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Abstract—Objective: Today, stress monitoring on wearable
devices is challenged by the tension between high-detection
accuracy and battery lifetime driven by multimodal data ac-
quisition and processing. Limited research has addressed the
classification cost on multimodal wearable sensors, particularly
when the features are cost-dependent. Thus, we design a Cost-
Aware Feature Selection (CAFS) methodology that trades-off
between prediction-power and energy-cost for multimodal stress
monitoring. Methods: CAFS selects the most important features
under different energy-constraints, which allows us to obtain
energy-scalable stress monitoring models. We further propose
a self-aware stress monitoring method that intelligently switches
among the energy-scalable models, reducing energy consumption.
Results: Using CAFS methodology on experimental data and
simulation, we reduce the energy-cost of the stress model designed
without energy constraints up to 94.37%. We obtain 90.98%
and 95.74% as the best accuracy and confidence values, respec-
tively, on unseen data, outperforming state-of-the-art studies.
Analyzing our interpretable and energy-scalable models, we
showed that simple models using only heart rate (HR) or skin
conductance level (SCL), confidently predict acute stress for
HR > 93.30BPM and non-stress for SCL < 6.42µS, but,
outside these values, a multimodal model using respiration and
pulse wave’s features is needed for confident classification. Our
self-aware acute stress monitoring proposal saves 10x energy
and provides 88.72% of accuracy on unseen data. Conclusion:
We propose a comprehensive solution for the cost-aware acute
stress monitoring design addressing the problem of selecting an
optimized feature subset considering their cost-dependency and
cost-constraints. Significant: Our design framework enables long-
term and confident acute stress monitoring on wearable devices.

Index Terms—Stress monitoring, cost-aware machine learning,
cost-constraints feature selection, low-power wearable devices.

I. INTRODUCTION

IN today’s society, we are constantly experiencing acute
stress from our way of living and working. The "acute

stress" term is often referred to the non-specific response of
the organism to adapt to external demands for change that
challenges its capabilities and resources [1]. On the one hand,
being exposed to high levels of acute stress decreases humans’
performance and the impaired cognitive workload can even
lead to accidents in critical tasks [2]. On the other hand, in
the long term, frequently high levels of stress become ’toxic’
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for both physical and mental health [2], [3]. That is why every
person could benefit from continuous monitoring of their stress
reactivity in daily life [3]. It could allow the identification of
acute stress episodes, then triggering preventive or corrective
action. In the case of safety-critical tasks (e.g., pilots, fire-
fighters, and rescuers), identifying high levels of acute stress
can prevent catastrophic accidents. However, a reliable stress
detection still represents a common major challenge since it
is not directly observable [4] nor a monolithic concept [3].

The analysis of stress reactivity by its physiological re-
sponse (i.e., sympathetic arousal) that considers multiple sig-
nals, i.e., multimodal, can be used for reliable, non-intrusive,
and continuous acute stress monitoring [4]–[11]. Wearable
and low-power edge-computing technologies, together with
machine learning techniques, facilitate real-time, multimodal,
and continuous stress reactivity monitoring on wearable de-
vices. However, several challenges must be overcome to fully
implement a stress detection method on wearable devices,
including safety, security and privacy, memory usage, battery
lifetime, reliability, etc. Today, battery lifetime is a major
constraining factor for wearable technology due to the restric-
tive battery factors of size and shape that ensure portability
and wearability. Besides, it is especially challenging on a
multimodal wearable platform since a significant part of the
energy is spent by the power-hungry bio-sensors. It is within
this context that, in this study, we focus on designing and
developing a low-power stress monitoring framework suitable
for accurate long-term monitoring of stress reactivity.

State-of-the-art studies on multimodal monitoring systems
do not address the battery lifetime issue directly on the ma-
chine learning detection models design [9]–[11]. To the date,
such studies do not differentiate between the physiological
features that feed the models in terms of energy consumption.
Their multimodal machine learning models are trained to
accurately predict an output and traditional feature selection
algorithms are used to select the most informative features
without considering the cost of individual features. Thus,
they assign equal weights to features of different costs and
priorities. However, in reality, sensors and biosignal processing
algorithms bear their costs and increase the complexity and
energy consumption of the edge device.

On multimodal monitoring systems, the energy cost of
computing a single physiological feature is composed of three
actions: i) signal acquisition by the sensor, ii) bio-parameter
calculation that includes signal filtering and delineation, and
iii) feature extraction algorithm. Note that from one signal,
different bio-parameters can be extracted and, subsequently,
different features. Thus, if two features from one specific
signal are selected, then the energy cost of the sensor needs to
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be counted only once, similarly if they come from the same
bio-parameter. The cost of each feature is not a fixed value
and depends on what other features have been selected. Thus,
we propose a Cost-Aware Feature Selection (CAFS) algorithm
that automatically considers the cost-dependencies variation in
this work. It selects a low-energy feature set that is sufficient
to provide an accurate and reliable acute stress prediction such
that a cost-constraint is satisfied.

Our CAFS methodology allows exploiting the trade-off
between energy-cost and prediction-power of individual fea-
tures. Changing the cost-constraint provides different sets of
selected features, hence different stress detection machine
learning models with different confidence levels. Thus, we
can have a complex model that makes confident predictions
under no/weak cost-constraint at the expense of high energy
consumption, and a simpler low-power model that makes less
accurate predictions under strong cost-constraint (e.g., very
limited battery lifetime). We further propose a self-aware stress
monitoring framework that, when needed, toggles between
different stress detection models to reduce energy consumption
without sacrificing the system quality. The methodology is
evaluated with experimental data and simulation.

Our main contributions are summarized as follows:
− We propose CAFS, a novel cost-aware feature selection

methodology applicable to any supervised classification prob-
lem using cost-dependent features, which aims to reduce any
form of classification cost like energy consumption, computa-
tion time, complexity, memory footprint, etc.
− We develop reliable and energy-scalable machine learn-

ing models for acute stress monitoring based on multimodal
physiological signals that are interpretable and generalizable
for our experimental condition, obtaining the best accuracy of
90.98% and prediction confidence of 95.74% on the unseen
dataset, which is higher than the latest state-of-the-art studies.
−We show how to minimize resource usage and complexity

of the used machine learning model applying our CAFS result-
ing in up to 94.37% energy saving with 6.76% and 34.44% loss
in accuracy and prediction confidence, respectively, compared
with a non-energy-constrained model.
− We introduce a self-aware machine learning framework

for dynamic energy management on wearable devices that
allows 89.25% of energy reduction with similar accuracy and
23.54% drop in the prediction confidence concerning the non-
energy-constrained model in our study case.

II. RELATED WORK

A. Multimodal Acute Stress Monitoring on Wearable Devices
Acute stress situations provoke a body physiological stress

response that triggers several reactions orchestrated by the
autonomic nervous system, including sweating skin, increased
heart rate, and increased respiratory frequency. Those reactions
can be measured on several physiological signals with wear-
able sensors, including Respiration (RSP), Electrocardiogram
(ECG), Photoplethysmogram (PPG), Electrodermal Activity
(EDA), and skin temperature (SKT) [8]. It has been shown
that a robust acute stress prediction needs fused information
from multiple modalities (signals) [3], [4], [7], [12], [13].

