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Abstract 

This thesis focuses on the signal modelling of Diffusion-Weighted Magnetic Resonance 

Imaging (DW-MRI) in the brain’s white matter (WM). DW-MRI a non-invasive technique 

with enormous potential for the study of the brain's microstructure by measuring the 

diffusion properties of biological tissue. In order to infer such microstructure properties 

from DW-MRI signals — for example the axon’s diameter distribution or the neurite 

dispersion, just to mention a few — many models have been proposed in the past decades. 

However, such models have relied on disregarding several structural components of the 

WM, like the diameter and direction changes along the axons or the volumetric changes in 

the tissues’ water compartments, which inherently affect the diffusion properties of the 

studied media. This large heterogeneity in the WM tissue, summed to the high structural 

variability between different brains regions or WM tracks, have prevented researchers from 

formulating accurate analytical models to this day. 

 

The following work proposes a paradigm change from the conventional analytic model-

based approach to a simulated-based one, centered in the simulation of DW-MRI signals 

in realistic virtual tissue. Our work starts with the challenge of creating a robust framework 

for the simulation of DW-MRI as a forward modelling tool for microstructure estimation 

and continues exploding the simulator capabilities to create a simulation-based 

microstructure modelling strategy. Each chapter of this thesis presents several 

contributions to the field for the construction of realistic white matte numerical phantoms, 

which can later be used for the estimation of the axons’ density and diameter distribution, 

or the design of novel microstructure-specific DW-MRI acquisition sequences. Thus, the 

contributions presented in this work pave the way for the modelling, study, and validation 

of complex microstructure models of brain white matter. 

 Keywords: Diffusion, MRI, Simulations, Monte Carlo, Machine Learning, Brain, 

Microstructure.  
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 Introduction 

 

In this dissertation we tackle the challenges of Diffusion-Weighted Magnetic Resonance 

Imaging (DW-MRI) and microstructure modeling from a novel simulation-based 

perspective. This work was conducted under the supervision of Professor Jean-Philippe 

Thiran  (École Polytechnique Fédérale de Lausanne (EPFL), Switzerland) and continues 

previous work from (Romascano, 2019) at the LTS5 and in collaboration with several 

laboratories such as the Danish Research Centre for Magnetic Resonance (DRCMR) and 

the Multimodal Microstructure-Informed Connectivity: Acquisition, Reconstruction, 

Analysis and Validation (MMINCARAV) international laboratory.  

 

The modelling and reconstruction of DW-MRI signals from the brain’s WM is, to this day, 

an open challenge due to the outstanding complexity of the WM microstructure and the 

tissue’s heterogeneity in different regions of WM.  Current models in the literature are still 

limited to different degrees due to the use of simplified WM microstructure geometries, 

such as in the changes of diameter and direction along the individual axons or the 

volumetric changes in the tissues’ water compartments, which inherently affect the 

magnitude and anisotropy of the confined diffusion process. In this thesis, we tackle these 

limitations from a simulation-based approach. Notably, the new simulation approach 

presented in this thesis, apart from serving as a validation tool for the study of the limitation 

of previously proposed methods in the literature, can be employed as a forward-modelling 

tool for the generation of synthetic data, usable as training data for Machine Learning-

based approaches, which can be then employed for the estimation of the axons’ density and 

diameter distribution (Chapter 5), or for the design of novel microstructure-specific DW-

MRI acquisition sequences (Chapter 6).  



 
xiv 

This work starts with the challenge of creating a robust framework for the simulation of 

Diffusion-Weighted Magnetic Resonance Signals (DW-MRI) as a forward modelling tool 

for microstructure estimation and continues exploding the simulator capabilities to create 

a new simulation-based microstructure modelling strategy.   

 

1.1 Content of the Thesis 

The content of the following seven chapters of this thesis will follow the listed structure 

below: 

 

• Chapter 2: Background. Summary of the state-of-the-art and theory of Diffusion-

Weighted MRI, tissue microstructure and diffusion simulations for synthetic data 

generation.  

 

• Chapter 3: Robust and Realistic DW-MRI Monte-Carlo Simulations. Summary on 

the contributions about the sign and validation of MCDS diffusion simulations. 

 

• Chapter 4: Towards Realistic and Complex Numerical Phantoms. Contribution 

chapter on the creation and complex substrate for MCDS mimicking the brain’s 

white matter microstructure. 

 

• Chapter 5: Simulation-Assisted Machine Leaning. Microstructure estimation using 

MCDS simulations to train machine learning models. 

 

• Chapter 6: Simulation-Assisted Protocol Optimization. This chapter focuses on the 

creation of microstructure-specific MRI protocols using MCDS.  

 

• Chapter 7: Data-driven Machine Learning: Perspectives for the Simulation of 

Realistic DW-MRI Signals. A chapter dedicated to estimating tissue properties 

using data-driven approaches outlines our research future work. 
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• Chapter 8: Contributions and Conclusions.  
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 Background    

2.1 Overview   

 

Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) is a non-invasive technique 

based on the self-diffusion process of water molecules in tissues, providing relevant clinical 

and biological information that no other MRI modality can provide. This technique is 

known as Diffusion-Weighted MRI (DW-MRI). In the brain, water diffusion is influenced 

by the microstructure of the tissue in which the molecules are situated, so quantifying 

diffusion provides indirect measures of the microstructure’s properties. For at least two 

decades, the DW-MRI technique has been extensively used to assess acute ischemic stroke 

and other neurological disorders sensitive to diffusion changes in brain tissue (Sorensen et 

al., 1996; Horsfield, Jones and Horsfield, 2002; Sotak, 2002). Its usefulness is based on its 

ability to measure the average diffusion coefficient in an image voxel — coined as the 

apparent diffusion coefficient (ADC). The term apparent relates to the fact that the 

resulting coefficient is sensitive to a variety of factors, including the DW-MRI acquisition 

procedure, the hardware properties, the characteristics of the tissues, and the surrounding 

environment; making the interpretation and study of the ADC value a multidimensional 

problem that often results in an ill-conditioned problem (Bihan, 2013; Le Bihan and Iima, 

2015). As a result of this, and due to the complexities of brain microstructure, the nature 

of the DW-MRI contrast caused by changes in geometrical tissue properties is still 

unknown. Because of these constraints, there is a need to develop simulation tools that 

enable researchers to study complex scenarios and propose ad-hoc models for the high-

quality data we can now achieve in modern scanners (Yaniv, 2013; Ferizi et al., 2015, 

2017). The development of next-generation MR sequences will ultimately benefit from 

comprehensive, systematic, and dependable simulations of realistic microstructure 

scenarios.  
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In this background chapter, we will go through the main theoretical concepts of DW-MRI, 

focusing on the basic principles behind signal decay, which are the building blocks needed 

to synthesize artificial simulated signals, that will be addressed at the end of the chapter. 

More specifically, the following section introduces fundamental concepts in 

neuroanatomy, state-of-the-art mathematical models, and ideas behind microstructure 

modelling, which we used through our contribution work of this thesis. The section will 

end with a technical overview of Monte-Carlo simulations, centred on creating more 

realistic virtual tissue in future chapters. 

2.2 Diffusion-Weighted Magnetic Resonance Imaging  

Nuclear Magnetic Resonance (NMR) results from the mutual interaction among the 

magnetic moments (such as the hydrogen nucleus 1H in the water molecules) in the sample 

and an induced constant magnetic field. This phenomenon appears in magnetic systems 

made up of elements that possess a magnetic moment, e.g. protons. Water molecules are 

susceptible to this effect. Due to the spontaneous displacements of the molecules caused 

by thermal motion, spins that move randomly experience non-uniform changes in their 

precession rate, which results in a dephasing that contributes to a loss of the MRI signal.  

The physical foundations of DW-MRI are then essentially based on this interaction 

between an induced magnetic field and the three-dimensional (3d) water diffusion, making 

the understanding of the water molecules diffusion process in complex media of utmost 

importance. 

2.3 Self-diffusion of water molecules 

Water molecules are in continuous motion and collide with each other at temperatures 

greater than absolute zero (0K). This particle-to-particle interaction also produces random 

displacements resulting in a self-diffusion phenomenon, which affects the local magnetic 

field felt by their nucleus of hydrogen. These changes in the field lead to the relaxation 

phenomena in which the T2 weighted MR contrast is based (Whittall et al., 1997). As it 
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will be explained in the following sections of this chapter, in the presence of a non-uniform 

linear magnetic field (gradient), molecules that move randomly suffer random changes in 

their spins’ precession rate, which ends into dephasings that contribute to the MRI signal 

loss.   

 

A random walk model can be used to explain this type of diffusion process, in which, at 

each time interval (𝜏), a molecule moves a random distance (𝑟) in a random direction. This 

view of diffusion as a random walk is usually built from the traditional understanding of 

diffusion as a flux of particles down a concentration gradient described by Fick’s first law 

formula (Fick, 1855),  

 𝐽(𝑥, τ) = −𝐷 ∇𝑐(𝑥, τ), 2-1 

where 𝐽 is the particle flux (number of particles passing through a unit area per second), 

∇𝑐(𝑥, 𝑡) is the gradient of the particle concentration, and 𝐷 is the diffusion coefficient.  

Equation 2-1  gives us an empirical law relating the total flux to the particle concentration. 

Furthermore, because of the conservation of mass, the continuity theorem can be applied 

and further write Eq. 2-1 as, 
δ𝑐(𝑥,τ)

δτ
= −∇𝐽(𝑥, τ), (Fick, 1855). By substituting  Eq. 2-1 in 

the former form, we can then write Flick’s second Law as follow: 

 δ𝑐(𝑥,τ)

δτ
= D∇2c(𝑥, τ). 2-2 

Flick’s second law relates the time evolution of the concentration with respect to the spatial 

Laplacian operator. In the case of homogeneous media where 𝐷 can be considered constant, 

Flick’s second law with initial Dirac conditions (𝑐(𝑥, 0) = 𝛿(𝑥)) has the following solution 

(Powles et al., 1992) : 

 
c(𝑥, τ) =

1

√(4π𝐷τ)
𝑒

(−
𝑥2

4𝐷𝑡
)
. 

 

2-3 

In the self-diffusion phenomenon, however, the concentration gradient is not present, and 

specifically for the application in DW-MRI, we are concerned about the total probability 

of a particle to displace from a position 𝑥0 to 𝑥1 in a given time 𝜏: 
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𝑃(𝑥1, 𝜏) = ∫ 𝜌(𝑥0)𝑃(𝑥0, 𝑥1, 𝜏) 𝑑𝑥0. 

 

2-4 

Furthermore, if we change the concentration gradient for the previous equation and relate 

J to  the conditional probability flux, Eq 2-4 becomes:  

 𝛿𝑃(𝑥0, 𝑥1, 𝜏)

𝛿𝑡
= 𝐷∇2𝑃(𝑥0, 𝑥1, 𝜏) 

 

2-5 

Using Eq.2-5,  (Albert Einstein, 1956) calculated the mean-squared displacement of free 

diffusion to describe the Brownian motion of an ensemble of particles as: 

 < 𝑥2 >   =  2𝑑𝐷, 2-6 

where 𝑑 is the dimensionality of 𝑥, and < 𝑥2 >   is the mean squared displacement of 

molecules ensemble.  At a temperature of 25∘C. the water diffusion coefficient is 

approximately 2.2 × 10−3𝑚𝑚2/𝑠; on the other hand, in soft tissue, because of the reduced 

mobility of the water molecules, the diffusion coefficient is in general smaller than in pure 

water (Bihan, 2013). When applying any Brownian water motion model, it is necessary to 

distinguish between the actual diffusion coefficient of pure water and the apparent 

diffusion coefficient (ADC) that can be measured. 

 

Finally, to relate the parameters of a random walk such as the total displacement 𝑟 and 

diffusion time 𝜏, to 𝐷, the net flux past a particular point 𝑥 in a one-dimensional random 

walk is considered, in which 𝐷 is related to the parameters of a random walk as  (Buxton, 

2009): 

 𝐷 =
𝑟2

2𝜏
. 

 

2-7 

Because of this phenomenon, a local diffusion coefficient can be estimated by applying the 

aforementioned magnetic gradient.  Even though the net displacement of a molecule could 

be close to zero for a given time in a random walk, the total distance travelled by the 

molecule is much larger. This is because every molecule follows a random path from its 
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initial position due to the collisions with other water molecules and with a velocity 

proportional to the environmental temperature.  

2.4 NMR Diffusion contrast 
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Figure 2-1 PGSE protocol and the diffusion experiment.  

Illustration of the effect of the Brownian motion of an ensemble of two water molecules in 

comparison with a non-diffusing scenario. The PGSE protocol is also illustrated in the panel 

above, consisting of two gradient blocks with duration δ, magnitude 𝑮,. After that, the molecuels 

are able to diffuse freely during the Δ duration. If the water molecules diffused along the gradient 

field direction (bottom column), the refocusing will be imperfect and the phase shift distribution 

will be different from cero. 
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Diffusion imaging is based on the previously described molecular self-diffusion 

phenomenon and the effects of linear magnetic gradients on the spin of the molecules. The 

classical pulsed gradient spin-echo (PGSE) protocol is the most frequently used DW-MRI 

protocol (Tanner and Stejskal, 1968), as illustrated in Figure 2-1. This protocol's key 

elements can be parametrized by timings between the two applied pulses (Δ), the total time 

they are active (𝛿), and the gradient amplitude 𝐆 . Following a 90∘ excitation pulse, the 

spatial gradient with amplitude 𝑮 and duration 𝛿 is applied. Following the duration of the 

first pulse and the separation Δ time, the second pulse of equal amplitude but opposite 

gradient direction is induced, in the case of PGSE, this is accomplished by using a 180° 

refocusing pulse between the two gradients, and then the second pulse of the same gradient 

direction is applied (Buxton, 2009). The purpose of these two pulses is to spatially label 

each spin based on its average position during the activation time (𝛿). This is achieved 

thanks to the  spins’ intrinsic Larmor frequency, 𝜔0 = 𝛾𝐵0, in the presence of a steady 

magnetic field, where 𝛾 is the gyromagnetic ratio (a fundamental physical constant), and 

𝐵0 is the strength of the static magnetic field. As shown in the non-diffusing case of Figure 

2-1, if the spins did not diffuse, the second pulse would precisely cancel out the first pulse's 

effect. The net result would be the same as if no gradient pulses were applied since the net 

magnetization measured value in an MRI experiment is proportional to the spins' coherence 

in their precession rate, i.e. when their dephasing can be dismissed. On the other hand, in 

the presence of diffusion, each spin is likely to be in a different position when the second 

pulse is applied than when the first pulse was applied. As a result, the effects of the two 

gradient pulses do not balance, leaving each spin with a random phase offset that is 

proportional to how far it displaced between the two pulses, so the frequency omega 

becomes spatially dependant as shown in the formula:  

 𝜔 = 𝜔𝑜 + 𝛾(𝑔 ⋅ 𝑟), 2-8 

where 𝒓 is the local displacement, and 𝒈 is the non-normalized gradient orientation. 

 

Eq. 2-8 gives us a simple measurement of the phase shift caused by a single molecule’s 

displacement. Now, by considering the cumulative phase shift of a single particle 𝑖 during  

the first gradient block (starting at the time 𝑡 = 𝑡1), the cumulative phase shift of a particle 

𝑖 at time block 𝜏 = t1 +  𝛿, and preceding the 180𝑜 refocusing pulse, can be defined as:  
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𝜙𝑖(𝜏 = 𝑡1 + 𝛿) ≔ 𝛾𝐵0𝜏 + 𝛾 ∫ 𝒈(𝑡)

𝑡1+𝛿

𝑡1

⋅ 𝒛𝒊(𝑡)𝑑𝑡, 
 

2-9 

where term 𝐵0 denotes the static field contribution to the phase shift; the term 𝒈(𝑡) denotes 

the time dependent applied gradient, and 𝑧𝑖(𝑡) is the molecule’s displacement at time 𝑡. As 

a result of the second term of the equation, the degree of dephasing caused by the gradient 

pulse is proportional to the type of nucleus (i.e. 𝛾), the gradient strength, the gradient time, 

and the spin displacement along the gradient direction. 

 

As shown in Figure 2-1, at the beginning of a PGSE sequence, a 90∘ pulse is applied, which 

provokes that the diffusion-sensitizing-gradient — defined as a constant value 𝑔(𝑡) = 𝑔 in 

PGSE — to have a positive phase shift effect on the spins. The gradient vector 𝒈(𝒕) will 

affect the spin phase proportionally to the displacement along the gradient direction. This 

means that a displacement orthogonal to the gradient direction does not affect the spin 

phase, while a displacement parallel to the gradient direction has the most significant phase 

shift effect. In the simplified case of a linear and constant magnetic gradient, as in the case 

of PGSE, the gradient magnitude is constant over time for each block; thus, if we describe 

𝑧𝑖(𝑡) as the displacement along the gradient direction (projection over the gradient 

direction), Eq 2-9 can be rewritten as follows: 

 
𝜙𝑖(𝜏 = 𝑡1 + 𝛿) = 𝛾𝐵0𝜏 + 𝛾𝑔 ∫ 𝑧𝑖(𝑡)𝑑𝑡,

𝑡1+𝛿

𝑡1
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where the gradient magnitude is now constant and proportional to the magnitude. Finally, 

as explained above, PGSE is separated into two main blocks; thus, at the end of the echo 

sequence, the total phase shift of spin 𝑖, is given by: 

 

 
Φi(𝜏, 𝛿,  Δ) = 𝛾𝐵0𝜏 + 𝛾𝑔 {∫ 𝑧𝑖(𝑡)𝑑𝑡

𝑡1+𝛿

𝑡1

− ∫ 𝑧𝑖(𝑡′)𝑑𝑡′
𝑡1+𝛿+Δ

𝑡1+Δ

} 
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Finally, the relation between the attenuation of the MR signal and the phase distribution of 

a spin ensemble is given by the formula (Price, 1997; Hall, 2009): 
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𝑆(𝐺, 𝛿, Δ) = 𝑆(0, 𝛿, Δ) ∫ 𝑃(Φ)𝑒(𝑖Φ)𝑑𝜙
∞

−∞

, 
 

2-12 

where S(0, δ,  Δ) is the signal in the absence of a gradient field, and P(ϕ) is the distribution 

of the total phase shift from Eq 2-11. Finally, if we consider the real-valued part only of 

the equation: e(𝑖ϕ) = cos(ϕ) + i sin(ϕ) as in (Price, 1997), this results in the definition 

of the normalized diffusion signal as follows: 

 
𝑆(𝐺, 𝛿,  Δ) = 𝑆(0, 𝛿,  Δ) ∫ 𝑃(𝜙) cos(𝜙) 𝑑𝜙

∞

−∞

. 
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The last expression describes how the PGSE mechanism works in particular. As seen in 

the equation above, the phase shift caused by the static field cancels. Without diffusion, 

the phase shifts caused by the two gradient pulses also cancels; thus, ϕ𝑖 = 0 for all labelled 

particles 𝑖 and since cos(ϕ) = 1, the maximum signal is obtained. At the signal level, the 

result of all the previous factors is a signal attenuation (𝐴  =  𝑆(𝐺, 𝛿,  Δ)/𝑆(0, 𝛿,  Δ)) that 

can be interpreted by a factor that depends on the value of D. If we assume that the 

distribution of the spin dephase is Gaussian, as is the case of free diffusion, the attenuation 

behaviour is a mono-exponential decay (Price, 1997): 

 

 𝑆(𝑏, 𝐷) = 𝑒−𝑏𝐷  

2-14 

were the factor 𝑏 = (γ𝐺δ)2(Δ − δ/3). This value contains all of the PGSE protocol’s 

amplitude and timing parameters. In practice, the local tissue diffusivity in a given direction 

can be calculated by evaluating two signals, one without a gradient applied (𝑏 = 0) and 

another with a relatively large b-value. The ratio of the two signals is called the attenuation 

factor 𝑆(b, D) and it depends on the apparent local diffusion. 

 

NMR diffusion contrast in the brain’s tissue 
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In in-vivo conditions, the water diffusion coefficient is approximately 2.5 × 10−3𝑚𝑚2/𝑠, 

then, from Eq 2-3, we can see that in free water, half of the particles in the media will 

displace by at least 15 𝜇𝑚 in a given direction at after 50 ms, which is about the average 

echo period of a PGSE protocol. On the other hand, diffusion in biological tissue is not 

unrestricted but is constrained by many barriers, such as cell membranes that restrict the 

mobility of water molecules and result in a lower ADC (see Figure 2-2) To interpret the 

decay with respect to the ADC, it is important to understand the water compartments inside 

the tissue microstructure. Figure 2-2 panel b) shows examples of the most prominent water 

a 
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Figure 2-2 Water diffusion compartments characteristics  

Panel 2.1) shows an electron microscopy image of the mouse corpus callosum showing the base 

structure of the myelinated axons. Panel 2.2) displays the restricted water compartments (yellow) 

by the myelin lamellae (purple). An illustration is shown of the water molecule motion in four 

distinctive compartments: a) trapped water in the myelin lamellae, b) in the extra-axonal space, c) 

intra-axonal space, and d) water exchange in non-myelinated axons. In the case of diffusion 

constrained by microstructure obstacles, the displacement distribution becomes sharper (2.4) In 

comparison with the distribution of free water, or even the extra-axonal space (2.3). As a result, the 

diffusion coefficient appears reduced and capped by the pore size (2.5). 
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compartments described in the brain’s white matter, which correspondently spawns four of 

the main sources of contrast in DW-MRI, described below.  

