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A reduced basis method based on a physics-informed machine learning framework 
is developed for efficient reduced-order modeling of parametrized partial differential 
equations (PDEs). A feedforward neural network is used to approximate the mapping 
from the time-parameter to the reduced coefficients. During the offline stage, the network 
is trained by minimizing the weighted sum of the residual loss of the reduced-order 
equations, and the data loss of the labeled reduced coefficients that are obtained via the 
projection of high-fidelity snapshots onto the reduced space. Such a network is referred 
to as physics-reinforced neural network (PRNN). As the number of residual points in time-
parameter space can be very large, an accurate network – referred to as physics-informed 
neural network (PINN) – can be trained by minimizing only the residual loss. However, for 
complex nonlinear problems, the solution of the reduced-order equation is less accurate 
than the projection of high-fidelity solution onto the reduced space. Therefore, the PRNN 
trained with the snapshot data is expected to have higher accuracy than the PINN. 
Numerical results demonstrate that the PRNN is more accurate than the PINN and a purely 
data-driven neural network for complex problems. During the reduced basis refinement, 
the PRNN may obtain higher accuracy than the direct reduced-order model based on a 
Galerkin projection. The online evaluation of PINN/PRNN is orders of magnitude faster 
than that of the Galerkin reduced-order model.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

High-fidelity numerical simulation has been widely used in applications modeled by parametrized partial differential 
equations (PDEs) [1,2], in which the parameters characterize geometric features, boundary conditions, source terms and 
physical properties, etc. However, for applications like design, control, optimization and uncertainty quantification, all of 
which require repeated model evaluations over a potentially large range of parameter values [3], high-fidelity simulation 
remains prohibitively expensive. The need of cost reduction in such applications has led to the development of reduced-
order modeling (ROM) [4] that seeks to build low-dimensional models for rapid and reliable solutions.

* Corresponding author.
E-mail addresses: wenqianchen2016@gmail.com (W. Chen), qian.wang@epfl.ch (Q. Wang), Jan.Hesthaven@epfl.ch (J.S. Hesthaven), 

chzhang@mail.xjtu.edu.cn (C. Zhang).
https://doi.org/10.1016/j.jcp.2021.110666
0021-9991/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.jcp.2021.110666
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2021.110666&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wenqianchen2016@gmail.com
mailto:qian.wang@epfl.ch
mailto:Jan.Hesthaven@epfl.ch
mailto:chzhang@mail.xjtu.edu.cn
https://doi.org/10.1016/j.jcp.2021.110666
http://creativecommons.org/licenses/by-nc-nd/4.0/


W. Chen, Q. Wang, J.S. Hesthaven et al. Journal of Computational Physics 446 (2021) 110666
Reduced basis (RB) methods are a class of well-known and widely-used ROM techniques. RB methods are generally im-
plemented in an offline-online paradigm [5]. During the offline stage, a reduced basis, which represents the main dynamics 
of the underlying problem, is extracted from a collection of high-fidelity solutions (snapshots). The reduced basis functions 
can be obtained by a variety of algorithms, such as proper orthogonal decomposition (POD) [1,2,6], the proper generalized 
decomposition [7], the piece-wise tangential interpolation [8], the matrix interpolation [9] and greedy algorithms [10–12]. 
Recently, autoencoder [13–15] has been used as a reduction tool on nonlinear manifolds. Once the reduced basis functions 
are computed, a reduced-order model can be constructed in either an intrusive or a non-intrusive manner. During the online 
stage, for a new parameter location, the corresponding reduced-basis solution is recovered as a linear combination of the RB 
functions, with the expansion coefficients (also called the reduced coefficients) computed by evaluation of the reduced-order 
model.

Intrusive reduced-order model is generally obtained by the projection of the full-order model onto the reduced space 
spanned by the RB functions. A Galerkin projection [16–18], in which the RB basis is used as the test functions, is the 
simplest and most popular choice. The popular method that uses POD to generate reduced basis and a Galerkin proce-
dure to build reduced-order model is referred to as POD-G in this paper. During the online stage, the reduced coefficients 
are determined by solving the reduced-order equations. The POD-G method has been applied successfully to a variety of 
problems. However, the POD-G lacks a priori guarantees of stability, accuracy and convergence for complex nonlinear prob-
lems [16,19,20], and the promise of accelerated solution is difficult to realize for general nonlinear problems. Extensive 
efforts have been made to improve the stability and accuracy of the POD-G method, such as the structure-preservation [21], 
supremizer enrichment [22,23], basis adaption [24,25], L1-norm minimization [26], and least-squares Petrov-Galerkin (LSPG) 
technique [27,28]. Closure modeling based on the Mori-Zwanzig formalism [29–32] is an alternative approach to improve 
the stability and accuracy of projection-based model order reduction. The short-memory assumption based models, such as 
the t-model [32] and the τ -model [33,34], have been applied to model order reduction for nonlinear problems. San and 
Maulik [35,36] used the feedforward neural network to model the closure term of the POD-G reduced-order model. Wang 
et al. [17] used recurrent neural network (RNN) for memory closure modeling of parametric POD-G reduced-order model.

Non-intrusive reduced-order model generally predicts reduced coefficients for a new time-parameter value by interpo-
lation or regression, based on a data base of reduced-order information [37]. Standard interpolation techniques may fail if 
only a small number of samples are available [38,39]. Regression-based non-intrusive RB methods [40–44] have recently 
been developed. Regression models, such as the artificial neural network (ANN) and Gaussian process (GP), are approximate 
maps between the time-parameter value and the projection coefficients of the high-fidelity solution onto the reduced space, 
and are trained by high-fidelity data in a supervised learning paradigm [45] during the offline stage. During the online stage, 
the reduced coefficients are determined by rapid evaluation of the regression map. Recently, non-intrusive reduced-order 
methods that learn the dynamics of the underlying problems in the reduced space have been developed. Srinivasan et al. 
[46] used a long short-term memory (LSTM) network to predict temporal dynamics of simple turbulent flows in Fourier 
space. Gonzalez and Balajewicz [47] and Hasegawa et al. [48] used an autoencoder for nonlinear basis generation and LSTM 
network to dynamically evolve the reduced solution in time. Swischuk et al. [49] relied on operator inference model for the 
complex rocket combustion instability problem.

The advantages of the non-intrusive over the intrusive methods are robustness and efficiency. The robustness is due to the 
decoupling of the online stage and the high-fidelity scheme in the non-intrusive method. The efficiency is due to the fact 
that in the online stage, the reduced coefficients of the non-intrusive method are determined by evaluating the regression 
model, while reduced coefficients of the intrusive method are determined by solving a nonlinear equation system [40]. 
The major disadvantage of the non-intrusive over intrusive methods is the offline cost. Since a big data set, obtained by 
projecting a large amount of expensive high-fidelity snapshots onto the reduced space, is necessary to train an accurate 
regression model.

A reduced basis method based on physics-informed machine learning [50–53] is proposed in this work to combine the 
advantages of intrusive and non-intrusive methods. As aforementioned, the intrusive reduced-order model relies on physics, 
and the non-intrusive reduced-order model relies on data. In the physics-informed machine learning based RB method, 
both physics and data are used to train a network that maps the time-parameter value to the reduced coefficients. The loss 
function for the network training is the weighted sum of the mean squared norm of the residual of the POD-G equation, 
and the mean squared error of the labeled reduced coefficients that are obtained via the projection of the high-fidelity 
snapshots onto the reduced space. The network is thus trained to fulfill the POD-G equation and fit the projection data. 
Such a network is referred to as physics-reinforced neural network (PRNN). In this work, the high-fidelity snapshots are 
only those used to extract the reduced basis. As the corresponding high-fidelity snapshots on the residual points are not 
needed, the number of residual points in the time-parameter space is practically unlimited. Therefore, even with a small 
amount of high-fidelity snapshots, a sufficiently large training data set can be generated to train an accurate PRNN. We 
also show in this work that an accurate network - referred to as physics-informed neural network (PINN) - can be trained 
by minimizing only the residual loss. However, for complex nonlinear problems, the projection of the high-fidelity solution 
onto the reduced space is more accurate than the solution of the reduced-order equation, since the reduced-order equation 
does not take into account the impact of the unresolved scales (truncated modes) on the resolved scales (reduced basis 
modes) [17]. Therefore, the use of snapshot data is not mandatory during the offline training, but important for the network 
accuracy. The PRNN is expected to be more accurate than the PINN for complex nonlinear problems. By using the physics-
2
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informed machine learning technique, we train neural networks to accurately and efficiently predict the reduced-order 
solution, without requiring extra high-fidelity simulation.

For reduced-order modeling of long-term evolution problems, a significant advantage of the non-intrusive methods over 
the intrusive methods is the local modeling capability. The modeling can be limited to a time interval of interest, which 
drastically reduces the modeling complexity. The physics-informed machine learning based RB method inherits the local 
modeling capability from the non-intrusive RB methods.

Several time-dependent and stationary problems are used to test the proposed reduced-order methods. Numerical results 
demonstrate that the PRNN can predict reliable reduced-order solutions and is more accurate than the PINN or a purely 
data-driven neural network. During the reduced basis refinement, the PRNN may obtain higher accuracy than the direct 
reduced-order model based on the Galerkin projection. It is also demonstrated that the PRNN/PINN is orders of magnitude 
faster than the POD-G during the online stage.

