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Abstract
Graphs offer a simple yet meaningful representation of relationships between data. This

representation is often used in machine learning algorithms in order to incorporate structural

or geometric information about data. However, it can also be used in an inverted fashion:

instead of modelling data through graphs, we model graphs through data distributions. In this

thesis, we explore several applications of this new modelling framework.

Starting with the graph learning problem, we exploit the probabilistic model of data given

through graphs to propose a multi-graph learning method for structured data mixtures. We

explore various relations that data can have with the underlying graphs through the notion

of graph filters. The structured data mixture assumes that the mapping of data to graphs is

not known and we propose an algorithm to jointly cluster a set of data and learn a graph for

each of the clusters. Experiments demonstrate promising performance in data clustering

and multiple graph inference, and show desirable properties in terms of interpretability and

proper handling of high dimensionality on synthetic and real data. The model has further been

applied to fMRI data, where the method is used to successfully identify different functional

brain networks and their activation times.

The probabilistic model of data defined through graphs can also be very meaningful even

when no data is available. Thus, in the second part of this thesis, we use such models to

represent each graph through the probabilistic distribution of data, which varies smoothly on

the graph. Optimal transport allows for a comparison of two such distributions, which in turn

gives a structurally meaningful measure for graph comparison. This novel measure is able to

take into account the global behaviour of a graph, while most other comparison measures

merely observe local changes independently.

We follow by using this distance to formulate a new graph alignment problem based on the

optimal transport framework, whose objective is to estimate the permutation that minimizes

the distance between two graphs. We propose an efficient stochastic algorithm based on

Bayesian exploration to accommodate for the nonconvexity of the graph alignment problem.

We demonstrate the performance of our novel framework on different tasks like graph align-

ment, graph classification and graph signal prediction, and we show that our method leads to

significant improvement with respect to the state-of-art algorithms.

Furthermore, we cast a new formulation for the one-to-many graph alignment problem,

allowing for comparison of graphs of different sizes. The resulting alignment problem is

solved with stochastic gradient descent, where a novel Dykstra operator ensures that the

solution is a one-to-many (soft) assignment matrix. Experiments on graph alignment and
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Abstract

graph classification problems show that our method for one-to-many alignment leads to

meaningful improvements with respect to the state-of-the-art algorithms for each of these

tasks.

Finally, we explore a family of probabilistic distributions for data based on graph filters.

Distances defined through a graph filter give a high level of flexibility in choosing which

graph properties we want to emphasize. In addition, in order to make the above graph

alignment problem more scalable, we formulate an approximation to our filter Wasserstein

graph distance that allows for the exploitation of faster algorithms, without grossly sacrificing

the performance. We propose two algorithms, a simple one based on mirror gradient descent

and another one built on its stochastic version, which offers a trade-off between speed and

accuracy. Our experiments show the performance benefits of our novel stochastic algorithm,

as well as the strong value of flexibility offered by filter-based distances.

In summary, we explore the idea of representing graphs through data distributions in several

important scenarios. The works presented in this thesis finds applications in timely research

problems, such as inference and comparison of biological networks and graph generation

methods.

Keywords: Graph learning, network inference, optimal transport, graph signal processing,

graph comparison, graph distance
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Résumé
Les graphes offrent une représentation simple de relations entre les données. Cette représen-

tation est souvent utilisée dans les algorithmes d’apprentissage automatique afin d’incorporer

des informations de structure ou de géométrie dans les données. Toutefois, elle peut égale-

ment être utilisée de manière inversée : au lieu de modéliser les données par des graphes,

nous proposons de modéliser les graphes par des distributions de données. Dans cette thèse,

nous explorons plusieurs applications de cette nouvelle perspective.

En commençant par le problème d’apprentissage de graphes, nous exploitons le modèle

probabiliste de données fourni par les graphes et proposons une méthode d’apprentissage

multi-graphes pour les mélanges de données structurées. Nous explorons différentes relations

que les données peuvent avoir avec les graphes sous-jacents à travers la notion de filtres

définis sur des graphes. Le mélange de données structurées suppose que la relation entre

données et graphes n’est pas connue et nous proposons un algorithme afin de conjointement

regrouper un ensemble de données et apprendre un graphe pour chacun des groupes. Des

expériences démontrent des performances prometteuses dans le partitionnement de données

et l’inférence multi-graphes, et montrent des propriétés souhaitables en termes d’interpréta-

bilité et de gestion de la dimensionnalité élevée sur des données synthétiques et réelles. Le

modèle a en outre été appliqué aux données IRMf, où la méthode est utilisée afin d’identifier

différents réseaux cérébraux fonctionnels et leurs temps d’activation.

Le modèle probabiliste de données défini par le biais de graphes peut également être très

significatif même lorsqu’aucune donnée n’est disponible. Ainsi, dans la deuxième proposition

de cette thèse, nous utilisons de tels modèles afin de représenter chaque graphe à travers la

distribution probabiliste des données, qui varie de façon continue sur le graphe. Le transport

optimal permet une comparaison de telles distributions, ce qui à son tour donne une mesure

structurellement significative pour la comparaison de graphes. Cette nouvelle mesure est

capable de prendre en compte le comportement global d’un graphe, tandis que la plupart des

autres mesures de comparaison observent uniquement des changements locaux de manière

indépendante.

Nous utilisons ensuite cette distance pour formuler un nouveau problème d’alignement de

graphes basé sur le framework de transport optimal, dont l’objectif est d’estimer la permuta-

tion qui minimise la distance entre deux graphes. Nous proposons un algorithme stochastique

efficace basé sur l’exploration bayésienne pour tenir compte de la non-convexité du problème

d’alignement de graphes. Nous démontrons la performance de notre nouveau framework sur

différentes tâches, telles que l’alignement de graphes, la classification de graphes et la prédic-
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Résumé

tion de signaux sur graphes, et nous montrons que notre méthode conduit à une amélioration

significative par rapport aux algorithmes de l’état de l’art.

En outre, nous proposons une nouvelle formulation pour le problème d’alignement de graphes

de différentes tailles. Le problème d’alignement qui en résulte est résolu par descente de

gradient stochastique, où un nouvel opérateur Dykstra garantit que la solution est une matrice

d’affectation souple. Des expériences sur les problèmes d’alignement et de classification de

graphes montrent que notre méthode d’alignement conduit à des améliorations significatives

par rapport à l’état de l’art pour chacune de ces tâches.

Enfin, nous explorons une famille de distributions probabilistes pour les données basée sur

des filtres de graphes. De plus, afin de rendre le problème d’alignement de graphes ci-dessus

plus scalable, nous formulons une approximation de notre coût, permettant l’exploitation

d’algorithmes plus rapides, sans sacrifier significativement la performance. Nous proposons

deux algorithmes : un algorithme simple basé sur la descente de gradient en miroir et un

autre basé sur sa version stochastique, qui offre un compromis entre vitesse et précision. Nos

expériences montrent les avantages en termes de performance de notre nouvel algorithme

stochastique, ainsi que la grande valeur qu’apporte la flexibilité offerte par les distances basées

sur les filtres.

En résumé, nous explorons les applications de la représentation de graphes par des distribu-

tions de données. Les travaux présentés dans cette thèse trouvent des applications dans les

problèmes de recherche actuels, tels que l’inférence et la comparaison des réseaux biologiques

et les méthodes de génération de graphes.

Mots clés : Apprentissage de graphes, inférence de réseau, transport optimal, traitement du

signal sur graphe, comparaison de graphes, distance de graphes
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1 Introduction

1.1 The perspective of data distributions in graph analysis

With the rapid development of digitisation in various domains, the volume of data increases

very rapidly, and a large amount of it takes the form of structured data. Often, this structure in

data can be represented through graphs, with nodes representing entities and edges modelling

connections between them. Examples of such structured data include online social networks,

as well as transportation networks with traffic information on top of them. The underlying

graphs provide valuable context and can be crucial in performing successful analysis of such

data. Interesting examples of such analysis can be found in the field of graph signal processing

[81], where data comes in the form of signals on an irregular domain, and tools are developed

to extend classical signal processing to such applications. From here onwards, we use the term

data and signal interchangeably.

However, the structure of data is not always readily available in the form of a graph. For

instance, brain activities can be measured independently in different brain regions, but the

connections between those regions are not accessible without further analysis. Furthermore,

even when the graph is available, the analysis of structured data can be very challenging. In

order to use the additional information provided by the graph structure, certain assumptions

on signal behaviour need to be made. Probably the most common assumption is that of

smoothness, stating that the signal values vary slowly across the edges of the graph. It has

been used extensively, from applications in machine learning, such as label propagation

[127] or robust principal component analysis [101], to signal processing, such as graph signal

denoising or image super-resolution [92]. In the recent years, a more general model of graph

filtered signals has gained on popularity, and has been extensively developed with the rise of

graph signal processing research. Both of these representations, though mostly in an implicit

manner, impose a probability distribution on data through the graph. While they have proven

to be very useful in processing and analysing data, they can also be used to analyse graphs

themselves.

In this work, we explore the idea of inverting this notion and modelling graphs through
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Chapter 1. Introduction

distributions of signals. By doing so, we present a graph as a distribution of all data which

can appear on it. The fact that this representation can actually be written in terms of a

probabilistic distribution is not only intuitively interesting, but also enables the utilisation of

bayesian statistics, such as graphical models, as well as the use of tools of optimal transport

theory, allowing us to find a meaningful distance and a transportation map between graphs.

In particular, in this thesis we study two very important problems for structured data and

graph analysis: graph learning and graph comparison.

Graph learning methods aim at recovering a graph from available data observations [25].

They provide very valuable insights in the behaviour of data, by properly modelling their

connections and creating a structure between them. Even more, they can be subsequently

used in order to perform further analysis on the data itself. However, most graph learning

works consider only scenarios in which all data can be described with one graph. This is

often not the case, as data is often available in a form of a mixture and needs to be separated

into meaningful groups. One such example are signals of brain activity, where fMRI data

contains mixed measurements when the brain goes through various processes described by

different functional networks. We will focus on the problem of learning graphs from mixed

signals, where the probabilistic representation of graphs through signals will allow us to create

a generative model for such data.

Graph comparison is a vital tool in graph analysis, providing the basis for working with several

graphs, processing data on them and generalising findings to different graph structures. It

also has vast direct applications, for example in biology for protein classification, and in

drug discovery for molecule comparisons. However, it remains a challenging problem and

there is no universally accepted solution in the research community. The reason for that is

twofold: 1) The nodes of the two graphs are generally not aligned in the best possible way.

This prevents a direct quantitative analysis of graph matrices and requires a generally very

costly procedure of recovering a good alignment between them. 2) Even when the nodes are

aligned, it is not entirely clear how two graphs can be compared in a meaningful way. Namely,

direct comparison of graph adjacency matrices will only capture local differences between

two graphs independently. Edges in the graph, however, are not all equally important, and

have different structural values to the global shape of the graph. We will again resort to graph

representation through their signal distributions, taking their global structure into account

through its influence on signal behaviour. This time, the probabilistic representation allows us

to use tools of optimal transport, a natural choice in distribution comparison. The resulting

Wasserstein distance between graphs therefore has an interesting interpretation of comparing

graphs based on the support they provide for data living on them. Equipped with a structurally

meaningful distance, we consider the challenging problem of graph alignment and provide

algorithms for alignment with both the exact Wasserstein distance, and a faster approximation.

Finally, the distribution of filtered signals allows a consideration of structural differences with

different priorities on signal behaviour, extending the definition to a more flexible framework.

2



1.2. Preliminaries

1.2 Preliminaries

1.2.1 Graph signal processing

In this section, we introduce some basic notions in graph signal processing that we will be

using throughout the thesis. Let G = (V ,E ,W ) be an undirected, weighted graph with a set of

N vertices V , edges E and a weighted adjacency matrix W . The value Wi j is equal to 0 if there

is no edge between i and j , and denotes the weight of that edge otherwise. The degree of a

vertex i ∈V , denoted by d(i ), is the sum of weights of all the edges incident to i in the graph G.

The degree matrix D ∈RN×N is then defined as:

Di , j =
d(i ) if i = j

0 otherwise.
(1.1)

Based on W and D , the combinatorial graph Laplacian L is defined as

L = D −W. (1.2)

As the graph Laplacian is a real symmetric matrix, it has a complete set of orthonormal

eigenvectors U = {U0,U1, ...,UN−1} with a corresponding set of non-negative eigenvalues

λi . Furthermore, zero appears as an eigenvalue with a multiplicity equal to the number of

connected components of the graph. The spectrum of the combinatorial graph Laplacian thus

satisfies

σ(L) = {0 =λ0 ≤λ1 ≤ ... ≤λN−1} (1.3)

We then define a signal on a graph as a function x : V → R, where xn denotes the value of a

signal on a vertex n. We can now observe these graph signals in the graph spectral domain (as

opposed to the vertex domain). Similarly to the classical Fourier transform, we can define the

graph Fourier transform x̂ of a signal x at frequency λl as the expansion:

x̂(λl ) = 〈x,Ul 〉 =
N∑

n=1
xnUln , (1.4)

and the inverse graph Fourier transform as

xn =
N−1∑
l=0

x̂(λl )Uln . (1.5)

Here, the normalised Laplacian eigenvectors form a Fourier basis and it is not difficult to see

that the corresponding eigenvalues carry a notion of frequency [102].

A graph signal is considered smooth if most of its energy is concentrated in the low frequencies

(first eigenvalues of the underlying graph), which can be measured with a quadratic form of

3



Chapter 1. Introduction

the graph Laplacian:

xT Lx = 1

2

∑
i , j

Wi j (xi −x j )2. (1.6)

Indeed, it is clear from Equation (1.6) that the signal difference will get more penalised for two

vertices linked by a strong edge. It might be less apparent that there is also a strong spectral

interpretation. Namely, using the graph Fourier decomposition, we can see that the above

relation

xT Lx = xT UΛU T x (1.7)

penalises signals according to their frequency support. Therefore, eigenvectors corresponding

to low eigenvalues will not be penalised very much, whereas high frequency components of

the signal will be penalised with the corresponding high eigenvalues. This again leads to the

notion of smoothness.

We further define filtering in graph signal processing [81] as

x̂ f (λl ) = x̂(λl )ĝ (λl ), (1.8)

where x̂ f is the outcome of filtering a graph signal x with a graph filter g defined in the spectral

domain. Using the inverse graph Fourier transform, x f can be written as

x f
n =

N−1∑
l=0

x̂(λl )ĝ (λl )Uln . (1.9)

A graph filter can also be represented in a matrix form

g (L) =UĜU T (1.10)

with a diagonal matrix

Ĝi , j =
ĝ (λi ) if i = j

0 otherwise.
(1.11)

The filtered graph signal can now be written simply in the matrix form as x f = g (L)x.

This can be used to generate graph signals with specific properties. Given a graph filter g (L)

and a white noise signal w ∼N (0, I ), in this work we will consider a kernel graph signal as

x =µ+ g (L)w. (1.12)

4



1.2. Preliminaries

This kernel signal follows a Gaussian distribution:

x =µ+ g (L)w ∼N (µ, g (L)I g (L)T ) =N (µ, g 2(L)), (1.13)

As the special case of smooth signals is of large importance and brings specific challenges, we

will explore both the general case, and this special case, in detail throughout the thesis.

Notice that a smooth signal can be seen as a special case of the kernel signal, with the filter

equal g (L) =
p

L†, L† being the pseudo-inverse of the graph Laplacian matrix. Namely, under

such an assumption, the signal x minimising (1.6) is equivalent to the maximiser of the log

likelihood of x given through Eq. (1.13). Furthermore, it is equivalent to modelling x through

a latent variable h ∼N (0,Λ†), such that x =µ+Uh. As Λ† represents the pseudo-inverse of

the eigenvalue matrix, this model assumes that signal support is inversely proportional to

frequency, describing smooth signals. This gives us a direct relationship between smooth

signals and the graph Laplacian matrix L:

x =µ+Uh ∼N (µ,UΛ†U T ) =N (µ,L†). (1.14)

Note that x can also be seen as a special degenerate Gaussian Markov Random Field (GMRF)

[93], since Li j = 0 ⇔ (i , j ) ∉ E . Namely, L is the precision matrix (inverse covariance matrix) of

the distribution defined in (1.14). It is also usually assumed to be sparse, and the particular

properties include that L has at least one zero eigenvalue, as well as a special structure

ensuring:

Li , j = L j ,i ≤ 0,∀i 6= j , (1.15)

N∑
j=1

Li , j = 0,∀i . (1.16)

When these conditions are satisfied, we write L ∈L, where L is a set of valid Laplacian matrices

[102].

1.2.2 Optimal transport

Here we present a quick overview of optimal transport and the tools that we will be using

throughout the thesis. Optimal transport (OT) is a theory that enables comparison of probabil-

ity distributions and defines a distance between them (known as the Wasserstein distance). It

was introduced by Monge [77], and reformulated in a more tractable way by Kantorovich [58].

It has been a topic of great interest both theoretically and practically [113], and has recently

been largely revisited with new applications in image processing, data analysis, and machine

learning [88].

Intuitively, we can imagine two probability distributions as two piles of sand. The piles are

taller wherever observations are more likely. Assuming distributions have equal amounts of
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sand in them both (probability distributions sum up to 1), we can imagine many ways for

transforming one distribution in to the other one. The idea of optimal transport is to find

the best way to do this transformation, such that the cumulative cost of transporting all sand

grains is minimal.

Formally, let (ν1,ν2) be the set of two arbitrary probability measures on two spaces (X ,Y), and

f :X →Y a measurable mapping. A push forward measure of ν1, denoted by f#ν1, is defined

on Y with

f#ν1(B) = ν1( f −1(B)) = ν1({x ∈X : f (x) ∈ B}) (1.17)

for every measurable set B ⊂Y . In other words, a push forward operator # defines a measure

on Y through two things: a predefined measure ν1 on X and a mapping f connecting X
and Y . For each set B ⊂Y , its push forward measure is equal to ν1(A), where A ⊂X is a set

containing all elements x ∈X such that f (x) ∈ B .

In terms of our example with two piles of sand, we can see a set A as an area of the ground X
under the sand. In that case, the measure ν1(A) denotes the total amount of sand in area A.

With B denoting an area of the ground Y , the push forward measure f#ν1 is defined such that

the total amount of sand in area B , f#ν1(B), corresponds to the amount of sand that function

f transferred from X to B ,ν1({x ∈X : f (x) ∈ B}).

Let c :X ×Y →R+ be a cost function, with c(x, y) denoting the cost of transporting a unit of

mass from x ∈X to y ∈Y . The Monge formulation [77] of the optimal transport problem then

reads

minimize
T

∫
X

c(x,T (x))dν1(x), s.t . T#ν1 = ν2, (1.18)

where T :X →Y is a ν1 - measurable map and # is the pushforward operator. Intuitively, T can

be seen as function that preserves positivity and total mass, i.e., moving an entire probability

mass on X to an entire probability on Y . Equation (1.18) can be seen as the minimal cost

needed to transport one probability measure to another with respect to the cost c :X ×Y →R+.

This minimal cost of transporting one measure to another is called the Wasserstein distance

between two measures (also referred to as Kantorovich-Monge-Rubinstein distance).

Going back to the sand pile example, c(x, y) is the cost of transferring a sand grain from x to

y , and T is the optimal mapping that defines where each sand grain should be transferred.

The Wasserstein distance presents the minimal cumulative cost with which it is possible to

transfer one pile of sand into the other.

An example of a Wasserstein distance that has a closed expression is that of Gaussian distribu-

tions. Namely, taking the l2 distance as the cost c , the Wasserstein distance between Gaussian

distributions has an explicit expression in terms of the mean vectors and covariance matrices.
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1.3. Thesis outline

Let X =Y = RN , and let ν1 and ν2 be two Gaussian distributions on RN , ν1 =N (m,Σ1) and

ν2 =N (n,Σ2). With c(x, y) = ‖x − y‖2 the Wasserstein distance W2
2 (ν1,ν2) can be written as

[106]:

W2
2

(
ν1,ν2

)= inf
T#ν1=ν2

∫
RN

‖x −T (x)‖2 dν1(x) (1.19)

= ‖m −n‖2 +Tr(Σ1 +Σ2)−2Tr

(√
Σ

1
2
1Σ2Σ

1
2
1

)
(1.20)

and the optimal mapping T that takes ν1 to ν2 is

T (x) = n +Σ
1
2
1

(
Σ

1
2
1Σ2Σ

1
2
1

) 1
2
Σ

1
2
1 (x −m). (1.21)

The Wasserstein distance gives a very meaningful comparison of two distributions and has

seen a recent surge in applications [88]. We will use the Wasserstein distance between Gaussian

distributions in order to define a structurally meaningful distance between graphs.

