
Cerebros: Evading the RPC Tax in Datacenters
Arash Pourhabibi

arash.pourhabibi@epfl.ch

EcoCloud, EPFL

Switzerland

Mark Sutherland

mark.sutherland@epfl.ch

EcoCloud, EPFL

Switzerland

Alexandros Daglis

alexandros.daglis@cc.gatech.edu

Georgia Institute of Technology

USA

Babak Falsafi

babak.falsafi@epfl.ch

EcoCloud, EPFL

Switzerland

ABSTRACT
The emerging paradigm of microservices decomposes online ser-

vices into fine-grained software modules frequently communicat-

ing over the datacenter network, often using Remote Procedure

Calls (RPCs). Ongoing advancements in the network stack have ex-

posed the RPC layer itself as a bottleneck, that we show accounts for

40–90% of a microservice’s total execution cycles. We break down

the underlying modules that comprise production RPC layers and

demonstrate, based on prior evidence, that CPUs can only expect

limited improvements for such tasks, mandating a shift to hardware

to remove the RPC layer as a limiter of microservice performance.

Although recently proposed accelerators can efficiently handle a

portion of the RPC layer, their overall benefit is limited by unneces-

sary CPU involvement, which occurs because the accelerators are

architected as co-processors under the CPU’s control. Instead, we

show that conclusively removing the RPC layer bottleneck requires

all of the RPC layer’s modules to be executed by a NIC-attached

hardware accelerator. We introduce Cerebros, a dedicated RPC pro-

cessor that executes the Apache Thrift RPC layer and acts as an

intermediary stage between the NIC and the microservice running

on the CPU. Our evaluation using the DeathStarBench microser-

vice suite shows that Cerebros reduces the CPU cycles spent in the

RPC layer by 37–64×, yielding a 1.8–14× reduction in total cycles

expended per microservice request.

CCS CONCEPTS
• Computer systems organization→ Architectures; • Infor-
mation systems→ Information integration; • Software and its
engineering → Cloud computing.

KEYWORDS
Remote Procedure Calls, Hardware Accelerators, Microservices,

Datacenters, Networked Systems

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MICRO ’21, October 18–22, 2021, Virtual Event, Greece
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8557-2/21/10. . . $15.00

https://doi.org/10.1145/3466752.3480055

ACM Reference Format:
Arash Pourhabibi, Mark Sutherland, Alexandros Daglis, and Babak Falsafi.

2021. Cerebros: Evading the RPC Tax in Datacenters. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO
’21), October 18–22, 2021, Virtual Event, Greece. ACM, New York, NY, USA,

14 pages. https://doi.org/10.1145/3466752.3480055

1 INTRODUCTION
Today’s online services are commonly developed and deployed

using microservices, where the desired business logic is decom-

posed into independent software modules [24, 37]. The adoption

of microservices promises significant improvements in scalability,

development velocity, and programmer productivity and has there-

fore emerged as standard practice by large and small enterprises

alike [10, 32, 55, 75]. As in other distributed systems, microservices

rely on a communication layer, the most common being Remote

Procedure Calls (RPCs) [24, 37, 70]. RPCs have emerged as the

backbone of software at scale in datacenters, with cloud providers

developing custom RPC layers that are used organization-wide (e.g.,

Google’s gRPC [26] or Facebook’s use of Thrift [4, 21]).

Continued advancements in datacenter networks, transport pro-

tocols, and systems software have begun to expose these RPC layers

as bottlenecks for microservice performance. Deploying software in

a datacenter with 100Gbps NICs [16, 49], bespoke network topolo-

gies [27, 67], and optimized protocol stacks [9, 15, 23, 29, 49, 56]

mandates that the RPC layer must be able to operate at a matching

rate. We find that when deployed with an optimized network stack,

microservices spend 40–90% of their on-CPU time executing the

RPC layer, as opposed to the application’s business logic. The end

result is a microservice that runs up to 10× slower than it should

due to its dependence on an RPC layer.

Despite the importance and prevalence of RPCs in microser-

vices, production RPC layers remain an inefficient workload for

general-purpose CPUs. To demonstrate this inefficiency, we study

the RPC layer and find that transforming data back and forth be-

tween application-readable and network formats represents ∼95%
of the RPC layer. As prior work has shown that CPUs lag behind

NIC line rates by orders of magnitude for such data transforma-

tions [60], CPU-based approaches are unable to mitigate the RPC

layer bottleneck. However, the fact that the vast majority of the

RPC layer’s cost is attributed to these common data transforma-

tions indicates that hardware specialization for such tasks is in

fact a feasible solution, because the hardware will be universally

applicable to all microservices relying on RPCs.

https://doi.org/10.1145/3466752.3480055
https://doi.org/10.1145/3466752.3480055

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Arash Pourhabibi, Mark Sutherland, Alexandros Daglis, and Babak Falsafi

In this work, we show that hardware that only accelerates data

transformation is insufficient to solve the RPC bottleneck because

the CPU must still be involved in the flow of incoming RPCs. The

CPU is involved because it is the endpoint to which the NIC sends

incoming packets and because current accelerator proposals leave

the remainder of the RPC layer’s functionality to the CPU. This

design pattern means that the CPU must explicitly send work to the

accelerator multiple times per RPC, incurring a considerable offload

overhead each time. We show that offload overheads reduce a state-

of-the-art accelerator’s achievable speedup by 23×, compared to

a streamlined design where the accelerator has a direct interface

to the NIC and executes the whole RPC layer, removing the CPU

from the critical path of RPC layer processing.

Our thesis is that offloading the entire RPC layer to a NIC-

integrated “RPC processor” simultaneously eliminates offload over-

heads and allows cost-effective silicon provisioning. Supporting this

idea are three key insights. First, despite the extreme diversity of mi-

croservices, there are three mature modules that underpin the RPC

layer, two of which can be readily offloaded to a data transformation

accelerator. Second, the primary source of offload inefficiency is the

fact that the third—seemingly small—RPC module is still performed

on the CPU. The resulting split in the RPC layer between software

and hardware introduces excessive fine-grained CPU-accelerator

offload overheads. Therefore, it is both necessary and sufficient to

perform all three modules with unified hardware in order to remove

the split in functionality and eliminate offload overheads. Third,

deploying an RPC processor as a NIC rather than per-CPU-core

extension results in 5× less silicon area and also enables a unique

performance optimization opportunity: a novel dispatch policy that

assigns RPCs to cores to increase instruction cache locality. Both

of these improvements are enabled by the emergence of on-chip

NIC integration [14, 57].

Building on these insights, we present Cerebros, an RPC pro-

cessor that can execute production RPC layers such as Apache

Thrift [21] in hardware, leaving the microservices’ business logic

alone to be executed on the CPU. Cerebros reduces the cycles spent

in the RPC layer by 37–64× compared to software and up to 23×
compared to prior accelerators [60]. Ourwork also boosts the perfor-

mance of the microservice itself by improving the CPU’s instruction

fetch performance in two ways. First, offloading the RPC layer to

Cerebros shrinks the microservice’s working set by 27–68%, reduc-

ing the instruction cache’s MPKI by up to 93%. Second, to address

pathological microservices where the working set remains large

even after offloading the RPC layer, Cerebros improves temporal

locality by steering incoming requests to cores that have recently

executed the same RPC type. We show this additional optimization

speeds up the microservices’ business logic by 1.05–2×, with the

largest benefits experienced by the most common request types.

In summary, we make the following contributions:

• We study a suite of microservices and demonstrate that the

RPC layer dominates their runtime, consuming between 40–

90% of server CPU cycles. These cycles are spent in three

key modules, two of which make up the vast majority of the

cycles and can be handled by the same specialized hardware.

• We identify that the seemingly small third module, called

“dispatch”, must also be executed in hardware to avoid split-

ting the RPC layer’s work between hardware and software.

The dispatch module only accounts for <5% of the RPC

layer’s cycles but exposes offload overhead as a new bot-

tleneck if left to run on the CPU.

• We design and evaluate Cerebros, an RPC processor that

offloads the entire RPC layer to hardware and thus reduces

the CPU cycles expended per request by 1.8–14×. Cerebros
provides an additional 1.05–2×microservice processing time

reduction by steering RPCs to cores based on instruction

cache locality.

The rest of the paper is organized as follows: We first highlight

the combination of need and opportunity that motivates hardware

acceleration of the RPC layer (§2). We then introduce our proposed

RPC processor design that can drastically improve handling of

modern RPC layers as compared to a general-purpose CPU and

prior hardware accelerators (§3). Building on our design principles,

we then present our RPC processor implementation, Cerebros (§4).

Next, we detail our methodology (§5) and evaluate Cerebros (§6).

Finally, we discuss related work (§7) and conclude (§8).

2 WHY HARDWARE FOR RPCS?
Online services have been transforming from single-binary mono-

liths to a concert of fine-grained modules known as microservices.

The microservices architecture simplifies development and deploy-

ment by creating independent modules responsible for subsets of

the application’s functionality and enforcing modularity [7, 24, 37].

Microservices are deployed across many servers and thus require

inter-server communication using an API such as Remote Proce-

dure Calls (RPCs). Decomposing a monolith into microservices

implies that each microservice performs only a small fraction of

the application-level work and that the total time spent on inter-

microservice RPCs increases in proportion to the number of mi-

croservices. This increase in the communication-to-computation

ratio creates a challenge to minimize the “tax” associated with each

RPC.

Although the tax on inter-microservice communication includes

both the RPC layer and the underlying network stack, ongoing

research has drastically reduced networking latency. Modern dat-

acenter network topologies [27, 67] and protocols for optimized

congestion control [1, 31, 56] achieve network traversals of a few

microseconds (𝜇𝑠) with high predictability. Furthermore, transport

protocols in either user-space [17] or hardware [9, 29, 57] have dras-

tically shrunk the cost of the transport layer from 10s of 𝜇𝑠 [64] to

as low as sub-𝜇𝑠 values [41]. Hence, the time spent in the RPC layer

is becoming a significant fraction of the end-to-end cost of invoking

a microservice. Prior work reports that microservices spend up to

75% of their on-CPU time in the RPC and transport layers [24]. In

order to improve this emerging RPC bottleneck, the first priority is

to decipher its underlying operations and identify their costs.

2.1 The Cost of RPCs
Figure 1a breaks down the layers of the system stack exercised

by a microservice. Upon the arrival of a new request, the server

terminates the transport protocol and hands the request to the RPC

layer. After the RPC layer completes, the microservice’s business

logic executes and creates the response to be sent to the original

Cerebros: Evading the RPC Tax in Datacenters MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Application

DC network

Transport

RPC layer

O
n-

se
rv

er
 ti

m
e

Header
parsing

Payload
deser.

Dispatch

Header
creation

Payload
ser.

Application

Transport

(a) (b)

Figure 1: System stack exercised in a microservice’s invoca-
tion and operations within the RPC layer.

requester. The response goes through the same layers in reverse

before the message leaves the server.

