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Abstract

Understanding the diffusion patterns of sequences of interdependent events is a central
question for a variety of disciplines. Temporal point processes are a class of elegant and
powerful models of such sequences; these processes have become popular across multiple
fields of research due to the increasing availability of data that captures the occurrence of
events over time. A notable example is the Hawkes process. It was originally introduced
by Alan Hawkes in 1971 to model the diffusion of earthquakes and was subsequently
applied across fields such as epidemiology, neuroscience, criminology, finance, genomic,
and social-network analysis.

A central question in these fields is the inverse problem of uncovering the diffusion
patterns of the events from the observed data. The methods for solving this inverse
problem assume that, in general, the data is noiseless. However, real-world observations
are frequently tainted by noise in a number of ways. Most existing methods are not
robust against noise and, in the presence of even a small amount of noise in the data,
they might completely fail to recover the underlying dynamics. In this thesis, we remedy
this shortcoming and address this problem for several types of observational noise.

First, we study the effects of small event-streams that are known to make the learning
task challenging by amplifying the risk of overfitting. Using recent advances in variational
inference, we introduce a new algorithm that leads to better regularization schemes and
provides a measure of uncertainty on the estimated parameters.

Second, we consider events corrupted by unknown synchronized time delays. We
show that the so-called synchronization noise introduces a bias in the existing estimation
methods, which must be handled with care. We provide an algorithm to robustly learn
the diffusion dynamics of the underlying process under this class of synchronized delays.

Third, we introduce a wider class of random and unknown time shifts, referred to
as random translations, of which synchronization noise is a special case. We derive the
statistical properties of Hawkes processes subject to random translations. In particular,
we prove that the cumulants of Hawkes processes are invariant to random translations
and we show that cumulant-based algorithms can be used to learn their underlying causal
structure even when unknown time shifts distort the observations.
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Abstract

Finally, we consider another class of temporal point processes, the so-called Wold
process that solves a computational limitation of the Bayesian treatment of Hawkes
processes while retaining similar properties. We address the problem of learning the
parameters of a Wold process by relaxing some of the restrictive assumptions made in
the state of the art and by introducing a Bayesian approach for inferring its parameters.

In summary, the results presented in this dissertation highlight the shortcomings of
standard inference methods used to fit temporal point processes. Consequently, these
results deepen our ability to extract reliable insights from networks of interdependent
event streams.

Keywords event streams, noisy observations, temporal point processes, Hawkes process,

Granger causality, networks, algorithms, Bayesian modeling, statistical inference, machine
learning
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Résumé

Comprendre les schémas de diffusion de séquences d’événements interdépendants est une
question centrale pour une variété de disciplines scientifiques. Les processus ponctuels
constituent une classe de modeles élégants et puissants pour de telles séquences temporelles.
Ils sont devenus populaires dans de nombreux domaines de recherche en raison de la
disponibilité croissante de données qui capturent I’occurrence d’événements dans le temps.
Un exemple notable est le processus de Hawkes qui a été introduit par Alan Hawkes en
1971 pour modéliser la diffusion des tremblements de terre et a ensuite été appliqué a de
nombreux domaines tels que ’épidémiologie, les neurosciences, la criminologie, la finance,
la génomique et I’analyse des réseaux sociaux.

Une question centrale dans ces domaines est le probléme inverse qui consiste a
découvrir les structures du systéme de diffusion des événements a partir d’observations
passées. Les méthodes s’attaquant & ce probleme inverse supposent en général que les
évenements soient observés sans bruit. Cependant, dans des applications réelles, les
données observées sont fréquemment entachées de plusieurs sources d’erreurs. La plupart
des méthodes existantes ne sont pas robustes contre ces erreurs et, méme en présence
d’une quantité minime de bruit dans les données, elles peuvent completement échouer
a inférer les schémas de diffusion des séquences d’événements. Dans cette thése, nous
remédions a cette lacune et abordons ce probléme pour plusieurs types de bruit.

Tout d’abord, nous étudions l'effet de petits flux d’événements qui sont connus pour
rendre la tdche d’apprentissage difficile en amplifiant le risque de surapprentissage (aussi
appelé “overfitting”). En utilisant les progres récents en inférence variationnelle, nous
introduisons un nouvel algorithme qui conduit a de meilleures méthodes de régularisation

et fournit une mesure de l'incertitude sur les parametres estimés.

Deuxiemement, nous considérons des événements corrompus par des décalages tempo-
rels synchronisés et inconnus. Nous montrons que ce bruit de synchronisation introduit un
biais dans les méthodes d’estimation existantes et doit donc étre traité avec précaution.
Nous proposons un algorithme pour apprendre de maniere robuste les dynamiques de
diffusion du processus sujets a cette classe de retards synchronisés.

ix



Résumé

Troisiemement, nous introduisons une classe plus large de décalages temporels aléa-
toires et inconnus, appelée translations aléatoires, dont le bruit de synchronisation est
un cas particulier. Nous dérivons les propriétés statistiques des processus de Hawkes
soumis a des translations aléatoires. En particulier, nous prouvons que les cumulants des
processus de Hawkes demeurent invariants aux translations aléatoires et nous montrons
que les algorithmes basés sur les cumulants peuvent étre utilisés pour apprendre leur
structure causale sous-jacente méme lorsque des décalages temporels inconnus déforment
les observations.

Enfin, nous considérons une autre classe de processus ponctuels, les processus dits de
Wold, qui résolvent une limitation computationnelle du traitement Bayésien des processus
de Hawkes tout en conservant des propriétés similaires. Nous abordons le probleme
de l'apprentissage des parametres d’un processus de Wold en relaxant certaines des
hypotheses restrictives faites dans les modeéles existants et en introduisant une approche
Bayésienne pour inférer ses parametres.

En résumé, les résultats présentés dans cette thése mettent en évidence les lacunes des
méthodes d’inférence standard utilisées pour ajuster les processus temporels ponctuels.
Par conséquent, ces résultats renforcent notre capacité a extraire des informations fiables
de réseaux de flux d’événements interdépendants.

Mots-clés flux d’évenements, processus ponctuels et temporels, processus de Hawkes,
causalité de Granger, réseaux, algorithmes, modeles Bayésiens, inférence statistique,

apprentissage automatique
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- Mathematical Notation

Symbol Description

r, X Plain letters denote scalar values.

x = [z Boldface lowercase letters denote column vectors.
X = [z4] Boldface uppercase letters denote matrices.

X Calligraphic uppercase letters denote sets.

R, Ry, N, Ny Number types: real, positive real, natural numbers, natural
numbers starting from 0, respectively.

[n] Set of consecutive natural numbers {1,...,n}.

P(A) Probability of the random event A.

Tig Indicator variable of the random event A.

E[z] Expectation of the random variable z.

I xg(t) Convolution between two scalar functions, defined as
frg(t) = fo f(t —u)g(u)du.

L[f](s) Laplace transform of a function f(x), defined as
LIF)(5) 2 [ (@) exp(—sTa)da.

O(f(x)) 9(x) = O(f(x)) <= limsup, ,|g(z)|/f(z) < o0

o(f(x)) g9(x) = o(f(2)) < limpooo g(x)/f(z) =

Q(f () 9(z) = Qf(z)) < [f(z) = O(g(x)).

w(f(x)) 9(x) = w(f(z)) <= f(x) = o(g(x)).
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Mathematical Notation

Continuous Distribution Domain Probability Density function f(x)
Exponential(\) R Aexp(—Ax)
Gamma(q, 3) R<g B 2" exp(—pz)
’ I(a)
Inverse—Gamma(a, 5) Ry 5 gl exp(—ﬁ)
’ () T
Uniform(a, ) Wt
niform
orm(a, a, —
1 _ 2
Normal(u, o) R 5 exp [@202“)]
1 (log z — )’
L 1 R —_— —_——
Ognorma‘ (M? U) >0 max eXp [ 20-2
Discrete Distribution Domain Probability Mass function P(X = k)
Ak
Poisson(\) No o exp(—\)
Categorical(p1, ..., pn) [n] Dk
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Il Introduction

1.1 Motivation

Analyzing the precise time interval between the occurrences of a natural or social
phenomenon has been a central question to scientists for centuries. As early as in the
1600s in the city of London, the Church of England began publishing weekly bills of
mortality to monitor burials of parishioners. In 1662, John Graunt analyzed 70 years’
worth of this data and reported time trends for many diseases in the Natural and Political
Observations on the Bills of Mortality. This publication was a pioneering work providing
statistical evidence for many theories on diseases. It thereby laid the foundations of
the field of statistics and granted John Graunt the title of first epidemiologist!. The
publication consists of the first life table (also called mortality table); it compiles the
survival of people from a certain population in order to quantitatively measure their
longevity.

The emergence of this type of event data that records occurrences of a phenomenon over
time led to the development of stochastic point processes, a mathematical framework
describing random sets of discrete points scattered in some space. The basic idea behind
point processes is to capture the expected arrival rate of events, called intensity function.
In recent decades, point processes have received a steady increase of popularity and have
become an essential chapter of the theory of stochastic processes. They appear in various
forms in many applications, from epidemiology to telecommunication networks, biology,
finance or social sciences.

In this thesis, we are interested in the problem of learning the temporal dynamics of

marked temporal point processes, i.e., point processes tailored for event data consisting of

!Morabia [91] provides an interesting history of modern epidemiology and more details on John
Graunt’s work.



Introduction

one or more sequences of events of the form

S = {(in, tn) }n>1,

where t,, € R is the time of occurrence of the n-th event and i,, € X is its type, or mark,
which belongs to a discrete set X'. The mark might, for example, represent a geographical
location, a user in a social network, or an individual in a population.

A typical task of interest is to extract the pairwise influence relationships between types
of interdependent events. Over the years, a class of point process emerged as a central
model to capture these relationships: self-exciting point processes, also called Hawkes
processes, which capture the self- and the mutual-excitation patterns between several
types of events. Even though self-exciting point processes were originally developed
by Hawkes [58] to model the diffusion of earthquakes, they rapidly found applications in
other disciplines. In particular, they were applied to model the firing patterns of nerve
cells in the brain [95], to study the extremal returns in high-frequency trading [11], to
uncover the epidemic pathways of infection diseases [65], and to forecast and control
opinion dynamics in social networks [48]. One of the reasons behind the popularity of
Hawkes processes is that their dynamics can be elegantly summarized into a directed
network that captures the Granger causality between the streams of events, a statistical
measure of causality that is based on predictiveness.

Handling Noisy Observations. Learning the dynamics of event data with Hawkes
processes is an active research problem. A large body of recent studies exploit advances
in deep learning and focus on designing increasingly complex intensity functions for
applications where large volumes of event data are available. However, very few efforts
discuss the systematic noise that may taint the observed events in a number of ways,
as well as the various ways in which this noise affects the learning algorithms of classic
models such as the Hawkes process. In this thesis, we remedy this shortcoming and
address this problem for several types of observational noises.

e Small Data. Although many applications benefit from the growing availability
of data from the web, some applications still have to work with small datasets
comprised of a limited number of events. Consider, for example, the problem of
learning the diffusion pathways of an infectious disease. The goal of policy makers
is to take actions as quickly as possible, as a result limiting the amount of observed
data. In other public health applications, data is typically collected manually
through surveys, which requires expensive field work. It is therefore crucial to
develop algorithms that are able to uncover the dynamics of the process when only
a handful of events is available.



1.2. An Overview of Temporal Point Processes

e Random Time Shifts. The process through which the sequences of events are
collected often introduces noise in the timestamps of the observed events. For
instance, in neuroscience, the activity of neurons is typically collected by measuring
a continuous signal coming from the action potential of neurons by using electrode
micro-arrays. The signal is then converted into discrete sequences of events of firing
neurons, called neuronal spike trains; they are the times when the action potential
exceeds a threshold. This procedure is inherently noisy and prone to introducing
inaccuracies in the measured timestamps. Another example is in epidemiology,
where the reported times of infection have an approximate granularity and do not
account for the latent incubation period. This could lead to inaccuracies in the
measured timestamps. Consequently, a secondary case might be reported before the
primary case, which could interfere with learning the true line of causation. Most
existing methods for learning point processes are based on a likelihood function that
relies on the order of events to extract the underlying dynamics of the processes,
and hence lack robustness to noise that affects timing information, even in small
amounts.

e Scalability without compression. Some applications such as social network
analysis and information diffusion deal with very big networks containing a large
number of event types. In such settings, mining the Granger causality graph of
Hawkes processes becomes a challenging task. In particular, the Bayesian treatment
of the Hawkes process is known to not scale well with both the number events
and the number of dimensions [77]. The only solution proposed to overcome this
challenge consists of a discretization of binning the events through a discretization
of time, at the expense of information loss. It is therefore essential to develop
algorithms to capture the Granger causality in large networks of multivariate
temporal point processes with introducing noise to the observed data.

In the following chapters of this thesis, we tackle in turn each of the aforementioned
challenges, and we characterize their impact on estimation procedures for self-exciting
temporal point processes. Before delving into these questions, we first provide an overview

of the temporal point process framework used throughout the dissertation.

1.2 An Overview of Temporal Point Processes

Although there are excellent textbooks, such as the classic An Introduction to the Theory
of Point Processes from Daley and Vere-Jones [34, 35], that discuss point processes in
extensive detail, this section is meant to be a comprehensive introduction without delving
too deep into technicalities of measure theory. To make it easier to grasp the intuition
behind the concepts used in such models, we first ignore the marks of the events and
begin by considering only their purely temporal information. We introduce the basic

3



Introduction

definitions from the perspective of counting problems. We then illustrate these definitions
with a few classic examples.

1.2.1 Preliminary Definitions

Consider a sequence of events occurring in a system. For example, an event can be a
transaction in a financial market, the transmission of an infectious disease in an epidemic,
a post on a social network, or a neuron firing in the brain. A temporal point process is a
probabilistic representation of these events and is formally defined as follows.

Definition 1.1 (Temporal Point Process). A sequence 7 = {ty,}n>1 of real, positive and
strictly increasing random variables, defined on [0, 7], describing the time of occurrence
of a certain event in a system, is called a temporal point process on [0, T].

By superposing the times of all events, we obtain the cumulative count of events that
occurs over time. This representation provides another way to characterize the system by
a so-called counting process, defined as follows.

Definition 1.2 (Counting Process). Consider a temporal point process T = {t,}n>1.
The stochastic process { N (t)}+er., With right-continuous sample paths defined as

N(t) = Z L>t,ys (1.1)

n>1

is the counting process associated with the temporal point process 7 = {ty, }n>1. Further-
more, we denote by H; the history of the process up to time ¢, which contains all the
event times in 7 up to time t.

It is easy to see that both definitions are equivalent. Indeed, (1.1) means that the
differential of the counting process, defined as

AN(t) = N(t +dt) — N(t) (1.2)

is equal to 1 for all ¢ € T and is equal to 0 otherwise. Definition 1.2 also implies that
N(0) = 0. Specifically, no event has yet occurred by time ¢ = 0. This is an arbitrary
choice made for simplification. By abuse of notation, both the sequence of event times
T = {tn}n>1 and the counting process { N (t) };cr., are often referred to as point processes
because they both carry the same information. We show an illustrative example of a
counting process in Figure 1.1.

A natural way to define the density of events at a given time ¢ is through the expected
rate of arrival of events within the infinitesimal interval (¢,¢ + dt], called the conditional
intensity function and formally defined as follows.

4



1.2. An Overview of Temporal Point Processes

N(t)
10
~—
8 ?_(.
—
6 - —
—
4 — |
—
2 - —
0 5 i i —t—t Time ¢
t, ty ts ty ts tg t, tg tg
Figure 1.1 — Example of a realization of a point process with events at times t1,ts,...,tg

and its corresponding counting process N (t).

Definition 1.3 (Conditional Intensity Function). The conditional intensity function of
a temporal point process is given by

~ i E[N(t+ At) — N(t) | H
At—0 At

A(t|He) : (1.3)

In the literature, the conditioning of A(¢|H;) on the history H; is often omitted to simplify
the notation. We follow this convention and abbreviate the conditioning with an asterix,
writing A*(¢) := \(¢|H:). where applicable.

The conditional probability, given the history H;, of a new event to occur in an interval
(t,t 4 dt] is then characterized by the conditional intensity function such that
P(AN(t) =1 | H) = At | He)dt, (1.4)
P(dN(t) > 1 | Hi) = o(dt).

Assumption (1.5) states that the probability of two or more events happening simulta-
neously is negligible. It is the assumption of so-called simple point processes; it holds
true for all point processes discussed in this thesis. It follows that, for such processes, the
random variable dN (t) is a Bernoulli random variable (up to first order), hence

E[dN(t)] = P(dN(t) = 1) = P(“an event occurred at time t”). (1.6)
Alternatively, it is useful to relate the conditional intensity function A\*(¢) to the distribu-

tion of time intervals between consecutive events, or inter-event time distribution. Let
f(tn+1|Hs,) be the density function, and F'(t,+1|Hs,) be cumulative distribution, of the

5
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next event t,4+1 given the history of previous events, formally defined for ¢ > ¢,, as

F(tHe,) = lm P (tngs € (8,8 + dt] | Hy,) /dt, (1.7a)
F(ﬂ%tn) = IP>(7571+1 € (tnat] | /th) . (17b)

We can rewrite the conditional intensity function defined in (1.4) in terms of (1.7), as

A* (t)dt =P (tn—H S (t, t+ dt] ’Ht)
=P (tn+1 € (&, 0+ dt][He, tns1 & (tn,t])
B P (tn—l-l S (t, t+ dt], tn+1 ¢ (tn, t”th)
- P (tns1 & (tn, t][Hs,)
P (tny1 € (¢t + dt]|Hy,)
IED(tm&-l §é (tmt”th) '

Hence, the conditional intensity function can be written as

0= "

Overall, the conditional inter-event time distribution and the conditional intensity function
are two equivalent ways to uniquely determine the probability structure of a temporal
point process. We refer the interested reader to Propositions 7.2.I and 7.2.1V in [34] for
the formal proof.

As shown by Daley and Vere-Jones [34, Proposition 7.2.11I], the joint density of events
of a point process, also called the likelihood function, can be expressed in terms of its
conditional intensity function, as follows.

Proposition 1.4 (Likelihood Function). Let N be a point process on [0,T] for some
finite positive T', and let ty,...,tn() denote a realization of N over [0,T]. Then the
likelihood of such N can be written as

N(T) T
L= g A (tl)] exp <_/0 A (u)du) (1.9)

Proof. The expression of the likelihood function can be obtained from the inter-event
time distribution in (1.7). As shown by Rasmussen [100], we can rearrange (1.8) into

F(t[He,) FF@M,) — dlog[l — F(tHen)]

MO = TR T TR at

(1.10)
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Integrating both sides over the interval (¢,,t) yields?

N ()du = tog(1 — F(tH,)) — log(1 — F(ta[H,)

ln

= log(1 — F(t|H4,)),

where the last equality comes from the property of simple point processes stating
two events cannot occur simultaneously. Hence, t,,4+1 > t, w.p. 1 and F(t,|H;,) = 0.
Rearranging the terms leads to

F(H,) =1 — exp (_ /t /\*(u)du) , (1.11)

tn

F(tHe) = M (1) exp (- t X"(u)du) . (1.12)

in

Now assume that the process is observed up to the n-th event. The likelihood function of
the realization {t1,...,t,} observed in an interval [0, 7] is given by the chain rule as

L= f(tl, R ,tn) (1 - F(T|/th))

= [H f(tl|thl)] (1 - F(T|Ht"))
n T
(L o)

where H;, £ @ by definition. O

1.2.2 Classic Examples

As we have seen in the previous section, temporal point processes are uniquely character-
ized by either their conditional intensity function or their conditional inter-event time
distribution. Therefore, defining a temporal point process reduces to specifying one or the
other. Whereas recent models usually tackle the problem from the intensity function point
of view, the inter-event time distribution was instrumental in the historic development of
point processes. In this section, we illustrate the definitions of Section 1.2.1 with a few
classic examples of temporal point processes.

Example 1.5. The Homogeneous Poisson Process. The simplest class of point
processes is the homogeneous Poisson process defined by sequences of inter-event times

{511 = tn — tn—l}

*Because I'm (t,,t), ’'m dynamite, (t,,t), and I'll win the fight.
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being i.i.d. exponential random variables with a constant rate A for all n € N. The form
of the Poisson process makes it easy to study analytically. In particular, the number of
points falling in an interval of length T is Poisson distributed with a fixed rate AT, i.e.,

(AT

P(N(t+T)—-N(t)=k)=e i

The homogeneous Poisson process is said to have both stationary and independent
increments. It has stationary increments because the distribution of the number of events
that occur in any time interval depends only on the length of that interval; and it
has independent increments because the number of points falling in disjoint intervals
are independent. It is also easy to see that, from the form of the exponential density
function, the corresponding conditional intensity function is independent of the history
and constant, i.e.,

AEH) = A(t) = A, V. (1.13)

As we will see in the following examples, the Poisson process can often be seen as a
limiting case of more general models.

Example 1.6. The Inhomogeneous Poisson Process. The inhomogeneous Poisson
process is a generalization of the homogeneous Poisson process that is obtained by
permitting the intensity function A(¢) to be a function of time ¢. Hence, the inhomogeneous
Poisson process still has independent but not stationary increments. The number of
events that occur in a time interval [a, b] is Poisson distributed with mean | f A(t)dt.

Example 1.7. The Renewal Process. Relaxing the exponential assumption of inter-
event times yields the more general class of remewal processes. A renewal process is
characterized by a sequence of i.i.d. inter-event times {d, } with an arbitrary probability
density function g(-) defined on the positive half-line, i.e., such that g(d,) = 0 for é,, < 0.
Hence, the conditional intensity function of a renewal process depends only on the most
recent event and can be written as

At | He) & At = tney), (1.14)

where N (t7) is the time of the last event before time ¢ > 0. The Poisson process is a
particular type of renewal process where g(-) is the exponential density function.

Example 1.8. The Wold Process. Going beyond the independence assumption of
renewal processes, Wold [125] studied the class of point process whose sequence of
inter-event times {d,+1} forms a Markov chain, such that the distribution

p(5n+1|5n7 5n717 R 51) = p(5n+1’5n)-

It turns out that for general Markovian transition probability densities, even this simple
model is analytically intractable [56]. However, when the transition probabilities have

8
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an exponential form p(d,+1/0,) = Exponential(f(d,)), the process shows interesting
properties [30, 33, 34]. In particular, Vaz de Melo et al. [121] studied the case where
f(8,) = (c+ 6,)~! for some constant ¢ > 0 and showed that the stationary distribution
of the Markov chain can be approximated by a log-logistic distribution.

It follows from the form of the transition probabilities that the conditional intensity
function of a Wold process depends only on the preceding inter-event time and takes the
form

A(E | He) = At | Sn)- (1.15)

Example 1.9. The Self-Exciting Process. In order to capture a longer dependency
on the whole history of the process, Hawkes [58] introduced a class of self-exciting
processes, known as univariate Hawkes processes, defined not in terms of inter-event time
distribution, but directly by a conditional intensity function of the form

At | Hy) 2+ /_; é(t — u)dN (u) (1.16)

where p > 0 is a constant and where ¢(-) is a non-negative function defined on R>¢. Such
point processes are self-exciting in the sense that whenever a new event occurs in the
process, the future conditional intensity increases according to the excitation function
¢(+). A common choice of excitation function is the exponential kernel

(t) = whe "oy, (1.17)

where the weight w captures the strength of influence and the exponential decay [
captures the timescale of the influence. In this case, the intensity jumps by w after each
a new event, and then decreases exponentially towards p, which is the intrinsic base
intensity of the process.

One way to interpret the intensity function in (1.16) is to view the integral term as a
convolution between the excitation function ¢(t) and the sequence of event times dN ().
The intensity can indeed be written as

At [ He) = p+ ¢ xdN (1),

where the convolution operator is defined as f * g(t) = [ f(t — u)g(u)du.

To illustrate these examples, we simulated five temporal point processes and present
their realization along with their conditional intensity function in Figure 1.2.

(a) A (homogeneous) Poisson process with unit rate A = 1.
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(b) A renewal process with Gamma(5,5) distributed inter-event times. Like the Poisson
process, it also has a mean inter-event time E[d;] = 1, but is more narrowly centered
around its mean with a lower variance of Var[;] = 0.2 < 1.

(c) A renewal process with Gamma(0.5,0.5) distributed inter-event times, which also
has a mean inter-event time E[d;] = 1, but a larger variance Var[d;] = 2 > 1.

(d) A Wold process with conditional inter-event times p(d,+1|0n) exponentially dis-
tributed with rate f(8,) = (¢ + 0,)~!, with ¢ = 0.1.

(e) A univariate Hawkes process with base intensity 1 = 0.1 and exponential excitation
function defined in (1.17), with w = 0.9 and 8 = 1.

The events in the renewal process in (b) are more regularly spaced than those of the
Poisson process, because the Gamma(5,5) distribution is narrowly centered around its
mean. In contrast, the renewal process with Gamma(0.5,0.5) inter-event times, the Wold
process, and the univariate Hawkes process all exhibit more clustering of events, yet have
distinct patterns of inter-event times. Overall, modeling event-data with point processes
consists of a mix of creativity and expert knowledge in order to craft the right conditional
intensity function, which fits the patterns of inter-event times in the data.

Although the (univariate) Hawkes process, defined in Example 1.9, is a fundamental
model used to describe purely temporal events, it is its multivariate counterpart, tailored
for marked events, that spread across many research fields. In the next section, we provide
an overview of the multivariate Hawkes processes. We explore the different representations
of the process, and we define the properties that will be used in the subsequent chapters.

