Diamine Synthesis via the Nitrogen-Directed Azidation of σ - and π -C-C Bonds

Ming-Ming Wang, Tin V. T. Nguyen, Jerome Waser*.

Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015 Lausanne, Switzerland

Abstract

Diamines are essential building blocks for the synthesis of agrochemicals, drugs and organic materials, yet their synthesis remains challenging, as both nitrogens need to be differentiated and diverse substitution patterns ($1,2-, 1,3$ or 1,4) are required. We report herein a new strategy giving access to 1,2-, 1,3- and 1,4-amido azides as orthogonally protected diamines based on the nitrogen-directed diazidation of alkenes, cyclopropanes and cyclobutanes. Commercially available copper thiophene-2-carboxylate ($\mathrm{CuTc}, 2 \mathrm{~mol} \%$) as catalyst promoted the diazidation of both π and σ C-C bonds within 10 minutes in presence of readily available oxidants and trimethylsilyl azide. Selective substitution of the formed α-amino azide by carbon nucleophiles (electron-rich aromatic, malonate, organosilicon, organoboron, organozinc and organomagnesium compounds) was then achieved in a one-pot fashion, leading to the formation of 1,2-, 1,3- and 1,4-diamines with the $\underline{\text { amino groups protected orthogonally as an amide/carbamate and an azide. }}$

Diamines are an important class of compounds found in pharmaceuticals such as Oseltamivir (1), Rivaroxaban (2) or Chloroquine (3), organocatalysts, chiral ligands, as in Noyori catalyst 4, and materials (Scheme 1a). ${ }^{1-4}$ Two key challenges currently hamper access to these building blocks: 1) A way to differentiate the two nitrogen functionalities and 2) A general access to the different substitution patterns (1,2-, 1,3- or $1,4^{-}$), which are currently synthesized using fundamentally different disconnections. To answer these challenges, we considered an approach based on the diazidation of nitrogen-substituted alkenes and strained rings (Scheme 1 b). The amine in the starting material would play a key role in this strategy: First, it will act as an activating group to promote the diazidation of an adjacent
π or σ C-C bond. Second, it will accelerate the dissociation of the azide at the aminal position for the introduction of nucleophiles. Finally, it will remain in the product as an orthogonally protected amine, whereas the second nitrogen functionality would be in the form of an azide, one of the synthetically most useful functional groups.5,6

When considering precedence for our strategy, only the π-diazidation step has been realized so far. 7^{-17} Diazidation of alkenes is attractive because of a quick access to diamines after reduction, but selective reaction of one of the two azido groups is difficult. ${ }^{18,19}$ Introducing simultaneously an azide and another nitrogen functionality on an alkene is promising, but has been realized only in a few reports. ${ }^{17,20-23}$

Rivaroxaban (2, Xarelto ${ }^{\circledR}$) anticoagulant

Noyori catalyst 4
Key synthetic challenges

- How to differentiate the nitrogens?
- How to access the different substitution patterns?

Scheme 1. (a) Diamines: essential building blocks, but a synthetic challenge. (b) Our concept starting from nitrogen-substituted alkenes and strained rings. (c) Our solution: copper-catalyzed synthesis of 1,2-, 1,3- and 1,4-amido azides.

In contrast to the diazidation of π bonds, the envisaged σ bond diazidation of cyclopropanes or cylobutanes to give either 1,3- or 1,4 -diazides was unprecedented. Only the diaminations of arylcyclopropanes to form 1,3-ditosylamides or 1,3 -azidoimides have been reported. ${ }^{24,25}$ This may be due to the lower reactivity of cyclopropane/cyclobutane σ bonds compared to alkene π bonds. ${ }^{26}$ Among recent efforts in ring-opening reactions of aminocyclopropanes and aminocycylobutanes, ${ }^{27,28}$ our group and others have used oxidative ring-opening to access multi-functionalized building blocks. ${ }^{29-35}$ For extending this strategy to the diazidation of aminocyclopropanes, two challenges needed to be considered: 1) the choice of a catalyst to promote both oxidative ring-opening and azide transfer; 2) the functionalization of α-azido amides by carbon nucleophiles, which was unprecedented. Indeed, only three examples using thiophenol, ${ }^{36}$ amine ${ }^{37}$ and silyl hydride ${ }^{10}$ as heteronucleophiles have been reported.

Herein, we show that the C-C diazidation challenge can be solved for both π and σ bonds by the use of a copper catalyst ${ }^{38-42}$ (commercially available copper thiophene-2carboxylate, CuTc, $2 \mathrm{~mol} \%$), an oxidant and TMSN_{3} as azide source (Scheme 1c). We then developed simple conditions for the one-pot addition of a broad range of carbon nucleophiles, resulting in a general access to 1,2-, 1,3- and 1,4- amido azides.

Based on our previous work, ${ }^{32-34}$ aminocyclopropane 5a was selected as the model substrate for the ring-opening azidation reaction with TMSN_{3} as azide source (Table 1). Photoredox conditions using benzophenone as catalyst and Selectfluor as oxidant ${ }^{34}$ afforded a mixture of diazidation product 6a and a fluorination byproduct (see Scheme S2 in SI). A broad screening of reaction conditions showed that copper salts were uniquely able to suppress fluorination and promote the azidation reaction (see Table S1 in SI). After optimization, 6a could be obtained in 78% yield in 10 minutes with 2.2 equivalents of TMSN_{3} when using CuTc as catalyst in acetonitrile (Table 1 A , entry 1). The reaction proceeded with low conversion when NFSI was used instead of Selectfluor (Table 1A, entry 2). Other oxidants failed to afford 6a (Table 1 A , entry 3). NaN_{3} and TBAN ${ }_{3}$ were examined, but were less efficient than TMSN_{3} (Table 1 A, entries 4 and 5). Almost no reaction took place in the absence of CuTc (Table 1A, entry 6). The reaction failed in other solvents and it was sensitive to air (Table 1A, entries 7 and 8).

With optimal conditions in hand, we examined the scope of substituents on nitrogen (Table 1 B). On benzamides, substituents could be introduced in para ($\mathbf{6 b}-\mathbf{h}$), meta ($\mathbf{6 i} \mathbf{i} \mathbf{j}$) and ortho position ($\mathbf{6 k} \mathbf{k} \mathbf{1}$). Electron-rich ($\mathbf{6 b}-\mathbf{c}$), electron-poor ($\mathbf{6 g - h}$) and halogen substituents ($\mathbf{6 d}-\mathbf{f}$) were all well tolerated.

Table 1. Optimization and scope of the diazidation reaction ${ }^{\text {a }}$

5, 0.2 mmol	CuTc (2 mol\%) Selectfluor (1.1 equiv) $\mathrm{TMSN}_{3}(2.2$ equiv $)$ $\mathrm{MeCN}(0.1 \mathrm{M}), \mathrm{RT}, \mathrm{N}_{2}$ 10 min		 5a

[^0]Substrates bearing alkyl amides underwent diazidation to give $6 \mathbf{m}-\mathbf{o}$ in $56-63 \%$ yield. Carbamate protected aminocyclopropanes afforded products $\mathbf{6 p}$ and $\mathbf{6 q}$ in 62% and 66% yield respectively. From tosyl protected substrate 5r, diazidation product $6 \mathbf{r}$ was observed by ${ }^{1} \mathrm{H}$ NMR, but purification by column chromatography led to decomposition. An alkyl-substituted benzamide gave diazide 6s in 64% yield. The reaction conditions were also successful in the case of aminocyclobutanes, leading to 1,4-diazides $\mathbf{6 t}$ and 6u in 67% and 60% yield (Table 1 C). Ring strain was shown to be an essential driving force, as aminocyclopentane $5 \mathbf{v}$ did not react. Importantly, the transformation was not limited to unsubstituted small rings. 1-Methyl, 2-methyl and 2-phenyl substituted aminocyclopropanes 5w, 5xa and $\mathbf{5 x b}$ gave the diazide products $\mathbf{6 w}$, 6xa and $\mathbf{6 x b}$ in $58-89 \%$ yield (Table 1D). Product $\mathbf{6 w}$ was observed by ${ }^{1} \mathrm{H}$ NMR, but it was not stable enough to be isolated. From gem-difluoro aminocyclopropane 5y, difluoroazide 6y was obtained in 86% yield. For all substrates, selective cleavage of the more-substituted σ-bond to give the more stable radical was observed. 3-Phenyl substituted aminocyclobutane $\mathbf{5 z}$ yielded only $\mathrm{C}_{1}-\mathrm{C}_{2}$ bond cleavage product $\mathbf{6 z}$ in 70% yield. Cyclopropylbenzene 7 gave diazidation product 8 in 10% yield (Table 1 E). In contrast, only the aminoazidation product
had been observed in Zhang's previous work using NFSI as oxidant. ${ }^{25}$

We then turned towards the one-pot nucleophilic substitution of the α-amino azide. After the diazidation step was complete, carbon nucleophiles ${ }^{43}$ were added directly to the reaction mixture (Table 2). To our delight, the α amino azide was readily replaced by numerous nucleophiles with or without Lewis acid activation. Friedel-Crafts reactions took place in 46-74\% yield with 3-methyl indole (9a) or 2-naphthol ($\mathbf{9 b}$) and boron trifluoride etherate as Lewis acid to give diamines 10a and 1ob. Mannich-type reactions with enamine $9 \mathbf{c}$ or enol ethers 9 d and 9 e gave products 10c-e in $58-79 \%$ yield. Allyltrimethylsilane ($\mathbf{9 f}$) was also a good nucleophile in presence of titanium tetrachloride. More reactive nucleophiles, such as malonate $\mathbf{9 g}$ and nitronate $\mathbf{9 h}$, reacted directly with the α-amino azide without the need for Lewis acid activation. Trimethylsilyl cyanide (9i) and triethylsilane (9j) gave cyano amine $\mathbf{1 0 i}$ and reduced amine $\mathbf{1 0 j}$ in 63 and $7 \mathbf{2} \%$ yield respectively. A Petasis-type reaction using tetrafluoroborate salts 9k and 91 as nucleophiles led to the formation of propargylic amine sok and allylic amine $\mathbf{1 o l}$ in 48 and 50% yield in presence of boron trifluoride etherate.

Table 2. One-pot diazidation-nucleophilic substitution for 1,3-and 1,4-diamine synthesis ${ }^{\text {a }}$

${ }^{\text {a }}$ Isolated yield on a scale of 0.2 mmol , nucleophilic substitution at room temperature for the indicated time. ${ }^{\mathrm{b}}$ Nucleophilic substitution at $-20^{\circ} \mathrm{C}$ for 2 hours.

Organozinc reagents, such as diethylzinc ($\mathbf{9 m}$) could be used to introduce an alkyl chain without Lewis acid activation. Commercially available organomagnesium reagents enabled the introduction of vinyl, aryl, alkynyl and alkyl substituents (products 1on-q). This diazidation-nucleophilic substitution process was successfully extended to aminocyclobutanes to give 1,4-diamines 11a, 11h and 11m in 35-78\% yield.

We then applied our nucleophilic substitution protocol with carbon nucleophiles to diazides derived from enamides. Rather than using one of the reported methods to access the diazides, ${ }^{10,11,15}$ we wondered if our copper-catalyzed diazidation method could be applied. In fact, the copper-catalyzed diazidation of styrenes has already been reported. ${ }^{8,9,13,14}$ Best results were obtained with PIDA as oxidant using CuTc as catalyst, and product 13 a was isolated in 95% yield starting from enamide 12 (Table 3, see Table S6 in SI for more details). The reaction proceeded even without CuTc, although the isolated yield decreased to 78%. These conditions were also suitable for enecarbamate $\mathbf{1 2 b}$ and product $\mathbf{1 3} \mathbf{b}$ was isolated in 83% yield in the presence of CuTc , compared to 67% in its absence.

Table 3. Diazidation of enamides and enecarbamates and one-pot addition of nucleophiles ${ }^{\text {a }}$
(2 mol\%)
${ }^{\text {a }}$ Isolated yield on a scale of 0.2 mmol , nucleophilic substitution at room temperature for the indicated time. ${ }^{\text {b }}$ Nucleophilic substitution at $-20^{\circ} \mathrm{C}$.

Different nucleophiles were then incorporated into the α-amino position. Friedel-Crafts reactions with indole (9r) and 2-naphthol (9b) gave $\mathbf{1 4 a}$ and $\mathbf{1 4 b}$ in 83% and 76% yield respectively. Enol ether (9d) and allyltrimethylsilane (9f) were also good nucleophiles. For enecarbamate 12b, β amino acid derivative $\mathbf{1 4 e}$ was obtained by using enol ether $\mathbf{9 e}$ as nucleophile. Sodium malonate gave $\mathbf{1 4 f}$ in 99% yield. When nitromethane was used as nucleophile, 1,2,3-trifunctionalized propane $\mathbf{1 4 g}$ bearing three nitrogen atoms in different oxidation states was formed. Different organomagnesium reagents were also examined and isolated yields for products $\mathbf{1 4 h} \mathbf{- 1 4} \mathbf{k}$ ranged from 40% to 59%.

Preliminary mechanistic experiments were then performed (Scheme 2). In the presence of the radical inhibitor 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), 6\% of TEMPO adduct $\mathbf{1 5}$ could be isolated, while 94% of $\mathbf{5}$ b was recovered (Scheme 2a). When methyl acrylate was added, 1,5 -diazide product 16 was isolated in 9% yield (Scheme 2b).

b

18\% $\mathbf{6}$ a
c

2 mol\% CuTc: 77\%, 6xa:20=85:15
4 mol\% CuTc: $88 \%, 6 \times \mathbf{x a} \mathbf{2 0}=93: 7$ 6 mol\% CuTc: 89\%, 6xa:20 = 96:4

Scheme 2. Studies on the catalytic ring-opening azidation and speculative mechanism.

In order to compare the reactivity of the σ and π bonds, we synthesized substrate 17 bearing a cyclopropyl ring and a cinnamyl group on the nitrogen. Using PIDA/TMSN ${ }_{3}$, 92% of alkene diazidation product 18 was isolated; with Selectfluor/TMSN $3,8 \%$ of $\mathbf{1 8}$ as well as 14% alkene hydroxyazidation byproduct 19 were isolated (Scheme 2c). In both cases, no ring-opening product was observed. Cyclic voltammetry experiments were then performed to measure the redox potential of substrates $\mathbf{5 b}, \mathbf{5 m}, \mathbf{5 P}$ and $\mathbf{5 r}$ and the values ranged from +1.67 to +2.23 V vs SCE in $\mathrm{CH}_{3} \mathrm{CN}$ (Scheme 2d). Therefore, Selectfluor $\left(\mathrm{E}_{1 / 2}{ }^{\mathrm{Red}}=+0.33 \mathrm{~V}\right.$ and +0.79 V vs SCE in $\mathrm{CH}_{3} \mathrm{CN}$, for two successive SET processes) ${ }^{34}$ should not be able to oxidize the aminocyclopropanes directly. When 5xa was used as substrate, a small amount of fluorination side product 20 was observed in addition to 6xa. Interestingly, the ratio between 6xa and 20 was increased by adding more CuTc , indicating that the copper catalyst played a role for azido group transfer (Scheme 2e). Finally, no asymmetric induction was observed in presence of a chiral CN-BOX ligand with 2-phenyl substituted aminocyclopropane 5xb (See Scheme S8 in SI). ${ }^{17,42,44}$

Based on these results, together with literature precedence on Selectfluor-oxidized $\mathrm{Cu}(\mathrm{III})$ species ${ }^{45-48}$ and a recent report on copper-catalyzed benzylic C-H azidation, ${ }^{41}$ we propose a speculative mechanism in Scheme 2f. The reaction would be initiated by oxidation of CuTc by Selectfluor to form a fleeting $\mathrm{Cu}(I I I)$ species, which then oxidizes aminocyclopropane 5 to give aminium radical I. Carbon radical II is then formed after β-scission. In a second step, the azide could be transferred from a $\mathrm{Cu}(\mathrm{II})-\mathrm{N}_{3}$ complex to II, regenerating a $\mathrm{Cu}(\mathrm{I})$ complex. A rebound-type mechanism with a $\mathrm{Cu}(\mathrm{III})-\mathrm{N}_{3}$ complex first oxidizing 5 and then transferring the azide to II can be considered, although we have no experimental support for it at this stage. Alternatively, the generation of a free azide radical that recombines with II can also be envisaged. In the latter case, the role of copper in the azidation step would be just to increase the concentration of the free azido radical. The azidation of II would then lead to iminium III, which would be intercepted by an azide nucleophile to deliver diazidation product 6.