Multimodal acute stress monitoring based on physiological
signals has been previously studied by adopting different

machine learning algorithms such as Support Vector Ma-
chine (SVM), K-Nearest Neighbor (KNN), XGBoost (eXtreme
Gradient Boosting), and Naïve Bayes trained on different
combinations of biosignals [4]–[7]. Most of the reported works
assess their machine learning framework on training or cross-
validation datasets [5], [14], without proving their generaliza-
tion power [15]. In contrast, few other studies evaluate their
stress and cognitive workload detection on new unseen data
reporting an accuracy range of 60− 86% [9], [10], [16], [17].

However, multimodal machine-learning approaches are
complex and their deployment on wearable systems is limited
due to the constraints of memory, energy consumption, and
duty cycles [7]. Even though, for such multimodal applica-
tions, processing on the edge (i.e., edge-computing) when
comparing to cloud computing is still advantageous in terms
of latency, bandwidth cost, data safety and privacy, and battery
lifetime [6], [18], [19]. To overcome those constraints, efforts
have mainly focused on improvements for the hardware plat-
form (sensors and micro-controllers) [6] but little on designing
a cost-aware machine learning model. Previous studies have
mainly focused on using simpler models and reduced features
set where all the features’ costs are assumed to be equal
without considering their cost-dependencies [9]–[11].

Therefore, cost-aware machine learning design methods for
multimodal applications on the edge are needed to reduce cost
while maximizing the application classification performance.
Furthermore, such design should consider the cost of selected
features on the targeted hardware platform and count for their
energy-cost dependencies.

B. Cost-Aware Machine Learning Design Techniques for Mul-
timodal Applications on the Edge

The cost-aware design of machine learning models has been
extensively studied [20]–[23]. This optimization problem is
divided in techniques for reducing time and models’ cost
on training (i.e., cost-sensitive learning) and prediction (i.e.,
cost-constrained test). In the context of the internet of things
(IoT) and wearable devices that target edge-computing, most
proposals aim to reduce the classification cost by employing
feature selection techniques to reduce the features number
[16], [24], [25]. However, they select features based on their
computational complexity and chosen thresholds defined by
classification performance or specific application constraints.
Such approaches may result in a sub-optimal feature set of
lower cost and do not count for features’ cost-dependencies.
In other domains, several works discuss the trade-off between
features’ cost and classification accuracy by using a lost func-
tion that integrates features cost and classification error [24],
[26]–[28]. Nevertheless, methods employing a lost function
are not designed for multimodal classification but rather for
making a prediction based on data where the cost of the
selected features is calculated by adding an individual feature’s
cost, e.g. data of only one sensor. Similarly, other heuristic
methods that try to solve the optimization problem of accuracy
vs cost [23], [29] do not consider the cost-dependency of the
selected features.

On the other hand, [30] proposes a mixed-integer linear
programming model based on SVM to incorporate the variable
acquisition costs in the feature selection procedure. Recently,
a study in [31] extends the work in [30] by incorporating
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Figure 1: Multimodal acute stress monitoring model design (top) for energy-scalable modes starting from a more confident
mode but demanding more energy to a less confident mode but with lower energy cost. Self-aware acute stress monitoring
system (bottom) bringing energy savings while keeping high the prediction confidence.

a budget constraint to preserve classification accuracy with
the least expensive features. In [23] it is proposed a greedy
forward feature selection to also satisfy a budget constraint.
Although these previous proposals present valuable ideas for
a cost-aware feature selection of multimodal data, they do not
consider the cost-dependency variation of different features.
Still, there is a lack of machine learning techniques that
account for the energy consumption of wearable devices on
multimodal applications by integrating the cost of each feature
and sensor without decreasing the detection performance.

III. COST-AWARE MULTIMODAL ACUTE STRESS
MONITORING FOR WEARABLE DEVICES

The framework design of our proposed low-power, wearable
and multimodal stress monitoring methodology is shown in
Fig. 1. The biosignals used are ECG, RSP, PPG, and EDA.
Firstly, we present a method for the multimodal stress moni-
toring model design (shown in blue) that has three conceptual
steps namely, signal processing and feature extraction, feature
selection, and model training, which are detailed in Section
IV. First, signals are filtered, delineated and different param-
eters are obtained to extract several physiological features
that represent the physiological stress response of the human
body. Next, in the feature selection step, we explore the
contribution of a wide variety of physiological features to the
stress detection model. Finally, a machine learning algorithm
is trained and tuned to obtain the stress monitoring model.

In the feature selection step, features are selected by elim-
inating the irrelevant and redundant ones for training a good
predictor, firstly without cost-constraints (highlighted in grey)
and then, including energy-constraints in our design (high-
lighted in blue). The design with no constraints uses a common
feature selection algorithm to obtain the full and complex
stress classification mode. Whereas the cost-aware design
uses our novel CAFS methodology that allows the design
of monitoring modes with different complexity, depending
on the weak/strong cost-constraints. CAFS trades-off between
features’ cost and prediction-power by solving an integer linear
programming problem, see Section V-A.

Using CAFS, weak/no energy-constraints assumption al-
lows free selection of most important features (that can be
either energy-expensive or not) and yields a more confident
and accurate acute stress detection model. Whereas, stronger
constraints on the energy consumption restrict the selection

of features and, as a consequence, lead to more errors in the
model, see Section V-B. In the CAFS methodology, we start
with a no constraint features selection and then tighten the
constraints using an iterative algorithm in every step until we
obtain the least expensive set of features for stress detection.
Thus, we obtain different energy-scalable monitoring modes
from a more accurate mode but that demands more energy to
a budget mode that is less accurate but saves more energy.

Finally, we make use of the energy-scalable stress monitor-
ing modes and apply the self-awareness concept as in [32]–
[34] to improve both the energy efficiency and stress detection
confidence of the proposed system. The overall flow of our
self-aware stress detection is shown in red in Fig. 1. In the
real-time self-aware monitoring of acute stress, the system
triggers between a budget mode and a complex mode for
the next segmentation window (i+1) whenever a predefined
confident threshold is not reached. The selected mode for the
next window defines which signals and processing algorithms
are going to be activated. In fact, a more complex mode
is not used unless the previous prediction is not confident
enough using a simple budget mode. As a result, the system
is running a simpler but confident mode with less energy
consumption. A detailed description of the self-aware stress
detection mechanism and its design is provided in Section VI.

Our proposed framework is trained and validated on an
experimental physiological data of subjects who went under a
virtual reality acute stress experiment, see Section VII-A. The
machine learning stress detection models for every monitoring
mode, from 1 to n, and also in self-aware modes are evalu-
ated using an unseen test set from the experimental dataset.
Moreover, we interpret and describe the decisions taken by
our stress detection models to make predictions.

