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Highlights
TGR5 is a membrane-bound recep-
tor for BAs, which is found on bile
� TGR5 is downregulated in cholangiocytes in PSC and Abcb4-/- livers
in a cell type-specific manner.

� Interleukin-8 reduces TGR5 levels in biliary epithelial cells and
biliary organoids.

� Biliary damage is aggravated in Tgr5-deficient mice and is attenuated
in Abcb4-/- mice overexpressing Tgr5.

� ScRNA-seq shows that overexpression of Tgr5 in Abcb4-/- mice
ameliorates the activated, inflammatory biliary phenotype.

� norUDCA treatment restores biliary Tgr5-expression in Abcb4-/- mice.
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contributes to the pathogenesis of sclerosing cholangitis
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Background & Aims: Primary sclerosing cholangitis (PSC) is were studied. BEC gene expression was analyzed by single-cell

characterized by chronic inflammation and progressive fibrosis
of the biliary tree. The bile acid receptor TGR5 (GPBAR1) is found
on biliary epithelial cells (BECs), where it promotes secretion,
proliferation and tight junction integrity. Thus, we speculated
that changes in TGR5-expression in BECs may contribute to PSC
pathogenesis.
Methods: TGR5-expression and -localization were analyzed in
PSC livers and liver tissue, isolated bile ducts and BECs from
Abcb4-/-, Abcb4-/-/Tgr5Tg and ursodeoxycholic acid (UDCA)- or 24-
norursodeoxycholic acid (norUDCA)-fed Abcb4-/- mice. The ef-
fects of IL8/IL8 homologues on TGR5 mRNA and protein levels
words: bile acid receptor; interleukin-8; biliary damage; biliary organoids;
NA-seq; norUDCA.
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transcriptomics (scRNA-seq) from distinct mouse models.
Results: TGR5 mRNA expression and immunofluorescence
staining intensity were reduced in BECs of PSC and Abcb4-/-

livers, in Abcb4-/- extrahepatic bile ducts, but not in intrahepatic
macrophages. No changes in TGR5 BEC fluorescence intensity
were detected in liver tissue of other liver diseases, including
primary biliary cholangitis. Incubation of BECs with IL8/IL8 ho-
mologues, but not with other cytokines, reduced TGR5 mRNA
and protein levels. BECs from Abcb4-/- mice had lower levels of
phosphorylated Erk and higher expression levels of Icam1,
Vcam1 and Tgfb2. Overexpression of Tgr5 abolished the activated
inflammatory phenotype characteristic of Abcb4-/- BECs.
NorUDCA-feeding restored TGR5-expression levels in BECs in
Abcb4-/- livers.
Conclusions: Reduced TGR5 levels in BECs from patients with
PSC and Abcb4-/- mice promote development of a reactive BEC
phenotype, aggravate biliary injury and thus contribute to the
pathogenesis of sclerosing cholangitis. Restoration of biliary
TGR5-expression levels represents a previously unknown
mechanism of action of norUDCA.
021 vol. 75 j 634–646
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Lay summary: Primary sclerosing cholangitis (PSC) is a chronic
cholestatic liver disease-associated with progressive inflamma-
tion of the bile duct, leading to fibrosis and end-stage liver dis-
ease. Bile acid (BA) toxicity may contribute to the development
and disease progression of PSC. TGR5 is a membrane-bound re-
ceptor for BAs, which is found on bile ducts and protects bile
ducts from BA toxicity. In this study, we show that TGR5 levels
were reduced in bile ducts from PSC livers and in bile ducts from
a genetic mouse model of PSC. Our investigations indicate that
lower levels of TGR5 in bile ducts may contribute to PSC devel-
opment and progression. Furthermore, treatment with norUDCA,
a drug currently being tested in a phase III trial for PSC, restored
TGR5 levels in biliary epithelial cells.
© 2021 The Authors. Published by Elsevier B.V. on behalf of European
Association for the Study of the Liver. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

Introduction
Primary sclerosing cholangitis (PSC) is a rare cholestatic liver
disease characterized by chronic inflammation and progressive
fibrosis of the intrahepatic and extrahepatic bile ducts.1–3 There
is an increased risk of hepatic malignancy, mainly chol-
angiocarcinoma.1–3 Genetic, environmental and immunological
risk factors, dysregulation of the intestinal microbiota and the
gut-liver axis, changes in bile composition and in biliary
epithelial cell (BEC) phenotype have all been implicated in PSC
aetiology.2–6 Currently, no drug therapy has been approved for
PSC.

