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The purpose of this study was to assess the potential of using a sacrum-worn inertial 
measurement unit (IMU) for performance evaluation in each swimming phase (wall push-
off, glide, stroke preparation, and swimming) of national-level swimmers in front crawl 
technique. Nineteen swimmers were asked to wear a sacrum IMU and swim four one-way 
25-m trials in front crawl, attached to a tethered speedometer and filmed by cameras in the 
whole lap for validation. Based on the literature, several goal metrics were defined over 
speedometer data, each one representing the performance of the swimmer either in one 
phase (maximum velocity of wall push-off phase) or several phases (time of 15 meters for 
wall push-off, glide, stroke preparation phases). Following a macro-micro approach, the 
IMU parameters of each swimming phase were used to predict the goal metrics. The 
selected IMU parameters were in line with the characteristics of movement within each 
phase and can estimate the corresponding goal metric with an R2 over 0.8 and relative 
RMSE lower than 10%. 

KEYWORDS: swimming, wearable sensor, performance evaluation, speedometer 

INTRODUCTION: Continuous monitoring of performance is essential in swimming. The 
swimmer passes different swimming phases from wall to wall, including a dive into the water 
or wall push-off (Push), then glide (Glid) and stroke preparation (StPr) and finally swimming 
(Swim) up to the following turn. Various goal metrics are used to evaluate the performance of 
the swimmer in each phase, such as flight distance (Ruschel et al., 2007) for start, time to 15m 
for under water phases, average velocity per stroke (Dadashi et al., 2015), swimming average 
velocity (Mason and Cossor, 2000) or lap time. Inertial Measurement Units (IMU) are widely 
used for parameter extraction in various swimming phases, as IMUs overcome the limitations 
of traditional methods such as cameras. Moreover, novel orientation analysis algorithms 
estimate the 3-D orientation of IMU sensor (Madgwick et al., 2011), to extract even more 
detailed parameters in swimming (Guignard et al., 2017). 
Despite the substantial potential of IMU for motion features extraction, this data is rarely used 
for estimating the performance-related goal metrics of swimming phases. By monitoring the 
swimmer with a single IMU placed on sacrum, the main objective of this study was to 
investigate the association between IMU parameters and goal metrics in different swimming 
phases. This association will allow to better understand the kinematics features involved in 
each goal metric and to identify IMU parameters as proxy for performance evaluation. 
 
METHODS: 19 elite swimmers took part in this study (9 males, 10 females, age 19 ± 3 years, 
size 177 ± 7 cm, weight 68 ± 8 kg). One IMU (Physilog® IV, GaitUp, CH) was waterproofed 
and taped to swimmer’s sacrum recording 3-D angular velocity and acceleration at 500 Hz. A 
functional calibration was performed after IMU fixation to make the data independent of sensor 
placement (Dadashi et al., 2015). The swimmers performed four one-way front crawl trials with 
progressive speed (from 70% to 100% of their best time) in a 25m indoor pool. 
Two systems, synchronized with the IMU, were used as references in this study. A set of four 
2-D cameras (GoPro Hero 7 Black, GoPro Inc., US), attached to the pool wall to videotape all 
the lap underwater with a 60 Hz rate, used for swimming phase detection and a tethered 
speedometer (SpeedRT®, ApLab, Rome, Italy), attached with a belt to the swimmer. The 
speedometer calculated the displacement and velocity of the swimmer at a rate of 100 Hz, and 



was used as the reference to estimate eight goal metrics in different swimming phases 
detected by cameras. During Push phase, the Push maximum velocity was used as the goal 
metric to assess push-off strength (Stamm et al., 2013). In Glid phase where the swimmer 
should try to lose less velocity (Vantorre et al., 2014) ,Glide end velocity is a goal metric. In 
StPr phase, the average velocity has negative correlation with 15-meter time of the swimmer 
(Cossor and Mason, 2001). Two goal metrics are defined for Swim phase: the average 
velocity per cycle providing valuable information of swimmer’s performance in every cycle 
(Dadashi et al., 2015), and average velocity of the whole Swim phase. Three more goal 

