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Abstract

We investigate the quasi-static growth of a fluid-driven frictional shear crack that propagates in
mixed mode (II+III) on a planar fault interface that separates two identical half-spaces of a three-
dimensional solid. The fault interface is characterized by a shear strength equal to the product of
a constant friction coefficient and the local effective normal stress. Fluid is injected into the fault
interface and two different injection scenarios are considered: injection at constant volume rate and
injection at constant pressure. We derive analytical solutions for circular ruptures which occur in
the limit of a Poisson’s ratio ν = 0 and solve numerically for the more general case in which the
rupture shape is unknown (ν 6= 0). For an injection at constant volume rate, the fault slip growth
is self-similar. The rupture radius (ν = 0) expands as R(t) = λL(t), where L(t) is the nominal
position of the fluid pressure front and λ is an amplification factor that is a known function of a
unique dimensionless parameter T . The latter is defined as the ratio between the distance to failure
under ambient conditions and the strength of the injection. Whenever λ > 1, the rupture front
outpaces the fluid pressure front. For ν 6= 0, the rupture shape is quasi-elliptical. The aspect ratio
is upper and lower bounded by 1/(1 − ν) and (3 − ν)/(3 − 2ν), for the limiting cases of critically
stressed faults (λ � 1, T � 1) and marginally pressurized faults (λ � 1, T � 1), respectively.
Moreover, the evolution of the rupture area is independent of the Poisson’s ratio and grows simply
as Ar(t) = 4παλ2t, where α is the fault hydraulic diffusivity. For injection at constant pressure,
the fault slip growth is not self-similar: the rupture front evolves at large times as ∝ (αt)(1−T )/2

with T between 0 and 1. The frictional rupture moves at most diffusively (∝
√
αt) when the fault

is critically stressed, but in general propagates slower than the fluid pressure front. Yet in some
conditions, the rupture front outpaces the fluid pressure front. The latter will eventually catch the
former if injection is sustained for a sufficient time. Our findings provide a basic understanding on
how stable (aseismic) ruptures propagate in response to fluid injection in 3-D. Notably, since aseismic
ruptures driven by injection at constant rate expands proportionally to the squared root of time,
seismicity clouds that are commonly interpreted to be controlled by the direct effect of fluid pressure
increase might be controlled by the stress transfer of a propagating aseismic rupture instead. We
also demonstrate that the aseismic moment M0 scales to the injected fluid volume V as M0 ∝ V 3/2.

Keywords: Fracture (A); Friction (B); Geological Material (B); Boundary integral equation (C);
Injection induced slip

1 Introduction

Fluid-driven frictional ruptures play an important role in earthquake and fault mechanics and can occur
either as a natural process or be induced by human activities. Some examples of the natural source are
related to fault valving behavior (Sibson 1992, Zhu et al. 2020) and metamorphic dehydration reactions
(Wong et al. 1997, Hacker et al. 2003, Kato et al. 2010) in fault systems, whereas seismic swarms (Parotidis
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et al. 2005, Chen et al. 2012, Ross et al. 2020, Hatch et al. 2020) and aftershock sequences (Bosl & Nur
2002, Miller et al. 2004, Hainzl et al. 2016, Ross et al. 2017, Miller 2020) are other natural phenomena
commonly attributed to the migration of fluids in fault zones. On the other hand, anthropogenic fluid
injections associated with hydrocarbon and geothermal operations routinely produce microseismicity and
have been extensively linked to the reactivation of faults (Healy et al. 1968, Deichmann & Giardini 2009,
Keranen et al. 2013, Eyre et al. 2019, Ellsworth et al. 2019).

Evidence for fluid-driven frictional ruptures is generally inferred from the observation of seismicity spread-
ing away from natural or human-related fluid injections in the Earth’s crust (Shapiro et al. 1997, Parotidis
et al. 2005, Hainzl et al. 2016, Ross et al. 2017, Goebel & Brodsky 2018, Ross et al. 2020). Observed
seismicity is the result of unstable (seismic) frictional sliding that radiates detectable seismic waves.
Nevertheless, seismic slip is not the only possible result of fluid injection. In fact, stable (aseismic) slip,
which is more difficult to detect due to the virtual absence of elastodynamic waves, is a likely frequent
result of the injection of fluids as demostrated by past large-scale fluid injections in the field (Hamilton
& Meehan 1971, Scotti & Cornet 1994, Bourouis & Bernard 2007), recent laboratory and in-situ experi-
ments (Guglielmi et al. 2015, Scuderi & Collettini 2016, Cappa et al. 2019, Passelègue et al. 2020), and
recent cases of injection-induced seismicity (Wei et al. 2015, Chen et al. 2017, Eyre et al. 2019).

As suggested by a number of recent experimental and observational studies (Wei et al. 2015, Guglielmi
et al. 2015, Duboeuf et al. 2017, Eyre et al. 2019, Cappa et al. 2019, Bhattacharya & Viesca 2019),
injection-induced aseismic slip may trigger seismicity by the transfer of solid stresses to unstable patches
in pre-existing structural discontinuities, such as fractures and faults. Such spatio-temporal perturbation
of the stress field is due to a quasi-statically expanding fluid-driven slipping patch that propagates along
an initially locked and predominantly frictionally-stable pre-existing discontinuity. In this view and in
the framework of this model, seismicity can be conceptually understood as the result of instabilities
triggered by perturbating the pre-injection stress state of frictionally-unstable patches present either
in the same pre-existing discontinuity (due to heterogeneities in rock frictional properties) or in others
nearby the propagating rupture. The potential prominence of this triggering mechanism has increased
in recent times since new investigations have suggested that fluid-induced aseismic slip can outpace the
diffusion of fluid pressure (Eyre et al. 2019, Bhattacharya & Viesca 2019) and may be in fact the primary
cause of observed seismicity during in-situ experiments (Guglielmi et al. 2015, Duboeuf et al. 2017) and
responsible for the triggering of hydraulic fracturing-induced earthquakes (Eyre et al. 2019).

Recent efforts for understanding injection-induced aseismic slip have been motivated mostly by the
sudden increase of seismicity due to anthropogenic fluid injection (Keranen et al. 2014, Bao & Eaton
2016, Goebel & Brodsky 2018). Nevertheless, understanding the mechanics of fluid-driven aseismic slip
is indeed relevant to any phenomenon that is predominantly characterized by stable frictional slidding
and the pressurization of interfacial fluids. This might be the case of, for instance, some seismic swarms
(Chen et al. 2012, Hatch et al. 2020), aftershock sequences (Ross et al. 2017), and slow slip transients
near the base of the seismogenic zone due to fault valving (Zhu et al. 2020) or metamorphic dehydration
reactions (Kato et al. 2010).

Despite the apparent relevance of fluid-driven aseismic ruptures in a wide variety of natural and anthro-
pogenic phenomena, the spatio-temporal evolution of aseismic slip in response to fluid injection remains
poorly constrained in 3-D. This is, in part, due to the challenge of solving such a moving boundary value
problem in which both fault slip and rupture shape are unknown. In this article, we investigate the
mechanics of injection-induced fault slip by solving the problem of a fluid-driven frictional shear crack
that propagates in mixed mode (II+III) on a planar fault that separates two identical half-spaces of a
three-dimensional, linear elastic, and impermeable solid. The fault interface is saturated by pressurized
fluid and it is characterized by a constant hydraulic transmissivity and a shear strength that is deter-
mined by the product of a constant friction coefficient and the local effective normal stress. We consider
that fluid is injected into the fault interface under two injection scenarios: injection at constant volume
rate and injection at constant pressure. The model is an extension to 3-D of a previous 2-D model pre-
sented by Bhattacharya & Viesca (2019). In the process, we also investigate the fundamental problem of
crack-shape selection of a frictional shear crack under localized (point-force-like) and distributed effective
shear loadings, including its dependence on the Poisson’s ratio of the bulk.

This paper is organized as follows. In section 2, we present the mathematical formulation of the problem
and the chosen numerical methods. In section 3, we solve the problem of a stable rupture driven by
injection at constant volume rate, for which we first derive an exact analytical solution in the case
of axisymmetric circular ruptures, and then solve numerically for the more general case in which the
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Figure 1: Model schematic. A planar fault separates two semi-infinite linear elastic, homogeneous, and
isotropic solids. The fault is characterized by a constant friction coefficient and is embedded in uniform
initial fluid pressure and stress fields. Fluid is injected right into the fault through a wellbore located
along the z axis. Fluid flow is confined within the fault plane and is fault-parallel and axisymmetric
with regard to the z-axis. A quasi-static rupture of front R(t) whose shape is unknown is driven by
axisymmetric fluid pressure diffusion that is characterized by a nominal fluid pressure front L(t).

rupture shape is part of the solution. Following a similar approach, we solve in section 4 the problem of
a stable rupture driven by injection at constant pressure. Finally, section 5 discusses our findings and its
possible implications to a number of fluid-driven earthquake-related phenomena such as injection-induced
seismicity, seismic swarms, aftershock sequences and slow slip events.

2 Problem formulation and numerical methods

2.1 Problem formulation

We consider a fault plane Γ located along z = 0 that separates two semi-infinite, homogeneous, isotropic
and linear elastic solids (see Fig. 1). The fault interface is governed by Coulomb’s friction with a constant
friction coefficient. The initial stress tensor is uniform and is characterized by a shear stress τo resolved
on the fault plane that acts along the x direction, and a total normal stress σo to the fault plane (that
acts along the z direction). We assume that fluid is injected into the fault plane through, for instance,
a wellbore, that is located along the z axis. We also assume that the solid is impermeable and the fault
interface has a uniform and constant hydraulic transmissivity; fluid flow thus occurs only within the fault
plane and is fault-parallel and axisymmetric with regard to the z axis. Owing to the planarity of the
fault and the uniform direction of the initial shear stress τo, fluid flow induces fault slip δ and changes
in the shear stress τ resolved on the fault plane that are both characterized by a uniform direction along
the x axis. The magnitude of the fault slip δ is maximum at the origin (the injection point) and vanishes
along the rupture front R(t) = {(x, y) : δ(x, y, t) = 0}. The rupture front R(t) is unknown a priori and
is to be determined as part of the solution.

The quasi-static elastic equilibrium that relates the fault slip δ to the shear stress τ on the fault plane
Γ can be written as the following boundary integral equation (Hills et al. 1996)

τ(x, y, t) = τo +
w

Γ

K(x− ξ, y − ζ;µ, ν)δ(ξ, ζ, t)dξdζ, (1)

where τo is the initial shear stress, µ is the shear modulus of the solid, ν is the Poisson’s ratio, and K is
the hypersingular (of order 1/r3) elastostatic traction kernel (Hills et al. 1996). We adopt the convention
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of slip positive in clockwise rotation, δ(x, y, t) = ux(x, y, z = 0+, t)− ux(x, y, z = 0−, t), where ux is the
displacement component in the x direction. We also adopt the convention of normal stress positive in
compression.

The fault is assumed to obey a Mohr-Coulomb shear failure criterion without any cohesion:

|τ(x, y, t)| ≤ f (σo − p(r, t)) , (2)

where f is the constant friction coefficient, σo − p(r, t) denotes Terzaghi’s effective normal stress to the
fault plane with p(r, t) being the spatiotemporally evolving fluid pressure, which is axisymmetric about
the point of injection {O; r, θ, z} (see Fig. 1). We further assume that fault slip occurs without any
normal displacement discontinuity, neither dilatant nor contractant, and that fault slip does not impact
fluid flow.

We make the assumption that the surrounding rock can be considered impermeable compared to the
fault itself at the scale of the injection duration. Single phase porous media flow (Bear 2013) in the
fault thus reduces (after width averaging across the fault thickness wh) to the following two-dimensional
pressure-diffusion equation on the fault plane

S
∂p

∂t
− k

η
∇2p = 0, (3)

where S is a storage coefficient combining the effect of both fluid and pore compressibilities, k is the
constant and uniform fault permeability, and η the fluid dynamic viscosity.

The fault is initially fully locked (zero slip rate) and the uniform initial fluid pressure field is equal to po.
We investigate sustained fluid injection for t > 0 under two different scenarios: either at constant volume
rate or at constant overpressure. The solutions of both boundary value problems for the two-dimensional
diffusion equation are well-known (Carslaw & Jaeger 1959) and can be written in the following functional
form

p(r, t) = po + ∆p∗Π(r, αt), (4)

where ∆p∗ is a characteristic pressure and Π is the dimensionless injection-induced overpressure. These
solutions of the diffusion equation (3) notably depend on the fault hydraulic diffusivity α = k/Sη [L2/T ]
via the well-known diffusion characteristic length

√
αt.