 

No diffusion (static water pools): In the presence of no diffusion, the maximum 

magnitude of the signal is obtained since the effect of the magnetization gradients is 

nullified for each spin. This case may arise in small restricted structures such as the myelin 

lamellae (Dortch et al., 2013; Brusini, Menegaz and Nilsson, 2019) and other cell bodies 

(Innocenti, Caminiti and Hof, 2010) where the water diffusivity is low and thus considered 

static (see  Figure 2-2, panel 2.2 a)). However, the small volume and typically low T2 

relaxation times have made this compartment neglected or ignored from the theoretical 

microstructure models (Tax et al., 2020). 

Free diffusion: In the presence of free diffusion (random walk with no restrictions), the 

displacement distribution of free water molecules is time-dependent and spreads as a 

Gaussian distribution that dilates (Eq. 2-3). This type of diffusion, which is mainly assumed 

to occur in the brain’s CSF and other isotropic compartments (Panagiotaki et al., 2012), 

can be accurately modelled using a mono-exponential decay as a function of the b-value, 

as is shown in Eq. 2-14. 

Hindered diffusion. As shown in  Figure 2-2, in a highly concentrated environment 

densely packed with membrane obstacles but still allowing for diffusion, the displacement 

of water molecules no longer follows a Gaussian distribution. Thus the signal decay cannot 

be adequately represented by a mono-exponential decay. This phenomenon, which is often 

associated with the extra-cellular space (ECS), is referred to as hindered diffusion. To 

estimate the degree of diffusion hindrance in the ECS proportional to a free medium, the 

tortuosity — formulated as the square root of the ratio of the apparent extra-cellular 

diffusion coefficient to that of the free medium (Nicholson, 2001) — has been used to 

calculate the degree of diffusion hindrance in the ECS proportional to a free medium.  

Several studies using iontophoresis have measured the tortuosity of the brains’ ECS, 

reporting tortuosity values of around 1.6, which corresponds to a factor of 
1

2.6
  from that of 

the water in the CSF (Nicholson, 2001); however, the true measurable tortuosity value of 

water molecules may still change. Of all the factors that contribute to the hindrance in the 

ECS — such as the extra-cellular matrix structure and trapped or transient water molecules 
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in the cell surface;  — the ECS geometry may be the most important (Tao and Nicholson, 

2004; Syková and Nicholson, 2008). The hindrance will be affected by the ECS geometry 

mainly by the extra-cellular volume fraction and the shape of the cells since water 

molecules are forced to take paths around cellular obstructions as their diameter increases 

due to cell swelling or increased cell packing density (cellularity), for example.  Such 

effects have been one of the points of interest and focus of the work on this thesis, as 

explained in the following chapters. 

Restricted Diffusion: Restricted diffusion is the fundamental signal characteristic of 

microstructure models for axon diameter mapping, as it provides details about the water 

molecules enclosed within the axons. Restricted is a term that has historically been used to 

refer to the trapping of water molecules inside an enclosed compartment (e.g., the axons’ 

myelin layer and cell membranes) summarized in the intra-axonal or intra-cellular space 

(ICS). The signal decay associated with this space is fundamentally different from the 

signal decay associated with free and hindered water diffusion since the net squared 

displacement of water molecules is no longer linear over time and thus non-Gaussian (see 

Figure 2-2). Moreover, assuming an impermeable compartment, the time evolution of net 

displacements — and thus the phase shift of net spins — is highly dependent on the size 

and shape of the restricting compartment, the intrinsic intracellular diffusivity, and the total 

diffusion time. Such behaviour contrasts to that of the extra-cellular water, where extra-

axonal ADC is independent of diffusion time — at least for short enough diffusion times 

—  (Jensen et al., 2005) since the effective diffusion coefficient for intracellular water 

decreases with the diffusion time. This because, as the diffusion time increases, a more 

significant proportion of spins are sensible to the membrane barriers and “bounce off”. 

Because of this, the restricted diffusion must be characterized considering the ensemble of 

factors that contributed to the “non-gaussianity” of the molecules’ net displacement, such 

as the diffusion time, the membrane permeability (low or high exchange regime) and the 

size of restricting cellular compartments. For example, in the short-time limit below 1 or 2 

ms, the diffusion is mainly unrestricted since a large amount of the water molecules are 

unable to reach the cell barriers, except for a small minority of molecules confined close 

to cell membranes or other barriers. Conversely, in the long-time limit above the cell 

residence time (> 500 ms) of the intra- and extra- axonal compartments, the diffusion 
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cannot be longer compartmentalized because of the active exchange between intra- and 

extra-cellular water. In DW-MRI, however, the typical acquisition time ranges between 30 

to 100 ms (Mitra, Sen and Schwartz, 1993; Latour et al., 1994; Mitra and Halperin, 1995), 

which is long enough for the particles to sense the axon’s myelinated barriers (0.1 to 2 𝜇𝑚) 

or cell membranes but short enough to be relatively small in comparison to the exchange 

between intra- and extra- cellular compartments (Dortch et al., 2013; Nilsson et al., 2013).  

 

2.5 White matter signal models 

 

The diffusion compartments described above can be used to characterize the MRI signal 

and provide important information about the white matter tissue microstructure of the 

brain. This characterization will then enable the ADC of the different compartments to be 

related to the underlying microstructure. The ADC has historically been used successfully 

to diagnose brain regions affected by ischemic stroke (Sorensen et al., 1996; Mori and 

Barker, 1999; Sotak, 2002). However, over the last decade, plenty of new models have 

been proposed to characterize, for instance, the degree of non-Gaussian net diffusion in a 

voxel, usually referred to as kurtosis, or more specific microstructure features such as axon 

diameter in white matter — CHARMED, AxtiveAx (Alexander et al., 2010; Dyrby et al., 

2013), AxCaliber (Assaf et al., 2008) — or neurite orientation dispersion (NODDI) (Zhang 

et al., 2012). In the following section, we will discuss several models used in the Thesis’ 

contribution work. 

 

 Diffusion Tensor 

 

The Diffusion Tensor (DT) (Le Bihan et al., 1986) is one, if not the most, used model for 

DW-MRI. In its essence, DTI extends the simplified model derived from Flick’s laws to a 
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three-dimensional diffusion case, replacing the scalar coefficient D with an axis-

symmetrical tensor 𝑫: 

 

𝑫  =   (

𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧

𝐷𝑦𝑥 𝐷𝑦𝑦 𝐷𝑦𝑧

𝐷𝑧𝑥 𝐷𝑧𝑦 𝐷𝑧𝑧

) 
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Then, Einstein’s equation (Eq. 2-7) can be rewritten in terms of the total displacement 

vector 𝑅 over time 𝜏 as:  

 
𝑫 =

1

6𝜏
(𝑅𝑅𝑡) 
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The solution of the Gaussian diffusion probability distribution function (PDF) is then 

formulated as  

 
𝑃(𝑟|𝑟0, 𝜏) =

1

√(4𝜋𝜏)3|𝑫|
𝑒𝑥𝑝 (−

(𝑟 − 𝑟0)𝑇𝑫−𝟏(𝑟 − 𝑟0)

4𝜏
), 
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From this expression, 𝑫 can be viewed as a covariance matrix of the molecule’s random 

displacement, which then can be estimated using linear regression at the signal level. Since 

𝑫 is a symmetric tensor, we have then a system with six unknowns, which in theory 

requires at least six independent measurements and one unweighted 𝑏0 image for 

normalization. Thanks to its simplicity, DT estimation has been extensively used in both 

clinical and research applications (Horsfield, Jones and Horsfield, 2002; Roebroeck et al., 

2008; Ramírez-Manzanares et al., 2010; Rafael-Patiño, Ramírez-Manzanares and Rivera, 

2011; Zhou et al., 2012).  As part of this thesis work, we made use of DT derived 

measurements as hand-crafted features for axon diameter and volume fraction estimation 

(Rafael-Patino, Yu, et al., 2020), such as the fraction anisotropy (FA) and mean diffusivity 

(MD), defined in terms of the tensor’s eigenvalues 𝜆1, 𝜆2, 𝜆3 decomposition as follows, 

 

 

𝐹𝐴 =
√3

√2
√

(𝜆– 𝜆1)
2

+ (𝜆– 𝜆2)
2

+ (𝜆– 𝜆3)
2

𝜆1
2 + 𝜆2

2 + 𝜆3
2  , 
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 𝑀𝐷 = 𝜆 = 𝑡𝑟𝑎𝑐𝑒(𝐷)/3. 2-19 

 

The FA is related to the amount of diffusion anisotropy of a DW-MRI image voxel, ranging 

from 0 (isotropic) to 1 (anisotropic). However, DT-based maps are limited by their 

assumption of a homogeneous and Gaussian diffusion, which is not the case of the brain’s 

white matter structure at the typical diffusion times used in clinical DW-MRI acquisitions. 

 

 Diffusion Kurtosis 

 

For more restricted media, such as the case of the intra-axonal space of the white matter, 

the diffusion kurtosis (DK) (Jensen et al., 2005) can be helpful to measure the degree of 

“non-gaussianity” of the diffusion PDF. A large, measured kurtosis is then related to the 

sharpness of the PDF, as shown in  Figure 2-2.  At the signal level, the diffusion DK is 

expressed as:  

 
𝑙𝑛(𝑆/𝑆0) = −𝑏𝐷𝑎𝑝𝑝 +

1

6
𝑏2𝐷𝑎𝑝𝑝

2 𝐾𝑎𝑝𝑝 + 𝒪(𝑏3) 
  

2-20 

where 𝐾𝑎𝑝𝑝 refers to the apparent kurtosis. 

 

 Compartment models 

 

Microstructure modelling relies on explicit models of the tissue’s biological structures 

inside a voxel. As previously stated, DT reduces the complexity of the tissue to a single 

tensor from which eigenvalues and eigenvectors can be extracted to obtain diffusion 

features — such as the FA and MD — that represent several properties of the WM 

microstructure. On the other hand, such metrics are non-specific and do not capture the 
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finer details of the DW-MRI signal. More complex tissue models allow for the estimation 

of specific microstructure properties such as mean axon diameter (Alexander et al., 2010), 

axon diameter distributions (Assaf et al., 2008), intra-axonal and extra-axonal volume 

fractions, and neurite dispersion (Zhang et al., 2012). Those models use the following 

equation to describe the DW-MRI signal 𝑆 as a mixture of compartments: 

 

𝑆 = ∑ 𝑓𝑖𝑆𝑖

𝑁

𝑖=1

;    𝑠. 𝑡.   ∑ 𝑓𝑖

𝑖

= 1, 
 

2-21 

where 𝑁 is the number of compartments and the term 𝑓𝑖  𝑆𝑖 is the signal of the 𝑖𝑡ℎ 

compartment, weighted by its volume fraction. These models are referred to as 

compartmentalized methods because the signal is modelled as a weighted average of each 

microstructure compartment’s independent contributions. Notice that those models 

consider microstructural structures that have a few micrometres of characteristic dimension 

(like the axon’s diameter) and decompose the signal — averaged in a voxel of a few 

millimetres — onto this linear formulation.  

 

Axon diameter model. 

Among the first compartmentalized models proposed for DW-MRI were the Composite 

Hindered And Restricted Model of Diffusion (CHARMED) (Assaf and Basser, 2005). 

The WM in this model is represented by two compartments, one hindered for extra-axonal 

space and one restricted for intra-axonal space. The total signal produced by diffusion in 

the compartments is the following formula: 

 

 𝑆(𝒒, Δ) = 𝑓ℎ𝑆ℎ(𝒒, Δ) + 𝑓𝑟𝑆𝑟(𝒒, Δ), 2-22 

 

where the sub-indices ℎ, 𝑟 indicate the hindered and restricted compartments, respectively. 

This model makes several assumptions about the nature of each compartment, i) it assumes 

no water exchange between compartments, and thus a simple linear formulation can be 

used; ii) the restricted compartment representing the WM axon fibres are simplified as 
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cylinders of constant radii, and the signal from the restricted diffusion perpendicular to the 

cylinder is taken from (Van Gelderen et al., 1994) formulation with diffusion coefficient 

𝐷⊥; iii) the diffusion parallel to the orientation of the cylinder is modelled as a Gaussian 

diffusion with diffusivity independent to the parallel diffusivity, and iv) the diffusion in the 

hindered compartment is assumed to be unrestricted but anisotropic, which is modelled by 

a tensor 𝑫𝒉 with parallel diffusivity and perpendicular diffusivity, and with the principal 

diffusion direction aligned with the WM fibres. According to (Assaf and Basser, 2005), the 

volume fraction of the restricted compartment distinguishes between white matter (WM), 

grey matter (GM), and cerebrospinal fluid (CSF) throughout the brain. In addition, since 

the water particles are trapped within axons, the signal at high b-values is mainly attributed 

to intra-axonal water, and the signal from extra-axonal water is completely attenuated. 

 

The AxCaliber model (Assaf et al., 2008) is an extension of CHARMED; it estimates the 

distribution of axon diameters within a voxel. This work is motivated by the relationship 

between the diameter of myelinated axons and their conduction velocity. The framework 

is similar to CHARMED, except that the restricted compartment is replaced by a 

probability function representing the diameter within each compartment. According to 

(Barazany, Basser and Assaf, 2009), the AxCaliber model significantly overestimates the 

mean axon diameter compared to histology, and at the same time, the axonal volume 

fraction is grossly underestimated. In addition, in this model, it is assumed that the intra- 

and extra-axonal compartments have the same T2 relaxation time because it cannot be 

estimated from DW-MRI data alone. However, it has been reported that the T2s of these 

compartments are different (McKinnon and Jensen, 2019). 

 

The ActiveAx model was proposed as a simplified version of AxCaliber in (Alexander et 

al., 2010), where one single mean axon radius is assigned at each voxel, and the intra-

axonal and parallel extra-axonal diffusivities are similar. In contrast to CHARMED, signals 

are acquired at a range of b-values and orientations to provide an estimate that is not 

orientation-based. The original framework was improved in (Dyrby et al., 2013) by using 

ad-hoc protocols optimized to enhance the sensitivity to small axons diameters. In addition 

to the model firstly proposed, the CSF is modelled using free and isotropic diffusion, 
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whereas the water trapped inside glial cells is modelled using an isotropic restricted 

diffusion compartment.  

 

The accuracy and feasibility of the axons’ diameter mapping have significantly been 

discussed in the DW-MRI community (Hui et al., 2011; Nilsson et al., 2012, 2017). A 

comparison study of the WM models for axon diameter estimation on ideal data 

(Panagiotaki et al., 2012) suggested that at least three compartments are necessary.  

 

Fibre dispersion and orientation distribution 

 

The Neurite Orientation Dispersion and Density Imaging (NODDI) model was 

proposed in (Zhang et al., 2012) to model the fibre dispersion estimation using three 

compartments. In here, the intra-axonal compartment is modelled with sticks (the 

perpendicular diffusivity is nullified, 𝐷⊥ = 0) oriented along a principal direction, with the 

fibre dispersion within voxels modelled by a Watson distribution; and the extra-axonal 

compartment is modelled as hindered Gaussian diffusion, with the apparent diffusion 

coefficient weighted using the Watson distribution. The authors claimed that the intra- and 

extra-axonal diffusivities take into account the morphology of the neurites because an 

increase in the dispersion coefficient reduces both diffusivities. The last compartment then 

models the CSF as isotropic Gaussian diffusion. One major drawback of this model is the 

fixed value of the intra-axonal and parallel extra-axonal diffusivities. The authors in 

(Jelescu et al., 2016) relaxed this assumption, but the fitting becomes rapidly unstable, and 

the precision decreases. Additionally, the model does not cope with voxels having crossing 

fibres because it is assumed that the axons are dispersed along one main direction. In  (Tariq 

et al., 2016), the Watson distribution is replaced by the Bingham distribution to allow 

anisotropic dispersion in the main direction, while no assumptions are made on the 

orientation distribution. 

 

Fast microstructure parameters estimation. 
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The methods described in the previous section exploit simple microstructure geometry 

models that allow deriving analytical solutions of the DW-MRI signal under specific 

conditions. This limits the signals modelling to those simple cases where the solution to 

the Bloch-Torrey equation can be analytically solved for cases based on the narrow pulse 

approximation, such as for the diffusion in confined plane sheets (Tanner and Stejskal, 

1968), cylinders (Neuman, 1974; John and Crank, 1979), and spheres (Murday and Cotts, 

1968). In each case, each compartment has some parameters that are either fixed before the 

fitting or estimated during the optimization, e.g., the diffusion coefficient, the distribution 

of sphere radii within the voxel, or the permeability of the membranes. The final step of 

these methods is estimating the tissue parameters from the measured DW-MRI signal by 

optimising a loss function for the parameters mentioned above. Usually, this cost function 

is the sum of the mean squared differences between the measured signal of each component 

𝑆𝑖  and model-estimated signal 𝑆̂:  

 

arg min
𝜃

ℒ = arg min
𝜃

∑ ||𝑆𝑖 − 𝑆̂(𝜃)||
2

𝑁𝑞

𝑖=1

 , 
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where 𝑁𝑞 is the number of measurements, θ is the ensemble of parameters.  

To solve models such as Eq. 2-23 efficiently, (Daducci et al., 2015) introduced the AMICO 

(Accelerated Microstructure Imaging by Convex Optimization) framework, in which 

any non-linear microstructure estimation problem is reformulated as a discrete regularized 

linear inverse problem, which can be solved using dedicated solvers that yield a global 

solution thousands of times faster. The following convex optimization problem is used to 

formulate the DW-MRI signal reconstruction: 

 
arg min

𝑥>0
||𝐴𝑥 − 𝑆̂||

2

2

+ 𝑅(𝑥), 
 

2-24 

where 𝑅(⋅) regularizes the solution 𝑥 and depends on the specific tissue model and 

microstructure signal response dictionary 𝐴. AMICO was first used to linearize ActiveAx 

and NODDI. Other studies continued the microstructure and diffusion modelling line by 

extending the framework towards more complex features such as the full axon diameter 

distribution (ADD) (Romascano et al., 2020) and the estimation of the diffusion 
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coefficients in complex hindered compartments such as the extra-axonal space of the WM 

using a mixture of a non-parametric model. The former work showed that non‐parametric 

and orientationally invariant ADDs could be reliably reconstructed from Pulsed gradient 

spin-echo (PGSE) data using this method (called 𝐴𝑐𝑡𝑖𝑣𝑒𝐴𝑥𝐴𝐷𝐷). Figure 2-3 shows a 

visualization of the mapping of the mean of the Axon Diameter Distribution (called 

streamline Axon Diameter Index, or mADI) for each streamline for the callosal connections 

of a human brain. 

 

 

Figure 2-3  Streamline Axon Diameter Index (mADI). 

Each streamline is coloured according to its mADI for a whole tractogram (left) and is projected to 

the voxel level (right). 

 

The method, however, inherits common limitations of current microstructure models, 

particularly the lack of sensitivity to small axons because of the protocol limitations and 

the difficulty of disentangling intra-axonal and extra-axonal contributions, and 

simplification regarding the axonal geometry as parallel cylinders of constant radius.  

2.6 DW-MRI Simulations 

As addressed in the previous sections, DW-MRI microstructure modelling allows the link 

of the measured signal to the tissue’s underlying microscopic properties. To further 

improve the information and analysis given by DW-MRI features, tests and validations of 
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acquisition methods in controlled environments are essential. For instance, to investigate 

the relationship between the MRI acquisition protocol and the substrate’s features, to 

develop and optimize novel DW-MRI acquisition protocol, to quantify the tissue 

composition, to improve the estimation of local tissue orientation methods, and enhance 

WM tractography techniques (Close et al., 2009; Lin et al., 2016; Rensonnet et al., 2019, 

2020; Truffet et al., 2020). Therefore, it is crucial to precisely understand how the 

microstructure influences the water diffusivity profiles and then use that knowledge to 

estimate the brain tissue properties on complex brain tissue accurately. 

 

The ability to simulate DW-MRI signals for given synthetic tissue geometries can play a 

significant role in this context. In a first approach, the diffusion-weighted signal of 

individual axons and glial cells was modelled using the synthetic signal from simple 

geometries (packing of parallel cylinders and spheres). The advantage of using such 

geometries is that it is possible to derive analytical solutions for the diffusion coefficients 

in those geometries. Although these geometries helped to study first insights in isotropic 

and anisotropic diffusivity, they are not an accurate representation of the complex tissue’s 

microstructure.  

 

A second approach for the validation of the DW-MRI was the development of physical 

phantoms (Nath et al.; Fieremans et al., 2008; Lavdas et al., 2013; Khasawneh et al., 2020). 