1.3 Thesis outline

The goal of this thesis is to explore the applications of the new framework of modelling graph

through data distributions. The thesis is organised as follows:

In Chapter 2 we explore the problem of multiple graph learning from mixed signals. We

propose a generative model for mixed graph signals, formulated for a generic class of signals

following a graph filter distribution. We solve the problem with the expectation maximisation

algorithm, and explore two specific graph learning methods in details, based on two signal

models of interest. Finally, we apply the method to the inference of multiple functional brain

networks, where we use fMRI data to simultaneously separate time frames based on the

functional brain network that they activate, and infer these brain networks and their structure.

Apart from recovering meaningful clusters and recognising brain networks which are known

in the literature, we get interesting insights into the correlation of distinct functional brain

graphs with the brain structure.

Chapter 3 further explores the representation of graphs through signal distributions, in a

scenario in which the signals are not necessarily available. We use the probabilistic model of

smooth graph signals and build on the notions of optimal transport, creating a framework

that permits to compare graphs through their respective signal distributions. This optimal

transport framework for graph comparison allows to define a structurally meaningful distance

between graphs, but also to adapt signals from one graph to another. We follow by formulating

a new graph alignment problem using this optimal transport distance. We propose to solve

this problem with a novel stochastic algorithm based on Bayesian exploration, in order to

accommodate for the non-convexity of the graph alignment problem. Finally, experiments on
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different tasks, such as graph alignment, graph classification and graph signal prediction, show

that our method successfully captures the global structure of graphs and provides considerable

improvements with respect to the state-of-art algorithms.

In Chapter 4 we extend the framework introduced in the previous chapter to graphs of different

sizes and formulate graph alignment as a one-to-many assignment problem, allowing us to

easily interpret an alignment of different-sized graphs. We propose a stochastic algorithm

using a novel Dykstra operator to implicitly impose the one-to-many alignment structure.

We demonstrate the performance of our novel framework on graph alignment and graph

classification, and show that our method leads to significant improvements with respect to

the state-of-the-art algorithms for each of these tasks.

In Chapter 5 we introduce the filter graph distance, that brings more flexibility into the graph

optimal transport framework. It results in graph distances that can take different spectral

information into account. We next formulate an approximation to the filter graph distance

cost, removing some of the largest computational challenges. We propose a simple and fast

solution using mirror gradient descent (MGD), as well as a more accurate solution using a

novel stochastic algorithm based on MGD, offering a tradeoff between speed and accuracy.

Our experiments confirm the computational gains of our approximated formulation, the

efficiency of our proposed stochastic algorithm, as well as the benefits of flexibility introduced

with filter graph distances.

Finally, Chapter 6 offers concluding remarks for the dissertation and discusses possibilities for

future work in this area.

1.4 Summary of contributions

The main contributions of this thesis are summarised below. In particular, we propose:

• A multi-graph learning method for structured signal mixtures, which simultaneously

clusters a set of signals and learns a graph for each of the clusters. The method has an

interesting application in neuroscience for multiple functional brain networks inference

• A framework based on optimal transport for graph comparison, which shapes a struc-

turally meaningful graph distance, as well as a signal transportation function between

graphs

• A novel formulation for the graph alignment problem defined through the graph optimal

transport distance and a stochastic algorithm based on Bayesian exploration, which

leads to efficient solutions to this non-convex problem

• An extension of the optimal transport framework to graphs of different sizes with a one-

to-many assignment, and an effective stochastic algorithm using a Dykstra operator

that computes a (soft) one-to-many assignment
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1.4. Summary of contributions

• A new filter graph distance, which is a flexible distance that enables prioritising specific

spectral properties in graph comparison, together with an approximation to the filter

optimal transport cost function, and a novel stochastic mirror descent algorithm for

efficient graph alignment with filter graph distance
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2 Learning with the Graph Laplacian
mixture model

2.1 Introduction

Relationships between data can often be well described with a graph structure. Although

many datasets, including social and traffic networks, come with a pre-existing graph that helps

in interpreting them, there is still a large number of datasets (e.g., brain activity information)

where a graph is not readily available. Many graph learning techniques have been proposed in

the past years [25] [72] to help in analysing such datasets. More specifically, a lot of interest

in the field of graph learning is currently focused on designing graph learning methods that

can take into account prior information on the graph structure [29], or different relationships

between data and the underlying graph [98]. However, most of these works only consider

simple data, where all datapoints follow the same model defined with only one graph. While

there are still many topics of interest in those settings, we argue that natural data often comes

in more complicated forms. In fact, such data opens an entire field of unsupervised learning

methods. A natural example of such a dataset can be found in brain fMRI data, where signals

usually measure the brain activity through different brain processes. Each of these processes

can be explained with a different brain functional network, with regions of interest as shared

network nodes. However, it is not clear which network is activated at what time, causing the

need to separate signals corresponding to different networks.

In this chapter, we precisely consider data that naturally forms several clusters, where signals

in a cluster live on the same graph1. This allows analysis of more complex datasets where

simple graph learning methods would suffer from intertwined data and thus lose the ability

to capture a meaningful graph structure. In particular, we study the problem of multiple

graph inference from a general group of signals that are an unknown combination of data with

different structures. Namely, we propose a novel generative model for data represented as a

1Parts of this chapter have been published in:
H. P. Maretic and P. Frossard. Graph laplacian mixture model. IEEE Transactions on Signal and Information
Processing over Networks, 6:261–270, 2020
H. Petric Maretic, M. El Gheche, and P. Frossard. Graph heat mixture model learning. In Asilomar Conference on
Signals, Systems, and Computers, pages 1003–1007. IEEE, 2018
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mixture of signals naturally living on a collection of different graphs. As it is often the case with

actual data, the separation of these signals into clusters is assumed to be unknown. We thus

propose an algorithm that jointly clusters the signals and infers multiple graph structures, one

for each of the clusters. Our method assumes a general signal model, and offers a framework

for multiple graph inference that can be directly used with a number of state-of-the-art

network inference algorithms, harnessing their particular benefits. Numerical experiments

show promising performance in terms of both data clustering and multiple graph inference,

while coping well with the dimensionality of the problem. Simulations show that our method

is effective in finding interesting patters in a traffic network of New York, while it demonstrates

high interpretability on a weather dataset, as well as MNIST data. Furthermore, the model

permits to successfully cluster brain fMRI signals intro groups determined by well-known

functional brain networks, providing understanding on the timing of network activations, as

well as on the similarity of functional and structural connectivity.

As we will deal with clustering in large dimensionalities in these settings, it is worth noting that

inherently high dimensional clustering problems often suffer from the curse of dimensionality

[13] and poor interpretability. While imposing that data lives on a graph implicitly reduces

the dimensionality of the problem, graphs also offer a natural representation for connections

between data. Therefore, they provide interpretability both in terms of direct inspection of

graph structure, as well as the ability to further deploy various data analysis algorithms.

2.2 Related work

In the literature, the graph learning problem has been first considered as sparse precision

matrix inference. Data is modelled as a multivariate Gaussian distribution, whose inverse

covariance matrix reveals direct pairwise connections between nodes [22] [36]. Based on

these methods, several models have been proposed to infer Gaussian mixture models with

sparse precision matrices [21] [67] [48]. All these works actually focus on inferring Gaussian

Markov Random Fields (GMRFs) [93], and do not constrain values in the precision matrix

in any special way. Therefore, the resulting graphs can have both positive and negative

weights, as well as self-loops, which can be difficult to interpret in practice. On the other hand,

graph representation constrained to a valid Laplacian matrix circumvents this problem, while

opening the door to numerous data analysis methods [102]. For these reasons, an increasing

amount of work has recently been focusing on inferring (generalised) graph Laplacians. Among

the first researchers to focus on graph Laplacian inference, Dong et al. [24] adopt a graph signal

processing perspective to enforce data smoothness on the inferred graph. The proposed model

results in assumptions similar to those in GMRFs, but with added constraints that ensure

that the graph is given by a valid Laplacian matrix. Kalofolias [55] uses a similar framework

and proposes a computationally more efficient solution by inferring a weight matrix, which

can eventually be easily transformed into a Laplacian. An even more efficient, approximate

solution has been proposed for large scale graph learning [57], scaling to graphs with millions

of nodes. Other recent works in this vein include inference of graph shift operators, with the
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2.3. Graph Laplacian mixture model

assumption that data is the result of a graph diffusion process. A popular approach to this

problem consists in exploiting the fact that the eigenvectors of the graph will be shared with

those of any graph filter. Therefore, they can be estimated from the data sample covariance

matrix, and the optimisation can be done only over the eigenvalues [98] [82]. Dictionary

based methods try to model signal heterogeneity by taking into account sparse combinations

or dictionary atoms. In [108], signals are represented as linear combinations of atoms from

a heat kernel dictionary. As those are still bound to be smooth, the authors in [86] model

signals as sparse linear combinations of atoms in a predefined polynomial graph dictionary.

Several methods exploit possible additional priors in the graph inference problem, such

as a bandlimited representation of signals [96], or properties on graph topologies [68] [83].

Online graph learning from streaming signals has been considered in [114] and [100]. All

aforementioned methods assume the whole set of signals can be well explained with one

single graph model. Naturally, this is unlikely to be the case in many applications, where

different signals might be generated in different ways or exist as a combination of distinct

causes.

Finally, there have been some works focused on signals in one dataset that naturally live on

different graphs. Kalofolias et al. [56] infer the structure of a time varying graph, effectively

capturing multiple graphs in different periods of time. A similar approach based on sparseness

of variation between graphs in different periods has been proposed by Yamada et al. [119].

Sardellitti et al. [95] propose a method for multi-layer graph inference for prediction of

dynamic graph signals. Segarra et al. [99] infer multiple networks under the assumption of

signal stationarity. Recent approaches include multi-graph data which would benefit from

being explained with one graph. Such methods infer one global graph which tries to retain

important properties from available graphs and signals [11] [76]. Multi-graph inference works

inspired by graphical lasso [36] include a method by Kao et al. [59] that promotes differences in

inferred graphs, minimizing the correlation between each graph and the sample covariance of

signals that do not live on it. Recent work of Gan et al. [37] imposes that the sparsity pattern on

all inferred graphs should be similar through a Bayesian prior. However, differently from our

work, all of these methods assume that signal clusters are given a priori, i.e., it is clear which

signals correspond to which graph. The joint network inference then becomes a problem of

imposing similarities on different graph structures, rather than decoupling the signals into

groups and learning a graph to explain each of the groups, which is the focus of our method.

To the best of our knowledge, our work presents the first framework to deal with inference of

multiple graph Laplacians from a mixture of not a priori clustered signals.

2.3 Graph Laplacian mixture model

We propose a probabilistic model for a set of graph signals with distinguishable subsets, where

the behaviour of signals in each of the subsets (groups) is well explained with a graph. A toy

example of our data model is given in Figure 2.1.
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Figure 2.1 – Illustration of our model. Data is given as signals x1, ..., xm . In this example, each
signal is smooth on its respective graph. Our model groups signals naturally belonging to
different clusters and learns a graph for each of the clusters.

Our goal is to distinguish these groups of signals, and eventually infer a graph that will model

the structure of signals in each cluster. The clusters of signals are unknown and the graph

structures largely influence behaviours inside clusters. We thus argue that identifying the

clusters and learning the associated graphs are intertwined problems. Therefore, we propose

a generative model that jointly explains both signals and clusters, under an assumption of

signals following the graph kernel model, for each cluster.

Specifically, as the graph kernel model we consider a distribution of filtered graph signals, as

described in (1.13). For a graph filter g (L) and a white noise signal w ∼N (0, I ), we consider a

distribution of signals x, such that x =µ+ g (L)w . The graph kernel model is then given as:

x =µ+ g (L)w ∼N (µ, g (L)I g (L)T ) =N (µ, g 2(L)), (2.1)

Furthermore, along with the general model for filtered graph signals, we will consider in detail

a special case of the graph kernel model focusing on signals which are smooth on L. As shown

in (1.14), smooth signals can be represented through a Gaussian distribution with a filter

g (L) =
p

L†, resulting in:

x ∼N (µ,L†). (2.2)

2.3.1 Multigraph signal representation

The graphical representation for our model is given in Figure 2.2. Let us assume that there are

K undirected, weighted graphs Gk = (V ,E k ,W k ) with a set of N shared vertices V . Each graph

has a specific set of edges E k and a weighted adjacency matrix W k . From each of these weight

matrices W k , we can define a graph Laplacian matrix Lk , as in (1.2).

We further assume there are K clusters, and each of the M observed signals xm ∈RN on the

nodes V , belongs to exactly one of the clusters. Cluster participation is modelled through
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Figure 2.2 – Plate notation for our generative model. Filled in circles are observed variables,
small empty squares are unknown parameters, and the empty circles represent latent variables.
Large plates indicate repeated variables.

a binary latent variable zm ∈ RK , with zm, j = δ j ,k ,∀ j , if signal xm belongs to cluster k. The

mixing coefficients α ∈RK model the size of each cluster, and define a prior distribution on

variables zm , with p(zm, j = δ j ,k ,∀ j ) = p(zm,k = 1) =αk ,∀m.

Finally, we model data in each cluster k with a mean µk and a graph Laplacian Lk , assuming

associated signals will be close to µk and follow a kernel model with a filter g on graph Lk , as

defined in Eq. (2.1):

p(xm |zm,k = 1) = p(xm |µk , gk (Lk )) =N (µk , g 2
k (Lk )) (2.3)

Marginalising over latent variables z , we have:

p(xm) =∑
z m

p(zm)p(xm |zm) (2.4)

=
K∑

k=1
p(zm,k = 1)p(xm |zm,k = 1) (2.5)

=
K∑

k=1
αkN (µk , g 2

k (Lk )), (2.6)

with Lk ∈L,∀k (2.7)

K∑
k=1

αk = 1, (2.8)

αk > 0,∀k (2.9)

This fully describes our generative model, with (2.7) ensuring that all Lk s are valid Laplacians,

while (2.8) and (2.9) ensure that α defines a valid probability measure.
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2.3.2 Problem formulation

Given a set of M N -dimensional graph signals X ∈RN×M with some intrinsic grouping into

K clusters associated to it, we look at the maximum a posteriori (MAP) estimate for our

parameters: mixing coefficients α = α1...αK , means µ = µ1...µK and graph Laplacians L =
L1...LK . Namely, assuming the data has been sampled independently from the distribution in

(2.6), and allowing for a prior on the graph structure, we want to maximise over the a posteriori

distribution of our model:

argmax
α,µ,L

ln p(α,µ,L|X ) (2.10)

∝argmax
α,µ,L

ln p(X |α,µ,L)p(L) (2.11)

=argmax
α,µ,L

ln
M∏

m=1
p(xm |α,µ,L)p(L) (2.12)

=argmax
α,µ,L

ln
M∏

m=1

K∑
k=1

αkN (xm |µk , g 2
k (Lk ))p(Lk ) (2.13)

=argmax
α,µ,L

M∑
m=1

ln
K∑

k=1
αkN (xm |µk , g 2

k (Lk ))p(Lk ), (2.14)

which does not have a closed form solution. We will thus estimate the parameters using an

expectation maximisation algorithm (EM), as explained below.

Note that we present our algorithm for the case of general kernel signals as long as that is

possible. However, we will see that smooth signals pose specific challenges, and will for that

reason be treated separately throughout the chapter.

2.4 Algorithm

We propose an expectation maximisation algorithm that alternates between optimising for

expected cluster participations γ := E(z) in the expectation step, and signal means µ, class

proportionsα and graph topologies L in the maximisation step. Therefore, the joint clustering

and multi-graph learning problem iterates over two steps: the first one estimates the correct

clustering, and the second one describes the clusters by inferring cluster means and propor-

tions, as well as the graphs describing them. Precisely, we first initialise α,µ and L randomly,

noting that we ensure L is a set of set of random valid Laplacian matrices, guaranteeing that it

truly describes graph structures. The alternating steps follow, as described below.

2.4.1 Expectation (E step)

Let us defineγ ∈RM×K as a matrix of posterior probabilities, with γm,k modelling the probabil-

ity that the signal xm belongs to the group k. Note that, at the same time, this is the expected
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value of the latent indicator variable zm,k , with γm = E(zm).

γm,k = p(zm,k = 1|xm ,µk ,Lk ) (2.15)

= p(zm,k = 1)p(xm |zm,k = 1,µk ,Lk )∑K
l=1 p(zm,l = 1)p(xm |zm,l = 1,µl ,Ll )

(2.16)

= αkN (xm |µk , g 2
k (Lk ))∑K

l=1αlN (xm |µl , g 2
l (Ll ))

(2.17)

In practice, γ can take different forms, depending on the choice of kernels gk ,k ∈ {1, ..,K }.

More precisely, the posterior probabilities γ can be directly computed in the case of most

arbitrarily chosen graph kernels using Equation (2.17).

However, the above formulation for γ cannot be computed directly when signals follow the

smooth model. Namely, it is well known that a graph Laplacian has at least one eigenvalue that

is zero, corresponding to the eigenvector 1. This makes the distribution in (2.17) degenerate

when signals follow (2.2) or a similar filter model. At the same time, from the signal processing

point of view, the corresponding eigenvector is completely smooth on all possible graphs,

and is therefore non-informative. The disintegration theorem [54] guarantees that we can

restrict our problem to the N −1 dimensional subspace spanned by all remaining eigenvectors.

We thus proceed by projecting signals to this subspace, where we can then compute γ and

retrieve the probabilities we want to model.

Furthermore, if a graph has disconnected components, it will have as many zero eigenvalues

as the number of components in the graph. Even if the final graph is connected, there is no

guarantee that the algorithm does not return a disconnected graph in one of the iterations of

the optimisation problem. It is easy to see how this can pose large numerical problems, both

in each graph separately as their eigenvalues approach zero, but also in terms of comparing

the probabilities that these graphs define when trying to infer γm,k from (2.17). To avoid this

problem, we add a small positive regularising constant ε to every eigenvalue corresponding to

the N −1 non-trivial eigenvectors of the graph Laplacian. Note that ε serves only for numerical

regularization and should be kept as small as possible. Finally, with ym,k := xm −µk , the

computation of probabilities γ sums up as follows:

Lk =UkΛkU T
k (2.18)

Λ̃k = (Λk )2:N ,2:N +εI N−1 (2.19)

Ũk = (Uk )1:N ,2:N (2.20)

ỹm,k = Ũ T
k ym,k (2.21)

γm,k = αkN (ỹm,k |0, g 2(Λ̃k ))∑K
l=1αlN (ỹm,l |0, g 2(Λ̃l ))

(2.22)
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2.4.2 Maximisation (M step)

Having estimated probabilities γm,k in the E-step, we can now maximise the expected posterior

distribution given all observed signals, to infer α,µ and L:

argmax
α,µ,L

∑
Z

p(Z |X ,µ,L)ln p(X , Z |α,µ,L)p(L) (2.23)

= argmax
α,µ,L

∑
Z

p(Z |X ,µ,L) (2.24)

ln
M∏

m=1
p(xm , zm |α,µ,L)p(L) (2.25)

= argmax
α,µ,L

M∑
m=1

K∑
k=1

p(zm,k = 1|xm ,µk ,Lk ) (2.26)

ln p(xm , zm |αk ,µk ,Lk )p(Lk ) (2.27)

= argmax
α,µ,L

M∑
m=1

K∑
k=1

γm,k ln (αkN (xm |µk , g 2
k (Lk ))p(Lk )) (2.28)

= argmax
α,µ,L

M∑
m=1

K∑
k=1

γm,k (ln αk+ (2.29)

+ ln N (xm |µk , g 2
k (Lk ))+ ln p(Lk )) (2.30)

Equation (2.30) is concave over µ and α, and offers closed form solutions for both:

µk =
∑M

m=1γm,k xm∑M
m=1γm,k

(2.31)

αk =
∑M

m=1γm,k

N
. (2.32)

In order to maximise over L, we substitute xm with variables ym,k := xm −µk . Now we can

formulate a problem of multiple graph inference:

argmax
L

K∑
k=1

M∑
m=1

γm,k (ln N (ym,k |0, g 2
k (Lk ))+ ln p(Lk )). (2.33)

It is clear that these are K independent optimisation problems, and we can maximise each

one separately:

argmax
Lk∈L

M∑
m=1

γm,k (ln N (ym,k |0, g 2
k (Lk ))+ ln p(Lk )). (2.34)

The generative model gives a general framework and a graph inference algorithm of choice

can be used to infer L in 2.34, depending on the nature of data and the appropriate graph filter.

Here, we explore two different methods, one representing the special case of smooth graph

signals, while the other investigates one of the most common graph filters, the heat kernel.
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Graph inference from smooth signals

Similarly to the graph inference problem explored in [24], using the kernel for smooth signals

g (Lk ) = L†/2 as discussed in (2.2), each of the problems (2.34) can be efficiently approximated

with:

argmin
Lk∈L

M∑
m=1

γm,k yT
m,k Lk ym,k + f (Lk ), (2.35)

with the graph Laplacian prior encoded in f (Lk ).