The remainder of the paper is organized as follows. Section 2 presents the model order reduction framework of 
parametrized PDEs. Section 3 discusses the physics-informed machine learning of the reduced-order model, while Section 4
presents the numerical results. Section 5 gathers the relevant conclusions.

2. Projection-based reduced basis method

Consider a nonlinear dynamical system governed by the parametrized partial differential equations (PDEs):

∂φ (x, t)

∂t
+N (φ (x, t) ;μμμ) = 0, (x, t) ∈ �(μμμ) × T

B (φ (x, t) ;μμμ) = 0, (x, t) ∈ ∂�(μμμ) × T
φ (x,0) = φ0 (x;μμμ), x ∈ �(μμμ)

(1)

where N is a general nonlinear differential operator and φ (x, t) are field variables. B is a boundary condition operator 
defined on the boundary ∂� of the spatial domain �. T is the temporal domain. μμμ ∈ P are the physical/geometrical 
parameters and P ⊂Rnp is the parameter space. np is the number of parameters, i.e., the dimension of P .

Snapshots used for generation of the reduced basis functions are obtained from high-fidelity (HF) simulations using the 
same amount of degree of freedoms (DOFs) on a set of parameter values. Physical coordinates of DOFs are variable when 
the shape or size of the physical domain � is controlled by geometrical parameters. Therefore, to ensure compatibility of 
the high-fidelity snapshots, we perform the simulations on a computational domain �̃. The invertible and differentiable 
problem-dependent mapping X : x ∈ � (μμμ) → ξξξ ∈ �̃ from physical to computational coordinates is

ξξξ = X (x;μμμ) , (2)

and (1) becomes

∂φ (ξξξ, t)

∂t
+ Ñ (φ (ξξξ, t) ;μμμ) = 0, (ξξξ, t) ∈ �̃ × T

B̃ (φ (ξξξ, t) ;μμμ) = 0, (ξξξ, t) ∈ ∂�̃ × T
φ (ξξξ,0) = φ0

(
X−1(ξξξ ;μμμ);μμμ)

, ξξξ ∈ �̃

(3)

where Ñ and B̃ are the corresponding operators in the computational space.

2.1. Full-order model

A full-order model is obtained by the discretization of (3) using a high-fidelity scheme on a fine mesh. The number of 
interior DOFs is denoted as N , the number of boundary DOFs is denoted as NB . We denote the discrete solutions of (3) as 
φφφh ∈RN and φφφB

h ∈RNB . The full-order model is expressed as

dφφφh

dt
+ LÑφφφh + gÑ (φφφh,φφφ

B
h ) + CÑ = 0, (4)

LB̃φφφh + LB
B̃φφφB

h + CB̃ = 0, (5)

where LÑ ∈RN×N , LB̃ ∈RNB ×N and LB
B̃ ∈RNB×NB represent matrices derived from the linear parts of the operators Ñ and 

B̃. CÑ ∈RN and CB̃ ∈RNB are constant vectors. gÑ :RN ×RNB �→RN is a nonlinear function derived from the nonlinear 
part of operator Ñ . Discretization of the boundary conditions results in a linear equation system (5), as commonly used 
boundary conditions, e.g., Dirichlet, Neumann and Robin, are linear and thus B is a linear operator.

A broad range of discretization procedures can be used to build the full-order model, such as finite difference (FD), 
finite volume (FV), finite element (FE), and spectral methods. In this work, a high-order accurate Chebyshev pseudospectral 
method [54,55] is used for the spatial discretization, and a third-order backward difference method is used for the temporal 
discretization.
3
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2.1.1. Chebyshev pseudospectral method
In the Chebyshev pseudospectral method, a d-dimensional physical domain is mapped to the computational domain 

�̃ = [−1, 1]d , with each dimension discretized by Np + 1 Chebyshev-Gauss-Lobatto points,

ξi = cos

(
π i

Np

)
, 0 ≤ i ≤ Np . (6)

The solution is approximated by φ(ξ) = ∑N p

i=0 φi�i(ξ), where �i(ξ) is the Lagrange polynomial. Spatial derivatives are dis-
cretized as[

∂ sφ

∂ξ s

∣∣∣
ξ0

,
∂ sφ

∂ξ s

∣∣∣
ξ1

, · · · ,
∂ sφ

∂ξ s

∣∣∣
ξN p

]T

= Dsφφφ, (7)

where φφφ = {φi}N p

i=0, s is the order of the derivative and Ds is the s-th-order difference matrix of size (Np + 1) × (Np + 1)

with elements defined by

D0
i, j = δi j, 0 ≤ i, j ≤ Np, (8)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1
i, j = Bi

B j

(−1)i+n

2 sin
(

(i+ j)π
2N p

)
sin

(
( j−i)π

2N p

) 0 ≤ i, j ≤ Np, i �= j

D1
i,i = −

N p∑
j=0, j �=i

D1
i, j 1 ≤ i ≤ Np − 1

D1
0,0 = −D1

N p,N p
= −2Np

2 + 1

6

Bi =
{

2 i = 0, Np

1 1 ≤ i ≤ Np − 1

, (9)

Ds
i, j = D1

i,k Ds−1
k, j 0 ≤ i, j,k ≤ Np . (10)

In the flow simulations in this paper, the I P N − I P N−2 method [56] is adopted to prevent spurious pressure mode [57]. 
In the I P N − I P N−2 method, the pressure derivative is approximated without pressure values on boundary points, thus 
pressure is approximated with a polynomial of two order lower than other flow variables. The first-order difference matrix 
for the pressure is D̂1 defined as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

D̂1
i, j = 0 i = 0, Np or j = 0, Np

D̂1
i,i = 3ξi

2(1 − ξ2
i )

1 ≤ i ≤ Np − 1

D̂1
i, j = (−1)i+ j(1 − ξ2

j )

2(1 − ξ2
i )(ξi − ξ j)

1 ≤ i �= j ≤ Np − 1

. (11)

For more details of the Chebyshev pseudospectral method, we refer the reader to the reference [54,55,57].

2.2. Reduced-order model

The solution of the full-order model (3) is often expensive due to the large amount of DOFs. Therefore, we are interested 
in replacing the full-order model with a low-dimensional reduced-order model to efficiently resolve the main dynamics 
of the underlying problem. The full-order model is said to be reducible if the high-fidelity solution φφφh can be well ap-
proximated in an m-dimensional subspace V . The reducibility can be quantified by the Kolmogorov m-width [58], which 
represents the smallest approximation error that can be obtained with an m-dimensional subspace. The subspace is spanned 
by a suitable set of basis vectors {vi ∈RN }m

i=1. The size of the problem is significantly reduced if m 	 N . The full-order so-
lution of the interior DOFs φφφh can be approximated by its projection onto the subspace V as

φφφh ≈ φ̃φφ + Vααα, (12)

where V ∈ RN×m is a matrix with the basis vectors as columns and ααα are the projection coefficients. The projection error 
is εεε =φφφh − φ̃φφ − Vααα. φ̃φφ ∈RN is a time-independent reference value used to avoid a possible dominant constant basis, and is 
usually set as the mean of the snapshots or the initial solution. As shown in (5), the boundary DOFs are linearly related to 
the interior DOFs. Therefore, the boundary DOFs φφφB can be treated as a function of the interior DOFs φφφh as
h

4
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φφφB
h = −(LB

B̃)−1 (
LB̃φφφh + CB̃

)
. (13)

Substituting (12) and (13) into (4), we obtain the following over-determined system for the reduced coefficients ααα

V
dααα

dt
+ LÑ

(
φ̃φφ + Vααα

) + LÑεεε + CÑ

+ gÑ

(
φ̃φφ + Vααα + εεε,−

(
LB
B̃

)−1 (
LB̃

(
φ̃φφ + Vααα

) + CB̃ + LB̃εεε
)) = 0,

(14)

which can be simplified into a compact from

V
dααα

dt
+ LVααα + g (Vααα) + C = ε̃εε, (15)

where L ∈ RN×N , C ∈ RN and g : RN �→ RN are the matrix, vector and nonlinear function derived from (14), respectively. 
The residual error ε̃εε results from the projection error εεε .

By performing the procedure of (12)–(15), we obtain a reduced-order model for the interior DOFs with enforcement of 
the boundary conditions.

In the framework of Petrov-Galerkin, by projecting the over-determined system (15) onto a subspace W ∈ RN×m and 
requiring that the residual is orthogonal to the test space, we recover a system of m equations

WT
(

V
dααα

dt
+ LVααα + g (Vααα) + C

)
= 0. (16)

In this work, we restrict ourselves to the Galerkin framework, namely W = V, reducing (16) to

VT
(

V
dααα

dt
+ LVααα + g (Vααα) + C

)
= 0. (17)

Once the reduced coefficients ααα are obtained by solving the reduced-order equation system (17), the interior solution φφφh
and boundary solution φφφB

h can be recovered by (12) and (13), respectively.
A key point of the reduced-order model is to get a suitable set of reduced basis functions. There exist several methods 

for reduced basis generation, such as the proper orthogonal decomposition [1,2,6], the proper generalized decomposition 
[7], the piece-wise tangential interpolation [8], the matrix interpolation [9], greedy algorithms [10–12] and an autoencoder 
[13–15]. The most widely-used reduced basis generation method, the proper orthogonal decomposition, is described and 
used in the rest of this paper.

