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1 Integrated Actuators Laboratory (LAI), École Polytechnique Fédérale de Lausanne

(EPFL), Neuchâtel, Switzerland
2 Division of Engineering and Computer Science, NYU Shanghai, Shanghai, People’s

Republic of China

E-mail: xiaotao.ren@epfl.ch

20 August 2021

Abstract. Soft Magnetic Composites (SMCs) possess promising electromagnetic

characteristics and attract intense research and application interest in the engineering

community. Fabrication of composites with customized architecture is feasible due to

the recent advances in additive manufacturing techniques. The systematic progress of

computational optimization has opened up the possibility of devising such structures.

This article presents newly structured SMCs which can recently be possible by additive

manufacturing. The effective permeability and eddy current losses are studied in

comparison to those properties of traditionally fabricated SMCs. With this hollow

inclusion arrangement, for the same iron volume fraction, the effective permeability

can be greatly enhanced (more than tenfold) while the eddy current losses decrease

considerably. For the same magnetic property, we save iron material, make the

composite lighter, and benefit from a lower level of eddy current losses with the hollow

configuration.
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1. Introduction

Composites are useful because they potentially incorporate the properties of the

component materials and their use in manufacturing applications is increasing at an

accelerated rate [1]. In addition to the physical properties, the microscopic arrangement

of the components would contribute significantly to the macroscopic behavior of

the composite [2]. The emergence of modern manufacturing techniques, analytical

homogenization and multiscale numerical algorithms has boosted their development.

Soft Magnetic Composites (SMCs) exhibit outstanding electromagnetic features

from their constitutive components and benefit from their architecture. They are

generally composed of magnetic inclusions such as iron granules embedded in the
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dielectric medium [3]. Inclusions ensure magnetization capacity while the matrix

confines eddy currents in each granule, which considerably reduces the losses. Increasing

academic research and engineering applications are engaged in the development of

SMCs[4]. SMCs are traditionally manufactured by powder metallurgy [5, 6, 7]. Research

interests mainly focus on composite modelings [8, 9, 10, 11, 12, 13, 14, 15] for the effective

permeability and eddy current losses. Efforts are continued on the delicate treatment in

powder coating or searching new powder alloy or insulation layer so as to enhance the

properties [16, 17]. Optimizing the manufacturing process and exploring new powder

and matrix materials are drawing research attention [18, 19, 20]. Nevertheless, the

indispensable insulation layer significantly hinders the magnetic permeability. Even

for a thin insulation film and a large volume fraction of the magnetic powder of a

relatively high property, the effective permeability of the composite is still quite limited.

It is necessary to explore the novel composite structures with the help of additive

manufacturing (AM) technology.

The rapid development of AM will boost SMC advancement by providing the

capability to easily fabricate new composites [21, 22, 23]. It allows us to break through

the barrier of the traditional metallurgy. Metallic 3D printing is developing fast and

is becoming increasingly popular [24, 25, 26]. In this article, we study a novel SMC

structure with 3D-printable hollow inclusions. The effective permeability and electrical

resistance are modeled and compared with the results of SMCs with solid inclusions.

2. Novel SMC microstructure

SMCs are a lattice of inclusions immersed in an insulating medium. Since the size of

the inclusion is smaller than that of the device made of SMCs, the composite is usually

considered spatially periodic. For this bi-phased composite, the medium is numbered

phase 1 and the inclusion phase 2. Isotropic transverse 2D and isotropic 3D composites

are considered in this study which lead to three different configurations listed in table 1.

Table 1: Three configurations for the composites.

Name Case

I 2D composite with out-of-plane field

II 2D composite with in-plane field

III 3D composite

2.1. Solid inclusion

A cell, denoted Ωα ⊂ Rd(d = 2, 3), as shown in figure 1a, consisting of an inclusion and

its portion of the matrix, is studied to understand the characteristics of the composite.

