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Abstract. In several domains of physics, including first principle simulations and classical models for
polarizable systems, the minimization of an energy function with respect to a set of auxiliary variables
must be performed to define the dynamics of physical degrees of freedom. In this paper, we discuss a recent
algorithm proposed to efficiently and rigorously simulate this type of systems: the Mass-Zero (MaZe)
Constrained Dynamics. In MaZe, the minimum condition is imposed as a constraint on the auxiliary
variables treated as degrees of freedom of zero inertia driven by the physical system. The method is
formulated in the Lagrangian framework, enabling the properties of the approach to emerge naturally
from a fully consistent dynamical and statistical viewpoint. We begin by presenting MaZe for typical
minimization problems where the imposed constraints are holonomic and summarizing its key formal
properties, notably the exact Born–Oppenheimer dynamics followed by the physical variables and the
exact sampling of the corresponding physical probability density. We then generalize the approach to
the case of conditions on the auxiliary variables that linearly involve their velocities. Such conditions
occur, for example, when describing systems in external magnetic field and they require to adapt MaZe to
integrate semiholonomic constraints. The new development is presented in the second part of this paper
and illustrated via a proof-of-principle calculation of the charge transport properties of a simple classical
polarizable model of NaCl.

1 Introduction

In this paper, we discuss, focusing on recent devel-
opments, the Mass-Zero (MaZe) constrained dynamics
and further extend it to a simple but interesting model
of classical polarizable systems in constant external
magnetic field. MaZe is a general simulation approach
to study the motion of a set of physical degrees of
freedom (dofs) whose evolution depends on parame-
ters subject to given conditions. The method considers
an extended system in which the parameters appear
as (auxiliary) dynamical variables together with the
original dofs and the conditions are interpreted as con-
straints. The coupled evolution equations for the over-
all constrained system are then conveniently obtained
in the Lagrangian formalism. From these, the original
parametric dynamics for the physical dofs is rigorously
recovered by taking the limit of zero mass for the aux-
iliary variables. In practical implementations, use of
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the SHAKE algorithm enables symplectic and efficient
numerical integration of the extended dynamical sys-
tem.

The method of mass-zero constraints was originally
introduced in the early 1980s to study the rotational–
translational coupling in diatomic molecules [1]. Rece-
ntly, it has undergone a new set of developments when
adiabatic systems were identified as an important area
where MaZe dynamics can provide an original formal
approach and an effective integration algorithm [2–4].
In adiabatic systems, the substantial timescale separa-
tion of the motion of two sets of interacting degrees
of freedom justifies adopting the Born–Oppenheimer
approximation for the evolution. The timescale gap is
typically due to the disparate masses of the two sets and
full adiabatic separation is achieved in the limit of zero
mass for the fast dofs. In the context of nuclear and
electronic motion, for which the Born–Oppenheimer
approximation was originally introduced, adiabaticity
also requires the existence of a finite gap between the
HOMO and LUMO electronic states. In the full adia-
batic regime, evolution equations, typically of classical
form, are given for the slow degrees of freedom. The
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forces on the slow variables, however, depend paramet-
rically on the values of the fast variables. These values
are obtained, for each configuration of the slow degrees
of freedom along the trajectory, enforcing the condition
that the interaction potential (a function of both sets) is
at a minimum with respect to the fast dofs. In Molec-
ular Dynamics (MD), a typical example of adiabatic
dynamics is the evolution of ionic (slow) and electronic
(fast) degrees of freedom in first principle calculations
based on Kohn–Sham or orbital-free Density Functional
Theory. Another important example is given by classi-
cal models of polarization in which electrons do not
appear directly, but the dynamical system is extended
to include sets of classical auxiliary variables of null
mass mimicking different polarization effects.

Current methods adopted for the MD simulation of
such systems combine standard propagation schemes
for the slow variables—that we shall indicate as the
ions for simplicity—with algorithms to find, or approx-
imate, the minimum of the potential with respect to the
fast dofs at each ionic configuration. Depending on the
specific system, additional conditions, such as orthonor-
mality or sum rules, may be imposed on the fast dofs,
affecting the minimum search. Traditional schemes for
finding the minimum include iterative methods, notably
the conjugate-gradient approach [5,6] adopted in Born–
Oppenheimer MD. In Car–Parrinello MD, on the other
hand, an extended system in which the auxiliary dofs
are treated as dynamical variables with a small mass
is defined [7,8]. In this scheme, the minimum condi-
tion is approximately tracked, with a precision that
improves with smaller mass for the auxiliary dofs [9–12],
via the dynamics itself thus avoiding iterations. More
recently, alternative ad hoc dynamics for the auxil-
iary variables like the so-called always stable predictor–
corrector approach [13,14] have also been employed. All
these methods, however, suffer from practical or con-
ceptual limitations. Conjugate-gradient minimization is
guaranteed to converge only in the case of a quadratic
function to be minimized, and, for the general min-
imization problems typically associated with realistic
condensed-phase models, can be unstable [15] or expen-
sive [16] to fully converge. Incomplete convergence of
the iterative minimization in Born–Oppenheimer MD,
also known as the self-consistent-field optimization, has
been shown to cause energy transfer between the slow
and fast dofs [17,18], leading to energy drift in the ionic
propagation and hindering access to long simulation
timescales. Energy transfer, and the consequent viola-
tion of the adiabatic separation in the system, affects
also Car–Parrinello propagation [5] due to the finite
ratio of the masses associated with the fast and slow
dofs. This pathology is often mitigated via thermostats
that, however, may affect or, in the worst cases, com-
promise correct statistical sampling. Furthermore, the
Car–Parrinello algorithm requires a very small timestep
to integrate accurately the dynamics of the fast vari-
ables. The always stable predictor–corrector scheme
is only approximately time-reversible [13,14] leading
again to energy drifts that are usually quenched via
a Berendsen thermostat (thus raising questions on the

ensemble sampled by the dynamics), and it contains
system-dependent parameters that can only be deter-
mined by trial and error. An alternative and quite suc-
cessful scheme, that combines an extended Lagrangian
approach with efficient self-consistent minimization,
was recently proposed to address these shortcomings in
the so-called extended Lagrangian Born–Oppenheimer
approach [19,20]. The method is formally fully time-
reversible and has been used in several interesting appli-
cations. The practical integration of the evolution equa-
tions for the auxiliary variables, however, requires, in
particular for longer simulations, to dampen propa-
gation of numerical noise that causes a divergence of
the auxiliary dofs from the exact ground-state den-
sity [20,21]. The modified Verlet algorithm used for this
purpose breaks full-time reversibility of the propaga-
tion.

The MaZe approach avoids many of the difficul-
ties described above. Adopting the framework of con-
strained MD [22], in combination with the SHAKE
algorithm [23], MaZe enables to derive and numeri-
cally solve classical evolution equations for an extended
system that rigorously enforces exact adiabatic prop-
agation. Exploiting and adapting the formalism of
Lagrange multipliers, the method can incorporate easily
additional constraints that depend only on the auxiliary
variables, such as electroneutrality in classical polariz-
able models or orthonormality in first principles cal-
culations. The MaZe dynamical system is solved via a
fully symplectic, time-reversible algorithm that guar-
antees stability of the evolution on the same timescale
and with the same timestep size of standard MD for
the physical dofs. The algorithm prevents, by construc-
tion, propagation of the error when imposing the con-
straints. Furthermore, the approach avoids standard
self-consistent cycles for the minimization along the
dynamics and uses iterations only to solve the equa-
tion of constraints, a process that usually has fast con-
vergence, in particular in nonlinear problems, enabling
to reach essentially the numerical precision limit at
an affordable cost [2–4]. Importantly, rigorous sam-
pling of the target probability for the physical dofs
(which coincides with the one usually associated to
Born-Oppenheimer dynamics) is also guaranteed [3]
ensuring that not only the adiabatic evolution, but
also the exact statistical mechanics of the system is
obtained. In the context of adiabatic systems, MaZe
has been used to simulate simple classical polarizable
systems [2], and more recently for state-of-the-art clas-
sical modeling of electrode charges in electrochemical
systems [4] (the method has also been implemented in
MetalWalls [24], a high-performance community soft-
ware in this area). The generalization to first principle
MD based on orbital-free density functional theory was
also derived and tested with very good results [3].

