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Abstract
The expeditious proliferation of Internet connectivity and the growing adoption of digital products
have transformed various spheres of our everyday lives. This increased digitization of society has
led to the emergence of new applications, which are deployed all the way from High Performance
Computing (HPC) systems and cloud servers to mobile devices. These new emerging applications
like video analytics, autonomous driving, natural language processing, content recommenda-
tion, bioinformatics, and genome sequencing, have different performance/energy requirements,
and are deployed on a variety of different platforms. To meet the performance and Quality-
of-Service (QoS) constraints, cloud servers, and HPC platforms are comprised of many-core
processors. Even the processors in today’s mobile and edge devices are multi-core. To optimize
energy efficiency and performance, a system-level simulator is required. This simulator must be
capable of simultaneously executing multi-threaded applications in a full-system environment
with a complete operating system (OS), on a heterogeneous many-core system.

In this thesis, I present gem5-X, a system-level simulation platform to optimize many-core hetero-
geneous compute and memory architectures. Gem5-X exploration and optimization methodology
is also proposed to optimize both the compute and memory sub-system for multi-thread ap-
plications. Gem5-X extends gem5 with architectural extensions for the compute and memory
sub-systems, including in-caching computing accelerator, clustered heterogeneous cores, in-
memory computing engine, and 3D stacked High Bandwidth Memory v2 (HBM2). It also adds
support enhancements to gem5, including, Virtual Machine (VM) support, profiling support in the
simulator using gperf profiler, enhanced checkpointing, and file sharing between the simulated
and the host system. Finally, all the extensions and enhancements are fully supported in Full
System (FS) mode of gem5-X, enabling booting and running a full Linux stack on top of the
simulator, allowing almost any application running in a Linux system to be executed using
gem5-X.

To demonstrate the capabilities of gem5-X, various compute-dominated and memory-dominated
applications are used as case studies. These state-of-the-art applications include video encoding,
video analytics, VMs in the cloud, Binary Neural Networks (BNNs) and Recurrent Neural Net-
works (RNNs) as compute-intensive workloads. In addition to compute-dominated workloads,
memory-dominated applications, including genome sequence alignment based on Next Genera-
tion Sequencing (NGS) techniques, and Convolutional Neural Networks (CNNs) are presented as
case studies to demonstrate the memory sub-system extensions of gem5-X. Gem5-X exploration
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Abstract

methodology is used to optimize architectures for these applications, achieving both performance
and energy benefits. All the applications and workloads used in this thesis are case studies
to showcase the capabilities of gem5-X. Gem5-X is generic and can be used to optimize and
explore architectures for any multi-threaded (or single-threaded) application that can run on a
Linux-based OS.

Keywords: Many-core, multi-core, heterogeneous architectures, architecture exploration, simu-
lator, gem5, gem5-X, in-cache computing, in-memory computing, HBM, 3D ICs, SPM, 3D stacked
memory, CNN, NGS, genome sequencing, High Performing Computing (HPC), Cloud Computing
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Résumé
L’augmentation de la connectivité internet et de l’utilisation de produits digitaux ont transformé
différentes facettes de notre vie quotidienne. La digitalisation de notre société a fait apparaître
de nouvelles applications qui sont déployées sur tout l’éventail de l’infrastructure informatique,
des serveurs cloud et centre de Calcul Haute Performance (HPC) jusqu’aux appareils mobiles.
Ces applications, telles que l’analyse vidéo, la conduite autonome, le traitement du langage
naturel, ou le séquençage du génome, ont des exigences différentes en matière de performances/-
énergie et sont déployées sur une large gamme d’appareils. Pour répondre aux contraintes de
performances et de qualité de service, les serveurs cloud et les plateformes HPC sont composés
de processeurs multicœurs. Même les processeurs des téléphones mobiles et des dispositifs
périphériques d’aujourd’hui sont multicœurs. Pour optimiser leur efficacité énergétique et leurs
performances, un simulateur du système complet est nécessaire. Ce dernier doit être capable
d’exécuter simultanément des applications multithread dans un environnement système complet
avec un système d’exploitation (OS) complet, sur un système multicœurs hétérogène.

Dans cette thèse, je présente gem5-X, une plateforme de simulation au niveau système pour
optimiser les architectures de calculs et de mémoire hétérogènes à plusieurs cœurs. Gem5-X
propose aussi une méthodologie pour l’exploration et l’optimisation à la fois du sous-système
de calcul et de la mémoire, pour les applications multithread. Gem5-X étend gem5 avec des
extensions architecturales, notamment un accélérateur de calcul en cache, des cœurs hétérogènes
groupés, un moteur de calcul en mémoire et une mémoire à bande passante élevée (HBM2)
empilée en 3D. Gem5-X apporte également plus de support à gem5, y compris, mais sans s’y
limiter, la prise en charge du profilage dans le simulateur à l’aide du profileur gperf. Toutes
les extensions et améliorations sont entièrement prises en charge en mode Système complet de
gem5-X, permettant de démarrer et d’exécuter une couche Linux complète sur le simulateur et
ainsi d’exécuter presque toutes les applications fonctionnant sur un système Linux.

Pour démontrer les capacités de gem5-X, diverses applications dominées par leur demande
en calculs et en mémoire sont utilisées comme études de cas. Ces applications de pointes in-
cluent l’encodage vidéo, l’analyse vidéo, les machines virtuelles dans le cloud, les réseaux de
neurones binaires (BNN) et les réseaux de neurones récurrents (RNN), l’alignement de séquences
génomiques basé sur les techniques de séquençage de nouvelle génération (NGS) et les réseaux
de neurones à convolution (CNN). La méthodologie d’exploration Gem5-X est utilisée pour
optimiser les architectures pour ces applications, permettant à la fois des avantages en termes de
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performances et d’énergie.

Mots-clés : Architectures multicœurs, architectures hétérogènes, exploration d’architecture,
simulateur, gem5, gem5-X, calcul en cache, calcul en mémoire, HBM, circuits intégrés 3D, SPM,
mémoire 3D empilé, CNN, NGS, séquençage du génome, Calcul Haute Performance (HPC),
calcul dans le cloud
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1 Introduction

The past two decades have seen a rapid expansion and reach of internet and online services.
From 2000 to 2019, internet penetration has increased more than 8 times from 6.3% to over
53% of the world population [3, 4]. In addition, more than 93% of the world population has
internet connectivity as of 2019 [5]. This increased internet connectivity has enabled various
online services which had a significant impact on our everyday lives. From weather reports in
the morning, daily navigation and route planning on our way to work, social networking, video
streaming, web search, online financial services, e-commerce and the list goes on, we are almost
continuously connected to the Internet.

The world’s connectivity infrastructure was put to a real test with the outbreak of the novel
coronavirus (COVID-19) [6]. The abrupt closure of workplaces, educational institutes, shops and
shopping centres to contain the spread of the virus had a drastic impact on the lives of people.
However, due to the internet connectivity and availability of various online services, many of the
effects were mitigated with workplaces and educational institutes switching instantly to remote
working and remote learning, respectively. Online shopping became the new norm for many,
with e-commerce representing 17% of the global retail trade [7]. With people confined to their
homes during lockdown, online entertainment and video streaming services also saw a surge,
with 72% weekly increase of Netflix users in the US [8].

With the emergence of the Internet-of-Things (IoT), we will be connected more than ever to the
Internet and rely even more on the online services [9], in addition to the increased internet usage
and digitization during the COVID-19 pandemic. IoT has evolved from being a buzz word in early
2000s to actual products and applications like smart cities [10], smart supply chain management
for real-time tracking [11], connected and autonomous cars [12], e-health via remote monitoring
and wearable sensors [13], and geographically distributed environment and weather sensors [14],
just to mention a few. To reduce the communication overhead and save on communication energy,
computing the collected data on the edge sensor nodes is preferable. However, these edge IoT
and mobile devices are constrained in energy as well as computational power. Therefore, with
the emergence of increasingly complex applications, some of these applications or a part of
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them have to be computed on the cloud servers to which the edge node is connected. Hence, we
have emerging applications which are deployed all the way from edge and mobile platforms to
cloud servers and High Performance Computing (HPC) systems. Thus, it is essential to optimize
performance and minimize the energy consumption of both the connected energy constrained
edge devices as well as high-end servers. These power hungry data centres consume around 1%
(200 TWh) of the global energy [15]. To put into perspective, this is half of the electricity used
for transport worldwide [16].

1.1 The Power Wall Problem

Moore’s Law [17] and the Dennard Scaling Model [18] describe the performance scaling in
the semiconductor industry for decades. According to Moore’s Law the number of transistors
per unit area double every 18 to 24 months. Dennard scaling, which is the scaling of transistor
size and voltage by the same factor, has helped chip designers maintain the power budget of the
chip, i.e., constant power per unit area, despite having more transistors per unit area. However,
Dennard scaling ignored the effects of leakage current and threshold voltage, due to which there
is an exponential dependence of leakage power on threshold voltage. This has constrained the
threshold and supply voltage scaling, resulting in increased power density of the chip with each
technology node [18]. Consequently, not all the transistors on the chip can be powered ON at the
same time due to constrained Thermal Design Power (TDP) budget of the chip, because of the
physical limitation of cooling technologies and packaging. This is commonly referred to as the
Dark Silicon problem [19, 20, 21]. Hence, many-core scaling faces a Power Wall problem.

Heterogeneous multi-core architectures can help in pushing back and alleviating the Power
Wall problem [22]. Heterogeneity enables applications or different kernels of the application
to be mapped on different computing resources, depending on the performance requirements
and energy constraints. Consequently this improves performance as well as energy efficiency
[23]. The heterogeneity can be of various forms including functional heterogeneity or micro-
architectural heterogeneity. Functional heterogeneity refers to heterogeneity at the processing
engines or core level, with different functional behavior like general-purpose processors, Graphic
Processing Units (GPUs) and special purpose accelerators [22]. Micro-architectural heterogene-
ity refers to processors that have cores with the same Instruction Set Architecture (ISA), but
different performance-power characteristics. These processors have a combination of simple
energy efficient in-order cores along with high-performance Out-of-Order (OoO) cores. Tasks
and applications are allocated according to their performance requirements, to have the best
energy efficiency as well as performance. The big.LITTLE architecture from ARM is an exam-
ple of micro-architectural heterogeneous processor [24]. Deeply heterogeneous architectures
combine all the forms of heterogeneity discussed above (i.e., functional and micro-architectural
heterogeneity) to have a complete heterogeneous system. However, there are various challenges
for the heterogeneous computing, including communication between different compute cores,
programming, integration, scheduling and scalability. Furthermore, design space exploration, in
the quest to find the best performance and energy efficient heterogeneous architecture, using a
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fast, validated and full system simulator is also a challenge in designing heterogeneous systems.

Besides heterogeneity, Near-Threshold-Computing (NTC) is a promising approach in mitigating
the Dark Silicon problem [22]. In NTC, performance is sacrificed for energy efficiency, by
operating the transistors at a voltage slightly greater than the transistor threshold voltage, thus
bringing down power consumption due to the quadratic relation between dynamic power and
operating voltage [25].

1.2 The Memory Wall Problem

In addition to the Dennard scaling and the Dark Silicon problem on the compute side, the
second problem limiting the performance and energy efficiency of the computing systems is the
Memory Wall problem. The Memory Wall problem refers to limited I/O and memory bandwidth
available to the processing cores on the chip [26]. The emerging applications, whether it be a
Convolutional Neural Network (CNN) deployed on the edge device or video analytics in the
cloud or a genome sequence alignment running on a HPC system, all face the Memory Wall
problem. These applications either have large working data-sets which do not fit on the on-chip
caches, or memory access patterns that are unpredictable, increasing the cache miss-rate. This
leads to deterioration in the overall performance and energy efficiency because of the high number
of memory accesses. Cache hierarchies have hidden the large latencies associated in accessing
the DRAM memory, but this does not solve the Memory Wall problem for applications with large
data or random memory access patterns. Emerging memory technologies like 3D die-stacked
memories [27] are explored as alternatives to the traditional DDR memories with magnitude
of improvement (10x) in bandwidth [28] and hence, help in bringing down the Memory Wall.
Moreover, the emerging Non-volatile Memories (NVMs) [29] are promising in alleviating the
Memory Wall problem by enabling to perform the computations within the memory [30].

1.3 Thesis Contribution

Today’s emerging applications are restricted in performance and energy efficiency by both the
Power Wall and the Memory Wall. To mitigate the effects of both the walls, this thesis proposes
and demonstrates the exploration of different heterogeneous compute and memory architectures
to achieve performance- and energy-optimized architectures, both for the compute and memory
sub-systems. Architecture Exploration is the key enabler for performance and energy efficient
architectures. It is this exploration that enables to explore new ideas and analyse if they are
beneficial in improving the system performance and energy efficiency. Therefore, I present in this
thesis a system-level architectural simulation platform, gem5-X, to explore novel architectures
for improved performance and energy efficiency across all levels of computing platforms, from
the edge sensors to high end servers in the cloud. The major contributions of this thesis are
summarized as follows:
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• I present and develop the gem5-X architectural simulator, which is based on gem5 simulator
[31], with a variety of architectural extensions and support enhancements completely
integrated and compatible with each other out-of-the-box (OOB) in Full System (FS)
mode.

• To demonstrate the capabilities of gem5-X architectural simulator, to explore and optimize
architectures both for the compute and memory sub-systems, various emerging and state-
of-the-art applications are used as case studies. However, gem5-X is generic and can be
used to explore and optimize architectures for any application, other than the case studies
as well.

• For the compute-dominated case study applications, I explore and optimize architectures,
enabled by gem5-X architectural extensions including heterogeneous computing, in-cache
computing accelerators, NTC servers and Computational Memories (CMs) integrated
within the Central Processing Unit (CPU) cores.

• I develop and propose to use 3D stacked High Bandwidth Memory v2 (HBM2) and
Scratchpad Memories (SPMs) models in gem5-X to alleviate the Memory Wall, when
optimizing the architecture for memory-dominated case study workloads.

In this section, the chapter-wise contributions of the thesis will be briefly presented, in the
architectural quest of achieving performance- and energy-optimized architectures for state-of-the-
art emerging applications of today.

1.3.1 The Gem5-X Simulator

To explore many-core heterogeneous compute and memory architectures, a system-level simulator
is required for fast design space exploration and optimization. The gem5-X simulator is proposed
and presented in this thesis with two main system-level exploration goals. In particular, it is used
for architectural exploration and for optimization of heterogeneous many-core systems in FS
mode with full Linux stack. Gem5-X is "a gem5-based full-system simulator with architectural
eXtensions". Gem5-X extends gem5 [31] with architectural extensions and support enhancements.
Gem5-X is presented an discussed in detail in Chapter 2 of this thesis.

1.3.1.1 Architectural Extensions

Architectural extensions in gem5-X are added for both the compute and the memory sub-systems
and are supported in FS mode. These extensions enable the support for different general purpose
compute cores, including ARMv8 in-order and OoO cores, with the number of cores scaling up
to 256. Accelerators can be added and integrated with ease in gem5-X at different levels in the
compute sub-system. They can be integrated within the CPU pipeline, or added within the caches
(as in-cache computing engine), or as a separate compute engine. Gem5-X ISA extensions enable
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seamless integration of the accelerators within the compute sub-system. Furthermore, gem5-X
enables heterogeneity and is able to simulate different core types (including in-order and OoO)
along with different accelerators in the same system together, to help alleviate the Power Wall
problem. In addition to heterogeneity, gem5-X also supports core clustering, with each cluster
having its own shared cache. Clustering enables different independent applications or kernels
of the same application with very little data sharing to be assigned to different clusters, which
alleviates the cache thrashing problem in the shared cache.

To alleviate the Memory Wall problem, gem5-X supports various architectural extensions to
have an efficient and optimized memory sub-system. It supports 3D stacked HBM2 [32], based
on 3D stacked DRAMs. This 3D stacking of DRAM banks is enabled by Through-Silicon-
Vias (TSVs). Gem5-X also supports traditional memories like DDR4, alongside HBM2 in the
same system. This enables one to have a heterogeneous memory sub-system, with data from
different applications or different kernels of the same application allocated to different memories
according to bandwidth (BW) requirements of the respective application or kernels. In addition
to supporting a heterogeneous memory sub-system with regards to the main memory, the gem5-X
simulation platform also supports SPM or Software-Programmable Memories, tightly coupled
to the computing cores. SPMs are at the same level as an L1 cache, but with the data managed
completely in software, as opposed to hardware controlled caches. Hence, they are useful when
the programmer wants the data to be readily available near the compute core and avoid it being
evicted in the hardware controlled cache. SPMs can either be private or shared between compute
cores. Shared SPMs are particularly useful for core-to-core communication or data transfer,
bypassing the entire cache hierarchy. Communication between cores was one of the challenges
that was described earlier for heterogeneous computing systems. Hence, shared SPMs also help
to resolve that. Gem5-X supports both private and shared SPMs.

1.3.1.2 Support Enhancements

Gem5-X has various support enhancements that enable it to include the architectural extensions
discussed above both for the memory and compute sub-systems. One of the most prominent
features and support enhancements of the gem5-X simulation platform is that it supports all the
architectural extensions, whether in the compute or memory sub-system, in FS simulation mode.
FS mode enables to boot an entire Linux based operating system (OS). Gem5-X comes with
Ubuntu 16.04 OS, up-gradable to Ubuntu 18.04 OS disk image. FS mode allows for almost
any multi-threaded application running on top of a modern Linux to be ported and simulated
in gem5-X, thus, facilitating a multi-threaded and multi-core architectural exploration for that
application utilizing different architectural extensions. Furthermore, the gperf [33] profiler
support in gem5-X allows fast profiling and seamless analysis of multi-threaded applications
within the simulator. Moreover, the support for Virtual Machines (VMs) using the Linux LXC
containers is also added to allow simulating cloud workloads using VMs. Furthermore, an
architectural exploration and optimization methodology is proposed to obtain a performance-
energy optimized architecture for applications within gem5-X. Checkpointing has been enhanced
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in gem5-X and support for file sharing between the host and simulated system has been added,
for faster simulation turnaround time.

The gem5-X simulator has been validated for both ARMv8 64-bit in-order and OoO cores with
a validation error of up to 4% against a commercially available ARM JUNO platform [34].
Moreover, a detailed BW analysis and validation of the HBM2 memory model in gem5-X is
presented in this thesis, in comparison to the DDR4 model. The BW analysis also looks into the
scaling of HBM2 BW with varying number of memory channels.

Gem5-X is generic and can be used in to simulate and optimize any multi-threaded application. To
demonstrate the architectural exploration methodology and the utilization of various architectural
extensions and support enhancements in gem5-X, different emerging applications deployed in
real world scenarios are used as case studies.

The case study applications are broadly classified as either compute-dominated or memory
dominated, depending on whether the application is compute intensive or memory intensive.
Therefore, the architecture exploration is also either compute-dominated or memory-dominated.
Compute-dominated architectural exploration does not imply that the memory sub-system will
not be optimized, but it means that the main focus will be on the compute sub-system for
compute intensive workloads, as most of the performance and energy benefits will come from it.
However, optimization of the memory-subsystem for these applications will also be looked at,
but the improvements will be lower. Same applies to memory-intensive workloads, where the
most performance and energy benefits will be achieved by improving the memory sub-systems.
However, an efficient compute sub-system will still be required and explored for these workloads.

1.3.2 Compute-Dominated Architecture Exploration

To showcase the gem5-X capabilities and demonstrate its architectural extensions, I will optimize
and explore architectures for state-of-the-art emerging compute intensive applications in this
thesis. The applications used as case studies represent application domains, and the optimized
architectures obtained for each application domain can be considered as architecture templates
for other applications in that domain. The compute-dominated case study applications include
video encoding, video analytics, VM banking workloads, Binary Neural Networks (BNNs) and
Long-Short-Term-Memory (LSTM) based Recurrent Neural Networks (RNNs). In this section
different compute intensive applications and the respective gem5-X extensions used will be
presented briefly. Chapter 3 of the thesis presents in detail the architecture exploration and
optimization for these compute-dominated workloads.

1.3.2.1 Architecture Optimization for Video Encoding

In 2018, 58% of the total down stream internet traffic was video streaming, as presented by
[35]. Furthermore, amid the COVID-19 pandemic and lockdowns imposed in various countries
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around the world, people were confined to their houses. Online video content was one of the
main entertainments for both adults and children alike, with a 72% weekly increase of Netflix
users in the US [8]. Hence, there is an increasing need for a performance-energy-optimized
video encoding application, as the online videos are encoded prior to transmission to reduce
BW utilization. Therefore, video encoding is used as one of the case study applications to
demonstrate gem5-X capabilities. Video encoding targets the video processing application
domain. Kvazaar [1], an open source state-of-the-art High Efficiency Video Coding (HEVC)
application, is used for video encoding.

Kvazaar is first profiled, both on the ARM JUNO platform [34] as well as in gem5-X. Valgrind [36]
and gperf [33] profilers are used in JUNO and gem5-X, respectively. The Finite Impulse Re-
sponse (FIR) filter and Sum-of-Absolute-Difference (SATD) blocks in the motion estimation
kernel of video encoding are found to be the dominating computationally intensive execution
blocks. The cache utilization is also found to be high, with around 5% L1-D cache miss rate,
indicating high data locality in the cache.

BLADE, an in-cache computing accelerator [37, 38], is proposed to accelerate both the FIR filter
and SATD blocks of the video encoding application, by enabling computation directly within the
cache. BLADE is implemented and integrated in the L1-D cache of the CPU cores in gem5-X.
To enable BLADE to be used in the gem5-X FS mode, the ARMv8 ISA [39] is extended using
the reserved opcodes, to implement new BLADE instructions. These new instructions are used
within the application via in-line assembly calls in C/C++.

Videos of three different resolutions are encoded to determine the performance and energy
benefits of using the BLADE in-cache accelerator for video encoding. Videos of 1920x1080,
416x240 and 176x144 pixels, corresponding to high, medium and low resolutions, are encoded
with Kvazaar. These resolutions are representative of user playback devices from a low end
mobile to a high resolution TV set. Results demonstrate that accelerating both the FIR filter and
the SATD block using BLADE leads to 15% performance benefits, 76% energy savings and 31%
less area when compared to a system architecture without BLADE.

1.3.2.2 Heterogeneous Architecture for Video Analytics

Real-time video analytics application, also referred to as the emerging "killer-app" [40], is de-
ployed across a variety of computing platforms, from low power edge devices to high performance
cloud servers. It is used in different emerging domains including video surveillance for security
and safety [41, 42], autonomous drone navigation for drone rescue missions and parcel deliveries
[43], and autonomous cars equipped with Advance Driver-Assistance Systems (ADAS) [44].

Video analytics is composed of two main kernels, video encoding and image classification and
detection, running simultaneously in parallel with each other. For a seamless user experience,
video encoding has to meet the 24 frames-per-second (FPS) Quality-of-Service (QoS) constraint,
whereas image classification has real-time constraints. These real-time constraints for the image
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classification are different in different use cases. Three case study scenarios of surveillance,
drone navigation and autonomous cars with ADAS for video analytics will be used in this thesis.
Kvazaar, as discussed in the previous section, is used for the video encoding kernel. MobileNet
[45], a CNN-based image classifier, is used as the image classification kernel of video analytics.

A two-step optimization and exploration methodology is used for architecture exploration of the
video analytics application. Step 1 focuses on architecture optimization for individual kernels.
Step 2 combines all the architecture optimizations for different kernels on a single platform with
all kernels co-allocated together to have a complete application. The complete architecture is
then optimized with all the kernels executing together.

Using the two-step architecture exploration methodology, a clustered heterogeneous system for
the video encoding application with 3D stacked HBM2 memory is proposed. ARMv8 in-order
cores along with BLADE in-cache computing engine are proposed for the video encoding kernel.
For the MobileNet CNN, I propose ARM OoO cores as they are found to be the most performance
and energy efficient for it. Hence, ARM in-order cores with BLADE and ARM OoO cores,
both in separate compute clusters, are proposed for the complete video analytics. HBM2 is also
proposed and utilized to relieve any memory bottlenecks in the system. Results show that using
heterogeneous cores along with HBM2 gives 30% performance speed-up, 54% energy savings
and 43% area benefit, while meeting the target performance constraints of the application.

1.3.2.3 Near-Threshold-Computing (NTC) Servers for VMs in the Cloud

Due to the increase in the number of applications and services hosted in the cloud one cannot turn
away from the importance of cloud computing. Video streaming services, online banking, cloud
storage services, web hosting services, just to name a few, are all hosted in the cloud. Hence, the
cloud data centers are increasing in the world, with the increase in these cloud based applications
and services. Therefore, I target to explore architectures to maximize the performance and energy
efficiency of cloud servers.

Server processors are generally multi-core, and due to the Dennard scaling have a Dark Silicon
problem, as was discussed earlier in Section 1.1. NTC can help in overcoming these power
bottlenecks, by operating the cores at a voltage slightly higher than the transistor threshold.
Exploiting the performance-power trade-offs in NTC, it will be demonstrate that the strict QoS
constraints can be met for the cloud servers. The Ultra-Thin Body and Buried Oxide (UTBB) in
28nm FD-SOI technology is used for NTC, in contrast to traditional bulk CMOS technology.

Linux LXC containers based VMs running synthetic workloads similar to that of real banking
applications, are used as case study for cloud server workloads. These workloads perform
matrix multiplication and manipulation, representing real world financial analysis. Gem5-X VM
enhancement is used to simulate VMs within the system. Furthermore, for power analysis of
an NTC server, an accurate power model for the UTBB FD-SOI process technology in NTC
servers, proposed in [25, 46] will be utilized. Moreover, I present a performance validation
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done against real servers (Intel x86 and ARM64), and propose NTC servers with improved
performance. Finally, the Dynamic Voltage and Frequency Scaling (DVFS) setup for NTC servers
is investigated along with energy and performance trade-offs with regards to QoS requirements.

1.3.2.4 In-Memory Computation of Artificial Intelligence (AI) Workloads

Artificial Intelligence (AI) and Machine Learning (ML) algorithms and systems have a great
influence in our day-to-day life, with these systems being deployed from low power edge sensors
and devices to high performance servers in the cloud and HPC platforms. Be it a search for
something of interest online, route navigation and recommendation, or online translation from one
language to another, these AI based systems are becoming a part of our lives. These algorithms
are not only computationally intensive, but also have large working data-sets and are hence
compute and memory intensive.

To have an optimized architecture for AI and ML applications, I propose to optimize architec-
tures from both compute and memory perspectives simultaneously, and hence, use in-memory
computation, also referred to as CM. CM improves both performance and energy efficiency by
enabling multiple compute operations to be performed in parallel in Single-Instruction-Multiple-
Data (SIMD) way, within the memory. Furthermore, avoiding the data movements from memory
to compute core, saves both time and energy and therefore, leads to better overall performance
and energy reduction. Gem5-X enables the modeling of the CM engine as an accelerator and
supports integrating it within the execution stage of the CPU pipeline. To use the integrated CM
engine in FS mode, gem5-X ISA extensions are used to extend the ARMv8 ISA [39], using the
reserved opcodes to have new instructions for the CM engine. To demonstrate the CM engine
architectural extension in gem5-X, two case study workloads are used, targeting two different
technologies for the CM engine.

First, I propose to use Resistive Random-Access Memory (RRAM) as Binary Dot-Product
Engine (BDPE) to be used in BNNs [47, 48]. BNNs are suitable for energy and resource
constrained edge devices as both the input and the weights of the convolutional layers are binary.
Therefore, the convolutions in BNNs are the bit-wise XNOR of the input and the kernel followed
by a bitcount. YoloV3 [49] CNN for object detection is converted to a simplified BNN version
to demonstrate the RRAM based BDPE. YoloV3 BNN is then profiled to identify the most
frequently used kernels. These kernels are stored in the RRAM which is integrated in the CPU
pipeline. Using the RRAM-based BDPE, a performance benefit of 11.3% is achieved along with
energy savings of 7.4% for the YoloV3 BNN.

Then, I present an Analog In-Memory Computing (AIMC) engine to accelerate RNNs based
on LSTM [50]. The AIMC engine is integrated into the execution stage of the CPU pipeline,
like that of BDPE for BNNs. AIMC facilitates parallel analog computation, thus reducing the
computational complexity of LSTMs. A non-volatile Phase-Change Memory (PCM) based
AIMC core [51] for LSTMs is proposed. Performance and energy benefits of up to 12.4x
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and 12.3x, respectively, are achieved, in comparison to a baseline system without in-memory
computation.

1.3.3 Memory-Dominated Architecture Exploration

The applications deployed on a computational platform, either one on an HPC server or on an edge
device, can be compute or memory intensive. For compute-dominated workloads, optimizing the
compute-system has the most impact on improving the performance and energy. Likewise, for
memory intensive workloads, optimizing the memory sub-system to overcome the Memory Wall,
has the most influence in increasing the performance and reducing the energy consumption of the
overall system. To demonstrate the capabilities of the gem5-X simulation platform in optimizing
the memory sub-system, memory intensive applications including genome sequence alignment
and CNNs are used as case studies. Chapter 4 of the thesis discusses in detail the architecture
exploration and optimization for these memory-dominated workloads. In this section, the two
case study memory-intensive applications and the respective gem5-X extensions used will be
presented briefly.

1.3.3.1 Genome Sequence Alignment

The importance of genome sequencing cannot be overlooked due to the impact it has had in the
areas of bioinformatics, food microbiology and drug discovery [52, 53, 54]. It has had a central
role during the COVID-19 pandemic [6], right from the development of test kits and vaccines to
the tracings of different variants worldwide. Genome sequencing [52, 55], a memory bounded
workload, is the process of determining the DNA sequence or the order of bases (As, Cs, Gs, and
Ts) making up the organism’s genome. Next Generation Sequencing (NGS) is a high-throughput
genome sequencing method, typically deployed on HPC architectures which are extremely power
hungry and high performance.

NGS applications have a pointer-chasing nature which comes from the full-text indexing strategies
they use, such as the FM-index, based on the Burrows-Wheeler Transform (BWT) [56, 57] for
fast sequence alignments. Three different state-of-the-art and widely used NGS applications,
namely, Bowtie2 [58], BWA-MEM [59] and HISAT2 [60], are used as case studies for design
space exploration of NGS applications. The gem5-X architectural exploration methodology
is extended for the NGS application domain, for optimal performance and energy. Using this
methodology I propose the use of 3D stacked HBM2, instead of DDR4, along with ARMv8 cores,
as a replacement for HPC class state-of-the-art Intel Xeon Phi 7210 Knights Landing (KNL)
[61], and demonstrate that fewer ARM in-order as well OoO cores can outperform a higher
number of KNL cores for NGS. An overall performance improvement of 68% and energy
savings of 71% are obtained thanks to the use of HBM2 instead of DDR4. I also investigate
the optimization of the cache sub-system and demonstrate that in some cases, HBM2 without
any Last-Level-Cache (LLC) can outperform traditional memory hierarchies with caches and
DDR4 for sequence alignment, resulting in energy savings as well. Moreover, it is shown that by
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using frequency scaling one can achieve up to 59% and 61% energy savings for ARM in-order
and OoO cores, respectively. Lastly, I demonstrate that many ARMv8 in-order cores at 1.5GHz
match the performance of fewer OoO cores at 2GHz, while attaining 4.5x energy savings.

1.3.3.2 Scratchpad Memories (SPMs) for CNNs

CNNs gained popularity and became the state-of-the-art de-facto standard for image processing,
since the Alexnet [62] CNN was unveiled in 2012. These CNNs are extensively used in everyday
imaging tasks on our mobile devices, as well as in the cloud, in applications like video analytics
for surveillance. CNNs are one of the workloads that can be considered both compute intensive
as well as memory intensive. Previously, the MobileNet CNN was considered as a compute-
dominated workload in the context of video encoding, as in Section 1.3.2.1. However, CNNs
are also very memory intensive, due to the large number of kernel weights and biases, as well as
transfer of activations between different CNN layers. Therefore, I will optimize the architecture
for CNNs for the memory sub-system.

Activations from one CNN layer to another in a multi-threaded CNN, with each layer on a
different compute core, need to traverse the whole cache hierarchy. This is detrimental, both
in terms of performance and energy, as the shared cache becomes the memory bottleneck. The
shared SPM extension in gem5-X can alleviate this memory bottleneck with activations being
passed between two layers allocated on consecutive cores, through the shared SPM between two
consecutive cores. Thus the activation transfer bypasses the cache hierarchy. Alexnet CNN is
used as a case study to demonstrate the use of a shared SPM architecture in gem5-X. To reduce
the memory footprint and allow for the activations to fit in a physically feasible SPM size, the
convolutions in the CNN are tiled. The results show that an SPM-based architecture for CNNs
activation transfer is 1.85x faster and 13% energy efficient, as compared to a baseline system
with caches only.

To summarize, the Power Wall and the Memory Wall are the two main hurdles, in achieving the
performance and energy efficiency for today’s emerging applications. Heterogeneous compute
and memory technologies are proposed to overcome these walls. However, there are various chal-
lenges in designing and exploring heterogeneous compute and memory architectures, including
design-space exploration, integration and executing all of it in a FS environment. In this thesis,
I present and propose gem5-X architectural simulator with variety of architectural extensions
both for the compute and memory sub-systems, to explore heterogeneous architectures along
with emerging memory technologies in a realistic FS setup. Both compute and memory intensive
workloads are used as case studies to demonstrate architectural exploration and optimization with
various extensions and support enhancements enabled by gem5-X.
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2 The Gem5-X Simulator

2.1 Introduction

The rapid growth of online services and increasing adoption of digital products have influenced
all spheres of our lives. This increased digitization of the society has led to the emergence of
new applications, which are deployed all the way from High Performance Computing (HPC)
systems and cloud servers to mobile devices. Consequently, this situation has led to data centres
consuming around 1% (200 TWh) of the global energy in 2019 [15]. These new emerging
applications like video analytics [40], autonomous driving [44], natural language processing [63],
content recommendation [64], bioinformatics [65] and genome sequencing [66], have different
performance/energy requirements, and are deployed on a variety of different platforms. These
platforms must be able to serve a diverse range of multi-threaded applications to multiple users,
simultaneously. To meet the performance and Quality-of-Service (QoS) constraints, cloud server
and HPC platforms are comprised of many-core processors, as described by [67]. The processor
cores might be asymmetric with different micro-architectures, such as in-order and Out-of-
Order (OoO) cores used by the ARM big.LITTLE architecture [24], with thread level allocation
policies appropriately allocating the workload to respective cores, meeting QoS constraints under
limited power budget. To optimize energy efficiency and performance, a system-level simulator is
required, capable of simultaneously executing multi-threaded applications in a Full System (FS)
environment with a complete operating system (OS), on a heterogeneous many-core system.
Furthermore, the simulator should also be capable of a detailed system-level profiling to identify
the bottlenecks, therefore, helping in designing strategies and architectures to alleviate these
bottlenecks and enable fast architectural exploration methodologies to assess novel techniques at
the system level.

This chapter presents gem5-X, "a gem5-based full-system simulator with architectural eXten-
sions". Gem5-X is a simulation framework that supports fast profiling and seamless analysis
of multi-threaded applications. It supports architectural extensions both for the compute and
memory sub-systems, and enables exploration of various architectural parameters, to have an
overall performance-energy-optimized architecture. Gem5-X allows seamless simulation of any
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Figure 2.1 – Gem5-X simulation framework.

multi-threaded application running on top of a modern Linux operating system, for detailed
architectural analysis and optimization. The contributions brought by the gem5-X simulation
framework are split into architectural extensions and support enhancements on top of gem5,
as shown in Fig. 2.1, with all of them completely integrated in FS mode. Furthermore, a
methodology to profile applications within gem5-X, identify bottlenecks, and validate architec-
tural modifications and extensions for application performance and energy optimization is also
provided with the gem5-X simulation framework.

In particular, the following contributions to gem5-X simulation framework are presented in this
chapter:

• The gem5-X framework, which enhances gem5, developed by [31], with a full-system
simulation of ARM-64 in-order and OoO architectures running on a modern Linux OS.
The in-order and OoO cores are tuned and validated for performance against a real ARM
JUNO platform developed by [34] with a Mean Absolute Error (MAE) below 4%. Gem5-X
is open-sourced to the community, enabling innovative extensions of ARM 64-bit architec-
tures.

• The gem5-X architectural extensions comprising both compute sub-system and memory
sub-system extensions. These extensions are supported in gem5-X FS mode.

• The gem5-X support enhancements, enabling in-simulator profiling, enhanced check-
pointing and file sharing between host and simulated systems.

• The 3D stacked High Bandwidth Memory v2 (HBM2) memory model in gem5-X is
presented, with interleaving to uniformly distribute the memory traffic. It is then analysed
with the STREAM benchmark, giving insight into memory bandwidth (BW) scaling and
the potential BW bottlenecks in the system.
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• The gem5-X methodology to profile applications, identify bottlenecks, and validate archi-
tectural modifications and extensions for application acceleration.

This chapter is organized into different sections, starting with the overview of state-of-the-art
and related work in Section 2.2. Then the gem5-X architectural extensions are presented in
Section 2.3 and the support enhancements in Section 2.4. Furthermore, the validation of the
gem5-X platform in presented in Section 2.5, followed by complete BW analysis of 3D stacked
HBM2 memory model in gem5-X in Section 2.6. Moreover, power models and area estimates for
simulated systems using gem5-X are presented in Section 2.7. Finally, the gem5-X architecture
exploration and optimization methodology is presented in Section 2.8, which will be utilized in
the next chapters, when exploring and optimizing architectures using gem5-X.