The inclusion is usually simplified as a sphere, or more generally, an ellipsoid (a disk or

an ellipse in 2D). To attain high concentration, the inclusion is usually considered as
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Figure 1: Sketch of a composite cell of size ` with a minimal insulation film thickness

δ`. (a) SMC cell, Ωα, by traditional powder metallurgy; (b) Newly structured SMC cell,

Ωβ

a cube (a square in 2D). In this work, we consider only the cube (square) inclusion to

discuss a full range of the iron material. Let χ2 denote the volume fraction of the iron

inclusion. For a small magnitude of loadings, the magnetic behavior of the constituents

can be modeled with a linear constitutive law (permeability µ1 for the matrix which

is typically of non-magnetic material so its permeability value is equal to the vacuum

permeability µ0, and µ2 for the iron).

For 2D composites (assuming infinitely long structure in the third direction), the

out-of-plane effective permeability µ̃αI can be described by the Wiener upper bound:

µ̃αI = χ2µ2 + (1− χ2)µ1 (1)

The in-plane effective permeability µ̃αII in the 2D case (assuming transverse isotropy)

and the isotropic effective permeability µ̃αIII in the 3D case (assuming isotropy) can be

accurately estimated with a classical Maxwell Garnett (MG) model [27],

for k = II, III µ̃αk = µ1 +
χ2µ1 (µ2 − µ1)

µ1 +Nk (1− χ2) (µ2 − µ1)
(2)

with Nk the depolarization coefficients (NII = 1/2 and NIII = 1/3). This estimate,

originally determined for dilute ellipsoidal inclusions, also provides an accurate estimate

for high volume fraction (χ2 > 95%) of inclusions [28].

The MG estimate is a strictly increasing function with respect to the inclusion

material property µ2. If the permeability contrast is sufficiently great, the estimate

actually converges toward a limit value,

for k = II, III lim
µ2→∞

µ̃αk = µ1 +
χ2µ1

Nk(1− χ2)
(3)

which does not depend of µ2.
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When the iron volume fraction reaches a maximum (while still keeping a thin

insulation layer), its value is,

lim
µ2→∞
δ→0

µ̃αII = lim
µ2→∞
δ→0

µ̃αIII =
µ1

2δ
(4)

which is independent of the dimension.

The option of enhancing the effective permeability of the composite by increasing

the permeability of the inclusion is not applicable, especially when µ2 ≥ 1000µ1.

Another option is to increase the volume fraction of the inclusion. However, the inclusion

should be well insulated to reduce the eddy current losses, which limits the increment of

the inclusion volume fraction. Therefore, we propose a novel composite topology with

a hollow inclusion.

2.2. Hollow inclusion

The Maxwell Garnett model (2), which accurately describes the effective permeability for

composites with α microstructures, is actually equal to the lower Hashin-Shtrikman (HS)

bound [29, 30]. It means that this structure provides the lowest effective permeability

one can expect when exhibiting isotropy.

If the two constituents are exchanged, then the effective permeability of the

composite would be the highest one (higher HS bound) when exhibiting isotropy. The

expressions of HS bounds are (N is equal to 1/2 in 2D and 1/3 in 3D),

µ̃HS− = µ1 +
χ2

1

µ2 − µ1

+
N (1− χ2)

µ1

µ̃HS+ = µ2 +
1− χ2

1

µ1 − µ2

+
Nχ2

µ2

(5)

Exchanging the constituents may increase the effective permeability but a major

problem would arise; the iron phase would then percolate and since it is electrically

conductive, it would generate important eddy current losses which contradicts the

purpose of SMCs. However, other structures of composites may exhibit an effective

permeability higher than the lower HS bound while still preventing the iron phase to

percolate.

It inspires the idea for the new composite microstructure shown in figure 1b. Such a

structure can exhibit a higher effective permeability than the one for the α configuration

while maintaining the insulation of the iron phase (fixed size: δ`). Denote Ωβ the domain

of this SMC cell. The new configuration Ωβ is topologically different from Ωα.

For 2D composites with an out-of-plane loading, the effective permeability µ̃βI is

still given by the Wiener upper bound

µ̃βI = µ̃αI (6)
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because this component in the 2D case does not depend on the microstructure but only

on the volume fraction of the iron.

