEOREM WHICH GENERALIZES THEOREMS XXII

AND XXIV.

Theorem XXXVI. Suppose we are given a (δmax,c)-ARAGG satisfying Definition G, and n work-

ers of which a subset G of size at least |G | ≥ n(1−δ) faithfully follow the algorithm for δ≤ δmax.

Further, for any good worker i ∈ G let fi be a possibly non-convex function with L-Lipschitz

gradients, and the stochastic gradients on each worker be independent, unbiased and satisfy

Eξi
‖g i (x)−∇ fi (x)‖2 ≤σ2 and E j∼G ‖∇ f j (x)−∇ f (x)‖2 ≤G2 +B 2‖∇ f (x)‖2 , ∀x ,

where δ ≤ 1/(3cB 2). Then, for F 0 := f (x0) − f ?, the output of Algorithm 10 with step-size

η= min

(
O

(√
LF 0+cδ(G2+σ2)
T L2σ2(n−1+cδ)

)
, 1

8L

)
and momentum parameter β= (1−8Lη) satisfies

1

T

T∑
t=1

E‖∇ f (x t−1)‖2 ≤O
( 1

1−3cδB 2 ·
(
cδG2 +σ

√
LF 0

T
(cδ+ 1/n)+ LF 0

T

))
.

263



Chapter 14. Appendix for heterogeneous Byzantine robust learning using resampling

DEFINITIONS.

RECALL OUR ALGORITHM WHICH PERFORMS FOR t ≥ 2 THE FOLLOWING UPDATE WITH (1−β) =
α:

mt
i = (1−α)mt−1

i +αg i (x t−1) FOR EVERY i ∈G ,

x t = x t−1 −ηARAGG(mt
1, . . . ,mt

n) .

FOR t = 1, WE USE α = 0 I.E. m1
i = g i (x0). LET US ALSO DEFINE THE ACTUAL AND IDEAL MO-

MENTUM AGGREGATES AS

mt := ARAGG(mt
1, . . . ,mt

n) AND m̄t := 1

|G |
∑
i∈G

mt
i .

WE STATE SEVERAL SUPPORTING LEMMAS BEFORE PROVING OUR MAIN THEOREM XXXVI. WE

WILL LOOSELY FOLLOW THE PROOF OF BYZANTINE ROBUSTNESS IN THE IID CASE BY KARIM-

IREDDY ET AL. (2021B), WITH THE KEY DIFFERENCE OF LEMMA 90 WHICH ACCOUNTS FOR THE

NON-IID ERROR.

Lemma 90 (Aggregation error). Given that ARAGG satisfies Definition G holds, the error be-

tween the ideal average momentum m̄t and the output of the robust aggregation rule mt for

any t ≥ 2 can be bounded as

E‖mt −m̄t‖2 ≤ cδρ2
t ,

where we define for t ≥ 2

ρ2
t := (6ασ2 +3G2)+ (6σ2 +3G2)(1−α)t +3

t∑
k=1

(1−α)t−kαB 2E‖∇ f (xk−1)‖2 .

For t = 1 we can simplify the bound as ρ2
1 := 6cδσ2 +3cδG2 +3cδB 2‖∇ f (x0)‖2.

Proof. Expanding the definition of the worker momentum for a fixed good workers i ∈G ,

E‖mt
i −E[mt

i | i ]‖2 = E‖α(g i (x t−1)−∇ fi (x t−1))+ (1−α)(mt−1
i −E[mt−1

i | i ])‖2

≤ E‖(1−α)(mt−1
i −E[mt−1

i | i ])‖2 +α2σ2

≤ (1−α)E‖mt−1
i −E[mt−1

i | i ]‖2 +α2σ2 .

Unrolling the recursion above yields

E‖mt
i −E[mt

i | i ]‖2 ≤
(

t∑
`=2

(1−α)t−`
)
α2σ2 + (1−α)t−1σ2 ≤σ2(α+ (1−α)t−1) .