2.2.1. Proper orthogonal decomposition
The proper orthogonal decomposition (POD) is one of the most widely-used techniques to compress data and extract an 

optimal set of orthonormal basis in the least-squares sense. Let Ph = {μμμ1, μμμ2, · · · , μμμNs } ⊂ P be a discrete and finite set of 
Ns parameter values generated with a suitable sampling, Th = {t1, t2, · · · , tNt } ⊂ T be a discrete and finite set of Nt time 
values, and ���h = {φφφh(t1; μμμ1) − φ̃φφ, φφφh(t2; μμμ1) − φ̃φφ, · · · , φφφh(tNt ; μμμNs ) − φ̃φφ} ∈ RN×Ns Nt be the corresponding snapshot matrix. 
The POD basis of size m is the solution to the minimization problem

min
V∈RN×m

∥∥∥���h − VVT���h

∥∥∥
F
,

s.t. VT V = I,
(18)

where ‖·‖F is the Frobenius norm and I ∈ Rm×m is the identity matrix. According to the Eckart-Young theorem [59], the 
solution of (18) is the first m left singular vectors of the matrix ���h , which can be obtained from the singular value decom-
position (SVD)

���h = US


S VS , 


S = diag (σi) , (19)

where the singular values σi , 1 ≤ i ≤ min(N, Ns Nt) are sorted in descending order. Choosing the first m columns of US as 
the POD basis functions, we have an error estimation for (18) as

min
V∈RN×m

∥∥∥���h − VVT���h

∥∥∥2

F
=

min(N,Ns Nt )∑
i=m+1

σ 2
i . (20)

For (20), it is clear that the error in the POD basis is equal to the sum of the squares of the neglected singular values, 
i.e., by controlling the size m, we can approximate the snapshot matrix ���h with arbitrary accuracy. Many problems exhibit 
an exponential decay of the singular values [2], allowing the use of a low-dimensional reduced space to approximate the 
high-fidelity solution with satisfactory accuracy.
5
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For the time-dependent problems with many time steps, such as the unsteady natural convection problem in Sec-
tion 4.2.3, the snapshot matrix is large, leading to an expensive SVD. The randomized SVD algorithm [60] which only 
needs to perform SVD of small matrices, can be used for efficient reduced basis generation of time-dependent problems 
with large snapshot matrices.

2.2.2. Treatment of nonlinear term
The cost of the reduced-order model (17) depends on the computational complexities of the four terms. The cost of the 

temporal term and the two linear terms scales with m, since they can be simplified as

VT V
dααα

dt
= dααα

dt
, VT LVααα = L̃ααα, VT C = C̃, (21)

where the matrix L̃ ∈Rm×m and the vector C̃ ∈Rm need to be computed only once.
The computational bottleneck is the computation of the nonlinear term VT g (Vααα) that scales with the full-order size N , 

even though the dimension of the equation system has been reduced to m 	 N . A further cost reduction of the nonlinear 
term is necessary to obtain an efficient reduced-order model. Several such hyper-reduction methods have been developed 
to enable significant speedups for the nonlinear term computation, e.g., the empirical interpolation method (EIM) [61], its 
discrete variant (DEIM) [62], gappy-POD [63] and missing point estimation (MPE) [64]. These methods seek a trade-off 
between accuracy and efficiency. In the present work, we restrict ourselves to the case of quadratic nonlinearity, for which 
hyper-reduction is not needed since the nonlinear term can be transformed exactly into a quadratic form [65]. Consider a 
quadratic nonlinearity

g (Vααα) = (Vααα) ⊗ (Vααα) (22)

where ⊗ denotes the element-wise multiplication operator. Substituting (22) into (17), the nonlinear term becomes

VT g (Vααα) = VT ((Vααα) ⊗ (Vααα)) =
m∑

k=0

(
αααT Akααα

)
Ik, 0 ≤ k ≤ m, (23)

where Ik ∈Rm is k-th column of the identity matrix I. Ak ∈Rm×m is defined as

Ak
i, j = vT

k

(
vi ⊗ v j

)
, 0 ≤ i, j,k ≤ m, (24)

where vl is the l-th column of V.
Once the matrices Ak are computed and saved during the offline stage, the online evaluation of the nonlinear term has 

a computational complexity of O(m3).

3. Physics-informed machine learning of reduced-order model

This section presents the physics-informed machine learning for reduced-order modeling. A POD-Galerkin reduced-order 
model can be built following the procedures in Section 2. However, the intrusive POD-G model suffers from stability, 
accuracy and convergence issues for complex nonlinear problems [16,19,20]. An alternative approach is to perform the 
non-intrusive reduced-order modeling based on regression [40]. The regression model approximates the mapping from the 
time-parameter to the projection coefficients of the underlying high-fidelity solution onto the reduced space. The neural 
network used as the regression model is referred to as projection driven neural network (PDNN) in this paper. The draw-
back of the non-intrusive reduced-order modeling is the high cost of the offline stage, since a large number of high-fidelity 
simulations are needed to generate a sufficiently large data set to train an accurate regression model.

A reduced-order modeling framework based on physics-informed machine learning [50–53] is proposed in this section 
to combine the advantages of both intrusive and non-intrusive methods. In this framework, the reduced coefficients are 
predicted by a feedforward neural network. The network can be trained by minimizing the mean squared norm of the 
residual of the reduced-order equation (17) on sampled training points in time-parameter space. By taking the residual of 
the reduced-order equation as the loss function, no labeled data is needed for the training. Such a network is referred to as 
the physics-informed neural network (PINN). However, the accuracy of PINN for complex nonlinear problem is often limited. 
To address this, the labeled data obtained by the projection of the high-fidelity snapshots that are used for basis generation, 
can be used to improve the accuracy. The usage of this data set does not require extra high-fidelity simulations. By using 
the labeled data, the loss function of the network becomes the weighted sum of the mean squared norm of the residual of 
the reduced-order equation and the mean squared error between the network output and the label. The network trained by 
this strategy is referred to as physics-reinforced neural network (PRNN). The framework of the physics-informed machine 
learning for reduced-order modeling is sketched in Fig. 1.

In the remainder of this section, the physics-informed machine learning framework, including the network construction, 
data preparation and training procedure will be presented in detail.
6
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Fig. 1. Framework of physics-informed machine learning for reduced-order modeling.

3.1. Feedforward neural network

One of the most important issues for the design of an artificial neural network (ANN) is the architecture of the network. 
Several network architectures have been proposed, among which the feedforward neural network (FNN) is often preferred 
for function regression tasks.

A FNN maps the input x to the output y. Generally, a FNN consists of an input layer, L hidden layers and an output layer. 
The l-th layer has nl neurons, where l = 0, 1, ..L, L + 1 denotes the input layer, first hidden layer,..., L-th hidden layer and 
the output layer, respectively. The forward propagation, i.e., the function y = fnn(x) is⎧⎪⎪⎨⎪⎪⎩

y(0) = x

y(l) = fact

(
W(l)y(l−1) + b(l)

)
, l = 1, · · · , L

y = y(L+1) = W(L+1)y(L) + b(L+1)

, (25)

where y(l) ∈Rnl is the output of l-th layer, n0 is the input dimension and nL+1 is the output dimension, W(l) ∈Rnl×nl−1 are 
the weight matrices, b(l) ∈Rnl are the biases and fact is the nonlinear element-wise activation function.

In this work, the network is used to predict the reduced coefficients ααα, given the time-parameter value (t, μμμ). Therefore, 
the input dimension is n0 = np + 1 and output dimension is nL+1 = m. The network structure is shown in Fig. 2. We put 
the same number of neurons in each hidden layer, namely n1 = n2 = · · · = nL = nH . The nonlinear activation function is the 
Swish function fact(x) = x · sigmoid(x) [66].

The network is trained, i.e., the weights and biases are optimized by minimizing a loss function. In the next two subsec-
tions, we will define several machine learning strategies by using different loss functions.

The training of the FNN is implemented in PyTorch [67]. The Adam optimizer [68] and the L-BFGS optimizer [69] are 
used in training. The Adam optimizer converges faster, while the L-BFGS optimizer generalizes better. Towards an efficient 
and accurate training procedure, the Adam optimizer is used in the first 90% of the epochs, and the L-BFGS optimizer is 
used for the remaining 10% of the epochs. Within a single epoch, the Adam optimizer uses mini-batches, while the L-BFGS 
optimizer uses full-batch of the training data. The training is performed for a sufficient number of epochs to obtain a 
converged network. The convergence speed of the Adam optimizer is controlled by the learning rate η.

3.2. Data preparation

In this subsection, we will present the procedure to generate the projection data set for the training process. The projec-
tion data is collected from the high-fidelity snapshots used to generate the reduced basis. As mentioned in Section 2, the 
7



W. Chen, Q. Wang, J.S. Hesthaven et al. Journal of Computational Physics 446 (2021) 110666
Fig. 2. A sample feedforward neural network structure with two hidden layers.

snapshots ���h = {φφφh(t1; μμμ1) − φ̃φφ, φφφh(t2; μμμ1) − φ̃φφ, ..., φφφh(tNt ; μμμNs ) − φ̃φφ} ∈RN×Ns Nt are obtained on the sampled parameter set 
Ph = {μμμ1, μμμ2, ..., μμμNs } ⊂P for Nt time steps.