In summary, we have developed a diazidation-nucleophilic substitution sequence for the synthesis of orthogonally protected $1,2-, 1,3^{-}$, and 1,4 -diamines starting from enamides/enecarbamates, aminocyclopropanes and aminocyclobutanes respectively. The first step was enabled by a copper-catalyzed diazidation proceeding in high yields within 10 minutes at room temperature using commercially available reagents. The obtained α-amino azides functioned then as masked imines for accessing a broad range of protected diamines in the form of an amide/carbamate and an azide by addition of carbon-based nucleophiles. Our new strategy to access diamines further highlights the potential of $\mathrm{C}-\mathrm{C}$ functionalizations of strained carbocycles for the selective synthesis of multi-functionalized building blocks, as well as shines light on the potential of α-amido azides as masked imines.

Supporting Information. The Supporting Information is available free of charge. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2085561 (10a) and 2085562 (14b). Copies of the data can be obtained free of charge via http://www.ccdc.cam.ac.uk/structures/.

Corresponding Author

* jerome.waser@epfl.ch

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENT

This work is supported by the Swiss National Science Foundation (SNSF, grant no. 200020_182798) and EPFL. We thank Dr. Rosario Scopelliti and Dr. Farzaneh Fadaei Tirani (ISIC, EPFL) for the determination of the X-ray crystal structure of compounds $\mathbf{1 0 a}$ and $\mathbf{1 4 b}$. We thank Dr. Daniel Ortiz (ISIC, EPFL) for assisting us with our attempts of detecting reaction intermediates by ESI-MS. We thank Dr. Stefano Nicolai, Dr. Luca Buzzetti and Dr. Emmanuelle Allouche for proofreading this manuscript.

REFERENCES

(1) Lucet, D.; Le Gall, T.; Mioskowski, C. The chemistry of vicinal diamines. Angew. Chem. Int. Ed. 1998, 37, 25802627.
(2) Kizirian, J.-C. Chiral tertiary diamines in asymmetric synthesis. Chem. Rev. 2008, 108, 140-205.
(3) Grygorenko, O. O.; Radchenko, D. S.; Volochnyuk, D. M.; Tolmachev, A. A.; Komarov, I. V. Bicyclic conformationally restricted diamines. Chem. Rev. 2011, 111, 55065568.
(4) Ji, X.; Huang, H. Synthetic methods for 1,3-diamines. Org. Biomol. Chem. 2016, 14, 10557-10566.
(5) Brase, S.; Gil, C.; Knepper, K.; Zimmermann, V. Organic azides: An exploding diversity of a unique class of compounds. Angew. Chem. Int. Ed. 2005, 44, 5188-5240.
(6) Sivaguru, P.; Ning, Y.; Bi, X. New Strategies for the Synthesis of Aliphatic Azides. Chem. Rev. 2021, 121, 42534307.
(7) Schäfer, H. Oxidative addition of the azide ion to olefins. A simple route to diamines. Angew. Chem. Int. Ed. 1970, 9, 158-159.
(8) Fumagalli, G.; Rabet, P. T. G.; Boyd, S.; Greaney, M. F. Three-component azidation of styrene-type double bonds: light-switchable behavior of a copper photoredox catalyst. Angew. Chem. Int. Ed. 2015, 54, 11481-11484.
(9) Lu, M.-Z.; Wang, C.-Q.; Loh, T.-P. Copper-catalyzed vicinal oxyazidation and diazidation of styrenes under mild conditions: access to alkyl azides. Org. Lett. 2015, 17, 6110-6113.
(10) Nocquet-Thibault, S.; Rayar, A.; Retailleau, P.; Cariou, K.; Dodd, R. H. Iodine(III)-mediated diazidation and azido-oxyamination of enamides. Chem. Eur. J. 2015, 21, 14205-14210.
(11) Yuan, Y.-A.; Lu, D.-F.; Chen, Y.-R.; Xu, H. Iron-catalyzed direct diazidation for a broad range of olefins. Angew. Chem. Int. Ed. 2016, 55, 534-538.
(12) Shen, S.-J.; Zhu, C.-L.; Lu, D.-F.; Xu, H. Iron-catalyzed direct olefin diazidation via peroxyester activation promoted by nitrogen-based ligands. ACS Catal. 2018, 8 , 4473-4482.
(13) Yu, L.-Z.; Wei, Y.; Shi, M. Copper-catalyzed cascade cyclization of 1,5 -enynes via consecutive trifluoromethylazidation/diazidation and click reaction: self-assembly of triazole fused isoindolines. Chem. Commun. 2016, 52, 13163-13166.
(14) Zhou, H.; Jian, W.; Qian, B.; Ye, C.; Li, D.; Zhou, J.; Bao, H. Copper-catalyzed ligand-free diazidation of olefins with TMSN_{3} in $\mathrm{CH}_{3} \mathrm{CN}$ or in $\mathrm{H}_{2} \mathrm{O}$. Org. Lett. 2017, 19, 6120-6123.
(15) Fu, N.; Sauer, G. S.; Saha, A.; Loo, A.; Lin, S. Metal-catalyzed electrochemical diazidation of alkenes. Science 2017, 357, 575-579.
(16) Siu, J. C.; Parry, J. B.; Lin, S. Aminoxyl-catalyzed electrochemical diazidation of alkenes mediated by a metastable charge-transfer complex. J. Am. Chem. Soc. 2019, 141, 2825-2831.
(17) Lv, D.; Sun, Q.; Zhou, H.; Ge, L.; Qu, Y.; Li, T.; Ma, X.; Li, Y.; Bao, H. Iron-catalyzed radical asymmetric aminoazidation and diazidation of styrenes. Angew. Chem. Int. Ed. 2021, 60, 12455-12460.
(18) Nyffeler, P. T.; Liang, C.-H.; Koeller, K. M.; Wong, C.-H. The chemistry of amine-azide interconversion: catalytic diazotransfer and regioselective azide reduction. J. Am. Chem. Soc. 2002, 124, 10773-10778.
(19) Udumula, V.; Nazari, S. H.; Burt, S. R.; Alfindee, M. N.; Michaelis, D. J. Chemo- and site-selective alkyl and aryl azide reductions with heterogeneous nanoparticle catalysts. ACS Catal. 2016, 6, 4423-4427.
(20) Zhang, B.; Studer, A. Copper-catalyzed intermolecular aminoazidation of alkenes. Org. Lett. 2014, 16, 17901793.
(21) Li, Y.; Liang, Y.; Dong, J.; Deng, Y.; Zhao, C.; Su, Z.; Guan, W.; Bi, X.; Liu, Q.; Fu, J. Directed copper-catalyzed intermolecular aminative difunctionalization of unactivated alkenes. J. Am. Chem. Soc. 2019, 141, 1847518485.
(22) Li, X.; Qi, X.; Hou, C.; Chen, P.; Liu, G. Palladium(II)catalyzed enantioselective azidation of unactivated alkenes. Angew. Chem. Int. Ed. 2020, 59, 17239-17244.
(23) Makai, S.; Falk, E.; Morandi, B. Direct synthesis of unprotected 2-azidoamines from alkenes via an iron-catalyzed difunctionalization reaction. J. Am. Chem. Soc. 2020, 142, 21548-21555.
(24) Banik, S. M.; Mennie, K. M.; Jacobsen, E. N. Catalytic 1,3difunctionalization via oxidative $\mathrm{C}-\mathrm{C}$ bond activation. J. Am. Chem. Soc. 2017, 139, 9152-9155.
(25) Wang, L.; Wang, X.; Zhang, G.; Yang, S.; Li, Y.; Zhang, Q. Copper-catalyzed 1,3 -aminoazidation of arylcyclopropanes: a facile access to 1,3-diamine derivatives. Org. Chem. Front. 2019, 6, 2934-2938.
(26) Kondo, H.; Miyamura, S.; Matsushita, K.; Kato, H.; Kobayashi, C.; Arifin.; Itami, K.; Yokogawa, D.; Yamaguchi, J. σ-Bond hydroboration of cyclopropanes. J. Am. Chem. Soc. 2020, 142, 11306-11313.
(27) Rassadin, V. A.; Six, Y. Ring-opening, cycloaddition and rearrangement reactions of nitrogen-substituted cyclopropane derivatives. Tetrahedron 2016, 72, 4701-4757.
(28) Sokolova, O. O.; Bower, J. F. Selective carbon-carbon bond cleavage of cyclopropylamine derivatives. Chem. Rev. 2021, 121, 80-109.
(29) Maity, S.; Zhu, M.; Shinabery, R. S.; Zheng, N. Intermolecular [3+2] cycloaddition of cyclopropylamines with
olefins by visible-light photocatalysis. Angew. Chem. Int. Ed. 2012, 51, 222-226.
(30) Wang, J.; Zheng, N. The cleavage of a C-C bond in cyclobutylanilines by visible-light photoredox catalysis: development of a $[4+2]$ annulation method. Angew. Chem. Int. Ed. 2015, 54, 11424-11427.
(31) Cai, Y.; Wang, J.; Zhang, Y.; Li, Z.; Hu, D.; Zheng, N.; Chen, H. Detection of fleeting amine radical cations and elucidation of chain processes in visible-light-mediated [3+2] annulation by online mass spectrometric techniques. J. Am. Chem. Soc. 2017, 139, 12259-12266.
(32) Wang, M.-M.; Waser, J. 1,3-Difunctionalization of aminocyclopropanes via dielectrophilic intermediates. Angew. Chem. Int. Ed. 2019, 58, 13880-13884.
(33) Wang, M.-M.; Jeon, S.; Waser, J. Synthesis of thiochromans via $[3+3]$ annulation of aminocyclopropanes with thiophenols. Org. Lett. 2020, 22, 9123-9127.
(34) Wang, M.-M.; Waser, J. Oxidative fluorination of cyclopropylamides through organic photoredox catalysis. Angew. Chem. Int. Ed. 2020, 59, 16420-16424.
(35) White, D. H.; Noble, A.; Booker-Milburn, K. I.; Aggarwal, V. K. Diastereoselective photoredox-catalyzed [3+2] cycloadditions of N-sulfonyl cyclopropylamines with electron-deficient olefins. Org. Lett. 2021, 23, 30383042.
(36) Mabrouk, E.; Elachqar, A.; Alami, A.; Hallaoui, A. E.; Hajji, S. E. One-pot regioselective synthesis of n-benzoyl 2-amino-3,4-dihydro-3-oxo-2h-1,4-benzothiazines. Orient. J. Chem. 2010, 26, 1249-1255.
(37) Houssine, M. E.; Abdelrhani, E.; Anouar, A.; Abdelilah, E. H. Synthesis of new racemic α, α-diaminocarboxylic ester derivatives. Molecules 2010, 15, 9354-9363.
(38) Goswami, M.; de Bruin, B. Metal-catalysed azidation of organic molecules. Eur. J. Org. Chem. 2017, 2017, 11521176.
(39) Tang, C.; Jiao, N. Copper-catalyzed C-H azidation of anilines under mild conditions. J. Am. Chem. Soc. 2012, 134, 18924-18927.
(40) Hossain, A.; Vidyasagar, A.; Eichinger, C.; Lankes, C.; Phan, J.; Rehbein, J.; Reiser, O. Visible-light-accelerated copper(II)-catalyzed regio- and chemoselective oxo-azidation of vinyl arenes. Angew. Chem. Int. Ed. 2018, 57, 8288-8292.
(41) Suh, S.-E.; Chen, S.-J.; Mandal, M.; Guzei, I. A.; Cramer, C. J.; Stahl, S. S. Site-selective copper-catalyzed azidation of benzylic C-H bonds. J. Am. Chem. Soc. 2020, 142, 11388-11393.
(42) Wu, L.; Zhang, Y.; Wu, D.; Wang, F.; Chen, P.; Lin, Z.; Liu, G. Anionic bisoxazoline ligands enable copper-catalyzed asymmetric radical azidation of acrylamides. Angew. Chem. Int. Ed. 2021, 60, 6997-7001.
(43) Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Catalytic enantioselective formation of C-C bonds by addition to imines and hydrazones: a ten-year update. Chem. Rev. 2011, 111, 2626-2704.
(44) Ge, L.; Zhou, H.; Chiou, M.-F.; Jiang, H.; Jian, W.; Ye, C.; Li, X.; Zhu, X.; Xiong, H.; Li, Y.; Song, L.; Zhang, X.; Bao, H. Iron-catalysed asymmetric carboazidation of styrenes. Nat. Catal. 2021, 4, 28-35.
(45) Jin, Z.; Xu, B.; Hammond, G. B. Copper mediated oxidation of amides to imides by Selectfluor. Tetrahedron Lett. 2011, 52, 1956-1959.
(46) Xiong, T.; Li, Y.; Bi, X.; Lv, Y.; Zhang, Q. Copper-catalyzed dehydrogenative cross-coupling reactions of N -para-tolylamides through successive C-H activation: synthesis of 4 H -3,1-benzoxazines. Angew. Chem. Int. Ed. 2011, 50, 7140-7143.
(47) Michaudel, Q.; Thevenet, D.; Baran, P. S. Intermolecular Ritter-type C-H amination of unactivated sp^{3} carbons. J. Am. Chem. Soc. 2012, 134, 2547-2550.
(48) Sathyamoorthi, S.; Lai, Y.-H.; Bain, R. M.; Zare, R. N. Mechanistic analysis of the $\mathrm{C}-\mathrm{H}$ amination reaction of
menthol by CuBr_{2} and Selectfluor. J. Org. Chem. 2018, 83, 5681-5687.

Supporting Information for

Diamine Synthesis via the Nitrogen-Directed Azidation of σ and π - C-C Bonds

Ming-Ming Wang, Tin V. T. Nguyen, and Jérôme Waser*
Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
corresponding author: jerome.waser@epfl.ch

Table of Contents

1. General Methods S2
2. Reaction discovery and optimization S3
3. Preparation of starting materials S8
4. Scope of 1,3- and 1,4-difunctionalization reaction S20
5. Scope of 1,2-difunctionalization reaction S43
6. Mechanistic studies S50
7. X-ray structure of 10a and 14b S56
8. Spectra for New Compounds S58

1. General Methods

For quantitative flash chromatography, distilled technical grade solvents were used. THF, $\mathrm{Et}_{2} \mathrm{O}$, toluene, hexane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were dried by passage over activated alumina under nitrogen atmosphere $\left(\mathrm{H}_{2} \mathrm{O}\right.$ content $<7 \mathrm{ppm}$, Karl-Fischer titration). All chemicals were purchased and used as received unless stated otherwise. Chromatographic purification was performed as flash chromatography using Macherey-Nagel silica 40-63, $60 \AA$, using the solvents indicated as eluent with $0.1-0.5$ bar pressure. TLC was performed on Merck silica gel 60 F254 TLC plastic or aluminium plates and visualized with UV light, permanganate stain. Melting points were measured on a calibrated Büchi B-540 melting point apparatus using open glass capillaries. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded at room temperature on a Brucker DPX-400 400 MHz spectrometer in CDCl_{3}, Acetone- $d_{6}, \mathrm{CD}_{3} \mathrm{CN}$ or $\mathrm{CD}_{3} \mathrm{OD}$, all signals are reported in ppm with the internal chloroform signal at 7.26 ppm , the internal acetone signal at 2.09 ppm , the internal acetonitrile signal at 1.94 ppm and the internal methanol signal at 3.34 ppm as standard. The data is being reported as $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quadruplet, $\mathrm{p}=$ quintet, $\mathrm{m}=$ multiplet or unresolved, br = broad signal, integration, coupling constant(s) in Hz, interpretation). ${ }^{13} \mathrm{C}$-NMR spectra were recorded with 1 H -decoupling on a Brucker DPX- 400101 MHz spectrometer in CDCl_{3}, Acetone$d_{6}, \mathrm{CD}_{3} \mathrm{CN}$ or $\mathrm{CD}_{3} \mathrm{OD}$, all signals are reported in ppm with the internal chloroform signal at 77.0 ppm , Acetone- d_{6} signal at $29.8 \mathrm{ppm}, \mathrm{CD}_{3} \mathrm{CN}$ signal at 1.3 ppm or $\mathrm{CD}_{3} \mathrm{OD}$ signal at 49.0 ppm as standard. Infrared spectra were recorded on a JASCO FT-IR B4100 or a Bruker Alpha-P spectrophotometer with an ATR device and a ZnSe prism and are reported as $\mathrm{cm}-1$ ($\mathrm{w}=$ weak, $\mathrm{m}=$ medium, $\mathrm{s}=$ strong). High resolution mass spectrometric measurements were performed by the mass spectrometry service of ISIC at the EPFL on a MICROMASS (ESI) Q-TOF Ultima API. HPLC measurements were done on a Agilent 1260 Infinity autosampler using a CHIRALPAK IA, IB, IC or IF column from DAICEL Chemical. The specific solvents and concentrations (in $\mathrm{g} / 100 \mathrm{~mL}$) are indicated.