For a constant volume rate injection from a point source, the two-dimensional flow solution is given in
polar coordinates by (section 10.4, eq. 5, Carslaw & Jaeger 1959):

∆p∗ =
Qwη

4πkwh
, Π(r, t) = E1

(
r2

4αt

)
, (5)

where Qw is the constant injection volume rate [L3/T ], wh is the fault thickness [L], and E1 is the expo-
nential integral function. Note that the product kwh is often denoted as the fault hydraulic transmissivity
[L3].

For the case of an injection from a finite wellbore at constant overpressure, the solution reads (section
13.5, eq. 6, Carslaw & Jaeger 1959):

∆p∗ = ∆pw, Π(r, t) = 1 +
2

π

∫ ∞
0

e−αξ
2t J0(ξr)Y0(ξrw)− Y0(ξr)J0(ξrw)

ξ (J2
0 (ξrw) + Y 2

0 (ξrw))
dξ, (6)

where ∆pw is the applied constant overpressure at the wellbore of radius rw, and J0 and Y0 are the
zero-order Bessel functions of the first and second kind, respectively.

The uniform initial fluid pressure and stress fields must satisfy the condition |τo| < fσ′o on the fault
plane, where σ′o = σo − po is the initial effective normal stress. This condition means no activation of
fault slip prior to the start of the injection. Fault slip starts when the fluid pressure increase is sufficient
to reach the Mohr-Coulomb shear failure criterion. The ensuing aseismic rupture grows due to the direct
effect of the fluid pressure that reduces locally the fault strength in Eq. (2), and due to the quasi-static
nonlocal elastic integral operator (1) that operates over the fault slip distribution δ and determines the
local shear stress change consistent with the Mohr-Coulomb strength condition.
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2.2 Numerical methods

We developed a fully implicit boundary-element-based solver with an elasto-plastic-like constitutive in-
terfacial law to solve simultaneously the quasi-static elastic equilibrium (1) and the activation criterion
(2) knowing the semi-analytical fluid pressure evolution on the fault (either Eq. (5) or (6) depending on
the injection scenario). The main features of our numerical solver are briefly described below.

2.2.1 Spatial discretization

We discretize the fault plane Γ using an unstructured Delaunay triangulation Γ = ∪NE

k=1Γk, where Γk
is the k-th triangular element and NE is the total number of elements in the mesh (see Fig. 5a-b for
examples of the unstructured meshes used). We use the displacement discontinuity method (Crouch &
Starfield 1983) to solve the quasi-static elastic equilibrium and employ piecewise quadratic triangular
boundary elements (Nikolskiy et al. 2013). The analytical integration of the traction kernel for a generic
triangle with quadratic shape functions was obtained by Nikolskiy et al. (2013) for the three components
of the displacement discontinuity. Our implementation considers boundary elements with six collocation
points such that NC = 6NE is the total number of collocation points in the mesh, and N = 3NC is the
total number of degrees of freedom.

In the configuration investigated here where the principal shear direction is known and does not change,
the quasi-static elastic equilibrium, Eq. (1), can be written in the x-direction of the global reference
system only. Nevertheless, we use a fully 3D collocation displacement discontinuity method and instead
expressed it in the local reference system

{
xk; ek1 , e

k
2 , e

k
3

}
of each k -th boundary element, where ek1 and

ek2 are two unit vectors tangent to Γk (and mutually orthogonal) and ek3 is a unit vector normal to Γk
such that n+ = −n− = −e3 where “+” and “–” refer to the upper and bottom fault faces. The spatially
discretized form of the quasi-static elastic equilibrium in the local reference system of the boundary
elements is

t = to + Ed, (7)

where t ∈ RN is the total traction vector, to ∈ RN is the initial total traction vector, d ∈ RN is the
displacement discontinuity vector, and E ∈ RN×N is the collocation boundary element matrix which is
dense and non-symmetric. We approximate this dense boundary element matrix E using a hierarchical
matrix EH representation. Using a hierarchical matrix approximation allows to significantly reduce the
memory requirements and speed up algebraic operations for an otherwise computationally expensive
matrix (see Ciardo et al. 2020, and references therein for further details).

The system of equations (7) is arranged in order that t = tmi = (t11, t
1
2, t

1
3, t

2
1..., t

NC
3 ), where the index

i = 1, 2, 3 denotes the local components with regard to the local reference systems of the boundary
elements, and the index m = 1, ..., NC denotes the collocation points.

Finally, the spatially discretized form of the Mohr-Coulomb shear failure criterion is solved locally (at
the collocation point level) and is written as

‖τm‖ ≤ ft′,m3 , (8)

where τm = (tm1 , t
m
2 ) is the local shear traction vector at the m-th collocation point, and t′,m3 = tm3 − pm

is the normal component of the local effective traction vector at the m-th collocation point.

2.2.2 Time integration

We use a backward Euler time integration scheme. Let ∆X = Xn+1−Xn be the increment of a generic
variable X from the time tn to the time tn+1 with ∆t = tn+1 − tn being the time step. Taking the time
derivative of Eq. (7) and using the definition of Terzaghi’s effective stress such that t = t′ + p , where
t′ ∈ RN is the effective traction vector and p ∈ RN is the fluid pressure vector, we arrive to the following
fully discretized incremental form of the quasi-static elastic equilibrium

∆t′(∆d) = −∆p+ EH∆d. (9)
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Note that ∆p = (0, 0,∆p1, 0, ...,∆pNC ) as the fluid pressure affects only the normal components of the
effective traction vector.

Eq. (9) is a nonlinear system of N equations for ∆d that is solved via a Newton-Raphson scheme.
Note that ∆t′ depends nonlinearly on ∆d due to the Mohr-Coulomb shear failure criterion on the fault
interface (8).

2.2.3 Integration of the constitutive interfacial law

The Mohr-Coulomb criterion (8) defines two different modes of contact at every collocation point which
are either locked or in frictional sliding. On the contrary to the rigid-plastic approach developed in
Ciardo et al. (2020), we solve here for ∆t′ (∆d) using an elasto-plastic constitutive interface relation
between the local effective traction t′ and displacement discontinuity d. In other words, we regularize
the fault frictional contact behavior by allowing a degree of elastic displacement discontinuity and write
the increment of displacement discontinuity vector as the sum of an elastic part ∆de and a plastic part
∆dp,

∆d = ∆de + ∆dp. (10)

We introduce a linear elastic relation between the increment of effective tractions ∆t′ and the elastic
part of the displacement discontinuity,

∆t′ = −D∆de, (11)

where D ∈ R3×3 is a diagonal elastic stiffness matrix containing the shear and normal stiffness compo-
nents of the local elastic springs (of dimension F/L3) modeling the fault elastic response. Numerically,
we consider sufficiently large values of the elastic stiffness components such that ‖∆dp‖ � ∆de, when-
ever plastic flow occurs. Note that the minus sign in the above directly comes from our convention of
signs for tractions (positive in compression) and displacement discontinuities (positive in opening).

The Mohr-Coulomb yield function in the local reference frame of a triangular displacement discontinuity
element can be rewritten as

F(t′) = ‖τ‖ − ft′3. (12)

If F < 0, the mode of contact is elastic and no frictional sliding occurs ∆dp = 0, whereas if F = 0,
plastic frictional contact occurs and thus frictional sliding ∆dp 6= 0.

We use a non-associated Mohr-Coulomb flow rule with zero dilatancy to describe the evolution of the
plastic part of the displacement discontinuity:

∆dp = −∆γ
∂G

∂t′
, G(t′) = ‖τ‖ , (13)

where ∆γ ≥ 0 is the plastic multiplier increment and G is the plastic flow potential.

The previously mentioned inequalities for the yield function and plastic flow can be re-written as the
Karush-Kuhn-Tucker conditions of elastoplasticity:

∆γ ≥ 0, F(t′) ≤ 0, ∆γF(t′) = 0. (14)

For a given increment of the total displacement discontinuity vector ∆d, the system of Eqs. (10) to (14)
has to be solved in order to obtain the plastic multiplier increment ∆γ, and consequently the increment
of plastic fault slip ∆dp and the incremental change of effective tractions ∆t′. We use a classical elastic
predictor-plastic corrector algorithm to solve this system of equations. The elastic predictor-plastic
corrector algorithm is a two-step procedure in which the two possible modes of contact, elastic and
plastic, are solved sequentially and the final solution is chosen as the only one satisfiying the yield
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inequality (see for example de Souza Neto et al. 2008 for details). Note that this algorithm is executed
locally at every collocation point for every Newton-Raphson iteration for a given increment of time. As
usual in elastoplasticity, it is critical to use the consistent tangent operator during the Newton-Raphson
iterations in order to achieve quadratic convergence. We recall the expression of this consistent tangent
operator in the Appendix A.

2.2.4 Implementation details

Since we do not consider fluid flow being affected by mechanical deformation, the numerical time-stepping
scheme consists only of solving a Newton-Raphson scheme for the mechanical equilibrium and the local
elasto-plastic relation at time tn+1 knowing the fluid pressure increment given by the semi-analytical
solutions (Eqs. (5) or (6)). Convergence of the non-linear Newton-Raphson solver is reached when
the relative increment of the norm of the displacement discontinuity vector between two consecutive
iterations falls below 10−4. The linear tangent mechanical system at each Newton step is solved using a
biconjugate gradient stabilized iterative solver (BiCGSTAB) with a tolerance set to 10−4.

It is worth noting that the exponential integral function in Eq. (5) is log singular at the injection point
r = 0. Hence, for the case of injection at constant volume rate, the fluid pressure is actually unbounded
right at the origin. There is thus an evolving but rather small (comparing to the rupture size) circular
region in the neighborhood of the injection point where the fluid pressure p is larger than the initial
effective normal stress σ′o. Even though our model does not account for fault opening, the effect of this
singularity is negligible in our numerical solutions, since, even for relatively high resolution, p < σ′o at
every single discrete (collocation) point of the simulations.

3 Self-similar rupture growth due to injection at constant volume
rate

3.1 Scaling and similarity

We first investigate the case of a constant volume rate injection, where the fluid pressure evolution driving
the rupture is given by Eq. (5). Such a diffusion solution is self-similar: the pressure is only function
of the self-similar variable r/

√
4αt, where L(t) =

√
4αt is the characteristic diffusion lengthscale which

corresponds to the evolution of the fluid pressure front disturbance. Because no other time or length
scales enter the problem, the quasi-static rupture will also evolve in a self-similar fashion. This result is
essential for the problem addressed in this section. We denote the a priori unknown rupture shape as
R(t) = {(x, y) : δ(x, y, t) = 0} and scale it as

R(t) = R(t)S, (15)

where S is the dimensionless rupture front and R(t) the characteristic rupture lengthscale. Moreover, we
define the amplification factor λ that relates the instantaneous rupture characteristic scale R(t) to the
nominal location of the fluid pressure front L(t), such that R(t) = λL(t). A value of λ > 1 indicates that
the rupture lengthscale is greater than the fluid pressure front radius, whereas a value of λ < 1 indicates
the opposite.

We can scale the spatial variables (x, y) with the diffusion lengthscale L(t) (or alternatively with the
characteristic rupture scale R(t)) while the characteristic fluid pressure scale is directly given by ∆p∗ in
Eq. (5). Introducing these characteristic scales in the Mohr-Coulomb and elasticity equations, allows to
close the scaling of the problem as:

~x

L(t)
→ ~x,

τ − fσ′o
f∆p∗

→ τ,
δ

δc(t)
→ δ,

p− p0

∆p∗
→ p, (16)

where the characteristic slip is given by δc(t) = f∆p∗L(t)/µ (or alternatively by f∆p∗R(t)/µ if R(t) is
used for the spatial scale). Using this scaling, the dimensionless form of the problem depends on only
two dimensionless parameters:
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T =
1− τo/fσ′o

∆p∗/σ′o
, (17)

and the Poisson’s ratio ν. The dimensionless rupture shape S thus depends on both ν and T . The
parameter T is similar to the one found by Bhattacharya & Viesca (2019) in their 2D plane-strain model
of a frictional shear crack driven by injection at constant pressure, whereas the second dimensionless
parameter, the Poisson’s ratio, arises from the three-dimensional nature of the problem considered here,
in which the rupture propagates in mixed mode (II+III) with an a priori unknown shape.