The projection coefficients of a snapshot φφφh(t; μμμ) onto the reduced space V are

αααV (t;μμμ) = VT (
φφφh(t;μμμ) − φ̃φφ

)
. (26)

The projection is the best approximation of the high-fidelity solution in the reduced space. Therefore, for a time-parameter 
value (t, μμμ), the “best” output of the network is αααV (t; μμμ). A data set DPr = {(ti,μμμi) ,αααV (ti;μμμi)}Ns Nt

i=1 can be collected from 
the high-fidelity solutions.

The training speed of neural networks is affected by the range of the input/output [70], thus feature scaling needs to be 
performed before feeding the training data into the network. For the input (t, μμμ) ∈ T × P , as the boundary of the time-
parameter space is predefined, the minimum and maximum of the time and parameters can be used to scale the input to 
[−1, 1]np+1 as

t̃ = t − (tmax + tmin)/2

(tmax − tmin)/2
, μ̃μμ = μμμ − (μμμmax +μμμmin)/2

(μμμmax −μμμmin)/2
. (27)

For the output ααα, there is no a predefined range. We turn to a statistical method to do the normalization using the standard 
score. To this end, the mean ααα and standard derivation σσσααα , computed from the data set DPr , are used to normalize the 
output as

α̃αα = ααα −ααα

σσσααα
. (28)

Feature scaling of the input/output can be viewed as a pre-processing, thus a corresponding post-processing is necessary to 
compute the final prediction

αααnn (t;μμμ) = fnn
(
t̃,μ̃μμ

) ⊗σσσααα +ααα. (29)

In this paper, the projection data set DPr is used as the training data set for the PDNN and part of the training data set 
for PRNN. Besides the training data set, a validation data set Dval and a test data set Dte are also required. The validation 
and test data sets are obtained following the same procedure as DPr , on two independently sampled parameter sets.

3.3. Physics-informed machine learning

Once the data preparation is completed, we train a network to predict reduced coefficients using the data set DPr , 
following the method proposed in [40,41]. As the network is trained on the data set collected by the projection of high-
fidelity snapshots onto the reduced space, we refer to the network as projection driven neural network (PDNN). In the 
training procedure, DPr is employed as the training data set. The loss function is defined as the mean squared error (MSE)

LPDNN = 1

ND

∑
(t,μμμ),ααα∈D

∥∥ fnn
(
t̃,μ̃μμ

) − α̃ααV (t;μμμ)
∥∥2

2, (30)

where D is the chosen data set of size ND , which can be the training set DPr or the validation set Dval .
In real applications, we do not expect to generate too many snapshots, since the high-fidelity simulation is expensive. 

Thus the data set DPr is typically small. To prevent over-fitting, L2 weight regularization is employed as

L̃PDNN = LPDNN + λ‖W‖2
F , (31)

where λ is the parameter used to control the amount of regularization.
8
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Algorithm 1 Training process of the PINN.
1: function [Wtr , btr ]=PINN_TRAINING(DResi , Nepo, Nbatch, η0)
2: W, b ← INIT(W, b) � initialize weights and biases
3: Nb ← NResi/Nbatch � Mini-batch size
4: for epoch ← 1, 0.9 ∗ Nepo do � Adam training epoch loop
5: η ← LEARNING_RATE_DECAY(η0, epoch) � learning rate decay
6: DResi ← SHUFFLE(DResi) � shuffle the training data set
7: for s ← 1, Nbatch do � mini-batch loop
8: DResi,s ← DResi [(s − 1) ∗ Nb + 1 : s ∗ Nb] � the s-th mini-batch

9: L ← 1
Nb

∑
(t,μμμ)∈DResi,s

∥∥∥ dαααnn(t;μμμ)
dt + VT (LVαααnn(t;μμμ) + g (Vαααnn(t;μμμ)) + C)

∥∥∥2

2
� compute loss

10: �W ← −ηGADAM(∇WL), �b ← −ηGADAM(∇bL) � Adam optimizer step
11: W ← W + �W, b ← b + �b � update weights and biases
12: end for
13: end for
14: for epoch ← 0.9 ∗ Nepo + 1, Nepo do � L-BFGS training epoch loop

15: L ← 1
NResi

∑
(t,μμμ)∈DResi

∥∥∥ dαααnn(t;μμμ)
dt + VT (LVαααnn(t;μμμ) + g (Vαααnn(t;μμμ)) + C)

∥∥∥2

2
� compute loss

16: �W ← −GL−BFGS(∇WL, ∇2
WL), �b ← −GL−BFGS(∇bL, ∇2

bL) � L-BFGS optimizer step
17: W ← W + �W, b ← b + �b � update weights and biases
18: end for
19: Wtr ← W, btr ← b � save optimized weights and biases
20: end function

3.3.1. Physics-informed neural network (PINN)
Due to the limited amount of snapshots, it is difficult to train an accurate PDNN. A physics-informed machine learning 

for reduced-order modeling is considered for more accurate network prediction of the reduced-order solution without 
performing extra high-fidelity simulations.

Recently, physics-informed neural network (PINN) has been developed and applied to PDEs [50–52]. The idea is to use the 
residual of the PDE as part of the loss function, to make the network solution fulfill the physics. As there is no labeled data 
involved in the residual loss, unlimited training data points can be sampled in the space-time domain, which significantly 
reduces the amount of labeled data points needed for the training. It is also possible to train a network to predict the 
solution of a PDE without any labeled data [71]. Inspired by these observations, we propose to train a PINN to predict ααα, 
which is the solution of the reduced-order equation (17), without any high-fidelity snapshot data.

The PINN for reduced-order modeling is trained to satisfy the POD-G equation (17), by minimizing the residual loss of 
the equation on a set of sampled points in the time-parameter space. As we only need to evaluate the residual of (17)
on each sampled time-parameter point (t, μμμ), the labeled output αααV (t; μμμ) is not needed. Therefore, high-fidelity snapshots 
on the residual points are not required, which means that a large training data set can be generated at a small cost, 
independent of the full-order model size. Using Latin hypercube sampling in time-parameter space, we generate the data 
set DResi = {ti, μμμi}NResi

i=1 , containing NResi residual points. The loss function is defined as

LPINN = 1

ND

∑
(t,μμμ)∈D

∥∥∥∥dαααnn(t;μμμ)

dt
+ VT (LVαααnn(t;μμμ) + g (Vαααnn(t;μμμ)) + C)

∥∥∥∥2

2
. (32)

The time derivative of the network is computed by using the automatic difference package of PyTorch. The training proce-
dure of the PINN is summarized in Algorithm 1.

During the training of the PINN, the residual of the POD-G model equation needs to be computed on a set of points in 
the time-parameter space at each epoch. Therefore, the complexity of the nonlinear term of the reduced-order model affects 
the training speed of the PINN. In the present work, we restrict ourselves to the case of a quadratic nonlinearity, for which 
hyper-reduction is not needed. For more general nonlinearities, a proper hyper-reduction technique, such as the empirical 
interpolation method (EIM) [61], its discrete variant (DEIM) [62], gappy-POD [63] and missing point estimation (MPE) [64], 
should be used to efficiently evaluate the nonlinear term of the reduced-order model. Another technical difficulty that 
affects the training speed is the non-affine dependence of the linear PDE operators on the parameters. The computation of 
the linear term in (21) is a matrix-vector multiplication. The matrix is not of high-dimension, and the number of residual 
points does not need to be very large in real applications, as shown in Section 4. Therefore, we can pre-compute and store 
the matrices for all parameter values, to make the training efficient.

As the PINN is trained to approximate the reduced-order model, the accuracy limit of the PINN is the POD-G.

3.3.2. Physics-reinforced neural network (PRNN)
For complex nonlinear problems, the projection of the high-fidelity solution onto the reduced space is more accurate than 

the solution of the reduced-order equation, since the reduced-order equation does not take into account of the impact of the 
unresolved scales (truncated modes) on the resolved scales (reduced basis modes). Therefore, the projection coefficients can 
be used to provide more physical information during the network training and thus improve the accuracy. For this reason, 
9
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Algorithm 2 Training process of the PRNN.
1: function [Wtr , btr ]=PRNN_TRAINING(DResi , DPr , Nepo, Nbatch, η0)
2: W, b ← INIT(W, b) � initialize weights and biases
3: N Resi

b ← NResi/Nbatch, N Pr
b ← Ns Nt/Nbatch � Mini-batch size

4: for epoch ← 1, 0.9 ∗ Nepo do � Adam training epoch loop
5: η ← LEARNING_RATE_DECAY(η0, epoch) � learning rate decay
6: DResi ← SHUFFLE(DResi), DPr ← SHUFFLE(DPr) � shuffle the training data set
7: for s ← 1, Nbatch do � mini-batch loop

8:
DResi,s ← DResi [(s − 1) ∗ N Resi

b + 1 : s ∗ N Resi
b ]

DPr,s ← DPr [(s − 1) ∗ N Pr
b + 1 : s ∗ N Pr

b ] � the s-th mini-batch

9:

L ← ω

N Resi
b

∑
(t,μμμ)∈DResi,s

∥∥∥∥ dαααnn(t;μμμ)

dt
+ VT (LVαααnn(t;μμμ) + g (Vαααnn(t;μμμ)) + C)