RPC frameworks such as Apache Thrift [4] or Google’s gRPC [26]

are themselves multi-layered architectures. Figure 1b expands the

RPC layer to display the common functionalities comprising these

frameworks. Upon receiving a new request, the RPC layer first

parses the header, which contains fields indicating the message type

and the requested function. Next is the dispatch module, which

looks up the function ID in a table to retrieve the handler associated

with this function and passes control to it. Finally, the handler pre-

pares the input arguments by deserializing the message’s payload

and calls the requested function, terminating the RPC layer. Re-

sponse messages are handled by the RPC layer in a similar manner,

applying the same operations in inverse order. We categorize the

aforementioned operations into three modules: header manipula-

tion, payload manipulation, and dispatch.

The above walkthrough presents a simplified case where the ap-

plication is self-contained and completes its processing in isolation.

However, microservices commonly perform several nested RPCs

while processing a request for reasons such as retrieving data from

other microservices. The inclusion of nested RPCs means the execu-

tion of the business logic is interrupted multiple times by repeatedly

traversing the RPC layer. Such behavior further increases the time

a microservice spends in the RPC layer. Oscillating between the

microservice and the RPC layer also negatively impacts the CPU’s

instruction supply, leading to a higher number of instruction misses

than would be experienced by an RPC-free application.

To quantify the RPC layer’s cost, we study five microservices

from DeathStarBench [24]: UniqueID (UID), User (USR), UrlShorten

(URL), SocialGraph (SG), and ComposePost (CP). Methodology de-

tails are available in §5. Figure 2a breaks down each microservice’s

mean on-CPU time when processing various request types into

the following three categories: (i) the RPC layer for the initial re-

quest message and its corresponding final response, (ii) the RPC

layer for any nested RPCs that the microservice generates, (iii) the

application-layer functions.

In all cases, the RPC layer takes a significant fraction of the

microservice’s runtime, accounting for 40–90% of the on-CPU time.

The fraction of time spent in the RPC layer varies widely because

the functions comprising these five microservices have different

complexities, input/output message types, and number of nested

RPCs. For example, UID has a single function that generates a

globally unique integer and one nested RPC to upload that ID to

another microservice. In contrast, CP has six simpler functions, but

C
PU

 C
yc

le
 B

re
ak

do
w

n
(%

)

0

20

40

60

80

100

Microservices

UID USRURL SG CP

Function
RPC Layer - Nested
RPC Layer

(a) Function vs. RPC Layer.

C
PU

 C
yc

le
s

(x
10

00
)

0

5

10

15

20

Microservices

UID USRURL SG CP

Payload Manipulation
Header Manipulation
Dispatch

(b) Inside the RPC Layer.

Figure 2: Breakdown of CPU cycles expended in microser-
vices and the RPC layer.

each one has several nested RPCs to other microservices; hence,

∼70% of CP’s expended cycles are attributed to nested RPCs.

Next, we further classify RPC layer time into the cycles expended

in each of the three aforementioned modules and display the results

in Figure 2b. All cycle counts are cumulative over the request RPC,

the final response RPC, and the nested RPCs that occur within the

microservice’s functions. Payload manipulation stands out as the

largest component, accounting for ∼60% of the RPC layer’s total

expended cycles. The absolute cost of payload manipulation is a

function of each message’s size and layout and adds up with each

nested RPC. CP and SG’s aggregate payload manipulation cycles

in Figure 2b are greater than UID, USR, and URL because they

create more nested RPCs, and each individual payload manipula-

tion task is costlier due to larger and more complex messages. In

contrast, header manipulation uses an identical format (i.e., data

types and values) across all of the microservices, and therefore the

total cost of header manipulation only depends on the number of

nested RPCs. The same is true for the dispatch module. Therefore,

microservices like SG and CP have a far greater aggregate cost for

header manipulation and dispatch than those similar to UID.

This study shows that once microservices are deployed using

optimized transport and network layers, the RPC layer is a prime

contributor to a server’s expended CPU cycles. Of equal importance

is that nested RPCs cannot be overlooked: as microservices become

more specialized and modular, the greater the cumulative RPC

overheads. These overheads are concentrated in the RPC layer’s

payload and header manipulationmodules, which together make up

∼95% of RPC cycles. We conclude that improving the performance

of microservices requires focusing on the RPC layer itself as a

primary factor.

2.2 Toward Faster RPC Processing
Despite the critical nature of the RPC layer for microservice perfor-

mance, CPUs are ill-suited for the three common RPCmodules. Pay-

load and header manipulation consist of data transformation (DT)
tasks, and prior work has already demonstrated that CPUs perform

such tasks orders of magnitude slower than necessary [60]. The dis-

patch module is also ill-suited for CPUs because it contains multiple

data-dependent and indirect branch instructions that depend on the

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Arash Pourhabibi, Mark Sutherland, Alexandros Daglis, and Babak Falsafi

incoming message. In addition to these issues, it has already been

reported that CPUs are plagued by instruction supply problems

when executing microservices [24], which will worsen with the

number of functions, message types, and nested RPCs that make

up a microservice. When the inefficiencies of CPU-centric DT are

combined with the instruction supply issues in microservices, using

dedicated hardware for RPC tasks becomes an attractive solution.

To justify the investment in dedicated hardware, it must be

widely applicable and also configurable for the sake of future soft-

ware deployments. Our breakdown of the RPC layer shows these

exact characteristics are true for its three modules; despite the diver-

sity and rapid evolution of microservices, they all depend on these

three ubiquitous modules. Furthermore, the maturity of the RPC

layer [42, §4] indicates that dedicated hardware for its modules will

not be immediately obsolete. Via the use of a dedicated abstraction

to represent both payload and header manipulation [60], such hard-

ware can be made applicable to any RPC message and framework.

Hence, we argue it is feasible to design hardware that is drastically

more effective in executing the RPC layer than CPUs.

Although the use of FPGA-equipped NICs has been proposed

to accelerate RPC layer operations [20, 52, 62, 74], no existing de-

sign has managed to target all of the RPC layer modules we de-

scribe in §2.1. The most difficult challenge is to support the header

and payload manipulation tasks because the message objects in

production RPC layers are complex pointer-based data structures.

Processing such software-readable objects requires judiciously co-

designing RPC hardware and software around the constraints of the

server’s DMA engine, which only transfers opaque chunks of bytes

or scatter-gather arrays [62]. Therefore, we argue that it is logical

to handle such tasks with hardware integrated on chip, removing

the DMA engine’s constraints as well as the extra latency incurred

whenever data must be moved across the I/O interconnect. Details

of existing proposals are further discussed in §7.

Although it may appear logical to limit the scope of integrated

hardware accelerators to the two manipulation modules because

they make up ∼95% of the execution time, the seemingly small dis-

patch module creates a critical bottleneck that must be addressed.

To demonstrate this counterintuitive insight, Figure 3a displays the

workflow of tasks occurring during RPC layer processing, assum-

ing a state-of-the-art accelerator designed for DT [60]. Although

originally designed only for payload manipulation, we assume this

accelerator has the trivial extensions necessary to perform both

header and payload manipulation, so both modules are acceler-

ated (2 , 4). However, because the dispatch module is logically

wedged between the two manipulation tasks and remains on the

CPU (3), the CPU serves as the coordinator that creates offload

tasks after a new network message arrives (1). Using the accel-

erator as a co-processor in this manner inherently adds offload
overheads to each manipulation task. These offload overheads are

a critical obstacle preventing current accelerators from fully cur-

tailing the cost of the RPC layer, particularly because their cost

accumulates when a microservice uses many nested RPCs.

For a 16-core server with a mesh interconnect and an LLC-

attached accelerator, we estimate that each offload incurs a cost

of ∼200 cycles (see §5 for details). When the manipulation tasks

are small (e.g., for RPC headers), the offload overhead takes up to

90% of the entire module’s execution time, bounding the benefit of

acceleration to just 2× compared to the CPU. Therefore, offloading

header manipulation, in addition to payload manipulation, pro-

vides limited performance gains due to the presence of the dispatch

module between the two tasks. We conclude that although it is

logical to invest in hardware for the two common manipulation

tasks, keeping the dispatch module on the CPU cripples end-to-end

performance due to cumulative offload overheads, and therefore it

must also be done in hardware.

The inclusion of dedicated hardware for all three of the RPC

layer’s modules has the side benefit of improving the CPU’s instruc-

tion supply. In all of the five microservices we studied, the RPC

layer’s instruction footprint forms a significant fraction of the mi-

croservice’s working set. However, many individual functions are

small enough to entirely fit inside the L1 instruction cache, which

is not possible when the RPC layer’s instructions are included. In

a server with hardware support for the RPC layer, these instruc-

tions vanish, and any remaining L1 instruction cache contention

occurs when the execution of multiple functions is interleaved on

the same core. Inter-function contention can be solved by RPC

hardware that is able to assign requests to cores in a manner that

is aware of the requested function. Next, we present the design

principles for hardware that accomplishes both the RPC layer and

such function-aware request steering.

3 RPC PROCESSOR DESIGN
In this section, we present the design of a specialized RPC proces-

sor (RPCProc) to completely remove the RPC layer’s burdensome

tasks identified in §2. Our architecture is guided by the following

four design goals: (G1) the CPU should only need to run the busi-

ness logic of the microservice rather than the RPC layer, (G2) the
RPCProc should be autonomous and not CPU-controlled, (G3) the
RPCProc should be synergistic with state-of-the-art NIC architec-

tures, (G4) the RPCProc should have minimal silicon requirements.

3.1 Eliminating Offload Overheads
In current systems, the NIC directly interacts with the CPU cores

to signal the arrival of incoming work, as shown in Figure 3a. After

terminating the network and transport protocols, the NIC sends a

request arrival notification to a CPU core, and then the core begins

processing the RPC layer. Consequently, using the RPCProc for

RPC layer acceleration mandates at least one explicit task offload

from the CPU to the RPCProc. Following our analysis in §2.2, a

critical requirement for the RPCProc is to receive incoming requests

directly from the NIC and process the full RPC layer to completion

before involving the CPU. The same is true for outgoing requests,

except the RPC layer must entirely complete with a single RPCProc

call by the CPU to start the sending process.

Realizing the goal of running the entire RPC layer in hardware

requires the RPCProc to be a transport protocol endpoint. The use of

lean hardware-terminated protocols enables this design change be-

cause there is no transport processing remaining once the incoming

message exits the NIC. Any well-established signaling method (e.g.,

in-memory queues [19] or MSI-X interrupts [11]) is sufficient to

interface the NIC and RPCProc, thus meeting G2 and G3. How-
ever, an RPCProc that directly receives incoming requests from

the NIC is still insufficient to achieve G1. The RPCProc must also

Cerebros: Evading the RPC Tax in Datacenters MICRO ’21, October 18–22, 2021, Virtual Event, Greece

C RPCProc

Network Msg.