Mice lacking the phospholipid-floppase Mdr2 (Abcb4-/-)
recapitulate the progressive fibrosing cholangitis aspect of hu-
man PSC and also develop intrahepatic malignancy.4,7 Thus,
Abcb4-/- mice are widely used as a model for sclerosing chol-
angitis. Feeding of the hydrophobic bile acid (BA) lithocholic acid
(LCA, 1%w/w) results in destructive cholangitis and periductal
fibrosis within 2-4 days in wild-type (WT) mice.8 While this
model resembles the biliary changes observed in PSC, LCA
administration cannot be tolerated long-term.7,8

Takeda G protein-coupled receptor-5 (TGR5, also known as
GPBAR1) is a G protein-coupled receptor responsive to both
primary and secondary BAs.9–12 TGR5 is expressed throughout
the biliary tree in rodents and humans and has been detected in
BECs lining small and large intrahepatic ducts, extrahepatic ducts
and gallbladder epithelium.13–17 Activation of TGR5 in BECs
stimulates cyclic AMP generation leading to increased chloride
and bicarbonate secretion resulting in bicarbonate-rich choler-
esis.14,18–21 Furthermore, TGR5 contributes to BEC tight junction
integrity.22 Thus, TGR5 protects BECs from BA toxicity, explaining
the significantly diminished viability of Tgr5-deficient BECs after
BA challenge.17 TGR5 activation also promotes BEC proliferation,
which was attenuated in Tgr5-/- mice in models of cholestasis.17

The prominent expression of TGR5 in BECs and the receptor’s
involvement in biliary secretion, cytoprotection and proliferation
underlined the physiological need for TGR5 in this compartment,
and indicated that it could have a role in the pathogenesis of
cholangiopathies. Further evidence for a potential role of TGR5 in
PSC stems from genome-wide association studies: a gene locus
associated with both ulcerative colitis and PSC encompasses the
TGR5 gene locus.23,24 Whether changes in TGR5-expression,
localization and function in BECs contribute to PSC pathogenesis
has not been fully elucidated.
Journal of Hepatology 2
The aims of the present study were fourfold: i) to investigate
alterations in TGR5-expression and localization in BECs from PSC
and Abcb4-/- livers, ii) to identify potential regulators of TGR5 in
BECs in the context of sclerosing cholangitis, iii) to explore
whether the absence of TGR5 predisposes to sclerosing chol-
angitis, while overexpression of TGR5 attenuates sclerosing
cholangitis and iv) to identify potential therapeutic strategies.

Materials and methods
Human liver tissue
The study was performed according to the guidelines of the
declaration of Helsinki. Informed written consent was obtained
from all patients. For details see the supplementary information.

Animals/animal procedures
Abcb4+/- mice (BALB/c) were bred to obtain littermate Abcb4-/-

and Abcb4+/+ controls. Tgr5-transgenic (Tgr5Tg) and Tgr5WTmice
(C57BL/6J) were described elsewhere.25 Both sexes (6–8-week-
old) were used for experiments. Breeding was carried out with
heterozygous animals to obtain littermate controls. 8-week-old
male Abcb4-/- mice (FVB/N) were from Jackson Laboratory (Bar
Habor, ME). Animals received either control diet (SAFE-diets,
France) or a diet supplemented with 0.5% (w/w) ursodeoxycholic
acid (UDCA) or 24-norursodeoxycholic acid (norUDCA) for 4
weeks. The experimental protocols were approved by the local
Animal Care and Use Committee (BMWFW-66.009/0008-WF/V/
3b/2015). Animals received humane care, were maintained on
12 h light/dark-cycle and had access to water and food ad libitum.

Isolation of human biliary epithelial cells
Human BECs were isolated as described.26 Cells were treated at
passage 4 with recombinant human IL8 (5 ng/ml) for 24 h before
harvesting for protein extraction (see supplementary
information).

Generation of human biliary organoids
Human biliary organoids were generated from cells contained in
bile (2-10 ml) collected during endoscopic retrograde cholangi-
ography.27 The study protocol was approved by the ethical
committee of the University Hospital Duesseldorf. Informed
written consent was obtained from all patients.

Isolation and culture of murine BECs
BECs were isolated from livers of 6-8 week-old male and female
mice.15,17 For details including FACS enrichment see
supplementary information.28,29