In the following, we first discuss the key aspects of
MaZe summarizing recent work on the dynamical and
statistical properties of the approach. For simplicity, the
formalism will be presented using as reference appli-
cation the adiabatic evolution of classical polarizable
models. This choice is motivated also by the new MaZe
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development presented in the second part of the paper:
the generalization of the approach for adiabatic propa-
gation of classical polarizable models in external mag-
netic field. Although the model system considered in
this work has some limitations (see detailed description
in the following), this generalization is motivated by the
problem of simulating ionic charge transport in systems
subject to a magnetic field, with particular focus on the
ionic Hall effect [25–27], an area that has attracted con-
siderable interest to investigate the properties of superi-
onic conductors [28,29] and, more recently, to enhance
the capacitance of batteries [30]; including the mag-
netic field in classical polarizable models requires, even
with the simplified model adopted here, some nontriv-
ial adaptations of the MaZe approach. First, due to the
Lorentz force, the condition of null force on the fast
degrees of freedom involves both the coordinates and
the velocities of these particles, thus leading to a set
of nonholonomic constraints associated with the MaZe
dynamics. These constraints are, however, linear in the
velocities, enabling to adapt the approach via a rela-
tively standard generalization of the Lagrangian equa-
tions of motion for the system. Second, again due to the
dependence of the constraint on the velocities, the stan-
dard SHAKE algorithm—not the idea at the basis of
the approach—cannot be directly applied. While some
methods for the numerical integration of systems sub-
ject to nonholonomic constraints exist [31,32], they are
not as consolidated as SHAKE and often rely on non-
symplectic algorithms. In this work, we then propose
an appropriate integration algorithm and test its prop-
erties.

The paper is organized as follows. In Sect. 2, the
derivation of the MaZe dynamical system and the proof
of exact sampling of the Born–Oppenheimer probabil-
ity density for the slow degrees of freedom are sum-
marized. The presentation will be self-contained, also
with the support of Appendix A, but we limit the
proofs to their key steps, referring to previous work
for more details. Our focus, in fact, will be to illustrate
the most interesting formal and practical aspects of the
approach. In Sect. 3, we then introduce the general-
ization of the MaZe framework to the case of classi-
cal polarizable simulations in constant magnetic field,
together with the new algorithm for the solution of the
nonholonomic constrained dynamics. We consider, for
convenience and given the exploratory purposes of these
first MaZe developments in the presence of magnetic
field, the simplest model of classical polarization, i.e.,
the shell model [33], and neglect possible magnetiza-
tion effects. Section 4 reports an illustrative calculation
investigating the combined effect of polarization and of
the magnetic field on ionic charge transport properties
in liquid NaCl.

2 MaZe dynamics and statistical mechanics

As mentioned above, to simplify the presentation and
tackle an interesting physical case, we illustrate the

MaZe approach via its application to classical polar-
izable models. These models are commonly employed
to simulate systems of theoretical and technological
interest such as devices for electrochemical energy stor-
age [34–36] in which large sizes and long timescale pre-
vent direct calculation of polarization effects via the
quantum treatment of the electronic density in first
principles MD. In this area then, polarization effects
are described by constructing empirical potentials that
include sets of auxiliary variables that mimic changes
in the electronic density. Because they represent elec-
tronic properties, these auxiliary variables are assumed
to adapt instantaneously to the ionic configuration in
the spirit of the Born–Oppenheimer approximation and
are assigned a null mass. An early example of this
type of models is the shell model [33,37,38], which
accounts for dipole polarization. Potentials that take
into account interactions due to quadrupoles [39] and
changes in the ions size and shape [40,41] have also
been introduced. More recently, models for capacitors
have been proposed that include the mutual polariza-
tion of the elements combining a multipole description
of the electrolyte with the so-called fluctuating charge
model [7,42] for the electrodes.

To be more specific, let us indicate with R ∈ R
3N

the Cartesian coordinates of the N physical dofs in the
system (ions), and with s ∈ R

M the M adiabatically
separated auxiliary variables. Depending on the specific
polarization model, the s variables may represent posi-
tions (as in the shell model) or different types of degrees
of freedom (e.g., dipoles or quadrupoles, or charges)
and their physical dimensions and number vary accord-
ingly. The two sets of variables interact via the poten-
tial V (R, s). The adiabatic dynamics of the system is
obtained by imposing that the auxiliary variables sat-
isfy, for all values of R along the trajectory, the condi-
tion

∂V (R, s)
∂sα

= 0 α = 1, . . . , M. (1)

Additional conditions, such as the charge neutrality
constraint for classical models of electrodes, may be
associated with the auxiliary dofs. These conditions are
typically expressed as

fι(s) = 0 (ι = 1, . . . , C), (2)

where C is the number of the additional constraints
that we shall assume to be, as it is often the case, func-
tions of the s variables alone. Equation (2) implies that
not all variations of the s are independent, and this
must be accounted for in the search of the minimum
of the potential. For example, in Born–Oppenheimer
dynamics, the conjugate-gradient minimization is con-
ducted via a constrained search, while in Car–Parrinello
schemes, the additional constraints are added in the
evolution equations derived from the Lagrangian. In
the following, we indicate with s̃ the values of the aux-
iliary variables satisfying both the minimum condition
on the potential and the additional constraints, if they
are present. Due to the dependence of the potential on
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R, s̃ = s̃(R). In the adiabatic regime, then, the evolu-
tion of the physical variables is given by

miR̈i = −∇Ri
V (R, s)

∣
∣
s=s̃

, (3)

where mi is the mass of ion i. As discussed in the Intro-
duction, current approaches for the numerical solution
of the equation above have limitations that justify the
development of alternative schemes. Starting from the
next subsection, the MaZe approach is presented.

2.1 MaZe dynamical system

The key idea of the mass-zero constrained dynamics is
to construct a Lagrangian that includes the s as dynam-
ical variables and to interpret Eq. (1) as a set of holo-
nomic constraints. In this section, MaZe is presented for
the general case in which additional conditions must be
satisfied by the fast dofs. In this case, the system is fur-
ther extended to include also the Lagrange multipliers
associated with these conditions as auxiliary variables.
To set the stage, let us introduce the auxiliary function

W (R, s, ν) ≡ V (R, s) +
C∑

ι=1

νιfι(s), (4)

where ν = {ν1, ..., νC} are Lagrange multipliers asso-
ciated to the additional constraints. The solution for s
and ν satisfying Eqs. (1) and (2) is then given by the
stationary point (ŝ, ν̂) of W (R, s, ν) [43,44]. This leads
to the M + C conditions

σα(R, s, ν) =
∂W (R, s, ν)

∂sα
= 0 (α = 1, . . . , M)

σM+ι(R, s, ν) =
∂W (R, s, ν)

∂νι
= 0 (ι = 1, . . . , C).

(5)
Note that the last set of equations above represents in
fact the additional conditions of Eq. (2), now obtained
as the result of an optimization problem in the space
that includes the Lagrange multipliers ν as additional
variables. In the absence of additional conditions, on the
other hand, W (R, s, ν) ≡ V (R, s) and the M surviving
conditions above reduce to Eq. (1). At this stage, a finite
fictitious “mass” is assigned to both sets of auxiliary
variables.1 Indicating the fictitious mass for the s and
ν variables as μs and μν , respectively, the Lagrangian
for the extended system is defined as

L(R, Ṙ, s, ṡ, ν, ν̇) =
1
2

N∑

i=1

miṘ
2

i +
1
2

M∑

α=1

μsṡ
2
α

+
1
2

C∑

ι=1

μν ν̇2
ι − W (R, s, ν), (6)

1 Note that, depending on the physical dimensions of the
auxiliary variables, the fictitious mass μ could have different
units than those of a mass.

From this, the constrained evolution equations are
obtained as

miR̈i = −∇Ri
W (R, s, ν) −

M+C∑

β=1

λβ∇Ri
σβ(R, s, ν)

μss̈α = −∂W (R, s, ν)
∂sα

−
M+C∑

β=1

λβ
∂σβ(R, s, ν)

∂sα

μν ν̈ι = −∂W (R, s, ν)
∂νι

−
M+C∑

β=1

λβ
∂σβ(R, s, ν)

∂νι
.

(7)
The equations above can be simplified by observing
that, in the first line, ∇Ri

W (R, s, ν) = ∇Ri
V (R, s),

and that the forces acting on the auxiliary variables are
null, because they coincide with the constraints. Thus,
dividing both sides of the equations for the auxiliary
variables by their masses

miR̈i = −∇RiV (R, s) −
M+C∑

β=1

λβ∇Riσβ(R, s, ν)

s̈α = −
M+C∑

β=1

λβ

μs

∂σβ(R, s, ν)
∂sα

ν̈ι = −
M+C∑

β=1

λβ

μν

∂σβ(R, s, ν)
∂νι

.