IV. DESIGN OF A NON-CONSTRAINED MULTIMODAL
ACUTE STRESS MONITORING MODEL

We first look at a general machine learning algorithm that
can reliably detect acute stress with no energy constraints. Its
designing steps are described hereafter.

A. Signal Processing and Feature Extraction
For each of the aforementioned physiological signals, we

extract several physiological parameters based on the latest
state-of-the-art results [8], [16], presented in Fig. 2. These pa-
rameters are segmented in 60-second-length sliding windows.
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Figure 2: Bio-parameters extracted from ECG and PPG signals

Then, for each window, an initial set of features is obtained
using time-domain and frequency-domain analysis as in [8]
and [16]. The initial considered parameters and features from
each biosignals are as follows:

1) ECG: RR intervals are extracted from the ECG signals.
From the RR interval, several features on time and frequency
domain are extracted based on the Heart Rate Variability
(HRV ) analysis [35]. Non-linear features are also extracted
from Poincaré plot indicating the vagal and sympathetic func-
tions from both RR interval series and its second-order differ-
ence (RR′). They are the following: the length of the trans-
verse axis (SD1); the length of the longitudinal axis (SD2);
the ratio SD2/SD1, called Cardiac Sympathetic Index (CSI);
and the Cardiac Vagal Index (CV I) as log10(SD2·SD1) [35].
Also, a modified CSI as RR′

SD2/RRSD1.
2) PPG: Several biomarkers are computed, and they are

shown in Fig. 2. They are pulse period (PP ), pulse amplitude
(PA), pulse wave rising time (PRT ). Slope of the Pulse
Wave (k): The slope transit time divided by the difference in
amplitude between 1/4 and 3/4 of the pulse wave. From these
biomarkers, same as the RR, several features are extracted.

3) RSP: We compute the respiration rate (FR), respi-
ration period (RSPPeriod), inspiration and expiration time
(INStime, EXPtime), ratio of inhalation to exhalation dura-
tion (IE Ratio). Then, in the frequency domain, we compute
the segmented signal power in the classical ECG high fre-
quency (HFecg) band (0.15 − 0.40 Hz) and in five different
bands with equal bandwidth within the HFecg band range
(HFecg − pFmn). These power values are normalized by the
total power in the 0 − 1Hz band. Furthermore, we extract
two features from the HF band (0.15 − 0.5 Hz). First, the
mean frequency of a Gaussian distribution used to fit the
power spectral density (PSD) estimated in the HF band
(HFgauss). This feature describes the PSD shifting in fre-
quency mainly caused by respiratory activity [36]. The second
one is the ponderate frequecy mean of the HF band (HFpond).
Moreover, for each segmentation window, we compute as
proposed in [37] the estimated respiratory frequency eRF
being the largest peak power (Pk) of the Lomb-Scargle PSD

of respiration. The power around the peak is computed in a
0.04 Hz bandwidth divided by the total power (powertot). This
normalized respiratory peak power (powernorm) represents
the RF variability within the interval.

4) EDA: The EDA signal is divided into two main compo-
nents, namely, the skin conductance level (SCL) and the skin
conductance response (SCR).

B. Feature Selection
The feature selection techniques aim to reduce the possible

overfitting and the model’s complexity. Hence, memory us-
age and power consumption are both minimized [33], [38].
In this regard, we use Recursive Feature Elimination with
Cross-Validation (RFECV) proposed in [39], which recursively
eliminates the least important features in a loop without losing
classification performance. In RFECV the features are ranked
by a permutation importance measure, we propose to use
instead SHAP features importance [40]. The SHAP importance
value is able to enforce consistency and accuracy more than
the permutation approach [41]. The most informative features
are selected when the RFECV-SHAP curve arrives at the best
accuracy and enters in a relatively steady state.

C. Model Training, and Generalization
Features extracted from the physiological signals have va-

riety of interactions, which requires a strong leaner model
that captures such interactions. Hence, for both classification
and feature selection, we consider XGBoost algorithm since it
outperforms alternative ones used for similar problems [10],
[42]. XGBoost [43], is a tree-based model and is an optimized
version of the gradient boosting machine.

Model’s hyper-parameters that have more effect on the
performance and complexity of the XGBoost model are the
number of trees ntree, and the maximum depth of trees dtree
[43]. A larger ntree means a more complex model and more
time to run but results in a smooth and better prediction [42].
Deeper trees result in a fewer number of trees but may lead
to overfitting [43]. Therefore, for further deployment of the
model on a resource-constrained system, we perform a model’s
hyper-parameter tuning. Grid-Search-CV [39] is carried out on
the ntree and dtree to search for their optimized values that
correspond to the maximum CV accuracy.

The maximum number of nodes nnode is calculated by
nnode = ntree ∗ (2dtree + 1). Note that after tuning hyper-
parameters, some features can get zero importance, specifically
if the model has high variance and a tendency to overfit.
Therefore, a second RFECV-SHAP is applied after tuning to
remove the zero important ones. Finally, the generalization
power of the stress detection model on our experimental
conditions is evaluated on the unseen test set.

V. COST-AWARE FEATURE SELECTION METHODOLOGY
FOR MULTIMODAL STRESS MONITORING: CAFS

In the previous section, we present the general design of
a non-constrained multimodal stress monitoring model using
a non-constrained feature selection algorithm, i.e., RFECV-
SHAP. The model decides which features to take to accurately
classify stress without considering the energy cost of each one.
Therefore, hereafter, we propose the CAFS methodology to
consider how likely each feature can accurately detect stress
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while also limiting the energy consumption.
To strike the right balance between the cost of selected fea-

tures and their overall prediction power, an exhaustive search is
generally impractical and computationally intractable. More-
over, we need to consider the cost dependencies of the features.
Therefore, our proposed CAFS methodology consists of a
four-phase process, as shown in Fig. 3. First, an initial pre-set
of the more important features that satisfies the cost constraints
and maximize the prediction power are selected by solving
an Integer Linear Programming (ILP) [44] problem. The ILP
allows to formulate our problem considering the benefit, cost
and cost dependencies of the features.

After solving the ILP problem, a pre-set of the more impor-
tant features that satisfy the constrained cost is obtained. Then,
from this pre-set we select a subset of the most important
features that gives the highest possible CV-accuracy score
using the RFECV-SHAP algorithm. Next, a new dataset with a
selected subset of features is considered for the model training
and hyper-parameter tuning. Finally, a second RFECV-SHAP
is applied to avoid having features with zero importance, as
described in Section IV-C.

In our CAFS methodology, we need to measure two fea-
ture’s attributes i.e., cost and benefit. The feature’s cost is the
energy it consumes to be extracted from a physiological signal,
and the benefit is its contribution to the model prediction
power. The details of these measurements are as follows.

1) Energy-Cost of Features
The total energy consumption of the embedded stress de-

tection model is composed of the energy consumption of
signal acquisition by sensors, bio-parameters extraction algo-
rithms, and features calculation. A large part of the energy
is consumed by the sensors, and is determined by their
type and sampling rate [6]. The energy-cost calculation of
the bio-parameters and features extraction depends on their
complexity, state-of-the-art implementation of the algorithms
and the processing unit selected.