The other cases of hollow inclusion with an insulation film are quite similar on

several aspects to the cases of bi-coated assemblage [2, Sec. 7.4, pp.117-118] of cylinders

or spheres. The effective permeability of such assemblages actually provide good

estimates for the composites with the β configuration,

for k = II, III µ̃βk = µ1 +
1− χ1

Nkχ1

µ1

+
1

µ2 − µ1 +
1− χ1 − χ2

Nkχ2

µ2

− 1− χ1

µ2 − µ1

(7)

with χ1 the volume fraction of the insulation layer (χ1 = 1 − (1 − 2δ)d). It is worth

mentioning that this formula encompasses the α configuration which is a specific β

configuration with no core (corresponding to χ1 +χ2 = 1). One can notice that µ̃βII and

µ̃βIII are monotonically decreasing functions of χ1 (in other words, strictly decreasing

functions of δ). When δ = 0, µ̃βII and µ̃βIII attain the HS upper bound µ̃HS+. The

effective permeability as a function of the iron volume fraction χ2 and the relative

insulation size δ is illustrated in figure 2. A thinner outer insulation could definitely

increase the effective property but it is equally critical to maintain the insulation film

to confine the eddy currents for magneto-dynamics applications.

0 0.2 0.4 0.6 0.8 1

0

100

200

300

δ =
0.1

%

δ =
0.2%

δ = 0.5%

δ = 1%

µ̃ H
S
+
, δ
=
0

µ̃HS− = µ̃α
II

χ2

µ̃/µ0

(a) 2D (case II): µ̃βII

0 0.2 0.4 0.6 0.8 1

0

100

200

300

δ =
0.1

%

δ =
0.2%

δ = 0.5%

δ = 1%

µ̃ H
S
+
, δ
=
0

µ̃HS− = µ̃α
III

χ2

µ̃/µ0

(b) 3D (case III): µ̃βIII

Figure 2: Effective permeability predicted by (7) as a function of iron volume fraction

for different δ values. µ2 = 1000µ0 and µ1 = µ0.

The maximum value attained by µ̃βII and µ̃βIII is also given by (4) when considering

the large permeability contrast and a thin insulation layer.

2.3. Validation with finite element models

The bi-coated homogenization model (7) is verified by numerical calculations. It is not

necessary to discuss the case I for both the α and β configurations since the Wiener
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upper bound is an exact solution for the effective permeability. In this section, we

compare the effective permeability values predicted from (7) with those obtained by the

Finite Element Method (FEM) for 2D with an in-plane magnetic field (case II) and for

3D (case III). A constant magnetic permeability µ2 = 1000µ0 is used for the iron and

magneto-static calculations are carried out to determine the effective permeability of

the composite. In the following, the effective permeability µ̃FEM determined by FEM

will be considered as the reference result.

For the α case, the inclusion is a square in order to span the largest possible range

of volume fractions for the iron. Similarly, for the β case, the hollow geometry inside

the iron material is also a square. The comparison between the analytical estimates and

the FEM values of the effective permeability is presented in figure 3.
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Figure 3: Comparison of the effective permeability predicted by (7) with the one

determined by FEM as a function of the volume fraction of iron. µ2 = 1000µ0, µ1 = µ0,

and δ = 1%.

It can be observed that, for the same volume fraction of the iron, the β arrangement

exhibits a much better magnetic property than the α one. The effective permeability

of the α arrangement varies closely along the HS lower bound. At high volume fraction

(χ2 ∼ 0.90), the effective permeability for the α arrangement can drop sharply for

a small volume fraction decrease (when trying to use less iron material) while the β

configuration can maintain the same level of permeability value.

To evaluate the accuracy of the analytical models, the relative error is defined by

ηµ =
µ̃− µ̃FEM

µ̃FEM

× 100%. (8)

The errors are plotted in figure 4. It shows that the MG model (2) underestimates

the effective permeability for all the volume fraction range in the α configuration. On the

other hand, for the β configuration, the errors decrease with the volume fraction. The

bi-coated model (7) generally overestimates the effective permeability for low volume

fractions. It is interesting to observe that for a major part of the range of volume

fractions, (χ2 > 0.35 for δ = 1%, and χ2 > 0.50 for δ = 0.5%), the relative error is
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below 3% which means the bi-coated analytical model is accurate for estimating the

effective permeability for β microstructures.
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Figure 4: Relative errors (8) as a function of the volume fraction of the iron. µ2 = 1000µ0

and µ1 = µ0.

It is worth noticing that at low iron filling factor, the analytical model for the β

configuration is less accurate. But since high effective magnetic permeability is expected,

attention is mainly focused on high volume fraction of the iron where the bi-coated model

(7) predicts accurately.