(8)

Let us now consider the limit of zero mass for both sets
of auxiliary variables. For this limit to be well defined,
it needs to be taken in a homogeneous way. We then
set μν ≡ μs/κ with κ a nonzero constant of dimen-
sions given by the ratio of the masses, so that the last
equation in the system above becomes

ν̈ι = −
M+C∑

β=1

κ
λβ

μs

∂σβ(R, s, ν)
∂νι

. (9)

We can now take the limit μs → 0 in Eq. (8). In order
for the auxiliary variables to have finite acceleration,
the ratio γβ = limμs→0

λβ

μs
must remain finite, implying

that the Lagrange multipliers λβ are proportional to
μs. In the limit of zero mass for the auxiliary variables,
then

miR̈i = −∇Ri
V (R, s),

s̈α = −
M+C∑

β=1

γβ
∂σβ(R, s, ν)

∂sα
,

ν̈ι = −
M+C∑

β=1

κγβ
∂σβ(R, s, ν)

∂νι
.

(10)

Equation (10) defines the mass-zero constrained dynam-
ics and it enables to recognize most of the interest-
ing properties of the approach mentioned in the Intro-
duction. First, since the Lagrange multipliers λβ go to
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zero with the auxiliary masses μs, the evolution of the
physical variables does not depend directly on the con-
straints. Second, the dynamics of the s and ν, controlled
only by the constraint forces, satisfy by construction
all the conditions imposed on the system. This implies
that these conditions are automatically fulfilled also
in the first of Eqs. (10) which is then equivalent to
Eq. (3). Thus, by rigorously enforcing the mass-zero
limit for the auxiliary variables, the system above pro-
vides a classical evolution for all degrees of freedom
that leads to the exact adiabatic dynamics for the phys-
ical ones. Third, the numerical integration of the first
equation can be performed with any standard MD algo-
rithms (e.g., Verlet) with a timestep determined only
by the force acting on the physical dofs. In addition,
at each timestep, the Lagrange multipliers γα, that
appear as unknown, time-dependent parameters in the
dynamical system, must be determined. This is done
enforcing the constraint, σα(R(t + dt), s(t + dt), ν(t +
dt)) = 0, at the position predicted by the MD algo-
rithm as described in Refs. [22,23]. This approach pre-
vents propagation of the error between values of the
variables at different timesteps. In the current imple-
mentations of the approach, the constraints are sat-
isfied via the SHAKE iterative algorithm, which was
proven to be symplectic and time-reversible [45,46].
Note that the homogeneous mass-zero limit has intro-
duced an unknown scaling factor κ in the equations.
The choice of the numerical value of this parame-
ter depends on the specific system and is discussed
more in detail in Refs. [3,4], where it is also shown
that MaZe results are very stable with respect to this
choice.

To conclude this section, note that when no addi-
tional constraints are present, i.e., in the absence of the
ν variables, the MaZe system reduces to

miR̈i = −∇Ri
V (R, s),

s̈α = −
M∑

β=1

γβ
∂σβ(R, s)

∂sα
.

(11)

This form of the evolution equations is appropriate, for
example, to simulate the shell model and, in view of
the specific application considered in the results section
and to simplify the notation, we shall adopt it in what
follows. In particular, in the next subsection, we shall
prove Eq. (11) samples exactly the Born–Oppenheimer
probability density for the physical variables, i.e., the
last MaZe property mentioned in the Introduction. This
is an interesting result, because the use of constraints
may induce a nontrivial metric in the phase space of the
system [47,48] and require appropriate reweighting of
statistical properties in the physical phase space. Fur-
thermore, importantly, we shall show that approximate
adiabatic separation, i.e., performing a dynamics with
μ �= 0, can induce a bias in the statistical properties of
the system.

2.2 Statistical mechanics of the Mass-Zero
constrained evolution

The discussion in this subsection summarizes the proof
presented in Ref. [4] and is reported here for complete-
ness and for the reader’s convenience. Let us start by
reconsidering the extended system before the mass-zero
limit is taken. In the absence of additional conditions,
the Lagrangian is given by

L(R, Ṙ, s, ṡ) =
1
2

N∑

i=1

miṘ
2

i +
1
2

M∑

α=1

μsṡ
2
α − V (R, s).

(12)
The statistical mechanics of the system is described
more naturally using (at first) a convenient set of gen-
eralized coordinates and in the Hamiltonian formalism.
Proceeding in analogy with Ref. [48], we then start by
performing the change of variables

Ri �→ ρi = Ri

sα �→ σα = σα(R, s).
(13)

In the following, we shall use the notation υ = (ρ, σ)
where ρ = {ρ1, ...,ρN} and σ = {σ1, ..., σM} and
observables expressed in the new variables will be
denoted in calligraphic font. The Hamiltonian of the
system can be obtained via standard Legendre trans-
form of the Lagrangian L(υ, υ̇) = L

(

R(υ), s(υ), Ṙ(υ, υ̇),
ṡ(υ, υ̇)

)

, and is given by

H(υ, πυ) =
1
2
πυT

M−1(υ)πυ + V(υ), (14)

where the momentum πυ is

πυ
k =

∂L(υ, υ̇)
∂υ̇k

=

{

πρ
i = ∇ρ̇i

L(ρ, ρ̇, σ, σ̇) k = 1, . . . , 3N

πσ
α = ∂L(ρ,ρ̇,σ,σ̇)

∂σ̇α
k = 3N+1, . . . , 3N+M

(15)
(i = 1, . . . , N and α = 1, . . . ,M), and we have also
introduced M−1(υ), i.e., the inverse of the metric matrix

Mkk′ =
N∑

i=1

mi
∂Ri

∂υk
· ∂Ri

∂υk′
+

M∑

α=1

μs
∂sα

∂υk

∂sα

∂υk′
(16)

associated with the new variables. For future conve-
nience, the metric matrix and its inverse can also be
expressed in block form as

M =
[
A B
BT `

]

with inverse M−1 =
[
´ E
ET Z

]

, (17)

where A and ´ are 3N × 3N matrices, B and E are
3N × M matrices, and ` and Z are M × M matrices,
whose expressions are given in Appendix A.1.
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The average of an observable O(ρ, σ,πρ, πσ) in the
constrained microcanonical ensemble is given by

〈O〉 =
1
Z

∫

d3Nρd3NπρdMσdMπσδM (σ)δM (πσ − π̃σ)

× δ(H(ρ, σ,πρ, πσ) − E)O(ρ, σ,πρ, πσ),
(18)

where Z is the partition function. The delta functions
in the equation above express the constant energy con-
dition (second line) and the constraints (first line). Note
that, in addition to the delta function associated with
the holonomic constraints, δM (σ), the integrand con-
tains a delta function involving the momenta πσ. This
delta originates from the fact that, in order for the con-
straints to be satisfied at all times, the additional con-
dition σ̇ = 0 must hold. Using the relation υ̇ = M−1πυ,
this implies (see also Appendix A.2) that, when the
constraints are imposed, the momenta must satisfy

πσ = π̃σ = −Z̃−1ẼT · πρ, (19)

where the tildes indicate that all matrices are evaluated
at σ = 0. We now move to determine the expression for
the average after integration over the variables asso-
ciated with the constraints. To that end, the integral
over πσ is evaluated first, followed by the change of
variables σα �→ sα, ρi �→ Ri, and a last integration
over the s variables. The last two steps are discussed
more in detail in Ref. [3] and in Appendix A.2. Here,
we report the result of these operations, which is given
by

〈O〉 =
1
Z ′

∫

d3NRd3NπρO(R, s̃,πρ, π̃σ)

× δ(H(R, s̃,πρ, π̃σ) − E).
(20)

In the equation above, s̃ = s̃(R) is such that σ(R, s̃) ≡
0 (we assume, as commonly done in the Born–Oppen-
heimer framework that this expression has, for any R, a
single root), and π̃σ is defined in Eq. (19). The Hamil-
tonian is also evaluated on the hypersurface σ = 0,
πσ = π̃σ where the constrained motion takes place. Its
explicit form is derived in Appendix A.3 and is equal
to

H(R, s̃,πρ, π̃σ) =
1
2
πρT

Ã−1πρ + V (R, s̃). (21)

Equation (20) defines the average of an observable with
respect to a marginal probability where the constraints
(or equivalently the auxiliary variables) have been inte-
grated over. This marginal probability, however, still
depends on the value of the mass, μs, associated with
the auxiliary dofs. This is apparent in the definition of
the mass matrix Ã (and its inverse) and therefore of
the generalized momenta πρ, and from the dependence
of the observable on π̃σ. Indeed, from the definition
in Appendix A.1, we have

Ã = D + μsR̃ = D
[

1 + μsD
−1R̃

]

, (22)

where Djj′ = mjδjj′ and R̃jj′ =
∑M

α=1
∂sα

∂ρj
· ∂sα

∂ρj′ , so
that

Ã−1 =
[

1 + μsD
−1R̃

]−1

D−1. (23)

Furthermore, the relation πυ = Mυ̇ implies, πρ = A ·
ρ̇ + Bσ̇ giving, on the constrained hypersurface

πρ = Ã · ρ̇ = Ã · Ṙ, (24)

where in the last equality we used ρ̇ = Ṙ, as implied by
the change of variable R �→ ρ. Finally (see Appendix
A.1), on the constrained hypersurface, we also have

π̃σ = −Z̃−1ẼT · πρ

=
[

˜̀ − B̃TÃ−1B̃
]

ẼT · πρ
(25)

that also carries a dependence on the mass μs due to
the definition of the matrices ˜̀ and B̃. Let us now
consider the limit μs → 0. ˜̀ and B̃ are proportional
to μs (see Appendix A) and therefore vanish in the
limit, while limμs→0 Ã = D̃. In the zero auxiliary mass
limit then, π̃σ = 0 and the Hamiltonian of the system
becomes

H(R, s̃,πR, π̃σ = 0) =
1
2
πRT

D−1πR + V (R, s̃) (26)

with D−1 = 1
mj

δjj′ and where we have used the fact
that, from Eq. (24), in the null auxiliary mass limit,
πρ = DṘ = πR.