The parameter T , named as fault stress parameter by Bhattacharya & Viesca (2019), is crucial in the
present study. It encapsulates the information about the initial state of stress acting on the fault and the
characteristic injection pressure. More specifically, the numerator of T , 1− τo/fσ′o, is a measurement of
the “distance” to failure under pre-injection ambient conditions (close to zero for a critically stressed fault,
and close to one for a fault initially far away from frictional failure), whereas the denominator ∆p∗/σ′o
is an overpressure ratio which measures the amount of pressurization due to injection with regard to the
initial effective normal stress. Both numerator and denominator are indeed independent parameters of
a more general model for a shear crack obeying slip-weakening friction in 2-D elastic media investigated
by Garagash & Germanovich (2012).

The fault stress parameter varies between 0 and +∞. The limiting values of T are associated with
end-member scenarios that are relatively similar to the ones identified by Garagash & Germanovich
(2012) and Bhattacharya & Viesca (2019) for two-dimensional problems involving injections at constant
pressure. For small values of T , the condition 1− τo/fσ′o � ∆p∗/σ′o must be satisfied. This means that
the fault is “critically stressed” with regard to the overpressure ratio. For large values of T , the condition
∆p∗/σ′o � 1 − τo/fσ

′
o must be satisfied, so that the fault is “marginally pressurized” with regard to

the level of stress criticallity. Hence, following these prior studies, we denominate the corresponding
end-member scenarios as a critically stressed fault (T � 1) and a marginally pressurized fault (T � 1).

It is worth noting that the characteristic pressure ∆p∗ = Qwη/4πkwh increases (and therefore the fault
stress parameter T decreases) not only when the injection volume rate Qw grows, but also when the fluid
viscosity η increases or the fault hydraulic transmissivity kwh decreases. On the other hand, large values
of T might be eventually upper bounded if the fluid pressure near the injection point is high enough to
make fault opening a significant mechanism driving the propagation of the rupture. Such problem has
been already addressed in 2-D (Azad et al. 2017).

3.2 Analytical solution for circular ruptures

We first consider the particular case where the Poisson’s ratio ν is set to zero such that the solution of
the problem only depends on the value of T . In this limit (ν = 0), the rupture front R(t) is circular
because the energy release rate for an axisymmetric shear load distributes uniformly along the circular
crack front (see Appendix B). The dimensionless rupture shape S is thus the unit circle and R(t) is
simply the rupture radius. For such a frictional shear crack with a constant friction coefficient, there
is no fracture energy spent during propagation. The condition for quasi-static crack propagation then
reads (see Appendix B)

∫ R(t)

0

∆τ(r, t)√
R(t)2 − r2

rdr = 0, (18)

where the axisymmetric shear stress drop is given by

∆τ(r, t) = τo − f (σ′o −∆p∗Π(r, t)) . (19)

The stress drop can be viewed as the contribution of two terms: a constant and negative term τo −
fσ′o which is the difference between the initial shear stress τo and the initial fault strength fσ′o, and
an axisymmetric and positive term f∆p∗Π(r, t) capturing the local reduction of fault strength due to
fluid injection. After a change of variable s = r/R and incorporating the previous definition of the
amplification factor λ = R(t)/L(t) into Eq. (18), the condition for quasi-static crack propagation can be
rewritten in dimensionless form as
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∫ 1

0

sE1(s2λ2)√
1− s2

ds = T. (20)

As expected from scaling analysis, T is the only governing dimensionless parameter and, as a result,
there is a unique value of λ for each value of T . The integral in Eq. (20) can be evaluated analytically
to obtain the following implicit equation for λ as function of T

2− γ +
2

3
λ2

2F2

[
1 1
2 5/2

;−λ2

]
− ln(4λ2) = T, (21)

where γ = 0.577216... is the Euler-Mascheroni’s constant and 2F2 [ ] is the generalized hypergeometric
function. The relation (21) is plotted in Fig. 2. This figure shows that a critically stressed fault (T � 1)
is characterized by a rupture that largely outpaces the fluid pressure front (λ� 1). On the other hand,
a marginally pressurized fault (T � 1) is characterized by a rupture that substantially lags the fluid
pressure front (λ� 1).

The limiting behavior of Eq. (21) for small and large λ allows to obtain simple closed-form expressions
for the corresponding end-member cases. In the limit of a critically stressed fault (λ� 1), Eq. (21) can
be asymptotically expanded as T ∼ 1/(2λ2) +O(1/λ4), leading to the following asymptotic solution for
the amplification factor

λ ∼ 1√
2T

. (22)

Likewise in the limit of a marginally pressurized fault (λ� 1), Eq. (21) follows the asymptotic expansion
T ∼ 2− γ − ln(4λ2) +O(λ2), that can be inverted to obtain

λ ∼ 1

2
e(2−γ−T )/2. (23)

Since in the critically stressed limit, the pressurized fault patch is small compared to the rupture area,
the fluid pressure perturbation can be approximated by a monopole distribution. Such approxima-
tion is, in terms of local reduction of fault strength, equal to a point force given by f∆p∗Π(r, t) ≈
f∆p∗

∫ +∞
0

Π(r, t)rdrδdirac(r)/r = 2αf∆p∗tδ
dirac(r)/r, where δdirac is the Dirac delta function in polar

coordinates. Replacing this approximation in Eq. (19), and then evaluating the crack propagation con-
dition, Eq. (18), leads equivalently to the asymptotic solution for λ in the critically stressed limit, Eq.
(22).

On the other hand, in the marginally pressurized limit where the crack size is small compared to the
pressurized area, the fluid pressure perturbation within the crack can be approximated by considering the
behavior of the the exponential integral function in Eq. (5) for small values of its argument. Such approx-
imate injection-induced local reduction of fault strength is f∆p∗Π(r, t) ≈ −f∆p∗

(
2 ln

(
r/
√

4αt
)

+ γ
)
.

Again, replacing this approximation in the crack propagation condition, Eq. (18), leads alternatively to
the asymptotic solution for λ in the marginally pressurized limit, Eq. (23).

The purpose of the previous analysis is to highlight the asymptotic form of the driving forces related
to the two end-member cases. As we will see later, both fault slip and rupture shape will also show
well-defined asymptotic behaviors, and thus the results can be directly associated with the type of force
that drives the crack growth in both limiting cases.

The asymptotic solutions (22) and (23) are shown in Fig. 2 together with the general solution given
by Eq. (21). Note that the transition between both propagation regimes (defined as λ = 1) occurs at
T ≈ 0.5915.

Another interesting analytical result is the rupture speed Vr that decreases with the squared root of time
and is simply given by

Vr =
λ
√
α√
t
. (24)

9
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(marginally pressurized fault)

(critically stressed fault)

Figure 2: Analytical solution for the amplification factor λ for circular ruptures (ν = 0) driven by
injection at constant volume rate. λ relates the rupture radius R(t) to the nominal position of the fluid
pressure front L(t) =

√
4αt as R(t) = λL(t). The amplification factor λ is a unique function of the fault

stress parameter T = (1 − τo/fσ′o)/(∆p∗/σ′o). The black curve corresponds to the analytical solution
given by Eq. (21), the blue dashed curves represent the asymptotic solutions for a critically stressed
fault (T � 1, λ� 1), Eq (22), and a marginally pressurized fault (T � 1, λ� 1), Eq. (23).

The singularity of the rupture speed at t = 0 is a consequence of the self-similar diffusion lengthscale√
4αt and the abscense of inertia. In addition, the (de)acceleration of the rupture front is equal to
−λ
√
α/(2t3/2). This power-law (de)acceleration is comparable to tensile hydraulic fracture propagation

under a constant injection rate albeit at a different power-law of time (Detournay 2016).

3.3 Numerical solution for circular ruptures

The numerical solution for circular ruptures allows us to obtain the axisymmetric self-similar slip profiles
and also to verify our numerical solver against the previously derived solution for the amplification
factor λ(T ). We use the boundary-element-based solver previously described in section 2.2 and run
seven simulations for values of T = 0.001, 0.01, 0.1, 0.7, 2.0, 4.0 and 7.0 with ν = 0. We perform 10 fully
implicit time steps for each simulation.

3.3.1 Axisymmetric slip profiles and accumulated fault slip at the injection point

Fig. 3a displays typical slip and pore pressure spatial profiles at different times after the start of injection.
The slip profiles correspond to the case T = 0.1 where the rupture front outpaces the fluid pressure front
(λ ≈ 2.3). Owing to the self-similarity of the problem, the slip profiles at different times collapsed
into one single curve under the scaling of Eq. (16). As a consequence, there is a unique dimensionless
slip profile for a given value of the fault stress parameter T . The unique self-similar slip profiles for the
different values of T are shown in Figs. 3b and 3d for critically stressed and marginally pressurized cases,
respectively. Moreover, in Appendix C, we derive closed-form analytical expressions for the self-similar
slip profiles in the limiting cases of critically stressed (λ� 1) and marginally pressurized (λ� 1) faults,
that are:
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δ(r, t)µ

f∆p∗R(t)
=

8

π

[√
1− r̄2 − |r̄| arccos (|r̄|)

]
(25)

in the marginally pressurized limit, and

δ(r, t)µ

f∆p∗L(t)
=

2
√

2T

π

[
arccos (|r̄|)
|r̄|

−
√

1− r̄2

]
, (26)

in the critically stressed limit, where r̄ = r/R(t) is the self-similar radial coordinate. Eq. (26) is indeed
valid for r � L(t) and it corresponds to the “outer” solution in the critically stressed limit. Both
analytical expressions are shown in Figs. 3b and 3d together with the numerical results.

The accumulated fault slip at the injection point, δ(r = 0, t), is plotted in Fig. 7c as a function of the
fault stress parameter T . Note that δ(r = 0, t) is normalized by the position of the fluid pressure front
L(t) on the left axis and by the rupture radius R(t) on the right axis. δ(r = 0, t) is easily obtained from
Eq. (25) in the marginally pressurized limit as

δ(r = 0, t) =
8

π

f∆p∗
µ

R(t), (27)

whereas in the critically stressed limit,

δ(r = 0, t) ∼ f∆p∗
µ

L(t). (28)

The prefactor in the previous equation is obtained numerically and it is approximately 3.5 (see Fig. 7c).

Eqs. (25) to (28) confirm that the relevant scale for the shear stress is f∆p∗, as chosen in the scaling
analysis. Also, it becomes now clear that the relevant lengthscale in the problem depends on the limiting
case under consideration; for marginally pressurized faults, the relevant lengthscale is the rupture radius
R(t), whereas for critically stressed faults, the proper lengthscale is the nominal radius of the pressurized
fault patch L(t).

3.3.2 Rupture radius and solver verification

In order to determine numerically the instantaneous rupture radius R(t) at every time step tn and verify
our numerical solver against the analytical solution, Eq. (21), we solve numerically for R(tn) by searching
for the position of zero slip δ(R, tn) = 0. As the solution for slip is axisymmetric in the limit of ν = 0,
we search in fact for the zeros along the entire rupture front by taking 100 equally-spaced values of the
angular cylindrical coordinate θ ∈ [0, 2π). In this way, we build the rupture front and compute finally
the instantaneous rupture radius by fitting the equation of a circle centered at the origin to the zeros
found for all the values of θ considered.

Fig. 4a shows the results for the rupture radius as a function of the nominal location of the fluid pressure
front L(t) =

√
4αt for different values of the fault stress parameter T . In such plot, self-similar solutions

for the rupture growth in the form R(t) = λL(t) are represented by straight lines that cross the origin
and have a slope equal to the amplification factor λ. We estimate numerically the amplification factor
λ for each value of the fault stress parameter T , by simply averaging the ratios R(tn)/L(tn) over the
different time steps of the simulation.

The numerical results for the amplification factor λ are displayed in Fig. 4b together with the analytical
solution, Eq. (21). The numerical results are in excellent agreement with the theoretical predictions.
This plus the previous comparison with the asymptotics of fault slip allows us to verify our numerical
solver before exploring the case of non-circular ruptures, which is solved by numerical means only. The
relative error between the numerical results and the exact analytical solution for the amplification factor
λ is showed in the inset of Fig. 4b and is approximately below 1%.