2.2 Related work

State-of-the-art complex applications deployed across the range of compute devices from edge
devices to servers in the cloud require new innovative and heterogeneous architectures to run
optimally in terms of performance and energy efficiency [68]. Full system architectural simulators
are required for fast architectural exploration with accurate performance and energy estimates, to
give an insight during the initial design phase by enabling early deployment of the application on
the simulation platform, and reduce the time-to-market of new products [69, 70].

Quite a lot of research has gone into developing architectural simulators, but each has its own
shortcomings. Sniper [71] is a multi-core parallel simulator with fast turnaround time, but its main
drawback is that it only supports traditional x86 architectures. Simics [72] is another architectural
simulator enabling applications to run on different hardware platforms. It is combined with
Simflex [73] for timing information, but is limited to SPARC architectures only. Gem5 [31]
is a FS architectural simulator being widely used both in academia and industry as it supports
multiple Instruction Set Architectures (ISAs), like x86, ARMv7, ARMv8, MIPS and ALPHA. In
addition to a variety of ISAs, it also supports different Central Processing Unit (CPU) models for
these ISAs, like atomic, in-order and OoO CPU models, as well as multiple caching protocols and
coherences. On the memory side, it supports many traditional and emerging memories. Further,
gem5 supports full system simulations via different Linux based operating systems like Ubuntu
and Android, enabling applications to run as they would do on a real platform, making it the best
candidate for architectural exploration. However, the higher accuracy and sequential nature of
gem5 results in slower simulation and long turnaround times. One of the major drawbacks of
gem5 is that not all components work out-of-the-box (OOB) i.e., in all simulation modes. In
particular, the Hybrid Memory Cube (HMC) is a memory type supported in gem5, but unavailable
in FS mode. Similarly, system stability is not guaranteed for all component combinations. The
Linux distributions and kernels provided are quite old with minimal package installation, and
they can demonstrate FS mode, but are incapable of exploiting all the features in FS mode. Even
so, gem5 is chosen as the base simulation platform as its flexibility allows for straightforward
architectural extensions.
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The gem5-X simulation framework enhances gem5 with OOB system-level support for many-core
ARM-64 architectures, architectural extensions and new memory models. It enables seamless FS
simulation with profiling support, to analyze the speedup and gains of the functional blocks within
the application as a result of new architectural extensions and optimizations. It also supports file
sharing between the host machine and the simulated system using workload automation (WA),
which is built into the Linux kernel provided for gem5-X. Therefore, the simulation turnaround
time is reduced, when debugging the application on a novel architecture within gem5-X. On the
architectural side, gem5-X supports heterogeneous architectures, like in-order and OoO cores
along with custom accelerators like an in-cache computing engine [37]. In-cache computing
allows massive Single-Instruction-Multiple-Data (SIMD)-like operations to be performed in
the cache hierarchy as proposed by [74]. The in-cache computing architecture incorporated in
gem5-X is similar to BLADE proposed by [37], targeted for the L1 cache of ARM-based many-
core systems, as opposed to the Last-Level-Cache (LLC), as in Neural Cache proposed by [75]. In
addition to the heterogeneity at the compute side, gem5-X also supports heterogeneous memory
types like traditional DDR4 alongside 3D stacked HBM2, thus, enabling a highly heterogeneous
system, with full Linux stack. The BW analysis on HBM2 memory model in gem5-X is also
performed using the STREAM benchmark [76] to validate that it provides the required BW in
comparison to DDR4, as will be discussed in Section 2.6. To the best of my knowledge, this
is the first work that simulates a complete Linux based system with clustered heterogeneous
compute cores (in-order and OoO) with in-cache computing engine along with 3D stacked HBM2
memory.

With increasing growth and popularity of cloud based services, many of the emerging workloads
can be deployed either on the cloud or on HPC systems. Gem5-X supports Virtual Machines
(VMs) which can be deployed in the cloud infra-structure. It can also be used to explore and
optimize architectures for HPC workloads.

2.3 Architectural Extensions

The gem5-X simulation platform is the enabler for the architectural exploration and optimization
of emerging state-of-the-art multi-threaded applications, running on a full Linux system. Gem5
can be modified at any level of the architecture, from the multi-core pipeline through the intercon-
nects and cache down to the DRAM. Therefore, gem5-X enhances gem5 with novel architectural
extensions, enabling performance, power and area optimizations of the architecture for a given
target application. It modifies the gem5 core to support extensions such as Scratchpad Memo-
ries (SPMs), HBM2, modified CPU pipelines, in-cache computing architectures and ARMv8
ISA extensions. All these architectural extensions are supported in gem5-X FS mode and can be
implemented and profiled to evaluate their effectiveness for the target application. Furthermore,
the architectural extensions added in gem5-X are generic and not specific to the applications used
as case study to demonstrate these extensions in Chapter 3 and Chapter 4 of this thesis. Therefore,
they can be used for optimizing any other application in the future, namely, by utilizing the
gem5-X exploration and optimization methodologies.
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Figure 2.2 – Gem5-X architectural extensions.

The architectural extensions in gem5-X are classified into compute sub-system and memory
sub-system extensions as shown in Fig. 2.2. Hence, I will now look into the compute and
memory sub-systems of the gem5-X platform.

2.3.1 Compute Sub-System

Gem5-X enables different architectural extensions for the compute sub-system, which be will
discussed next.

2.3.1.1 ISA Extension

To support an accelerator or to add a new functional unit within the CPU core, gem5-X supports
ISA extension, using the reserved op-codes of the original ISA specifications. Adding a custom
instruction using one of the unused opcodes enables seamless integration of a new functional unit
or accelerator in FS mode in gem5-X with full Linux stack. The accelerator or the functional
unit can be used by issuing in-line assembly calls to the new instruction in C/C++. The added
instruction, when decoded, issues the request to the accelerator/functional unit.

To support the new instruction, the decoder in the gem5 ISA domain-specific language (DSL) is
modified. New flags are also added with the instruction, so that the accelerator/functional unit
can recognize and handle it accordingly. Furthermore, the added flags record the statistics of the
new instruction and associated accelerator/functional unit.

2.3.1.2 Custom Accelerator

Custom accelerators are used to speed-up specific tasks or applications using dedicated hardware.
This increases both performance and energy efficiency of the overall system. Gem5-X supports
adding custom accelerators to the system in addition to general purpose processors. In particular,
two approaches can be used to integrate the accelerator in the system with general purpose
processors, namely, through system-memory map or a custom instruction extension.
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2.3.1.2.1 Memory Mapped Accelerator
The custom accelerator can be integrated in the system via memory map by modifying the
system memory map in gem5-X. The memory map thus shall include both the control and data
registers of the accelerator. The system memory map in gem5-X need to be modified in the FS
configuration script to support the accelerator in FS mode. Furthermore, a DMA can be setup
with the accelerator to directly move data to and from the memory, without traversing it through
the CPU cores.

The memory mapped accelerator approach is recommended for modelling accelerators that are
either off-chip, or those who have a large number of instructions or commands. This enables
these accelerators to be used with any ISA CPU core in gem5-X. To access the memory mapped
accelerators in gem5-X, one can either develop device drivers for them or mmap() them from
within the target application in FS mode.

2.3.1.2.2 Custom Instruction Accelerator
The custom accelerator can also be integrated in the system in gem5-X via custom instructions.
In this approach, the accelerator is tightly coupled and integrated with the CPU core. Gem5-X
ISA extension using the reserved op-codes in the ISA specification are used in this approach, as
discussed earlier in Section 2.3.1.1.

Custom instruction is the appropriate approach for accelerator integration when accelerator needs
to be tightly integrated with the CPU core and if there are just a few (5-6) instructions for the
accelerator. The accelerator can be used in FS mode using inline assembly calls to the custom
instructions.

2.3.1.3 BLADE In-cache Computing Engine

BLADE [37, 38] is a hardware extension for CPU caches that enables computing directly within
the cache. BLADE operations are performed by first precharging the bitlines of the cache subarray,
as illustrated in Fig. 2.3a. Then, two wordlines are activated simultaneously, thus allowing the
contents of two rows of bitcells to be connected to the bitlines, as illustrated in Fig. 2.3b. The
bitlines are discharged according to the contents of the bitcells, resulting in an and operation on
the bitline and a nor operation on the inverse bitline. These signals can be further combined via
a nor gate to achieve a xor operation. Finally, further processing allows complex operations
such as addition and multiplication to be performed [37, 38]. The operation results are then
written back to the cache. Application runtime is improved in two ways; first, data movement is
reduced, and second, SIMD operations can be performed on multiple operands simultaneously,
for example 128 1-byte operations in a cache with 2 subarrays and 64-byte wordlines. It also
reduces energy consumption, as the computation is performed in the cache, hence saving energy
both on the internal bus transactions as well as static energy for the idle core, when the data is
being fetched.
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Figure 2.3 – Cache subarray with AND/NOR/XOR bitline computing on values A=0 and B=0.
Bitwise operations are performed by first (a) precharging the bitlines, then (b) activating multiple
wordlines, thus discharging the bitlines through the connected bitcells.

BLADE provides acceleration primarily for applications that exhibit high cache locality and data
computing regularity, as it performs SIMD operations on many physically successive operands.

To add an in-cache computing architecture to gem5-X, gem5’s L1 cache model is modified, as
discussed by [31], to simulate in-cache addition, subtraction, multiplication, shifting, greater/-
less than and absolute operations in a timing and architecture-accurate manner. BLADE is
implemented within the private L1 cache, as this provides a favorable trade-off between area
footprint and functionality, as well as simplifying cache coherence considerations, in contrast to
implementation in shared caches. BLADE can be implemented in lower level caches, providing
an increase in the number of possible parallel operations, in exchange for a greater area overhead
and coherence complexity.

To support BLADE in FS mode, a custom instruction is added using one of the unused opcodes in
the ARMv8 ISA specification [39]. A new cachecompute flag is also added with the instruction,
so that the cache controller can recognize it as a cache compute request and handle it accordingly.
The flag is also used to record the statistics for in-cache computing engine in gem5-X. The
accelerator can then be used by issuing in-line assembly calls to the new instruction in C/C++.

When an in-cache instruction is decoded by the CPU, the required operations are scheduled and
their operands are loaded into the cache from main memory. The in-cache computing operands
must share bitlines to be eligible for in-cache computing operations. Sets that can interact with
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each other are considered local, and therefore the requirements placed upon operands can be
called operand (or data) locality constraints, as discussed in [38]. These constraints depend on
the geometry of the cache, as factors such as cache size, subarray size, and associativity affect
which sets share bitlines. However, all variations in cache geometry can be abstracted to three
constraints on the operand memory addresses, as shown in Fig. 2.4:

• The offset bits between two operands must match, guaranteeing operand alignment within
a cache block.

• A certain number of set LSBs must match, guaranteeing that the operands share the same
subarray.

• A certain number of MSBs must differ in order to avoid data corruption, due to activation
of multiple wordlines. Local bitlines are used in BLADE to divide groups of wordlines
into Local Groups (LGs), where all wordlines in an LG share an local bitline pair, which is
connected to the global bitline, as discussed in [38].

These data locality constraints are ensured by reserving 1GB of cacheable memory that can be
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mmapped by an application, allowing a fine grained control of where operands are stored in the
cache. The target application is also modified to guarantee data alignment during operations to be
performed in-cache. Applications need to be modified at the source code level to support BLADE
operations. BLADE has been incorporated in the L1 cache for ARM in-order cores in gem5-X.

By integrating the in-cache computing architecture into gem5-X, its performance can be measured
on top of a full software and Linux kernel stack, allowing events such as context switching,
cache line eviction, and performance loss due to complex data accesses to be evaluated. This
is important when assessing the real-world applicability of any architectural innovation, and its
ability to generalize to other applications.

To guarantee timing accuracy and estimate power consumption, the in-cache architecture was
developed and simulated in 28nm bulk CMOS technology using Cadence Virtuoso, as discussed
by [77]. The power and timing values were extracted and converted to cycle counts that are
integrated into the gem5-X’s event scheduler.

2.3.1.4 Computational Memory

Computational Memory (CM) is a memory technology like Resistive Random-Access Memory
(RRAM) or Analog In-Memory Computing (AIMC) core that can store computational data as
well as perform compute operations within the memory.

Gem5-X enables CM extension by integrating it in the execution stage of the CPU pipeline, as
shown in Fig. 2.5. The gem5-X ISA extension mechanism is utilized for the CM to enable it in
FS mode and to tightly couple it to the CPU. Therefore, it is integrated as a new functional unit
in the CPU execute stage. A key benefit of this configuration is that the transactions between
the CPU and CM core are reduced to the order of single nanoseconds. This is as opposed to
standalone CM accelerators where an off-chip communication with the CPU is necessary to
access its rich digital functionalities. Software modification to the application is required to use
the CM, using in-line assembly calls to the new instructions in C/C++.

To ensure correct timing and energy consumption, circuit level simulations in Cadence Virtuoso
is used to extract the timing and power values, which are then integrated within the CM core
model in gem5-X.

Simple memory model in gem5-X is extended and used to model load/store functionality of the
CM core. The compute functionality is implemented in conjunction with gem5-X ISA extension.
The CM core is designated as a functional unit in gem5-X with its own flags. Hence, whenever
the decoder in the CPU pipeline encounters a CM instruction, it forwards that to the CM core.
Then, the compute engine within the CM core receives the instructions along with designated
flags, and performs the corresponding operation.
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Figure 2.5 – Simplified block diagram of a generic processor 5-stage pipeline integrating the CM
in execute stage of the pipeline.

2.3.1.5 Core Clustering

Gem5-X enables clustering of the compute cores, both for heterogeneous as well as homogeneous
core types. Each cluster supports multiple cores and has its own shared cache. If there are only
2-levels of caching in the memory sub-system, the shared cache for each cluster is the LLC.
However, if there are 3-levels of caching, the shared cache of each cluster is the L2 which then
connects to the system L3 cache, as shown in Fig. 2.6. System architects can further expand
the cluster implementation with each cluster having its own independent clock. Core clustering
is fully supported in gem5-X FS mode. To add the core clustering support in gem5-X, cache
configuration script, base CPU model files and FS configuration script are modified.

Clustering enables independent applications to execute on independent multi-core clusters with
their own independent shared cache (L2 or LLC) in a multi-core system. Moreover, if there
are independent kernels within an application that do not share resources with other kernels of
the application, clustering enables to allocate these independent kernels on different multi-core
clusters, each with its own independent shared cache. The benefit of this clustering approach
is the avoidance of cache thrashing. Furthermore, as the clusters can operate independently
at different clock frequencies, this can help in energy savings while meeting the performance
requirements, as the performance and clock requirements of each cluster can be different.

2.3.1.6 Heterogeneous Cores

Gem5-X supports ARMv8 64-bit energy-efficient in-order cores as well as ARMv8 64-bit high
performance OoO cores. To this end, I added support for heterogeneous architecture simulation
enabling both in-order and OoO cores to be simulated simultaneously in FS mode, with different
applications or application kernels being allocated efficiently to different core types to maximize
performance, as well as energy efficiency. Furthermore, heterogeneous cores can be combined
with clustering in gem5-X with each cluster having its own shared cache, and different core types
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Figure 2.6 – Multi-core heterogeneous clusters in gem5-X. Each cluster supports multiple cores
which can either be in-order or OoO cores for a given cluster with its own cluster cache. If the
cluster cache is the LLC, then the clusters connect directly to the main memory via a cross-bar
interconnect. However, if a shared L3 is the LLC then the clusters are connected to the L3 shared
cache, which ultimately connects to the main memory.

in different clusters, i.e., an in-order cores cluster and an OoO core cluster, as shown in Fig. 2.6.
Real heterogeneous platforms also take a similar clustering approach with each cluster having its
own shared cache, as in the ARM JUNO [34] and Hikey960 [78] ARM big.LITTLE platforms.

To support heterogeneous cores in gem5-X, FS configuration script, system simulation script,
cache configuration script and base CPU model files are modified. The modifications in the
system simulation script ensures that checkpoints can be resumed for two different CPU models
(in-order and OoO) within the same simulation.
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Figure 2.7 – 3D stacked HBM2 Architecture.

2.3.1.7 Core Count

Gem5-X enables many-core simulation with support for 256 cores simulation. To support 256
cores in FS mode, the Linux kernel is updated with a maximum core count of 256 cores. Moreover,
the device tree binary (DTB) files are also updated to support many core simulation in gem5-X.

2.3.2 Memory Sub-System

The memory sub-system is as essential as the compute sub-system, especially in the case of
memory intensive applications. Gem5-X adds various extensions in the memory sub-system,
which will be discussed next.

2.3.2.1 High Bandwidth Memory v2 (HBM2)

The HBM2 memory, as described by [32], is based on 3D stacked DRAM banks connected by
Through-Silicon-Vias (TSVs). It can achieve a BW of up to 307.2 GB/s [79], enabled by multiple
channels. It supports up to 8 channels with each channel being 128-bit wide. To implement the
functional behavior of the HBM2 memory model in gem5-X, the DRAM controller model of
gem5 is extended according to the architectural details of HBM2, as summarized in Table 2.1.
To have 8-channels with memory interleaving, 8 DRAM controllers, each 128 bits wide, are
initialized. All 8 DRAM controllers are connected to a 1024-bit wide system bus, which connects
to the cache hierarchy. For accurate timing estimates the timing values presented by [80] are
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Table 2.1 – Implemented HBM2 architecture.

Parameter Value Parameter Value
Clock period (tCK) 0.833ns Channel width 128 bits
Bandwidth 2.4Gbps/pin #Channels 8
#I/Os 1024 pins Ranks per channel 1
Banks per rank 16 Burst length 4
Bank groups per ranks 4 - -
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Figure 2.8 – Private SPM architecture in gem5-X.

used.

The memory interleaving among different channels of the HBM2 model uniformly distributes
the memory accesses across all the channels. No additional support is required from the software
perspective, thus enabling any application to be executed either on a traditional DDR4 or HBM2
based memory system in FS mode, without modifying the software. Figure 2.7 shows the 3D
stacked HBM2 with multiple channels in gem5-X. Each channel is 128-bits wide, hence, for
8-channels HBM2, the system bus is configured to be 1024-bits wide.

2.3.2.2 ScratchPad Memory (SPM)

SPM, also referred to as software-programmable memory, is a tightly coupled memory to the
CPU core at the same level as the L1-D cache. These memories are particularly useful when there
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Figure 2.9 – Shared SPM architecture in gem5-X, with the SPM being shared between two
consecutive CPU cores.

is a high memory contention in the cache and the working data-set gets evicted from the cache,
due to cache thrashing. Since SPMs are software controlled, in contrast to hardware controlled
caches, the programmer can store the working data-set in the SPMs, hence, keeping it close to
the CPU.

Gem5-X supports SPMs in the memory sub-system. The SPMs can either be private to each core
in the system, as shown in Fig. 2.8 or they can also be shared between two consecutive cores in
the system, as shown in Fig. 2.9. A private SPM can only be accessed by the core to which it
is attached. In case of a shared SPM, it can be accessed by the consecutive cores to which it is
attached. In Fig. 2.9, the D-SPM 0 is shared between core-0 and core-1, the D-SPM 1 is shared
between core-1 and core-2 and so on.

SPMs are supported in FS mode in gem5-X. To enable this support, the memory map of the
SPMs is separate from the cache hierarchy and the main memory. Therefore, to allocate data on
the SPM, mmap() is used from within the application in FS mode. Hence, the data allocated on
SPM is not cached and with no copy on the main memory. Simple memory model in gem5-X
is used to model the SPM, with timing values configured the same as that of an L1 cache. The
cache configuration, base CPU and FS configuration files are modified to enable the support of
SPMs in gem5-X.
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Figure 2.10 – Gem5-X platform with architectural exploration parameters. These configurable
parameters include the core count, choice of core as either in-order or OoO, ISA extensions,
BLADE in-cache computing engine in L1-D cache, cluster cache (L2/LLC), common LLC for
all the cores/clusters, and the main memory as either DDR4, HBM2 or both. Caches and memory
sizes are configurable as well.

2.3.2.3 Heterogeneous Memories

Gem5-X also supports heterogeneous memory types like traditional DDR4 along with 3D stacked
HBM2 simultaneously in the same system in FS mode. Both memories are mmapped separately
in the gem5-X configuration file. During the Linux boot-up, one of the memories is defined as
the base memory, with the full address space available to the kernel. The other memory can then
be allocated using mmap(), from within the application, if required. By default, allocations are
done to the base memory defined during the kernel boot.

2.3.3 Gem5-X Parameters

Gem5-X simulation platform enables architectural exploration with architectural extensions both
in the compute and memory sub-systems. Figure 2.10 shows the gem5-X platform with the
different configurable exploration parameters highlighted in red.
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Figure 2.11 – Gem5-X support enhancements.

2.4 Support Enhancements

To enable gem5-X to integrate all architectural extensions from the software perspective and also
to decrease the simulation turnaround time, various support enhancements are added to gem5, as
shown in Fig. 2.11.

2.4.1 ARMv8 64-bit Full System (FS) Support

The vanilla gem5 provides FS support for ARMv8 (aarch64), however, this support is limited.
The default disk images that come with gem5 are outdated and older versions of the OS like
Ubuntu 14.04 distribution with minimal installed packages and disk storage space limited to 3GB.
This situation limits the porting of new emerging applications to gem5. Moreover, the system
stability is not guaranteed in gem5 FS mode, as the simulation crashes with higher core count,
and all the system components are either not compatible with each other or not supported in FS
mode.

Gem5-X enables stable ARMv8 (aarch64) FS support based on Ubuntu 16.04 and later disk
images with Linux kernels v4.3, v4.13 and v5.0. Gem5-X FS support provides 30GB storage to
allow larger applications, benchmarks and data-sets to be stored with ease on the disk images
provided. The FS mode in gem5-X is thoroughly tested with all architectural extensions including
accelerators, CM cores, heterogeneous systems along with emerging memories including 3D
stacked HBM2 and SPM. The required Linux kernel configurations and libraries for all the
compute and memory components as well as for support enhancements are provided with
gem5-X for seamless OOB FS integration. The FS mode in gem5-X supports the pthread library
to allow thread-level parallelism on a multi-core system, which is required by most applications.
This extension to gem5 allows the installation and execution of any application that runs on a
regular Linux system, using both in-order and OoO ARMv8 cores.

To run experiments on an application or benchmark in gem5-X, it needs to be on the disk image.
For this, the disk image can be mounted as in any Linux system using the Linux mount command.
Then a user can chroot into the image using QEMU. QEMU [81] allows emulating the ARMv8
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64 bit image on an x86 host machine. Therefore, once in the emulation mode, user can install any
benchmark or application on the disk image, which will later be used during the simulation in
gem5-X.

2.4.2 Gperf Profiler

Profiling capabilities within FS mode on gem5-X have been included, by installing the gperf
profiler on the disk image. The gperf statistical profiler developed by [33] provides profiling
capabilities on gem5-X itself with minimal overhead, enabling the identification of application
bottlenecks and exploration of the effectiveness of architectural modifications and extensions.

2.4.3 Enhanced Checkpointing

Checkpointing in gem5 drastically reduces simulation time in FS mode. Gem5-X enhances
the existing checkpointing in gem5 by marking the Region-Of-Interest (ROI) of applications.
Gem5-X simulations are launched using a simple functional CPU, run until the ROI and check-
pointed. Then, simulations are switched to either in-order or OoO detailed models. This method
vastly reduces the time required to setup simulation of applications. Moreover, checkpointing
reduces the burden of the debugging process, by checkpointing just before the point-of-failure
and then resuming with the debug mode.

2.4.4 9P over Virtio

I utilize the 9P protocol developed by Bell [82] over a virtio device driver developed by [83],
to allow fast modification of files without modifying the root file system in gem5-X FS mode.
While this feature is available in vanilla gem5, it is not enabled by default and has no kernel
support. Both of these features are provided in gem5-X. Once Linux is booted, a folder on the
host machine can be mounted within gem5-X to access files on the host system. This enables file
sharing and fast data transfer between the host system and simulated system in gem5-X. Without
9P mounting, every time a program is modified, one needs to reload the disk image required for
FS simulation and reboot Linux. In gem5, this process can take up to 20-30 minutes every time a
program is modified, a bottleneck that gem5-X eliminates.

2.4.5 Virtual Machines (VMs)

Gem5-X supports VMs, virtualized via Linux LXC containers. The LXC support in FS mode is
added by enabling it in the Linux kernel as well as the disk image. The VM support in gem5-X
enables the capability to simulate cloud workloads in gem5-X, in a virtualized fashion.
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Figure 2.12 – Methodology for validation of the simulation platform.

2.5 Validation

Validation of the simulation platform is necessary to have confidence in the results of the
simulation. To perform the validation of gem5-X simulation platform, a validation methodology
is proposed, as shown in Fig. 2.12.

As a first step of the validation methodology, the simulation platform is configured to match
the architecture of a reference platform. For this step, gem5-X was configured to simulate the
architecture of a real ARM JUNO platform [34]. JUNO is an ARM big.LITTLE platform based
on ARMv8 64-bit ISA, with both ARM in-order and OoO cores. This enables, to validate both
type of cores in gem5-X against the real cores in ARM JUNO. The architectural configuration of
gem5-X in this step includes, number of cores, core frequencies, cache levels, cache sizes and
the memory size.

The next step involves the tuning of the CPU pipeline stages in gem5-X. The widths and latencies
for fetch, decode, rename, execute, commit and writeback stages of the CPU pipeline are tuned
during this step. As a starting point for these values ARM Cortex-A57, as presented in [84] for
OoO cores and the ARM Cortex-A53, as presented in [85] for in-order cores, are utilized.

Furthermore, the number of functional units and the latencies of the functional units are tuned for
in-order and OoO cores. The functional units include, the integer Arithmetic Logic Unit (ALU),
integer multiplication and division unit, floating point unit, vector processing units and memory
read and memory write units. Then, the number of physical integer, floating point and vector
registers are tuned according to the specifications of in-order and OoO cores in the reference
platform.
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Table 2.2 – Validation error of gem5-X when compared against a real JUNO platform.

Video Resolution (pixels) In-order Core - Error OoO Core - Error
176x144 2.4% 1.93%
416x240 4.3% 1.85%
1920x1080 2.7% 4.25%

Moreover, the cache heirarchy is tuned in accordance with the cache sub-system of the reference
platform. The cache latencies for L1-D, L1-I and LLC are tuned. The cache architecture is also
configured in terms of set associativity of the caches, as compared to the reference platform.

Once all the parameters are tuned, a target application or a benchmark is run on both the real
platform (ARM JUNO in this case) and the simulated platform in gem5-X. The difference in
terms of execution time is checked. If the error is less than 5%, then the simulation platform is
considered to be validated. However, if the validation error is more than 5%, then the parameters
in CPU pipeline, functional units, physical registers and caches are tuned to bring down the
validation error.

For validation of gem5-X, a real-time video encoding application Kvazaar, developed by [1] is
used. Different video resolutions are used for encoding with Kvazaar for validation purposes.
The validation errors for both in-order and OoO cores for various video resolutions are shown in
Table 2.2. This table indicates that gem5-X has a maximum validation error of 4.3%.

Kvazaar is used for validation as it utilizes all the components (all CPU functional units, including
NEON SIMD, caches, memory) in the system. The network and disk models in gem5-X are not
tuned, as the purpose of this thesis is to explore novel compute and memory architectures (and
not disk or networks). As a result, the performed validation of the simulation framework provides
confidence in the results provided by gem5-X.

2.6 HBM2 Model Bandwidth Analysis

After validating the ARMv8 in-order and OoO compute cores in gem5-X with a validation error
of up to 4%, as discussed in the previous section, the BW analysis of HBM2 memory model
in gem5-X is presented in this section. The BW analysis is performed to validate that HBM2
provides the required BW in comparison to DDR4 and also to check that the memory traffic
is being uniformly distributed among different memory channels. STREAM [76], which is a
well-known memory BW benchmark, is used for the HBM2 BW analysis.

2.6.1 BW Analysis Methodology

Figure 2.13 shows the methodology for the analysis of HBM2 BW and its comparison to DDR4
in gem5-X using the STREAM benchmark, by changing various architectural parameters in the
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Figure 2.13 – Methodology for BW analysis using the STREAM benchmark.

system.

• Input: The STREAM benchmark is used as a benchmark on the ARM based platform. The
input array size of the benchmark is set to 100 million, which is equivalent to a memory
requirement of 2.2GB. The array size is chosen to have a trade-off between memory
utilization and simulation turnaround time, which increases linearly with the increase in
array size.

• Memory Channels: STREAM is executed for HBM2 with 1, 2, 4 and 8 memory channels,
to observe the effect of channel count on BW.

• Memory Types: Both HBM2 and DDR4 memories are used as memory types to compare
their performance. DDR4 is used with 1, 2 and 4 memory channels, as the number of
channels scale from 1 to 4 in commercially available DDR4 based systems, when moving
from low-power mobile devices to high-end server-class systems [86, 87, 88].

• Core Types: All the benchmark experiments are run for both ARMv8 in-order and OoO
cores.

• Core Frequency: All the benchmark experiments are repeated at 1GHz, 2GHz and 4GHz
core frequencies. The 4GHz frequency is used just for scaling analysis, as I am not aware
of any ARM cores operating at 4GHz.

• Core Count: 8 and 16 cores are benchmarked to analyze the effect of core count on BW.

• Cache Hierarchy: Changes of the cache hierarchy are also looked into, namely, the effects
of no-LLC system in comparison to system with LLC.

• Analysis: In addition to analysing the results after changing each architectural parameter
discussed in this methodology, the results are analysed globally, and the experiments are
run again with any changes in architectural parameters necessary.
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Figure 2.14 – BW scaling of HBM2 with respect to the number of channels and core frequency
in comparison to DDR4, for both 8 in-order and 8 OoO cores when running the STREAM
benchmark.

2.6.2 Bandwidth Analysis Results

Deploying the BW analysis methodology, I now look into the BW analysis results of HBM2 in
comparison to DDR4.

• Figure 2.14 shows the scaling of HBM2 BW with the number of channels and core
frequency, as compared to DDR4 with 1, 2 and 4 channels, for 8-core ARM in-order and
OoO systems with an LLC (L2) of 1MB. It can be seen that the BW increases with the
number of channels. HBM2 performs better than DDR4 by 5% for both in-order and OoO
cores for the same number of channels, whereas 8-channel HBM2 gives up to 34% and 48%
more BW as compared to single channel DDR4, for in-order and OoO cores, respectively.
Moreover, 8-channel HBM2 gives up to 12% and 19% more BW as compared to 4-channel
DDR4. BW scales with the core frequency for 8 in-order cores as in Fig. 2.14a. It can also
be seen that OoO cores utilize much more of the available BW as compared to in-order
cores at the same frequency. However, the BW scaling with frequency is low after 2 GHz.
To investigate this further, STREAM is run with higher number of cores, as discussed next.

• The STREAM benchmark is run for 16 ARM in-order and OoO cores, both with LLC.
Figure 2.15 shows that BW saturates for OoO cores at higher frequency, and BW utilization
of in-order cores converge to that of OoO cores. If the BW of 8-OoO cores in Fig. 2.14b is
compared to that of 16-OoO cores in Fig. 2.15, it is observed that the BW does not scale
with the increase in the core count of OoO cores. However, it does scale with the number
of in-order cores. The BW of 8-channel HBM2 is 44%-46% higher than 1-channel DDR4,
and 17%-19% higher than 4-channel DDR4. Hence, I will only look into 8-channel HBM2
BW scaling analysis for now.

• Through the analysis of the data path between the compute cores and memory, it is observed
that the LLC is the bottleneck on the available BW, which explains why OoO cores do
not exhibit a linear scaling with the number of cores. On the other hand, the reduced
BW scaling is also an indication of better performance as the memory is being accessed
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Figure 2.16 – BW scaling of HBM2 with core count and core frequency with no LLC.

less frequently due to the caching effects of LLC. However, the LLC is removed from
the system and the STREAM benchmark is run again. As shown in Fig. 2.16, the BW
scales with number of cores both for in-order and OoO cores without the LLC. From Fig.
2.16a and Fig. 2.16b, it is also evident that OoO cores can utilize almost 2x more BW as
compared to in-order cores. These figures show that the BW utilization depends on the
core count and type of cores. Thus, the BW provided by HBM2 is available, the greater the
number of cores, the more its utilization. However, it is observed that the BW utilization
does not scale linearly in relation to the core frequency and remains almost constant.

• The L1 cache is investigated to see if it is causing any bottlenecks in relation to BW scaling
with frequency. The size of miss-status-holding-registers (MSHR)1 is changed from 4
to 10. However, there was no change in BW for in-order cores, and around 16% BW

1MSHRs keep track of outstanding cache misses, thus enabling multiple accesses and outstanding misses in the
cache
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improvement for OoO cores when using 10 MSHRs instead of 4. However, the change
with frequency scaling was still quite constant. Hence, the reason for almost constant
BW being accessed across different frequencies is not due to L1, but results from the fact
that the core frequency to issue memory request is high compared to HBM2 serving those
requests. Thus, whenever the request goes to HBM2, the cores are stalled waiting for
memory to respond to those read/write accesses. As STREAM is a memory intensive
benchmark, changing the core frequency does not improve the stressed BW of the memory.

2.7 Power Models and Area

In addition to performance analysis using gem5-X, I am also interested in the power and energy
consumption of the systems. However, gem5 or McPAT power model, as proposed by [89] and
[90], respectively, are not used as they both are for ARMv7 32-bit ISA, whereas I am using
ARMv8 64-bit cores. For the CPU energy analysis, the power model for 28nm CMOS bulk
technology node for ARM 64-bit in-order and OoO cores proposed in [46] are used. For in-order
cores, the energy ratio between A57 and A53 cores at different frequencies as proposed by
[91, 92] is used. The power model accounts for core active, wait-for-memory (WFM) and static
energy (in J/cycle), and the LLC read and write energy (in J/access). For the memory power
models, power values as reported in [93] and [94] are used for DDR4 and HBM2, respectively.
Counters in gem5-X statistics like active CPU cycles, WFM cycles, cache read and writes hits
and main memory accesses are used for power modeling.

For area estimates, the values reported in [92] and [91] for ARM OoO and in-order cores,
respectively, are used.

2.8 Architecture Exploration and Optimization Methodology

An architectural exploration and a flexible optimization methodology is presented for any given
application using the gem5-X simulation platform. If the application has one kernel or if there is
just one application, a single-step methodology comprising different phases is used. However,
if there are multiple kernels in the application or multiple applications allocated on the system,
then a two-step methodology is deployed, which encompasses the single-step methodology. Both
methodologies are discussed in this section.

2.8.1 Single-Step Architecture Exploration and Optimization Methodology

This architecture exploration methodology is used to optimize a single kernel or application in
the system. The methodology, as shown in Fig. 2.17, has 3 phases: application characterization,
architecture optimization and milestones. Each phase is then further divided into different stages.
The different phases of the methodology are discussed in this section.
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Figure 2.17 – Gem5-X single-step multiple-phase architectural exploration methodology.

2.8.1.1 Phase 1: Application Characterization

To optimize an architecture for any given application, the application is first profiled to identify
bottlenecks.

• Profiling: Profiling provides two important insights. Firstly, it identifies the applica-
tion kernels that are compute and memory intensive, and secondly, it gives information
about the system resources being stressed by these kernels. In the gem5-X methodol-
ogy, valgrind [36] is used as profiler when profiling on a hardware platform to collect
performance counter statistics (e.g., instruction counts, cache misses, etc.). Valgrind adds
some code instrumentation to the application, hence it is very slow. Therefore, the gperf
statistical profiler developed by [33] is also used on both hardware and in the gem5-X
simulator to profile applications with minimal profiling overhead, and generate call graph
trees showing what percentage of the total time each kernel takes.

• Identify Bottlenecks: Once the profiling information is available, the kernels that consume
most of the execution time can be identified. Then, using the profiling data, the resource
utilization by these kernels can be further analyzed, providing insights about the resources
that are bottle-necked.

2.8.1.2 Phase 2: Architecture Optimization

Once the application is characterized and bottlenecks are identified, the architecture is optimized
by alleviating the bottlenecks and improving performance and energy efficiency using a two-stage
process.

1. Selection of Architectures

Gem5-X enables different architectural strategies and allows to select from a range of
architectural extensions and tune various architectural parameters, as shown in Fig. 2.18.
Once the bottlenecks are identified via profiling in phase 1 of the methodology, they provide
guidance in selection of appropriate architectural choices. These architectural choices are
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divided broadly into three main steps: 1) Compute cores, 2) accelerators, and 3) memory
exploration and optimizations.

• Compute Cores Exploration and Optimization: The compute core sub-system is
explored and optimized in this step for selection of appropriate architectural choices,
as depicted in Fig. 2.18, based on the bottlenecks identified. The type of cores, as
either energy efficient in-order cores or high performing OoO, the core frequencies
and the number of cores are varied to meet the required performance and power
constraints. It is also checked if the performance scales with the core count. If it does
not scale, core clustering extension of gem5-X is used with multiple instances of the
application deployed on each individual cluster. Heterogeneous cores in gem5-X can
also be utilized if it is efficient (with regards to performance and energy) to run some
part of the application on one type of core and the others on another core type.