The most challenging problem here is replicating and manufacturing complex 

microstructure phantoms suitable for studying DW-MRI at the microscale. Even though 

these phantoms have proven helpful for DW-MRI experimentation and quality evaluation, 

developing physical models that accurately reflect the complex arrangement of axons that 

occurs in vivo remains a challenge. 

 

Alternatively, Monte-Carlo Diffusion Simulations (MCDS), like the ones presented in 

this thesis, are tools used to study diffusion phenomena in scenarios where the analytical 

solutions cannot be computed due to their complexity. In contrast to other numerical 

methods, MCDS does not require an explicit model of the diffusion signal. Instead, it 

requires a substrate (geometrical representation of the diffusion media) in which the water 
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molecule displacement can be simulated. To the best of our knowledge, (Lipinski, 1990) 

presented the first analysis of extra-cellular diffusion in brain tissue using MCDS. In this 

study, binary contours were drawn from 2D histological data to serve as irregular intra-

cellular barriers. Most studies after this one simplified the extra-cellular space 

representation as a series of restricted corridors in the orthogonal plane of the axonal 

direction and unrestricted parallel to them. Furthermore, the intracellular compartment is 

typically modelled as a series of parallel hollow cylinders with constant radii or radii 

sampled from a distribution based on histological evidence. Recent research (Nilsson et 

al., 2012; Reisert et al., 2017; Andersson et al., 2021) suggests that such simplifications 

fail to capture the complexity of white matter’s axonal structures and its diffusion 

properties. By introducing regular undulations in the intra-axonal compartment, 

researchers were able to obtain shifts in the diffusion signal and parameters derived from 

the diffusion tensor, such as the fractional anisotropy (FA) and mean diffusivity (MD). 

However, because of the high computational burden and lack of available resources, the 

DW-MRI community has not widely adopted such methods. As a result, more realistic 

diffusion simulations are underutilized. 

 

In addition to the computational burden, one subsequent challenge in using microstructure 

MCDS is replicating the complex geometry of the WM tissue. Nevertheless, several studies 

emerge to investigate the immense complexity of real axonal morphology in 3d using ex-

vivo Electron Microscopy (EM) (Abdollahzadeh et al., 2019, 2021; Andersson et al., 

2021). Compared with previously reported trends that studied axon diameter and g-ratio in 

one image, the 3d detailed reconstructions show that real WM contains axons with complex 

morphology on an individual axon basis: undulation beading, non-circular cross-sections, 

orientation dispersion, and crossing bundles. Thanks to this new understanding of the 

structural components of the white matter, several studies introduced more microstructure 

complexity into the numerical phantoms, like beading  (Balls and Frank, 2009), spines 

(Palombo, Alexander and Zhang, 2019), undulation (Nilsson et al., 2012), water myelin 

exchange (Brusini, Menegaz and Nilsson, 2019), and interdigitating packing (Ginsburger 

et al., 2019; Rafael-Patino, Romascano, et al., 2020). Nevertheless, large substrate size 

(number of axons) and high packing density in the WM are not solved yet. 
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In the following section, we address the basic theory behind DW-MRI Monte-Carlo 

simulations, the challenges to implement a robust and optimized simulator, and critical 

problems and challenges that have been addressed in this thesis.  

 

 DW-MRI Monte-Carlo Simulations 

 

Monte-Carlo experimentation is a non-deterministic method used to approximate complex 

mathematical expressions or models. The base of a Monte-Carlo method is to sample the 

mathematical expression in order to obtain the desired approximation randomly. To 

approximate the DW-MRI contrast in challenging environments vía Monte-Carlo 

sampling, an MCDS uses a computational geometric model of a complex tissue in silica, 

then mimics the diffusion dynamics (the evolution in time of the proton diffusion density) 

of a large population of water spins within such environments, and simulates the resulting 

MR signal explained by Eq. 2-13. To approximate the magnetic resonance signal, a large 

population of uniformly distributed water spins is needed. Following that, each individual 

spin is tracked over time, and its local displacement and total magnetization are updated 

according to the DW-MRI protocol’s parameters. Finally, the signal decay can be 

computed as a function of the ensemble of spins. This approximation can theoretically be 

achieved in great detail if the geometry model is accurate enough to reflect the desired 

tissue microstructure or substrate. One advantage of this approach is that we can keep track 

of all dynamical events, allowing us to study the diffusion and magnetization processes 

and the intrinsic interaction between parameters. A simulation then can be divided into 

these two main steps, the particle dynamics simulation and the signal computation. The 

following section will explain the main components of these two steps. 

 

Particle Dynamics Simulation 
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The particle dynamics simulate the diffusion process of water particles in a certain 

environment, usually called the substrate. At the beginning of the simulation, the particles 

are uniformly placed inside the defined substrate’s voxel or substrate’s limits. This way, 

the number of particles in all compartments is proportional to the defined volume fractions. 

If necessary, the local position of each particle can be tracked to separate the signal 

contribution of each compartment by, for example, tracking if the particle is inside a given 

compartment. The major challenge of this step is to build a fast and robust simulation that 

can reproduce, with enough accuracy, the desired geometry. We need to define this 

geometry and its microstructure features in which the water is diffusing. On the other hand, 

as in any Monte-Carlo method, we need a considerable large number of samples to estimate 

our objective function. Our samples here are the particles diffusing in each time step as 

random walkers, colliding and interacting with the barriers of the substrate. Thus, in each 

step of the simulation, the direction is randomly sampled using a fixed step length. At each 

time step, the particles that collide with the substrates barriers are elastically reflected 

depending on the properties of the barriers. For example, we can consider the elasticity of 

the barrier or even a percolation coefficient that controls exchange time between 

compartments. This results in the following sequence of steps as explained in (Hall and 

Alexander, 2009): 

 

I. Spin initial distribution. The water spins need to be initialized in the corresponding 

substrates limits, which define the simulated voxel size. In a substrate made of 

multiple compartments, the initialization must be done uniformly in all 

compartments, such that the resulting density of particles is proportional to the 

volume fraction of each compartment. The number of particles or the density of 

particles is an essential parameter in a Monte-Carlo simulation — which is 

addressed in the following chapter — since it directly affects the convergence of 

the signal estimation (Rafael-Patino, Romascano, et al., 2020).  

 

II. Water spins random diffusion. Once the particles are uniformly placed at a given 

position at time 0, the molecules will undergo a reflected Brownian motion. To 
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simulate the random motion of a given spin, each spin molecule will move a given 

distance (𝑙) in a random direction over the sphere at each time step. This can be 

done by sampling a random set of angles 𝜙 and 𝜃 as follows:  

 𝑥 = sin 𝜙 cos 𝜃 , 

𝑦 = sin 𝜙 sin 𝜃, 

𝑧 = cos 𝜙, 
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where 𝜙 is the elevation angle ranging from [0, 𝜋] radians, and  𝜃 is the azimuth angle 

from [0, 2π] radians. The step size or step length 𝑙 defines the effective diffusion 

displacement over the duration of each time step. The step length needs to be computed 

using the Einstein  equation (Eq. 2-6) as follows: 

 

𝑙 = √
6𝐷𝑡𝑠

𝑇
, 
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where 𝐷 is the desired diffusion coefficient, T is the number of steps to compute, and 𝑡𝑠 is 

the total simulation time of the simulation. The resulting step vector is then defined as  

Δ𝑥⃗ = 𝑙 ∗ (𝑥, 𝑦, 𝑧). 

 

III. Collision detection: At each time step, the particle’s position is updated based on 

the substrated defined barriers and properties. The main operation relies on 

verifying whether the resulting position after the step crosses any substrate’s 

barrier. In the lack of a collision, the spin position can be updated as 𝑥⃗𝑛 = 𝑥⃗𝑛−1 +

Δ𝑥⃗ . On the other hand, if any barrier is crossed, the spin is iteratively and elastically 

reflected at the collision point — or ignored depending on the barrier’s permeability 

— until no barrier is crossed or the total step length is travelled.  

 

It is important to note that the dynamic simulation and the pulse sequence must be time-

congruent, meaning that the overall duration of the dynamics simulation should match the 

duration of the pulse sequence calculation. 

 

Signal Computation 
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The cumulative net magnetic contribution of the spatially dependent magnetic gradients 

and thus the resulting phase shift of each particle must be computed during the particle 

simulations. This is easily described by referring to the pulsed gradient PGSE sequence, 

PGSE. As previously mentioned, a PGSE sequence consists of two magnetic gradient 

blocks with the same delta duration. After a 90𝑜 initial pulse, the first gradient block is 

enabled, and this combination induces a quantifiable effect on each particle called a phase 

shift. Following the application of the initial gradient, a 180𝑜 pulse is applied, which acts 

as if the gradient’s sign is flipped and the phase shift contribution is now negative. We can 

compute this effect numerically on the cumulative phase shift formula (Eq. 2-13) for each 

one of the spins as follows: 

 Φ(𝑡) = 𝑎(𝑡)𝛾𝑔(𝑡)𝑧(𝑡)  
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where a phase shift is computed in each step as a function of the time-step 𝑡, 𝑔(𝑡) is the 

magnitude of gradient vector, which is constant for the  PGSE sequence, z(t) is the spin’s 

displacement along the gradient direction at time 𝑡, defined as the projection of 𝑥⃗(𝑡) − 𝑥0⃗⃗⃗⃗⃗ 

in that direction, where 𝑥0⃗⃗⃗⃗⃗ is the position at time 𝑡 = 0 and 𝑥⃗(𝑡) is the position at time t; 𝛾 

is the gyro-magnetic ratio; 𝛿𝑡 is the duration of a time step, defined as the diffusion time 

divided over the number of steps; and finally 𝑎(𝑡) is a function that indicates the gradient 

sign and magnitude. For example, in a PGSE sequence, 𝑎(𝑡) is equal to 1 in the first 

gradient block, and -1 on the second gradient block after the 180∘ pulse. The function 𝑎(𝑡) 

can then be easily adjusted for any other type of sequence with multiple refocusing times 

or arbitrary waveforms shapes as in (Truffet et al., 2020) (See Chapter 6). 

 

Throughout the simulation, each one of the spins accumulates the phase shift, and the final 

signal is then generated by the contribution of the conjoint phase shift of all the spins 

simulated: 

 

𝑆/𝑆0 =
1

𝑁𝑠
∑ 𝑒−𝑖 ∑ 𝜙(𝑡)𝑑𝑡𝑁𝑡

𝑡

𝑁𝑠

, 
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where 𝑁𝑠 is the total number of spins, 𝑁𝑡 is the number of time steps in the simulation, and 

𝑑𝑡 is the step duration, defined as the total diffusion time divided by the number of steps 
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taken 𝑁𝑡 . Equation 2-28 is analogous to Equation 2-12, so, in order to obtain a real-valued 

signal, we can take only the real part of the signal as explained in (Price, 1997) resulting in 

the following expression:  

 

𝑆/𝑆0 =
1

𝑁𝑠
∑ 𝑐𝑜𝑠 (∑ 𝜙(𝑡)𝑑𝑡

𝑁𝑡

𝑡

)

𝑁𝑠
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Simulation computation complexity 

 

 

Alg. 2-1 DW-MRI Monte-Carlo Simulatoins algorithm. 

 

The algorithm shown in Alg. 2-1 summarizes all of the fundamental steps required in a 

diffusion simulation. Previously, in (Hall and Alexander, 2009), the simulation complexity 

was defined as the number of steps multiplied by the number of simulated particles ( 𝑈 =

𝑁𝑡 ∗ 𝑁𝑠). From an experimental standpoint, this formula helps summarize the relationship 

between sample size and temporal resolution in terms of estimation quality; however, the 

computational complexity is not adequately described. This is because such complexity 

considers only the first two nested loops and implicitly assumes that the position update 

has complexity 𝒪(1), which is valid only when there is no substrate, i.e., free diffusion.  In 

(Rafael-Patino, Romascano, et al., 2020), the following asymptotic complexity formula 
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was proposed: 𝒪(𝑁𝑠 ∗ 𝑁𝑡 ∗ 𝑁𝑜) + 𝒪(𝑁𝑠 ∗ 𝑁𝑔) ; which incorporates the effect of the 

collision detection  in terms of the number of simulated obstacles (𝑁𝑜) and number of 

acquisitions (𝑁𝑔). From this expression, the number of particles 𝑁𝑠 linearly increases the 

computational burden of a simulation. At the same time, the quality of the estimated signal 

will greatly depend on the number of sampled particles. 

 

 

Alg. 2-2 Particle’s position update function. 

 

Alg. 2-2 shows the steps inside the updateSpinPosition() function. To assess the overall 

function’s complexity of this function, the estimated collision probability must be 

estimated. However, the predicted collision rate is impractical to compute since it is 

dependent on the step duration, the number of obstacles, their size and packing density, 

and diffusion parameters. On the other hand, the method checkForCollision() has 𝒪(𝑁𝑜), 

where 𝑁𝑜 is the total number of obstacles — barriers defined as triangles, cylinders, or 

spheres — in the substrate. Spatial optimization procedures, such as Axis-aligned 

Bounding Boxes (AABB) or R-Trees, can optimize the collision detection by splitting and 

search the obstacle domain in Ω(𝑙𝑜𝑔(𝑁𝑂)) for well balanced spatial structures (Agarwal 

et al., 2001).  By neglecting the complexity of the multiple reflections of a single step, we 

can summarize the complexity of the first two nested loops in Alg. 2-2 as 𝒪(𝑁𝑠 ∗ 𝑁𝑔 ∗ 𝑁𝑜). 

Finally, since updating the total dephasing in each iteration can be done in constant time, 
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the second nested loop has complexity 𝒪(𝑁𝑠 ∗ 𝑁𝑔), where 𝑁𝑔 is the number of acquisitions 

(number of output signals). The overall simulation complexity can be written as:  

  

𝒪(𝑁𝑠 ∗ 𝑁𝑡 ∗ 𝑁𝑜) + 𝒪(𝑁𝑠 ∗ 𝑁𝑔) = 𝒪(max(𝑁𝑠 ∗ 𝑁𝑡 ∗ 𝑁𝑜 , 𝑁𝑠 ∗ 𝑁𝑔)) 
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The number of particles 𝑁𝑠 has the most significant impact since it scales the complexity 

in both terms; in addition, it is usually the biggest one, followed by the number of steps 𝑁𝑡. 

On the other hand, the number of acquisitions or output signals 𝑁𝑔 is usually the smaller 

one and therefore, the complexity above can be usually reduced as 𝒪(𝑁𝑠 ∗ 𝑁𝑡 ∗ 𝑁𝑜). 

Nevertheless, we cannot neglect it from the complexity above since it may have a more 

significant impact in application related to protocol optimization — as is shown in Chapter 

4 — or q-space exploration, where a significant number of shells or sampling direction is 

needed. Finally, the number of obstacles 𝑁𝑜 may variate from hundreds (Panagiotaki et al., 

2010) to several million as in the presented numerical phantom of Chapter 4. 
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Robust and Realistic DW-MRI 

 Monte-Carlo Simulations 

3.1 Overview 

As discussed in the previous chapter, Monte-Carlo Diffusion Simulations (MCDS) have 

been broadly used as a ground truth method for microstructure model validation in 

Diffusion-Weighted MRI. However, as reported in previous studies, methodological flaws 

in the design of biomimicking geometrical configurations and stimulation parameters can 

result in biased approximations of the DW-MRI signal. Such pitfalls have an impact on the 

estimated signal reliability, as well as its validity and reproducibility as ground truth data. 

For instance,  the number of simulated particles and time steps, and simplifications in the 

intra- and extra- axonal substrate are three of those crucial pitfalls encountered in the design 

of MCDS in the literature, which we investigated in our contribution Paper-1 (Rafael-

Patino, Romascano, et al., 2020) and summarize in here. This next chapter shows how the 

simulated signal and recovered microstructure features show significant changes when 

those parameters are modified and how we can tackle such limitations by generating more 

complex — and computationally expensive — simulations. As a result of this, and as part 

of the Thesis contributions, we developed a robust and open-source simulator to help 

improve the realism and reproducibility of DW-MRI simulations in the field, which paved 

the way for all of the studies presented in the following chapters of this thesis.  
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3.2 Design and Validation of MCDS 

The number of simulated particles and the number of time measures, the intracellular 

geometrical representation, and the created extra-axonal space in terms of the substrate’s 

size are discussed in this chapter as three significant pitfalls encountered in the design of 

MCDS in the literature. Each experiment depicts a potential bias produced in the computed 

signal when such simplifications are not adequately handled, affecting the signal’s 

reproducibility. 

 Number of samples in an MCDC 

The first experiment measures the variance of the predicted signal as a function of the 

number of particles sampled in a substrate; to stress the importance of the number of 

simulated spins to the signal convergence. To do so, we calculated the errors of a collection 

of simulated signals with varying sample counts. In the intra-axonal space, the calculated 

errors were compared to the predicted analytical solution and a gold-standard estimate of 

the extracellular space. A substrate with 10,000 parallel cylinders with diameters sampled 

from a Gamma distribution, Γ(κ, θ), with shape, 𝜅 =  4.0, and scale, 𝜃 = 4.5 × 10−7, was 

used, resulting in a mean diameter 𝜇 = 1.8𝑢𝑚 with a standard deviation of 𝜎 = 0.9, using 

a packing algorithm similar to that described in (Hall and Alexander, 2009), resulting in a   

distribution of radii comparable to the ones found in the literature (Hui et al., 2011; 

Benjamini et al., 2016)  

 

The analytical signal of the intra-axonal space was computed using the volume-weighted 

sum of the individual signals, so this substrate was used: 

 
𝑆𝑖 =

𝑣1𝑆𝑐𝑖,1 + ⋯ + 𝑣𝑛𝑆𝑐𝑖,𝑛

∑ 𝑣𝑗
, 

 3-1 
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where 𝑆𝑖 is the 𝑖𝑡ℎ acquisition, 𝑣𝑗  is the volume of the 𝑗𝑡ℎ cylinder and 𝑆ci,1 is the analytical 

signal of the cylinder obtained using the Gaussian Phase Distribution (GPD) approximation 

of the signal in cylinders for a given radius (Van Gelderen et al., 1994). The resulting 

distribution of radii and the measured ground-truth intra-axonal signal are shown in Figure 

3-1. Since there is no analytical model for the extracellular signal, the gold-standard was 

calculated using a large number of particles (20 × 106), and time-steps (2 × 104). These 

parameters were chosen based on previous findings (Rafael-Patino et al., 2017) and 

research into the convergence properties of a larger number of particles and time measures 

(Hall and Alexander, 2009). In reality, we confirmed that the signal converges even with 

less demanding simulation parameters (i.e. 1 × 106 particles and 5 × 103 steps). In order 

to keep results as accurate as possible, however, we decided to use simulation parameters 

higher than the minimum required. 

 

The approximate signals were determined with the number of particles ranging from 

1 × 103 to 1 × 106 particles, and the time-steps from 1 × 102 to 2 × 104 steps. For both 

simulations and ground-truth results, the diffusion coefficient was set to  𝐷 = 0.6 × 10−3 

𝑚𝑚2/𝑠 (corresponding to an ex-vivo diffusivity), and TE  =  0.054 s., for both the 

simulations and the ground-truth data. The ActiveAx PGSE protocol (Alexander et al., 

Figure 3-1: Gamma distributed radii and corresponding intra-axonal diffusion signal.  

 

Left panel: The distribution of the sampled diameters, the dotted line marks the sampled 

distribution mean. Right panel: The computed ground-truth along with the simulated signal used 

for the intra-axonal space representation. The signals of each shell are ordered by the normalized 

distance to Z coefficient of the gradient direction. 
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2017) was used, which consist of a four shell HARDI acquisition with 90 orientations per 

shell, each shell with the following parameters respectively, i) b=1930 𝑠/𝑚𝑚2, 𝐺 =

 140 𝑚𝑇/𝑚, 𝛿 =  0.010 s, and Δ =  0.016s; ii) 𝑏 = 1930𝑠/𝑚𝑚2, 𝐺 =  140 𝑚𝑇/𝑚, 𝛿 =

 0.010 s, and 𝐷𝑒𝑙𝑡𝑎 =  0.016 s; iii) 𝑏 = 3090𝑠/𝑚𝑚2, 𝐺 =  131 𝑚𝑇/𝑚, 𝛿 =  0.007 s, 

and Δ =  0.045 s; iv) 𝑏 = 13190𝑠/𝑚𝑚2, 𝐺 =  140 𝑚𝑇/𝑚, 𝛿 =  0.017 s, and 𝐷𝑒𝑙𝑡𝑎 =

 0.035 s. Figure 3-1 right panel shows the plot of a diffusion signal obtained with this 

protocol separated by shell and ordered with respect to the angle with the main fibre axis 

(Z-axis). 