11

Non-peer reviewed EarthArXiv preprint, submitted for consideration by J. Mech. Phys. Sol.



t = 46 days

t = 11 days

t = 2 days

(a)

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 (b)

T = 0.7
T = 0.1

T = 0.01
T = 0.001

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0

0.5

1.0

1.5

2.0

2.5
(c)

(d)

T = 2.0

T = 4.0

T = 7.0

0

2

4

6

- 1 - 0.5 0 0.5 1
0.0

0.5

1.0

1.5

Numerical solution
Asymptotic solution 
for marg. press. faults 

Numerical solution
Asymptotic “outer” solution 
for crit. stressed faults 

Figure 3: (a) Axisymmetric spatial profile of slip (red) and fluid overpressure (blue) at three different
times for a circular rupture driven by the injection of fluid at constant volume rate. The fault stress
parameter is T = 0.1 for the particular choice of simulation parameters: σ0 = 120 [MPa], τ0 = 47.958
[MPa], p0 = 40 [MPa], f = 0.6, µ = 30 [GPa], ν = 0, α = 0.01 [m2/s], Qw = 1.8 [m3/min],
kwh = 3 · 10−12 [m3], η = 8.9 · 10−4 [Pa · s]. (b) and (d) Self-similar slip profiles as a function of
the self-similar radial coordinate r/R(t) for different values of the fault stress parameter T considering
both numerical and asymptotic analytical solutions. (c) Normalized accumulated fault slip at the center
of the rupture (the injection point) as a function of the fault stress parameter T , including prefactors
derived analytically (8/π) and numerically (3.5).
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Figure 4: (a) Simulation results for the rupture radius R(t) as a function of the fluid pressure front
location L(t) =

√
4αt for different values of the fault stress parameter T . Self-similar solutions of the

rupture growth in the form R(t) = λL(t) are represented by straight lines that cross the origin and
have a slope equal to the amplification factor λ. (b) Comparision between the numerical results for the
amplification factor λ and the exact value given by the analytical solution, Eq. (21). The relative error
for λ as (λnum − λexact)/λexact is displayed in the inset.

3.4 Numerical solution for non-circular ruptures

We move now to the more general case where the Poisson’s ratio is different than zero. It is important
to recall that the rupture shape R(t) is not known a priori but, of course, remains self-similar. In order
to cover the relevant parameter space, we run 21 simulations for the same seven values of the fault stress
parameter T considered in the previous section, 0.001, 0.01, 0.1, 0.7, 2.0, 4.0 and 7.0, for three values of
the Poisson’s ratio ν = 0.15, 0.30, and 0.45.

3.4.1 Rupture shape

We quickly recognize in our simulations that the ruptures evolve systematically in a nearly elliptical
shape. We also observe that the aspect ratio of the ruptures depends strongly not only on the Poisson’s
ratio but also on the fault stress parameter T , i.e., on the initial stress state and the driving force itself.
Snapshots of two rupture simulations having the same Poisson’s ratio but different values of the fault
stress parameter are shown in Figs. 5a-b. It is clear that the aspect ratio for critically stressed faults
(Fig. 5a, T = 0.001, λ � 1) is higher than the aspect ratio for marginally pressurized faults (Fig. 5b,
T = 7.0, λ� 1).

In order to quantify the rupture shape, we perform a nonlinear regression of the rupture front at every
time step assuming an elliptical shape:

R(t) =

{
(x, y, z = 0) :

(
x

a(t)

)2

+

(
y

b(t)

)2

= 1

}
, (29)

where a and b are the semi-major and semi-minor axes of the ellipse. We use the same procedure
described previously to estimate the rupture front, with the only difference that now the spatiotemporal
evolution of slip is no longer axisymmetric. Typical ellipsoidal fits of the rupture front are displayed in
Figs. 5a-b.

The results for the aspect ratio a/b as a function of the fault stress parameter T and the Poisson’s ratio
ν are summarized in Fig. 5c. Note that the aspect ratio is time-invariant due to the self-similarity of the
problem, thus, we average the aspect ratio over the simulations’ time steps for better accuracy. Fig. 5c
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Figure 5: Typical simulations’ snapshots and ellipsoidal fits (blue curves) of the rupture front for ν = 0.3
and (a) T = 0.001 (λ ≈ 22.37, a critically stressed fault) and (b) T = 7.0 (λ ≈ 0.03, a marginally
pressurized fault). The red points indicate the collocation points that have slipped. In the background,
the unstructured mesh made on triangular boundary elements with quadratic shape functions. (c)
Aspect ratio a/b as a function of the fault stress parameter T for different values of the Poisson’s ratio ν.
(d) Aspect ratio a/b with increased resolution for the Poisson’s ratio ν for the two end-member cases,
T = 0.001 (λ ≈ 22.37, critically stressed faults) and T = 7.0 (λ ≈ 0.03, marginally pressurized faults).

displays clearly two asymptotic behaviors of the aspect ratio for the two end-member cases of a critically
stressed fault and a marginally pressurized fault. Additional simulations were run to better explore the
dependence on Poisson’s ratio for T = 0.001 (λ ≈ 22.37, critically stressed faults) and T = 7.0 (λ ≈ 0.03,
marginally pressurized faults). The results are shown in Fig. 5d. We notably found by numerical
observation that the aspect ratio grows asymptotically with the Poisson’s ratio as

{
a/b ∼ 1/(1− ν) for critically stressed faults (T � 1, λ� 1)

a/b ∼ (3− ν)/(3− 2ν) for marginally pressurized faults (T � 1, λ� 1)
(30)

It is interesting to note that the aspect ratio for critically stressed faults, a/b ∼ 1/(1 − ν), is similar to
the results obtained by Gao (1988) and Elie et al. (2006) for three dimensional planar shear-crack under
uniform remote loading and a uniform energy release rate along the crack front.
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3.4.2 Generalized amplification factor λ

Since the rupture front R(t) is self-similar and nearly elliptical, we can write a(t) = λaL(t) and b(t) =
λbL(t), where λa and λb are the corresponding amplification factors for the semi-major and semi-minor
axes of the rupture front, respectively. Note that λa and λb depend only on the fault stress parameter T
and the Poisson’s ratio ν. The evolution of a(t) and b(t) as a function of the fluid pressure front location
L(t) =

√
4αt is shown in Fig. 6a for different values of the fault stress parameter T and the Poisson’s

ratio ν. In this figure, we also include the reference circular case ν = 0, and indicate the meaning of
λa, λb, and λ as the slopes of the straight lines for a(t), b(t), and R(t) (of the reference circular case),
respectively. Fig. 6a shows that the major and minor axes for the elliptic ruptures (ν 6= 0) lie about the
radius for the reference circular solution (ν = 0). For a given value of T and any value of ν, we find that
the geometric mean of a(t) and b(t),

√
a(t)b(t), is equal to the radius R(t) of the circular crack solution

for the same value of T (and ν = 0). This equality is equivalent to the equality of amplification factors

λ =
√
λaλb =

√
a(t)b(t)

L(t)
(31)

This is demonstrated in the inset of Fig. 6a in which the numerical values of λnum =
√
λaλb for all

values of T and ν are plotted against the exact solution for circular ruptures λcirc.

The numerical results for Eq. (31) are plotted in Fig. 6b together with the analytical solution, Eq. (21),
for all values of T and ν. In the inset, the relative difference between the numerical results and the
analytical solution are also displayed. Fig. 6b thus demonstrates that Eq. (31) is a generalization of the
amplification factor that is now valid for any value of the Poisson’s ratio. In the particular case of ν = 0,
Eq. (31) reduces simply to λ = R(t)/L(t), as originally defined when deriving the analytical solution for
the circular rupture case.

3.4.3 Poisson’s ratio-independent rupture area

The generalized amplification factor λ =
√
λaλb has a clear physical meaning. Indeed, it is equivalent

to the squared root of the ratio between the instantaneous elliptic rupture area Ar(t) = πa(t)b(t) and
the instantaneous pressurized area πL2(t): λ =

√
Ar(t)/(πL2(t)) such that the evolution of the rupture

area Ar(t) is simply given by

Ar(t) = 4παλ2t (32)

and is thus independent of the value of the Poisson’s ratio ν. The Poisson’s ratio (together with the
value of T ) modifies the shape of the ruptures, which are more or less elongated, but it does not modify
the rupture area, which solely depends on T . The rupture area Ar evolves linearly with time and
proportionally to the injected volume (∝ V ) for such a constant injection rate case.

Furthermore, for the two end-member cases of critically stressed and marginally pressurized faults, Eqs.
(22) and (23) lead to simple closed-form expressions for the evolution of the rupture area as function of
the fault stress parameter T

{
Ar(t) ∼ 2παt/T for critically stressed faults (T�1, λ�1)
Ar(t) ∼ παe2−γ−T t for marginally pressurized faults (T � 1, λ� 1)

(33)

It is worth noting that David & Lazarus (2021) obtained recently a somewhat similar result in their
study of tensile crack growth under the Paris’ fatigue law (with a uniform energy release rate being a
limiting case). They found, also by numerical observation, that a circular crack solution is sufficient to
predict the area of a rupture for any non-circular crack.
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Figure 6: (a) Evolution of the semi-major a(t) and semi-minor b(t) axes of quasi-elliptical ruptures as
a function of the fluid pressure front location L(t) for different values of the fault stress parameter T
and Poisson’s ratio ν. Solid red lines correspond to the analytical solution for ν = 0, Eq. (21). λa and
λb are the slopes of the straight lines for a(t) and b(t), respectively. Inset: comparision between the
numerical results for the geometric mean

√
λaλb and the exact analytical solution for circular ruptures

λcirc. (b) Comparison between the numerical values of the generalized amplification factor λnum =√
λaλb =

√
a(t)b(t)/L(t) and λcirc. Inset: the relative difference (λnum − λcirc)/λcirc as a function of

the amplification factor λcirc.

3.4.4 Rupture front R(t) for the end-member cases

The asymptotic expressions for the aspect ratio (30) plus Eq. (33), lead to the following closed-form
expressions for the evolution of the semi-major a(t) and semi-minor b(t) axes of the rupture front for
critically stressed faults (λ� 1):

a(t) ∼

√
2αt

(1− ν)T
, b(t) ∼

√
(1− ν) 2αt

T
, (34)

and for marginally pressurized faults (λ� 1)

a(t) ∼
√

3− ν
3− 2ν

√
αt · e(2−γ−T )/2, b(t) ∼

√
3− 2ν

3− ν
√
αt · e(2−γ−T )/2. (35)

Since the rupture front is quasi-elliptical, Eqs. (34) and (35) fully define the spatiotemporal evolution of
the rupture front R(t) for the end-member cases.

3.4.5 Non-axisymmetric slip profiles and accumulated fault slip at the injection point

The non-axisymmetric self-similar slip profiles are unique for a given combination of T and ν. Some
typical slip profiles along the x -axis (normalized by a(t)) are shown in Figs. 7a-b for different values of
the fault stress parameter T and ν = 0.3. The accumulated fault slip at the injection point δ(r = 0, t)
is plotted in Fig. 7c for all simulations as a function of the fault stress parameter T and the Poisson’s
ratio ν. In Fig. 7c, we include the circular rupture case (ν = 0) and δ(r = 0, t) is further normalized in
Fig. 7d by the geometric mean

√
a(t)b(t) which is Poisson’s ratio-independent and in the limit of ν → 0

corresponds to the rupture radius R(t).

Figs. 7c-d shows that the accumulated fault slip at the injection point decreases for increasing values of
the Poisson’s ratio. In addition, we recover a similar scaling for δ(r = 0, t) that in the circular rupture
case: δ(r = 0, t) ∼ f∆p∗R(t)/µ in the marginally pressurized limit, with the characteristic rupture scale
R(t) taken as

√
a(t)b(t) in Fig. 7d; and δ(r = 0, t) ∼ f∆p∗L(t)/µ in the critically stressed limit.
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Figure 7: (a) and (b) Self-similar slip profiles along the x -axis (normalized by a(t)) for different values
of the fault stress parameter T and for ν = 0.3. (c) and (d) Normalized accumulated fault slip at the
injection point as a function of the fault stress parameter T for different values of the Poisson’s ratio,
scaled by L(t) and R(t) =

√
a(t)b(t), respectively.
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Figure 8: Normalized aseismic moment for circular ruptures (ν = 0) as a function of the fault stress
parameter T . Numerical results and asymptotic behaviors for critically stressed (T � 1, λ � 1) and
marginally pressurized (T � 1, λ� 1) faults.

3.5 Aseismic moment

The scalar moment release M0 is a key measurement in seismology to quantify the potency of a rupture
(Aki & Richards 2002). In our planar fault model with a uniform direction of slip δ, the time-dependent
aseismic moment (we focus on the case of a circular rupture) is M0(t) = 2πµ

∫ R(t)

0
δ(r, t)rdr, where R(t)

is the evolving rupture radius. We can thus compute the aseismic moment numerically for all the seven
values of T considered. Furthermore, we can use the asymptotic solutions of the slip distribution, Eqs.
(25) and (26), to derive closed-form expressions for the limiting behaviors of the aseismic moment. We
obtain that

M0(t) ∼ 16

9
f∆p∗R

3(t) (36)

in the marginally pressurized limit, and

M0(t) ∼ 8

3
f∆p∗L

2(t)R(t) (37)

in the critically stressed limit.