• Accelerator Exploration and Optimization: Accelerators can be used to overcome
compute bottlenecks in an application. The choice and selection of accelerator is
driven by profiling data. If a full-custom accelerator is required, gem5-X enables
that either by modifying the system memory map or a custom instructions for the
accelerator. One of the accelerators enabled by gem5-X is the in-cache computing
architecture discussed in Section 2.3. If a kernel involves many operations upon the
same data chunk, resulting in low memory access times but high computation cost
and processor-cache traffic, it is a good candidate for in-cache acceleration. Moreover,
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CM core accelerators are enabled by gem5-X, which can be integrated within the
execution stage of the CPU pipeline. They are particularly useful when a kernel is
both compute and memory intensive.

• Memory Exploration and Optimization: After optimizing the compute sub-system,
the memory sub-system is optimized for an overall performance/energy-optimized
system. This involves selection of the main memory as either traditional DDR4
or HBM2, as presented in Section 2.3. If the system is bottlenecked at the main
memory, due to low available memory BW, the HBM2 is the better choice to speed-
up the system by easing the memory bottleneck. Moreover, to select the appropriate
cache size, it is possible to sweep the cache sizes at all levels like at L1 and LLC.
Furthermore, depth of the cache hierarchy can also be explored to decide how many
cache levels are required. Lastly, if the workload involves data transfer between the
cores, SPMs extension in gem5-X can be utilized to bypass the cache hierarchy and
enable direct data transfer between the cores.

2. Evaluation of Performance and Energy Efficiency

Once the optimized architecture is obtained using the strategies discussed in the previous
section, the performance and energy efficiency improvements achieved are evaluated at
the system level, as well as application level. I also look at the cost in terms of area of the
optimized system.

2.8.1.3 Phase 3: Milestones

In the third and final phase of the gem5-X methodology, it is checked if the optimized system
meets the power, performance and area constraints. If any one of the constraints is not achieved, I
go back to phase-1 and iterate over the whole methodology again. I iterate until all the constraints
are met and milestones achieved, obtaining an optimized architecture. If multiple architectures
meet the constraints, I use Pareto optimal architecture points, w.r.t. power, performance and area.

2.8.2 Two-Step Architecture Exploration and Optimization Methodology

I propose a two-step methodology to explore and optimize architectures for applications that
are composed of multiple kernels, or when multiple independent applications are allocated
simultaneously on a platform. Figure 2.19 shows the two-step methodology for architectural
exploration and optimization of this multiple kernel scenario.

The first step is the local architectural optimization for each kernel based on its own bottlenecks
and compute/memory requirements. The optimization is on both compute and memory fronts,
exploiting their respective architectural parameters as presented in Fig. 2.19, Step 1, which is
the same as single-step methodology shown in Fig. 2.17. Once all the kernels are independently
architecturally optimized using the single methodology, they are co-allocated together and the
architecture is globally optimized for all kernels, if further necessary, as in Fig. 2.19, Step 2.
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Figure 2.19 – Two-Step architectural exploration and optimization methodology.

The optimization strategy in Step 2 is the same as for local optimization in Step 1, both on the
compute and memory sides, hence leaving limited room for further optimization, unless there
are conflicting architectural requirements between different applications. In such a scenario,
the focus is on minimum performance requirements or QoS for each kernel, and then further
optimize the architecture.

The methodologies discussed in this section will be used in the following chapters to explore and
optimize architectures for the case study applications.

2.9 Summary

In this chapter, I have presented the gem5-X simulation platform to enable exploration of many-
core heterogeneous architectures to optimize performance and energy consumption in new
emerging dynamic applications. Compared to gem5, the latest version of gem5-X supports
validated ARMv8 in-order and OoO cores in FS mode with a validation error of up to 4%. Also
gem5-X supports multiple heterogeneous ARMv8 cores along with heterogeneous memories
including DDR4 and the new 3D stacked HBM2 in FS mode, completely integrated and tested,
which gem5 does not support straight OOB. In addition to heterogeneous compute cores, gem5-X
enables exploration of clustering configurations of compute cores. Moreover, gem5-X supports
accelerators to be integrated within the system like the BLADE in-cache computing engine,
by capitalizing on the ISA extension support. Furthermore, in comparison to gem5, gem5-X
enables profiling support using the gperf profiler, supports advanced check-pointing to help
reduce the simulation turnaround time and comes with WA to enable file sharing between host
machine and the simulated system. All in all, in this chapter I have also proposed a new two-step
architectural exploration and optimization methodology of new many-core architectures for new
dynamic applications and benchmarks. Moreover, using the system configuration capabilities of
the gem5-X framework and exploration methodology for many-core systems, I also analyzed the
benefits of HBM2 vs. DDR4 in the STREAM benchmark.
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Chapter 2. The Gem5-X Simulator

The gem5-X simulation framework is open-sourced to the community, enabling OOB, fast
simulation of many-core ARM 64-bit heterogeneous architectures with innovative architectural
extensions. It is readily available for download online from https://esl.epfl.ch/gem5-x [95]. A
technical reference manual for gem5-X has also been published online [96], which includes a
quick start guide, as well as instructions on how to use different architectural extensions and
support enhancements in gem5-X.

The work in [97], [98], [38] and [37] were published as a result of this chapter. The main contribu-
tions from [97] are the gem5-X architectural extensions, including ISA extensions and in-cache
computing engine along with gem5-X support enhancements and single-step exploration method-
ology. The validation of gem5-X is also one of the main contributions in [97]. The work in [98]
extended the work in [97] with support for core clustering, heterogeneous cores, heterogeneous
memory sub-system along with HBM2 BW analysis and the two-step architectural exploration
methodology. The main contribution of the work in [38] and [37] is the implementation of
BLADE in-cache computing engine in gem5-X.
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3 Compute-Dominated Architecture
Exploration

3.1 Introduction

The adoption of digital products along with their associated online cloud-based services are
experiencing an unprecedented growth. We interact and use these services and products in
a variety of different spheres of our daily lives. Among them, video streaming services like
YouTube, Netflix, etc., machine learning and Convolutional Neural Networks (CNNs) based video
analytics applications like surveillance, security, drone navigation, self driving cars, personal
digital assistants, augmented reality, etc., and cloud based services like social networking,
online banking etc., are some of the noticeable ones. These applications are deployed all the
way from cloud data centres and High Performance Computing (HPC) systems to the edge
nodes and mobile devices. Consequently, there has been a rapid growth in the number of data
centers in the world, leading to unsustained energy consumption, estimated to be at 1% of the
global energy demand in 2019 [15]. This results in an escalating demand to meet the power and
performance requirements of the server platforms hosting these different services and applications.
Moreover, these platforms comprise many-core processors to meet the performance and Quality-
of-Service (QoS) constraints while hosting a range of multi-threaded applications for multiple
users, simultaneously, as described by [67]. The applications and services on these multi-core
systems are either compute-dominated or memory-bounded. In case of compute-dominated
applications, to optimize for performance, power and area (PPA), optimizing the compute sub-
system maximizes the optimization for PPA. Memory optimization will also improve the PPA
for these compute-dominated app, as memory is also the essential part of the system, but with a
lesser impact.

In this chapter, I will present and explore optimized architectures using gem5-X simulation
platform, for state-of-the-art emerging compute-dominated applications, including video en-
coding, video analytics comprising of video encoding and CNN-based image classification,
Binary Neural Networks (BNNs), Recurrent Neural Networks (RNNs) like Long-Short-Term-
Memory (LSTM) and banking workload in Virtual Machines (VMs). These workloads are
deployed all the way from cloud servers and data centres to mobile devices. I will use these
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applications, as case studies to demonstrate the use of gem5-X methodology discussed in Chapter
2 and the compute sub-system architectural extensions of gem5-X, also presented in Chapter 2.
These applications are case studies to show-case the capabilities and architectural extensions
added to gem5-X, which is generic and can be used to explore and optimize architecture for any
other application. Thanks to the gem5-X architectural extensions presented in Chapter 2, includ-
ing Instruction Set Architecture (ISA) extensions, accelerator support (like in-cache computing),
core clustering, heterogeneous compute cores, Computational Memory (CM) and 3D stacked
High Bandwidth Memory v2 (HBM2), which enables to explore and optimize the architectures
for improved performance and energy efficiency for the case study applications. Furthermore, the
gem5-X support enhancements, helps not only to reduce the simulation turnaround time, but also
allows to simulate the case study applications with different architectural extensions in the Full
System (FS) mode with full Linux stack, as in a real system.

The main contributions in this chapter, as well as its organization is summarised as follows:

• Overview of state-of-the-art and related work for architectures of different case study
applications is presented in Section 3.2.

• Architectures for real-time video encoding application for various video resolutions are
explored and optimized using the gem5-X optimization methodology and utilizing the
in-cache computing accelerator in Section 3.3. This provides performance benefits of up to
15% and energy benefits of up to 76% over an ARM-based baseline system.

• A heterogeneous architecture is proposed for a complete video analytics application,
comprising of video encoding and CNN-based image classification, in Section 3.4. In
addition to the heterogeneity on the compute side comprising ARM in-order cores, Out-of-
Order (OoO) cores and in-cache computing engine along with clustering of the compute
cores, high bandwidth 3D stacked HBM2 memory is also being utilized to alleviate any
memory bottlenecks in the system. Gem5-X two-step methodology is used for architectural
exploration and optimization for this case study application. Performance benefits of up to
30% and energy savings of up to 54% are achieved when using heterogeneous cores along
with HBM2, while meeting the performance constraints of the video analytics application.

• Near-Threshold-Computing (NTC) servers are proposed for VMs in the cloud in Section 3.5,
enabled by gem5-X VM support enhancement. Energy and performance trade-off with
regards to QoS constraints for cloud workloads are discussed and presented in Section 3.5.

• In-memory computational cores based on Resistive Random-Access Memories (RRAMs)
and Analog In-Memory Computing (AIMC) engine are proposed for accelerating BNNs
and RNNs, respectively, in Section 3.6. These CMs are integrated within the execution
stage of the Central Processing Unit (CPU) pipeline, thanks to the gem5-X ISA extensions.
Performance and energy benefits of 12.4x and 12.3x, respectively, made possible due to
the tightly coupled integration of the CMs in the CPU, are also presented in Section 3.6.
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3.2 Related work

3.2.1 Video Encoding

Video encoding is an essential step in online video streaming, to reduce the size of actual
data being transmitted. High Efficiency Video Coding (HEVC) [99] is a state-of-the-art video
encoding standard and offers twice the compression of its predecessors, but at the cost of
significantly increased computational cost [100]. To improve the throughput, the authors in
[101], parallelize the HEVC encoder on multi-core processors, using tiles and Wavefront Parallel
Processing (WPP) techniques. The work in [102], accelerates the HEVC encoder via a Field-
Programmable Gate Array (FPGA) based accelerator. HEVC encoder on ARM-based multi-core
platform is demonstrated in [103], using the parallelization techniques discussed in [101]. In
all these works, the effort in improving the performance and energy is focused on either multi-
threading or using hardware accelerator.

I propose to use in-cache computing engine, integrated in the L1-D cache of the CPU, to process
the compute intensive kernels of the application with high cache locality. The in-cache computing
accelerator is capable of processing a large working data-set, similar to a Single-Instruction-
Multiple-Data (SIMD) format. Hence, I propose a heterogeneous system comprising of CPU
cores with accelerators tightly coupled to them in their respective L1-D caches, in a multi-
core system. The in-cache accelerator provides both performance and energy gains, firstly by
processing a larger data-set and secondly, by eliminating the data transfer overhead between the
CPU and the L1 cache.

3.2.2 Video Analytics

Real-time video analytics is an emerging application which is used in variety of fields such
as video surveillance, traffic monitoring, augmented reality and self-driving smart cars [40].
Graphic Processing Units (GPUs) based video analytics have been proposed in [104] and [105]
for high performance and throughput. For increased performance along with energy efficiency,
Application-Specific Integrated Circuit (ASIC) and FPGA based video analytics hardware ac-
celerators have also been proposed, as in [106, 107]. However, quite a lot of effort and time is
required for the development of an ASIC. Furthermore, applications developed to run on ASIC
cannot be updated/upgraded if there are new improvements to the algorithm. Therefore, I propose
a CPU-based video analytics architecture, which is deeply heterogeneous along with 3D HBM2
memory, with different applications kernels running on different types of compute cores, along
with an in-cache computing accelerator. The in-cache computing accelerator is not application
specific, but runs basic computational blocks of the application. The performance and energy
efficiency of the proposed CPU-based architecture with 3D stacked HBM2 is compared to that of
an embedded low power GPU, and it is demonstrated that the CPU-based system is better for
video analytics both in terms of performance and energy efficiency.
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3.2.3 Near-Threshold-Computing (NTC) Servers for VMs in the Cloud

Recent work in the area of energy-efficient server design focuses on presently-shipping enterprise
servers, with traditional x86 architectures [108]. These servers had traditionally been designed to
meet performance goals, without energy efficiency as a design constraint. Only recently, with the
stagnation of Dennard Scaling [18], and the resulting power-limited servers, NTC turned into a
key technology to improve energy efficiency. Previous work on near-threshold many-cores mainly
focused on single voltage domain and multiple frequency domain architectures [109]. However,
other recent works on processors in FD-SOI demonstrated the near-threshold capabilities of
the technology, capable to run a dual-core CortexA9 processor at 1 GHz at the supply voltage
of 0.6V [110]. The work presented in [25] was the first one proposing the usage of NTC
servers in Ultra-Thin Body and Buried Oxide (UTBB) FD-SOI technology. The proposed server
architecture [25] was based on ARM cores optimized for latency-critical scale-out applications.
Nonetheless, the power model proposed in that work did not include a detailed characterization
of the uncore components. Moreover, the target Cavium ThunderX servers [111] were neither
based on FD-SOI technology nor validated for virtualized applications. A new and much more
accurate power model using 28nm FD-SOI process technology is utilized, along with a server
architecture resembling available ARM-based ThunderX server, but optimized to run virtualized
applications, as proposed in [46]. The power model of the near-threshold FD-SOI processors
is based on the same characterization adopted by the authors of [25], but extensively modified
and extended based on an exhaustive characterization of the different components of the Cavium
ThunderX server (L2 memory power, memory controller, IOs, DDR memory) according to
extensive measurements performed on the real hardware, fitted and ported to the 28nm FD-SOI
technology to be used for the exploration performed using gem5-X.

3.2.4 In-Memory Computation of AI Workloads

3.2.4.1 Accelerating BNNs with RRAMs

The need to deploy CNN on edge devices enabling the mobile devices and edge sensors for image
classification and detection has led to the creation of new CNN models capable of being executed
efficiently in such compute and energy constrained systems [45]. In CNNs, approximately 90%
of the operations realized are convolutions [112]. Hence, convolutional layers became the main
targets for optimization in CNNs. Consequently, two main approaches aiming at optimizing the
execution of such layers were adopted: using dedicated hardware accelerators; and reducing the
precision of the operands.

The use of custom accelerators attempts to optimize the execution of CNNs by exploiting
hardware level parallelism [113, 114] and offloading workload to near-data accelerators [115,
116]. However, most of these solutions do not comply with the limitations of edge devices since
they require a significant amount of hardware resources to be implemented, which is hardly
feasible in the context of such energy and cost constrained systems. Furthermore, accelerators do
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not provide performance benefits whenever the workload associated to the dataset is not enough
to overcome the communication overhead with main memory [117]. For that, the datasets have to
be significantly big, and since edge devices are usually used for processing rather small datasets,
accelerators may also not be suited for such systems.

CNN models using low-precision operands, such as bfloat16 [118], were also created to speed
computation in convolutional layers. Ultimately, BNNs [47, 48] only use one bit to represent the
weights. Moreover, in XNOR-Net BNNs [47] both the input and the weights of the convolutional
layers are binary, thus convolutions are performed by simply executing the bit-wise XNOR of
the input and kernel followed by a bitcount. Although accuracy is sacrificed to some level by
such heuristics [47], the resultant memory savings and performance improvements allow some
XNOR-Net CNNs to be executed by edge devices. This allows such systems to execute complex
workloads, such as facial recognition, which is a real-time task that has to be performed efficiently
[119]. Moreover, in most BNNs, the convolutional kernels are rather small (typically 3×3, 5×5 or
7×7), thus it is expected that a significant part of their data is redundant. For instance, in 3×3
binary kernel, there can only be 29 = 512 possible combinations. There will be reuse of these 512
kernels, hence, resulting in redundancy in BNNs.

Exploiting the redundancy in BNNs, I propose a Binary Dot-Product Engine (BDPE) that
locally stores the most used kernels in RRAMs and efficiently implements binary convolution to
accelerate convolutional layers. Since the BDPE is meant to be integrated into the pipeline of a
CPU, it does not introduce communication overheads, which is one of the main drawbacks of
using dedicated accelerators.

3.2.4.2 Accelerating LSTMs with Analog In-Memory Computation

Matrix-vector multiply (MVM) are one of the main operations in various Deep Learning (DL)
workloads such as RNNs, CNNs, and Multi-Layer Perceptrons (MLPs) [120, 121]. MVM
operations are especially amenable for in-memory acceleration, paving the way for significant
energy gains and speed-ups for DL workloads.

One approach to exploit in-memory computing for DL is to design stand-alone accelerators
where multiple CM cores and associated digital logic blocks are interconnected by a suitable
communication fabric [122, 123]. In such an accelerator, weights associated with different
neural network layers can be mapped to different CM arrays and data can be propagated via
array-to-array communication. Yet, these works do not offer great implementation flexibility.
The data flow and array-to-array connectivity may have to be revised for different neural network
models. Moreover, the digital logic block typically offers limited functionality. For instance, only
a small set of activation functions can be supported. DL algorithms change much faster than
the development time of custom hardware accelerators; the accelerators should offer sufficient
flexibility for supporting diverse workloads. One way to enrich the digital logic supported by
the CM accelerators is to add local CPUs [124, 125]. However, these implementations lack a
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complete full-stack hardware and software ecosystem.

One prominent approach for moving towards a more general-purpose architecture is to bring
computing closer to the CPU with in-cache computing [38]. Here, the SRAM cache array’s bit
line/word line structure is exploited to perform a large number of parallel bitwise and arithmetic
computations in a SIMD-like manner. However, the cache size (only on the order of kilobytes)
limits the size of the operands and the number of operations that can be executed in parallel.

I propose a novel system architecture, where AIMC cores [126] are integrated directly into
the pipeline of a general-purpose CPU. The design allows megabytes of data to be stored and
processed in parallel in AIMC cores in only constant time complexity, while still having access
to the rich digital capabilities of the CPU. The existing hardware and software stack can be
leveraged with extensions to accommodate the AIMC core. RNN based LSTMs, [50] which are
quite well suited for natural language processing [63], are used as case study DL workload for
the AIMC core.

3.3 In-Cache Computing Accelerator for Video Encoding

3.3.1 Video Encoding

To demonstrate the gem5-X framework and methodology, real-time video encoding is used as
one of the case study applications. Video encoding is chosen because video streaming represents
58% of the overall downstream traffic in 2018, as presented by [35], hence, the need for a
performance-energy-optimized video encoding application. For this purpose, Kvazaar [1], a
state-of-the-art open source HEVC application, compliant with H.265 coding standard, is used as
real time video encoding application. HEVC offers twice the compression of its predecessors,
but at the cost of significantly increased computational cost [100].

In the HEVC encoder, the most complex block is the motion estimation of the video, which
plays a critical role in compression (and therefore, bandwidth) and quality. The goal of online
encoding is to serve videos to users in real-time, i.e. achieving a sustained frame rate of 24
frames-per-second (FPS), regardless of the video resolution. Real-time HEVC encoding is
achieved by means of thread-level parallelization of different blocks. Kvazaar comes with a wider
range of parallel processing capabilities. It is very well optimized from the software perspective,
leaving limited headroom for further software-based optimization.

In accordance with the gem5-X methodology, as discussed in Chapter 2, I first profile and
assess the bottlenecks of real-time video encoding application when running on ARM-64 in-
order and OoO architectures equipped with the NEON SIMD accelerator [127]. To demonstrate
the capabilities of gem5-X for exploiting architectural extensions, BLADE, the novel cache
computing engine described in [37] and discussed in Section 2.3.1.3, is used for accelerating
Kvazaar video encoding. BLADE executes a large number of operations simultaneously in-cache,
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Table 3.1 – Initial architecture for video encoding.

Parameter Value Parameter Value
Core ISA ARMv8 64-bit # In-order, # OoO cores 4, 4
Core Frequency 2GHz DDR4 size 4GB
L1-I cache, L1-D cache 32kB, 32kB LLC 1MB

being a promising solution to reduce the computation time. The benefits of in-cache computing
are assessed in terms of performance and energy consumption from the system-level perspective
across varying frequencies and core counts, within a fixed area limit.

3.3.2 Experimental Setup

• Application: To demonstrate the gem5-X methodology, experiments are run using Kvazaar
for video encoding for three video resolutions: high, medium and low, which correspond
to 1920x1080, 416x240 and 176x144 pixels, respectively.

• Power Model: To compute energy values, the power model for 28nm bulk CMOS A57
OoO cores is used, as proposed in Section2.7 of Chapter 2. For in-order cores, the energy
ratio between A57 and A53 cores at different frequencies is used, as proposed by [91, 92].
The power model includes core active, wait-for-memory (WFM) and static energy (in
J/cycle), and the Last-Level-Cache (LLC) read and write energy (in J/access).

• Hardware Architecture: As a starting point for the architecture exploration, the ARM
JUNO platform [34] is modelled in gem5-X, with 4 OoO cores instead of 2 to have a fair
comparison between different architectures and core types, each with 4 cores as a starting
point. The simulated architecture is summarized in Table 3.1.

3.3.3 Profiling and Bottlenecks

The first step in the gem5-X methodology is to profile the target application to identify memory
and compute bottlenecks. Valgrind [36] is used first on the JUNO platform to profile Kvazaar.
The profiling data shows that the Finite Impulse Response (FIR) filter and the Sum-of-Absolute-
Difference (SATD) are the two main blocks in the application that represent 21% and 26% of
overall instructions executed, respectively. The remaining 53% of the computation is spread in
chunks of less than 10% (in average 7%). L1 cache read miss counts for FIR filter and SATD
blocks were as low as 4.8% and 5.2%, respectively, demonstrating high data locality. Kvazaar
is also profiled on the ARMv8 64-bit JUNO platform in both in-order and OoO using gperf.
The profiling results are consistent in both types of cores as well as across the profiler used, in
terms of the bottlenecked functions. Moreover, percentages only differ between 1% to 4% from
Valgrind to gperf due to gperf’s statistical profiling.

Profiling demonstrates that the FIR filter and SATD blocks are the primary bottlenecks in Kvazaar.
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Due to the high locality in the L1 cache and the relatively simple arithmetic operations they
perform, they are potential candidates for the case study architectural extension of in-cache
computing.

3.3.4 Gem5-X Extensions for Video Encoding

To increase the performance and explore different energy-efficient platforms for video encoding
on the basis of the profiling step, two gem5-X compute sub-system architectural extensions will
be utilized:

1. BLADE in-cache computing accelerator: The BLADE in-cache computing accelerator
is integrated in the L1-D cache of the CPU, as discussed in Section 2.3.1.3 of Chapter
2. When the CPU decodes the in-cache computing instruction, the required operations
are scheduled and its operands are loaded into cache from main memory. Data locality
constraints are enforced upon the operands to guarantee architectural accuracy, as discussed
by [128] and [37]. In order to perform an operation between two operands, they must share
the same bitlines. This is ensured by reserving 1GB of cacheable memory that can be
mmapped by an application, allowing fine grained control of where operands are stored
in the cache. The target application, Kvazaar in this case, is modified to guarantee data
alignment during operations to be performed in-cache.

2. ARMv8 ISA extensions: In-cache computing architecture is supported in FS mode in
gem5-X, by extending the ARMv8 ISA [39], using reserved op-codes. The added in-
struction, when decoded, issues an in-cache computing request to the cache controller. A
new cachecompute flag with the instruction is also added, so that the cache controller can
recognize it as a cache compute request and handle it accordingly. This instruction can be
issued through in-line assembly from any C or C++ program.

3.3.5 Strategies for Architecture Optimization

3.3.5.1 Sweeping the Cache Sizes

As discussed in the previous section, FIR filter and SATD, the primary bottlenecks in Kvazaar,
exhibit high cache locality. To explore the effect of cache size, I use gperf in gem5-X and vary the
size of the L1 and LLC, in accordance with Phase-2 of the single-step exploration methodology
presented in Section 2.8. It is observed that for an L1 of 32KB, varying the LLC size from 512KB
to 16MB provides 6% application speed-up. Similarly, for an LLC of 16MB, increasing the L1
from 8KB to 128KB provides a 3.2% speed-up. As the speed-up is not significant, indicating
that data fits in all cache sizes, a 32KB L1 cache and a 1MB LLC is selected for the remainder
of architecture exploration for Kvazaar video encoding, as they represent an adequate trade-off
between energy, performance, and area.
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Figure 3.1 – Half and Quarter Pixel FIR Filter (numbers represent size in pixels).

3.3.5.2 Acceleration with In-cache Computing

FIR Filter and SATD blocks are accelerated using in-cache computing, as they are the primary
bottlenecks in Kvazaar and exhibit high cache locality in the L1 cache. Each block involves many
operations upon the same data chunk, resulting in low memory access times, but high computation
cost and processor-cache traffic, making them good candidates for in-cache acceleration.

1. FIR filter: The FIR filter block provides half and quarter pixel interpolation between two
blocks of pixels, typically in 72x72 pixel blocks. Four 8-tap filters are utilized to perform
interpolation. Four intermediate pixel blocks are computed first, and then six half pixel
and nine quarter pixel blocks are computed, resulting in two instances of filtering being
performed over the pixel blocks. To support the necessary data alignment as described in
Section 2.3.1.3 in Chapter 2, the first 4 instances of FIR filtering are performed in-CPU and
the results are stored in the necessary data aligned state in the 1GB of reserved space. This
allows the next 15 instances of FIR filtering to be performed in-cache. Each instance of FIR
filtering over a 72x72 pixel block requires 4’160 instances each of 32 bit multiplications,
adds, shifts, greater than, and less than calculations, all of which can be performed in-cache,
resulting in 312’000 in-cache operations being performed per function call. Finally, as
FIR filtering over a 72x72 block of pixels results in an output block of 65x65, resulting in
an unaligned data block, I trim the extra column of pixels and perform these calculations
in-CPU, storing them in a separate array and maintaining data alignment, as demonstrated
in Fig. 3.1.

2. SATD Block: SATD is performed between each of the half and quarter pixel blocks
computed as described in the previous section, and a reference pixel block, and involves
subtracting each pixel in the reference block from its corresponding pixel in the computed
block. The Hadamard frequency transform of these blocks is then taken in the horizontal
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Table 3.2 – FIR filter speed-up for different video resolutions when using BLADE. Application
acceleration and energy reduction for different video resolutions, when using BLADE in-cache
computing engine (for both FIR filter and SATD block) with ARM in-order cores in comparison
to ARM in-order cores with NEON SIMD.

Video Resolution Filter Speed-up Application Speed-up Overall Energy
Reduction

Low Resolution 88% 15.36% 11.5%
Medium Resolution 62.34% 14.7% 14.1%

High Resolution 64.64% 14.4% 16.47%

and vertical direction. The absolute values of these transformed values are added together
for a single final value that represents the difference between the original and computed
block.

Similar to the FIR filter, the SATD block can be accelerated by performing the subtractions
and horizontal Hadamard transform in-CPU, and the results saved to the reserved memory.
Then the absolute vertical Hadamard transform can be performed in-cache. To take
advantage of data locality, each 64x64 pixel block is tiled into sub-blocks of 8x64 pixels,
all operations performed on these tiles atomically. The vertical Hadamard transform
requires 2’048 additions, 2’048 subtractions and 4’096 absolute value operations per 64x64
block. 4’096 additional additions are needed to reduce the absolute results to a single cost
value, 3’584 of which are performed in-cache.

Table 3.2 shows the speed-up of the individual FIR filter and the overall application speed-up
obtained via in-cache computing with 4 in-order cores, using gem5-X. Note that all comparisons
in this section are against in-order (and OoO) ARM architectures equipped with a Neon SIMD
accelerator. The FIR filter block is accelerated by 62% to 88% depending on the video resolution.
The SATD acceleration is lower, reaching ~5% maximum, as not all SATD blocks can be
accelerated, due to the alignment constraints on the operands for in-cache computing, as discussed
in Section 2.3.1.3. However, accelerating SATD blocks is still very beneficial in terms of energy.
The BLADE in-cache computing engine reduces the energy consumption, as it operates on larger
data set using the SIMD approach, as discussed in Section 2.3.1.3 of Chapter 2. Furthermore, it
reduces the data movement between cache and the functional units in the CPU, as the operations
are performed in cache, which reduces the energy consumption. Accelerating both the FIR filter
and the SATD block gives ~15% application speed-up across low, medium and high resolution
videos compared to an in-order core without in-cache computing. Moreover, as presented in
Table 3.2, an overall energy reduction of 11.5% to 16.47% is also achieved when both FIR filter
and the SATD block are accelerated with BLADE, for different video resolutions.
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Figure 3.2 – Energy and area comparison for low resolution video.

3.3.6 Architectural Exploration and Results

Gem5-X allows to assess different architectures with and without in-cache computing. For the
Kvazaar video encoding, the goal is to minimize the energy consumption while meeting the 24
FPS requirement for all video resolutions.

3.3.6.1 Low Resolution Video

I start by assessing all configurations capable of satisfying 24 FPS for low resolution videos
within a fixed area budget of 4 OoO cores, i.e 8.2mm2, as described by [92]. Figure 3.2 shows
the energy consumption and area for various systems when running 24 FPS of a low resolution
video. It can be seen that 8 in-order cores with in-cache computing at 400MHz are 22.7% and
26% more energy efficient when compared to 4 OoO cores at 500MHz and 8 in-order cores
at 500MHz, respectively. Since in-order cores are 3 times smaller than OoO cores [92, 91], 8
in-order cores take 31% less area w.r.t. to 4 OoO cores. The area overhead of the L1 in-cache
computing unit is 0.5% of the core area using the estimates by [75] and [129], which is not
significant. Hence, it will not be considered for the rest of the chapter. The number of cores and
frequency values are optimal, in terms of area and energy efficiency, when doing a sweep across
different core counts at different frequencies.

3.3.6.2 Medium Resolution Video

Figure 3.3 shows the energy consumption and area for optimal in-order and in-order with in-cache
computing systems in comparison to OoO system when satisfying 24 FPS of a medium resolution
video. It can be seen that 8 in-order cores with in-cache computing at 950MHz gives 44% energy
benefit w.r.t. 4 OoO cores at 1.2GHz and area benefit of 31%. In comparison to 8 in-order cores
without in-cache computing at 1.1GHz, the in-order system with in-cache computing is 36%
more energy efficient. The number of cores and the operating frequencies for each architecture is
optimal in terms of energy and area while meeting the 24 FPS requirement. They are obtained by
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Figure 3.3 – Energy and area comparison for medium resolution video.
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Figure 3.4 – Energy and area comparison for high resolution video.

doing a parameter sweep across both the number of cores and their frequencies.

3.3.6.3 High Resolution Video

Finally, the high resolution videos are assessed, with results consistent to that of lower resolutions,
as shown in Fig. 3.4. In-order cores with a core count of 8 operating at 1.65 GHz with in-cache
computing accelerator provide the best results in terms of energy efficiency, with energy savings
of 76% in comparison to 4 OoO cores operating at 2GHz and 80% in comparison to 8 in-order
cores operating at 2GHz. The area benefit for 8 in-order cores with in-cache computing is 31% in
comparison to 4 OoO cores. Sweeping the core count and their operating frequencies enabled me
to obtain the optimal architectures in terms of energy efficiency and area.

Figure 3.4 also reveals that the energy savings of in-order cores with in-cache computing in
comparison to both in-order and OoO cores without in-cache computing, increases for higher
video resolution as compared to lower and medium resolution videos, as shown in Fig. 3.2 and
Fig. 3.3, respectively. This situation implies that, as the computational requirements increase, the
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Table 3.3 – Speed-up using HBM2 instead of DDR4.

Application Medium Resolution + Alexnet
Speed-up

High Resolution + Alexnet
Speed-up

Kvazaar Speed-up 7.72% 2.8%
Alexnet Speed-up 8.35% 7.48%

in-cache computing performs better as it has larger data chunks to process and achieves more
energy savings. The energy benefits obtained for all three video resolutions are attributed to the
lower operating frequency used, the in-order cores and the in-cache computing unit.

3.3.7 Video Encoding on Many-core Multi-application Systems

To demonstrate the many-core and multi-application simulation capabilities of gem5-X, a realistic
server scenario is simulated by concurrently executing Alexnet image classification inference
[62], along with real-time encoding (provided by Kvazaar), as in a video analytic application.
This will be explored in much more detail in the next Section 3.4 for architecture exploration of
video analytics application. In this section, I want to showcase the multi-application capabilities
in gem5-X. Alexnet [62] is a CNN-based image classification algorithm. An Alexnet model in
the ARM Compute Library (ACL) framework, developed by [130] is used. The system uses
in-cache computing to accelerate the dominant blocks in Kvazaar. The in-simulator gperf profiler
is useful in this case to look for new bottlenecks in the Kvazaar application, on the architecture
with in-cache computing, when co-located with Alexnet, which is a memory intensive application.
Analysis of the Kvazaar application for medium resolution and high resolution video reveals that
memory functions, like memcpy and memset together contribute 16.5% and 10% respectively
towards execution time. Profiling Alexnet reveals a 23.5% memset function contribution.

To accelerate the memory functions described above, HBM2 is used instead of the conventional
DDR4 due to its high bandwidth (BW). The experimental setup includes HBM2 with 8 in-order
cores. Kvazaar is allocated to the 4 cores equipped with in-cache computing, while Alexnet
is allocated to the remaining 4 cores, all operating at 2GHz. Table 3.3 shows the percentage
speed-up achieved when using HBM2 instead of DDR4. It can be seen that AlexNet is accelerated
by more than 7% for both medium and high resolution videos. Moreover, Kvazaar achieves a
higher acceleration in case of medium resolution as compared to high resolution, because the
contribution of memory functions is higher in medium resolution videos as compared to high
resolution ones.

To conclude, I have demonstrated in this section the architecture exploration and optimization of a
video encoding application using the gem5-X methodology, architectural extensions and support
enhancements. The fast design space exploration enabled by gem5-X allowed to properly select
the optimal number, type and operating frequency of the cores giving an optimized architecture.
To further demonstrate the system-level capabilities and functionality of gem5-X, I co-simulated
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real-time encoding along with a deep learning CNN and alleviated the memory bottlenecks using
HBM2. The gem5-X FS support enabled me to explore and optimize the application in a Linux
based system, as in a real platform. Moreover, the gperf support enhancement enabled me to
analyse the performance gains of BLADE for the individual kernels (i.e., FIR filter and the SATD
block). Furthermore, the enhanced checkpointing support in gem5-X made it possible to reduce
the simulation turnaround time by 20-30 minutes per simulation, as when resuming from the
checkpoint, the core operating frequency as well as cache sizes can be changed. This enables
multiple experiments to be resumed from the same checkpoint.

3.4 Heterogeneous Architecture for Video Analytics

Real-time video analytics dubbed as the next-generation "killer-app" [40], is used in a wide
range of domains, from video surveillance, for security and monitoring, safety on construc-
tion sites, traffic monitoring and thermal monitoring to identify patients with fever as well as
for fire hazards [41, 42]. Real-time video analytics is also used for autonomous drone navi-
gation and rescue drone missions, e.g. during earthquakes, floods or rescuing people at sea
[43, 131]. Autonomous drones are also being deployed for deliveries of parcels by many com-
panies around the globe. The emerging market of smart autonomous cars along with their
Advance Driver-Assistance Systems (ADAS), use video analytics as one of the core components
of the system to detect obstacles, traffic signs and signals to navigate the car accordingly [44, 132].
Hence, this new emerging "killer-app" is being deployed all the way from low power edge devices
to high performance cloud servers.

In this section, I demonstrate the capabilities of gem5-X to seamlessly analyze multi-threaded
multi-kernel applications or multiple applications, enable various architectural extensions, and
explore various architecture parameters, to have an overall performance-energy-optimized archi-
tecture. The video analytics application is used as a case study to demonstrate the architectural
and system-level characterization capabilities of the gem5-X framework. Then, I demonstrate
the utilization of gem5-X two-step optimization methodology based on local exploration and
optimization for each individual kernel and then a global optimization for the whole application
to have a complete optimized system, as discussed in Section 2.8.2. Each kernel can have its own
optimized architecture, which might be different from another kernel, but collectively all those
locally optimized kernels make up the complete optimized application. Hence, a heterogeneous
system-level architecture is developed to ensure that all the kernels and system components are
working coherently with each other.

Video analytics is a combination of two kernels, namely, video processing (or video encoding)
along with image classification and detection. The video encoding kernel has to meet the
performance and QoS constraints of processing at 24 FPS for a seamless user viewing experience.
Image classification has real-time constraints in real scenarios like in surveillance to identify and
alert of a potential security breach or safety alert on a construction site, collision avoidance in
drone navigation and safety features and decision processing in autonomous cars and ADAS
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Figure 3.5 – Video analytics application composed of two kernels running concurrently, i.e.,
video encoding using Kvazaar [1] and image classification/detection using CNNs.

systems. These different use-cases of video analytics on different architectures, like surveillance
in the cloud and drone navigation on the edge, require to have performance- and energy-optimized
architectures while meeting the real-time constraints. The optimized architecture will enable
longer battery life for edge devices and lower energy costs as well availability of resources to
serve more users on the cloud. Hence, the proposed gem5-X system-level simulator is used to
optimize the performance and energy of the complete system for multi-threaded applications on
different architectures, either on the edge or in the cloud.