The energy consumed to acquire a specific signal from
a sensor, e.g., ECG sensor, should be counted only once
for all the features extracted from that signal, e.g., ECG
features. Similarly, the energy consumed to get a bio-parameter
should be accounted for all the features derived from that
parameter. Therefore, the total energy consumption Etotal

consists of three energy values: sensors’ energy, parameter
extraction algorithms’ energy, and features computation’s en-
ergy. They are respectively defined as: Es = [E(1)

s ... E(k)
s ],

Ep = [E(1)
p ... E(l)

p ], and Ef = [E(1)
f ... E

(m)
f ], where k is the

number of sensors used. l is the number of different parameters
extraction steps performed (e.g., psd, poincaré plot, scl,...), and
m is the features number.

2) Features’ Prediction-Power
We choose SHAP importance values (I) to measure the

feature’s benefit to the target prediction in our CAFS al-
gorithm. Since I is the average contributions of a feature
across all the possible combinations of features, it is neither

dependent on the other features nor model specific. According
to [40], the I of feature j is the collective of absolute Shapley
values φ of that feature over the data, which is written by
Ij =

∑n
i=1 | φ

(i)
j |. Since φ values tell us how the prediction

is distributed among the features for each observation, their
collective value over all the observations, which is I , shows
the prediction power (benefit) of each feature. Hence, adding
up I of selected features represents model’s prediction-power.
Maximizing prediction power subject to the total costs be less
than the budget energy describes our optimization problem.

A. Cost-Aware Feature Selection Algorithm
Our goal is to maximize the prediction-power without

exceeding the energy budget limits of features’ cost. The
general form of our problem is written as follows:

maximize prediction-power
subject to total energy consumption ≤ energy budget,

(1)

In the first phase of our proposed CAFS approach, we
assume we can either take a feature or not. Therefore, this
phase is expressed as an ILP problem in which a variable is
restricted to be an integer. Our ILP problem has three parts:

1) The selection vector: xf = [ x(1)
f ... x

(m)
f ]

T , a m-
dimensions (number of features) vector of 1’s and 0’s, i.e.,
when the jth feature is selected or not, respectively.

2) The constraints: We only need to ensure that the sum
of our energy does not exceed the limit Ebudget. Thus, we
compute the total energy consumption of our features with the
dot product of the selection vector xf and the energy vector
Ef = [E(1)

f ... E
(m)
f ]

T with m dimensions.
3) The objective function: We aim to select a subset

of features that maximizes our prediction-power. The total
prediction-power of any given selection is the dot product
of the selection vector xf and the importance vector I =
[ I1 ... Im ]

T with m dimensions, where Ij is the SHAP features
importance of the jth feature.

Thus, our problem can be formulated as follows:

max ITxf s. t. ET
f xf ≤ Ebudget, (2)

To have the total energy consumption of the model, in
addition to the energy of features (Ef ), we need to count the
energy of sensors (Es) and parameters (Ep) as well. To do
so, we add the sensor’ selection vector xs = [ x(1)

s ... x(k)
s ]

T

and the parameters’ selection vector xp = [ x(1)
p ... x(l)

p ]
T . In

addition, as explained before, in our application we need to
consider the cost dependencies of the features. Thus, when
the jth feature (f (j)) extracted from the kth sensor and
lth parameter is selected (x(j)f = 1), then its corresponding
sensor and parameter should be selected as well (x(k)s = 1,
x
(l)
p = 1). Since the selection variable x is binary, sensors

and parameters are selected only once. For instance, if two
features f (i) and f (j) are selected and both are extracted
from the RSP sensor and the PSD parameter, their total
energy consumption is E

(i)
f + E

(j)
f + E

(psd)
p + E

(rsp)
s , where

x
(i)
f = x

(j)
f = x

(rsp)
s = x

(psd)
p = 1. This is equivalent to
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x
(i)
f ≤ x

(rsp)
s and x

(j)
f ≤ x

(rsp)
s , similarly, x(i)f ≤ x

(psd)
p and

x
(j)
f ≤ x

(psd)
p . Consequently, we defined the conditions for all

f (j) ∈ {features extracted from the kth sensor} and for all f (j) ∈
{features extracted from the lth parameter}, respectively:

Therefore, to include cost-dependencies between features in
our problem formulation, we extend (2) as follows:

max ITxf

s. t. EsTxs+ EpTxp+ EfTxf ≤ Ebudget,

x
(j)
f − x

(k)
s ≤ 0 ∀f (j) ∈ {features from kth sensor},

x
(j)
f − x

(l)
p ≤ 0 ∀f (j) ∈ {features from lth parameter},

(3)

The ILP problem in (3) is solved using the GLPK_MI solver
[45] yielding a pre-selected features set. Then, the RFECV-
SHAP is applied, the model is trained and hyperparameters are
tuned. Finally, a second RFECV-SHAP is applied as described
in Section IV-C resulting in the constrained features set.

B. Weak and Strong Constraints Variations
The pre-selected set of features obtained by solving the

constrained ILP problem in (3) can change depending on the
available resources, i.e., Ebudget. On the one hand, weak/no
energy-constraints assumption (i.e., an unlimited battery life-
time) allows to freely select the most important features
regardless of how costly they are, hence yielding a more
accurate stress detection model. On the other hand, stronger
constraints on the resources restrict the selection of features
and allow for errors in the model. Thus, we propose a dynamic
CAFS methodology that provides the best possible set of
features according to the target energy constraints.

As shown in Figure 4, CAFS starts with no budget con-
straints and results in a full mode, called Mode1, a stress
detection model with a complex set of features. In a second
step, the energy constraint is updated to be less than the total
features’ cost of the previous mode. Then, the algorithm con-
tinues n times until it reaches a model with the lowest possible
cost (Moden or budget mode). As a result, the optimization
finishes with an energy-scalable stress detection model builder
that automatically trades-off feature cost and accuracy giving
different output modes. It starts from a complex full mode
that is more accurate but demands more energy, until a simple
budget mode that is less accurate but saves more energy.

An application we adopt for different energy-scalable modes
(Mode1 to Moden) obtained using the proposed CAFS
method is self-aware real-time monitoring of stress. In the
following Section VI, the details of our proposed self-aware
stress monitoring system are described.

VI. SELF-AWARE STRESS MONITORING SYSTEM

Real-time monitoring of stress can be done on a multimodal
platform and in a self-aware fashion [33], [38], so that the
battery lifetime is prolonged without compromising the de-
tection quality. Although stress has a multimodal nature, it is
not always required to have a complex and highly sensitive
model running on a wearable device to detect stress events.
People usually are in normal conditions and occasionally
experience stress. Therefore, to improve the energy-efficiency
of the wearable system, often a simple model with a small
subset of physiological features is sufficient. However, the
system should be aware of a stress event presence and be
able to switch to a more complex mode to detect it.