Both previous equations provide the proper scaling of the aseismic moment. We use these scalings to
normalized the numerical results that are presented in Fig. 8 as a function of the fault stress parameter
T . In this figure, we include the corresponding prefactors of Eqs. (36) and (37). Note that the prefactor
8/3 in the critically stressed limit is in good agreement with the numerical solution, despite the slip
profile being approximated by the “outer” asymptotic solution of this limit only.

Moreover, Eqs. (36) and (37) allow us to establish the corresponding scaling relation between the moment
release M0 and the injected volume V that has been extensively sought with the purpose of constraining
the magnitude of injection-induced earthquakes (McGarr 2014, van der Elst et al. 2016, Galis et al. 2017,
McGarr & Barbour 2018). Because R(t) = λL(t), L(t) =

√
4αt and V (t) = Qwt, the aseismic moment

M0 scales to the injected volume V as

M0 ∝ V 3/2 (38)
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4 Non-self-similar rupture growth due to injection at constant
pressure

4.1 Scaling and similarity

Under the scenario of constant pressure injection, the evolution of fluid pressure given by Eq. (6) is no
longer self-similar. This is due to the presence of a finite wellbore radius rw where the pressure is set
constant which introduces a new characteristic length in the problem. As a result, the frictional rupture
will not evolve self-similarly, like for a constant injection rate. We recall that self-similar solutions always
correspond to idealized models in which the dimensional parameters of the independent variables (space
and time in our case) are equal to zero or infinity (Barenblatt 1996). The infinitesimal nature of the
constant-volume-rate fluid source of the previous section and its subsequent self-similarity, can be seen
in fact as an intermediate-asymptotic behavior of a more realistic physical system in which both the fluid
source and the domain are finite. In this view, the solution of section 3 is valid for times t� r2

∗/α, where
r∗ is the characteristic length of the fluid source, and for t� R2

∗/α, where R∗ is the characteristic length
of a finite domain. Note that the introduction of, for instance, a frictional lengthscale in the self-similar
problem of injection at constant volume rate, would also cause the loss of self-similarity in the model.

The scaling thus differs slightly from the scaling of the previous section. The finite wellbore radius rw
introduces a characteristic diffusion timescale tc = r2

w/α with α the fault hydraulic diffusivity, such that
we obtain:

t

tc
→ t,

~x

rw
→ ~x,

τ − fσ′o
f∆pw

→ τ,
δ

δc
→ δ,

p− p0

∆pw
→ p, (39)

where ∆pw is the constant overpressure imposed at the wellbore, and δc = f∆pwrw/µ is the characteristic
slip.

As already mentioned, the loss of self-similarity is due to the finite size of the wellbore. In fact, radial
flow from an infinitesimal fluid source at constant pressure is not physically possible. Injection of a finite
volume from an infinitesimal fluid source in such geometrical conditions always leads to infinite pressure.

The dimensionless solution of the problem depends now on three dimensionless parameters, a slightly
different fault stress parameter T that is a function of the constant wellbore overpressure ∆pw

T =
1− τo/fσ′o

∆pw/σ′o
, (40)

the Poisson’s ratio ν, and the dimensionless time αt/r2
w.

The limiting values of T are determined by the condition for fault slip activation, f∆pw ≥ fσ′o− τo, and
the condition for no slip prior to injection, fσ′o − τo > 0. Together, these conditions imply that T varies
between 0 and 1, so that the fault stress parameter is now upper bounded, unlike the case of injection
at constant volume rate in which T can theoretically go up to +∞.

The limit of T → 1 is characterized by the condition f∆pw → fσ′o−τo. This condition can be interpreted
as a scenario in which the pressure at the fluid source, ∆pw, is just enough to activate fault slip. This
is the reason why such end-member case has been named in prior studies as marginally pressurized
faults (Bhattacharya & Viesca 2019, Garagash & Germanovich 2012). On the other hand, considering
that ∆pw is always positive and finite, the limit of T → 0 is associated with the condition τ0 → fσ′0.
This condition represents the case of faults that are about to fail before injection, and is thus named
as critically stressed faults. Unlike the problem of injection at constant volume rate in which the fluid
pressure near the injection point is always increasing, here the pressure at the wellbore is fixed and
thus the terminology of critically stressed and marginally pressurized faults is unambiguous. Note that
σ′0 > ∆pw > 0, with the upper bound being the transition to fault opening that we do not cross in this
study.
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4.2 Approximate analytical solution for circular ruptures

The solution of the diffusion equation for injection at constant pressure from a finite source, Eq. (6),
does not allow to treat the problem of a circular rupture analytically. Nevertheless, as we are interested
in solutions for times that are in general large compared to the characteristic diffusion time, tc = r2

w/α,
we can use the following asymptotic expansion for the instantaneous pressure profile that is valid for
t� tc (Jaeger 1955)

Π(r, t) ≈ 1− 2 ln(r̄)

{
1

ln(4t̄)− 2γ
− γ

(ln(4t̄)− 2γ)2

}
(41)

where r̄ = r/rw and t̄ = αt/r2
w are the dimensionless radial coordinate and the dimensionless time,

respectively, and γ = 0.577216... is the Euler-Mascheroni’s constant.

Fig. 9a shows the comparison between the exact numerical solution for the fluid pressure profile, Eq. (6)
(solved via numerical inversion of the Laplace transform, Stehfest 1970) and the asymptotic expansion
(41). In Fig. 9a, we also include an asymptotic expansion of Π(r, t) with higher order corrective terms
that are function of r̄ and the successive time derivatives of the terms in curly brackets in (41) (Jaeger
1955). The higher order terms have cumbersome expressions but are necessary to capture the “near
front” behavior of the fluid pressure profile as shown in Fig. 9a. However, for the sake of simplicity, we
neglect these corrective terms in the following.

Similarly to the case of injection at constant volume rate, we define the instantaneous rupture radius
R(t) and use the condition for quasi-static propagation of a circular crack with zero fracture energy under
axisymmetric shear load, Eq. (18), with now ∆τ(r, t) = τo − f (σ′o −∆pwΠ(r, t)). After some algebraic
operations, this propagation condition can be rewritten as

1

R(t)

∫ R(t)

0

Π(r, t)√
R(t)2 − r2

rdr = T (42)

where T is the fault stress parameter defined in Eq. (40) for the constant pressure injection case. We
approximate Π(r, t) = (p(r, t)− p0) /∆pw by the asymptotic expansion (41). Note that in Eq. (41), one
could consider to drop the term of O

(
1/ ln(t̄)2

)
and use a first order approximation for Π(r, t) instead;

however, we found that better results are systematically obtained by keeping the second order term in
any further mathematical operation and performing first order approximations afterwards.

The integration limits of Eq. (42) have to be considered carefully, since the asymptotic expansion for
Π(r, t) gives non-physical values that are greater than unity for r/rw < 1 and negative for r/rw beyond the
intersection with the abscissa (see Fig. 9a). In fact, the intersection with the abscissa defines conveniently
a nominal position of the fluid pressure front, L̃(t)/rw = exp(−(1/2) (2γ − ln (4t̄))

2
/ (3γ − ln (4t̄))), that

is given at the first order by

L̃(t) =
√
c1αt (43)

where c1 = eln(4)−γ = 2.245838... ≈ 2.25. The position of the fluid pressure front L̃(t) given by Eq. (43)
is shown in Fig. 9a at different dimensionless times. With a change of variable s = r/R and taking care
of the integration limits as discussed before, we can rewrite Eq. (42) in dimensionless form as

∫ β0

0

1√
1− s2

sds+

∫ β

β0

Π(sR, t)√
1− s2

sds = T (44)

where β0 = rw/R, and β = 1 if R ≤ L̃, or β = L̃/R otherwise (R > L̃).

Eq. (44) can be solved to obtain the evolution of the normalized rupture radius R(t)/rw as a function
of the dimensionless time αt/r2

w and the fault stress parameter T . The solution is piecewise due to
the piecewise definition of β that indeed separates the two possible rupture regimes. One regime is
characterized by R(t) < L̃(t) which represents a rupture front that lags the fluid pressure front, whereas
the other regime is characterized by R(t) > L̃(t) in which the rupture front outpaces the fluid pressure
front.
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In addition, the first integral of the left-hand side of Eq. (44) can be neglected if we assume that the
rupture radius R(t) is much bigger than the wellbore radius rw, so that β0 = rw/R � 1. Hereafter, we
consider β0 = 0. Let us first consider the case in which R(t) < L̃(t). After integrating Eq. (44) with
β = 1, we obtain at the first order the following explicit expression for the evolution of the normalized
rupture radius in the form of a power-law

R(t)/rw = g (T )

(
αt

r2
w

)(1−T )/2

(45)

where g (T ) = c2e
−c3T , with c2 = e(2−γ)/2 = 2.036825... and c3 = (ln (4)− γ) /2 = 0.404539....

Note that the transition between the two rupture regimes happens at a certain time t∗ when R(t∗) =
L̃(t∗). Using the first-order Eqs. (43) and (45), we obtain that this transition time is

αt∗

r2
w

=

(
g(T )

c1

)2/T

(46)

Finally, the solution for the case R(t) > L̃(t) is obtained by integrating Eq. (44) with β(t) = L̃(t)/R(t).
The solution for the rupture radius is now implicit and it is given by

f1 (β) ln (R(t)/rw) + f2 (β) = ln
(
L̃(t)/rw

)
(f1 (β)− T ) (47)

where

f1(β) = 1−
√

1− β2, and f2(β) = ln

(
2β

1 +
√

1− β2

)
+
√

1− β2 (1− ln (β))− 1 (48)

Eqs. (45) to (48) can be used to define a time-dependent amplification factor in the form λ(t) = R(t)/L̃(t).
Such approximate analytical solution for λ(t) is plotted in Fig. 9b at different dimensionless times, as a
function of the fault stress parameter T .

4.3 Numerical solution for circular ruptures

We now solve numerically for the case of circular ruptures to obtain the evolution of the axisymmetric
slip profiles δ(r, t). In addition, the computation of the slip profiles allows us to calculate numerically the
rupture radius R(t) and test the accuracy of the approximate analytical solution derived in the previous
section. For this purpose, we run six simulations for values of the fault stress parameter T = 0.01, 0.1,
0.3, 0.5, 0.7, and 0.9 and set ν = 0. We perform 9 fully implicit time steps per simulation for values of
the dimensionless time logarithmically spaced between 1 to 108.

4.3.1 Axisymmetric slip profiles and accumulated fault slip at the rupture center

Figs. 10a, 10b and 10c display the non-self-similar slip profiles for different values of the fault stress
parameter T . Since the solution is not self-similar, the dimensionless slip profiles are not unique for a
single value of the fault stress parameter, but rather time-dependent. Note that the slip profiles near the
injection point are now smooth due to the finite size of the fluid source. On the other hand, Fig. 10d
shows the normalized accumulated fault slip at the center of the rupture δ(r = 0, t) as a function of the
dimensioless time αt/r2

w for different values of the fault stress parameter T . This figure suggests that
at large times δ(r = 0, t) ∼ (f∆pw/µ)R(t), up to a factor 0.1 to 0.2 approximately, for the values of T
considered.
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Figure 9: (a) Instantaneous spatial profile of fluid pressure for injection at constant pressure, Π(r, t), as
function of the dimensionless radial coordinate r/rw at different dimensionless times αt/r2

w. Comparison
between the exact solution given by Eq. (6), the asymptotic expansion (41) valid for αt/r2

w � 1, and
an asymptotic expansion with higher order corrective terms (Jaeger 1955). (b) Approximate analytical
solution for circular ruptures driven by injection at constant pressure, given by the amplification factor
λ(t) = R(t)/L̃(t) as a function of the fault stress parameter T at different dimensionless times αt/r2

w.

4.3.2 Rupture radius and comparison with approximate analytical solution

Based on the numerical solution of the axisymmetric slip profiles δ(r, t), we compute the instantaneous
rupture radius R(t) at every time step for each simulation. We use the same procedure described in
section 3.3 for building the rupture front and computing the rupture radius. The results are plotted in
Fig. 11a together with the approximate analytical solution derived in the previous section.