3.4.1 Video Analytics Application

The gem5-X simulation framework supports full Linux stack and is generic enough to run and
optimize any multi-threaded application, but to demonstrate its capabilities, real-time video
analytics application is used as a case study. The choice of this particular application is due
to two reasons. Firstly, video analytics is deployed and used in different spheres of our daily
life, e.g., in surveillance for safety and security, drone navigation and autonomous cars. These
different scenarios also present a challenge to system architectures because of different compute
capabilities and energy constraints of the systems, all the way from the edge device to the cloud
servers. The second reason for using video analytics as a case study application is because of the
complexity of the application itself and the fact that it is composed of two distinct kernels, video
encoding and image classification using CNNs. This gives me the opportunity to exploit and
demonstrate the capabilities of gem5-X in optimizing various compute and memory sub-systems
to have an overall optimized architecture.

3.4.1.1 Video Analytics Application Structure

As depicted in Fig. 3.5, real-time video analytics consists of two kernels running in parallel
alongside each other, namely, video encoding/processing and image classification and detection
[133, 134]. Video encoding is used to encode the video stream and transmit it to the end user or
to store it in the cloud, e.g. in a security video surveillance system the video is being streamed
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Table 3.4 – Video Analytics Application Scenarios.

Case Video Resolution
(pixels)

Image Classification
(FPS)

Surveillance: Construction Site/Pedestrians
[41], [42]

640x480 5

Drone Navigation [43], [131] 300x200 10
Autonomous Driving and ADAS [44],
[132]

640x480 15

to a control room or stored in the cloud [41]; in case of a drone navigation system it is being
transmitted to the drone pilot [131]. In addition to video encoding, the video frames from the
video stream are being analyzed simultaneously by the image classification application. CNN-
based image classification may be used for facial recognition, counting people, potential hazard
on a construction site in case of surveillance application [42]. It is also used for obstacle detection
in drone navigation [43, 131] and autonomous cars [44, 132]. In a drone rescue mission, it can be
used by drones to identify people at sea, in flood or in the rubble during an earthquake. In essence,
both the video encoding and image classification needs to run side-by-side for a fully functional
video analytics. The video encoding needs to process 24 FPS for a seamless user experience.
Simultaneously, the image classification needs to classify a number of FPS depending on the
application scenario. Table 3.4 summarizes the various application scenarios of video analytics
application with different resolutions for video encoding and image classification/detection rate.

In the following sections, the video encoding and image classification kernels will be presented,
both of which together make up the video analytics.

3.4.1.2 Video Encoding

Video encoding is an essential part of video analytics. Kvazaar [1], a state-of-the-art open source
HEVC application, compliant with H.265 coding standard, is used as real time video encoding
kernel. As discussed in Section 3.3, FIR filter and the SATD block are the two dominating
blocks in Kvazaar that represent 21% and 26% of overall instructions executed, respectively.
The remaining 53% of the computation is spread in chunks of less than 10% (in average 7%)
instructions in other blocks. Hence, I will focus on defining a suitable architecture for the various
case study scenarios with gem5-X to optimize the execution of the FIR filter and SATD block in
Kvazaar.

3.4.1.3 Image classification using CNNs

The video analytics includes video encoding, which is either send to the end user or stored
in the cloud, and CNN based visual recognition as discussed in [133, 134, 135]. CNN based
image recognition is now becoming a standard in both the industry and academia for computer
vision tasks because of the impressive results it has achieved [136]. All the case study scenarios
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Figure 3.6 – Image partitioning and resize for input image resolution of (a) 300x200 pixels, (b)
640x480 pixels.

of surveillance, drone navigation and ADAS use CNNs for the visual recognition part of the
application, as discussed in [42], [131] and [44], respectively. Because of ample research in CNN
architectures, there are a variety of CNNs to choose from [137]. The choice to deploy a partic-
ular CNN depends on various factors such as accuracy, inference time, memory requirements,
computation complexity and the size of the network. The video analytics scenarios presented
in Table 3.4 vary from being deployed on the edge device like in drone navigation all the way
up to high-end cloud servers like in a surveillance system. Therefore, the CNN should meet the
memory, computational complexity and performance requirements in all the scenarios.

MobileNet [45] is an efficient CNN architecture that can be deployed on the edge as well as in
the cloud. It has a Top-1 accuracy of 70.4% on the Imagenet benchmark, which is better than
other complex popular CNNs, like GoogleNet, Alexnet and Squeezenet. MobileNet-v1 is also
quite small in size and complexity, and feasible to be deployed on the edge node. MobileNet
has previously been used in surveillance [42], drone navigation [138, 139] and autonomous
cars and ADAS [140]. As most of the edge nodes are based on ARM architectures, the ACL
[130] framework is used to deploy MobileNet. The limitation of MobileNet is that it can only
process image sizes of up to 224x224 pixels, smaller than the case study scenarios listed in Table
3.4. Hence, for these images to be processed by MobileNet, image partitioning and resizing (if
required) is performed, as shown in Fig. 3.6. For the 300x200 pixel frame, it is partitioned into
two 224x224 images. Since the resolution of the resulting two 224x224 images is greater than the
original image, extra pixels are used to overlap the split images horizontally. This overlap allows
to detect objects that would have otherwise been split between images. The unused pixels at the
bottom of the images are ignored and filled with black, as shown in Fig. 3.6a. For the frame
resolution of 640x480, it is first resized to 640x448 pixels, so that it can evenly be distributed
vertically to a 224 pixel size. After that, it is partitioned into six 224x224 pixel images, with
the extra pixels being used to overlap the adjacent images to avoid splitting of objects between
images, as shown in Fig. 3.6b. The partitioned images are then sent to MobileNet-v1 for image
recognition.
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MobileNet has been used as it is a small, fast and high accuracy CNN, which makes it feasible
to be used both on the energy constrained edge device, as well as on the servers in the cloud. It
has also previously been used in the case study scenarios listed in Table 3.4. However, any other
CNN can be used instead of MobileNet, and the methodology used for optimization will remain
the same.

3.4.2 Gem5-X Extensions

For the real-time video analytics application, comprising of video encoding and CNN based image
classification kernels, the following compute and memory sub-system architectural extensions of
gem5-X are utilized:

1. BLADE In-cache Computing Accelerator: The BLADE in-cache computing accelerator
is used for accelerating the FIR filter and SATD blocks of the video encoding kernel, as
discussed already in Section 3.3.4. As the in-cache computing engine has data alignment
constraints, the Kvazaar kernel is modified to ensure data alignment during operations to
be performed in-cache.

2. ARMv8 ISA Extensions: Gem5-X ISA extension capability is utilized by extending the
ARMv8 ISA [39], using reserved op-codes. ISA extension enables the BLADE in-cache
computing to be used in FS mode in gem5-X, as discussed in Section 3.3.4.

3. Heterogeneous Compute Cores: As the video analytics application comprises two differ-
ent kernels, the video encoding and image classification based on CNNs, their compute
requirements are also different. Hence, one kernel of the application might have better
performance and energy efficiency on in-order cores and the other might run better on OoO
cores. The gem5-X heterogeneous compute core extension, as discussed in Section 2.3.1.6
of Chapter 2, along with in-cache computing accelerator support will be utilized in such a
scenario, which will be discussed later in Section 3.4.6.

4. Core Clustering: Core clustering in gem5-X enables independent L2 or LLC caches for
different kernels of the application, as discussed in Section 2.3.1.5. Hence, clustering
of cores alleviates the memory BW bottleneck on the L2/LLC, as each cluster has its
own L2/LLC. As the video encoding application consists of two main kernels, core
clustering will improve the performance, as the working data-set for each kernel will
reside independently in its own cluster’s cache. Thus, this also helps in avoiding the cache
thrashing.

5. HBM2 3D Stacked Memory: The video analytics application is primarily compute
dominated, with compute intensive tasks in both of its kernels, video encoding and CNN
based image classification. However, when both the kernels are co-allocated together for
a complete video analytics, the memory utilization increases. To alleviate any memory
bottlenecks and increase the memory BW, 3D stacked HBM2 memory model in gem5-X
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is used to improve both performance and energy efficiency, as it provides a high BW of up
to 307.2 GB/s [79], enabled by multiple channels. The HBM2 memory model in gem5-X
has already been discussed in Section 2.3.2.1 of Chapter 2. A detailed BW analysis of
HBM2 in comparison to DDR4 has also been already presented in Section 2.6.

3.4.3 Exploration and Optimization Methodology for Real-Time Video Analytics

To have an optimal architecture in terms of performance and energy efficiency for the case study
video analytics, the two-step exploration methodology is used, as discussed in Section 2.8.2
of Chapter 2. Therefore, as in Step 1 of the methodology, separate architectural exploration
and optimization is performed for each of the two kernels of the application, Kvazaar and
MobileNet. Once the architectures have been optimized separately, both in terms of performance
and energy efficiency, for both kernels, they are co-allocated together on a single platform as a
video-analytics application. During co-allocation, the architectural optimizations for both kernels
are combined together into a single architectural platform. Finally, in accordance with Step 2 of
the methodology, global optimization is performed with both kernels co-allocated on a single
architecture.

I will now discuss the architecture exploration and optimization separately for video encoding
Kvazaar kernels and CNN-based image classification using MobileNet kernel. Finally, I will
demonstrate the co-allocation of these two kernels and combine their respective architectural
optimizations on a single platform for complete video analytics application.

3.4.4 Architecture Exploration and Optimization of Video Encoding Kernel

Kvazaar [1] is an open-source HEVC transcoding application, capable of performing both online
encoding and decoding. For video analytics, the key element to consider is the video encoding
part of Kvazaar. The performance requirement for encoding is 24 FPS to have a seamless user
experience. Hence, for all video resolutions in Table 3.4, 24 FPS requirement needs to be met.
As discussed in Section 3.4.1.2 and in [97], FIR filter and SATD are the two dominating blocks
in the Kvazaar encoder. Hence, I will focus on optimizing the architecture for these significantly
contributing blocks to have an architecture optimized for the overall kernel.

3.4.4.1 Experimental Setup

The same experimental setup as for the video encoding application, presented in Section 3.3.2
and presented in Table 3.1 based on ARM JUNO platform [34] is used as a starting point. The
power modeling modeling includes the core, LLC and memory power, as discussed in Sections
2.7 and 3.3.2.

The experimental setup is based on general-purpose compute cores (ARMv8 cores) and not
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Figure 3.7 – Performance, energy and area comparison for Kvazaar video encoding of 300x200
resolution video.

ASICs, as quite a lot of effort and time is required for the development of an ASIC. A software-
based solution can ease this with just downloading and optimizing the code and running it
on available general-purpose compute system. Furthermore, applications developed to run on
ASIC cannot be updated/upgraded if there are new improvements to the algorithm. However, a
CPU-based system allows for updating the currently deployed application with updated or new
algorithms on the same platform.

3.4.4.2 Profiling the Video Encoding Kernel

Kvazaar was profiled both on ARM JUNO and in the gem5-X simulated system, as discussed
already during the architecture exploration for the video encoding application in Section 3.3.3.
FIR and SATD blocks were found to be the dominating blocks with 21% and 26% instructions
respectively, and hence they were potential candidates for optimization using the BLADE in-cache
computing engine, as discussed already in Section 3.3.5.2.

3.4.4.3 Architecture Exploration - Results and Analysis

There are two video resolutions, 300x200 pixels and 640x480 pixels that cover all three-video
analytic case study scenarios, namely, surveillance, drone navigation and autonomous cars, as
presented in Table 3.4. Therefore, for the architectural exploration and optimization of Kvazaar,
these two resolutions will be used. The baseline architecture will be as in Table 3.1, with ARMv8
64-bit in-order cores with the core count dependent on video resolution to meet the 24 FPS
requirement. BLADE will be used as an accelerator along with ARMv8 in-order cores. The
performance will also be compared to ARMv8 OoO cores.

• 300x200 Resolution:

Figure 3.7a shows the performance and energy benefits of ARM 4-core in-order system
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Figure 3.8 – Performance, energy and area comparison for video encoding of 640x480 resolution
video.

with BLADE and ARM 4 OoO cores in comparison to the baseline of ARM 4 in-order
cores, all operating at 2GHz and DDR4 as main memory, while processing 300x200
resolution video at 24 FPS or more. It is observed that 4 in-order cores with BLADE are
6.33% performance efficient and 6.49% energy efficient, as compared to in-order system
without BLADE. OoO cores on the other hand improve performance by 45% but at the
cost of consuming 44.44% more energy than 4 in-order cores. Hence, the OoO core count
is scaled down to 2-cores, to just meet the 24 FPS and not more.

Also, 4 in-order cores are selected with BLADE as the reference, and their energy and area
compared to 2-OoO cores. Now both systems have the same performance to encode at
24 FPS, but 2 OoO cores consume 45% more energy along with an area overhead of 31%
as depicted in Fig. 3.7b. Therefore, a 4-core in-order system with BLADE is the optimal
architecture for 300x200 resolution video.

• 640x480 Resolution: For 640x480 resolution video I start with a core count of 4-cores for
ARM in-order, in-order with BLADE and OoO cores at 2GHz. As shown in Fig. 3.8a,
4 in-order cores with BLADE perform 20% better than in-order cores without BLADE
in terms of FPS, along with 18% less energy consumption. The performance and energy
benefit for in-order cores with BLADE is more in comparison to 300x200 resolution video,
as a larger data set exploits more cache capacity and provides more opportunities for using
BLADE vector processing in the cache. The OoO cores improve performance by 45%,
but consume 44% more energy in comparison to in-order without BLADE, similar to
300x200 resolution video. However, with 4-cores none of these architectures meet the 24
FPS requirement. Hence, the core count is increased until the 24 FPS requirement is met.
For in-order cores without BLADE, the number of cores are increased to 12, to reach 24
FPS, whereas, with BLADE only 10 cores are necessary, indicating a performance benefit
of 20%. The number of OoO cores at 2GHz required to encode 24 FPS are 6. While
processing 24 FPS for a 640x480 resolution video, I compare the energy and area required
for OoO cores in comparison to in-order cores with BLADE. It is found that 10 in-order
cores with BLADE are 54% more energy efficient compared to 6 OoO cores, and at the
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Table 3.5 – Time, core power (at 2GHz) and memory power for video encoding of 300x200
resolution video, while meeting 24 FPS requirement.

Parameter 300x200 Video Resolution
In-order
4-Cores

OoO
2-Cores

In-order 4-Cores with
BLADE

Time (s) 0.98 1.0942 0.918
Core Power (W) 0.971 1.460 0.8567
Memory Power (W) 0.0291 0.0259 0.141

Table 3.6 – Time, core power (at 2GHz) and memory power for video encoding of 640x480
resolution video, while meeting 24 FPS requirement.

Parameter 640x480 Video Resolution
In-order 12-
Cores

OoO
6-Cores

In-order 10-Cores with
BLADE

Time (s) 1.006 1.092 0.962
Core Power (W) 3.835 6.448 2.987
Memory Power (W) 0.175 0.137 0.444

same time taking 43% less area as well, as shown in Fig. 3.8b.

The BLADE in-cache computing engine reduces the energy consumption, as it operates on larger
data set using the SIMD approach as discussed in [37, 97]. Furthermore, it reduces the data
movement between cache and the functional units in the CPU, as the operations are performed in
cache, which reduces the energy consumption. For the video encoding kernel, Table 3.5 and Table
3.6 show the core and memory power for 300x200 and 640x480 resolution videos, respectively,
while meeting the 24 FPS requirement. Here it can be seen that the energy reductions mainly
come from the core power. In-order cores with BLADE in-cache computing has the least power,
as compared to OoO cores, as well as the in-order cores without BLADE. In summary, this
situation leads to low power ARM in-order cores with BLADE to match the performance of
high-performance ARM OoO cores with 54% less energy budget.

Therefore, for the video encoding portion of video analytics, ARM64 bit in-order cores along
with BLADE in-cache computing engine will be used, as it produces the best energy efficiency
and area occupancy, while achieving the required 24 FPS.

3.4.5 Architecture Exploration and Optimization of MobileNet Kernel

MobileNet [45] is a state-of-the-art CNN used for image classification, with low computational
cost designed for deployment on mobile and edge devices. As image classification and detection
is necessary for video analytics, MobileNet will be used for this purpose. The ARM ACL [130]
framework is used to deploy an ARM optimized version of MobileNet, which is used in gem5-X
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Table 3.7 – MobileNet classification rate for various application scenarios.

Case FPS - Original Resolution FPS - Split Images
Surveillance (640x480) 5 30
Drone Navigation (300x200) 10 20
Autonomous Driving and ADAS
(640x480)

15 90

based experiments to look into further architectural exploration and optimization choices.

MobileNet allows input image size of 224x224 pixels, whereas the three case study scenarios
in Table 3.4 have 300x200 and 640x480 pixel resolution. As discussed in Section 3.4.1.3, each
300x200 and 640x480 frame is split into 2 and 6 images of 224x224 pixels as inputs to MobileNet,
respectively. Therefore, the resulting FPS requirement for MobileNet is higher as shown in Table
3.7.

3.4.5.1 Performance Comparison - CPU vs GPU

GPUs are increasingly being used both in training and inference of the CNNs architectures due
to their high performance capability of processing vectored data, making them a perfect fit for
CNNs [141, 142]. Then, as the case study scenarios involve edge devices, I looked into energy
efficient GPUs for mobile and edge computing.

Nvidia Jetson Nano is a low power state-of-the-art GPU designed for Artificial Intelligence (AI)
tasks on embedded and edge devices [143]. I compare the performance and energy consumption
for MobileNet inference between ARM in-order cores, OoO cores and Jetson Nano. The Nvidia
Jetson Nano platform [143, 144] comes with 128 Nvidia Maxwell GPU cores integrated with 4
ARM Cortex A-57 cores. Furthermore, the Nvidia Jetson Nano has better software support, as
compared to other platforms like ARM Mali GPU [145] and Ethos Neural Processing Unit (NPU)
[146]. It can run the networks implemented in Tensorflow directly and has the optimized versions
of the networks in TensorRT [147], an optimized framework to deploy CNNs on Nvidia GPUs.

MobileNet is deployed on Jetson Nano using the Nvidia TensorRT framework [147]. The energy
statistics on Jetson Nano are collected using the Nvidia tegrastats utility. Jetson Nano is set to
its high-performance mode (10W mode) with its 128 GPU cores operating at 921MHz. The
CPU and GPU in the Jetson Nano are in separate power domains [144], and in high-performance
mode, the power rails VDD_CPU and VDD_GPU for CPU and GPU, respectively, are both set
to 1.322V. These power rails only account for the CPU and GPU compute cores of Jetson Nano
and not any other peripherals or I/Os, as they are in separate power domains. Both ARM in-order
and OoO cores are configured in gem5-X to operate at 2GHz with 32KB L1 instruction and data
cache. The LLC is configured to 1MB for 4 cores. As it will be discussed later in Section 3.4.5.2,
MobileNet performance scales linearly with multiple threads on multi-core system up to 4 cores.
Hence, for an 8-core simulation, two instances of MobileNet are launched, each using 4-cores
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Figure 3.9 – MobileNet performance and energy comparison.

independently, so that the performance scales with core count. Thus, I use a clustering approach
which will be discussed in detail in Section 3.4.5.2. Then, HBM2 is used as memory instead
of DDR4, which is an architectural optimization, as discussed in detail in Section 2.3.2.1 and
Section 2.6 of Chapter 2.

Figure 3.9 shows the performance in terms of FPS achieved by MobileNet on different architec-
tures for 224x224 pixel input image. This figure shows that ARM 8 in-order and 4 OoO cores
surpass the performance of Jetson Nano, by 3.3% and 11%, respectively. Hence, 4 OoO cores
achieve the highest performance. The reason as to why the lower number of ARM CPU-based
system matches or outperforms Jetson Nano comes from the fact that ARM CPU-based system is
operating at 2GHz, whereas, Jetson Nano GPU-based platform with 128 GPU cores is operating
at 921MHz. Regarding energy comparison, the energy is computed for processing 21 MobileNet
images. Jetson Nano consumes the highest energy as can be seen in Fig. 3.9, whereas OoO
cores are the most energy efficient. OoO cores are 27% more energy efficient as compared to
Jetson Nano and 6% in comparison to 8 in-order cores. The energy of 8 in-order cores is the
same as 4-in-order cores, as 8 in-order cores achieve double the FPS (half the execution time)
in comparison to 4 in-order cores. Overall, OoO cores with HBM2 are the best both in terms of
performance and energy efficiency for processing MobileNet. Jetson Nano consumes more energy
in comparison to ARM CPU-based system because the high number of GPU compute cores (128
cores) in Jetson contribute largely towards the high energy consumption [148]. Secondly, the
energy for the Jetson Nano platform includes the GPU energy as well as the 4 ARM Cortex-A57
cores which are mostly idle and not used for the actual computation of the MobileNet CNN, but
are used as the host cores for the GPU. As these cores are mostly idle, their static energy adds to
the total energy of the Jetson Nano platform.
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Figure 3.10 – Clustered architecture for multiple MobileNet instances.

3.4.5.2 MobileNet Scaling and Clustering

To achieve higher FPS, e.g., 90 FPS for an ADAS system, more cores are required to process
the images, as well as the use of multiple threads with one thread per core. Therefore, it is
investigated how MobileNet scales with the number of cores.

It is found that FPS scales linearly up to 4 cores, however, after that the performance does not
scale up with core counts and number of threads. This is due to the fact that since MobileNet
is a light weight network, the cost of sharing data among higher number of cores affects the
performance per core, thus suppressing the overall performance.

To overcome this issue of scaling, multiple independent MobileNet instances are launched in
parallel, with each instance using a maximum of 4 cores. Hence, I instantiate 3 clusters each
with 4 cores in gem5-X. Each cluster has its own LLC, as shown in Fig. 3.10, so that there is no
thrashing in the cache.

3.4.5.3 Architecture Exploration - Results and Analysis

For the compute side optimization of MobileNet, it was concluded in Sections 3.4.5.1 and 3.4.5.2
that ARM OoO cores are the best in terms of compute core performance, and that to use clustering
for parallel processing and launching separate instance of MobileNet on each cluster.

Next, regarding the memory side exploration, 8-channel HBM2 is considered, as CNNs are
memory intensive applications due to weight and bias accesses of the network. For the three-
video analytics application case study scenarios, the FPS requirement needs to be met for the
visual recognition portion, as in Table 3.7. Hence, I run experiments with ARM OoO cores at
2GHz, with the architecture shown in Fig. 3.10, both with DDR4 and HBM2 memory types.

65



Chapter 3. Compute-Dominated Architecture Exploration

0

20

40

60

80

100

120

4-OoO Cores 8-0oO Cores 12-OoO Cores

FP
S

HBM2 DDR4 1-Ch
DDR4 2-Ch DDR4 4-Ch
Surveillance - FPS Threshold Drone Navigation - FPS Threshold
Autonomous Cars and ADAS - FPS Threshold
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Figure 3.12 – MobileNet performance and energy benefit of using HBM2 (8-Ch) over DDR4
with different number of channels for OoO cores.

Figure 3.11 shows that 4 OoO cores with HBM2 meets the FPS requirement for drone navigation
and surveillance scenarios, whereas, 4 OoO cores with DDR4 (1 to 4 channels) only meet the
FPS requirement for drone navigation. However, using HBM2 instead of DDR4 results in energy
benefit of up to 21%, as shown in Fig. 3.12b. For ADAS and autonomous smart cars, where the
requirement is 90 FPS, 3 instances of MobileNet are launched, each on a 4-core cluster. Figure
3.11 shows that 12 OoO cores with HBM2 meet the 90 FPS requirement. Again 12 OoO cores
with DDR4 (1 to 4 channels) fail to reach the required FPS. I also run experiments with 8 OoO
cores with two MobileNet instances, and see that it scales well with the clustering approach, from
4-core to 8-core to 12-core systems.

Finally, I compare the percentage performance and energy benefit of using 8-channel HBM2
instead of DDR4, with number of channels varying from 1 to 4, for MobileNet. Figure 3.12a
shows that the performance benefit varies from 8% to 28%, as it scales with the number of cores
as well as with the number of DDR4 channels. Similarly, as shown in Fig. 3.12b, there are
energy savings of up to 32% for 12 core system, when using HBM2 instead of single channel
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Figure 3.13 – Heterogeneous architecture for video analytics.

DDR4. The energy savings when using HBM2 instead of 4-channel DDR4 is between 16% to
20%, depending on the number of compute cores.

Therefore, ARM OoO core system with 8-channel HBM2 is the best performing system both in
terms of performance and energy efficiency for MobileNet based visual recognition tasks.

3.4.6 Architecture Exploration and Optimization of Video Analytics

Once the Kvazaar video encoding and MobileNet visual recognition kernels are independently
optimized for performance and energy efficiency, I move to Step 2 of the optimization and
exploration methodology, presented in Section 2.8.2 of Chapter 2. Then, the global architectural
optimization and exploration is performed with all the application kernels co-allocated on the
same platform, running in parallel. This complete analysis results in heterogeneous architectures
with different clusters, as each locally optimized architecture might be different from one kernel
to another, which share the crossbar interconnect and memory.

3.4.6.1 Heterogeneous Architecture

Figure 3.13 shows the heterogeneous architecture proposed for the complete video analytics
application. There is a separate compute cluster for Kvazaar, with ARM in-order cores and ISA
extensions to use the in-cache computing engine, BLADE, integrated into the L1-D. Similarly,
there are multiple clusters for MobileNet with 4 ARM OoO cores per cluster. The number of
clusters depends on the required FPS. All of the clusters have their own LLC. HBM2 is used
as the main memory in the system, as it offers more BW compared to DDR4 and it is necessary
for MobileNet to achieve the required FPS. All the cores and clusters are 100% utilized for both
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Figure 3.14 – Video Analytics FPS for Kvazaar and Mobilenet clusters for 300x200 resolution
video for drone navigation when using HBM2, DDR4 and on Hikey960 platform.

the Kvazaar and MobileNet kernels. Hence, there will be no resource sharing between different
kernels in terms of compute cores and their components, as it will not benefit the application
performance. I will look into the performance and energy benefits of using HBM2 for Kvazaar
as well as the overall system in the next section.

3.4.6.2 Architecture Exploration - Results and Analysis

For video analytics, the primary goal is to meet the QoS and performance requirements as set out
in Tables 3.4 and 3.7 and improve the energy efficiency as much as possible. As there are three
scenarios, one with a resolution of 300x200 pixels (drone navigation) and two with 640x480
pixels (surveillance and autonomous cars), I will explore and discuss the results according to the
video resolutions.

• 300x200 resolution: It was concluded in Section 3.4.4.3, that 4 in-order cores at 2GHz
with BLADE in-cache computing is the optimal architecture to meet 24 FPS requirement
for the Kvazaar video encoding part of video analytics. For visual recognition using
MobileNet, 4 OoO cores at 2GHz were optimal in terms of performance and energy to
meet the FPS requirement of 20 FPS for drone navigation, with HBM2 as the main memory.
Hence, the architecture in Fig. 3.13 will have one Kvazaar cluster with 4-cores and LLC of
1-MB and one Mobilenet cluster of 4 OoO cores.

Figure 3.15a shows a performance benefit of 10% and 16.6% for Kvazaar and MobileNet
clusters, respectively, when HBM2 is utilized instead of single-channel DDR4. The FPS
values for both clusters with HBM2 and DDR4 are shown in Fig. 3.14. The performance
benefit is approximately 9% for both clusters when using HBM2 instead of 4-channel
DDR4. It is also observed that an energy benefit of 6% and 20.7% for Kvazaar and
MobileNet is achieved, respectively, when HBM2 is compared to single-channel DDR4.
When compared to 4-channel DDR4, the energy benefit is 2.5% and 18% for Kvazaar
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Figure 3.15 – Percentage performance and energy benefit when using HBM2 (8-Ch) in compari-
son to DDR4 with different number of channels and Hikey960 platform for video analytics of
300x200 resolution video for drone navigation.

and MobileNet, respectively. As shown in Fig. 3.14, the achieved FPS are more that the
minimum required for both kernels (24 FPS for Kvazaar, and 20FP for MobileNet). More-
over, the proposed architecture with HBM2 is also compared to commercially available
ARM big.LITTLE Hikey960 platform [78], which has 4 in-order and 4 OoO ARM cores.
As shown in Fig. 3.14, the Hikey960 achieves the least FPS, leading to 18% and 35%
performance benefit of the proposed architecture using HBM2 over Hikey960, for Kvazaar
cluster and MobileNet cluster, respectively, as shown in Fig. 3.15a. With regards to energy,
energy savings of 18% and 43% are achieved over Hikey960, for Kvazaar and MobileNet
clusters, respectively, as shown in Fig. 3.15b.

To further optimize the architecture, I move to Step 2 of the optimization methodology,
to optimize for energy efficiency as the performance requirements have already been met.
Both kernels scale linearly with frequency. Hence, the frequencies of both clusters are
reduced to meet minimum performance requirements, therefore, enabling more energy
savings. Reducing the frequency of Kvazaar 4-core cluster from 2GHz to 1.72GHz, results
in an energy saving of 32% while achieving 24 FPS. Similarly, for the MobileNet cluster
the frequency is reduced from 2GHZ to 1.2GHz resulting in an energy saving of 59%.

• 640x480 resolution:

For the 640x480 resolution, two case study scenarios exist. First, one of video surveillance
with MobileNet requirement of 30 FPS. Second, autonomous cars and ADAS with Mo-
bileNet are used for image recognition with a requirement of 90 FPS. The video encoding
for both scenarios is required to execute at 24 FPS. Hence, as discussed in Section 3.4.4.3,
a 10-core in-order cluster at 2GHz with BLADE is instantiated for Kvazaar, with HBM2
as main memory instead of DDR4. For MobileNet clusters, a 4-core OoO cluster at 2GHz
meets the 30 FPS requirement and three 4-core clusters meet the 90 FPS requirement as
discussed in Section 3.4.5.3.

The performance benefit of 10-core Kvazaar cluster varies from 6.5% to 10.5% when using
HBM2 instead of single-channel DDR4, while meeting the 24 FPS requirement, as shown
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Figure 3.16 – Video Analytics for 640x480 resolution video for video surveillance and au-
tonomous cars and ADAS systems. 10-core Kvazaar cluster is used for video encoding in both
scenarios. A 4-core OoO cluster is used for MobileNet in case of surveillance, and three 4-core
OoO clusters are used for autonomous cars and ADAS.

in Fig. 3.16a, and between 2.8% to 4.3% when comparing HBM2 to 4-channel DDR4.
It can be seen that the percentage benefit of the Kvazaar cluster for 640x480 resolution
video, when HBM2 is being used instead of DDR4, is less as compared to 300x200 video
resolution, as in Fig. 3.15a. The reason being that, the higher the resolution, the more
efficiently BLADE in-cache computing and caching is used as compared to lower resolution
video. Hence, lower BW utilization of main memory and less performance benefit. The
corresponding energy savings of using HBM2 for the Kvazaar cluster is between 6%
to 10% and 2.6% to 3.3%, in comparison to single-channel and quad-channel DDR4,
respectively, as depicted in Fig. 3.16b. For the MobileNet clusters, the performance and
energy efficiency increase with the scaling of 4-core clusters from 1 to 3 for surveillance
and ADAS, respectively. The performance improvement of using HBM2 is up to 30% with
a corresponding energy benefit of 30% in comparison to single-channel DDR4. When
compared to 4-channel DDR4, the performance and energy benefits of using HBM2 are
up to 12% and 10%, respectively, for the MobileNet clusters. Comparing the results of
MobileNet cluster in Fig. 3.16 to that of Fig. 3.15, it can be observed that the performance
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Table 3.8 – Time, core cluster power (at 2GHz) and memory power for video analytics case study
scenarios.

Parameter Clustered Architecture with HBM2 Clustered Architecture with DDR4
Drone
Naviga-
tion

Surveillance ADAS Drone
Naviga-
tion

Surveillance ADAS

Time Kvazaar
Frame (ms)

35.45 38.11 39.47 39.29 40.76 42.83

Core Power
Kvazaar
Cluster (W)

0.865 2.943 2.873 0.832 2.924 2.940

Time
MobileNet
Frame (ms)

29.55 29.41 10.465 35.44 35.17 15.015

Core Power
MobileNet
Cluster (W)

4.490 4.738 14.215 4.723 4.732 15.645

Memory
Power (W)

0.198 0.511 1.222 0.631 1.672 3.302

and energy savings are higher for three 4-core MobileNet clusters when it is co-allocated
with Kvazaar than when it is standalone. This is because, when more applications are being
allocated on a single platform sharing the same memory, the memory BW requirements
increase, which HBM2 serves better than DDR4.

The overall energy reduction when using HBM2 instead of DDR4, is due to the fact that
HBM2 not only has lower energy per access in comparison to DDR4 [93, 94], but also
enables faster memory access via 8 memory channels. The faster access in turn implies
less stalling of the processor pipelines when waiting for data, resulting in overall energy
reduction. Table 3.8 summarizes the core power, memory power, and execution time per
frame for both kernels of video analytics in drone navigation, surveillance and ADAS
scenarios. It can be seen that the run-time to process each frame is less when using HBM2
instead of DDR4. Secondly, the memory power when using HBM2 is less as compared
to when using DDR4. Therefore, lower memory power and fast processing time for each
frame (both for video encoding and MobileNet kernels), contributes to the energy benefits
achieved when using HBM2 instead of DDR4.

In these case study scenarios for surveillance and autonomous cars, Step 2 of the method-
ology is not used, as the performance requirements are just met with the proposed archi-
tectures. Thus, I cannot further reduce the frequency to optimize for energy, as was the
case in drone navigation, because this will degrade the performance below the minimum
requirement.

In summary, capitalizing on the gem5-X simulation platform, an optimized heterogeneous
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architecture is proposed for a video analytics application, composed of ARM in-order cores
along with BLADE in-cache computing engine being used for the video encoding portion and
ARM OoO core clusters for CNN based image recognition with HBM2 as the main memory.
This heterogeneous architecture meets all the performance requirements and at the same time is
energy efficient in all the three case study scenarios. In this case study, Step 2 of the methodology
was used to optimize for energy consumption by reducing the frequency for drone navigation
scenario. Other than this, as the two kernels of the application do not give rise to any conflicting
requirements, no trade-offs have to be made. Moreover, the methodology is generic if an
application requires further architectural exploration during Step 2. For instance, in case of
different kernels of the application running on different cores, when allocated together on a single
system, might all share the same LLC. In that case, the strategy to follow in Step 2 would be
to optimize LLC size to fit the working data set of all kernels. In another instance, the memory
requirement for individual kernels might be sufficient, but when co-allocated, the application
might run out-of-memory. Thus, in Step 2 one will select appropriate memory size, forcing to
even change the memory technology being used, as some memories like the 3D stacked HBM2
are limited in terms of the memory size, as compared to traditional DDR4 memories. Therefore,
Step 2 of the methodology can be used to optimize the architecture for the compute and memory
sub-systems in cases when conflicting requirements arise after co-allocating all the kernels of the
application together, in addition to the tuning of core frequencies for optimal performance and
energy. Furthermore, the two-step methodology is generic and not specific to any application
or application domain. It can be used to explore and optimize architecture for any application
domain. The advantage of using the methodology for a general-purpose CPU-based system, is
that it gives an optimized architecture for the application domain and not specific to an application.
This enables updating the application or replacing the application or one of its kernels with a
better application or kernel, which is not possible in ASICs, as they are application specific.
This has been demonstrated by using MobileNet for image classification kernel in this section,
instead of AlexNet, which was used in the previous Section 3.3.7. From Fig. 3.15, it can be
seen that using an 8-core system with 4-cores allocated to Kvazaar and 4-cores for MobilNet, the
performance benefit of using HBM2 instead of DDR4 is up to 10% and 16.6% for Kvazaar and
MobileNet, respectively, in comparison to 7.72% and 8.35% performance benefit for Kvazaar
and AlexNet, respectively, in previous Section 3.3.7 in [97], in a similar 8-core system.

3.5 Near-Threshold-Computing (NTC) Servers for VMs in the Cloud

Cloud computing has recently been brought into focus in both academia and industry due to the
increase of applications and services. Consequently, there has been a rapid growth in the number
of data centers in the world, leading to increased energy consumption, estimated to be at 1% of
the global energy usage [15].

To maximize energy efficiency (i.e., performance per watt), customized server architectures
increase throughput by identifying and eliminating the bottlenecks of conventional server proces-
sors. However, as an effect of post-Dennard scaling [18], energy reduction in deep sub-micron
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technologies has lagged behind, resulting in power-limited servers.

A promising approach to overcome the power bottlenecks is NTC. NTC takes advantage of the
quadratic dependency between supply voltage and dynamic power consumption, by lowering
the operating voltage to a value slightly higher than the transistor threshold, increasing energy
efficiency at the expense of reduced performance. However, for current cloud applications,
NTC allows to optimize the trade-off between performance and power, emerging as a promising
approach to overcome the power-wall [25].