In this work, we propose a two-mode (S2) and a three-
mode (S3) self-aware classifiers. The S2 toggles between
a simple mode (ModeS) and a medium mode (ModeM ),
and S3 toggles between ModeS , ModeM , and a full mode
(ModeF ). Each of these self-aware classifiers always runs on
a simple mode, e.g. ModeS , while other features, parameters
and sensors from a more complex mode (ModeM or ModeF )
are inactive until the output prediction is not confident enough
according to the desired confidence threshold. Then, the sys-
tem selects a more complex mode for running in the next
segmentation window (i+1). The selected mode for the next
time window defines which sensors and feature extraction
algorithms are needed to become active.

To measure the desired confidence threshold, we analyze the
classification performance in the CV set by varying the deci-
sion threshold, thS . It is selected when the total performance is
relatively high respect to the energy the model consumes and
before the probability of using the simple mode becomes very
small. In the S3, thM is chosen similarly by comparing the CV
performance between a S2 and ModeF . Then, we estimate the
energy consumption of the whole self-aware system by having
the probability of triggering each mode [33]. The simpler
mode ModeS is always running for every decision; however,
the more complex mode is activated with the probability of
PM and PF . The S2 total energy consumption is as follows:

Etotal = ES + PM .EM\S , (4)

where ES and EM\S are the energy consumption of ModeS
and ModeM without features from ModeS , respectively. In
S3, the total energy is the following:

Etotal = ES + PM .EM\S + PF .EF\(M∪S), (5)

where EF\(M∪S) is the energy consumption of ModeF with-
out features from ModeM and ModeS .

VII. EXPERIMENTAL SETUP

To evaluate the feasibility of our proposed techniques, we
build and test the generalization of the CAFS techniques and
the self-aware stress monitoring with experimental data from
[46]. Additionally, a multi-sensor platform with an ultra-low-
power microcontroller unit is used to analyze and estimate
the energy consumption [47]. The CAFS algorithm and the
self-aware stress monitoring source codes are available on our
public repository.

https://github.com/ni4344mo/Cost-Aware-Feature-Selection
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A. Stress Database: Experiment Protocol and Setup
Physiological signals of 60 male participants (Agemean=

20.43±2.17) were recorded using the Biopac System [48]
(sampling rate of 1kHz) while performing the experimental
tasks in a virtual reality (VR) environment [46], [49]. ECG was
recorded following the lead II positioning. EDA was recorded
on the thenar/hypothenar surface of the non-dominant hand.
The PPG was recorded on the middle finger from the non-
dominant hand. The stress experiment was approved by Vaud
Ethics Committee of Switzerland (2017-00449). Participants
were divided into two groups performing either a control or a
stress task lasting in total 10 minutes each [46], [49].

The stress task exposed participants to an uncontrollable
social-evaluative and timed problem-solving task with negative
feedback in the VR challenge. Participants were immersed in
an empty room with tiled flooring, on which they could move
around. Mental arithmetic questions appeared briefly in the
heads-up display. Incorrect responses caused a tile on the floor
to break and disappear, leaving an open hole where participants
could fall into. The control task has an equivalent condition but
without the stressful elements of the stress task. More details
about the experimental protocol are in [46], [49].

B. Energy Measurement Platforms
To estimate the energy consumption of the features, we

adopt a single-chip system-on-chip platform similar to the one
used in [6], i.e., having an ARM Cortex M3 as a processing
unit. The energy consumption for signal acquisition sensors
is assumed to be the same as reported in the measurements
from [6], [50]. For measuring the energy of the different
algorithms for filtering, delineations, parameter extraction,
feature computation and inference, we use the Simplicity
Studio software energy profiler on EFM32LG-STK3600 board
[47]. This board contains a 48 MHz ARM Cortex-M3 CPU, 32
kB of RAM, and 256 kB of flash memory. Every algorithm
is run using the -O3 compiler optimization level, which is
the best optimization tolerated by the EFM32. The energy
profiler measures the execution time and energy consumed
by the algorithms within a specified execution window, in our
case, a 60s-window length.

C. Machine Learning Training and Generalization
We consider both low and high-stress levels as a two-class

problem corresponding to Control and Stress tasks. The data
are segmented into 60-second-length windows without overlap
and each segment is labelled according to its associated task.
The dataset composes of 415 observations after removing the
outliers and 66 features. Since we get more than one segment
of data from the signals of each participant, the training, cross-
validation, and test sets should not have any data overlap to
avoid bias in evaluation. Therefore, we divide the data based
on the subject-data where all data from the same subject is
always grouped in either the training, validation or test set.
Hence, 67% of the subjects, i.e. 40 (23 in Control and 17
in Stress groups), are considered for the training and cross-
validation, yielding 282 observations. 33% of the subjects, i.e.
20 (14 in Control and 6 in Stress groups), are considered for
the test set yielding 133 observations.

A Group-Shuffle-Split-CV with 10 iterations is used to get
smooth mean validation scores. On each iteration, 20% of

0.90
19

16

Figure 5: RFECV-SHAP: CV mean and STD accuracy score.

subjects, i.e. 8, are randomly selected as a validation set.
Finally, the generalization power of the stress detection model
is evaluated on the unseen test set composed of 20 subjects.

VIII. EXPERIMENTAL RESULTS

A. Exploration of Machine Learning Models for MultiModal
Acute Stress Detection on Wearables

We train the XGBoost classification algorithm obtaining a
CV accuracy and F1-score of 87.55% and 83.61%, respec-
tively. Next, we implement the RFECV-SHAP algorithm to
obtain the optimized number of features. Fig. 5 illustrates that
the CV accuracy increases with the number of selected features
until 16 features when it arrives at the maximum accuracy of
90.19% (F1-score of 86.81% and Gmean of 89.99%). After
the 16 features, it enters in a relatively steady-state, which
implies that there is no information lost by removing the last
50 features. Consequently, the complexity of the XGBoost
model is reduced. The sudden changes in the curve trend are
due to the subject-based CV since the physiological response
to the stress stimulus is subject-specific. Moreover, features
are not independent and their combination contributes to the
output prediction, see Section VIII-C.

These 16 features are ranked according to their SHAP
features importance values, as shown in Fig. 6. It can be
seen that ECGRRmean

is the most important feature followed
by SCLmean in the stress detection model. Even with much
less importance value, the other features are needed when
the values of ECGRRmean

and SCLmean are in certain
ranges that do not provide a confident classification. In Section
VIII-D, we illustrate these cases.

Moreover, our XGBoost model’s hyper-parameters are tuned
by performing a Grid-Search-CV. The maximum of the mean
CV accuracy within that region corresponds to 41 trees with a
maximum depth of 6. Finally, we obtain a mean CV accuracy
of 90.93%, F1-score of 87.80%, and Gmean of 90.66%.