1.3 Multivariate Hawkes Processes

3

Formally, a d-dimensional (multivariate) Hawkes process® is a collection

N(t) = (N1(t),- -, Na(t))T

of d univariate temporal point processes, also called dimensions, or types. The process
N;(t) is characterized by the following form of conditional intensity function

d st
N (tHy) :ui—i-Z/ 605t — TYAN, (), for i € [d], (1.18)
j=17/-e0

where H; = U%_,H! and ! is the history of the i-th process up to time t. As in the
univariate Hawkes process, the constant u; is the exogenous part of the intensity of the
i-th process. The excitation function ¢; j(t): R +— Rxq is causal, i.e., ¢; j(t) = 0 for t <0,
non-negative, and captures the endogenous influence of the events in the j-th dimension

3For ease of reading, we often refer to a multivariate Hawkes process simply as a Hawkes process in
the remainder of thesis.

10
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(c) Renewal Process, p(d;) = Gamma(0.5,0.5)
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Figure 1.2 — Example of a simulated realization of five temporal processes: in (a) a
homogeneous Poisson process with unit rate; (b) and (c), two renewal processes with
Gamma distributed inter-event distributions; in (d) a Wold process form studied in [121];
and in (e) a Hawkes process with exponential excitation function.
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Figure 1.3 — Illustration of a multivariate Hawkes process in d = 3 dimensions, with 4
non-zero excitation functions. In the graph shown on the left, there is a directed edge
J — i between two nodes if ¢; ;(t) > 0 for some time ¢. A simulated realization of the
process is shown on the right with the corresponding conditional intensity function of
each dimension. Because node A is connected to both nodes B and C, every time an
event occurs in node A, the intensity of the two other nodes is impacted, increasing the
probability of occurrence of future events.

on the intensity of the i-th dimension. If ¢; ;(¢) > 0 at some time ¢, then dimension j
“excites” dimension ¢, in the sense that the intensity of dimension 7 increases after each
occurrence of an event in dimension j. The larger the values of ¢; ;(t), the more likely
events in dimension j will trigger events in dimension 3.

Equivalently, we write (1.18) more compactly in matrix form as

A (t) = p+ /_; &(t — 7)dN(7), (1.19)

where the matrix ®(t) = [¢;;(t)] is called the excitation matriz. To illustrate the
conditional intensity function of the Hawkes process, we provide a realization of a
3-dimensional process in Figure 1.3.

For any practical application, it is clear that the number of events observed in a finite
observation window will be finite. This property translates into the stationarity of the
process, defined as follows.

Proposition 1.10 (Stationarity). The Hawkes process N (t) has asymptotic stationary
increments, and X*(t) is asymptotically stationary, if and only if the integrated excitation

12
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matrix
&= E[<I>](O):/R<I>(t)dt (1.20)

has a spectral radius p(®) < 1. A Hawkes process that satisfies this property is said to be
stable.

A consequence of the stability condition in Proposition 1.10 is that the process is ensured
to reach a weakly stationary state where the statistical properties of the process, such
as its moments and cumulants, do not change when shifted in time. In particular, the
first-order moment, or mean, of the process is then defined as

E[dN (t)]/dt = E[X*(t)] = (I — @) 'p. (1.21)

There exists an equivalent definition of Hawkes processes that is based on the branching
structure of a Poisson cluster process.

1.3.1 Poisson Cluster Representation

The Poisson superposition theorem, defined formally in [34, Theorem 2.4.V1], states that
the superposition of M independent, possibly inhomogeneous, Poisson processes with
intensity A\;(t), i € [M], is still a Poisson process with intensity A(t) = S-M_, \;(t). Using
this property, we can define a Poisson cluster process as follows [62].

« For dimension k, let I* be a realization, on the interval [0, T, of a homogeneous
Poisson process with constant rate uy. We call the points in I* immigrants of
type k.

« For every k, each immigrant 2 € I* generates a cluster of points C¥. All such
clusters are mutually independent.

« The clusters C* are generated according to the following branching structure:
o Each cluster C¥ consists of generations of offsprings of all types of the immi-

grant x, where z itself belongs to generation 0.

o Recursively, given the immigrant x and the offsprings of generation 1,2,...,n
of all types, every “child” y of generation n and type j, produces its own
offsprings of generation n 4+ 1 and type i, Vi, by generating a realization of an
inhomogeneous Poisson process with rate ¢; ;(t — ).

The point process obtained by superposing all the points in all clusters is a Hawkes process
with the conditional intensity function defined in (1.18). This equivalence can be easily

13
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Figure 1.4 — Hlustration of the evolution of a Poisson cluster on a network of three nodes
and four directed links. Types (dimensions) are coded by color. The immigrant is of
type A (in red) generated from a homogeneous Poisson process with rate p4. The first
generations are one event from type C (in blue) and one event from type B (in green)
generated from independent inhomogeneous Poisson processes with rate ®c4(-) and
®p4(+), respectively. The evolution is shown up to the second generation.

proved by linearity of (1.18). Among other qualities, the Poisson cluster representation has
ramifications in the causality analysis of the process and in the derivation of its cumulants.
We provide an illustration of the generative process of the clusters in Figure 1.4.

1.3.2 Causality Analysis of Hawkes Processes

One of the most appealing properties of the Hawkes process for many applications is
that the support of its excitation matrix ®(t) encodes a notion of causality between
the different dimensions of the process. In particular, consider the graph G(V,£), called
Granger causality graph, in which nodes V = {1,...,d} correspond to dimensions and
where a directed edge i — j connects node ¢ to node j if events in N; influence the
occurrence of future events in N;. It was shown that this graph encodes the so-called
Granger causality relationships between the processes [43, 130].

Originally defined for time series in discrete time, the term was coined by the economist
Clive Granger [53], with the following definition:
“We say that Yy is causing Xy if we are better able to predict X; using all

available information than if the information apart from Y; had been used.”

14
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Didelez [38] showed that Granger causality in continuous time is related to the notion of
local independence structures in event data. The idea behind local independence is that,
once we condition on specific past events, the intensity of a future event is independent
of other past events. Eichler et al. [43] then show how Granger causality is encoded in
the excitation matrix.

Proposition 1.11 (Proposition 3.2 in [43]). Consider the multivariate Hawkes process
N ={Ny,..., Ny} with intensity function defined in (1.18). Then N; does not Granger-
cause N; with respect to N if and only if ¢;;(t) =0 for all t € R.

Proposition 1.11 states that learning the support of the excitation matrix of Hawkes
processes enables us to quantitatively analyze the patterns of direct influence between
processes and to summarize them in an easily interpretable directed network.

In addition to this result, Etesami et al. [44] showed that the Granger causality graph
of a Hawkes process is equivalent to the directed information graph (DIG) that encodes
statistical interdependencies in stochastic causal dynamical systems. Directed information
(or transfer entropy) is an information-theoretic measure defined in terms of mutual
information. More precisely, directed information compares two conditional distributions
of N;(t + dt) in terms of KL-divergence, given the following two different conditionings:
(1) the full history H, and (2) the full history without the past of dimension j, H; \ H?.
If the two conditional distributions are equal, then dimension ¢ is said to not influence
dimension j. For a detailed discussion on directed information for Hawkes processes,
see [44].

1.3.3 Cumulants of the Hawkes Process

We have seen that stationary Hawkes processes reach a weakly stationary state where
statistical properties of the process, such as its moment and cumulants, do not change
when shifted in time. In this section, we characterize the form of the cumulant densities
of Hawkes processes that are particularly relevant in a class of inference algorithms.

Consider an arbitrary n-dimensional random vector = (z1,...,x,). The cumulant of
order n, denoted by K (x), is a measure of statistical dependence of the components of x
and is defined as

K(z) =Y (In| -~ T] E [H :z:] (1.22)

T Cen ceC

where the sum is over all partitions 7 of the set {1,...,n}, and where |r| denotes
the number of blocks of a given partition [82]. For example, for n = 1, the first-order
cumulant density K (z) = E[z] is the mean; for n = 2, K(z1,x2) = E[x129] — E[21]E[x2] =
Cov(z1,x2) is the covariance; and for n = 3, the third-order cumulant is the skewness.
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For a given time vector t = (t1,...,%,,) and a multi-index ¢ = (i1, ..., %), we denote the
m-~th order cumulant density of the Hawkes process by
_ K(dNj (t1),...,dN;, (tm))

Klt = )
®) dty...dty,

where K () is the cumulant function defined in (1.22).

Jovanovié et al. [62] exploited the Poisson cluster representation of Hawkes process to
derive the following intuitive expression of the cumulants densities.

Proposition 1.12. Consider a stationary Hawkes process N (t) with excitation matriz
function ®(t) and exogenous intensity vector . The mean intensity is given by

d
m=1

the covariance density is given by

d
Kiyj(tl,tg) == Z Km/RRi,m(tl - I)Rj7m(t2 - SU)d.T, (124)
m=1
and the skewness density is given by
Kijk(t,t2,t3) =

d
Z K, //R Rin(t1 — 2)Rjm(ta — y) Rim(ts — ¥)Win(y — z)dydz

m,n=1

d
Y K /R Rjn(ts — @) Rin(ts = 9) Rim(ts — 9)Unn(y — 2)dyda

m,n=1

d
+ Z K, //R Ripn(ts — x)Rim(ti — y)Rjm(ta — )Y n(y — x)dydz

m,n=1

d
+ > Km | Rim(ti — 2)Rjm(t2 — @) R (ts — x)dx, (1.25)
R

m=1

where

R(t) =Y ®"(t), (1.26)

n>0
(1) = R(t) — I5(1). (1.27)

The matriz I is the identity matriz and ®*"(t) is the n-th convolution power of ma-
triz ®(t), defined recursively by ®*0(t) = I5(t) and ®"(t) = [ ®* "=V (t — 7)®(7)dr.
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We will see in Chapter 3 that the cumulant densities in Proposition 1.12 have attractive
properties to help learn Hawkes processes under random translations.

References

For an alternative introduction to temporal point processes, we refer the reader to
the following books and articles. A comprehensive introduction to general temporal
point processes is provided in the lecture notes of Rasmussen [101], and in the tutorials
of Laub et al. [71] or in the review from Bacry et al. [11] with a focus on the Hawkes
process. For a complete overview of the theory of point processes, we recommend the
book from Daley and Vere-Jones [34]. Finally, for a detailed discussion on point process
calculus, see [24, 25].

1.4 Main Related Works

The Hawkes process has been widely used in recent years to model both natural and
social phenomena. In this section, we review algorithms designed to learn their dynamics
from data, as well as recent extensions of the model. Finally, we present a variety of
applications of the Hawkes process.

1.4.1 Parameter Estimation

The main approaches for learning Hawkes processes are of two flavors: likelihood-based
approaches that estimate parameters of the process by maximizing the log-likelihood
function defined in (1.9), and approaches based on the second or third-order statistics of
the process such as the cumulants defined in (1.23)-(1.25).

Likelihood-Based Approaches

In its simplest form, maximum likelihood estimation (MLE) for Hawkes processes assumes
a parametric form for the excitation functions {¢; ;(t)}, and learns their parameters by
directly maximizing the log-likelihood function using various iterative algorithms such as
gradient ascent [97]. In particular, simple parameterizations of the form

¢i7j(t) = wi7j/€(t), for 1,7 € [d], (1.28)

with a fixed function x(t), lead to a simple form of intensity function
t
—0o0

d
N(HH) = i+ 3wy / K(t — 7)dN; (1), (1.29)
j=1
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which makes the log-likelihood convex with respect to the parameters {y;} and {w;;}.
In addition, because the integral term only depends on the data, it can be precomputed,
which reduces the computational complexity of each iteration at the expense of memory.
A common choice for k(t) is the exponential kernel

K(t) = Be Lm0y, (1.30)
where the exponential decay  captures the time constant [47, 100, 111, 116, 132, 141].

However, the log-likelihood function can be nearly flat in large regions of the parameter
space. This issue has been shown to hinder the speed of convergence of algorithms [122].
Instead, to accelerate convergence, some approaches use the Poisson cluster representation
from Section 1.3.1 by incorporating the branching structure of the clusters as auxiliary
variables. This technique was used in several works to derive EM-type algorithms [122,
113, 130] and Bayesian methods [76, 77].

Alternatively, making use the convexity of the log-likelihood, some works borrow from the
convex optimization literature to design efficient learning algorithms. For example, Zhou
et al. [141] developed an algorithm based on alternating direction method of multipliers
(ADMM) to learn a sparse and low-rank excitation matrix. Similarly, Bacry et al. [10]
analyzed the generalization error for this problem theoretically and proposed an estimator
based on the minimization of a least-squares loss rather than the likelihood.

Some methods aim to relax restrictive assumptions on the form of the excitation functions.
In particular, Xu et al. [130] decomposed the excitation functions into a sum of M basis
functions of the form

M
ig(t) = 3 wi™ k1), (1.31)
m=1

with a fixed set of basis functions {#,,(¢)})_;. Zhou et al. [142] used the same decompo-
sition and formulated the problem as an Euler-Lagrange equation that enables them to
learn the basis functions from data. Similarly, Yang et al. [133] derive a non-parametric
online algorithm based on the framework of online kernel learning.

Moment-Based Approaches

Alternatively, some approaches use statistical properties of the process. In particular,
Bacry and Muzy [7] proposed a Wiener-Hopf formulation and solve a set of d linear systems
in d? dimensions. This formulation has the advantage of guaranteeing convergence without
making any assumption on the form of excitation functions, other than stationarity.
However, it requires inverting a d? x d? matrix, which is costly for large d. Similarly,
Etesami et al. [44] used the Fourier transform of the normalized covariance matrix
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to derive an estimator for the case of exponential excitation functions. Going beyond
second-order statistics, Achab et al. [2] introduced a non-parametric approach based
on the third-order cumulants of the process, which is able to scale to high dimensional
problems.

Learning Hawkes Processes with Missing Data

While the above methods assume that complete traces without noise are available, the
presence of observation noise in Hawkes processes has largely been overlooked. The notable
exception is when the noise takes the form of missing data. In particular, a few studies
considered gaps in the observations where no events are detected in some dimensions
for a certain period of time [78, 72, 111, 85]. This formulation allows hypothesizing
about events associated with partially or completely unobserved dimensions. In a similar
context, [131] considered the case where many short and doubly-censored sequences of
events are available.

1.4.2 Applications of the Hawkes Process.

Even though Hawkes [58] originally introduced a self-exciting point processes to model
the diffusion of earthquakes [92, 93, 143, 144]|, variants of the model rapidly spread to
other disciplines. In this section, we explore some of the major areas of application
of Hawkes processes: epidemiology, social network analysis, neuroscience, finance, and
criminology. This list is not exhaustive: for example Hawkes processes were also applied
to problems ranging from genomic analysis [55, 103] to wildfire hazard management, and
dynamic topic modeling [41, 69].

Epidemiology. Most of the epidemiology literature lie in compartment models at the
population-level. The growing availability of data at the individual level enables the use
of point processes to model the clustered nature of epidemics [64, 86, 81]. In particular,
variants of the Hawkes process have been used to quantify the transmission dynamics of
invasive meningococcal disease [88, 87], the Ebola virus disease [63], or more recently
Covid-19 [18, 28]. The non-stationary evolution of epidemics led to several extensions of
Hawkes processes, such as the recursive self-exciting epidemic model from Schoenberg
et al. [108] and the SIR-Hawkes from Rizoiu et al. [105], both of which modulate the
intensity function of the process in different ways to account for the varying size of the
population at risk. Kim et al. [65] inferred the likely propagation pathways of a vector-
borne disease, by modeling the internal dynamics of meta-populations as multivariate
Hawkes processes. Leveraging the increasing adoption of electronic health records, Choi
et al. [29] introduced a context-sensitive Hawkes process to infer a network of disease
relationships and models the temporal progression of patients.
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Social Network Analysis. Modeling interactions in social groups is another fruitful
application of Hawkes processes [21, 48, 50, 83]. Du et al. [40] applied Hawkes processes
to estimate influence in social networks with applications to viral marketing. The idea
was subsequently applied in a variety of control problems attempting to steer the activity
of online users. In particular, De et al. [36] introduced a framework to learn and forecast
opinion dynamics in social networks and identified the conditions under which opinions
converge to a steady state. Farajtabar et al. [46] developed a convex optimization
framework to determine the level of external drive required to reach a desired activity
level on the network. Inspired by this framework, Zarezade et al. [136, 137] formulated
the problem as an optimal control problem for jump stochastic differential equations to
advise users on the optimal time to post.

Neuroscience. A central problem in neuronal data analysis is to characterize how
neurons that are part of an ensemble interact with each other. With the development
of microelectrode arrays, scientists can now record the activity of hundreds of neurons
simultaneously. This activity takes the form of a sequence of discrete events, called
neuronal spike trains. While the dynamics of these events is naturally self-exciting, the
inhibitory behavior of neurons lead most researchers to model this type of data with
non-linear Hawkes processes, which are defined by encapsulating the conditional intensity
function of a classic Hawkes process into a non-linear function f, so that (1.18) becomes

d
N(t) = f m+Z/ Gii(t — T)AN;(7) | | (1.32)
j=17/-ee

for ¢ € [d], to allow for a wider range of dynamics, including negative excitations
¢i;(t) < 0, while retaining the interpretability of the model [52, 70, 95, 118]. Common
choices of non-linear functions are the ReLu function f(x) = max(0,z) widely used in
deep learning, and the exponential function f(z) = e®. Another line of research allows
inhibition through the use of thinning [4, 27].

Finance. In times of crisis, large changes in one financial market are known to quickly
propagate to other markets, a phenomenon often called financial contagion. Following this
observation, Hawkes processes were proposed as a model that is capable of reproducing
both time and space propagation in a crisis [6]. In particular, Bowsher [22] analyzed
of the dynamic microstructure of financial markets, characterized in terms of market
events such as trades and changes to the quoted prices. For a complete review of Hawkes
processes in finance, we refer the reader to the review of Bacry et al. [11].

Crime Forecasting. Certain types of crime, such as burglary and gang violence,
exhibit a spatio-temporal clustering behavior. For example, victims of residential burglary
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become more likely to be victimized again [112]. Following this observation, criminologists
studied the self-exciting nature of crime [90, 115], and evaluated the extent to which gun
violence can be predicted [54]. However, there are numerous ethical concerns raised by
crime prediction, often referred to as predictive policing [5, 23]. For a review of self-exciting
processes in criminology, see [102].

1.4.3 Extensions of Hawkes Processes

Designing new temporal point process models that are able to capture the self- and
mutual-excitation patterns in event data has also been an active area of research. Mostly
tailored for predictive applications in criminology and epidemiology, some studies replace
the discrete space of event types by a continuous space [90, 102, 122, 134, 135]. Other
extensions address the non-linear patterns observed when modeling neuronal activity in
the brain [27, 52, 70, 124], while some authors focus on enabling inhibitory patterns [4, 79].

With recent advances in deep learning, some works designed the intensity function of
temporal point processes using various recurrent neural architectures to provide a more
flexible representation of the effect of past events on the intensity function [42, 80, 84,
96, 110, 128]. Other approaches were developed without directly modeling the intensity
function. In particular, Shchur et al. [109] target the inter-event time distribution using
tools from neural density estimation. Xiao et al. [127] proposed a method to generate
samples that mimic the observed dynamics of events using generative adversarial networks
(GANSs). Similar approaches were proposed based on deep reinforcement learning [75, 119].

While these neural-based models were empirically shown to be able to predict the occur-
rence of future events more accurately than simpler models, they loose the interpretability
provided by classic Hawkes processes and are unable to extract the pairwise influence
relationships between types of events. However, a few recent studies tackle the problem
using attention mechanisms [129, 139, 140].

1.5 Outline and Contributions

In this thesis, we seek to uncover the diffusion patterns of event data, with a focus on
the Hawkes process. In particular, we draw our attention to several types of noise that
can commonly distort the observed events and hinder the learning algorithms. For each
setting, we characterize the effect of noise on controlled experiments using synthetic and
real-world datasets, and we design algorithms that address the shortcomings of the state
of the art.

In Chapter 2, we address the inference of Hawkes processes under short sequences of
events. It is known that the lack of data amplifies the risk of overfitting and empha-
sizes the need for advanced regularization schemes. However, due to the challenges of
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hyperparameter tuning, state-of-the-art methods only parameterize regularizers by a
single shared hyperparameter, hence limiting the power of representation of the model.
Building on recent advances in variational inference, we develop a variational expectation-
maximization algorithm that enables us to use advanced regularizers by optimizing over
an extended set of hyperparameters. Our algorithm is also able to take into account the
uncertainty in the estimated model parameters by learning a posterior distribution over
them. Our experimental results on both synthetic and real data show that this approach
outperforms the state of the art under short observation sequences for both parametric
and non-parametric settings.

In Chapter 3, we shift our attention to settings where the observed timestamps of
events are subject to random and unknown shifts. In particular, we consider the case
of synchronization noise, where the time shifts are synchronized within each dimension.
These time shifts transforms the computationally efficient estimation of the Hawkes
process parameters into a particularly ill-conditioned optimization problem. They both
introduce discontinuities in the log-likelihood function and break its convexity. To address
these challenges, we introduce a smooth approximation of the excitation functions and
we propose an algorithm based on stochastic gradient descent to recover both the model
parameters and the shifts. We demonstrate on both synthetic and real data that our
method is able to accurately estimate the causal structure of a Hawkes process for a wide
range of noise level, with an increase of F1-score of up to 40% on a simulated controlled
study.

In Chapter 4, we consider a more general class of random and unknown time shifts
that are drawn from independent probability distributions. This framework, called
random translations, generalizes the special case of synchronized noise. We prove that
the cumulants of the Hawkes process are invariant to random translations, and therefore
can be used to learn their underlying causal structure. Furthermore, we empirically
characterize the effect of random translations on state-of-the-art learning methods. We
show that maximum likelihood-based estimators are brittle, whereas cumulant-based
estimators remain stable even in the presence of significant time shifts.

Finally, in Chapter 5, we focus on a class of temporal point process called the multivariate
Wold process, which has recently been shown to be well suited to model real-world
communication dynamics. Similar to the Hawkes process, the Wold process captures
the Granger causality between types of events. It addresses a limitation of the Bayesian
treatment of Hawkes processes that limits its scalability and can only be overcome by the
development of algorithms based on discrete-time approximations of the model, at the
expense of information loss. Here, we relax some of the restrictive modeling assumptions
made in the state of the art and introduce a continuous-time Bayesian approach for
inferring the parameters of the Wold process. We develop a computationally efficient
variational-inference algorithm that scales favorably to high-dimensional processes and
long sequences of observations without discretizing the time. Our experimental results on
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both synthetic and real-world datasets show that our proposed algorithm outperforms
existing methods both in terms of accuracy and runtime.
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] Learning Hawkes Processes from
a Handful of Events

In this chapter!, we investigate the first type of observational noise, namely small data.
Maximum-likelihood estimation is the most common approach to solve the problem in the
presence of long observation sequences. However, when only short sequences are available,
the lack of data amplifies the risk of overfitting and regularization becomes critical. Due
to the challenges of hyperparameter tuning, state-of-the-art methods only parameterize
regularizers with a single hyperparameter shared by all the model parameters, hence
limiting the power of representation of the model. To solve both issues, we develop in
this chapter an efficient algorithm based on variational expectation-maximization. Our
approach is able to optimize over an extended set of hyperparameters. It is also able
to take into account the uncertainty in the model parameters by learning a posterior
distribution over them. Experimental results on both synthetic and real datasets show that
our approach significantly outperforms state-of-the-art methods under short observation
sequences.

2.1 Introduction

Most studies focus on developing scalable algorithms to learn the parameters of Hawkes
process using large datasets. However, in many applications, data can be very expensive
to collect, or simply not available. For example, in economic and public health studies,
collecting survey data is usually an expensive process. Similarly, in the case of epidemic
modeling, it is critical to learn as fast as possible the patterns of diffusion of a spreading
disease. As a result, the amount of data available is intrinsically limited. Hawkes processes
are known to be sensitive to the amount of data used for training, and the excitation
patterns learned by Hawkes processes from short sequences can be inaccurate [131]. In
such settings, the likelihood becomes an unreliable estimator and regularization becomes
critical. Nevertheless, as most hyperparameter tuning algorithms such as grid search,
random search, and even Bayesian optimization become challenging when the number of

!This chapter is based on [107].
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hyperparameters is large, state-of-the-art methods only parameterize regularizers by a
single shared hyperparameter, hence limiting the power of representation of the model.

In this work, we address the issue of small data in conjunction with hyperparameter
tuning by considering the parameters of the model as latent variables and by developing
an efficient algorithm based on variational expectation-maximization. By estimating
the evidence —rather than the likelihood— the proposed approach is able to optimize
over an extended set of hyperparameters, with minimal computational complexity. Our
approach is also able to take into account the uncertainty in the model parameters by
fitting a posterior distribution over them. Therefore, rather than just providing a point
estimate, this approach can provide an estimation of uncertainty on the learned Granger
causality graph. Experimental results on synthetic and real datasets show that, as a result,
the proposed approach significantly outperforms state-of-the-art methods under short
observation sequences, and maintains the same performance in the large-data regime.

Outline of the Chapter. In Section 2.2, we discuss related work. In Section 2.3, we
define the problem setting and investigate shortcoming of the common formulations of
maximum likelihood estimation for Hawkes processes. In Section 2.4, we present our
algorithm, and in Section 2.5, we evaluate its performance on synthetic and real-world
data.