2. Reaction discovery and optimization

2.1 Reaction discovery

Scheme S1 (Azidation attempts with intercepted HLF reaction)

N-(1-Azido-3-iodopropyl)benzamide (22).

In a 12*75 mm Borosilicate glass tube, N-cyclopropylbenzamide 5 ($32.2 \mathrm{mg}, 0.200 \mathrm{mmol}$) and N iodosuccinimide ($47.2 \mathrm{mg}, 0.210 \mathrm{mmol}, 1.05$ equiv.) were added. $\mathrm{CDCl}_{3}(1.0 \mathrm{~mL}, 0.2 \mathrm{M}$) was added, followed by the addition of TMSN_{3} (94% purity purchased from $\mathrm{TCI}, 62.0 \mu \mathrm{~L}, 0.440 \mathrm{mmol}, 2.2$ equiv.). The reaction mixture was stirred at room temperature for 30 minutes. N-(1-Azido-3iodopropyl)benzamide 22 ($23.0 \mathrm{mg}, 70.0 \mu \mathrm{~mol}, 35 \%$) was obtained as a yellow solid after purification by column chromatography (SiO_{2}, pentanes/EtOAc 3:1).
\mathbf{R}_{f} : 0.45 (silica, pentanes:ethyl acetate 3:1);
Mp: 98-99 ${ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=7.85-7.76(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.58-7.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}$, $\operatorname{ArH}), 6.76(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.89(\mathrm{dt}, \mathrm{J}=9.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.30-3.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{l}\right), 2.31-2.16$ (m, 2H, CH CH_{2} I);
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=167.5,132.8,132.4,128.8,127.2,67.5,38.0,-1.8$;
IR (film): $\tilde{v}=3293$ (m), 2109 (s), 1650 (s), 1523 (s), 1241 (s), 701 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{IN}_{4} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 352.9870$; Found 352.9878 .

Scheme S2 (Azidation attempts with benzophenone photocatalyst)

N-(1-azido-3-fluoropropyl)-4-methoxybenzamide (23).

In a 12* 75 mm Borosilicate glass tube, N-cyclopropyl-4-methoxybenzamide $\mathbf{5 b}$ ($19.1 \mathrm{mg}, 0.100 \mathrm{mmol}$), Selectfluor ($39.0 \mathrm{mg}, 0.110 \mathrm{mmol}, 1.1$ equiv.) and benzophenone ($1.8 \mathrm{mg}, 0.010 \mathrm{mmol}, 0.10$ equiv.) were added. The tube was then closed with a rubber septum and sealed off with parafilm. Evacuaterefill cycle with nitrogen were performed three times to remove O_{2} and extra-dry acetonitrile (1.0 mL) was added under nitrogen atmosphere, followed by the addition of TMSN_{3} (94% purity purchased from
$\mathrm{TCI}, 31.0 \mu \mathrm{~L}, 0.220 \mathrm{mmol}, 2.2$ equiv.). The mixture was then stirred at room temperature under 365 nm irradiation in Rayonet Reactor for 80 minutes. A mixture of $\mathbf{6 b}$ and $\mathbf{2 3}$ was obtained in roughly $\mathbf{3 0 \%}$ yield in a ratio of 4.4:1 after purification by column chromatography (SiO_{2}, pentanes/EtOAc 3:1).

Compound 23 was not obtained in a pure form due to coelution with $\mathbf{6 b}$, but its existence was confirmed by:
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-218.8$.

Table S1 (Azidation attempts with Copper catalyst)

Formation of diazidation product $\mathbf{6} \mathbf{b}$ was observed when copper catalysts were used as catalyst, while no fluorination byproduct $\mathbf{2 3}$ was observed in these cases.

Entry	Catalyst	yield $^{[a]}$
1	$\mathrm{Cu}(\mathrm{OTf})_{2}$	74%
2	CuOAc	74%
3	$\mathrm{Cu}(\mathrm{OTf})_{2} \mathrm{Benzene} \mathrm{complex}(5 \mathrm{~mol} \%)$	32%
4	$\mathrm{Cu}(\mathrm{OAc})_{2}$	87%
5	$\mathrm{Cu}(\mathrm{OAc})_{2}(2 \mathrm{~mol} \%)$	93%

[a] ${ }^{1} \mathrm{H}$ NMR yield using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as internal standard.

Scheme S3 (Water as nucleophile)

For substrates 5b, water was initially used as nucleophile. However, low conversion was observed.

N-(3-Azido-1-hydroxypropyl)-4-methoxybenzamide (24).

In a 12*75 mm Borosilicate glass tube, N-cyclopropyl-4-methoxybenzamide 5 b ($38.2 \mathrm{mg}, 0.200 \mathrm{mmol}$), Selectfluor ($78.0 \mathrm{mg}, 0.220 \mathrm{mmol}, 1.1$ equiv.) and CuTc ($0.8 \mathrm{mg}, 0.004 \mathrm{mmol}, 0.02$ equiv.) were measured on analytical balance. The tube was then closed with a rubber septum and sealed off with parafilm. Acetonitrile-water ($\mathrm{v}: \mathrm{v}=1: 1,1.0 \mathrm{~mL}, 0.2 \mathrm{M}$) was added and freeze-pump-nitrogen thaw three times were performed to remove O_{2}, followed by the addition of TMSN_{3} (94% purity purchased from $\mathrm{TCI}, 34.0 \mu \mathrm{~L}, 0.240 \mathrm{mmol}, 1.2$ equiv.). The reaction mixture was stirred at room temperature for 3 hours. Upon completion, the mixture was quenched by the addition of water (10 mL). The aqueous layer was then extracted with dichloromethane ($10 \mathrm{~mL} \times 3$). The organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. N -(3-Azido-1-hydroxypropyl)-4-methoxybenzamide 24 ($4.9 \mathrm{mg}, 0.020$
mmol, 10%) was obtained as a white solid after purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentanes/EtOAc 1:1).
$\mathbf{R}_{\mathrm{f}}: 0.25$ (silica, pentanes:ethyl acetate 1:1);
${ }^{1} \mathrm{H}$ NMR ($800 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.79-7.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.07(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.00-6.90(\mathrm{~m}, 2 \mathrm{H}$, ArH), 5.63 (dtd, J = 8.7, 5.6, $3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $3.95(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$), $3.86(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}$), 3.73 (ddd, J $=12.4,7.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}$), 3.57 (ddd, $\left.\mathrm{J}=12.4,7.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 2.06-1.94\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(201 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=168.1,162.7,128.9,125.5,113.9,73.4,55.5,47.2,33.6 ;$ IR (film): $\tilde{v}=3316$ (w), 2958 (m), 2105 (m), 1654 (s), 1612 (s), 1257 (s), 1037 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{NaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$273.0958; Found 273.0954.

Scheme S4 (Methanol as nucleophile)

Good conversion of 5b was observed when methanol was used as nucleophile but three different products were isolated by prep TLC. The yield of diazidation product $\mathbf{6 b}$ can be increased by performing the reaction in the absence of MeOH , and with excess of TMSN_{3}.

N-(3-Azido-1-methoxypropyl)-4-methoxybenzamide (25).

In a 12* 75 mm Borosilicate glass tube, N-cyclopropyl-4-methoxybenzamide $\mathbf{5 b}$ ($38.2 \mathrm{mg}, 0.200 \mathrm{mmol}$), Selectfluor ($78.0 \mathrm{mg}, 0.220 \mathrm{mmol}, 1.1$ equiv.) and CuTc ($0.8 \mathrm{mg}, 0.004 \mathrm{mmol}, 0.02$ equiv.) were measured on analytical balance. The tube was then closed with a rubber septum and sealed off with parafilm. Evacuate-refill cycle three times with nitrogen were performed to remove O_{2} and extra dry acetonitrile ($1.0 \mathrm{~mL}, 0.2 \mathrm{M}$) was added under nitrogen atmosphere, followed by the addition of MeOH ($16.0 \mu \mathrm{~L}, 0.240 \mathrm{mmol}, 2.0$ equiv.) and TMSN ${ }_{3}$ (94% purity purchased from TCI, $34.0 \mu \mathrm{~L}, 0.240 \mathrm{mmol}, 1.2$ equiv.). The reaction mixture was stirred at room temperature for 4 hours. Upon completion, the mixture was quenched by the addition of water (10 mL). The aqueous layer was then extracted with dichloromethane ($10 \mathrm{~mL} \times 3$). The organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. N-(3-Azido-1-methoxypropyl)-4-methoxybenzamide 25 ($16.8 \mathrm{mg}, 64.0 \mu \mathrm{~mol}, 32 \%$) was obtained as a white solid after purification by column chromatography (SiO_{2}, pentanes/EtOAc 2:1).
$\mathbf{R}_{\mathrm{f}}: 0.39$ (silica, pentanes:ethyl acetate 2:1);
Mp: $72-75^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.81-7.74(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.97-6.91(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.52(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}$, NH), $5.48(\mathrm{dt}, \mathrm{J}=9.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 3.61-3.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 3.41(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 2.02-1.92\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right)$;
${ }^{13} \mathrm{C}$ NMR (101 MHz , Acetone- d_{6}): $\delta=167.2,163.3,130.1,127.4,114.3,79.8,55.8,55.7,48.5,35.2$;
IR (film): $\tilde{v}=3311$ (w), 2939 (w), 2098 (s), 1641 (s), 1497 (s), 1257 (s), 1077 (s), 848 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{NaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$287.1115; Found 287.1118.

2.2 Optimization

With $\mathrm{Cu}(\mathrm{OAc})_{2}$ as catalyst, other substrates were screened to check whether this reaction is general enough or not. However, poor conversion was encountered for the substrates shown below. Therefore, a second round of optimization was conducted using $\mathbf{5 a}$ as substrate.

5a, 16\% conv.

5c, 10\% conv.

5d, 10\% conv.

5h, 6\% conv.

5q, 32\% conv.

Table S2 (Catalyst screening)

Entry	Catalyst	NMR yield ${ }^{[\text {a] }}$
1	CuBr	26%
2	CuCl	16%
3	CuCN	20%
4	$\mathrm{Cu}\left(\mathrm{MeCN}_{4} \mathrm{BF}_{4}\right.$	24%
5	$\mathrm{Cu}(\mathrm{OTf})_{2} \mathrm{Benzene} \mathrm{complex}$	32%
6	$\mathrm{CuTc}(20 \mathrm{~mol} \%)$	48%
7	$\mathrm{CuTc}(5 \mathrm{~mol} \%)$	74%
8	$\mathrm{CuTc}(2 \mathrm{~mol} \%), \mathrm{MeCN}(0.1 \mathrm{M})$	78%

[a] ${ }^{1} \mathrm{H}$ NMR yield using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as internal standard.
Table S3 (Oxidant screening)

Entry	Oxidant	NMR yield ${ }^{[\text {a] }}$
1	Selectfluor	78%
2	NFSI	13%
3	PIDA	0
4	NCS	0
5	m CPBA 2	$\mathrm{~K}_{2} \mathrm{SO}_{2}$
TBHP_{8}	0	
7	CuF_{2}	0
8	O_{2} from air	0
9		0

[a] ${ }^{1} \mathrm{H}$ NMR yield using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as internal standard.

Table S4 (Azide screening)

Entry	Azide source	NMR yield ${ }^{[\text {a] }}$
1	TMSN_{3}	78%
2	NaN_{3}	18%
3	TBAN_{3}	0

[a] ${ }^{1} \mathrm{H}$ NMR yield using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as internal standard.
Table S5 (Solvent screening)

Entry	Solvent	NMR yield ${ }^{[\text {a] }}$
1	MeCN	78%
2	DCM	0
3	Acetone	0
4	$\mathrm{CH}_{3} \mathrm{NO}_{2}$	0
5	DMF	0

${ }^{[a]}{ }^{1} \mathrm{H}$ NMR yield using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as internal standard.
Table S6 (Optimization for enamide)

	$\text { 12a, } 0.2 \mathrm{mmol}$	$\xrightarrow[\substack{\text { MeCN }(0.1 \mathrm{M}) \\ \mathrm{N}_{2}, \mathrm{RT}, 10 \mathrm{~min}}]{\substack{\text { CuTc (2 mol\%) } \\ \text { Oxidant (} 1.1 \text { equiv.) } \\ \text { TMSN }_{3}(2.2 \text { equiv.) }}}$		
Entry		Oxidant		NMR yield ${ }^{[a]}$
1		Selectfluor		degradation
2		NFSI		messy
3		TBHP		No reaction
4		$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$		No reaction
5		NCS		50\%
6		$m C P B A$		30\%
7		PIDA		70\%
8		PIDA (1.3 equiv.)		88\% (95\% ${ }^{[b]}$)

[^1]
3. Preparation of starting materials

3.1 Synthesis of the aminocyclopropanes

General Procedure A (GP A):

Following a modified version of a reported procedure, ${ }^{[1]}$ to a solution of cyclopropylamine (0.70 mL , $10 \mathrm{mmol}, 1.1$ equiv.) and triethylamine ($1.40 \mathrm{~mL}, 10.0 \mathrm{mmol}, 1.1$ equiv.) in dichloromethane (10 mL) was slowly added a solution of acyl chloride ($9.09 \mathrm{mmol}, 1.0$ equiv.) in dichloromethane (10 mL) at 0 ${ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature usually for 16 hours. Upon completion, the mixture was quenched by the addition of $1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$. The aqueous layer was then extracted with dichloromethane. The organic extract was washed with $1 \mathrm{M} \mathrm{NaOH}(10 \mathrm{~mL})$ and brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. In most cases, the crude product was pure enough to be used as such, without further purification.

The synthesis of the substrates (except compound $\mathbf{5 f}, \mathbf{5 j}, \mathbf{5 l}, \mathbf{5 n}, \mathbf{5 w}$ and $\mathbf{5 u}$) has already been described by our group ${ }^{[2][3][4]}$. The procedures are taken from our previous publications to facilitate reproduction of the results by having all data in the same file.

N-Cyclopropylbenzamide (5a).

Following GP A, using benzoyl chloride ($1.28 \mathrm{~g}, 9.09 \mathrm{mmol}$), N-cyclopropylbenzamide (5a) was obtained as a white solid ($1.38 \mathrm{~g}, 8.57 \mathrm{mmol}, 94 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.76-7.67(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.49-7.43(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.41-7.34(\mathrm{~m}, 2 \mathrm{H}$, ArH), $6.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 2.88(\mathrm{tq}, \mathrm{J}=7.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 0.87-0.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.66-0.50(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}).
${ }^{1} \mathrm{H}$ NMR data correspond to the reported values. ${ }^{[5]}$

N-Cyclopropyl-4-methoxybenzamide (5b)

[^2]

Following GP A, using 4-methoxybenzoyl chloride (1.55 g, 9.09 mmol), N-cyclopropyl-4methoxybenzamide (5b) was obtained as a white solid ($1.90 \mathrm{~g}, 8.99 \mathrm{mmol}, 99 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74-7.66(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.94-6.85(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.21$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.88(\mathrm{tq}, J=7.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 0.85\left(\mathrm{td}, \mathrm{J}=7.0,5.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.65$ $-0.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR data correspond to the reported values. ${ }^{[1]}$
N-cyclopropyl-4-methylbenzamide (5c).

Following GP A, using 4-methylbenzoyl chloride (1.41 g, 9.09 mmol), N-cyclopropyl-4methylbenzamide (5 c) was obtained as a white solid ($1.51 \mathrm{~g}, 8.62 \mathrm{mmol}, 95 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.72-7.55(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.23-7.11(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.33(\mathrm{~d}, \mathrm{~J}=39.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{NH}$), $2.88(\mathrm{tt}, J=7.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.37\left(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.92-0.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.68-$ $0.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR data correspond to the reported values. ${ }^{[6]}$

N-Cyclopropyl-4-fluorobenzamide (5d).

Following GP A, using 4-fluorobenzoyl chloride (1.44 g, 9.09 mmol), N -cyclopropyl-4-fluorobenzamide (5 d) was obtained as a white solid ($1.50 \mathrm{~g}, 8.36 \mathrm{mmol}, 92 \%$).

[^3]${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.79-7.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.12-7.01(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.37(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 2.87$ (tq, J = 7.1, $3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $0.84\left(\mathrm{td}, J=7.0,5.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.65-0.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR data correspond to the reported values. ${ }^{[7]}$

4-Chloro-N-cyclopropylbenzamide (5e).