 

A bootstrapping analysis was used: 1 × 103, 2 × 103, 5 × 103, 1 × 104, 2 × 104, 

5 × 104, 1 × 105, 2 × 105, 1 × 106, and 2 × 106 samples; and time-steps: 1 × 102, 

5 × 102, 1 × 103, 5 × 103, 1 × 104, and 2 × 104 to assess the variance of the error 

between estimations with different sample sizes. Signals from 50 repetitions were 

generated for each combination of sample size and time-steps. The Relative Mean Absolute 

Error (RMAE) was used to calculate the error between the ground-truth and each estimated 

signal, which was expressed as a percentage: 

 

𝑅MAE(𝑆𝑔𝑡, 𝑆𝑐) =
100

𝑁𝑔
∑

|𝑆𝑔𝑡(𝑖) − 𝑆𝑐(𝑖)|

|𝑆𝑔𝑡(𝑖)|

𝑁

𝑖

, 
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where 𝑆𝑔𝑡 is the ground-truth signal, Sc is the estimated signal and 𝑁𝑔 is the number of 

acquisitions.  

 

In addition, a complementary study of the temporal resolution (number of time steps) was 

performed using the same substrate and protocol. The estimated signals were computed 

using a total 𝑜𝑓 𝑁 = 20 × 106  samples and then varying the number of time-steps. A 

bootstrapping analysis with 50 repetitions was performed in the same way as before, 

increasing the number of time-steps from 1 × 102 to 2 × 104.  
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 Impact of the Intra-axonal space simplifications 

In our second study, we look into the effect of using curved or angled geometries against 

straight cylinders as representations of the intra-axonal space. Such an effect is of particular 

interest on the computation of axonal diameter indexes when it is assumed that straight 

cylinders capture the diffusion properties of the intra-axonal compartment.  

 

To understand this effect, an experiment extending the previous work from (Nilsson et al., 

2012) was performed, where the diffusion properties of undulating axonal substrates using 

a helical undulation parametrization along z. 

 
𝑈(𝑧) = (𝐴𝑥𝑐𝑜𝑠 (

2π𝑧

𝐿
) , 𝐴𝑦𝑠𝑖𝑛 (

2π𝑧

𝐿
) , 𝑧), 
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where L is the wavelength and 𝐴𝑥, 𝐴𝑦 denote the amplitude in the X- and Y- axis, 

respectively. The amplitudes 𝐴𝑥 and 𝐴𝑦 were set to be equal to obtain helical undulations. 

A set of substrates was made by deforming cylinders with diameters of 1 𝜇𝑚, 2 𝜇𝑚, and 3 

𝜇𝑚 using the formula above. The wavelength and amplitude of the undulations were 4 𝜇𝑚 

to 2 𝜇𝑚 and 0.2 𝜇𝑚 to 2.6 𝜇𝑚, respectively, covering a wide range of values in the 

literature (Haninec, 1986; Allison C. Bain David I. Shreiber, 2004; Nilsson et al., 2012). 

The resulting undulating cylindrical shapes were triangulated to use them as mesh 

substrates suited for MCDS, as shown in Figure 3-2.  

 

A fitting procedure using an exhaustive search approach was used to calculate the diameter 

estimation error in the intra-axonal signal. The RMAE between the simulated signal of 

each undulating substrate and the analytical signal of a range of cylinders with different 

diameters, sampled between 0.4 𝜇𝑚, and 8.0 𝜇𝑚 with a step size of 0.01 𝜇𝑚, is computed 

using exhaustive search. The GPD approximation for the signal in cylinders was used to 

calculate the analytical signals (Van Gelderen et al., 1994). The fitting procedure returns a 

set of plausible diameters with a computed error between them that is less than a threshold 

set at a 1% difference from the minimum fitting error for each undulating substrate. The 

fitting procedure was carried out using two different acquisition protocols i) the ex-vivo 
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ActiveAx PGSE protocol (Alexander et al., 2010) and ii) the optimized PGSE protocol for 

ex-vivo axonal diameter estimation described in (Dyrby et al., 2013). 

 

 

Figure 3-2: Curved meshes used as intra-axonal substrates. 

 Examples of the curved meshes for three different diameters and different undulation parameters. 

 

Finally, the convergence analysis described at the beginning of the Chapter was used to 

select the MC simulation parameters. The confidence estimate was calculated by varying 

the number of particles and time steps on the substrate with higher curvature (higher 

amplitude and smaller wavelength) and selecting parameters with almost no variance in 

the estimations. A total of 5 × 104 particles and 5 × 104steps were chosen to compute the 

signal for each substrate separately.  

 Extra-axonal space representation 

If the volume size of the sample is large enough, extra-axonal spins exhibit an effective 

diffusivity that an axisymmetric tensor can represent in the case of macroscopically 

homogeneous substrates, e.g. with randomly packed cylinders and in the absence of bundle 

dispersion (Hrabe et al., 2004). Several works (Assaf et al., 2008; Alexander et al., 2010; 

Hui et al., 2011; Panagiotaki et al., 2012; Daducci et al., 2015; Benjamini et al., 2016) 

assume that the extra-axonal radial contribution does not shift for any direction aligned to 
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the bundle's perpendicular plane. This assumption seems to be supported by the author's 

validations. However, in MCDS, the significance of the extra-axonal space design was 

commonly ignored because it was presumed that substrates with any hindered 

configuration would match the model. To demonstrate such a pitfall, we conducted a study 

of the extra-axonal radial contribution in simulated signals, which shows the importance 

of the sample size in terms of the number of cylinders used to create a substrate. 

 

In our third study, the radial extra-axonal DW-MRI signal was simulated to select voxels 

with different numbers of cylinders and a fixed distribution of diameters and intra-axonal 

volume fractions. As in our first analysis, N diameters (𝑁 = 100, 1,000, 10,000, 50,000, 

and 100,000) were sampled from a gamma distribution with parameters Γ(4.0,4.5 ×

10−7). The corresponding cylinders were randomly placed in substrates with voxel sizes 

adjusted to ensure a 60% intra-axonal volume fraction and periodicity at the voxel 

boundaries. The extra-axonal signal was simulated using the following parameters: 1 ×

106 particles in the extra-axonal space with diffusivity of 0.6 × 10−4 𝑚m2s−1, TE = 0.075 

s, and 1 × 103 steps. The diffusion protocol was set to highlight the radial contribution of 

the diffusion signal in different diffusion time regimes as follows: 𝐺 = 300 𝑚𝑇𝑚−1, 𝛿 =

0.010 s and Δ from 0.015 to 0.060 s., acquired in 180 directions evenly distributed over 

the XY-plane. The simulated noiseless signal's anisotropy was calculated by dividing the 

signal's standard deviation by its mean, yielding an approximation of how far the signal 

deviates from a perfectly radially isotropic signal. 

3.3 Results 

 Convergence analysis 

Figure 3-3 summarizes the overall results of the bootstrapping analysis for the intra- and 

extra- axonal space with respect to the number of samples and time-steps. The graphs 

represent the mean error of the 50 samples for each possible combinations of the selected 

parameters, which are colour-coded in a heat map. We showed the error of each repetition 
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by i) setting the number of steps to the limit (2 × 104) and varying the number of particles 

(left column), and ii) setting the number of particles to the maximum (2 × 106) and varying 

the number of steps (right column). Each data point represents one repeat of a fixed sample 

size. Each row contains 50 points, and the mean error for each sample is denoted by a red 

asterisk.  

 

 

Figure 3-3 RMAE Intra- extra- axonal tests.   

RMAE for each repeat and sample size for the number of samples (left) and time-steps (right). 

The top two rows reflect intra-axonal results, while the bottom row reflects extra-axonal results. 

The X-axis represents each sample size, and the Y-axis represents the RMAE of all repetitions of 

the same colour. A red marker represents the mean RMAE of all repetitions. 

 

The error in the estimation presented in Figure 3-3 illustrates the significant possible 

estimation variability for a relatively simple substrate. We found that the signal on each 
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compartment showed high variability for simulations with less than 5 × 105 particles and 

1 × 104  steps, which are above the range of parameters used in other simulations studies. 

We can extrapolate from this that any estimation from more complex substrates, such as 

the ones with undulation or crossings, or even higher diffusivity, will likely entail even 

higher variability. Instead of using this measurement as a rule of thumb, to avoid such 

uncertainty on the estimations for more intricated substrates, a similar analysis as the one 

presented should be attained. 

 Intra-axonal space representation results 

 

The diameter range calculated from our fitting procedure for both protocols is shown in 

Figure 3-4. Each cell is coloured according to its minimum RMAE. In the table’s rows, an 

amplitude (amp) of 0 𝜇𝑚 corresponds to a straight cylinder, which has the minimum fitting 

error achievable for each diameter. Values with the highest amplitude and lowest 

wavelength (wl) correspond to the axons with the highest undulation, 𝑤𝑙 =  4 𝑢𝑚; on the 

other hand, values with the lowest amplitude and highest wavelength amplitude (amp = 0.2 

𝜇𝑚, wl = 32 𝜇𝑚) corresponds to almost straight axons. 

 

While the helical representation used in this study was found to exist in the nervous system 

(Nilsson et al., 2012), it may not accurately represent the longitudinal axonal angular 

variations in the brain's white matter, particularly at the micro-scale. However, it gives us 

a convenient starting point to study the effect of angular variations in the intra-axonal 

compartment over the diffusion signal. This study found a considerable misestimation in 

the presence of undulation for both protocols and the three studied diameters. The relative 

fitting error for the smaller diameter (1 𝜇𝑚) was higher among the three cases (more than 

300 % for some cases). We also observed that the range of diameters from our fitting 

method did not follow a simple trend between protocols; that is to say, increments on the 

undulation parameters, which effect can be summarized in terms of the tortuosity factor 

𝜆 = √(2π𝐴/𝐿)2 + 1, does not follow a simple relationship between protocols (horizontal 
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axis of the results in Figure 3-4). This is likely to affect the parameters of the acquisition 

protocol (𝛿, Δ and TE), which vary between shells and thus change the effective diffusion 

time. We corroborated that the optimized protocol showed better results in terms of the 

fitted diameter and range of similar diameters compared to both protocols. However, there 

was still a considerable misestimation, especially for the undulation of 1 𝜇𝑚 diameter. We 

considered this experiment to be of great interest for any future protocol optimization or 

diameter estimation framework. It illustrates how sensible the estimation of the axon's 

diameter based on the cylindrical model is, even for regular and smooth angular deviations.  

 

 

Figure 3-4 Tables with the diameter fitting results.   

For the three simulated diameters, the left column displays the fitted intervals of the initial ex-

vivo ActiveAx protocol (Alexander et al., 2010), and the right column shows the optimized ex-

vivo protocol from (Dyrby et al., 2013). For each simulated amplitude and wavelength, the min 

and max diameters (m) of the fitted range are specified between square brackets. According to the 

colour bar on the right, the colour of each cell is encoded with respect to the minimum RMAE in 

the fitted set. 

 

In a previous work (Nilsson et al., 2017), it is worth mentioning that a formulation to 

compute the minimal diameter of a parallel cylinder can produce a signal attenuation more 

significant than that from a cylinder with a diameter of zero using standard single-shell 
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PGSE sequences. According to this formalism, the minimum differentiable diameter is 

𝑑𝑚𝑖𝑛 = (768𝜎𝐷/7𝛾2𝛿|𝐺|2)1/4, where 𝜎 is the significance level, defined as the minimum 

tolerated percentage of signal change. For a fixed value 𝜎 =  1% change, the resolution 

limit predicted for both protocols used in this study were 𝑑𝑚𝑖𝑛 = 2.29 𝜇𝑚 for |𝐺| =

140𝑚𝑇/𝑚, and 𝑑𝑚𝑖𝑛 = 1.76𝜇𝑚 for |𝐺| = 300𝑚𝑇/𝑚. However, such estimates are based 

on many assumptions that do not hold in our experimental conditions. For example, the 

formulation is valid for parallel and straight cylinders and acquisition protocols with a 

single shell with parameters 𝛿 =  Δ, which is not the case of this experiment, where we 

used non-parallel and curved cylinders with multi-shell protocols with Δ ≫  𝛿. 

 Extra-axonal space representation results 

 

Figure 3-5 shows three distinct substrates with 100, 1,000, and 10,000 cylinders, 

corresponding to voxel sizes of 23  × 23 𝜇𝑚, 71  × 72  𝜇𝑚, and 230  × 230 𝜇𝑚, 

respectively, and their corresponding radial DW-MRI signals. The voxel sizes shown were 

chosen to emphasize the radial anisotropy in three representative sizes. The most isotropic 

radial DW-MRI signal was found on the substrate with 10,000 cylinders, i.e. the most 

significant voxel scale. The substrate with the fewest cylinders, on the other hand, produced 

the most anisotropic signal. The mean and standard deviation of the radial extra-axonal 

signal as a function of voxel size is shown in Figure 3-5. The graphs showed that a 

sufficiently rich sampling is required for the simulated signal to converge. Indeed, small 

substrates have a limited number of cylinders, limiting the variability of hindered micro-

environments sampled by the spins during the Monte-Carlo simulation — yielding 

anisotropic patterns in the radial DW-MRI signal. The results also showed a bias in the 

mean amplitude, with small voxels having a lower signal than bigger voxels. Our results 

suggest that, for a given diameter distribution, substrates with an area smaller than 

200𝑥200 𝜇𝑚 will present biased extra-axonal signals. However, this lower bound 

probably depends on the distribution of diameters and cylinder packing on one side and the 

typical diffusion length of the spins, given by their diffusivity and the diffusion time of the 

experiment. 
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Figure 3-5 Results for three substrates, with 100, 1,000 and 10,000 cylinders, respectively. 

First row: sample diameter distributions for each voxel size, getting closer to the desired 

distribution law as the voxel size increases. Second row: Cylinder’s packing positions in each 

substrate, the white scale bar corresponds to 10μm. Third row: radial DW-MRI signal simulated 

from the respective substrates. Each coloured line corresponds to one different ∆ duration. Dotted 

lines correspond to the mean radial signal for each diffusion time. 
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3.4 The MC/DC Simulator 

 

The Monte Carlo Diffusion and Collision (MC/DC) Simulator is a C++, open-source, DW-

MRI Monte-Carlo Simulator developed as part of the contribution work done in (Rafael-

Patino, Romascano, et al., 2020). The simulator is currently supported and still under 

constant development. The installation, main parameters and examples can also be found 

in the simulator’s repository 1.  

 

The simulator is implemented following a modular and scalable architecture, as shown in 

Figure 3-6. Similar to our description of the simulation process in Chapter 3, the framework 

separates a Mote-Carlo simulation into the two cores tasks, the particle dynamics inside 

the DynamicSimulation class and the signal synthesis, handled by the SimuleableSequence 

base class. Both classes are fundamentally independent of each other, making the 

simulation process's separation (and parallelization) possible. We used this property to 

implement a fast signal synthesizer for the DW-MRI protocol optimization framework, 

explained in Chapter 6. The simulator also implements a friendly user interface via simple 

scripting to run and handle the most common simulation types. The simulator handles three 

types of obstacles for the spin dynamics: infinity cylinders of constant radii, spheres of 

constant radii, and closed 3d mesh models. Several obstacles can be defined inside a single 

substrate in arbitrary positions by the user. The simulator also implements some commonly 

used substrates for porous media such as hexagonally packed cylinders, hexagonally 

packed spheres, randomly packed cylinders with radii sampled from a Gamma distribution 

(  𝑟 ~Γ(𝛼, 𝛽) ), and randomly packed spheres with radii sampled from a Gaussian 

distribution (𝑟~𝐺(𝜇, σ)). On the other hand, for the signal synthesis, the simulator handles 

two nominal cases: explicit PGSE protocols parametrized by the gradient strength and its 

timings 𝛿, Δ, and 𝑇𝐸 (see Chapter 2); and General Waveforms parametrized as 3d gradient 

curves over time. For more details on the needed parameters and other advanced options 

to track dynamic and magnetic simulation events, such as the particles’ mean squared 

 
1
 https://github.com/jonhrafe/MCDC_Simulator_public 

 

https://github.com/jonhrafe/MCDC_Simulator_public
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displacement distribution, phase shift distribution, or ensemble propagator over time, we 

refer the reader to the technical project’s GitHub page.  

 

 

Figure 3-6 Single MC/DC simulation core components.  

The purple dotted arrows indicate which classes (pointed classes) are instances in the base class. 

Blue lines indicate inherited classes from the parent (pointed) class. All the displayed components 

depicted above are organized in separated class-oriented modules with abstract-based prototypes 

that can be inherited and re-implemented to augment the functionality and scope of the simulations. 

 

3.5 Discussion and Conclusions 

To summarize, this Chapter's key inputs can be defined as follows: First, we discuss and 

explore a series of pitfalls that can occur when selecting parameters and designing 

substrates for Monte-Carlo simulations. Our findings on the effect of particle number and 

time-steps and our quantification of the effect of substrate size on extra-axonal space can 

be used to improve the design of future experiments immediately. Overall, we discovered 

that simulations of less than 5 × 105 particles and 1 × 104 steps carried a significant 

variance between the computed signals for both the intra- and extra-axonal compartments. 

Furthermore, we discovered that simulation substrates with less than 10,000 sampled 
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cylinders caused a significant bias in the diffusion signal's directional symmetry in 

directions transversal to the main fibre path. Those values are around one order of 

magnitude larger than those used in the literature, which necessarily impacts 

reproducibility. An additional effect of incorporating angular perturbations into the intra-

axonal space model showed significant deviations from expectations (Hall and Alexander, 

2009; Rensonnet et al., 2018, 2019). Using the approximate axon diameter based on the 

cylindrical model, we evaluated the effect of incorporating such angular perturbations in 

the intra-axonal space representation and found a significant deviation from the predicted 

results. This finding is consistent with previous findings and adds to the growing body of 

evidence that estimating whole-brain axon diameter using simplified models like the 

straight cylindrical diffusion model may not be feasible. Finally, we presented a self-

implemented robust and open-source simulator that paved the way for all the presented 

studies in the following chapters of this thesis.   
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Towards Realistic and Complex  

Numerical Phantoms 

4.1 Overview 

The introduction of new simulation frameworks, such as the one described above, has 

pushed the community to consider more complex in-silico approaches rather than 

analytical models. However, due to the inherent complexity of the brain's white matter at 

the micro and meso scales, defining and designing appropriate physical models (with 

accurate microstructural features) has proven to be a difficult task. In this chapter, we 

describe our efforts to create more realistic white matter numerical phantoms. The first 

section describes a proposed framework based on a previous algorithm used to build 

tractography phantoms. The adaptation to this framework for MCDS results in a system 

capable of generating complex fibre configurations at the mesoscale and with desired 

microstructure details presented in (Rafael-Patino, Romascano, et al., 2020). We 

demonstrated the framework's ability to generate a complex fibre configuration, which is 

used to highlight the frameworks’ capabilities and the resulting microstructure maps. Then, 

we present arguably the most complex numerical phantom build to this day, the DiSCo 

Numerical phantom, which is introduced as a new phantom for joint microstructure and 

tractography studies. Finally, we describe additional experiments on the simulation of 

realistic axons segmented from electron microscopy, which has previously been used 

successfully in other collaboration studies (Andersson et al., 2021).  
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4.2 Complex substrates generation framework 

Based on the results of previous experiments and a previously published algorithm for 

generating tractography phantoms (Close et al., 2009), the section that follows lays out a 

general structure for creating complex substrates. We illustrate that such a structure 

overcomes some of the previous sections' simplifications. A cross-section of axon bundles 

was created as a study case to demonstrate those capabilities. The complexity of the 

crossing fibres was evaluated qualitatively in terms of the resulting intra-axonal volume 

fraction and diffusion properties at various resolutions.  

 

The original framework is based on optimising an objective function that penalizes the 

overlap, curvature and length of a set of initial splines called strands. Each strand has a 

constant radius used to ensure no overlapping. The optimization cost-function has the 

following form:  

 

𝐸(∪ 𝑆) = ∑ 𝑤𝑜𝐽𝑜(𝑆𝑖)

#𝑆

𝑖

+ 𝑤𝑐𝐽𝑐(𝑆𝑖) + 𝑤𝑙𝐽𝑙(𝑆𝑖), 
 

4-1 

where the set ∪ 𝑆 of size #𝑆, denotes the collection of all initialized strands and 𝑆𝑖 

represents the strand 𝑖 for 𝑖 = 1, … , 𝑆. The functions define the overlap, curvature, and 

length penalization functions  𝐽𝑜(⋅), 𝐽𝑐(⋅), 𝐽𝑙(⋅); and the coefficients represent their weights 

𝑤𝑜, 𝑤𝑐, and 𝑤𝑙. Each strand 𝑆𝑖 is parametrized using a distinct set of control points that 

describe the strand's backbone and a constant radius; the transversal region associated with 

this radius is then subdivided to form sub-strands. For more details, we refer the reader to 

(Close et al., 2009). 

 

A gamma-distributed collection of diameters was mapped within the trajectories of the 

resulting strands using the structure mentioned above, which was improved. The cost-

function, 𝐽0, was also adjusted to make it more appropriate for constructing 3D meshes. 

The analytical intersection between two strands' control points was computed using the 

cylinder to cylinder collision detection described in (Verth and Bishop, 2008).  
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Figure 4-1 Optimized non-overlapped trajectories 

Optimization procedure of initial trajectories. (Left) initial trajectories parametrized as a set of 

control points with a constant radius. (Right) the resulting trajectories after the optimization 

procedure, which ensures that there is no overlapping between the resulting strands. 