Single-cell experiments, 10x sample processing, library
preparation and sequencing
Single-cell experiments were performed in 2 sets: Abcb4-/- and
WT littermates; (Balb/c background) Abcb4-/-/Tgr5WT and
Abcb4-/-/Tgr5Tg littermates (BALB/c x C57BL/6J). After FACS sort-
ing for epithelial cell adhesion molecule (EpCAM), a total of
10,000 cells were used as input for the single-cell droplet li-
braries generation on the 10X Chromium Controller system uti-
lizing the Chromium Single-Cell 3’NextGEM Reagent-Kit-v3.1
(10X Genomics, Pleasanton, CA). Sequencing was carried out on a
NextSeq-550 system (Illumina Inc. San Diego, CA) with a mean
sequencing depth of ~50,000 reads/cell.
021 vol. 75 j 634–646 635
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Single-cell RNA-seq data analysis
CellRanger analysis pipeline (v5.0.0) was used to process the 10x
genomics single-cell RNA-sequencing data: read alignment to
the reference and generate a matrix containing UMI counts per
gene per cell (gene expression matrix). The gene expression
matrix was further processed using R30 and the Seurat R-package
(v3.2.2).31 For cell clustering, the k-nearest neighbors of each cell
were determined. An SNN (shared nearest neighbor) graph was
constructed computing the Jaccard Index (neighborhood
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overlap) between each cell and its 20 nearest neighbors in the
principal component space. The cell clusters were visualized
using the uniform manifold approximation and projection
(UMAP) technique.32 Differential gene expression between cell
clusters was determined by the Wilcoxon rank sum test. The
resulting p values were adjusted using a Bonferroni correction.
The significance threshold was set to 0.05. Additionally, a
threshold of 0.25 was applied to the average log fold change
expression. For details see the supplementary information.
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Liver tissue from controls and patients with PSC were double-labelled for TGR5
lysis and expressed in relation to CK-7 FI (control livers n = 28 were set to 100%,
ILI (n = 3) and viral hepatitis (n = 4) was double-labelled for TGR5 and CK-7. (D)
ressed in relation to CK-7 FI (controls set to 100%). Nuclei in A/C were stained
t to control livers (p <0.05, Mann-Whitney U test). BECs, biliary epithelial cells;
ic steatohepatitis; PBC, primary biliary cholangitis; PSC, primary sclerosing
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Western blotting
Cells and liver tissue were lysed as described.14,17

Image acquisition and expression analysis
Confocal images were acquired on a Zeiss laser scanning mi-
croscope 510META or Model880 equipped with a 63xPlan Neo-
fluar objective using ZEN-software (black edition-Ver.2.3-SP1).
For image acquisition parameters/image analysis see
supplementary information.

Statistical analysis
Results were analyzed using the non-parametric 2-tailed Mann-
Whitney U, and/or the 2-tailed Wilcoxon signed-rank test as
indicated in the figure legends. A p value <0.05 was considered
statistically significant. For single-cell experiments, p values
were adjusted for multiple testing by the Bonferroni method (*p
<0.05; ***p <0.001).

For further details regarding the materials and methods used,
please refer to the CTAT table and supplementary information.

Results
TGR5 fluorescence intensity is reduced in BECs in PSC livers
High TGR5 protein expression was detected within or in close
proximity to the apical membrane in BECs of control livers
stained with antibodies against TGR5 and cytokeratin-7 (CK-
7)(Fig. 1A).13,16,17 In PSC livers, TGR5 staining was also present in
BECs and the subcellular distribution was similar to that observed
in controls (Fig. 1A). However, the TGR5 fluorescence staining
intensity (FI) in relation to CK-7 FI was reduced to 60.6±6.1% (n =
30) of controls, which were set to 100% (n = 28, p <0.05)(Fig. 1B).
CK-7 FI was comparable in all livers analyzed (Fig. S1A). Reduced
TGR5 BEC FI was detected in both early (I/II, n = 4, p <0.05) and
late stage (III/IV, n = 4, p <0.05) PSC tissue, suggesting that TGR5
protein levels are diminished early in the disease process and
remain low during disease progression (Fig. S1B). To explore
whether downregulation of TGR5 FI in BECs is a common phe-
nomenon in liver diseases, TGR5 BEC FI was determined in livers
from patients with primary biliary cholangitis (PBC), non-
alcoholic steatohepatitis (NASH), drug-induced liver injury
(DILI) and chronic viral hepatitis (Fig. 1C). No reduction of TGR5
BEC FI was observed in liver tissue from these diseases (Fig. 1D) –
suggesting a disease-related/-specific downregulation.

To visualize TGR5 in CD206+-macrophages, previously
described to be enriched in PSC livers, we counterstained liver
tissue with anti-TGR5 and anti-CD206 antibodies.33 In line with
previous findings, TGR5 FI was strong in CD206+-macrophages in
PSC tissue, indicating a cell type-specific regulation of TGR5-
expression in PSC (Fig. S1C).33

Tgr5-expression levels are reduced in intra- and extrahepatic
ducts of Abcb4-/- mice
To determine whether downregulation of Tgr5 is found in BECs
from both intrahepatic and extrahepatic ducts, Abcb4-/- mice
were used as a model for sclerosing cholangitis. EpCAM+/CD30-/
CD45-/CD11b- BECs were enriched by FACS from livers of 6–8-
week-old WT and Abcb4-/- mice (Fig. S2A). Relative Tgr5 mRNA
levels were reduced to 43.9±0.7% in EpCAM+-cells derived from
Abcb4-/- animals compared to WT cells (n = 5 per genotype, p
Journal of Hepatology 2
<0.05, Fig. 2A). In contrast, Tgr5 mRNA expression was unaltered
in EpCAM- non-parenchymal cells from Abcb4-/- mice (Fig. S2B).
Analysis of micro-dissected intrahepatic lobular ducts (n = 5
Abcb4-/-, n = 10 WT) or extrahepatic ducts (n = 7 Abcb4-/-, n = 5
WT) from Abcb4-/- animals revealed a significant reduction of
Tgr5 mRNA levels of about 40% and 50%, respectively, compared
to WT littermates (Fig. 2B,C).