Following GP A, using 4-chlorobenzoyl chloride ($1.59 \mathrm{~g}, 9.09 \mathrm{mmol}$), 4-chloro- N -cyclopropylbenzamide (5e) was obtained as a white solid ($1.65 \mathrm{~g}, 8.43 \mathrm{mmol}, 93 \%$).
$\mathbf{R f}_{\mathrm{f}}$: 0.59 (silica, pentanes:ethyl acetate 2:3);
Mp: $133-135{ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.70-7.64(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.41-7.35(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 2.88$ ($\mathrm{tt}, \mathrm{J}=7.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $0.90-0.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.66-0.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$;
${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=167.8,137.7,132.7,128.8,128.3,23.2,6.8 ;$
IR (film): $\tilde{v}=3309$ (m), 1639 (s), 1528 (m), 1484 (m), 1312 (m), 1093 (m), 847 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{ClNNaO}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 218.0343$; Found 218.0344.
4-Bromo-N-cyclopropylbenzamide (5f).

Following GP A, using 4-bromobenzoyl chloride ($1.59 \mathrm{~g}, 9.09 \mathrm{mmol}$), 4-bromo- N -cyclopropylbenzamide (5 ff) was obtained as a white solid ($2.14 \mathrm{~g}, 8.92 \mathrm{mmol}, 98 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.64-7.57(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.57-7.48(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$, 2.88 (tq, J = 7.1, $3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $0.94-0.76\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.70-0.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$;
${ }^{1} \mathrm{H}$ NMR data correspond to the reported values. ${ }^{[8]}$
4-Cyano- N -cyclopropylbenzamide (5g).

[^4]

Following GP A, using 4-cyanobenzoyl chloride ($1.51 \mathrm{~g}, 9.09 \mathrm{mmol}$), 4-cyano- N -cyclopropylbenzamide $(5 \mathrm{~g})$ was obtained as a white solid ($1.60 \mathrm{~g}, 8.59 \mathrm{mmol}, 95 \%$).
$\mathbf{R}_{\mathrm{f}}: 0.33$ (silica, pentanes:ethyl acetate 1:1);
Mp: $159-161{ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.84(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.77-7.64(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.34(\mathrm{~d}, \mathrm{~J}=38.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NH}$), $2.91(\mathrm{tq}, \mathrm{J}=7.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 1.09-0.73\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.70-0.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.0,138.3,132.4,127.6,118.0,115.1,23.3,6.8$;
IR (film): $\tilde{v}=3275$ (m), 3015 (w), 2230 (m), 1632 (s), 1532 (s$), 1499$ (m), 1313 (m), 1284 (m), 1018 (w), 858 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$187.0866; Found 187.0862.

N-Cyclopropyl-4-nitrobenzamide (5h).

Following GP A, using 4-nitrobenzoyl chloride ($1.69 \mathrm{~g}, 9.09 \mathrm{mmol}$), N-cyclopropyl-4-nitrobenzamide (5h) was obtained as a pale yellow solid ($1.71 \mathrm{~g}, 8.27 \mathrm{mmol}, 91 \%$).
$\mathbf{R}_{\mathrm{f}}: 0.31$ (silica, pentanes:ethyl acetate 1:1);
Mp: $176-177^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.30-8.22(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.94-7.86(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.41(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 2.92$ (tq, J=7.2, 3.7 Hz, 1H, CH), $0.91\left(\mathrm{td}, J=7.1,5.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.70-0.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$;
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.8,149.6,139.9,128.0,123.8,23.4,6.8 ;$
IR (film, cm^{-1}): $\tilde{v}=3280(\mathrm{~m}), 1639$ (s$), 1597$ (w), 1533 (m), 1514 (s$), 1350$ (m), 1308 (m);
HRMS (APCI) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}$207.0764; Found 207.0761.

N-Cyclopropyl-3-methoxybenzamide (5i).

Following GP A, using 3-methoxybenzoyl chloride (1.55 g, 9.09 mmol$), N$-cyclopropyl-3methoxybenzamide ($\mathbf{5 i}$) was obtained as a pale yellow solid ($1.88 \mathrm{~g}, 8.90 \mathrm{mmol}, 98 \%$).
$\mathbf{R}_{\mathrm{f}}: 0.31$ (silica, pentanes:ethyl acetate 1:1);
Mp: $74-76^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.23(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.19(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 6.96 (ddd, $J=8.0,2.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.39(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 3.78\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.84(\mathrm{tt}, \mathrm{J}=7.2,3.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}), 0.92-0.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.65-0.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$;
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.8,159.7,135.8,129.4,118.6,117.6,112.2,55.4,23.1,6.7 ;$
IR (film): $\tilde{v}=3295$ (w), 1638 (m), 1582 (m), 1527 (m), 1485 (m), 1286 (m), 1247 (m), 1040 (m), 732 (s); HRMS (ESI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NNaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$214.0838; Found 214.0842.

N-Cyclopropyl-3-methylbenzamide (5j).

Following GP A, using 3-methylbenzoyl chloride (1.41 g, 9.09 mmol), N-cyclopropyl-3methoxybenzamide ($5 \mathbf{j}$) was obtained as a white solid ($1.52 \mathrm{~g}, 8.69 \mathrm{mmol}, 96 \%$).
\mathbf{R}_{f} : 0.35 (silica, pentanes:ethyl acetate 1:1);
Mp: $95-97^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.58-7.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.49(\mathrm{qd}, J=4.6,3.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.30-$ $7.25(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.34(\mathrm{~d}, \mathrm{~J}=28.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 2.93-2.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.45-2.27\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.92$ $-0.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.69-0.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$;
${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=169.1,138.3,134.4,132.2,128.4,127.6,123.8,23.1,21.3,6.8 ;$
IR (film): $\tilde{v}=3293$ (m), 3016 (w), 1635 (s), 1535 (s), 1303 (m), 744 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NNaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$198.0889; Found 198.0889.
N-Cyclopropyl-2-methoxybenzamide (5k).

Following GP A, using 2-methoxybenzoyl chloride ($0.853 \mathrm{~g}, 5.00 \mathrm{mmol}$), N-cyclopropyl-3methoxybenzamide (5k) was obtained as a colorless solid ($0.586 \mathrm{~g}, 3.06 \mathrm{mmol}, 61 \%$) after purification by column chromatography on silica using 1:1 pentanes:ethyl acetate as eluent.
\mathbf{R}_{f} : 0.36 (silica, pentanes:ethyl acetate 1:1);
Mp: $56-58{ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.19(\mathrm{dq}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.40(\mathrm{ddq}, \mathrm{J}=8.7,7.3$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.04 (ddt, $J=8.9,7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $6.92(\mathrm{dq}, J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $3.91(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), 2.91 (tq, J = 7.4, $3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $0.86-0.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.61-0.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$;
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.5,157.3,132.6,132.1,121.3,121.2,111.2,55.8,22.7,6.7$;
IR (film): $\tilde{v}=3393$ (w), 3002 (w), 1651 (s), 1600 (m), 1525 (s), 1484 (s), 1295 (m), 1240 (s), 1020 (m), 756 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NNaO}_{2}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$214.0838; Found 214.0843.

N-Cyclopropyl-2-methylbenzamide (5I).

Following GP A, using 2-methylbenzoyl chloride (1.41 g, 9.09 mmol), N-cyclopropyl-3methoxybenzamide (5I) was obtained as a white solid ($1.56 \mathrm{~g}, 8.91 \mathrm{mmol}, 98 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.32-7.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.22-7.12(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 5.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$, 2.88 (tq, J = 7.2, 3.7 Hz, 1H, CH), $2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.93-0.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.65-0.47\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR data correspond to the reported values. ${ }^{[9]}$

N-Cyclopropylpivalamide (5m).

Following GP A, using pivaloyl chloride ($1.32 \mathrm{~g}, 11.0 \mathrm{mmol}$), N-cyclopropylpivalamide (5 m) was obtained as a white solid ($0.90 \mathrm{~g}, 6.37 \mathrm{mmol}, 64 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.71(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 2.76-2.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.16\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 0.86-0.71$ (m, 2H, CH2), $0.57-0.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR data correspond to the reported values. ${ }^{[10]}$

N-Cyclopropylcyclohexanecarboxamide (5n).

Following GP A, using cyclohexanecarbonyl chloride (1.33 g, 9.09 mmol$)$, N cyclopropylcyclohexanecarboxamide (5n) was obtained as a white solid (1.43 g, $8.54 \mathrm{mmol}, 94 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.60(\mathrm{brs}, 1 \mathrm{H}, \mathrm{NH}), 2.69(\mathrm{tq}, \mathrm{J}=7.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.00(\mathrm{tt}, J=11.8,3.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}$), $1.87-1.58\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2}\right), 1.40\left(\mathrm{qd}, J=11.9,2.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.30-1.11\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right), 0.75$ (dd, J = 6.8, 1.9 Hz, 2H, CH2), 0.56-0.35 (m, 2H, CH CH_{2}).
${ }^{1} \mathrm{H}$ NMR data correspond to the reported values. ${ }^{[10]}$

N -Cyclopropyl-2-phenylacetamide (50).

[^5]

Following GP A, using 2-phenylacetyl chloride ($1.41 \mathrm{~g}, 9.09 \mathrm{mmol}$), N -cyclopropyl-2-phenylacetamide (5o) was obtained as a white solid ($1.52 \mathrm{~g}, 8.67 \mathrm{mmol}, 95 \%$).
$\mathbf{R}_{\mathrm{f}}: 0.36$ (silica, dichloromethane:ethyl acetate 4:1);
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.38-7.27(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.23(\mathrm{dd}, \mathrm{J}=6.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 5.44(\mathrm{~s}, 1 \mathrm{H}$, NH), $3.54\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.66\left(\mathrm{tq}, \mathrm{J}=7.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right.$), $0.75-0.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.44-0.33(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}).
${ }^{1} \mathrm{H}$ NMR data correspond to the reported values. ${ }^{[11]}$

tert-Butyl cyclopropylcarbamate (5p).

Following a modified version of a reported procedure, ${ }^{[12]}$ to a solution of cyclopropylamine (1.40 mL , 20.0 mmol, 1.0 equiv.) in dichloromethane (20 mL) was slowly added a solution of di-tert-butyl dicarbonate ($4.85 \mathrm{~g}, 22.0 \mathrm{mmol}, 1.1$ equiv.) in dichloromethane $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at for 16 hours room temperature. Upon completion, the mixture was quenched by addition of $1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$. The aqueous layer was then extracted with dichloromethane. The organic layer was washed with $1 \mathrm{M} \mathrm{NaOH}(10 \mathrm{~mL})$ and brine (10 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. tert-Butyl cyclopropylcarbamate 5 p was obtained as a white solid ($3.11 \mathrm{~g}, 19.8$ $\mathrm{mmol}, 99 \%$), which was pure enough to be used without further purification.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.70($ brs, $1 \mathrm{H}, \mathrm{NH}), 2.57-2.47(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.44\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 0.72-0.63$ (m, 2H, CH2 $), 0.53-0.39\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR data correspond to the reported values. ${ }^{[12]}$

Benzyl cyclopropylcarbamate (5q).

Following GP A, using benzyl chloroformate ($1.55 \mathrm{~g}, 9.09 \mathrm{mmol}$), benzyl cyclopropylcarbamate ($5 \mathbf{q}$) was obtained as a colorless solid ($1.72 \mathrm{~g}, 9.00 \mathrm{mmol}, 99 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta=7.41-7.29(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.10\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.01-4.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH})$, $2.60(\mathrm{ttd}, \mathrm{J}=7.0,3.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 0.76-0.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.55-0.49\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$.

[^6]${ }^{1} \mathrm{H}$ NMR data correspond to the reported values. ${ }^{[13]}$

N-cyclopropyl-4-methylbenzenesulfonamide (5r).

Following GP A, using tosyl chloride ($1.73 \mathrm{~g}, 9.09 \mathrm{mmol}$), N-cyclopropyl-4-methylbenzenesulfonamide ($5 \mathbf{r}$) was obtained as a colorless solid ($1.90 \mathrm{~g}, 9.00 \mathrm{mmol}, 99 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.79(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.32(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 4.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$, $2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.23(\mathrm{tt}, \mathrm{J}=6.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 0.65-0.52\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR data correspond to the reported values. ${ }^{[14]}$

N-Cyclopropyl-4-methoxy- N-methylbenzamide (5s).

Following a modified version of a reported procedure, ${ }^{[1]}$ to a solution of N-cyclopropyl-methylamine hydrochloride ($323 \mathrm{mg}, 3.00 \mathrm{mmol}, 1.1$ equiv.) and triethylamine ($0.84 \mathrm{~mL}, 6.0 \mathrm{mmol}, 2.1$ equiv.) in dichloromethane (10 mL) was slowly added a solution of 4-methoxybenzoyl chloride ($478 \mathrm{mg}, 2.80$ $\mathrm{mmol}, 1.0$ equiv.) in dichloromethane $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 16 hours. Upon completion, the mixture was quenched by the addition of $1 \mathrm{~N} \mathrm{HCl}(10$ mL). The aqueous layer was then extracted with dichloromethane. The organic extract was washed with $1 \mathrm{M} \mathrm{NaOH}(10 \mathrm{~mL})$ and brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. N -cyclopropyl-4-methoxy- N-methylbenzamide (5 s) was obtained as a yellow oil ($560 \mathrm{mg}, 2.73 \mathrm{mmol}, 97 \%$) which solidified during storage.
$\mathbf{R}_{\mathrm{f}}: 0.40$ (silica, pentanes:ethyl acetate 2:3);
Mp: $59-61{ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.55-7.43(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.94-6.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 3.07 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$), $2.82(\mathrm{tt}, J=7.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 0.63\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.47(\mathrm{p}, \mathrm{J}=5.8,5.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2}$);
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.2,160.6,129.4,129.4,113.1,55.2,35.6,33.1,9.4 ;$
IR (film): $\tilde{v}=3010$ (w), 2936(w), 1626 (s), 1607 (s), 1381 (s), 1250 (s), 1172 (m), 1027 (m), 842 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NNaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 228.0995$; Found 228.0999.

4-Methoxy-N-(1-methylcyclopropyl)benzamide (5w)

[^7]

Following a modified version of a reported procedure, ${ }^{[1]}$ to a solution of 1-methylcyclopropan-1-amine hydrochloride ($396 \mathrm{mg}, 3.68 \mathrm{mmol}, 1.1$ equiv.) and triethylamine ($1.0 \mathrm{~mL}, 7.2 \mathrm{mmol}, 2.1$ equiv.) in dichloromethane (10 mL) was slowly added a solution of 4-methoxybenzoyl chloride ($586 \mathrm{mg}, 3.43$ $\mathrm{mmol}, 1.0$ equiv.) in dichloromethane (10 mL) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 16 hours. Upon completion, the mixture was quenched by the addition of $1 \mathrm{~N} \mathrm{HCl}(10$ mL). The aqueous layer was then extracted with dichloromethane. The organic extract was washed with $1 \mathrm{M} \mathrm{NaOH}(10 \mathrm{~mL})$ and brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. 4-Methoxy- N-(1-methylcyclopropyl)benzamide 5 w ($689 \mathrm{mg}, 3.36 \mathrm{mmol}, 98 \%$) was obtained as a white solid.
$\mathbf{R}_{\mathrm{f}}: 0.44$ (silica, pentanes:ethyl acetate $2: 3$);
Mp: $130-132{ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.75-7.63(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.92-6.85(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.53-6.35(\mathrm{~m}, 1 \mathrm{H}$, NH), $3.83\left(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$, due to rotamers), $1.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.86-0.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.74-$ 0.68 (m, 2H, CH2);
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.1,162.0,128.6,127.1,113.6,55.4,29.5,22.9,14.6 ;$
IR (film): $\tilde{v}=3286$ (m), 2962 (w), 1634 (s), 1605 (s), 1499 (s), 1252 (s), 1029 (m), 841 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NNaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$228.0995; Found 228.0996.

4-Methoxy-N-2-methylcyclopropyl)benzamide (5xa).

Following a modified version of a reported procedure, ${ }^{[1]}$ to a solution of 2-methylcyclopropan-1-amine ($250 \mathrm{mg}, 3.52 \mathrm{mmol}, 4: 1$ d.r., ordered from Fluorochem) and $\mathrm{Et}_{3} \mathrm{~N}(0.54 \mathrm{~mL}, 3.9 \mathrm{mmol}, 1.1$ equiv.) in dichloromethane (10 mL) was slowly added a solution of 4-methoxybenzoyl chloride ($658 \mathrm{mg}, 3.87$ $\mathrm{mmol}, 1.1$ equiv.) in dichloromethane (5 mL) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature usually for 16 hours. Upon completion, the mixture was quenched by the addition of 1 N $\mathrm{HCl}(10 \mathrm{~mL})$. The aqueous layer was then extracted with dichloromethane. The organic extract was washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. 4-Methoxy- $\mathrm{N}-2-$ methylcyclopropyl)benzamide 5xa was obtained as a white solid ($655 \mathrm{mg}, 3.20 \mathrm{mmol}, 4: 1$ d.r., 91%) after first purification by column chromatography on silica using 3:2 pentanes:ethyl acetate as eluent. Second purification was performed by column chromatography on silica using 3:2 pentanes:ethyl acetate as eluent, trans-5xa (272 mg) and cis- $5 \times \mathrm{xa}(79 \mathrm{mg}$) were obtained separately, together with the rest of product 5xa recovered as a mixture of diastereomers.