To efficiently update L through (2.35), it is crucial to choose a good prior on the graph Lapla-

cians. Namely, we want to maximise signal smoothness on the graph, while controlling graph

sparsity. Due to its computational efficiency, we will use the algorithm from Kalofolias [55]

with the small addition of cluster probabilities γm,k , as in (2.35). The graph update step (2.34)

thus becomes:

argmin
Lk∈L

M∑
m=1

γm,k yT
m,k Lk ym,k− (2.36)

β1tr (1T log (diag(Lk )))+β2‖Lk‖2
F,off (2.37)

L= {L ∈RN×N : Li , j = L j ,i ≤ 0,∀i 6= j ,L1 = 0} (2.38)

in which diag(Lk ) is a vector with the diagonal values (node degrees) from Lk , and ‖Lk‖2
F,off is

the Frobenius norm of the off-diagonal values in Lk . Notice that ‖Lk‖2
F,off = ‖Wk‖2

F , where Wk

is the weight matrix of the same graph. Compared to the formulation from (2.35), the function

f (Lk ) = −β1tr (1T log (diag(Lk )))+β2‖Lk‖2
F,off consists of two parts, such that increasing β1

strengthens graph connectivity, while a large β2 promotes density. With small β1 and β2, the

solution will be very sparse by the nature of the problem. The parameters can be selected

with a simple parameter sweep, or automatically as proposed in [57]. Note that our f (Lk ) does

not stem from a probabilistic prior, and is used here as an effective heuristic to approximate

problem (2.35). As before, the constraint that Lk ∈L ensures that Lk is a valid Laplacian matrix.

This problem is solved with an iterative algorithm [55] and the computational complexity of

this algorithm is O(M N 2) once for preprocessing, and then O(N 2) per iteration.

Graph inference from kernel signals

Assuming the graph filter model in (2.34) is known a priori, an efficient graph inference method

can easily be formulated. As an example, we investigate a widely used filter model, the graph

heat kernel,

gk (Lk ) = e−τLk . (2.39)

Following (2.34), it is clear that data is connected to the graph Laplacian matrix through its
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covariance g 2
k (Lk ) = e−2τLk . To infer a graph Laplacian matrices Lk , we first notice that the

estimation of a covariance matrix without graph priors p(Lk ) can be written in closed form as:

Σk :=
∑

m γm(k)ym,k yT
m,k∑

m γm(k)
(2.40)

In order to efficiently infer graph structures, the information of data probability might however

not be sufficient. Namely, without very large amounts of data, the sample covariance matrices

{Σk } are usually noisy (if not low rank), and it can be difficult to recover the exact structure of

the graph matrix. We thus formulate a problem that aims at finding a valid Laplacian matrix

that would give a covariance matrix similar to the sample covariance one, while at the same

time imposing a graph sparsity constraint. Namely, we can estimate the weight matrix Wk as

argmin
Wk

‖Σk −e−2τLk‖2
F +β‖Wk‖1, (2.41)

s.t.

{
Lk = Dk −Wk

W = {Wk ∈RN×N
+ : Wk =W T

k ,di ag (Wk ) = 0}.
(2.42)

Similarly, we can avoid the computation of the matrix exponential by searching for heat kernel

parameters which are close to the sample log-covariance matrix. Namely, we solve

argmin
Wk∈W

‖logΣk +2τLk‖2
F +β‖Wk‖1 (2.43)

with the same constraints. It results in a convex problem that can be solved efficiently with

FISTA [12] [85].

As our work offers a generic model for multiple graph inference, a very wide range of graph

signal models, and most graph learning methods can be used directly with our framework to

perform multiple graph inference. Moreover, while performing graph inference already has a

clear advantage with respect to covariance estimation in terms of both interpretability and

accuracy [22], this effect can be enhanced using graph-related prior information to simplify

the problem. Namely, any graph specific additional information, such as a mask of possible

or forbidden edges, or a desired level of sparsity, can easily be incorporated in most graph

learning methods, including the ones presented in this chapter. Such prior information would

render the implicit dimensionality reduction of the problem even stronger, and the search

space smaller, thus leading to even better results.

2.5 Simulations

In this section, we evaluate our algorithm on both synthetic and real data, followed by a short

study on the inference of multiple functional brain networks. To the best of our knowledge,

there are no other methods tackling the problem of jointly clustering graph signals and learning

multiple graph Laplacians. Thus, we compare our algorithm (namely, GLMM for the smooth
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signal model, GHMM for the heat kernel) to the estimation of a Gaussian mixture model

(GMM) and respectively to a signal clustering by a simple K-means algorithm, followed by

graph learning [55] in each inferred cluster separately (denoted as K-means + GL). In order to

compare the inferred graphs, we threshold all graphs obtained with any graph learning method

to remove very small values. Furthermore, the Gaussian mixture model does not contain any

sparsity regularization, and will thus not naturally provide sparse precision matrices. We

therefore obtain graphs from fitted GMMs by choosing only the largest absolute values in the

inferred precision matrices, in such a way that the number of edges is the same as the one in

the original graph.

2.5.1 Synthetic data

Smooth signals on a graph mixture

We consider randomly generated connected graphs of size N = 15 following an Erdos-Renyi

model [31] with p = 0.7. Each graph Lk is given a randomly generated 15-dimensional mean

signal µk that lives on its vertices, µk ∼ N (0,σ2I ), with σ = 0.5. We fix the total number

of signals to 150 and consider a case with 2 and 3 classes, given by the probability vectors

α1 = {0.5,0.5}, α2 = {0.2,0.8} and α3 = {0.33,0.33,0.33}. For each signal xm we randomly

generate zm through probabilities α. Then xm is randomly generated through a distribution

xm ∼N (µk ,L†
k ), if zm,k = 1, which gives us the full synthetic dataset for each experiment. The

whole experiment has been repeated 100 times, each time with different graphs, means and

randomly generated data.

Table 2.1 – Synthetic data clustering results for graphs with 15 nodes. The error is presented
in terms of signal clustering NMSE percentage (values between 0 and 100, smaller is better).
The first row shows results for 2 balanced clusters with α= [0.5,0.5], the second for 3 balanced
clusters α= [0.33,0.33,0.33], while the last row presents the error for clustering unbalanced
clusters with α= [0.2,0.8].

α GLMM GMM K-Means

[0.5, 0.5] 2.49 22.6 7.3
[0.33, 0.33, 0.33] 5.98 27.7 11.86

[0.2, 0.8] 2.84 23.02 21.03

We examine the performance of GLMM, GMM and K-means + GL in recovering the original

clusters of signals (given by zm) and the corresponding graph topologies. The hyperparam-

eters have been fixed with a grid search before running the experiment. Note that, to avoid

numerical issues and render the comparison more fair, we train the GMM in n - 1 dimensions,

ignoring the direction of the first eigenvector, as the corresponding eigenvalue is known to be

zero (see Section 1.2). We present the error in terms of class identification NMSE ( 1
2M ‖z −γ‖2

F ,

presented in %) in Table 2.1. The performance of graph inference for each of the methods is

presented in Table 2.2 in terms of mean edge recovery F measure.
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Table 2.2 – Synthetic data graph learning results for graphs with 15 nodes. The performance
is evaluated in terms of edge recovery F-measure (values between 0 and 1, larger is better).
The first row shows results for balanced clusters with α= [0.5,0.5], the second for 3 balanced
clusters α= [0.33,0.33,0.33], while the last two rows present the F-measure for unbalanced
clusters with α= 0.2, and α= 0.8, respectively.

α GLMM GMM K-Means + GL

[0.5, 0.5] 0.81 0.59 0.77
[0.33, 0.33, 0.33] 0.71 0.44 0.64

0.2 0.66 0.39 0.52
0.8 0.86 0.7 0.81

As expected, we can see that all methods are affected by unbalanced clusters, and give signifi-

cantly poorer results in terms of clustering performance, as well as edge recovery for the graph

in less represented cluster. As the graph in the more represented cluster (with α= 0.8) will

always be inferred from the bigger set of relevant signals, all three methods outperform their

own F measure score compared to the case of balanced clusters.

Signals on a mixture of graph heat kernels

We next investigate the performance of our algorithm for signals generated from a graph filter

that describes a graph heat kernel.

We generate two connected Erdos-Renyi graphs L1 and L2 of size N = 20, with edge probability

p = 0.7. The means for each cluster are randomly drawn from µk ∼ N (0,0.1I ), and the

membership probabilities for each cluster are fixed to αk = 0.5. The signals are random

instances of Gaussian distributions xm ∼N (µk ,e−2τLk ), where the mean µk , τ and the graph

Laplacian Lk drive the heat diffusion processes. The number of signals is fixed to M = 200 and

each experiment has been repeated 100 times.

We test the performance of all four inference algorithms as a function of the heat parameter τ

that varies between 0.1 and 0.8, as shown in Figure 2.3. For very small values of τ, all algorithms

have difficulties in recovering the structure as the sample covariance matrix is close to identity,

and does not contain a lot of graph related information. For large values of τ, the signals that

we observe are very smooth, with very small variations. For this reason, the simple smoothness

assumption used in GLMM is too weak to successfully separate signals, while the heat kernel

model achieves very good performance. This shows that adapting the signal model to data

can be very important, and emphasizes the importance of the flexibility that our framework

offers in incorporating various graph learning methods.

Note that no prior information on τ was given to any of the algorithms (as it is just a scaling

factor in the heat model). Therefore, the only influence that τ has on results comes from data

structure.
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Figure 2.3 – Performance of clustering and graph inference with respect to the heat parameter
τ.

Gaussian mixture model signals

Next, we test the performance of our algorithm on data generated from random Gaussian

mixture models. The objective is to investigate if the added structure in GLMM creates implicit

dimensionality reduction that can help in inference of high dimensional GMMs. We generate

random covariance matrices of size N = 20 from the Wishart distribution Σk ∼ 1
n W (In ,n), and

means as µk ∼ 1
2 N (0, In),∀k. With α= [0.5,0.5], we sample the Gaussian mixture model 200

times. We then add white noise to each sampled signal w ∼N (0,σ2I ), withσ varying from 0 to

0.6, as in Figure 2.4. Each point is averaged over 100 experiments. As expected, all methods are

affected by increasing noise. However, it is interesting to see that, while the error of GMM and

GLMM is very similar in the no-noise scenario, the GMM error increases drastically already

for small noise (σ= 0.1). This is probably due to the high sensitivity to noise that Gaussian

mixture models exhibit in high dimensions, while GLMM’s implicit dimensionality reduction

makes it more robust, even in cases when data is not sampled from a graph mixture.

To test this assumption further, we explore changing the dimensionality of the Gaussian

mixtures. We vary N from 15 to 50 as shown in Figure 2.4, keeping the number of signals fixed

(M = 200). Note that with larger N the task becomes easier, as means are still generated in the

same way (µk ∼ 1
2 N (0, In)), so in higher dimensions cluster means are more likely to be further

away. That explains a significant decrease in error for K-means. However, GMM still suffers

from the curse of dimensionality, while GLMM manages to achieve lower errors for higher

dimensions, implying that an implicit dimensionality reduction has occurred.

Various experiments on synthetic data show that our method achieves promising results in

comparison with other inspected methods, introducing higher flexibility in data modelling

and reducing the dimensionality of the problem.
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Chapter 2. Learning with the Graph Laplacian mixture model

Figure 2.4 – Clustering performance of data generated through random Gaussian mixture
models. The performance is shown as a function of noise level (σ) and dimensionality (N ),
respectively.

Signals with noisy labels

Cluster labels are often not entirely unknown, and the available labels may be unreliable due

to some errors or noise. In this final experiment on synthetic data, we examine this problem

and evaluate our algorithm given noisy cluster labels. For the purpose of this experiment, we

slightly modify our model, allowing for mixing coefficients to come in the form of group priors

α. Namely, each signal xm belongs to a predefined group Si , and p(zm,k = 1) =αSi ,k , if xm ∈ Si .

In this experiment, we use the same settings as in experiment 2.5.1, with 3 balanced clusters.

In addition, each signal has a noisy cluster label available. However, using the labels directly

with a hard assignment might not be optimal due to the noise. We therefore group all the

signals with the same noisy label, and vary the group prior initialisation: from 1 corresponding

to the hard assignment of noisy labels, to 0.33 corresponding to a random prior.

Figure 2.5 shows results in terms of clustering and graph inference F-measure for different

percentages of noise among available labels (from 0 to 100). Note that, apart from the scenario

in which the prior is fixed as 1 (hard assignment of labels), all other priors manage to adapt

reasonably well, with 0.8 and 0.9 performing optimally for small noise levels, and 0.33 giving

the best results when noise is larger than 50%. In addition, even small group priors benefit from

scenarios with no noise, probably due to the fact that mere separation of signals into (almost)

correct groups is enough to help the algorithm eventually converge to better clustering.

2.5.2 Real data

We further evaluate our algorithm on real data. In applications where the real network is

not known, we evaluate the performance by inspecting the quality of recovered clusters. We

further compare the inferred graphs to a constructed ground-truth graph, and use visual
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Figure 2.5 – Performance of clustering and graph inference with regard to the amount of noise
present in data labels.

inspection to assess graph quality.

Molene weather dataset

The Molene weather dataset [40] provides measurements of temperature and wind strength in

28 stations across Bretagne, France. There are in total 744 measurements of each type, in each

of the 28 stations. Note that we refer to signals as measurements, while measure represents a

whole class of temperature or wind strength signals. We preprocess the data by subtracting the

mean of each signal and by normalising both measures, to ensure the data is in the same range.

We compare the results of GLMM, GMM, K-means + GL and GHMM in terms of clustering

accuracy, graph inference, as well as model generalisability.

We first look at clustering accuracy and graph inference performance. We randomly select a

subset of 300 preprocessed measurements describing temperature and 300 describing wind

speed to create a dataset for evaluation. The whole experiment has been repeated 100 times,

each time with a different randomly selected subset of measurements. Clustering performance

is presented in Table 2.3 in terms of NMSE (%).

Table 2.3 – Clustering of 600 randomly selected signals from Molene weather dataset, of which
300 are temperature measurements and 300 represent wind speed. C stands for the clustering
error in terms of NMSE percentage (values between 0 and 100, smaller is better), while G
stands for graph inference error in terms of edge recovery F measure (values between 0 and 1,
larger is better).

GLMM GMM K-means + GL GHMM

C 7.66 24.51 21.61 18.68
G 0.82 0.49 0.73 0.52
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Figure 2.6 – GLMM inferred temperature and wind graphs, respectively.

We can see that GLMM outperforms other methods in terms of clustering accuracy. This is

especially interesting as the examined dataset does not have an inherent ground truth graph

structure supporting it. We argue that this suggests that our data can be well modelled with

graphs. Therefore, additional constraints posed by Laplacian inference reduce the scope of

the problem when compared to GMM, while they still allow for a lot more adaptivity when

compared to simple K-means. The results obtained by GHMM suggest that, while there is still

added benefit compared to the other two methods, the choice of kernel in our framework is

very important. Namely, the smooth kernel is more general and therefore more flexible to

possible outside influences, while the heat kernel is a more strict model, and as such should

be used more carefully with noisy data.

We also investigate graph inference performance on this data. As there are no ground-truth

graphs for this data, it is difficult to compare inference performance in a fair way. We thus

construct pseudo-ground-truth graphs using the knowledge of original clusters: temperature

and wind. For each cluster separately, we use all available data, preprocess them by subtracting

the mean, and use a graph learning algorithm [55] to infer the graph. We present the results in

Table 2.3. While this is clearly not a conclusive comparison due to the lack of real ground truth

graphs, it is interesting to see that there is a significant gain of GLMM compared to K-means +

GL, both of which use the same graph inference method.

To complement numerical findings, we further investigate graph quality by visual inspection.

Figure 2.6 shows inferred temperature and wind graph topologies for GLMM. Figure 2.7

presents the same for GMM. We note that these are geographical graphs, plotted with node

position corresponding to true measuring station coordinates and that none of the algorithms

were given any prior information on node positions. We can see that graphs inferred by GLMM

offer much more structure, mostly connecting neighbouring nodes, a desirable property in

a weather-related geographical graph. We also note that the temperature and wind graph

inferred by GLMM are fairly similar, with the largest difference appearing along the southern

coast. One possible explanation could be that the temperature values are all highly correlated
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Figure 2.7 – GMM inferred temperature and wind graphs, respectively.

as they are regulated by the ocean, while the wind values in these areas are less stable, often

change direction and strength along the coast.

Next, we evaluate how trained models generalise to new data. Namely, we separate both

temperature and wind data into 600 training and 100 testing signals. We then randomly choose

subsets of training data of different sizes to fit generative models. We run each algorithm

5 times with different random initialisations, and select the best run in terms of training

data clustering performance. The unseen (test) data is then clustered using trained models.

Namely, we determine the cluster for each new datapoint by estimating which of the pre-

trained clusters it fits into the best. The whole experiment has been repeated 100 times, each

time with different randomly selected measurements. Figure 2.8 shows the test data clustering

NMSE (%) for all three methods, given different training set sizes.

Figure 2.8 – Test data clustering performance for different sizes of training data. Each training
dataset contains 50% temperature and 50% wind strength signals. The x-axis represents the
training set size. The y-axis show signal clustering NMSE(%).

We can see a significantly better performance in our method compared to the others in
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terms of generalisability to new data. We reiterate that this is especially significant as the

results are demonstrated on data that does not inherently live on a graph. We argue that this

shows the flexibility of our model, as it is able to generalise well to unseen data on signals

that do not necessarily live on a mixture of graphs (but might be well representable with

them). Furthermore, we note that, while increasing the size of our training set improves the

performance of more adaptive algorithms, like GMM and GLMM, K-means does not show the

possibility to adapt due to its very simple nature.

Uber data

We next search for patterns in Uber data representing hourly pickups in New York City during

the working days of September 2014 2. We divide the city into 29 taxi zones, and treat each

zone as a node in our graphs. The signal on these nodes corresponds to the number of Uber

pickups in the corresponding zone, per hour. We fix the number of clusters to K = 5, following

the reasoning in [108].

Figure 2.9 – Cluster indexes for Uber hourly signals, obtained with GLMM. Each dot represents
one hour in the day, and thin vertical lines represent the beginning of each working day.

Figure 2.9 shows the clustering of hourly Uber signals into 5 different clusters, obtained with

GLMM. We can see a slightly noisy periodic pattern, recurring daily. Note that no temporal

information was given to the algorithm.

As there are no ground truth clusters, we inspect the results in terms of clustering consistency.

Namely, we compare clusters obtained in each day to clusters obtained in all other days and

average the result, in order to approximate the expected difference between daily patterns. If

the periodic pattern occurs in the same way every day, the clustering is consistent, and the

average difference will be zero. Note that without ground truth clusters, consistency does not

give sufficient information in evaluating clustering performance. Namely, a clustering that

groups all data into only one cluster will be deemed perfectly consistent. For that reason, we

complement our findings with qualitative analysis of clusters. Table 2.4 shows the average

NMSE obtained by comparing daily clusters. While GLMM has the best consistency, the result

2https://github.com/fivethirtyeight/ubertlc-foil-response
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for GMM is not far in terms of consistency. However, GLMM on average separates the day

into very sensible periods: 23h-6h, 6h-9h, 9h-15h + 22h-23h, 15h-20h and 20h-22h, separating

night time, rush hours, day time and evening. At the same time, GMM on average separates the

day into only 3 clusters, filling the remaining two clusters only with outliers, and putting most

of the data into one large cluster: 6h-9h, 16h-20h and all the rest (20h-16h without 6h-9h). This

explains a good score in consistency (as most data falls into the same cluster), however these

clusters are not very meaningful. Note that GHMM and K-means produce clusters similar to

those of GLMM, with the important difference of K-means not detecting morning rush hours

(6h-9h and 9h-15h + 22h-23h are grouped into one cluster).

Table 2.4 – Clustering consistency error in terms of NMSE percentage (values between 0 and
100, smaller is better).

GHMM GMM GLMM K-means + GL

11.45 10.75 10.07 13.55

Finally, Figure 2.10 presents two of the graphs inferred with GLMM. Each graph shows patterns

of a different period in the day. We can see that the traffic during nights and early mornings

is restricted to the city center and communications with the airports, while direct commu-

nication among non-central locations becomes more active later in the day. These different

mobility patterns look reasonable with respect to daily people routine in NYC.

(a) 23h - 6h (b) 15h - 20h

Figure 2.10 – GLMM inferred graphs corresponding to Uber patterns in different times of day.

MNIST digits

Finally, we comment on the advantage that our method brings over standard GMMs in terms

of interpretability in high dimensional settings. We tackle a well known classification problem

in which there is no reason to believe that signals live on a graph. Each signal is one MNIST

digit representing "0" or "1". Since each digit is given as a 20x20 pixel grayscale image, the di-
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mension of our signal is 400. We gather signals by randomly choosing 1000 digits from class ’0’

and 1000 digits from class ’1’. We test the performance of GLMM, GMM and K-means + GL, as

well as a modified GLMM that was restricted to allow edges only between 2-hop neighbouring

pixels (mGLMM). We show clustering performance in Table 2.5, but note that MNIST digit

clustering is inherently a much lower dimensional problem, and should be treated as such.