In contrast, no difference in Tgr5 mRNA expression was
observed in BECs derived from Abcb4-/- and WT mice using the
micro-dissection and outgrowth method (BECs were cultured for
4–8 passages before analysis) (Fig. S2C).15,17 Thus, the reduction
of Tgr5-expression appears to be a consequence of changes in the
livers of Abcb4-/- mice rather than of a direct, cell-intrinsic effect
of the genetic modification.

To study alterations of Tgr5 on the protein level, immuno-
fluorescence staining was performed on WT and Abcb4-/- liver
tissue. Immunolocalization detected Tgr5 in the apical mem-
brane domain and also some intracellular vesicular structures of
intrahepatic and extrahepatic bile ducts in both WT and Abcb4-/-

mice (Fig. 2D,F). The FI of Tgr5 in relation to Ck-7 was signifi-
cantly reduced to 39.0±5.9% in intrahepatic BECs of Abcb4-/-

compared to WT animals (set to 100%, n = 6 per genotype, p
<0.01, Fig. 2E). In extrahepatic BECs, Tgr5 FI was reduced to
46.7±4.3% in Abcb4-/- animals (WT set to 100%, n = 3-5 per ge-
notype, p <0.05, Fig. 2F). Ck-7 FI was similar between genotypes
(Fig. S3A). Counterstaining of Tgr5 and macrophages with anti-
Tgr5, anti-F4/80 and anti-CD68 antibodies revealed a strong
Tgr5 fluorescence signal in both F4/80+ and CD68+ intrahepatic
macrophages, especially in Abcb4-/- livers (Fig. S3B). This finding
is in line with the 3.1-fold increase of Tgr5 mRNA expression in
whole liver tissue from Abcb4-/- mice compared to WT (n = 12
per genotype, p <0.05), emphasizing that the downregulation of
Tgr5 in BECs is cell type specific (Fig. S3C).
Interleukin-8 (CXCL-8) and its murine homologues suppress
TGR5 levels in murine and human cholangiocytes
Increased senescence has been identified as a hallmark of PSC
and cholangiocytes derived from PSC livers express and secrete
inflammatory cytokines and chemokines such as interleukin (IL)
6, IL8 (CXCL8) and CC-chemokine ligand-2 (CCL2), which are
markers of the senescence-associated secretory pheno-
type.6,34,35,36 High levels of IL8 in the bile and serum of patients
with PSC are associated with disease progression and reduced
transplant-free survival.37,38 Therefore, we tested whether Il8
homologues, Il6 and Ccl2 are increased in serum from 6–8-week-
old Abcb4-/- mice. Indeed, serum levels for KC/Cxcl1, Mip2/Cxcl2,
Il6, Ccl4 and Ccl2 were elevated by 1.8-, 1.2-, 2.5-, 1.4- and 1.7-
fold in Abcb4-/- mice compared to WT littermates (n = 22
Abcb4-/-, n = 13 WT, Fig. 3A, Fig. S4). In contrast, serum levels of
Il1b, tumor necrosis factor (Tnf)-a and Il10 were similar in both
genotypes (Fig. S4).

Given the potential role of IL8 as a promotor of disease pro-
gression, we incubated primary murine BECs for 24 h with Cxcl1/
Cxcl2. Cxcl1 and to a lesser extent Cxcl2 suppressed relative TGR5
mRNA levels to 61.1±8.0% and 76.7±9.2%, respectively, compared
to vehicle-treated controls (n = 7-8, p <0.05, Fig. 3B). In contrast,
incubation with Tnfa, Il6, Il1b and Ccl4 did not affect Tgr5 mRNA
levels (n = 7-27 each, Fig. 3B). Pre-treatment with reparixin, an
021 vol. 75 j 634–646 637
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allosteric inhibitor of the CXC chemokine receptors 1/2 (Cxcr1/2)
attenuated the Cxcl1-induced downregulation of Tgr5-
expression (Fig. S5A).