3
Dispatch

1NIC
2

Header Offload

4
Payload Offload

(a) Explicit CPU-controlled offloads.

App-Ready RPC5

C

Network Msg.

NIC

Header
Parsing

Payload
Parsing

App Function
6

Dispatch

DT

2 4

3

RPCProc

1

(b) NIC-interfaced.

Figure 3: Comparison of CPU-controlled versus NIC-interfaced accelerators for incoming RPC.

support the RPC layer’s dispatch module in the same location as

the manipulations—otherwise, the system reverts to the one in Fig-

ure 3a, where the dispatch and manipulations are logically split,

necessitating the RPCProc to be under CPU control.

Figure 3b displays the architecture of an RPCProc that achieves

G1 and G2: it receives incoming RPC requests directly from the

NIC (1) and processes the RPC layer without the CPU’s involve-

ment, starting with header parsing (2). It then performs the dis-

patch module using hardware, which reads the function ID from the

parsed header and looks it up in a dispatch table to find the meta-

data describing how to parse the corresponding payload type (3).

Using this information, the accelerator parses the payload (4) and

passes an application-readable RPC to the CPU (5) that executes

the requested function (6).

An RPCProc with a direct NIC interface not only eliminates

offload overhead, but also benefits the microservice’s on-CPU busi-

ness logic execution by improving the CPU’s instruction supply

behavior. As mentioned in §2.2, performing the RPC layer in hard-

ware completely bypasses the set of instructions dedicated to RPC

processing. Additionally, as the RPCProc already has knowledge of

the requested function ID from header parsing (2), it can choose

the core to process this function based on any policy—in particular,

we identify temporal locality as a beneficial one. Assigning RPCs

to cores that have just executed the same function virtually guar-

antees that the core’s instruction cache is warm and that function

will execute with fewer CPU frontend stalls. We call this approach

affinity-based request steering. Next, we present our RPCProc’s com-

ponents and system integration, which are critical to meet G3 and

G4.

3.2 Components for RPC Tasks
An RPCProc’s most important component is the module that han-

dles payload and header manipulation because those two tasks

constitute the vast majority of RPC latency. Both manipulation

tasks essentially reduce to the same low-level operation of con-

verting an in-memory object to its wire format, or vice versa. Due

to the prevalence of such manipulation tasks and their associated

CPU limitations, bespoke accelerators for payload manipulation or

object (de)serialization have been proposed in prior work [36, 60].

Although such designs provide impressive speedups for manipu-

lation tasks, neither operates autonomously, meaning they do not

satisfy G1 and need to be expanded to be included in a full RPCProc.

Executing the full RPC layer in hardware requires control logic

surrounding the RPCProc’s manipulation hardware that performs

two tasks previously left to the CPU: initiate accelerator processing

in response to incoming requests, and perform the RPC layer’s

dispatch module. To initiate a new manipulation task, the control

logic must communicate the input/output buffers and object to be

transformed to the manipulation hardware. State-of-the-art accel-

erators already use in-memory metadata (called schemata) [36, 60]
to represent the data to be manipulated, and therefore commencing

a new manipulation task simply requires indicating the correct

schema and buffer addresses to the accelerator. As the schemata are

flexible enough to represent both header and payload manipulation,

the same initiation logic is sufficient to create tasks for 95% of the

work in the RPC layer.

Moving the dispatch module to the RPCProc’s hardware is nec-

essary to eliminate offload overheads and meet G2. In software, the

dispatch module reads the parsed header to retrieve the function

ID, calls the subroutine that deserializes the message’s payload, and

then transfers control to the function handler. To realize this in

hardware, the in-memory schema must be extended to include a

marker specifying which header field identifies the function. After

the header-parsing task, the RPCProc’s dispatch logic extracts the

function ID and matches it with the corresponding schema describ-

ing this function’s payload manipulation task. For this purpose, the

RPCProc contains a small table that is looked up by function ID and

returns the correct schema and address of the respective function

handler.

3.3 Server System Integration
Figure 4 shows the architecture of an on-chip RPCProc and the

components that execute the header manipulation, dispatch, and

payload manipulation modules of the RPC layer. Our RPCProc

design is architected around an on-chip integrated NIC with a

hardware-terminated transport protocol (G3) because such designs

are a natural starting point for servers optimized for microser-

vices. Architectures featuring integrated NICs are already common-

place, with academic examples like the FAME-1 RISC-V RocketChip

SoC [43], Scale-Out NUMA [57], and the NanoPU [33]. Commercial

examples include Oracle’s Sonoma [30], Calxeda’s ARM SoC [73],

and Intel Xeon-D servers with integrated Ethernet [35].

We integrate the RPCProc with the on-chip NIC to reduce silicon

costs and deployment complexity (G3 and G4) because the RPCProc
and NIC share glue logic that connects them to the CPU’s memory

hierarchy. In particular, both components need a small cache and its

matching MMU, which the NIC uses to read/write data coherently

and the RPCProc will use to operate on that data when it performs

the RPC layer. By moving the endpoint of the transport protocol

to the RPCProc, it now must be the agent which communicates

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Arash Pourhabibi, Mark Sutherland, Alexandros Daglis, and Babak Falsafi

NIC

Server Chip

N
IC

In
te

rf
ac

e

DT
Component

RPCProc

Cores Glue
Logic

Control

Dispatch

To Glue Logic

Figure 4: Architecture of an on-chip RPC processor.

with the CPU cores to inform them of incoming RPCs (c.f., step 5

of Figure 3b). As CPU-NIC communication has been shown to be

problematic for small data transfers, it is logical for an RPCProc

meeting G3 to leverage highly optimized architectural support in

state-of-the-art NIC designs [13, 71].

An alternate design point is to provision an RPCProc per CPU

core, sharing the CPU’s glue logic rather than the NIC’s. However,

we choose to use a single shared RPCProc for two reasons. First,

the silicon overheads of a design with replicated RPCProcs are

considerable, thus contradicting G4. Prior work only considering

payload manipulation has shown that with a 64-core server, the

total area cost of such replicated accelerators corresponds to 75%

of an entire server-grade CPU core [60]. The overheads would

naturally be greater for a full RPCProc, which requires additional

logic for control and the dispatch stage. Second, a per-core design

precludes the RPCProcs from employing affinity-based request

steering because requests are first sent to the per-core RPCProcs

by the NIC before the function IDs are known.

Integrating the RPCProc with the server’s NIC enables function-

to-core affinity as one of potentially many policies in the stages

of the NIC that assign incoming requests to cores. State-of-the-art

NICs already contain support for assigning work to cores based on

metrics like load balancing [14] or TCP connection locality [34],

and therefore it is logical to provide affinity-based request steering

in the same location. The RPCProc components in §3.2 already

extract the function ID from the header parsing stage to execute the

dispatch module and can provide it to the NIC’s core-assignment

stage once RPC layer processing is concluded.

4 THE CEREBROS RPC PROCESSOR
In this section, we present Cerebros, an implementation of a full RPC

processor following §3’s design principles. We first briefly introduce

the critical features of our assumed network hardware and discuss

Cerebros’ interface with the NIC and the CPU cores (§4.1). We then

describe Cerebros’ components that replace the RPC layer’s mod-

ules (§4.2 and §4.3) and conclude with the extensions for affinity-

based request steering. Figure 5a presents the Cerebros architecture,

with indicators showing the process of receiving and processing an

RPC. Alphabetic indicators show events associated with the NIC,

whereas numeric indicators show Cerebros’ operations.

4.1 NIC and Software Interfaces
As motivated in §3.3, it is logical for Cerebros to be constructed

over a baseline system featuring an on-chip integrated NIC and

hardware-terminated protocol.We, therefore, select theNeBuLa [71]

architecture as our baseline because it features an RPC-oriented

hardware-terminated transport and an integrated NIC attached to

the server’s on-chip network. Software endpoints communicate

with the NeBuLa stack by using an RDMA-like memory-mapped

Queue-Pair (QP) interface [19].

When packets arrive at the server, NeBuLa’s NIC pipelines ter-

minate the transport protocol, reassemble the possibly fragmented

network packets into a full message, and place it into a dedicated

NIC cache that is coherent with the server’s memory hierarchy.

NeBuLa keeps newly arrived messages in a NIC-private memory-

mapped queue until a core becomes available to process a new

message. When a core indicates its availability, NeBuLa creates

a new entry in that core’s QP, pointing to the received message’s

buffer location in memory. The core polls its QP to receive the RPC

arrival notification.

To meet the goal of performing the RPC layer without CPU

involvement (§3, G2), Cerebros needs to be inserted into the flow

of incoming RPCs as a logical step between NeBuLa’s transport

protocol termination and core notification. As our design goals

are best fulfilled by integrating the RPC processor with the NIC,

we choose to add a simple interface comprising two hardware

queues between NeBuLa’s NIC pipelines and Cerebros’ control

logic. Cerebros only begins RPC processing after network protocol

handling completes; the inverse is true for outgoing RPCs.

As in the NeBuLa baseline, the NIC pipelines place incoming

RPC messages into the NIC cache. The NIC invokes Cerebros’ con-

trol logic through a hardware queue (Figure 5a, A), passing the

address of the newly arrived message. Cerebros’ data accesses all

go through NeBuLa’s existing MMU (B) and find the target data

already resident in the NIC cache. Once Cerebros completes its

processing tasks, its control logic returns a message to the NIC

pipelines indicating RPC processing is complete, which contains a

metadata structure with all of the RPC’s corresponding data (C).

The NIC pipelines’ final stages then execute the core selection logic

and use NeBuLa’s default mechanism to notify the selected core

through its QP (D). §4.3 details how we adapt NeBuLa’s core

selection logic to accommodate affinity-based request steering.

Software Interface. Cerebros’ control path is used at initialization

time by microservices that wish to offload their RPC layer. Soft-

ware must provide Cerebros with the following information: i) its

function IDs and their respective payload types, ii) the metadata

(schema) describing each function’s payload layout, iii) the globally

shared format for header manipulation, and iv) a set of memory

arenas used by the manipulation accelerator to place its output into.

Each of these parameters is created once on application start and

programmed into Cerebros’ memory-mapped control registers via

ioctl system calls.

Each of the microservice’s threads creates and registers a dedi-

cated QP that is used for sending and receiving network messages.

Incoming messages placed in the thread’s QP have been completely

processed by Cerebros and can be directly processed by the function

whose ID is indicated in the new QP entry. Outgoing nested RPCs

and responses are placed by the microservice directly in the QP

without invoking software RPC processing, which is completely

performed by Cerebros before the message is delivered to the NIC

for transport encapsulation. In case Cerebros cannot process a mes-

sage (e.g., due to an unrecognized function), a fallback mechanism

Cerebros: Evading the RPC Tax in Datacenters MICRO ’21, October 18–22, 2021, Virtual Event, Greece

NIC
Pipelines

NIC
Cache M

M
U

Cerebros

NoC

A

B

D

Datacenter
Network

Core
Select

MMU

DT Component

Control
Logic

Schema
Map

New RPC1

2
3 4

5

C

(a) Cerebros. Shaded components are modified or newly added.