B. Energy-Cost Characterization of Physiological Features
The total energy cost of each feature has several common

steps including signal acquisition, filtering, delineation, signal
processing to extract bio-parameters, and a final step that is
specific for each feature, as explained in Section V-1. Since
each physiological signal and its extracted features vary in
processing, we group signal acquisition and filtering as our
first step in our approach (including delineation for ECG and
PPG). Next, we perform the parameter extraction in the second
step by including the common processing algorithm, such as
the power spectral estimation (PSD). Feature extraction steps
and their energy consumption per 60s-segmentation window
are presented in Table I. Moreover, in Fig. 6, the energy
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Figure 6: The 16 most important features selected. Left: features ranking based on their SHAP importance. Right: energy
consumption of signal acquisition, parameter extraction, and feature extraction for each of the features

Table I: Feature extraction algorithms steps and their energy consumption per segmentation window
Sensor + Preprocess-
ing (Energy mJ*)

Parameter Process-
ing (Energy mJ*)

Feature Extraction Processing
(Energy µJ*)

Description

RRSD2 (0.88) Longitudinal axis length of RR poincaré plot.
Poincare Plot of RR RRCV I (2.69) Cardiac Vagal Index (CVI).
(0.04) RRCSI (1.85) Cardiac Sympathetic Index (CSI).

RRCSImodified
(1.85) Modified CSI of RR and RR’ (second-order RR difference).

Poincare Plot of RR′SD2 (0.88) Longitudinal axis length of RR’ poincaré plot.
ECG (2.4) + RR’(0.04) RR′CSI (1.85) CSI of the RR’ poincaré plot.
filtering + delineation RR′CV I (2.69) CVI of the RR’ poincaré plot.
(2.38) PSD (0.09) RRV LF , RRLF , RRHF (90.65),

RRLF/HF (181.30)
Heart rate variability (HRV) indexes in frequency domain. Low Fre-
quency (LF), High Frequency (HF), and Very Low Frequency (VLF)

RRmean (0.69), RRSDNN (1.39), RRSDSD
(1.46), RRPNN50 (0.06)

HRV indexes in time domain. Standard Deviation of NN intervals
(SDNN), Standard Deviation of Successive Differences (SDSD), Per-
centage of successive NNs that differ by more than 50 ms (PNN50).

PPSD2 (0.88) Longitudinal axis length of the PP poincaré plot.
Poincare Plot of PP PPCV I (2.69) CVI of PP
(0.04) PPCSI (1.85) CSI of Pulse Period (PP)

PPCSImodified
(1.85) Modified CSI of PP and PP’ ( second-order PP difference).

Poincare Plot of PP’ PP ′SD2 (0.88) Longitudinal axis length of PP’ poincaré plot.
(0.04) PP ′CSI (1.85) CSI of PP’ poincaré plot.

PP ′CV I (2.69) CVI of PP’ poincaré plot.
PPG (60.36)+ PSD of PP (0.09) PPV LF,LF,HF (90.65), PPLF/HF (181.30) HRV indexes in frequency domain.
filtering + delineation PSD of PRT (0.09) PRTV LF,LF,HF (90.65), PRTLF/HF (181.30) Pulse rising time (PRT) indexes in frequency domain.
(2.43) PPmean (0.69), PPSDNN (1.39), PPSDSD

(1.46), PPNN50 (0.96), PPPNN50 (0.06) HRV indexes in time domain.

PRTmean(0.69), PRTstd(1.39), PRTSDSD(1.46) PRT indexes in time domain.
PAmean (0.69), PAstd (1.39), PASDD (1.46) Pulse amplitude (PA) indexes in time domain.
kmean (0.69), kstd (1.39), kSDD (0.96) Pulse rising speed (k) indexes in time domain.

Delineate (0.75) Ratemean (0.17), Ratestd (0.58) Respiration rate indexes in time domain.
Peakness estimation
(2.84) Pk, powertot, powernorm (0.09) Largest peak power, total power, and normalized power from the

estimated PSD of the RSP signal.

PSD (3.74)

RSPHFecg (10.91) Respiration power of the HFecg band.
RSP (4.44) + RSPHFecg−pFmn (11.31) Normalized power of five equally distributed bands in the HFecg band
filtering (1.26) RSPLFp1/Hf (56.35) LFnorm + (1/HFnorm)

RSPHFgauss (340.8) Mean frequency of a Gaussian distribution fitted in the HF band.
RSPHFpond

(11.31) Ponderate frequency mean of the HB band (0.15− 0.50Hz).

EDA(2.34)+ filter(0.86) SCL (0.64)
mean, gradient (20.00), std (40.00) SCL indexes in time domain.
power (70.00) power of SCL
power phasic (70.00) Phasic power of SCR.

*Measures with Gecko Board per 60s-window length and ECG, PPG, RSP and EDA’s sampling frequency of 256Hz, 128Hz, 128Hz and 4Hz, respectively.

consumption distribution of the 16 most important selected
features is shown. The colored steps represent the values used
to calculate the energy consumption considering the cost-
dependencies among the selected features.

C. Cost-Aware Feature Selection (CAFS) for Energy-aware
Stress Detection Model

Considering unlimited available resources, 16 features are
selected, which yields a complex stress detection model named
Mode1. Mode1 uses data of four physiological signals ECG,
RSP, PPG, and EDA to detect stress with a total energy-cost
of 85.0mJ and CV accuracy of 90.93%. Then, to reduce
the total cost while still has good performance, we apply

the CAFS methodology. In this case, we constrain the energy
consumption to be less than Mode1, which results in Mode2.

Table II shows that twelve features are selected in Mode2
from three physiological signals ECG, RSP, and SCL with a
total cost of 22.12mJ, and CV accuracy of 90.60%. In Mode2
features from the PPG signals are not selected. PPG features
have a high computation for the energy cost metrics, yet they
have a little overall value, according to Fig. 6. Therefore, their
energy cost is not justified. On the other hand, ECG features
are also costly, but they appear to be highly valued, as shown
in Fig. 6. Then, the CAFS methodology is repeated this time
subject to energy consumption being less than the total energy
of Mode2, which results in Mode3 with 7 features from ECG
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Table II: XGBoost Acute Stress Detection Modes

Mode XGBoost Energy CV scores (%) Selected featuresfeat. depth trees nodes (mJ) Acc. F1 Prec. Rec. Gmean Spec. Conf.

1 16 6 41 2665 85.00 90.93 87.80 89.74 87.91 90.66 94.38 94.35

ECG: RRmean, RRSDNN , RRSDSD, RRL, RR′
L, RR′

CSI , RR′
CV I

RSP: Ratestd, Pk, HF , HFgaussF1, HFpF2n

PPG: PPCSImod
, PRTstd

EDA: SCLmean, SCLstd

2 12 3 69 621 22.12 90.60 87.47 88.81 88.30 90.51 93.68 95.46
ECG: RRmean RRSDNN RRSDSD RR′

CSI RR′
CV I

RSP: Ratestd, Pk, HF , HFgaussF1, HFpF2n

EDA: SCLmean, SCLstd

3 7 5 1 33 8.75 89.49 86.39 89.46 85.01 89.12 94.18 62.26 ECG: RRmean, RRSDSD ,RRPNN50, RR′
CSI , RR′

CV I

EDA: SCLmean, SCLstd

4 1 1 1 3 4.78 88.80 84.32 91.51 81.44 87.56 96.02 60.46 ECG: RRmean

5 1 6 1 65 3.86 64.68 59.81 57.34 70.72 64.33 64.20 56.95 EDA: SCLmean
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Figure 7: Effect of SCLmean and RRmean variations on their SHAP values contributions to the acute stress prediction on
each observation of the training set. Positive and negative SHAP values express a prediction toward the stress and control
class, respectively, and around zero means that the model cannot predict the class.

and EDA sensors. Thus, it consumes 8.75mJ energy in total
and has an 89.49% CV accuracy. The results of Mode3 prove
that RSP features are not as valuable as ECG and EDA ones
when considering all factors (i.e., cost and prediction power).