2.2 Related Works

The most common approaches to uncover the excitation matrix of Hawkes processes
are based on variants of regularized maximum-likelihood estimation (MLE). Zhou et al.
[141] propose regularizers that enforce sparse and low-rank structures, along with an
efficient algorithm based on the alternating-direction method of multipliers. To mitigate
the parametric assumption, Xu et al. [130] represent the excitation functions as a series
of basis functions, and to achieve sparsity under this representation they propose a sparse
group-lasso regularizer. Such estimation methods are often referred to as non-parametric
as they enable more flexibility on the shape of the excitation functions [57, 73]|. To
estimate the excitation matrix without any parametric modeling, fully non-parametric
approaches were developed [2, 142]. However, these methods focus on scalability and
target settings where large-scale datasets are available.

Bayesian methods go beyond the classic approach of MLE by enabling a probabilistic
interpretation of the model parameters. A few studies tackled the problem of learning
the parameters of Hawkes processes from a Bayesian perspective. Linderman and Adams
[76] use a Gibbs sampling-based approach, but the convergence of the proposed algo-
rithm is slow. To tackle this problem, Linderman and Adams [77] discretize the time,
which introduces noise in the model. In a different setting where some of the events or
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dimensions are hidden, Linderman et al. [78] use an expectation maximization algorithm
to marginalize over the unseen part of the network.

Bayesian probabilistic models are usually intractable and require approximate inference.
To address the issue, variational inference (VI) approximates the high-dimensional
posterior of the probabilistic model. It recently gained interest in many applications. VI
is used, to name a few, for word embedding [13, 16|, paragraph embedding [61], and
knowledge-graph embedding [14]. For more details on this topic, we refer the reader
to Zhang et al. [138] and Blei et al. [19]. Variational inference has also proven to be a
successful approach to learning hyperparameters [17, 14]. Building on recent advances
in variational inference, we develop in this work a variational expectation-maximization
algorithm by interpreting the parameters of the process as latent variables of a probabilistic
model.

2.3 Preliminary Definitions

2.3.1 Multivariate Hawkes Processes

Recall that, as defined in Section 1.3, a d-dimensional Hawkes process is a collection of d
univariate counting processes N;(t), i = 1,...,d, whose realization over an observation
period [0, 7] consists of a sequence of discrete events S = {(in,tn)}n>1, where t,, € [0,T]
is the timestamp of the n-th event and i, € [d] is its dimension. Each process has the
particular form of conditional intensity function given in (1.18). In this chapter, the
excitation matrix ®(t) = [¢; ;(t)], which captures the Granger causality between event
types, is the main quantity we want to estimate.

We consider both parametric and non-parametric forms for the excitation functions as
discussed in Section 1.4. In particular, we use the exponential kernel, which we recall is
defined as

i j(t) = w; jBe P!, (2.1)

which is the most popular form is the exponential excitation function. However, in most
applications the excitation patterns are unknown and this form might be too restrictive.
Hence, to alleviate the assumption of a particular form for the excitation function, we also
consider a formulation used in other approaches [57, 73, 130], where the functional space
is over-parameterized and the excitation functions is encoded into a linear combination
of M basis functions {k1(t), ka(t),...,kam(t)} as

M
6ig(t) = 3w k(1) (2.2)
m=1
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Common choices for the basis functions are exponential or Gaussian kernels [130].
This kind of approach is generally referred to as non-parametric. In the experimental
results of Section 2.5, we adopt both forms in (2.1) and (2.2) and investigate their
performance to uncover the excitation matrix of a multivariate Hawkes process from
small sequences of observations. We denote the set of d>M + d parameters of the process

as 0 = {{u;}¢,, {{wZ(T) 1 i1}

2.3.2 Maximum Likelihood Estimation

Suppose that we observe a sequence of discrete events S = {(in, tn) }n>1 Over an observa-
tion period [0, T]. The most common approach to learning the parameters of a Hawkes
process given S is to do regularized maximum-likelihood estimation [10, 130, 141], which
amounts to minimizing an objective function that is the sum of the negative log-likelihood
and a penalty term that induces some desired structural properties. Specifically, the
objective is to solve the optimization problem

A~

1
0 = arg min — log p(S]0) + —R(6), (2.3)
0>0 «

where the log-likelihood of the parameters is given by

d T
logp(S10) = 3 log Al (t) =3 /0 (b, (2.4)
=1

(in,tn)€ES

The particular choice of penalty R (@), along with the single hyperparameter « controlling
its influence, depends on the problem at hand. For example, a necessary condition to
ensure that the learned model is stable is that lim;_,o ¢; j(t) = 0 for all 4,5 € [d] and
that the spectral radius of the excitation matrix is less than 1 [34]. Hence, a common
penalty used is

p

Rp(0) = X Sty [l (2.5)

with p = 1 or 2 in [130, 141, 142]. Another common assumption is that the graph is
sparse. In this case, a Group-Lasso penalty of the form

2
d M
R12(0) = 22721 m=1 (wz(?)) (2.6)
is commonly used to enforce sparsity in the excitation functions [130].

Small data amplifies the danger of overfitting; hence the choice of regularizers and their
hyperparameters becomes essential. Nevertheless, to control the influence of the penalty
in (2.3), all state-of-the-art methods are limited by the use of a single shared hyperparam-
eter a. Ideally, we would have a different hyperparameter to independently control the
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effect of the penalty on each parameter of the model. However, the number of parameters,
i.e., (d>*M +d), grows quadratically with the dimension of the problem d. To make matters
worse, the most common approaches used to fine-tune the choice of hyperparameters, i.e.,
grid search and random search, become computationally prohibitive when the number of
hyperparameters becomes large. Indeed, the search space exponentially increases with
the number of hyperparameters. Another approach is to use Bayesian optimization of
hyperparameters, but the cost of doing this also becomes prohibitive as the number of
samples required to learn the landscape of its cost function exponentially increases with
the number of hyperparameters [114]. We describe the details of our proposed approach
in the next section.

2.4 Proposed Learning Approach

We now introduce a novel approach for learning the excitation matrix of a Hawkes process.
The approach enables us to use a different hyperparameter for each model parameter
and efficiently tune them all by taking into account parameter uncertainty. It is based
on the variational expectation-maximization (EM) algorithm and jointly optimizes the
model parameters 6, as well as the hyperparameters c.

First, we can view regularized MLE as a maximum a posteriori (MAP) estimator of the
model where parameters are considered as latent variables. Under this interpretation,
regularizers on the model parameters correspond to unnormalized priors on the latent
variables. The optimization problem becomes

6 = arg maxlog pa (0, S) = arg max log p(S|6) + log pa (6). (2.7)
6>0 6>0

Therefore, having a better regularizer means having a better prior. In the presence of
a long sequence of observations, we want the prior to be as uninformative as possible
—i.e., a smaller regularization— as we have access to enough information for the MLE to
accurately estimate the parameters of the model. But in the case where we only observe
short sequences, we want to use more informative priors —i.e., a larger regularization— to
avoid overfitting.

Unfortunately, the MAP estimator cannot adjust the influence of the prior by optimizing
over a. Indeed, the cost function in (2.7) is unbounded from above? and solving Equa-
tion (2.7) with respect to a leads to a divergent solution é — o0. To address this issue,
we can take a Bayesian approach, integrate out parameters and optimize the evidence
(or marginal likelihood) pa(S) instead of the log-likelihood. Such an approach changes

2We provide more details on this limitation in Appendix A.1.1.
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the optimization problem of Equation (2.7) into

& = argmax /p(S]B)pa(O)dO = argmax pq(S). (2.8)
a>0 a>0

Unlike the MAP objective function, maximizing the evidence over a does not lead to
a degenerate solution because it is upper bounded by the likelihood. However, this
optimization problem can be solved only for simple models where the integral has a closed
form, which requires a conjugate prior to the likelihood. Therefore, we use variational
inference to estimate the evidence and develop a variational EM algorithm to optimize
our objective with respect to a.

2.4.1 Variational Expectation-Maximization Algorithm
Variational inference

The derivation of the variational objective is as follows. First postulate a variational
distribution ¢ (@), parameterized by the variational parameters -, approximating the
posterior p(@|S). The variational parameters « are chosen such that the Kullback-Leibler
divergence between the true posterior p(6|S) and the variational distribution ¢(8) is
minimized. It is known that minimizing KL [¢,(0)|p(8|S)] is equivalent to maximizing
the evidence lower-bound (ELBO) [19, 138] defined as

ELBO(gy, @) := Eg, [logpa (0, S)] — Eq, [log ¢4(0)]. (2.9)

By invoking Jensen’s inequality on the integral
Pa(S) = [ pal6.5)d6.

we obtain the desired lower bound on the evidence po(S) > ELBO(gy, ) where, by
maximizing ELBO(g,, o) with respect to 7, the bound becomes tighter.

For simplicity, we adopt the mean-field assumption by choosing a variational distribution
¢(0) that factorizes over the latent variables®. As the parameters 6 are non-negative,
a good candidate to approximate the posterior is a log-normal distribution. We define
the variational parameters v = {v,e”} as the mean and the standard deviation of g,.
We denote the standard deviation by e? because we optimize its log to naturally ensure
its positivity and the stability of the optimization procedure. Although we present our
learning approach for the log-normal distribution, it is easily generalizable to other
distributions.

3This assumption can be relaxed using more advanced techniques, such as importance weighted
autoencoders (IWAE) [31], at the cost of having a higher computational complexity. However, our
experiments have not shown significant performance gain with IWAE.
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Variational EM algorithm

In order to efficiently optimize the ELBO with respect to both the variational parameters
~ and the hyperparameters a, we use the variational EM algorithm that iterates over
the two following steps: The E-step maximizes the ELBO with respect to the variational
parameters v in order to get a tighter lower-bound on the evidence; and the M-step
updates the hyperparameters a with a closed form update. Details of the two steps are
as follows.

E-step. The E-step maximizes the ELBO with respect to the variational parameters
~ to make the variational distribution ¢ (@) close to the exact posterior p(8|S) and to
ensure that the ELBO is a good proxy for the evidence. To evaluate the ELBO, we use
the black-box variational-inference optimization [66, 104]. We re-parameterize the model
as

0 =g,(c) =exp(r+e? ®e),

where € is a d?M + d vector, with each element following a normal distribution N(0, 1).
® denotes the element-wise product. This trick enables us to rewrite the first intractable
expectation term of the ELBO in (2.9) as

Eq»y [logpa(e, S)] = EENN(O,I) [logpa (9’7(5)7 8)] . (2'10)

The second term of the ELBO in (2.9) is the entropy of the posterior. For the log-normal
distribution, it can be expressed, up to a constant, as 3°,. ,. (v + 0;). Hence, the ELBO
can be estimated by Monte-Carlo integration as

1 L
ELBO(v, ) =~ T Zlogpa (g+(g0),S) + Z (vi + 03), (2.11)
(=1 vi+o;
where L is the number of Monte-Carlo samples &1, ...,er. Note that the first term of

(2.11) is the cost function for the MAP problem (2.7) evaluated at 6 = g (e;) for £ € [L].
Hence, the E-step summarizes into maximizing the right-hand side of (2.11) with respect
to v using gradient descent.

M-step. In the M-step, the ELBO is used as a proxy for the evidence pq(S) and is max-
imized with respect to the hyperparameters a. Again, we rely on the re-parameterization
technique and compute the unbiased estimate of the ELBO in (2.11). The maximum of
the estimate (2.11) with respect to a has a closed form that depends on the choice of
prior. Indeed, by rewriting the joint distribution logpa(g~(€¢),S) as

log pa(g~(€r), S) = log p(S|gy(er)) + log palg~(€r)), (2.12)
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the first term —the likelihood— is not a function of @ and only the second term —the prior—
is a function of a. Hence, maximizing the joint distribution

L

> 10g pa (g4(e0), S)
/=1

over o amounts to maximizing the prior

L

> log pa (g4(e0)) -

(=1

To avoid fast changes in a due to the variance of the Monte-Carlo integration, we take an
update similar to the one by Bamler et al. [14] and take a weighted average between the
current estimate and the maximizer of the current Monte-Carlo estimate of the ELBO as

L

a<—C-a+(1—§)-arg{nax%210gp& (g+(e0),S), (2.13)
@ =1

where ¢ € [0, 1] is the momentum term. Algorithm 2.1 summarizes the proposed variational
EM approach. The computational complexity of the inner-most loop of Algorithm 2.1 is
L times the complexity of an iteration of gradient descent on the log-likelihood. However,
as observed by recent studies in variational inference, using L = 1 is usually sufficient in
many applications [66]. Hence, we use L = 1 in all our experiments, leading to the same
computational complexity per-iteration as MLE using gradient descent.

Algorithm 2.1 Variational EM algorithm for Multivariate Hawkes Processes

Input: Sequence of observations S = {(t,,4,)}\_;. Initial values for & and ~. Mo-
mentum term 0<({ < 1. Sample size L of Monte-Carlo integrations. Number
of iterations Tr and Tgrys of E-steps and EM-steps. Learning rate 7.

1: fort«+ 1,...,Tgy do
2 fort«1,...,7T do > E step
3 Sample Gaussian noise €1, ...,e ~ N(0,1).
4 Evaluate the ELBO using Equation (2.11).
5: Update v + v +n(V,f(v,o,6;a) + 1).
6 Update o <+~ o + (Vs f(v,0,e;a) + 1).
7 end for
8 Sample L Gaussian noise €1,...,€f. > M step
9: Update a using Equation (2.13).
10: end for
Output: a, v
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Choice of Prior

In this section, we provide the probabilistic interpretation as a prior of several commonly

used regularizers.

Lo-regularizer. The most commonly used regularizer is certainly the Lo-regularizer
w?/(2a) discussed in (2.5). This regularizer can be interpreted as a zero-mean Gaussian
distribution over the weights taking the form

1 w?
palw) = Jaa O (—20) : (2.14)

where « is the variance. Hence, setting the derivative of the log of the distribution to

zero, we find that the closed-form update for the M-Step is

L

1 1 &
argmin — »_logpa(gy(€e), S) = 7 Y g4(e0)*. (2.15)
a L =1 L =1

The update rules for the other priors can be found similarly.

Li-regularizer. This regularizer, also known as lasso regularizer, is often considered as
a convex surrogate for the Ly (pseudo) norm to promote sparsity in the parameters [141].
It can be interpreted as a Laplace distribution over the weights, i.e.,

palw) = ia exp (—'Z') : (2.16)

Low-rank regularizer. To achieve a low-rank integrated excitation matrix ® :=
[Jg ¢i,j(t)dt], a nuclear norm penalty on W := [w; ;] is used as a regularizer by Zhou
et al. [141] to enable clustering structures in W for the parametric case where M = 1. In
this case, with w. j = [wy; ..., wg ], the different {w.;}; are independent for different j
and the prior over w. ; can be expressed as

1 [w-jll2
Pa(w. ;) =c- o &P <_a]> ) (2.17)

where ¢ > 0 is a normalizing constant.

Group-lasso regularizer. This regularizer is used by Xu et al. [130] in the non-

parametric setting defined in Section 2.3 where the excitation function is approximated
(1) (M )}

by a linear combination of M basis functions, parameterized by w; ; = {wi oo Wi
% 9,
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In this case, the La-norm of w; ; is assumed to have a Laplace distribution, i.e.,

1 i
palwiy) = c- Mexp(—”“;j”?). (2.18)

where ¢ > 0 is a normalizing constant.

2.5 Experimental Results

We carry out two sets of experiments to evaluate the performance of our approach
compared to the state of the art. First, we perform a link-prediction task on synthetic
data to show that our approach can accurately recover the support of the excitation
matrix of the process under short sequences. Second, we perform an event-prediction task
on real datasets of short sequences to show that our approach outperforms state-of-the-art
methods in terms of predictive log-likelihood.

We run our experiments in two different settings. First, in a parametric setting where
the exponential form of the excitation function is known, we compare our approach
(VI-EXP) to the state-of-the-art MLE-based method (MLE-ADM4) from Zhou et al. [141].
Second, we use a non-parametric setting where no assumption is made on the shape of
the excitation function. We then set the excitation function as a mixture of M = 10
Gaussian kernels defined as

(t — 7m)?

km(t) = (2b%) L exp (— o ) ., Ym=1,..., M, (2.19)

where 7, and b are the known location and scale of the kernel. In this setting, we compare
our approach (VI-SG) to the state-of-the-art MLE-based methods (MLE-SGLP) of Xu
et al. [130] with the same {r,,(t)}*. Let us stress that the parametric methods have a
strong advantage over the non-parametric ones because they are given the true value of
the exponential decay f.

As our VI approach returns a posterior on the parameters, rather than a point estimate,

we use the mode of the approximate log-normal posterior as the inferred edges {w; ;}.
M

m=1 1(,7;1)
schemes of the baselines, we use a Laplacian prior for the edge weights {w; ;} to enforce

For the non-parametric setting, we use w; ; = > w; . To mimic the regularization
sparsity, and we use a Gaussian prior for the baselines {y;}. We tune the hyperparameters

of the baselines using grid search?.

4We also performed the experiments with other approaches designed for large-scale datasets, but their
performance was below that of the reported baselines [2, 76, 77].
5More details are provided in Appendix C.1.
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2.5.1 Synthetic Data

First, we evaluate the performance of our VI approach on simulated data. We generate
random Erd&s—Rényi graphs with d = 50 nodes and edge probability p = log(d)/d.
Then, a sequence of observations is generated from a Hawkes process with exponential
excitation functions defined in (2.1) with exponential decay § = 1. The baselines {yu}
are sampled independently in Unif[0,0.02], and the edge weights {w;;} are sampled
independently in Unif[0.1, 0.2]. Results are averaged over 30 graphs with 10 simulations
each. For reproducibility, a detailed description of the experimental setup is provided in
Appendix C.1.

To investigate if the support of the excitation matrix can be accurately recovered under
small data, we evaluate the performance of each approach on three metrics [142, 130, 49].

e Fl-score. We zero-out small weights using a threshold n = 0.04 and measure the
Fl-score of the resulting binary edge classification problem. Additional results with

varying thresholds n are provided in Appendix B.1.

e Precision@k. Instead of thresholding, we also report the precision@k defined by the
average fraction of correctly identified edges in the top k largest estimated weights.
Since the proposed VI approach gives an estimate of uncertainty via the variance of
the posterior, we select the edges with high weights w; ; and low uncertainty, i.e., the
edges with ratio of the lowest standard deviation over weight w ;.

« Relative error. To evaluate the distance of the estimated weights to the ground truth
ones, we use the averaged relative error defined as [@; ; —w;;|/w}; when w}; # 0, and

W; j /(miny; >0 wy ;) when w;; = 0. This metric is more sensitive to errors in small
s ) 7
weights w; ;, and therefore penalizes false positive over false negative errors.
9

We first investigate the sensitivity of each approach to the amount of data available for
training by varying the size of the training set from N = 750 to N = 25000 events, i.e.,
15 to 500 events per node. Results are shown in Figure 2.1. Our approach improves the
results in both parametric and non-parametric settings for all metrics. The improvements
are more substantial in the non-parametric setting. If the accuracy of the top edges is
similar for both VI-SG and MLE-SGLP in terms of precision@20, VI-SG improves the
Fl-score by about 20% with N = 5000 training events. The reason for this improvement
is that MLE-SGLP has a much higher false positive rate, which is hurting the F1-score
but does not affect the precision@20. VI-SG is also able to reach the same F1-score as the
parametric baseline MLE-ADM4 with only N = 4000 training events. Note that VI-SG is
optimizing d>M + d = 25050 hyperparameters with minimal additional cost.
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Figure 2.1 — Performance with respect to the number of training samples measured by
(a) F1-Score, (b) Precision@20, and (c) Relative error. Our VI approaches are shown in
solid lines. The non-parametric methods are highlighted with square markers. Results
are averaged over 30 random graphs with 10 simulations each (+ standard deviation).

In the next experiment, we focus on the non-parametric setting. We fix the length of
observation to N = 5000 and study the effect of increasing M on the performance of
the algorithms. The results are shown in Figure 2.2. We see that our approach is more
robust to the choice of M than MLE-SGLP. A possible explanation for this behavior is
that MLE-SGLP overfits because of the increasing number of model parameters.

We also investigate the parameters of the model learned by our VI-EXP approach. In
Figure 2.3a, we use the variance of the approximated posterior ¢, as a measure of
confidence for edge identification, and we report the distribution of ratio of standard
deviation over weight @; ; for both the true and false positive edges. Similar results
hold between the true and false negative edges. The false positive edges have a higher
uncertainty than the true positive ones. This is relevant when we cannot identify all
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Figure 2.2 — Analysis of the robustness of non-parametric approaches to the number of
bases M of excitation functions (for fixed N = 2000).

edges due to lack of data, even though we still wish to identify a subset of edges with
high confidence. Figure 2.3b confirms that, as expected, the optimized weight priors o
are much larger for true edges in the ground-truth excitation matrix than for non-edges.

Finally, to evaluate the scalability of our approach, we fixed the number of training events
per dimension and analyzed the empirical running time® on increasingly large-dimensional
problems for both VI-EXP and MLE-ADM4. As shown in Figure 2.4, the empirical running
time per iteration of our approach VI-EXP (implemented in Python) scales better than
the one of MLE-ADM4 (implemented in C++). Although our gradient descent algorithm
requires more iterations to converge, we show in Figure 2.5 that VI-EXP reaches the same

F1-score as MLE-ADM4 faster.

2.5.2 Real Data

We also evaluate the performance of our approach on the following three small datasets:

1. Epidemics. This dataset contains records of infection of individuals, along with their
corresponding district of residence, during the last Ebola epidemic in West Africa in
2014-2015 [51]. To learn the propagation network of the epidemics, we consider the 54
districts as processes and define infection records as events.

2. Stock market. This dataset contains the stock prices of 12 high-tech companies
sampled every 2 minutes on the New York Stock Exchange for 20 days in April
2008 [44]. We consider each stock as a process and record an event every time a stock
price changes by 0.15% from its current value.

5All experiments were run single-threaded on the same machine with a CPU Intel Xeon E5-2680 v3
(Haswell), 2.5 GHz, 30 MB cache.
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3. Enron email. This dataset contains emails between employees of Enron from the
Enron corpus. We consider all employees with more than 10 received emails as processes
and record an event every time an employee receives an email.

We perform an event-prediction task to show that our approach outperforms the state-of-
the-art methods in terms of predictive log-likelihood. To do so, we use the first 70% events
as training set, and we compute the held-out averaged log-likelihood on the remaining
30%. We present the results in Table 2.1.

We first see that the non-parametric methods outperform the parametric ones on both
the Epidemic dataset and the Stock market dataset. This suggests that the exponential
excitation function might be too restrictive to fit their excitation patterns. In addition,
our non-parametric approach VI-SG significantly outperforms MLE-SGLP on all datasets.
The improvement is particularly clear for the Epidemic dataset, which has the smallest
number of events per dimension. Indeed, the top edges learned by VI-SG correspond to
contiguous districts as expected. This is not the case for MLE-SGLP, for which the top
learned edges correspond to districts that are far from each other.

Table 2.1 — Predictive log-likelihood for the models learned on various real datasets.

Dataset Statistics Averaged predictive log-likelihood
#dim (d) #events (|S]) | VI-SG MLE-SGLP VI-EXP MLE-ADM4
Epidemics 54 5349 —2,06 -3,03 —4,31 —4,61
Stock market 12 7089 —1,00 —2.45 —2.82 —2.81
Enron email 143 74294 —0,42 —1,01 -0,23 —0,40

2.6 Summary

In this chapter, we proposed a novel approach to learn the excitation matrix of a
multivariate Hawkes process in the presence of short observation sequences. We observed
that state-of-the-art methods are sensitive to the amount of data used for training
and showed that the proposed approach outperforms these methods when only short
training sequences are available. The common tool to tackle this problem is to design
smarter regularization schemes. However, all maximum likelihood-based methods suffer
from a common problem: all the model parameters are regularized equally with a few
hyperparameters. We developed a variational expectation maximization algorithm that is
able to (1) optimize over an extended set of hyperparameters, with almost no additional
cost and (2) take into account the uncertainty of the learned model parameters by fitting
a posterior distribution over them. We performed experiments on both synthetic and
real datasets and showed that our approach outperforms state-of-the-art methods under
small-data regimes.

39






8] Learning Hawkes Processes under
Synchronization Noise

In this chapter!, we address the problem of learning the causal structure of the Hawkes
process when the timestamps of events cannot be recorded accurately. In particular, we
introduce the so-called synchronization noise, where the stream of events generated by
each dimension is subject to a random and unknown time shift. We characterize the
sensitivity of the classic maximum likelihood estimator to synchronization noise and
highlight the challenges posed by such temporal noise. We introduce a new approach for
learning the causal structure in the presence of noise. Our experimental results show that
our approach accurately recovers the causal structure of Hawkes processes for a wide
range of noise levels, and significantly outperforms classic estimation methods.

3.1 Introduction

Learning the excitation matrix of a Hawkes process, which encodes the Granger causal
structure between the processes from a set of observations, has been the focus of recent
work?. All these studies assumes that the observations are noiseless, that is, the arrival
times of the events are recorded accurately without any delay. To the best of our knowledge,
no work to date has considered learning the causal structure of a noisy Hawkes process.
Recent studies tackled the inference of Hawkes processes with missing data [111, 131], but
did not consider noisy (delayed) observations. The inference of temporal point processes
in the presence of noisy observations has been studied for non-parametric estimators of
spatial Poisson processes [15, 32]. However, these studies mostly focus on the special case
of independent and known noise and cannot be applied to Hawkes processes.