∥∥∥∥2

2
+

1

N Pr
b

∑
(t,μμμ),ααα∈DPr,s

∥∥ fnn
(
t̃,μ̃μμ

) − α̃ααV (t;μμμ)
∥∥2

2

� compute loss

10: �W ← −ηGADAM(∇WL), �b ← −ηGADAM(∇bL) � Adam optimizer step
11: W ← W + �W, b ← b + �b � update weights and biases
12: end for
13: end for
14: for epoch ← 0.9 ∗ Nepo + 1, Nepo do � L-BFGS training epoch loop

15:

L ← ω

NResi

∑
(t,μμμ)∈DResi

∥∥∥∥ dαααnn(t;μμμ)

dt
+ VT (LVαααnn(t;μμμ) + g (Vαααnn(t;μμμ)) + C)

∥∥∥∥2

2
+

1

Ns Nt

∑
(t,μμμ),ααα∈DPr

∥∥ fnn
(
t̃,μ̃μμ

) − α̃ααV (t;μμμ)
∥∥2

2

� compute loss

16: �W ← −GL−BFGS(∇WL, ∇2
WL), �b ← −GL−BFGS(∇bL, ∇2

bL) � L-BFGS optimizer step
17: W ← W + �W, b ← b + �b � update weights and biases
18: end for
19: Wtr ← W, btr ← b � save optimized weights and biases
20: end function

we refer to the trained network as physics-reinforced neural network (PRNN). The loss function is defined as the weighted 
sum of the mean squared norm of the residual of the reduced-order equation and the mean squared error between the 
network output and the projection coefficients of the high-fidelity solutions. The detailed form of the loss function is

LPRNN = LPDNN|D=DPr
+ ω LPINN|D=DResi

. (33)

where the hyper-parameter ω is the residual loss weight of which the quasi-optimal value is determined by grid-search in 
the numerical tests. The training procedure of the PRNN is summarized in Algorithm 2. We note that the projection data 
set for a steady-state problem is typically small, and we just use one mini-batch for the projection data set. For unsteady 
problems, during the training, the projection and residual data sets are divided into the same number of mini-batches.

The PRNN is trained using the information of physics and projection data, and an ideal PRNN is supposed to achieve 
accuracy that is higher than the POD-G and lower than the projection. However, in the numerical results in Section 4, we 
observe that for the PDNN, PINN and PRNN, the accuracy reaches a certain limit during the reduced basis refinement. This 
is caused by the prediction error of the networks, and is impossible to avoid since the generalization accuracy of an artificial 
neural network is limited.

A great advantage of a non-intrusive RB method over its intrusive counterpart is the local modeling capability [41]. 
Inheriting the local modeling capability from the non-intrusive RB method, the physics-informed machine learning based 
reduced-order models can be built on a local time range of interest, which reduces the modeling complexity.

4. Numerical results

4.1. Steady-state problems

In this subsection, we use several steady-state problems to evaluate the proposed methods. Although the methods are 
described for unsteady problems in Sections 2 and 3, it is straightforward to obtain the steady-state formulas by setting 
Nt = 1 and removing the time derivatives and initial conditions. This subsection presents the numerical results of the 
reduced basis methods based on PDNN, PINN and PRNN for the one-dimensional Burgers’ equation, the two-dimensional lid-
driven cavity flow and the two-dimensional natural convection. The results of the following two methods are also presented 
for comparison:

(1) Projection: Projection of high-fidelity solution onto the reduced basis space;
(2) POD-G: Intrusive POD-Galerkin reduced-order model.
10
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Table 1
Network training hyper-parameters for steady-state problems.

Number of mini-batches

Network DResi DPr Epochs Learning rate for epoch i λ

PDNN 1 20,000 0.01 × 0.95int( i−1
200 ) 10−10

PINN 10 20,000 0.01 × 0.95int( i−1
200 )

PRNN 10 1 20,000 0.01 × 0.95int( i−1
200 )

The mean relative error of the reduced-order solution is used to measure the accuracy of the methods:

ε• = 1

NDte

∑
μμμ,φφφh∈Dte

∥∥φφφh − φ̃φφ − Vααα• (μμμ)
∥∥

2

‖φφφh‖2
, (34)

where Dte = {μμμi, φφφh(μμμi)}NDte
i=1 is the test data set of size NDte , the subscript “•” is used to take the place of “Projec-

tion”, “POD-G”,”PDNN”,”PINN” and “PRNN”, respectively. For steady-state problems, the reference value is simply set as zero, 
namely φ̃φφ = 0.

The sampling methods in the parameter space P in the numerical experiments are:

(1) high-fidelity snapshots: Sobol sequence;
(2) residual points: Latin hypercube sampling;
(3) validation data points: Random sampling;
(4) test data points: Uniform sampling;

The network training hyper-parameters for steady-state problems are set as the values listed in Table 1, if not 
stated otherwise. The quasi-optimal residual loss weight ω (defined in (33)) for PRNN is sought among five values 
{10−2, 10−1, 100, 101, 102}, if not stated otherwise. To avoid the influence of random initialization of weights and biases 
on network training, each ANN is trained with 5 restarts. The trained network that has the smallest mean relative error (34)
on the validation data set is selected as the final model.

We refer the reader to the repository1 for details of the code and data.

4.1.1. Burgers’ equation
To validate the proposed methods, we first consider the one-dimensional parameterized Burgers’ equation⎧⎨⎩φ(x;μμμ)

∂φ(x;μμμ)

∂x
− ∂φ2(x;μμμ)

∂x2
= s(x;μμμ) − 1 ≤ x ≤ 1

φ (x = ±1;μμμ) = 0
, (35)

where μμμ = (μ1, μ2) ∈ [1, 10] × [1, 10] are the parameters in the manufactured solution

φ(x;μμμ) = (1 + μ1x) sin(−μ2x/3)(x2 − 1). (36)

The source term s(x; μμμ) can be derived analytically by substituting the solution (36) into (35). High-fidelity snapshots are 
obtained using the Chebyshev pseudospectral method with 129 Chebyshev Gauss-Lobatto points.

A baseline reduced-order model is constructed to validate the proposed methods. The reduced basis functions are ex-
tracted using Ns = 80 high-fidelity snapshots. The singular value decay is shown in Fig. 3(a). The singular value decays 
quickly, implying that a small number of reduced basis functions is enough to recover the main dynamics of the solution. 
Meanwhile, the number of high-fidelity snapshots can be also reduced. The PDNN, PINN and PRNN have the same network 
architecture with L = 3 hidden layers and nH = 30 neurons in each hidden layer. The number of residual points for the 
PINN and PRNN is NResi = 1024. The accuracy of the physics-informed machine learning based reduced-order model de-
pends on the sizes of the projection data set, the residual data set and the feedforward network. The impacts of these three 
factors on the accuracy will be investigated separately, e.g., we train networks of different sizes on the same projection and 
residual data sets, to study the effect of the network size. A data set with 40 randomly sampled points in parameter space 
is employed as the validation data set. A data set with 101 × 101 = 10201 uniformly sampled points in parameter space is 
used to test the accuracy of the models.

Reduced-order models built with Ns = 10, 80 and 320 snapshots are tested to investigate the impact of the size of 
the projection data on the accuracy of the methods. The prediction error is shown in Fig. 4, and the corresponding quasi-
optimal residual loss weight for PRNN is shown in Fig. 5. The POD-G is accurate as its error is only slightly larger than 

1 available at https://github .com /cwq2016 /POD -PINN.
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Fig. 3. Singular value decay of the steady-state problems: (a) the Burgers’ equation with 80 snapshots, (b) the lid-driven cavity flow problem with 100 
snapshots and (c) the natural convection problem with 200 snapshots.

the projection, indicating that the impact of the unresolved scales on the resolved scales can be neglected. The PINN is as 
accurate as PRNN, and both follow the POD-G closely until they reach the accuracy limit of O(10−5) at m = 8. The results 
show that adding the projection data to the physics-informed learning is not beneficial in this case, since the POD-G model 
is already very accurate so that an accurate PINN can be obtained by learning the POD-G model on the residual data set. 
The PINN and PRNN are much more accurate than the PDNN. With Ns = 10 and m ≥ 8, the error of the PINN/PRNN is up to 
three orders of magnitude smaller than that of the PDNN. As the dynamics of the problem can be recovered accurately on 
a small set of reduced basis, significant accuracy improvement due to the refinement of the high-fidelity snapshots is not 
observed in Fig. 4, except for the purely data-driven PDNN.

An important observation in Fig. 4 is that during the reduced basis refinement for the network-based reduced-order 
methods, the accuracy reaches a plateau when the basis size becomes larger than a threshold. This is caused by the reduced 
coefficients prediction error, and is impossible to avoid since the generalization accuracy of an artificial neural network 
is limited. As lower-order modes play more important roles than higher-order modes, prediction error of the reduced 
coefficients becomes dominant when the set of reduced basis is sufficiently large and the accuracy of the reduced-order 
solution saturates.

Reduced-order models built with NResi = 256, 512 and 1024 are tested to investigate the impact of the size of the 
residual data set on the accuracy of PINN and PRNN. In Fig. 6(a), it is shown that the accuracy improves with the residual 
data set refinement, which indicates that the PINN and PRNN can learn the reduced-order equation more accurately with 
more residual points.