metrics were used, which relate to more than one phase: the time to reach five meters (𝑻𝟓𝒎), 
affected mainly by Push and Glid phases (Zatsiorsky et al., 1979), the time to reach 15 meters 
(𝑻𝟏𝟓𝒎) was used to evaluate Push, Glid and StPr phases (Vantorre et al., 2014). Finally, the 
Lap average velocity was used as the goal metric for the whole lap. 
IMU data were processed following the macro-micro analysis approach (Hamidi Rad et al., 
2021). Swimming bouts, laps and technique were identified in macro level. Afterwards in micro 
level, each lap was segmented into swimming phases of Push, Glid, StPr and Swim from wall 
to wall. As a continuation of this approach, the kinematic parameters within each swimming 
phase (micro parameters) were extracted and used for performance evaluation. The study 
flowchart is displayed in Figure 1. IMU data preparation transfers the IMU data from sensor to 
the global frame to achieve the true acceleration, angular velocity and orientation of sacrum, 
using a gradient-descend based optimization algorithm (Madgwick et al., 2011). Global X, Y 
and Z axes are aligned respectively in vertical, forward and left direction of swimming lane.  
 

 
Figure 1: Flowchart of the performance evaluation approach. IMU data preparation (left), phase 
detection by cameras (CAM) or IMU calibrated data and micro parameter extraction from IMU 
(middle) and parameter selection from micro parameters and the goal metrics estimation (right). 
 

To observe the effect of IMU-based phase detection error on performance evaluation, the rest 
of the analysis was performed once with swimming phases detected by cameras and once by 
IMU for comparison. Then, by analysing the IMU data in global frame within the detected 
swimming phases, micro parameters were extracted in each swimming phase. Fast swimming 
depends on generating high propulsive forces, keeping the correct posture for less drag, while 
swimming with the highest efficiency (Toussaint and Truijens, 2005). Therefore, knowledge of 
the propulsion, posture and efficiency is useful for performance optimization. Propulsion 
category is reflected in parameters defined on acceleration in forward direction. Posture 
category is relevant to the parameters defined over roll and pitch angle signals, and efficiency 
category relates to the ratio of propulsive to non-propulsive acceleration (such as the ratio of 
forward acceleration to acceleration norm). The parameters related to the duration or rate of 
movement, e.g. angular velocity or stroke rate and count in Swim phase, were categorized in 
a category called duration/rate as they do not fit into the previous categories. 
Finally, we used a linear model with LASSO (least absolute shrinkage and selection operator) 
parameter selection to rank and select the highly-associated phase-based micro parameters 
with the corresponding goal metrics and use them for goal metrics estimation. This method 
regularizes model parameters by reducing some of them to zero and keeping only the 
significant ones. After normalizing the micro parameters, LASSO algorithm is applied with 
leave-one-out cross-validation to rank the parameters. The parameters with a relative weight 



more than 5% were selected because of higher significance. The relative weights of selected 
parameters were summed over the four categories (propulsion, posture, efficiency and 
duration/rate) to observe how much each category contributes to the estimation. Then the goal 
metrics were estimated using the corresponding selected micro parameters and the cross-
validated R2, RMSE and its relative value were used to evaluate the regression models.  
 
RESULTS and DISCUSSION: The number of observations used for goal metrics estimation 
were 1166 (number of cycles) for cycle average velocity in Swim phase, and 76 (number of 
laps) for other goal metrics. Figure 2 displays the overall contribution of each category in 
estimating the goal metrics. The dominant categories are in line with the phase characteristics, 
as high propulsion and correct posture are important in Push and Glid phases respectively. 
StPr phase is a combination of propulsion, acceleration in forward direction (efficiency) and 
posture categories. For estimating the average velocity per stroke in Swim phase, the duration 
of the cycle (duration/rate) and the displacement per stroke (efficiency) were selected for 
predicting the goal metric. However, the average velocity of the whole Swim phase was 
affected by the rate of strokes (duration/rate), forward acceleration (propulsion) and horizontal 
orientation (posture). 𝑇5𝑚, 𝑇15𝑚  and lap average velocity depend on more than one phase. The 
selected parameters for these goal metrics were already selected for the local goal metrics, 
proving the significance of them even in a larger scale.  
 