The approximate analytical solution (valid for large times, αt/r2
w � 1) is in good agreement with the

numerical results for values of T ranging from 0.1 to 0.7, with an average relative difference of about 5%.
Near the limit of a marginally pressurized fault (T = 0.9), the analytical solution is less accurate (average
relative difference around 20%) due to the fact that the assumption R(t)� rw is not properly satisfied.
On the other hand, near the limit of a critically stressed fault (T = 0.01), the analytical solution loses
accuracy possibly due to the fact that the “near front” behavior of the fluid pressure profile is not well
captured by the asymptotic expansion, Eq. (41). The absolute value of the relative difference between
the approximate analytical solution and the numerical results is around 30% in average.

Finally, Fig. 11b displays the numerical results for the time-dependent amplification factor λ(t) =
R(t)/L̃(t) and the corresponding approximate analytical solution for it. Note that for values of T & 0.7,
the rupture lags the fluid pressure front at all times, whereas for T > 0.01 the rupture outpaces the fluid
pressure front at all times considered here. The case of intermediate values, 0.5 > T > 0.1, is interesting
because a transition of propagation regime occurs at early times.

4.4 Numerical solution for non-circular ruptures

Finally, we solve numerically for the more general case where the Poisson’s ratio is different than zero.
We run 12 simulations for four values of the fault stress parameter T = 0.1, 0.3, 0.5, and 0.7, plus three
values of the Poisson’s ratio ν = 0.15, 0.30, and 0.45.

Similarly to the case of injection at constant volume rate, the simulations show that ruptures evolve
systematically in a nearly elliptical shape. We thus define the rupture front R(t) according to the
equation of an ellipse (Eq. (29)), and compute the semi-major a(t) and semi-minor b(t) axes of the
elliptical front following the same procedure described in section 3.4. Fig. 12a shows the temporal
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Figure 10: Non-self-similar normalized slip profiles for circular ruptures driven by injection at constant
pressure as a function of the normalized radial coordinate r/R(t) at different dimensionless times αt/r2

w.
(a) Fault stress parameter T = 0.01, (b) T = 0.1, (c) T = 0.5. (d) Normalized accumulated fault slip
at the center of the rupture as a function of dimensionless time αt/r2

w for different values of the fault
stress parameter T .
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Figure 11: Comparison between numerical results and approximate analytical solution for circular rup-
tures driven by injection at constant pressure. (a) Dimensionless rupture radius R(t)/rw as a function
of dimensionless time αt/r2

w for different values of the fault stress parameter T . (b) Same as (a) but for
the time-dependent amplification factor λ(t) = R(t)/L̃(t).
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Figure 12: (a) Aspect ratio a/b as a function of dimensionless time αt/r2
w for different values of the fault

stress parameter T . (b) Geometric mean
√
λa(t)λb(t) for ν = 0.3 divided by the amplification factor

for circular ruptures (ν = 0), λcircular, as a function of dimensionless time αt/r2
w for different values of

the fault stress parameter T .

evolution of the aspect ratio a(t)/b(t) for ν = 0.3 and different values of the fault stress parameter T . It
can be observed that for values of T closer to zero (critically stressed faults), the aspect ratio decreases
over time and tends to a constant value at large times, whereas for values of T closer to one (marginally
pressurized faults), the aspect ratio increses over time and tends at large times to a constant value as
well. Finally, for intermediate values of T , the aspect ratio is nearly constant (see results for T = 0.3).

Fig. 12b displays the ratio between the geometric mean
√
λa(t)λb(t) for ν = 0.3, where λa and λb

are defined as λa(t) = a(t)/L̃(t) and λb(t) = b(t)/L̃(t), respectively, and the numerical values of the
amplification factor λ(t) for the circular rupture case (ν = 0). We observe that like the case of injection
at constant volume rate, the (now time-dependent) geometric mean

√
λaλb is almost equal to the am-

plification factor λ(t) for circular ruptures, meaning that the rupture areas for the values of ν = 0 and
ν = 0.3 are approximately the same for the values of T considered here.

5 Discussions

5.1 Comparison between 2-D and 3-D models

We examine here the differences between our 3-D model and its counterpart in 2-D. In the two-
dimensional case, the diffusion of fluid pressure along the one-dimensional frictional interface is self-
similar under both injection scenarios (constant volume rate and constant pressure) when considering a
fluid point source (Carslaw & Jaeger 1959). Injection-induced fault slip will thus evolve in a self-similar
fashion in both cases owing to the abscense of other lengthscales in the model.

The solution in 2-D elasticity for the evolution of the crack length under injection at constant pressure was
presented by Bhattacharya & Viesca (2019). They showed that the amplification factor λ = `(t)/`d(t),
where `(t) is the position of the crack tip (equal to the half-crack length) and `d(t) is a nominal position of
the fluid pressure front, is time-invariant and depends only on the fault stress parameter T . Interestingly,
we found qualitatively the same response in our 3-D model but for injection at constant volume rate.

On the other hand, the solution of the 2-D model for injection at constant volume rate has not been
presented yet. We derive such solution in the Appendix D and found that the amplification factor λ is
time-dependent and follows

exp
(
−λ2/2

) [(
1 + λ2

)
I0
(
λ2/2

)
+ λ2I1

(
λ2/2

)]
− 2λ/

√
π = xc/`d, (49)

where `d =
√

4αt and xc = (fσ′o − τo) / (fqwη/k). I0 and I1 are the Bessel functions of the first kind
of zero and first order, respectively. Eq. (49) represents a unique relation between the amplification
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factor λ and the ratio between the position of the fluid pressure front `d and the characteristic length
xc, which is plotted in Fig. 13 together with the corresponding asymptotes for small and large λ (details
in Appendix D).

The characteristic length xc corresponds to the position of the fluid pressure front at the onset of crack
growth (activation of slip). Upon crack initiation, the rupture lags the fluid pressure front and expands
faster than the diffusion of fluid pressure. The crack catches the fluid pressure front (λ = 1) when the
normalized fluid pressure front ¯̀

d ≈ 3.1435 or, in other words, when the fluid pressure front `d has
grown approximately three times the size xc necessary for the crack to start growing. After that, the
rupture outpaces the fluid pressure front and the crack keeps propagating faster than the diffusion of
fluid pressure until it reaches a steady propagation regime that is characterized by a constant rupture
speed VR equal to (see Appendix D)

VR =
8√
π

fqwαη/k

fσ′o − τo
, (50)

where qw [L/T ] is the constant injection volume rate per unit fault thickness wh and unit out-of-the-plane
length b, such that qw = Qw/whb with Qw the injection volume rate

[
L3/T

]
.

This response of the 2-D model under constant rate of injection has no analog in 3-D. Injection at
constant volume rate in the 3-D model leads to a rupture speed that decreases with the squared root
of time, VR = λ

√
α/
√
t (Eq. (24)). Moreover, the relative position of the rupture front and the fluid

pressure front is time-invariant in 3-D.

Our analysis shows that the response of the 2-D and 3-D models under the same injection scenario are
different even qualitatively. These differences have to be carefully considered when linking theoretical
and numerical predictions to laboratory measurements and field observations in which, generally, 3-D
models prevail.

0.05 0.10 0.50 1 5 10
1

5

10

50

(short-run-out rupture regime)

(long-run-out rupture regime)

Figure 13: Analytical solution for a frictional shear crack in 2-D elasticity driven by injection at constant
volume rate from a point source. Ratio between the position of the fluid pressure front `d and the position
of the fluid pressure front at the onset of crack growth xc, with `d =

√
4αt and xc = (fσ′o − τo) / (fqwη/k),

versus the amplification factor λ = `(t)/`d(t), where `(t) is the half-crack length.

5.2 Assumption of constant friction

In the context of rock friction and earthquake mechanics, laboratory-derived friction laws (Dieterich
1979, Ruina 1983, Marone 1998) have been widely used to describe the entire spectrum of slip rates in
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natural faults (Scholz 2019). These empirical friction laws capture the dependence of friction on slip rate
and the history of slidding (via a state variable) as observed during velocity-step laboratory experiments
on bare rock surfaces and simulated fault gouge (Marone 1998). It seems then interesting to discuss
under what conditions a constant friction coefficient can mimic more complex models of fluid-driven
frictional ruptures with rate-and-state friction.

Results in 2-D antiplane elasticity of fluid-driven fault slip propagating on a strengthening (aging) rate-
and-state frictional interface have been notably reported by Dublanchet (2019), for the case of injection of
fluid at a constant volume rate. Two distinct regimes of crack propagation were observed in Dublanchet’s
numerical simulations (following a first initial phase of slip rate acceleration): a stable crack growth that
tends ultimately to a constant rupture speed, and an unstable crack growth in which the rupture speed
blows up in a finite time. He observed that what determines the stable/unstable fault response is the
sign of the difference between the residual shear stress left within the crack τr and the initial shear stress
resolved on the fault plane τo. If τr−τo > 0 (a condition that is guaranteed in a constant-friction model),
crack propagation is always stable, whereas if τr − τo < 0, the crack may evolve towards an instability.
Such ultimate stability condition can be indeed understood under the classic Griffith energy-balance and
the small scale yielding approximation (Rice 1968), as performed by Garagash & Germanovich (2012)
for a fluid-driven slip-weakening frictional shear crack in 2-D.

The stable regime of crack propagation found by Dublanchet (2019) is indeed the most relevant in the
context of aseismic ruptures. Furthermore, during such stable propagation regime, Dublanchet noticed
that the crack behaves exactly as if it were governed by a constant friction coefficient within the slipping
patch. This is because in that regime, the leading-order terms of the quasi-static elastic equilibrium are
the nonlocal stress transfer along the fault and the effect of fluid pressure change on reducing the constant
part of the shear strength in the rate-and-state friction law. It is not surprising then that our 2-D model of
a constant-friction shear crack derived in the Appendix D and summarized in Fig. 13, shows qualitatively
the same response (under the same injection scenario), notably the ultimate steady crack propagation
regime characterized by a constant rupture speed VR. In our 2-D model, VR ∝ fαqw/(fσ

′
o − τo) (see

Eq. (50)), which depends on the constant friction coefficient f , hydraulic diffusivity α, injection rate qw,
and residual τr and initial τo shear stress, in the same form as in the rate-and-state model (Eq. 23 in
Dublanchet 2019), considering that fσ′o is the residual shear strength in the constant-friction model.

A similar result, also in 2-D elasticity, has been recently obtained by Garagash (2021) using a different
approach. He developed a Griffith-energy-balance-like equation of motion for the evolution of crack
length on rate-and-state faults that he then applied to the study of slip transients due to point-force-like
fluid injections. He notably showed that for injection at constant volume rate on neutraly and under-
stress (with regard to the ambient slip rate) strengthening rate-and-state faults (obeying the slip law),
the frictional ruptures expand initially within the limits of the pressurized fault patch and move faster
than the latter, until they eventually outpaces the fluid pressure front and reaches also a terminal steady
propagation regime characterized by a constant rupture speed. This response is again qualitatively the
same of our 2-D model of a constant-friction shear crack, and the same found by Dublanchet (2019)
for the stable propagation regime. Moreover, as pointed out by Garagash (2021), the ultimate behavior
of the crack under these conditions is due to the diminishing effect of rate-and-state fracture energy in
the Griffith energy balance compared to the effect of the fluid injection (in the energy release rate) with
increasing rupture size, such that, in the limit of large-run-out rupture, the crack behaves as having zero
toughness or, in other words, a friction coefficient that is constant.

Our discussion in 2-D elasticity suggests that the assumption of a constant friction coefficient describes
to first order the behavior of rate-and-state friction under conditions that are relevant for the study
of fluid-driven aseismic ruptures (rate-strengthening in both aging and slip laws, and approaching the
large-run-out rupture regime), in which the frictional fracture energy can be neglected. We expect our
results in 3-D to provide also first-order descriptions of fluid-driven aseismic ruptures in the context of
rate-and-state friction, yet this assumption remains to be confirmed in future studies.

5.3 Implications to injection-induced seismicity

As suggested by a number of experimental and observational studies (Hamilton & Meehan 1971, Scotti
& Cornet 1994, Bourouis & Bernard 2007, Guglielmi et al. 2015, Wei et al. 2015, Chen et al. 2017,
Duboeuf et al. 2017, Eyre et al. 2019, Cappa et al. 2019), aseismic slip seems to be a frequent result
of fluid injections into the subsurface and might play a significant role in injection-induced seismicity
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related to hydrocarbon and geothermal operations. It is thought that fluid motion drives aseismic slip
which in turn transmits solid stresses that trigger part of the observed induced seismicity (Guglielmi
et al. 2015, Wei et al. 2015, Duboeuf et al. 2017, Eyre et al. 2019, Bhattacharya & Viesca 2019). Our
results open the possibility of quantifying this triggering mechanism in a three-dimensional scenario that
is more realistic than previous two-dimensional models for fluid-driven aseismic fault slip (Eyre et al.
2019, Bhattacharya & Viesca 2019, Dublanchet 2019, Garagash 2021).