The experiments confirm this, giving better results for simpler methods: K-means performs

very well as the simplest model, while GLMM still performs better than GMM due to its more

focused nature and lower sensitivity to noise. The imposed structure in mGLMM simplifies the

problem significantly and yields the best results, suggesting additional interpretative knowl-

edge of the problem can be easily incorporated and reduce the dimensionality of the problem.

Note that a mask of "allowed edges" was very easy to construct in this example, which is

not necessarily always the case. However, these results imply that investigating contextual

information might be a worthwhile task even when the masks are not as simple to construct.

An alternative in such cases might be to include a soft mask as a matrix of costs weighing the

value of each edge. In this way, prior knowledge can be incorporated in a way to promote

larger values only in certain edges, without constraining the connectivity pattern in a definitive

manner. Furthermore, we discuss the interpretability advantage offered by GLMM in settings

Table 2.5 – Clustering of 2000 randomly selected MNIST digits, of which 1000 represent digit
’0’ and 1000 represent digit ’1’. The error is presented in terms of NMSE percentage (values
between 0 and 100, smaller is better).

GLMM mGLMM GMM K-means

1.76 0.64 7.18 0.89

Figure 2.11 – Recovered graph with GLMM for the cluster of MNIST digit ’0’, no prior structure
imposed

where this knowledge might not be available a priori, and can therefore not be imposed to the
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learning problem. Figure 2.11 shows the graph topology inferred with GLMM corresponding to

the cluster of digit zero. Note that no prior information or restrictions on edges were imposed

in this version of the algorithm. To visualise the graph, we only considered edges adjacent to

at least one vertex with a mean value larger than a threshold.

As expected, we can see that neighbouring pixels that form the number zero are strongly

correlated. We can also see that pixels are rarely connected if they are not close in the image,

even though no pixel position information was given to the graph inference algorithm. It

is clear that such insights can be very valuable in terms of interpretability in these high

dimensional settings.

We finish with noting that the cost of using this model when data does not live on a graph

comes, of course, in terms of restrictions imposed by a valid graph Laplacian, as well as the

sparsity constraint in the graph learning method. These restrictions reduce model flexibility

and could therefore lead to less accurate results. However, in large dimensional settings where

this model is meant to be used, these restrictions are not too constraining. Even more, as

they implicitly reduce the dimensionality of the problem, they seem to even improve the

performance on some datasets (as seen in Figure 2.4 and Table 2.3).

2.5.3 Inference of functional Brain Networks

Our final application is related to neuroscience, where GLMM is applied to analyse functional

magnetic resonance imaging (fMRI) temporal data. This is a natural application for our

algorithm, as brain regions can be synchronised in activity despite the absence of task or

external stimuli [15]. Naturally, there is a need to both separate these activations of different

brain networks and identify their structure. We give a short overview of the analysis here, and

explain one experiment in detail. Further details on the whole project, including materials

and methods used, some background information and additional analysis, can be found in

the Appendix A.3

The general workflow of this work is summarized in Fig. 2.12. We began by extracting the mean

blood-oxygen-level-dependent (BOLD) signals within regions of the Automated Anatomical

Labeling (AAL) atlas for each session of each subject. We built a data matrix X that contains

the timecourses of all AAL 90 regions. The timecourses of all sessions and all subjects are then

concatenated together to form a huge data matrix Y. This is then fed to the GLMM algorithm

which estimates the means or metastates (µk ), learned graphs represented in the output as the

graph Laplacians (Lk ), and signal clustering probabilities (γ).

We first validate the performance of the proposed framework using task fMRI by demonstrating

that the timing of the task paradigms are captured by the averaged γ-values across all subjects.

3The experiments presented here are part of a joint project with the Medical Image Processing Laboratory of
EPFL:
A. Tarun, I. Ricchi, H. Petric Maretic, P. Frossard, and D. Van De Ville. Inference of Multiple functional Brain
Networks using Graph Laplacian Mixture Model. under preparation
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Figure 2.12 – General workflow: from fMRI signals to the extraction of metastates. (a) Mean
BOLD signals from four sessions of fMRI recordings are computed within each region of the
AAL90 atlas and are concatenated together to form the subject data matrix X. The final data
(Y) is obtained by concatenating 50 HCP subjects. (b) Plate notation of the generative model
for extracting functional metastates and their corresponding estimated graphs represented
through the Laplacians. (c) The output of the algorithm are K-number of metastates, their
corresponding graph Laplacians, and the probability that each metastate would occur at a
particular time-point. In the above example, we show K = 3.

We show that the extracted metastates consist of brain areas that are consistent with previously

observed regions that are implicated in the corresponding task. Details about this experiment

can be found in the Appendix (A.3.1 and A.3.2). Next, we apply GLMM to RS fMRI data and

obtain the most prevalent networks of spontaneously interacting brain areas, as shown in detail

below. Finally, an important benefit of the GLMM algorithm compared to other clustering

methods is the estimation of graph Laplacians (L). Not only this does help in obtaining more

meaningful metastates (means), but it also conveys much more information and details about

our clusters. We reveal indicative similarities of the learned functional graphs to the structural

connectome derived from diffusion-weighted MRI (DW-MRI), and find a behaviorally-relevant

organisation of functional brain graphs. Further details about this experiment are available in

A.3.3.
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2.5. Simulations

Extracted metastates during resting state fMRI

After validating the outcome of the proposed framework with task fMRI using the known

experimental task paradigm as the ground truth, we applied the method to resting state (RS)

fMRI. Fig. 2.13 displays the estimated metastates together with the approximated likelihood to

occur at each time-point for one representative subject. This likelihood of occurrence gives a

proxy of the metastate’s activity profiles. As expected, we observe the default mode network

(DMN) to be highly occurring. We found a metastate that clearly covers areas of the visual

cortex, another metastate that shows regions corresponding to the auditory network and some

portions of the frontoparietal cortex, and another one that contains the bilateral temporal

cortices and the insula, which is analogous to the salience network. Additionally, we also

found separately clustered activations in the left and right portion of the brain.
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Figure 2.13 – Extracted metastates from resting-state (A) Six metastates corresponding to
the RS data. Values in percentage show the occurrences of each metastate across all 50
subjects considered. (B) Example activtity profile of each metastate for an example subject.
(C) Correlation of estimated means corresponding to DMN-networks extracted from rest and
all task fMRI data.

We found that metastates corresponding to the rest epochs of the tasks always corresponded

to the DMN, which is expected. To understand the nature of the recovered DMN-related

metastates, we computed the correlation across all pair-wise networks corresponding to
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Chapter 2. Learning with the Graph Laplacian mixture model

each task and RS data. Fig. 2.13(C) displays the correlation between the extracted DMN-

related metastates from all tasks and RS fMRI. The x− and y-axes were sorted from lowest to

highest correlation, showing a distinction between tasks that require low-level sensory-motor

functions (e.g., language, motor, rest) versus tasks that associated to high-level cognition

(e.g., emotion, working memory, relational memory, and social). More general findings for all

experiments can be found in A.4.

2.6 Conclusion

We propose a generative model for mixtures of signals living on a collection of different graphs.

We assume that both the mapping of signals to graphs, as well as the topologies of the graphs

are unknown. We therefore jointly decouple the signals into clusters and infer multiple graph

structures, one for each cluster. To do so, we formulate a Maximum a posteriori problem

and solve it through Expectation minimisation. Our method offers high flexibility in terms of

incorporation of different signal models, as well as simple inclusion of additional priors on the

graph structure. We further argue that our model can be used for high dimensional clustering

even when data is not assumed to have inherent graph structures, bringing additional inter-

pretability to data. Simulations on real data achieve good clustering and meaningful graphs on

weather data, infer interesting patterns in New York traffic, and find highly interpretable results

on MNIST digits. Finally, the analysis of fMRI data using our method successfully identifies

periods of time corresponding to different brain activities, reconstructs brain networks which

are found in the literature and provides interesting insights into the organizational principles

of human brain function and its relation to structure.
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3 GOT: An Optimal Transport frame-
work for Graph comparison

3.1 Introduction

Structured information is often represented by graphs that capture potentially complex struc-

tures. It stays however pretty challenging to analyse, classify or predict graph data, due to the

lack of efficient measures for comparing graphs. In particular, the mere comparison of graph

matrices is not necessarily a meaningful distance, as different edges can have a diverse impor-

tance in the graph. Spectral distances have also been proposed [53, 39], but they usually do not

take into account all the information provided by the graphs, focusing only on the Laplacian

matrix eigenvalues and ignoring a large portion of the structure encoded in eigenvectors. In

addition to the lack of effective distances, a major difficulty with graph representations is that

their nodes may not be aligned, which further complicates graph comparisons.

In this chapter, we propose a new framework for graph comparison, which permits to compute

both the distance between two graphs under unknown permutations, and the transportation

plan for data from one graph to another, under the assumption that the graphs have the same

number of vertices1. Instead of comparing graph matrices directly, we propose to look at the

smooth graph signal distributions associated to each graph, and to relate the distance between

graphs to the distance between the graph signal distributions. We resort to optimal transport

for computing the Wasserstein distance between distributions, as well as the corresponding

transportation plan. Interestingly, the Wasserstein distance takes a closed-form expression

in our settings, which essentially depends on the Laplacian matrices of the graphs under

comparison. We further show that our novel Wasserstein graph distance has the important

advantage of capturing the main structural information of the graphs.

Equipped with this distance, we formulate a new graph alignment problem for finding the

permutation that minimises the mass transportation between a "fixed" distribution and

a "permuted" distribution. This yields a nonconvex optimization problem that we solve

1This chapter contains work which has been published in:
H. Petric Maretic, M. El Gheche, G. Chierchia, and P. Frossard. GOT: An Optimal Transport framework for Graph
comparison. In Advances in Neural Information Processing Systems 32, pages 13876–13887. 2019
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Chapter 3. GOT: An Optimal Transport framework for Graph comparison

efficiently with a novel stochastic gradient descent algorithm. It permits to efficiently align

and compare graphs, and it outputs a structurally meaningful distance and transport map.

These are important elements in graph analysis, comparison, or graph signal prediction tasks.

We finally illustrate the benefits of our new graph comparison framework in representative

tasks such as noisy graph alignment, graph classification, and graph signal transfer. Our

results show that the proposed distance outperforms both Gromov-Wasserstein and Euclidean

distance for what concerns the graph alignment and graph clustering. In addition, we show

the use of transport maps to predict graph signals. To the best of our knowledge, this is the

only framework for graph comparison that includes the possibility to transport and adapt

graph signals to another graph.

3.2 Related work

In the literature, many methods have formulated the graph matching problem as a quadratic

assignment problem [120, 52], under the constraint that the solution is a permutation matrix.

As this is an NP-hard problem, different relaxations have been proposed to find approximate

solutions [79]. In this context, spectral clustering [18, 104] emerged as a simple relaxation,

which consists of finding the orthogonal matrix whose squared entries sum to one, but the

drawback is that the matching accuracy is suboptimal. To improve on this behavior, the

semi-definite programming relaxation was adopted to tackle the graph matching problem

by relaxing the non-convex constraint into a semi-definite one [97]. Spectral properties have

also been used to inspect graphs and define different classes of graphs for which the convex

relaxation is equivalent to the original graph matching problem [1] [34]. Other works focus

on the general problem and propose provably tight convex relaxations for all graph classes

[28]. Based on the assumption that the space of doubly-stochastic matrices is a convex hull,

the graph matching problem was relaxed into a non-convex quadratic problem in [19, 126].

A related approach was recently proposed to approximate discrete graph matching in the

continuous domain asymptotically by using separable functions [123]. Along similar lines,

a Gumbel-sinkhorn network was proposed to infer permutations from data [75, 30]. The

approach consists of producing a discrete permutation from a continuous doubly-stochastic

matrix obtained with the Sinkhorn operator [103].

Closer to our framework, some recent works have studied the graph alignment problem from

an optimal transport perspective. For example, Flamary et al. [35] propose a method based on

optimal transport for empirical distributions with a graph-based regularization. The objective

of this work is to compute an optimal transportation plan by controlling the displacement

of a pair of points. Graph-based regularization encodes neighborhood similarity between

samples on either the final position of the transported samples, or their displacement [32].

Gu et al. [45] define a spectral distance by assigning a probability measure to the nodes via

the spectrum representation of each graph, and by using Wasserstein distances between

probability measures. This approach however does not take into account the full graph

structure in the alignment problem. Nikolentzos et al. [80] propose instead to match the graph
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3.3. Graph Alignment with Optimal Transport

embeddings, where the latter are represented as bags of vectors, and the Wasserstein distance

is computed between them. The authors also propose a heuristic to take into account possible

node labels or signals.

Another line of works have looked at more specific graphs. Memoli [74] investigates the

Gromov-Wasserstein distance for object matching, and Peyré et al. [87] propose an efficient

algorithm to compute the Gromov-Wasserstein distance and the barycenter of pairwise dis-

similarity matrices. The algorithm uses entropic regularization and Sinkhorn projections, as

proposed by [20]. The work has many interesting applications, including multimedia with

point-cloud averaging and matching, but also natural language processing with alignment

of word embedding spaces [2]. Vayer et al. [112] build on this work and propose a distance

for graphs and signals living on them. The problem is given as a combination between the

Gromov-Wasserstein of graph distance matrices and the Wasserstein distance of graph signals.

Barbe et al. [8] extend this idea and apply the Wasserstein distance between signals only after

a graph filtering step, encoding the structural information of the graph into the filtered signals.

Xu et al. [118] proposed a method based on Gromov-Wasserstein which simultaneously learns

the graph alignment and the embeddings of graph nodes. The node embeddings are derived

using optimal transport, which in turn helps in the graph matching task. The authors follow

up in [117], devising a scalable version of Gromov-Wasserstein distance for graph partitioning

and matching. However, while the above methods solve the alignment problem using optimal

transport, the simple distances between aligned graphs do not take into account its global

structure and the methods do not consider the transportation of signals between graphs.

Finally, the graph optimal transport framework presented below has recently been extended

to an interesting coordinated optimal transport approach, where the structural properties of

our distance are successfully used for graph sketching [26].

3.3 Graph Alignment with Optimal Transport

Despite recent advances in the analysis of graph data, it stays pretty challenging to define a

meaningful distance between graphs. Even more, a major difficulty with graph representations

is the lack of node alignment, which prevents from performing direct quantitative comparisons

between graphs. In this section, we propose a new distance based on Optimal Transport (OT)

to compare graphs through smooth graph signal distributions. Then, we use this distance to

formulate a new graph alignment problem, which aims at finding the permutation matrix that

minimizes the distance between graphs.

3.3.1 Wasserstein distance between graphs

We interpret graphs as the structure that drives the probability distributions of signals, and as

such, represent graphs through these distributions. Such a graph representation captures the

properties and particularities of the graph, which are important in shaping data that lives on
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Chapter 3. GOT: An Optimal Transport framework for Graph comparison

it. Specifically, we consider two graphs G1 and G2 with Laplacian matrices L1 and L2, and we

consider smooth signals on them, which follow a Gaussian distribution as described in (1.14):

νG1 (x) =N (0,L†
1) (3.1)

νG2 (x) =N (0,L†
2). (3.2)

Recall that the smooth signal assumption is verified for most common graph and network

datasets, and used as regularization in many graph applications, such as robust principal

component analysis [101] and label propagation [127].

Instead of comparing graphs directly, we propose to compare their representations as smooth

signal distributions. Specifically, we measure the dissimilarity between two aligned graphs

G1 and G2 through the Wasserstein distance of the respective distributions νG1 and νG2 . More

precisely, the 2-Wasserstein distance corresponds to the minimal “effort” required to transport

one probability measure to another with respect to the Euclidean norm [77], that is

W 2
2

(
νG1 ,νG2

)= inf
T#νG1=νG2

∫
X
‖x −T (x)‖2 dνG1 (x), (3.3)

where T#ν
G1 denotes the push forward of νG1 by the transport map T : X →X defined on a

metric space X . For normal distributions such as νG1 and νG2 , the 2-Wasserstein distance can

be explicitly written in terms of their covariance matrices, as seen in (1.19):

W 2
2

(
νG1 ,νG2

)= Tr
(
L†

1 +L†
2

)
−2Tr

(√
L

†
2
1 L†

2L
†
2
1

)
, (3.4)

and the optimal transportation map is

T (x) = L
†
2
1

(
L

†
2
1 L†

2L
†
2
1

) †
2

L
†
2
1 x. (3.5)

The Wasserstein distance captures the structural information of the graphs under comparison.

It is sensitive to differences that cause a global change in the connection between graph com-

ponents, while it gives less importance to differences that have a small impact on the whole

graph structure. Indeed, as graphs are represented through the distribution of smooth signals,

the Wasserstein distance essentially measures the discrepancy in lower graph frequencies,

known to capture the global graph structure. This behaviour is illustrated in Figure 3.1 by a

comparison with a simple distance that is the Euclidean norm between the Laplacian matrices

of the graphs.2

Moreover, the optimal transportation map enables the movement of signals from one graph to

2Note that in our setting a possible alternative to the Wasserstein distance could be the Kullback-Leibler (KL)
divergence, whose expression is explicit for normal distributions.
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3.3. Graph Alignment with Optimal Transport

(a) G1

(b) G2: ‖L1 −L2‖F = 2.828,
W2

2 (νG1 ,νG2 ) = 0.912
(c) G3: ‖L1 −L3‖F = 2.828,

W2
2 (νG1 ,νG3 ) = 0.013

Figure 3.1 – Illustration of the structural differences captured with Wasserstein distance be-
tween graphs defined in (1.18). The graphs G2 and G3 are both copies of G1, with 2 edges
removed. The modification in G2 is very influential, as the two communities are almost discon-
nected; here, both Frobenius norm and Wasserstein distance measure a significant difference
w.r.t. G1. Conversely, the modification in G3 is hardly noticeable; here, the Frobenius norm still
measures a significant difference, whereas the Wasserstein distance does not. The latter is a
desirable property in the context of graph comparison.

another. This is a continuous Lipshitz mapping that adapts a graph signal to the distribution

of another graph, while keeping similarity. This results in a simple and efficient prediction of

the signal on another graph.

3.3.2 Graph alignment

Equipped with a measure to compare aligned graphs of the same size through signal distri-

butions, we now propose a new formulation of the graph alignment problem. It is important

to note that the graph signal distributions depend on the enumeration of nodes chosen to

build L1 and L2. While in some cases (e.g., dynamically changing graphs, multilayer graphs,

etc. . . ) a consistent enumeration can be trivially chosen for all graphs, it is not always the

case. This generally leads to the challenging problem of first estimating an a priori unknown

permutation between graphs before they could be compared. In our approach, we are given

two connected graphs G1 and G2, each with N distinct vertices and with different sets of edges.

We aim at finding the optimal transportation map T from G1 to G2. However, the vertices

of these graphs are not necessarily aligned. In order to take all possible enumerations into

account, we define the probability measure of a permuted representation for the graph G2 as

ν
G2
P =N (

0,(P>L2P )†)=N (0,P>L†
2P ), (3.6)

where P ∈RN×N is a permutation matrix. Consequently, our graph alignment problem consists

in finding the permutation that minimizes the mass transportation betweenνG1 andνG2
P , which
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Chapter 3. GOT: An Optimal Transport framework for Graph comparison

Algorithm 1 Approximate solution to the graph alignment problem defined in (3.7).

Require: Graphs G1 and G2

Require: Sampling size S ∈N, learning rate γ> 0, and constant τ> 0
Require: Random initialization of matrices η0 and σ0

1: for t = 0,1, . . . do
2: Draw samples {ε(s)

t }1≤s≤S from the distribution qunit
3: Define the stochastic approximation of the cost function as

Jt (ηt ,σt ) = 1

S

S∑
s=1

W2
2

(
νG1 ,νG2

Sτ(ηt+σt¯ε(s)
t )

)
4: g t ← gradient of Jt evaluated at (ηt ,σt )
5: (ηt+1,σt+1) ← update of (ηt ,σt ) using g t

6: end for
7: return P =Sτ(η∗)

reads

minimize
P∈RN×N

W2
2

(
νG1 ,νG2

P

)
s.t.



P ∈ [0,1]N

P1N =1N

1
>
N P =1N

P>P = IN×N ,

(3.7)

where 1N = [1 . . . 1]> ∈RN and IN×N is the N ×N identity matrix. The constraints in 3.7 ensure

that P is a valid permutation matrix. According to (3.1), (3.4), (3.6), the above distance boils

down to

W2
2

(
νG1 ,νG2

P

)= Tr
(
L†

1 +P T L†
2P

)
−2Tr

(√
L

†
2
1 P T L†

2PL
†
2
1

)
. (3.8)

The optimal permutation allows us to compare G1 and G2 when the consistent enumeration

of nodes is not available. This is however a non-convex optimization problem that cannot

be easily solved with standard tools. In the next section, we present an efficient algorithm to

tackle this problem.