From a technology viewpoint, the UTBB FD-SOI technology has demonstrated its suitability for
NTC. In contrast to traditional bulk technology, FD-SOI features a significantly increased voltage
range and even higher performance for the same energy thanks to the better behavior of transistors
at low voltage [110]. The 28nm FD-SOI technology process is currently employed for mass
production by Samsung and ST Microelectronics, the 20nm technology is being produced by
GlobalFoundries while the 12nm node is on the strategic roadmap [149]. With respect to FinFET
technology, FD-SOI provides a cost-sensitive solution for low-power (both active and leakage)
systems without increasing die cost [150], making it a suitable solution for next-generation NTC
servers.

In the following sections, I utilize an accurate power model for the UTBB FD-SOI process
technology in NTC servers, together with a performance validation against real servers (Intel
x86 and ARM64), and propose a performance-improved architecture for NTC servers. I will
also assess the performance and efficiency of virtualized workloads on three architectures: (i)
x86, (ii) ARM-based Cavium ThunderX, and (iii) the proposed NTC server, which modifies and
improves the efficiency of the ThunderX architecture. I will also investigate the Dynamic Voltage
and Frequency Scaling (DVFS) setup and its effect on performance and power for NTC server.

3.5.1 Overview of the Proposed system

3.5.1.1 Application Description

The applications consist of VMs, virtualized via Linux LXC containers, and running synthetically
generated workloads that resemble batches of real banking applications, as reported by the indus-
try partners. These VMs perform batch financial analysis, mainly based on matrix multiplication
and manipulation, and both their CPU and memory utilization can be tuned. For realistic CPU
and memory usage, one week of traces of Google Cluster [151] are used, which provide the
CPU and memory utilization for over 600 VMs, reported every 5 minutes (memory utilization is
varying in the range of 2% to 32%). Therefore, for profiling purposes, the workload is divided in
three categories, according to the per-VM memory utilization:

1. Low-mem for average memory usage of 70MB (7%)

2. Mid-mem for 255MB (25%)
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3. High-mem for 435MB (43%)

Moreover, in order to run the experiments in worst-case scenarios, the workloads are tuned to
maximum CPU utilization.

3.5.1.2 Server and Data Center Architecture

As a starting point for the server architecture, Cavium ThunderX platform [111] is chosen.
However, for the target applications, as discussed in Section 3.5.1.1, the Cavium performance
was slower (from 1.5x to 3.5x) than the x86 platform with similar characteristics, and unable
to meet QoS constraints, as discussed later (see Table 3.9 and Section 3.5.4.1). This was due
to an inappropriate memory subsystem design for the target applications considered and the
choice of in-order cores. Hence, the original architecture is modified with ARMv8 OoO cores
instead of the in-order cores. A 16-core CPU (instead of 48 in ThunderX) is modelled to achieve
a lower simulation turnaround time, as it was experimentally observed that the model linearly
scaled up for higher number of cores. The memory sub-system was also updated, by including L1
instruction cache (I-cache) and data cache (D-cache) of 64KB and 32KB, respectively. A LLC of
16MB is modeled. A total memory size of 16GB is considered using a DDR4 memory model
with memory controller [152]. DDR4 is clocked at 1200MHz with a peak BW of 19.2GB/s.
Gem5-X FS mode is used to boot Ubuntu 16.04 and run VM workloads on top of it.

3.5.1.3 QoS Degradation Constraint for VMs

Because banking applications are virtualized batch jobs, their QoS constraints are defined in
terms of the maximum allowable degradation (i.e., increase in their execution time), which in this
case is defined as 2x [108], w.r.t. a baseline execution in a 16-core Intel Xeon X5650 running
at 2.6GHz, with 12MB LLC and 128GB of RAM clocked at 1333MHz, in which one LXC
container (VM) per core is executed. 16 LXC containers are created for 16 cores on the server.
Then, CGROUPS are used to allocate one container per core. The time command in Linux is
used to get the total execution time for each workload with different memory utilization.

3.5.2 Server and Data Center Power Models

The overall NTC server power model used is based on the work of Ali et al. in [25, 46]. The
power model in [25, 46] is extracted by combining direct measurement on a commercial ARMv8
based server [153] with power measurements of real prototypes implemented in 28nm FD-SOI
technology and operating in near-threshold [110, 154], allowing for a very accurate system power
estimation. Four main contributors are considered to the overall power consumption of the server:
1) the core region composed of the A57 cores logic and the L1/L2 caches, 2) the LLC, 3) the
memory controller, peripherals, IO subsystem and motherboard, and 4) the DRAM banks.
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3.5.2.1 Cores

For the core power, the power model proposed by Ali et al. [25, 46] is used, in which the authors
combine the 28nm FD-SOI power and performance model of a recent Cortex A9 implementation
of STM in 28nm bulk and FD-SOI, considering the differences in pipeline length ratio and critical
path between Cortex A57 and Cortex A9. In the proposed model in [25, 46], these parameters
are extracted by comparing the different voltage to frequency ratio (extracted via the CPUFreq
Linux driver) present in the Samsung Exynos processor family. The Cortex A57 is 1.17x faster
(higher-frequency) than the Cortex A9. This information is combined, by the authors of [25, 46],
with the active and static energy per clock cycle at the different DVFS levels from the Samsung
Exynos 5433 processors to scale its energy figures to the STM 28nm FD-SOI technology by
using the trends reported in [110]. These numbers also account for the L1 and L2 cache power
consumption. When in WFM state, the core region consumes 24% less power than when active.
This number is reported to be measured empirically on an Intel Xeon v3 processor. Then, for
the proposed NTC power model in [25, 46], the performance and power model is extended
to the NTC region fitting a template extracted from measurements of a 28nm UTBB FD-SOI
near-threshold parallel processor [154],

3.5.2.2 Last-Level-Cache (LLC)

The LLC power model proposed by Ali et al. [25, 46] is utilized. The authors of [25, 46], modeled
LLC by measuring the leakage power for a 256KB SRAM block in 28nm UTBB FD-SOI and
read and write energy [pJ/Access] for 128-bit wide accesses. All these values are reported for
different voltage levels.

3.5.2.3 Memory Controller, Peripherals, IO and Motherboard

Ali et al. [25, 46] empirically measure the memory controller, peripherals and IO subsystem
power consumption overhead of an Intel Xeon v3 CPU. This power consumption is split in two
parts: (i) a constant component which accounts for the static and fix dynamic power cost needed
to keep these subsystems on, and (ii) a component proportional to the operating condition. The
constant part causes a 11.84W overhead in all operating points, while the proportional one ranges
from 9 to 1.6W in the operational range. Finally, the same motherboard power consumption is
assumed than in the Cavium ThunderX server, which is of 15W for a low fan speed, and with 1
SSD disk.

3.5.2.4 DRAM

The DRAM power proposed by Ali et al. [46] is used. The authors of [46] obtained this power
model with direct measurement on a real server platform based on Intel Xeon v3 architecture.
The final model contains the empirical measurement of an idle power value of 15.5 mW/GB
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Table 3.9 – NTC server and Cavium ThunderX QoS analysis in terms of execution time (s).

Application Intel x86
@2.66 GHz

2x Degraded Intel
(QoS limit)

Cavium
@2GHz

NTC Server
@2GHz

low-mem 0.437 0.873 0.733 0.582
mid-mem 1.564 3.127 5.035 2.926
high-mem 3.455 6.909 11.943 6.765

of DRAM, which increases to 155 mW/GB when the banks are activated. On top of this static
power, an energy consumption of 800 pJ/Byte is reported.

3.5.3 Gem5-X Extensions

As the target application consists of VMs, virtualized via Linux LXC containers, and running
synthetically generated workloads, as discussed in Section 3.5.1.1, the VM support enhancement
and extension provided by gem5-X will be used.

VMs are supported in gem5-X using Linux LXC containers, as discussed in Section 2.4.5 of
Chapter 2. To enable virtualization in gem5-X, configuration parameters related to virtualization
and LXCs were enabled in the Linux kernel. LXCs were also added to the gem5-X disk image to
have a complete VM support in gem5-X.

3.5.4 Experimental Results

3.5.4.1 Simulation Framework Validation

Gem5-X cycle-accurate simulator is used to simulate the server architecture described in Section
3.5.1.2. In order to understand the effect of DVFS on performance, I compute the QoS degrada-
tion, taking as a baseline the execution time on the x86 server discussed in Section 3.5.1.3. Then,
the virtualized applications are simulated in gem5-X for different frequency levels ranging from
2.5GHz down to 100MHz.

To validate the correctness of the results provided by the gem5-X simulator, the applications
are run on two real hardware platforms based on x86 and ARM. I compared the execution
times of Cavium ThunderX with the ones obtained via gem5-X while matching the exact same
architectural configuration. The error obtained was below 10% in terms of execution time,
showing that gem5-X is able to accurately simulate the workloads.

The execution time for each workload, on all three platforms are shown in Table 3.9. The QoS
limit is a 2x degradation of the execution time on x86 based platform, as already discussed.
The Cavium server exhibits the worst execution time. After the modifications undertaken, the
proposed NTC server architecture outperforms Cavium by a factor of 1.25x to 1.76x. These
results are due to the improved memory sub-system and the incorporation of the OoO processor
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Figure 3.17 – Execution time normalized to QoS limit for different workloads.

in the proposed architecture.

3.5.4.2 Server-level Results

QoS requirements of virtualized applications make it unclear whether this technology is suitable
for server processors. To check for QoS requirements being met for VM workloads on NTC
server, normalized execution time to QoS limit is shown in Fig. 3.17. It can be seen that high-mem
and mid-mem workloads meet QoS requirement till a minimum frequency of 1.8GHz, whereas
low-mem can scale down to 1.2GHz. In conclusion, I am able to reduce the frequency of the
cores while meeting the 2x degradation constraint for virtualized applications.

3.5.4.3 Energy Efficiency

Fig. 3.18 shows the benefits of reducing DVFS on server energy efficiency (i.e., the total number
of User Instructions per Second (UIPS) at the chip level, divided by the total power consumption
of the server). The optimal efficiency point is around 1.2GHz for high-mem, and around 1.5GHz
for low-mem and mid-mem. The energy efficiency decreases with increasing memory utilization,
firstly, because of higher active memory power, and secondly, because more memory accesses
increase the amount of stalls and the WFM cycles.

3.5.4.4 Trade-offs Discussion

As shown by [25], workloads can tolerate low frequencies if only core power is considered, thus
enabling NTC operation to reduce core power consumption. However, not all server components
scale with the core voltage, shifting the most energy-efficient point to a higher frequency. The
results showed that frequency can be reduced to 1.2GHz for high-mem and 1.5GHz for low-mem
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Figure 3.18 – Server efficiency as UIPS/Watt under different core frequencies.

and mid-mem. But, to guarantee the QoS requirements, the frequency level should be scaled up
to 1.8GHz for mid-mem and high-mem; while for low-mem (CPU-bounded tasks) the optimal
frequency (i.e., 1.5GHz) still meets the QoS limit.

3.6 ISA Extensions for In-Memory Computation of AI Workloads

The advent of AI and Machine Learning (ML) algorithms and systems, fueled by Big Data, are
having an ever increasing impact in different spheres of our lives. These systems are being used
and developed for autonomous cars, surveillance, medical imaging and diagnosis, drug discovery
and online content recommendation to name a few. These AI and ML algorithms are deployed
in different execution platforms all the way from high performance cloud servers to energy
constrained edge devices. These algorithms are computationally intensive, along with extensive
memory accesses. I propose to use in-memory computations or CM for these computational
and memory intensive workloads, as it improves performance and energy by allowing multiple
operations to be performed in parallel in the memory.

Gem5-X enables in-memory computation allowing the CM to be integrated in the execution stage
of the CPU pipeline, as discussed in Section 2.3.1.4 of Chapter 2. CM extension in gem5-X can
be utilized in FS simulation mode, thanks to the ISA extensions in gem5-X. Using the gem5-X
ISA extensions, new instructions for the operations of CM are added to the instruction set.

I will present and use two CMs in this section: RRAMs and analog in-memory CM for BNNs
and LSTM workloads, respectively.

3.6.1 Accelerating BNNs with RRAMs

The role played by Internet-of-Things (IoT) in the advent of Big Data [155], which requires
the execution of complex AI algorithms in latest smart embedded systems (also called edge
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devices [156]), has created the necessity of developing new ML algorithms that can target
compute and energy constrained systems. As BNNs have been proposed for these edge devices,
I propose a BDPE based on RRAMs for improved performance and energy efficiency of the
BNNs. The most frequently used kernels are stored in the RRAM, reducing the overall memory
accesses. Since RRAMs excel by their ability of enabling in-memory computing capabilities
while providing storage support [157], the novel BDPE uses a robust and energy efficient RRAM-
based convolutional block based on [2] and operates in the digital domain. Furthermore, I propose
to integrate the BDPE in the execute stage of the CPU pipeline, hence reducing the data transfer
and communication overhead. Consequently, using the RRAM based BDPE for BNNs leads to
performance and energy benefits.

3.6.1.1 CNN Background

CNNs relate to a class of Neural Networks (NNs) that are commonly applied to image analysis.
Such networks are dominated by convolutional layers, where the input is convoluted by a kernel,
and the produced output is passed to the next layer. The operation of CNNs is divided into two
phases: the training phase and the inference phase. Although the devised mechanism can be
applied to both phases, the computing power and energy required by the training phase goes
beyond edge devices. Therefore, only the inference phase is targeted by this work.

In the image analysis domain, CNNs can be used for multiple purposes, such as image classi-
fication [158, 159], or object detection [160], such as pedestrians detection [161, 162] or face
recognition [163]. YoloV3 [49, 164] is a state-of-the-art CNN for real-time object detection. It
divides the image into regions and predicts bounding boxes and associated probabilities for each
region. By sizing the network, YoloV3 also allows trading accuracy for performance by reducing
the number of network layers. This represents an advantage for edge devices characterized by
low computing power. When binarized using the definitions in [47], the XNOR-Net version of a
given configuration of YoloV3 shows approximately the same mean Average Precision (mAP)
as the full-precision network, while reducing the size of the weights approximately 32× and
thus executing up to 58× faster. For the Street View House Numbers (SVHN) dataset [165],
the YoloV3 XNOR-Net shows a mAP decrease of only 0.43%, while increasing the number
of detections by 75%. YoloV3 is a widely accepted benchmark, thus it is used to evaluate the
proposed BDPE.

From the same authors of YoloV3, Darknet [166] is a C-based ML framework compatible with a
large number of NN models. When executed in Darknet, BNNs can be accelerated using CPU
primitives that can efficiently perform the binary convolution of two 64-bit vectors. For that
purpose, the elements of the small kernels are shifted and combined in vectors of 64 bits, thus
reducing the data redundancy that can be found between combinations. For the trimmed version
of YoloV3 XNOR-Net trained with the SVHN dataset, all the generated combinations of small
kernels are different, making it impossible to take advantage of data redundancy. However, as
shown in Table 3.10, a small percentage of combinations is frequently used. For instance, 0.07%

79



Chapter 3. Compute-Dominated Architecture Exploration

Table 3.10 – Profile of a trimmed version of YoloV3 regarding the frequency of use of each
convolutional kernel during the inference phase.

Execution frequency Kernels Total executions Percentage
169 115,200 19,468,800 45.64
676 18,432 12,460,032 29.21

2,704 1,152 3,115,008 7.30
10,816 320 3,461,120 8.11
43,264 96 4,153,344 9.74
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Figure 3.19 – Block diagram of the proposed BDPE. Fig. 3.19a illustrates the control logic
and the alternative mechanism to perform the bit-wise XNOR of the data and the kernel (both
supplied as an input), in case the kernel is not stored in the RRAM array. Fig. 3.19b depicts the
RRAM-based convolutional block used in this work inspired by [2].

of the combinations (designated from now on as kernels) are used in 9.74% of the total number
of convolutions. Thus it is possible to significantly accelerate the total amount of convolutions
only storing a small percentage of kernels locally. Due to Darknet’s performance, it is used for
evaluation purposes.

3.6.1.2 Architecture of the Binary Dot Product Engine

The devised BDPE aims at improving the performance of binary convolution while reducing
the number of data transfers by locally storing the most used kernels. Accordingly, the base
block used, proposed in [2], implements the binary dot product using the compute capabilities
of RRAM, while also providing storage. The operands involved in the binary dot product are a
constant binary kernel stored in the RRAM array in the form of resistance values and a binary
vector supplied as an input. By selecting the appropriate kernel local address and applying the
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Figure 3.20 – Simplified block diagram of a generic processor pipeline integrating the BDPE.

input data to the RRAM array, the XNOR phase of the convolution is performed as a memory
readout using custom XNOR sense amplifiers [2]. Then, a fully-digital combinational circuit
counts the number of logic ones to determine the result of the binary dot product operation. The
block diagram of the proposed RRAM-based convolutional block is depicted in Fig. 3.19b. Using
the proposed mechanism has two main advantages. First, by locally storing the most used kernels,
the data movements are substantially reduced, thus decreasing the overall energy consumption.
Second, since it is capable of performing a dot product in one clock cycle, it also increases
system’s performance.

To use the devised engine in a CPU, a control path is added to the original block, which also
unlocks the possibility of performing the XNOR of two inputs as an alternative to using the
primary RRAM-based XNOR mechanism. Fig. 3.19a illustrates the block diagram of the BDPE.

The secondary XNOR mechanism is built from regular CMOS gates. Depending on the control
bit obtained from the decoded opcode, the output of the alternative XNOR mechanism can be
used as input to the Bitcount Circuit. In that case, the result is based on the kernel coming from a
processor register rather a kernel stored in the RRAM. Such a functionality is particularly useful
when the required convoluting kernel is not stored in the RRAM array.

3.6.1.3 Integration within the CPU Pipeline

The integration of the proposed BDPE with a conventional ARMv8 core is divided into three
phases, namely: (1) the integration of the new functional unit with the processor’s pipeline; (2)
the creation of new instructions in the ISA to use the BDPE; (3) compiler support to use the new
ISA instructions on the software side.

The new functional unit is integrated into the processor’s pipeline in the Execution stage. It
receives the operands from the Decode stage, similarly to the Arithmetic Logic Unit (ALU),
and passes the result to the Execute/Memory Access pipeline register, as shown in Fig. 3.20.
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Figure 3.21 – Format of the new instructions added to the ARMv8 ISA to allow the processor
to issue instructions to the BDPE. The opcodes 10000011000 and 11000011000 were
re-purposed to specify the custom instructions. rm and rn specify addresses of 64-bit registers;
imm6 represents a 6-bit immediate; and rd specifies the address of the destination 64-bit register.
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Figure 3.22 – Simple example that illustrates the process of storing the most used kernels inside
the RRAM and running a BNN using the novel BDPE.

According to the ARM Architecture Reference Manual for the ARMv8-A architecture profile
[39], the ARMv8 ISA has unused opcodes that can be re-purposed to expand the functionality of
the CPU. Using two of the unused opcodes, two instructions were created and assigned to the
novel BDPE.

Fig. 3.21 illustrates the format of the new instructions and denotes the purpose of each distinct set
of bits. Each of the new instructions is decoded in the Decode stage such that the content of the
register specified by rm serves as input data of the BDPE; the content of the register represented
by rn is the input kernel; imm6 specifies the address of the kernel stored in the RRAM array;
and the second Most Significant Bit (MSB) of the opcode designates the control bit.

After determining which kernels to store in the RRAM and the respective RRAM addresses, an
additional phase is added to the compilation workflow to replace regular binary dot products
using the processor’s ALU with the corresponding instruction using the BDPE. By controlling
the opcode (and consequently the control bit), either the output of the RRAM array or the output
of the alternative XNOR mechanism is used to calculate the final result of the binary dot product
operation.

To sum up, as shown in Fig. 3.22, the workflow for running a BNN using the novel BDPE is
divided into profiling and execution.

During the profiling, the BNN is used to perform a single inference while the kernel space is
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profiled, selecting the most frequently used kernels. The selected kernels are stored in the RRAM,
and a configuration file is generated containing the information about the content of the RRAM.
Then, the CNN is recompiled, and the code responsible for implementing the binary convolution
is replaced by custom code that utilizes the BDPE. If the kernel being used is stored in the
RRAM, the compiler inserts a special instruction to perform the binary convolution using the
RRAM array. Otherwise, the compiler inserts a load instruction to fetch the kernel from memory,
followed by a special instruction that performs the binary convolution using the two data inputs
of the BDPE.

3.6.1.4 Performance and Energy Evaluation Methodology

The Darknet framework together with gem5-X is used to evaluate the performance of the modified
ARMv8 architecture. Darknet is set to operate as a trimmed version of the YoloV3 XNOR-Net
CNN, and gem5-X is configured to emulate the ARMv8 in-order core with and without the
devised BDPE. Darknet is adapted to allow support for gem5-X System Emulation (SE) mode by
compiling all the inputs of the network (the configuration files, the previously trained weights for
the SVHN [165] dataset and the input image) into a single executable binary file. Additionally,
the Darknet framework is modified at assembly level to use the custom BDPE instead of the
processor’s ALU when performing 64-bit binary convolutions.

To determine the most used kernels and populate the RRAM array, the following two-step
procedure is used: (1) Darknet is run using gem5-X and the kernel space is profiled; (2) The
most used kernels are selected and stored in the RRAM. After populating the RRAM, the
gem5-X module responsible for emulating the BDPE is rebuilt. Because the framework is not
recompiled, gem5-X in SE mode mapped the data structures to the same addresses used in (1),
and the application flow is kept the same except for the binary convolutions involving the most
frequently used kernels stored in the RRAM. In those cases, the RRAM array is used instead
of the alternative XNOR mechanism to perform the XNOR operation. The complete system
featuring the modified ARM in-order cores and four DRAM ranks of 1GB each operating at
1200MHz is simulated and the entire workflow of Darknet is executed.

As a result of running the modified version of Darknet, gem5-X produces timing results, statistics
on memory accesses and usage of the CPU’s several modules. Such results are used to estimate
the energy consumption, as described next.

For the energy efficiency and power assessment of the proposed architecture, 28nm FD-SOI
power models for ARMv8 in-order cores are used, as discussed in Section 3.5.2. The Delay and
power model of the devised BDPE are obtained through circuit-level electrical simulations using
a commercial 28nm FD-SOI design kit in Cadence Innovus.
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Figure 3.23 – Results showing the performance improvements due to using BDPE. Figure 3.23a
shows the relative reduction on memory accesses during the inference phase of YoloV3 for five
runs where the usage of the BDPE varies between 10% and 50%. Figure 3.23b depicts the
execution time of the inference phase of YoloV3 and the relative performance improvements
varying the usage of the BDPE.

3.6.1.5 Experimental Results

To better evaluate the impact of the BDPE in the performance of the targeted ARMv8 CPU, five
scenarios are considered where the RRAM usage rate (percentage of convolutions that use kernels
locally stored in the RRAM) varies between 10% and 50%, when executing YoloV3 XNOR-Net.

By offloading the execution of binary convolutions to the BDPE, the kernels are not requested
from the main memory when they are locally stored in the RRAM array. Therefore, a reduction in
memory accesses equal to the RRAM usage rate is observed, as shown in Fig. 3.23a. Moreover,
over 99% of the memory accesses reduction happens at the L1 cache. Thus, the system counts
with the maximum benefits of caching effects.

All in all, as illustrated in Fig. 3.23, for a usage rate of 10% the performance improvement
is 11.3%. Also, the performance gains show no significant variation with the RRAM usage
rate. This effect has two main causes: (1) both the data paths in the BDPE take exactly one
cycle to perform a binary convolution; (2) due to caching effects, the convolutional kernels are
stored in the L1 cache 94% of the time, substantially reducing the time required to fetch them.
Consequently, using the alternative method for performing the XNOR of the kernel and the input
data takes approximately the same time as using the RRAM array and does not impact negatively
the overall performance. Nevertheless, thanks to the gem5-X simulation framework, that enabled
me to perform this analysis and architectural exploration.

The total energy spent by the baseline system (ARM in-order core) and the five scenarios using
the BDPE is illustrated in Fig. 3.24a. Then, Fig. 3.24b shows the energy consumption for the
same circumstances subtracted by the energy spent by the DRAM. As illustrated in Table 3.11,
the total energy spent by the BDPE is negligible when compared with the rest of the system, and
so the energy savings are mostly due to the reduction in the execution time. As the execution
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Figure 3.24 – Results showing the energy efficiency improvements due to using BDPE. Figure
3.24a shows the total energy spent when executing the baseline and five runs where the usage of
the BDPE varies between 10% and 50%. Figure 3.24b shows, for the same scenarios the energy
spent by the system excluding the main memory (DRAM).

Table 3.11 – Total energy spent by the BDPE and the CPU during the inference phase of YoloV3
XNOR-Net.

RRAM usage
rate [%] Baseline 10 20 30 40 50

BDPE [µJ] 0 0.870 0.279 0.271 0.263 0.255
CPU [µJ×106] 0.542 0.502 0.501 0.501 0.501 0.502

time is approximately constant regardless of the RRAM usage rate, so are the energy savings.
When considering only the processing system (excluding the DRAM main memory), the use of
the BDPE allows for average energy savings of 7.4%.

The advantages allowed by the devised BDPE are tightly coupled with the considered baseline
CPU and the used CNN model. Since an ARM in-order core (modeled on ARM Cortex-A53) is
used, which is a high-efficiency CPU, the compute power and energy efficiency enabled by the
baseline puts it among the most efficient new edge devices. Nevertheless, the use of the devised
BDPE allows achieving performance improvements and energy savings at the cost of a minor
area overhead. It is also worth saying that should the baseline be a more rudimentary processing
system (e.g., an ultra-low power embedded system), the novel BDPE would allow for bigger
improvements.

The ML framework Darknet, optimized to achieve the best performance on CPUs, eliminated the
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possibility of taking advantage of kernel redundancy, which would increase the RRAM usage rate
and consequently allow for higher performance improvements and energy savings. To circumvent
this and increase redundancy among kernels, the use of techniques such as weight clustering
are proven to be efficient, while sacrificing little accuracy [167]. Nevertheless, since YoloV3
XNOR-Net uses a small subset of the kernels in most convolutions, significant data redundancy
was still achieved.

3.6.2 Accelerating LSTMs with Analog In-Memory Computation

The latency associated with accessing data from the lower levels of the memory hierarchy is a
key performance bottleneck for a wide range of applications, in particular for the increasingly
prominent artificial intelligence-related workloads [168]. To accelerate these workloads, AIMC
is a highly promising computing paradigm where the computation takes place in-memory [126].
In addition to alleviating the data movement, the AIMC core allows a significant reduction in
the computational complexity facilitated by millions of memory devices performing the analog
computation in parallel. Matrix-vector multiply (MVM) operations are particularly suitable for
in-memory acceleration, enabling both performance and energy gains for various DL workloads
like CNNs, RNNs and MLPs [120, 121].

I propose to integrate AIMC core within the execution state of the CPU pipeline, enabling fast
data transfer and processing between the tightly coupled AIMC core and the CPU ALU and the
register file (RF).

3.6.2.1 Analog in-memory computing - Background

AIMC offers significant advantages in terms of energy and performance owing to two key
properties. First, the computation takes place in the memory and therefore, the expensive data
movement can be avoided. Secondly, the computation can be done in a massively parallel and
analog manner by exploiting the physical attributes and state dynamics of memory devices, as well
as circuit laws. Both charge-based (such as SRAM, DRAM, Flash) and emerging resistance-based
memory technologies (such as Phase-Change Memory (PCM) and RRAM) can be exploited to
build AIMC cores [126]. I will focus on PCM for AIMC. The multi-level storage capability
(ability to achieve a continuum of resistance/conductance values) and non-volatility makes PCM
a very attractive candidate for inference applications [51].

MVM operations, which form the bulk of computation for DL workloads, can be implemented in
the following way in a PCM crossbar array, as shown in Fig. 3.25. The elements of an M ×N

weight matrix are represented as the conductance values of memory devices. Each element of
an input vector is translated into the duration of voltage pulse with fixed amplitude V . The
voltage pulses are applied simultaneously to M word lines and each memory device contributes
to the current flowing through one of the N bit lines, with an amount directly proportional to its
conductance G (Ohm’s law). The total current integrated on each of the bit lines over a certain
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Figure 3.25 – (a) Proposed design of the AIMC core. The core communicates with the CPU
through digital input and output signals while the array of unit cells performs the MVM operations
in an analog fashion. (b) Schematic illustration of the MVM operation across one of the bit lines.

period of time ti nt is indicative of the result of the dot product between the M-element vector and
a column of the M ×N matrix (Kirchoff’s current law). Hence, the multiplication of an M ×N

matrix with an N -element vector (or in other words approximately 2×M ×N operations) can be
performed in a constant amount of time, typically less then a few hundreds of nanoseconds.

3.6.2.2 DL acceleration with analog in-memory computing

A potential drawback of AIMC is the reduced computing precision owing to the analog mode of
operation; the result of the MVM operation is deciphered from the sum of currents across the bit
lines. Some of the contributing factors for the reduced precision are non-idealities associated
with memory devices (noise and other temporal conductance fluctuations) and circuit-related
effects such as IR-drop. Moreover, the AIMC array typically interfaces with the rest of the AIMC
arrays and the other system components through digital signals. This necessitates digital-to-
analog (DAC) and analog-to-digital converters (ADC) to be employed. The conversion resolution
and accuracy of the data converters, and scaling input and output signals to the range of the data
converters are also contributing factors to the analog computing precision.

The reduced computing precision of AIMC poses challenges to perform DL inference with an
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Figure 3.26 – (a) The proposed processor system with the AIMC core integration. (b) A classic
in-order pipe-lined CPU instruction cycle. The AIMC core exists alongside the ALU within the
execution stage of the CPU.

accuracy comparable to conventional digital floating-point implementations. However, inno-
vations at the algorithmic level as well as AIMC array design choices can ensure iso-accuracy
with digital implementations. For instance, custom training strategies that consider memory
device non-idealities are shown to be particularly effective in experimentally achieving high
inference accuracies with only a marginal loss [121]. Representing weights with multiple memory
devices to increase the weight representation precision [122, 169] and applying proper weight
compensation schemes [121] to account for temporal device non-idealities are other techniques
that can be adopted for an increased computing precision.

In the presence of device-related non-idealities, the precision of MVM on PCM-based arrays is
shown to be comparable to a 4-bit fixed-point implementation [170] or even to an 8-bit fixed-point
implementation with suitable innovations in device design [171]. Note that 8-bit precision is
sufficient to reach state-of-the-art inference accuracies for a wide range of networks [172, 173].

3.6.2.3 Integration of Analog In-memory Computing (AIMC) Cores

The proposed integration of an AIMC core into the CPU system is depicted in Fig. 3.26a. The
AIMC core is implemented within the execute stage of the processor, alongside the ALU, as
shown in Fig. 3.26b. A key benefit of this configuration is that the transactions between the CPU
and AIMC core are reduced to the order of single nanoseconds. This is as opposed to standalone
AIMC accelerators where an off-chip communication with the CPU is necessary to access its rich
digital functionalities. Furthermore, AIMC enables the stationary weights to be stored within the
PCM crossbar array, which eliminates the need for the data of the weights to be fetched from
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off-chip main memory and bring it to the CPU.

In addition to the PCM crossbar array in the AIMC core, there are signed 8-bit DACs with input
memory/registers and signed 8-bit ADCs with output memory/registers for the data conversion,
shown as yellow and orange blocks in Fig. 3.26a, respectively. The digital control unit coordinates
the core operation and interfaces with the CPU.

3.6.2.4 ISA extensions for analog in-memory computing cores

For the AIMC core integration, the ARMv8 ISA has been extended with three custom instructions
using three previously unused opcodes.

The instructions are used as follows:

• CM_INITIALIZE is used prior to inference to program the AIMC core. After inference has
started, the program packs 8-bit inputs into an argument register.

• CM_QUEUE is then called to place the packed inputs into the input memory of the AIMC
core. Additional argument registers are used to specify the number of valid inputs packed
in the aforementioned argument register, as well as the input memory index. Once all of
the inputs are queued into the input memory,

• CM_PROCESS is called to operate the AIMC core by converting the values from input
memory into analog voltages, performing the MVM operation with the stationary weights,
and storing the results in the output memory after digitizing them. Finally,

• CM_DEQUEUE is called to retrieve packed 8-bit outputs from the AIMC output memory
and place them in a destination register. The argument registers specify the number of
packed outputs to retrieve starting from what index.

3.6.2.5 Experimental setup

All of the experiments are run in gem5-X FS mode. The system specifications are listed in Table
3.12. Experiments are run for three different system configurations to represent the three different
use-cases: HPC, Mid-Tier (such as mid-low end devices), and IoT (edge devices).

Power models as presented in Section 2.7 of Chapter 2 are used to calculate the energy consump-
tion of the ARM based system.

3.6.2.6 Analog in-memory computing core parameters

Table 3.13 reports the performance and energy metrics of the AIMC core estimated from hardware
measurements and chip designs in 14nm technology node [120]. The signed weight is represented
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Table 3.12 – Gem5-X FS Mode System Configurations.

System IoT Mid-Tier HPC
CPU Core Model In-order CPU
ISA ARMv8 (AArch64)
CPU Core Frequencies 0.8GHz 1.3GHz 2.3GHz
L1 Data/Instruction Cache Size 32kB 64kB
L2 (Last-Level) Cache Sizes 256kB 512kB 1MB
Memory Model 8GB DDR4 @ 1200MHz

Table 3.13 – AIMC core performance and energy figures.

Operation latency of CM_PROCESS 100ns
Operation latency of CM_QUEUE, CM_DEQUEUE 1ns
Read energy per weight 50fJ
AIMC core performance power 20 TOPS/W

with a pair of PCM devices. Only one of the two PCM devices is programmed according to the
sign of the weight. The PCM devices of the pair are physically located on separate consecutive
bit lines and the differential current is integrated at the ADCs.

The AIMC core is implemented in gem5-X and a direct line modelled between the CPU and the
AIMC core within the ARMv8 ISA templates and custom instructions, where operation latencies,
configured as the number of CPU cycles, are implemented as a function of the CPU frequency.

3.6.2.7 LSTMs - Recurrent Neural Networks (RNNs)

RNNs, namely LSTMs [50], are used in the experiments. An LSTM consisting of one cell and
one fully-connected dense layer is considered, as shown in Fig. 3.27 . A softmax layer follows
the dense layer. LSTMs can greatly benefit from AIMC acceleration, as each of the four gates
in an LSTM cell has fully-connected layers. Moreover, the implementation requires a variety
of activation functions (si g moi d , t anh, so f tmax), which can be performed with sufficient
precision on the CPU with the proposed architecture.

Various sizes for the cell input, hidden layer and dense layer output are considered, as listed in
Table 3.14. Mapped to a single AIMC core are weights and biases for both the cell and dense
layers (Parameters in Table 3.14). For the LSTM cell, weights associated with each of the gates
are organized side-by-side in the AIMC core; the mapping of the LSTM cell weights to AIMC
cores is described in more detail in [120]. The inference is run for only 10 steps (Ninf).

To demonstrate that analog computation incurs only minimal accuracy loss for inference, the
largest LSTM has been trained to perform character recognition on the PTB data set [174].
To assess the inference accuracy, the BPC metric [175] was used. The floating-point (FP32)
implementation yields a BPC of 1.33 on the full test set while the AIMC implementation
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Figure 3.27 – RNN with one layer LSTM with fully connected dense layer. The weights for both
the layers are stored in the AIMC core.

Table 3.14 – RNN Network Parameters.

Experiment 1 2 3 4 PTB
Input x 24 50 50 100 50
Hidden state h 96 192 254 512 750
Output y 256 512 778 1024 50
Inference steps Ninf 10
Parameters 71k 285.4k 508.3k 1.78M 2.4M
Working set (INT8) 72.2kB 287.2kB 516.7kB 1.8MB 2.4MB

(simulations with 8-bit signed input, 8-bit signed output, 1.5% Gaussian conductance noise to
model PCM device non-idealities) results in 1.35 BPC on the same test set without resorting to
any special training methodology.

3.6.2.8 Experimental Results

In the experiments, inference is defined as a Region-Of-Interest (ROI), which is a part of run
time that consists of loading inputs, propagating inputs through the layers and applying necessary
digital functions, and storing outputs.The CPU+SIMD implementation (denoted as digital) is
compared with the proposed architecture (denoted as analog).

In the CPU+SIMD implementation, vector input, weights and biases are loaded from memory in
order to perform the MVM operations in the LSTM cell. When running the experiments on the
proposed architecture, the AIMC core is used for computing the MVMs. The inputs first queued
to the AIMC core through a 32-bit bus and in a similar manner, the outputs are dequeued. As the
weights are stationary on the AIMC core, no weight loading is required and the working set only
comprises of the inputs and the outputs. The internal cell state of the LSTM cell (FP32) is stored
and updated for each inference. The LSTM cell requires tanh and sigmoid as activation functions
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Figure 3.29 – Factor improvement in (a) performance and (b) energy statistics with the proposed
AIMC-based architecture over CPU+SIMD implementation.

while a softmax is used for the dense layer. The activation functions and element-wise LSTM
cell operations are performed in FP32 precision.

The aggregate results for the LSTM experiments, including PTB character recognition are shown
in Fig. 3.28. Greater performance and energy gains are achieved with the analog test bench
in comparison to its digital counterpart for larger networks. It is observed that the gains are
correlated with the LLC size and the working set size, with the gains remaining relatively constant
(around 1.3x, average) until the working set size exceeds the LLC size. The IoT, Mid-Tier, and
HPC systems have 256kB, 512KB, and 1MB of LLC, respectively. The working set exceeds
the LLC sizes of the IoT, Mid-Tier and HPC system for experiments 2, 3 and 4 respectively.
Interestingly, for the smallest experiment where the 72.2KB working set fits on the LLC for all
the system configurations, the digital implementation slightly outperforms the analog one in
terms of time and energy. This suggests that the digital implementation is more favorable when
the CPU can easily access the data.