Substituting in the expression for the average, we
obtain

〈O〉 =
1
Z ′

∫

d3NRd3NπRO(R, s̃,πR, π̃σ = 0)

× δ(H(R, s̃,πR, π̃σ = 0) − E).
(27)

The result above implicitly defines the microcanon-
ical marginal probability in the physical phase space
in the full adiabatic limit. This definition is in agree-
ment with the form usually assumed for the Born–
Oppenheimer probability. The discussion above also
indicates that the dynamical system rigorously sam-
ples this density only in the full μs → 0 limit and
that, for finite auxiliary masses, corrections to the mass
matrix associated with the momenta would be required,
as indicated by Eqs. (23) and (24).

3 Magnetic MaZe

In this section, we extend the MaZe formalism to treat
the shell model [33] in constant external magnetic field.
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The shell model is one of the first attempts to repre-
sent polarization effects via empirical potentials, with
specific focus in taking into account dipole polarization.
This is described by assuming that the ion’s total charge
is divided between a core (representing the nucleus)
and a massless shell (representing the electronic charge
density). Each core–shell pair is bound by a harmonic
potential and feels electrostatic interactions with the
other particles. The ions evolve according to full adia-
batic dynamics, i.e., subject to a force computed with
the auxiliary variables at the minimum of the poten-
tial. Although several refinements have been proposed,
the shell model still represents a valid benchmark for
classical polarizable potentials and was chosen in this
work, focused on exploratory calculations for a new
development of MaZe, due to its simplicity. Polariza-
tion effects are important to capture accurately features
of ionic systems ranging from phonon dispersion curves
to structural and transport properties [49]. In the fol-
lowing, we shall consider how they influence charge dif-
fusion in the presence of an external magnetic field.
The model we consider does not take into account mag-
netization effects and therefore identifies the magnetic
induction field B and the applied external magnetic
field, usually noted as H. The generalization of the
empirical Hamiltonian and of the integration algorithm
that we describe in Sect. 3 to account for magnetization
is nontrivial and beyond the developments presented in
this work. To the best of our knowledge, however, this
is the first time in which the effect of a magnetic field on
the transport properties of a classical charged system is
explored with any classical model of polarization and we
consider it a first test on the way to more realistic sim-
ulations. Furthermore, in Sect. 4, we shall investigate a
simple molecular liquid—molten sodium chloride—for
which magnetization is likely to play a minor role.

Assigning a charge Qi to core i and qα to the shell α,
the MaZe dynamics for the system in magnetic field is
conveniently obtained, in analogy with the discussion
in Sect. 2.1, by first considering the Lagrangian

L(R, Ṙ,S, Ṡ ) =
1
2

N∑

i=1

miṘ
2

i +
1
2

N∑

α=1

μṡ2
α

−V (R,S) +
N∑

i=1

QiṘi · A(Ri)

+
N∑

α=1

qαṡα · A(sα), (28)

where a finite mass μ has been (temporarily) associ-
ated with the shell variables. In the equation above,
V (R,S) is the total interaction potential, whose form
is detailed in Appendix B, and we have introduced the
notation R = {R1, ...,RN} (with Ri = {Rx

i , Ry
i , Rz

i }),
and S = {s1, ..., sN} (with sα = {sx

α, sy
α, sz

α}) for the
3N Cartesian coordinates of the cores and of the 3N
shell variables, respectively. A(r) is the vector poten-
tial associated to the magnetic field B = ∇r × A(r)

at position r. We shall consider a system in a constant
magnetic field parallel to the z axis: B = (0, 0, Bz).
In the Coulomb gauge (∇r · A(r) = 0), a valid choice
for the vector potential is then A(r) = Bz/2(−y, x, 0).
The dynamics of the system is defined as fully adia-
batic: the shells are assumed to adapt instantaneously
to the positions of the cores, so that the force on each
shell variable is null

σx
α(R,S, Ṡ) = −∂V (R,S)

∂sx
α

+ qαBz ṡ
y
α = 0

σy
α(R,S, Ṡ) = −∂V (R,S)

∂sy
α

− qαBz ṡ
x
α = 0

σz
α(R,S) = −∂V (R,S)

∂sz
α

= 0.

(29)

In the equations above, α = 1, ..., N and we have writ-
ten explicitly the conditions of zero force for the com-
ponents on the xy plane, which include the Lorentz
force, and the component along the z axis, i.e., par-
allel to the magnetic field. Equation (29) can still be
interpreted a set of 3N constraints, but, for this sys-
tem, the components of the force on the plane orthog-
onal to the field depend on the velocity and the corre-
sponding constraints are therefore no longer holonomic
(the σz

α, on the other hand, are holonomic). The lin-
ear dependence on the velocity of these constraints,2
however, still enables to write the Lagrangian equations
of motion. In fact, for systems with mixed holonomic
and semiholonomic constraints, these equations can be
expressed as [31,32,50–54]

d

dt

∂L

∂ξ̇h
α

− ∂L

∂ξh
α

= −
N∑

β=1

∑

l=x,y

λl
β

∂σl
β

∂ξ̇h
α

−
N∑

β=1

λz
β

∂σz
β

∂ξh
α

(30)

where we have indicated all the dynamical variables
with the notation R

3N+3N 
 ξ = (R,S). Following the
same steps described in Sect. 2.1, the MaZe dynami-
cal system is derived by first obtaining the evolution
equations for the system on the basis of Eq. (30), then
rearranging the evolution equations for the shell vari-
ables exploiting the condition of null force as in Eq. (8).
In the μ → 0 limit, the resulting dynamical system then
is

miR̈
h
i = −∂V (R,S)

∂Rh
i

+ Qi(Ṙi × B)h

s̈h
α = −

N∑

β=1

∑

l=x,y

γl
β

∂σl
β

∂ṡh
α

−
N∑

β=1

γz
β

∂σz
β

∂sh
α

,

(31)

where, as in the previous case, γh
β = limμ→0 λh

β/μ.

2 Constraints of this form are often referred to as semiholo-
nomic
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3.1 The MaZe algorithm for the shell model

The numerical integration of Eqs. (31) must take into
account two nontrivial features: the velocity depen-
dence of the Lorentz force, which prevents direct use of
standard integration algorithms (e.g., velocity Verlet),
and the presence of nonholonomic constraints. These
difficulties are solved combining a symplectic algorithm
recently introduced to integrate the dynamics of ions in
constant external magnetic field [55], with an adapted
SHAKE algorithm to update the shell’s positions and
velocities. To set the stage, we introduce the auxiliary
dynamical system

Ṙx
i =

P x
i

mi
+ ωiR

y
i

Ṙy
i =

P y
i

mi
− ωiR

x
i

Ṙz
i =

P z
i

mi

ṡx
α = px

α

ṡy
α = py

α

ṡz
α = pz

α

Ṗ x
i = − ∂V

∂Rx
i

+ ωi(P
y
i − miωiR

x
i )

Ṗ y
i = − ∂V

∂Ry
i

− ωi(P
x
i + miωiR

y
i )

Ṗ z
i = − ∂V

∂Rz
i

ṗx
α = Gx

α

ṗy
α = Gy

α

ṗz
α = Gz

α,

(32)
where V ≡ V (R,S) and where we have introduced the
notation

Gh
α ≡ Gh

α(R,S) = −
N∑

β=1

∑

l=x,y

γl
β

∂σl
β

∂ṡh
α

−
N∑

β=1

γz
β

∂σz
β

∂sh
α

.