3.4 GOT Algorithm

We propose to solve the OT-based graph alignment problem described in the previous section

via stochastic gradient descent. The latter is summarized in Algorithm 1, and its derivation is

presented in details below.
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3.4. GOT Algorithm

(a) Graph 1 (b) Graph 2 (c) Solution P̄ to (3.13) (d) Matrix Sτ(P̄ )

Figure 3.2 – Illustrative example of the graph alignment problem. The solution to (3.13) is a
matrix P̄ whose rows may be interpreted as assignment log-likelihoods. Applying the Sinkhorn
operator to P̄ yields a matrix whose rows are assignment probabilities from Graph 1 (columns)
to Graph 2 (rows).

3.4.1 Optimization

The main difficulty in solving Problem (3.7) arises from the constraint that P is a permutation

matrix, which leads to a discrete optimization problem with a factorial number of feasible

solutions. We propose to circumvent this issue through an implicit constraint reformulation.

The idea is that the constraints in (3.7) can be enforced implicitly by using the Sinkhorn

operator [103, 20, 38, 75]. Given a square matrix P ∈ RN×N (not necessarily a permutation)

and a small constant τ > 0, the Sinkhorn operator Sτ normalizes the rows and columns of

exp(P/τ) via the multiplication by two diagonal matrices A and B , yielding3

Sτ(P ) = A exp(P/τ)B. (3.9)

The diagonal matrices A and B are computed iteratively as follows:

A[k] = diag
(
P [k]

1N
)−1 (3.10)

B [k] = diag
(
1
>
N A[k]P [k])−1 (3.11)

P [k+1] = A[k]P [k]B [k], (3.12)

with P [0] = exp(P/τ). It can be shown [75] that the operator Sτ yields a permutation matrix

in the limit τ→ 0. Consequently, with a slight abuse of notation (as P no longer denotes a

permutation), we can rewrite Problem (3.7) as follows

minimize
P∈RN×N

W2
2

(
νG1 ,νG2

Sτ(P )

)
. (3.13)

The above cost function is differentiable [69], and can be thus optimized by gradient descent.

An illustrative example of a solution of the proposed approach is presented in Fig. 3.2.

3Note that exp is applied element-wise to ensure the positivity of the matrix entries.
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3.4.2 Stochastic exploration

Problem (3.13) is highly nonconvex, which may cause gradient descent to converge towards

a local minimum. Hence, instead of directly optimizing the cost function in (3.13), we can

optimize its expectation w.r.t. the parameters θ of some distribution qθ, yielding

minimize
θ

EP∼qθ

{
W2

2

(
νG1 ,νG2

Sτ(P )

)}
. (3.14)

The optimization of the expectation w.r.t. the parameters θ aims at shaping the distribution

qθ so as to put all its mass on a minimizer of the original cost function, thus integrating the

use of Bayesian exploration in the optimization process.

A standard choice for qθ in continuous optimization is the multivariate normal distribu-

tion, thus leading to θ = (η,σ) ∈ RN×N ×RN×N and qθ =
∏

i , j N
(
ηi j ,σ2

i j

)
. By leveraging the

reparameterization trick [62, 33], which boils down to the equivalence

(∀(i , j ) ∈ {1, . . . , N }2) Pi j ∼N (
ηi j ,σ2

i j

) ⇔
εi j ∼N (0,1)

Pi j = ηi j +σi j εi j ,
(3.15)

the above problem can be reformulated as4

minimize
η,σ

Eε∼qunit

{
W2

2

(
νG1 ,νG2

Sτ(η+σ¯ε)

)}
︸ ︷︷ ︸

J (η,σ)

, (3.16)

where qunit =∏
i , j N (0,1) denotes the multivariate normal distribution with zero mean and

unitary variance. The advantage of this reformulation is that the gradient of the above stochas-

tic function can be approximated by sampling from the parameterless distribution qunit,

yielding

∇J (η,σ) ≈ ∑
ε∼qunit

∇W2
2 (νG1 ,νG2

Sτ(η+σ¯ε)). (3.17)

The problem can be thus solved by stochastic gradient descent [61]. An illustrative application

of this approach on a simple one-dimensional nonconvex function is presented in Fig. 3.3.

Under mild assumptions, the algorithm converges almost surely to a critical point, which is

not guaranteed to be the global minimum, as the problem is nonconvex.

The computational complexity of our naive implementation is O(N 3) per iteration, due to

the matrix square-root operation based on a singular value decomposition (SVD). A better

option consists of approximating the matrix square-root with the Newton’s method [66]. These

iterations only involve matrix multiplications, which can take advantage of the matrix sparsity,

thus resulting in a faster implementation than SVD. Moreover, the computation of pseudo-

inverses can be avoided by adding a small diagonal shift to the Laplacian matrices and directly

4Note that ¯ is the entry-wise (Hadamard) product between matrices.
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3.5. Experimental results

(a) Plot of f (t ) =−sinc(t ) (b) Contours of J (η,σ) = Et∼N (η,σ2)

{
f (t )

}
Figure 3.3 – Illustrative example of stochastic exploration. The white circles mark the iterates
(η0,σ0), . . . , (η∗,σ∗) produced by optimizing J (the expectation of f ) via stochastic gradient
descent. As this optimization is performed in the space of parameters η and σ (see the right
panel), the algorithm avoids local minima and successfully converges to the global minimum
of both J and f .

computing the inverse matrices, which is orders of magnitude faster. This is not a large

concern though, as it can be done in preprocessing and only needs to be done once.

3.5 Experimental results

We illustrate the behaviour of our approach, named GOT, in terms of both distance metric

computation and transportation map inference. We show how the distance can be beneficial

in computing alignment between structured graphs even when they are very different, due

to its ability to strongly capture structural properties. For similar reasons, the metric is able

to properly separate instances of random graphs according to their original model. Finally,

we show illustrations of the use of transportation maps for signal prediction in simple image

classes.

Prior to running experiments, we chose the parameters τ (Sinkhorn) and γ (learning rate)

with grid search, while S (sampling size) was fixed empirically. In all experiments, we set

τ = 5,γ= 0.2, and S = 30. We set the maximal number of Sinkhorn iterations to 10, and we

run stochastic gradient descent for 3000 iterations (even though the algorithm converges long

before, after around 1000 iterations, typically). As our algorithm seems robust to different

initialisations, we used random initialisation in all our experiments. The code is available at

https://github.com/Hermina/GOT. Finally, the algorithm was implemented using automatic

differentiation (in PyTorch with AMSGrad [91]).

3.5.1 Alignment of structured graphs

We generate a stochastic block model graph G1 with 40 nodes and 4 communities. A noisy

version of this graph, G2, is created by randomly removing edges within communities with
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Figure 3.4 – Alignment and community detection performance for distorted stochastic block
model graphs as a function of the edge removal probability. The first three plots show dif-
ferent error measures (closer to 0 the better); the last one shows the community detection
performance in terms of Normalized Mutual Information (NMI closer to 1 the better).

probability p = 0.5, and edges between communities with increasing probabilities p ∈ [0,0.6].

We then generate a random permutation to change the order of nodes in the noisy graph

G2. We investigate the influence of a distance metric on alignment recovery. We compare

three different methods for graph alignment, namely the proposed method based on the

suggested Wasserstein distance between graphs (GOT), the proposed stochastic algorithm

with the Euclidean distance (L2), and the state-of-the-art Gromov-Wasserstein distance [87]

[112] for graphs (GW), based on the Euclidean distance between shortest path matrices, as

proposed in [112]. After adjusting parameters for all compared methods, we repeat each

experiment 50 times, with different G∞s, and show the results in Figure 3.4.

Apart from analysing the distance between aligned graphs with all three error measures,

we also evaluate the structural recovery of these community-based models by inspecting

the normalized mutual information (NMI) for community detection. While GW slightly

outperforms GOT in terms of its own error measure, GOT clearly performs better in terms of

all other inspected metrics. In particular, the last plot shows that the structural information

is well captured in GOT, and communities are successfully recovered even when the graphs

contain a large amount of introduced perturbations.

3.5.2 Graph classification

We next tackle the task of graph classification. In order to successfully classify random in-

stances of different graph models, a method needs to both find a good alignment and capture

structural differences in graphs. Such a method can compare graphs in a structurally mean-

ingful way, and can therefore be used to classify graphs based on their global properties.

We create 100 graphs following five different models (20 per model), namely Stochastic Block

Model [51] with 2 blocks (SBM2), Stochastic Block Model with 3 blocks (SBM3), random regular

graph (RG) [105], Barabasy-Albert model (BA) [7], and Watts-Strogatz model (WS) [115]. All

graphs have 20 nodes and a similar number of edges to make the classification task more

meaningful. All graphs are randomly permuted.
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We use GOT to align graphs and compute the Wasserstein distance between them, and then

use these distances with a simple non-parametric 1-NN classification algorithm to eventually

classify graphs. We compare to several methods for graph alignment and comparison, followed

by the same non-parametric 1-NN classification algorithm: GW [87, 112], FGM [125], IPFP

[65], RRWM [19] and NetLSD[110].

Figure 3.5 – Confusion matrices for 1-NN classification results on random graph models:
SBM2, SBM3, RG, BA and WS respectively. Rows represent indices of actual classes, while
columns are the ones of the predicted classes. Yellow squares correspond to values close to
100%, and blue to values close to 0%. A perfect results would be a diagonal matrix of yellow
squares.

We present the results in terms of confusion matrices in Figure 3.5, accompanied with their

accuracy scores. GOT clearly outperforms the other methods in terms of general accuracy, with

GW and RRWM also performing well, even if they have more difficulties with SBMs and the WS

model. This once again suggests that GOT is able to capture well the structural information of

graphs.

3.5.3 Graph signal transportation

Finally, we look at the relevance of the transportation plans produced by GOT in illustrative

experiments with simple images. We use the MNIST dataset, which contains around 60000

images of size 28×28 displaying handwritten digits from 0 to 9, with 6000 per class. For each

class c ∈ {0, . . . ,9}, we stack all the available images into a feature matrix of size 6000×784, and

we build a graph over the resulting 784 feature vectors. To construct a graph, we first create a

20-nearest-neighbour binary graph, which we then square (multiply with itself) to obtain the

final graph, capturing 2-hop distances and creating more meaningful weights. Hence, each

class of digits is represented by a graph of 784 nodes (i.e., image pixels), yielding 9 aligned

graphs Gzero,Gone, . . . ,Gnine.

Each image of a given class can be seen as a smooth signal x ∈ R784 that lives on the corre-

sponding graph. A transportation plan T is then constructed as written in (3.5), between the

source graph (e.g., Gzero) and all other graphs (e.g., Gone, Gtwo, . . . , Gnine).

Figure 3.6 shows two original “zero" digits with different inclinations, transported to the graphs

of all other digits. We can see that the predicted digits are recognisable, because they are

adapted to their corresponding graphs, and they further keep the similarity with the original

digit in terms of inclination. This shows that transported signals successfully adapt to the

structure of a new graph, while keeping properties from the original signal. Note that images of
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Figure 3.6 – First two rows: Original “zero” digits in MNIST dataset, and their images trans-
ported to graphs of different digits. The transported digits in each row follow the inclination of
the original zero digit. Last two rows: Original “Shirt” images in Fashion MNIST dataset, and
their images transported to the graphs of other classes (“T-shirt”, “Trouser”, “Pullover”, “Dress”,
“Coat”, “Sandal”, “Sneaker”,“Bag”, “Ankle boot”).

digits 1 to 9 are fully generated from the original “zero" digit and their corresponding transport

plans T . This is particularly remarkable if we note that these newly generated images are

created simply as T x, where the transportation plan T is a linear operator and x is the “zero"

digit.

We repeated the same experiment on Fashion MNIST, and reported the results in Figure

3.6. By transporting a “Shirt” image to the graphs of classes “T-shirt”, “Trouser”, “Pullover”,

“Dress”, “Coat”, “Sandal”, “Sneaker”, “Bag”, “Ankle boot”, we can remark that the predicted

images are still recognisable with a good degree of fidelity. Furthermore, it is easy to see that

the white shirt translates to white clothing items, while the textured shirt leads to textured

items, reinforcing the observation that our signal transport function adapts a signal to the

new graph structure, while keeping some of its original properties. Note that this graph signal

transportation plan is unique to GOT as it uses the structure of graphs to adapt the signal,

even when the graphs are already aligned. Such signal adaptation methods have been largely

unexplored. This experiment confirms the unique potential that the GOT framework offers in

graph signal prediction through adaptation of a graph signal to another graph.

3.6 Conclusion

We presented an optimal transport based approach for computing the distance between two

graphs and the associated transportation plan. Equipped with this distance, we formulated

the problem of finding the permutation between two unaligned graphs, and we proposed

to solve it with a novel effective stochastic gradient descent algorithm. We evaluated the

proposed approach in the context of graph alignment, graph classification, and graph signal
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transportation. Our experiments confirmed that GOT can efficiently capture the structural

information of graphs, while our algorithm can effectively find corresponding alignments

between graphs, resulting in a structurally meaningful graph distance. Furthermore, the

proposed transportation plan leads to promising results for the transfer of signals from one

graph to another. Finally, despite the efficiency of our approach, there are several improve-

ments and generalisation that can be explored. The main limitation of our approach is the

assumption that the graphs are of the same size. To address this issue, we extend this frame-

work to one-to-many graph alignment and propose an efficient algorithm in Chapter 4. After

that, we explore the generalisation of GOT to filter graph distances, which are not limited to

distributions of smooth signals and offer a more flexible comparison of graphs. In addition

to that, we formulate an approximation to the Wasserstein distance cost, leading to more

efficient algorithms, and present this work in details in Chapter 5.
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4 One-to-Many alignment based on the
Wasserstein graph distance

4.1 Introduction

Comparing graphs of different sizes can be a particularly challenging problem. As we have

seen in the last chapter, when two graphs are not aligned a priori, graph alignment must be

performed prior to any comparison. This leads to the challenging problem of estimating an

unknown assignment between their vertices. Furthermore, when the graphs are not of the

same size, the assignment cannot be a permutation matrix anymore, and the question of

a meaningful assignment structure can be posed. Several relaxations to this problem exist,

often minimizing a suitable distance between graphs under the quadratic assignment model,

such as the `2-norm between the graph adjacency matrices [123], or the Gromow-Wasserstein

distance [117]. However, these approaches may yield solutions that are unable to capture the

importance of edges with respect to the overall structure of the graph. An alternative that

seems more appropriate for graph comparison is based on the Wasserstein distance between

the graph signal distributions presented in the last chapter, but it was limited to graphs of the

same size.

In this chapter, we build on the optimal transport framework for graph comparison, and

propose a novel method for comparing graphs of different sizes. Specifically, we first cast a

new formulation for the one-to-many graph alignment problem, which aims at matching

a node in the smaller graph with one or more nodes in the larger graph. To accommodate

for the nonconvexity of the problem, we propose a stochastic formulation based on a novel

Dykstra operator to implicitly ensure that the solution is a one-to-many soft-assignment

matrix. This allows us to devise an efficient algorithm based on stochastic gradient descent,

which naturally integrates Bayesian exploration in the optimization process, so as to help

finding better local minima. We illustrate the benefits of our new graph comparison framework

in representative tasks such as graph alignment and graph classification on synthetic and real

datasets. Our results show that the Wasserstein distance combined with the one-to-many

graph assignment permits to outperform both Gromov-Wasserstein and Euclidean distance

in these tasks, suggesting that our approach outputs a structurally meaningful distance to

49
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efficiently align and compare graphs of different sizes. These are important elements in graph

analysis, comparison, or graph signal prediction tasks.

4.2 One-to-many assignment problem

Following the previous chapter, instead of comparing graphs directly, we look at their signal

distributions, which are governed by the graphs. Specifically, we measure the dissimilarity

between two aligned graphs G1 and G2 through the Wasserstein distance of the respective

distributions νG1 =N (0,L†
1) and νG2 =N (0,L†

2), which can be calculated explicitly as

W2
2

(
νG1 ,νG2

)= Tr
(
L†

1 +L†
2

)
−2Tr

(√
L

†
2
1 L†

2L
†
2
1

)
. (4.1)

The Wasserstein distance W2
2 presented in the last chapter requires the two graphs to be of

the same size. However, we now want to compare graphs of different sizes as well, which

represents a common setting in practice. Throughout the rest of this work, we will consider

two graphs G1 = (V1,E1) and G2 = (V2,E2), and we arbitrarily denote by G1 the graph with the

smaller number of nodes.

We now compare graphs of different sizes by looking for the one-to-many assignment between

their vertices, similarly to [124]. This is illustrated in the toy example of Figure 4.1, where

every vertex of the smaller graph G1 is assigned to one or more vertices in the larger graph G2,

and every vertex of G2 is assigned to exactly one vertex in G1. Let kmax ≥ 1 be the maximum

number of nodes in G2 matched to a single node in G1. Such a one-to-many assignment can

be described by a matrix P ∈R|V1|×|V2| satisfying the constraints

Chard =

P ∈R|V1|×|V2| :

(∀i ,∀ j ) Pi j ∈ {0,1}

(∀i )
∑

j Pi j ∈ [1,kmax]

(∀ j )
∑

i Pi j = 1

. (4.2)

In words, the matrix P only takes values zero or one, which corresponds to a hard assignment.

Moreover, the sum of each matrix row has to be between 1 and kmax, ensuring that every vertex

of G1 is matched to at least one and at most kmax vertices of G2. Finally, the sum of each matrix

column has to be exactly one, so that every vertex of G2 is matched to exactly one vertex of G1.

To ensure that Chard is a nonempty constraint set, we require that

1 ≤ kmax ≤ 1+|V2|− |V1|. (4.3)

Given the true assignment matrix P∗ ∈ Chard, the larger graph G2 can be aligned to the smaller

graph G1 by transforming its Laplacian matrix as P∗L2P>∗ [124]. It further yields an associated
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Figure 4.1 – One-to-many assignment between different-size graphs.

distribution of signals given as:

ν
G2
P∗

=N (
0,(P∗L2P>

∗ )†). (4.4)

The graph alignment with the one-to-many assignment solution thus naturally leads to the use

of W2
2 (νG1 ,νG2

P∗
) of Equation (4.1) for evaluating the distance1 between graphs that originally

have different sizes.

Of course, the true assignment matrix P∗ is often unknown beforehand. We are thus interested

in estimating the best alignment, or equivalently in finding the assignment matrix P that

minimizes the distance between two graphs G1 and G2, leading to the optimization problem

minimize
P∈Chard

W2
2

(
νG1 ,νG2

P

)
. (4.5)

The main difficulty in solving Problem (4.5) arises from the constraint Chard defined in (4.2),

since it leads to a discrete optimization problem with a factorial number of feasible solutions.

To circumvent this issue, we propose a relaxation of the one-to-many assignment problem in

the next section.

4.3 Optimization algorithm

4.3.1 Relaxation

To deal with the nonconvexity of the alignment problem in Equation (4.5), we rely on two

main ideas. Firstly, we relax the binary constraint into the unitary interval, so that P becomes

1It is not a distance in the theoretical sense. For brevity, we will use the term “distance" with an abuse of
terminology.
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a soft-assignment matrix belonging to the set

Csoft =

P ∈R|V1|×|V2| :

(∀i ,∀ j ) Pi j ∈ [0,1]

(∀i )
∑

j Pi j ∈ [1,kmax]

(∀ j )
∑

i Pi j = 1

. (4.6)

Secondly, we enforce the relaxed constraints implicitly using the Dykstra operator

Aτ : R|V1|×|V2| → Csoft, (4.7)

which transforms a rectangular matrix into a soft-assignment matrix, as explained in Section

4.3.2. This operator can be injected into the cost function to remove all the constraints, thus

yielding the new unconstrained optimization problem

minimize
P̃∈R|V1 |×|V2 |

W2
2

(
νG1 ,νG2

Aτ(P̃ )

)
. (4.8)

However, problem (4.8) remains highly nonconvex, and this may cause gradient descent to

converge towards a local minimum with high probability. Hence, we define below the Dykstra

operator Aτ(P̃ ) that will allow us to devise a stochastic formulation which can be efficiently

solved with a variant of gradient descent integrating Bayesian exploration in the optimization

process. This will help finding better local minima than solving 4.8 with gradient descent.

4.3.2 Dykstra operator

The Dykstra operator uses an iterative algorithm to find a least square projection of a point

to any finite intersection of convex sets [16]. In our case, given a rectangular matrix P̃ and a

small constant τ> 0, the Dykstra operator will normalise the rows and columns of exp(P̃/τ) to

obtain a one-to-many assignment matrix, where a node in the smaller graph is matched to

one or more (but at most kmax) nodes in the larger graph. It is defined as

Aτ(P̃ ) = argmax
P∈Csoft

[〈
P, P̃

〉−τ∑
i j

Pi j log(Pi j )

]
. (4.9)

This operator can be efficiently computed by the Dykstra algorithm [27] with Bregman pro-

jections [10]. Indeed, Problem (4.9) can be written as a Kullback-Leibler (KL) projection [14]

Aτ(P̃ ) = argmin
P∈C(0)∩C(1)

KL
(
P | exp(P̃/τ)

)
, (4.10)

with
C(0) = {

Ξ ∈R|V1|×|V2|+ |Ξ1|V2| ∈ [1,kmax]|V1| },

C(1) = {
Ξ ∈R|V1|×|V2|+ |Ξ>

1|V1| =1|V2|
}
.