Finally, Fig. 3.29 shows the factor improvement in performance and energy of the proposed
approach over the CPU+SIMD implementation. The HPC system has both the largest time and
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energy gains (12.4x and 12.3x, respectively). The mid-tier system sees time and energy gains
of 9.1x and 9.4x, respectively, and the IoT system sees time and energy gains of 7.4x and 8.4x,
respectively.

3.7 Summary

In this chapter, I have presented and explored architectures for performance and energy opti-
mization for state-of-the-art emerging compute-dominated applications using gem5-X. These
new emerging dynamic applications include video encoding, video analytics comprising video
encoding and CNN-based image classification, BNNs, RNNs like LSTMs and banking workload
in VMs. These workloads are deployed on different platforms all the way from cloud servers and
data centres to mobile devices and were used as case studies to demonstrate the use of gem5-X
methodology along with the compute sub-system architectural extensions of gem5-X. Gem5-X
is generic and can be used to explore and optimize architecture for any other application.

I have demonstrated integrating and using in-cache computing engine in the L1-D cache to
accelerate FIR filter and SATD blocks in the video encoding application. Gem5-X in-simulator
profiling capability was also used to first profile the video encoding application and identify the
potential bottlenecks. By properly selecting the optimal number, type and operating frequency
of the cores, it was demonstrated that in-order cores with in-cache computing achieve the best
performance and energy efficiency while meeting QoS requirements. Using video analytics as
a case study, I have demonstrated the heterogeneous compute core and clustering capabilities
of gem5-X along with with heterogeneous memories including DDR4 and the new 3D stacked
HBM2 in FS mode. Three case study scenarios of video analytics are used, namely, surveillance,
drone navigation and autonomous cars and ADAS, for architecture exploration and optimization,
as each has different performance requirements. In the end, thanks to gem5-X and the exploration
methodology, an optimal clustered heterogeneous architecture with ARM in-order cores cluster
along with a BLADE in-cache computing engine, embedded within L1-D cache was defined as
optimal option to process the video encoding kernel, as well as an OoO core cluster was included
to process the CNN based image classification kernel of video analytics application. Overall,
gem5-X allows to select the right number of clusters and their operating frequencies for different
case study scenarios according to the performance requirement in each case. Furthermore, on the
memory side, gem5-X proved that the use of HBM2 for the video analytics application led to
both performance and energy benefits. Hence, I demonstrated that using gem5-X enables a truly
complete and fast design space exploration for many-core architectures.

Furthermore, I proposed NTC servers based on the FD-SOI process technology. The NTC
server architecture was modeled and simulated in gem5-X with virtualized workload as the target
application, enabled by VM support in gem5-X. The efficiency of the target application was
evaluated on three different platforms: (i) x86, (ii) ARM-based Cavium ThunderX, and (iii)
proposed NTC server. Moreover, the energy vs. performance trade-offs were explored, when
VMs with different CPU utilization and memory footprint characteristics are executed.
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Finally, I demonstrated the utilization and integration of CM in the execution stage of the CPU
pipeline, by capitalizing on ISA extensions support in gem5-X. BDPE was implemented using
RRAMs to accelerate the executions of BNNs. Similarly, the architecture for LSTM-based RNNs
was optimized for both performance and energy using analog in-memory computation.

Hence, I demonstrated that using gem5-X enables a truly complete and fast design space explo-
ration for many-core architectures along with novel architectural extensions. The work in [97],
[98], [38], [37], [46] and [176] were published as a result of this chapter. The main contribution
from [97] to this chapter is the architectural exploration for video encoding Kvazaar case study
application, using the in-cache computing accelerator. Furthermore, the work in [38] and [37]
present in detail the implementation of BLADE in-cache computing engine in gem5-X. The
work in [98] presents architectural exploration and optimization for video analytics application
and demonstrates the support for core clustering, heterogeneous cores, and 3D stacked HBM2
memory in gem5-X. The scale-out NTC servers and VM support in gem5-X is demonstrated in
the work published in [46]. Finally, the contribution of [176] to this chapter is the use of RRAMs
in implementing BDPE within gem5-X for optimal execution of BNNs, in the context of CM
integrated within the CPU pipeline.
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Exploration

4.1 Introduction

High Performance Computing (HPC) systems hosted on data centers and cloud servers have
accelerated the fast paced digitization of the society enabling greater efficiency in all phases
of our daily lives. However this comes at the price of a significant increase in computational
resources, resulting in data centers consuming 1% (200TWh) of the global energy demand
in 2018 [15]. There is a wide range of applications hosted by these data centers for HPC
systems, from weather forecasts or particle physics to genomics and precision medicine. These
applications are either compute-dominated or memory dominated. In HPC data centers, where
performance is the main evaluation metric, x86 based Central Processing Units (CPUs) along
with Graphic Processing Units (GPUs) constitute the backbone and de facto industry standard
of the processing infrastructure. Recent studies as in [177, 178] have evaluated using energy-
efficient ARM cores in the HPC domain. In [179, 46], authors have also looked into ARM
based data centers. These works agree that ARM-based systems are more energy efficient as
compared to x86 based systems. The benchmarks used for evaluation of performance are compute
bounded. In Chapter 3, I also presented different compute-dominated applications in various
application domains, including video processing, Convolutional Neural Network (CNN) based
image processing, Virtual Machine (VM) based cloud workloads and Artificial Intelligence (AI)
applications including Binary Neural Networks (BNNs) and Recurrent Neural Networks (RNNs).
All the optimized architectures for these compute-dominated applications, obtained using gem5-X,
are ARM-based systems. The works [177, 178] also look into the memory bandwidth (BW) of
ARM based systems with traditional DDR as main memory, for memory bounded applications
and benchmarks, and conclude that the ARM systems fall behind x86. However, the authors in
[178] suggest that ARM based systems might benefit from future 3D high bandwidth memories.

In this chapter, I will explore and optimize architectures for memory-dominated applications,
using gem5-X and ARM-based energy efficient systems. In particular, I will present Next
Generation Sequencing (NGS), which is a memory intensive application with random memory
access pattern, and demonstrate that an ARM based-system with 3D stacked High Bandwidth
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Memory v2 (HBM2) can outperform a power hungry and high performing Intel Knights Landing
(KNL) system [61], which also comes with 3D stacked memory. Furthermore, I will also look in
to optimizing multi-core, multi-threaded version of CNNs, which are both compute and memory
intensive, using Scratchpad Memories (SPMs) or software programmable memories, tightly
coupled to the CPU core. With the help of gem5-X, it will be demonstrated that using SPMs to
pass activations between different layers of CNN, mapped to different CPU cores, leads to both
performance and energy benefits.

The main contributions in this chapter, as well as its organization are summarised as follows:

• The single-step architectural exploration methodology is extended for the memory bounded
NGS application domain, for optimal performance and energy. It is shown in Section 4.3
that by optimizing the memory sub-system using this extended architectural exploration
methodology, HBM2 with no Last-Level-Cache (LLC) can outperform traditional memory
hierarchies with caches and DDR4 for sequence alignment for some NGS applications.
Furthermore, combining the memory sub-system with compute core optimization, the
architectural design space is explored with different core types, core count, frequency
and LLC size with HBM2 as main memory for NGS. Moreover, it is demonstrated that
many ARMv8 in-order cores surpass or match the performance of fewer ARMv8 Out-of-
Order (OoO) cores saving up to 2x energy when both are operating at same frequency and
up to 4.5x energy benefits when in-order cores are operating at lower frequency than OoO
cores.

• I propose the use of ARMv8 cores along with HBM2, as a replacement for state-of-the-art
Intel Xeon Phi 7210 KNL processor with integrated 3D-stacked MCDRAM memory, and
demonstrate that 16 ARM OoO cores can match the performance of 32 KNL cores for
various case study NGS applications. I also show that 28 ARM in-order cores match the
performance of 32 KNL cores for NGS case studies, in Section 4.3.

• A shared SPM architecture is proposed for inter-core data transfer, using Alexnet [62]
CNN, as the case study in Section 4.4. The shared SPM enables the activations between
consecutive CNN layers to be transferred without going through the cache hierarchy,
providing 1.85x performance improvement and 13% energy savings over a baseline cache-
only system. To reduce the memory requirements for activations transfer, tiled convolutions
in the CNN convolutional layers are also proposed.

4.2 Related Work

4.2.1 Architecture for NGS Application Domain

HPC systems, usually based on x86 cores, have traditionally been used for fast NGS and sequence
alignment process. These x86 CPU-based architectures are also the first point of execution and
testing when a new sequencing algorithm is being developed. The widely used BWA-MEM

96



4.2. Related Work

was tested on Intel Xeon 5420 running at 2.5GHz system, as in [59]. Similarly, Bowtie2 has
been reported to run on Intel Xeon X5550 Nehalem running at 2.66 GHz rented from Amazon
Web Services (AWS) system, as in [58]. Previous works in [180] and [181] have been done on
improving the scalability of well known and state-of-the-art-aligners like BWA-Mem, Bowtie2
and HISAT2 [60] on Intel based HPC architectures like Intel KNL, Skylake and Broadwell
architectures [180].

In addition to x86 CPU based systems, GPUs have also been explored for high-throughput
sequence alignment task, as in [182] and [183]. The Arioc GPU aligner in [182] achieves up to
10x speedup in comparison to CPU-based system for the seed and extend stage of BWA-MEM.
However, the authors have not looked into energy comparisons. Moreover, Intel Xeon X5670
CPUs running at 2.93GHz were used along with the GPUs, which cannot be used as a standalone
system. In addition, using GPUs for read alignments is challenging from a software perspective,
as one has to manage Single-Instruction-Multiple-Data (SIMD) threading as well as memory
management, including data layout and data transfers between CPU and GPU [184]. Dynamic
programming dependencies along with memory intensive tasks in sequence alignment add to the
challenges of using parallel threaded GPU implementation of NGS [185]. Therefore, GPUs have
not been widely adopted for NGS so far.

Sequence alignment accelerators both on Application-Specific Integrated Circuits (ASICs) and
Field-Programmable Gate Arrays (FPGAs) have been developed previously. The GenAx ac-
celerator [186] provides around 31.7x speedup as compared to 14-core Xeon E5 server. The
authors in [187] implement a dataflow architecture on FPGA for Smith-Waterman Matrix-fill
and Traceback stages, widely used in sequence aligners like BWA-MEM [59] and Bowtie2 [58].
However, this only accelerates the Smith-Waterman part of the sequence alignment application
and the other stages of the application have to be run on the CPU. In [188], the authors implement
Smith-Waterman accelerator on FPGA, which is attached as a co-processor to the IBM POWER8
CPU, and achieves 1.6x speed-up compared to CPU-based version. The DRAGEN platform [189]
from Illumina is another state-of-the-art FPGA-based sequence aligner which operates in hybrid
hardware-software configuration with a dual Intel Xeon processor. The DRAGEN architecture is
proprietary and has not been disclosed, but it is reported to achieve 16-18x speed-up compared to
BWA-MEM on a software based system [190]. Despite the speed-up that the sequence alignment
accelerators can achieve, it takes a significant amount of time and effort for these accelerators
to be developed, either on FPGAs or ASICs. On one hand, if they are on FPGAs, which are
resource constrained, and hence, the application have to be scaled out on multiple compute nodes
[52]. Additionally, application developed for one FPGA might not be compatible across different
FPGA generations. On the other hand, in the case of ASICs, if a new sequencing algorithm is
developed, it cannot be adopted for the same ASIC platform. Due to these factors, CPU-based
sequence alignment is still widespread and is commonly used for research, as it is fast to deploy
and the same system can be used with follow-up versions of the application.

On the memory front, NGS applications are memory intensive. High bandwidth memories like
3D stacked HBM2 are well suited for these applications. In [191], authors use HBM2 with
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the Smith-Waterman algorithm on FPGA-based platform and report 2x speed-up compared to
DDR4 memory system. Processing-in-Memory (PIM) exploiting HBM2 has been proposed
in [192] for the seed location filter, used just before the alignment, and achieve 1.81x-3.65x
speed-up compared to a state-of-the-art FastHASH seed location filter. However, in both these
works significant software changes were done to use HBM2 with an accelerator on FPGA [191]
or as a PIM [192]. Therefore, to the best of my knowledge, this is the first work where it is
proposed the use of an ARM many-core compute sub-system along with a high bandwidth
HBM2 based memory sub-system for an energy efficient sequence alignment system across three
state-of-the-art and widely used NGS applications, namely, Bowtie2 [58], BWA-MEM [59] and
HISAT2 [60].

4.2.2 SPM for CNNs

SPMs have widely been used in embedded systems since the early 2000s [193, 194]. They are
particularly useful when there is a high memory contention in the cache and the working data-set
gets evicted from the cache, due to cache thrashing and limited cache size. Previous works have
also looked into SPM memory management at the compiler level [195, 196]. In the context of
Deep Learning (DL) and CNNs, SPMs have been used in CNN hardware accelerators on ASICs
like the Eyeriss [197] or on FPGAs as in [198]. The work in [199] is also an FGPA-based CNN
accelerator using SPMs. SPMs have been proposed to be used as local private memory only for
the Processing-Elementss (PEs) in [197], [198] and [199]. As the parameters in CNNs are usually
very large, local SPMs allow the most frequently used parameters (kernel weights) to be stored
close to PEs, reducing the time to fetch these parameters from the main memory. They are also
used to store intermediate results of the PEs. However, SPMs have not been proposed to transfer
data between different layers of a CNN. Furthermore, the previous works in [197, 198, 199], use
SPMs in CNN accelerators.

To the best of my knowledge, this is the first work, where it is proposed to use SPMs for
transferring data from one CNN layer to another, with different CNN layers running on separate
compute cores. Furthermore, this is the first work to deploy SPMs to improve CNN inference
performance on general purpose compute cores, in a multi-core system. Hence, it also paves the
way forward for not only using SPMs on multi-core embedded systems, but also on many-core
servers.

4.3 Design Space Exploration for Genome Sequence Alignment

4.3.1 Introduction

Next generation biomedical applications, like genome sequencing, are having an astounding
impact in the fields of bioinformatics, cancer research, food microbiology and drug discovery
[52, 200, 53, 54]. Genome sequencing is also one of the first steps in understanding a new
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disease, its effects, development of diagnostic tests and possible cure and vaccines for it. This
process should be fast and efficient in case of a new disease outbreak, in order to curtain it,
as has been evident during the recent outbreak of the novel coronavirus (COVID-19). SARS
CoV-2, the virus that causes COVID-19, was first completely sequenced in China by 11 January
2020 and shared with the world community [6]. The Institut Pasteur in France sequenced the
genome for COVID-19 in three days [6, 201]. Since the availability of the genome sequence
of COVID-19, scientists and researchers around the world raced towards the development of
vaccine and diagnostic kits, in order to cure and overcome the outbreak.

HPC architectures are usually used for fast NGS due to the complexity of the sequence alignment
process. These HPC systems are extremely power hungry and performance is usually the only
evaluation metric. However, performance alongside with energy should be considered together
for enabling scalable HPC systems. HPC systems run both compute-bounded and memory-
bounded applications. Genome sequencing [52, 55], which is the process of determining the
DNA sequence or the order of bases As, Cs, Gs, and Ts making up the organism’s genome, is
among the latter type of applications due to pointer chasing [202]. NGS is a high-throughput
genome sequencing method. Before the advent of NGS, Maxam and Gilbert [203] and Sanger
along with his colleagues [204] came up with techniques to sequence DNA by fragmentation and
chain termination, respectively, in the 1970s. The Sanger sequencing was further commercialized
and became the de facto sequencing technique for 30 years. It has the honour of being the
sequencing method used for the complete human genome in 2004 [205], through a 13-year effort
under Human Genome project with an estimated cost of $2.7 billion [206]. With the advent
and rapid developments in NGS, the human genome was again sequenced in 5-months at a cost
of $1.5 million [207]. The common feature NGS platforms share is large parallel sequencing
of clonally amplified or single DNA molecules separated spatially in a flow cell [206]. This
is a departure from Sanger sequencing, which uses separate chain-termination for individual
sequencing reactions. NGS is a huge parallel process that generates hundreds of mega-bases to
giga-bases of nucleotide-sequence output in a single instrument run [206].

In sequence alignment, which is one of the first steps in NGS, a sequence read is aligned or
checked against a genomic reference for regions of similarity [55]. This process must tolerate
differences between the query read and the reference genome, due to errors in the sequencing
process and genuine differences between organisms. In addition, the strategies used in sequence
alignment have a pointer-chasing nature. They involve a repeated series of irregular memory
access patterns through which they determine the memory address of the next (pointer) access,
and the previous accessed data is required. Depending on the length of the sequence to be read,
this pointer-chasing nature affects the performance of the application. In [208], it is shown
that these NGS applications are memory bounded with 40% stalls due to memory, and 80% of
these memory stalls are accounted for by long latency DRAM accesses. As these applications
are memory bounded, having high performance compute nodes does not help in improving
performance, but actually adds to the energy consumption of the system, due to underutilization
of the processors. Instead, simpler ARM based architectures along with high bandwidth memories
can help in having an energy efficient architecture for NGS with better performance compared to
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existing solutions, leading to global energy savings for HPC data centers.

NGS applications use full-text indexing strategies, such as the FM-index, based on Burrows-
Wheeler Transform (BWT) [56, 57] for fast sequence alignments. Additionally, Bowtie2 [58]
is a new state-of-the-art NGS application based on FM-index, with efficient multi-threading
capabilities. BWA-MEM [59] is a widely used sequence alignment application also based on
BWT. Then, HISAT2 [60] is a graph based sequence alignment application and superior to both
Bowtie2 and BWA-MEM in performance. HPC class compute resources like the Intel Xeon Phi
KNL processors [61], Intel Skylake and Broadwell architectures, which support multiple threads,
are used to run these NGS applications and maximize their performance [56, 180]. GPUs are also
explored for genome sequencing as in [182]. In [209], authors utilize HPC type many-core x86
clusters for NGS. However, the underlying behaviour in NGS applications, whether it is based
on FM-index or graph based search, behaves like pointer chasing, with random accesses to the
memory and low cache locality. Thus, HPC nodes like KNL or GPUs are not efficient for these
sort of memory bounded applications, as they underutilize and waste the compute resources.

ARM-based scale-out processors [210] have been evaluated for memory bounded data center
applications, and reported to perform well as in [46], using traditional DDR4 memory. To the
best of my knowledge, no studies have analysed ARM-based architectures along with 3D stacked
memories for memory bounded genome sequence alignment applications. In this section, it will
be demonstrated that random access memory bounded NGS workload can be executed on energy
efficient ARM-based platforms, with performance at par or surpassing that of existing x86 or
accelerators like KNL, given that there is enough memory BW available, such as the one provided
by HBM2. KNL is selected as the x86 based comparison architecture instead of Intel Skylake or
Broadwell. The reason is that KNL has a 3D stacked memory, making the comparison fair across
the memory sub-system for both the proposed ARM-based system as well as x86-based system.

In this section, I extend the design space exploration methodology discussed in Section 2.8.1 to
find performance, energy and area optimized architectures for the NGS application domain. As
NGS applications are memory bounded, this extended methodology first focuses on optimizing
the memory subsystem and then the compute sub-system. Using this methodology, an optimized
architecture based on 3D-stacked HBM2 [79] alongside energy efficient ARMv8 64-bit compute
cores is proposed. I use the gem5-X [97, 98] architectural simulator, an open source, validated
and enhanced version of gem5 [31], with HBM2 memory model, presented and discussed in
Chapter 2. Three widely used state-of-the-art NGS applications namely, Bowtie2 [58], BWA-
MEM [59] and HISAT2 [60] with different search strategies are used as case study applications
for performance and energy optimization. The main contributions of this section are as follows:

• By optimizing the memory sub-system using the extended exploration methodology, I
demonstrate that many ARMv8 in-order cores surpass or match the performance of fewer
ARMv8 OoO cores giving significant energy benefits. I also explore the use of ARMv8
cores along with HBM2 and show such a system can outperform Intel KNL based system
with 3D stacked memory.
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• I perform a frequency sensitivity analysis for ARM-based systems and demonstrate that an
energy benefit of up to 59% and 61% can be achieved, for ARM in-order and OoO systems,
respectively, when operating more cores at lower frequency, while matching or surpassing
the performance, as compared to fewer cores at a higher frequency.

4.3.2 Sequence Alignment Applications

Different optimized sequence alignment NGS applications exist, including some of the most
widely used, relying upon the FM-index data structures and search algorithms. Among them,
Bowtie2, BWA-MEM and HISAT2 are representative examples of these applications, and will be
used as case study in the next sections. In this section these applications will be described briefly
along with the FM-index.

4.3.2.1 FM-index

FM-index is a data structure that allows fast substring searches over large texts [57]. FM-index is
based on several data structures and algorithms, such as Suffix Array and BWT. Given a pattern
or query Q, the FM-index allows to find all occurrences of Q in the text T . The search process
takes the following two steps, as shown in Fig. 4.1a: count and locate. They are explained next:

1. Count: Count is a backward iterative process which performs two rank queries as high-
lighted in red in Fig. 4.1a and an addition per each character in Q (starting from the end). In
FM-index, rank queries are typically performed using memory-consuming data structures,
which store previously calculated data, making it a low computing, highly memory bound
operation. As shown in Fig. 4.1a, in the highlighted yellow part, the count step requires
accessing random sections of the memory in each iteration. The result of this step are
pointers to the first and last position in the occurrences interval of Q in the sorted list of
suffixes from T .

2. Locate: Locate uses the indexes of the rows to access the suffix array, where it finds the
position of every occurrence of Q in the text T . Locate can be performed in one memory
access at the cost of a higher memory footprint. With a reduced memory footprint, it also
shows a random memory access pattern.

FM-index data structures are used in several well-known sequence alignment applications, such
as Bowtie2, BWA and HISAT2 which will be discussed next. All these applications use the
seed and extend techniques, depicted in Fig. 4.1b. The differences between these alignment
applications are depicted through color coded blocks in Fig. 4.1b.
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Figure 4.1 – Phases for (a) FM-index and (b) Genome Sequencing Applications.

4.3.2.2 Bowtie2

Bowtie2 [58] is an open-source, ultra-fast and memory-efficient alignment application used for
aligning DNA reads to large genomes, able to support gapped alignments. It relies upon the BWT
and the FM-index algorithm to quickly find non-exact alignments that satisfy a specified alignment
policy. Bowtie2 includes several novelties over the seed and extend basis, as the prioritization of
seed alignments in order to reduce the computing power used, as shown Fig. 4.1b. Bowtie2 is
scalable and supports multi-threading, and equally distributes the alignment tasks among different
threads.

Bowtie2 indexes are optimized in order to use as little memory as possible. This way, a Bowtie2
index for the human genome uses around 3.24GB on disk, and has a memory footprint of just
1.3GB. Compared to other sequence alignment tools, Bowtie2 is 2.5-3x faster than the Burrows
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Wheeler Aligner (BWA) when both applications are searching for gapped alignments.

4.3.2.3 BWA-MEM

BWA-MEM [59] is another widely used open-source sequence alignment algorithm based on FM-
index data structures. It automatically chooses between local and end-to-end alignments, supports
paired-end reads and performs chimeric alignment. This algorithm follows seed-and-extend,
common in other sequence alignment applications as Bowtie2, but including some novelties.
BWA-MEM includes an additional step which creates groups of seeds, and filters them in order
to reduce unsuccessful seed extension at a later step. The seed extension step also includes
a variation focused on reducing the computing time used by sub-optimal seed extension and
prioritize end-to-end alignments over local ones.

As most sequence alignment applications, BWA-MEM processes a batch of reads at a time. This
algorithm uses this feature to obtain both single-end and paired-end mappings. BWA-MEM also
supports multi-threading.

4.3.2.4 HISAT2

HISAT2 [60] is also and open-source NGS application based on the seed-and-extend and an
extension of FM-index for graphs as opposed to the raw FM-index in previous applications, as
depicted in Fig. 4.1b. Named the Hierarchical Graph FM-Index (HGFM), it is composed of a
global Graph FM-Index (GFM), representing a population of human genomes and a large set of
small GFM indexes, collectively covering the whole genome. These small indexes (named local
indexes), combined with several alignment strategies, enable rapid and accurate alignment of
sequencing reads.

According to results reported in [60], HISAT2 is faster than any other state-of-the-art sequence
alignment algorithms like Bowtie2 and BWA-MEM. Although HISAT2 claims to be scalable and
supports multi-threading, I noticed its scalability is limited, both on real hardware as well as in
the gem5-X simulator, as will be discussed in Section 4.3.6.3.1.

Overall, there are similarities as well as some differences between the three genome sequencing
case study applications, as has already been shown in Fig. 4.1b. I will explore architectures with
optimal performance and energy for these NGS domain applications, taking advantage of the
similarities of the applications, but flexible enough to cater for the differences between them.

4.3.3 Methodology for Architecture Exploration

The NGS application domain is usually memory bounded with random memory access pattern.
As discussed in Section 4.3.2, the three case study applications exhibit a memory bounded
behaviour with random access pattern, as in a pointer chasing and graph processing applications.
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Figure 4.2 – Extended architecture exploration and optimization methodology.

The main compute operation in these applications is the comparison operation, performed when
comparing the search sequence to a reference index.

Figure 4.2 shows the architecture exploration and optimization methodology. This methodology is
an extension of the gem5-X exploration methodology, presented in Section 2.8.1. In comparison
to the methodology described previously, there is no profiling phase in this extended methodology,
as already discussed earlier in Section 4.3.1 that, according to [208], NGS applications are
memory bounded with 40% stalls due to memory. Moreover, 80% of these memory stalls are
accounted for by long latency DRAM accesses. Furthermore, the Phase 2 of the methodology
in Section 2.8.1 is extended by all the phases of the methodology in Fig. 4.2, which is intended
to optimize architectures for memory-dominated workloads like the NGS application domain.
Therefore, the extended methodology first optimizes the memory sub-system and then the
compute sub-system, as will be discussed in this section. This extended methodology comprises
three phases.
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4.3.3.1 Memory Exploration and Optimization

The first phase is related to memory system exploration and optimization. It requires optimizing
the entire memory sub-system comprising both the main memory and the cache. As the applica-
tion is memory bounded with random access patterns, for the first step I analyse replacing the
traditional DDR4 with a higher bandwidth memory like the 3D-stacked HBM2 and look into the
performance and energy benefits. If the HBM2 based system with LLC outperforms DDR4 with
LLC both in terms of energy and performance, it suggests that HBM2 should replace DDR4 in
further optimization steps.

During the second step of the memory exploration phase, sweeping the LLC size while optimizing
the cache sub-system is looked into. The LLC size providing the best performance is selected as
the optimal one.

For the final and third step of the memory exploration phase, the cache sub-system is optimized
with LLC being the main focus. A "no-LLC HBM2" system is explored and compared to an
"LLC with DDR4" system, both for energy efficiency and performance. If the "no-LLC HBM2"
system outperforms "LLC with DDR4" in terms of energy efficiency and performance, it is
considered to be a potential candidate for an optimized architecture and is used during subsequent
phases of the methodology, otherwise it is discarded. Looking into step-1 and step-3, I am
effectively comparing three configurations, HBM2 (LLC) vs. DDR4 (LLC) vs. HBM2 (no-LLC).
I do not compare to DDR4 (no-LLC), as it has a lower BW compared to HBM2, and without any
caching effects of LLC, it has lower performance compared to DDR4 (LLC) and HBM2 (LLC)
configurations.

During this first phase in the methodology, percentage performance/energy benefits are used
instead of absolute values, as I am looking for architectural choices that are better performing
and discarding the others.

4.3.3.2 Compute Core Exploration and Optimization

After the identification of the best memory sub-systems in the first phase, the compute cores are
optimized. Two types of cores are used: energy efficient in-order cores and high performance
OoO cores. In the first stage of this phase, the performance and energy scaling of the Region-Of-
Interest (ROI) with the number of compute cores is explored. The optimized core-count and core
type are selected based on performance and energy metrics.

For the second stage of phase 2, I investigate scaling with the core frequency and analyse the core
count and core types comparing their performance and energy. I also analyse the area constraints
when comparing different core types.

Absolute performance/energy values are used during this phase of the methodology, to have an
insight into the best performing system.
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Figure 4.3 – Architectural block diagram of experimental setup in gem5-X.

4.3.3.3 Final Architecture

Finally, the optimized architecture is compared with state-of-the-art systems currently being
used for the application under study. If the proposed architecture outperforms the state-of-the-art
solutions, it is selected as the final optimized architecture.

4.3.4 Architectural Exploration and Simulation Framework

Architectural exploration is necessary to find the best architecture for an application, for a given
optimization metric. Energy efficiency together with performance is considered as the primary
optimization metrics. The gem5-X simulation framework enables us to perform fast architectural
exploration for performance/energy-optimized architecture for any given application. It is capable
of running multi-threaded applications on a many-core simulated system, as required for HPC
applications.

4.3.4.1 Experimental Setup

The gem5-X simulation platform is used in ARM Full System (FS) simulation mode. ARM FS
mode is used with an Ubuntu 16.04 operating system (OS), as all the case study applications
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require various OS multi-threading support. As shown in Fig. 4.3, multiple ARMv8 64-bit
in-order and OoO cores are used for the architectural exploration with L1 instruction (L1-I) and
L1 data (L1-D) cache fixed at 32KB using the validated ARM JUNO platform [34] as starting
point. All the cores are connected to the LLC, which then connects to the main memory of 4GB
via a coherent cross-bar interconnect. Gem5-X statistics for the ROI are used for the performance
analysis.

4.3.4.2 Power Models

For energy evaluation, the power model for 28nm CMOS bulk technology node is used for ARM
OoO and in-order cores, as presented in Section 2.7 of Chapter 2. The power model includes
the core active, wait-for-memory (WFM) and static core energy, LLC read/write and static cache
energy. For the memory power models, the DRAM power values as reported in [93] are used.
Furthermore, counters in gem5-X statistics like active CPU cycles, WFM cycles, cache read and
writes hits and main memory accesses are used for power modeling.

4.3.4.3 Gem5-X Extensions

For the different case study NGS applications, the following memory and compute sub-system
architectural extensions of gem5-X are utilized:

1. High Bandwidth Memories: High bandwidth memories like HBM2 [79] help in alle-
viating the memory bottleneck of memory bounded applications. I propose to use the
3D-stacked HBM2 memory for such workloads, attaining a BW of 307.2 GB/s. The 3D
stacking has been made possible by Through-Silicon-Vias (TSVs), enabling the memory
and the logic cores to be placed in the same die resulting in high bandwidth memory
accesses. Gem5-X implements the HBM2 memory model by extending the DRAM con-
troller model in gem5, as discussed in Seciton 2.3.2.1 and 2.6 of Chapter 2. For the power
model of HBM2, the energy values of [94] are used.

2. Core Clustering: Core clustering in gem5-X enables independent L2 or LLC caches for
each cluster, as discussed in Section 2.3.1.5. Therefore, it mitigates the memory BW
bottleneck problem on the L2/LLC, as each cluster has its own L2/LLC. Core clustering
can be utilized to improve application scaling, if the application performance does not
scale with the increasing number of cores, due to L2/LLC being the bottleneck. This will
be utilized for HISAT2 NGS application, due to its scaling problem, as discussed later in
Section 4.3.6.3.1 and 4.3.6.3.2.
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Table 4.1 – Parameters for architectural exploration and optimization.

Parameter Values
Core Type ARMv8 in-order, ARMv8 OoO
Core Count 8 to 64 cores
Core Frequency 1GHz, 1.5 GHz, 2 GHz
LLC size No LLC, 1MB, 1MB/8-cores, 2MB/8 cores as in Table 4.2
Memory Type DDR4, HBM2

Table 4.2 – LLC Sizes and scaling with number of cores.

Core Count Fixed Size LLC LLC 1MB/8-cores LLC 2MB/8-cores
8 cores LLC = 1MB LLC = 1MB LLC = 2MB
16 cores LLC = 1MB LLC = 2MB LLC = 4MB
24 cores LLC = 1MB LLC = 4MB LLC = 8MB
28 cores LLC = 1MB LLC = 4MB LLC = 8MB
32 cores LLC = 1MB LLC = 4MB LLC = 8MB

4.3.5 Architectural Exploration Parameters

Following the optimization methodology discussed in Section 4.3.3, Table 4.1 summarizes the
architectural parameters I sweep to get an optimized architecture, since they have the most impact
on system performance and energy.

In the experiments, one software thread is pinned to each physical core. For systems with
no-LLC, no more than 28 physical cores are simulated, because the simulation turn around time
increases drastically with the number of cores and the scaling trend can already be captured with
simulations of up to 28-cores. Similarly, for OoO cores a maximum of 32-cores with LLC are
simulated. Lastly, for in-order cores additionally 64-core systems are simulated, which will be
discussed in Section 4.3.6.

To explore the effects of varying LLC size, in addition to no-LLC and a fixed LLC of 1MB,
the LLC size is also changed proportionally to the number of cores, so to have the same LLC
size-to-core count ratio, as in Table 4.2. Two ratios are used, 1MB/8-cores and 2MB/8-cores. The
ratio is restricted to 2MB/8-cores (at max.), as the LLC size will increase unrealistically large
with the number of cores if this ratio is increased further. The ratio scales well with 8, 16 and 32
cores, but for 24 and 28 cores, according to the ratio of 1MB/8-core LLC size should be 3MB
and 3.5MB, respectively. Since these sizes are not a power of 2, the LLC is scaled up to 4MB for
24 and 28 cores. Similarly, for 2MB/8-cores, a size of 8MB is used for both 24 and 28 cores.

4.3.6 Architecture Exploration Results

In this section I will explore and optimize architectures for performance, energy and area for the
three genome sequencing applications discussed before in Section 4.3.2, using the optimization
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methodology in Fig. 4.2 presented in Section 4.3.3. ROI is the search and alignment phase of
each application. Hence, the performance numbers are given in terms of execution time for ROI.
The energy consumption corresponds to the energy in the ROI for the complete system including
CPU cores, caches and memory.

As input data, a set of single-end queries generated by the Mason simulation tool [211] were
used. These queries, with 200 symbols in average, have been searched in the Parus major (Great
Tit) genome reference Parus_major1.0.3 [212] which is composed of around 1 gigabases.

First an in-depth exploration of Bowtie2 is performed, and then using the insights gained during
its architectural optimization, a similar exploration is done for BWA-MEM and HISAT2.

4.3.6.1 Bowtie2 Architectural Exploration

For all the performance and energy results, I launched Bowtie2 in gem5-X, and performed 200K
read alignments, which is a representative workload for sequence alignment and stresses the
system resources. According to phase-1 of the methodology, first the performance and energy
benefits of using HBM2 are explored, with and without LLC, as compared to DDR4, as in Section
4.3.6.1.1 and 4.3.6.1.2, respectively. Then, in accordance with phase-2 of the methodology, it
will be discussed how performance-energy scales with core count and frequency, as in Section
4.3.6.1.3 and 4.3.6.1.4, respectively, in quest for an optimized architecture in phase-3.

4.3.6.1.1 HBM2 vs DDR4
I first investigate the performance and energy benefit of using HBM2 instead of DDR4 for

Bowtie2 with different core types, core count and LLC size. Figure 4.4a shows the performance
benefit of using HBM2 instead of DDR4, along with absolute performance in terms of sequencing
time. Hence, the baseline architecture for each bar in Fig. 4.4 is different and is composed
of multi-core ARM in-order or OoO cores varying from 8-cores to 28-cores, which operate at
2GHz with DDR4 memory. The LLC for the baselines also varies as fixed 1MB, 1MB/8-core or
2MB/8-cores, namely:

• Architectures with HBM2 always outperform those with DDR4. The performance benefit
is higher for OoO cores compared to in-order cores, as the OoO cores can further exploit
the memory BW and, therefore, take more advantage of HBM2. The results show that OoO
cores utilize 2x more memory BW in comparison to in-order cores, due to the speculative
multiple issue of instructions in OoO cores.

• The performance benefit of using HBM2 increases with higher core count for in-order
cores, as the increase in the core count results in a larger stress on memory BW, which
HBM2 provides in comparison to DDR4. The BW utilization for HBM2 increases from
7GB/s to 22GB/s when varying the core count from 8 to 28 cores, in comparison to
6GB/s-12GB/s for DDR4.
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Figure 4.4 – Bowtie2 performance and energy benefit of HBM2 vs DDR4 at 2GHz. The bars
represent percentage benefits and the points with lines show absolute value. (a) Percentage
performance benefits along with sequencing time. (b) Corresponding percentage energy benefits
along with absolute energy values.

• For OoO cores, the performance benefit of using HBM2 instead of DDR4 is constant
for 16, 24 and 28 cores with fixed LLC size of 1MB and LLC of 1MB/8-core, but it
scales with the core count for larger LLC size of 2MB/8-core. The reason being that
LLC is a memory BW bottleneck for both HBM2 and DDR4 systems. As OoO cores are
stressing the memory to a larger extent, the performance benefits are almost constant for
smaller LLC size. However, larger LLC accommodates more search data and helps in
alleviating the BW bottleneck problem, as the results show 2x increase in LLC read hits
when increasing the LLC size from 1MB to 2MB/8-core. This is also the reason behind
the decrease in percentage performance benefit as the LLC size for a given core count is
increased. However, lower percentage benefit does not imply lower performance, as it can
be seen in Fig. 4.4a that the absolute performance is always better with larger LLC size for
a given core count.