(33)
Taking the time derivative of all positions, it is imme-
diate to show that the system above is equivalent to
Eq. (31). A convenient integration algorithm can now
be obtained by exploiting the Liouvillian formalism and
writing the single timestep evolution operator associ-
ated with Eq. (32) as

U(δt) = eiδtL, (34)

where the Liouvillian at the exponent is defined as

iLX = Ẋ · ∇X

with i the imaginary unit and X = {R,P ,S,p}, and
where, for example, P = {P 1, ...,P N}. To proceed,
U(δt) is approximated via the following Trotter split-
ting

U(δt) ≈ ei
δt
2 LP eiδtLR eiδtLp eiδtLS ei

δt
2 LP . (35)

In the equation above, we have separated, as commonly
done [56], the differential operators acting on the coor-
dinates R = {R1, ...,RN} and momenta of the ions
and the shells. Note that, in the exploratory calcula-
tions presented here, we have employed a mixed Trotter
break up, which is symmetric for the cores’ momenta
and simple for the shell variables and the cores’ posi-
tions. The overall error in the approximation of the

propagator is then of order δt2. One more observation is
necessary to proceed. Focusing on the physical dynam-
ical variables, we have

iLP =
N∑

i=1

Ṗ x
i

∂

∂P x
i

+
N∑

i=1

Ṗ y
i

∂

∂P y
i

+
N∑

i=1

Ṗ z
i

∂

∂P z
i

≡ iLP x + iLP y + iLP z

iLR =
N∑

i=1

Ṙx
i

∂

∂Rx
i

+
N∑

i=1

Ṙy
i

∂

∂Ry
i

+
N∑

i=1

Ṙz
i

∂

∂Rz
i

≡ iLRx + iLRy + iLRz .

(36)

In the absence of an external magnetic field, the expo-
nentials of the Liouvillians in Eq. (35) correspond to
simple translation operators for the components of the
momenta (ei

δt
2 LP ) and coordinates (eiδtLR ). Further-

more, always in the absence of an external magnetic
field, the Liouvillians for the different Cartesian com-
ponents of these variables commute among themselves
so, for example, ei

δt
2 LP = ei

δt
2 LP x ei

δt
2 LP y ei

δt
2 LP z and

the corresponding translations can be applied sequen-
tially. Operating from left to right on the phase-space
variables with the full set of translation operators, the
velocity Verlet algorithm is recovered. When a (con-
stant) magnetic field is present, however, the Liouvil-
lians corresponding to the x and y components of the
dynamical variables no longer commute. For example,
by applying the commutator of the Liouvillians to a
generic function of X, it can be seen that

[iLRx , iLRy ] = −
N∑

i=1

ωi

[

Ṙx
i

∂

∂Ry
i

+ Ṙy
i

∂

∂Rx
i

]

. (37)

A nonzero result is obtained also for [iLP x , iLP y ], while
the remaining commutators are zero. For this reason,
two more Trotter break-ups become necessary to write
the single-step propagator as a sequence of transla-
tions for the different variables. In particular, following
Ref. [55], we choose the splitting:

ei
δt
2 LP eiδtLR ei

δt
2 LP =ei

δt
4 LP y ei

δt
2 LP x ei

δt
4 LP y ei

δt
2 LP z

ei
δt
2 LR y eiδtLR x ei

δt
2 LR y eiδtLR z

eiδtLp eiδtLS

ei
δt
4 LP y ei

δt
2 LP x ei

δt
4 LP y ei

δt
2 LP z .

(38)
The actions of these operators can be directly trans-
lated into a set of instructions taking the system from
time t to time t + δt and this is detailed in the insets
in Fig. 1. In particular, the action of the momen-
tum translations induced by the operators in the first
line of the equation above corresponds to the “Update
Core Momenta (1)” in the figure, while “Update Core
Positions” shows the effect of the coordinates transla-
tions induced by the operators in the second line, and
“Update Core Momenta (2)” derives from application
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of the operators in the last line. As indicated in the fig-
ure, the evaluation of the forces required to implement
the second update of the core’s momenta (these forces
depend on the shell variables at time t + δt) must be
performed under the condition that the updated shell
velocities and positions satisfy the constraints Eq. (29).

These updated shell variables are determined via a
straightforward generalization of the standard SHAKE
algorithm (see also Refs. [31,32]) that preserves the key
conceptual steps of the method. After the update of
the positions of the cores, and based on the propaga-
tors associated with S and p (which is equal to Ṡ) in
Eq. (38), the shell variables are advanced as

sh
α(t + δt) = sh

α(t) + δtṡh
α(t) +

δt2

2
s̈h

α(t)

= sh
α(t) + δtṡh

α(t)+

− δt2

2

[ N∑

β=1

∑

l=x,y

γl
β

∂σl
β(t)

∂ṡh
α

+
N∑

β=1

γz
β

∂σz
β(t)

∂sh
α

]

≡ sh
α(t + δt;Γ )

(39)
and

ṡh
α(t + δt) = ṡh

α(t) + δts̈h
α(t)

= ṡh
α(t)+

− δt
[ N∑

β=1

∑

l=x,y

γl
β

∂σl
β(t)

∂ṡh
α

+
N∑

β=1

γz
β

∂σz
β(t)

∂sh
α

]

≡ ṡh
α(t + δt;Γ ).

(40)
In the second and third line of Eqs. (39) and (40), we
have used the form of the shell’s acceleration prescribed
by the MaZe dynamical system, Eq. (31), and it must be
noted that the constraint accelerations depend on time
via the core and shell positions. Finally, the definitions
in the fourth line of Eqs. (39) and (40) highlight the
fact that the updated shell positions and velocities are
a function of the Lagrange multipliers represented, for
future convenience, as the 3N -dimensional vector

Γ = {γx
1 , γy

1 , γz
1 , ..., γx

N , γy
N , γz

N}.

The value of Γ , at this stage, is yet undetermined. Fol-
lowing the SHAKE strategy, these Lagrange multipliers
are computed a posteriori imposing that the advanced
shell positions and velocities satisfy the constraints at
time t + δt:

σl
α

(

R(t + δt),S(t + δt;Γ ), Ṡ(t + δt;Γ )
)

= 0

σz
α

(

R(t + δt),S(t + δt;Γ )
)

= 0
(41)

with, as usual, α = 1, ..., N and l = x, y. The expres-
sions above are a system of nonlinear equations in
the unknowns Γ that is conveniently solved using
the SHAKE algorithm. This is an adapted Newton–
Raphson method [44] in which the Lagrange multipliers

are determined iteratively according to

Γ (n+1) = Γ (n) − η[Jd(S(n), Ṡ
(n)

)−1]Σ(S(n), Ṡ
(n)

),
(42)

where the superscript (n) indicates the iteration step.
In the equation above, the vector of parameters η =
(ηx, ηy, ηz) was introduced. In standard SHAKE calcu-
lations, this vector is not present. However, following a
common practice in minimization algorithms [57], it has
been shown [58] that using a scaling factor to modulate
the magnitude of the SHAKE update can improve con-
vergence. As discussed more in detail in Sect. 4, for the
particular problem considered in this paper, it proved
useful to use a different scaling factor for the com-
ponents of the constraints perpendicular and parallel
to the field. This is due to the different nature (holo-
nomic and semiholonomic) of the constraints shown in
Eq. (29). In Eq. (42), we have also adopted the notation

Σ = {σx
1 , σy

1 , σz
1 , ..., σ

x
N , σy

N , σz
N}

to define the vector of the constraints, and Jd for the
3N × 3N diagonal matrix

[

Jd(S(n), Ṡ
(n)

)
]

ab
=

∂Σa(S(n), Ṡ
(n)

)
∂Γb

δab

=
[ 3N∑

c=1

∂Σa(S(n), Ṡ
(n)

)
∂Sc

∂Sc

∂Γb

+
3N∑

c=1

∂Σa(S(n), Ṡ
(n)

)
∂Ṡc

∂Ṡc

∂Γb

]

δab

(43)

(i.e., the diagonal approximation of the Jacobian matrix
of the standard Newton–Raphson method), with a, b =
1, ..., 3N . This matrix and the vector of the con-
straints are updated at each iteration step with the
updated shell’s positions and velocities that are com-
puted according to

S(n+1) = S(n) + δtṠ
(n)

+

− δt2

2

[ N∑
β=1

∑
l=x,y

(γl
β)

(n)∇Ṡ σl
β(t) +

N∑
β=1

(γz
β)

(n)∇S σz
β(t)

]

Ṡ
(n+1)

= Ṡ
(n)

+

− δt
[ N∑

β=1

∑
l=x,y

(γl
β)

(n)∇Ṡ σl
β(t) +

N∑
β=1

(γz
β)

(n)∇S σz
β(t)

]
.