(4.11)
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The Dykstra algorithm [27] starts by initializing

P [0] = exp(P̃/τ) and Q [0] =Q [−1] =1|V1|×|V2|, (4.12)

and then iterates for every t = 0,1, . . .

P [t+1] =PKL
C(t mod2)

(
P [t ] ¯Q [t−1]), (4.13)

Q [t+1] = Q [t−1] ¯P [t ]

P [t+1]
, (4.14)

where all operations are entry-wise.2 The KL projections are defined, for every Ξ ∈R|V1|×|V2|+ , as

follows

PKL
C(0)

(
Ξ

)= diag

([
max

{
1,min

{∑
j Ξi j ,kmax

}}∑
j Ξi j

]
i

)
Ξ (4.15)

PKL
C(1)

(
Ξ

)=Ξdiag

([
1∑

i Ξi j

]
j

)
. (4.16)

Intuitively, projections (4.15) and (4.16) project the solution to sets C(0) and C(1), respectively.

The Dysktra algorithm alternates between these projections, ensuring the final solution is

found in the intersection of the two sets. In the limit τ→ 0, the operator Aτ yields a one-to-

many assignment matrix. It is also differentiable [69], and can be thus used in a cost function

optimized by gradient descent, as we will see in Section 4.3.3.

Connection to the Sinkhorn operator

In the special case where the two graphs have the same size |V1| = |V2| = |V |, the condition

in (4.3) leads to kmax = 1, and thus Csoft reduces to the space of doubly-stochastic matrices.

This describes the scenario that was studied in detail in the last Chapter. We now see that the

relaxed constraints introduced in this Chapter are consistent with the constraints used for

the original GOT formulation. Furthermore, in such a case, the Dykstra operator reverts to a

Sinkhorn operator [20, 38, 75, 84]. Recall that given a square matrix P̃ and a small constant

τ > 0, the Sinkhorn operator [103] normalizes the rows and columns of exp(P̃/τ) so as to

obtain a doubly stochastic matrix. Formally, it is defined as

Sτ(P̃ ) = argmax
P∈Cdoubly

[〈
P, P̃

〉−τ∑
i j

Pi j log(Pi j )

]
, (4.17)

2¯ denotes the entry-wise (Hadamard) product of matrices.
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where Cdoubly is the set of doubly stochastic matrices

Cdoubly =

P ∈R|V |×|V | :

(∀i ,∀ j ) Pi j ∈ [0,1]

(∀i )
∑

j Pi j = 1

(∀ j )
∑

i Pi j = 1

. (4.18)

It is well known that the above operator can be computed with the following iterations

P [0] = exp(P̃/τ)

L[t ] = diag
(
P [t ]

1|V |
)−1

R [t ] = diag
(
1
>
|V |L

[t ]P [t ])−1

P [t+1] = L[t ]P [t ]R [t ].

(4.19)

In the limit τ→ 0, the operator Sτ yields a permutation matrix [75]. It is also differentiable

[69], and can be thus used in a cost function optimized by gradient descent, as we will see in

Section 4.3.3.

4.3.3 Stochastic formulation

With help of the Dykstra operator, the cost function in Problem (4.8) is differentiable, and can

thus be optimized by gradient descent. However, the nonconvex nature of the problem may

cause gradient descent to converge towards a local minimum. Instead of directly solving Prob-

lem (4.8), we propose to optimize the expectation w.r.t. the parameters θ of some distribution

qθ, yielding

minimize
θ

EP̃∼qθ

{
W2

2

(
νG1 ,νG2

Aτ(P̃ )

)}
. (4.20)

The optimization of the expectation w.r.t. the parameters θ aims at shaping the distribution qθ
so as to put all its mass on a minimizer of the original cost function, thus integrating the use

of Bayesian exploration in the optimization process, possibly helping the algorithm to find

better local minima.

A standard choice for qθ in continuous optimization is the multivariate normal distribution,

leading to θ = (η,σ) with η and σ being |V1|× |V2| matrices. By leveraging the reparameteriza-

tion trick [62, 33], which boils down to setting

P̃i j = ηi j +σi j εi j with εi j ∼N (0,1). (4.21)

The problem of Equation (4.20) can thus be reformulated as

minimize
η,σ

J (η,σ) := Eε∼qunit

{
W2

2

(
νG1 ,νG2

Aτ(η+σ¯ε)

)}
, (4.22)

where qunit =∏
i , j N (0,1) denotes the multivariate normal distribution with zero mean and

unitary variance. The advantage of this reformulation is that the gradient of the above stochas-
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Algorithm 2 Approximate solution to Problem (4.5).

1: Input: Graphs G1 and G2

2: Input: Sampling S ∈N, step size γ> 0, and τ> 0
3: Input: Random initialization of matrices η0 and σ0

4: for t = 0,1, . . . do
5: Draw samples {ε(s)

t }1≤s≤S from qunit
6: Approximate the cost function with

Jt (ηt ,σt ) = 1

S

S∑
s=1

W2
2

(
νG1 ,νG2

Aτ(ηt+σt¯εs )

)
7: g t ← gradient of Jt evaluated at (ηt ,σt )
8: (ηt+1,σt+1) ← update of (ηt ,σt ) using g t

9: end for
10: Output: P =Aτ(η∗)

tic function can be approximated by sampling from the parameterless distribution qunit,

yielding

∇J (η,σ) ≈ ∑
ε∼qunit

∇W2
2

(
νG1 ,νG2

Aτ(η+σ¯ε)

)
. (4.23)

The problem can be thus solved by stochastic gradient descent [61]. Our approach is summa-

rized in Algorithm 2.

Under mild assumptions, the algorithm converges almost surely to a critical point, which is

not guaranteed to be the global minimum, as the problem is nonconvex. The computational

complexity of our naive implementation is O(N 3) per iteration, due to the matrix square-

root operation, but faster options exist to approximate this operation [66]. Moreover, the

computation of pseudo-inverses can be avoided by adding a small diagonal shift to the

Laplacian matrices and directly computing the inverse matrices, which is orders of magnitude

faster.

4.4 Experiments

We now analyse the performance of our new algorithm in two parts. Firstly, we assess the

performance achieved by our approach for graph alignment and community detection in

structured graphs of different sizes, testing the preservation of both local and global graph

properties. We investigate the influence of distance on alignment recovery and compare

to methods using different definitions of graph distance for graph alignment. Secondly, we

extend our analysis to graph classification, where we compare our approach with several

state-of-the-art methods.

Prior to running experiments, we determine the algorithmic parameters τ (in the Dykstra

operator) and γ (step size in SGD) with grid search, while S (sampling size) is fixed empirically.
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Figure 4.2 – Alignment and detection of communities in structured graphs, performed on
distorted stochastic block model graphs as a function of the percentage of fused nodes. The
first plot shows the `2 distance between aligned graphs (closer to 0 the better), while the
second one shows the community detection performance using spectral clustering in terms of
Normalized Mutual Information (NMI closer to 1 the better).

In all experiments, we set τ= 3, γ= 1 and S = 10. We set the maximal number of Dykstra itera-

tions to 20, and we run stochastic gradient descent for 1000 iterations. As our algorithm seems

to be robust to different initialisations, we used random initialization in all our experiments.

The algorithm was implemented in PyTorch with AMSGrad method [91].

4.4.1 Graph alignment and community detection

In this section, we test our proposed approach for graph alignment and recovery of communi-

ties in structured graphs. Namely, apart from the direct comparison of two graphs matrices

that shows the recovery of local changes, we evaluate the preservation of global properties by

comparing the clustering of nodes into communities. We consider two experimental settings.

In the first one (Figure 4.2), we generate a stochastic block model graph G2 with 24 nodes and

4 communities. The graph G1 is a noisy version of G2 constructed by repeatedly fusing two

randomly selected connected nodes into one, until a target percentage of nodes is merged.

We then generate a random permutation to change the order of the nodes in graph G1.

In the second experimental setting (Figure 4.3), the graph G2 is again generated as a stochastic

block model with four communities. For eachG2, six graphsG1 are created as random instances

of stochastic block model graphs with the same number of communities, but with a different

number of vertices and edges. Apart from the number of communities, there is no direct
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Figure 4.3 – Alignment and detection of communities in structured graphs, performed on
random instances of the stochastic block model as a function of the graph size. The first plot
shows the `2 distance between aligned graphs (closer to 0 the better), while the second one
shows the community detection performance using spectral clustering in terms of Normalized
Mutual Information (NMI closer to 1 the better).

connection between G1 and G2.

We investigate the influence of a distance metric on alignment recovery. We compare three

different methods for graph alignment, namely the proposed method (W2
2 ) based on the

Wasserstein distance between graphs, the proposed stochastic algorithm with the Euclidean

distance (`2) defined as ‖L1 −PL2P>‖2, and the state-of-the-art Gromov-Wasserstein dis-

tance [87] for graphs (GW), using the Euclidean distance between shortest path matrices, as

proposed in [112]. We repeat each experiment 50 times, after adjusting parameters for all

compared methods, and show the results in Figures 4.2 and 4.3.

In both experiments, we evaluate the alignment quality by computing the `2 distance between

aligned graphs. We further evaluate the structure recovery of the community-based models

with the community recovery normalised mutual information (NMI). Namely, the `2 distance

considers changes in the local structure independently, while community recovery measures

the preservation of global structure. For that reason, they can be seen as complementary

measures, taking into account both independent and local, as well as structural and global

properties. To measure the NMI, we use spectral clustering to cluster the nodes in each graph

after the alignment estimation. A good alignment should detect and preserve communities,

keeping the nodes in their original clusters and close to their original neighbours, even when

the exact neighbours are not recovered. We evaluate the quality of community recovery with
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Table 4.1 – Accuracy scores for 1-NN classification results on graph dataset.

Dataset GA IPFP RRWM GW NetLSD `2 W2
2

IMDB-B 56.72 55.22 61.19 54.54 53.73 54.54 63.63
PTC 50.75 52.24 49.25 56.71 52.23 47.76 61.19

NMI between the clusters in the original graph and the recovered clusters.

As shown in Figure 4.2, the proposed approach manages to capture the structural information

and outperform methods based on different distance metrics. This suggests that our proposed

Wasserstein distance between graphs has a strong positive significance in determining a good

graph alignment. Furthermore, while all observed methods seem to be slightly negatively

affected by a larger percentage of fused nodes in terms of the `2 norm, our method seems

have consistently good performance in terms of community recovery NMI, suggesting that

the global structural properties are well captured even under large perturbations.

In Figure 4.3, we can see a similar trend in comparison of our method with methods based

on other observed distances, reinforcing once again the positive effect of our Wasserstein

graph distance in recovering an appropriate alignment. Furthermore, we observe an increase

in performance in terms of NMI for both `2 and W2
2 . The emergence of this phenomenon,

despite the growing size difference between compared graphs, suggests that our assignment

matrix has the ability to fuse nodes into meaningful groups, forming well defined clusters.

4.4.2 Graph classification

We now tackle the task of graph classification on two different datasets: PTC [63] and IMDB-

B [121]. We randomnly sample 100 graphs from each dataset. The graphs have a different

number of nodes and edges. We useW2
2 to align graphs and compute pairwise graph distances,

followed by a simple non-parametric 1-NN classification algorithm to classify graphs with

help of the computed graph distances. We compare the classification performance with

methods where the same 1-NN classifier is used with different state-of-the-art methods

for graph alignment: GW [87, 112], GA [42], IPFP [65], RRWM [19], NetLSD [110], and the

proposed stochastic algorithm with the Euclidean distance (`2) instead of the Wasserstein

distance in Eq. (4.20) . We present the accuracy scores in Table 4.1, where the classification

with the proposed W2
2 clearly outperforms the other methods in terms of general accuracy.

Furthermore, we analyse the performance of W2
2 , GW and `2 on several examples from the

two datasets.

PTC dataset

PTC dataset contains the molecular structure of the NTP dataset. Figure 4.4 presents a set of

graph examples from two different classes, namely graphs of class 0 and 1 for respectively the
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G1 G2 G3 G4

Class 0 Class 1

D(G1,G2) < D(G1,G3) > D(G3,G4)

`2-norm 0.0058 0.0096 0.0093
GW 1.2417 0.7866 2.2204
W2

2 0.9301 0.9465 0.5457

Class 0 Class 1

D(G1,G2) < D(G1,G3) > D(G3,G4)

`2-norm 0.0476 0.0002 0.0067
GW 2.7187 3.5081 0.9897
W2

2 1.0891 2.0754 0.8202

Class 0 Class 1

D(G1,G2) < D(G1,G3) > D(G3,G4)

`2-norm 0.1580 0.0023 0.0050
GW 1.4493 0.9217 8.5444
W2

2 1.2069 0.2332 1.7364

Figure 4.4 – PTC dataset with two classes. Each row presents a set of graph examples, from
the left to the right: G1, G2, G3 and G4. G1 and G2 belong to class 0. G3 and G4 belong to class
1. Each table provides two kinds of distances: an intra (D(G1,G2) and D(G3,G4)) and an inter
class distance (D(G1,G3)). We evaluate three different methods in terms of distances in order
to classify the graphs

(
e.g., D(G1,G2) ≤D(G1,G3) or D(G3,G4) ≤D(G1,G3)

)
.
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G1 G2 G3 G4

Class 0 Class 1

D(G1,G2) < D(G1,G3) > D(G3,G4)

`2-norm 0.0083 7.0609 8.7336
GW 0.3166 0.1755 0.3096
W2

2 0.5251 0.6327 0.7653

Class 0 Class 1

D(G1,G2) < D(G1,G3) > D(G3,G4)

`2-norm 15.1141 0.0859 0.0084
GW 0.1362 0.6224 0.3233
W2

2 0.7313 1.4359 0.3120

Class 0 Class 1

D(G1,G2) < D(G1,G3) > D(G3,G4)

`2-norm 8.7374 4.5367 1.2624
GW 0.5998 0.0388 0.6294
W2

2 0.5529 0.3003 0.6718

Figure 4.5 – IMDB-B dataset with two classes. Each row presents a set of graph examples, from
the left to the right: G1, G2, G3 and G4. G1 and G2 belong to class 0. G3 and G4 belong to class
1. Each table provides two kinds of distances: an intra (D(G1,G2) and D(G3,G4)) and an inter
class distance (D(G1,G3)). We evaluate three different methods in terms of distances in order
to classify the graphs

(
e.g., D(G1,G2) ≤D(G1,G3) or D(G3,G4) ≤D(G1,G3)

)
.
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first, and last two columns. In the first example (first row), W2
2 outperforms both `2 and GW

in separating the two classes. The distinguishing feature between G1 and G3 is the number of

nodes that forms the ring, which has been captured by W2
2 , thanks to the soft permutation

applied to the larger graph G3 (|V3| > |V2|).

The second example (second row) shows in a very intuitive way how W2
2 and GW are able

to capture structural similarities in graphs, even when those largely vary in size. This is

especially clear when comparing the almost two times larger W2
2 (G1, G3) and W2

2 (G1, G2), with

structurally very similar G1 and G2, and an easy-to-imagine assignment of one node in the

graph G1 to several nodes in the graph G2. However, it is not always as simple to understand

the similarities. The third row shows an example in which all the three methods fail to find

structural similarities between graphs in the same class.

IMDB-B dataset

IMDB-B dataset contains two classes: Comedy and science-fiction movies, with several ex-

amples shown in Figure 4.5. The striking difference between example 2 (second row) and

example 3 (third row) shows that, while taking into account the global graph structure can be

crucial in distinguishing some samples (second row), it remains a challenging dataset with

very similar graphs often belonging to different clusters (third row). Namely, graphs in the

second row which belong to the same clusters share clear structural similarities, and both

the GW distance and our proposed W2
2 distance manage to capture these shared properties.

On the other hand, graphs in the third row which belong to the same clusters do not have

very clear shared properties, and even share many more structural similarities with some of

the graphs in the other cluster. This possibly explains the low accuracy across all examined

methods.

Finally, example 1 (first row) shows the high flexibility of the assignment matrix proposed

in our algorithm, where the one-to-many assignment is able to detect that graph G1 is very

close to a graph with 2 communities, even if it has 3 communities. This combination of

putting emphasis on structural information, and allowing for flexibility with the one-to-many

assignment might be the reason why W2
2 still manages to outperform the other investigated

methods.

4.5 Conclusion

In this chapter, we have proposed a new method to align graphs of different sizes. Equipped

with an optimal transport approach to compute the distance between two smooth graph

distributions associated to each graph, we have formulated a new one-to-many alignment

problem to find a soft assignment matrix that minimizes the “mass" transportation from a fixed

distribution to a permuted and merged distribution. The resulting nonconvex optimization

problem is solved efficiently with a novel stochastic gradient descent algorithm. It allows
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us to align and compare graphs of different size, and it outputs a structurally meaningful

distance. We have shown the performance of the proposed method in the context of graph

alignment and graph classification. Our results show that the proposed algorithm outperforms

state-of-the-art alignment methods for structured graphs of different sizes.
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5 fGOT: filter Graph distances using
Optimal Transport

5.1 Introduction

The graph optimal transport distance introduced in the last chapters has shown to capture

well the global structure of graphs. While that is a vital property for a graph distance in a

large number of applications, it might not always be the optimal way to compare graphs. For

example, if we are interested in how certain phenomena will spread in our graphs, the global

graph structure is important, but a more natural comparison would be based directly on the

graphs’ diffusion properties. In fact, several graph distances based on heat diffusion have been

proposed. The authors in [46] propose a direct comparison of graph heat diffusion matrices,

but stay limited to graphs of the same size. A spectral method proposed by [110] circumvents

this problem by comparing heat kernel traces, but it still does not address the graph alignment

problem. Closer to our work, a fast heat kernel distance based on optimal transport has

recently been proposed in [8]. However, this distance compares graph through available

signals, whereas our method uses the representation of graphs through signal distributions

and therefore does not assume any signal availability. The above methods are limited only to

heat diffusion models, while more general distances could often be of interest.

In this chapter, we propose the filter graph distance, a graph comparison method based on op-

timal transport, which compares graphs through signals generated with graph filters. Filtered

signals present a generic model for graph signals, capturing the structural properties of the

underlying graph through the definition of a graph filter. They offer a high level of flexibility in

modelling the relationship between data and the underlying graph, and are capable of captur-

ing a wide range of structural graph properties, including local characteristics, global structure,

and any combination of spectral graph properties. We use probabilistic distributions of such

signals to formulate a graph comparison problem using optimal transport, generalising the

graph Wasserstein distance proposed in Chapter 3. In order to render the method compu-

tationally competitive, we formulate an efficient approximation to the alignment problem

defined through filter graph distances. The approximation removes the largest computational

difficulties present in the original formulation of the alignment problem and permits the
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utilisation of much faster algorithms.

We then propose a simple and efficient solution to the approximated alignment problem using

mirror gradient descent. As the problem remains non-convex, we propose a novel stochastic

algorithm based on mirror gradient descent which can be used efficiently for any filter graph

distance. We finish by showing the benefits of our method in experimental settings. Filter

graph distances show better performance than the standard optimal transport distances on

simple graph alignment tasks, confirming the benefits of the flexibility introduced with our

method. Finally, the proposed stochastic algorithm achieves significantly better results in

community detection in structured graphs, when compared to the simple mirror gradient

descent. This suggests that our algorithm successfully takes into account the non-convexity of

the alignment problem.

5.2 Filter Graph Alignment with Optimal Transport

5.2.1 Filter graph distance

In this section we define the filter graph distance, a generalisation of the graph optimal

transport (GOT) distance [84] which has the ability to emphasize specific spectral properties

of the graph, such as high or low frequencies, local or global graph phenomena. We prioritise

these properties through filtered graph signals, exploiting the specific graph information and

finally comparing graphs through filtered signal distributions. Clearly, the choice of a graph

filter is crucial in driving the resulting distance.

Specifically, given two aligned graphsG1 andG2 with Laplacian matrices L1 and L2, we consider

the shape of their respective filtered signals. As described in 1.13, these graph signals follow a

Gaussian distribution defined through the filter:

νG1,g =N (
0, g 2(L1)

)
(5.1)

νG2,g =N (
0, g 2(L2)

)
, (5.2)

where g (·) is a graph filter function as defined in 1.10. The choice of the filter g (·) will drive

different spectral characteristics of the graph signals. For example, a heat kernel g (L) = e−τL

will model a graph based on the nature of the spread of heat through the graph, usually

emphasizing global graph properties. On the other hand, a high pass filter like g (L) = L2 will

take more local phenomena into account, prioritising high graph frequencies.