We study the problem of learning Hawkes processes in the presence of observation noise.
More precisely, we consider synchronization noise, where the stream of events generated
by each source —or dimension— is subject to a random and unknown time shift. This model

!This chapter is based on Trouleau et al. [116].
2We refer the reader to Section 1.4 for a detailed discussion.
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captures situations where no perfect clock time synchronization is available at different
sources, or when the observation process itself introduces source-dependent delays. As
an example of the former, consider a network of sensors that record events such as
neural spikes or earthquake shocks. It is often the case that the sensors are not perfectly
synchronized, because they each rely on a local clock to time-stamp events. As an example
of the latter, consider processes where an event can only be observed indirectly after a
delay, such as through the symptoms of an infectious disease that manifest themselves
some time after the actual infection. We will show that synchronization noise can severely
harm the estimation performance of state-of-the-art learning methods.

Our contribution is two-fold. First, we demonstrate the vulnerability of the state-of-the-art
learning algorithms to noisy observations. Second, we provide a novel estimation approach
for learning the causal structure of a Hawkes process in the presence of synchronization
noise. Unlike previous works on the inference of point processes with noise [15, 32],
our approach does not assume that the noise is sampled from a known distribution.
Our approach is based on the maximum-likelihood estimation of a novel model called
desynchronized multivariate Hawkes process (DESYNC-MHP) in which the parameters
of interest consist of the Hawkes process parameters along with the noise. In other words,
given a set of observed data, our approach learns the Hawkes process with synchronization
noise that maximizes the log-likelihood with respect to both the noise and the parameters
of the process. Such log-likelihood function is smooth with respect to the Hawkes process
parameters, yet non-convex and non-smooth with respect to the noise parameters. We
show that maximizing a smoothed version of this objective function with respect to both
the noise and the Hawkes process parameters recovers the excitation matrix and hence
the causal structure of the process.

Outline of the Chapter. The chapter is organized as follows. In Section 3.2, we
provide some preliminary definitions and notations. We introduce the synchronization
noise framework in Section 3.3 and show how it biases the classic maximum likelihood
estimation algorithm that assumes the observations to be noiseless. In Section 3.4,
we introduce our methodology to learn Hawkes processes under synchronization noise.
Finally, we demonstrate the performance of our approach on synthetic simulations, and
we validate it on a dataset of neuronal spike trains in Section 3.5.

3.2 Preliminary Definitions

Prior to discussing our results, we introduce the basic notations and definitions used in
this chapter. Detailed notations will be introduced along the way. Recall that, as defined
in Section 1.3, a d-dimensional Hawkes process is a collection of d univariate temporal
point processes N;(t), i =1,...,d, also called dimension, with a particular form of the
conditional intensity function introduced in (1.18). The dynamics of influence between
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the processes are captured by the excitation matrix ®(t) := [¢; ;(¢)]. A common choice
for the excitation function ¢; j(t) is an exponential kernel of the form

¢1,5(t) = wije sy, (3.1)

where w; j captures the strength of influence and 3 captures the time constant [47, 100,
111, 132, 141]. In this chapter, we present our learning approach for the exponential
kernel in (3.1), but it is applicable to more general forms of parametric kernels.

Suppose that, during a time period [ty, T], we observe a sequence of events

§= {(Zm tn)}nzlv

where t,, € [to,T] is the timestamp of the n-th event and 4, € [d] is its dimension.
Let 0 denote the parameters of the Hawkes process, which consist of the excitation
matrix {w; ;} and the background intensities {y;}. Maximum likelihood estimation can
be used to learn 8 from the observations S. Similar to the definition in Chapter 2, the
log-likelihood of & given 0 for the Hawkes process is given by

d T
logp(S10) = Y log N, (talMs,) — Z/t Ai(t[He)dt. (3.2)
i=17to

(in,tn)€S

It can be shown that (3.2) is convex for exponential kernels if the exponential decay [
is known [11]. It is therefore common practice to define 5 as a hyperparameter and to
apply maximum likelihood estimation only to

d(d+1
0 = {{ui} i, {wi ) e RETHY.

3.3 Noisy Observation Framework

In this section, we introduce a particular form of noise, called synchronization noise. We
demonstrate its destructive effect on the classic maximum likelihood (ML) estimation
methodology, which assumes noiseless observations.

3.3.1 Synchronization Noise

With synchronization noise, all the arrivals within a dimension are shifted equally by
an unknown offset. In other words, for every dimension 4, there exists z;, such that the
observed data is

S = {(instn) n>1 = {(ins tn + 2i,) b1
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Figure 3.1 — Illustration of the synchronization noise model on a simple two-dimensional
Hawkes process, with type A influencing type B. Noisy events are displayed in solid ticks
whereas the original events are shown in transparent ticks. The arrows illustrate the time
shift introduced by the noise.

In other words, each event ¢, is shifted in time by an offset of z;, shared by all events of
type i,. We denote the collection of noise variables by z = {zi}?:y Because of boundary
effects due to the finite observation window, the number of noisy observations may differ
from the number of noiseless events in [tg, T] as some events can enter or escape the

observation window.

To make this more concrete, Figure 3.1 shows a simple example of synchronization noise
for a 2-dimensional Hawkes process with types {A, B}. The synchronization noise values
{z4, zp} do not change the relative orders of the arrivals within a dimension but it affects
the relative orders of the arrivals between different dimensions. For instance, the event to
of type i = A comes before the event t3 of type i3 = B, namely, to < t3, but

t2+2i2:t2+ZA:£2>£3:t3+Zi3:t3+ZB,

so their order is reversed. Some events can also enter (or escape) the observation window,
such as t1 of type A (or t5 of type B).

3.3.2 Effect of Noise on Classic Inference Methods

The synchronization noise may swap the relative order of arrivals between different
dimensions, which results in estimation errors for classic inference methods, such as ML
estimation. Consider once again the simple network of two processes shown in Figure 3.1.
In this example, the causal graph contains a single edge A — B, implying that events
of types A cause future events of type B (but not the other way around). Figure 3.2
displays the result of ML estimation with synchronization noise for these two processes.
When z4 < zp, events of type B tend to occur after their cause (parent) of type A,
which leads ML estimation to correctly identify the causal direction A — B. However, as
zA > zp, the causes and effects begin to blur. This forces ML estimation to learn edges
in both directions. Finally, as the difference between z4 and zp gets large, the inferred
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Figure 3.2 — Maximum likelihood estimate on the toy example of Figure 3.1 as a function
of noise values. When zp — z4 < 0, maximum-likelihood estimation detects edges in both
directions, i.e., Wap and Wp4 are both positive.

dependency between A and B decreases. This is the reason explaining the convergence
of the kernel coefficients to zero.

3.4 Inference under Synchronization Noise

In this section, we introduce a new robust inference approach for learning Hawkes
processes in the presence of synchronization noise. We first note that, if the value of
the noise z is known, we can simply subtract the value of the noise from each arrival
time, and the problem reduces to the inference of a standard (noiseless) Hawkes process.
Conditioning on the noise z, the log-likelihood in (3.2) can hence be written as the
conditional log-likelihood

log p(S]z,0) = logp ({(imfn - Zin)}n>1’9)

T— zl
= Y togi, (Fa -2, ) Z / M)A, (33)
to—z4

(in,fn)eS

where H; = {(in,&n) | in < t} is the observed history of the (noisy) processes up to
time ¢. It is important to notice that (3.3) is a function of the observed history H, due to
the conditional intensity function terms. Since the synchronization noise can change the
order of the arrivals in different dimensions and consequently the value of the conditional
intensity function, it can also change the above conditional log-likelihood. Hence, the
noise offset z affects the Hawkes process parameters @ maximizing (3.3).

45



Chapter 3. Learning Hawkes Processes under Synchronization Noise

We define a new multivariate point process called desynchronized multivariate Hawkes
process (DESYNC-MHP) that is a Hawkes process with synchronization noise. The
parameters of this model are {z,8}. In other words, a DESYNC-MHP with parameters
{z,0} is a Hawkes process with parameter 8, where each dimension i € [d] is affected by
the synchronization noise offset z;. Therefore, the log-likelihood function of this model,
given a set of observed arrivals S, can be written as (3.3). Hence, ML estimation for the
DESYNC-MHP amounts to solving the optimization problem

2,0 = argmaxlog p(S|z, 6). (3.4)
2€R,0>0
An alternative approach to directly maximizing the log-likelihood is to consider the noise
as a latent variable and to use the EM algorithm. However, such an approach requires to
evaluate the posterior distribution, which is intractable because of its coupling with the
ordering of the events. It is therefore easier to solve (3.4) directly. This approach still
introduces new challenges that we will address next.

Challenges

For a given noise variable z, maximizing (3.3) with respect to the Hawkes process
parameters 0 results in the ML estimation for the noiseless Hawkes process, which can
be often solved efficiently. For instance, in the exponential kernel setting, when 6 =
{{miydy, {wi,j}g,j:ﬁ, the problem is smooth and convex, and therefore the parameters
can be easily estimated using first-order methods [47, 100, 132, 141].

In contrast, the objective function in (3.3) is neither smooth nor continuous with respect
to the noise z. Recall that in (3.3) the intensity function (1.18) depends on the history
H, of the process. However, synchronization noise can invert the order of arrivals in
different dimensions, and consequently it can change the past events of some arrivals.
This change in the ordering of events creates discontinuities in the likelihood and makes
it particularly challenging to optimize.

To observe this concretely, consider a 2-dimensional Hawkes process with only two arrival
times t1 and to (t; < t2), in dimensions 1 and 2, respectively. Suppose that the observed
arrival times #; and f9, are such that £; < 5. The effect of dimension 1 on dimension 2 is
captured by

pa1(fa — 20 — t1 + 21) = wa e_ﬂ(trm_tlﬂl)]l{t”gfzzfmzpo}
Hence, for a given z1, as 2z increases, the excitation function increases until zo = to—t1+21.
At this point, the arrival orders are switched and the effect of the arrival at ¢; on the
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Figure 3.3 — Illustration of the discontinuities of the objective function (3.3) for a 2-
dimensional Hawkes process as a function of zo, when 2z is fixed to its true value and
B = 1. The inset shows a fine zoom on the objective function in 0.5 £ 0.005.

arrival at to disappears. Formally, at 7 = ty — 29 — t1 + 21, we have

lim ¢o1(7) =wo1 # 0= 13617@,1(7')'

T—0t

This results in a discontinuity in the objective function.

Figure 3.3 illustrates the objective function as a function of z3, when z; is fixed to
its true value, for a two-dimensional process. These discontinuities in the conditional
log-likelihood function will prevent gradient-based algorithms from converging. Even
worse, the objective function is particularly ill-conditioned: it decreases at the points
of discontinuity, but increases everywhere in between. The presence of synchronization
noise therefore transforms the computationally efficient estimation of the Hawkes process
parameters into a particularly ill-conditioned optimization problem.

Below, we discuss our approach to tackle this issue in two steps. We first introduce a
novel approach for smoothing the objective function, which allows us to subsequently
find an optimum solution by using stochastic gradient descent.

Smoothing the objective function. Recall that the source of the discontinuities
(jumps) in the objective function are the swapped arrivals and the discontinuities of the
excitation kernels at ¢t = 0. If the excitation kernels {¢; ;(t)} were differentiable for all
t € R, such sudden jumps in the intensity function would be avoided and consequently
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Figure 3.4 — Illustration of the smoothing of the objective function (3.3) for a 2-dimensional
Hawkes process as a function of z9, when z; = 27 and 8 = 1. The inset shows a fine zoom
on the objective function in 0.5 4 0.005.

the likelihood function would be smooth. This observation leads us to approximate the
excitation kernels with functions that are differentiable everywhere. For instance, one

candidate for approximating the exponential kernel is
Gii(t) 2wy (o(yt)e ™ + (1= o(y1)e”), (3.5)
where o(t) = 1/(1 + e~ ?) is the sigmoid function®. Because

lim () = b (1), 3.6

B,qlﬁg_oo CZ)m( ) ¢z,j( ) (3.6)

the approximated kernel can be made arbitrarily close to ¢; ;(t). Selecting 5" and v large

enough will therefore preserve the causal structure of the Hawkes process. Figure 3.4
illustrates how &Z](t) affects the objective function for various values of 5’ and +.

Stochastic gradient descent. The kernel approximation (3.5) addresses the non-
smoothness of the objective function with respect to the noise z. But the issue of
convexity remains, as illustrated in the inset of Figure 3.4 for large values of /3. This
means that choosing the right 8’ is crucial. On the one hand, a small 3’ makes the
objective function smoother and removes some local minima. On the other hand, a small
B" degrades the quality of the approximation and hence introduces a larger bias in the
optimization problem.

3Note that this choice of kernel is non-causal, in the sense that the kernels are non-zero for ¢ < 0.
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Stochastic gradient descent (SGD) is often used to escape local minima in non-convex
optimization. In our case, SGD randomizes the discontinuities, and hence enables us
to evade the local minima. We apply a mini-batch version of SGD with a set of C
independent observations {5‘1, . ,g'c}. Because of the ergodicity of stationary Hawkes
processes, a set of short independent observations of a Hawkes process is statistically
equivalent to a single long observation of that Hawkes process.

Algorithm 3.1 summarizes the steps of our approach?. Since smoothing is only necessary
for optimizing logp(g\z,O) with respect to z, we use the gradient® of the smooth
approximation of the log-likelihood, denoted by V. log ﬁ(g’ |z,0), to update z, and we
keep the gradient of the exact log-likelihood to update the Hawkes process parameters 6,
denoted by Vg log p(Sk|z, Ok ).

Algorithm 3.1 DESYNC-MHP Maximum Likelihood Estimation

Input: Data {S,...,Sc}, hyperparameters (5, 3’, 7).
1: Initialize zp and 6y to random values
2: k<« 0
3: repeat
4 Si ~ Uniform{gl7 e ,gc}v
5: Zpt1 < 2 + O V2 log p(Sk|zk, Ok)
6 0k+1 — max(ek + d0r Vo logp(g’k\zk, Gk), 0)
7 k—k+1
8: until convergence
Output: =z, 6

3.5 Experimental Results

We perform two sets of experiments. First, we use synthetic data to show that, despite
the non-smoothness and non-convexity of (3.4), our approach can accurately recover the
excitation matrix of the Hawkes process and significantly outperform the classic ML
estimator. We further investigated the effects of dimensionality d and the scale of the
noise on the performance of our estimator. Second, we validate our approach using a
dataset of neuronal spike trains obtained from measurements of the motor cortex of a
monkey.

3.5.1 Experiments on Synthetic Data

We set the exponential decay to 3 = 1. For smoothing, we use 8’ = 50 and v = 500,
which were found to work well in practice. For each experiment, we choose small positive

4Source code of the algorithm is available publicly.
The derivation of the gradient with respect to the noise parameters and the parameters of the Hawkes
process is provided in the Appendix.
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Figure 3.5 — Analysis of the sensitivity to the noise scale with 4 different noise regimes.
(d =10 is fixed.)

background intensities {y;} and generated a random® excitation matrices with entries
{w; ;} € {0,1} by sampling edges randomly with probability 2/d. The average in-degree
and out-degree of each node is hence close to 2. We then rescale the entries to obtain a
spectral radius of 0.95 to ensure that the simulated processes are stable. We generate
C = 5 realizations of 50,000 samples from the Hawkes process using Ogata’s thinning
algorithm? [94]. We repeat each experiment 10 times over 10 different matrices for each set
of parameters. We solve the optimization problem (3.4) using stochastic gradient descent
with Lasso regularization on the parameters {w; ;}. We compare our approach, denoted
by DESYNC-MHP MLE, against the state-of-the-art maximum likelihood estimation
method ADMA4 from Zhou et al. [141], denoted by Classic MLE, which solves the classic
maximum likelihood estimation problem with the same regularization.

Similar to Chapter 2, we zero-out small weights using a small threshold® 7 = 0.04 and
we report the Fl-score of correctly identified edges, i.e., the non-zero the kernels in the
support of the excitation matrix.

Sensitivity to the noise level 2. We first study the sensitivity of our approach to
the level of noise and compared it to the classic ML estimator. Figure 3.5 shows the
mean Fl-score (and standard deviation) for difference noise variance o2. We observe four

different noise regimes:

1. In the low-noise regime, virtually no event is swapped, meaning that the cause
(parent) events always occur before their effect. Both the classic ML estimator and
our approach therefore recover the causal structure accurately.

SExperiments were performed on other random graph models with qualitatively similar results.
"We used the Python library tick to generate synthetic samples of the processes [12].
8We provide similar plots for varying thresholds 7 in Appendix B.2.
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2. When the noise level is increased to 02 = 1/ = 1 (indicated by the red vertical line
in Figure 3.5), our approach still recovers the true causal structure with a Fl-score
close to 1, contrary to the classic ML estimator whose F'1-score drops to 0.6.

3. In the third regime, for noise levels between o2 = 1/ up to one order of magnitude
larger than 1/, our approach gets trapped in local optima more frequently, and
hence its performance decreases. Yet, it still clearly outperforms the classic ML
estimation.

4. In the high-noise regime, the signal from the Hawkes process gets completely lost
in the noise. The log-likelihood function therefore rapidly decreases around the
true noise z, and becomes more and more flat for all z far from z,. Thus, iterative
gradient-based algorithms such as Algorithm 3.1 and the classic ML estimator stay
trapped around their initial points zg. Note that our algorithm with fixed z =0
becomes the classic ML algorithm. As the noise variance increases, neither of the
two estimators is able to correctly learn the causal structure in the observations,
and both algorithms converge toward sparser excitation matrices. More details are
given in the Appendix.

Sensitivity to the number of dimensions d. Because z € R? and 0 € Rd2+d,
number of parameters to estimate grows quadratically with the dimensionality of the
process. Consequently, the optimization problem becomes harder for larger-sized problems.
In Figure 3.6, we also analyze the sensitivity of our approach to the number of dimensions
d of the Hawkes process. We see that our approach still outperforms the Classic MLE as
we increase the number of dimensions d.

Sensitivity to the number of realizations C'. Recall that we used SGD in order
to evade local minima in the conditional log-likelihood function. Figure 3.7 shows that
with only C' = 3 independent mini-batches each consisting of 50,000 samples suffice to
obtain a F1l-score close 1.

3.5.2 Application to Real Data

In addition to simulations on synthetic data, we also evaluate our approach on an
experimental dataset of neuronal spike trains from Wu and Hatsopoulos [126]. The
dataset consists in measurements of an electrode array located on the motor cortex of a
macaque monkey performing a series of tasks involving a specific arm movement. The
local field potentials in the motor cortex were recorded and processed to obtain the
neuronal spike train data (discrete event times). More details can be found in [126]. The
dataset contains the spike train data from 115 identified neurons for a duration of an
hour, quantized at the resolution of 1 millisecond. Since each spike train was recorded
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3.5. Experimental Results

Table 3.1 — Predictive log-likelihood for the models learned by both approaches. Results
are reported averaged over several random initialization points (£ standard deviation).

Classic MLE DESYNC-MHP MLE
0.4282 £ 3.5e—5 0.4311 + 3.0e—4

by an independent sensor, some synchronization noise between the dimensions could be
expected. For ease of visualization, we keep only a subset of data containing the top
d = 10 neurons with the highest number of spikes, leading to a total of 354 285 spikes.
We use the first 70% of the dataset for training and keep the last 30% for testing. We set
the hyperparameters (3, 5’,7) to (0.0047,0.16,1.6) using grid-search.

We compare the predictive log-likelihood on the test set for the models learned by the
baseline classic ML estimator and the DESYNC-MHP ML estimator in Table 3.1. Since
problem (3.4) is non-convex, we start the optimization from several starting points and
we report both the average and standard deviation of both estimators.

We see that the DESYNC-MHP ML estimate consistently improves the predictive log-
likelihood over the classic ML estimate. Our algorithm identifies a small synchronization
noise with an average value of 12.5ms, which is less than the average inter-event time of
88.9ms. The Granger causality graphs learned by the two methods is shown in Figure 3.8.
The two graphs agree on 91% of the edges. In a previous analysis of causality of the
dataset, Quinn et al. [99] identified a dominant direction of influence on both graphs
from the lower left to the upper right corner of the array, which might correspond to
the direction of propagating local field potential waves discussed in Wu and Hatsopoulos
[126]. The Granger causality graphs in Figure 3.8 are consistent with these findings. A
dominant direction is indeed noticeable on both graphs and is particularly striking on
the graph learned by DESYNC-MHP MLE in Figure 3.8b.

To evaluate the robustness of our approach to larger synchronization noise, we added
additional shifts the arrivals in different dimensions randomly with various noise variances
o2 and computed the predictive log-likelihood both for our algorithm and for the classic
ML estimator. The results are reported in Figure 3.9. We identify different noise regimes.
For low noise, with a variance smaller than ¢? = 10ms, DESYNC-MHP MLE consistently
leads to more likely estimate than the classic MLE. This is consistent with the log-
likelihood values computed in Table 3.1. For higher noise variance, the likelihood of
both approaches decreases, but the DESYNC-MHP ML estimate always outperforms the
classic one. It is interesting to note that, on this dataset, the shift in noise regime occurs
before 1/5. This might come from the noise initially present in the data.

Although our approach shows better results compared to the classic MLE, the gains are
not as large as in the case of the synthetic experiments. Since our approach is not limited
to the exponential kernel, results could certainly be improved by using a more flexible
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Chapter 3. Learning Hawkes Processes under Synchronization Noise

(b) Causal graph learned by DESYNC-MHP
(a) Causal graph learned by the classic MLE. MLE.

Figure 3.8 — Granger causality graphs of the neuronal spike train dataset. Each node
indicates a different neuron. The relative position of the nodes corresponds to the
relative position of the electrode on the array. The differences between the two graphs
is highlighted with dashed edges. Edges appearing only in the classic ML estimate are
highlighted in red in Figure 3.8a, and edges appearing only in the DESYNC-MHP ML
estimate are highlighted in green in Figure 3.8b. The labels of the nodes correspond to
the ordering of the neurons sorted by number of observed events.
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Figure 3.9 — Analysis of the sensitivity to the noise scale on the neuronal spike train
dataset.
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3.6. Summary

form of excitation function. For instance, using non-parametric learning approaches for
Hawkes processes inspired by Zhou et al. [142], Yang et al. [133] might better fit the true
excitation dynamics of the neurons.

3.6 Summary

We addressed the problem of learning the causal structure of multivariate Hawkes
processes under synchronization noise, which can arise both for technical reasons or as
a feature of the observation process. We showed that the classic maximum likelihood
(ML) estimator fails when observations are noisy, because delays perturb the order of
events across dimensions. In particular, we showed that, even with small noise with
variance o2 ~ 1/, the classic ML estimator is unreliable and only achieves an F1-score
of approximately 0.6. To tackle these challenges, we introduced a novel multivariate point
process, called DESYNC-MHP, which is a Hawkes process with synchronization noise. In
particular, a DESYNC-MHP with parameters (z, 6) is a Hawkes process with parameters
0, where each dimension ¢ is affected by the synchronization noise offset z;. The log-
likelihood function of DESYNC-MHP is non-smooth and non-continuous with respect
to the noise, making off-the-shelf gradient-based approaches infeasible. We introduced a
novel smoothing approach based on a smooth approximation of the excitation kernels, in
conjunction with SGD, to solve the problem. Our experimental results show that, despite
the non-convexity of the objective, our approach significantly outperforms the classic ML
estimator and accurately recovers the causal structure of Hawkes processes for a wide
range of noise.
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“] Learning Hawkes Processes under
Random Translations

In this chapter!, we introduce a general class of noise for temporal event data. In this
framework, called random translations, the observed events in a dimension are subject
to random and unknown time shifts that are drawn from some unknown probability
distribution. The synchronized noise discussed in Chapter 3 can be seen as a particular
type of random translation. In this work, we prove that the cumulants of Hawkes processes
are invariant to random translations and hence can be used to learn their underlying causal
structure. Furthermore, we empirically characterize the effect of random translations on
state-of-the-art learning methods. We show that maximum likelihood-based estimators
are brittle, whereas cumulant-based estimators remain stable even in the presence of
significant time shifts.

4.1 Introduction

The process through which sequences of events are collected often introduces noise in
the observed timestamps. This is particularly relevant for applications relying on data
collected from sensors. For instance, in neuroscience, the activity of neurons is typically
collected by measuring a continuous signal coming from the action potential of neurons
using electrode micro-arrays. The signal is then converted into a discrete sequence
of events of firing neurons, called spike trains, which are the times when the action
potential exceeds a threshold. This procedure is inherently noisy and prone to introduce
inaccuracies in the measured timestamps. Another example is in epidemiology, where the
reported times of infection have an approximate granularity and do not account for the
latent incubation period. This could lead to inaccuracies in the measured timestamps.
As a result, a secondary case might be reported before the primary case, which could
interfere with learning the true causation structure.

!This chapter is based on Trouleau et al. [117].
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Chapter 4. Learning Hawkes Processes under Random Translations

Most of the literature on learning temporal point processes assumes perfect information
regarding the observation. In this work, we consider inferring the causal network of
Hawkes processes when the observations are subject to a particular form of noise,
called random translation. In a randomly translated point process, every event within
a dimension is shifted randomly and independently in time, according to a fixed but
unknown distribution. We show that the cumulants of a Hawkes process are invariant
with respect to random translations. Therefore, any inference method that can obtain
the causal network of a Hawkes process from its cumulants can also be used to learn its
causal network under random translation noise.