First, we note that injection protocols generally consist of a series of injections conducted at a constant
volume rate. Results of section 3 are thus more relevant for geo-energy applications. In particular, we
showed that aseismic slip induced by injection at constant volume rate is self-similar in a diffusive manner.
As a consequence, the rupture front expands proportionaly to the square root of time in the same way
as the fluid pressure front does. Induced seismicity that is commonly considered to be driven by the
direct effect of fluid pressure increase due to the square-root-of-time feature of seismicity clouds (Shapiro
et al. 1997, 2005), might instead be controlled by the stress transfer of a propagating aseismic rupture
(Bhattacharya & Viesca 2019). This would notably be the case of critically stressed fractures/faults in
which the rupture front is predicted to be systematically ahead of the fluid pressure front. Our results
suggest that assessing whether seismicity is induced by aseismic-slip stress transfer or fluid pressure
increase might not be possible from the observation of square root time dependence of seismicity front
alone.

Our model is, of course, idealistic in the sense that it represents a single and isolated fracture/fault
in 3-D. Nonetheless, recent two-dimensional simulations of fluid induced aseismic slip in fractured rock
masses have shown that the same patterns predicted by a single fracture in 2-D emerge collectively for
a set of fractures (Ciardo & Lecampion 2021). Notably, a collective aseismic slip front outpaces the
migration of fluids when the fracture network is in the critically stressed regime in a global sense (Ciardo
& Lecampion 2021). In addition, field observations indicate critically stressed fractures/faults are likely
to be preferred, high-permeability, conduits of fluid flow than the fractures/faults that are not optimally
oriented with regard to the stress field (Barton et al. 1995). Together, these observations suggest that
seismicity triggered by injection-induced aseismic slip might be indeed a general feature of reservoir rocks
in response to fluid injections.

Moreover, if aseismic slip is the dominant mechanism for the triggering of seismicity, current estimates
of reservoir hydraulic diffusivity α based on the spatio-temporal seismicity patterns (Shapiro et al. 1997)
might be rather related to the quantity αλ2 (see Eq. (32)), with λ being an equivalent amplification
factor of the fractured rock mass. Such amplification factor would be intrinsically dependent not only
on hydraulic properties of the fracture network, but also on the distribution of fracture orientations with
regard to the stress field and the rate of injection.

Another finding of our study is related to the scaling relation between the aseismic moment release
M0 and the accumulated injected volume of fluid V . This type of relation has been extensively sought
with the purpose of constraining the magnitude of injection-induced earthquakes based on operational
parameters (McGarr 2014, van der Elst et al. 2016, Galis et al. 2017, McGarr & Barbour 2018). We found
that the aseismic moment scales to the injected volume of fluid as M0 ∝ V 3/2, for injection at constant
volume rate. Interestingly, the same power-law scaling has been found for self-arrested injection-induced
seismic ruptures based on fully-dynamic rupture simulations and fracture mechanics arguments (Galis
et al. 2017). We emphasize that our scaling relation is derived for purely aseismic (quasi-static) ruptures,
whereas the relation found by Galis et al. (2017) represents seismic (dynamic) events.

5.4 Implications to seismic swarms, aftershock sequences and slow slip events

Seismic swarms and aftershock sequences are often characterized by diffusive spatiotemporal patterns
that are thought to be caused by naturally injected fluids into fault zones (Bosl & Nur 2002, Miller
et al. 2004, Parotidis et al. 2005, Chen et al. 2012, Hainzl et al. 2016, Ross et al. 2017, 2020). Moreover,
natural fluid releases are likely represented by the sudden increase of injection rate at the fluid source
origin followed by stabilization towards a constant rate. This might be the case of, for instance, breaking
an initially sealed and highly-pressurized reservoir. Of course, after a certain period of injection at
approximately constant rate, the rate of injection has to decrease until the pressure at the initially
highly-pressurized fluid source equilibrates the fluid pressure of the surroundings; we neglect the rupture
growth during that stage and also after injection ceases. Our results for sustained injection at constant
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volume rate can be thus discussed in the context of natural fluid-driven seismicity in seismic swarms
episodes and aftershock sequences.

Indeed, the previous discussion on injection-induced aseismic slip in fractured rock masses is easily
extendable to fault zones. Notably, seismicity is expected to be now constrained into a relatively well-
defined fault plane of thickness that equals the size of the damage zone. Observed seismicity would
be the result of instabilities that occur either in the main fault plane or in the fracture network of the
damage zone. Similarly to the case of a fractured rock mass, the triggering of seismicity by aseismic-slip
stress transfer would depend on how critically stressed the main fault plane or the damage zone fracture
network is. The square root time migration of seismicity might be insufficient to discriminate whether
aseismic slip or elevated fluid pressure is the direct triggering mechanism. Likewise, estimates of fault
hydraulic diffusivity α based on seismicity patterns might rather represent the quantity αλ2.

Other phenomena that are potentially related to the diffusion of fluid pressure are silent earthquakes
or slow slip events. Their occurrence is spatially well-correlated to predominantly frictionally stable
regions in subduction zones with highly-pressurized fluids that operate at almost lithostatic pressures
(Kato et al. 2010, Frank et al. 2015). Metamorphic dehydration reactions are likely to occur in these
regions and have been invoked as a possible driving mechanism for slow slip events (Kato et al. 2010).
To distinguish between possibly different physical mechanisms underlying slow and regular earthquakes,
seismologists often search for scaling relations between the scalar moment M0 and the duration of the
event D (Gomberg et al. 2016). Assuming that slow slip events are driven by a sustained fluid source
characterized by a constant injection rate over a fault patch that is small in comparison to the rupture
area, and the rupture is allowed to grow unboundly, we obtain, from Eq. (38), that M0 ∝ D3/2. This
scaling relation differs from other relations proposed for a diffusion-controlled slow slip event model that
follows M0 ∝ D (Ide et al. 2007).

5.5 Permeability variations

Our model assumes that fluid flow occurs within a frictional interface characterized by a constant hy-
draulic transmissivity. However, permeability changes due to variations of the effective normal stress or,
equivalently, the normal interfacial deformation/closure, are well-documented in the fracture/joint rock
mechanics literature (e.g., Bandis et al. 1983) and fault mechanics literature as well (e.g., Rice 1992). In
addition, fracture/fault dilatant-behavior can also induce significant permeability variations (e.g., Cia-
rdo & Lecampion 2019). The effect of such hydro-mechanical couplings on the propagation of aseismic
slip remains to be investigated in 3-D and requires the solution of the fully-coupled hydro-mechanical
problem as solved, for instance, by Ciardo & Lecampion (2019) in 2-D.

6 Summary and concluding remarks

We have studied the quasi-static propagation of aseismic fault slip driven by fluid pressure diffusion
under two different injection scenarios, namely, at constant volume rate and at constant pressure. Our
model considers a frictional shear crack that grows in mixed mode (II+III) on a planar fault interface
that separates two identical half-spaces of a three-dimensional, isotropic, homogeneous, linear elastic and
impermeable solid. The fault interface is characterized by: a shear strength that is equal to the product of
a constant friction coefficient and the local effective normal stress, a uniform stress state before injection,
and a uniform and constant hydraulic transmissivity. The problem admits analytical treatments for
circular ruptures which occur in the limit of a Poisson’s ratio ν = 0, and it is solved numerically for the
more general case in which the frictionally-constrained crack shape is to be determined as part of the
solution (ν 6= 0).

For injection at constant volume rate from a point source, the fault rupture is self-similar. For the
limiting case of a circular crack (ν = 0), the rupture radius evolves simply as R(t) = λL(t), where
L(t) =

√
4αt is the nominal position of the fluid pressure front and λ is an amplification factor which

is similar to the one presented by Bhattacharya & Viesca (2019) in their 2-D model. We derived an
analytical solution for λ as a function of a unique dimensionless parameter T . The fault stress parameter
T varies between 0 and +∞ and contains the information related to the pre-injection fault stress state
and the parameters of the injection protocol. Whenever λ > 1, the rupture front outpaces the fluid
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pressure front. As in previous studies (Garagash & Germanovich 2012, Bhattacharya & Viesca 2019),
two end-member cases have been identified, namely, critically stressed faults (T → 0) that largely outpace
the fluid pressure front (λ� 1), and marginally pressurized faults (T → +∞) that significantly lags the
fluid pressure front (λ � 1). Simple closed-form asymptotic expressions have been derived for λ and
also for the axisymmetric slip distribution δ(r, t), for the two end-member cases. Other results include
the rupture speed that decays with the square root of time as Vr(t) = λ

√
α/
√
t, and the accumulated

fault slip at the injection point which is δ(r = 0, t) ≈ 3.5 (f∆p∗/µ)L(t) for critically stressed faults, and
δ(r = 0, t) = (8/π) (f∆p∗/µ)R(t) for marginally pressurized faults, where f is the friction coefficient,
∆p∗ is the characteristic overpressure of the injection, and µ is the shear modulus.

For the more general case in which the Poisson’s ratio is different than zero, we solved the problem
of determining the equilibrium shape of the frictional shear crack over the entire parametric space. We
found that the crack shape is quasi-elliptical and the aspect ratio is upper and lower bounded by 1/(1−ν)
and (3− ν)/(3− 2ν). The two bounds are associated with the limiting cases of critically stressed faults
and marginally pressurized faults, respectively. There is thus a strong dependence of the aspect ratio
not only on the Poisson’s ratio but also on the initial stress state and the driving force itself. Moreover,
we found that the rupture area is Poisson’s ratio-independent and grows simply as Ar(t) = 4παλ2t. If
λ > 1, the rupture area is greater than the diffusively pressurized fault patch. Interestingly, λ is the
same amplification factor that for the circular rupture case, meaning that knowing the solution of the
circular shear crack is sufficient to determine the area of any other resulting crack shape for any value of
the Poisson’s ratio and the same value of T . In addition, simple closed-form asymptotic expressions are
provided for the semi-major a(t) and semi-minor b(t) axes of the quasi-elliptical crack that fully define
the rupture front for the corresponding end-member cases.

For injection at constant pressure from a finite source of radius rw, the fault rupture is not self-similar.
The rupture radius grows at large times as R(t) = λ(t)

√
c1αt, where c1 ≈ 2.25,

√
c1αt is the nominal

position of the fluid pressure front and λ(t) is an amplification factor known as function of dimensionless
time αt/r2

w and T . The fault stress parameter T varies in this case between 0 and 1. λ(t) decreases
monotonically with time and the rupture radius expands as R(t) ∝ (αt)(1−T )/2. For critically stressed
faults (T → 0 =⇒ (1− T ) /2 → 1/2), the rupture evolves almost diffusively, whereas for marginally
pressurized faults (T → 1 =⇒ (1− T ) /2→ 0), the rupture grows extremely slow. Generally speaking,
the rupture front propagates slower than the diffusive fluid pressure front. Yet in some cases the rupture
front outpaces the fluid pressure front, the latter will eventually catch the former if injection is sustained
for a sufficient time.

Among the two injection scenarios considered, injection at constant volume rate is the one with broader
implications. This is due to injection protocols in the geo-energy industry normally consist of a series
of injections at constant volume rate, whereas naturally injected fluids into the Earth’s crust are likely
represented by the same kind of source. Since aseismic ruptures expand diffusively (proportional to
the square root of time) for that type of injection, irrespective of the pre-injection stress state and the
parameters of the injection, current interpretations of fluid-driven seismicity might need to be revisited.

Indeed, it is commonly assumed that seismicity clouds are driven by the direct effect of fluid pressure
increase whenever seismic events are observed to spread away from the injection zone with square root
time dependence (Shapiro et al. 1997, Bosl & Nur 2002, Parotidis et al. 2005, Chen et al. 2012, Hainzl
et al. 2016, Ross et al. 2017, 2020). Our results challenge that interpretation and open the possibility
that those episodes might be controlled by the stress transfer of a propagating aseismic rupture instead
(Bhattacharya & Viesca 2019). This would be notably the case of critically stressed fractures/faults
in which the rupture front is predicted to be systematically ahead of the fluid pressure front (λ � 1).
Furthermore, current estimates of reservoir and fault zone hydraulic diffusivity α based on seismicity
patterns (e.g., Shapiro et al. 1997, 2005, Ross et al. 2017) might be rather related to the quantity αλ2,
with λ being a representative amplification factor of the fractured rock mass or fault zone.