3. Eddy current losses

Eddy current circulates in electrically conductive parts when loaded with an alternating

magnetic field. According to Faraday’s law, an alternating magnetic field generates an

electromotive force (emf), which produces an electric field E. In a geometric domain Ω

with electric conductivity σ, eddy current arises, which causes Joule heat known as the

eddy current losses. The definition of the volumetric loss density Q is the Joule losses

dissipated per unit volume,

Q =
1

2|Ω|

∫
Ω

σE2dΩ (9)

where |Ω| indicates the volume of the domain Ω. At low working frequency, the losses

are proportional to the conductivity, the square of the induction magnitude (B0), the

square of the frequency (f), and the square of the dimension [8, 31]. Define

Q0 = π2σf 2`2B2
0 (10)

so that Q = KQ0, where K is a shape and volume fraction dependent dimensionless

factor.
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3.1. Solid inclusion

Eddy current losses for composites with solid inclusions of different shapes have already

been examined in various studies (see for instance [8, 9, 13, 32]). The analytical formulae

derived in these studies are based on the assumption of uniform magnetic induction in

the iron particles, which is verified for high volume fractions. For square or cubic

inclusions, the homogenized eddy current losses of the composites are estimated with:

Qα
I =

9

128

(
χ2 µ2

χ2 µ2 + (1− χ2)µ1

)2

Q0

Qα
II =

2

3

(
χ2 µ2

(1 + χ2)µ2 + (1− χ2)µ1

)2

Q0

Qα
III =

81

128

1
3
√
χ2

(
χ2 µ2

(1 + 2χ2)µ2 + 2(1− χ2)µ1

)2

Q0

(11)

Simpler expressions can also be derived when considering large contrasts:

Qα
I ≈

9

128
Q0

Qα
II ≈

2

3

(
χ2

1 + χ2

)2

Q0

Qα
III ≈

81

128

χ
5/3
2

(1 + 2χ2)2
Q0

(12)

3.2. Hollow inclusions

For hollow inclusions, the eddy current loss models are more complex to determine

because the magnetic induction in the iron inclusion is not uniform (except for the case

I). Similarly to the strategy used for effective permeability in Section 2, we will use

an equivalent bi-coated cylinder/sphere to determine analytical formulae for the eddy

current losses of composites with the β microstructure.

The analytical formulae are (see Appendix for a detailed derivation):

Qβ
I =

9

128
ΦQ0

Qβ
II =

2

3

(
1− χ1

2− χ1

)2

ΦQ0

Qβ
III =

81

128

(1− χ1)5/3

(3− 2χ1)2
ΦIIIQ0

(13)

with Φ and ΦIII the dimensionless coefficients depending on the volume fractions and

the permeability contrast (see Appendix for the exact expressions).

The eddy current losses calculated from (13) are illustrated in figure 5 for different

δ values. It can be observed that as the insulation becomes thinner (δ decreases), eddy

current losses slightly decrease for I, II, III cases. As opposed to the effective permeability

which is quite sensitive to δ values, the effect of δ on the eddy current losses is negligible
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for these three cases (maximum relative difference is 7%, 3%, and 10% respectively for

these three cases for the considered δ values in this study).
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Figure 5: The theoretical eddy current losses as a function of iron volume fraction for

different δ values. σFe = 1.12× 107 S/m, µ2 = 1000µ0, µ1 = µ0, and f = 100 Hz.

3.3. Validation with finite element models

Harmonic computations of unit cells of composites in the α and β configurations have

been performed by FEM and eddy current losses can be post-processed from these

computations. Similarly to the effective permeability, the influence of volume fraction

of the iron χ2 is particularly studied. In order to evaluate the accuracy of the analytical

estimates, an error indicator is also verified. The relative error is defined by

ηQ =
Q−QFEM

QFEM

× 100% (14)

In the FEM and analytical calculations, the parameters as detailed in table 2 have

been used. The eddy current losses for the α and β microstructures in the I, II, and III

cases are illustrated in figure 6.

Table 2: List of parameters used for the validation with FEM.