The outcome is a gamma-distributed crossing arrangement of deformed cylinders. The key 

benefit of this configuration is that the bundles within a common area do not overlap or 

intersect but rather interdigitate, preserving volume in the crossing field. Furthermore, the 

curvature and length penalties encourage a higher packing density. Finally, rather than 

assigning a symmetric tensor along the sub-strands, the proposed structure computes the 

DW-MRI signal using a Monte-Carlo simulation using a mesh substrate built from the 

configuration obtained above. Figure 4-2 shows the crossing configuration before and after 

the optimization procedure.  

 

The diameters from a gamma distribution with parameters  Γ(1.2,1.5 × 10−6) 𝜇m were 

sampled in the presented study case, resulting in mean diameter of 𝜇 = 1.8 𝜇𝑚 and standard 

deviation σ = 1.6 𝜇𝑚, which are in the range of anatomical interest (Alexander et al., 

2010). To prevent strands with diameters smaller than 0.2 𝜇𝑚, the resulting values were 

truncated. The dimensions of the resulting enclosing volume were 1200 𝜇𝑚  ×  240 𝜇𝑚  ×

480 𝜇𝑚. Figure 4-1 depicts the resulting 3D geometrical crossing. After post-processing 

decimation and smoothing to reduce the triangle density, the 3D mesh model has 

1,698,328 triangular faces. The longest strand measures 1.58 𝑚𝑚 from end to end. The 
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resulting diameter distribution of the overall structure is shown in Figure 4-2's bottom 

panel.  

 

The total volume was divided into three voxel resolutions to compute the simulated MRI 

signal: 80  × 16  × 32,  40  × 8  × 16, and 20  × 4  × 8 voxels. The signal for the three 

resolutions was computed using 105 × 106 particles and 5,000 steps. The original 

ActiveAx protocol from (Alexander et al., 2010) was used with a diffusivity coefficient 

equal to 0.6  × 10−3 𝑚𝑚2/𝑠  and a total diffusion time of 0.053 s. 

 

 

Figure 4-2 Fiber crossing substrate. 

 The top panel shows a visualization of the resulting fibre crossing substrate after the strand 

refinement and the smoothing and decimation of the triangular faces. The left-bottom panels show 

the resulting sub-strand configuration of one of the crossings bundles. The Right-bottom panel 

shows the overall diameter distribution of the displayed bundle on the (left). 
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The Diffusion Tensor estimate and corresponding FA were computed using Dipy 

(Garyfallidis et al., 2014) and the ICVF maps for each of the three resolutions. To compute 

the DT in each voxel, only the shell with b=3080 𝑠/𝑚𝑚2 was used. Since there was no 

analytic representation of the substrate, the ICVF was approximated by tracking the local 

location of the uniformly random positioned particles and labelling them as within or 

outside the meshed substrate. 

 

Finally, for the three separate voxel resolutions, an assessment of the axon diameter 

estimate within the crossing region was performed. The same exhaustive search method 

explained before was used to estimate axon diameter. The analytical GPD approximation 

was computed using only one bundle orientation chosen from the DT calculation at each 

voxel. The fitting procedure was performed solely on the intra-axonal signal and in voxels 

with FA greater than 0.25 to isolate the effect of extra-axonal space on diameter 

misestimation. 

 Results on a fibre-crossing substrate 

The resulting crossing with two fibre populations is outlined in Figure 4-2. The total 

optimization time to construct the substrate was approximately 42 hours, with the majority 

of the optimization time (approximately 35 hours) required in the second optimization 

iteration, following the subdivision on gamma-distributed radii, to ensure that no minor 

overlaps and abrupt angular changes were made. A single-core 2.8 GHz processor was 

used for optimization. The total simulation time for the complete geometry, with 

105 × 106 particles, was less than 24 hours using a total of 8 nodes with 28 cores on 

EPFL's cluster and 6GB of RAM per node (48GB in total). 
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Figure 4-3 Model bases results of the crossing signal. 

From the leftmost to the right: diffusion tensor map, the resulting fractional anisotropy, and the 

two highlighted ROIs in each map. Each image corresponds to the same volume slice in the XZ-

plane. The ROI’s highlights one area where different compartments result from the optimization 

procedure. 

 

Figure 4-3 depicts the resulting diffusion tensor and FA maps for the three different 

resolutions. There can be observed local variations in diffusivity and signal changes linked 

to the curvature of each axon. Figure 4-4 shows the intra-axonal volume fraction. Small 

water compartments in the crossing sections can be seen in the highest resolution, and this 

is a consequence of the optimizer phase that does not overlap fibres. These compartments 

are no longer visible in the lowest resolution, but the reduced volume fractions indicate 

these compartments. 
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Figure 4-4 ICVF maps of one volume slice in the XZ-plane in three different resolutions.  

The highest achieved ICVF value for each resolution were:0.8013,0.5792,0.4825, from top to 

bottom, respectively. The three green areas highlighted in the two lowest resolutions were used to 

evaluate the axon diameter estimation. 

 

Figure 4-5 depicts one plane of the axon diameter measurement maps of the volumetric 

area outlined in Figure 4-4 and the diameter distribution obtained for the three resolutions. 

The higher resolution estimation (80 x 16 x 32) has 2848 voxels, while the lower resolution 

has a total of 112 voxels. The bottom-right panel of Figure 7 displays the resulting sampled 

diameters inside the crossing configuration, which are notably distorted to smaller 

diameters; this is a consequence of the packing algorithm inside individual circular strands, 

which under-represent the tail of the distribution due to the complexity of packing strands 

with large diameters. This influence would have an immediate impact on the effective 

apparent radius  (Burcaw, Fieremans and Novikov, 2015)  𝑟𝑒𝑓𝑓 ≈ (
<𝑟6>

<𝑟2>
)

1/4

 given by the 
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intra-axonal contribution of the signal. The resulting effective diameter of the conjoint 

assemble of strands was 2 ∗ 𝑟𝑒𝑓𝑓 =  3.48 𝜇𝑚, comparable with such of Figure 4-5. 

 

 

Figure 4-5 Axon diameter estimation maps and distributions. 

The left column shows the axon diameter estimation map of the regions highlighted in Figure 4-4. 

The right column shows the diameter histograms estimated on the total volume enclosed by the 

highlighted regions. The top row shows the axon diameter map and the diameter estimation 

histogram for the 80 × 16 × 32 nominal resolution; the middle row shows the same maps for the 

40 × 8 × 16 nominal resolution, and the bottom row shows the same maps for the 

20 × 4 × 8 nominal resolution. The dotted line indicates the histograms' mean diameter within 

the regions, to be compared with the effective apparent diameter (2 ∗ 𝑟𝑒𝑓𝑓) of 3.48 um. 
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 Conclusions 

This section presents a framework that can generate complex fibre configurations with 

desired microstructure information based on a previous algorithm used to create 

tractography phantoms. We showed the framework's capabilities to generate complex 

fibres configurations that, along with the simulator developed in this work, can generate 

more challenging and composite Monte-Carlo simulations. This is further shown in the 

following section, where a numerical phantom, extensive enough to run tractography 

algorithms, is constructed. The framework, however, still lacks several structural features 

present in white matter tissue — such as the axonal myelin sheath, Ranvier nodes, or 

diameter changes along the trajectory of the axons — and thus, future work should focus 

on adding such characteristics as explained in the last section of the chapter.  

 

4.3 The DiSCo Numerical Phantom for Connectomics  

 

This section describes the creation of a numerical phantom that mimics complex 

anatomical fibre pathway trajectories while also accounting for microstructural features 

such as axonal diameter distribution, myelin presence, and variable packing densities. The 

substrate has a micrometric resolution and an unprecedented size of 1 cubic millimetre to 

mimic an image acquisition matrix of 40x40x40 voxels. DW-MRI images were obtained 

from Monte Carlo simulations of spin dynamics to enable the validation of quantitative 

tractography. The phantom comprises 12,196 synthetic tubular fibres with diameters 

ranging from 1.4 𝜇𝑚 to 4.2 𝜇𝑚, interconnecting sixteen regions of interest.  The simulated 

images capture the macroscopic properties of the tissue (e.g. fibre diameter, water diffusing 

within and around fibres, free water compartment) while also having desirable macroscopic 

properties resembling the anatomy smoothness of the fibre trajectories. While previous 

phantoms were used to validate either tractography or microstructure, this phantom can 

better assess the connectome estimation's reliability on the one side and its adherence to 

the actual microstructure of the nervous tissue on the other. This phantom has increased 
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complexity compared to previously available datasets and may help improve the 

reconstruction methods of the quantitative structural connectome. In particular, in this large 

and complex substrate, the volume of the axon-like structure is preserved across their 

trajectories, allowing for microstructure-informed tractography methods. 

 

 Phantom Design 

 

The DiSCo (Diffusion-Simulated Connectivity) phantom is composed of 12,196 tubular 

fibres (strands), with gamma-distributed inner diameters ranging from 1.4 𝜇𝑚 to 4.2 𝜇𝑚, 

connecting 16 distant Regions of Interest (ROIs). The strands form different white matter 

configurations (e.g., kissing, branching), intersect at different crossing angles, split and 

group after leaving and ending in the ROIs. These fibres form various white matter 

configurations (e.g. kissing, branching), intersect at various crossing angles, separate and 

group together after leaving and ending from/in 16 regions, with the possibility of forming 

120 distinct pairs of connections. The initial connectivity matrix weights of the DiSCo 

phantom were randomly generated for 16 ROIs. By controlling for the sparsity of the 

resulting matrix, we obtained 25 non-zero weights for a total of 120 possible connections 

among the ROIs. These weights were used to initiate a proportional set of strands of 15 𝜇𝑚 

in diameter interconnected the ROIs going toward the centre of the sphere (789 strands, 

see Figure 4-6 b). The strands trajectories were then optimised using the Numerical Fiber 

Generator (Close et al., 2009) described in the past section. To force strands convergence 

toward the centre of the phantom, we added spherical constraints around each ROI (see 

Figure 4-6 a). The cost function had energy terms controlling for strands curvature and 

strands length. Moreover, the cost function increases when strands overlap with other 

strands or with spherical constraints. Multiple optimisation iterations were performed to 

increase the cost of overlapping strands slowly (see Figure 4-6 c,d). Each strand was then 

subdivided into strands of 7.5 𝜇𝑚 in diameter following hexagonal packing (5,523 strands, 

see Figure 4-6 e). Strands were then optimized to reduce overlaps, length, and curvature. 

Finally, each strand was subdivided into cylinders which diameters following a gamma 
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distribution Γ(κ, θ), with shape, 𝜅 = 0.5, and scale 𝜃 = 0.007 (minimum diameter of 

2 𝜇𝑚 and maximum diameter of 6 𝜇𝑚). Cylinders were iteratively sampled and placed 

within each strand cross-sectional surface until a density of 0.7 was reached (12,196 

strands, see Figure 4-6 f). Sampled cylinders not fitting within the surface were discarded. 

The Numerical Fiber Generator optimisation procedure was performed for an additional 

iteration to reduce overlapping strands further and use the space left by the initial sampling 

procedure. 

 

The final set of strands (trajectories and diameters) were used to generate a mesh of the 

substrate with the Blender software (see Figure 4-7). For each strand, a tubular mesh was 

generated to represent the outer surface of the axon-like structure with an additional inner 

tubular mesh following the same trajectory but with a diameter of 0.7 times the outer 

diameter, representing the inner surface of the axon-like structure. The mesh was used as 

input to the open-source MC/DC Simulator presented in Chapter 2. 

 

 

Figure 4-6 DiSCo Phantom construction steps 
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a) Spherical constraints located around each ROI, used to force the strands trajectories to converge 

toward the centre of the phantom. b) Initial strands trajectories. c, d) Strand’s trajectories after 1 

and 4 optimisation steps of the Numerical Fiber Generator, respectively. e) Subdivided strands 

following hexagonal packing. f) Strand trajectories after the optimisation process, with gamma-

distributed diameters. The colours of the strands correspond to a pair of connected ROIs. 

 DW-MRI Signal Simulation 

All the signals were computed using the sum of the accumulated phase shift approximation 

implemented in the MC/DC simulator (Rafael-Patino, Romascano, et al., 2020). The 

simulator contains routines to optimize collision detection and memory handling, allowing 

it to perform simulations of 3D mesh substrates containing millions of triangles and 

particles. We adjusted the parameters of those routines to better perform in the simulation 

settings and substrate size described before, allowing us to compute the full volume 

simulation in a feasible time. To ensure a high and uniform density in all the 64,000 

computed voxels, we used a highly dense regular particle placement with a total of 109 

particles to achieve a density of one particle per cubic micrometre. The total diffusion time 

was set to 53.5 × 10−3 𝑠 matching the maximum protocol's echo time, and the time 

between each step 𝛿𝑡 was set to 5.35 × 10−7s. The unrestricted diffusion coefficient was 

set to 0.6 × 10−3 𝑚𝑚2/𝑠 for and ex-vivo scenario. The simulated signal was computed 

separately by labelling all particles inside the inner-mesh as intra-axonal,  those inside the 

outer-mesh but outside the inner mesh as myelin, and those outside the outer-mesh as extra-

axonal.   Particles initiated in the extra-axonal and intra-axonal compartments were used 

for the DW-MRI signal generation.  
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Figure 4-7 Mesh of the 12,196 strands used as input to the MC/DC diffusion simulator. 

The outer mesh (used for the simulation of the extra-axonal space) contains 36,672,202 faces 

after post-processing. 

 

Although the substrate was optimized to minimize strand overlaps, some overlaps 

remained. To account for the effect of overlapping strands in the simulated DW-MRI 

signal, the intra-axonal signal was generated solely using the mesh of the strand into which 

the particle was initiated. If a particle is initiated at a point where two strands overlap and 

thus within more than one strand, one of the strands was randomly chosen to simulate the 

intra-axonal diffusion process. 

 

The DW-MRI protocol includes 360 diffusion-weighted images and four non-diffusion-

weighted images (b=0). The measurements are distributed on four b-shells (𝑏 = 1000, 

1925, 3094, 13191𝑠/𝑚𝑚2). Those correspond to the three b-shells of the optimized 

ActiveAx protocol (Dyrby et al., 2013) with an additional shell at 𝑏 = 1000𝑠/𝑚𝑚2. The 

echo time was set to 0.0535s. Each shell is sampled using 90 uniformly distributed gradient 

directions on the sphere. The resulting DW-MRI signal was corrupted using various levels 

of Rician noise using the Diffusion Imaging in Python (DIPY) library (Garyfallidis et al., 

2014). 
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 Resulting Dataset 

 

The in silico DW-MRI was simulated for 360 measurements, using four b-values (b=1000, 

1925, 3094, 13191 𝑠/𝑚𝑚2). The dataset includes the ground truth connectivity matrix, 

which weights correspond to the inter-sectional area of the axon-like structures forming 

the connections. The four-dimensional (4D) DW-MRI signal obtained is available in 

standard Nifti format of dimension 40𝑥40𝑥40𝑥364, where the 4th dimension corresponds 

to the DW-MRI. The DW-MRI images corrupted with Rician noise at a signal to noise 

ratio (SNR) of 10, 20, 30, 40 and 50 are also generated. The 3d location of the 16 ROIs of 

the phantom is included as a labelled mask with all voxels of the ROIs having a 

corresponding value of 1 to 16. Finally, the maps of the fraction of Monte Carlo particles 

initiated inside the inner tubular mesh of the substrate over the total number of Monte Carlo 

particles used to generate the signal are included as a volume fraction metric between 

compartments. Additionally, the ground-truth information is included, such as the 

centerline trajectories of the 12,196 strands and the list of the corresponding inner 

diameters and the two ending ROIs labels of each strand.  

 

All the resulting files, meshes and metrics are freely available as a test dataset for the 

MICCAI 2021 Diffusion Simulated Connectivity (DiSCo) challenge (Girard et al., 2021)2 

and as a Mendeley Research dataset (Rafael-Patino et al., 2021)3 .  

 Conclusion 

This section presented the construction of a massive numerical phantom, extensive enough 

to run tractography algorithms, using the framework in (Rafael-Patino, Romascano, et al., 

2020) and discussed in the previous section. The creation of this type of phantoms shows 

how Monte-Carlo simulations could also be used as a cornerstone for the validation or the 

modelling of tractography and microstructure-informed tractography methods. This will 

be of great importance to machine-learning-based methods such as the one presented in 

 
2 http://hardi.epfl.ch/static/events/2021_challenge/ 
3 https://data.mendeley.com/datasets/fgf86jdfg6/1 
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Chapter 7, where the lack of ground truth information makes the validation and training of 

such methods a challenging task.  

4.4 MCDS in 3d reconstructed tissue 

Several studies have used histology to study and validate DW-MRI models and tissue 

structural assumptions. For example, for the validation of the fibre orientation dispersion, 

polarized light images were used in (Mollink et al., 2017), light microscopy images in 

(Grussu et al., 2016) and 3d confocal microscopy images in (Schilling et al., 2018). Such 

results can be used directly to design realistic numerical phantoms by mimicking the 

structural characteristics of the segmented tissue or by reconstructing the geometry 

directly. Figure 4-8 shows a photomicrograph and a 3d reconstruction made, which 

exemplifies how this can be used for MCDS of the orientation dispersion of segmented 

axons. Other recent studies have used 3d electron microscopy (EM) to reconstruct the 

axons’ microstructure below the micrometre level.  Such reconstructions produce realistic 

virtual tissues, making the study of the effect of more refined structures in the DW-MRI 

signal, such as the axons’ diameter changes along with the fibre orientation and the micro 

and meso dispersion (Andersson et al., 2021). Figure 4-9 shows an example of such axonal 

shape reconstruction from EM data which are able to provide high-quality meshes of 

realistic environments for Monte-Carlo simulations.  
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In addition, such diameter changes can be induced in the numerical phantom framework 

explained earlier in this chapter, generating this way realistic fibre bundles mimicking the 

micro and meso characteristics of segmented data, as was explored in the MODERN 

Figure 4-8 . Photomicrograph showing axons and the resulting 3d reconstruction. 

(Left) Photomicrograph showing axons labeled with biotinylated dextran amine (BDA) from a 

cortical injection which course in a tight bundle up to where they disperse on the way to the 

corpus callosum (CC) and internal capsule (IC). (Right) BDA 3d reconstructed at high 

resolution. Notice the undulations as well as the fact that axons do not keep a parallel course but 

tend to cross each other (misalignment).  

(𝐮
𝐦

)

Figure 4-9 EM 3d reconstruction and quantification. 

Bottom panels shows a the 3d reconstruction from serialized EM data (not shown). From the 

3d reconstruction, quantifications such as the inner axon diameter along the fiber (top left 

panel) and its distribution (top right panel) can be measured.  
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framework in (Rafael‐Patino et al., 2019). Figure 2-3 shows a substrate generated with 

axonal diameter changes mimicking those from segmented EM data; however, adding 

more microstructures characteristics makes the packing procedure more challenging, 

making achieving lower extra-axonal volume fractions an open problem.  

 

 

Figure 4-10 A numerical phantom using MODERN.  

Axonal-like structures with mapped axonal diameter changes generated using a multi-objective 

differential evolution optimization procedure. The phantom contains axonal diameter changes and 

dispersion characteristics packed inside a target voxel.  

 

 Conclusions 

The advances in the creation of numerical phantoms of the brain’s white matter, like the 

one presented in this chapter, will indubitably help validate and model DW-MRI methods 

for microstructure estimation and tractography. However, many essential structures present 

in real tissue are still neglected and thus could still bias the simulated DW-MRI signal 

towards previously used simplified models. Because of this, studies from highly accurate 

tissue imaging, as 3d EM reconstructions, play a vital role towards the designs of realistic 

and complex numerical phantoms.   
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Simulation-Assisted Machine Leaning 

5.1 Overview  

 

Diffusion MRI (DW-MRI) allows for the detailed exploration of the brain white matter 

microstructure, with applications in both research and the clinic. However, state-of-the-art 

methods for microstructure estimation suffer from known limitations, such as the 

overestimation of the mean axon diameter and the infeasibility of fitting diameter 

distributions. This chapter presents our recent study in simulated-based microstructure 

modelling proposed in (Rafael-Patino, Yu, et al., 2020). In this study, we proposed to 

eschew current modelling-based approaches favouring a novel, simulation-assisted 

machine learning approach. In particular, we trained machine learning (ML) algorithms on 

a large dataset of simulated diffusion MRI signals from white matter regions with different 

axon diameter distributions and packing densities. We showed, on synthetic data, that the 

trained models provide an accurate and efficient estimation of microstructural parameters 

in-silico and from DW-MRI data with moderately high b-values (4000𝑠/𝑚𝑚2). Further, 

on in-vivo data, we showed that the estimators trained from simulations can provide 

parameter estimates close to the values expected from histology. 
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5.2 Introduction  

 

 
Figure 5-1 Simulation-based framework pipeline. 

The proposed framework selects the microstructure properties and the acquisition protocol prior 

to the dataset generation. The generated data can then be used to train different models, feature-

based like Random Forest (RF) and Support Vector Machines (SVM’s ), or directly from the 

output signals as the multi-layer perceptron (MLP) model. 