To test whether these results could be transferred to human
disease, BECs were isolated from human liver and stimulated
with IL8 for 24 h. A significant reduction of relative TGR5 protein
levels to 71.1±11.9% of vehicle-treated controls was detected by
western blotting (n = 8 each, p <0.05, Fig. 3C,D). Furthermore, we
derived organoids from human bile.27 Bile-derived organoids
expressed biliary markers such as CK-19, CK-7 and SOX9, and
showed absent or only low expression levels of hepatocyte
genes, such as albumin and hepatocyte nuclear factor 4a (Fig. 3E,
Fig. S6).27 Stimulation of bile-derived organoids with IL8 for 24 h
significantly reduced TGR5 mRNA expression to 67.1±4.9% of
vehicle-treated controls (n = 4, p <0.05, Fig. 3F), which was
abrogated in the presence of a CXCR1/2 inhibitor (Fig. S5B).

To explore whether TGR5-expression is also downregulated
in the setting of senescence-associated paracrine biliary injury,
we stained Tgr5 and Ck-19 in liver tissue from mice, which
develop biliary senescence based on the conditional deletion of
murine double minute-2 (Mdm2) under the control of the Ck-19
promotor.36 Relative Tgr5 FI in relation to Ck-19 FI was signifi-
cantly reduced in these animals 8 and 11 days after the induction
of biliary senescence (Fig. S7).
638 Journal of Hepatology 2
Taken together, these data strongly suggest that down-
regulation of TGR5 in murine and human BECs may occur in
response to biliary senescence and paracrine secretion of IL8 and
its homologues.

Reduced Tgr5 levels are associated with decreased Tgr5
signaling in BECs and predispose to more severe biliary injury
To investigate whether Tgr5 downregulation affects Tgr5-
dependent signaling, BECs isolated from WT and Abcb4-/-

livers were subjected to western blotting for extracellular
signal-regulated kinase (Erk)1/2 phosphorylation and total
Erk1/2. In line with reduced Tgr5 protein levels, Erk1/2 phos-
phorylation was lower in BECs derived from Abcb4-/- livers (n =
6 WT, n = 9 Abcb4-/-, p <0.05, Fig. 4A). The same result was
obtained when whole liver samples were analyzed (n = 4 per
genotype, p <0.05, Fig. 4B). Since Tgr5 levels in BECs were
reduced by about 40–60% in this study, we investigated
whether deletion of Tgr5 on only 1 allele would suffice to
render mice more susceptible to biliary injury after LCA
feeding. WT, Tgr5+/- and Tgr5-/- mice were fed LCA (1%) over
84 h, which resulted in severe liver damage in all geno-
types.7,8,39 Analysis of the biliary phenotypes revealed that
heterozygous Tgr5+/- animals developed significantly higher
serum alkaline phosphatase (ALP) levels and an aggravated
021 vol. 75 j 634–646
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sclerosing cholangitis phenotype on histology as compared to
WT littermates (Fig. S8).
Single-cell RNA-sequencing reveals intrahepatic
cholangiocytes from Abcb4-/- mice have an activated,
inflammatory phenotype
EpCAM+-BECs were sorted from liver cell lysates by FACS prior to
single-cell RNA-sequencing (scRNA-seq) analysis using 10x Ge-
nomics. After filtering, a total of 40,333 cells from 8 livers (n = 4
per genotype) were used for further analysis. UMAP projection of
the clustering revealed 9 clusters which were assigned to cell
types using known lineage markers (Fig. 5A).40 The sequencing
data for this project can be accessed on GEO (accession number
GSE168758). BECs were characterized by expression of EpCAM,
Sox9, Spp1, Krt7 (Ck-7), Krt19 (Ck-19), Tm4sf4 and clusterin
(Fig. S9B).41,42 In line with increased ductular reaction, a larger
number of EpCAM+-BECs were derived from Abcb4-/- livers
(Fig. 5B). While Tgr5 was detected in BECs, Tgr5-expression
levels were low, which is in line with previous findings,
Journal of Hepatology 2
therefore clustering according to Tgr5-expression levels was not
pursued.41,43 Comparison of WT and Abcb4-/- BECs revealed a
significant upregulation of genes previously associated with an
activated (“reactive”) inflammatory BEC phenotype, such as
intercellular adhesion molecule-1 (Icam1), vascular cellular
adhesion molecule (Vcam1), Ccl2 and transforming growth fac-
tor-b2 (Tgfb2) (Fig. 5C).44,45 307 genes were differentially regu-
lated between WT and Abcb4-/- BECs (Fig. 5D). Pathway analysis
revealed an activation of NF-jB, Toll-like receptor (Tlr)2, Il6 and
Il17A signaling in Abcb4-/- BECs (Fig. 5E).
Tgr5 overexpression improves sclerosing cholangitis in
Abcb4-/- mice
To investigate the link between reduced Tgr5-expression and the
reactive biliary phenotype, we crossed Abcb4-/- mice with Tgr5-
overexpressing transgenic mice (Tgr5Tg)25 and compared these
Abcb4-/-/Tgr5Tg to Abcb4-/-/Tgr5WT littermates. Tgr5 FI in intra-
hepatic BECs from Abcb4-/-/Tgr5Tg mice was significantly higher
than in those from Abcb4-/-/Tgr5WT mice (Fig. 6A), which was in
021 vol. 75 j 634–646 639
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line with increased Tgr5 mRNA levels in both intra- and extra-
hepatic BECs of Tgr5Tg mice (Fig. 6B, Fig. S10A). Abcb4-/-/Tgr5Tg