Parameter (unit) Value

B0 (T) 1

f (Hz) 100

σFe (S/m) 1.12× 107

` (µm) 50

δ (%) 1

µ1/µ0 (-) 1

µ2/µ0 (-) 1000
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Figure 6: Eddy current losses as a function of the volume fraction of iron in the I, II,

and III cases.

It can be seen that the α configuration exhibits a constant (except at very low

filling factors) eddy current loss density, while the losses in the β case are a quasi-linear

function of the iron volume fraction for the case I. Another conclusion which can be
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drawn is the fact that the losses are generally lower in the β configuration than in the

α one for a given volume fraction of the iron (which means with the same effective

permeability in the case I).

It also appears that the analytical models provide an accurate estimate of the losses

for both the α and β configurations in case I. The formula Qα
I estimates perfectly the

eddy current losses in α configuration with a relative error always below 0.035%. The

Qβ
I estimate is accurate at high volume fractions but is less accurate (still generally less

than 10%) for low volume fractions. This is due to the fact that the equivalent bi-coated

cylinder used to derive the formula does not fully capture the path of eddy currents in

a hollow square, hence the slight error in the analytical estimate.

For the case II, it can be observed that the β composites dissipate roughly the same

amount of energy as the α ones. At high volume fraction (χ2 > 0.3), the β composites

have a slightly better loss characteristic than the α ones. At low volume fraction, the

opposite phenomenon is observed. For both the α and β composites the eddy current

losses are roughly a quasi-linear function of the iron volume fraction.

Once again, the analytical formulae are quite accurate in the case II since the error

stays below 5% for the majority of the iron volume fraction (χ2 > 10%). It can also be

noticed that the analytical formula for the losses in the β configuration is accurate to

1% (except for very low volume fractions).

For the case III, we observe that for the whole iron volume fraction range, the β

composites dissipate less energy than the α ones. When we decrease slightly the iron

material at high volume fraction, the eddy current losses would decrease more for the

β composites than for the α ones which is exactly the opposite to what is observed

for the effective permeability. It means that the β configuration can maintain a higher

permeability than the α one while exhibiting much lower losses. For the majority of the

volume fraction range (χ2 > 0.3), the analytical estimates predict accurately the losses,

with an error below 8%.

4. Comparison

One potential interest for SMC designers could be to use less iron in the composite in

order to reduce the material cost and also to reduce the material density. Removing iron

means increasing the insulation layer for the α configuration, while it means increasing

the epoxy core in the center (but maintaining the insulation layer) for the β one.

All the previous results are plotted as a function of the iron volume fraction. But it

could be useful to compare the α and β configurations for the same effective permeability.

The iron saving ratio η2 defined as,

η2 =
χα2 − χβ2
χα2

(15)

is plotted in figure 7 for the case II and case III problems. There is no need to calculate

η2 for the case I because both the α and β composites in the case I exhibit the same

permeability for the same volume fraction.
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Figure 7: Iron material saving ratio as a function of effective permeability for δ = 1%.
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Figure 8: The quantitative loss decrease as a function of normalized effective

permeability for δ = 1%.

It can be observed that as the effective permeability decreases, the material saving

increases. As an example, with the goal of attaining 90% of the maximal effective

permeability, this figure shows that the β composites require 50 ∼ 60% less iron than

α composites when δ = 1%. Even more iron saving could be obtained with smaller

values of δ but then macroscopic eddy currents would flow between the different cells

and should not be neglected anymore.

Likewise, the quantitative loss decrease as a function of normalized effective

permeability is drawn in figure 8.

Similarly to the conclusion about iron saving, it shows that β composites exhibit

a much lower loss level than α composites for a given effective permeability. With the

same example of 90% of the maximum effective permeability, the β composites exhibit

55 ∼ 75% less losses than the α composites.

It can be observed in figure 9 that the β configuration dissipates significantly less

energy for the same effective permeability. At high effective values, a slight compromise
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Figure 9: Eddy current losses mapping to the effective permeability for δ = 1%.

of permeability can lead to a sharp reduction in the eddy current losses for the β

configuration. In comparison, also at high permeability range, the eddy current losses

for the α configuration remain virtually flat for a small variation of effective permeability.

5. Conclusion

We present a new topology of soft magnetic composites with hollow microstructures.