Outline of the Chapter. We begin by discussing the related works in Section 4.2.
In Section 4.3 we define some notations specific to this chapter. In Section 4.4, we
introduce the random-translations noise framework. We then characterize the cumulants
of a randomly-translated Hawkes processes in Section 4.5, and we discuss the robustness
of cumulant-based estimators for learning their excitation matrix in Section 4.6. Finally,
we validate our findings with experiments on both synthetic and real data in Section 4.7.

4.2 Related Works

Thanks to its ability to capture the Granger causality between several types of events, the
excitation matrix of a Hawkes process has been the target of a number of recent learning
algorithms [2, 107, 130, 133]. The main approaches for this problem are of two flavors:
maximum likelihood-based approaches [97, 107, 116, 130, 133, 142]; or moment-based
approaches that learn the parameters of interest by solving a set of equations obtained
from first, second, or third-order moments of the process [2, 8, 7, 44, 58]. For a detailed
discussion of these approaches, we refer the reader to Section 1.4. All the aforementioned
approaches assume that the observations are noiseless, that is to say, the arrival times of
the events are accurately recorded without any delay.

In the previous chapter, we addressed the case where events are synchronized. This is
a special case of the random-translation framework that we study in this work. More
precisely, in our general random-translation noise model, the events of a dimension are
independently shifted according to some unknown distribution. In the synchronized noise
model, all events within a dimension have the exact same delay.

The inference of temporal point processes in the presence of noisy observations has been
studied for other types of point processes, such as spatial Poisson processes [15, 32].
However, these studies focus mostly on the special case of independent and known noise.
Another line of research tackles the inference problem in Hawkes processes with missing
data, such as the studies by Shelton et al. [111] and Xu et al. [131]. In our setting, data
are not missing, but timestamps are inaccurately measured. In this setting, Hoffmann
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and Caramanis [59] consider a similar type of temporal noise in the context of disease
modeling. In particular, they study the inference of epidemic pathways for a discrete-time
epidemic model spreading over a network of individuals, when the infection times are
not known exactly. However, the approaches developed in this work are designed for a
discrete-time model where each dimension can have at most only one event, i.e., the
infection time of an individual. Hence, these methods are not applicable to our setting. In
the context of univariate Hawkes processes, Deutsch and Ross [37] have studied a similar
type of noise, referred to as “data distortion”. They propose an approach to estimate
the parameters of the process based on Approximate Bayesian Computation (ABC) and
Markov Chain Monte Carlo. However, the method is limited to the univariate setting.

4.3 Preliminaries

We begin by introducing specific notation used throughout the chapter. We denote the
Dirac function by §(t). For a given function f(¢), we denote its time reversed version

and we define its convolution with a function g(¢) by

Fra®) 2 [ £t = a)glayda.

We use f*"'(t) to denote the convolution of f(¢) with itself n times. The n-dimensional
Laplace transform of a function f(x) is given by

L[fl(s) = A C) exp(—s' a)dz.

Finally, the Laplace transform of a matrix function ®(¢) = [¢; j(t)], denoted by L[®](s) £
[L[i;](s)], is done element-wise.

Recall that, as defined in Section 1.3, a d-dimensional Hawkes process is a collection of d

univariate temporal point processes N;(t), i = 1,...,d, also called dimensions, with a
conditional intensity function given in (1.18). In this chapter, the integrated excitation
matrix

® £ L[®](0)

is the quantity we are interested in estimating.
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Chapter 4. Learning Hawkes Processes under Random Translations

4.4 Random Translation Noise Framework

In a randomly translated point process, all the events are shifted randomly in time,
according to an unknown distribution [34]. More precisely, consider a sequence of events

S= {(inatn)}nzlv (4.1)

where t,, denotes the time of the n-th event and 4,, is its dimension. A random translation
of § is denoted by S and is defined by

g = {('Lna En)}nzl = {(Zna ty + xn)}nzla (4.2)

where {z,}n>1 are independent random variables such as x, ~ Fj, (-). Namely, for
each type ¢ € [d], the timestamps of type i events are shifted independently with
distribution Fj(-). Figure 4.1 demonstrates a simple Hawkes process in three dimensions,
in which events are translated according to distribution functions {F4, Fp, Fc}. Note
that the synchronization noise model proposed in Chapter 3 is a special case of the
random translation, when all the distributions are Dirac delta functions, i.e., for every i,
dF;(x) = §(x — z;)dzx, where z; € Ry.

Among the potential approaches to learning randomly translated Hawkes processes, a
first candidate is a maximum-likelihood based estimation, such as expectation maxi-
mization. However, as discussed in Chapter 3, such a method results in a non-convex
objective function, has a high computational complexity, and fails —even for the syn-
chronized translations— as the noise power increases. For the sake of completeness, we
will demonstrate the similar shortcomings of the maximum-likelihood estimator for the

random-translation setting through empirical experiments.

_ ~Fy ~Fa
- ™ ~ - - -~ VV \\\\
A 3 R
tq ty
- ~ Fp
B i >
- ~Fe fa
C - .
ts t3
Time

Figure 4.1 — An example of events in a three-dimensional Hawkes process and their
translations. Events in dimension A, (resp., B and (') are translated randomly by F
(resp., Fip and F¢). The Granger causality graph of the process is shown on left.
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4.5. Cumulants of Randomly Translated Hawkes Process

4.5 Cumulants of Randomly Translated Hawkes Process

As discussed in Section 1.3.3, Jovanovié¢ et al. [62] showed that the cumulant densities of
the Hawkes process can be calculated analytically through their cluster representation.
This result establishes the relationships between the integrated cumulants of a Hawkes
process and its excitation matrix. Achab et al. [2] used this relationship to develop
an algorithm called NPHC to learn the causal network of a Hawkes process given
its integrated cumulants. They also provided an estimator for the first, second, and
third-order integrated cumulants given a set of observations.

In this section, we will compute the cumulant densities of a randomly translated Hawkes
process by using its cluster representation and show how they relate to the causal
structure of the underlying process. To do so, we have to study the effect of random
translations on the clusters of a Hawkes process. We observe two key properties that we
discuss in the context of a simple example illustrated in Figure 4.2.

As shown in the figure, although the events within this cluster are randomly displaced,
the tree structure —i.e., the parent-children relationships— of the cluster is unaffected.
Moreover, the clusters do not mix, 7.e., two separate clusters remain separated after
translation. The next theorem follows from these properties and expresses the cumu-
lant densities of a randomly translated Hawkes process as functions of the translation
distributions and the parameters of the process.

t

Time

Figure 4.2 — The cluster of Figure 4.1, with the immigrant of type A and its four
descendants translated according to distributions {F4, F, Fc}.
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Chapter 4. Learning Hawkes Processes under Random Translations

Theorem 4.1. Consider a Hawkes process with excitation matriz function ®(t) and
exogenous intensity vector p € Ri. After a random translation of the event set S with
distributions {F1(-),..., Fy(-)}, the resulting event set S has the following cumulants.

d
K; = Z um/RRL',m(x)d:r, (4.3)

d
Kz"j({l,fg) = Z Km/RRi,m(El — x)Rj,m(fg — x)dac, (4.4)

M-
=

(éz-,n@ )Ry m(Fs — ) R (B — )Ty — :c>)dydx

E
i

_l’_

<]§j, (to — x)ﬁ@m(t] — y)ék’m(fg — y){Iv!m,n(y — x))dydw

<Ek,n(£3 - m)éz,m(fl - y)Rj,m(t~2 - y)\im,n(y - x))dydm

+

M= 3=

3
3
l

+
M=~
3

<Ei7m(t~1 - l‘)ﬁfj’m(lyg - .’L‘)Rhm(fg — x))dx, (4.5)

3
I

where R(t):= > on>0 &+ (1), W(t):=R(t) — I5(t), and

Gij(t) = fi *x dij * I;()

(4.6)
- //Rfi(t +x — 8)pi;(s) fi(w)dsdz.

with fi(x)dx = dF;(x).

We prove the theorem in Appendix A.3.1. The steps of the proof can be summarized as
follows. First, we show that an inhomogeneous Poisson process is another inhomogeneous
Poisson process after random translation. Then, using this fact, along with the Poisson
cluster representation of the Hawkes process discussed in Section 1.3.1, we determine the
intensity function of each cluster in order to derive the equations of the cumulants.

This result shows the relationships between the first, second, and third-order cumulant
densities of a randomly translated Hawkes process, the noise distributions, and the
parameters of the underlying process. Note that Equation (4.6) implies that the matrices
®(t) and ®(¢) have the same support. In the next corollary, we further show that their
integrated versions, namely ® := £[®](0) and ® := L[®](0), are equal.
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4.5. Cumulants of Randomly Translated Hawkes Process

Corollary 4.2. Consider a Hawkes process with stationary increments. After a random
translation, its corresponding matriz function R(t) given in Theorem 4.1 is bounded, and

R 1—6)_1, (4.7)
3=, (4.8)

L=

where R == L[R](0), and & := L[®](0).

We use this equivalence to learn the support of ®. Note that, given a realization S
of a randomly translated Hawkes process, we can empirically estimate the integrated
cumulants. In the remainder of this section, we transform the equations (4.3)-(4.5) into
their integrated forms by evaluating their Laplace transform at s = 0 and solve for R.
Corollary 4.2 can then be applied to obtain ®. More precisely, let

Wi = L[P;5](0),
Kij = L[K; ](0),
Kijr = LK )(0).

Then, the integrated cumulants of a randomly translated Hawkes process can be computed
from (4.3)-(4.5) as follows.

d
m=1
— d — —
Ki;= Z K Ri i Rjm, (4.10)
m=1
— d —_— PR— PR— —
Kz,],k: = Z KnRz,nR],mRk m\Ijm,n
m,n=1
d — — — —
+ Z KnRj,nRz,mRk,m\I’m,n
m’zzl (4.11)
+ Z Knﬁk,nﬁz,mﬁj,mam,n
m,n=1
d —_— — —
+ Z KmRi,ij,mRk,m;
m=1

where ¥ = R — I.

We emphasize that the above equations are analogous to those of a Hawkes process without
random translations given in Section 1.3.3. Together with the fact that ® = @, this
implies that the integrated cumulants are invariant with respect to random translations,
a key result that will enable to estimate them consistently.
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In Equations (4.9)-(4.11), the first-order cumulants {K;} and the integrated cumulants
{{K;},{Kijx}} can be empirically estimated from the data. These estimates are then
used to solve for R = [E@ ;1, which yields the underlying causal structure, i.e., the support
of @, of the randomly translated Hawkes process, via Corollary 4.2. In the next section, we
review two approaches for learning Hawkes processes based on their cumulants and show
how exactly they can be adopted to infer the underlying causal structures of randomly
translated Hawkes processes.

4.6 Cumulant-Based Estimation Methods

4.6.1 The NPHC Algorithm

Achab et al. [2] proposed the NPHC algorithm, a non-parametric approach inspired by
the generalized method of moments. First, note that (4.10) and (4.11) provide (d? + d)/2
and (d® + 3d?> + 2d) /6 independent equations, respectively. The number of unknowns,
{{u:}%_1, R}, is only d + d?. Achab et al. [2] then select a subset of size d? equations out
of the group of equations in (4.11), namely, K;; ; for 1 <4,j < d, and use d*+ (d*> +d)/2
equations to obtain the unknowns. The NPHC algorithm works in two steps.

(1) First, the integrated cumulants are estimated from the data. Let

C = K”} and § = {F“g}

denote the estimators of the integrated covariance matrix and skewness matrix,
respectively. Details of these estimators are provided in Appendix A.3.4.

(2) Then, the NPHC estimator for R is defined as the solution of a polynomial
optimization problem

R c argmin (1 - a)|S(R) - S|2 + o|C(R) - C|3.
R

The weight o = ||§H§/ (||§||§ + ||6H§) balances between the two terms matching the

integrated covariance matrix C(R) = {F”} and the integrated skewness matrix

S(R) = K]

The authors prove that the NPHC estimator is consistent?. Corollary 4.2 then demon-
strates that the NPHC estimator is also consistent for randomly translated Hawkes
processes. Therefore, applying the NPHC algorithm to a randomly translated sequence of
events will recover the matrix R and, consequently, the integrated excitation matrix ®.

2For more comprehensive details on the algorithm and its relation to the generalized method of
moments, we refer the reader to [2].

64



4.6. Cumulant-Based Estimation Methods

4.6.2 The Wiener-Hopf Formulation

Another cumulant-based approach for learning Hawkes processes is based on the second-
order statistics [7]. More precisely, we define the covariance density matrix of a Hawkes
process, 3(t1,t2) = [X;(t1,t2)] as

E[dN;(t1)]

Yij(ti,te) = K (ti,t2) — pra

€i,j0(t1 — ta),

where ¢; ; is the Kronecker symbol, which is always 0 except when i = j, in which case it
is 1. Hawkes [58] proved that 3(t) := X(¢,0) is directly related to the excitation matrix
®(t) through the equation

X(t) = (I6 + W) « A(I5 + ®)" (t) — AS(t), Vt € R, (4.12)

where A = diag([K71,...,Ky]) is the mean intensity of the stationary process, ¥(t):=
> on>1 @7 (t) and W (t) = ¥(—t). Note that this equation does not admit a unique solution
with respect to ®(t).

Bacry and Muzy [7] derived the following d?-dimensional Wiener-Hopf system of equations
from (4.12):

X(t) = ®(t) + &« X(t), Vt > 0, (4.13)

where X (t) = BT (t)A~! can be estimated from data. The interesting aspect of this
equation is that, since it only consider positive times, using the fact that ®(¢) is causal
results in a unique solution with respect to ®(¢). It can therefore be used to infer the
excitation matrix ®(¢) of a Hawkes process from data.

Similarly to the aforementioned approach, we can use Theorem 4.1 to define the covariance
density matrix of a randomly translated Hawkes process and to explicit its relation to
®(t) which was defined in (4.6).

Corollary 4.3. Let f](t) denotes the covariance density matriz of a randomly translated
Hawkes process, defined as

~ - - - - EldN;(t S
Xt t2) = K j(t1,t2) — [dg(l)]ei,j&(tl —ty).
1
Then, for all t € R,
S(t) = (I6 + B) « A(Ts + B)" (£) — AS(2), (4.14)

where A = diag([K1, ..., Kg]) and ®(t) is defined as in Theorem 4.1.
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Chapter 4. Learning Hawkes Processes under Random Translations

Similar to (4.12), Equation (4.14) does not necessarily admit a unique solution® with
respect to ®(t), but unlike ®(t), ®(t) is not a causal function. This is evident from (4.6)
because gg”(t) is obtained by convolving the causal function ¢;;(t) with functions
{ ij(t), fi(t)} in which at least one is an anti-causal function. This is a major hurdle that
was not present in the noiseless case but comes with any non-zero amounts of noise.
Indeed, it prevents us from obtaining a Wiener-Hopf system of equations from (4.14)
that, like (4.13), admits a unique solution. Nevertheless, for a small amount of noise,
experiments show that we can successfully apply the Wiener-Hopf approach from Bacry
and Muzy [7] to randomly translated Hawkes processes and learn ®(t) by solving the
system

X(t)=®(t) + D X(t), Vt >0, (4.15)

where X (t) = 2T (¢)A~1. However, because ®(t) increasingly departs from being causal
as the noise power increases, this approach fails to accurately learn the underlying causal
structure.

4.7 Experimental Results

To illustrate the result of Theorem 4.1 and to characterize the effect of random translations
on the estimation of Hawkes processes, we carry out two sets of experiments. First, we
simulate a synthetic dataset from a Hawkes process and quantify the ability of two
maximum likelihood-based and two cumulant-based approaches for learning the ground-
truth excitation matrix, under varying levels of noise power. Second, we evaluate the
stability of each approach to random translations on a real dataset pertaining to Bund
Future traded at Eurex. The open-source code and datasets used in all experiments are
publicly available for reproducibility?.

We evaluate the effect of random translation on the following four state-of-the-art
approaches.

o NPHC. (from Achab et al. [2]) This non-parametric approach is based on matching
the empirical integrated cumulants of the events, as discussed in Section 4.6.1.

o WH. (from Bacry and Muzy [7]) This method is a non-parametric approach based
on solving a set of Wiener-Hopf equations for learning the excitation functions of
the process, as discussed in Section 4.6.2.

o ADMA4. (from Zhou et al. [142]) This method is a parametric approach that max-
imizes the log-likelihood function with a sparse and low-rank regularization. It

3We present a proof in Appendix A.3.5.
4For more details, see Appendix C.3.
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assumes an exponential excitation function of the form ¢; ;(t) = w; jx(t), where
k(t) = Bexp(—pt). The exponential decay §3 is a given hyperparameter.

o Desync-MLE. (from Trouleau et al. [116]) This method, discussed in Chapter 3, is
the parametric approach that maximizes the log-likelihood function of a Hawkes
process under synchronization noise, i.e., a particular type of random translation
where the noise is assumed to be distributed as dF;(z) = d(z — z)dz, Vi € [d],
such that all events within a dimension are shifted by a constant. This method
jointly learns the parameters of the process, as well as the noise value {z;}, by using
stochastic gradient descent. Similarly to ADM4, this approach assumes exponential
excitation functions where the exponential decay 3 is a given hyperparameter.

4.7.1 Synthetic Data

We first apply the result of Theorem 4.1 to a synthetic 10-dimensional (d = 10) Hawkes
process. Following the experimental setup of Achab [1], we considered a non-symmetric
block-matrix ®* depicted in Figure 4.3(a), with exponential excitation functions

o7 ;(t) = w; jBexp(—Ft), Vi, j=1,...,d,
with 8 =1, and baseline intensity u; = 0.01,Vi =1,...,d.

We simulated 20 datasets, each comprised of 5 realizations of 10° events. We then
randomly translated each dataset with distributions F; ~ N(0,02), 1 < i < d, for

2 and we estimated the excitation matrix for the aforementioned

varying noise powers o
approaches®. All reported values are averaged over the 20 simulated datasets (+ standard

error).

Figure 4.3 depicts the estimated integrated excitation matrices for a fixed noise level
02 = 5 for a qualitative visualization of the results. We observe that, though the cumulant-
based NPHC method is able to accurately recover the excitation matrix, the maximum
likelihood-based ADM4 suffers from both false positives and misses true positives. The
covariance-based WH approach is performing better than ADM4 but tends to suffer from
false positives. This is expected from Corollary 4.3, as WH incorrectly assumes that éIv>(t)
is a causal function.

To verify the findings of Theorem 4.1, we evaluated the sensitivity of the estimators of
the integrated cumulants used in NPHC. This pertains to the estimation of the left-hand
side of (4.4) and (4.5). In Figure 4.4, we report the squared Lo o distance of the estimated
integrated covariance and skewness matrices to their corresponding ground-truth. As
expected, the cumulant estimators remain stable over a large range of noise levels.

®We also ran experiments with other noise distributions (i.e., exponential and uniform) and observed
similar results.
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Figure 4.3 — Comparison of estimated integrated excitation matrix ® for several methods
under randomly translated observations.
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Figure 4.4 — Analysis of sensitivity of integrated cumulant estimation with respect to the
scale of the noise.
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To further quantitatively evaluate the sensitivity of each approach to increasing noise
levels, we also measured their performance against several metrics for a large range of
noise variances 0. More specifically, we considered the following metrics.

e Relative error. To evaluate the distance between the estimated and the ground-
truth values, we computed the averaged relative error defined as

{ 1915 — ¢751/197 41, it @3 > 0,

|¢i7j - ¢;j|/min¢;;m¢0 |¢¢n,n|, otherwise.

This metric is more sensitive to errors in small values and therefore penalizes
methods with large false positive entries learned in the excitation matrix [49, 142].

e Precision@k. To assess the performance of the approaches at recovering the top
entries in ®*, we used precision@Fk that is defined as the average fraction of correctly
identified entries in the top k largest estimated values. We reported this metric for
k =10 and k = 20 [49, 107].

« PR-AUC. Considering that there is a Granger-causal link between two dimensions
if the learned value @] > 7, we evaluate the performance of the resulting binary
classification problem by using the area under the precision-recall curve over all
thresholds n > 0. Methods that accurately uncover the excitation patterns from
the randomly translated data will have a PR-AUC close to 1.

e Lyo Norm. We also measured the squared Lo 2 norm of the estimated excitation
matrices, defined as H‘i’”%Q =i AZ% ;- Methods that fail to uncover the excitation
patterns from the randomly translated data tend to learn an almost-zero matrix
with small Lg 2 norm.

The results are shown in Figure 4.5. As expected from Corollary 4.2, the NHPC estimator
provides stable estimates for a large range of noise levels. Whereas Figure 4.5e shows that
the norm of the matrices estimated by the other approaches tends to zero with increasing
o2. This is particularly obvious for ADM4 and Desync-MLE. This result is consistent
with the findings of Chapter 3 for the special case of synchronized noise. Consistently
with the observation discussed in Section 4.6.2, the WH method performs well only for
low noise. This is because, as expected, the non-causal property of i’(t) in randomly
translated Hawkes process violates the assumption of WH and hence introduces a bias in
the estimation. In a smaller noise regime, <i>(t) is closer to being causal and, as a result,
the WH method learns it better.
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Figure 4.5 — Analysis of the sensitivity of the estimation methods to the noise scale
for the synthetic datasets. Reported values are averaged over 20 simulated datasets (+
standard error).
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4.7.2 Real Data

We also evaluated the effect of random translations on a publicly available real-world
dataset of Bund Futures traded at Eurex over 20 days in April 20145. This dataset
contains d = 4 dimensions corresponding to the following types of events:

e mid-price movement up,
e mid-price movement down,
e buyer initiated trades that do not move the mid-price,

o seller initiated trades that do not move the mid-price.

As there is no ground-truth available for this dataset, we focus our experiments on
evaluating the stability of the estimates when a random translation is added to the
observations. More precisely, for a large range of noise levels 02, we randomly shifted
the observed timestamps with distributions F; ~ N(0,02), and compared the resulting
estimated &’g to the noise-free estimate <i>o based on the dataset without random
translation.

We show the results in Figure 4.6. We observe that they are consistent with the conclusions
reached on the synthetic datasets. ADM4 converges to a zero excitation-matrix, as the
noise scale increases, whereas the cumulant-based approaches, NPHC and WH, remain
stable for a wider range of noise levels.
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2 10! 4 5 1072 o
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3 4
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100 NPHC ] NPHC
—— WH 1074 4 4 wH
LLLLL B L) B 10 B L N LR B R R R -um| LI ) B L) N L1 B R R R L
1004 103 1072 107! 109 10t 1004 103 1072 107! 109 10!
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(a) Relative Error (b) L2 Norm

Figure 4.6 — Analysis of the sensitivity of the estimation to noise scale for the Bund
Futures traded at Eurex. Reported values are averaged over 20 simulated datasets (+
standard error).

5Dataset available at: https://github.com/X-Datalnitiative/tick-datasets/
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4.8 Summary

In this work, we have studied the inference problem of multivariate Hawkes processes
under noisy timestamps. We have introduced a general form of observation noise called
random translation and proved that the cumulants of Hawkes processes are invariant to
such noise. We derived a set of equations for the first, second, and third-order cumulants
of a randomly translated Hawkes process with respect to its underlying parameters,
namely, the exogenous intensities and the excitation matrix. Using these findings, we have
shown than cumulant-based estimators, such as NPHC, are robust to random translations
and can accurately learn the causal structure of randomly translated Hawkes processes.
Furthermore, through extensive experiments on both synthetic and real datasets, we
validated our results and demonstrated that the state-of-the-art inference methods based
on maximum-likelihood fail to capture the structure, when the observations are affected
by random translations.
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5] Learning Large Networks With
Wold Processes

In this chapter!, we shift our focus from Hawkes processes and consider another class of
temporal point process, called Wold processes. Although Hawkes processes are certainly
the most widely used class of temporal point processes and are responsible for the growing
popularity of this type of models, their Bayesian treatment introduces computational
challenges that severely limit their scalability. The only approaches proposed to overcome
this challenge are based on discrete-time approximations of the model, that incur an
information loss. Wold processes address this limitation thanks to the form of their
conditional intensity function. In addition to a computational advantage, recent statistical
studies showed that Wold processes are well suited to capture the dynamics of real-world
communications. In this work, we relax some of the restrictive modeling assumptions made
in the state of the art and introduce a Bayesian approach for inferring the parameters of
multivariate Wold processes. We develop a computationally efficient variational inference
algorithm that allows scaling up the approach to high-dimensional processes and long
sequences of observations. Our experimental results on both synthetic and real-world
datasets show that our proposed algorithm outperforms existing methods.

5.1 Introduction

Wold processes [34, 125], akin to Hawkes processes, are a type of multivariate point
process that are well suited for modeling discrete events. They are defined in terms
of a Markovian joint distribution of inter-event times. Specifically, the times between
consecutive events t,,_1 and t,, also called inter-event times ¢,, := t,, —t,,_1, form a Markov
chain such that the distribution p(dy|dp—1,0n—2,...,01) = p(0n|dn—1). Wold processes are
suitable for modeling the dynamics of complex systems, and their inherent Markovian
property facilitates the learning task [120, 121]. Similar to the Hawkes process, the
interactions among the dimensions of a Wold process can be visualized using a directed
graph in which nodes and edges represent processes and direct influences, respectively.