mice developed a less severe sclerosing cholangitis phenotype as
demonstrated by improved liver histology (Fig. 6C) and reduced
levels of aspartate aminotransferase, alanine aminotransferase
and ALP (Fig. 6D, Fig. S10B). Serum levels of Cxcl1 and Cxcl2 were
significantly lower in Abcb4-/-/Tgr5Tg mice (Fig. 6D). Hepatic Ck-
19 mRNA levels were diminished in Abcb4-/-/Tgr5Tg+ livers, indi-
cating a reduced ductular reaction (Fig. 6E, Fig. S10C). Enhanced
Tgr5-expression led to a significant reduction in hepatic
expression of collagen-1a1, Ccl2 and Tnfa, while levels for Tgfb2
and Icam1 were significantly lowered to levels observed in WT
animals (Fig. 6E, Fig. S10D).

To investigate whether Tgr5 overexpression also improves the
inflammatory BEC phenotype, scRNA-seq was performed
(Fig. 7A). There was a significant reduction in expression of
Icam1, Vcam1 and Cxcl1 in BECs from Abcb4-/-/Tgr5Tg mice
compared to Abcb4-/-/Tgr5WT(n = 4 each, Fig. 7C). Overall, 46
genes were differentially regulated in BECs from these animals
(Fig. 7D). Pathway analysis revealed an inhibition of IjBjB, Tlr3,
Tnfa, Il17A and Il1a signaling pathways in Abcb4-/-/Tgr5Tg

compared to Abcb4-/-/Tgr5WT (Fig. 7E). These findings suggest
that enhanced Tgr5-expression and signaling attenuates devel-
opment of a reactive BEC phenotype.
640 Journal of Hepatology 2
NorUDCA restores Tgr5 levels in BECs of Abcb4-/- mice
NorUDCA has been shown to improve the sclerosing cholangitis
phenotype of Abcb4-/- mice and to lower ALP serum levels in
patients with PSC.45,46 Therefore, we analyzed Tgr5 FI in livers of
Abcb4-/- mice fed for 4 weeks with norUDCA or UDCA as
described.45 Tgr5 FI in BECs of norUDCA-fed Abcb4-/- animals was
increased by 3.2-fold compared to untreated mice and thus
restored to levels comparable to WT animals (Fig. 8A,B). UDCA-
feeding led to a significant increase in Tgr5 mRNA levels, but
only partially restored Tgr5 FI in relation to WT levels. Addition
of norUDCA or UDCA for 24 h to murine BECs, which were pre-
incubated with Cxcl1 for 24 h, reversed the Cxcl1-induced
downregulation of Tgr5 mRNA levels (Fig. 8C). Similarly, nor-
UDCA restored IL8-induced downregulation of TGR5mRNA levels
in human bile-derived organoids (Fig. 8D).

Discussion
Chronic inflammation, cholestasis and fibrosis are the hallmarks
of PSC. The initial trigger of the disease is still unknown and may
differ between patient populations.1,2 It has been speculated that
exposure of the biliary epithelium to pathogens or microbial-
derived products in a genetically predisposed individual may
trigger the development of an activated, pro-inflammatory
BEC phenotype, which is found in PSC as well as Abcb4-/-

animals.1,2,5,6

Since TGR5 is highly expressed in BECs and exerts protective
effects,13,17,22 we evaluated changes in TGR5-expression, locali-
zation and signaling in livers from patients with PSC and Abcb4-/-

animals.4,7 Assessment of liver tissue from different liver dis-
eases (PSC, PBC, NASH, DILI, viral hepatitis) demonstrated a
significant downregulation of TGR5 only in BECs from PSC livers.
This downregulation was present in the early stages of disease
and persisted throughout disease progression. The reduction of
TGR5 FI was not observed in intrahepatic CD206+-macrophages
as described previously.33

Accordingly, higher Tgr5 mRNA levels were detected in whole
liver tissue of Abcb4-/- animals, which may be attributed to
accumulation of Tgr5-expressing monocytes/macrophages in
livers of Abcb4-/- mice.33,34 In contrast, a significant reduction of
Tgr5 mRNA levels was detected in FACS-isolated BECs (50.6% of
WT levels) as well as in micro-dissected intrahepatic (59.3% of
WT levels) and extrahepatic ducts (43.8% of WT levels) from
Abcb4-/- mice. Furthermore, Tgr5 protein levels as measured by
immunofluorescence staining were significantly lower in intra-
hepatic and extrahepatic BECs of Abcb4-/- animals, indicating a
cell type-specific regulation of Tgr5.