(44)
The algorithm in Eq. (42) can be initialized, for each
timestep along the dynamics, with the null vector
Γ (0) = 0 or, if it is available, with the value of
the Lagrange multipliers computed at the previous
timestep. The calculations presented in the following
were performed using the sequential update of the
components of the vector of constraints first proposed
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Fig. 1 On the right: schematic flowchart of the main molecular dynamics loop for the propagation of the cores. The
equations for the update of positions and momenta, derived in Ref. [55], are given in the boxes on the left. The update of
the shell variables, red box in the main loop, is performed via the adapted SHAKE algorithm described in the last part of
Sect. 3

in [23]. The iteration process is stopped when the mod-
ulus of the largest constraint, i.e., maxa|Σa|, becomes
smaller than a predefined tolerance, typically chosen as
close to the numerical precision achievable on the com-
puter.

4 Simulation setup and results

The algorithm detailed in the previous section is applied
to compute static and transport properties in a shell
model simulation of molten NaCl in external magnetic
field. The simulated system contains 108 Na+ and 108
Cl−, placed in a cubic box of side L = 19.87Å, corre-
sponding to a density ρ = 1.3113gcm−3. In the presence
of our vector potential, standard periodic boundary
conditions can be preserved by imposing that images
enter the box with their velocities [55]. This procedure
ensures continuity of our Hamiltonian and of the rele-
vant observables. The temperature of the system is set
to T ≈ 1350K. The specific form of the interatomic
potential, V (R,S), is given in Appendix B, and it is
similar to the one adopted in Ref. [38]. We present
results for the polarizable system in the presence and in
the absence of a constant magnetic field directed along
the z axis. The intensity of the field is chosen, so that
the magnitude of the Lorentz force on each particle is
comparable to that of the forces originating from the

other interparticle interactions. As in our previous work
on the shell model [2], we do not use the method of
Ewald sums in the simulations, but rather truncate all
interactions at a cut-off radius rc = 0.5L. The trun-
cation of the long-range forces, sometimes adopted in
simulations of large systems or when accuracy on the
energy is not critical [59–61], was enforced for conve-
nience. Our calculations are intended as a proof-of-
principle validation of the MaZe dynamics in magnetic
field and, while qualitative trends in the observables will
be described, we are not focused on a realistic descrip-
tion of the system. Note that incorporating Ewald sums
in the algorithm does not pose a conceptual problem
nor has a significant effect on the numerical cost of the
approach, as shown in Ref. [4] where a state-of-the-art
classical model of polarization was considered.

The simulations are initialized as follows. The Cl−
and Na+ cores are placed on the sites of a simple
cubic lattice and then displaced by a small uniform
random amount in all directions. Initial shell positions
are then found via a conjugate-gradient minimization
of the potential energy with respect to these degrees
of freedom. Velocities for all the degrees of freedom
are set to zero. After the calculation of the interatomic
forces, the first half of the evolution algorithm is applied
to the cores to compute R(δt) and P (δt/2). New val-
ues of the shell variables are determined by applying
SHAKE starting from the shell positions found by the
conjugate-gradient minimization at step zero. Finally,
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interatomic forces are computed for this new configu-
ration and the second half of the evolution algorithm is
applied to the cores to obtain P (δt). Note that, because
the shell velocities are set to zero at initialization, this
procedure ensures that constraints are satisfied at t = 0
both in the absence and in the presence of the mag-
netic field. MaZe integration as described in Sect. 2.1
(no magnetic field) and Sect. 3 (magnetic field present)
is then started. The timestep for the standard MaZe
simulations is set to δt = 1fs, while for the runs with
Bz �= 0, δt = 0.25fs (see below for a discussion of the
reasons for the smaller timestep). Equilibration to the
target temperature is achieved in all runs by simulat-
ing the system for 5ps. During this equilibration, the
velocities are rescaled if the temperature differs from
the target more than 10%. NVE runs of total length
of 10ps are then performed to compute the properties
reported in the following. A strict convergence criterion
for the constraints is enforced in all runs by imposing
that the maximum magnitude of the constraints is less
than 10−10 units of force. The relaxation parameter η,
see Eq. (42) and discussion in the previous section, is
set to η = (1, 1, 1) for the calculations with Bz = 0
and to η = (0.33, 0.33, 1) when the magnetic field is
present. While the value of η can be set via an auto-
matic search and adapted during the run [58], here it
was chosen via manual search by optimizing the num-
ber of iterations necessary to converge SHAKE for a
typical configuration of the cores. Previous experience,
confirmed by the simulations reported here, has shown
that this is sufficient to provide a stable number of iter-
ations along the whole trajectory. In Fig. 2, we show
the convergence paths of the constraints in the presence
(left panel) and absence (right panel) of the magnetic
field for a few randomly chosen configurations along
the trajectory of the cores. The figures show the mag-
nitude of the largest constraint as a function of the
number of SHAKE iterations. In agreement with pre-
vious calculations, the number of iterations needed to
converge in MaZe calculations for fully holonomic con-
straints (no magnetic field) is very small and similar
for different configurations. The path shows monotonic
convergence, with a single slope on the semilogarith-
mic scale employed in the figure. This fast convergence
is facilitated by the already small value of the largest
constraint at the start of the iterative process, indicat-
ing that the provisional values for the shell positions
are quite close to the minimizers of the potential. The
convergence of MaZe for the mixed set of holonomic
and semiholonomic constraints, on the other hand, is
about four times slower. This may be related to the
fact that the magnetic force results in larger nondi-
agonal terms in the Jacobian matrix of the Newton–
Raphson procedure, implying that Eq. (43) provides a
less effective approximant of its inverse. Furthermore,
the value of the maximum constraint at the beginning
of the minimization is now larger than in the holonomic
case, indicating that our provisional shell positions and
velocities at the zeroth iteration are farther from the
final solution. This behavior is sensitive to the choice
of the timestep δt, with worse performance (and even-

tually lack of convergence) with larger timesteps. This
suggests that the basin of convergence of SHAKE in the
presence of semiholonomic constraints may be smaller
than the one for standard applications, an issue that
will be further investigated in future studies. Finally,
the paths to convergence now present a double slope
pattern: a fast initial decay is followed by a slower
decrease. Closer inspection of the decrease of individ-
ual constraints suggests that this is due to the differ-
ent speed of convergence of the holonomic and semi-
holonomic constraints, with the latter evolving faster
toward the threshold. This is most likely also related
to the different values for the components in the scal-
ing vector η. In spite of the differences in the conver-
gence pattern, and of the need to further investigate
the behavior of the new algorithm, this first implemen-
tation of SHAKE for mixed constraints performs well
for the nontrivial interactions of the model.

Inspection of typical dynamical indicators and struc-
tural properties confirms the reliability of the MaZe
approach for classical polarizable models in external
magnetic field. In particular, the fluctuations of the
total energy relative to the fluctuations of the potential
energy along the trajectory of the cores are ΔE/ΔV ≈
2 · 10−4, where, for example, ΔE =

√〈E2〉 − 〈E〉2.
The stability of the new algorithm is visible also in
the calculation of the instantaneous temperature of the
cores. Figure 3 shows the fluctuations of this quantity
in a 10ps simulation in the presence of the magnetic
field, which are—again—perfectly compatible with typ-
ical results for classical simulations. As a test of the
reliability of MaZe semiholonomic dynamics, we con-
sider the radial distribution function of the ionic species
as obtained in the simulation with and without exter-
nal magnetic field. Results are shown in Fig. 4, where
we report as symbols the output of the runs in the
absence of the magnetic field and as solid lines that
of the calculations with the magnetic field. The posi-
tion and shape of the peaks for all g(R) are in good
agreement with experimental results [64] and with pre-
vious calculations [2,55] in spite of the somewhat crude
treatment of the electrostatic interactions, of a different
temperature (T ≈ 1350 K in this work and T ≈ 1550 K
in Refs. [2,55]) and of some differences in the parame-
ters in the shell model detailed in Appendix B. Perhaps
more importantly for our purposes, the curves and the
symbols are superimposed. This provides strong valida-
tion for the MaZe algorithm presented in Sect. 3: it is
in fact known (see, for example, Ref. [55]) that time-
independent averages are not affected by the presence
of the magnetic field. As shown by the results on a
nontrivial observable, this property is respected by the
MaZe algorithm.