!This chapter is based on [45].
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Recently, Vaz de Melo et al. [121] showed that Wold processes can model the dynamics
of real-world communications more faithfully than the widely used Hawkes processes.
Figueiredo et al. [49] then developed a Markov Chain Monte Carlo (MCMC) sampling-
based algorithm, called Granger-Busca, to infer the parameters of a Wold process.
However, the choice of prior of the MCMC algorithm in [49] requires certain restrictive
assumptions on the network. For instance, it requires that every node in the underlying
network of a Wold process has at least one out-going edge, i.e., at least one child. Clearly,
many practical systems violate this assumption. Beside relaxing the limiting assumptions
in [49], we propose an efficient Bayesian algorithm for learning a general class of Wold
processes. To achieve scalability, we propose a variational inference (VI) approach to
approximate the high-dimensional posterior of the model parameters given the data.

5.2 Related Works

The inference problem for multivariate point processes has been mostly studied for
Hawkes processes. There are two types of approaches for estimating the parameters of
Hawkes processes. Maximum likelihood-based approaches estimate the parameters from
the likelihood of observations [116, 133, 142], whereas cumulant-based approaches learn
the parameters of interest by solving a set of equations obtained from various order
statistics of the Hawkes process [2, 7, 58]. Some studies address the problem from a
Bayesian perspective; e.g., Linderman and Adams [76] develop an MCMC sampling-based
algorithm. Due to the long memory of Hawkes processes, the method does not scale well
with the number of observations. To improve the scalability of such Bayesian methods,
Linderman and Adams [77] propose approximating the continuous-time Hawkes process
with a discrete-time formulation. This led to a computationally more efficient stochastic
variational inference (VI) algorithm that scales better for longer sequences of observations,
at the expense of information loss incurred by binning the events into discrete-time bins.
Analogous to [77], the Bayesian approach that we propose here uses mean-field VI to
learn the parameters of Wold processes.

Recall that Wold processes are defined through a Markovian transition probability
distribution on the inter-event times p(d,+1|dy), which measures the probability of
the next inter-event time 6,41, given the preceding one. It turns out that for general
Markovian transition probabilities, this model is analytically intractable [56]. However,
in the univariate setting, when the transition probabilities have the exponential form
P(6n+1|0n) = f(9n) exp (—f(0n)0n+1), the process shows interesting properties [30, 33, 34].
In particular, the next inter-event time d,1 is then exponentially distributed with rate
f(6n). In the case where f(d,) = )\5;1/2, the stationary distribution of inter-event times
can also be found via Mellin transforms [125]. Similarly, in the case where f(d,) = B+ adn,
the stationary distribution p(d,) has the form (8 + ad,) ! exp (=38,). The analytical
properties of a specific type of Wold process that is an infinite process defined on the
unit circle are discussed in Isham [60].
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Recent efforts consider variations of the exponential Wold process [3, 120]. Instead
of defining the Wold process in terms of its inter-event exponential rate, these works
define the process in terms of the conditional mean of an exponentially distributed
random variable E[0,41]0,] = B + «d,. This class of point processes is called a self-
feeding process. This form of Wold process is able to capture both exponential and
power-law behavior, which often occur simultaneously in real data. Realizations of this
process tend to generate bursts of intense activity, followed by long periods of silence.
Vaz de Melo et al. [121] use self-feeding processes to model the time intervals between
communication events for different technologies and means of communications, including
short-message services, mobile phone-calls, and e-mail transactions. Building on this
work, Figueiredo et al. [49] introduce a multivariate version of the self-feeding process
and propose an MCMC sampling-based algorithm to learn the parameters. However, the
approach requires restrictive structural assumptions on the network of the process, which
limits the applicability of the model.

5.3 Preliminary Definitions

In this section, we describe the model and the notation used throughout this chapter. We
first define the univariate Wold process, and then generalize it to the multivariate case.

Consider a temporal point process 7 = {t,}n>1 on R>g that index the occurrences of
random asynchronous events. Let {0, = t,, — t,—1}n>1 denote the sequence of inter-event
times. As introduced in Example 1.8, T is called a Wold process if the distribution over
the inter-events is Markovian, i.e.,

p(6n+1|6n76n717' e 751) :p(6n+1|5n)- (51)

The form of the transition probability specifies the class of Wold process. For instance, in
this work, we consider the self-feeding process formulation where transition probabilities
have the exponential form given by p(0p41[0n) = f(0n) exp(—f (65 )dn+1). In addition, we
consider f(d,) to be 1/(8 + d,,) so that the conditional mean is linear [3, 121].

Now, to define the multivariate case, consider a set of Wold processes T = U;“flzl T; that
are observed simultaneously, where 7; = {t; 1 < t;2 < ...} and t; , denotes the n-th event
in the ¢-th process. Note that, to make the notation lighter to read in this chapter, we
adopt the compact notation t; ,, thus indicating both the dimension and the index of
the event as a subscript. At a given time ¢, the conditional intensity of the i-th process
depends on the last inter-event times {A; ;(t) : j € [d]} where

Dig(t) = si(t) — s, (si(2)). (5.2)
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Figure 5.1 — Illustration of the Wold process dynamics on a simple toy example with
2 processes, where process ¢ is influenced by process j and by itself, i.e., o; ; > 0 and
a;; > 0, and process j also influences itself. At the highlighted time ¢, the intensity in
process i depends on the two highlighted inter-event times A; ;(¢) and A;;(t), which
remain constant until the next event in process 1.

In this definition, s;(t) is the last event time of process i before time ¢, i.e.,

si(t) == max{ti, : tin < t}, (5.3)
and s;(s;(t)) is the last event of process j preceding the event s;(t), i.e.,

55 (si(t)) == max{t; : tjn < s;(t) < t}. (5.4)

An illustration of the process is shown in Figure 5.1. The conditional intensity function
of the i-th process is then

o j
Xi(t[He) uz+2ﬁ” +A]”(t)7 (5.5)

where p; > 0 is its background rate, and the influence of process j on process i at time ¢
is captured by «; ;/(B;; + A j(t)). The parameter o; ; > 0 is the weight of the influence
and f3; ; > 0 ensures the stability of the process, i.e., that the expected number of events
stays finite in a finite time horizon [34].

Unlike the Hawkes process, the Wold process has finite memory because of its Markov
property. In addition, because A; ;(¢) changes only when there is an event in dimension 7,
a given process ¢ in a Wold process is influenced by other processes (including itself) only
when an event occurs in process ¢, as illustrated in Figure 5.1.

In Hawkes processes, the structure of the Granger causality graph is encoded in the
support of the excitation matriz [43, 44]. Therefore, learning the support of the excitation
matrix is sufficient for recovering the network structure. Analogously, one can gather the
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influences among dimensions of a Wold process in a matrix called the influence matrix
®(t) = [ai;/(Bij+ Aij(£)]¢;—;. The main reason for this name is that the influence
matrix captures the Granger causality of the Wold process. Specifically, the support of

®(t) is the adjacency matrix of the corresponding Granger causality graph.

In this work, we learn the set of parameters

po={pi i€ [d]},
o= {o;; 1,7 €[d]},
and B :={F;:1,7€[d}.

It is worth emphasizing that the algorithm proposed in [49] assumes that Zfl:l ;=1
and ;; = B; for all i € [d]. Herein, we relax all these restrictive assumptions.

5.4 Proposed Learning Approach

5.4.1 Maximum Likelihood Estimation

Suppose that we observe a sequence of discrete events T = Ule T; over an observation
period [0, 7] generated by a Wold process. The generic approach to infer the parameters
of the model is to use regularized maximum-likelihood estimation. The design of regu-
larization depends on the problem at hand, as well as the necessary conditions we are
imposing, e.g., positivity or sparsity of the parameters. The log-likelihood function of a
multivariate point process can be written as

d d .7
logp(Tl,a, B) =3 Y log AiltinlHi) = > /0 (M, ). (5.6)
i=1

i=1t; ,€T;

The specific form of Wold process defined in (5.5), makes the log-likelihood function non-
convex with respect to 8. Moreover, maximum-likelihood estimation of point processes
typically scales poorly to high dimensional settings. Therefore, we use a variational
inference approach to circumvent both issues of non-convexity and scalability.

5.4.2 Variational Inference

Variational inference (VI) is a method for approximating the posterior distribution over
the model parameters given the observations. In order to represent the posterior in a
tractable form, it is common to define an auxiliary variable that relates the parameters
and the observations [49, 77, 113]. Observing that the conditional intensity in (5.5) is a
summation of d + 1 terms, we can use the superposition theorem of point processes to
define the parent of each event [34, 76]. More precisely, we define an auxiliary variable
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zi n for each event t; , to be a one-hot vector that indicates the cause of that event. This

cause is either the background rate p; or one of the processes in {1,...,d}. Specifically,
) 1) (d)
Zin = |ZinsZins " s Rin |
where zi(’o) is 1 if and only if ¢;,, was caused by the background rate p; or z( ) s 1 if and

only if ¢; , was caused by process j. Because an event has exactly one cause (01" parent),
()

in = 1 for all < and n.

Zin is a one-hot vector, which means that Z?:o z

Our approach is conceptually similar to the VI algorithm proposed in [77] for learning
Hawkes processes. However, because Hawkes processes suffer from long memory, each
preceding event is a potential parent, so the number of auxiliary variables increases
exponentially with the number of events. To overcome this issue, Linderman and Adams
[77] approximate the Hawkes process by discretizing time, which has the drawback of
introducing an approximation error. In contrast, as a result of the Markovian nature of
the Wold process, only the preceding events of each dimension are the potential parents.
Thus, the number of potential parents of an event remains constant.

Having defined the auxiliary variable z, we approximate the posterior distribution
p(p, z,a, B|T) with a variational distribution ¢ (u, z, @, 3) that minimizes the KL-
divergence between p and ¢. In particular, VI solves for the optimal variational distribution
that minimizes the KL-divergence, or equivalently it maximizes the evidence lower bound
(ELBO), given by

ELBO(‘]) = Eq [logp(lia zZ, /BvT)] - Eq [lqu (/L,Z, a’ﬂ)] . (57)

We consider a mean-field approximation for the variational distribution. In such an
approximation, the variational parameters are assumed to be independent. Therefore,

d Tl
q(p,z,a,B) = H q(pi) x H Hq Zzn ) X HHq az,] /Bz,]) (5'8)
i=1n=1 i=1j=1

Using this approximation and coordinate ascent for maximizing (5.7), we obtain the
variational distributions {q(u:),q(2in),q(aij),q(Bij)} by selecting appropriate prior
distributions over the parameters. Coordinate ascent is a commonly used optimization
method in VI. It iteratively updates each factor of the mean-field variational density while
holding the others unchanged [123]. Next, we give the variational updates. Derivation of
these updates can be found in Appendix A.4.1.
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Variational update of the auxiliary parent variable z;,. The definition of the

auxiliary variable z;, implies that Z;l:o 29 — 1. As shown in Appendix A.4.1, this

wno

results in
q(zin) = Categorical (d +1; pz(»?rz, ...,p%) , (5.9)
where the probabilities

pron ocexp (Eqqup [log ] (5.10)
and  p?)) ocexp (Eya, ) [l0g(ci )] — Eys, ) llog (Bij + Aii(tin)]) Vi € [d]
(5.11)

are normalized such that Z?:o pZ(JT)L =1.

Variational update of «;;. Selecting a Gamma distribution with shape a;; and
rate b; ; for prior of o ; results in a Gamma mean-field approximation of the posterior,

given by
q(aij) = Gamma (A; ;3 B; j) , (5.12)

where
| 7:] )
._ J
n=1 ’
|73

tin — tin1
Biy = b+ Eys [M]
e ; W) | By + Diy(tin)

Variational update of y;. Similar to a, we use a Gamma distribution with shape ¢;
and rate d; as the prior of u; resulting in the posterior, given by

q(pi) = Gamma (Cj; D;) , (5.13)
where
|7l ©
Ci = + ;Eq(zfgi)) [Zi,n] 5
|7il

D; =d; + Z tin — tin—1-
n=1
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Variational update of 3; ;. For this parameter, we select the prior distribution to be
Inverse-Gamma with shape ¢; ; and scale v; ;. This choice of prior results in a variational
distribution of j3; ; proportional to

oo T

~ii—lo Ty ~E[=) Elai j](tin — tin-1)
(ﬁi,j) Pii—leT Fij H (Bi,jJrAi,j(ti,n)) ]E[ , ]exp < Bi,;+Ai,j(ti,n)1 >‘| (5.14)

n=1

This form of the density function is not straightforward to work with as we need
to compute Ellog(8;; + A;;(t))] and E[1/(8;; + A ;(t))]. However, the form of this
distribution suggests that it can be well-approximated by an inverse-Gamma distribution.
Hence, we approximate this distribution with an Inverse-Gamma and use the following
variational update

q(Bi,;) = Inverse-Gamma(®; ;; ¥; ;), (5.15)

where ®; ; and ¥; ; are selected so that its moments coincide with the moments of the
distribution in (5.14). This leads to the following form of the parameters
By WTyy — VTy 1,
Ty — Ty
(W — )Xy Ty

Vij =
LTy — Ty

In these equations, w > 1, w > v > 0 and x,, denotes the smallest positive real root of
equation g, (x) = 0, where
(j)]

T E [z

o) = Gij+1—w g(2{7)“in Wiy lg:' Eq(a; el (tin — tin—1)
o x S+ Atie) 2 o (z+Ai(tin)*

(5.16)

The following lemma guarantees the existence of such an inverse-Gamma distribution.

Lemma 5.1. If0< ¢;; +1—-w < ¢;j +1—v and w > 1, then ®; ; and V; ; exist and
are positive.

Proof. Let g,(x) denote the function in (5.16). We have lim, .o, gu.(z) = —oo and
limy 00 gu(x) = 04 for u = v, w. Thus, g,(z) has at least one positive real root. Without
loss of generality, let z, and z,, be the smallest positive real roots of g,(z) and g, (x),
respectively. Given the assumption in the lemma, it is clear that g,(x) > g (x) for > 0.
Hence, 0 = g,(2y) > gu(xy) and gy(zy) > gu(xy) = 0. Since z,, is the smallest positive
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root of gy (), limz 0, gu(x) = —00, and gy(z,) < 0, then x,, > x,. Now, using the facts
that w > v and w > 1, and the equations of ®; ; and ¥; ;, we conclude the proof. ]

In Section 5.5.3, we provide an example of realizations of the distribution in (5.14) to
illustrate the goodness of this approximation.

5.5 Experimental Results

We now provide a comparison of our VI approach with state-of-the-art approaches in two
sets of experiments. We first simulate synthetic realizations of Wold processes, where
the ground-truth parameters are known, to measure the performance and efficiency of
each approach to recover the influence matrix. Subsequently, we evaluate our approach
on two real-world datasets of multivariate asynchronous time series. For reproducibility,
we provide a detailed description of the setup of each experiment in Appendix C.4 and
make the code publicly available online at https://github.com/trouleau/var-wold.

5.5.1 Experiments on Synthetic Data

To simulate Wold processes, we generated Erdés—Rényi random graphs with d nodes.
We sampled background rates {y;} from Uniform[0,0.05], edge weights {a;;} from
Uniform[0.1,0.2] for all edges, and parameters {;;} from Uniform/[1, 2], all independently.
To evaluate the scalability of an approach with respect to the number of dimensions, we
varied the number of dimensions d between 5 and 50 nodes. The results are averaged
over 5 graphs with 4 realizations of the Wold process for each graph, with an average of
10000 training events per dimension. We compared the performance of our approach,
denoted as VI, with three other methods:

GB. The MCMC sampling-based approach Granger-Busca from [49] is the only other
approach designed for Wold processes. Note that GB does not estimate a posterior
for {f;,;}, but instead uses the data-driven heuristic ; ; = median({t; n+1 —
tinltin € Ti})/ exp(1), referred to as Busca, as advised by the authors.

BBVI. To compare with another method based on VI, we adapted the approach discussed
in Chapter 2, for learning Wold processes. The approach is based on black-box
VI and the variational EM algorithm.

MLE. For a simple baseline, we also compared with maximum-likelihood estimation

with a Tikhonov regularizer.

Note that the three Bayesian approaches VI, BBVI, and GB estimate a posterior over the
parameters rather than a point-estimate as done in MLE. Therefore, we use the mean of
the posteriors to evaluate the performance of the estimated influence weights {d; ;}.
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Figure 5.2 — Results on synthetic data for varying number of dimensions K. Panels
(a) (log-scale) relative error, (b) precision@10, (¢) PR-AUC and panel (d) (log-scale)
empirical runtime of each approach in minutes.

Similar to the previous chapters, we evaluate the performance of each approach in learning
the influence matrix of the processes. More precisely, we compared the estimated {&; ;}
with the ground-truth {a; ;} using three metrics common in the literature:

¢ Relative error. To evaluate the distance of the estimated weights to the ground-
truth ones, we computed the averaged relative error defined as [4;; — o7 ;|/af;
when o ; # 0, and &; j/(minay >0y, ,,) When o ; = 0 [130, 107].

e Precision@k. To assess the performance of the approaches at recovering the top
edges, we used precision@Fk, which is defined as the average fraction of correctly
identified edges in the top k largest estimated weights [49].

« PR-AUC. Considering that an edge exists in the influence matrix if the learned
value &; ; > 7, we evaluate the performance of the resulting binary edge classification
problem using the area under the precision-recall curve over all thresholds n > 0.

Our results are depicted in Figure 5.2. As shown in Figure 5.2a-5.2¢, both VI and BBVI
outperform GB and MLE on all metrics. Despite the non-convexity of the problem,
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both methods achieve an almost perfect precision@10 and PR-AUC for all numbers of
dimensions. On the other hand, MLE showed a large variance in the estimated parameters?.

The computational complexity per iteration is of order O(|T|d) for our VI algorithm
and O(|T|logd) for GB, where |T| is the total number of events and d is the number of
dimensions. However, note that each update of our VI approach is easily parallelizable
over each of the d? edges, while GB can only be parallelized over each of the d nodes.
We also observed that VI empirically requires fewer iterations to converge compared to
GB. To show this, we compared the runtime of each method in Figure 5.2d. Note that
all methods were implemented in Python, GB was compiled in Cython, and VI used
just-in-time compilation with the library Numba. To make runtime comparison fair, all
methods were run on a single core on the same machine. Although both VI and BBVI
perform well, the runtime of VI is about one order of magnitude faster than BBVI and is
similar to GB. More details are available in Appendix B.3.

5.5.2 Experiments on Real Datasets

We evaluated the approaches on two datasets from the Snap Network Repository®: (1)
the email-Eu-core dataset that contains emails sent between collaborators from a large
European research institution [49, 98], and (2) the Memetracker dataset containing online
blog posts [2, 49, 74]. We compare our VI approach on these datasets with GB, which
currently is the most scalable approach. In [49], the authors showed that Wold processes
are better suited than Hawkes processes for these two datasets.

Email-EU-core. The dataset consists of source nodes (senders) that send events to
destination nodes (receivers) at some time. Each event is represented as a triplet (source,
destination, timestamp). Following the same preprocessing as [49], we aggregated the
events by receiver and considered the top 100 receivers, i.e., those with the most events,
resulting in a total of 92924 events. We hypothesize that the ground-truth influence
matrix is determined by the number of emails sent by a sender to a receiver. More
precisely, the ground-truth was defined as a graph whose nodes are both senders and
receivers and whose directed edges captured the flow of communication from sender to
receiver, weighted by fraction of received emails. We used the first 75% of the dataset for
training and the remaining 25% for testing. We evaluated the results for two tasks: (1)
An edge-estimation task where we evaluated the performance of each approach to recover
the ground-truth influence matrix of the training set, and (2) an event-prediction task
where we measured the predictive log-likelihood of the two approaches on the held-out
test set. Because both approaches estimate the posterior distribution over the parameters

2To highlight that the discrepancy of performance does not come from the particular experimental
setup, we present additional results in Appendix B.3 for an alternative experimental setup matching the
structural assumption of GB, i.e., where Zl aj ;=1

3https://snap.stanford.edu/data/
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(in contrast with single point-estimators), we characterized the uncertainty using Monte
Carlo samples of the parameters from the learned posterior distributions, and we reported
the mean and standard deviations among these samples for all the reported metrics.

The results on the Email-EU-core dataset are shown in Table 5.1. VI outperfoms GB on
all metrics. The improvement can be explained by the fact that VI relaxes the restrictive
assumptions in GB, i.e., that ¢ | a; j = 1 and ;; = f; Vi € [d], which we discussed in
Section 5.3.

Table 5.1 — Results on the EU-email-core dataset.

‘ PR-AUC Precision@10  Precision@50 Precision@200 Pred. log-likelihood

VI | 0.33 (£0.00) 0.40 (+0.00) 0.40 (+0.00) 0.47 (£0.00) —5.64 (+1.16e—2)
GB | 0.32 (£0.00) 0.20 (+£0.00) 0.35 (£0.07)  0.43 (£0.03)  —11.56 (+1.78¢—2)

MemeTracker. The dataset consists of the times of publication of online blog posts
along with the hyperlinks within. The dataset was originally collected to analyze the
propagation of short phrases, called memes, and is often modeled as a multivariate point
process [2, 49, 106]. To evaluate the performance of their algorithms, [2] and [49] extracted
a ground-truth influence matrix based on hyperlink references among the websites and
reported the precision of their methods, which were low. This could be explained by the
presence of noise in the dataset?, as well as by non-stationarity, (i.e., varying dynamics
of the data over time), which were reported by Rodriguez et al. [106]. Therefore, for the
MemeTracker dataset, we focused on the predictive capability of our algorithm compared
to GB by evaluating the predictive log-likelihood on held-out data. More precisely, we
split the data into observation windows of about 12 days, trained on each window and
tested on the following one. The log-likelihood values were normalized by number of
events®.

Figure 5.3 depicts the results on the MemeTracker dataset. Again, to account for un-
certainty in the estimation, we also reported the mean and standard deviations of the
predictive log-likelihood among Monte Carlo samples of the parameters. We see that VI
outperforms GB for all observation windows. Moreover, the values are not stable over
time, confirming the findings of Rodriguez et al. [106] that the dynamics of the data are
indeed non-stationary.

4The assumption that a hyperlink (source) appearing in another blog (destination) implies a causal
influence might not be accurate. For example, a hyperlink can appear in comments of a blog, unrelated
from its main content.

5For reproducibility, we provide the detailed preprocessing steps in Appendix C.4.2.
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Figure 5.3 — Held-out predictive log-likelihood on the MemeTracker dataset.
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Figure 5.4 — Two examples of the distribution in (5.14) and their corresponding Inverse-
Gamma approximation in (5.15). The Inverse-Gamma are denoted by tilde and they are
obtained by selecting v = 0 and w € {1,1.7}.

5.5.3 Example of the ¢(f; ;) Approximation

Next, we evaluate the goodness of the approximation proposed in (5.15) for the update
of B; ;. To do so, we considered two realizations of the distribution in (5.14), given by

f1(B) o g-1-1. /8. (8 + 2'9),0.2 ' 67%.

(B + 1.7)708 . ¢F¥iT -
f2(B) o B3 eTVE (5 40.3)70%  ¢7i05.
(B L1)7H8 - T - (84270 e, (5.18)

and we computed their approximated Inverse-Gamma distribution using (5.15). We
display the resulting distributions in Figure 5.4. The approximated Inverse-Gamma
distributions are denoted by f and are obtained by selecting v = 0 and w € {1,1.7}.
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In order to measure the goodness of the approximation, we also present in Table 5.2
the KL-divergence between (5.17) and (5.18) and their approximated Inverse-Gamma
distributions for several choices of w.

Table 5.2 — KL-divergences between the distributions in (5.17) and (5.18) and their
approximations.

‘ J’F(l) ]’F(1.3) J’F(1.7) J’F(1.9) J?(2.5)

f1 1 0.0370 0.0272 0.0126 0.0070 -
f2 1 0.0296 0.0222 0.0151 0.0119 0.0062

5.6 Summary

We have addressed the problem of learning the Granger causality graph of multivariate
temporal point processes. This problem has been widely studied for the multivariate
Hawkes process, but the long memory of such processes makes Bayesian inference difficult.
Because of its Markovian intensity function, the Wold process does not suffer from the
same shortcomings and has therefore recently gained popularity in the literature. We
relaxed the limiting structural assumptions of the only available state-of-the-art method
and proposed an efficient Bayesian algorithm based on variational inference for the
multivariate Wold process with exponential transition probabilities. Our experiments
on both synthetic and real-world datasets show that our approach outperforms the
state-of-the art and is able to accurately and efficiently recover the influence matrix of
the process.
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Conclusion and Outlook

In this thesis, we have considered the challenges faced when modeling event data with
self-exciting temporal point processes. We have addressed, in particular, the statistical
and algorithmic aspects of uncovering the diffusion patterns of interdependent events
from observed data, with a focus on the widely used Hawkes process. We have explored
the impact of several types of noise present in event data, characterized the sensitivity
of common learning methods to these sources of noise, and have proposed solutions
to handle them. We have studied each setting through controlled experiments in both
synthetic and real-world datasets.

e In Chapter 2, we have explored how to learn the excitation matrix of a Hawkes
process when limited amounts of data are available for training. In this context,
overfitting becomes a major issue and regularization is of paramount importance.
We have exploited recent advances in variational inference and have proposed an
expectation-maximization algorithm that enables us to use advanced regularization
schemes and automatically learn an extended set of hyperparameters. This approach
is also able to learn a versatile class of posterior distribution over the parameters
of the Hawkes process.

e In Chapter 3, we have addressed the setting where the time of events cannot be
recorded accurately, thus leading to a synchronization noise between different types
of events. We have characterized the robustness of the maximum likelihood estimator
to synchronization noise and have demonstrated that even a small amount of noise
can lead to a significant bias in the estimated parameters. We have shown that
this noise makes the likelihood function non-smooth and introduces discontinuities
that makes the optimization task particularly challenging. We have proposed an
algorithm that overcomes these challenges and accurately recovers the parameters
of the Hawkes process for a wide range of noise values.

e In Chapter 4, we have considered a more general type of temporal noise, called
random translations, where the timestamps of events are subject to random and
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unknown shifts that are independently drawn from some unknown probability
distribution. We have taken a more theoretical approach and have proved that
the cumulants of the Hawkes process are invariant to random translations. We
have validated our findings empirically, by showing that cumulant-based estimation
methods can robustly learn the parameters of the process from randomly translated
events, whereas maximume-likelihood based methods are brittle.