Reduced-order models based on networks with different hidden layer widths and depths are tested to investigate the 
impact of the network size on the accuracy. The errors of the PDNN, PINN and PRNN with various hidden layer widths 
are shown in Fig. 6(b), where the network depth is fixed as L = 3. The errors of the PDNN, PINN and PRNN with various 
network depths are shown in Fig. 6(c), where the network hidden layer width is fixed as nH = 30. The results show that 
the larger PDNN, PINN and PRNN are more accurate, since larger networks have stronger ability to learn the projection data 
or the reduced-order equation. Furthermore, it is shown that the hidden layer width has larger impact on the prediction 
accuracy of networks than the depth.

Reduced-order models with λ = 10−4, 10−6, 10−8, 10−10, 0 are tested to investigate the impact of L2 regularization on 
the accuracy of PDNN. In Fig. 6(d), it is shown that the accuracy reaches the maximum at λ = 10−10, which is taken as the 
default value of λ in Table 1.

4.1.2. Lid-driven cavity flow
In this subsection, the lid-driven cavity flow problem is used to test the proposed reduced-order methods. The vis-

cous flow in a parallelogram-shaped cavity is described by the following non-dimensionalized incompressible Navier-Stokes 
equations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∇x · u = 0 x ∈ �

u · ∇xu = −∇x p + 1

Re
∇2

x u x ∈ �

u = uw , v = 0 x ∈ �1

u = v = 0 x ∈ �2

, (37)

where u = (u, v) is the velocity in the Cartesian coordinate system x = (x, y), p is the pressure and Re is the Reynolds 
number. The geometry of the problem is depicted in Fig. 7 (a), and is affected by the angle θ between the oblique sides 
12
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Fig. 4. Prediction error for the steady-state Burgers’ equation with different number of snapshots. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

Fig. 5. Quasi-optimal residual loss weight (chosen from {10−2,10−1,100,101,102}) of the PRNN for the steady-state Burgers’ equation.

and the positive x-semiaxis. The boundary is ∂� = �1 ∪ �2, where �1 represents the top moving wall and �2 represents 
the other three static non-slip walls. μμμ = (Re, θ) are the parameters for this problem.

The high-fidelity simulations are performed in the computational domain [−1, 1]2. The mapping from the physical coor-
dinate x = (x, y) to the computational coordinate ξξξ = (ξ1, ξ2) ∈ [−1, 1]2 is defined as
13
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Fig. 6. Prediction errors for the steady-state Burgers’ equation with different (a) number of residual points NResi , (b) network hidden layer width nH , 
(c) network depth L and (d) L2 regularization parameter λ.

X :
{

x = 1/2ξ1 + 1/2ξ2 cos(θ)

y = 1/2ξ2 sin(θ)
� X−1 :

{
ξ1 = 2(x − y cot(θ))

ξ2 = 2y/ sin(θ)
. (38)

The Jacobian matrix of the mapping is

J = ∂x

∂ξξξ
=

[
2 0

−2 cot(θ) 2/ sin(θ)

]
. (39)

The governing equations in computational space are
14
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Fig. 7. The geometry and boundary conditions for (a) Lid-driven cavity flow and (b) Natural convection.

⎧⎨⎩
(
J−1∇ξξξ

) · u = 0(
u · (J−1∇ξξξ

))
u = − (

J−1∇ξξξ

)
p + 1

Re

(
J−1∇ξξξ

)2
u

. (40)

The flow is driven by the top wall moving with a velocity

uw = (1 + ξ1)
2(1 − ξ1)

2. (41)

The governing equations (40) are discretized by the Chebyshev pseudospectral method on a tensor-product mesh of 49 × 49
points. The I P N − I P N−2 method [56,57] is adopted to remove the spurious modes of pressure. The artificial compressibility 
method [72] is used to address the velocity-pressure coupling issue by adding pseudo time derivatives to the steady-state 
equation (40). The discretized equations are advanced in pseudo time using the explicit four-stage fourth-order Runge-Kutta 
scheme.

The parameter space of interest is μμμ = (Re, θ) ∈ [100, 500] × [π/3, 2π/3]. The singular values for Ns = 100 snapshots 
are shown in Fig. 3(b). It shows that the singular values decay slowly, implying that a large number of basis functions are 
required to recover the main dynamics of the problem accurately.

The POD-G solver diverges for many parameter values if a proper initial reduced-order solution can not be provided. To 
avoid the divergence issue, for a parameter μμμ, we use the projection of the corresponding high-fidelity solution onto the 
reduced space as the initial solution for the POD-G solver. This of course comes at high cost.

The PDNN, PINN and PRNN have the same network architecture with L = 5 hidden layers and nH = 30 neurons in each 
hidden layer. The number of residual points for the PINN and PRNN is NResi = 2048.

Reduced-order models are built with Ns = 30, 60 and 100 snapshots. A data set with 50 random sampled points in 
parameter space is employed as the validation data set. A data set with 11 × 11 = 121 uniformly sampled points in pa-
rameter space is used to test the accuracy of the reduced-order models. The prediction errors of the reduced-order models 
are shown in Fig. 8, and the corresponding quasi-optimal residual loss weight for PRNN is shown in Fig. 9. It is shown that 
the POD-G error is larger than the projection error, due to the difficulty of recovering the main dynamics of the problem 
accurately using a small set of basis functions. As the projection of the high-fidelity solution onto the reduced space is 
more accurate than the POD-G solution, the use of the projection data in the training makes the PRNN more accurate than 
the PINN. It is shown in Fig. 8 that the error curve of the PRNN lies in between that of the POD-G and projection when 
m ≤ 20, which demonstrates that the PRNN can reach higher accuracy than the POD-G in a low-dimensional reduced space. 
PRNN is more accurate than the purely data-driven PDNN, which suffers from the low-accuracy and over-fitting issues on 
small data sets. The error of the PRNN is around one order of magnitude smaller than that of the PDNN for m ≥ 20 and 
Ns = 30.

Predictions by the PRNN for several parameter values are compared with the corresponding high-fidelity solutions in 
Fig. 10 to intuitively show the accuracy of the proposed reduced-order method. The PRNN reduced-order solutions agree 
well with the high-fidelity solutions.

4.1.3. Natural convection
The natural convection problem is used to further test the proposed reduced-order methods. The unit square cav-

ity is filled with an incompressible Newtonian fluid. The cavity is heated and cooled on the left and right walls, 
while the other two boundaries are adiabatic walls. The geometry and boundary conditions are shown in Fig. 7(b). 
The flow is driven by the vertical buoyancy force, which is modeled by the Boussinesq approximation. The orienta-
tion of the cavity is controlled by an angle θ . The physical coordinate system x − y is attached to the cavity, by 
setting the origin as the center of the cavity and the y-axis parallel to the heated/cooled walls. The natural con-
vection can be modeled by the non-dimensionalized incompressible Navier-Stokes equations plus an energy equa-
tion
15
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Fig. 8. Prediction error for the lid-driven cavity flow problem with different number of snapshots.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇x · u = 0 x ∈ �

u · ∇xu = −∇x p +
√(

Pr

Ra

)
∇2

x u − T ng x ∈ �

u · ∇xT = 1√
(Pr × Ra)

∇2
x T x ∈ �

u = 0, T = +0.5 x ∈ �1

u = 0, T = −0.5 x ∈ �2

u = 0, ∂T /∂n = 0 x ∈ �3

, (42)

where u = (u, v) is the velocity in the Cartesian coordinate system x = (x, y), p is the pressure, Ra is the Rayleigh 
number, Pr is the Prandtl number and ng = (− sin θ,− cos θ) is the direction of gravity. �1 represents the left hot wall, 
�2 represents the right cold wall and �3 represents the other two walls. Similar to the lid-driven cavity problem in 
Section 4.1.2, the high-fidelity simulations are obtained using the Chebyshev pseudospectral method on a mesh with 
49 × 49 points. As the physical domain is a unit square, the physical coordinate can be linearly scaled to the com-
putational coordinate. The governing equations in computational space can be easily obtained from (42) and are thus 
omitted.

The parameter space of interest is μμμ = (Ra, Pr, θ) ∈ [104, 105] × [0.6, 0.8] × [π/4, π/2]. The singular values for Ns = 200
snapshots are shown in Fig. 3(c). It shows that the singular values decay slowly, suggesting that a large number of basis 
functions are needed to accurately recover the main dynamics of the problem.

Similar to the lid-driven cavity problem, to avoid the divergence issue, we use the projection of the corresponding high-
fidelity solution onto the reduced space as the initial solution for the POD-G solver.

The PDNN, PINN and PRNN have the same network architecture with L = 5 hidden layers and nH = 30 neurons in each 
hidden layer. The number of residual points for the PINN and PRNN is NResi = 2048.

Reduced-order models are built with Ns = 30, 100 and 200 snapshots. A data set with 30 random sampled points 
in parameter space is employed as the validation data set. A data set with 6 × 6 × 6 = 216 uniformly sampled points 
in parameter space is used to test the accuracy of the reduced-order models. The prediction errors of the reduced-order 
models are shown in Fig. 11, and the corresponding quasi-optimal residual loss weight for PRNN is shown in Fig. 12. It is 
shown that the POD-G error is larger than the projection error, due to the difficulty of recovering the main dynamics of the 
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Fig. 9. Quasi-optimal residual loss weight (chosen from {10−2,10−1,100,101,102}) of the PRNN for the lid-driven cavity flow problem.