Similar computation also shows

E‖m̄t −E[m̄t ]‖2 ≤ σ2

n
(α+ (1−α)t−1) .
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So far, the expectation was only over the stochasticity of the gradients of worker i . Note that

we have E[mt
i | i ] = (1−α)∇ fi (x t−1)+αE[mt−1

i | i ]. Now, suppose we sample i uniformly at

random from G . Then,

Ei
∥∥E[mt

i | i ]−E[m̄t ]
∥∥2 = E‖α(∇ fi (x t−1)−∇ f (x t−1))+ (1−α)(E[mt−1

i | i ]−E[m̄t−1]‖2

≤ (1−α)Ei‖E[mt−1
i | i ]−E[m̄t−1]‖2 +αEi‖∇ fi (x t−1)−∇ f (x t−1)‖2

≤ (1−α)Ei‖E[mt−1
i | i ]−E[m̄t−1]‖2 +αG2 +αB 2E‖∇ f (x t−1)‖2)

Note that here we only get α instead of α2 as before. This is because the randomness in

the sampling of i nabl a fi (x t−1) is not independent of the second term E[mt−1
i | i ]−E[m̄t−1].

Expanding this we get,

Ei
∥∥E[mt

i | i ]−E[m̄t ]
∥∥2 ≤G2(1+ (1−α)t−1)+

t∑
k=1

(1−α)t−kαB 2E‖∇ f (xk−1)‖2 .

We can combine all three bounds above as

Ei‖mt
i −m̄t‖2 ≤ 3E‖mt

i −E[mt
i | i ]‖2 +3E‖m̄t −E[m̄t ]‖2 +3Ei‖E[mt

i | i ]−E[m̄t ]‖2

≤ (6ασ2 +3G2)+ (6σ2 +3G2)(1−α)t +3
t∑

k=1
(1−α)t−kαB 2E‖∇ f (xk−1)‖2 .

Recall that the right hand side was defined to be ρ2
t . Using Definition G, we can show that the

output of the aggregation rule ARAGG satisfies the condition in the lemma.

ONE MAJOR CAVEAT IN THE ABOVE LEMMA IS THAT HERE ρ2 CANNOT BE KNOWN TO THE ROBUST

AGGREGATION SINCE IT INVOLVES E‖∇ f (xk−1)‖2 WHOSE VALUE WE DO NOT HAVE ACCESS TO.

HOWEVER, THIS DOES NOT PRESENT A HURDLE TO agnostic AGGREGATION RULES WHICH ARE

AUTOMATICALLY ADAPTIVE TO THE VALUE OF ρ2. DERIVING A SIMILARLY PROVABLE ADAPTIVE

CLIPPING METHOD IS A VERY IMPORTANT OPEN PROBLEM.

Lemma 91 (Descent bound). For any α ∈ [0,1] for t ≥ 2, η ≤ 1
L , and an L-smooth function f

we have for any t ≥ 1

Et [ f (x t )] ≤ f (x t−1)− η

2
‖∇ f (x t−1)‖2 +ηEt‖ē t‖2 +ηEt‖mt −m̄t‖2 .

where ē t := m̄t −∇ f (x t−1).
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Proof. By the smoothness of the function f and the server update,

f (x t ) ≤ f (x t−1)−η〈∇ f (x t−1),mt 〉+ Lη2

2
‖mt‖2

≤ f (x t−1)−η〈∇ f (x t−1),mt 〉+ η

2
‖mt‖2

= f (x t−1)+ η

2
‖mt −∇ f (x t−1)‖2 − η

2
‖∇ f (x t−1)‖2

= f (x t−1)+ η

2
‖mt ±m̄t −∇ f (x t−1)‖2 − η

2
‖∇ f (x t−1)‖2

≤ f (x t−1)+η‖ē t‖2 +η‖mt −m̄t‖2 − η

2
‖∇ f (x t−1)‖2 .

Here we used the identities that−2ab = (a−b)2−a2−b2, and Young’s inequality that (a+b)2 ≤
(1+γ)a2 + (1+ 1

γ )b2 for any positive constant γ≥ 0 (here we used γ= 1). Taking conditional

expectation on both sides yields the lemma.

Lemma 92 (Error bound). Using any constant momentum and step-sizes such that 1 ≥ α ≥
8Lη for t ≥ 2, we have for an L-smooth function f that E‖ē1‖2 ≤ 2σ2

n and for t ≥ 2

E‖ē t‖2 ≤ (1− 2α
5 )E‖ē t−1‖2 + α

10 E‖∇ f (x t−2)‖2 + α
10 E‖mt−1 −m̄t−1‖2 +α2 2σ2

n .