Our graph distance will compare graphs through their respective signal distributions. The

choice of filter is therefore critical in driving the resulting distance. In the example of the

heat kernel, the distance will model differences in the spread of heat through the graphs,

emphasizing global dissimilarities with the additional interpretation of comparing graphs

based on how they propagate heat through their nodes.
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Following the GOT framework introduced in Chapter 3, we can now define the filter graph

distance (fGOT) as the Wasserstein distance between the distributions νG1,g and νG2,g of graphs

G1 and G2:

W2
2

(
νG1,g ,νG2,g )= Tr

(
g 2(L1)+ g 2(L2)

)−2Tr

(√
g (L1) g 2(L2) g (L1)

)
. (5.3)

The fGOT distance builds on the idea of graph comparison through smooth signal distributions,

and extends it to the probabilistic distributions of signals filtered through graphs. This directly

compares the nature of filter responses on those graphs, putting an emphasis on the specific

properties of filtered signals. In particular, the smooth graph optimal transport (GOT) distance

can be seen as a special case of fGOT, with the low pass graph filter equal to g (L) =
p

L†.

Figure 5.1 – The enumerated list of random graphs which are compared in Figure 5.2. Graphs
are generated by randomly perturbing the original graphG0 with adding and removing random
edges. The number of nodes has not been changed.

Figure 5.2 shows the flexibility of fGOT in prioritising different phenomena in the definition of

our distance. We compare the set of graphs presented in Figure 5.1 based on different filter

distances, and sort them based on their distance to G0. There are several differences in the

ordering of graphs with different filter distances. For instance, G2 and G3 exchange places

with G6 as the filter becomes high pass, from rows 1 and 2 to rows 4 and 5. The reason for this

is that smooth filters capture the rupture in the global ring structure of G6, while the higher

pass filters focus on local changes which are more present in G2 and G3. The same example

shows the strong impact of temperature on the behaviour of the heat kernel filter. Namely,

g1(L) = e−5L has a very large reach, which makes it the smoothest filter we observed, while the

very limited reach of g3(L) = e−0.5L makes it more focused on local changes, and positions it

between the low and high pass filters in this example.

Finally, we note that a filter graph distance can be especially useful is systematic comparison

of graphs with disconnected components. Namely, traditional distances comparing Laplacian

or Adjacency matrices directly will not take any connectedness information into account.

More meaningful distances like GOT [84] or FGW [112] are not designed for disconnected

graphs, and need to use heuristic solutions in order to compare them. On the other hand,

a filter graph distance can easily control the importance of connectedness by adjusting its

spectral properties. An example of this can be seen in row 3 of Figure 5.2 with g3(L) = e−0.5L

and graph G7, where the connectedness information is taken into account without being given

too much importance.
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Figure 5.2 – Random graphs of Figure 5.1 sorted based on increasing distance to G0, for
different graph filter distances. Each row is a different filter distance, starting with very smooth
filters and going towards more high pass filter distances. Namely, the filters are given by
g1(L) = e−5L , g2(L) =

p
L†, g3(L) = e−0.5L , g4(L) =p

L, g5(L) = L2.

5.2.2 Scalable alignment approximation

The distance introduced in (5.3) requires to know a correspondence between vertices of the

two graphs. This requirement is often not realistic, and a proper alignemnt between graph

vertices needs to be recovered in order to make graphs comparable. In order to take different

alignments into account, we define a probability distribution for the permuted version of G2

as

ν
G2,g
P =N (

0, g 2(PL2P T )
)
. (5.4)

We now search for the optimal alignment P by minimising the graph Wasserstein distance

between G1 and different permutations of G2:

minimize
P∈Cperm

Tr
(
g 2(L1)+ g 2(PL2P T )

)−2Tr

(√
g (L1)g 2(PL2P T )g (L1)

)
, (5.5)

where Cperm denotes the set of permutation matrices:

Cperm =

P ∈RN×N :

(∀i ,∀ j ) Pi j ∈ {0,1}

(∀i )
∑

j Pi j = 1

(∀ j )
∑

i Pi j = 1

. (5.6)
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While the alignment algorithms presented in the last two chapters could successfully be used

to solve (5.5), the time complexity of such algorithms is prohibitive for large graphs or large sets

of graphs. For this reason, we present an alternative cost in order to enable faster optimisation

algorithms.

Lemma 1. Let P ∈ Cperm be a permutation matrix and L ∈RN×N an arbitrary graph Laplacian

matrix. Then g (PLP T ) = P g (L)P T for any graph filter g (·) defined as in 1.10.

Proof. We write the eigenvalue decomposition of L as L = UΛU T . Notice that the eigen-

value decomposition of PLP T is then (PU )Λ(PU )T . Namely, with ui an eigenvector of L

corresponding to the eigenvalue λi , we have:

PLP T Pui = PLui =λi Pui . (5.7)

Therefore,

g (PLP T ) = g ((PU )Λ(PU )T ) = (PU )Ĝ(PU )T = PUĜU T P T = P g (L)P T , (5.8)

where Ĝ is given by 1.11.

Lemma 2. Let G1 and G2 be two graphs with their respective Laplacian matrices L1 ∈ RN×N

and L2 ∈RN×N . Then, for any graph filter g (·) defined as in 1.10, and P ∈ Cperm :

W2
2

(
νG1,g ,νG2,g

P T

)≤ Tr
(
g 2(L1)+ g 2(L2)

)−2
〈

g (L1)P g (L2),P
〉

. (5.9)

If L1 and L2 further represent permuted versions of the same graph:

min
P∈Cperm

W2
2

(
νG1,g ,νG2,g

P T

)= min
P∈Cperm

Tr
(
g 2(L1)+ g 2(L2)

)−2
〈

g (L1)P g (L2),P
〉= 0 (5.10)

Proof.

W2
2

(
νG1,g ,νG2,g

P T

)︸ ︷︷ ︸
J

= Tr
(
g 2(L1)

)+Tr
(
P g 2(L2)P T )−2Tr

(√
g (L1)P g 2(L2)P T g (L1)

)
(5.11)

= Tr
(
g 2(L1)

)+Tr
(
g 2(L2)P T P

)−2
∑

i
λi

(√
g (L1)P g 2(L2)P T g (L1)

)
(5.12)

= Tr
(
g 2(L1)

)+Tr
(
g 2(L2)P T P

)−2
∑

i

√
λi

(
g (L1)P g 2(L2)P T g (L1)

)
(5.13)

= Tr
(
g 2(L1)

)+Tr
(
g 2(L2)

)−2
∑

i

√
λi

(
g (L1)P g (L2)P T P g (L2)P T g (L1)

)
(5.14)

with λi (A) denoting the eigenvalues of a matrix A. Here, (5.12) follows because for a symmetric

positive-semidefinite matrix Tr (A) =∑
i λi (A) and (5.14) because PP T = P T P = IN . Now with
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σi (A) denoting the singular values of a matrix A, the equality becomes:

J = Tr
(
g 2(L1)

)+Tr
(
g 2(L2)

)−2
∑

i

√
λi

((
g (L1)P g (L2)P T

)(
g (L1)P g (L2)P T

)T
)

(5.15)

= Tr
(
g 2(L1)

)+Tr
(
g 2(L2)

)−∑
i

(
σi

(
g (L1)P g (L2)P T )+σi

((
g (L1)P g (L2)P T )T

))
, (5.16)

because λi (A AT ) = σ2
i (A) = σ2

i (AT ). Finally, (5.17) follows from
∑

i σi (A +B) ≤ ∑
i (σi (A)+

σi (B)), and (5.18) because for a symmetric positive-definite matrix C , σi (C ) =λi (C ):

J ≤ Tr
(
g 2(L1)

)+Tr
(
g 2(L2)

)−∑
i

(
σi

(
g (L1)P g (L2)P T + (

g (L1)P g (L2)P T )T
))

(5.17)

= Tr
(
g 2(L1)

)+Tr
(
g 2(L2)

)−∑
i
λi

(
g (L1)P g (L2)P T + (

g (L1)P g (L2)P T )T
)

(5.18)

= Tr
(
g 2(L1)+ g 2(L2)

)−Tr
(
g (L1)P g (L2)P T + (

g (L1)P g (L2)P T )T
)

(5.19)

= Tr
(
g 2(L1)+ g 2(L2)

)−2Tr
(
g (L1)P g (L2)P T )

(5.20)

= Tr
(
g 2(L1)+ g 2(L2)

)−2
〈

g (L1)P g (L2),P
〉

(5.21)

The result of Lemma 2 opens the door to optimising over a surrogate cost function, which we

denote as

W̃2
2

(
νG1,g ,νG2,g

P

)= Tr
(
g 2(L1)+ g 2(L2)

)−2
〈

g (L1)P g (L2),P
〉

, (5.22)

and which will allow for a faster algorithm to solve the resulting problem, removing the need

to find a matrix square root in every iteration. We will now propose an algorithm to efficiently

optimise over 5.22, searching for the optimal alignment P .

5.3 FGOT algorithm

As we have seen in the previous Chapters, the main difficulty in solving an alignment problem

arises from the constraint that P is a permutation matrix, since it leads to a discrete optimi-

sation problem with a factorial number of feasible solutions. We relax the constraints and

propose to circumvent this issue through an implicit constraint reformulation.

We look for a soft assignment between the graphs, namely, a matrix P ∈R|V1|×|V2| satisfying the

constraints

Cfuzzy =

P ∈R|V1|×|V2| :

(∀i ,∀ j ) Pi j ≥ 0

(∀i )
∑

j Pi j = 1
|V1|

(∀ j )
∑

i Pi j = 1
|V2|

. (5.23)

Note that P ∈ Cperm implies P ∈ Cfuzzy up to a rescaling factor of
p|V1||V2|. Using the surrogate
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cost function (5.22), we can now write the optimisation problem (5.5) as

minimize
P∈Cfuzzy

W̃2
2

(
νG1,g ,νG2,g

P

)
. (5.24)

To solve the non-convex optimisation problem in Equation (5.24), one can use the projected

mirror gradient descent, where the projection is computed according to the Kullback-Leibler

(KL) metric. Adding the entropic regularisation εH(P ) to the problem yields the following

iterative algorithm:

Pt+1 =PKL
Cfuzzy

(
Pt ¯ exp

(−α(∇W̃2
2

(
νG1,g ,νG2,g

Pt

)−ε∇H(Pt )
)))

(5.25)

where the Kullback-Leibler projection PKL
Cfuzzy

(·) can be computed in function of the Sinkhorn

operator Sτ:

PKL
Cfuzzy

(P ) =Sτ(−τ logP ). (5.26)

However, the optimisation problem in Equation (5.24) remains non-convex, and thus very

susceptible to converging to locally optimal solutions. To address this issue, we propose a novel

stochastic mirror gradient optimisation algorithm. We formulate the optimisation problem

(5.24) with an implicit constraint, taking into account the KL projection of the (non-stochastic)

mirror gradient descent algorithm. For simplicity, we denote the KL projection to Cfuzzy with

B(.), and the optimisation problem becomes:

B(P ) :=PKL
Cfuzzy

(P ) (5.27)

minimize
P∈R|V1 |×|V2 |

W̃2
2

(
νG1,g ,νG2,g

B(P )

)
. (5.28)

The above cost function is differentiable [69], and can thus be optimised with a gradient based

optimisation algorithm.

To avoid converging towards a local minimum, we aim at optimising the expectation of

W̃2
2

(
νG1,g ,νG2,g

B(P )

)
w.r.t. the parameters θ of some distribution pθ, that is

minimize
θ

EP∼pθ

{W̃2
2

(
νG1,g ,νG2,g

B(P )

)}︸ ︷︷ ︸
U (θ)

. (5.29)

The optimization of U aims at shaping the distribution pθ so as to put all its mass on a

minimizer P∗ of W̃2
2 , thus integrating the use of Bayesian exploration in the optimization

process. This approach is commonly used in many areas of stochastic search, such as evolution

strategies [47, 116, 94].
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Algorithm 3 Approximate solution to Problem (5.5)

1: Input: Graphs G1 and G2

2: Input: Sampling S ∈N, step size α> 0 and τ> 0
3: Input: Constant initialization of matrix η0 and random initialization of σ0

4: for t = 0,1, . . . do
5: Draw the samples ε(n)

t from N (
0, I

)
.

6: Estimate the gradient (gηt , gσt ) with the first-order stochastic approximations:

gηt ≈ 1

N

N∑
n=1

∇W̃2
2

(
νG1,g ,νG2,g

B(ηt+σt◦ε(n)
t )

))
gσt ≈ 1

N

N∑
n=1

ε(n)
t ◦∇W̃2

2

(
νG1,g ,νG2,g

B(ηt+σt◦ε(n)
t )

))
7: Update (ηt ,σt ) using (gηt , gσt ):

ηt+1 = ηt −αtσ
2
t ◦ gηt

dt = αt

2
σ2

t ◦ gσt

σt+1 =
√
σ2

t +d 2
t −dt

8: end for
9: Output: P =B(η∗)

The updates of variational gradient descent can be equivalently rewritten as

θt+1 = argmin
θ

θ>∇U (θt )+ 1

2αt
‖θ−θt‖2. (5.30)

The Euclidean distance can be replaced by a Bregman divergence D, resulting in the mirror-

descent update:

θt+1 = argmin
θ

θ>∇U (θt )+ 1

αt
D(θ,θt ). (5.31)

For exponential-family distributions, the Kullback-Leibler (KL) divergence corresponds to a

Bregman divergence (Raskutti and Mukherjee, 2015):

D(θ,θt ) =DKL(pθ ||pθt ) = EP∼pθ

{
log

pθ(P )

pθt (P )

}
. (5.32)

The use of KL divergence results in better steps when optimising the parameter of a probability

distribution [3].
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When pθ is the diagonal Gaussian distributionN (
η,diag(σ2)

)
with θ = (η,σ), the KL divergence

is given by:

DKL(pη,σ ||pηt ,σt ) = 1

2

D∑
d=1

(
σ2

d

σ2
t ,d

+ (ηt ,d −ηd )2

σ2
t ,d

−1+ log
σ2

t ,d

σ2
d

)
. (5.33)

Then, the gradients of DKL w.r.t. η and σ are given by

∂

∂ηd
DKL(pη,σ ||pηt ,σt ) = ηd −ηt ,d

σ2
t ,d

∂

∂σd
DKL(pη,σ ||pηt ,σt ) = σd

σ2
t ,d

− 1

σd
,

(5.34)

and the mirror-descent update boils down to

ηt+1,d = ηt ,d −αtσ
2
t ,d

∂U (θt )

∂ηd

σt+1,d =

√√√√
σ2

t ,d + (αtσ
2
t ,d

2

∂U (θt )

∂σd

)2 −
αtσ

2
t ,d

2

∂U (θt )

∂σd
.

(5.35)

The stochastic mirror gradient descent algorithm for fGOT is summarised in Algorithm 3.

Finally, we note that the computational complexity of our algorithms boils down to the

computational complexity of matrix multiplications for each iteration of the algorithm. In the

worst case, this complexity is O(|V1|2|V2|+|V2|2|V1|). However, much more efficient algorithms

exist for square matrix multiplication (O|V |2.38), and for a variety of special cases, such as

sparse matrices. The gain in computational complexity compared to the algorithms presented

in previous chapters is significant, as algorithms proposed in Chapter 3 and 4 both perform

SVD decomposition in each iteration in order to compute the matrix square root present

in the original cost function (5.5). In our work, the stochastic version of Algorithm 5.5 was

implemented in PyTorch, using the AMSGrad method [91].

5.4 Experimental results

5.4.1 Speed comparison on a graph alignment task

In this experiment, we tackle the problem of alignment of unstructured random graphs across

different graph sizes. We compare the execution time, as well as the alignment quality of

different algorithms and filters. In particular, for each predefined graph size between 10

and 100, we perform 50 repetitions of aligning two random Erdos-Renyi graphs using the

following algorithms: Gromov-Wasserstein (GW) [87], with graphs compared based on their

shortest path matrices, as proposed in [112]; the GOT algorithm, as proposed in [84]; the mirror
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gradient descent (MGD) algorithm for fGOT with the original GOT low pass filter g (L) =
p

L†;

as well as the stochastic MGD and MGD with a high pass filter g (L) = L2.

Figure 5.3 – Speed comparison of different algorithms and filters on a task of random graph
alignment. The first plot shows the log execution time for each algorithm, while the second
one shows the `2 distance between aligned graphs, across different graph sizes.

As the graphs in question have no particular structure, we expect high-pass filters to perform

better than low-pass ones. Namely, the l2 norm compares local differences between graphs,

which are better captured by high pass filters. Furthermore, as the graphs do not have a

particularly strong global structure, the smooth filters do not have the advantage of capturing

the global behaviour of graphs. We can see this phenomenon in Figure 5.3, where high pass

filters clearly outperform their low-pass counterparts. This reinforces the importance of the

right filter choice for each problem, and emphasizes the benefits of the flexibility offered by

fGOT.

At the same time, we can observe the significant speed improvement that both of our ap-

proximated fGOT algorithms offer compared to the original GOT formulation presented in

Chapter 3. The mirror gradient descent algorithm shows competitive performance using all

observed filters, with performance differences coming from filter particularities and speed

of convergence. In particular, it is worth noting that using the g (L) = L†/2 filter, the proposed

approximation renders the computation of the GOT distance comparable to the GW distance

speed, circumventing the largest drawback of the GOT framework. On the other hand, the
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stochastic mirror gradient descent algorithm still offers a great speed improvement, while

keeping the stochastic nature of the algorithm, successfully accounting for the nonconvexity

of the alignment problem. This allows the algorithm to capitalise on both speed and accuracy,

offering better performance than its non-stochastic counterpart at a faster rate than GOT. In

summary, our two proposed algorithms offer a choice between maximising accuracy or speed,

while both provide a very competitive trade-off between the two.

5.4.2 Community detection in structured graphs

Figure 5.4 – Alignment and community detection performance for distorted stochastic block
model graphs as a function of the percentage of fused nodes (Experiment 1). The first plot
shows the community detection performance using spectral clustering in terms of Normalized
Mutual Information (NMI closer to 1 is better), while the second one shows the `2 distance
between aligned graphs (closer to 0 is better).

We test the performance of fGOT on a graph alignment and community detection task in

structured graphs. We consider two experimental settings: namely the comparison of a

graph with a noisy version of the same graph, and its comparison with a random structured

graph. We investigate the influence of the filter model defining the graph distance metric on

alignment recovery. Namely, a filter which manages to capture the main properties of these

graphs should recognize and align the global graph communities even in these challenging

settings, and therefore achieve a better alignment of these structured graphs. In addition to

the filter distance, we evaluate the performance of our stochastic mirror algorithm, by showing
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two results for each graph filter distance: computed with mirror gradient and stochastic mirror

gradient. We use the state-of-the-art Gromov-Wasserstein (GW) distance [87] as baseline,

where graphs are compared based on their shortest path matrices, as proposed in [112]. We

compare alignment results obtained with three different graph filter models, namely g (
p

L†),

which corresponds to the approximated version of the original GOT distance for smooth

signals [84], and two heat kernel distances: g (L) = e−0.2L and g (L) = e−0.8L .

To evaluate the alignment recovery, we resort to two measures: Normalised mutual informa-

tion (NMI) of community alignment, and the difference between the aligned graphs in terms of

the `2 norm. We estimate the community alignment of these structured graphs by performing

spectral clustering in both (aligned) graphs, separating their nodes into 4 communities. The

two measures can be considered as complementary, with NMI capturing the recovery of global

structure, and `2 considering local differences independently.

Figure 5.5 – Alignment and community detection performance for random instances of
stochastic block model graphs as a function of the graph size (Experiment 2). The first plot
shows the community detection performance using spectral clustering in terms of Normalised
Mutual Information (NMI closer to 1 is better), while the second one shows the `2 distance
between aligned graphs (closer to 0 is better).

In Experiment 1, we generate a stochastic block model graph G2 with 24 nodes and 4 commu-

nities. The graph G1 is constructed as a noisy version of G2 by randomly collapsing edges until

a target percentage of nodes is fused. Graph G1 is then further randomly permuted, in order to
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change the order of its nodes. Each experiment has been repeated 50 times with a different G2,

after adjusting parameters for all compared methods. The results are given in Figure 5.4.

Then, in Experiment 2, both graphs are generated randomly as instances of stochastic block

models with 4 communities. For eachG2 with size 24, we generate six graphsG1 with a different

number of edges and vertices (between 12 and 24). While we keep the number of communities

equal for a meaningful community detection task, there is no other direct connection between

G1 and G2. Each experiment has been repeated 50 times with a different G2, after adjusting

parameters for all compared methods. The results are given in Figure 5.5.

Both experiments demonstrate the superior performance of our stochastic algorithm com-

pared to the simple mirror descent algorithm, especially in the case of heat kernel models.