Another important finding is related to the scalar moment M0 due to purely aseismic (quasi-static)
motion. We found that it scales to the injected volume of fluid V asM0 ∝ V 3/2. Interestingly, this relation
is the same as the one found by Galis et al. (2017) for self-arrested injection-induced seismic (dynamic)
ruptures. Similarly, the seismic moment scales to the duration of fluid-driven aseismic ruptures D,
approximately asM0 ∝ D3/2. This scaling relation might be useful to interpret seismological observations
of slow slip events driven by fluid sources such as dehydration reactions or others related to fault valving
behavior, and it differs from other diffusion-controlled slow slip event models that have been proposed
to follow M0 ∝ D (Ide et al. 2007).
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We expect our analytical and numerical results to provide a conceptual and quantitative framework
to undertand various applied problems in geomechanics and geophysics associated with aseismic frac-
ture/fault slip induced by fluid motion. Moreover, our analytical results provide a simple mean for
verifying and benchmarking 3-D numerical solvers as performed here.
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Appendices

A The consistent tangent operator

The Newton-Raphson iterations of the backward Euler time integration scheme require the computation
of the corresponding Jacobian matrix J ∈ RN×N . By differentiating the residual form of Eq. (9), the
Jacobian matrix is simply given by J = EH+CTO, where CTO = −∂∆t′/∂∆d is the so-called consistent
tangent operator of elastoplasticity. In order to derive an analytical expression for CTO, we consider
the consistency condition ∆γḞ = 0, which states that when plastic flow occurs (i.e., ∆γ > 0), the stress
state t′ has to remain on the yield function and thus Ḟ = 0. This additional equation can be read in
incremental form as

∂F
∂t′
·∆t′ = 0.

Note that the consistent tangent operator CTO is a block diagonal matrix and is composed by blocks that
we denote as Cm

TO ∈ R3×3. There is one Cm
TO matrix for every m-th collocation point. By combining

Eqs. (10) to (13) plus the previous consistency condition, we derive the following expression for Cm
TO

Cm
TO =

 k1 sin2 (θ) −k1 sin (θ) cos (θ) fk3 cos (θ)
−k2 sin (θ) cos (θ) k2 cos2 (θ) fk3 sin (θ)

0 0 k3

 ,

30

Non-peer reviewed EarthArXiv preprint, submitted for consideration by J. Mech. Phys. Sol.



where θ = arctan (t2/t1) with t1 and t2 the two local components of the shear traction vector at the
m-th collocation point (the superscript m is omitted), and k1, k2 and k3 are the corresponding entries
of the diagonal elastic stiffness matrix D.

Note that Cm
TO is a null matrix if ∆γm = 0 (i.e., if the collocation point state is elastic or, in other

words, no slip has occured).

B Propagation condition for a constant-friction circular shear
crack under axisymmetric shear load

The stress intensity factors of a circular crack of radius R under an arbitrary shear traction vector of
components σxz and σyz (with regard to the reference frame showed in Fig. 1) applied anti-symmetrically
on the crack surfaces read as (Fabrikant 1989, Lai et al. 2002)

KII(R,φ) + iKIII(R,φ) =
1

π
√
πR

∫ 2π

0

∫ R

0

[
{σxz(r, θ) + iσyz(r, θ)}

√
R2 − r2e−iφ

R2 + r2 − 2Rr cos(φ− θ)

+
ν

2− ν
{σxz(r, θ)− iσyz(r, θ)}

√
R2 − r2

{
3R− rei(φ−θ)

}
eiφ

R(R− rei(φ−θ))2

]
rdrdθ,

where φ is the polar angular coordinate, such that tan (φ) = x/y.

Consider a shear load of axisymmetric magnitude ∆τ(r) along the x direction, such that σxz(r, θ) = ∆τ(r)
and σyz(r, θ) = 0. Evaluating the integral of the right-hand side of the previous equation with regard to
θ, we obtain:

KII(R,φ) =
2 cos(φ)√

πR

∫ R

0

∆τ(r)

[
1√

R2 − r2
+

3ν

2− ν

√
R2 − r2

R2

]
rdr,

KIII(R,φ) =
2 sin(φ)√

πR

∫ R

0

∆τ(r)

[
− 1√

R2 − r2
+

3ν

2− ν

√
R2 − r2

R2

]
rdr.

Let us consider the energy release rate of a pure shear crack in 3-D elasticity, G = K2
II/E

′ + K2
III/2µ

(Lawn 1993), where E′ is the plane strain modulus. Using the previous equations for the stress intensity
factors in the limiting case of a material with Poisson’s ratio ν = 0 (E′ = E = 2µ), we obtain the
following expression for the energy release rate,

G =
2

πµR

(∫ R

0

∆τ(r)√
R2 − r2

rdr

)2

.

The fracture energy Gc of a constant-friction shear crack is zero, such that Grifith energy balance G = Gc
reduces simply to

∫ R

0

∆τ(r)√
R2 − r2

rdr = 0,

that is the expression used in the main text as the condition for crack propagation.
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C Asymptotics of fault slip for circular ruptures driven by injec-
tion at constant volume rate

The quasi-static elastic equilibrium that relates the fault slip distribution δ to the shear stress drop ∆τ
within an axisymmetric circular shear crack (ν = 0) of radius R(t) is (Salamon & Dundurs 1971, 1977)

∆τ(r, t) =
µ

2π

∫ R(t)

0

∂δ(ξ, t)

∂ξ

(
K [k(r/ξ)]

ξ + r
+
E [k(r/ξ)]

ξ − r

)
dξ,

where K and E are the complete elliptic integrals of the first and second kind, respectively, and k(x) =
2
√
x/ (1 + x).

The inverse relation of the previous equation is given by Sneddon (1951) (Eq. 121, p. 489) as

δ(r, t) =
4R(t)

πµ

∫ 1

r̄

ξdξ√
ξ2 − r̄2

∫ 1

0

∆τ(sξR(t), t)sds√
1− s2

, (51)

where r̄ = r/R(t) is the self-similar radial coordinate.

Considering that the shear stress drop ∆τ(r, t) = τ0−f
[
σ′o −∆p∗E1

(
r2/4αt

)]
(Eq. (19)), the fault stress

parameter T = (fσ′o − τo) /f∆p∗ (Eq. (17)), and the amplification factor is defined as λ = R(t)/L(t)
with L(t) =

√
4αt, we can recast the above equation in dimensionless form,

δ̄ (r̄;T ) =
δ(r, t)µ

f∆p∗R(t)
=

4

π

∫ 1

r̄

ξdξ√
ξ2 − r̄2

∫ 1

0

(
E1

(
s2ξ2λ2

)
− T

)
sds

√
1− s2

, (52)

where δ̄ (r̄;T ) is the normalized self-similar slip distribution that is unique for a given value of T . We
recall that the amplification factor λ is known by Eq. (21) as a function of T as well.

Eq. (52) admits analytical integration in the limiting cases of critically stressed (λ� 1) and marginally
pressurized (λ� 1) faults. One of the inner integrals,

∫ 1

0
E1

(
s2ξ2λ2

)
sds/
√

1− s2, has indeed the same
limiting behaviors than the crack propagation condition, Eq. (20). For large values of λ, such integral
is approximated asymptotically as ∼ 1/

(
2ξ2λ2

)
+ O

(
1/λ4

)
(see Eq. (22)), whereas for small values of

λ is ∼ 2− γ − ln
(
4ξ2λ2

)
+O

(
λ2
)
(see Eq. (23)). Considering the previous asymptotic expressions, Eq.

(52) can be evaluated analytically to obtain the following closed-form expressions for the self-similar slip
distribution:

δ(r, t)µ

f∆p∗R(t)
=

8

π

(√
1− r̄2 − |r̄| arccos (|r̄|)

)
(53)

in the marginally pressurized limit (T � 1, λ� 1), and

δ(r, t)µ

f∆p∗L(t)
=

2
√

2T

π

(
arccos (|r̄|)
|r̄|

−
√

1− r̄2

)
(54)

in the critically stressed limit (T � 1, λ� 1).

The latter is indeed valid for r � L(t) only. It corresponds to the “outer” solution of the critically
stressed limit in which the reduction of frictional strength due to the fluid pressure perturbation can be
approximated as a point force. Eqs. (53) and (54) can be equivalently derived by using the asymptotic
expressions of the fluid pressure perturbation in the limiting cases (see details on those approximations
in section 3.2). In addition, the condition for having no singularity at the crack tip, ∂δ/∂r = 0 at r = R,
is equivalent to the crack propagation condition, Eq. (18), and will lead to same expressions that relates
λ and T , Eqs. (22) and (23), in the corresponding end-member cases.

Eqs. (53) and (54) are plotted in Fig. 14 together with the slip profiles obtained from the numerical
simulations for values of T that are representative of the limiting cases. We use logarithmic scale in the
critically stressed limit in order to facilitate the comparison. Note that the marginally pressurized limit
is reached for values of T ? 4 (Fig 14b). On the other hand, in the critically stressed limit (Fig 14a), the
“outer” solution breaks for small r (it diverges at r = 0 indeed); an “inner” solution should be derived in
order to properly approximate the slip distribution in the domain in which r ∼ O (L(t)).
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Figure 14: Comparison between asymptotics of fault slip and results from the simulations for (a) critically
stressed faults (λ� 1), and (b) marginally pressurized faults (λ� 1).

D Analytical solution in 2-D for a frictional shear crack driven
by injection at constant volume rate

Consider the same problem formulated in section 2.1 but in 2-D elasticity. Fluid is injected via a point
source at x = 0 into a planar 1-D frictional interface located along the x-axis. Injection is sustained for
t > 0 at a constant volume rate qw [L/T ] per unit fault thickness and unit out-of-the-plane length. The
quasi-static crack propagation condition for a 1-D straight constant-friction (zero-toughness) shear crack
(either mode II or III) of half-crack length `(t) reduces to (Barenblatt 1962)

∫ `(t)

−`(t)

∆τ(x, t)√
`2(t)− x2

dx = 0,

where ∆τ(x, t) is the shear stress drop given by

∆τ(x, t) = τ0 − f (σ′o −∆p(t)Π(ξ)) ,

with ξ = x/
√

4αt and

∆p(t) =
2qwη√
πk

√
αt, Π(ξ) = exp

(
−ξ2

)
−
√
π |ξ|Erfc (|ξ|) .

As defined in the main text, η is the fluid dynamic viscosity, k is the fault intrinsic permeability, and α
is the fault hydraulic diffusivity.

Let us define the nominal position of the fluid pressure front `d(t) =
√

4αt, a time-dependent amplification
factor λ in the form λ(t) = `(t)/`d(t), and the following characteristic length

xc =
fσ′o − τo
fqwη/k

.

The crack propagation condition can be then rewritten in dimensionless form

`d
xc

∫ 1

−1

Π(λs)√
1− s2

ds = π,

that represents a unique relation between the amplification factor λ and the ratio between the position
of the fluid pressure front `d and the characteristic length xc.

The left-hand side of the previous integral can be evaluated analytically to obtain the following implicit
equation for λ as a function of `d/xc,
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exp
(
−λ2/2

) [(
1 + λ2

)
I0
(
λ2/2

)
+ λ2I1

(
λ2/2

)]
− 2λ/

√
π = xc/`d,

where I0 and I1 are the Bessel functions of the first kind of zero and first order, respectively.

The previous equation is the one reproduced in the main text and it is plotted in Fig. 13. Asymptotic
expansions of the left-hand side of this equation for small and large λ lead to the following closed-form
asymptotic solutions for the short-run-out rupture (λ� 1) and long-run-out rupture (λ� 1) regimes:

λ =
√
π

2

(
1− xc

`d

)
, for λ� 1

λ = 2√
π
`d
xc

, for λ� 1
,

that are also plotted in Fig. 13.

From the asymptotic for the short-run-out rupture regime, we note that solutions are defined only for
`d/xc ≥ 1. The limit of `d/xc = 1 represents the instant in which activation of slip (or crack nucleation)
happens and implies that `d = xc. From the latter, it becomes clear that the characteristic length xc is
the size of the pressurized patch necessary to the crack starts growing.

On the other hand, from the asymptotic for the long-run-out rupture regime and the definition of λ, we
can write

`(t) =
8α√
πxc

t.

Hence, the ultimate behavior of the crack is a steady propagation regime at constant rupture speed VR
equal to

VR =
8√
π

fqwαη/k

fσ′o − τo
,

which is the other equation used in the main text.
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