Object

Schema

Input OutputInput OutputDT Pipeline

Input

Output

Type Address
1 0xA
2 0xD
… …

(b) DT Component.

Figure 5: Architecture of Cerebros, and its component for header/payload manipulation.

sends the unprocessed message to a thread, indicating with a null

function ID that the RPC layer must be executed in software.

Memory Management. During its payload manipulation stage,

Cerebros unpacks the incoming message’s arguments and prepares

them for the software to read. However, this implies that a buffer

must be provisioned for the deserialized payload, in addition to the

transport buffers reserved for and managed by NeBuLa’s network

protocol stack. Instead of adding another disparate memory reser-

vation stage in Cerebros’ hardware, a more efficient alternative is

to unify this buffer management with NeBuLa’s transport buffer

management and make them “all-or-nothing” atomic. Allocating

both the transport and application buffers together avoids the need

for additional logic in the NIC to handle cases where transport allo-

cation succeeds but RPC layer allocation fails, which is likely to be

rare and complex to handle. To unify the two buffering stages, we

extend NeBuLa’s buffer manager (which originally only manages

transport buffers) to also reserve memory for the deserialized pay-

load. If either memory reservation fails, NeBuLa returns a NACK

to the sender according to its existing protocol; the sender reacts

to the NACK according to a policy of its choice.

To ensure the application buffer’s allocated size is sufficient to

contain the deserialized payload, we use the insight that in produc-

tion RPC stacks, the maximum possible field-level compression is

4×. This compression occurs only in variable-length integers, which

can shrink from 8B in their application format to 2B in the network

format. All other primitive types have lower compression factors

due to additional metadata, and the same is true for composite

types such as Maps. Therefore, Cerebros allocates 4× the network

message’s size for the deserialized payload, which is guaranteed

to be sufficient memory even if the entire incoming message con-

sists of variable-length integers. All RPC layer memory comes from

the arenas pre-allocated and installed by the microservice through

Cerebros’ control interface. Next, we discuss the architecture of the

components comprising Cerebros.

4.2 Data Transformation Component
Due to the commonality between header and payload manipulation,

the two operations can be handled by a single hardware compo-

nent performing data transformations [60]. The two most relevant

components in the literature that specifically target data transforma-

tions with bespoke hardware components are Optimus Prime [60]

and Cereal [36]. We hereafter refer to a component of this form as a

“data transformation accelerator” (DTA). While both DTAs address

the same problem and arrive at similar hardware designs, Cereal

only works with a dedicated serialization format, limiting its gen-

erality. A DTA following Optimus Prime’s design patterns is more

applicable to datacenter microservices because it does not require

changing each microservice’s data format to match the specific

DTA implementation. Therefore, Cerebros adopts a DTA design

similar to Optimus Prime for header and payload manipulation.

The DTA’s key enabling feature is the use of a transformation

schema, an in-memory data structure that represents the parallel

sub-tasks comprising each manipulation request. Figure 5b shows a

sample manipulation task that serializes an Object from language-

readable to wire format. The RPC framework creates a schema for

each instance of an Object, defining the list of tasks required to

serialize it. Each row of the schema represents one of the Object’s
fields, indicating its Type and the Address where the data is to

be read from. Cerebros borrows this transformation schema as a

flexible accelerator interface that allows defining all types of parallel

data manipulation tasks, facilitating compatibility with any RPC

framework after the schema’s format is established.

Internally, the DTA is organized as an array of independent

transformation pipelines, each featuring a set of hardware units

operating in a decoupled access-execute mode [68]. During serial-

ization, its input units read data from the memory hierarchy based

on the Address fields and feed transformation units, which feature

simple ALUs that transform data according to the installed schema’s

rules. The output units write the transformed data to the designated

memory buffer. An architecture like the DTA we have presented

is sufficient to handle both RPC manipulation modules; the next

component that must be addressed is the one handling dispatch.

4.3 RPC Dispatch and Request Steering
Moving the dispatch module into hardware is mandatory for com-

plete RPC layer processing on Cerebros without CPU involvement.

We now walk through the tasks performed by Cerebros when the

dispatch stage executes, using Figure 5a as a guideline. When a

new RPC task arrives at Cerebros from the NIC (1), Cerebros’

controller assigns the RPC to an available transformation pipeline

and passes the request’s metadata to it (2). After the DTA parses

the header (3), Cerebros must (i) determine the function ID being

requested, and (ii) prepare the payload manipulation task corre-

sponding to that function’s message type.

To meet these two requirements, we extend Figure 5b’s schema

format to include a special marker indicating which field of the

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Arash Pourhabibi, Mark Sutherland, Alexandros Daglis, and Babak Falsafi

header contains the function ID. Our added dispatch logic in the

DTA pipeline uses the modified schema to extract the function

ID from the deserialized header. After the function ID is known,

Cerebros uses a small table, called the Schema Map, that maps this

ID to the correct schema corresponding to the incoming request’s

payload format. The Schema Map is exposed via an in-memory con-

figuration space and programmed by the microservice at start-up

through Cerebros’ control path (§4.1). The Schema Map’s storage

requirements are limited because we expect the number of concur-

rently active functions to be a few tens.

We also introduce the idea of a split schema, which decomposes

each schema into two parts. The first part is the Type column of

Figure 5b, which only represents the data types pertaining to a par-

ticular message class. As all of the messages reaching a particular

function are of the same type, the Type schema remains immutable

and is shared among all messages of the same type, including head-

ers. The second part is unique for each individual message and con-

tains the data pointers (the Address column). Dividing schemata in

this fashion roughly halves their storage requirements, as Cerebros

will access the same read-only Type schema for all incoming mes-

sages to the same function. Additionally, such division eliminates

the need for Cerebros’ DT component to create a new Type schema

in memory for every request.

Returning to Figure 5a, after header parsing completes, Cerebros

uses the special marker in the header schema to extract the function

ID. It then looks up the Schema Map (4) which returns the Type
schema for the corresponding function’s payload type. To prepare

the payload manipulation task for the incoming RPC, Cerebros cre-

ates a blank Address schema in the memory previously reserved by

the NIC’s pipelines for the DTA to fill out with each Type’s address.
Cerebros’ control logic initiates payload manipulation by passing

pointers to both the raw payload and its application-level mem-

ory containing the Address schema and intended output buffer

to the DTA. The DTA then parses the payload and fills out the

Address schema with the addresses where the application-readable

fields were placed. When payload manipulation completes, Cere-

bros sends two pieces of information to the NIC’s core selection

stage (C): a pointer to the buffer with the application-readable

request and the function ID.

Affinity-Based Request Steering. The final task remaining is to

select a core to send this RPC to—the result of this process is what

allows us to realize affinity-based request steering. NICs already

implement logic to perform core selection based on a variety of

metrics (e.g., load balancing [14] or TCP 5-tuple [34]). Cerebros

contains a core selection stage that obtains a set of desirable cores

for handling this function from a table called the function map (D).

The function map is a direct-mapped table storing a FIFO list

of recently executed function IDs for each CPU core. When a new

RPC is assigned to a core, the function ID is added to the head of the

core’s list, and the tail of the list is dropped. Our implementation

only stores a single entry per core, so that a core is only considered

as having affinity if it has just executed the exact same function.

Selecting a core for a new RPC involves comparing the function

map’s entries against the incoming function’s ID, and considering

that a core has affinity to this function if the incoming ID matches.

To preserve load balancing, Cerebros’ core selection stage then

chooses the core with the fewest number of outstanding RPCs from

the set of all cores having affinity to this function. Such policies that

assign requests based on the number of outstanding requests per

core have been implemented in hardware by prior work [14, 48].

Further core assignment policy optimizations (e.g., increasing the

depth of the list in the function map in the case where multiple

functions have constructive code sharing) are interesting extensions

to our proof-of-concept implementation.

While the core is being selected, NeBuLa’s NIC pipelines create a

metadata structure containing a pointer to the incoming message’s

Address schema, the corresponding request buffer, and a function

pointer that indicates the address where the core must begin execut-

ing. Cerebros notifies the selected core of a new incoming request,

passing the metadata to it via a QP entry. Once the core receives

the notification, it begins executing the function indicated in the

metadata structure.

5 METHODOLOGY
Evaluated Microservices. We choose microservices from Death-

StarBench [24] that differ in the following primary parameters

that dictate the RPC layer’s cost breakdown (c.f., §2): number and

complexity of functions, frequency of nested RPCs, and message

size/format complexity. Our microservices are UniqueId (UID),

User (USR), UrlShorten (URL), SocialGraph (SG), and Compose-

Post (CP), which comprise one, six, one, seven, and six underlying

functions, respectively. The selected microservices represent Death-

StarBench’s various microservice classes. Other microservices in

this benchmark suite behave identically or similarly to those we

evaluated. In particular, most of the microservices are similar to SG

and CP, which contain little business logic and spend most of their

execution time just passing data along to othermicroservices or data

stores via nested RPCs. Facebook has also recently revealed their

web services (the closest workload to DeathStarBench’s microser-

vices) spend as little as 18% of their execution time in the application

logic [69]. All microservices use Apache Thrift [4] as their RPC

layer, to which we have added a new hardware-terminated trans-

port protocol based on NeBuLa [71]. We study each microservice in

isolation and create mock components for the other microservices

surrounding the isolated one. Due to our use of isolated microser-

vices, we report the CPU cycles expended in only the RPC and

application layers. Therefore, our results are independent from the

underlying transport and network protocols.

Request Processing Model. Our evaluated RPC layer implements

a synchronous request processing model, where each microser-

vice polls for incoming requests and executes them to completion.

Threads also synchronously poll for the results of their nested RPCs,

which Cerebros guarantees will be returned to the same thread. An

asynchronous processing model (where threads begin processing

new requests instead of polling for responses to nested RPCs) would

provide higher throughput at the cost of extra CPU cycles spent

for context switching and higher programming complexity [8]. A

user-level threading library such as Arachne [61] would be manda-

tory for handling the 𝜇𝑠-scale execution times of our evaluated

microservices. We emphasize that because Cerebros’s primary tar-

get is the reduction of CPU cycles expended per request, it benefits

Cerebros: Evading the RPC Tax in Datacenters MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Table 1: Parameters used for cycle-accurate simulation.

Cores

ARMv8, 64-bit, 2GHz, 4-way OoO, 128-entry ROB

TSO, next-line instruction prefetcher

L1 Caches

64KB 4-way L1-D, 64KB 4-way L1-I, 64B blocks

2 ports, 32 MSHRs, 4-cycle latency (tag+data)

LLC

Shared block-interleaved NUCA, 8MB total

16-way, 1 bank/tile, 8-cycle latency

Coherence Directory-based Non-Inclusive MESI

Memory 45ns latency, 2×25.6GBps DDR4-3200
Interconnect 2D mesh, 16B links, 3 cycles/hop

either processing model, and the saved cycles can be re-purposed

to increase concurrency if asynchronous RPCs are used.