¢ Finally, in Chapter 5, we have considered another type of temporal point process,
called the Wold process; it answers a computational limitation of the Bayesian
treatment of Hawkes processes and has been shown to be well-suited to model
real-world communication dynamics. We have relaxed the restrictive assumptions
made in the stats-of-the-art Wold process models and have proposed a scalable
Bayesian approach based on variational inference for inferring the parameters of
the process.

The approach we have taken in this thesis consists of establishing the shortcomings of
common learning algorithms for temporal point processes, in order to enable reliable
insights for policy makers. However, there remains important research questions that
have yet to be explored. We discuss promising research directions along which our work
could be extended, as well as the main challenges that need to be addressed.

Learning Hawkes Processes under Quantized Data. Whether it is due to privacy
concerns or limitations of the data-collection procedure, the time of events might be
quantized in discrete-time bins. With the growing popularity of point process models,
recent studies have applied such aggregated event data to temporal point processes. For
example, both Chen et al. [26] and Chiang et al. [28] developed temporal point process
models and used data released publicly by The New York Times on daily COVID-19
cases in the state of New Jersey. Similarly, Mohler et al. [89] and Bertozzi et al. [18] used
an extension of the Hawkes processes to compute the effective reproduction number of
early stages of the COVID-19 epidemic in China, based on the number of deaths per day.
However, temporal point process models are designed in continuous time and assume
that two events cannot occur simultaneously!. This raises the following questions: Can
temporal point processes accurately capture the relationships between event types when
only quantized events are available? And if so, what classes of algorithms are better
suited for quantized events? Even though this setting has not directly been studied for
Hawkes processes, discretization of time were introduced in a few studies, as a way to
develop a scalable inference algorithm [67, 68, 77].

"We discuss this assumption, known as the property of simple point processes, in Equation (1.5) of
Section 1.2.
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On Neural-Based Point Processes. Neural-based point processes enable to capture
more complex conditional intensity functions that the linear dependencies of Hawkes
processes. However, this complexity is usually achieved at the expense of interpretability
of the model. Although the influence structure of Hawkes (or Wold) processes can be
conveniently summarized into a Granger causality graph, this is not the case of most
neural-based models. At the time of writing, only the recent models from Xiao et al. [129]
and from Zhang et al. [140] can provide summary statistics for Granger causality that
is enabled by their use of an attention mechanism. Learning interpretable dynamics for
complex processes is certainly one of the most promising research directions for enabling
actionable insights to be understood and trusted by policy makers. Nevertheless, due
to their complexity, neural-based point processes are usually simply fit using maximum
likelihood estimation. We have seen in Chapters 3 and 4 that the likelihood function
of Hawkes processes is sensitive to noise in the observed timestamps. Because most
neural-based models are inspired by Hawkes processes and encode the history of the
process into a vector representation, it is therefore critical to evaluate the impact of noisy
observations on these kinds of models.

On the Need for Better Data Collection. Designing better point processes and
understanding the shortcomings of their inference algorithms addresses only the conse-
quences of a larger problem. Collecting better data tackles the problem at its source. As
such, developing digital technologies that enable easier, faster, and more reliable collec-
tion of event data is certainly of even greater importance than studying the algorithmic
aspects of noisy data.

In conclusion, the results we have presented in this thesis highlight the often neglected
challenges of modeling event data with point processes. Our hope is that this discussion
will spark the interest of researchers to address these issues in future studies. As several
research problems remain open, they offer an opportunity to further study the challenges
of modeling event data with self-exciting temporal point processes.
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i\ Technical Details

A.1 Technical Details of Chapter 2

A.1.1 Simple Optimization over Hyperparameters in MAP Estimation

In this section, we show that we cannot simply find « by optimizing the negative
log-likelihood in (2.3) or the MAP objective in (2.7) over a.

First note that, minimizing regularized negative log-likelihood in (2.3) over «, simply
sets a to infinity. Second, we show that maximizing the MAP objective in (2.7) over «
also fails because it is unbounded from above. We show this for the case of the Gaussian
prior defined by

Peal11s W) = e, (1Wpagy (W) = ———exp [ —LHIE) L (W
o e ow V2ray, 20y, V2mogy 207 )
(A1)

but the same result holds for other priors. The log of the Gaussian prior (A.1) is

log pa(p, W) = log pa, (1) + 10g pay,, (W)

2o wr 1 1
__W_‘H—logau—zlogaw-i-c, (A.2)

where c¢ is a constant independent of c. In the MAP objective (2.7), if we set p =1
and W = 0, i.e., all processes are simple Poisson process with rate 1 and no interaction
between them, then the conditional intensity A;(¢) = 1 for all ¢ € [d] and ¢ > 0. The
log-likelihood in (2.4) becomes log p(S|p, W) = —DT, which is bounded from below. Set
oy, = 1, then for oy — 0, we get log pa(p, W) — co. Hence, the MAP estimator for a
is unbounded from above and maximizing the MAP objective simultaneously over both
the hyperparameters o and the model parameters g and W would fail.
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A.2 Technical Details of Chapter 3

A.2.1 Derivation of the Gradient

We derive the gradient of the log-likelihood of the DESYNC-MHP model with respect
to the synchronization noise parameters z. It corresponds to the update rule of z in
Algorithm 3.1. First, the gradient of (3.3) with respect to the noise parameter in the
k-th dimension can be written as

- a d - T—Zi -
Vzklogp(8|z,9):§ 1SS 1ogAi(T—zi|%T,zi)—/ Ni(t|He)dt | |,
Pl \remim) fo=zi
where

d d ~
Ni(t/He) = pi + D> iyt —7) =i+ Z/o ¢ij(t — T)dN;(T).
=1

J=1 TGﬁ‘Z

Substituting the above intensity into the log-likelihood implies

o & d 5
a—ZkZ Zlog uj+Zijﬂ-¢(T—zj—s—l—zi)

=1 et =1 serii (A.3)
, , d T T —54+2; - _
(@ =t =3 [ [ wddtaNi(s) b
=170

where t(, :== tg — min; z;, 7" := T — max; z;, and

sy = (-8t
N 1+et

is the smooth approximation of the exponential kernel defined in Equation (3.5). Note
that in the above equation, we approximated the boundary of the integral by [t{,T") to
account for windowing effects.

First, we compute the derivative of gB(T — 2z — S + z;) with respect to z,
o - (6—5uk,i + e—(W—ﬂl)Uk,i)rye—“fuk,i
7(“’]?,1):_ U 0\ 2
0z, (14 e 7umi)
+

14 e Yk ’

(A.4)
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where uy; = 7 — 2z — s + 2. Further, 8%1(5(“’“) = —%q}(uk,i). The other important
term is
o T —s+zp _ ~
7 / S(O)dt = $(T' — s + 2). (A.5)
Oz ty

By taking the derivative of the log-function, Equation (A.3) can be written as follows

Z{ 5 dlzseﬁiwji WO(T — 2 — s+ 2)

j=1 67-/,] MJ E =1 ZSE'H”“ wy, z¢( —Z; =S + Z,L)

_z; /tg (vzk /0 o wj,in(t)dt> dﬁi(s)},

Substituting (A.4) and (A.5) into (A.6) implies the result.

The gradient of the log-likelihood with respect to wy,; for some k and lin {1,...,d} is

Zseﬁl AT — 21— 5+ 2) / / —s+zz - )dthl( ) (A7)
t!

k+zse7{b Wi AT — 25 — 5+ 2)

767;7% H

n (A.7), we have

T _ 1—e BT 1og2 —log(l + e~ (V=8
/ Stydr ~ L Toa 2 log( te ).
B v—B

when v > fand v/(y— ') =~ 1

A.3 Technical Details of Chapter 4

A.3.1 Proof of Theorem 4.1

We first start by showing that a random translation of an inhomogeneous Poisson process
is again a Poisson process [34, 39]. Subsequently, we will use this result to compute the
cumulants of a randomly-translated Hawkes process.

Lemma A.1. (Section 2.3 of Daley and Vere-Jones [34]) Let N(-) be an inhomoge-
neous Poisson process on R>q with intensity \(t). The resulting process after a random
translation with distribution function F(-) is yet another Poisson process with intensity

= /too At — z)F(dz). (A.8)
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Proof. We prove this lemma by showing that the number of events within an arbitrary
interval of the randomly-translated Poisson process is Poisson distributed with the
specified rate. Let Iy = [0, 6] be an interval in R, then

P(N(I@) — k)) _ (A(é!@))kel\(h),

where A(lp) is f09 A(x)dz. The probability that an arrival at time ¢ € Iy is translated to
an arbitrary interval I := [a, b] is

Pla<a+t<b)=Fb—t)—Fla—t)=FI-t)

The probability that only m of k arrivals within Iy are translated to I is equal to

m k—m
<></ F(I - 1)\ dt/A(Ig)> </09(1—F(I—t)))\(t)dt/A(Ig)) .

Therefore, the probability that m events are observed in I after translation is

k 0 m
Jim. g: (A(ﬁ))e"(“)(:;) (/0 F(I—t)/\(t)dt/A(Ig)>

k—m
) </9(1 — F(I - t))/\(t)dt/A(Ie)>
0

o—AIs) 6 m 0
JE;E:an_nﬂ!<£1w1ﬂMwﬁ> ~<A(1FU’t»Mﬂﬁ>

k—m

k>m
o—Ap) 1( g
ot F(I - tA(t)dt = [ a=Fu=t)awat
ym ([ kzk, | a-ra—me
e M N (M) -A(1)
= i m! (A(IG>) ¢ ’

where A(Iy) := fo F(I —t)A(t)dt. Letting 0 to go to infinity and setting I = {v,v + dv},
we obtain

P(AN (v) = 1) = A(v)dv = (/OOO Flo— u)/\(u)du) dv

_ (/OO Av— @F(d@) do,

where F'(dv) = f(v)dv. O

To establish the result in Theorem 4.1, it is also useful to prove the following lemma.
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TkNFk

Figure A.1 — The evolution of a part of a cluster after random translation. Nodes are
labeled by their types.

Lemma A.2. For every multi-index i = (i1, ...,1,) and every vector t = (t1,...,t,), we

have
K;(t)dt = P(E{ N C}),

where E% denotes the event that for every k there is a type iy events at time tj, and CE is
the event that there exists a cluster such that all the events in t belong to that cluster.

Proof. This can be seen from the fact that

E[dN;, (f1)...dN;,

(tn)] =P (Vk € {1,...,n}, there is a type i event at fk) = IP’(E%)

and

P(E}) = P(E:NCY) + P(ELNCY),

where C_'Z; denotes the complement of the event C’;. The rest follows similarly to the proof
of Equation (24) in Appendix A of [62]. O

Lemma A.3. Consider the setting in Theorem 4.1, and define

R; j(t)dt =P (typej event at 0 causes type i event at t), (A.9)

then éu(t) = {ano &)*”(t)L]

Proof. Suppose in a cluster C of the original Hawkes process, ¢.e., before translation,
dimension j at some time y triggers an arrival in dimension 7. Based on the definition of
the clusters, the arrival times in dimension ¢ are distributed as an inhomogeneous Poisson
process with rate ¢; j(t —y). This evolution of this cluster is illustrated in Figure A.1.

Suppose that nodes j and 7 are translated by 7; and 7;, respectively. Then fj =y+Tj
and t; = y + = + 7;, where z ~ Exponential(¢; ;(t — y)), and t; — {; =z + 7, — 7.
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The above observation and Lemma A.1 imply that

]P’(dN( i) = 1\7']
- /fz z

s)gij(s —y)ds = / fi(ti fj + 75 — 8)di(s)ds

where N; denotes the number of arrivals in i-th dimension of the translated process.
Therefore,

asivj(fi - f]) = (dN (tl — 1 / / fz i 7Ej + 75— S)(ﬁ@j(S)fj(Tj)deTj.

This equation may be interpreted as follows: the cluster of a Hawkes process after the
random translation forms a new cluster in which dimension j at some time t~j causes an
offspring of type i by generating a realization of an inhomogeneous Poisson process with
rate <z~$,;,j(t — fj). Moreover, an immigrant from dimension k appears in the translated
cluster with rate [ ppFi(dx) = pu.

Define P?,j(t) as the probability that an event of type j at 0, after n generations, causes
a type @ event at t in the translated cluster. Clearly, p?’j (t) = [I4(t)]; jdt. For n > 0, we
have

pi;(t) = dij(t)dt
d
pi;(t) = Z/ Orj ()i (t — s)dsdt = [B2(1)]; ;dt,
e=1"R

pi;(t) = [@" (1) jdt.

This implies

dt.

Z (’Iv)*n@)

n>0

= p(t) =

n>0

With Lemma A.3 at hand, we are ready to prove Equations (4.3)-(4.5) of Theorem 4.1.
First, for Equation (4.3), the definition of the cumulant leads to

Ki(f)di = K(dNy()) = E[dN; (D))
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The last term in the above expression is the probability that an immigrant, say from
dimension j, generates an event in dimension 7 at time #, which equals

d d
Z/ /,LjRi,j(LZ— CC)dl‘ == Z/ ,U,jRi,j({L‘)dI‘ == KZ
j=1"R j=1"R

Then, for Equation (4.4), we have
Ki’j(fl, to)dtydty = P (types i,7 events at times t1,fy within the same cluster).

The above event happens if and only if node 7 and j have a common ancestor in a cluster,
which happens with probability

d

Z / P (an immigrant generates an event in dimension k at time :1:)
R

k=1

x P (k generates events in dimensions ¢ and j at times #; and fg)dfldfgda:

d
= Z/RKk X (Ez,k(fl - .CL‘)Rjyk(EQ - x)dfldfg)dﬂj
k=1

Finally, for Equation (4.5), we use the above Lemmas A.2 and A.3, and the fact that 4, j
and k can all occur in one cluster if one of the followings cases happen:

{i,j} and {k},
{i,k} and {5},
{k,j} and {1},

® {i7j7 k}?

where types within one set have a common ancestor and separate sets have a common
ancestor. For example, in case of {3, j} and {k}, i and j share a common ancestor and the
common ancestor of {7, j} and {k} have their own common ancestor. Say the common
ancestor of 7 and j be from type m at some time y, and assume m and k have a different
common ancestor than {i,j}, say n at another time x. This case can be formally written
as follows

case({i, 7}, {k})

d
= Z / Kan,n(fg, — .I‘)dfg / Ri,m(fl — y)dflRLm(fQ — y)dfg\IJm’n(y — x)dydx
R R

m,n=1

d
= Z Kn/ / Rk,n(fg - x)Ri,m(fl - y)Rj,m(ll:Q - y)q/m7n(y — l‘)dyd.rdfldfgdfg
RJR

m=1,n=1
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In this expression, ¥,, , appears because nodes m and n cannot coincide, then there
must be at least one generation difference from n to m. The probability of this event is

> Phnly— 1) = [Z S (y — w)]

r>0 r>0

= [R(y —2) — I5(y - 2)],,.,

=V n(y — ).

Similarly, one can compute the probability of the other partitions and conclude the result.

A.3.2 Proof of Corollary 4.2

Recall from Theorem 4.1 that @j (t) = fix¢ij* ij (t). Since functions ¢; ;, fi, and f;
are bounded, their convolutions is also bounded. We have

57;,]» = /R/R/Rfi(t—ﬂﬂ_ $)¢i;(s) fj(x)dsdzdt = /RQSZ'J(S)dS.

The last equality is due to the fact that [ fi(t)dt = [p f;(t)dt = 1. By assumption, the
matrix £[®](0) has spectral radius less than one, and by the above equality so does the
matrix ®.

A.3.3 Proof of Corollary 4.3

The result is immediate from the definition of the covariance density matrix of a randomly-
translated Hawkes process,

< - - _ - E[dNy(t o
it t2) = Kij(ti, t2) — [dgl(l)]ﬁz}jé(tl —ta),

and substituting the second order cumulant density given in (4.4).

A.3.4 Estimators for the Integrated Cumulants

We used the same empirical estimates for the cumulants as in [2] as follows.

= 1 Ni(T)
Ki=5) 1= ,

- T
TEL;

= 1

Kij=m5 Y (Nj(r+H) = Nj(r — H) - 2HK;),
TEEi
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= 1 ~ ~
Ki,j,k :T Z (N](T+H) 7Nj(T*H) 72HKJ)(N]€(T+H) *Nk(TfH)72HKk)
T fil
K, , o
- Z Z max{(2H — |7’ — 7|),0} + 4H* K, K, K},

TGEj T’Ef',k

where t; denotes the set of all events up to time 7" in dimension i and H is a hyper-
parameter used to truncate the interval (—oo, 00) to [—H, H]|. See [2] for a proof of the
consistency of these estimators.

A.3.5 Discussion on the Covariance Density Matrix Equations

In this section we show that equations (4.12) and (4.14) do not admit unique solutions.
First we need the following Lemma.

Lemma A.4. For a stationary Hawkes process and a random translation of it, both
p(L[®](s)) and p(L[®](s)) are strictly less than one for all s € C.

Proof. From Gelfand’s Formula, we know that for any matrix B, p(B) = lim,, o, |[B"||"/",
where || - || is any matrix norm. We will apply this formula with B = L][®](s) and || - ||
chosen as the max norm || - ||;q42, but first observe

| L[] (5) |ma = max |[£[®]"(5)]

Z?]

?:7‘7‘

< max ‘ [E[q)]n(o)]i,j

2y

= ”<I)n”maw7 vn e N,s e C. (A.lO)

We used the triangle inequality and the fact that for a positive function f,

IL[f1(s)] < [L[F1(0)].
Now, applying Gelfand’s Formula, we obtain

p(LI®](s)) < lim [|@"[|12, = p(®) < 1.

n—00 maz

The last inequality is due to the stationarity assumption of the Hawkes process. Following
the same steps and the result of Corollary 4.2, one can show p(L[®](s)) < 1. O

Lemma A.5. Equations (4.12) and (4.14) do not admit unique solutions in terms of
®(t) and ®(t), respectively.

Proof. We only present the proof for equation (4.12). The argument for (4.14) is similar.
Let ®(t) denote a solution to (4.12) and R(t) := Id(t) + ¥(t), then

¥(t) = R+ ART(t) — Ad(2).
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Define Ro(t) == R(t)A/20A~1/2, where O is any orthogonal matrix, i.e., any matrix
such that 00T = 070 =1. It is easy to see that

() = R * AR (t) — Ad(1).
Lemma A.4 implies that £[R](s) is bounded and equals (I — £[®](s))~!, therefore

L[Ro](s) = ﬁ[R](s)Al/QOA—lﬂ
= (I- L[®](s)) 'AYV20A "1/

(
= (T-T4+A20TA12 - A1/20TA*1/2£[<1>](5))_1
(I - A(s))_l,
where

A(s) :=1— AY20TA7Y2 4+ AV2OTAY2L[®](s).
This means that ®0(t) = L71[A](¢) is also a solution of (4.12).

A.4 Technical Details of Chapter 5

A.4.1 Derivations of the Variational Inference Updates

In this section, we present the derivations of variational updates for the Wold process
parameters. From [20], we know that maximizing the ELBO with the mean-field assump-
tion implies that the variational update of a parameter x; from the parameter set x
given the observation set d has the following form

q(xj) = exp (E,Ij [log p(z, d)]) + const. (A.11)

In the above expression, p(x, d) denotes the joint distribution of the parameters and the
observations. The expectation is taken with respect to the variational density of all the
parameters except x;. Using this update rule, we can explicitly derive all the variational
updates of interest. For notational simplicity, we use the following notations throughout
the appendix.

o ={aiz}i,, a={al,
Bi={Bi;}_,, B={B}L,
z={zin:n e TN, w={m}l,.
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Variational update for the auxiliary parent variables z;,

Let —z;,, denote the set of all parameters except z;,. From (A.11), we obtain

log (¢ (zin)) = E_2, , [logp(u, 2, e, B|T)] + const.
=B, [log p (2in|pi, o, Bi, T)] + const.

The last equality holds because of the mean-field assumption. In order to obtain the
conditional distribution of the parent variable given the rest of the parameters, we use
the fact that the number of events in a given interval is distributed according to Poisson
distribution. Hence,

P (Zin |1, e, Bi, T) =Poisson (zz(?f pi(tin — ti,n—l))

d
- (7). % (tin — tin—1)
X Poisson | z;°/; 1 . ,
jl;Il < Y Big + Ai(tin) {Z}izo ZE,’izl}

(A.12)

where 1., denotes the indicator function. The product form in (A.12) results again the

mean-field assumption, and the indicator enforces that Z;l:o zl-(jg = 1. Substituting the
above conditional distribution into the variational update equation, we obtain

(0)
log (q (2in)) =Ey [log (i(tin — t))]
©)

d o '(t' — ¢t ) Zi,n
+E 8 IOg i,7\li,n i,n—1
o [0 11 ( Bij + Bijltin)

() —
Zj Zi,J'n_l

0
=20 R, [log (1i(tin — tin1))]

i i HON log @ j(tin — tin—1)
i e Bi Bij + Dij(tin)

+ log ]l{ } + const.

j=0
+log 1 , + const.
{Zj Zz(iz:l}
Therefore, ¢(z; ) is Categorical, i.e.,
) =C ical (d + 1;p%), .., p.%) A13
4(zin) = Categorical (d + 1;p.%), .., p\%). (A.13)
where pEJT)L is the probability that zz(jg is one and the others are zero. Therefore, {p%} is

a valid probability distribution, i.e., Z;l:o pgj )= 1.

n
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Variational update for o; ;

From (A.11), we have

log (¢ (i) =E_q,; [logp(p, 2, «, B|T)] + const.
=E_q,, [logp(z|p, o, B, T) + log p(c|T)] + const.
| 7i

= Z E_q, [logp (zi,n
n=1

Ti
R () i j(tin = tin-1) atij(tin — tin—1)
= Z E_o,,; |2 log —
o ’ Bij + Aij(tin) Bij + Aij(tin)
+ log p(cy ;) + const.
|7i| |7il

= Z E m {zfﬂ log( a” — Z E,g”

+ logp(am) + const.

Wis @iy Bi, 7')} + log p(c; ;) + const.

tzn 1 ]
/Blj +A ,](tzn)

If we select the prior distribution of «; ; to be Gamma with shape a; ; and rate b; ;, the
variational posterior remains Gamma, i.e.,

q(ci ;) = Gamma (4, j; B ;) , (A.14)

where the shape and rate parameters are respectively given by

17| ; 7] tin —tin1
= a;j + ZE @ {Zm} ; =bi;+ ZE»BH [m}

Variational update for p;

The update rule for y; is similar to the one of o ;.

log (q (1)) =E—p, [logp(p, 2, o, B|T)] + const.

=E_,, [logp(z|p, e, B,T) + log p(p|T)] + const.
|7:]

= Z E_p; [bgp (Zz',n iy @iy Bis T)] + log p(1;) + const.
n=1
|T:]

= 2 B [ 108 ({tin — tis)) = st =t

+ logp(,ui) + const.
T3] o |3l
— Z E_ o) [ z; n} log () — i Z(tm — tin—1) + log p(u;) + const.

n=1 “in n=1
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Selecting a Gamma prior with shape ¢; and rate d; implies the result.

Variational update for g, ;

Note that f; ; is defined for ¢, j in [d]. Similar to the update rule for «; j, we have

log (q (Bi;)) =E_p, ; llogp(p, 2, e, B|T)] + const.
=E_p, ; [logp(z|p, o, B, T) + log p(B|T)] + const.

|7:| L L
= Z E_ﬂz . ( ) 10g Qg (tz,n tz,nfl) . QO j (t%n tz,nfl)
+ log p(Bi,5) + const.

A 7

tin_tin 1
ZE[ )\ tog(Bij + A j(tin)) - Blois) 2 5 R o)

+ log p(pi,;) + const.

If we select an Inverse-Gamma prior for 3; ; with shape ¢; ; and scale v; j, ¢(8; ;) will be
proportional to

_ Vi i ) Elag il (tin — tin—
57 ] B+ b)) exp (— %f’?ﬁzﬁ.,(;’")“), (A.15)
1,7 ,7\,n

n=1

for 4, j € [d]. This distribution is not analytically tractable, but it can be approximated
well by an inverse-Gamma distribution. Therefore, we approximate the variational update
for f; ; as an Inverse-Gamma(®; j, ¥; ;). We choose its parameters ®; ; and ¥; ; such that
its resulting moments coincide with the moments of the distribution in (A.15). Finding
the moments of the distribution in (A.15) tends to be quite challenging. Instead, we use
the following observation to obtain our approximation.

Remark A.6. Let f(x;a,b) be the p.d.f. of the Inverse-Gamma distribution with shape
a and rate b. The Function z* f(x;a,b) has a global mazimum that occurs at b/(a+1—u)
foru e Ry.