Since no difference in Tgr5-expression was observed between
ex vivo cultured BECs from Abcb4-/- and their WT littermates, we
speculated that the reduction of Tgr5-expression in BECs was
due to disease-associated changes within the peribiliary micro-
environment. Development of a reactive BEC phenotype, which
is characterized by increased cell proliferation, expression and
secretion of pro-inflammatory cytokines, chemokines and
adhesion molecules (e.g. Icam1, Vcam1) has been described for
PSC.6,35,44,47 Persistence of biliary injury may then trigger
development of BEC senescence, which aggravates and perpet-
uates biliary injury in a paracrine manner.6,35,36 Indeed, using
scRNA-seq, a significant increase in Icam1-, Vcam1-, Ccl2-and
Tgfb2-expression was detected in BECs from Abcb4-/- animals.

High levels of IL8 in the bile and serum of patients with PSC
may serve as a prognostic factor and are associated with reduced
021 vol. 75 j 634–646
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transplant-free survival.37 IL8 acts as a neutrophil chemo-
attractant and activator, and is upregulated early after biliary
injury in PSC and also in biliary atresia.37,38,48,49 We therefore
tested whether IL8 modulates TGR5-expression. Stimulation of
murine and human BECs with IL8/Il8 homologues resulted in
decreased TGR5 mRNA and protein levels, respectively. This was
not observed in murine BECs in response to Tnfa, Il6, Il1b and
Ccl4 or in cells/organoids pretreated with a Cxcr1/2 inhibitor.
However, we cannot rule out that further factors, such as biliary
senescence or other paracrine factors contribute to the down-
regulation of Tgr5. To investigate whether the observed
reduction in Tgr5 levels is sufficient to affect Tgr5-signaling
and thus cytoprotective mechanisms in BECs, Erk1/2
Journal of Hepatology 2
phosphorylation was analyzed in FACS-isolated BECs. In line
with the reduced Tgr5-levels, lower Erk1/2 phosphorylation
was detected, although factors independent of Tgr5 may
contribute to the reduced Erk1/2 activation. Another down-
stream effect of Tgr5 in BECs is cell proliferation. While BECs
derived from Tgr5-/- mice show no proliferation in response to
BAs, cell proliferation induced by cytokines/chemokines is un-
altered (Fig. S12). Since cytokine/chemokine levels are signifi-
cantly elevated in Abcb4-/- mice, cholangiocyte proliferation can
be triggered independently of Tgr5. The protective effect of
Tgr5 in BECs, against the toxic effects of BA, was analyzed in
heterozygous Tgr5-deficient mice, which were challenged by
LCA.4,39 Tgr5 heterozygous animals developed a severe
021 vol. 75 j 634–646 641
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cholangitis phenotype, supporting the hypothesis that a
reduction of Tgr5 protein levels is sufficient to render both
intra- and extrahepatic BECs more susceptible to cellular injury.
In contrast, overexpression of Tgr5 in Abcb4-/- mice improved
sclerosing cholangitis and ameliorated the reactive BEC
phenotype, as demonstrated by reduced expression of Icam1,
Vcam1 and Cxcl1 and inhibition of inflammatory pathways.
642 Journal of Hepatology 2
These data underscore that enhanced Tgr5-expression and
signaling may prevent development of an inflammatory, reac-
tive BEC phenotype. Indeed, sclerosing cholangitis in Abcb4-/-

mice was improved by administration of a dual TGR5/FXR
agonist (INT-767)50 and can be cured by norUDCA-feeding.45

In vitro, norUDCA, tauro-norUDCA and UDCA completely
restored TGR5 mRNA levels in Cxcl1/IL8-treated murine/human
021 vol. 75 j 634–646