Microservice Characterization. To accurately measure the break-

down between the functions and RPC layer, we instrument the

microservices’ code to record cycles expended in the following

three steps: (i) the RPC processing that occurs upon new requests

arriving, (ii) nested RPCs that occur during the function’s execu-

tion, and (iii) the function code itself. Therefore, the cycles we

attribute to the function quantify only the time spent executing the

application’s business logic. Reported cycle counts are the average

number of cycles expended per request across all functions for each

microservice. To estimate instruction working set sizes, we apply

the methodology used for profiling workloads in Google datacen-

ters [42]: we collect the trace of executed instructions and measure

how many unique cache lines cover 99.9% of the trace when ranked

by popularity.

Simulation Setup.We evaluate Cerebros using cycle-accurate full-

system simulation. We use the QFlex simulator [58] to simulate a 16-

core ARMv8 CPU running Ubuntu Linux 18.04, whose parameters

are summarized in Table 1. All workloads are pinned on 15 cores,

leaving one core for system tasks and interrupt processing. We

limit UID to four cores because lock contention limits its scalability.

Our simulator includes a load generator that creates incoming

requests based on a given popularity distribution, dictated by the

structure of the microservice [59, §6.1], and delivers notifications to

the CPU through the NeBuLa transport stack. The load generator

also emulates all the mock microservices, mimicking their behavior

and instantly responding to RPCs with pre-constructed messages.

To compare against Optimus Prime (OP) [60], we estimate its

best-case performance using numbers available in the respective

paper. We model OP’s processing time as the cycles required by its

transformation pipelines to process all the fields of the message,

plus a single access to the cache hierarchy for all required data.

We use a fixed latency for each message transformation that varies

based on the message type and is calculated based on the message’s

structure and fields, following Thrift’s compact protocol encoding.

For Cerebros, we add the cycles required for header parsing and

dispatch, calculated identically. We assume no queuing delays in

either OP or Cerebros due to the fact that the accelerators’ mes-

sage processing rates are 2.5 − 100× faster than the maximum load

generated by the cores running our microservices. Moreover, in a

real deployment, Cerebros would experience far less load because

of the extra latency contributed by the other surrounding microser-

vices and the datacenter network (as opposed to responses arriving

instantly). Hence, Cerebros’ processing rate dwarfs the cores’ peak

RPC generation rate, making queuing negligible.

Analytical Model. To explicitly study the impact of offload over-

head, we use an analytical model similar to Accelerometer [69] to

estimate the total expended cycles in the RPC layer, as particular

layers of the RPC layer are offloaded to hardware. The message

processing cycle counts are calculated using the same performance

model previously explained for OP. To estimate the cost of a sin-

gle synchronous offload, we model five sequential traversals of

the server’s on-chip network: (i) the CPU invokes the accelera-

tor through MMIO writes; (ii) the accelerator reads the metadata

describing the task, which is delivered separately from the invoca-

tion [60, §4]; (iii) the accelerator reads the data block(s) correspond-

ing to the task; (iv) the data to be returned is written back to the

cache hierarchy; and (v) the accelerator notifies the CPU. Each of

these traversals incurs a latency of 40 cycles, measured using our

cycle-accurate simulator.

6 EVALUATION
We begin our evaluation by quantifying the performance implica-

tions of offload overheads, demonstrating the need for Cerebros to

directly interact with the NIC and run the entire RPC layer. We then

show Cerebros’ ability to achieve our first design goal: the CPUs

only run the microservices’ business logic and not the RPC layer.

Next, we demonstrate how fully offloading the RPC layer actually

improves the performance of the microservices themselves, and

conclude by evaluating affinity-based request steering.

6.1 Impacts of Offload Overhead
The performance improvements from a design that uses the CPU

as a coordinator for an RPC accelerator depend on the accelerator’s

per-module speedup and the overhead of each module offload. In

Figure 6 we instantiate our analytical model for the following five

designs executing the UID microservice: the CPU baseline (None),

offloading the RPC’s payload to the OP accelerator (OP: P-Only),

offloading both the payload and header (P+H), using a private

accelerator per core (P+H_PV), and Cerebros that performs the

entire RPC layer (Full).

Accelerating payload manipulation (P-Only) leaves the rest of

the RPC layer processing to the CPU and only reduces RPC layer

cycles by 1.7×. Additionally offloading header manipulation (P+H)

frees up 40% of the remaining cycles, bringing the total speedup

to 2.3×. In this case, the only remaining part that is executed on

the CPU is the dispatch module, which takes only 5% of the RPC

layer’s cycles. However, the offload overhead grows because the

CPU must explicitly request the processing of both manipulation

modules independently, forming a lower bound on the performance

of the RPC layer. Each request to the UID microservice generates

four header manipulation and four payload manipulation tasks,

resulting in a total offload overhead of ∼1600 cycles, compared to

an accelerator processing time of only 90 cycles. For microservices

with more nested RPCs (e.g., SG or CP), offload overheads dominate

the cost even more overwhelmingly.

A brute-force solution to mitigate offload overheads is to inte-

grate a private accelerator with each CPU core. Figure 6’s P+H_PV

bar shows the performance of this solution, where the only module

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Arash Pourhabibi, Mark Sutherland, Alexandros Daglis, and Babak Falsafi

None

OP: P-Only

P+H

P+H_PV

Full

CPU Cycles (x1000)

0 1 2 3 4 5

RPC Layer
Offload Overhead

Figure 6: RPC layer cycles for various offload options, when
executing the UID microservice.

remaining that contributes to RPC layer cycles is the dispatch layer.

However, such accelerator replication requires 5× more area and

6×more power than a single shared accelerator with a 16-core chip,

which is a steep cost for hardware operating at only 1% utilization in

the case of UID. These costs grow with higher core counts, making

replication an inefficient design choice.

We expect that the best solution to reduce offload overhead

without a direct NIC-accelerator interface requires optimizing the

accelerator’s interface to coalesce its input data with the CPU’s

requests (similar to RDMA NICs) [39], and using a low-diameter

on-chip interconnect such as Multi-drop Express Channels [28]

or NOC-Out [54]. The combination of these two techniques can

reduce offload overheads by 3.36×, reducing the exposed offload

overhead to 60 cycles per module. Therefore, the performance of

such an optimized system would fall between P+H and P+H_PV.

Only the solution with a fully capable RPC processor (Full) can si-

multaneously offload all elements of the RPC layer and avoid silicon

overprovisioning. A NIC-interfaced RPC processor cuts expended

cycles in the RPC layer by 50×when compared to the CPU baseline,

and 21.5× compared to the case where only dispatch is performed

on the CPU (P+H). Integrating the RPC processor with the NIC

itself allows a 50% reduction in the area of the DT component [60],

as it now shares the NIC’s cache and MMU (§3.2).

6.2 Reduction in RPC Processing Time
We now evaluate the impact of Cerebros’ ability to execute the RPC

layer in hardware on overall microservice behavior. Figure 7 shows

the mean on-server expended CPU cycles per request, broken down

into the RPC layer and the application-level function. Cerebros

virtually eliminates the cycles spent in the RPC layer and thus

reduces the expended CPU cycles by 1.8–14.2×, depending on the

fraction of cycles attributed to the RPC layer in the baseline.

The effect of RPC layer offload to Cerebros is most pronounced

for SG and CP, as they spend ∼90% of their cycles in the RPC layer

due to heavy use of nested RPCs. The functions of these two mi-

croservices primarily pass along the information contained in their

input messages to other microservices, performing tiny amounts of

business logic. A function in CP can include up to 13 nested RPCs,

accounting for up to ∼70% of the microservice’s total expended

cycles on average, as shown in Figure 2a. In contrast, SG has a

maximum of five nested RPCs, but the messages it exchanges with

other microservices include complex nested objects and are larger

than CP’s. Message size and complexity make SG’s breakdown

of RPC versus function time similar to CP’s, despite fewer nested

C
PU

 C
yc

le
s

(x
10

00
)

0

4

8

12

16

20

24

Microservices - HW Configuration

UID
 -

CPU

UID
 -

Cer

USR
 -

CPU

USR
 -

Cer

URL -
 C

PU

URL -
 C

er

SG
 -

CPU

SG
 -

Cer

CP -
 C

PU

CP -
 C

er

Function RPC Layer

Figure 7: Average on-server cycles per request.

RPCs. Cerebros is able to effectively eliminate the RPC layer’s over-

heads, whether the underlying root cause is deep RPC nesting or

transformation complexity.

Business logic in UID, USR, and URL is more complex, hence

forming a more notable fraction of the expended cycles. Addition-

ally, UID’s messages do not contain complex objects and are smaller

than 50B in size. Despite the relative simplicity of UID’s RPC tasks,

Cerebros still attains a 1.8× reduction in CPU cycles.

As a side-effect of full RPC layer offload, Cerebros reduces the

on-CPU service time of each microservice’s business logic as well.

Figure 7 shows 2–49% fewer expended cycles in the functions as

a result of improved CPU frontend performance due to reduced

instruction working set. To clearly show the effect on the CPU

frontend, we measure the working set sizes and the MPKI values of

our five microservices in two configurations: when the RPC layer

is performed by the CPU and when it is offloaded to Cerebros.

Figure 8a shows the instruction working sets of our evaluated

microservices. In the baseline CPU system, the bloated RPC layer

results in total working sets that exceed the L1-I’s capacity by up

to 3×. In contrast, Cerebros’ RPC layer offload reduces the working

set by 27–68%, which naturally translates to a higher L1-I hit rate.

The working sets are most visibly reduced for SG and CP, as they

have little business logic in their functions and their instruction

footprints correspond more directly with RPC layer code, due to

their large number of nested RPCs and complex message types.

Hence, when the RPC layer is offloaded to Cerebros, we see a

reduction of more than 60% in their instruction working sets. On

the contrary, UID includes only one nested RPC and uses simpler

messages, while the function itself is roughly 43KB in size. Even

then, offloading UID’s RPC layer to Cerebros shrinks the instruction

working set by 38%.

Figure 8b depicts the L1-I MPKI before and after the RPC layer

offload. The working set reduction achieved by Cerebros directly

affects the core’s frontend performance, virtually eliminating in-

struction misses for four of the microservices and reducing CPU

cycles wasted on instruction misses by 5–93%. Instruction miss re-

duction also yields a 2–49% reduction in function cycles, as shown

in Figure 7, highlighting that RPC layer offload has a significant

positive side-effect on the CPU performance.