We now move to the calculation of time-dependent
statistical properties of the system. In this case, the
presence of a magnetic field is expected to affect the
results in nontrivial ways providing further and more
interesting testing ground for our approach. We con-
sider, in particular, the velocity correlation functions
of the ionic species. In Figs. 5 and 6, we show results
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for the diagonal and off-diagonal correlations in the
absence and presence of B. Results for system in the
absence of the magnetic field are reported in symbols
(Na+ upper panel and Cl− lower panel). In the insets,
we also show the corresponding elements of the diffu-
sion tensor. As expected, when Bz = 0, the three diago-
nal components of the velocity correlation function are
equal for each species and show the characteristic initial
decay followed by one or more minima before going to
zero at longer times. For this system, the integral of the
autocorrelation function of the velocity yields diffusion
coefficients equal to DNa = (1.78 ± 0.08) · 10−4cm2s−1

and DCl = (1.51 ± 0.06) · 10−4cm2s−1, both obtained
averaging the three components on the diagonal of the
diffusion tensor. The error on the values of the diffu-
sion is estimated from the off-diagonal components of
the tensor for Bz = 0. These off-diagonal components
must be zero based on time-reversal symmetry argu-
ments [65,66], and the results of the simulation can be
used to estimate the statistical noise in computing the
integrals. All the results discussed above are compati-
ble with previous studies [64] performed on the same
system at zero magnetic field.

The presence of the magnetic field breaks the isotropy
of space and this implies that the components of the
correlation on the plane orthogonal to the field are now
different from that in the direction parallel to it, and
show an oscillatory behavior that reflects the rotatory
motion induced by the Lorentz force. Consistently, the
diffusion coefficients are also affected by the presence
of the magnetic field. The observed reduction of their
values is in fact a known phenomenon, the so-called
magnetoresistance, which is commonly observed for the

electrons in semiconductors in the presence of mag-
netic field and was also reported for ions in previous
simulations [55,62]. In particular, the diffusion coeffi-
cients are reduced to D⊥

Na = (0.96±0.10) ·10−4cm2s−1,
Dzz

Na = (1.36 ± 0.14) · 10−4cm2s−1 for the Sodium
ions and to D⊥

Cl = (0.91 ± 0.07) · 10−4cm2s−1, Dzz
Cl =

(1.24 ± 0.10) · 10−4cm2s−1 for the Chlorine ions, where
D⊥ = (Dxx + Dyy)/2. The effect of the magnetic
field is even more striking when considering the off-
diagonal components of the velocity correlation func-
tions. In Fig. 6, we present results for the xy and yx
cross-correlations. In the absence of the field, time-
reversal invariance leads to null values of these quan-
tities. On the other hand, when Bz �= 0 a charac-
teristic oscillatory pattern is observed. As detailed in
Ref. [66], the antisymmetry of these two observables
is dictated by their properties under generalized time-
reversal symmetries and well reproduced by our simu-
lations (all other off-diagonal components remain zero,
for symmetry reasons). The behavior of the correlation
function is reflected in the values obtained for the xy
and yx components of the diffusion tensor, which are
now equal to Dxy

Na = (0.46 ± 0.14) · 10−4cm2s−1 and
Dyx

Na = (−0.43 ± 0.14) · 10−4cm2s−1 for Sodium and
to Dxy

Cl = (−0.32 ± 0.10) · 10−4cm2s−1 and Dyx
Cl =

(0.32 ± 0.10) · 10−4cm2s−1 for Chloride.
Finally, it is interesting to explore the effects of polar-

ization on the transport properties of this model of
molten NaCl. To assess the relevance of these effects, we
compare the elements of the diffusion tensor discussed
above with those from a simulation of an unpolarized
model of the system. The unpolarized (or rigid ion)
model is defined by removing the shell variables from
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the electrostatic interactions, while keeping the remain-
ing parameters of the potential for the cores as in our
previous runs. Further details and the specific form of
the interaction are also given in Appendix B. In Fig. 7,
we show results for the diffusion coefficients of the
polarized (solid curves) and rigid ions (symbols) simu-
lations in the presence of the same magnetic field. The
plot indicates that, for the rigid ion model, the diago-
nal components of the diffusion tensor (upper panel of
the figure) are very similar for both species. The pres-
ence of polarization globally enhances transport in the
system, but—due to the different polarizability of the
two ions—leads to different values, in particular, of the
component of the diffusion tensor parallel to the mag-
netic field. Similarly, the cross components of the dif-
fusion for Na+ and Cl− in the plane orthogonal to the
magnetic field (bottom panel of the figure) are essen-
tially identical for rigid ions, but polarization separates
them. In particular, for the rigid ion case, we obtain
values for the xy and yx components of the diffusion
coefficients given by D̄xy

Na = (0.25 ± 0.14) · 10−4cm2s−1

and D̄yx
Na = (−0.24 ± 0.14) · 10−4cm2s−1 for Sodium

and D̄xy
Cl = (−0.26 ± 0.10) · 10−4cm2s−1 and D̄yx

Cl =
(0.25±0.10) ·10−4cm2s−1 for Chloride, where the sym-
bol D̄ is used to indicate that the diffusion coefficient is
computed for the rigid ion model, at difference with the
notation D which indicates diffusion coefficient com-
puted for the shell model.

This has an interesting implication for the detection
of the ionic Hall effect in molted NaCl. In fact, the key
indicator of this phenomenon, the Hall mobility, in the
Nerst–Einstein approximation, is given by [62]

μH =
1

Bz

Dxy
Na + Dxy

Cl

D⊥
Na + D⊥

Cl

. (45)

When the off-diagonal components of the diffusion
tensor of the two species are equal and opposite, as
in previous more refined calculations on a rigid ion
model for the system [55,62] and, within errors, in
the results shown in Fig. 7, the mobility is obviously
null. In particular, the values of the diffusion coef-
ficients obtained from the rigid ion simulations per-
formed in this work yield a value for the Hall mobil-
ity given by μ̄H ≈ −0.9 ·10−5cm2V−1s−1. On the other
hand, the diffusions obtained with the shell model result
in μH ≈ 8.5 · 10−5cm2V−1s−1. While error bars (not
reported) are still quite large with our level of statistics,
the noticeably different values for these mobilities sug-
gest that Hall effect is absent or hardly measurable for
the rigid ion model but quite appreciable when polar-
ization is accounted for. This observation needs to be
confirmed via more accurate calculations, but it clearly
underlines the relevance of polarization on observables
affected by relatively subtle effects in transport pro-
cesses.
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Fig. 6 xy components of the velocity correlation tensor for Na+ (upper panel) and Cl− (lower panel) for polarizable shell
model. Solid lines report results for Bz �= 0, while the symbols refer to the same system when no magnetic field is present.
Diffusion coefficients, computed as time integrals of the correlation functions, are shown in the insets as a function of the
total integration time

Fig. 7 Diagonal (upper panels) and off-diagonal, i.e., perpendicular to the magnetic field (lower panels), components of
the diffusion tensor for a rigid ion (symbols), and a shell model (lines) system in magnetic field
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5 Conclusions

In this paper, we described the MaZe dynamics for
the simulation of systems where the evolution of a
set of physical dofs depends on parameters subject to
assigned conditions. Fully adiabatic dynamics, in first
principle or classical polarizable models, is perhaps the
most relevant example of such systems. The derivation
of MaZe and of its key properties was presented, using
the classical shell model for polarization as a reference
case. MaZe exploits the Lagrangian formulation of clas-
sical mechanics to define an extended system in which
the external parameters evolve as auxiliary dynamical
variables of zero mass. These variables are subject to
constraints that strictly enforce the conditions on the
parameters for each configuration of the physical dofs
in the evolution. The mass-zero value for the auxiliary
variables results in rigorous fully adiabatic evolution
for the physical dofs and, consequently, on exact sta-
tistical sampling of the associated probability density.
From a numerical point of view, the integration of the
constrained dynamics is efficiently performed using the
SHAKE algorithm in its standard form for holonomic
systems.