4-Methoxy-N-trans-2-methylcyclopropyl)benzamide (trans-5xa)

\mathbf{R}_{f} : 0.37 (silica, pentanes:ethyl acetate 1:1);
Mp: $94-96{ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.75-7.62(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.94-6.83(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 3.83$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.56 (dq, $J=6.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), $1.13\left(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.95$ (ddt, $J=12.2,6.2$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{3}$), 0.73 (ddd, $J=9.2,5.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 0.61 (dt, J=7.2, 5.7 Hz, 1H, CH2).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.1,162.1,128.6,126.7,113.6,55.4,30.4,17.2,14.9$ (signals of C2 and C3 are overlapped).
IR (film): $\tilde{v}=3274$ (m), 3003 (w), 2952 (w), 1624 (s), 1606 (s), 1574 (m), 1541 (s), 1254 (s), 1031 (m), 843 (m);
HRMS (APCI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NNaO}_{2}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 228.0995$; Found 228.0993.

4-Methoxy-N-cis-2-methylcyclopropyl)benzamide (cis-5xa)

\mathbf{R}_{f} : 0.26 (silica, pentanes:ethyl acetate 1:1);
Mp: $89-91{ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.76-7.69(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.92-6.87(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.07(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 3.84$ (s, 3H, OCH ${ }_{3}$), 2.90 (dddd, J = 9.9, 7.0, 4.0, 3.0 Hz, 1H, NCH), 1.15-1.07 (m, 4H, CH3 $+\mathrm{CH}_{2}$), 1.03 (dddd, $\left.J=8.8,5.4,3.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 0.26-0.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=168.7,162.1,128.6,126.9,113.7,55.4,27.5,13.2,12.5,11.7$.
IR (film): $\tilde{v}=3292$ (m), 2958 (w), 1631 (s), 1606 (s), 1499 (s), 1252 (s), 1178 (m), 1028 (m), 844 (m);
HRMS (APCI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NNaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$228.0995; Found 228.0993.

4-Methoxy- N -(trans-2-phenylcyclopropyl)benzamide (5xb).

Following a modified version of a reported procedure, ${ }^{[1]}$ to a solution of trans-2phenylcyclopropylamine hydrochloride ($635 \mathrm{mg}, 3.74 \mathrm{mmol}, 1.1$ equiv., ordered from Acros) and triethylamine ($1.0 \mathrm{~mL}, 7.2 \mathrm{mmol}, 2.0$ equiv.) in dichloromethane (10 mL) was slowly added a solution of 4-methoxybenzoyl chloride ($607 \mathrm{mg}, 3.56 \mathrm{mmol}, 1.0$ equiv.) in dichloromethane (10 mL) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 16 hours. Upon completion, the mixture was quenched by the addition of $1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$. The aqueous layer was then extracted with dichloromethane. The organic extract was washed with $1 \mathrm{M} \mathrm{NaOH}(10 \mathrm{~mL})$ and brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. 4-Methoxy- N -(trans-2-phenylcyclopropyl)benzamide ($\mathbf{5 x b}$) was obtained as a white solid ($0.92 \mathrm{~g}, 3.4 \mathrm{mmol}, 97 \%$).
\mathbf{R}_{f} : 0.50 (silica, pentanes:ethyl acetate 1:1);
Mp: $153-155^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.81-7.65(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.24-7.15(\mathrm{~m}, 3 \mathrm{H}$, ArH), $6.97-6.83(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.39(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.06(\mathrm{tt}, \mathrm{J}=7.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH})$, 2.16 (ddd, $J=9.8,6.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}$), $1.38-1.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$;
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.1,162.2,140.4,128.7,128.4,126.6,126.5,126.1,113.7,55.4,32.5$, 24.9, 16.3;

IR (film): $\tilde{v}=3291$ (w), 1632 (s), 1606 (s), 1500 (s), 1255 (s), 1029 (m), 845 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NNaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$290.1151; Found 290.1151.
N-(2,2-Difluorocyclopropyl)-4-methoxybenzamide (5y).

Following a modified version of a reported procedure, ${ }^{[1]}$ to a solution of 2,2-difluorocyclopropylamine hydrochloride ($250 \mathrm{mg}, 1.93 \mathrm{mmol}, 1.0$ equiv., ordered from Fluorochem) and triethylamine (0.60 mL , $4.3 \mathrm{mmol}, 2.2$ equiv.) in dichloromethane (10 mL) was slowly added a solution of 4-methoxybenzoyl chloride ($370 \mathrm{mg}, 2.17 \mathrm{mmol}, 1.1$ equiv.) in dichloromethane (5 mL) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature usually for 16 hours. Upon completion, the mixture was quenched by the addition of $1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$. The aqueous layer was then extracted with dichloromethane. The organic extract was washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. N -(2,2-difluorocyclopropyl)-4-methoxybenzamide ($5 y$) was obtained as a white solid ($320 \mathrm{mg}, 1.41 \mathrm{mmol}, 73 \%$) after purification by column chromatography on silica using 2:1 pentanes:ethyl acetate as eluent.

Rf: 0.25 (silica, pentanes:ethyl acetate 2:1);
Mp: $128-129^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.73(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.39(\mathrm{~s}, 1 \mathrm{H}$, NH), $3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.51(\mathrm{dtq}, J=12.1,5.9,3.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 1.87$ (dtd, J=13.5, 9.3, 6.4 Hz, 1 H , CH_{2}), $1.50-1.35\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$;
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta={ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 167.8,162.6,128.9,125.5,113.8$, 111.1 (dd, $J=291.4,284.3 \mathrm{~Hz}$), $55.4,30.8$ (dd, $J=15.0,9.4 \mathrm{~Hz}$), 19.3 ($\mathrm{t}, J=9.9 \mathrm{~Hz}$);
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-131.2(\mathrm{~d}, \mathrm{~J}=162.2 \mathrm{~Hz}, 1 \mathrm{~F}),-143.6(\mathrm{~d}, \mathrm{~J}=162.2 \mathrm{~Hz}, 1 \mathrm{~F})$;
IR (film): $\tilde{v}=3307$ (m), 1638 (s), 1608 (m), 1500 (s), 1471 (m), 1257 (s), 1222 (s), 1014 (m), 845 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$228.0831; Found 228.0843.

3.2 Synthesis of the aminocyclobutanes

N-Cyclobutyl-4-methoxybenzamide (5t)

Following GP A, using cyclobutylamine ($523 \mathrm{mg}, 7.40 \mathrm{mmol}, 1.1$ equiv.) and 4-methoxybenzoyl chloride ($1.19 \mathrm{~g}, 7.00 \mathrm{mmol}, 1.0$ equiv.), N-cyclobutyl-4-methoxybenzamide 5 t was obtained as a white solid ($1.08 \mathrm{~g}, 5.27 \mathrm{mmol}, 75 \%$).
\mathbf{R}_{f} : 0.44 (silica, pentanes:ethyl acetate 1:1);
Mp: $126-128^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.84-7.61(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.00-6.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.58$ (h, J = $8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.53-2.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.02-1.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.76$ ($\mathrm{tt}, \mathrm{J}=11.4,6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$);
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.0,162.1,128.6,126.8,113.7,55.4,45.1,31.4,15.2$;
IR (film): $\tilde{v}=3305$ (w), 2941 (w), 1628 (s), 1607 (s), 1503 (s), 1253 (s), 1030 (m), 844 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$206.1176; Found 206.1175.

Following a modified version of a reported procedure, ${ }^{[12]}$ to a solution of cyclobutylamine (1.70 mL , 20.0 mmol, 1.0 equiv.) in dichloromethane (20 mL) was slowly added a solution of di-tert-butyl dicarbonate ($4.85 \mathrm{~g}, 22.0 \mathrm{mmol}, 1.1$ equiv.) in dichloromethane $(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at for 16 hours room temperature. Upon completion, the mixture was quenched by addition of $1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$. The aqueous layer was then extracted with dichloromethane. The organic layer was washed with $1 \mathrm{M} \mathrm{NaOH}(10 \mathrm{~mL})$ and brine (10 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. tert-Butyl cyclobutylcarbamate 5 u was obtained as a white solid ($3.41 \mathrm{~g}, 19.9$ $\mathrm{mmol}, 99 \%$), which was pure enough to be used without further purification.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.29-3.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.30\left(\mathrm{q}, \mathrm{J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.88-1.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.72-1.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.43\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR data correspond to the reported values. ${ }^{[15]}$

4-Methoxy-N-(trans-3-phenylcyclobutyl)benzamide (5z).

Following a modified version of a reported procedure, ${ }^{[1]}$ to a solution of trans-3-phenylcyclobutan-1amine ($250 \mathrm{mg}, 1.70 \mathrm{mmol}, 1.0$ equiv., ordered from Fluorochem) and triethylamine ($0.27 \mathrm{~mL}, 1.9$ $\mathrm{mmol}, 1.1$ equiv.) in dichloromethane (10 mL) was slowly added a solution of 4-methoxybenzoyl chloride ($320 \mathrm{mg}, 1.88 \mathrm{mmol}, 1.1$ equiv.) in dichloromethane $\left(5 \mathrm{~mL}\right.$) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature usually for 16 hours. Upon completion, the mixture was quenched by the addition of $1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$. The aqueous layer was then extracted with dichloromethane. The organic extract was washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. 4-Methoxy- N-(trans-3-phenylcyclobutyl)benzamide $5 z$ was obtained as a white solid ($448 \mathrm{mg}, 1.59 \mathrm{mmol}$, 94%) after purification by column chromatography on silica using 1:1 pentanes:ethyl acetate as eluent.
$\mathbf{R f}_{f}$: 0.50 (silica, pentanes:ethyl acetate 1:1);
Mp: $164-166{ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.83-7.71(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.39-7.26(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.26-7.17(\mathrm{~m}, 1 \mathrm{H}$, ArH), $6.98-6.87(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.36(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 4.71$ (ddtd, J = 14.2, 7.9, 6.3, 1.3 Hz, 1H, NCH), 3.86 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.71 - $3.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhCH}), 2.74-2.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.55-2.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$; ${ }^{13}$ C NMR (101 MHz, CDCl $)$: $\delta 166.5,162.1,144.8,128.7,128.5,126.8,126.5,126.0,113.7,55.4,43.7$, 36.9, 34.6;

IR (film): $\tilde{v}=3338$ (m), 2938 (w), 1628 (s), 1605 (m), 1499 (s), 1251 (s), 1031 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$282.1489; Found 282.1480.

[^8]
4. Scope of the 1,3- and 1,4-difunctionalization reaction

General Procedure B (GP B):

In a 12*75 mm Borosilicate glass tube, the corresponding aminocyclopropane ($0.200 \mathrm{mmol}, 1.0$ equiv.), Selectfluor ($78.0 \mathrm{mg}, 0.220 \mathrm{mmol}, 1.1$ equiv.) and CuTc ($0.8 \mathrm{mg}, 0.004 \mathrm{mmol}, 0.02$ equiv.) were measured on analytical balance. The tube was then closed with a rubber septum and sealed off with parafilm. Evacuate-refill cycle three times with nitrogen were performed to remove O_{2} and extra-dry acetonitrile ($2.0 \mathrm{~mL}, 0.1 \mathrm{M}$) was added under nitrogen atmosphere, followed by the addition of TMSN (94% purity purchased from $\mathrm{TCl}, 62.0 \mu \mathrm{~L}, 0.440 \mathrm{mmol}, 2.2$ equiv.). The reaction mixture was stirred at room temperature for 10 minutes. Upon completion, the mixture was quenched by the addition of water (10 mL). The aqueous layer was then extracted with dichloromethane ($10 \mathrm{~mL} \times 3$). The organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude mixture was purified by column chromatography (SiO_{2}, pentanes/EtOAc).

N-(1,3-Diazidopropyl)benzamide (6a).

Following GP B, starting from N-cyclopropylbenzamide 5 a ($32.2 \mathrm{mg}, 0.200 \mathrm{mmol}$), N -(1,3diazidopropyl)benzamide 6 a ($39.3 \mathrm{mg}, 0.160 \mathrm{mmol}, 80 \%$) was obtained as a yellow oil after purification by column chromatography on silica using 3:1 pentanes:ethyl acetate as eluent.
$\mathbf{R f}_{\mathrm{f}}$: 0.41 (silica, pentanes:ethyl acetate 3:1);
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.85-7.79(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.58-7.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}$, $\operatorname{ArH}), 7.19(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.92(\mathrm{dt}, J=8.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.66\left(\mathrm{dt}, J=12.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right)$, $3.54\left(\mathrm{dt}, \mathrm{J}=12.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 1.95\left(\mathrm{q}, \mathrm{J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right)$;
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.4,132.9,132.3,128.8,127.1,65.1,47.3,33.2$;
IR (film): $\tilde{v}=3672$ (w), 3311 (w), 2975 (m), 2903 (m), 2110 (s), 1653 (m), 1521 (m), 1065 (s ;
HRMS (ESI) calcd. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{7} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$268.0917; Found 268.0920.

N-(1,3-Diazidopropyl)-4-methoxybenzamide (6b).

Following GP B, starting from N-cyclopropyl-4-methoxybenzamide $\mathbf{5 b}$ ($38.2 \mathrm{mg}, 0.200 \mathrm{mmol}$), N -(1,3-diazidopropyl)-4-methoxybenzamide 6b ($49.0 \mathrm{mg}, 0.178 \mathrm{mmol}, 89 \%$) was obtained as a yellow oil after purification by column chromatography on silica using 3:1 pentanes:ethyl acetate as eluent.
$\mathbf{R}_{\mathrm{f}}: 0.36$ (silica, pentanes:ethyl acetate $3: 1$);
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.82-7.75(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.15(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 6.95-6.89(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{ArH}), 5.89(\mathrm{dt}, J=8.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.64\left(\mathrm{dt}, J=12.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 3.52(\mathrm{dt}$, $J=12.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}$), $1.94\left(\mathrm{q}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right.$);
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.9,162.8,129.1,125.0,113.9,65.1,55.4,47.4,33.2 ;$
IR (film): $\tilde{v}=2975$ (w), 2903 (w), 2110 (s), 1665 (s), 1497 (s), 1269 (s);
HRMS (ESI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{7} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$298.1023; Found 298.1023.

N-(1,3-Diazidopropyl)-4-methylbenzamide (6c).

Following GP B, starting from N -cyclopropyl-4-methylbenzamide 5 c ($35.0 \mathrm{mg}, 0.200 \mathrm{mmol}$), N -(1,3-diazidopropyl)-4-methylbenzamide 6 c ($40.7 \mathrm{mg}, 0.157 \mathrm{mmol}, 78 \%$) was obtained as a colorless oil after purification by column chromatography on silica using 3:1 pentanes:ethyl acetate as eluent.
$\mathbf{R}_{\mathrm{f}}: 0.41$ (silica, pentanes:ethyl acetate 3:1);
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.76-7.68(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.27-7.24(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.14(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}$, NH), $5.91(\mathrm{dt}, J=8.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.65\left(\mathrm{dt}, J=12.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 3.53(\mathrm{dt}, J=12.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~N}_{3}$), $2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.95\left(\mathrm{q}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right.$);
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=167.4,142.9,130.0,129.4,127.2,65.0,47.4,33.2,21.5 ;$
IR (film): $\tilde{v}=3303$ (w), 2926 (w), 2092 (s), 1641 (s), 1526 (s), 1498 (m), 1239 (s), 835 (m);
HRMS (APCI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{7} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 282.1074$; Found 282.1071.

N-(1,3-Diazidopropyl)-4-fluorobenzamide (6d).