• The performance benefit translates linearly into energy benefit, which scales in an identical
(but scaled) way as that of performance, with core type, core count and LLC size. Thus,
by replacing DDR4 with HBM2 as main memory, a performance benefit of up to 50% is
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Figure 4.5 – Bowtie2 performance and energy benefits of near memory compute HBM2 with no-
LLC systems in comparison to DDR4 with LLC systems at 2GHz core frequency. (a) Percentage
performance benefits along with sequencing time. (b) Corresponding percentage energy benefits
along with absolute energy values.

obtained, as shown in Fig. 4.4a, and energy benefit of up to 53% as depicted in Fig. 4.4b.

• Experiments are also run at 1GHz and 1.5GHz and with the same scaling trend observed
for both performance and energy as that at 2GHz. So, using HBM2 instead of DDR4 bears
performance and energy benefits.

4.3.6.1.2 HBM2 (no-LLC) vs DDR4
I explore using HBM2 near to CPU core with no-LLC and compare it to a DDR4 system with
LLC for Bowtie2. Figure 4.5 shows the percentage performance and energy benefit of HBM2 in
a system with no-LLC as compared to DDR4 with LLC in the system at 2GHz core frequency.
Hence, the baseline system has the same compute cores (in-order or OoO ARM cores) at 2GHz
with DDR4 memory and LLC varies from 1MB, 1MB/8-cores to 2MB/8-cores, namely:

• OoO cores with HBM2 and no-LLC are always better than that of DDR4 with LLC both
in terms of performance (by up to 68%) and energy (by up to 71.5%), except when the
number of cores are 8 and LLC is 2MB. In this configuration, the number of cores is not
large enough to fully exploit the memory BW and also the large size of LLC helps in
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hiding away the latency to the memory, hence, LLC-DDR4 systems performs better. The
same trend is true for the energy benefit of OoO cores.

• For in-order cores, the performance and energy benefits increase with the number of cores,
except when LLC is larger (i.e. 2MB/8-cores), leading to slightly negative performance
benefit. In this case, as in-order cannot stress the memory BW, LLC helps in hiding away
the latency to the memory for the DDR4 system. However, energy benefits still remain,
even if the performance benefits are negative.

• Experiments were also ran at 1GHz and 1.5GHz and the scaling trend is the same as that at
2GHz.

As no-LLC HBM2 outperforms DDR4 with LLC, this memory configuration will be further
evaluated, as well as HBM2 with LLC, as it also outperforms DDR4 with LLC, when following
further steps of the optimization methodology.

The methodology does not suggest exploring the DDR4 (no-LLC) configuration, as discussed in
Section 4.3.3.1, since it is the worst performing memory configuration. In any case, as sanity
check, experiments are performed for DDR4 (no-LLC) for both 28 ARM in-order and OoO cores
at 2GHz. The results show that DDR4 (no-LLC) configuration performs at least 2x slower, as
compared to HBM2 (no-LLC) for both in-order and OoO cores. Hence, as suggested by the
proposed methodology, this memory configuration will not be considered.

4.3.6.1.3 Performance-Energy Scaling with Core Count
The scaling of performance and energy with the number of cores is explored for different core
types and cache sizes with HBM2 as main memory. The scaling results with DDR4 will not be
taken into account, as it was already shown in Section 4.3.6.1.1 and 4.3.6.1.2 that using HBM2
has performance and energy benefits over DDR4. Figure 4.6 and Fig. 4.7 show the performance
and energy scaling with number of cores at 2GHz, for different configurations, as described next:

• There are a number of configurations in Fig. 4.6 that either match or outperform the per-
formance of state-of-the-art 32 KNL cores operating in turbo boost at 1.5GHz (maximum
KNL frequency) with 3D stacked memory, with 1 thread per core. E.g., it can be observed
that 16 ARM OoO cores at 2GHz surpass the performance of 32 KNL cores at 1.5GHz.
It can also be observed that 32 ARM in-order cores at 2GHz match the performance of
32 KNL cores at 1.5GHz. As it will be shown in Section 4.3.6.1.4, different ARM cores
at 1.5GHz also match and outperform 32 KNL cores (operating at 1.5GHz). A compari-
son point of 32 KNL cores is chosen, as opposed to maximum 72 KNL cores, since the
performance and energy scaling trends are captured with 32 KNL cores in comparison
to 32 ARM OoO cores and 64 ARM in-order cores. In fact, this analysis already shows
that this configuration surpasses or matches at least the performance of 32 KNL cores.
Furthermore, 1 thread per core is used for KNL instead of maximum 4 threads per core for
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comparison to ARM based architectures. The reason being that if the number of threads
are increased to 4 per core the performance does not improve, but actually deteriorates. In
particular, when increasing the threads from 32 threads to 128 threads on 32 cores of Intel
KNL, the performance deteriorates by 37.5% for Bowtie2. This is because the workload
is memory intensive and increasing the threads increases the memory accesses and hence
the bottleneck on already limited BW memory, which leads to performance deterioration.

• Performance improves when increasing the number of cores, except for OoO cores with
LLC. This is because larger core count implies more memory requests through LLC,
which gets bottle-necked, leading to performance stagnation. However, it can be seen
that systems with HBM2 and no-LLC do not have this bottleneck and therefore, the
performance improves with increasing core count. Systems with in-order cores do not
exhibit this effect as in-order cores do not generate a lot of memory requests, thus, LLC
does not get bottle-necked either.

• Many-core in-order system can match or outperform fewer OoO cores performance, with
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much lower energy. To illustrate this, an additional simulation of 64 in-order ARM cores
is run, as shown in Fig. 4.6 and Fig. 4.7. It can be seen that 64 ARM in-order cores (at
2GHz) with LLC of 2MB/8-cores, outperform 28 ARM OoO cores at 2GHz by 16.38%
and 32 KNL cores (at 1.5GHz) by 37.5%. This leads to an energy benefit of 47.25% over
28 ARM OoO cores.

• If the area is considered, the area of a single OoO core for 28nm CMOS bulk (2.05mm2)
is almost 3 times that of a single in-order core (0.7mm2) as reported in [97]. So, 64 ARM
in-order cores take 23.8% less area when compared to 28 ARM OoO cores. Consequently,
64 ARM in-order cores with LLC of 2MB/8-cores is the most efficient architecture in
terms of performance, energy and core area.

• In all in-order cores systems (with or without LLC) or OoO systems without LLC, as the
performance scales with core count, the increase in the energy consumption is not with the
same slope, but with a lower slope, as shown Fig. 4.7. This implies that the performance
gain is higher with slight increase or almost constant energy.

Many ARMv8 in-order core system with LLC and HBM2 not only outperforms KNL but also
fewer ARM OoO core system, in terms of performance, energy and area.

4.3.6.1.4 Performance-Energy Scaling with Frequency
I explore the performance and energy scaling with compute core frequencies varying from 1GHz
to 2GHz, for different core types and LLC size. For the sizes of LLC, the extremes will be
considered, i.e., no-LLC and LLC size of of 2MB/8-cores. The trends for both fixed LLC size
of 1MB and LLC of 1MB/8-cores are encapsulated between these two extremes, as at 2GHz
in Section 4.3.6.1.3, hence, they will not be considered in this section for frequency scaling.
Figure 4.8 shows the performance scaling of different architectures with HBM2, with different
frequencies and number of cores. The results are discussed next.

• Outperforming KNL: I compare the performance of all the architectures against 32-
KNL cores (running at 1.5GHz), and demonstrate that there are many-core ARM 64-bit
architectures with HBM2 (for different core types, core count, frequency and LLC size),
that can either match or surpass the performance line of 32-KNL cores, as shown in Fig.
4.8. The performance and energy of all the ARM architectures outperforming KNL are
compared in Fig. 4.9. Firstly, it can be seen that the proposed architectures can match the
performance of 32-KNL cores at 1.5GHz with as little as 24 OoO cores at 1.5GHz or 16
OoO cores at 2GHz with LLC of 2MB/8-cores. It can also be seen that 64 in-order ARM
cores at 2GHz with LLC of 2MB/8-cores is the best configuration in terms of performance.
However, in terms of energy efficiency, 64 in-order ARM cores at 1.5GHz with LLC of
2MB/8-cores is the best with 2.38x less energy when compared to operating at 2GHz.

• Fewer OoO vs. many in-order cores: It is observed that many in-order cores operating
at lower frequency can match the performance of fewer OoO cores at higher frequency.
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Figure 4.8 – Bowtie2 performance scaling with frequency for different core types and LLC size.

E.g., in Fig. 4.8 28 OoO cores with LLC of 2MB/8-cores 2GHz is outperformed by 16.5%
in performance by 64 in-order cores at 2GHz, with energy savings of 1.9x as shown in
Fig. 4.9. Furthermore, if the operating frequency of 64 in-order cores is reduced to 1.5GHz,
it matches the performance of 28 OoO cores at 2GHz, but with energy savings of 4.5x as
in Fig. 4.9. This also results in an area benefit of 23.8%.

• Performance Stagnation vs. No LLC System: If the zoomed-in section of Fig. 4.8 is
observed, it can be seen that systems with OoO cores and LLC have performance stagnated,
due LLC not being able to provide enough BW as required by high number of OoO cores,
even if HBM2 is the main memory. However, if the LLC is removed, the performance
always scales with the increase in core count, and no performance stagnation in the no-LLC
system. Therefore, a no-LLC system, is beneficial from scaling perspective for OoO cores
as this translates into area savings. But Fig. 4.9 shows that no-LLC has slightly higher
energy demand than corresponding LLC systems. So even though stagnation exist for
OoO cores, a system with LLC still performs better in terms of performance and energy
when compared to no-LLC system. This stagnation effect is not evident in 64-core in-
order system with LLC. Thus, a many-core in-order system with LLC is best in terms of
performance, energy, area and scaling.

• Frequency Scaling based Energy Savings: Figure 4.8 and Fig. 4.9 show that 64 ARM
in-order cores at 1.5GHz with LLC can surpass the performance of 32 in-order cores at
2GHz, resulting in an energy saving of 2.1x. Similarly, 24 OoO cores at 1.5 GHz match
the performance of 16 OoO cores at 2GHz with energy savings of 2.2x.
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Figure 4.9 – Bowtie2 performance and energy of all configurations surpassing 32 KNL cores
performance.

Many-core (64-cores) ARMv8 in-order system with LLC and HBM2 is the best performing when
compared to KNL and fewer ARMv8 OoO cores. It is also more energy efficient and takes less
area in comparison to fewer OoO cores. When targeting energy efficiency it operates best at
1.5GHz. However, if performance is being targeted, the same systems performs best at 2GHz.

4.3.6.2 BWA-MEM Architectural Exploration

Following the exploration methodology in Fig. 4.2 for Bowtie2, a performance/energy-optimized
architecture was achieved. Similarly, following the methodology, BWA-MEM is the second
genome sequencing application that will be used to explore optimal NGS architectures in this
section. BWA-MEM is launched in gem5-X FS mode for 100K read alignments. The number of
read alignments are reduced in BWA-MEM as it is almost twice as slow as Bowtie2, so 200K
read for BWA-MEM was unfeasible in terms of simulation turnaround time. Similar to Bowtie2,
using the exploration and optimization methodology, I first explore the performance and energy
benefits of using HBM2, with and without LLC, as compared to DDR4. Then, I present how
performance-energy scale with core count and frequency so to have an optimized architecture.

4.3.6.2.1 HBM2 vs DDR4
I investigate the performance-energy benefits of using HBM2 instead of DDR4 for BWA-MEM

with different core types, core count and frequency as shown in Fig. 4.10. Hence, the only
difference between the baseline and the explored architecture is the use of HBM2 instead of
DDR4. The LLC size is fixed at 2MB/8-cores, as discussed for Bowtie2, because this LLC size
has the best performance. As BWA-MEM also uses a similar FM-Index strategy as Bowtie2 with
some variation, the LLC size is kept the same. Key findings are summarized next:

• It can be observed in Fig. 4.10 that systems with HBM2 achieve up to 6.5% and 10.5%
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Figure 4.10 – BWA-MEM performance and energy benefits of HBM2 in comparison to DDR4
with LLC of 2MB/8-cores.

performance benefit for in-order and OoO cores, respectively, when compared to DDR4.
The performance benefit scales and increases with the number of cores, as well as with the
core frequency.

• The performance benefit translates into energy savings of up to 16% and 18% for in-order
and OoO cores, respectively, when using HBM2 instead of DDR4.

Thus, using HBM2 instead of DDR4 is beneficial both in terms of performance and energy for
BWA-MEM.

4.3.6.2.2 HBM2 (no-LLC) vs DDR4
I explore using HBM2 with no-LLC and compare the energy and performance to a DDR4 system

with LLC for BWA-MEM, in accordance with second step of phase-1 in the methodology in
Section 4.3.3. For BWA-MEM, a no-LLC HBM2 system, as compared to DDR4 with LLC, is
inferior in performance and energy efficiency for both in-order and OoO cores, in contrast to
Bowtie2. Therefore, a no-LLC HBM2 memory configuration is discarded for further phases of
the methodology.

The experiments are run for DDR4 (no-LLC) for both 28 ARM in-order and OoO cores at 2GHz,
as a sanity check. The results show that DDR4 (no-LLC) configuration performs 28% and 38%
slower, as compared to HBM2 (no-LLC) for in-order and OoO cores, respectively. Thus, in
accordance with the methodology, DDR4 (no-LLC) configuration will not be explored.

4.3.6.2.3 Performance-Energy Scaling with Core-Count and Frequency
I look into the performance and energy scaling of BWA-MEM with the number of cores as

well as with the core frequency for both in-order and OoO cores in accordance with phase-2 of
the methodology. The architectures of HBM2 with no-LLC will not be explored, as discussed
in Section 4.3.6.2.2, that these systems are inferior in performance to DDR4 system with LLC.
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Figure 4.12 – BWA-MEM energy scaling with core-count and frequency. LLC is fixed at
2MB/8-cores.

DDR4 system with LLC will also not be considered, as it was concluded in Section 4.3.6.2.1, that
HBM2 system with LLC outperforms DDR4 system with LLC, both in terms of performance
and energy. Figure 4.11 and Fig. 4.12 show the performance and energy scaling of BWA-MEM,
respectively, for different core-types, core frequency and core count with HBM2, as a main
memory with LLC of 2MB/8-cores.

• As shown in Fig. 4.11, the performance of BWA-MEM scales with number of cores as
well as with core frequency. It can also be seen see that ARM OoO cores outperform
in-order cores for a particular core count. However, many-core in-order system can
match or outperform fewer OoO cores system. For example, 64 in-order cores match the
performance of 32 OoO cores, with both operating at the same frequency (1.5GHz/2 GHz).
This leads to energy savings, which are discussed next:
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• The energy scaling of BWA-MEM with both frequency and core-count is shown in Fig.
4.12. As the performance scales with core count, the energy curves are almost flat,
indicating a very small increase in energy with the core count. So, 64 in-order cores,
outperform 32 OoO cores at 2GHz with energy savings of 48%. For the same comparison
at 1.5GHz, the energy saving is 33%. For 28nm technology node, 64 in-order cores occupy
32% less area when compared to 32 OoO cores.

• Figure 4.11 also shows that 16 OoO ARM cores at 1.5 GHz match the performance of 32
Intel KNL also at 1.5GHz. If compared with ARM in-order cores, which are three times
smaller in area than ARM OoO, 28 in-order cores match the performance of 32 KNL cores
for BWA-MEM.

• Figure 4.11 shows that 32 OoO cores at 1.5GHz match the performance of 32 OoO cores at
2GHz, giving an energy benefit of 61% as shown in Fig. 4.12. Also, it can be seen that 64
in-order cores at 1.5GHz surpass the performance of 32 in-order cores at 2GHz resulting
in energy savings of 59%.

Overall, for BWA-MEM, 64 in-order ARM cores with HBM2 and LLC is the best architecture in
terms of performance, energy efficiency and area, consequently, achieving the same optimized
architecture than for Bowtie2.

4.3.6.3 HISAT2 Architectural Exploration

Graph based genome sequencing application HISAT2, as discussed in Section 4.3.2.4, is the third
and final application studied in the context of energy and performance efficient architecture for
genome sequencing applications. HISAT2 was ported to compile for ARMv8 cores. The number
of read alignments for HISAT2 are 500K, in-contrast to 100K for BWA-MEM and 200K for
Bowtie2, as HISAT2 is faster than both Bowtie2 and BWA-MEM, giving approximately the same
simulation turnaround time as for Bowtie2 and BWA-MEM.

4.3.6.3.1 HISAT2 Scaling Problem
When HISAT2 is launched either on a simulation platform, like gem5-X, or natively on a server,
it scales in multi-threading mode on a multi-core system (1-thread/core), up to a certain thread
count, i.e., around 8 ARM cores in gem5-X and around 16 cores on an Intel Xeon server. After
that, performance saturates and does not scale with number of cores. This is due to the lack of
further parallelization support in HISAT2. To overcome it, multiple instances of HISAT2 are
launched, with each instance using 4 threads (on 4 different cores). Therefore, to stress 16 cores,
4 instances of HISAT2 are launched, each using 4 cores, with the number of read alignments
equally distributed among them. This does not affect the memory footprint for HISAT2, as it
supports using memory-mapped I/O for reference index which many HISAT2 instances can share.
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Figure 4.13 – Clustered architecture with 4-cores per cluster for HISAT2.

4.3.6.3.2 Clustered Architecture
As discussed in the previous section, as HISAT2 scales to a limited number of threads, multiple

instances of HISAT2 are launched, each using 4-cores. Hence, I propose a clustered architecture
with 4-core clusters, each with its own LLC to prevent cache thrashing. This clustered architecture
is shown in Fig. 4.13. Each cluster connects to a coherent system bus, which ultimately connects
to the main memory, which is HBM2 in the figure, but can be DDR4 as well.

The LLC is set to 512KB for each cluster. This gives 1MB/8-cores, in contrast to 2MB/8-cores
for Bowtie2 and BWA-MEM. The reason being that the dataset in HISAT2 is smaller and can
fit in a smaller cache. I ran experiments in gem5-X with both 2MB/8-cores and 1MB/8-cores,
and observed no difference in performance. Thus, the choice for a smaller cache leads to higher
energy and area savings. The performance starts to deteriorate if the cache size is reduced further.

I will now describe the utilization of optimization methodology for HISAT2, as I did earlier for
Bowtie2 and BWA-MEM.

4.3.6.3.3 HBM2 vs DDR4
With the clustered architecture for HISAT2, I investigate the performance and energy benefits
of using HBM2 in comparison to DDR4 (both with LLC) for different core types, core count
and frequency as shown in Fig. 4.14. The LLC size is fixed at 512KB/4-cores (1MB/8-cores).
Therefore, the baseline multi-core architecture differs from the proposed architectures only at the
memory level with DDR4 being used for the baseline, namely:
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Figure 4.14 – HISAT2 performance and energy benefits of HBM2 in comparison to DDR4 with
LLC of 512KB/4-cores.

• For in-order cores, an HBM2 based system performs up to 12% better when compared
to DDR4 based system, and up to 14% better for OoO cores. The performance benefit
increases with the number of cores as well as with the core frequency, as shown by the bars
in Fig. 4.14.

• The energy benefit of using HBM2 instead of DDR4 for both in-order and OoO cores is
up to 26%.

Therefore, using HBM2 instead of DDR4 is beneficial both in terms of performance and energy
for HISAT2, in a system with LLC.

4.3.6.3.4 HBM2 (no-LLC) vs DDR4
For HISAT2, HBM2 with no-LLC does not perform better than a DDR4 system with LLC in

terms of performance as well as energy efficiency for both in-order and OoO cores, as was the
case with BWA-MEM. Thus, no-LLC HBM2 configuration for HISAT2 will be not be further
investigated in the optimization methodology.

As a sanity check of the methodology regarding the DDR4 (no-LLC) configuration, experiments
are run for DDR4 (no-LLC) for both 28 ARM in-order and OoO cores at 2GHz. The results show
that DDR4 (no-LLC) configuration performs 35% and 38% slower, as compared to HBM2 (no-
LLC) for in-order and OoO cores, respectively. Therefore, in accordance with the methodology,
DDR4 (no-LLC) configuration will not be explored.

4.3.6.3.5 Performance-Energy Scaling with Core-Count and Frequency

Figure 4.15 and Fig. 4.16 show the performance and energy scaling, respectively, for differ-
ent core-types, core frequency and core count with HBM2 as a main memory with LLC of
512KB/4-cores. The architectures of HBM2 with no-LLC will not be explored, as discussed
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in Section 4.3.6.3.4 that these systems are inferior in performance to DDR4 system with LLC.
DDR4 system with LLC will not be explored, as it was also concluded in Section 4.3.6.3.3, that
HBM2 system with LLC outperforms DDR4 system with LLC, both in terms of performance
and energy. Key findings are described in the following paragraphs:

• Figure 4.15 shows the performance scaling of HISAT2 with number of cores and core
frequency. It can be also be seen that for a given core-count, ARM OoO cores outperform
in-order cores. However, many-core in-order system can match the performance of fewer
OoO cores system. For example, 64 in-order cores match the performance of 32 OoO
cores, with both operating at the same frequency.

• Figure 4.16 shows the energy scaling of HISAT2 with both frequency and core-count. As
the performance scales with core count, the energy curves are almost flat, indicating a very
small increase in energy with the core count. As discussed above, 64 in-order cores match
the performance of 32 OoO cores at 2GHz and giving energy savings of 2x. Similarly at
1.5GHz, 64 in-order cores consume 39% less energy than 32 OoO cores, and at the same
time matching performance. For 28nm technology node, 64 in-order cores occupy 32%
less area when compared to 32 OoO cores.

• Furthermore, the performance of ARM based architectures is compared with Intel KNL.
Figure 4.15 shows that 16 OoO ARM cores at 1.5GHz match the performance of 32 Intel
KNL also at 1.5GHz. If compared with ARM in-order cores, which are three times smaller
in area than ARM OoO, 28 in-order cores at 1.5 GHz match the performance of 32 KNL
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cores for HISAT2.

• Finally, the performance of the same system configurations are compared at different
frequencies. Figure 4.15 shows that 64 in-order cores at 1.5GHz match the performance
of 32 in-order cores at 2GHz resulting in energy savings of 51%, as shown in Fig. 4.16.
It can also be seen that 32 OoO cores at 1.5GHz surpass the performance of 16 OoO at
2GHz cores giving an energy benefit of 61%.

Overall, in the case of HISAT2, a system with 64 in-order ARM cores with HBM2 and LLC is
the best architecture in terms of performance, energy efficiency and area.

4.3.6.4 Discussion of the Results

After following the optimization methodology for three case study applications representing the
NGS genome sequencing applications, the following conclusions can be drawn:

1. In all the three applications, systems with HBM2 as main memory outperformed their
counterparts with DDR4, both in terms of performance and energy efficiency. This leads
to a performance benefit of 50%, 10.5% and 14% for Bowtie2, BWA-MEM and HISAT2,
respectively, with corresponding energy savings of up to 53%, 18% and 26%, respectively.
This is due to the fact that the three NGS applications are memory bounded and, therefore,
benefit from high memory BW of up to 307.2 GB/s [79], which is provided by HBM2. It
is also observed that the performance and energy benefits of using HBM2 are more for
OoO cores compared to in-order cores, as OoO cores can exploit more BW and therefore,
take more advantage of HBM2.

2. For no-LLC HBM2 systems compared to LLC systems with HBM2 or DDR4, both BWA-
MEM and HISAT2 showed that LLC with HBM2 or DDR4 performed better than no-LLC
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HBM2 in terms of performance and energy. As discussed previously, HBM2 with LLC
was better than DDR4 with LLC. Hence, HBM2 with LLC was selected as the optimized
memory sub-system for both BWA-MEM and HISAT2. In case of Bowtie2, no-LLC
HBM2 showed performance and energy benefits of up to 68% and 71.5%, respectively, as
compared to DDR4 with LLC. Moreover, no-LLC HBM2 outperformed LLC with HBM2,
when the LLC is small (1MB/8-core). However, if the LLC is large (2MB/8-cores), LLC
with HBM2 was the best performing architecture in terms of performance and energy for
Bowtie2.

3. Both ARM OoO and in-order cores outperformed HPC class Intel KNL with similar
3D-stacked memory as HBM2 (used in proposed ARM systems), with fewer or similar
core counts at the same core frequency of 1.5GHz, for all the three applications. This is due
to the fact that, as the applications are memory bounded, high performing Intel KNL cores
do not help in improving the performance. Hence, energy efficient ARM cores coupled
with HBM2 surpass the performance of Intel KNL.

4. For a given system, based on either ARM in-order or OoO cores, using frequency and core
count scaling, it was shown that a system operating at a lower operating frequency can
either match or surpass the performance of that at higher frequencies with energy savings
of up to 55% (2.2x) for Bowtie2 and 61% for both BWA-MEM and HISAT2, when using
OoO cores. Similarly, for in-order cores, an energy benefit of up to 52% (2.1x), 59% and
51% is achieved for Bowtie2, BWA-MEM and HISAT2, respectively.

5. Many energy-efficient ARM in-order cores either matched or outperformed fewer (almost
half) high performance ARM OoO cores at the same operating frequency with energy
savings of up to 47.5%(1.9x), 48% and 50% for Bowtie2, BWA-MEM and HISAT2,
respectively. This is due to the memory bounded nature of the applications, which do not
benefit from high performance cores. As discussed, since in-order are almost 3x smaller
in area than OoO, it also led to core-area savings of 23.8% for Bowtie and 32% for both
BWA-MEM and HISAT2. Furthermore, in case of Bowtie2, not only in-order cores surpass
the performance of OoO cores, but that also at a lower operating frequency, resulting in
4.5x energy savings.

6. HISAT2 application showed performance scaling up to 8 cores in the system. To alleviate
this problem, a clustered system was proposed with an instance of HISAT2 on each cluster
(4-core cluster with 512KB LLC), and the read alignments distributed among all clusters.

Therefore, many-core ARM in-order system with HBM2 and LLC was the overall best performing
system for all three applications in terms of performance, energy efficiency and area.

124



4.4. SPM Memories for CNNs

4.4 SPM Memories for CNNs

As of 2018, 41% of Americans owned a digital home assistant, e.g., Amazon’s Alexa or Google’s
Home, and over 25% owned more than three smart home devices [213]. In the same year, 77% of
Americans owned a smartphone, for the first time overtaking PC ownership at just 75% [214]. As
edge device adoption accelerates, their utilization and influence has also increased in our everyday
lives. Hence, the compute power must increase correspondingly to meet application demands.
Many of these edge devices make up the Internet-of-Things (IoT) and are connected to the cloud.
Hence, the architectures for the application deployed must be optimized all the way from the
edge to the cloud. Moreover, as the adoption of edge devices increasingly supplant traditional
compute environments such as servers, emerging workloads will increasingly resemble those of
traditional servers in function and complexity. As edge devices are naturally limited in physical
size and power, innovations must be developed that boost performance while maintaining low
area and power overheads.

Since Alexnet [62] was unveiled in 2012, CNNs have become the premier neural net for tasks
such as image and language processing [215, 216] and object detection [217]. Given their extreme
utility, hardware support on mobile platforms for neural network inference and specifically CNNs
has become increasingly attractive [218, 219]. CNNs are considered both compute and memory
intensive. I have earlier looked into optimizing the architecture for them from the compute sub-
system perspective when considering them as compute-intensive workloads, as in for MobileNet
in the video analytics application in Section 3.4.5. However, in this section, I will consider CNNs
as memory intensive, and optimize them from a memory sub-system perspective to overcome the
Memory Wall.

CNNs are composed of multiple layers. The output of one layer is an input to the next one,
with the inputs also referred to as activations. To increase the performance and throughput of
the CNNs, they are multi-threaded on a multi-core platform, with different layers of the CNN
mapped to different compute cores. To pass activations from one layer to another, they need
to traverse through the whole cache hierarchy. As shown in Fig. 4.17, layer N of a CNN is
mapped to core N and layer N+1 is mapped to core N+1. To transfer activations from layer N
to layer N+1, they need to go from L1 of core N to LLC and then to L1 of core N+1 running
the CNN layer N+1. Hence, the activations traverse the whole cache hierarchy. I propose to use
SPM to pass activations from one CNN layer to another, in a multi-core multi-threaded CNN.
SPM is a tightly coupled memory to the CPU core at the same level as the L1-D cache. When
using SPMs to transfer the activations between the layers (and the cores they are running on),
the cache hierarchy is by-passed, thus benefiting both performance and energy, as shown in Fig.
4.18. In this section, I discuss and present the performance and energy benefits of using SPMs
for inter-core data transfer, using Alexnet [62] CNN, as the case study.

Gem5-X supports SPMs in the memory sub-system, as presented in Section 2.3.2.2 of Chapter 2.
The SPMs can be configured as private SPMs in which they can only be accessible to a specific
compute core, or they can be shared where they are accessible by two consecutive cores in the

125



Chapter 4. Memory-Dominated Architecture Exploration

L1‐D 
Cache

CoherentXBar (tol2bus) 

L2/LLC

Main 
Memory

L1‐D 
Cache

CNN Layer 
N+1

CPU
Core‐N+1

DATA PORT

CNN Layer 
N

 CPU
Core‐N

DATA PORT

Each CNN Layer mapped 
to a different CPU core

A
ct
iv
at
io
n
s 
p
as
se
d
 v
ia
 

th
e 
ca
ch
e 
su
b
‐s
ys
te
m

Cache 
sub‐system

Figure 4.17 – Passing activations from one CNN layer to the next through the cache hierarchy.
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system. Since SPMs are software controlled, in contrast to the hardware controlled caches, the
programmer can store the working data-set in the SPMs, hence, keeping it close to the CPU. The
memory map of the SPMs is separate from the cache hierarchy and the main memory. Therefore,
to allocate data on the SPM, mmap() is used from within the application. Hence, the data allocated
on SPM is not cached and with no copy in the main memory.

4.4.1 Application

In this section, Alexnet [62] will be used as a case study CNN, to demonstrate the utilization of
SPMs to transfer data between different layers of the CNN running simultaneously on different
cores. Alexnet model was implemented in C++ using a C/C++ based CNN solver, presented in
[220]. A C++ CNN solver is used instead of python based frameworks like TensorFlow [221], as
the memory management of the SPM is done manually by the programmer, which is not possible
in python based frameworks.

The Alexnet implementation in [220] is single threaded. This implementation is first improved to
incorporate and enable multi-threaded capabilities, using the Linux POSIX threads (pthreads)
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[222]. The multi-threaded implementation of Alexnet enables the different layers of the network
to run on different physical cores. The layers run simultaneously in a pipelined fashion on
multiple compute cores, as shown in Fig. 4.19. For instance, when CNN layer 1 is processing
image 3, CNN layer 2 is working on image 2 and layer 3 is processing image 1. Moreover, next
layer is triggered only when data from previous layer is available. For instance, when layer 1
completes the processing of image 1, it triggers layer 2. Layer 2 then starts processing image
1 and layer 1 moves on to image 2, and so on. To maximize the throughput and avoid any
bottlenecks, two buffers are used in a ping-pong strategy to transfer data between layers (in the
implementation without SPM).

Once the CNN has been multi-threaded, the performance improves as multiple images are being
processed in parallel on different layers. However, the memory bottleneck still exists, as the
activations from one layer to another go through entire cache hierarchy, as discussed earlier. This
offers a potential opportunity to use SPM, to transfer data between different cores, executing
different CNN layers. However, it needs to be checked first that using SPM will be beneficial,
and for that the CNN needs to be profiled, which will be discussed in the next section.

4.4.2 Profiling of the Application

To showcase the gem5-X SPM architectural extension, Alexnet [62] will be used as a case study
CNN. SPM are beneficial in applications where the working data set does not fit onto the caches,
or if there is cache thrashing, leading to high cache miss rates. In such a scenario, the programmer
can manage the data in software keeping it in SPMs closer to the compute cores, instead of leaving
it to be managed by the hardware controlled caches. However, it needs to be checked first if there
is any need for SPMs, i.e., if the cache miss rates are high. Therefore, according to phase-1 of
the single-step methodology, presented in Section 2.8.1 of Chapter 2, multi-core implementation
of Alexnet is profiled in gem5-X. The architecture simulated for profiling in gem5-X is similar
to that of ARM JUNO platform [34], except that all the compute cores are ARMv8 in-order
cores, instead of big.LITLLE architecture in JUNO, comprising of both in-order and OoO cores.
The simulated architecture is summarized in Table 4.3. Alexnet has 5 convolutional (CONV)
layers, each of which is executed on a separate compute core. Two maxpool layers, one after
the CONV4 layer and another after CONV5 layer are also pinned to separate physical cores.
The fully connected (FC) layers are co-allocated together on a single physical core. Hence, the
Alexnet CNN is multi-threaded on an 8-core system.

Table 4.4 shows the L1-D cache miss rate for different Alexnet layers executing on 8 ARM
in-order cores. It can be seen that CONV3, CONV4 and CONV5, which are also the largest
convolutional layers in Alexnet [62], have a L1-D cache miss rate of more than 20%. These cache
misses are mainly due to the transfer of activations from one layer to another, as the L2/LLC
miss rate is low and is 5%. Hence, the LLC is used to transfer the data from one layer to another.
Therefore, this shows that there is potential for improving performance by bypassing the cache
hierarchy and transferring activations via SPMs, with each SPM shared between two consecutive
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Table 4.3 – Initial profiling architecture.

Parameter Value Parameter Value
Compute Core ISA ARMv8 Core Type In-order
Number of Cores 8 Core Frequency 2GHz
L1-I cache, L1-D cache 32KB, 32KB L1-I, L1-D associativity 2
L1 MSHRS 4 LLC MSHRS 20
LLC size 512KB LLC associativity 2
Cache Coherence Protocol MOESI DDR4 size 4GB

Table 4.4 – Alexnet profiling on a cache-only system in gem5-X.

CNN Layer Core Number L1-D miss rate
CONV1 Core 0 0.6%
CONV2 Core 1 10%
CONV3 Core 2 27%
CONV4 Core 3 34%
MAXPOOL1 Core 4 10%
CONV5 Core 5 24%
MAXPOOL2 Core 6 8%
FC Layers Core 7 6%

cores.

4.4.3 SPM architecture for Alexnet CNN

After profiling the multi-threaded Alexnet CNN, it is evident that using SPM for activation
transfer between the layers (on different cores), can help improve the performance and energy
efficiency by bypassing the cache hierarchy, hence reducing the transfer time. To begin with,
first, the size of SPM needs to be selected. The same SPM size will be used for all SPMs in
the system. Hence, the size is governed by the biggest output activations. For Alexnet, the
CONV3 layer has 384 output channels, which are the maximum number of channels among all
the Alexnet layers. If the same dual buffer ping-pong strategy, as in the cache-only system is
used, the memory requirement for transfer from CONV3 to CONV4 is 2MB. An 8-core system,
with 8 2MB SPMs connecting consecutive cores, would imply 16MB for all SPMs. This is
quite large and impractical for physical implementation of such a system. Therefore, software
modifications are required to allow for a pipelined data-flow from one layer to the next, but with
reduced memory requirements.

4.4.3.1 Tiling of the Convolution Layers to Reduce Activations Transfer Size

Figure 4.20 shows a convolution layer in a CNN. Input activations with width W, height H and
C number of channels are convoluted with Cout number of kernels, with each kernel of width
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Figure 4.20 – Convolution in a CNN layer.

Wkrn, height Hkrn and C number of channels. This results in an output with Cout number of
channels. The output is the input for next CNN layer. In the cache-only implementation of
Alexnet, each kernel is convoluted with input activations in a channel-wise fashion. This implies
that all channels of kernel-1 are convoluted with all channels of input activations, to generate
channel-1 of the output. Then kernel-2 is convoluted with the input to generate output channel-2
and so on. The drawback of this approach is that all the output channels need to be generated
before they can be used as inputs to the next layer, and therefore, a large memory requirement to
transfer the activations from one layer to another.

To use SPM for activation transfer from one layer to another with a smaller memory size, as
shown in Fig. 4.18, memory re-use is necessary. Therefore, I propose a tiling based convolution
operation, which enables the next convolution layer to start processing the output activations
of the previous layer, without the need for all the output activations of the previous layer to be
available, but just enough to trigger the next convolution layer. The minimum data required for
any convolution layer to start is the data availability of all the channels with column and rows
equivalent to Wkrn and Hkrn of that layer, respectively. Based on this, SPM size for all the layers is
selected as that for the largest convolution layer, which is CONV4 for Alexnet with 384 channels
of the input activations. Consequently this leads to a memory requirement of 119KB, hence a
128KB SPM is used. For Alexnet, in an 8 core system, 8 128KB SPMs are instantiated with each
of them connected to the consecutive cores, as in Fig. 4.18.

The memory allocated for the activations in the SPM are stored in a circular FIFO, with empty
and full conditions to control the data read/write operations. The maximum number of rows of
the activations that are stored in the allocated memory are equal to the number of rows of the
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Table 4.5 – Parameters for SPM-based architecture.