USR benefits the least among all microservices because it in-

cludes two functions with working sets larger than 90KB in size. It

also experiences the smallest reduction in the instruction working

Cerebros: Evading the RPC Tax in Datacenters MICRO ’21, October 18–22, 2021, Virtual Event, Greece
In

st
. W

or
ki

ng
 S

et
 (

K
B)

0

50

100

150

200

Microservices

UID USR URL SG CP

CPU Cerebros

(a) Instruction working set.

L1
-I

M
PK

I

0
2
4
6
8

10
12
14

Microservices

UID USR URL SG CP

CPU Cerebros

(b) MPKI.

Figure 8: Frontend behavior of microservices.

set, as shown in Figure 8a. In such cases where the aggregate work-

ing set of all the functions still outstrips the L1-I cache, even fully

offloading the RPC layer to Cerebros provides limited benefits to

the CPU’s frontend. We now evaluate the performance of affinity-

based request steering that ameliorates CPU frontend inefficiencies

in these exact cases.

6.3 Affinity-based Request Steering
Although the aggregate working set of the USR microservice when

using Cerebros is ∼140KB, four of its six functions are small enough

to fully reside in a 64KB instruction cache if running in isolation.

However, the working sets of the other two functions are >90KB.

When the NIC’s core selection policy does not take into account

function locality, all six functions will compete for L1-I cache ca-

pacity, resulting in the high number of instruction misses visible in

Figure 8b even after Cerebros’ RPC layer offload. This phenome-

non particularly hurts the performance of functions for which L1-I

misses account for a large fraction of total execution time.

Figure 9 breaks down the CPU time of USR’s six functions into

execution time and time stalled on instruction misses and com-

pares a Cerebros baseline (C) against Cerebros with affinity-based

steering (CA). In the affinity-agnostic baseline, USR’s functions

are stalled on instruction misses for 15–44% of their total runtime.

Function 2 is the only strongly compute-bound function, spend-

ing the majority of its time hashing strings after its working set is

first loaded into the L1-I. All other functions have their CPU times

divided roughly equally between execution and instruction stalls.

With affinity-based request steering enabled, the fraction of time

stalled on L1-I misses drops by 1.05 − 18×, with the larger benefits

being applicable to the most commonly executed functions, F3–F5.

We measured that ∼98% of requests were able to be steered to a core

that had just executed the same function type, highlighting the fact

that function affinity is plentiful for our deployment. For F3–F5,

affinity-based steering virtually eliminates L1-I misses, leading to a

1.8 − 2× reduction in CPU time. These functions benefit drastically

because their instruction working sets are between 20–25KB, which

are easily accommodated by our CPU’s 64KB L1-I cache. Affinity-

based steering allows F3–F5 to execute with zero L1-I misses for

94% of requests.

Despite their high number of L1-I misses in the baseline, F0–

F1 benefit only marginally from affinity-based steering because

their L1-I misses primarily come from limited cache capacity, not

inter-function contention. We have verified this with an experiment

Fu
nc

tio
n

La
te

nc
y 

(N
or

m
. T

o
C

er
eb

ro
s)

0.00

0.25

0.50

0.75

1.00

USR Function - Hardware Configuration

F0
 -

 C
F0

 -
 C

A

F1
 -

 C
F1

 -
 C

A

F2
 -

 C
F2

 -
 C

A

F3
 -

 C
F3

 -
 C

A

F4
 -

 C
F4

 -
 C

A

F5
 -

 C
F5

 -
 C

A

Execution I$ Misses

Figure 9: Breakdown of the USR microservice’s functions
into execution time and instruction cache misses.

enforcing that these two functions execute on dedicated cores to

eliminate any contention from other functions. Even in this best-

case scenario, F0–F1’s CPU times are within 3% of what we observe

with affinity-based request steering.

Aggregated across all of the functions, affinity-based request

steering reduces average CPU time for the USRmicroservice by 8.7%.

The fact that USR’s two largest functions (F0–F1) have execution

times ∼180× larger than its most popular functions (F3–F5) skews

the average downwards. In contrast, the median CPU time drops

by 33% because F3–F5 comprise 70% of total incoming requests and

experience greater speedups.

7 RELATEDWORK
Other RPC Acceleration Frameworks. The prevalence of RPC-
connected microservices in the datacenter has led to a plethora of

proposals to use production NICs, equipped with FPGAs or their

own CPU cores, to accelerate application-level tasks such as the

RPC layer. Dagger [52] is the only other work we are aware of

which proposes to offload the full RPC layer to hardware. They

target the integrated FPGA in an Intel Broadwell platform and build

a customized RPC layer inspired by the Thrift [4] software stack.

Similarly, NICA proposes a programming model and runtime to ac-

celerate application-level tasks on FPGA-enhanced NICs [20], citing

message de-serialization as a potential application. Neither Dagger

nor NICA currently supports the underlying modules of production

RPC layers we describe in §2.1 because they lack support for the

header and payload manipulation modules in production Thrift [52,

§4.5]. Dagger and NICA share our use of hardware-terminated

transport protocols, but still leave header/payload manipulation

(and therefore RPC dispatch) to the host CPU.

Adding support for manipulation tasks to designs based on com-

modity NICs would require co-design with the host’s DMA engine,

because common-case objects cannot be deserialized on the NIC

and then DMA’ed to the host without rewriting all of the object’s

pointers. Although it may be possible to realize such a design in

the future, as argued by Wolnikowski et al. [74] and Raghavan et

al. [62], the hardware required will likely be similar to Cerebros, and

therefore we believe an on-chip design is more logical. Additionally,

executing the RPC stack on commodity NICs will inevitably incur

the overhead of transferring objects between the FPGA accelerator

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Arash Pourhabibi, Mark Sutherland, Alexandros Daglis, and Babak Falsafi

and the host’s CPU cores. Dagger and NICA contain a highly cus-

tomized communication stack to transfer objects between the FPGA

accelerator and the host’s CPU cores, and reduce the latency of the

FPGA-to-host interconnect—another form of offload overhead that

Cerebros does not incur due to its use of an on-chip NIC.

Customized RPC frameworks such as Cap’n Proto [46] or Flat-

Buffers [25] use a pre-flattened RPC message format, which inher-

ently removes the aforementioned challenges with pointer-based

objects. However, such frameworks sacrifice object mutability, gen-

erate larger wire-format objects, and experience higher latencies

during costly object creation [62]. We believe these trade-offs are

particularly burdensome for microservices with many nested RPCs

because message objects are commonly modified on every nested

call. Cerebros can even benefit such frameworks by accelerating

header parsing and with affinity-based request steering.

Optimus Prime [60] introduces a data transformation accelerator

(DTA) to perform RPC payload manipulation at rates matching a

high-end server NIC. Cerebros builds on Optimus Prime’s DTA

architecture and transformation schema to perform both payload

and header manipulation, and shows that a further 23× reduction

in RPC processing time is possible compared to merely targeting

payloadmanipulation. Cerebros also performs dispatch in hardware,

thus eliminating CPU involvement altogether.

iPipe proposes a scheduling algorithm to minimize tail latency

for microservices offloaded to SmartNICs [53]. Combining affinity-

based request steering with a scheduler such as iPipe’s would result

in a system that can simultaneously improve instruction locality

and maintain tail latency.

RPC Transports. The use of RPCs as a datacenter communication

API has resulted in a plethora of research to optimize RPC perfor-

mance [14, 18, 38, 40, 41, 48, 71]. None of these customized systems

use a production RPC layer providing communication among mi-

croservices that cross language and data format barriers; therefore,

our work is largely orthogonal to all of these systems. Although

we chose to implement Cerebros on top of NeBuLa due to its inte-

grated NIC, it is possible to integrate Cerebros with any solution

that offers transport termination in hardware. In that case, Cerebros

would need to re-implement an interface to the server’s memory

hierarchy and to the CPU cores, increasing its hardware cost.

Reducing CPU-Accelerator Offload Overhead. Shao et al. have

observed that data movement between CPUs and accelerators limits

performance, and propose optimizations to pipeline data transfers

with computation [65]. Although such techniques could reduce

some of the offload overhead we identify, they cannot eliminate it

due to the complex pointer dependencies inherent to the messages

in production RPC formats. M3-X provides support for acceler-

ators to access OS services and communicate with rescheduled

threads [5]. Systems such as Morpheus-SSD [72], GPUfs [66], and

NVIDIA GPUDirect [12] address performance losses arising from

CPU-mediated transfers between peripherals, and all use peer-to-

peer DMA to eliminate CPU time spent moving data through sys-

tem memory. Cerebros shares the motivation of removing the CPU

from the accelerator’s path of work, but operates at nanosecond

timescales instead of milliseconds.

Many prior works have developed analytical modeling tech-

niques for studying heterogeneous architectures [2, 69]. We instan-

tiate a similar model to show the offload overheads associated with

CPU involvement in the flow of RPCs.

Instruction Supply in Servers. A plethora of microarchitectural

solutions exist to address instruction supply bottlenecks [3, 22,

44, 45, 50, 51, 63], all of which depend on storing and accessing

prefetching metadata. For microservices with many functions or

large working sets, the required metadata to cover their misses will

outgrow the CPU’s storage capacity and reduce coverage. Offload-

ing the RPC layer to Cerebros benefits these frontend designs, as

the RPC layer’s code footprint vanishes and fewer capacity misses

occur in the prefetcher’s storage. Cerebros also goes further by

proposing affinity-based request steering, which provides speedups

in the case where a microservice’s functions are too large to be

contained by the CPU’s frontend resources. Profile-guided prefetch-

ing proposals, such as AsmDB [6] and I-SPY [47], perform offline

analysis on datacenter-wide miss traces, and re-compile the profiled

applications with software prefetches. Affinity-based request steer-

ing does not require recompilation or datacenter-wide profiling.

8 CONCLUSION
As the microservices software architecture continues to prolifer-

ate, the common RPC layer gluing the microservices together is

becoming a bottleneck: the RPC layer itself consumes 40–90% of

the execution cycles of the microservices we study. Due to the

fact that CPUs are unable to perform the RPC layer’s underlying

functionality at rates matching commodity NICs, it is necessary

to execute the RPC layer in hardware to ensure servers keep pace

with improving network line rates. In this work, we present de-

sign principles and constraints guiding the architecture of RPC

processing hardware. Specifically, we show that an RPC processor

must directly receive tasks from the NIC and execute the full RPC

layer to completion before the CPU is involved. Following these

principles, we propose Cerebros, a NIC-integrated RPC processor

that executes the Apache Thrift RPC layer 37–64× faster than a

CPU, and also improves the CPU’s performance when executing

the microservice by improving its instruction supply. Offloading

the RPC layer to Cerebros shrinks the microservice’s instruction

working set by 27–68%, and our novel affinity-based request steer-

ing policy provides a further 1.05–2× reduction in execution time

for microservices whose functions contend for cache space. We

believe Cerebros is an ideal candidate for inclusion in future server

chips to support microservices as they decompose into even finer

granularity.