Following GP B, starting from N-cyclopropyl-4-fluorobenzamide 5d (41.4 mg, 0.200 mmol), N -(1,3-diazidopropyl)-4-fluorobenzamide 6d ($37.9 \mathrm{mg}, 0.144 \mathrm{mmol}, 72 \%$) was obtained as a pale yellow solid after purification by column chromatography on silica using 3:1 pentanes:ethyl acetate as eluent.
$\mathbf{R}_{\mathbf{f}}: 0.45$ (silica, pentanes:ethyl acetate 3:1);
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.87-7.77(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.22(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.13(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{ArH}$), $5.89(\mathrm{dt}, J=8.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.67\left(\mathrm{dt}, J=12.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 3.54(\mathrm{dt}, J=12.2,5.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}$), 1.95 ($\mathrm{q}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$);
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.4,165.2(\mathrm{~d}, J=253.1 \mathrm{~Hz}), 129.6(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 129.0(\mathrm{~d}, J=3.2 \mathrm{~Hz})$, 115.9 (d, J = 22.0 Hz), 65.2, 47.3, 33.1;
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-106.5$;
IR (film): $\tilde{v}=3303$ (w), 2925 (w), 2095 (s), 1645 (m), 1498 (m), 1234 (s), 882 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{FN}_{4} \mathrm{O}^{+}\left[\mathrm{M}-\mathrm{N}_{3}\right]^{+}$221.0833; Found 221.0835.

4-Chloro-N-(1,3-diazidopropyl)benzamide (6e).

Following GP B, starting from 4-chloro- N-cyclopropylbenzamide 5 e ($39.0 \mathrm{mg}, 0.200 \mathrm{mmol}$), 4-chloro-N-(1,3-diazidopropyl)benzamide 6 e ($39.2 \mathrm{mg}, 0.141 \mathrm{mmol}, 70 \%$) was obtained as a beige solid after purification by column chromatography on silica using 3:1 pentanes:ethyl acetate as eluent.
$\mathbf{R}_{\mathrm{f}}: 0.52$ (silica, pentanes:ethyl acetate $3: 1$);

Mp: $81-83^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.81-7.75(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}, \operatorname{ArH}), 7.21(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{NH}$), $5.92(\mathrm{dt}, \mathrm{J}=8.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.71\left(\mathrm{dt}, J=12.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 3.57(\mathrm{dt}, J=12.6,5.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}$), 1.98 ($\mathrm{q}, \mathrm{J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$);
${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.4,138.7,131.3,129.1,128.6,65.2,47.3,33.1$;
IR (film): $\tilde{v}=3292$ (w), 2104 (s), 1648 (m), 1527 (m), 1485 (m), 1244 (m), 1091 (m), 846 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{ClN}_{7} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$302.0528; Found 302.0531.

4-Bromo-N-(1,3-diazidopropyl)benzamide (6f).

Following GP B, starting from 4-bromo- N -cyclopropylbenzamide 5 f ($47.8 \mathrm{mg}, 0.200 \mathrm{mmol}$), 4-bromo-N-(1,3-diazidopropyl)benzamide $6 f(43.5 \mathrm{mg}, 0.135 \mathrm{mmol}, 67 \%)$ was obtained as a beige solid after purification by column chromatography on silica using 3:1 pentanes:ethyl acetate as eluent.
\mathbf{R}_{f} : 0.48 (silica, pentanes:ethyl acetate 3:1);
Mp: $88-91{ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.70-7.65(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.63-7.58(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.18(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}$, $N H$), $5.89(\mathrm{dt}, J=8.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.68\left(\mathrm{dt}, J=12.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 3.55(\mathrm{dt}, \mathrm{J}=12.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~N}_{3}$), 1.95 ($\mathrm{q}, \mathrm{J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$);
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.5,132.0,131.7,128.7,127.2,65.2,47.3,33.1$;
IR (film): $\tilde{v}=3293$ (w), 2104 (s), 1648 (m), 1527 (m), 1482 (m), 1245 (m), 1070 (w), 844 (w);
HRMS (ESI) calcd. for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Br}^{79} \mathrm{~N}_{4} \mathrm{O}^{+}\left[\mathrm{M}-\mathrm{N}_{3}\right]^{+}$281.0032; Found 281.0039.

4-Cyano- N-(1,3-diazidopropyl)benzamide (6 g).

Following GP B, starting from 4-cyano- N-cyclopropylbenzamide 5 g ($37.2 \mathrm{mg}, 0.200 \mathrm{mmol}$), 4-cyano- N -(1,3-diazidopropyl)benzamide $6 \mathrm{~g}(33.5 \mathrm{mg}, 0.124 \mathrm{mmol}, 62 \%)$ was obtained as a pale yellow oil after purification by column chromatography on silica using 3:1 pentanes:ethyl acetate as eluent.
$\mathbf{R f}_{f} 0.33$ (silica, pentanes:ethyl acetate 3:1);
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.97-7.89(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.80-7.74(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.34(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}$, NH), $5.90(\mathrm{dt}, J=8.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.76-3.64\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 3.57\left(\mathrm{dt}, J=12.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right)$, 1.97 (dt, J = 6.3, $5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$);
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.7,136.8,132.6,127.9,117.8,115.8,65.3,47.2,32.9$;
IR (film): $\tilde{v}=3322$ (w), 2232 (w), 2104 (s), 1653 (m), 1530 (m), 1496 (m), 1280 (m), 1244 (m), 857 (m);
HRMS (APCI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{5} \mathrm{O}^{+}\left[\mathrm{M}-\mathrm{N}_{3}\right]^{+}$228.0880; Found 228.0876.

N-(1,3-Diazidopropyl)-4-nitrobenzamide (6h).

Following GP B, starting from N-cyclopropyl-4-nitrobenzamide 5 ($41.2 \mathrm{mg}, 0.200 \mathrm{mmol}$), N-(1,3-diazidopropyl)-4-nitrobenzamide $6 \mathrm{~h}(33.1 \mathrm{mg}, 0.114 \mathrm{mmol}, 57 \%$) was obtained as a yellow solid after purification by column chromatography on silica using 3:1 pentanes:ethyl acetate as eluent.
\mathbf{R}_{f} : 0.50 (silica, pentanes:ethyl acetate 3:1);
Mp: $88-91^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.34-8.28(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 8.01-7.95(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.38(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}$, NH), $5.92(\mathrm{dt}, J=8.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.73\left(\mathrm{dt}, J=12.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 3.58(\mathrm{dt}, J=12.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~N}_{3}$), 1.98 (dt, J = 6.2, 5.4 Hz, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$);
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.5,150.0,138.4,128.4,124.0,65.4,47.2,32.9$;
IR (film): $\tilde{v}=3294$ (w), 2095 (s$), 1652$ (m), 1522 (s), 1344 (m), 1240 (m), 867 (m);
HRMS (APCI) calcd. for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{5} \mathrm{O}_{3}{ }^{+}\left[\mathrm{M}-\mathrm{N}_{3}\right]^{+}$248.0778; Found 248.0776.

N -(1,3-Diazidopropyl)-3-methoxybenzamide (6i).

Following GP B, starting from N-cyclopropyl-3-methoxybenzamide 5 i ($38.2 \mathrm{mg}, 0.200 \mathrm{mmol}$), N -(1,3-diazidopropyl)-3-methoxybenzamide $6 \mathbf{i}$ ($39.4 \mathrm{mg}, 0.143 \mathrm{mmol}, 72 \%$) was obtained as a yellow oil after purification by column chromatography on silica using 3:1 pentanes:ethyl acetate as eluent.
\mathbf{R}_{f} : 0.45 (silica, pentanes:ethyl acetate $3: 1$);
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.33$ (dd, J=2.7, 1.5 Hz, 1H, ArH), $7.32-7.27(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.26-7.23$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{ArH}), 7.09(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.04-6.99(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 5.84(\mathrm{dt}, \mathrm{J}=8.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.78$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.59\left(\mathrm{dt}, \mathrm{J}=12.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 3.47\left(\mathrm{dt}, \mathrm{J}=12.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 1.88(\mathrm{q}, \mathrm{J}=6.0$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$);
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.3,159.9,134.3,129.7,118.8,118.6,112.5,65.1,55.5,47.3,33.2$; IR (film): $\tilde{v}=3305$ (w), 2940 (w), 2099 (s), 1647 (m), 1583 (m), 1523 (m), 1289 (m), 1246 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{7} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$298.1023; Found 298.1029.

N-(1,3-Diazidopropyl)-3-methylbenzamide (6j).

Following GP B, starting from N-cyclopropyl-3-methylbenzamide 5 j ($35.0 \mathrm{mg}, 0.200 \mathrm{mmol}$), N -(1,3-diazidopropyl)-3-methylbenzamide $\mathbf{6 j}$ ($37.2 \mathrm{mg}, 0.144 \mathrm{mmol}, 72 \%$) was obtained as a pale yellow oil after purification by column chromatography on silica using 3:1 pentanes:ethyl acetate as eluent.
$\mathbf{R f}_{\mathrm{f}}$ 0.48 (silica, pentanes:ethyl acetate 3:1);
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.64(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.58(\mathrm{dt}, \mathrm{J}=6.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.38-$ $7.31(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.18-7.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 5.98-5.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.71-3.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 3.60-$ $3.48\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.95\left(\mathrm{q}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right)$;
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.6,138.7,133.1,132.9,128.6,128.0,124.0,65.0,47.3,33.2,21.3 ;$
IR (film): $\tilde{v}=3291$ (w), 2926 (w), 2094 (s), 1643 (m), 1519 (m), 1242 (m), 1096 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{7} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$282.1074; Found 282.1073.

N-(1,3-Diazidopropyl)-2-methoxybenzamide (6k).

Following GP B, starting from N-cyclopropyl-2-methoxybenzamide $\mathbf{5 k}$ ($38.2 \mathrm{mg}, 0.200 \mathrm{mmol}$), N -(1,3-diazidopropyl)-2-methoxybenzamide 6k ($37.0 \mathrm{mg}, 0.135 \mathrm{mmol}, 67 \%$) was obtained as a pale yellow oil after purification by column chromatography on silica using 3:1 pentanes:ethyl acetate as eluent.
$\mathbf{R}_{\mathrm{f}}: 0.32$ (silica, pentanes:ethyl acetate 3:1);
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.62(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 8.25-8.19(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.54-7.46(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{ArH}), 7.10(\mathrm{ddd}, J=8.3,7.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.00(\mathrm{dd}, J=8.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 5.95(\mathrm{dt}, J=8.7,6.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}$), $3.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.65-3.38\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 1.95\left(\mathrm{q}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right)$;
${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.5,157.7,133.7,132.6,121.5,120.1,111.4,64.6,56.0,47.2,33.5 ;$ IR (film): $\tilde{v}=3362$ (w), 2945 (w), 2100 (s), 1658 (m), 1514 (m), 1482 (m), 1240 (m), 1020 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{7} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$298.1023; Found 298.1030.

N-(1,3-Diazidopropyl)-2-methylbenzamide (6I).

Following GP B, starting from N -cyclopropyl-2-methylbenzamide 5 I ($35.0 \mathrm{mg}, 0.200 \mathrm{mmol}$), N -(1,3-Diazidopropyl)-2-methylbenzamide $6 \mathbf{(1 9 . 5 ~ m g}, 0.075 \mathrm{mmol}, 38 \%$) was obtained as a colorless oil after purification by column chromatography on silica using 3:1 pentanes:ethyl acetate as eluent.
$\mathbf{R}_{\mathbf{f}}$: 0.48 (silica, pentanes:ethyl acetate 3:1);
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.43-7.33(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.27-7.21(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.68(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}$, NH), $5.90(\mathrm{dt}, J=9.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.57\left(\mathrm{ddt}, J=39.3,12.2,6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 2.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.91$ ($q, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$);
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.8,136.6,134.7,131.3,130.7,126.7,125.9,64.4,47.3,33.2,19.9$;
IR (film): $\tilde{v}=3268$ (w), 2928 (w), 2100 (s), 1649 (m), 1516 (m), 1242 (m), 742 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{7} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$282.1074; Found 282.1081.
N-(1,3-Diazidopropyl)pivalamide (6m).

Following GP B, starting from N-cyclopropylpivalamide 5 m ($28.2 \mathrm{mg}, 0.200 \mathrm{mmol}$), N -(1,3diazidopropyl)pivalamide 6 m ($27.8 \mathrm{mg}, 0.124 \mathrm{mmol}, 62 \%$) was obtained as a yellow gel after purification by column chromatography on silica using 3:1 pentanes:ethyl acetate as eluent.
\mathbf{R}_{f} : 0.33 (silica, pentanes:ethyl acetate 4:1);
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 5.77-5.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.60(\mathrm{dtd}, \mathrm{J}=12.9,6.7,2.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}$), 3.47 (dtd, $J=13.3,5.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}$), $1.84\left(\mathrm{q}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right.$), $1.24(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$;
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.9,64.3,47.3,39.0,33.0,27.5$;
IR (film): $\tilde{v}=3333$ (w), 2969 (w), 2098 (s), 1654 (m), 1513 (m), 1246 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{~N}_{7} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$248.1230; Found 248.1230.
N-(1,3-diazidopropyl)cyclohexanecarboxamide (6n).

Following GP B, starting from N-cyclopropylcyclohexanecarboxamide 5 n ($33.4 \mathrm{mg}, 0.200 \mathrm{mmol}$), N -(1,3-diazidopropyl)cyclohexanecarboxamide 6 n ($28.3 \mathrm{mg}, 0.124 \mathrm{mmol}, 62 \%$) was obtained as a beige solid after purification by column chromatography on silica using 3:1 pentanes:ethyl acetate as eluent.
$\mathbf{R}_{\mathbf{f}}: 0.52$ (silica, pentanes:ethyl acetate 3:1);
Mp: $43-45^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.35(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.71(\mathrm{dt}, J=9.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 3.55(\mathrm{dt}, J$ $=12.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}$), $3.45\left(\mathrm{dt}, \mathrm{J}=12.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 2.16(\mathrm{tt}, J=11.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH})$, $1.95-1.78\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.53-1.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.36-1.17\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$;
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=176.4,64.0,47.3,45.3,33.2,29.9,29.4,25.6,25.5$ (one less carbon peak due to overlapping);
IR (film): $\tilde{v}=3279$ (w), 2931 (m), 2099 (s), 1655 (m), 1526 (m), 1255 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~N}_{7} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$274.1387; Found 274.1377.

N-(1,3-Diazidopropyl)-2-phenylacetamide (60).

Following GP B, starting from N -cyclopropyl-2-phenylacetamide 50 ($35.0 \mathrm{mg}, 0.200 \mathrm{mmol}$), N -(1,3-Diazidopropyl)-2-phenylacetamide $60(32.5 \mathrm{mg}, 0.125 \mathrm{mmol}, 63 \%)$ was obtained as a yellow solid after purification by column chromatography on silica using 3:1 pentanes:ethyl acetate as eluent.
$\mathbf{R}_{\mathrm{f}}: 0.30$ (silica, pentanes:ethyl acetate $3: 1$);
Mp: $54-56{ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.42-7.37(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.36-7.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}$, $\operatorname{ArH}), 6.36(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.67(\mathrm{dt}, J=9.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.71-3.61(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCH} 2), 3.45$ (ddd, $J=13.0,7.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}$), $3.36\left(\mathrm{dt}, J=12.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right.$), $1.69(\mathrm{dd}, J=6.6,4.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$);
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.5,133.8,129.5,129.2,127.7,64.4,46.9,43.5,32.7$;
IR (film): $\tilde{v}=3277$ (w), 2097 (s), 1656 (m), 1532 (m), 1242 (m), 696 (m);

tert-Butyl (1,3-diazidopropyl)carbamate (6p).

Following GP B, starting from tert-butyl cyclopropylcarbamate $5 p$ ($31.4 \mathrm{mg}, 0.200 \mathrm{mmol}$) with CuTc ($0.4 \mathrm{mg}, 0.002 \mathrm{mmol}, 0.01$ equiv.), tert-Butyl (1,3-diazidopropyl)carbamate 6 p ($29.7 \mathrm{mg}, 0.123 \mathrm{mmol}$, 62%) was obtained as a colorless oil after purification by column chromatography on silica using 10:1 pentanes:ethyl acetate as eluent.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.54-5.12(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NH}+\mathrm{CH}), 3.46\left(\mathrm{qt}, \mathrm{J}=12.7,6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 1.80$ ($\mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$), $1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$;
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=154.8,81.0,66.5,47.3,33.6,28.1$;
IR (film): $\tilde{v}=3323$ (w), 2987 (m), 2098 (s), 1701 (s), 1509 (m), 1257 (s), 1161 (s);
HRMS (ESI) calcd. for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{~N}_{7} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$264.1179; Found 264.1180.

Benzyl (1,3-diazidopropyl)carbamate (6q).