Proof. Let us define ḡ (x) := 1
|G |

∑
i∈G g i (x). This implies that

E‖ḡ (x)−∇ f (x)‖2 ≤ σ2

|G | ≤
2σ2

n
.

Then by definition of m̄, we can expand the error as:

E‖ē t‖2 = E‖m̄t −∇ f (x t−1)‖2

= E‖αḡ (x t−1)+ (1−α)m̄t−1 −∇ f (x t−1)‖2

≤ E‖α∇ f (x t−1)+ (1−α)m̄t−1 −∇ f (x t−1)‖2 + 2α2σ2

n

= (1−α)2E‖(m̄t−1 −∇ f (x t−2))+ (∇ f (x t−2)−∇ f (x t−1))‖2 + 2α2σ2

n

≤ (1−α)(1+ α
2 )E‖(m̄t−1 −∇ f (x t−2))‖2

+ (1−α)(1+ 2
α )E‖∇ f (x t−2)−∇ f (x t−1)‖2 + 2α2σ2

n

≤ (1− α
2 )E‖ē t−1‖2 + 2L2

α E‖x t−2 −x t−1‖2 + 2α2σ2

n

= (1− α
2 )E‖ē t−1‖2 + 2L2η2

α E‖mt−1‖2 + 2α2σ2

n

≤ (1− α
2 )E‖ē t−1‖2 + 6L2η2

α ‖ē t−1‖2

+ 6L2η2

α E‖mt−1 −m̄t−1‖2 + 6L2η2

α E‖∇ f (x t−2)‖2 + 2α2σ2

n
.
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Our choice of the momentum parameter α implies 64L2η2 ≤α2 and yields the lemma state-

ment.

PROOF OF THEOREM XXXVI. SCALE THE ERROR BOUND LEMMA 92 BY
5η
2α AND ADD IT TO THE

DESCENT BOUND LEMMA 91 TAKING EXPECTATIONS ON BOTH SIDES TO GET FOR t ≥ 2

E[ f (x t )]+ 5η
2α E‖ē t‖2 ≤ E[ f (x t−1)]− η

2 E‖∇ f (x t−1)‖2 +ηE‖ē t‖2 +ηE‖mt −m̄t‖2+
5η
2α E‖ē t−1‖2 −ηE‖ē t−1‖2 + η

4 E‖∇ f (x t−2)‖2

+ η
4 E‖mt−1 −m̄t−1‖2 +5ηα

σ2

n

NOW, LET USE THE AGGREGATION ERROR LEMMA 90 TO BOUND E‖mt−1−m̄t−1‖2 IN THE ABOVE

EXPRESSION TO GET

E[ f (x t )]+ 5η
2α E‖ē t‖2 ≤ E[ f (x t−1)]− η

2 E‖∇ f (x t−1)‖2 +ηE‖ē t‖2 +ηE‖mt −m̄t‖2

+ 5η
2α E‖ē t−1‖2 −ηE‖ē t−1‖2 + η

4 E‖∇ f (x t−2)‖2 +5ηασ2

n

+ ηcδ

4

(
(6ασ2 +3G2)+ (6σ2 +3G2)(1−α)t−2

+3
t−1∑
k=1

(1−α)t−1−kαB 2E‖∇ f (xk−1)‖2
)

LET US DEFINE St :=∑t
k=1(1−α)t−kαB 2E‖∇ f (xk−1)‖2. THEN, St SATISFIES THE RECURSION:

1
αSt = ( 1

α −1)St−1 +B 2E‖∇ f (xk−1)‖2 .