The improvements are especially visible in the community detection tasks, as the settings

become more challenging. Furthermore, the stochastic version of the heat kernel distances

outperforms both the original GOT distance, as well as the GW in both experiments. This

shows that, even when observing only smooth filters, the flexibility offered by considering

different filter models can affect our results substantially and bring considerable benefits.

Finally, the results in terms of the l2 distance are consistent with the NMI, suggesting that the

stochastic algorithm improves the alignment significantly both in terms of global structure

recovery and more local alignment properties.

5.5 Conclusion

We proposed fGOT, a flexible generalisation of the graph optimal transport framework that

uses graph filter models to encode specific graph properties. We exploit the generative model

of filtered signals, which allows for a representation of graphs through the distribution of

filtered signals. It thus permits an efficient comparison through the Wasserstein distance

of these distributions. In order to provide a more scalable algorithm, we formulate an ap-

proximation to the generic filter optimal transport cost, circumventing the computation of

its most expensive parts. We propose an efficient stochastic algorithm based on Bayesian

exploration, which adapts mirror gradient descent to this challenging non-convex problem.

We show the performance of our method in the context of graph alignment and community

detection. Experimental results show that both our proposed algorithms offer a superior

performance in terms of speed, when compared to the original GOT algorithm. Furthermore,

our novel stochastic algorithm offers superior performance to its non-stochastic counterpart

in terms of accuracy and alignment quality, reaching the best trade-off between speed and

accuracy. Finally, experiments on both unstructured and structured graphs show that the filter

graph distance brings valuable flexibility, with problem-adjusted filters outperforming the

state-of-the-art in different simple tasks.
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6 Conclusion

6.1 Summary

In this thesis, we have investigated the problem of representing graphs through data distri-

butions. We have shown how such a new probabilistic representation of a graph is both very

successful in capturing important graph properties, and versatile in its applications, enabling

the exploitation of various probabilistic tools to address problems in graph analysis.

We first tackled the problem of learning multiple graphs from structured data mixtures. We

showed how the probabilistic representation of graphs through filtered signals can be used to

create a generative model for a mixture of structured signals. The proposed model extends

graph inference to a more general scenario in which the signals are mixed and naturally live

on multiple graphs. In our experiments, we demonstrated the advantages of our methods

in terms of interpretability and coping with high dimensionality, and evaluate our results in

terms of both clustering and graph learning performance. Additionally, we showed that our

model offers important findings in a natural application of functional brain network inference.

Our model successfully recovered coherent activation patterns and meaningfully structured

brain networks from resting state fMRI data, but also provided interesting insights into the

organisation of functional brain graphs with respect to the structural connectome.

Next, we employed the graph representation in order to introduce a structurally meaningful

distance between graphs. Namely, using a probabilistic representation of graphs through

smooth graph signal distributions, we proposed a novel framework based on optimal transport,

in order to derive the Wasserstein graph distance, as well as a transportation map for signals

between graphs. We have further formulated a new graph alignment problem based on

the graph Wasserstein distance that permits to compare graphs while paying attention to

their structure, and proposed an efficient stochastic algorithm which accommodates for

the nonconvexity of the problem. In our experiments, we have demonstrated the structural

benefits that our framework introduces into the graph comparison problem, as well as the

efficiency of our graph alignment algorithm. Namely, our graph optimal transport distance

outperforms the state-of-the-art methods on both structural graph alignment and graph
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classification tasks, and shows interesting results in terms of graph signal prediction.

We then extended our framework to graphs of different sizes, formulating a one-to-many

assignment problem, where each node in the smaller graph is matched with one or more

nodes in the larger graph. We have proposed an optimisation algorithm using a novel Dykstra

operator, which successfully imposes a (soft) one-to-many structure on the alignment matrix.

Our experiments on graph alignment and graph clustering tasks confirm the benefits of our

optimal transport framework in the challenging settings where graphs have different sizes,

and show the efficiency of our novel algorithm in finding a meaningful assignment between

graphs.

Finally, we further extended our framework to consider graph representations through proba-

bilistic distributions of filtered graph signals. We showed how such different representations

lead to a large flexibility in our graph Wasserstein distance, and can help to prioritise specific

graph properties in distance computation. We have then formulated an approximation to

the graph filter distance cost, enabling the usage of more scalable algorithms. We proposed

a novel stochastic mirror gradient descent algorithm in order to tackle the nonconvexity of

the alignment problem. Our proposed stochastic algorithm leads to a great improvement in

recovering a meaningful graph alignment, and our experiments in community detection in

structured graphs show the strong benefits of the flexibility introduced through the filter graph

distance.

6.2 Future directions

While the graph representation used in this thesis proved to contain very meaningful informa-

tion about the graphs, it is surely not unique. Namely, a Gaussian distribution for signals is not

always realistic, and representations through different signal distributions could be attractive

in many scenarios. In particular, one where signals are modelled as a sparse combination of

graph dictionary atoms [109], could be very useful for example in scenarios in which data is

expected to originate and spread from only a few graph nodes. It would be very interesting to

see the impact of such an intuitively different graph representation on applications similar to

those presented in this thesis.

Next, the Graph Laplacian Mixture Model introduced in Chapter 2 is successful in recovering

multiple graphs from a mixture of structured signals. However, there are several extensions

that could be made in order to make the model more adapted to various applications. Firstly,

the graphical model assumes independence between cluster participations of different signals,

which is often not the case in applications with temporal dynamics, where a cluster of a signal

might depend on the previous history. Incorporating such information by utilizing hidden

Markov models is an interesting research avenue for future work. Another interesting extension

would be to impose similarities or differences on graphs inferred through GLMM, reducing

the difficulty of the learning problem. Such properties could be enforced in a structurally

meaningful way by using our graph Wasserstein distance introduced in Chapter 3.
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An interesting extension to the graph optimal transport framework introduced in Chapters 3,

4 and 5 would be to incorporate available signal values into the distance in order to further

inform the graph alignment recovery. A natural way to do so in our framework would be to

use the signal transportation function to measure the distance between signals on different

graphs. Namely, transporting signals to the same graph would make them directly comparable

and emphasize information meaningful for the graph alignment. In addition, the signal

transportation function could be of great interest in domain adaptation, and such a direction

could be a promising research avenue.

Finally, in fields such as neuroscience, biology and machine learning, there are several possi-

ble applications of our work and algorithms proposed in this thesis. One such application,

explored in Appendix A, could be explored with graph comparison with optimal transport. It

would be interesting to see whether additional insights on the organisation of functional graph

networks could be inferred using the graph Wasserstein distance. Another such application

lays in the emerging and active field of graph generation. A very important step in constructing

a graph generative model is efficient and meaningful graph comparison. It would be very

interesting to see how our structurally meaningful graph distance affects such models, the sort

of challenges it would introduce, and the benefits its structure-preserving properties would

bring.
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A Appendix: Inference of Brain Net-
works

Here we give additional information about the inference of Multiple functional Brain Networks

using GLMM, part of which has been presented as an experiment in Section 2.5.3. After the

introduction, we describe the materials and methods in detail, present our experiments and

results, and finish with a discussion of our findings.

A.1 Introduction

Functional magnetic resonance imaging (fMRI) has provided extensive possibilities for prob-

ing the functional architecture of the human brain. Spontaneous fluctuations of blood-

oxygenation-level dependent (BOLD) signal has been particularly interesting since the discov-

ery that brain regions can be synchronised in activity despite the absence of task or external

stimuli [15]. Several networks of coherent activity between remote areas have long been iden-

tified, including the visual area, auditory cortex, language, as well as attention-related areas.

One particular network associated with resting-state (RS) studies is the default mode network

(DMN), which shows reduced activity when subjects perform an externally oriented task [44],

and contrastingly becomes more engaged when a subject undergoes internal mentation [4].

In these experiments, we use our GLMM framework proposed in Chapter 2 to estimate multiple

functional brain networks, or metastates, by building upon an emerging field of graph learning

[25]. From this point onwards, we will use the terms metastates and networks interchangeably

to pertain to repeating functional spatial patterns in the brain. Starting from the whole-brain

time-series of parcellated fMRI data, GLMM infers different metastates directly from the data,

and at the same time, extracts the corresponding underlying graph that gives rise to these

networks.

81



Appendix A. Appendix: Inference of Brain Networks

A.2 Materials and Methods

A.2.1 Data and Preprocessing

The functional data were downloaded from the publicly available Human Connectome Project

(HCP) database, WU-Minn Consortium. MRI acquisition protocols of the HCP are extensively

described and discussed in [41]. We used 50 subjects consisting of 4 sessions of RS scans

(1200 volumes each, a total of 4800 frames), and 2 sessions each of task fMRI data (working

memory, relational memory, social, language, emotion, and motor tasks). Functional volumes

underwent the standard preprocessing steps [111]. All functional images were realigned to the

mean functional volume for each participant. The realigned volumes were registered to the

structural T1 data using rigid-body registration (SPM12, https://www.fil.ion.ucl.ac.uk), and

were de-trended (i.e., constant, linear, quadratic) to remove signal drifts. Then, the images

were smoothed using a Gaussian kernel with FWHM equal to 6mm. Finally, we used the

Automated Anatomical Labeling (AAL, 90 regions) atlas that was resliced to fMRI resolution to

parcellate fMRI volumes and compute regionally averaged fMRI signals. Meanwhile, structural

data of each subject were downloaded from the HCP and were processed using MRtrix3 (http:

//www.mrtrix.org/). The SC of each subject was generated based on the total number of fibers

connecting two regions divided by the volumes of connecting regions. The normalization

is done to ensure that the strength of the connection is not biased towards the size of the

bundles. The final SC matrix was obtained by averaging all SC matrices of all subjects.

A.2.2 Experimental details

We first demonstrate the powerful use of the tool by capturing distinct networks corresponding

to each task epochs of task fMRI data downloaded from the Human Connectome Project (HCP)

database. The performance of the method is validated by comparing the extracted probability

of occurrence of each metastate to the timing of the task paradigm. We show that the extracted

metastates consist of brain areas that are consistent with previously observed regions that are

implicated in the corresponding task. We then apply the GLMM to RS fMRI data and obtain

the most prevalent networks of spontaneously interacting brain areas.

Furthermore, in addition to understanding the organizational principles of human brain

function, recent studies in neuroimaging are also starting to elucidate the role of structure in

cognition and behavior [90, 73]. To extract meaningful interpretation of the learned graphs,

we show that the estimated graph Laplacian matrices from fMRI reveal indicative similarities

with the structural connectome (SC) derived from diffusion-weighted MRI (DW-MRI). We

demonstrate that the degree of their similarity captures behaviorally-relevant gradient that

is consistent with the previously observed macro-scale organization of the cortex that ranks

low-level sensory processing to high-level cognitive ones [90, 71].

We then validated the performance of the proposed framework using task fMRI by demon-

strating that the timing of the task paradigms are captured by the averaged γ-values across all
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subjects. The hyper-parameters of the model (∆, θ) are optimized using Normalized Mutual

Information (NMI) using the task paradigm as the reference ground truth. Meanwhile, the

number of clusters (K) is optimized using a feedback step where t cannot expect it to cor-

respond to the number of tasks, since the metastates may be formed as a combination of

tasks. For that reason, we evaluated the results by iteratively changing K and performing a

visual evaluation of the dynamics of γ with respect to the experimental task paradigm. Doing

so, we observe that the meaningful clusters consistently appear in a very similar fashion,

regardless of the proposed number of clusters K. Furthermore, fixing K in such a way results

in better overall accuracy, suggesting that the number of optimal clusters might be different

from the number estimated through more traditional methods. We denote this method as K-γ

itero-homogeneity of metastates.

As for RS, which is lacking a ground truth, the number of clusters K was chosen based on

the optimized silhouette measure and the consensus clustering procedure [78], which is a

resampling-based method for optimal class discovery. Both metrics suggested 3 as the optimal

number of clusters. K has eventually been varied according to the procedure mentioned above,

in order to capture multiple networks. In practice, changing the optimal number of clusters

does not seem to affect the final estimation, instead, it opens the possibility of inferring more

networks.

A.2.3 Comparison of learned functional graphs to brain structure

An important benefit of the GLMM algorithm compared to other clustering methods is the

estimation of graph Laplacians (L). Not only this does help in obtaining more meaningful

networks or metastates (means), but it also conveys much more information and details

about our clusters. From here onwards, we use the term graphs to refer to the learned graph

Laplacians and networks or metastates to refer to the functional means or clusters.

We explored the similarity of the learned functional graphs to the structural connectome

derived from DW-MRI by using the spectral euclidean difference as a metric. This is done

by first decomposing the adjacency matrices (A) of each graph derived from the Laplacians

(A = D −L) into their constituent eigenvalues and eigenvectors. The eigenspectrum of A are

transformed using the procrustes algorithm [60, 43] to match the ordering of the eigenvectors

of SC.

The output of the Procrustes transform is the rotation matrix that is used to retrieve the

transformed (functional) eigenvalues. In particular, given the rotation matrix Z generated by

the transformation, the rotated eigenvalues are computed as follows:

λ̂= Z EW, (A.1)

where W is the weighted adjacency matrix of the functional network taken into consideration

and E is the vector of its original eigenvalues.
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Considering all the functional networks inferred, regardless of the task, we computed the

euclidean spectral distance between the eigenvalues of the SC and the transformed graphs.

This metric reflects the degree of similarity between the learned graphs in each task and

the anatomy. Thus, each network will have a certain score of distance that indicates how

that function couples with structure: the smaller the metric, the closer the estimated graph

to the structure. We perfomed bootstrap repetitions runs to extract networks that show

statistically different values. We then performed a Neurosynth meta-analysis similar to the one

implemented by Margulies et.al. [71] and Preti et.al. [90], where topic terms from the database

[https://neurosynth.org/] were matched with the derived euclidean spectral difference of the

functional graphs and the SC. The active areas of the estimated networks were correlated with

the database present in literature, thereby capturing a number of possible behavioral domains.

The same 24 topics adopted these two studies were considered. This behavioral gradient has

been sorted according to a weighted mean of the resulting z-statistics.

A.3 Results

A.3.1 Estimated network time-courses are consistent with the timing of the task
paradigms

The proposed framework extracts consistent patterns of brain activity in each of the considered

tasks, and along with it is the estimation of their likelihood to occur at each time-point. Fig. A.1

displays the estimated time-courses for six selected tasks overlaid with the task paradigm

which are distinguished in colors. Metastate 2 and 3 of the Language task capture time-points

when subjects undergo the Story and Math epochs, respectively while Metastate 1 corresponds

to the resting epoch of the task. Meanwhile, Metastate 3 consistently captures the RS epoch in

the Social task. However, the algorithm does not distinguish the metastates corresponding to

Mental and Random phases since the likelihood estimation of Metastate 2 corresponded to

both task epochs. On the other hand, Metastate 3 captures the transition between the rest and

task epochs. The same observation can be made in the other tasks, in particular, the motor,

relational, and working memory. In each of these tasks, some metastates capture transitions

between epochs and uniquely identifies whether it is a transition between rest and task epoch

or a transition between two different task epochs i.e., Metastate 4 in Relational Memory

captures transitions between Relation and Match, while Metastate 2 captures transitions

between rest and any of the two tasks.

A.3.2 GLMM captures spatial networks corresponding to each task consistent with
their known established neurophysiological descriptions

Fig. A.2(A) and (B) displays an example set of results that we obtained when running the

GLMM algorithm to the Language and Emotion tasks, respectively. The RS epochs of both

tasks reveal metastates that are akin to the DMN network. The regions implicated in Metastate
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Figure A.1 – Estimated timecourses with respect to selected task paradigms. The γ values
are plotted over the experimental paradigm of Language (A), Emotion (B), Social (C) and
Relational Memory (D) tasks. The black signal corresponds to the probability of belonging to a
specific metastate.

2 (Math) include the parietal areas (superior and inferior) and the frontal region (e.g., middle

frontal gyrus, opercular part of the inferior frontal gyrus). These regions are well in-line

with the established associated areas corresponding to numbers and calculations [6]. On the

other hand, active areas in Metastate 3 (Story) are the hippocampus, frontal, and the bilateral

superior and anterior temporal cortex, consistent with previously observed regions implicated

with story processing tasks [9].

Meanwhile, Metastate 1 corresponding to the Rest epoch of Emotion task again captures the

DMN pattern. Metastates 2 and 3 corresponding to the Fear and Neutral phases, respectively

both show stark differences in terms of the regions activated. In particular, Fear triggers

activations in the bilateral central gyrus, superior occipital gyrus, and the parietal cortices.

These regions cover the somatosensory cortex, which is a known region responsible not only

for processing sensory information from various parts of the body but also for emotional
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Figure A.2 – metastates corresponding to each epoch of the (A) Language task and (B) Emo-
tional task paradigms. Each node corresponds to each brain region in the AAL atlas. The colors
denote the signs of the extracted clusters (means), the edges denote the connectivity derived
from the estimated graph Laplacians, and the size the nodes indicate the degree of each node’s
connections. The rest epochs of the two tasks show regions of the default mode network.

processing, including generation of emotional states and emotion regulation [23, 17, 64].

Meanwhile, the metastate for Neutral shows activation of visual regions that are strongly

related to shape [5, 50]. Unexpectedly, we found relatively low means in the amygdala, a

well-known region that is typically activated in emotional matching paradigms [49, 89].

A.3.3 Learned graphs bear similarity to the underlying brain structure and their
relation reveals behaviorally-relevant organization

For each of the tasks evaluated, we obtained different metastates and corresponding graph

Laplacian matrices. We, therefore, have a total of 28 metastates across all tasks, and conse-

quently, also 28 graph Laplacian matrices. We evaluated the similarity of these graph Laplacian

matrices to the underlying brain structure derived from DW-MRI. Fig. A.3(A) shows the group-

averaged structural connectome across all subjects considered in this work, and Fig. A.3(B)
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Figure A.3 – Learned Laplacian matrix and its relation to the structural connectome and
behavior. (A) Group-averaged SC matrix corresponding to all subjects considered in this work.
(B) Adjacency matrix extracted from an example Laplacian matrix. (C) Similarity between SC
and different FC measures: using (1) GLMM-based adjacency extracted from learned graphs
and classical measures of FC using (2) Pearson Correlation and (3) Partial Correlation. (D) Meta-
analysis of SC-FC relationship using spectral distance as a metric. The distinction between
low level and high-level processing arises thanks to the sorting of the spectral difference and
the z-score assigned to a behavioral topic.

displays an example adjacency matrix computed from the estimated graph Laplacian matrix

of an example task. The adjacency matrix is visually more sparse than the SC. Moreover, a

direct statistical measure (i.e., Pearson correlation) between the estimated GLMM adjacency

matrices and SC reveals a similarity values within the range of r = 0.48 to r = 0.60 as is shown in

Fig. A.3(C). Compared to the classical FC-SC relationship where FC is obtained by correlating
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inter-regional BOLD time-courses using either Pearson correlation or Partial correlation, the

strength of FC-SC coherence is much higher using GLMM-based FC.

We then performed a meta-analysis [122] of this SC-FC relationship by using spectral difference

as a measure. In essence, this translates to a dissimilarity index between the SC and the GLMM-

based FC obtained in all tasks and RS fMRI. Fig. A.3(D) shows the results of the meta-analysis

performed using the Neurosynth database, analogous to previous works of Preti, et.al. [90] and

Marguiles, et.al., [71]. We displayed seven metastates that showed a statistically significant

spectral difference. This is shown in the figure as columns which is sorted in increasing

order. The 24 behavioral topics describing the rows are sorted according to their z-score. The

ordering of both axes reveals an organized behavioral gradient that naturally arises from this

SC-FC relationship. Low-level processes (highlighted in blue) reveal a general low spectral

difference while high-level cognitive behavior (in red) show high difference. A diagonal trend

can be glimpsed.

A.4 General findings

We proposed to use our new framework for extracting repeating functional brain patterns

based on a generative model that assumes functional data as a collection of signals that

live on multiple graphs. Using this technique, we were able to obtain: (1) distinct sets of

networks that the brain cycles to, (2) the likelihood of these networks to occur at each time-

point, and (3) the underlying graphs that describe the interactions of the regions composing

these networks. We validated the approach by demonstrating that the extracted metastates

corresponded to spatial patterns that are consistent with their established neurophysiological

descriptions. We also showed that the probability of these networks to occur at each time-

point generally captured the timing of the task paradigms we evaluated. Then, we applied the

approach to RS data to reveal some of the well-known RS networks, such as the DMN, visual,

auditory/attention, and salience networks. Finally, we took advantage of the estimated graph

Laplacian matrices to understand the interactions of the regions composing these networks,

and how they are related to the underlying brain structure obtained from DW-MRI. We showed

that the adjacency matrices computed from the graph Laplacians bear closer similarity to SC

than conventionally defined FC measures, e.g., Pearson correlation of inter-regional BOLD

signals. We then demonstrated that the degree of similarity between the learned graphs and

the SC captures behaviorally-relevant gradient which distinguishes low-level and high-level

cognitive processes that is consistent with previously observed macro-scale organization in

the cortex [90, 71].
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