The effective permeability and eddy current losses are studied and modelled for the new

structure. The models are verified by numerical results. The permeability and losses of

the new structure are compared with those of the traditional one. The new structure

has a stable effective permeability at high volume fractions of the iron when the fraction

slightly varies. Meanwhile, for the whole fraction range, the new structure dissipates less

energy. A third advantage is that the new structure can significantly save iron material

for the same permeability requirement.

Appendix: Formulae for eddy current losses

Appendix A.1. Low frequency assumption

In order to predict the EC loss density of the composite, the induced electric field

distribution in the iron phase (the only electrically conductive constituent in the

composite) needs to be determined (see (9)). The induced electric field E can be related

to the vector potential A (with B = ∇×A):

E = −jωA (A.1)

Assuming the frequency is low enough, the induced current density does not

strongly influence the magnetic induction and field distribution. It means that a

quasi-static situation accurately represents the magnetic induction distribution for the

dynamic case as long as the skin effect does not appear. That is the reason why the
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Figure A1: Equivalent doubly coated cylinder/sphere assemblage.

induced EC losses will be derived from a potential vector A determined in a quasi-static

situation.

Q =
ω2

2|Ω|

∫
Ω

σA2dΩ (A.2)

Since only the iron phase exhibits electrical conductivity (σ), it is equal to:

Q =
2σπ2f 2

|Ω|

∫
ΩFe

A2dΩ (A.3)

For solid inclusions (α configuration), one can easily construct some EC loss density

estimates (see (11) and (12)) which show a very good accuracy as long as the assumption

of uniform magnetic induction in the iron phase is verified. For hollow inclusions (β

configuration), such estimates are more complex to build because the magnetic induction

in the iron phase varies locally and highly depends on the microstructure, which means

the potential vector A is usually more difficult to determine.

Appendix A.2. Equivalent bi-coated cylinder/sphere composite

Hollow inclusions microstructures (β configuration) are difficult to handle analytically.

Instead, an equivalent doubly coated cylinder (in 2D) or sphere (in 3D) assemblage,

as shown in figure A1, will be used for determining the EC losses. Such an equivalent

problem was already used to determine the effective permeability for β composites (see

(7)).

The ratios of the radii R1, R2 and R3 are fixed so that the volume fractions for

each phase correspond to the ones in the real hollow composite problem.(
R2

R1

)d
= 1− χ1,

(
R3

R1

)d
= 1− χ1 − χ2 (A.4)

with d the dimension of the problem.

Another identity can be given by introducing a relative volume fraction p (with

p = χ2/ (1− χ1)):(
R3

R2

)d
= 1− p (A.5)
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Appendix A.3. 2D hollow problem: out-of-plane magnetic field

The out-of-plane magnetic field being uniform in the whole assemblage, the

corresponding magnetic induction in each phase can be easily retrieved:
B1,z = B3,z =

1

1− χ2 + χ2c
B0 = γIB0

B2,z =
c

1− χ2 + χ2c
B0 = cγIB0

(A.6)

with c the contrast of permeabilities (c = µ2/µ1) and B0 the magnitude of the

macroscopic induction.

Due to the revolution symmetry of such a problem, the vector potential A only exhibits

an azimuthal component Aθ which only depends on r in cylindrical coordinate system

(r,θ,z). Its general form is:

Aθ(r) =

(
a′r − b′

r

)
(A.7)

and

Bz =
1

r

∂rAθ(r)

∂r
= 2a′ → a′ =

Bz

2
(A.8)

The two coefficients a′ and b′ are different for each phase of the composite. It should

also be noted that b′ is null in the core.

In the iron phase, Aθ will be written as:

Aθ(r) =
cγIB0

2

(
ar − bR2

3

r

)
(A.9)

a and b are dimensionless coefficients which can be determined by knowing the induction

B2,z in the phase and also ensuring the continuity of the potential vector at the interface

with the core (r = R3). It gives:
a = 1

cγIB0

2
(a− b)R3 =

γIB0

2
R3 → b = 1− 1

c

(A.10)

The volumetric loss density Qbi
I can be obtained by using (A.3):

Qbi
I =

2σπf 2

R2
1

∫ R2

R3

∫ 2π

0

Aθ(r)
2rdrdθ (A.11)

which expands to:

Qbi
I =

c2γ2
I

R2
1

σπ2f 2B2
0

∫ R2

R3

(
ar − bR2

3

r

)2

rdr (A.12)

Using the identities of the radii ratios, the EC loss density is:

Qbi
I =

1

4
(1− χ1)2 c2γ2

I λR
2
1σπ

2f 2B2
0 (A.13)

with λ a dimensionless parameter equal to:

λ = a2 − (1− p)2

(
a2 +

4abp

1− p + 2b2 ln(1− p)
)

(A.14)
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Appendix A.4. 2D hollow problem: in-plane magnetic field

Assuming that the macroscopic magnetic induction B is along the x direction

(magnitude B0), the uniform magnetic induction in the core B3,x is:

B3,x =
1

1 +
p

4
(c− 1)

(
2− χ1

(
1 +

1

c

))B0 = γIIB0 (A.15)

In this case, the vector potential A in the assemblage only exhibits an out-of-

plane component Az which can be analytically expressed in a simple form in cylindrical

coordinates:

Az(r, θ) =

(
a′r − b′

r

)
sin θ (A.16)

and 
Br =

1

r

∂Az(r, θ)

∂θ
=

(
a′ − b′

r2

)
cos θ

Bθ = −∂Az(r, θ)
∂r

=

(
a′ +

b′

r2

)
sin θ

(A.17)

with again a′ and b′ two coefficients which are different in each phase. (b′ is null in the

core)

In the iron phase, Az will be written as:

Az(r, θ) =
cγIIB0

2

(
ar − bR2

3

r

)
sin θ (A.18)

a and b can be determined by considering the continuity of the normal induction and the

continuity of the tangential magnetic field at the interface with the core (which exhibits

a uniform field B3,x = γIIB0):
cγIIB0

2
(a− b) = γIIB0 → a− b =

2

c
cγIIB0

2
(a+ b) = cγIIB0 → a+ b = 2

(A.19)

which gives: 
a = 1 +

1

c

b = 1− 1

c

(A.20)

It should be noted that these coefficients are very similar to the ones determined in the

previous section (b is identical and a is slightly different but is actually the same when

considering large contrast of permeabilities which is the case here).

Since Az is a very similar function compared to Aθ in the previous section, the EC loss

density Qbi
II is also very similar to Qbi

I :

Qbi
II =

1

8
(1− χ1)2 c2γ2

IIλR
2
1σπ

2f 2B2
0 (A.21)
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with the same formula for the dimensionless parameter λ (with the same b coefficient

but a is slightly different).

It should also be noted that the coefficient in the denominator is different because of

the integral of sin2 θ in this case.

Appendix A.5. 3D hollow problem

Assuming that the macroscopic magnetic induction B is along the z direction

(magnitude B0), the uniform magnetic induction in the core B3 is:

B3 =
1

1 +
2p

9
(c− 1)

(
3− χ1

(
2 +

1

c

))B0 = γIIIB0 (A.22)

In this case, the vector potential A in the assemblage only exhibits an azimuthal

component Aθ which can be analytically expressed in a simple form in spherical

coordinates (r, θ, φ):

Aφ(r, θ) =

(
a′r − b′

r2

)
sin θ (A.23)

and 
Br =

1

r sin θ

∂Aφ(r, θ) sin θ

∂θ
= 2

(
a′ − b′

r3

)
cos θ

Bθ = −1

r

∂rAφ(r, θ)

∂r
= −2

(
a′ +

b′

2r3

)
sin θ

(A.24)

with again a′ and b′ two coefficients which are different in each phase. (b′ is null in the

core)

In the iron phase, Aφ will be written as:

Aφ(r, θ) =
cγIIIB0

3

(
ar − bR3

3

r2

)
sin θ (A.25)

a and b can be determined by considering the continuity of the normal induction (at

θ = 0) and the continuity of the tangential magnetic field (at θ = π/2) at the interface

with the core (which exhibits a uniform field B3 = γIIIB0):
2cγIIIB0

3
(a− b) = γIIIB0 → a− b =

3

2c

2cγIIIB0

3

(
a+

b

2

)
= cγIIIB0 → a+

b

2
=

3

2

(A.26)

which gives: 
a = 1 +

1

2c

b = 1− 1

c

(A.27)

It should be noted that these coefficients are again very similar to the ones determined

in the previous section (b is identical and a is slightly different but is actually the same



Improved Properties of SMCs xviii

when considering large contrast of permeability which is the case here).