Following GP B, starting from benzyl cyclopropylcarbamate 5 q ($38.2 \mathrm{mg}, 0.200 \mathrm{mmol}$) with CuTc (0.4 $\mathrm{mg}, 0.002 \mathrm{mmol}, 0.01$ equiv.), benzyl (1,3-diazidopropyl)carbamate 6 q ($36.2 \mathrm{mg}, 0.132 \mathrm{mmol}, 66 \%$) was obtained as a colorless oil after purification by column chromatography on silica using 5:1 pentanes:ethyl acetate as eluent.
$\mathbf{R f}_{\mathrm{f}} 0.53$ (silica, pentanes:ethyl acetate 5:1);
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.39-7.34(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.63(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.48(\mathrm{p}, \mathrm{J}=6.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}$), $5.16\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.54-3.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 1.82\left(\mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right)$;
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=155.6,135.6,128.6,128.4,128.3,67.5,66.9,47.1,33.4 ;$ IR (film): $\tilde{v}=3672$ (w), 3323 (w), 2975 (s), 2098 (s), 1713 (s), 1245 (s), 1065 (s);
HRMS (ESI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{7} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$298.1023; Found 298.1028.
N-(1,3-diazidopropyl)-4-methylbenzenesulfonamide (6r).

Following GP B, starting from N-cyclopropyl-4-methylbenzenesulfonamide $\mathbf{5 r}(42.2 \mathrm{mg}, 0.200 \mathrm{mmol})$, N -(1,3-diazidopropyl)-4-methylbenzenesulfonamide 6 r was formed in 68% yield based on crude ${ }^{1} \mathrm{H}$ NMR after workup, but purification by column chromatography on silica led to decomposition. Please refer to compound $\mathbf{1 0} \mathbf{i}$ for one-pot nucleophilic substitution via $\mathbf{6 r}$.

N-(1,3-Diazidopropyl)-4-methoxy-N-methylbenzamide (6s).

Following GP B, starting from N-cyclopropyl-4-methoxy- N-methylbenzamide 5 s ($41.0 \mathrm{mg}, 0.200 \mathrm{mmol}$), N-(1,3-diazidopropyl)-4-methoxy-N-methylbenzamide 6 s ($37.1 \mathrm{mg}, 0.128 \mathrm{mmol}, 64 \%$) was obtained as a pale yellow oil after purification by column chromatography on silica using 3:1 pentanes:ethyl acetate as eluent.
\mathbf{R}_{f} : 0.26 (silica, pentanes:ethyl acetate 3:1);
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=7.52-7.34(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.99-6.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.36-5.51(\mathrm{br}$, $1 \mathrm{H}, \mathrm{CH}$), $3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.38\left(\mathrm{dd}, \mathrm{J}=12.4,5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 2.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.02-1.79(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$);
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=172.5,161.3,129.4,126.9,113.9,55.4,47.4,31.7$ (two carbon signals are not resolved due to rotamers, which can be observed by measuring NMR experiment in Acetone- d_{6} at 261.7 K);
IR (film): $\tilde{v}=2963$ (w), 2097 (s), 1641 (m), 1607 (m), 1251 (s), 1064 (m), 1028 (m), 842 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{7} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$312.1179; Found 312.1187.

N-(1,4-Diazidobutyl)-4-methoxybenzamide (6t).

Following GP B, starting from N-cyclobutyl-4-methoxybenzamide 5 ($41.0 \mathrm{mg}, 0.200 \mathrm{mmol}$), N -(1,4-diazidobutyl)-4-methoxybenzamide $6 \mathbf{t}$ ($39.0 \mathrm{mg}, 0.135 \mathrm{mmol}, 67 \%$) was obtained as a white solid after purification by column chromatography on silica using 3:1 pentanes:ethyl acetate as eluent.
\mathbf{R}_{f} : 0.30 (silica, pentanes:ethyl acetate 3:1);
Mp: $58-61{ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.74-7.69(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.89-6.85(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.52(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}$, NH), $5.68(\mathrm{dt}, \mathrm{J}=8.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.33-3.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 1.76-1.63(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$);
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=166.9,162.8,129.1,125.1,113.9,66.6,55.5,50.7,32.0,24.7$;
IR (film): $\tilde{v}=3296(\mathrm{w}), 2933$ (w), 2097 (s), 1638 (m), 1605 (s), 1500 (s), 1254 (s), 1177 (m), 1029 (m), 845 (m);
HRMS (APCI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{7} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$312.1179; Found 312.1174.
tert-Butyl (1,4-diazidobutyl)carbamate (6u).

Following GP B, starting from tert-butyl cyclobutylcarbamate 5 u ($34.2 \mathrm{mg}, 0.200 \mathrm{mmol}$) with CuTc (0.4 $\mathrm{mg}, 0.002 \mathrm{mmol}, 0.01$ equiv.), tert-Butyl (1,4-diazidopropyl)carbamate $6 \mathrm{u}(30.5 \mathrm{mg}, 0.120 \mathrm{mmol}, 60 \%$) was obtained as a colorless oil after purification by column chromatography on silica using 8:1 pentanes:ethyl acetate as eluent.
$\mathbf{R}_{f}: 0.31$ (silica, pentanes:ethyl acetate 8:1);
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.34-4.97(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NH}+\mathrm{CH}), 3.32\left(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 1.67(\mathrm{tdd}, \mathrm{J}$ $\left.=13.4,10.2,6.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.46\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$;
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=154.8,80.8,68.2,50.7,31.9,28.1,24.6$;
IR (film): $\tilde{v}=3667$ (w), 3340 (w), 2973 (s), 2102 (s), 1704 (s), 1508 (m), 1253 (s), 1060 (s);
HRMS (ESI) calcd. for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{~N}_{7} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$278.1336; Found 278.1338.

N-(2,4-Diazidobutan-2-yl)-4-methoxybenzamide (6w).

Following GP B, starting from 4-methoxy- N-(1-methylcyclopropyl)benzamide 5 w ($41.0 \mathrm{mg}, 0.200$ mmol), N -(2,4-diazidobutan-2-yl)-4-methoxybenzamide 6 w was formed in 58% yield based on crude ${ }^{1} \mathrm{H}$ NMR after workup, but purification by column chromatography on silica led to decomposition. Therefore, one-pot reduction by trimethylsilane was performed as shown below to form $\mathbf{2 6}$.

N-(4-azidobutan-2-yl)-4-methoxybenzamide (26).

Following GP C, starting from 4-methoxy- N-(1-methylcyclopropyl)benzamide 5 w ($41.0 \mathrm{mg}, 0.200$ mmol), after diazidation step is finished, triethylsilane ($32.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}, 1.0$ equiv.) and TMSOTf ($36.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}, 1.0$ equiv.) were added to the crude. The reaction mixture was stirred at room temperature for 2 hours. N-(4-azidobutan-2-yl)-4-methoxybenzamide 26 ($22.4 \mathrm{mg}, 90.3 \mu \mathrm{~mol}, 45 \%$) was obtained as a white solid after purification by column chromatography on silica using 1:1 pentanes:ethyl acetate as eluent.
\mathbf{R}_{f} : 0.37 (silica, pentanes:ethyl acetate 1:1);
Mp: $61-63{ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR ($800 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.77-7.66(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.96-6.86(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.07(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, NH), 4.30 (tdd, J = 8.2, 6.6, $5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 3.84 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.49-3.36$ (m, 2H, $\mathrm{N}_{3} \mathrm{CH}_{2}$), $1.90-1.75$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{N}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.28 (d, J = $6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$);
${ }^{13} \mathrm{C}$ NMR (201 MHz, CDCl_{3}): $\delta=166.4,162.1,128.6,126.8,113.7,55.4,48.7,43.8,35.8,20.9$;
IR (film): $\tilde{v}=3313(\mathrm{w}), 2977$ (s), 2098 (s), 1631 (s), 1500 (s), 1257 (s), 1045 (s), 852 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$271.1165; Found 271.1169.

N-(1,3-Diazidobutyl)-4-methoxybenzamide (6xa).

Following GP B, starting from 4-methoxy- N-(trans-2-methylcyclopropyl)benzamide $5 \times \mathrm{xa}(41.0 \mathrm{mg}, 0.200$ mmol) with CuTc ($2.4 \mathrm{mg}, 0.012 \mathrm{mmol}, 0.06$ equiv.), N-(1,3-diazidobutyl)-4-methoxybenzamide 6xa
($51.6 \mathrm{mg}, 0.179 \mathrm{mmol}, 89 \%$) was obtained as a yellow gel after purification by column chromatography on silica using 3:1 pentanes:ethyl acetate as eluent.
\mathbf{R}_{f} : 0.23 (silica, pentanes:ethyl acetate 3:1);
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$; mixture of diastereoisomers in a ratio of 1.1:1, signals corresponding to the two regioisomers are partially resolved): $\delta=7.78$ (ddd, $J=10.1,4.9,2.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}$, major + minor), $7.62-7.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}$, minor), $7.00-6.89(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}$, major + minor), $6.59(\mathrm{t}, \mathrm{J}=18.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$, major), $5.96-5.81(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}$, major + minor), 3.99 (dd, J = 6.5, 3.5 Hz, 1H, MeCH, minor), 3.86 (s, $6 \mathrm{H}, \mathrm{OCH}_{3}$, major +minor), $3.75-3.66\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{MeCH}\right.$, major), $1.96-1.71\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$, major +minor), 1.37 (dd, $J=8.2,6.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}$, major +minor);
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of diastereoisomers in a ratio of 1.1:1, signals corresponding to the two regioisomers are partially resolved): $\delta=166.8,166.7,162.8,162.8,129.1,125.2,114.0,65.2,64.7$, 55.5, 54.3, 53.7, 41.0, 39.7, 19.6, 19.3;

IR (film): $\tilde{v}=3307(\mathrm{w}), 2971$ (w), 2098 (s), 1640 (m), 1605 (m), 1500 (s), 1252 (s), 1029 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{7} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$312.1179; Found 312.1180.

N-(1,3-Diazido-3-phenylpropyl)-4-methoxybenzamide (6xb).

Following GP B, starting from 4-methoxy- N-(trans-2-phenylcyclopropyl)benzamide 5xb (53.4 mg, 0.200 mmol), N-(1,3-diazido-3-phenylpropyl)-4-methoxybenzamide $6 x b$ ($58.0 \mathrm{mg}, 0.165 \mathrm{mmol}, 83 \%$) was obtained as a yellow solid after purification by column chromatography on silica using 3:1 pentanes:ethyl acetate as eluent.
$\mathbf{R f}_{\mathrm{f}}$: 0.43 (silica, pentanes:ethyl acetate 3:1);
Mp: $81-84^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$; mixture of diastereoisomers in a ratio of 1.2:1, signals corresponding to the two regioisomers are partially resolved): $\delta=7.81-7.75(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}$, major), $7.70-7.62(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}$, minor), $7.59-7.53$ (m, 1H, NH, major), $7.46-7.30(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}$, major + minor), $6.97-6.92(\mathrm{~m}, 2 \mathrm{H}$, ArH, major), $6.92-6.87$ (m, 2H, ArH, minor), 6.66 (d, J = $8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$, minor), 5.91 (ddd, J = 8.9, 7.6, $5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$, minor), 5.85 (ddd, $J=8.9,5.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$, major), 4.88 (dd, J = $9.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}$, PhCH, major), 4.71 (dd, $J=9.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}$, minor), 3.86 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$, major), 3.84 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$, minor), 2.22-1.95 (m, 4H, CH2, major + minor);
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of diastereoisomers in a ratio of 1.2:1, signals corresponding to the two regioisomers are partially resolved): $\delta=166.8,166.8,162.8,162.8,138.5,137.9,129.3,129.2$, 129.1, 129.1, 129.0, 128.9, 126.9, 125.1, 125.0, 113.9, 113.8, 65.0, 64.8, 62.3, 62.2, 55.4, 55.4, 40.9, 39.9;

IR (film): $\tilde{v}=3307$ (w), 2100 (s), 1643 (m), 1605 (m), 1502 (s), 1255 (s), 1177 (m), 1029 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{7} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$374.1336; Found 374.1345.
N-(1,3-Diazido-3,3-difluoropropyl)-4-methoxybenzamide (6y).

Following GP B, starting from N-(2,2-difluorocyclopropyl)-4-methoxybenzamide 5 y ($45.4 \mathrm{mg}, 0.200$ mmol), N -(1,3-diazido-3,3-difluoropropyl)-4-methoxybenzamide $6 y$ ($53.8 \mathrm{mg}, 0.173 \mathrm{mmol}, 86 \%$) was obtained as a beige solid after purification by column chromatography on silica using 3:1 pentanes:ethyl acetate as eluent.
$\mathbf{R f}_{f}$: 0.43 (silica, pentanes:ethyl acetate 3:1);
Mp: $58-61{ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.80-7.75(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.97-6.93(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.77(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}$, NH), 6.00 (ddd, $J=8.8,7.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.43$ (tdd, $J=11.1,6.4,2.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$);
${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.8,163.0,129.1,124.8,121.9(\mathrm{t}, \mathrm{J}=266.9 \mathrm{~Hz}), 114.0,62.2(\mathrm{t}, \mathrm{J}=4.1$ $\mathrm{Hz}), 55.5,40.1(\mathrm{t}, \mathrm{J}=26.7 \mathrm{~Hz})$;
${ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-69.1$;
IR (film): $\tilde{v}=3312$ (w), 2936 (w), 2142 (s), 1652 (m), 1601 (s), 1502 (m), 1250 (s), 1171 (s);
HRMS (ESI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~F}_{2} \mathrm{~N}_{7} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 334.0834$; Found 334.0838.

N-(1,4-Diazido-3-phenylbutyl)-4-methoxybenzamide (6z).

Following GP B, starting from 4-methoxy- N-(trans-3-phenylcyclobutyl)benzamide $\mathbf{5 z}$ ($28.1 \mathrm{mg}, 0.100$ mmol), N-(1,4-diazido-3-phenylbutyl)-4-methoxybenzamide $6 z(25.7 \mathrm{mg}, 0.070 \mathrm{mmol}, 70 \%$) was obtained as a colorless oil after purification by column chromatography on silica using 3:1 pentanes:ethyl acetate as eluent.
\mathbf{R}_{f} : 0.43 (silica, pentanes:ethyl acetate 3:1);
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of diastereoisomers in a ratio of $1: 1$, signals corresponding to the two regioisomers are partially resolved): $\delta=7.59-7.54(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.43-7.37(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.36-$ $7.32(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.31-7.26(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.25-7.22(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.89-6.80(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 6.49(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$), $6.40(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$), 5.75 (ddd, $J=9.2,7.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 5.49$ (td, J=8.7, $5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.55\left(\mathrm{dt}, \mathrm{J}=12.1,7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{N}_{3} \mathrm{CH}_{2}\right), 3.45$ (ddd, $J=15.1,12.1,7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{N}_{3} \mathrm{CH}_{2}$), $3.14(\mathrm{ddt}, J=10.5,7.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}$), 3.07 (ddt, J = 10.9, 7.0, 3.7 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{PhCH}$), $2.26-2.12\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.06$ (tdd, J = 13.8, 10.3, 5.0 Hz, 2H, CH2);
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of diastereoisomers in a ratio of $1: 1$, signals corresponding to the two regioisomers are partially resolved): $\delta=166.7,166.5,162.7,140.7,140.0,129.5,129.2,129.0$, $128.9,128.8,127.9,127.8,127.7,127.6,125.0,124.9,113.7,113.7,66.0,65.4,56.8,56.6,55.4,55.3$, 42.4, 41.3, 37.8, 37.5;

IR (film): $\tilde{v}=3303(\mathrm{w}), 2934$ (w), 2097 (s), 1641 (m), 1605 (m), 1499 (m), 1254 (s), 1176 (m), 1028 (m); HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{7} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$388.1492; Found 388.1496.

(1,3-Diazidopropyl)benzene (8).

Following GP B, starting from cyclopropylbenzene 7 ($25.1 \mu \mathrm{~L}, 0.200 \mathrm{mmol}$), (1,3-diazidopropyl)benzene 8 ($4.0 \mathrm{mg}, 0.020 \mathrm{mmol}, 10 \%$) was obtained as a colorless oil after purification by column chromatography on silica using pentanes as eluent.
$\mathbf{R}_{\mathrm{f}}: 0.32$ (silica, pentanes);
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.41$ (ddt, J=8.0, $6.5,1.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.38-7.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.32(\mathrm{tt}$, $J=5.6,1.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $4.61(\mathrm{dd}, J=8.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.48-3.29\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 2.10-1.88(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$);
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=138.6,129.0,128.6,126.9,63.2,48.1,35.5 ;$
IR (film): $\tilde{v}=2963$ (m), 2098 (s), 1245 (m), 1053 (m), 908 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{4}{ }^{+}\left[\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$175.0978; Found 175.0965.