 
Figure 2: Parameter categories contribution to goal metrics estimation for front crawl  
 
Table 1: R2, RMSE and relative RMSE (in percent) for goal metrics estimation models (phases 
detected by camera (CAM) or IMU (IMU)) 

Goal metrics 
CAM IMU 

R2 RMSE (%) R2 RMSE (%) 

Push maximum velocity (m/s) 0.80 0.133 (5.4) 0.74 0.140 (5.7) 

Glid end velocity (m/s) 0.83 0.105 (8.7) 0.76 0.123 (10.0) 

StPr average velocity (m/s) 0.72 0.075 (4.4) 0.72 0.075 (4.4) 

Average velocity per Swim cycle (m/s) 0.96 0.029 (4.8) 0.89 0.050 (8.3) 

Average velocity of Swim phase (m/s) 0.90 0.044 (2.7) 0.90 0.044 (2.7) 

𝑇5𝑚 (s) 0.67 0.155 (7.5) 0.64 0.158 (7.6) 

𝑇15𝑚 (s) 0.80 0.345 (4.0) 0.75 0.369 (4.3) 

Lap average velocity (m/s) 0.95 0.031 (2.3) 0.95 0.032 (2.4) 

 
The cross-validated R2, RMSE and relative RMSE (in parentheses) of regression models for 
each goal metric are reported in Table 1, with swimming phases found by cameras and IMU 
for comparison. The R2 for estimating all goal metrics was more than 0.8 except for StPr 
average velocity (0.72) and 𝑇5𝑚  (0.67). The average velocity of StPr shows a high variability 
among swimmers, and the linear model was not efficient enough in reflecting its variation. Only 
the parameters from Push and Glid phases were used for 𝑇5𝑚  estimation, while swimmers might 



start StPr phase earlier than five meters from the wall according to their velocity and 𝑇5𝑚 is 
partly affected by StPr phase. The relative error was the highest for Glid end velocity estimation 
(11%), because this goal metric had the lowest value in the whole lap. By comparing the results 
found by the phases detected by camera and by IMU (Table 1), the results get slightly worse 
(lower R2 and higher error) because of the phase detection error by IMU compared to cameras. 
However, R2 has decreased by 0.07 in the worst case, and less than 0.05 for other goal metrics, 
showing that the IMU phase detection algorithms were reliable enough for phase-based 
performance evaluation. The parameters, found dominant in this study were already obtained 
with IMU (such as Swim stroke rate (Beanland et al., 2014) or distance per stroke (Bächlin et 
al., 2008)) but their relationship with the goal metrics were not studied.  
 
CONCLUSION: Using the IMU data, numerous parameters related to propulsion, posture, 
efficiency and duration/rate of motion were extracted, that were associated with the goal 
metrics defined over velocity and time of swimming in each swimming phase. These 
parameters were biomechanically interpretable and were able to predict the goal metrics using 
LASSO linear regression. The models fit the data with an R2 value more than 0.8 for most goal 
metrics. The RMSE of the regression were less than 0.14 𝑚 𝑠⁄  and 10% for goal metrics defined 

over velocity and 0.369 s and 7.6% for goal metrics defined over time. This study showed that 
a single sacrum-worn IMU has the potential to evaluate the swimmer performance in different 
swimming phases in line with standard goal metrics. Practically, the proposed method could 
be useful for the coach to identify the weakness and strength of the swimmer and track their 
progress during training session with a single IMU. Further studies with different swimmer 
levels and techniques are needed to improve the estimation and extend the approach. 
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