The volumetric loss density Qbi
III can be obtained by using (A.3):

Qbi
III =

3σπf 2

2R3
1

∫ R2

R3

∫ π

0

∫ 2π

0

Aφ(r, θ)2r2 sin θdrdθdφ (A.28)

which expands to:

Qbi
III =

4c2γ2
III

9R3
1

σπ2f 2B2
0

∫ R2

R3

(
ar − bR3

3

r2

)2

r2dr (A.29)

Using the identities of the radii ratios, the EC loss density is:

Qbi
III =

4

45
(1− χ1)5/3 c2γ2λIIIR

2
1σπ

2f 2B2
0 (A.30)

with λIII a dimensionless parameter equal to:

λIII = a2 − (1− p)2

(
5b2 +

5ab

1− p +
a2 − 5ab− 5b2

3
√

1− p

)
(A.31)

Appendix A.6. Simplification for large contrasts

The expressions of the losses can be simplified when considering large contrast values,

which is the case in this study (c = 1000). The expressions for γI, γII and γIII can then

be approximated to:

c2γ2
I ≈

1

(1− χ1)2p2

c2γ2
II ≈

16

(2− χ1)2p2

c2γ2
III ≈

81

4(3− 2χ1)2p2

(A.32)

For the same reasons (large contrast c), a and b coefficients can be approximated to

unity. Then, λ and λIII can be simplified into:
λ

p2
≈ 1− 2

(
1

p
− 1

)(
1 +

(
1

p
− 1

)
ln(1− p)

)
= Φ

λIII

p2
≈ 1− 3

(
1

p
− 1

)(
1 + 3

(
1

p
− 1

)(
1− 1

3
√

1− p

))
= ΦIII

(A.33)

which finally leads to:

Qbi
I ≈

1

4
ΦR2

1σπ
2f 2B2

0

Qbi
II ≈ 2

(
1− χ1

2− χ1

)2

ΦR2
1σπ

2f 2B2
0

Qbi
III ≈

9

5

(1− χ1)5/3

(3− 2χ1)2
ΦIIIR

2
1σπ

2f 2B2
0

(A.34)
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Appendix A.7. Equivalence to the real composite

The losses determined for the doubly coated cylinder/sphere assemblage do not directly

correspond to the losses exhibited by a hollow square/cube composite because the size

R1 needs to be set related to `. It has been shown in the literature that the losses in a

cylindrical conductive material (with radius R) are:
Qcyl

I =
1

4
R2σπ2f 2B2

Qcyl
II =

1

2
R2σπ2f 2B2

(A.35)

For a sphere (with radius R), it is:

Qsph
III =

1

5
R2σπ2f 2B2 (A.36)

Similarly, the losses in a square conductive material (with size L) are:
Qsq

I =
9

128
L2σπ2f 2B2

Qsq
II =

1

6
L2σπ2f 2B2

(A.37)

And in a cube (size L), it is:

Qcub
III =

9

128
L2σπ2f 2B2 (A.38)

In order to make both structures exhibit the same level of losses, the sizes must satisfy:

R2 =
9L2

32
for I

R2 =
L2

3
for II

R2 =
45L2

128
for III

(A.39)

For the hollow square/cube structures, the EC loss density is assumed to be similar

to the one in a bi-coated cylinder/sphere assemblage with a size chosen according to

previous equation.

It finally gives:

Qβ
I =

9

128
ΦQ0

Qβ
II =

2

3

(
1− χ1

2− χ1

)2

ΦQ0

Qβ
III =

81

128

(1− χ1)5/3

(3− 2χ1)2
ΦIIIQ0

(A.40)

with:

Q0 = π2σf 2`2B2
0 (A.41)
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Appendix A.8. Consistency with the α configuration

It should be noted that these formulae for the β configuration are consistent with those

for the α one. Indeed, the α configuration can be seen as a special β one with no core,

which actually means that p is equal to 1 (because χ2 = 1− χ1). Since Φ and ΦIII are

equal to 1 in that case, the EC loss density for α configuration can be recovered, leading

to the equations given in (12).
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