ADDING
3ηcδ

4α St ON BOTH SIDES TO THE BOUND ABOVE AND REARRANGING GIVES THE FOLLOW-

ING FOR t ≥ 2
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E f (x t )− f ?+ ( 5η
2α −η)E‖ē t‖2 + η

4
E‖∇ f (x t−1)‖2 + 3ηcδ

4α
St︸ ︷︷ ︸

=:Et

≤ E f (x t−1)− f ?+ ( 5η
2α −η)E‖ē t−1‖2 + η

4
E‖∇ f (x t−2)‖2 + 3ηcδ

4α
St−1︸ ︷︷ ︸

=:Et−1

(−η
4 + 3ηcδB 2

4 )E‖∇ f (x t−1)‖2

+ 5ηα

n
σ2 + ηcδ

4

(
(6ασ2 +3G2)+ (6σ2 +3G2)(1−α)t−1)

≤ Et−1 − η

4
(1−3cδB 2)E‖∇ f (x t−1)‖2

+5ηασ2( 1
n + 3

10 cδ(1+ 1
α (1−α)t−2)

)+ 3ηcδG2

4 (1+ (1−α)t−2)︸ ︷︷ ︸
=:ηξ2

t−1

.

FURTHER, SPECIALIZING THE DESCENT BOUND LEMMA 91 AND ERROR BOUND LEMMA 92 FOR

t = 1 WE HAVE

E1 = E f (x1)− f ?+ 3η

2
E‖ē1‖2 + η

4
E‖∇ f (x0)‖2 + 3ηcδB 2

4
‖∇ f (x0)‖2

≤ f (x0)− f ?+ 5η

2
E‖ē1‖2 − η

4
(1−3cδB 2)E‖∇ f (x0)‖2 +ηE‖m1 −m̄1‖2

≤ f (x0)− f ?− η

4
(1−3cδB 2)E‖∇ f (x0)‖2 + 5ησ2

n
+3cδη(2σ2 +G2 +B 2‖∇ f (x0)‖2)

= f (x0)− f ?− η

4
(1−3cδB 2)E‖∇ f (x0)‖2 +ηξ2

0 .

ABOVE, WE DEFINED ξ2
0 := 5σ2

n +3cδ(2σ2 +G2 +B 2‖∇ f (x0)‖2). SUMMING OVER t FROM 2 UN-

TIL T , AGAIN REARRANGING OUR RECURSION FOR Et , AND ADDING (1−3cδB 2)E‖∇ f (x0)‖2 ON
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BOTH SIDES GIVES

(1−3cδB 2)
1

T

T∑
t=1

E‖∇ f (x t−1)‖2 ≤ 4E1

ηT
+ (1−3cδB 2)E‖∇ f (x0)‖2 + 1

T

T∑
t=2

4ξ2
t−1

≤ 4( f (x0)− f ?)

ηT
+ 1

T

T∑
t=1

4ξ2
t−1

= 4( f (x0)− f ?)

ηT
+ 4ξ2

0

T

+ 1

T

T∑
t=2

20ασ2( 1
n + 3

10 cδ(1+ 1
α (1−α)t−2)

)
+ 1

T

T∑
t=2

3cδG2(1+ (1−α)t−2)

≤ 4( f (x0)− f ?)

ηT
+ 4ξ2

0

T
+3cδG2 + 3cδG2

αT

+20ασ2( 1
n + 3

10 cδ
)+ 6cδσ2

αT

= 4( f (x0)− f ?)

ηT
+ 3cδ(G2 +2σ2)

η8LT
+η160Lσ2( 1

n + 3
10 cδ

)
+ 4ξ2

0

T
+3cδG2

THE LAST EQUALITY SUBSTITUTED THE VALUE OF α= 8Lη. NEXT, LET US USE THE APPROPRIATE

STEP-SIZE OF

η= min


√√√√4( f (x0)− f ?)+ 3cδ

8L (G2 +2σ2)

T (160Lσ2)
( 1

n + 3
10 cδ

) ,
1

8L

 .

THIS GIVES THE FOLLOWING FINAL RATE OF CONVERGENCE:

1

T

T∑
t=1

E‖∇ f (x t−1)‖2

≤ 1

1−3cδB 2 ·
(
3cδG2 +

√
160Lσ2

( 1
n + 3

10 cδ
)

T
·
√

4( f (x0)− f ?)+ 3cδ
8L (G2 +2σ2)

+ L( f (x0)− f ?)

2T
+ 3cδ(G2 +2σ2)

T

+
20σ2

n +12cδ(2σ2 +G2 +B 2‖∇ f (x0)‖2)

T

)
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