By further tightening the available energy budget, we end
up with Mode4 and Mode5 using only one-modality of ECG
and EDA, respectively. The CV accuracy of 88.80% in Mode4
shows that the mean value of RR interval in the ECG signal
is the most important physiological feature for one-modality
stress detection. Conversely, the SCLmean provides poor
accuracy and insignificant energy improvements. Therefore,
it is not suitable for one-modality stress detection.

Table II shows the CV results of the XGBoost stress
detection models with tuned hyper-parameters. Mode1 uses
the largest number of nodes (2665) among other modes due
to its large number of deep trees used for voting. In Mode5,
the XGBoost model has one tree with a maximum depth of
six, which is too deep to predict when the model has only one
tree and one feature. Hence, the model in Mode5 is overfitting.
However, by decreasing the maximum depth of the model to
one, we reduce the overfitting problem in Mode5.

D. Exploration of Self-Aware Stress Detection on Wearables
From the analysis of the different modes in Table II, we

observe that a simple model like Mode4 using only one
feature is often sufficient to detect stress. However, in other
situations, a small subset of physiological features (Mode3)
or a complex mode (Mode1) is needed. Indeed, Fig. 7 shows
the effect of changing SCLmean and ECGRRmean

on the
stress classification in the training dataset for the different
modalities’ modes. First, it can be seen that Mode5 predicts

low values of SCLmean, i.e., less than 6.42 µS, but it fails
to predict for larger values. Conversely, in Mode4, also one-
modality mode using ECGRRmean , the SHAP values show
that short RR interval, i.e. smaller than 0.65sec, (having fast
heart rate) is predicted as stress and larger than this value
(having slow heart rate) is predicted as no stress.

Next, Fig. 7 shows that by fusing SCLmean and
ECGRRmean

in Mode3, we can classify for larger SCLmean

values. In this case, SHAP values above zero are for the
majority of observations having SCLmean larger than 21.26
µS, hence classified as the stress group. However, this model
has difficulties discriminating between classes when the RR
interval is between 0.65 and 0.68 sec and SCLmean is be-
tween 6.42 and 21.26 µS. Finally, using more modalities (PPG
and RSP), as in Mode1 and Mode2, we better discriminate
between stress and control prediction. For SCLmean values
between 6.42 and 21.26 µS, a slower heart rate increases the
prediction tendency toward the control class.

Based on the previous observation, we propose a self-aware
system that toggles to a more confident mode whenever the
prediction confidence (i.e., decision threshold) is not good
enough. In this study, we choose to combine three monitoring
modes on our self-aware stress detection. In particular, we
combine Mode5 (the simplest mode), Mode3 (medium mode
having features from the previous mode), and Mode2 (the full
mode), which were obtained from our CAFS methodology.
Although Mode1 is more complex and might perform better
in a real environment, we chose Mode2 since it performs high
and consumes less energy, for our lab-based dataset. First, we
cross-validate the decision threshold for the S2 monitoring
mode. Then, a second decision threshold is chosen between
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Table III: Self-aware Stress Detection Models
Self- Probability (%) Energy CV scores (%)
aware P2 P3 P5 (mJ) Acc. F1 Prec. Rec. Gmean Spec. Conf.

S2 – 96.7 3.3 8.56 88.97 85.55 88.38 84.63 88.61 93.69 62.07
S3 30.1 66.6 3.3 11.13 89.37 85.88 88.29 85.54 89.08 93.71 71.56
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Figure 8: Self-aware classifier: Gmean, probability of using a
simple mode and Et versus decision thresholds.

S2 and Mode2 for the S3 monitoring mode.
Fig. 8a shows the CV Gmean and energy consumption

(E_total defined in (4)) of S2 when changing the probability
of using the simplest mode (Mode5) by varying the decision
threshold. The higher the decision threshold is, the lower the
probability of using the simple mode is. Consequently, it is
more probable to use a more confident mode, i.e., Mode3
in S2, which increases the performance, and also the energy
consumption. The decision threshold to stop using Mode5 on
S2 is chosen to be 0.6 (60%), namely, when the performance
is relatively high 88.61% and the E_total is reduced.

Fig. 8b shows the CV scores of the S3, which includes
Mode5, Mode3, and Mode2. The desired confidence thresh-
old between S2 and Mode2 is chosen to be 0.63 (63%), where
the Gmean is high (89.64%). Also, the energy consumption is
reduced from 22.12mJ to 11.13mJ just before the system
almost stops the probability of using the lower energy modes.
Our CV results of the S2 and S3 are reported in Table III,
showing that the energy consumption is reduced in the self-
aware modes without sacrificing the performance.

The CV performance vs all the modes’ energy consumption
is presented in Fig. 9. Although the detection Gmean for all
modes, except Mode5, is similar ranging from 87.5–90.6%,
the confidence levels vary from 95% for the complex modes
(Mode2 and Mode1) to 61% for simpler models (Mode3,
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Figure 9: CV confidence and Gmean versus the total energy-
cost of all five modes and S2 and S3 self-aware models.

Mode2 and S2), Our proposed self-aware mode S3 improves
the confidence levels of the simpler modes by 12% with little
increase of the energy consumption, Furthermore, S3 reduces
the energy consumption significantly compared to Mode2 and
Mode1, but it still has a good detection performance.

E. Generalization
Finally, we assess the generalization of our proposed acute

stress monitoring modes for our experimental conditions with
20 subjects’ data were not seen before. The results are pre-
sented in Table IV. It shows that the test scores in every mode,
except Mode5, are high and the gaps between test scores in
Table IV and the CV scores in Table II and Table III are small.
Therefore, we can conclude that the generalization power of
our proposed stress monitoring modes is high. Moreover, we
can conclude that Mode1, Mode2, as well as the S3 self-aware
mode, perform accurate and confident stress monitoring.

Table IV: Generalization of Acute Stress Detection Models

Mode Energy Test scores tuned models
(mJ) Acc. F1 Prec. Rec. Gmean Spec. Conf.