Fig. 10. Pressure contours and streamlines of the lid-driven cavity flow computed by the high-fidelity solver and the PRNN for three parameter values. 
The reduced basis is of size m = 25 and extracted from 100 snapshots. The solid streamline indicates an anticlockwise vortex and the dashed streamline 
indicates an clockwise vortex.

problem accurately using a small set of basis functions. The PRNN is more accurate than the PINN because of the use of the 
projection data in the training. It is shown in Fig. 11 that the error curve of the PRNN lies between that of the POD-G and 
projection when m ≤ 15, which demonstrates that the PRNN reaches higher accuracy than the POD-G in low-dimensional 
reduced space. PRNN is more accurate than the purely data-driven PDNN.
17
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Fig. 11. Prediction error for the steady-state natural convection problem with different number of snapshots.

Fig. 12. Quasi-optimal residual loss weight (chosen from {10−2,10−1,100,101,102}) of the PRNN for the steady-state natural convection problem.

Predictions by the PRNN for several parameter values are compared with the corresponding high-fidelity solutions in 
Fig. 13 to show the accuracy of the proposed reduced-order method. The PRNN reduced-order solutions agree well with the 
high-fidelity solutions.
18
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Fig. 13. Temperature contours and streamlines of the natural convection computed by the high-fidelity solver and the PRNN for three parameter values. 
The reduced basis is of size m = 20 and extracted from 200 snapshots. The solid streamline indicates an anticlockwise vortex and the dashed streamline 
indicates an clockwise vortex.

4.2. Unsteady problems

In this subsection, we use several unsteady problems to further evaluate the proposed methods. It is shown in Section 4.1
that the PINN is less accurate than the PRNN, as the projection data is added to the training of PRNN. Therefore, only two 
networks, namely the PDNN and PRNN, are considered in this subsection. The test cases are the one-dimensional Burgers’ 
equation, the two-dimensional advection diffusion reaction flow and the two-dimensional natural convection flow. The 
results of the following three methods are also presented for comparison:

(1) Projection: Projection of high-fidelity solution onto the reduced basis space;
(2) POD-G: Intrusive POD-Galerkin reduced-order model.
(3) POD-G + closure: Intrusive POD-Galerkin reduced-order model with closure.

The closure term for the POD-G model represents the impact of the unresolved scales on the resolved scales. The sta-
bility and accuracy of the POD-G model can be significantly improved by adding the closure term. For the introduction 
of closure modeling for reduced-order modeling, we refer the reader to [17]. As we do not intend to do prediction 
beyond the time range of the training data, a Radial Basis Function (RBF) interpolation is utilized to compute the clo-
sure term of the POD-G model, instead of the recurrent neural network used in [17]. The RBF interpolation model is 
trained on the projection data set. The input for the RBF interpolation is the time-parameter (t, μμμ), and the labeled 
output is the closure term which is the difference between the projection of the full-order model onto the reduced 
space and the POD-G model. The POD-G and the “POD-G + closure” are advanced in time using the backward Euler 
method.

The sampling methods in the time-parameter space T ×P in the numerical experiments are:

(1) high-fidelity snapshots: Th × Sobol sequence in parameter space P ;
(2) residual points: Latin hypercube sampling in the time-parameter space T ×P ;
(3) validation data points: Th × Random sampling in parameter space;
(4) test data points: Th × Uniform sampling in parameter space P ;
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Table 2
Network training hyper-parameters for unsteady problems.

Number of mini-batches

Network DResi DPr Epochs Learning rate for epoch i λ

PDNN 10 10 20,000 0.01 × 0.95int( i−1
200 ) 10−10

PRNN 10 10 20,000 0.01 × 0.95int( i−1
200 )

The following metric is used to measure the accuracy for unsteady problems:

ε• = 1

NDte

∑
μμμ∈Dte

√√√√√ 1

te − ts

te∫
ts

∥∥φφφh − φ̃φφ − Vααα• (t;μμμ)
∥∥2

2 dt, (43)

where [ts, te] is the time range to be tested on, Dte = {μμμi}NDte
i=1 is the test data set of size NDte in parameter space, the 

subscript “•” is used to take the place of “Projection”, “POD-G”, “POD-G + closure”, “PDNN”, and “PRNN”, respectively.
The network training hyper-parameters for unsteady problems are set as the values listed in Table 2, if not stated other-

wise. The quasi-optimal residual loss weight ω for PRNN is considered among the five values {10−2, 10−1, 100, 101, 102}, if 
not stated otherwise. To avoid the influence of random initialization of weights and biases on network training, each ANN 
is trained with 5 restarts. The trained network that has the smallest mean relative error (43) on the validation data set is 
selected as the final model.

4.2.1. Burgers’ equation
The following time-dependent one-dimensional Burgers’ equation is used to test the proposed methods⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂φ

∂t
+ φ

∂φ

∂x
= 1

Re

∂2φ

∂x2
(x, t) ∈ � × T

φ (x, t) = 0 (x, t) ∈ ∂� × T

φ (x,0) = x

1 +
√

1
t0

exp
(

Re x2

4

) x ∈ �

. (44)

The spatial domain is � = [0, 1] and the temporal domain is T = [0, 2]. The exact solution is

φ(x, t) =
x

t+1

1 +
√

t+1
t0

exp
(

Re x2

4t+4

) , (45)

where t0 = exp(Re/8). The only parameter for this problem is μμμ = Re ∈ [200, 800]. High-fidelity snapshots are computed 
using (45), with 129 Chebyshev Gauss-Lobatto points in space and 101 equally spaced points in time.

The reduced basis is extracted from the snapshots computed using Ns = 10 parameter instances and the reference value 
φ̃φφ is set as the initial solution. The singular value decay is shown in Fig. 14(a). The singular value decays quickly, suggesting 
that a small number of reduced basis functions is enough to recover the main dynamics of the solution. The PDNN and 
PRNN have the same network architecture with L = 2 hidden layers and nH = 100 neurons in each hidden layer. The 
number of residual points for the PRNN is NResi = 2048. A data set with 10 randomly sample parameter points and 101
equally spaced time points is employed as the validation data set. A data set with uniformly sampled 100 parameter points 
and 101 equally spaced time points is used to test the accuracy of the models.

Reduced-order models built with Ns = 5, 10 and 20 parameter instances are tested to investigate the impact of the size 
of the projection data on the accuracy of the methods. The prediction error is shown in Fig. 15, and the corresponding 
quasi-optimal residual loss weight for PRNN is shown in Fig. 16. The POD-G is accurate as its error is only slightly larger 
than the projection, which indicates that the impact of the unresolved scales on the resolved scales can be neglected and 
there is no need for closure modeling. The PRNN follows the POD-G closely until it reach the accuracy limit of O(10−4) at 
m = 12. The PRNN is much more accurate than the PDNN. With Ns = 5 and m ≥ 12, the error of the PRNN is up to two 
orders of magnitude smaller than that of the PDNN. It is observed in Fig. 15 that the projection data set size has much 
larger impact on the accuracy of PDNN than that of PRNN.

4.2.2. Advection diffusion reaction
To validate the improvement by using the local modeling strategy of the non-intrusive methods, we consider a linear 

advection-diffusion-reaction problem
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Fig. 14. Singular value decay of the unsteady problems: (a) the Burgers’ equation with 10 parameter instances, (b) the advection diffusion reaction problem 
with 10 parameter instances and (c) the natural convection problem with 60 parameter instances. The basis functions of the unsteady natural convection 
problem are generated using the truncated randomized SVD, in which only 500 singular values and vectors are extracted.

Fig. 15. Prediction error for the unsteady Burgers’ equation with different number of parameter instances.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂φ

∂t
− K∇2

x φ + u · ∇xφ + a0u = F (x, t) ∈ � × T

∂φ

∂n
= 0 (x, t) ∈ ∂� × T

φ (x,0) = 0 x ∈ �

, (46)

in the two-dimensional spatial domain � = [0, 1]2 and the temporal domain T = [0, 2π ], where a0 = 0.01, u =
(cos(t), sin(t))T and F = exp

(
− (x−0.5)2+(y−0.5)2

0.072

)
. The parameter of interest is μμμ = K ∈ [0.05, 0.5]. High-fidelity snapshots 

are obtained using the Chebyshev pseudospectral method with 25 × 25 Chebyshev Gauss-Lobatto points for spatial dis-
cretization and a third-order backward difference method with 201 equally spaced points for temporal discretization.

To validate the effectiveness of the local modeling feature of non-intrusive methods, we test the PDNN and PRNN on 
both the global temporal domain T = [0, 2π ] and a local temporal domain Tloc = [0.2π, 2π ].

The reduced basis is extracted from the snapshots computed using Ns = 10 parameter instances and the reference value 
φ̃φφ = 0. The singular values decay for both the global and local time domains as shown in Fig. 14(b). The singular values 
decay slowly for the global time domain, implying that a large number of reduced basis functions is required to recover 
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Fig. 16. Quasi-optimal residual loss weight (chosen from {10−2,10−1,100,101,102,103,104,105}) of the PRNN for the unsteady Burgers’ equation.

the main dynamics of the solution. The singular values of the local time domain decay faster than that of the global time 
domain, featuring the advantage of local modeling. The PDNN and PRNN have the same network architecture with L = 2
hidden layers and nH = 100 neurons in each hidden layer. The number of residual points for the PRNN is NResi = 2048. 
A data set with 10 randomly sampled parameter points and 201 equally spaced time points is employed as the validation 
data set. A data set with 100 uniformly sampled parameter points and 201 equally spaced time points is used to test the 
accuracy of the models.