 

In this study, we explored the feasibility of bypassing some of the limitations of the current 

inverse models by developing an emerging approach that is based on using DW-MRI 

simulations as a tool for performing forward modelling (Nedjati-Gilani et al., 2017; 

Rensonnet et al., 2019). In our approach, we first created an extensive and detailed dataset 

of numerical white matter phantoms with varying geometric properties of interest, such as 

the mean and standard deviation of axon diameters and axon density. We then generated 

the DW-MRI signals of these phantoms using the MC/DC simulator (Rafael-Patino, 

Romascano, et al., 2020). We trained two different machine learning algorithms, i.e., 

random forest and multi-layer perceptron, to map the simulated signals with and without 

handcrafted features to the microstructural parameters. The learned models were then 

applied to both synthetic and in-vivo brain data. 

 

Figure 5-1 shows the structure of our framework from the dataset generation to the 

accuracy evaluation. In generating the dataset, we express the DW-MRI signal in the brain 

white matter as the sum of the signals from the intra-axonal 𝑆𝑖𝑛𝑡 and extra-axonal 𝑆𝑒𝑥𝑡 

compartments, weighted by their relaxation-weighted volume fractions (icvf and ecvf, 

resp.) as follows: 

 𝑆 = (𝑖𝑐𝑣𝑓)𝑆𝑖𝑛𝑡 + (1 − 𝑖𝑐𝑣𝑓)𝑆𝑒𝑥𝑡 ,  
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5-1 

where 𝑒𝑐𝑣𝑓  =  1 − 𝑖𝑐𝑣𝑓,  and 𝑖𝑐𝑣𝑓  +  𝑒𝑐𝑣𝑓 = 1. The intra-axonal space represents the 

axons, which we model as straight and parallel cylinders, and the extra-axonal space 

corresponds to the space outside the axons, including the extra-axonal matrix, glial cells, 

and cerebrospinal fluid. We further assume that within a bundle, the axon diameters follow 

a Gamma distribution (Sepehrband et al., 2016) each bundles having different means and 

standard deviations. 

 

A large dataset of white matter phantoms with different geometrical properties was 

generated by parameterizing the intra-axonal space with the volume fraction 𝑖𝑐𝑣𝑓 as well 

as the mean 𝜇 and standard deviation 𝜎 derivated from the parameters of a Gamma 

distribution. A packing algorithm that generates axon geometries matching these 

predefined parameters was implemented similar to (Hall and Alexander, 2009). Then, 

simulated DW-MRI signals for each one of these phantoms were generated using the 

MC/DC simulator with a specific acquisition protocol consisting of 2 shells with b-values 

equals to 1000 𝑠/𝑚𝑚2 and 4000𝑠/𝑚𝑚2, 𝛿 =  7 𝑚𝑠, and echo time (𝑇𝐸) = 80 𝑚𝑠, and 

an isotropic voxel resolution of 2 𝑚𝑚. For each shell, the Δ time varied as Δ =

17.3, 30, 42, 55 𝑚𝑠. A total of 30 uniformly sampled directions in the sphere were used 

per different Δ time for the shell with b-value = 1000 𝑠/𝑚𝑚2 and 60 directions for the b-

value = 4000𝑠/𝑚𝑚2. In addition, to include some uncertainty related to the main fibre 

orientation, four additional signals were generated for each phantom by rotating the 

original signal by 5 degrees in 4 directions around the mean fibre direction. We chose this 

dispersion by computing the variance of the main fibre direction in a region of interest in 

the corpus callosum (CC) from the in-vivo data. The resulting substrates were removed if 

the packed distribution were not close enough to the desired distribution of diameters or 

could not reach the desired ICVF. Figure 5-2 shows an example of a generated distribution 

and the directions used to rotate the phantom's main direction. In total, the final database 

consisted of 82,400 white matter phantoms and their DW-MRI signals, which were 

obtained after generating different realizations of each of the 1824 combinations of 𝑖𝑐𝑣𝑓, 

𝜇 and 𝜎 (Table 5-1) after pruning. 
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Parameters Values 

μ {0.2, 0.3, 0.5, 0.66, 0.81, 0.97, 1.12, 1.28, 1.44, 1.59, 1.75, 1.91, 

2.06, 2.22, 2.34, 2.53, 2.69, 2.84, 3} 

σ {0.1, 0.3, 0.5, 1, 1.5, 2, 2.5, 3} 

icvf {0.35, 0.4, 0.45, 0.5, 0.53, 0.57, 0.6, 0.63, 0.67, 0.7, 0.73, 0.75} 

Table 5-1 Table of values used to generate all the substrates for the mean radius (μ) the standard 

deviation of the distribution (σ),  and the  ICVF.  A total of 1824 combinations were produced. 

 

The in-vivo data were acquired using a 3T Connectome scanner equipped with 300mT/m 

diffusion gradients and using the same imaging parameters to generate the synthetic 

dataset. The same healthy volunteer subject was scanned five times to test the method's 

robustness to multiple repetitions. 

 

 

Figure 5-2 Substrate generation characteristics  

From left to right, an example of a generated phantom, the resulting distribution of axons after fitting, 
and the directions used to rotate the main fibre direction to simulate minor angular dispersion. 

5.3 Simulation-Assisted Machine Learning models 

We implemented three approaches to learn the mapping from simulated signals to 

microstructural parameters, relying on either handcrafted features or the raw diffusion 

signal. The diffusion signal vector was separated into eight parts to create the handcrafted 

features. Each part corresponds to a different shell with a specific combination of the 
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imaging protocol parameters used, i.e. Δ, 𝛿 and 𝐺. Then, for each of these, a Principal 

Component Analysis (PCA) was computed, and the first three components were selected, 

which explained more than 98% of the signal variance. In addition, the fractional 

anisotropy (FA) and the mean diffusivity (MD) were computed and concatenated to the 

feature vector. The total feature vector signal consisted of  8 ∗ 3 +  2 =  26 normalized 

features. 

 

The computed models were the following. First, we trained a random forest (RF) regressor 

using the handcrafted features described above. A total of 100 estimator trees with a 

maximum depth of 17 were used. The random forest parameters were optimized using the 

Bootstrap aggregation method.  Second, a multi-layer perceptron (MLP) was trained using 

the same handcrafted features with the following architecture: four dense hidden layers 

with 129, 32, 16 and 3 units, respectively. We used a rectified linear unit (Relu) as the 

activation function for all layers, with dropout after the first and second layers with a 

probability of 0.01. The third layer was regularized using 𝐿2-based kernel and bias 

regularization with a coefficient of 0.01. We used the 𝐿2 loss between the predicted and 

ground truth parameters as the cost function. Finally, an Adam optimizer was employed to 

train the network for 100 epochs with a batch size of 10. We refer to this method as MLP-

feat in the rest of the results below. Third, we trained an MLP using the DW-MRI signal 

directly, with no feature extraction. The architecture consists of 6 hidden layers with 400, 

200, 100, 56, 16 and 3 neurons. The fifth layer is a regularization layer, and all other details 

are identical to those used in the MLP above. We refer to this method as MLP-raw to 

differentiate it from the previous one trained with handcrafted features.   

 

We used 80% of the dataset for training and validation, while 20% was held out for testing; 

10-fold cross-validation to mitigate overfitting was performed. The three described 

approaches were tested on both the held-out synthetic data and five in-vivo DW-MRI 

images masked into the CC. As a baseline for the in-vivo data, we compare these results 

with those of the AMICO implementation of ActiveAx, using the default regularization 

parameters and dictionary.  

 



 

 
84 

5.4 Results and Discussion 

Figure 5-3 shows the microstructure parameters estimated by the three ML algorithms from 

synthetic data. Our main finding is that they can accurately estimate both the mean and 

standard deviation of the axon diameter distributions even for diameters much smaller than 

those estimated in previous studies (i.e. approx. 2 𝜇𝑚), and using an acquisition protocol 

employing b-values lower than the conventional ones used for diameter estimation (Dyrby 

et al., 2013; Daducci et al., 2015; Ye, 2017). To explain why the proposed ML techniques 

can improve the estimation of axons with smaller diameters, it is essential to remember 

that the model-based approaches determine the axon diameter entirely from an intra-axonal 

model, as the signal from the extra-axonal space is challenging to relate analytically to the 

underlying microstructure parameters. The limited diffusion contrast of the DW-MRI 

signal from the intra-axonal space along the direction perpendicular to the fibres hampers 

the estimation of axons with small diameters. In contrast, applying ML techniques to the 

whole signal allows finding hidden non-trivial and nonlinear relationships between the 

microstructure parameters and the DW-MRI signal from the intra- and the extra-axonal 

spaces. As the properties of the diffusion process in the extra-axonal space (i.e., mean 

displacement length, tortuosity, time-dependent diffusion) are highly influenced by the 

microstructure features of the intra-axonal space, the ML algorithms can exploit this 

additional information. Another critical factor is that, by defining a specific distribution of 

axon diameters in our forward model, the ML algorithms could predict the full distribution 

using only the information from the right-tail of the distribution, which is not affected by 

the contrast/resolution problem mentioned before. 
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Figure 5-3 Estimates of the trained regressors on the validation dataset. 

From top to bottom, results for the Random Forest (top), MLP trained with handcrafted 
features (middle row), and the MLP trained with the raw signal (bottom). From left to right, 
ground truth vs the estimated parameters on the validation dataset for the mean diameter, 
standard deviation, and ICVF. 

 

 

Figure 5-4 Joint histogram of the estimated mean diameters.  

Joint histogram of the estimated mean diameters in the segmented mask of the CC across five scans 

for (from left to right) the RF regressor, MLP-feat and the MLP-raw. Each histogram was computed 

using the combined estimates of the five in-vivo scans. 
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In-vivo Random Forest μ𝐷 predictions

 

 

 

In-vivo 𝑀𝐿𝑃𝑓𝑒𝑎𝑡 μ𝐷 predictions 

 

  

 

In-vivo 𝑀𝐿𝑃𝑟𝑎𝑤 μ𝐷 predictions 

 

 

 

In-vivo 𝐴𝑀𝐼𝐶𝑂𝐴𝑐𝑡𝑖𝑣𝑒𝐴𝑥 μ𝐷 predictions 

 

 

 

Figure 5-5 Midsagittal plane of the estimation maps for two subjects (showed from posterior to 

anterior).  

The colour bars were adjusted per model to highlight the regions with higher and lower values. 

One of the MLP-raw predictions contains notorious outlier values in regions voxels outside the 

CC. 
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5.5 Conclusion and contributions 

 

The main focus of this work is the introduction of an emerging simulation-based technique 

for microstructural parameter estimation, from the construction of a large dataset of 

realistic numerical phantoms to training machine learning algorithms on the corresponding 

simulated signals. A comprehensive dataset accounting for a wide variety of parameters 

characterizing axon packing, size, and small angular dispersion, mimicking that which 

occurs in the CC, was generated. We demonstrated that machine learning models with and 

without handcrafted features could accurately recover the mean and standard deviation of 

the axon diameter distribution on synthetic data and DW-MRI data with moderately high 

b-values (4000𝑠/𝑚𝑚2). The proposed approach allowed us to estimate, for the first time, 

the number-weighted distribution of axon diameters, which cannot be estimated with 

previous DW-MRI modelling techniques. As this is the distribution conventionally 

reported in histological studies, this study may help to fill the gap between in-vivo DW-

MRI and postmortem histology. 

 

Furthermore, once trained, machine learning models require a few seconds of computation 

time for estimating the microstructure parameters in the whole-brain white matter. Finally, 

the in-vivo results show consistent trends and values for all five subject scans with the same 

ML model. However, there are qualitative differences between the different models that 

should be explored in future studies. Our findings show that values reported in the CC for 

all ML models are close to those found in histology, with the RF regressor further 

replicating the expected spatial trend in mean diameter (Liewald et al., 2014). However, in 

this work, it is valuable to mention that a simplified model of the CC microstructure is 

employed by considering a two-compartment model that assumes that axons are 

completely straight cylinders, without micro-dispersion along the axons. Nevertheless, 

since it is straightforward to generate more realistic phantoms (e.g. axons with undulations 

and angular dispersion) and simulate the corresponding DW-MRI signals using state-of-

the-art MC simulators, both limitations can be addressed in the future by generating more 

complex axon configurations without significantly modifying the machine learning models 
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and related parameters. Future in-silico validations will be conducted to evaluate the 

method's robustness as a function of the signal-to-noise ratio and acquisition protocol. 
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Simulation-Assisted Protocol Optimization 

6.1 Overview  

In diffusion-weighted MRI, general gradient waveforms became of interest for their 

sensitivity to microstructure features of the brain white matter. However, the design of such 

waveforms remains an open problem. This chapter resumes the contribution paper 

presented in (Truffet et al., 2020). In this article, we propose a framework for designing 

generalized gradient waveforms with optimized sensitivity to selected microstructure 

features. We presented a rotation-invariant method based on a genetic algorithm to 

maximize the signal's sensitivity to the intra-axonal volume fraction. The sensitivity is 

assessed by calculating a score based on the Fisher information matrix from Monte-Carlo 

simulations, which provide more flexibility and realism than traditional analytical models. 

As a proof of concept, we demonstrate that the optimized waveforms outperform the 

standard pulsed-field gradient experiments. 

6.2 Fisher information based Optimal waveforms.  

By measuring the displacement of molecules at the micrometre scale, diffusion-weighted 

MRI (DW-MRI) is sensitive to the fine structure of biological tissues.  Biophysical models 

have been proposed to extract useful information about tissue microstructure in-vivo. In 

particular, in the brain white matter, axons have a coherent organization. Besides 

estimating the orientation of fibres (Tuch, 2004), one can quantify the apparent intra-axonal 

volume fraction (iavf), parameters of the distribution of axon radii (Yaniv, 2004; Assaf et 

al., 2008) or orientation coherence of the fibre orientations (Zhang et al., 2012).  
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Complementary to analytical modelling of the DW-MRI signal, Monte-Carlo simulation 

offers increased flexibility for the description of biological substrates and higher accuracy 

of the DW-MRI signal for selected microstructure configurations (Hall and Alexander, 

2009; Yeh et al., 2013; Rafael-Patino, Romascano, et al., 2020). The signals computed 

using Monte-Carlo simulations were shown to be a good predictor of that measured in-vivo 

(Rensonnet et al., 2019). 

 

Another critical factor, besides modelling, to improve the accuracy of microstructure 

features estimation is the experimental design. In (Alexander, 2008), the authors present a 

general framework for experimental design, applied to the optimization of pulsed gradient 

spin echo (PGSE) sequence parameters for the estimation of the composite hindered and 

restricted model of diffusion (CHARMED). The same framework was later extended to 

oscillating gradient spin-echo (OGSE) (Drobnjak et al., 2016), generalized gradient 

waveforms (linear-encoding) and gradient trajectories (spherical-encoding) (Drobnjak, 

Siow and Alexander, 2010; Drobnjak and Alexander, 2011). 

 

In this work, we focus on the choice of gradient waveforms to optimize the sensitivity of 

the acquisition to the intra-axonal volume fraction (IAVF) in white matter. Using a 3d 

substrate model of white matter and Monte-Carlo simulation, we optimize the gradient 

waveforms for an increased rotation-averaged Fisher information. The search for optimized 

waveforms follows a particle swarm heuristic. Our optimized waveforms are compared 

with the PGSE sequence. 

 

The Fisher information is a measure of how sensitive a gradient trajectory, 𝑔, is to a 

microstructure parameter of interest. Indeed, the Cramér-Rao bound, defined as the lower 

bound on the variance of any unbiased estimator, is computed as the inverse of the Fisher 

information (Galdos, 1980). In this study, we focus on the IAVF, 𝑓, while the other 

microstructure parameters are fixed. We focused on the IAVF for two main reasons: i) the 

IAVF is a biologically relevant index of axonal loss, and therefore a biomarker specific to 

several neurodegenerative diseases; ii) measuring the IAVF from clinically plausible 
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datasets is more accessible and less sensitive to noise than other parameters of interest, 

such as, e.g. axon diameter index, for which a precise estimation remains challenging for 

diameters below 5 𝜇𝑚. We derive in the sequel the Fisher information for 𝑓, and provide 

implementation details for its computation using Monte-Carlo simulations.  

 Signal and noise model 

The signal attenuation model 𝐴(𝑓, 𝑔) depends on a the IAVF, f, and an effective DW-MRI 

gradient trajectory, 𝐠(𝑡) ,  𝑡 ∈ [0, 𝑇𝐸] (TE is the echo time). Besides, the magnitude signal 

in DW-MRI is corrupted by noise. As mentioned in (Alexander, 2008), it is important to 

consider Rician noise rather than Gaussian noise since the latter leads to an unrealistic 

choice of higher b-value (Aja-Fernández and Vegas-Sánchez-Ferrero, 2016).  In some 

situations, the Rician model does not adequately describe noise properties. However, in 

most cases, it can be considered a valid model. The probability density function of the 

measured signal, 𝐴̃ in noise is, with a spread parameter 𝜎: 

 
𝑝(𝐴̃; 𝑓, 𝑔, σ2) =

𝐴̃

σ2
𝐼0 (

𝐴(𝑓, 𝑔)𝐴̃

σ2
) 𝑒𝑥𝑝 (−

𝐴2(𝑓, 𝑔) + 𝐴2̃

2σ2
) . 

 

6-1 

The Fisher information for the parameter 𝑓 is defined as  

 
  F0(𝐠, 𝑓, 𝜎2)  =  𝐸 [

𝜕2𝑙𝑜 𝑔 𝑝

𝜕𝑓
 (𝐴;  𝑓, 𝐠 , 𝜎2)]  

 

6-2 

The full derivation for the Fisher information 𝐹_0 (not reported here) can be found in the 

Appendix of (Alexander, 2008); it can be computed from the estimation of the partial 

derivatives 𝜕𝐴/𝜕𝑓. Note that in our case, there is no analytical expression for the signal 

attenuation; instead, 𝐴 is computed using the Monte-Carlo simulator. Because of the 

intrinsic uncertainty in the signal, we cannot estimate these partial derivatives using 

classical finite difference. Therefore, we empirically propose to perform linear regression 

from a set of signals generated for ten values of 𝑓 around the value of interest. 

 



 

 
92 

We note that the Fisher information depends on the value of the IAVF 𝑓. Without prior 

knowledge on this parameter, and to avoid introducing any bias in the acquisition design, 

we compute the average Fisher information over a set Ω = {0.25,  0.50,  0.75}: 

 
𝐹(𝑔, σ2) =

1

|Ω|
∑ 𝐹0(𝑔, 𝑓, σ2)

𝑓∈Ω

. 
 

6-3 

In this work, we focus on gradient trajectories with a fixed orientation, 𝑢 𝑆  =  𝑔(𝑡) =

𝑔(𝑡) 𝑢. We want to separate the search for optimal waveforms from the search for optimal 

sampling directions, the latter having already received prior attention in the community 

(Jones, Horsfield and Simmons, 1999; Caruyer et al., 2013; Cheng, Shen and Yap, 2014). 

Besides, to have a rotation-invariant measure, we define the sampling score, 𝑈, as the 

average over directions on the sphere: 

 
𝑈(𝑔, σ2) = ∫ 𝐹(𝑔 𝑢, σ2)d2u

𝒮2

. 
 

6-4 

In practice, the integral in Eq. 6-4 is computed by taking advantage of the cylindrical 

symmetry of the substrates and considering a set of nine gradient directions, making an 

angle θ with the cylinders uniformly spread in the range [0, π/2]. As a result, we needed 

to run 270 simulations (3 IAVF values, each with ten values for the linear regression and 

each with nine angles 𝜃) to compute the score 𝑈(𝑔, σ2) for one waveform. Overall, this 

corresponds to 30 Monte Carlo particle trajectories files to be generated. 

 Numerical substrate design 

All substrates were generated assuming a two-compartment model composed of intra- and 

extra-axonal spaces. The intra-axonal space compartment was represented using a 

collection of parallel cylinders with radius sampled from a Gamma distribution Γ(2.0,0.35) 

𝜇𝑚 which is in the range of values reported from histology samples (Lamantia and Rakic, 

1990; Aboitiz et al., 1992). The extra-axonal space compartment corresponds to space 

outside the cylindrical axons, which comprise the extra-axonal matrix, glial cells, and 

cerebrospinal fluid. The substrates were then generated by randomly placing a total of 104 

sampled cylinders into an isotropic voxel, without intersection between them, and ensuring 
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periodicity at the voxel boundaries. Figure 6-1, panel a), shows a toy example of a 

numerical substrate. 

 

 

Figure 6-1  Example of substrate design composed of intra- and extra-axonal spaces. 

The intra-axonal space compartment is represented using a collection of parallel cylinders with 

various radii packed inside a containing voxel, which results in the top view displayed in panel a). 

Panel b) shows how the base configuration is then transformed by scaling the voxel and the position 

of the cylinders by a constant factor, but without scaling the cylinder’s radii; this transformation 

reduces the volume ratio between the voxel and the total cylinder's volume, thus reducing the 

represented IAVF. 

 

A total of 40 numerical substrates were generated for four IAVF of 0.25, 0.5, 0.6, and 0.75. 