We argue that if the u-th moment of an Inverse-Gamma variable, with shape ®; ; and
rate U, ;, coincides with the u-th moment of the distribution in (A.15), denoted by h(z),
then we should have

/ Yy @5, Wi )dae = / x"h(x)dzx.

Ry Ry

A sufficient condition for the above equality is that the points that maximize
" f(x; @i 5, V; ;) and z"h(z)
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should coincide. This happens if
—_—— = A.16
(biJ‘ +1—u T ( )

where x,, is the point that maximizes z"h(x). By equating the derivative of log(z"h(x))
to zero, it is easy to see that x, is the real root of the following equation

T; (4) T
Gij+1—u N 7 E [Zi,n] iy lZ Ela j](tin — tin-1)

= 0.
& n=1 x + Alv] (tl,n) $2 n=1 (:L‘ + AZ,J (tl,n))2

Since the above function has continuous derivatives, we can use, for example, Halley’s
method to find its root. Equation (A.16) alone cannot specify both ¥; ; and ®; ;. Thus,
by selecting two different u, say v = v and u = w, we obtain

Vig Vig
- 8 - w -
@i7j+1—v <I>z~7j—|—1—w
Solving for ¥; ; and ®; ;, we obtain
WLy — VL W — V) Ty T
B = e gy, (O
Ty — Ty Ty — Ty

Lemma 5.1 implies that such x, and z,, exist and the above shape and scale are positive
for appropriate choices of v, w, and ¢; ;.

A.4.2 Computing the required statistics

Note that the variational updates introduced in Section A.4.1 depend on each others
through some common statistics. For instance, the variational update for the auxiliary
variable z;, in (A.13) requires computing E,, ;[loga;;]. In this section, we provide
analytical expressions of such statistics.

Since ¢(zi,) is Categorical, for i € [d] and n € T;, we have

E ) [22)] = pt), for j € [d] U {0}, (A.17)

i,n
in

where p(j ) is the probability that zz(J,z =1 and zz(]:l) =0 for k # j.

7N

Given that a;; has a Gamma (A; j; B; ;) distribution, we have for i, j € [d],

(A.18)

Ea, ;[log(ai ;)] = T(Ai;) —log(Bi;), (A.19)
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where Y () denotes the digamma function. Similarly, we can obtain the required statistics
of -

Because we use an inverse-Gamma(®; j, V; ;) distribution for the variational update of

Bij»

1 1 - dy
Es |—m———— :/ S —‘1317]—1 _\II’L —,
- [Bm' + Aij (tm)} B, Y+ Dij(tin) P (Vi)
—®, dy
Eg,, | 108(Bis + Qi (tin)| = 108y + Aij(tin))y P lexp (= Wi y)
+

where Z denotes the normalization factor of the inverse-Gamma(®; j, ¥; ;). The above
expressions can be approximated as follows

1 1
E N ——— , (A.20)
Bij + Ai,j(tz’,n)] Tty + A j(tin)
W,
E [log (ﬁi,j + Ai,j(ti,n))] ~ log (‘I) : i 1 + Ai,j@i,n)) . (AQl)
Z7‘7

A.4.3 Computational Complexity

We report the computational complexity of GB to be O(|T|logd), while the authors
of the method originally report O(|7|(log|7T| + logd)) in [49]. The difference lies in
the computation of the inter-event times {A; ;(t;»)}, where the authors consider the
computation of each inter-event time as O(log|7|) at each iteration. However, it suffices
to precompute these values once and cache them. Therefore, this step is O(1), which
reduces the computational complexity of GB to O(|T|logd).
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Additional Experimental Results

B.1 Additional Experiments for Chapter 2

We carry out an additional set of experiments to evaluate the effect of zeroing-out small
weights using a threshold 7. To do so, we first introduce the two performance metrics.
The false positive rate (FPR) is the fraction of errors in learned edges

FPR = [{wj;|wi; > 0,w}; = 0}|/{w;j|wy; = 0},

where | - | denotes the cardinality of a set. Similarly, the false negative rate (FNR) to be
the fraction of errors in learned non-edges

FNR = ’{@U‘@U = 0,'11};]- > 0}’ ]{@”]w; > 0}‘

Figure B.1 shows the effect of number of samples on Fl-score for several choices of
threshold 1. We see that our proposed algorithm VI-EXP (resp. VI-SG) outperform its
MLE counterpart MLE-ADM4 (resp. MLE-SGLP) for all values of . With increasing n,
we see that the Fl-score of MLE-based approaches improve. This is due to the FPR
decreasing faster than the FNR increases due to the sparsity of the graph. However, note
that since we do not know the expected value of true edges w;; beforehand, it is not clear
a-priori what value we should set for the threshold 7. Ideally, we choose the threshold 7 to
be as small as possible, which is the regime in which our variational inference algorithm
outperforms MLE-based methods the most.

107



Appendix B. Additional Experimental Results

1.0
<'0.9-
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L0.7— ¥
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30.54 3t MLE-SGLP
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0.34 —— VI-SG
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103 104 103 104 103 104
Number of training events Number of training events Number of training events

(a) (b) (c)

Figure B.1 — Performance measured by F1-Score with respect to the number of training
samples for several choices of threshold 7. The proposed variational inference approaches
are shown in solid lines. The non-parametric methods are highlighted with square markers.

B.2 Additional Experiments for Chapter 3

Similar to Chapter 2, we analyze the effect of zeroing-out small weights using a threshold
7. Figure B.2 shows the effect of the variance of the noise on F1-score for several choices
of threshold 7. We see that the relative performance of both methods remain consistent
across all the thresholds considered.

For the sake of completeness and for consistency with the other chapters, we also present
the experimental results with respect to the average precision-recall by sweeping over all
thresholds n > 0 in Figure B.3, and we report the precision@¥k for several values of k in
Figure B.4.

1.0 1.0 o= 1'0_'=“—{'“§P-
Y
S 0.8 B 0.8 f} 3 0.8
= = II =
Il Il Il I
=~ 0.6 - =~ 0.6 ‘H = 0.6 i\
£ £ £
® ® ® }
=} =} =}
S 0.4 - S 0.4 S 0.4
%@ — 1/8=1.0 %@ %@ N\
- =§- Classic MLE - -
_ 0.2 0.2
0-2 7 _5— DESYNC-MHP MLE
T I T T T T T
102 109 102 102 109 102 102 109 102
Noise variance o2 Noise variance o2 Noise variance o2

(@ (b) (©

Figure B.2 — Performance measured by F1-Score with respect to the noise scale for several
choices of threshold 7.
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1 - 1
T

1072 100 102
Noise variance o2

Figure B.3 — Performance measured by PR-AUC, sweeping over all thresholds n > 0 as
in Chapters 4 and 5.
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Figure B.4 — Performance measured by precision@k for k = 5,10, 20.

B.3 Additional Experiments for Chapter 5

Analysis of performance w.r.t. number of training events.

To evaluate the number of training samples required to achieve a good performance for
each approach, we ran the experiments with the same synthetic simulation setup, fixed
the number of dimensions d = 10, and varied the number of training events. We present
these results in Figure B.5. Although BBVI was originally designed to train on small
observations sequences, our VI approach does as well or outperforms BBVI.

Alternative simulation setup.

To further investigate the effect of the structural constraint required by GB, i.e.,
>ia;5 =1 for all i,j € [d], we ran additional experiments on synthetic data where
we normalized the ground-truth {c; ;} such that ), a; j = 1. The results are shown in
Figure B.6. We see that, even if GB performs better than in Figure 5.2, our VI approach
still outperforms GB on all metrics.
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Figure B.5 — Results on synthetic data for varying numbers of training events. Panel
(a) (log-scale) relative error, (b) precision@10, (¢) PR-AUC, and panel (d) (log-scale)
empirical runtime of each approach in minutes.
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Figure B.6 — Results on synthetic data for the alternative synthetic simulation setup where
we normalize the {«; ;} such that 3, o;; = 1. Panel (a) (log-scale) relative error, (b)
precision@10, (¢) PR-AUC, and panel (d) (log-scale) empirical runtime of each approach
in minutes.
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Figure B.7 — Analysis of the robustness of VI to the choice of prior. We report the relative
error for a wide range of variances for both {o;;}, {8 ;}, keeping their mean fixed to
the same value used in the experiments.
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Figure B.8 — Number of iterations performed in the experiments on synthetic data.

Robustness to the choice of prior.

To investigate the sensitivity of VI to choice of the prior, we ran additional experiments
on synthetic data. For d = 10 dimensions, we fixed the mean as in the experiments of
Section 5.5.1, and evaluated the performance for variance of the priors of {a; ;} and
{Bi ;} ranging between 1072 and 102. As seen in Figure B.7, for a large range of priors,
VI remains stable. For all values tested, both the PR-AUC and Precision@10 remained
at 1.0.

Analysis of the number of iterations.

In Figure 5.2, we discussed the runtime of each algorithm on synthetic data. To make the
comparison fair, we also report the number of iterations performed in Figure B.8. As stated
in Appendix C.4, we ran VI, BBVI and MLE until convergence or up to maximum 10 000
iterations. As the number of dimensions increases, the number of iterations needed for VI
to converge becomes sub-linear. BBVI almost always ran to the cap on the maximum
number of iterations because it uses Monte Carlos samples of the posterior at each
iteration and hence exhibit a larger variance between iterations. We ran GB for 3000

iterations, which was found to be enough to reach convergence!.

!Note that [49] used 300 iterations without further justification.
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In this section, we provide extensive details on the experimental setup used in all the
experiments of the thesis.

C.1 Experimental setup of Chapter 2

We first describe the implementation details of the algorithm described in Algorithm 2.1.
We then provide the details of the experimental setup for both the synthetic and real
data experiments. The open-source code used to generate the figures is released publicly
on GitHub at https://github.com/trouleau/var-hawkes.

C.1.1 Implementation details of Algorithm 2.1

We used L = 1 sampled Gaussian noise in line 3 of Algorithm 2.1. We set the momentum
term ¢ = 0.5 in (2.13). In our early experiments, we observed that the performance of
the algorithm is not sensitive to the momentum term ¢ for ¢ € (0,1). Therefore, we
decided to set it to 0.5 in all experiments. We used the Adam optimizer with learning rate
n = 0.02. We also multiply the learning rate by 1 — 10~% at each iteration. We initialized
v by sampling from the normal distribution N (0.1,0.01). We initialized o = 0.1 for all
hyperparameters. We observed that the performance of the algorithm is not sensitive to
the initialization. We initialized o by sampling from the normal distribution A/(0.2,0.01)
then clipping them to be in [0.01, 2]. This initialization ensures that the initial variance
of the algorithm is neither too small nor too big.

C.1.2 Synthetic Data

To create the synthetic data, we generated random Erdés—Rényi graphs with d = 50 nodes
and with edge probability p = log(d)/d, leading to graphs with 195 edges on average.
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Then, the sequences of observations were generated from a multivariate Hawkes process
with exponential excitation kernels defined in (2.1). The baseline {u;} were sampled
uniformly at random in [0,0.02], and the edge weights {w;;} were sampled uniformly
at random in [0.1,0.2]. To generate the results of Figure 2.1, we varied the length of
observations between N = 700 and N = 25000. The results were averaged over 30 graphs
with 10 simulations each.

We used the Python library tick to run the MLE-based baseline approaches [12]. To
tune the hyperparameters of the MLE-based approaches, we first manually searched
for an initial range of parameters where the algorithm performed well. Then, we fined-
tuned the hyperparameters using grid-search to find the ones giving the best results for
the Precision@20 and F1-score metrics. For MLE-SGLP, we used the grid range 1/« €
[0.001,0.005,0.01,0.05,0.1,0.5,1.0] and lasso_grouplasso_ratio € [0.25,0.5,0.75]. We
used the default values for the optimizer, which we checked and are sure of its conver-
gence. We finally chose 1/a = 0.1 and lasso_grouplasso_ratio = 0.75. For MLE-
ADM4, we also used the grid range 1/a € [0.001,0.005,0.01,0.05,0.1,0.5,1.0] and
lasso_ nuclear_norm € [0.25,0.5,0.75]. Making overall 21 different configurations. We
finally chose 1/a = 0.05 and lasso_nuclear_norm = 0.5 that gave the best results for
Precision@20 and F1-score.

C.1.3 Real Data

For our approach VI-EXP and its parametric counterpart VI-SG, the exponential decay
parameter must be tuned for each dataset. As expected, both algorithms performed best
with the same decay. For our approach VI-SG and its MLE counterpart MLE-SGLP, there
are two parameters to tune, M and cutoff time T,. The center of the m-th Gaussian
kernel, with m € [M], is defined as t,,, = T, - (m — 1)/M and its scale is defined as
b=T./(mr-M) in (2.2). After manually finding an initial range of M and T where
algorithms performed well, we then fine-tuned them using grid-search.

Epidemic dataset. This dataset is publicly available in the supplementary material
of [51]. We performed the following hyperparameter search. For our VI-SG algorithm,
we did a grid-search with M € {30, 35, 40, 45,50,55} and T, € {025 - M,0.5 - M,0.75 -
M?}. We did not see a notable difference between the performance of different grids,
as long as M and T are large enough. We chose M = 55 and T = 27.5. For the
baseline MLE-SGLP, we did a grid-search with M € {1,3,5,7,9,11,13,15,17,19,21}, T, €
{0.25M,0.5M ,1M,2M,5M,10M,20M,40M} and 1/a € {1,10,50,100}, that makes
overall 352 experiments. We chose M =19, T, = 9.5 and 1/a = 10. For our algorithm
VI-EXP, we tried decay € [0.1,0.5,1,2,5, 10, 20,40] and we chose decay = 0.1. For the
baseline MLE-ADM4, we did a grid-search with decay € {0.1,0.5, 1,2, 5,10, 20,40} and
1/a =4{0.01,0.1,1,2,5,10, 50, 100, 200, 400, 800}. We chose decay = 0.1 and 1/a = 50.
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Stock market dataset. This dataset was generously provided to us by the authors
of [44]. In the stock market dataset, our algorithm VI-SG also performed better with
a larger M. As for large M the experiments are slow we decided to set M = 50 and
did grid-search for T, with 7, € [0.15- M,0.25 - M, 0.5 - M]. For the baseline MLE-
SGLP, we did a grid-search with M € {1,3,5,7,9,11,13,15,17,19,21}, T. € {0.25 -
M,0.5- M,0.75 - M,1-M,2-M,5- M} and 1/a € {0.01,0.1,0.5,1,10,50,100}. The
best values found were M = 17, T, = 8.5 and C' = 0.1. For our algorithm VI-EXP,
we tried decay € {0.1,0.5,1,2,5,10,20,40} and we chose decay = 0,1. For the baseline
MLE-ADM4, we did a grid search with decay € {0.1,0.5,1,2,5,10,20,40} and 1/a =
{0.01,0.1,1, 2,5, 10, 50, 100, 200, 400, 800}. We chose decay = 0,1 and 1/a = 1.

Enron email dataset. The Enron email dataset is available at: https://www.cs.
cmu.edu/~enron/. Preprocessing details are made available online at https://github.
com/trouleau/var-hawkes. Because it is a larger dataset and experiments are more
computationally intensive, we chose smaller ranges for hyperparameter tuning. For our
algorithm VI-SG we did a grid-search with M = 10 and 7T, € [5,7.5,10,15]. The best
value is T, = 5. For the baseline MLE-SGLP, we did a grid-search with M € {1,2,3,4,5},
T. € {0.1,0.25,0.5,0.75,1,1.25} and 1/« € {10, 20, 50,100, 500}. The best value is M = 1,
T. = 2.5 and 1/a = 50. For our algorithm VI-EXP, we tried decay € {5,10,20,40}
and we chose decay = 20. For the baseline MLE-ADM4, we did a grid-search with
decay € {0.1,0.5,1,2,5,10,20,40} and 1/a = {0.01,0.1,1, 2, 5,10, 50, 100, 200, 400, 800}.
We chose decay = 20 and 1/a = 0.1.

C.2 Experimental setup of Chapter 3

In this section, we provide details of the experimental setup used to produce the figures
reported in Chapter 3. The open-source code used to generate the figures are released
publicly on GitHub at https://github.com/trouleau/desync-mhp.

C.2.1 Synthetic Data

We set the exponential decay to 5 = 1.0. For smoothing, we ran experiments for a wide
range of hyperparameters 3’ and ~ in [10Y,10%] such that 8’ < v. We found that the
performance of the algorithm is not sensitive to the choice of hyperparameters as long as
B < B’ < v to satisfy the assumptions of the approximation in (3.5). In all experiments,
we used 3 = 50 and v = 500. We used the same L1 penalty with the same weight
1/ag = 5000 for both methods. For DESYNC-MHP, we also use a L2 penalty for the
noise parameters with weight 1/a, = 2000.
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For each experiment, we chose small positive background intensities p; = 0.05Vi € [d]
and generated a random excitation matrices with entries {w; ;} € {0,1} by sampling
edges independently with probability 2/d. The average in-degree and out-degree of each
node was hence close to two. We then rescaled the entries to obtain a spectral radius of
0.95 to ensure that the simulated processes are stable. Experiments were not found to
be sensitive to this choice of value. We generated C = 5 realizations of 50,000 samples
from the Hawkes process using Ogata’s thinning algorithm with the Python library tick
from Bacry et al. [12]. We repeated each experiment 10 times over 10 different matrices
for each set of parameters.

C.2.2 Real Data

For computational reasons, hyperparameter search was performed on the classic ML
estimator. Both methods assume an exponential excitation function with a fixed ex-
ponential decay that needs to be tuned. We tuned the exponential decay [ using
grid-search to maximize the log-likelihood of the classic ML estimator. In all experi-
ments, we used 3 = 0.0047. We used the same L1 penalty with the same weight 1/ayg
for both methods. Similar to the exponential decay, we tuned the penalty weight us-
ing grid-search with 1/ag € {0.1,0.5,...,10%,5 x 10°} and set it to 1/ag = 5000. For
DESYNC-MHP, we also use a L2 penalty for the noise parameters. We did a grid-search
with 1/a, € {1000, 2000,...,5000} and chose 1/, = 2000. Similar to the synthetic
experiments, the performance of the algorithm was not found to be sensitive to the choice
of the hyperparameters 3’ and + for the smooth approximation of the excitation function.
We used 3 = 0.16 and v = 104’ = 1.6 using grid-search on /'

C.3 Experimental setup of Chapter 4

In this section, we provide details of the experimental setup used to produce the figures
reported in Chapter 4. The open-source code used to generate the figures is released
publicly on GitHub.

C.3.1 Synthetic data

The experimental setup for the experiments on synthetic data is as follows. We simulated
20 datasets, each comprised of 5 realizations of 10° events. We then randomly translated
each dataset with distributions F; ~ A(0,02), 1 <14 < d, for 20 noise powers o ranging
from 0.1 to 25, sampled in log-space.

The hyperparameters used to produce the figures in Section 4.7 can be found in notebook
and scripts. Details are as follows.
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Figure C.1 — Tuning of the bandwidth H of the cumulants estimator used in the
experiments of NPHC. We observe that the for noise power in range 02 < 1/3 = 1, the
best bandwidth H remains stable. For 02 < 1/3 = 1 the best bandwidth H was increases
linearly with o2.

e« ADMA4. The exponential decay was set to its ground-truth value, § = 1.

e Desync-MLE. Similar to ADM4, the exponential decay was set to its ground-truth
value, 8 = 1.

e« NPHC. The bandwidth H of the estimator of the cumulants was set using binary
search to minimize the Lo o distance to the ground-truth cumulants. The resulting
bandwidth used to run the algorithm are discussed in Figure C.1. In short, we
observed that the for noise powers 02 < 1/8 = 1, the best bandwidth H remained
stable. For 02 < 1/8 = 1 the best bandwidth H increased linearly with o2.

e WH. The maximum support of the excitation matrix was set to 10.0 to roughly
match the same scale as the ground-truth excitation functions. The number of
quadrature points was set to 20. This value, which has a quadratic cost in the
computational complexity of the algorithm, was found to be large enough to provide
prefect PR-AUC and Precision@k on noiseless observations.

C.3.2 Real data

The dataset used in the experiments is that of Bund Futures traded at Eurex over 20
days in April 2014 . This dataset has already been modeled using Hawkes processes
in [9]. Each day is considered an independent realization of the process. The timestamps
are recorded at the microsecond timestamp resolution. As explained on the download
website, the data was preprocessed as follows. Market opens at 8AM which corresponds
to a timestamp of 28 800. This timestamp has been subtracted to all timestamps to

!Dataset available at: https://github.com/X-Datalnitiative/tick-datasets/.
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have a realization that starts at time 0. As markets closes at 10PM, the end time of the
realizations is 50 400. No additional preprocessing was performed on the dataset.

The first 5 days were used to tune the hyperparameters of the learning algorithms, and
the remaining 15 days were used to measure the performance reported in Figure 4.6.

The hyperparameters used to produce the figures in Section 4.7 can be found in notebook
and scripts. Details are as follows.

o« ADMA4. To set the exponential decay 8 of the excitation functions, we ran a grid
search for values between 10 and 10%, and we found that § = 1291.0 maximized
the log-likelihood. We used grid search between 1 and 10° to tune the regularization
weight and found that 10® maximized the log-likelihood.

« NPHC. Following the observation made in the experiments on synthetic data, the
bandwidth H of the estimator of the cumulants, was set to H = 1/ + o2. This
value provided stable results.

o WH. The hyperparameters of this algorithm were set as in [9].

We were unable to reproduce the results of [9] on the noiseless dataset (i.e., without
added random translation) using Desync-MLE. Since the dataset consists of timestamps in
a high-frequency trading application, it is not expected to hold any synchronization noise.
However, as shown in Figure C.2, Desync-MLE converged to a non-zero synchronization
noise with a diagonal excitation matrix.

8 N = ol

1 2 3 4 12 3 4 12 3 4 1 2 3 4
(a) ADM4 (b) NPHC (c) WH (d) Desync-MLE

N

w

Figure C.2 — Excitation matrices ® learned by the different learning methods on the
noiseless dataset of Bund Futures traded at Eurex.

C.4 Experimental setup of Chapter 5

In this section, we provide details of the experimental setup used to produce the figures
reported in Chapter 3. The open-source code used to generate the figures is released
publicly on GitHub at https://github.com/trouleau/var-wold.
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C.4.1 Simulation setup for synthetic data

We generated Erdés—Rényi random graphs with d nodes. We sampled background rates
{ui} from Uniform[0, 0.05], edge weights {«; ;} from Uniform[0.1,0.2] for all edges, and
parameters {f;;} from Uniform(1, 2], all independently. Each algorithm was then run as
follows.

VI. We ran the algorithm for a maximum of 10000 iterations or until convergence.
We defined convergence when the maximum absolute difference of any parameter
between two consecutive iterations is less than 1074 We used priors p(u;) =
Gamma(0.1,1), p(c;,;) = Gamma(0.1,1) and p(B; ;) = InverseGamma(100, 100).

GB. We used the implementation released in [49]. We used 3000 iterations in all
experiments. As advised by the authors, we used the same Dirichlet prior with
uniform parameters 1/d, and set the parameters {f; ;} to the data-driven heuristic
ﬁm’ = median({tm — ti,n—l’ti,n S ﬁ})/exp(l).

BBVI. We adapted the method introduced in Chapter 2 with the intensity of a Wold
process. Analogous to VI, we ran the method for a maximum of 10000 iterations
or until convergence. As in Chapter 2, we used Log-Normal posterior distributions,
Laplacian priors {a;;}, and Gaussian priors for {y;} and {#;;} with the same
parameters.

MLE. Analogous to VI, we ran the method for a maximum of 10000 iterations or until
convergence.

All experiments were run on a single-core, on the same machine with a processor Intel(R)
Xeon(R) CPU E5-2680 v3 @ 2.50GHz and 256 GB of RAM.

C.4.2 Experiments on Real Datasets
Email-EU-core dataset

As explained in Section 5.5, the Email-EU-core dataset is composed of emails between
researchers from a European research institution. Each email in the dataset is a tuple
(sender, receiver, timestamp). To build each process from the dataset, we used the same
preprocessing steps as Figueiredo et al. [49]. More precisely, we excluded users with no
sent email and defined the set of processes as the top-100 users with the most received
emails. We then aggregated the timestamps by receivers. The entries in the ground-truth
influence matrix are defined by counting the number of emails sent from each sender to
each receiver (a weight zero indicates the absence of an edge). The preprocessing code is
made available publicly.
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For the hyperparameters, we ran a sweep over the Dirichlet prior of GB over [0.01, 0.1, 1.0,
10.0,100.0] and reported the best results obtained with 10.0. For VI, we ran a sweep
over the of parameters of the priors over [0.01,0.1,1.0,10.0,100.0] and used p(u;) =
Gamma(1.0, 1.0), p(c ;) = Gamma(1.0,1.0) and p(5; ;) = Inverse—Gamma(100.0, 100.0).

MemeTracker dataset.

The MemeTracker dataset is composed of online blog posts. We used the top-100 blogs
with the highest number of published posts and built the processes by aggregating the
sequences of published timestamps, resulting in 15168 774 events in 100 dimensions. The
preprocessing code is available publicly?. We ran a sweep over the Dirichlet prior of GB over
[0.01,0.1,1.0,10.0], and did not observe a significant difference between the different values
and reported the results obtained for 0.01. For VI, we used priors p(y;) = Gamma(0.1, 1),
p(a; ;) = Gamma(0.1,1) and p(B; ;) = Inverse—Gamma(10%, 10%).

2The code is made publicly available at https://github.com/achab/nphc/tree/master/nphc/
datasets/memetracker by the authors of [2].
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