The test error is shown in Fig. 17, and the quasi-optimal residual loss weight for PRNN is shown in Fig. 18. Without 
closure, the error curve of POD-G lies far from the projection error curve, implying a poor accuracy of POD-G. By adding the 
closure term, the accuracy of the POD-G is significantly improved, which indicates that the impact of the unresolved scales 
on the resolved scales can not be neglected. The PRNN follows the “POD-G + closure” closely and is much more accurate 
than the original POD-G. The PRNN is also more accurate than the PDNN. It is observed in Fig. 17 that both the PDNN 
and the PRNN achieve much higher accuracy on the local time range than the global time range, which demonstrates the 
effectiveness of the local modeling strategy.

Predictions by the PRNN for several time-parameter values are compared with the corresponding high-fidelity solutions 
in Fig. 19 to show the accuracy of the proposed reduced-order method. The PRNN reduced-order solutions agree well with 
the high-fidelity solutions.

4.2.3. Natural convection
To further validate the capability of the proposed method in handling complex nonlinear problems, we consider the 

unsteady natural convection enclosed in a cavity, described by the following equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇x · u = 0 x ∈ � × T

∂u

∂t
+ u · ∇xu = −∇x p +

√(
Pr

Ra

)
∇2

x u − T ng x ∈ � × T

∂T

∂t
+ u · ∇xT = 1√

(Pr × Ra)
∇2

x T x ∈ � × T

u = 0, T = f (t) x ∈ �1 × T
u = 0, T = −0.5 x ∈ �2 × T
u = 0, ∂T /∂n = 0 x ∈ �3 × T

u (x,0) = u0, p (x,0) = p0, T (x,0) = T0 x ∈ �

, (47)

where Pr = 0.71 is the Prandtl number, ng = (− sin θ,− cos θ) is the direction of gravity. The geometry and boundary con-
ditions are the same as for the steady natural convection problem in Section 4.1.3, except that the heated wall is subjected 
to a sinusoidal time-dependent temperature
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Fig. 17. Prediction error for the advection diffusion reaction problem. The mark “local” denotes the test on the local temporal domain [0.2π,2π ].

Fig. 18. Quasi-optimal residual loss weight (chosen from {10−2,10−1,100,101,102}) of the PRNN for the advection diffusion reaction problem.

f (t) = 0.5 + a sin

(
2πt

P

)
, (48)

where the amplitude and the period of the fluctuating temperature are set as a = 0.8 and P = 10, respectively. The param-
eter of interest is μμμ = (Ra, θ) ∈ [104, 3 × 104] × [5π/12, π/2], and the time interval is T = [0, 100], corresponding to 10 
time periods.

High-fidelity snapshots are obtained using the Chebyshev pseudospectral method with 33 × 33 Chebyshev Gauss-Lobatto 
points for the spatial discretization and a third-order backward difference method with 1001 equally spaced points in 
time for the temporal discretization. To make the problem reducible, the steady-state solution of a special case (Ra, θ) =(
104,π/2

)
, is employed as the initial condition.
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Fig. 19. Contours of the advection diffusion reaction problem computed by the high-fidelity solver and the PRNN for K = 0.10. The reduced basis is of size 
m = 25 and extracted from 10 parameter instances.

To validate the effectiveness of the local modeling feature of non-intrusive methods for complex nonlinear problems, we 
test the PDNN and PRNN on both the global time range (10 time periods) T = [0, 100] and a local time range (the last time 
period) Tloc = [90, 100].

The reduced basis is extracted from the snapshots computed using Ns = 60 parameter instances. During the reduced 
basis generation for the global time domain, the reference value φ̃φφ is set as the initial solution. During the reduced basis 
generation for the local time domain, the reference value φ̃φφ is set as the average of the snapshots. The singular values decay 
for both the global and local time domains as shown in Fig. 14(c). However, the singular values decay slowly for the global 
time domain, implying that a large number of reduced basis functions is required to recover the dynamics of the solution. 
The singular values of the local time domain decay faster than that of the global time domain, featuring the advantage of 
local modeling. The PDNN and PRNN have the same network architecture with L = 2 hidden layers and nH = 100 neurons 
in each hidden layer. The number of residual points for the PRNN is NResi = 2048. A data set with 30 randomly sampled 
parameter points and 1001 equally spaced time points is employed as the validation data set. A data set with uniformly 
sampled 7 × 7 = 49 parameter points and 1001 equally spaced time points is used to test the accuracy of the models.

On the global temporal domain, the POD-G is found to diverge eventually for some parameter instances. Therefore, only 
the results for local modeling are presented in Fig. 20. The corresponding quasi-optimal residual loss weight for PRNN 
is shown in Fig. 21. For the evolution on the local temporal domain, the POD-G uses the projections of the high-fidelity 
snapshots onto the reduced space as initial conditions, which is not feasible in real applications as the high-fidelity snapshot 
at an arbitrary time-parameter instance is not available.

It is shown in Fig. 20 that, without closure, the error of POD-G is large and does not decrease with basis refinement, 
which indicates that the POD-G fails. By adding the closure term, the accuracy of the POD-G is significantly improved, which 
indicates that this test case is complex and the closure term plays an important role. The PRNN is slightly more accurate 
than the “POD-G + closure” and is much more accurate than the PDNN.

Predictions by the PRNN for several time-parameter values are compared with the corresponding high-fidelity solutions 
in Fig. 22 to show the accuracy of the proposed reduced-order method. The PRNN reduced-order solutions agree well with 
the high-fidelity solutions.

4.3. Computational cost

The offline and online computational cost for reduced-order modeling of both the steady-state and unsteady natural 
convection problems, using m = 30 reduced basis functions, is listed in Table 3. The high-fidelity simulations are performed 
serially on the Intel� Xeon� E5 CPU nodes of the Tianhe-2 (China) cluster. All other computations are performed on the 
IZAR cluster (EPFL, Switzerland), which has 64 nodes and each node has two 20-core Intel� Xeon�-Gold CPUs and two 
NVIDIA V100 PCIe 32 GB GPUs. Each ANN is trained on IZAR using a single GPU during the offline stage. As the number 
of restarts and the number of hyper-parameter values in grid-search during the training of PDNN/PINN/PRNN can be set 
arbitrarily, we only list the offline training cost for one restart in a certain hyper-parameter setting in Table 3 to avoid 
confusion.

As shown in Table 3, although the offline training of PRNN is more expensive than that of PDNN, the training cost is 
far less than the cost for high-fidelity snapshots generation. Compared to POD-G, reduced basis method based on PRNN is 
characterized by its extremely fast online evaluation, demonstrating its efficiency.
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Fig. 20. Prediction error for the unsteady natural convection problem.

Fig. 21. Quasi-optimal residual loss weight (chosen from {10−2,10−1,100,101,102}) of the PRNN for the unsteady natural convection problem.

5. Conclusions

This paper proposes a physics-informed machine learning for reduced-order modeling. The reduced coefficients are 
predicted by a feedforward neural network. A physics-informed neural network (PINN) can be used to learn the POD-G 
reduced-order model, by setting the mean squared norm of the residual of the reduced-order equation as the loss function 
in the training procedure. The PINN is an approximation of the reduced-order model that is obtained without any labeled 
data. For a more accurate network, the projection data, collected from the high-fidelity snapshots that are used in the re-
duced basis generation, are introduced into the training to provide more physical information. The physics-reinforced neural 
network (PRNN) is trained by minimizing the weighted sum of the residual loss of the reduced-order equation and the 
matching error loss on the projection data set. The physics-informed machine learning technique makes it possible to train 
an accurate network to predict reduced-order solution, without the requirement of extra high-fidelity simulations.
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Fig. 22. Temperature contours and streamlines within one period of the unsteady natural convection flow computed by the high-fidelity solver and the PRNN 
for μμμ = (2.86 × 104, 1.32). The reduced basis is of size m = 30 and extracted from 60 physical parameters. The solid streamline indicates an anticlockwise 
vortex and the dashed streamline indicates an clockwise vortex.

Table 3
Computational time cost. The unit of the time cost is second(s). 
The PDNN, PINN and PRNN have the same network architec-
ture and activation function, thus have the same online cost. 
Therefore, “NN” is used to represent these networks in terms 
of online runtime.

Steady-state Unsteady

Offline Snapshots 7.35E4 6.68E5
POD 1.23E1 1.81E2
Training PDNN 1.20E2 1.24E3

PINN 1.13E3 –
PRNN 1.37E3 8.95E3

Online POD-G 2.27E-4 3.78E-1
POD-G+Closure – 3.785E-1
NN 5.06E-6 7.32E-6

Numerical results demonstrate that the PRNN achieves higher accuracy than the POD-G when the reduced basis set 
is small. The online stage of the physics-informed learning based reduced-order method is efficient as it just requires 
the evaluation of the network. Therefore, the PRNN is an accurate and efficient reduced-order modeling tool for general 
nonlinear problems.
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