Cholangiocytes

HSC/PF

Macrophage/Kupffer

B−lymphocytes

Hepatocytes

Endothelial

T−lymphocytes

Lymphocytes

Fibroblasts

Endothelial vascular
−10

0

10

−10 −5 0 5 10
UMAP 1

U
M

AP
 2

Abcb4-/-Tgr5WT Abcb4-/- Tgr5Tg

−10 −5 0 5 10 −10 −5 0 5 10

−10

0

10

UMAP 1

U
M

AP
 2

mean log fold change

Icam1
Vcam1

Cxcl1

0

100

200

−1.5 −1.0 −0.5 0.0 0.5
-lo

g 
ad

j. 
p-

va
l

A B

C D

Abcb4-/-

Tgr5WT
Abcb4-/-

Tgr5Tg
Abcb4-/-

Tgr5Tg
Abcb4-/-

Tgr5Tg

0

1

2

3

Ex
pr

es
si

on
 le

ve
l

Icam1

0
1
2
3
4
5

Ex
pr

es
si

on
 le

ve
l

Vcam1

0
1
2
3
4
5

Ex
pr

es
si

on
 le

ve
l

Cxcl1
*** *** ***

E
CXCL2

LCN2

IKBKB

VCAM1

RBP1

CXCL2

VCAM1

TXNIP

IL1B

ICAM1

CXCL2

LCN2

ICAM1

IER3

TLR3

CXCL2

LCN2

VCAM1

ICAM1

IL17A

LCN2

CXCL2

VCAM1

ICAM1

TXNIP

TNF

Abcb4-/-

Tgr5WT
Abcb4-/-

Tgr5WT

Fig. 7. Overexpression of Tgr5 ameliorates the reactive BEC phenotype in Abcb4-/- mice. (A) Intrahepatic BECs were enriched by FACS prior to scRNA-seq.
Clustering of 47,764 cells from Abcb4-/-Tgr5WT (denoted as Abcb4-/-) and Abcb4-/-Tgr5Tg mice (n = 4 per genotype) using expression of marker gene signatures,
and (B) clustering according to genotype. (C) Violin plots showing gene expression in BECs from Abcb4-/-Tgr5WT and Abcb4-/-Tgr5Tg (n = 4 per genotype). (D)
Differentially expressed genes (n = 46) between Abcb4-/-Tgr5WT and Abcb4-/-Tgr5Tg. (E) Pathway analysis as predicted by IPA-software. Inhibition is depicted in
blue, increased expression in pink and decreased expression in green. p values determined by the Wilcoxon rank sum test and adjusted for multiple testing by the
Bonferroni method. ***p <0.001. BECs, biliary epithelial cells; IPA, Ingenuity Pathway Analysis; scRNA-seq, single-cell RNA-sequencing; WT, wild-type.
BECs. In vivo, UDCA-feeding resulted in significantly higher
Tgr5 levels in BECs, however these did not reach WT levels. In
contrast, Tgr5 FI in BECs was restored to WT levels after nor-
UDCA treatment. It is possible that due to the presence of
cholehepatic shunting in vivo, norUDCA reaches higher biliary
concentrations than UDCA or tauro-norUDCA.51 Both norUDCA
and UDCA exert anti-inflammatory effects, which may
contribute to the upregulation of biliary Tgr5 levels in Abcb4-/-

mice.52 Enhanced biliary Tgr5-expression may then amplify
the norUDCA-dependent increase in biliary bicarbonate
secretion.51

Taken together, the downregulation of biliary TGR5-
expression seen in PSC and Abcb4-deficient mice contributes to
the development of an inflammatory reactive BEC phenotype.
Journal of Hepatology 2
This can be attenuated in Abcb4-/- mice by overexpression of Tgr5
or restoration of Tgr5 levels by norUDCA. Preservation and
upregulation of TGR5-expression may be a hitherto undescribed
mechanism of norUDCA activity and upregulation of TGR5 levels
may therefore prove beneficial in PSC.

Abbreviations
Abcb4, ABC binding cassette transporter B4; ALP, alkaline phos-
phatase; BA, bile acid; BEC, biliary epithelial cell (= chol-
angiocyte); CCL, CC-chemokine ligand; CK-19, cytokeratin-19
(=Krt19); CK-7, cytokeratin-7 (=Krt7); CXCL, CXC chemokine
ligand; DILI, drug-induced liver injury; EpCAM, epithelial cell
adhesion molecule; ERK, extracellular signal-regulated kinases;
FI, fluorescence intensity; Icam1, intracellular adhesion
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molecule-1; IL, interleukin; KC, keratinocyte-derived cytokine/
cytokine-induced neutrophil-attracting chemokine (=Cxcl1);
LCA, lithocholic acid; Mdr2, multidrug resistance-associated
protein-2 (Abcb4); MIP2, macrophage inflammatory protein 2
(=Cxcl2); NASH, non-alcoholic steatohepatitis; norUDCA, 24-
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norursodeoxycholic acid; PBC, primary biliary cholangitis;
PSC, primary sclerosing cholangitis; ROI, region of interest;
scRNA-seq, single-cell RNA-sequencing; Spp1, secreted
phosphoprotein-1 (=osteopontin); Tgfb2, transforming growth
factor-b2; TGR5, Takeda G protein-coupled receptor-5 (=G
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protein-coupled bile acid receptor-1 [GPBAR1]); Tgr5Tg, Tgr5
transgenic/overexpressing; Tlr, toll-like receptor; Tm4sf4, trans-
membrane 4 superfamily member-4; Tnf, tumor necrosis factor;
UDCA, ursodeoxycholic acid; UMAP, uniform manifold approxi-
mation and projection; Vcam1, vascular cell adhesion protein-1;
WT, wild-type.
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