ACKNOWLEDGMENTS
The authors thank the anonymous reviewers for their valuable

comments and feedback. We also thank the members of PARSA

at EPFL for their feedback and support. This work was partially

supported by the SNSF “Memory-Centric Server Architecture for

Datacenters” and “Hardware/Software Co-Design for In-Memory

Services” projects, by Facebook under the “Full-System Accelerated

& Secure ML Collaborative Research” program, by the National

Science Foundation under the award NSF-CCF-2006602, and by a

Google Faculty Research Award.

Cerebros: Evading the RPC Tax in Datacenters MICRO ’21, October 18–22, 2021, Virtual Event, Greece

REFERENCES
[1] Mohammad Alizadeh, Albert G. Greenberg, David A. Maltz, Jitendra Padhye,

Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010.

Data center TCP (DCTCP). In Proceedings of the ACM SIGCOMM 2010 Conference.
63–74.

[2] Muhammad Shoaib Bin Altaf and David A. Wood. 2017. LogCA: A High-Level

Performance Model for Hardware Accelerators. In Proceedings of the 44th Inter-
national Symposium on Computer Architecture (ISCA). 375–388.

[3] Ali Ansari, Pejman Lotfi-Kamran, and Hamid Sarbazi-Azad. 2020. Divide and

Conquer Frontend Bottleneck. In Proceedings of the 47th International Symposium
on Computer Architecture (ISCA). 65–78.

[4] Apache Software Foundation. [n.d.]. Thrift. Retrieved August 16, 2019 from

https://thrift.apache.org/

[5] Nils Asmussen, Michael Roitzsch, and Hermann Härtig. 2019. M3x: Autonomous

Accelerators via Context-Enabled Fast-Path Communication. In Proceedings of
the 2019 USENIX Annual Technical Conference (ATC). 617–632.

[6] Grant Ayers, Nayana Prasad Nagendra, David I. August, Hyoun Kyu Cho, Svilen

Kanev, Christos Kozyrakis, Trivikram Krishnamurthy, Heiner Litz, Tipp Moseley,

and Parthasarathy Ranganathan. 2019. AsmDB: understanding and mitigat-

ing front-end stalls in warehouse-scale computers. In Proceedings of the 46th
International Symposium on Computer Architecture (ISCA). 462–473.

[7] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. 2013. The Datacenter as
a Computer: An Introduction to the Design of Warehouse-Scale Machines, Second
Edition. Morgan & Claypool Publishers.

[8] Luiz André Barroso, Mike Marty, David A. Patterson, and Parthasarathy Ran-

ganathan. 2017. Attack of the killer microseconds. Commun. ACM 60, 4 (2017),

48–54.

[9] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat, Jeremy

Fowers, Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-

Young Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Papamichael,

Lisa Woods, Sitaram Lanka, Derek Chiou, and Doug Burger. 2016. A cloud-

scale acceleration architecture. In Proceedings of the 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 7:1–7:13.

[10] Adrian Cockcroft. 2015. Microservices the Good Bad and the Ugly. Retrieved

August 16, 2019 from https://www.slideshare.net/adriancockcroft/microservices-

the-good-bad-and-the-ugly

[11] James Coleman. 2009. Reducing Interrupt Latency Through the Use
of Message Signaled Interrupts. Retrieved March 28, 2020 from

https://www.intel.com/content/dam/www/public/us/en/documents/white-

papers/msg-signaled-interrupts-paper.pdf

[12] NVIDIA Corp. 2020. Developing a Linux Kernel Module using GPUDirect RDMA.
Retrieved March 29, 2020 from https://docs.nvidia.com/cuda/gpudirect-rdma/

index.html

[13] Alexandros Daglis, Stanko Novakovic, Edouard Bugnion, Babak Falsafi, and Boris

Grot. 2015. Manycore network interfaces for in-memory rack-scale computing.

In Proceedings of the 42nd International Symposium on Computer Architecture
(ISCA). 567–579.

[14] Alexandros Daglis, Mark Sutherland, and Babak Falsafi. 2019. RPCValet: NI-

Driven Tail-Aware Balancing of µs-Scale RPCs. In Proceedings of the 24th Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-XXIV). 35–48.

[15] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan Arefin, Anshuman

Gupta, Brian Fahs, Dima Rubinstein, Enrique Cauich Zermeno, Erik Rubow,

James Alexander Docauer, Jesse Alpert, Jing Ai, Jon Olson, Kevin DeCabooter,

Marc de Kruijf, Nan Hua, Nathan Lewis, Nikhil Kasinadhuni, Riccardo Crepaldi,

Srinivas Krishnan, Subbaiah Venkata, Yossi Richter, Uday Naik, and Amin Vahdat.

2018. Andromeda: Performance, Isolation, and Velocity at Scale in Cloud Network

Virtualization. In Proceedings of the 15th Symposium on Networked Systems Design
and Implementation (NSDI). 373–387.

[16] Datacenter Knowledge. 2018. The Year of 100GbE in Data Center Networks.

Retrieved November 19, 2020 from https://www.datacenterknowledge.com/

networks/year-100gbe-data-center-networks

[17] DPDK [n.d.]. Data Plane Development Kit. https://www.dpdk.org

[18] Aleksandar Dragojevic, Dushyanth Narayanan, Miguel Castro, and OrionHodson.

2014. FaRM: Fast Remote Memory. In Proceedings of the 11th Symposium on
Networked Systems Design and Implementation (NSDI). 401–414.

[19] Dave Dunning, Greg J. Regnier, Gary L. McAlpine, Don Cameron, Bill Shubert,

Frank Berry, Anne Marie Merritt, Ed Gronke, and Chris Dodd. 1998. The Virtual

Interface Architecture. IEEE Micro 18, 2 (1998), 66–76.
[20] Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka, and Mark Silberstein. 2019.

NICA: An Infrastructure for Inline Acceleration of Network Applications. In

Proceedings of the 2019 USENIX Annual Technical Conference (ATC). 345–362.
[21] Facebook Inc. [n.d.]. Facebook Thrift. Retrieved November 19, 2020 from https:

//github.com/facebook/fbthrift

[22] Michael Ferdman, Thomas F. Wenisch, Anastasia Ailamaki, Babak Falsafi, and

Andreas Moshovos. 2008. Temporal instruction fetch streaming. In Proceedings of
the 41st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

1–10.

[23] Daniel Firestone, Andrew Putnam, Sambrama Mundkur, Derek Chiou, Alireza

Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian M. Caulfield,

Eric S. Chung, Harish Kumar Chandrappa, Somesh Chaturmohta,Matt Humphrey,

Jack Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham

Popuri, Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivaku-

mar, Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug

Burger, Kushagra Vaid, David A. Maltz, and Albert G. Greenberg. 2018. Azure

Accelerated Networking: SmartNICs in the Public Cloud. In Proceedings of the
15th Symposium on Networked Systems Design and Implementation (NSDI). 51–66.

[24] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,

Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna

Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung,

Siyuan Wang, Leon Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake

Padilla, and Christina Delimitrou. 2019. An Open-Source Benchmark Suite for

Microservices and Their Hardware-Software Implications for Cloud & Edge

Systems. In Proceedings of the 24th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-XXIV). 3–
18.

[25] Google. [n.d.]. FlatBuffers. Retrieved April 5, 2019 from https://google.github.io/

flatbuffers/

[26] Google. [n.d.]. gRPC. Retrieved April 16, 2021 from https://grpc.io/

[27] Albert G. Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,

Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta

Sengupta. 2009. VL2: a scalable and flexible data center network. In Proceedings
of the ACM SIGCOMM 2009 Conference. 51–62.

[28] Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu. 2009. Express

Cube Topologies for on-Chip Interconnects. In Proceedings of the 15th IEEE
Symposium on High-Performance Computer Architecture (HPCA). 163–174.

[29] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Padhye,

and Marina Lipshteyn. 2016. RDMA over Commodity Ethernet at Scale. In

Proceedings of the ACM SIGCOMM 2016 Conference. 202–215.
[30] Tom Halfhill. 2015. Oracle Shrinks Sparc M7. Linley Group Microprocessor Report

(September 2015).

[31] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W.

Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-architecting datacenter

networks and stacks for low latency and high performance. In Proceedings of the
ACM SIGCOMM 2017 Conference. 29–42.

[32] Todd Hoff. 2016. Lessons Learned From Scaling Uber To 2000 Engineers,

1000 Services, And 8000 Git Repositories. Retrieved August 16, 2019

from http://highscalability.com/blog/2016/10/12/lessons-learned-from-scaling-

uber-to-2000-engineers-1000-ser.html

[33] Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo Jepsen, Muhammad Shahbaz,

Changhoon Kim, and NickMcKeown. 2021. The nanoPU: A Nanosecond Network

Stack for Datacenters. In Proceedings of the 15th Symposium on Operating System
Design and Implementation (OSDI). 239–256.

[34] Intel. 2014. Introduction to Intel Ethernet Flow Director and Memcached
Performance. https://www.intel.com/content/www/us/en/ethernet-products/

converged-network-adapters/ethernet-flow-director.html

[35] Intel Corp. 2016. Intel Xeon Processor D-1500 Product Family. https://cdrdv2.

intel.com/v1/dl/getcontent/333423. (Date retrieved: 6 March 2020).

[36] Jaeyoung Jang, Sungjun Jung, Sunmin Jeong, Jun Heo, Hoon Shin, Tae Jun Ham,

and Jae W. Lee. 2020. A Specialized Architecture for Object Serialization with

Applications to Big Data Analytics. In Proceedings of the 47th International Sym-
posium on Computer Architecture (ISCA). 322–334.

[37] Gopal Kakivaya, Lu Xun, Richard Hasha, Shegufta Bakht Ahsan, Todd Pfleiger,

Rishi Sinha, Anurag Gupta, Mihail Tarta, Mark Fussell, Vipul Modi, Mansoor

Mohsin, Ray Kong, Anmol Ahuja, Oana Platon, Alex Wun, Matthew Snider,

Chacko Daniel, Dan Mastrian, Yang Li, Aprameya Rao, Vaishnav Kidambi,

Randy Wang, Abhishek Ram, Sumukh Shivaprakash, Rajeet Nair, Alan War-

wick, Bharat S. Narasimman, Meng Lin, Jeffrey Chen, Abhay Balkrishna Mhatre,

Preetha Subbarayalu, Mert Coskun, and Indranil Gupta. 2018. Service fabric: a

distributed platform for building microservices in the cloud. In Proceedings of the
2018 EuroSys Conference. 33:1–33:15.

[38] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2014. Using RDMA

efficiently for key-value services. In Proceedings of the ACM SIGCOMM 2014
Conference. 295–306.

[39] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design Guidelines

for High Performance RDMA Systems. In Proceedings of the 2016 USENIX Annual
Technical Conference (ATC). 437–450.

[40] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. FaSST: Fast, Scalable

and Simple Distributed Transactions with Two-Sided (RDMA) Datagram RPCs. In

Proceedings of the 12th Symposium onOperating SystemDesign and Implementation
(OSDI). 185–201.