Parameter Value Parameter Value
Compute Core ISA ARMv8 Core Type In-order
Number of Cores 8 Core Frequency 2GHz
Number of SPMs 8 SPM Size 128KB
L1-I cache, L1-D cache 32KB, 32KB L1-I, L1-D associativity 2
L1 MSHRS 4 LLC MSHRS 20
LLC size 512KB LLC associativity 2
Cache Coherence Protocol MOESI DDR4 size 4GB

kernel, Hkrn, in next layer using these activations. Once the kernel has been convoluted with the
data in the FIFO across all channels and columns, its slides down to next rows, by the stride set
for that layer. The top rows are now no longer needed and can be re-used to store the next rows.
As the data is stored in row-wise circular FIFO, the previous layer can now process more data
and store it in the rows that can be re-used. In this way, the data flows in a tiled pipeline manner
from one CNN layer to the next, with reduced memory requirements for SPM. The empty and
full conditions need to be checked accordingly, for all SPMs, during the data transfer between
the layers.

4.4.4 Experimental Setup

To demonstrate the performance and energy benefits of using SPM for inter-layer data transfer in
a multi-core CNN implementation, two experimental setups are used in gem5-X. First setup is a
baseline system with caches to transfer activations between CNN layers, as shown in Fig. 4.17.
This baseline cache-only system is summarized in Table 4.3. Then, the SPM-based system with
shared SPM architecture, as presented in Fig. 4.18, is simulated in gem5-X with the architectural
parameters summarized in Table 4.5.

4.4.5 Experimental Results

4.4.5.1 Performance Results

Figure 4.21 shows that Alexnet runs 1.85x faster on an SPM based system in comparison to
cache-only system. This is because SPM enables the transfer of activations from one CNN layer
to the next on consecutive compute cores, bypassing the cache hierarchy. However, as SPMs are
added in the system, the total on-chip memory including L1-D, LLC and SPM, is 2.33x greater
than the baseline cache-only architecture. Consequently, this increase in the total on-chip memory
implies corresponding increase in the on-chip memory area. To have a more fair comparison, the
LLC size is increased to 2MB for the cache-only architecture, but remains the same at 512KB
for the SPM system. The reason being that in SPM based system, SPM is used to transfer the
activations, and in cache-only system LLC is used for this purpose. Figure 4.22, shows the
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Figure 4.21 – Alexnet performance comparison of cache-only and cache-SPM system. Total
memory size, comprising of L1-D, LLC and SPM, is also compared for the two systems.
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Figure 4.22 – Performance and total memory size comparison of cache-only and cache-SPM
system with an LLC of 2MB and 512KB, respectively.

performance and total memory comparison of the two systems. The performance differences
between the two systems is smaller as compared to before, but still SPM-based system is 1.45x
faster than cache only system, although the cache-only architecture is 1.29x larger in terms of
total memory. Hence, this demonstrates that even if the LLC is larger, but as the data needs to
traverse through the complete cache hierarchy, the SPM-based system performs better.

Table 4.6 shows the L1-D miss rates for Alexnet on an 8-core SPM-based platform. When the
L1-D miss rates are compared to that of a cache-only system in Table 4.4, it is evident that the
miss rates have reduced considerably, by up to 3x for some layers. The scaling of performance is
also explored in the SPM-based system, with reduction in LLC and L1-D cache sizes. Figure
4.23, shows that the performance remains the same, even if the LLC is reduced to 256KB from
512KB. If L1-D is also reduced to 16KB along with a reduced LLC of 256KB, the performance
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Figure 4.23 – Performance scaling of Alexnet in a SPM-based system with scaling of both L1-D
and LLC size.

Table 4.6 – Alexnet L1-D miss rate on SPM-based system in gem5-X.

CNN Layer Core Number L1-D miss rate
CONV1 Core 0 1%
CONV2 Core 1 8%
CONV3 Core 2 9%
CONV4 Core 3 9%
MAXPOOL1 Core 4 3%
CONV5 Core 5 9%
MAXPOOL2 Core 6 1.7%
FC Layers Core 7 7%

only degrades by 0.6%, which is negligible. This reduction in L1 and LLC size to 16KB and
256KB, respectively, further reduces the total on-chip memory by 1.27x, hence resulting in area
benefit.

4.4.5.2 Energy Results

SPMs are 30% smaller than a cache and consume around 30% less energy than a cache of the
same size [223, 224]. As the SPMs in the proposed architecture are shared, hence, the SPM
power model is derived from LLC power model, with 30% less energy. This derived SPM power
model is used along with the one discussed in Section 2.7 of Chapter 2 for compute cores, LLC
and main memory. Figure 4.24 shows the energy consumption of all systems discussed in the
section above. It shows that SPM system with L1 of 32KB and LLC of 512KB is 13% more
energy efficient than a cache based system with the same LLC size of 512KB. However, if the
LLC size in the cache-only system is increased to 2MB, it consumes 7% less energy than the
SPM-based system with 512KB LLC. The reason for this is that, DRAM access energy decreases,
with the increase in LLC size, as DRAM accesses are decreased. Hence, the large LLC system
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Figure 4.25 – Alexnet Energy-Delay-Product (EDP) comparison of cache-only systems with
SPM and cache system.

consume less total energy in comparison to SPM-based system with smaller LLC. Furthermore,
if cache sizes for both the L1-D cache and LLC are decreased in the SPM-based architecture,
the energy does remains almost constant, with a difference of around 1%, as was the case with
performance change.

The SPM-based system has better performance then the cache-only system, however, the cache-
only system with a larger LLC consumes less energy. Hence, there is a trade-off between
performance, energy and area. The selection of the architecture will depend on the actual
performance, power and area (PPA) constraints.

However to decide which is the overall optimal system, the EDP metric is analysed for both
systems. Figure 4.25 shows the Alexnet EDP comparison for all the cache-only and SPM-based
systems. It is evident that SPM-based systems are outperform cache only systems, as their EDP
is lower. The SPM-based architecture with L1-D of 32KB and LLC of 512KB outperform cache-
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only platforms with LLC of 512KB and 2MB by 52.9% and 25.7%, respectively. The EDP of
SPM-based architectures, with different cache sizes is almost constant. Therefore, in conclusion,
using SPMs for transferring CNN activations from one layer to the next, is the optimal in terms
of performance and energy efficiency, when compared to a system without SPMs.

4.5 Summary

In this chapter, I demonstrated the architecture exploration and optimization of memory-dominated
workloads, using NGS and CNN, as case studies. Using the gem5-X architectural simulator and
the proposed optimization methodology, architectures were explored to optimize the performance
and energy of the system for three genome sequence alignment applications i.e., Bowtie2, BWA-
MEM, and HISAT2. All these applications are memory bounded with random memory access.
The analysis in this chapter has shown such memory bounded workloads do not require power
hungry HPC compute nodes like Intel Xeon Phi KNL, but instead require improvements in mem-
ory BW to enhance the overall performance and energy. Furthermore, I have proven that by using
high BW memories like HBM2 coupled with energy efficient compute cores, NGS applications
achieve up to 68% performance and 71% energy benefit compared to a traditional system with
DDR4. It was also demonstrated that a variety of architectures based on ARMv8 in-order and
OoO cores with LLC and HBM2 outperform 32-core Intel KNL processor. Moreover, I have
shown that by using frequency scaling, energy savings of up to 59% and 61% can be achieved for
ARM in-order cores and OoO cores, respectively. Lastly, it was highlighted that up to 4.5x energy
savings can be achieved using many simple in-order cores, instead of fewer complex OoO cores.
Thus, power hungry HPC class resources like KNL are not required for efficiently executing
NGS applications, but rather simple many-core ARM in-order architectures with HBM2 can be
used instead. These newly proposed ARM-based many-core architectures perform much better in
terms of both performance and energy efficiency.

Furthermore, I have demonstrated the utilization of SPMs for inter-core data transfer, bypassing
the cache hierarchy. Using Alexnet CNN as a case study, it was shown that using SPMs for the
transferring CNN activations from one core to the next, with the cores hosting consecutive CNN
layers, results in an overall performance-energy-optimized system. Since SPMs are software
controlled and with limited capacity, they need to be managed efficiently. In case of CNNs, this
implied using a tiled convolution enabling me to re-use the memory allocated in SPMs. Finally,
using the EDP as the evaluation metric, it was shown that SPM-based architectures are 52.9%
and 25.7% more efficient than cache-only systems, with LLC of 512KB and 2MB, respectively.

The work in [66] was published as a result of this chapter, demonstrating the design space
exploration for genome sequence alignment application. The results showed that the use of energy
efficient ARM cores along with 3D stacked HBM2 memory for genome sequence alignment,
is optimal in terms of performance and energy efficiency and outperforms Intel KNL based
architectures used for genome sequencing.
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In today’s world, digitization, enabled by state-of-the-art smart systems and ultra fast connectivity,
has influenced and facilitated all spheres of our everyday lives. We interact with these smart
devices, throughout our day, starting from smart electronic tooth brushes, getting updated on
morning weather reports through connected smart personal assistants, using smart coffee machines
to prepare the morning coffee blended to our taste, and then starting off our day to work on smart
autonomous or semi autonomous cars. Depending on our field of work, these smart devices
enable us to be more productive at work in ways like never before, including automation, smart
supply chain management, providing e-health to remotely connected patients, and the list goes
on. Finally, after returning from work, digitization and connected devices are still with us, for
instance, when we go for a run or other sports with our smart watches, or for entertainment to do
online gaming or watch online content hosted by various video streaming services. Lastly, to end
the day we go back to sleep, but some of us with various health conditions wearing connected
wearable sensors for continuous health monitoring. All these smart devices and services we use
throughout the day expand over a wide range of computing platforms from computing and power
constrained edge sensors all the way to high performance cloud servers. As these devices evolve,
they are going to run much more complex and complicated tasks and become smarter. To scale
the performance while minimizing the energy consumption, both the Power and Memory Walls
need to be overcome.

In this thesis, I have presented a system-level architectural simulation platform, gem5-X, to
explore novel architectures for improved performance and energy efficiency across all levels of
computing platforms, from the edge sensors to high end servers in the cloud.

5.1 Exploration is the Key

Architecture Exploration is the common theme and key enabler for novel performance and energy
efficient architectures, that I have presented from Chapter 2 to Chapter 4 of this thesis. It is this
exploration that allows to test and try out new ideas and check if they are useful in improving the
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system performance and energy efficiency.

In Chapter 2 of this thesis, I presented the gem5-X simulation platform with architecture ex-
tensions and support enhancements for architecture exploration of many-core heterogeneous
compute and memory architectures. Thanks to the gem5-X Full System (FS) mode, all the exten-
sions and support enhancements are compatible and integrated in a simulated full Linux system.
This has opened possibilities to explore architectures for any application (single or multi threaded)
capable of running in a Linux based environment. FS mode also enabled to have profiling support
in gem5-X which helps in determining the bottlenecks within an application. All-in-all, gem5-X
enables fast architectural exploration in an ever evolving and fast paced digital landscape, as
it allows to try new ideas for compute and memory architectures. The main contributions in
Chapter 2 are as follows:

• Gem5-X architectural extensions and support enhancements to ease the way for architec-
ture exploration of emerging state-of-the-art applications in FS mode. The architectural
extensions are for both compute and memory sub-systems.

• Gem5-X was validated against a real ARM JUNO platform with a validation error of up to
4%.

• Gem5-X architecture exploration methodology was proposed in the quest to have a
performance-power optimized architecture.

Next, to demonstrate the exploration capabilities of gem5-X, I optimized and explored archi-
tectures for both compute and memory-dominated workloads, using state-of-the-art emerging
applications of today as case studies.

Chapter 3 of this thesis focused on architectural exploration for compute-dominated workloads.
The case study applications used were video encoding, video analytics, Virtual Machines (VMs)
based cloud workloads, Binary Neural Networks (BNNs) and Recurrent Neural Networks (RNNs).
Following are some of the main contributions, when exploring architectures for these compute
dominated case studies:

• An in-cache computing accelerator was proposed and integrated in the L1 data (L1-D)
cache of the Central Processing Unit (CPU). This inclusion provides both performance
and energy gains of up to 15% and 76%, respectively, for different resolutions of the video
encoding application.

• Video analytics, comprising of the video encoding kernel and Convolutional Neural Net-
work (CNN) based image classification kernel, was optimized for energy efficiency while
meeting the real-time performance constraints using the two-step gem5-X architectural
exploration methodology. The resulting architecture was deeply heterogeneous and com-
posed of ARM in-order cores cluster with in-cache computing, ARM Out-of-Order (OoO)
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cores cluster and 3D stacked High Bandwidth Memory v2 (HBM2). Thus, this architecture
provides performance and energy benefits up to 30% and 54%, respectively.

• For VM based cloud workloads, Near-Threshold-Computing (NTC) servers were proposed.
Gem5-X VM support enhancement made it possible to simulate the VMs.

• Computational Memory (CM) cores were proposed and integrated in the execute stage
of the CPU pipeline for Deep Learning (DL) workloads, including BNNs and Long-
Short-Term-Memory (LSTM) based RNNs. Binary Dot-Product Engine (BDPE) based on
Resistive Random-Access Memories (RRAMs) was used to accelerate BNNs. Similarly,
Phase-Change Memory (PCM) based Analog In-Memory Computing (AIMC) core was
used for performance and energy gains of 12.4x and 12.3x, respectively, when running
LSTMs.

Finally, in Chapter 4 of this thesis, I explored and optimized architectures for memory-dominated
workloads, to demonstrate the memory sub-system architectural extensions in gem5-X. Two case
study applications were used. First, Next Generation Sequencing (NGS) applications were used
for genome sequence alignment, which is a High Performance Computing (HPC) class memory
bounded workload. Three NGS applications, representative of the NGS application domain,
were used as case studies. Then, I explored architectures for CNNs, from a memory sub-system
perspective, rather than the compute sub-system, as they are both compute and memory intensive
workloads. In Chapter 3, the compute sub-system was explored for them. The main contributions
in Chapter 4 are as follows:

• It was demonstrated that for memory bounded workload like NGS, both ARM in-order
and OoO cores with 3D stacked HBM2 memory, can match or surpass the performance of
Intel Knights Landing (KNL) processor, also with 3D stacked memory.

• A many-core ARM in-order cores based system was able to match the performance of a
fewer ARM OoO cores system, both with 3D stacked memory, giving 4.5x energy savings.

• A shared Scratchpad Memory (SPM) architecture was proposed to transfer activations
between consecutive layers of the CNN, with each layer allocated to a different physical
core. This proposed system avoided the entire cache hierarchy for activations transfer from
one layer to the next, giving 1.85x performance and 13% energy benefits, compared to a
cache-only baseline system.

Table 5.1 summarizes all the case study applications used in this thesis and the corresponding
gem5-X architectural extensions, that enabled the architectural exploration for these applications
both in the compute and memory sub-systems. Moreover, the architecture exploration was
facilitated by various gem5-X support enhancements, particularly the FS support, which eased
the execution of running multi-threaded applications on a Linux based operating system (OS) in
gem5-X. Furthermore, the enhanced checkpointing enabled faster simulation turnaround time
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Table 5.1 – case study Applications vs. Gem5-X Architectural Extensions.
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by reaching the Region-Of-Interest (ROI) fast. Finally, the gperf profiler support in gem5-X
was very helpful in identifying the bottlenecks and analysing the improvements provided by the
architectural optimizations.

5.2 Future Work

I will now present several ideas and research topics that can be pursued as future work in the
follow-up of my contributions to this thesis. In Section 5.2.1, I will present short-term future
work that is continuation and consolidation of different contributions to this thesis. Furthermore, I
will also present long-term future research ideas in Section 5.2.2, to extend architecture modeling
and exploration capabilities of gem5-X.

5.2.1 Short-Term

5.2.1.1 Consolidation of Architectural Extensions

Table 5.1 shows all the gem5-X architectural extensions and the applications which utilize
them. All the extensions are compatible with each other, and can be consolidated into a single
architectural platform. I propose a case study to demonstrate that all these extensions can be
used together in a single simulated system. Video analytics co-allocated along with VM-based
cloud workload, as in a realistic cloud server, can be used to demonstrate this. Video analytics
is already using all the extensions, except for CM cores, VMs and SPMs. VM workload with
video analytics will utilize the VM extension in gem5-X. Furthermore, the CNN kernel in video
analytics can be optimized for performance using CM cores like the AIMC core along with SPMs

140



5.2. Future Work

for inter-layer activations transfer, hence extending the work on optimizing the architecture for
video analytics in Chapter 3. Therefore, such a case study will demonstrate the utilization of all
the architectural extensions at the same time in gem5-X.

5.2.1.2 Custom Accelerators

Tightly integrated accelerators, like the BLADE in-cache computing engine and CM cores with
ISA extensions, have been demonstrated and simulated using gem5-X this thesis. However, I
propose to simulate custom accelerators integrated using memory mapping in gem5-X. These
accelerators can be utilized with any Instruction Set Architecture (ISA) CPU core system. Off-
chip accelerators or accelerators not tightly integrated with the CPU can be modelled using this
approach.

5.2.1.3 Dynamic Voltage and Frequency Scaling (DVFS) Support in Gem5-X

Dynamic Voltage and Frequency Scaling (DVFS) is a dynamic performance-power trade-off
scaling technique. It allows for the operating frequency of the compute cores to be scaled down
dynamically, when they are either idle or doing non-critical tasks. In addition, DVFS also enables
thermal throttling of the cores and also limits the maximum power consumption. The lowering of
the operating frequency also allows for the operating voltage to be scaled down as well. This leads
to reduced power consumption, as the dynamic power is quadratically related to operating voltage
and linearly related to operating frequency [225]. Therefore, DVFS is a widely adopted and
deployed to save energy in almost all computing platforms, either on edge sensors or cloud servers.
The work in [226] proposes DVFS in the gem5 simulator, on which gem5-X is based. However,
DVFS does not come out-of-the-box with gem5. Moreover, DVFS management in [226] is only
tested in a limited configuration with just a single OoO core. Therefore, I propose to implement
and integrate DVFS management based on the work in [226], and then extend and develop it, so
that it is supported in a many-core heterogeneous clustered architecture in gem5-X with different
voltage and clock domains. This will enable more realistic performance and power modeling of
platforms in gem5-X, along with its architectural extensions and support enhancements. Thus,
this DVFS capability will extend the architectural extensions of gem5-X presented in Chapter 2.
Furthermore, it can be used to dynamically change the operating frequency for the case study
workloads in Chapter 3 and Chapter 4 of this thesis.

5.2.1.4 Processing-in-Memory (PIM)

Processing-in-Memory (PIM) has been a promising approach in overcoming the Memory Wall
problem. In this thesis, I presented two in-memory computing architectures: 1) BLADE, an
in-cache computing engine based on SRAMs and integrated in the L1-D cache of the CPU,
2) Non-volatile Memories (NVMs) based on in-memory computing accelerators, i.e., RRAMs
based BDPE and PCM based AIMC cores, integrated in the execution stage of the CPU pipeline.
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However, both of these in-memory architectures were on-chip, closely coupled to the compute
cores. In both of these extensions, the input data has to be brought from off-chip DRAM memory.
Near-memory processing [227] or PIM [228] is a computing paradigm where the computation
takes place directly near or on the main memory, hence, avoiding the need for data movement.
Consequently, both the performance and energy efficiency of the system improves.

From a technology perspective, 3D stacked memories like HBM2 enable PIM and near memory
computing. The logic layer at the very bottom of the 3D stacked DRAM banks in HBM2 can be
used to implement an accelerator or a small CPU core like the ARM in-order core. I propose that
the HBM2 model in gem5-X can be extended to support PIM or near-memory computing with
ARM in-order cores integrated with the HBM2 model. This will open new avenues of exploration
in overcoming the Memory Wall problem. Thus, the PIM will extend the HBM2 architectural
extension in gem5-X presented in Chapter 2. Moreover, it can be used to optimize architectures
for memory-dominated workloads, thus extending the work presented in Chapter 4 of this thesis.

5.2.2 Long-Term

5.2.2.1 Integrate 3D-ICE Thermal Simulator with Gem5-X

3D Interlayer Cooling Emulator (3D-ICE) enables thermal modeling of both 2D and 3D integrated
circuits (ICs) [229]. 3D-ICE takes as input a netlist file for the physical description of the
Integrated Circuit (IC) (2D or 3D) and a floor-plan to describe the thermal power distribution.
Integrating together 3D-ICE with gem5-X will enable system architects and designers to have a
complete view of new explored architectures including performance, power, energy and thermal
modeling. This integration will further extended the capabilities of gem5-X that are discussed
in Chapter 2 of this thesis. It can be used in thermal modeling of architectures, particularly
for compute-dominated workloads and the optimized heterogeneous architectures presented in
Chapter 3.

5.2.2.2 RISC-V Instruction Set Architecture (ISA) Support

RISC-V is an open source emerging ISA [230, 231], which is widely anticipated to be adopted and
deployed to power the computing platforms of tomorrow. The main advantage of RISC-V is that it
is open source, and anyone can freely innovate or modify it according to one’s requirements. Due
to this flexibility of RISC-V, the work in [232] demonstrates different RISC-V cores optimized
for low power consumption. Given this openness and flexibility of RISC-V, I propose to integrate
RISC-V ISA into gem5-X and support it in FS mode. This will enable gem5-X to explore
architectures based on RISC-V, before actually implementing them in hardware, saving both cost
and time. However, supporting RISC-V in gem5-X is not a trivial task, as it requires work on
RISC-V ISA implementation, Linux disk image to boot up in gem5-X, compatible kernels, valid
device tree configurations, address translation unit in gem5-X according to RISC-V ISA, and
then finally validating all of it against a real RISC-V hardware platform. RISC-V ISA support can
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clearly extend Chapter 2 of this thesis, with new ISA capabilities added to gen5-X. Furthermore,
the compute-dominated workloads in Chapter 3 can be executed on RISC-V based architectures,
and the performance/energy compared against the currently proposed ARM-based architectures.

5.2.2.3 ISA Heterogeneity

Gem5-X supports multiple ISAs including ARM, x86, MIPS, and ALPHA. However, currently,
only one ISA can be simulated at a time. ISA heterogeneity refers to support multiple ISAs in the
same simulated system. This implies having complex instruction set computer (CISC) cores (e.g.
x86), as well as energy efficient reduced instruction set computer (RISC) cores (e.g. ARM, MIPS)
integrated and simulated in the same system. Hence, applications can be allocated according
to their Quality-of-Service (QoS) requirements to a suitable core to increase energy efficiency.
This is a long-term future work, as it would require work on the Linux boot strategies supporting
multiple ISAs, shared memory consistency models, task allocation management, device tree
configurations, clocking strategies, just to mention few of the challenges. ISA heterogeneity
extends Chapter 2 of this thesis, as it is an architectural extension to the gem5-X simulation
platform.

5.2.2.4 Graphics Processing Unit (GPU) Modelling

Graphic Processing Units (GPUs) along with CPUs have been widely deployed on different
computing platforms to process a range of applications, from energy efficient mobile devices
to super computers [233]. Recently, in addition to graphics processing tasks, GPUs have also
been wide adopted for training of Deep Neural Networks (DNNs) [234]. Furthermore, they
have gained popularity in cryptocurrency mining [235]. Given the wide adoption of GPUs in
various fields and their essential role in heterogeneous computing, I propose to model GPUs in
gem5-X and validate the the performance against a real GPU in the future, extending Chapter 2
of this thesis. Compute-dominated workloads are the main target for utilizing GPUs to improve
performance, thus extending Chapter 3 of this thesis.

5.2.2.5 Parallelization of Gem5-X

Gem5-X is based on gem5 which has a single thread simulation engine, and so gem5-X is a
single threaded application. To speedup the simulation turnaround time, I propose to parallelize
the gem5-X simulation engine into multi-threads on a multi-core host system. This is a tedious
task, as gem5 is an event triggered simulator with a single global event queue. To parallelize
it, the event queue needs to be distributed among different host CPU cores, but always be in
synchronization with each other. However, if this parallelization is achieved, the simulation speed
can scale with the number of cores on the host systems, thus reducing the simulation turnaround
time. This parallelization feature enhances the supports capabilities of gem5-X, thus extending
Chapter 2 of this thesis.
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https://www.linkedin.com/in/yasir-mahmood-qureshi/ 
 

STRENGTHS 
• RTL Designer for CPUs and Memories 

• SoC/ASIC/FPGA Design, Embedded Systems 

• Low Power Design Specialist 

• Heterogeneous Systems Architect 
  

EDUCATION 

• PhD Electrical Engineering                                                                                      2016 - 2021 

Swiss Federal Institute of Technology, Lausanne (EPFL) 
• MSc. Embedded Computing Systems (Erasmus Mundus) Average: A Grade   2011 - 2013 

            NTNU, Trondheim, Norway                                             A - Grade                   2012 - 2013  

            University of Southampton, UK                                       A - Grade 83.42%      2011 - 2012 

• Bachelor of Electrical Engineering                                       GPA 3.99/4.00           2006 - 2010 

National University of Sciences and Technology (NUST), Pakistan  
  

WORK EXPERIENCE 

• Embedded Systems Laboratory (ESL), EPFL, Switzerland.                                2016 - 2021 

Doctoral Thesis - “Architecture Exploration and Optimization of Heterogeneous Many-

Core Compute And Memory Architectures with Architectural Extensions”  

o Development of Gem5-X multi-core heterogeneous simulator 

o System level architectural exploration and optimization for state-of-the-art video encoding, 

CNNs, and next generation genome sequencing (NGS) applications 

o Integration and utilization of in-cache computing accelerator in L1-D cache 

o Integration and utilization of RRAM as computational engine in CPU pipeline 

o Exploration of 3D stacked HBM2 memory with heterogenous compute cores for various 

applications 

o Scratch Pad Memory (SPM) integration and utilization for CNNs and RNNs within a CPU 

based system 

• ARM, Cambridge, UK.                                                                                                2015 - 2016 

Systems & Software Group (SSG).  Job Title: ‘Engineer’ 

1. Design 

o Block level design specifications for different ARM CoreSight SoC blocks 

o Implementing ARM CoreSight SoC components in RTL according to design 

specifications 

o Integrating different IP components together in RTL 

o Implementing clock domain crossings (CDC) and multiple clock domains in RTL 

o IP-XACT for Configurable IPs 
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2. Verification 

o Built block level testbenches using UVM for verification 

o Write top level test cases  

o Power aware simulations  

o Out of Box testing. 
 

• ARM, Cambridge, UK.                                                                                                2013 - 2015 

Systems & Software Group (SSG).  Job Title: ‘Graduate Engineer’ 

As a Graduate Engineer at ARM, I did three graduate rotations  

1. Cortex-M7 

o Worked on tarmac trace verification of Cortex-M7 CPU 

o Created test cases to stress test the exception model for Cortex-M7 

o Debug and fixed the cases for tarmac trace mismatches 

2. Dynamic Memory Controller (DMC) 

o Formal verification for APB protocol 

o Memory mapping of the system at RTL level 

o Formal verification with clock domain crossing and multiple clock domains 

3. CoreSight SOC 

o Built block level testbenches using UVM for verification 
  

• ATMEL, Norway.                                                                                                                                 2013 
IC Design Division. Job Title: “Thesis Student” 

o Implementation of system consisting of AVR8 core, AMBA-APB interconnect and APB 

compliant peripherals in RTL 

o Design of a bus matrix for AVR8 to APB interfacing in RTL 

o Testing and verification of the complete system 

o Synthesis of the system for low power optimization 
  

• ARM, Cambridge, UK.                                                                                                        2012 

Processor Cores Division. Job Title: ‘Summer Placement’ 

Worked on system validation project for ARM Cortex-M and Cortex-R class CPUs which 

plugs the gap in not just having system level validation for these cores, but it goes beyond in 

having MATLAB providing realistic simulated scenarios of real-world control problems and 

doing RTL-MATLAB co-simulations.   

o Specified the memory map of different peripherals in the system 

o Setting up and running the ModelSim-Simulink/MATLAB co-simulation environment with 

the Cortex-M0+ integration kit. 

o Loopback test in the ModelSim-Simulink/MATLAB co-simulation 

o Used Simulink Coder for the auto generation of C code for the controller from its 

MATLAB model 

o Implemented the RTL model of the DAC peripheral with some skewing effect and AHB 

slave interface 

o Integrated DAC and the ADC peripheral into one system and do the loopback test with the 

MATLAB co-simulation  
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• Center for Advanced Research in Engineering (CARE) Pvt Ltd Pakistan.        2010 - 2011   

Job Title: ‘Design Engineer’ www.carepvtltd.com 

o Development of software reconfigurable hardware architecture for Software Defined Radio 

(SDR).  

o Implementation of PHY for SDR on multiplatform system, comprising Xilinx Spartan 3A-

DSP FPGA, TI DSP and ARM GPP.  

o Development and implementation of OFDM, GMSK, W-CDMA and FM waveforms for 

data and speech transmission over SDR  

o Implementation for burst detection algorithm for WBNR waveform on Xilinx Spartan 6 

FPGA.  

o Design and Implementation of MAC protocol for Ad-Hoc radio networks. 

 

• Next Generation Intelligent Network Research Center, Pakistan.                                  2008  

Job Title: ‘Research Student’ www.nexginrc.org 

o Worked as Research Student in Remote Patient Monitoring System (RPMS) Project Team, 

on the development of 

o Clinical digital temperature sensor, digital blood pressure apparatus and digital pulse meter 

o Data acquisition and transmission by PDA via GPRS 
 

TEACHING 
• Microprogrammed Embedded Systems                                                                  2017 - 2020 
o Lead Teaching Assistant (TA) for this course, in which programming a embedded system is 

taught using Nitendo DS as the emdedded platform.  

o Lab sessions 

o Exam preparation and evaluation 

o Project evaluation 

 

TRAININGS 
1. Comprehensive SystemVerilog – Doulos                               (17 March 2014 – 21 March 2014) 
2. UVM Adopter Class – Doulos                                              (12 August 2014 – 15 August 2014) 
 

 

TECHNICAL SKILLS 
• Tools and Packages 

Synopsys Design and 

Power Compiler 

Cadence using AMS C35 

and Cadence Encounter 

ModelSim Xilinx ISE  and 

EDK    

Synopsys VCS Jasper Gold IP-XACT Synplify Pro 

ModelSim – MATLAB 

Cosimulation 

Altera Quartus II MATLAB/Simulink PrimeTime 

QuestaSim Formality LTSpice HAL 

Code Composer Studio 

(CCS) 

ARM ACL AutoCAD Gem5-X/Gem5 

Simulator 

Cortex M0+ Integration 

Kit (IK) 

Cortex-M0 Design Start MS-Office  

 

 

 

169



• Programming Skills:  
 

SystemVerilog HDL C/C++ programming language 

Verilog HDL Python 

VHDL Assembly language programming for ARM, x86 

UVMs M-file programming 
 

• Hardware Platforms:  
 

Virtex-II Pro FPGA Rasberry Pi 

Altera Cyclone IV TI MSP430 

Xilinx Spartan 3-A DSP, Spartan 6 FPGA ARM JUNO Platform 

TI DM 6446 DSP Processor Nvidia Jetson Nano 
 

LANGUAGE SKILLS 
1. English – Fluent 

2. French  – Beginner (Al – CEFR ) 

PUBLICATIONS 
1. Gem5-X: A Many-Core Heterogeneous Simulation Platform for  Architectural 

Exploration and Optimization,  

ACM Transactions on Architecture and Code Optimization (TACO), 2021 

2. Genome Sequence Alignment-Design Space Exploration for Optimal Performance and 

Energy Architectures, 

IEEE Transactions on Computers, 2020 

3. An In-Cache Computing Architecture for Edge Devices, 

IEEE Transactions on Computers, 2020 

4. Gem5-X: A Gem5-Based System Level Simulation Framework to Optimize Many-Core 

Platforms, 

      Spring Simulation Conference (SpringSim), Tucson, AZ, USA, 2019 

5. BLADE: A BitLine Accelerator for Devices on the Edge 

      GLSVLSI '19: Proceedings of the 2019 on Great Lakes Symposium on VLSI, 2019. 

6. A Product Engine for Energy-Efficient Execution of Binary Neural Networks Using 

Resistive Memories, 

IFIP/IEEE 27th International Conference on Very Large Scale Integration (VLSI-SoC), 2019. 

7. Energy proportionality in near-threshold computing servers and cloud data centers: 

Consolidating or Not?, 

Design, Automation & Test in Europe Conference & Exhibition (DATE), 2018. 

8. Design and Layout of a Two Stage High Bandwidth Operational Amplifier, 

WASET International Conference on Electrical, Computer, Electronics and Communication 

Engineering (ICECECE), Venice, 2012.  
 

PROJECTS 
INTERNET OF THINGS (IOT) 

Optimal Exercise Training System 

Two STM32L151xD ARM Cortex M3 based custom boards integrated with ECG and PPG 

sensors along with 3D accelerometer is used for Machine Learning (ML) based training system 

for athletes. The system is connected via Bluetooth Low Energy (BLE) module to our Android 
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application. The whole system is optimized to be low power, with some application parts 

execution on the edge sensor nodes and others on the Android device.  

MASTER THESIS 

Low-Power Optimized AMBA-APB Bus Connection For AVR8 Co-Processor 

• Design, implementation and integration of bus matrix to connect 8-bit AVR8 core with 32-bit 

APB for low power optimization in Verilog RTL 

• AVR8 is Atmel’s low power 8-bit CPU and AMBA-APB is an industry standard, low power, 

32-bit bus interconnect by ARM for peripheral modules on SoCs.  

• Implementation of different bus matrix designs for different optimization parameters 

o Low power design 

o High performance design 

o Low area design 

AUTUMN SPECIALIZATION PROJECT 

Modeling of Cache Coherence Protocols 

• Study of memory consistency models and cache coherence protocols  

• Modeling techniques and abstraction levels in modeling 

• Investigating multi-processor simulators like GEM5 and MultiCacheSim for modeling of the 

cache coherence protocols 

UNDERGRADUATE DESIGN PROJECT 

System level design and hardware implementation of Real-Time Signal Processor of a Phase-

Coded Pulse Doppler Radar on Virtex-II FPGA for detection of high-altitude planes. 

• IBM PowerPC405 used as main control processor 

• Design and implementation of a co-processor for real time radar processing and its integration 

with PowerPC in RTL 

• Design of optimized parallel and pipelined architecture of FFT engine  

• Implementation of memory controller for fast access of DDR RAM 

 

SEMESTER PROJECTS 

• Realization of Digital Components: Design and implementation of RSA 

encryption/decryption core on Altera Cyclone IV in VHDL.  

• Computer Design: Design and implementation of a fully pipelined MIPS processor with 

branch predictor on Spartan6 FPGA in VHDL. 

• Digital System Synthesis: Low Power Data Path Design using Clock Gating.  

• VLSI Design Project: Design and Implementation of Solar Tracker and MPPT on Altera 

Cyclone IV in Verliog. 

• System on Chip: Full Custom Design and layout of Op-Amp in Cadence AMS C35 

• System on Chip: Design and Layout of Sequence Decoder in Synopsys Design Compiler and 

Cadence Encounter 

• Control Systems:  Position and velocity PID control of DC servo motor using PIC 18F452 

microcontroller. 

• Power Electronics: DC-DC Converter using Maximum Power Point Tracking for Solar 

Panels. 

• DSP: Image Compression using Wavelet Transform. 
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• Digital System Design: Optimized design and implementation of Wallace Tree and Hybrid 

Adder on Xilinx Sartan-3E FPGA. 

• Communications: Simulation and noise analysis of QAM, QPSK, FSK, ASK, PAM, SSB 

and DSB in MATLAB 

• Microcontroller: Air Mouse based on accelerometer sensor using PIC Microcontroller. 

• Digital Logic Fundamentals: 1. 16-Bit ALU using discrete components. 2. Implemented a 

Laser Based Security System  

• Electronics-II: Full Duplex Mode Intercom System.  

• Electronics-I: Designing of ±30V Variable and ±5V Fixed Power Supply. 

• Data Structures: String Matching using Finite Automata Algorithm.    
  

AWARDS/HONORS 

• EMECS-thon 2013 – Won the People’s Choice award in the 48 hours embedded marathon 

EMECS-thon competition at NTNU 

• Won the prestigious Erasmus Mundus Scholarship for 2011-2013. 

• Presidents Gold Medal for being the best university student for 2009-2010 at NUST 

• Prime Minister’s Gold Medal for best CGPA in the Department of Electrical Engineering in 

Bachelor’s of Engineering at NUST. 

• Won Prime Minister’s Gold Medal Scholarship. 

• Maximum Performance Based Scholarships in all semesters at NUST 

• Declared Overall best student in academics at NUST for 2009-2010 

• Won MERIT Award at Asia Pacific Information Communication Technology Alliances 

(APICTA) competition 2010 in Malaysia    (Awarded to SDR Project) 

• Won PASHA 2010 IT award for best project on communication systems. (Awarded to SDR 

Project) 

• Higher Secondary School Examination Scholarship 2006 by FBISE 

• President of University Student Body 

• Awarded Plaque of Excellence by Dean, College of E&ME, NUST. (7 times) 

• Won Interschool Football Tournament, 2000 Leading my team as the captain 
  

EXTRA-CURRICULAR ACTIVITIES 
• Fire Warden, at ARM 

• Vice President, University Environment Club, NUST 

• Liaison Head, Society of Information and Communication Technology, NUST 

• Speaker at MATLAB Workshop, 2010 College of E&ME, NUST 

• Organizer, Alumni Reunion, 2010, NUST 
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