1 85.00 89.47 81.08 83.33 78.95 86.00 93.68 94.92
2 22.12 88.72 79.45 82.86 76.32 84.55 93.68 95.74
3 8.75 90.98 84.21 84.21 84.21 88.82 93.68 62.02
4 4.78 82.71 69.33 70.27 68.42 77.78 88.42 60.48
5 3.86 63.91 46.67 40.38 55.26 61.02 67.37 57.40
S2 8.13 88.72 80.52 79.49 81.58 86.43 91.58 61.42
S3 9.14 88.72 79.45 82.86 76.32 84.55 93.68 72.58

IX. DISCUSSION

Real-life multimodal stress monitoring applications need
highly accurate detection algorithms that allow a longer bat-
tery lifetime on wearable devices. Despite several efforts in
multimodal stress monitoring [4]–[7], the energy consumption
of wearable monitoring devices has received little attention.
Here, our proposed CAFS methodology is designed to develop
highly accurate multimodal stress models with low energy
usage, tested in particular for acute stress detection within
our experimental framework. Moreover, our proposed CAFS
approach is model-agnostic and applies to any supervised
classification problem that uses cost-dependent features, con-
sidered for the first time, to the best of our knowledge, on a
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cost-aware feature selection solution.
Using an experimental dataset, CAFS provides five inter-

pretable acute-stress detection modes from complex to simple
(more confident to less confident) depending on the energy
budget constraints. Our results show that this new CAFS
methodology considerably reduces the energy requirements of
the stress detection model, while maintaining high classifica-
tion performance. All the five modes defined using CAFS and
the two self-aware modes are compared and the interpretability
of the models are further discussed in the next subsections.

Finally, concerning the limitations of this work, we first
consider that the acute stress models are only generalizable
for our particular experimental conditions. Further research
should be done in a wider setting and real-life conditions
for a more general understanding of stress and cognitive
workload. On the other hand, due to the limited amount of data
available for each participant in our dataset, here in this article,
we do not consider the individual profile and differences
of stress reactivity, instead we have used a homogeneous
group of participants (i.e., healthy, Agemean= 20.43±2.17 and
male participants). For a heterogeneous population sample, a
personalized stress detection models to obtain individualized
prototypical signatures of stress for each participant could be
developed. This will allows extending our presented findings
by proposing personalized models.

A. Stress Detection Models: Scores, Confidence, and Cost
In Fig. 9 and Table IV, our results show that applying

CAFS with no or weak energy-constraints yields highly-
accurate and confident models (i.e., Mode1,2). These models
use more physiological signals and features and consequently,
a larger number of trees to make a prediction. Hence, they are
more complex having a higher number of nodes. However,
having more trees for voting, the collective absolute SHAP
value gets larger. Thus, the prediction-power gets higher and,
consequently, a more confident prediction is achieved.

Indeed, the confidence level in Mode1 and Mode2 is about
95%, whereas it is only 62% in Mode3 even when the
detection accuracy for these modes is similar, ranging from
88.72% to 90.98%. Regarding the cost, using Mode2 and
Mode3 the energy consumption is reduced by 73.98% and
89.71% concerning Mode1, respectively. It is important to
note that we employ a particular dataset, where the stress and
control tasks are only 10 minutes long and where subjects
perform the same activity. In a real environment with a
wider range of stress responses, we expect to have a scalable
detection accuracy and confidence with an increase of the
model complexity. Having a very similar induced acute stress
response explains our similar performance results for Mode1
and Mode2, although they have different complexity.

On the other hand, strong budget constraints modes
(Mode4,5) are simpler using a few features and few shallow
trees. It, in turn, reduces the complexity and energy expen-
diture of the machine learning models but results in a less
confident prediction. Using Mode4 and Mode5, the energy
is reduced by 94.38% and 95.46%, with only a 6.76% and
25.56% drop in accuracy for Mode4 and Mode5. Due to poor
performance in Mode5, this mode is not suitable for stress
monitoring but rather is useful for a self-aware stress moni-
toring by taking advantage of its low energy consumption and

the ability of confident classification for specific SCLmean

values. Using Mode4, one-modality model with ECG signal,
we are still able to predict stress, but this prediction is not as
confident as using a multimodal model, such as, in Mode1,2.

The prediction scores (accuracy, precision) and confidence
levels comparisons among these five modes show that we
cannot rely only on high prediction scores for a confident and
reliable stress prediction. We corroborate that by using more
modalities at the expense of energy, we have a more com-
prehensive physiological response that makes the predictions
between stress and no stress more discriminable and hence
more confident even if the prediction scores are same. That is
the stress has a multimodal nature [4], [7], [12], [13].

Therefore, considering the multimodal nature of stress, we
aim to reduce energy consumption while having an accurate
and confident acute stress prediction by employing our new
self-aware stress classifier. According to our results, S3 re-
duces the total energy consumed for a stress prediction by
89.24% with a 0.75% drop in accuracy and 22.34% drop in
the prediction confidence respect to Mode1 on the unseen
test data. In contrast, compared with Mode3 that has a similar
energy consumption and accuracy, the confidence increases by
10.56%. On the other hand, although using the S2 mode the
energy consumption is reduced by 90.44% and keeping high
accuracy, its confidence level is not improved enough since no
complex and confident mode is used in its design.

Note that for S2 and S3 the energy consumption varies
according to the needs of using the different modes, which
depends on the physiological stress response induced. Self-
aware classification brings more energy savings while keeping
high stress detection accuracy and confidence in a real-life
application. On the other hand, higher detection accuracy
variations can be expected when using different modes.

B. Interpretability of Acute Stress Detection Models
In agreement with previous studies [4], [5], [7], the RRmean

in the ECG signal is the most important feature followed by the
SCLmean from EDA signal for acute stress prediction. Our
results show that a low SCL value (SCLmean < 6.42µS)
and also a long RR interval (0.68sec < RRmean) represent
no stress status. While a high SCL (21.26µS < SCLmean)
and a fast HR (RRmean < 0.65 s) suggest a stress status.
However, for other ranges of RRmean and SCLmean (e.g.,
0.65 < RRmean < 0.68 and 6.42 < SCLmean < 21.26)
the model requires more features for a confident stress classi-
fication. Although RRmean provides a pretty accurate stress
prediction in one-modality Mode4, using SCLmean in one-
modality Mode5 does not provide an accurate and confi-
dent stress prediction. Nevertheless, the contribution of the
SCLmean with RRmean in the multi-modality models, as
in Mode1,2,3, provides a more confident stress prediction.
Furthermore, although the RSP and PPG features are not as
valuable as adding ECG and EDA features to the model, which
improves up to 35% the stress discrimination confidence

X. CONCLUSION

In this work, we have proposed CAFS, a comprehensive
solution for the design of energy-aware multimodal acute
stress monitoring on wearable devices. We have addressed
the problem of selecting an optimized feature subset in the
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presence of individual feature costs with cost-dependency and
a total cost constraint. Our CAFS methodology automatically
explores the trade-off between energy-cost and the benefits of
adding more features for multimodal stress prediction.

Using CAFS on our acute stress experimental database, four
generalizable and energy-scalable stress detection models from
full-complex multimodal to simple low-budget unimodal were
obtained, keeping the accuracy as high as the non-constrained
model and reducing the energy cost by 10 times. The best
accuracy obtained on the unseen data is 90.98%, which
outperforms the state-of-the-art studies. Finally, our self-aware
stress detection model achieves an accuracy of 88.72% on the
unseen dataset, having the same energy level as the simple
model but with a 11.16% more confident prediction.
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