[41] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2019. Datacenter RPCs

can be General and Fast. In Proceedings of the 16th Symposium on Networked
Systems Design and Implementation (NSDI). 1–16.

https://thrift.apache.org/
https://www.slideshare.net/adriancockcroft/microservices-the-good-bad-and-the-ugly
https://www.slideshare.net/adriancockcroft/microservices-the-good-bad-and-the-ugly
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/msg-signaled-interrupts-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/msg-signaled-interrupts-paper.pdf
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://www.datacenterknowledge.com/networks/year-100gbe-data-center-networks
https://www.datacenterknowledge.com/networks/year-100gbe-data-center-networks
https://www.dpdk.org
https://github.com/facebook/fbthrift
https://github.com/facebook/fbthrift
https://google.github.io/flatbuffers/
https://google.github.io/flatbuffers/
https://grpc.io/
http://highscalability.com/blog/2016/10/12/lessons-learned-from-scaling-uber-to-2000-engineers-1000-ser.html
http://highscalability.com/blog/2016/10/12/lessons-learned-from-scaling-uber-to-2000-engineers-1000-ser.html
https://www.intel.com/content/www/us/en/ethernet-products/converged-network-adapters/ethernet-flow-director.html
https://www.intel.com/content/www/us/en/ethernet-products/converged-network-adapters/ethernet-flow-director.html
https://cdrdv2.intel.com/v1/dl/getcontent/333423
https://cdrdv2.intel.com/v1/dl/getcontent/333423

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Arash Pourhabibi, Mark Sutherland, Alexandros Daglis, and Babak Falsafi

[42] Svilen Kanev, Juan Pablo Darago, KimM.Hazelwood, Parthasarathy Ranganathan,

Tipp Moseley, Gu-Yeon Wei, and David M. Brooks. 2016. Profiling a Warehouse-

Scale Computer. IEEE Micro 36, 3 (2016), 54–59.
[43] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,

Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra,

Qijing Huang, Kyle Kovacs, Borivoje Nikolic, Randy H. Katz, Jonathan Bachrach,

and Krste Asanovic. 2018. FireSim: FPGA-Accelerated Cycle-Exact Scale-Out

System Simulation in the Public Cloud. In Proceedings of the 45th International
Symposium on Computer Architecture (ISCA). 29–42.

[44] Cansu Kaynak, Boris Grot, and Babak Falsafi. 2013. SHIFT: shared history in-

struction fetch for lean-core server processors. In Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). 272–283.

[45] Cansu Kaynak, Boris Grot, and Babak Falsafi. 2015. Confluence: unified instruc-

tion supply for scale-out servers. In Proceedings of the 48th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 166–177.

[46] Kenton Varda, Sandstorm.io. [n.d.]. Cap’n Proto. Retrieved September 3, 2021

from https://capnproto.org

[47] Tanvir Ahmed Khan, Akshitha Sriraman, Joseph Devietti, Gilles Pokam, Heiner

Litz, and Baris Kasikci. 2020. I-SPY: Context-Driven Conditional Instruction

Prefetching with Coalescing. In Proceedings of the 53rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO). 146–159.

[48] Marios Kogias, George Prekas, Adrien Ghosn, Jonas Fietz, and Edouard Bugnion.

2019. R2P2: Making RPCs first-class datacenter citizens. In Proceedings of the
2019 USENIX Annual Technical Conference (ATC). 863–880.

[49] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan M. G. Wassel, Xian

Wu, Behnam Montazeri, Yaogong Wang, Kevin Springborn, Christopher Alfeld,

Michael Ryan, David Wetherall, and Amin Vahdat. 2020. Swift: Delay is Simple

and Effective for Congestion Control in the Datacenter. In Proceedings of the ACM
SIGCOMM 2020 Conference. 514–528.

[50] Rakesh Kumar, Boris Grot, and Vijay Nagarajan. 2018. Blasting through the

Front-End Bottleneck with Shotgun. In Proceedings of the 23rd International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-XXIII). 30–42.

[51] Rakesh Kumar, Cheng-Chieh Huang, Boris Grot, and Vijay Nagarajan. 2017.

Boomerang: A Metadata-Free Architecture for Control Flow Delivery. In Pro-
ceedings of the 23rd IEEE Symposium on High-Performance Computer Architecture
(HPCA). 493–504.

[52] Nikita Lazarev, Shaojie Xiang, Neil Adit, Zhiru Zhang, and Christina Delimitrou.

2021. Dagger: Efficient and Fast RPCs in Cloud Microservices with Near-Memory

Reconfigurable NICs. In ASPLOS 2021. 36–51.
[53] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishnamurthy, Simon Peter, and

Karan Gupta. 2019. Offloading distributed applications onto smartNICs using

iPipe. In Proceedings of the ACM SIGCOMM 2019 Conference. 318–333.
[54] Pejman Lotfi-Kamran, Boris Grot, Michael Ferdman, Stavros Volos, Yusuf Onur

Koçberber, Javier Picorel, Almutaz Adileh, Djordje Jevdjic, Sachin Idgunji, Emre

Özer, and Babak Falsafi. 2012. Scale-out processors. In Proceedings of the 39th
International Symposium on Computer Architecture (ISCA). 500–511.

[55] Tony Mauro. 2015. Adopting Microservices at Netflix: Lessons for Architec-

tural Design. Retrieved August 16, 2019 from https://www.nginx.com/blog/

microservices-at-netflix-architectural-best-practices

[56] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John K. Ousterhout.

2018. Homa: a receiver-driven low-latency transport protocol using network

priorities. In Proceedings of the ACM SIGCOMM 2018 Conference. 221–235.
[57] Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi, and Boris

Grot. 2014. Scale-out NUMA. In Proceedings of the 19th International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-XIX). 3–18.

[58] Parallel Systems Architecture Lab (PARSA), EPFL. 2020. QFlex. https://qflex.

epfl.ch

[59] Arash Pourhabibi. 2021. Hardware-Software Co-Design of an RPC Processor.

EPFL PhD Thesis (2021).

[60] Arash Pourhabibi, Siddharth Gupta, Hussein Kassir, Mark Sutherland, Zilu Tian,

Mario Paulo Drumond, Babak Falsafi, and Christoph Koch. 2020. Optimus Prime:

Accelerating Data Transformation in Servers. In Proceedings of the 25th Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-XXV). 1203–1216.

[61] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John K. Ousterhout. 2018.

Arachne: Core-Aware Thread Management. In Proceedings of the 13th Symposium
on Operating System Design and Implementation (OSDI). 145–160.

[62] Deepti Raghavan, Philip Alexander Levis, Matei Zaharia, and Irene Zhang. 2021.

Breakfast of champions: towards zero-copy serialization with NIC scatter-gather.

In Proceedings of The 18th Workshop on Hot Topics in Operating Systems (HotOS-
XVIII). 199–205.

[63] Glenn Reinman, Brad Calder, and ToddM. Austin. 1999. FetchDirected Instruction

Prefetching. In Proceedings of the 32nd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). 16–27.

[64] Stephen M. Rumble, Diego Ongaro, Ryan Stutsman, Mendel Rosenblum, and

John K. Ousterhout. 2011. It’s Time for Low Latency. In Proceedings of The 13th
Workshop on Hot Topics in Operating Systems (HotOS-XIII).

[65] Yakun Sophia Shao, Sam Likun Xi, Vijayalakshmi Srinivasan, Gu-Yeon Wei, and

David M. Brooks. 2016. Co-designing accelerators and SoC interfaces using gem5-

Aladdin. In Proceedings of the 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 48:1–48:12.

[66] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett Witchel. 2013. GPUfs:

integrating a file system with GPUs. In Proceedings of the 18th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-XVIII). 485–498.

[67] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy

Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand

Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer, Urs Hölzle,

Stephen Stuart, and Amin Vahdat. 2015. Jupiter Rising: A Decade of Clos Topolo-

gies and Centralized Control in Google’s Datacenter Network. In Proceedings of
the ACM SIGCOMM 2015 Conference. 183–197.

[68] James E. Smith. 1984. Decoupled Access/Execute Computer Architectures. ACM
Trans. Comput. Syst. 2, 4 (1984), 289–308.

[69] Akshitha Sriraman and Abhishek Dhanotia. 2020. Accelerometer: Understanding

Acceleration Opportunities for Data Center Overheads at Hyperscale. In Proceed-
ings of the 25th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-XXV). 733–750.

[70] Akshitha Sriraman and Thomas F. Wenisch. 2018. 𝜇Tune: Auto-Tuned Threading

for OLDI Microservices. In 13th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018. 177–194.

[71] Mark Sutherland, Siddharth Gupta, Babak Falsafi, Virendra J. Marathe, Dion-

isios N. Pnevmatikatos, and Alexandros Daglis. 2020. The NEBULA RPC-

Optimized Architecture. In Proceedings of the 47th International Symposium on
Computer Architecture (ISCA). 199–212.

[72] Hung-Wei Tseng, Qianchen Zhao, Yuxiao Zhou, Mark Gahagan, and Steven Swan-

son. 2016. Morpheus: Creating Application Objects Efficiently for Heterogeneous

Computing. In Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA). 53–65.

[73] Bob Wheeler. 2011. Calxeda Spins 4W Server-on-a-Chip. Linley Group Micropro-
cessor Report (November 2011).

[74] Adam Wolnikowski, Stephen Ibanez, Jonathan Stone, Changhoon Kim, Rajit

Manohar, and Robert Soulé. 2021. Zerializer: towards zero-copy serialization. In

Proceedings of The 18thWorkshop on Hot Topics in Operating Systems (HotOS-XVIII).
206–212.

[75] Hao Zhou, Ming Chen, Qian Lin, Yong Wang, Xiaobin She, Sifan Liu, Rui Gu,

Beng Chin Ooi, and Junfeng Yang. 2018. Overload Control for Scaling WeChat

Microservices. In Proceedings of the ACM Symposium on Cloud Computing, SoCC
2018,Carlsbad, CA, USA, October 11-13, 2018. 149–161. https://doi.org/10.1145/

3267809.3267823

https://capnproto.org
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices
https://qflex.epfl.ch
https://qflex.epfl.ch
https://doi.org/10.1145/3267809.3267823
https://doi.org/10.1145/3267809.3267823

	Abstract
	1 Introduction
	2 Why Hardware for RPCs?
	2.1 The Cost of RPCs
	2.2 Toward Faster RPC Processing

	3 RPC Processor Design
	3.1 Eliminating Offload Overheads
	3.2 Components for RPC Tasks
	3.3 Server System Integration

	4 The Cerebros RPC Processor
	4.1 NIC and Software Interfaces
	4.2 Data Transformation Component
	4.3 RPC Dispatch and Request Steering

	5 Methodology
	6 Evaluation
	6.1 Impacts of Offload Overhead
	6.2 Reduction in RPC Processing Time
	6.3 Affinity-based Request Steering

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