A new development extending this approach to the
physically interesting case of the shell model in exter-
nal magnetic field was also presented. Although the
model we have chosen neglects magnetization effects,
it is still nontrivial and represents an interesting exten-
sion of the MaZe framework. In this case, in fact, the
presence of the Lorentz force requires to generalize the
formalism and the associated algorithm to systems with
constraints that depend linearly on the velocities. This
generalization was described in the second part of the
paper and used in illustrative calculations on a shell
model of molten NaCl. These calculations demonstrate
the effectiveness of the new algorithm and provide inter-
esting qualitative information on the effect of polariza-
tion on ionic transport in magnetic field. In particular,
we showed indications that—within the model adopted
— polarization is critical to obtain a nonnull value of
the Hall mobility for the system. Future work will con-
sider extending MaZe to more general models for elec-
tric and magnetic interactions.
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Appendix A: Addendum to Sect. 2.2

Appendix A.1:Definition of the submatrices in the
metric matrix and its inverse

Ajj′ =
N∑

i=1

mi
∂Ri

∂ρj

· ∂Ri

∂ρj′
+

M∑
α=1

μs
∂sα

∂ρj

∂sα

∂ρj′

= mjδjj′ +
M∑

α=1

μs
∂sα

∂ρj

∂sα

∂ρj′
for j, j′ = 1, . . . , N

Bjβ =
N∑

i=1

mi
∂Ri

∂ρj

· ∂Ri

∂σβ
+

M∑
α=1

μs
∂sα

∂ρj

∂sα

∂σβ

=

M∑
α=1

μs
∂sα

∂ρj

∂sα

∂σβ
for j = 1, . . . , N, β = 1, . . . , M

`ββ′ =

N∑
i=1

mi
∂Ri

∂σβ
· ∂Ri

∂σβ′
+

M∑
α=1

μs
∂sα

∂σβ

∂sα

∂σβ′

=
M∑

α=1

μs
∂sα

∂σβ

∂sα

∂σβ′
for β, β′ = 1, . . . , M (A.1)

´jj′ =
N∑

i=1

1

mi
∇R iρj · ∇R iρj′ for j, j′ = 1, . . . , N

Ejβ = −
N∑

i=1

1

mi
∇R iρj · ∇R iσβ for j = 1, . . . , N,

β = 1, . . . , M

Zββ′ =

N∑
i=1

1

mi
∇R iσβ · ∇R iσβ′ +

M∑
α=1

1

μs

∂σβ

∂sα

∂σβ′

∂sα

for β, β′ = 1, . . . , M. (A.2)

The first equation above is obtained remembering that ρ
does not depend on s. In Eqs. (A.1) and (A.2), the notations

∇u v · ∇u v =
∑

γ∈{x,y,z}

∂vα

∂uγ

∂vβ

∂uγ

and
∂v

∂u
· ∂v

∂u
=

∑
γ∈{x,y,z}

∂vγ

∂uα

∂vγ

∂uβ
,
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have been used (both represent 3 × 3 matrices).

Appendix A.2:Performing the integrals over the
constraint variable and momentum

The integral over πs in Eq. (18) is performed trivially due
to the delta function to obtain

〈O〉 =
1

Z ′

∫
d3Nρd3NπρdMσδM (σ)O(ρ, σ, πρ , π̃σ)

× δ(H(ρ, σ, πρ , π̃σ) − E).

(A.3)

The expression above can be usefully simplified by perform-
ing the change of variables σα �→ sα, ρi �→ Ri to obtain at
first

〈O〉 =
1

Z ′

∫
d3NRd3NπρdMs|J(R)|δM (σ(R, s))

× O(R, σ(R, s), πρ , π̃σ)

× δ(H(R, σ(R, s), πρ , π̃σ) − E),

(A.4)

where |J(R)| is the Jacobian of the coordinate transforma-
tion, which reduces to det

[
∂σ
∂s

]
. Then, making the depen-

dence on s of the delta explicit, we get

〈O〉 =
1

Z ′

∫
d3NRd3NπρdMs|J(R)||J(R)|−1δM (s − s̃(R))

× O(R, s, πρ , π̃σ)δ(H(R, s, πρ , π̃σ) − E),

(A.5)
where we have O(R, s, πρ , π̃σ) = O(R, σ(R, s), πρ , π̃σ). In
this last equality, we have used the properties of the delta
of a vector function of the integration variable to express
the constraint condition directly as a function of the s, with
s̃(R), such that σ(R, s̃) = 0 (we assume, as commonly done
in the Born–Oppenheimer framework that this expression
has, for any R, a single root). Finally, performing the inte-
gral over the s variables, and noting that the product of
Jacobians in the integrand simplifies, we obtain

〈O〉 =
1

Z ′

∫
d3NRd3NπρO(R, s̃, πρ , π̃σ)

× δ(H(R, s̃, πρ , π̃σ) − E)

(A.6)

with (see next subsection)

H(R, s̃, πρ , π̃σ) =
1

2
πρ T

Ã−1πρ + V (R, ŝ) (A.7)

which is the result given in the main text.

Appendix A.3:Expressions for πσ and for the
Hamiltonian on the constrained hypersurface

The expression for πσ on the constrained hypersurface is
obtained as follows. From

(
ρ̇
σ̇

)
=

[ ˜́ Ẽ
ẼT Z̃

] (
πρ

πσ

)
, (A.8)

where, as in the text, the tildes indicate that quantities are
evaluated on the constrained hypersurface. We have

σ̇ = ẼTπρ + Z̃π̃σ (A.9)

and, since the condition σ̇ = 0 must hold on the constrained
hypersurface, Eq. (19) follows.

Furthermore, from MM−1 = 1, we have that ÃẼ+ B̃Z̃ = 0
and B̃TẼ + ˜̀Z̃ = 1. Using these identities, we obtain

Z̃−1 = ˜̀ − B̃TÃ−1B̃ (A.10)

from which Eq. (25) is obtained by substituting the expres-
sion above in Eq. (19).

The Hamiltonian

H(υ, πυ) =
1

2
πυT

M−1(υ)πυ + V(υ)

on the hypersurface σ = 0, πσ = π̃σ can be written in the
form presented in the text via the following steps. First, we
use the block representation of the inverse mass matrix to
write

H(ρ, σ = 0, πρ , πσ = π̃σ)

=
1

2
(πρ , π̃σ)

[ ˜́ Ẽ
ẼT Z̃

] (
πρ

π̃σ

)
+ V(ρ, σ = 0).

(A.11)

We then observe that the block expression of the product

MM−1 = 1 imposes Ã˜́ + B̃ẼT = 1 and ÃẼ + B̃Z̃ = 0. These

two relationships, in turn, imply ˜́−ẼZ̃−1ẼT = Ã−1, so that

H(ρ, σ = 0, πρ , πσ = π̃σ)

=
1

2
[πρ T

(˜́ − ẼZ̃−1ẼT)πρ ] + V(ρ, σ = 0)

=
1

2
πρ T

Ã−1πρ + V(ρ, σ = 0).

(A.12)

Appendix B: Interaction potentials used in
simulations

Let us indicate with R = {R1, . . . , RN} and S =
{s1, . . . , sN}, where N is the number of ions. The Shell
Model (SM) potential adopted in our calculations is of the
form

V
SM(R, S) =

N∑

i=1

1

2
ki(Ri − si)

2

+
∑

i�=j

{
qiqj

|si−sj |+
qiQj

|si−Rj |+
Qiqj

|Ri−sj |+
QiQj

|Ri − Rj |

+Aij exp

[
− |si−sj |

λ

]
− Cij

|Ri − Rj |6 − Dij

|Ri−Rj |8
}

,

(B.13)

where Qi and qi represent the charge assigned to the core
and the shell of the ion i, respectively,3 and ki, Aij , λ =
0.317Å, Cij and Dij are force-field parameters dependent
on the particular species considered. The values chosen for
these parameters are reported in Tables 1 and 2.

The analytical form of the potential is the same as the
one used in Ref. [38], but, differently from that work that
considered a mixed picture with rigid ion Na+ and polar-
izable Cl−, we consider a model in which both species are
polarizable. Consequently, the parameters in the potential
associated with the shell variables paired with Sodium are
nonzero. The values used for these parameters are based on

3 The parameters Qi and qi are subject to the condition
Zi = Qi + qi, where Zi is the ionic charge.
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Table 1 Interatomic potential parameters for the Shell
Model and for the Rigid Ion Model from Ref. [38]

Species Aij (Eh) Cij (EhÅ
−6

) Dij (EhÅ
−8

)

Na Na 15.57 3.85 · 10−2 1.83 · 10−2

Na Cl 46.10 2.57 · 10−1 3.19 · 10−1

Cl Cl 128.0 2.66 5.34

Table 2 Single species parameter for the Shell Model from
Refs. [38,67]

species ki (EhÅ
−2

) Qi (e) qi (e)

Na 35.1 +3.17 −2.17
Cl 1.58 +2.17 −3.17

a more sophisticated polarizable potential proposed in [67]
(in particular, we used that work to define the elastic con-
stant k) and the Sodium core and shell charges were assigned
by mirroring (with opposite signs) those used for Chlorine.
The changes caused by this reparametrization of the shell
model potential are minor as demonstrated in Sect. 4.

The Rigid Ion Model (RIM) used for the simulations illus-
trated in Fig. 7 and in the subsequent discussion is defined
by

V RIM(R) =
∑
i�=j

{
ZiZj

|Ri − Rj | + Aij exp

[
− |Ri − Rj |

λ

]
+

− Cij

|Ri − Rj |6 − Dij

|Ri − Rj |8
}

,

(B.14)
where the parameters Aij , Cij , Dij , and λ are the same as
the shell model and the ionic charges Zi = Qi + qi are used
in place of the ones summarized in Table 2.
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