For each of the four nominal IAVF, we generated ten samples around the target value to 

compute the numerical derivative of the Fisher information. To generate samples with the 

same intra-axonal configuration, but slightly different IAVF, we first generated one 

randomly packed phantom for each of the four selected IAVF, and then scaled each one of 

them by a small factor 1.0 + 𝜖, with 𝜖 =  {0.00, 0.001, 0.002, … , 0.010  }, without scaling 

the cylinders radii distribution, as is shown in Figure 6-1, panel b). This way, the same 

intra-axonal space configuration is kept, but different IAVF can be computed. Doing so, 

we avoid any bias arising from radii re-sampling and positioning of the cylinders, which 

would effectively change the considered geometry, hence the signal. 

 

To build waveforms with the highest score defined in Eq. 6-4, we perform a stochastic 

optimization based on a genetic algorithm. To narrow down the search space, the 
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admissible range of b-values is pre-determined. Intuitively, if the b-value is too low, there 

is almost no diffusion-weighting; conversely, a too high b-value leads to a highly 

attenuated signal which has an amplitude comparable to that of the noise floor. We start 

with an initial set of 100 random waveforms, and we perform cross-overs to build the next 

generation. The process to build random gradient waveforms is based on Markov Chains: 

the value of the waveforms at time 𝑡 + 𝑑𝑡 only depends on the value of the waveform at 

time t. This method allows us to build waveforms that respect the properties of maximum 

gradient strength and slew rate that are well documented. Other limitations, such as the 

duty cycle, could have been added (Sjölund et al., 2015) but are not documented enough 

to add numeric constraints. We referred to the limitations of a SIEMENS Prisma 3T for 

possible future experimentations: 

 
|𝑔(𝑡)| ≤ 𝐼80 𝑚𝑇𝑚−1    ;      |

𝑑𝑔

𝑑𝑡
(𝑡)| ≤ 200 𝑇𝑚−1𝑠−1. 

 

6-5 

We generate the waveform between 𝑡 = 0 and 𝑡 = 𝑇𝐸/2, and added a symmetric portion 

to obtain the full gradient trajectory. Examples of randomly generated gradients are shown 

in Figure 6-3 (a). We generated several waveforms and selected only those that have a b-

value in the targeted range. 

 Evolution process  

We defined the cross-over as the combination of two waveforms. We keep the beginning 

of a waveform, and the end of another, as shown in Figure 6-3. The position of the cut is 

sampled randomly from a Gaussian centred on 𝑇𝐸/4, with a standard deviation of 𝑇𝐸/12 

to avoid that the new waveform inherits too much from only one of the two previous 

waveforms. 

 

Generation 𝑖 + 1 is built on generation 𝑖. First, we randomly select two waveforms. Then, 

the probability of selecting a waveform is a linear scaling of the score that leads to having 

a probability of selecting the waveform with the highest score ten times higher than 

selecting the waveform with the lowest score. If the b-value of the resulting waveform is 

outside the targeted range, we drop this cross-over and try another one. We repeat this 
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process until having 95 waveforms that fall within the target range. The last five waveforms 

needed to complete generation 𝑖 + 1 are randomly generated, such as for generation 0 to 

promote novelty. 

 Signal simulation 

The simulated DW-MRI signals were computed using DW-MRI Monte-Carlo simulations 

as described in Chapter 1. However, since each iteration of our proposed framework is 

required to recompute the DW-MRI signal of all the numerical substrates at each 

generation of waveforms, this requires generating a high number of new signals for the 

same substrate. Because of this, we proposed first to generate and store all the Monte-Carlo 

particles dynamics required to compute the DW-MRI signal using the MC/DC open-source 

simulator (Rafael-Patino, Romascano, et al., 2020) and then use a tailored version of this 

simulator written in C++ CUDA, which is able to compute the DW-MRI signal in a fraction 

of the original computation time. Using the latter approach, we were able to produce one 

generation of waveforms in about 30 minutes, in contrast to 20 hours for the former. 

 

For each numerical substrate, we generated and stored a total of 2 × 105 particles, with a 

maximum diffusion time of 10 ms and in time-step intervals of 20 ms. The diffusion 

coefficient was set to 𝐷 = 1.7 × 10−9𝑚𝑚2/𝑠 as in (Alexander, 2008). 

6.3 Optimized waveforms 

In Figure 6-2, we report the Fisher information for several b-values ranging from 0 to 

5000𝑠/𝑚𝑚2 , with 100 different waveforms for each b-value. We first notice a high 

variability within one b-value. This shows that the b-value is not enough to characterize 

the efficiency of one waveform for the estimation of the IAVF. Then, we also notice that 

the b-value still represents an important parameter since we observe, as expected, a low 

score for low b-values and too high b-values. This result leads us to restrict our search for 

waveforms to those within the target range [1500 𝑠/𝑚𝑚2;  3100 𝑠/𝑚𝑚2]. 
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Figure 6-2 Fisher information vs b-value  

Fisher information computed for a family of randomly generated gradient waveforms, spanning a 

range of b-values from 0 to 5,000 𝑠 𝑚𝑚−2. The Fisher information shows a dependence on the b-

values, but within a given b-value, there is a remaining variability which is explained by waveform. 

We restricted our waveform search in the b-value range of [1500,3100] 𝑠 𝑚𝑚−2 (value above the 

red line) to further investigate their sensitivity to the IAVF. 

 

 

Figure 6-3 Cross-over procedure.  

The cross over is performed piece-wise using a common margin point such that the resulting b-

value remains almost the same. 

 

Waveforms optimization: As we can see in Figure 6-5, after 30 generations, the score of 

the waveforms has increased compared to generation 0. Since most of the waveforms of 

generation 30 have a higher score than the random waveforms of generation 0, one can 

hope that this increase is due to the optimization process and not only to new random 
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waveforms incorporated at each generation. The waveforms with the highest score of 

generation 30 are shown in Figure 6-4. 

 

Figure 6-4 Waveforms genetically generated to optimize the Fisher Information. 

From left to right, the figure shows the four waveforms of generation 30 with the highest score. 

 

 

Figure 6-5 Histogram of the Fisher information of DW-MRI sequences.  

The left panel shows the histogram associated with gradient waveforms across four generations of 

the genetic algorithm. Right, histogram computed for the family of 1,000 PGSE sequences. 

 

As a proof-of-concept, we compared our optimized waveforms with PGSE. We computed 

the score for a family PGSE covering a wide range of timing and gradient amplitude 

parameters. We generated all the PGSE sequences with 𝐺𝑚𝑎𝑥 = 80𝑚𝑇/𝑚d 𝛿 between 

0.5 𝑚𝑠 and 40 𝑚𝑠 with a step of  0.5 𝑚𝑠 ; and Δ between 10 𝑚𝑠 and 80 𝑚𝑠 with a step of 

0.5 𝑚𝑠. After filtering only feasible sequences and only selecting those with a b-value 

between 1500 and 3100, we obtained approximately 1,000 PGSE. Figure 6-5 right panel 

shows the distribution of scores among these PGSE sequences. 
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The maximum score with these b-values is lower than the score obtained with generalized 

waveforms in generation 30. We can also notice that, even in generation 0, some randomly 

generated waveforms had a higher score than PGSE sequences. This shows that generalized 

waveforms have a greater potential than PGSE sequences at identifying the substrate's 

IAVF. 

6.4 Conclusion 

The optimization of gradient waveforms is an important step in designing new acquisition 

sequences in DW-MRI. The generalized waveforms protocol obtained in this work is 

optimized independently from the sampling directions. We designed a genetic algorithm 

to make the waveforms evolve. After a few generations, our algorithm created a family of 

waveforms with a higher sensitivity to the IAVF than PGSE.  

 

We have presented a novel framework with several advantages. First, it is based on Monte-

Carlo simulations and can be adapted to various microstructure configurations, such as 

substrate with various compartment shapes and sizes. Second, generalized waveform 

optimization can be performed on one or several microstructure parameters of interest. In 

this work, we optimized for the IAVF parameter in two-compartment substrates composed 

of parallel cylinders with various radii and packing densities, but other biomarkers can be 

used instead. The only requirement is our ability to compute partial derivatives of the signal 

with respect to these parameters. Future work will target angular dispersion and spherical 

pore size parameter estimation. In vivo experiments will be a necessary step for the 

validation of the generated waveforms. Designing an experiment that shows the efficiency 

of the waveforms without having the ground truth microstructure is a challenging issue. 
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Data-driven Machine Learning: 

Perspectives for the Simulation of Realistic 

DW-MRI Signals 

7.1 Overview  

In this chapter, we present two contributions on the use of data-driven machine learning 

models, the detection of anomalous tissue presented in (Fischi-Gomez et al., 2021)4 and 

for the use of deep learning-based autoencoders for the axon diameter estimation (Rafael-

Patino et al., 2019). In both works, we aimed to train data-driven methods thoroughly using 

the available data and forms of ground truth. However, the final aim of these studies is to 

explore which applications, sources of contrast and learned features could be further 

improved by constructing and designing tailored simulation experiments where to train and 

validate such approaches. Both works then served to define novel research avenues such 

as the DisCo simulated phantom presented before and implement additional simulation 

components such as multi-diffusion and multi-T2 compartment simulations discussed at 

the end of the chapter. 

7.2 Anomalous Tissue Detection 

The goal of this work is two-fold; first, to evaluate the prediction power of the combination 

of enhanced DW-MRI microstructural methods and multi-echo T2 data for the 

 
4 Rafael-Patino equalilly contributed author 
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classification of anomalous tissue. Second, we used a state-of-the-art machine learning 

method known for improving the prediction quality with low samples — since in our 

showed application in Multiple Sclerosis (MS) lesions can be very sparse and data 

challenging to gather — in order to test whether such swallow machine learning methods 

can predict lesions on MRI scans obtained without the use of contrast material in a localized 

voxel-wise level scheme. 

 

MS is a chronic disease of the central nervous system (CNS) characterized by focal and 

diffuse inflammation and degeneration within the cerebral tissue (Noseworthy et al., 2000). 

Brain inflammation leads to myelin/axonal damage and altered axonal organization, which 

translates to the presence of diffuse demyelination, gliosis, and axonal damage in non-

lesional normal-appearing (NA) tissue. The pathological hallmark of MS is multiple focal 

areas of myelin loss, also known as plaques or lesions (Kerschensteiner et al., 2004).  

 

MS has an intrinsic disseminated nature (Kerschensteiner et al., 2004), with individual 

patients differing from each other regarding clinical presentation, level of disability and 

number and anatomical locations of the demyelinating lesions. For MS assessment, MRI 

is the reference neuroimaging modality. However, the processes linked to MS pathology 

are difficult to visualize using conventional in-vivo imaging techniques, as they are 

generally limited by low pathological specificity and low sensitivity to diffused damage 

(Filippi and Agosta, 2007; Erzinger et al., 2015; Cercignani and Bouyagub, 2018). Myelin 

water imaging methods appear as an appealing set of techniques for characterizing in-vivo 

the underlying complex geometry of the tissue, especially in the brain. The valuable 

compartment-specific information they provide opens the way to identifying competing 

diseases processes that simultaneously act on several tissue compartments, offering new 

insights into the pathophysiology of the disease. 

 

Myelin-sensitive techniques exploit the tissue-specific changes in quantitative measures of 

proton relaxation times (𝑇1, 𝑇2, 𝑇2
∗) and semi-quantitative measures such as the 

magnetization transfer ratio (MTR) (Bakshi et al., 2002; Neema et al., 2009; Bonnier et 
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al., 2015, 2016, 2017). Several mathematical models have been proposed that relate MRI-

derived measures of myelin content (obtained using magnetization transfer or 

multicomponent relaxometry imaging) and fibre volume fraction (obtained from DWI) to 

the myelin g-ratio (the ratio of the inner axonal diameter to the total outer diameter). Stikov 

et al. (Stikov, 2015) proposed a model that combines the myelin volume fraction (MVF) 

obtained from magnetization transfer and the relative axon volume fraction (AVF) 

computed from NODDI. The NODDI model, however, suffers from heavy bias and poor 

precision due to its non-linear fitting, mainly in regions with CSF. This limitation added to 

the MTI limitations in inflammatory areas where extracellular water accumulates 

(oedema), hampers its use for myelin mapping. In (Warntjes et al., 2016), authors 

combined R1 and R2 relaxation rates (𝑅𝑥 = 1/𝑇𝑥) and proton density (PD) imaging to  

propose a tissue model that combines the myelin and oedema in the brain. This model 

relates these imaging parameters to four partial volume compartments simultaneously: 

myelin, cellular water, free water and excess parenchymal water partial volume. The 

limitations of this model mainly come from the model simplification performed by the 

authors to allow the model to converge to a unique solution. 

 

T2-relaxometry extracts the myelin water fraction (MWF) in the brain by resolving 

deferentially-relaxing T2 water pools (Mackay et al., 1994; Alonso-Ortiz, Levesque and 

Pike, 2015). By separating the short- and medium-time T2 relaxation components in the 

observed T2 relaxation time, these techniques differentiate between the water trapped 

between myelin layers (McKenzie et al., 1999) and the one attributed to the intra-axonal 

and extracellular compartments. These models separate the water signal into three non-

exchanging components: a short T2 component (between 10-40 ms) attributed to myelin; 

an intermediate T2 component (longer than 60 ms) arising from intra- and extra-

compartments, and a long T2 component (higher than 100ms T2-relaxation time) due to 

cerebrospinal fluid (CSF) (MacKay and Laule, 2016). The MWF is then calculated as the 

short T2 relaxation component ratio relative to the total T2 distribution (Whittall et al., 

1997; Laule et al., 2006). T2-derived MWFs have shown strong correlations with gold 

standard histological measures of myelin concentration. Interestingly, MWFs are also 

relatively insensitive to inflammation and other non-myelin-related aspects of pathology 



 

 
102 

in diseased tissues. However, imaging the whole brain at sufficiently high resolution 

remains challenging. The major drawback are the long scan times required to provide full-

brain coverage (Piredda et al., 2020), the computationally intensive (and relatively 

complex) post-processing, and the inherently low signal-to-noise ratio (SNR) of the MWF 

maps (E J Canales-Rodríguez et al., 2019).  

 

Recent improvements in MR scanner gradient performance and sequence development 

allow the whole-brain coverage in clinically acceptable scans times by provided sufficient 

high resolution and SNR. Multicomponent T2 relaxation analysis has become the gold 

standard to non-invasively compute the myelin water fraction (MWF) in the brain. 

 Data 

Twenty early-stage relapsing-remitting MS (RRMS) patients and twenty sex and age-

matched healthy controls (HC) were scanned using the same 3T MRI Siemens scanner with 

a standard 32-channel head/neck coil. High-resolution human brain multi-echo T2 (MET2) 

data were collected using a prototype 3d multi-echo gradient and spin-echo sequence 

accelerated with CAIPIRINHA (Piredda et al., 2020) using the following parameters: 

matrix-size = 144x126; voxel-size = 1.8x1.8x1.8 𝑚𝑚3; TE/N-echoes/TR =10.68𝑚𝑠/32/

1 𝑠; prescribed 𝐹𝐴 = 180𝑜; number-of-slices=84; acceleration factor=3x2; number of 

averages = 1; acquisition time = 10:30 mins.   

 

The dMRI acquisition consisted of a four-shell protocol, including six images at b =

700 𝑠/𝑚𝑚2, 20 images at b = 2000 𝑠/𝑚𝑚2 and 66,  b = 3000𝑠/𝑚𝑚2, and 11 intersperse 

b = 0 (𝑏0) images. The voxel size was 1.8𝑥1.8𝑥1.8 𝑚𝑚3 and the TE and TR were 75 𝑚𝑠 

and 4500 𝑚𝑠, respectively. Additionally, 12 reverse encoding 𝑏0 images were acquired for 

distortion correction. Standard MP2RAGE and FLAIR structural 3d images with voxel-

size = 1𝑥1𝑥1𝑚𝑚3 were also acquired for the initial radiologic evaluation of the subjects 

and to segment brain lesions as in (La Rosa et al., 2018). Susceptibility-induced distortions 

were eliminated using the 𝑏0 images acquired with reversed phase-encoding polarities, and 

the dMRI data were corrected for eddy-currents and subjects motion using FSL tools 
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(Andersson and Sotiropoulos, 2015). The institutional review board approved the protocol, 

and all participants gave their written consent. 

 Multi-component T2 reconstruction 

The Extended-Phase-Graph (EPG) model (Prasloski, Mädler, et al., 2012) was employed 

to correct for stimulated echoes due to non-ideal experimental conditions. It allowed 

quantifying the deviation of the flip angle (FA) from the prescribed value due to B1 field 

inhomogeneities and imperfect excitation pulses (Hennig, Weigel and Scheffler, 2004). In 

our study, the dictionary matrix was built using the EPG model with 𝑝 = 60 T2-

logarithmically-spaced points ranging from 10 to 2000 ms (Prasloski, Rauscher, et al., 

2012). 

 

The noise was partially suppressed by filtering the raw data with a 3d total variation 

algorithm in the first step. The filtered data were corrected for head motion by linearly 

registering all image volumes with different echo times to the first volume. Different 

dictionary matrices were generated in a second step, each corresponding to a fixed FA 

value from a discrete set between 90o and 180o equally spaced by 1o. The fitting process 

was carried out independently for each dictionary matrix by using the standard non-

negative least squares (NNLS) method, and the actual FA was determined as the one 

minimizing the mean squared error. Finally, the intra-voxel T2 distribution was calculated 

using a regularized NNLS method  (Mackay et al., 1994; Whittall et al., 1997) based on a 

second-difference Laplacian matrix that promotes smooth solutions, as described in (E J 

Canales-Rodríguez et al., 2019). The optimal regularization parameter was determined 

using the L-curve methods, implemented in (Castellanos, Gómez and Guerra, 2002). The 

features extracted from the multi-compartment T2 reconstruction where the myelin water 

fraction (𝑀𝐸𝑇2𝑓𝑀
), the intra- and extra-cellular water fraction combined in a single scalar 

(𝑀𝐸𝑇2𝑓𝐼𝐸
) and the free water fraction, corresponding primarily to free fluids such as the 

cerebrospinal fluid (CSF) (𝑀𝐸𝑇2𝑓𝑐𝑠𝑓
). 
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The resulting images were registered to the diffusion MRI native space using the acquired 

𝑏0 images as reference. The non-linear registration was carried out with the Elastix 

software (Klein et al., 2010). 

 Multi-compartment microscopic diffusion MRI model 

The DW-MRI data was processed using an in-house python implementation of the 

Spherical Mean Technique (SMT) proposed by Kaden et al. (Kaden et al., 2016). It models 

brain tissue per voxel into an intra-neurite domain, containing dendrites and axons and the 

extra-neurite compartment that includes neurons, glial cells, and extracellular space. This 

technique provides estimates of neurite density unconfounded by fibre crossings and 

orientation dispersion. The features extracted from this model are the intra-neurite signal 

fraction 𝑆𝑀𝑇𝑓𝐼
 and the extra-cellular signal fraction 𝑆𝑀𝑇𝐹𝐸

. 

 Lesion identification 

Lesions were segmented on T1-w and T2-w images and verified and rated by two trained 

neurologist. Specifically, the lesion masks consisted of a voxel-wise probability 

distribution map, where "healthy" voxels have a null probability of being a lesion (La Rosa 

et al., 2018). On the training set, lesional voxels (L) were selected as voxels having a lesion 

score higher than 0.75 on the segmentation mask. This threshold was set to reduce the 

uncertainty in the lesion contours. A sharp limit was enforced in order to exclude 

perilesional voxels that may belong to normal-appearing tissue. The initial set of MS 

lesions counting for a total number of 18,441 voxels were identified and later refined and 

randomly sampled to build the training dataset from the patients' data. The voxels 

considered normal-appearing WM (NAWM) were selected by defining an external 

surrounding ring to each MS lesion. NAWM voxels were defined as being six voxels away 

for any lesion and named as (N) (see Figure 7-1). Voxels considered as healthy tissue 

voxels (C) were selected from the control dataset. 
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Figure 7-1 Visualization of the extracted training data for the lesions (light blue) and NAWM 

voxels (purple).  

All voxels with a lesion score above 0.75 were chosen as training data; NAWM voxels (N) were 

extracted from the surrounding WM of a neighbourhood with a minimum distance of six voxels 

from a lesion voxel (lesionscore>0). 

 Machine learning-based classification scores 

Boosting is a successful strategy used for assembling learning since first introduced by 

(Freund and Schapire, 1997) in the Adaboost classifier; it combines a set of weak classifiers 

to form a strong classifier via an aggregation-based voting mechanism, which in addition 

results in a probability of classification estimate. The first weak classifiers are learned by 

first considering all samples as equally important, then, for the training of the second 

iteration of the weak classifier, the weighting of all misclassified samples is increased by 

adjusting the weights of the feature vectors. Hence, the second classifier will focus 

primarily on the previously misclassified samples and therefore on the features that better 

separate the remaining data. Such a strategy has proven to work well for handcrafted 

features from orthogonal and complementary measurements. 

 

In this work, we used the multi-class extension of Adaboost, which performs a forward 

stagewise additive modelling using a multi-class exponential loss function. We 

corroborated through a quantitative evaluation strategy (not shown) that this method 

overperforms other state-of-the-art machine learning models such as SVM's and densely 

connected multilayer perceptron Neural Networks. The predictions were performed using 

as a feature set the ensemble of both SMT-dMRI and MET2 derived microstructure 
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parameters: 𝐹𝑐𝑜𝑚𝑏 = {𝑆𝑀𝑇𝑓𝐼
, 𝑆𝑀𝑇𝑓𝐸

, 𝑀𝐸𝑇2𝑓𝑀
, 𝑀𝐸𝑇2𝑓𝐼𝐸

, 𝑀𝐸𝑇2𝑓𝐶𝑆𝐹
}. For the evaluation, 

we maintain an MS patient dataset that was never used for training the data in any of the 

repetitions. Three different experiments were performed. In each of these three settings, 

the classifier was trained, and every repetition is used to predict to which category the 

voxels in the validation image belong.  The classifier implementation was performed using 

the Scikit-learn 0.22.1 weight-Boosting module. The trained models have the following 

structure:  

• Experiment-1: voxel classification in three different classes (L), (N), (C). 

• Experiment-2: lesions versus normal-appearing WM, i.e., (L) vs (N). 

• Experiment-3: lesions versus healthy controls, i.e., (L) vs (C).  

For each experiment, we performed k-fold cross-validation with 𝑘 = 5. The feature 

importance was also computed based on the information gain, which correlates to the 

feature importance to determine the splits over the aggregation procedure. Finally, instead 

of reporting a discrete label, we report the classification probability between lesions (L) 

and not lesions (N) or (C) as our "probability estimate map". 

 Results 

Results from the three experiments are summarized in Figure 7-2 and Table 6.1, which 

show, respectively, the confusion matrices of the classification and the cross-validation 

scores and mean accuracy for the three trained models. The first setting (L-N-C 

classification) shows that the combination of all features leads to a lesion detection of 77% 

(Figure 7-2 first panel). Most interestingly, the rate of false positives (i.e. when a healthy 

tissue voxel (C) is classified as a lesion (L)) is less than 1% (Figure 7-2, first column). As 

expected, the classification between NAWM and control voxels (N) and (C) yielded a 

modest classification, with almost the same percentage of true and false positives. 
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Figure 7-2 Confusion matrix of the three trained models. 

The y-axis shows the true ground-truth label. 

 

 

Test scores k-1    k-2    k-3    k-4    k-5 mean accuracy 

L-N-C 0.598  0.607  0.600  0.597  0.593 0.599 

L-N 0.843  0.861  0.851  0.841  0.840 0.847 

L-C 0.858  0.853  0.848  0.843  0.854 0.851 

 

Table 7-1 5-folds cross-validation scores and mean accuracy for the three trained models on the 

test dataset. 

 

Figure 7-2 compares the lesion probability map for two exemplary RRMS subjects 

extracted from the testing dataset using our proposed method with the lesion segmentation 
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masks extracted. While the lesions were correctly classified by our method, the resulting 

map highlighted voxels within the non-lesional tissue showing a diffuse abnormal pattern. 

These voxels were mainly located in the perilesional voxels. Moreover, voxels within the 

MS lesions show a gradient pattern, with the centre of the lesion having a higher score than 

the peripheral voxels. 

 

 

Figure 7-3 Voxel-wise lesion probability maps for one control subjects used in the validation. 

Notably, all the WM voxels of the control subject were classified with an overall lower probability 

than that of the RRMS patients. 
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Figure 7-4 Voxel-wise lesion probability maps for two MS subjects used in the validation.  

In each panel, the first row corresponds to the sagittal, coronal and axial views over the FLAIR 

image of the subject's lesions mask. In the second row, the same views of the lesion probability 

map as computed using our proposed method. The probability maps show a gradient in the lesions, 

with the core of the lesions having a higher lesion score and a diffuse pattern of abnormal tissue in 

regions otherwise considered non-lesional. 
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 Conclusions and perspectives 

This study proposes combining multi-component diffusion MRI and T2 relaxometry 

models to characterize brain lesions in patients with multiple sclerosis. Our results show 

that combining the dMRI and T2 relaxometry features, together with an Ada-boost 

classifier, adds valuable complementary information for the classification of abnormal 

tissue otherwise considered non-lesional. The proposed approach is fully automatic and 

may help monitor illness progression and assess the efficacy of new treatments. 

 

Our analysis shows that combining tissue microstructure information from multi-

compartment dMRI and T2 relaxometry helps yield better delineation of MS lesions than 

the state-of-the-art method used for the segmentation. More interestingly, the lesion 

probability map, computed using our Ada-Boost classifier, highlighted a gradient pattern 

in the lesional voxel, concordant with previous studies showing a progressive tissue loss in 

the core of MS lesions (Klistorner et al., 2018).  

 

In contrast to recent studies in MS using the fractional anisotropy metric derived from DTI 

(Chatterjee et al., 2018; Klistorner et al., 2018; Lipp et al., 2019), in our study, we 

employed a multi-shell acquisition protocol and a more complex biophysical model of the 

dMRI signal. The parameters estimated for this multi-compartment microscopic diffusion 

model are unconfounded by fibre crossings and orientation dispersion, thus providing more 

specific biomarkers of the tissue microstructure. 

 

Our study has certain limitations, mainly arising from the limited dataset available. Further 

work will include increasing the training and testing dataset and investigating other dMRI 

and MET2-based features. 
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7.3 Microstructure Maps using Trainable Sparse Encoders 

 

Diffusion-Weighted Magnetic Resonance Imaging is the only non-invasive technique 

available to infer the underlying brain tissue microstructure. One of the promising methods 

for microstructure imaging is signal modelling using the convex formulation, e.g. using the 

COMMIT framework. Despite the benefits of such a framework, a significant limitation is 

the long convergence time, making the method unappealing for clinical applications. In 

order to address this limitation, we propose to use a neural network to learn the sparse 

representation of the data and perform an end-to-end reconstruction of the microstructure 

estimates directly from the DW-MRI data. Our results show that the neural network can 

accurately estimate the microstructure maps, four orders of magnitude faster than the 

convex formulation. 

 Introduction 

In previous studies, the COMMIT framework (see Chapter 1) was successfully used to 

recover Axon Diameter Indices (ADI) from whole-brain tractography on ex-vivo monkey 

data and in-vivo human data. However, even if the convex optimization formulation brings 

fast estimations for simple biophysical forward models, with the increase in complexity of 

the forward models, the optimization procedure can reach several hours/days of 

computation time. In the following sections, we propose using a deep neural network to 

learn the sparse representation of the data and perform an end-to-end reconstruction of the 

microstructure estimates directly from the DW-MRI data. 

 COMMIT 

The COMMIT framework associates whole-brain tractography streamlines — estimating 

the white matter pathways — and microstructure imaging in a joint formulation. The 

framework is  expressed as a linear equation: 
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 𝑦 =  𝐴𝑥 +  𝜇,  

7-1 

Where 𝑦 contains the acquired DW-MRI voxels of the brain, 𝐴 is a matrix generated 

applying multi-compartmental biophysical modelling, and 𝜇 is the acquisition noise. The 

contributions 𝑥 of the compartments are estimated by solving a non-negative least-square 

problem: 

 𝑥 = 𝑎𝑟𝑔𝑚𝑖𝑛‖𝐴𝑥 −  𝑦‖2
2. 

 

 

7-2 

The estimated coefficients x, associated with each streamline, are commonly projected 

back to the voxel space. This procedure generates biophysical maps allowing comparison 

to state-of-art voxel-based methods (Daducci et al., 2015)  

 

 

Figure 7-5 The network architecture of LISTA truncated to the number of layers. 

Matrices 𝑊𝑒 and 𝑆 are learned and correspond to the learned auto-encoder. The matrix ϕ𝑇 is learned 

as part of the microstructure estimation rendered as a supervised learning classification. 

 Learned Sparse Encoding 

Sparse encoding aims to reconstruct an input signal using a linear combination of basis 

functions with a sparse set of coefficients. In the work of (Gregor and Lecun, 2010), a 

learned method that computes approximations of optimal sparse codes in a fixed amount 

of times was proposed. The method uses a time-unfolded neural network architecture 

where back-propagation through time can be applied. This method was coined Learned 

ISTA (LISTA) since it unfolds the popular ISTA algorithm (Beck and Teboulle, 2009), 

which solves the most common form of sparse encoding. This is summarized in the 

equation: 

 
𝐸𝑊𝑒

(𝑋, 𝑌) =
1

2
||𝑋 − 𝑊𝑒𝑌||

2

2
+ 𝛼||𝑌||

1
  , 
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7-3 

where 𝑊𝑒 is a 𝑁𝑠𝑖𝑔𝑛𝑎𝑙𝑠 × 𝑁𝑎𝑡𝑜𝑚𝑠 dictionary matrix of which the columns are the basis 

vectors, 𝛼 is a coefficient controlling the sparsity penalty, and the vector 𝑌 is the signal 

data. ISTA finds the sparse coefficients 𝑋 by iterating until convergence the following 

equation: 

 𝑌𝑘+1 = ℎθ(𝑊𝑒𝑋 + 𝑆𝑌𝑘);   𝑌(0) = 0 ,  

7-4 

where 𝑊𝑒 = 𝑊𝑑
𝑇 is the filter matrix, 𝑆 = (𝐼 − θ𝑊𝑑

𝑇𝑊𝑑) is the mutual inhibition matrix θ-

weighted, and ℎθ(⋅) is the shrinkage function (Gregor and Lecun, 2010). The idea of 

LISTA is to unfold the iterative process in Eq. 7-3 and map it into a sequential neural 

network, as shown in Figure 7-5. 

 

 

Figure 7-6 Voxel-wise map of the mean Axon Diameter Index 

a) Whole-brain tractography of one of the subjects of the HCP dataset; the white colour of the 

streamlines means that no quantitative information is associated with the tractography; b) Whole-

brain tractography with streamlines coloured according to the Axon Diameter Index (ADI) 

estimated using the COMMIT framework; c) Voxel-wise map of the mean Axon Diameter Index 

(mADI); left: sagittal view, top right: coronal view; bottom right: axial view. 

 

 Sparse Encoding for Microstructure Estimation.  

 

In a previously proposed framework, (Daducci et al., 2015) used sparse encoding to infer 

microstructure information using dictionaries of microstructure compartmentalized 

signals, coined as AMICO. More recently (Ye, 2017) used the LISTA architecture to learn 
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microstructure properties by mimicking the computation of the Neurite Orientation 

Dispersion and Density Imaging (NODDI) estimates as proposed in AMICO.  

 

Inspired by (Ye, 2017) we propose to learn the sparse representation of the voxel-wise 

mean Axon Diameter Index (mADI) computed with the COMMIT. Differently from local 

microstructure frameworks like AMICO, where the estimations are computed voxel-by-

voxel independently, COMMIT computes the microstructure properties jointly for the 

whole-brain, using the geometry of the streamlines to create voxel connections. We use the 

LISTA Network architecture to map the voxel-wise DW-MRI signal to the estimated mADI 

by adding a complete connected layer that maps directly into the learned coefficients.  

 In-Vivo Dataset and Processing 

We used 34 subjects of the MGH-USC Human Connectome Project (HCP) Adult Diffusion 

Dataset. The DW-MRI acquisition scheme consists of 552 q-space samples over four shells 

with b = 1,3,5,10 𝑚𝑠/𝜇𝑚2 and 40 b = 0 images. The DW-MRI images were acquired at 

1.5 𝑚𝑚 isotropic voxel size (Spin-echo EPI sequence, 𝑇𝑅/𝑇𝐸 =  8800/57 𝑚𝑠, 𝛿 =

12.9 𝑚𝑠, Δ = 21.8𝑚𝑠). DW-MRI images were corrected for motion and EDDY currents. 

The fibre Orientation Distribution Functions (ODFs) were computed using a single 

averaged fibre response (white matter voxels with fractional anisotropy above 0.7) as input 

for the spherical deconvolution (Tournier, Calamante and Connelly, 2007; Erick Jorge 

Canales-Rodríguez et al., 2019)  on single-shell DW-MRI images (𝑏 = 3 𝑚𝑠/𝜇𝑚2  and a 

maximum spherical harmonic order 8). Partial Volume Estimates (PVEs) for the white 

matter, grey matter and cerebrospinal fluid were obtained from the provided T1-weighted 

using FSL/FAST (Zhang et al., 2005). We used the PVEs as input for the probabilistic 

Particle Filtering Tractography (PFT) algorithm, and ten streamlines were initiated per 

voxel of the white matter volume; the resulting streamlines are shown in Figure 7-6 a. 

 

We used the COMMIT framework to estimate the ADI coefficients for each streamline, 

Figure 7-6, b, and the Extra Axonal Signal Fraction (EASF) for each voxel. The mean 

Axon Diameter Index (mADI) (shown in Figure 7-6) is reported voxel-wise as: 
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𝑚𝐴𝐷𝐼 =

∑ 𝑤𝑠 ⋅ 𝑙𝑠 ⋅ 𝐴𝐷𝐼𝑠
𝑆
𝑠

∑ 𝑤𝑠 ⋅ 𝑙𝑠
𝑆
𝑠

, 
 

7-5 

where S is the set of all streamlines crossing the voxel, 𝐴𝐷𝐼𝑠 is the ADI of the streamline 

𝑠, 𝑙𝑠 is the length of the segment intersecting the voxel, and 𝑤𝑠 is the intra-axonal 

contribution of the streamlines. 

 Results 

Figure 7-7 shows the mADI and the EASF maps obtained for a single volume in the test 

dataset from both the Neural Network (NN) and COMMIT. The bottom row shows the 

difference map between both estimations. The overall mean (μ) and standard deviation (𝜎) 

of the mADI and ECSF error, calculated as the difference between the estimations of 

COMMIT and the NN over 14 training subjects, were 𝜇 = 0.627 and  𝜎 =  0.083, and  

𝜇 = 0.028 and 𝜎 =  0.003, respectively. In addition, a regular trend of high mADI 

estimations near the Corpus Callosum (CC) can be observed in both COMMIT and NN 

methods and a decrease of the EASF in both maps in the same CC regions. The average 

computation time for COMMIT was approximately 15 hours per subject on a machine with 

12 cores, while with NN, the computation time went down to a few seconds per subject 

using an NVIDIA Titan Xp GPU. 
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Figure 7-7  DNN vs COMMIT bases mADI results. 

a) axial view of the b0 image. b) Track Density Imaging (TDI), counting the number of tractography 

streamlines passing through each voxel. c) Top: mADI map estimated with COMMIT; bottom: 

mADI map estimated with the neural network (NN). d) Top: EASF map estimated with COMMIT; 

bottom: ECSF estimated with the NN. e) Map of the difference between the mADI estimated with 

COMMIT and with the NN. f) Map of the difference between EASF estimated with COMMIT and 

with the NN.   

 Conclusions 

In this work, we present a preliminary exploration of the use of learned sparse encoders to 

estimate tissue microstructure properties derived from a whole-brain tractography 

informed microstructure framework, i.e. COMMIT. The first advantage of the proposed 

method is the speed up in computation time of the microstructure maps from several hours 
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for COMMIT to a few seconds. The second advantage is that the learned network can 

compute the microstructure maps directly from the raw DW-MRI data, and thus it does not 

require tractography methods. The results presented in this work shows the feasibility of 

this approach to replicate such maps accurately. 

 

The presented work is exploratory, and further experiments will be carried out to address 

some limitations, such as the quality of the microstructure maps. This can be done using 

data with higher diffusion gradients strength to improve the sensitivity to smaller axon 

diameters' indices. Finally, a thorough comparison of the network's architecture and 

convergence against more robust architectures will be considered in future work. 
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  Conclusions and Perspectives 

 

 

The purpose of this thesis was to investigate the modelling and reconstruction of DW-MRI 

signals from the brain's WM using Monte-Carlo diffusion simulations, with applications 

ranging from protocol optimization to microstructure estimation. 

 

Our first notably contribution is the design and development of the MCDC (Section 3.4 ), 

a robust, fast and open-source Monte-Carlo DW-MRI simulator. Our simulator is capable 

of performing groundbreaking simulations, which has open the door to new studies on the 

diffusion properties of realistic WM microstructure (Andersson et al., 2021), the validation 

of models for the axon diameter distribution estimation in the WM (Romascano et al., 

2020), signal peak estimation on novel DW-MRI sequences (Rensonnet et al., 2020). The 

simulator is in constant development and available for the scientific community. Hence our 

future work will focus on extending the simulator capabilities. 

 

An interdependent part of the generation of realistic Monte-Carlo simulations is the 

creation of accurate virtual tissue models. In our work, we extended an existing method for 

the creation of composite white matter bundles configurations and extended it into a 

framework for creating complex substrates for Monte-Carlo simulations (Chapter 4). We 

created a Diffusion Simulated Connectivity Phantom with this framework (Section 4.3 ), a 

one-of-a-kind numerical phantom with unheard dimensions and complexity. The phantoms 

dimensions and complexity make it an exceptional environment for validating join 

tractography and microstructure models. Furthermore, we have presented two new 

constructed phantoms as a collaborative tractography and connectivity estimation 

challenge in MICCAI’s 2021 conference. However, this framework can still be further 

improved, for example, by adding more accurate refine structures found in the natural 

axonal tissue, such as axons diameter variations, the presence of non-myelinated (and thus 
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permeable) structures, and densely high packed regions. Thus, future studies on the 

segmentation and reconstruction of hyper-realistic axonal 3d models, like the one presented 

in (Andersson et al., 2021), will ultimately guide the development of new frameworks for 

the generation of hyper-realistic virtual tissue models. 

  

In the second part of our contribution work, we have focused on applications of our novel 

simulator as a forward modelling tool for the generation of simulation-assisted 

frameworks. Here, we have shown two key applications of this. The first contribution paper 

uses simulations to generate a massive number of simulated data for training Machine 

Learning-based microstructure models (Chapter 5). We were able to show that the trained 

models with and without handcrafted features could accurately recover the mean and 

standard deviation of the axon diameter distribution on synthetic data and DW-MRI data 

with moderately high b-values (4000𝑠/𝑚𝑚2).  However, the simulated data in this work 

can still be further improved by considering more than a two-compartment model and 

axonal trajectories with micro-dispersion along the axons. As before, this limitation can be 

addressed in the future by generating more complex and realistic axonal configurations, 

remarkably, without significantly modifying the machine learning models and related 

parameters from this study.  

 

Our second simulated-assisted model tackles the problem of creating DW-MRI sequences 

optimized for the reconstruction of a microstructure feature of interest (Chapter 6). The 

key element in this study relies upon the performance and flexibility of our simulator, 

which makes it feasible to compute the DWI signal fast and robustly enough to 

approximate first-order derivatives of the waveform optimization procedure on the go. Our 

framework — which relies on maximizing the Fisher information derived for a 

microstructure feature of interest (the IAVF in our case scenario) — can create a family of 

waveforms with a higher sensitivity to the IAVF than those from optimized PGSE 

sequences.  Our future work will target more challenging microstructure properties, such 

as angular dispersion and spherical pore size parameter estimation. More importantly, 

however, accounting for in-vivo experiments will be an essential step for validating the 

generated waveforms.  
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Finally, the third part of the thesis presents a data-driven exploration of two challenging 

scenarios of our simulation-based approach (Chapter 7). The first application tackles the 

characterization of anomalous tissue, which by its nature, is more challenging to 

characterize and study than healthy segmented tissue. Our results on such cases showed 

that combining tissue microstructure information from multi-compartment DW-MRI and 

T2 relaxometry can accurately delineate MS lesions at the individual voxel level. As future 

work, and in order to apply our simulated-based strategy to this study, we have further 

developed our simulation framework to account for multiple diffusion compartments and 

T2 relaxometry effects (Rafael-Patino, Girard, et al., 2020). These extensions are a first 

step forward towards the characterization of the structural changes in pathology. However, 

work regarding other possible effects on MS, such as demyelination — and thus changes 

in the tissue's permeability conditions — are open challenges that we will address in future 

work.  

 

The final data-driven application explores the use of deep learning-based methods to learn 

microstructure features from COMMIT-mADI, which uses the global information of a 

tractogram to model the local axonal microstructure. Such an approach presents several 

remarkable challenges. The first arises from the learned model need to use the outputs maps 

from another computed model as COMMIT, which, as discussed before, suffers from 

previous models' limitations based on simplified geometries. The second challenge is 

constructing and computing suitable substrates and their corresponding simulation, 

requiring a complete tractogram spawning several voxels.  Both constraints have been 

successfully addressed with our constructed DisCo phantom, from which we can use the 

ground-truth information of the phantom’s optimized trajectories and virtually generated 

microstructure to train from scratch a simulated-assisted version of the deep-leaning based 

work presented. 

 

 

All the contributions presented here summarise our particular effort towards novel, robust, 

and accurate DW-MRI microstructure models; from the first step on the signal modelling 

to the final inverse modelling for microstructure estimation. It is our hope that our 
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simulated-based approach, along with the simulator developed in this thesis, will help to 

produce novel and reproducible research in microstructure imaging. 
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