General Procedure C (GP C):

In a 12*75 mm Borosilicate glass tube, the corresponding aminocyclopropane ($0.200 \mathrm{mmol}, 1.0$ equiv.), Selectfluor ($78.0 \mathrm{mg}, 0.220 \mathrm{mmol}, 1.1$ equiv.) and CuTc ($0.8 \mathrm{mg}, 0.004 \mathrm{mmol}, 0.02$ equiv.) were measured on analytical balance. The tube was then closed with a rubber septum and sealed off with parafilm. Evacuate-refill cycle with nitrogen were performed three times to remove O_{2} and extra-dry acetonitrile ($2.0 \mathrm{~mL}, 0.1 \mathrm{M}$) was added under nitrogen atmosphere, followed by the addition of TMSN 3 (94% purity purchased from $\mathrm{TCI}, 62.0 \mu \mathrm{~L}, 0.440 \mathrm{mmol}, 2.2$ equiv.). The reaction mixture was stirred at room temperature for 10 minutes before nucleophile (and if needed the Lewis acid/base) was added. The nucleophilc substitution step was not sensitive to air and nucleophile can be added directly by injection if it is in liquid state or by removing the cap and adding from the top if it is in solid state. The progress of the reaction was monitored by TLC. Upon completion, the mixture was quenched by the addition of water (10 mL). The aqueous layer was then extracted with dichloromethane ($10 \mathrm{~mL} \times 3$). The organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude mixture was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentanes/EtOAc).

N -(3-Azido-1-(3-methyl-1H-indol-2-yl)propyl)-4-methoxybenzamide (10a).

Following GP C, starting from N-cyclopropyl-4-methoxybenzamide 5 ($38.2 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, 3 -methylindole ($39.4 \mathrm{mg}, 0.300 \mathrm{mmol}, 1.5$ equiv.) and boron trifluoride etherate ($25.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}, 1.0$ equiv.) were added to the crude. The reaction mixture was stirred at room temperature for 30 minutes. N-(3-Azido-1-(3-methyl-1H-indol-2-yl)propyl)-4methoxybenzamide 10 ($47.3 \mathrm{mg}, 0.130 \mathrm{mmol}, 65 \%$) was obtained as a yellow solid after purification by column chromatography on silica using 3:2 pentanes:ethyl acetate as eluent.
$\mathbf{R f}_{\mathrm{f}}$: 0.45 (silica, pentanes:ethyl acetate 3:2);
Mp: $152-155^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.13(\mathrm{~s}, 1 \mathrm{H}$, indole NH), $7.75-7.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.54-7.50(\mathrm{~m}, 1 \mathrm{H}$, ArH), 7.32 (dt, J = 8.1, 1.0 Hz, 1H, ArH), 7.17 (ddd, J = 8.2, 7.0, 1.3 Hz, 1H, ArH), 7.10 (ddd, J = 8.0, 7.0,
$1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $6.93-6.89(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.75(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.16(\mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.84$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.44 (ddd, $J=12.5,7.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}$), 3.31 (ddd, $J=12.6,7.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}$), $2.56-2.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$;
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.9,162.5,135.4,133.1,128.8,128.5,126.1,122.2,119.2,118.7$, 113.9, 111.0, 108.3, 55.4, 48.8, 46.2, 32.8, 8.7;

IR (film): $\tilde{v}=3672$ (w), 3323 (m), 2975 (s), 2098 (s), 1617 (s), 1497 (m), 1257 (s), 1065 (s);
HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$386.1587; Found 386.1588.

N -(4-Azido-1-(3-methyl-1H-indol-2-yl)butyl)-4-methoxybenzamide (11a).

Following GP C, starting from N -cyclobutyl-4-methoxybenzamide 5 t ($41.0 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, 3 -methylindole ($39.4 \mathrm{mg}, 0.300 \mathrm{mmol}, 1.5$ equiv.) and boron trifluoride etherate ($25.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}, 1.0$ equiv.) were added to the crude. The reaction mixture was stirred at room temperature for 30 minutes. N-(4-Azido-1-(3-methyl-1H-indol-2-yl)butyl)-4methoxybenzamide 11a ($51.4 \mathrm{mg}, 0.136 \mathrm{mmol}, 68 \%$) was obtained as a beige solid after purification by column chromatography on silica using 3:2 pentanes:ethyl acetate as eluent.
\mathbf{R}_{f} : 0.37 (silica, pentanes:ethyl acetate 3:2);
Mp: $160-164{ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.93(\mathrm{~s}, 1 \mathrm{H}$, indole NH), $7.72-7.67(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.52(\mathrm{dd}, \mathrm{J}=7.8,1.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.27-7.24$ (m, 1H, ArH), 7.15 (ddd, $J=8.1,7.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.09 (ddd, $J=8.1,7.0$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $6.87-6.81(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.79(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.22(\mathrm{q}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.80$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.29\left(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.29-2.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.71-1.55(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2}$);
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.3,162.4,135.4,133.6,128.8,128.7,126.3,122.1,119.2,118.7$, 113.8, 110.9, 108.2, 55.4, 51.1, 47.6, 31.6, 26.0, 8.8;

IR (film): $\tilde{v}=3316$ (m), 2938 (w), 2102 (s), 1616 (s), 1500 (s), 1261 (s), 1029 (w);
HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 400.1744$; Found 400.1745 .

N-(3-Azido-1-(2-hydroxynaphthalen-1-yl)propyl)-4-methoxybenzamide (10ba).

Following GP C, starting from N-cyclopropyl-4-methoxybenzamide $5 \mathbf{5}$ ($38.2 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, 2-naphthol ($43.2 \mathrm{mg}, 0.300 \mathrm{mmol}, 1.5$ equiv.) and boron trifluoride etherate ($25.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}, 1.0$ equiv.) were added to the crude. The reaction mixture was stirred at room temperature for 30 minutes. N-(3-Azido-1-(2-hydroxynaphthalen-1-yl)propyl)-4-
methoxybenzamide 10 ba ($56.0 \mathrm{mg}, 0.149 \mathrm{mmol}, 74 \%$) was obtained as a white solid after purification by column chromatography on silica using 1:1 pentanes:ethyl acetate as eluent.
\mathbf{R}_{f} : 0.27 (silica, pentanes:ethyl acetate 1:1);
Mp: 187-190 ${ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone- d_{6}): $\delta=9.55(\mathrm{~s}, 1 \mathrm{H}$, naphthol OH$), 8.39(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 8.31(\mathrm{~d}, \mathrm{~J}=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.88-7.78(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}$), $7.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.54 (ddd, J=8.5, 6.8, 1.4 Hz, $1 \mathrm{H}, \mathrm{ArH}$), 7.33 (ddd, $J=8.0,6.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.26(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.01-6.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, $6.34(\mathrm{q}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.52\left(\mathrm{dt}, J=12.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 3.42(\mathrm{dt}, J=12.6$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}$), $2.63-2.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right.$), 2.28 (dq, J = $13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$);
${ }^{13}$ C NMR (101 MHz, Acetone- d_{6}): $\delta=166.5,163.1,154.0,133.4,130.1,130.0,129.6,129.5,128.0$, 127.6, 123.9, 123.3, 120.2, 119.5, 114.4, 55.8, 49.8, 45.7, 34.4; IR (film): $\tilde{v}=3137$ (m), 2932 (w), 2097 (s$), 1627$ (s$), 1606$ (s), 1501 (s), 1259 (s), 1029 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{NaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$399.1428; Found 399.1426.

Benzyl (3-azido-1-(2-hydroxynaphthalen-1-yl)propyl)carbamate (10bb).

Following GP C, starting from benzyl cyclopropylcarbamate $5 q(38.2 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, the crude was cooled down to $-20^{\circ} \mathrm{C}$ before 2-naphthol ($43.2 \mathrm{mg}, 0.300 \mathrm{mmol}, 1.5$ equiv.) and boron trifluoride etherate ($25.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}, 1.0$ equiv.) were added to the crude. The reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 2 hours. Benzyl (3-azido-1-(2-hydroxynaphthalen-1yl)propyl)carbamate 10 bb ($35.0 \mathrm{mg}, 0.093 \mathrm{mmol}, 46 \%$) was obtained as a white solid after purification by column chromatography on silica using 4:1 pentanes:ethyl acetate as eluent.
$\mathbf{R}_{\mathrm{f}}: 0.30$ (silica, pentanes:ethyl acetate 4:1);
MP: $149-150{ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.76$ (dd, J = 8.1, $1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.65(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}$), 7.49 (ddd, J=8.5, 6.7, $1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.39-7.31(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}), 7.04(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, $5.85(\mathrm{dt}, J=9.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 5.20\left(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 3.32(\mathrm{ddt}, J=47.1,12.5,6.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{~N}_{3}\right), 2.42-2.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right)$;
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=152.0,136.0,131.9,129.6,129.0,128.7,128.5,128.3,128.2,128.1$, 128.0, 127.2, 123.3, 121.9, 118.2, 67.5, 48.8, 47.0, 33.9;

IR (film): $\tilde{v}=3277$ (m), 2097 (s), 1687 (s), 1516 (s), 1329 (m), 1271 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{NaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$399.1428; Found 399.1435.

N-(3-Azido-1-(2-oxocyclohexyl)propyl)benzamide (10c).

Following GP C, starting from N-cyclopropylbenzamide 5 a ($32.2 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, 1-morpholinocyclohexane ($100 \mu \mathrm{~L}, 0.600 \mathrm{mmol}, 3.0$ equiv.) and boron trifluoride etherate ($75.0 \mu \mathrm{~L}, 0.600 \mathrm{mmol}, 3.0$ equiv.) were added to the crude. The reaction mixture was stirred at room temperature for 1 hour. N-(3-Azido-1-(2-oxocyclohexyl)propyl)benzamide 10c ($35.1 \mathrm{mg}, 0.117$ $\mathrm{mmol}, 58 \%)$ was obtained as a beige solid after purification by column chromatography on silica using 3:1 pentanes:ethyl acetate as eluent.
\mathbf{R}_{f} : 0.30 (silica, pentanes:ethyl acetate $3: 1$);
Mp: $93-96^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$; mixture of two diastereoisomers in a 1.7:1 ratio: the signals corresponding to the two diastereoisomers are partially resolved): $\delta=7.77$ (ddd, $J=7.6,6.0,1.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.54-$ $7.47(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.44$ (dtd, $J=8.7,4.3,2.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.09(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$, major:minor = 1.7:1), 4.31 (qdd, $J=11.0,4.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), $3.50-3.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right.$), 2.72 (dddd, $J=17.5,12.3$, $5.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}), 2.48-2.01\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2}\right), 2.00-1.62\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2}\right)$;
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of two diastereoisomers in a 1.7:1 ratio: the signals corresponding to the two diastereoisomers are partially resolved): $\delta=214.4,213.2,167.1,166.7,134.1,134.1,131.6$, $128.6,126.9,54.5,54.0,49.0,48.9,48.7,48.2,43.3,42.5,33.7,33.1,30.9,29.5,28.4,27.0,25.1,24.8 ;$ IR (film): $\tilde{v}=3315$ (w), 2936 (m), 2093 (s), 1703 (s), 1636 (s), 1527 (s), 1308 (m), 1258 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$323.1478; Found 323.1477.

N-(5-Azido-1-oxo-1-phenylpentan-3-yl)benzamide (10d).

Following GP C, starting from N-cyclopropylbenzamide 5 a ($32.2 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, trimethyl((1-phenylvinyl)oxy)silane ($82.0 \mu \mathrm{~L}, 0.400 \mathrm{mmol}, 2.0$ equiv.) and TMSOTf (72.0 $\mu \mathrm{L}, 0.400 \mathrm{mmol}, 2.0$ equiv.) were added to the crude. The reaction mixture was stirred at room temperature for 30 minutes. N-(5-Azido-1-oxo-1-phenylpentan-3-yl)benzamide 10d ($51.1 \mathrm{mg}, 0.159$ $\mathrm{mmol}, 79 \%$) was obtained as a yellow solid after purification by column chromatography on silica using 2:1 pentanes:ethyl acetate as eluent.
$\mathbf{R}_{\mathrm{f}}: 0.32$ (silica, pentanes:ethyl acetate 2:1);
Mp: $81-84^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.00-7.94(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.82-7.75(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.62-7.57(\mathrm{~m}, 1 \mathrm{H}$, ArH), 7.46 (ddd, J = 19.5, 8.1, $6.5 \mathrm{~Hz}, 5 \mathrm{H}, \mathrm{ArH}$), $7.26-7.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 4.68(\mathrm{tq}, \mathrm{J}=9.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}$, NCH), 3.56 (dd, $J=17.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}$), 3.47 (dd, $J=7.4,6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}$), $3.29(\mathrm{dd}, \mathrm{J}=17.6$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}$), 2.20 (ddt, $J=14.2,9.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$), 1.95 (dtd, J=14.4, 7.4, 4.7 Hz, 1H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$);
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=199.5,167.0,136.6,134.2,133.7,131.6,128.8,128.6,128.1,126.9$, 48.9, 45.0, 41.5, 33.0;

IR (film): $\tilde{v}=3310$ (w), 3061 (w), 2095 (s), 1682 (s), 1636 (s), 1534 (s), 1306 (m), 690 (s);
HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$323.1503; Found 323.1498.

Methyl 5-azido-3-benzamidopentanoate (10e).

Following GP C, starting from N-cyclopropylbenzamide 5 ($32.2 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, tert-butyl[(1-methoxyvinyl)oxy]dimethylsilane ($132 \mu \mathrm{~L}, 0.600 \mathrm{mmol}, 3.0$ equiv.) was added to the crude. The reaction mixture was stirred at room temperature for 4 hours. Methyl 5 -azido-3-benzamidopentanoate 10e ($34.0 \mathrm{mg}, 0.123 \mathrm{mmol}, 62 \%$) was obtained as a colorless oil after purification by column chromatography on silica using 1:1 pentanes:ethyl acetate as eluent.
$\mathbf{R f}_{\mathrm{f}} 0.47$ (silica, pentanes:ethyl acetate 1:1);
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.79(\mathrm{dq}, J=8.1,1.7,1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.54-7.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.44$ (ddd, J = 8.1, 6.2, 1.3 Hz, 2H, ArH), $7.08(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 4.65-4.47(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 3.72(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), 3.50-3.39 (m, 2H, CH2N N_{3}, $2.79-2.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 2.07-1.96\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 1.94$ $-1.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right)$;
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.4,166.8,134.1,131.7,128.6,126.9,51.9,48.7,44.3,37.9,33.3 ;$
IR (film): $\tilde{v}=3309$ (w), 2951 (m), 2098 (s), 1736 (s), 1638 (s), 1534 (s), 1307 (m), 1263 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{NaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$299.1115; Found 299.1114.
N-(1-Azidohex-5-en-3-yl)benzamide (10f).

Following GP C, starting from N-cyclopropylbenzamide $\mathbf{5 a}(32.2 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, allyltrimethylsilane ($64.0 \mu \mathrm{~L}, 0.400 \mathrm{mmol}, 2.0$ equiv.) and TiCl_{4} ($55.0 \mu \mathrm{~L}, 0.500 \mathrm{mmol}$, 2.5 equiv.) were added to the crude. The reaction mixture was stirred at room temperature for 1 hour. N-(1-Azidohex-5-en-3-yl)benzamide 10 f ($31.2 \mathrm{mg}, 0.128 \mathrm{mmol}, 64 \%$) was obtained as a grey solid after purification by column chromatography on silica using 3:1 pentanes:ethyl acetate as eluent.
\mathbf{R}_{f} : 0.39 (silica, pentanes:ethyl acetate 3:1);
Mp: $54-57^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.80-7.69(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.53-7.47(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.46-7.38(\mathrm{~m}, 2 \mathrm{H}$, ArH), 6.15 (d, J = $8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$), 5.82 (ddt, J = 16.5, 10.8, $7.1 \mathrm{~Hz}, 1 \mathrm{H}$, vinylCH), $5.21-5.09$ (m, 2H, viny CH_{2}), 4.31 (ttd, J = 8.8, 6.4, $4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), $3.51-3.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 2.47-2.30(\mathrm{~m}, 2 \mathrm{H}$, allylic CH_{2}), 1.93 (dtd, $\mathrm{J}=14.2,7.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$), 1.79 (dddd, $\mathrm{J}=14.4,8.9,7.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$);
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.1,134.5,133.7,131.5,128.6,126.8,118.6,48.7,47.1,39.1,33.6 ;$
IR (film): $\tilde{v}=3293$ (w), 2930 (w), 2094 (s), 1633 (s), 1536 (s), 1305 (m), 917 (w);
HRMS (ESI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+} 245.1397$ Found 245.1394.

Dimethyl 2-(3-azido-1-benzamidopropyl)malonate (10ga).

Following GP C, starting from N-cyclopropylbenzamide 5 ($32.2 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, a solution of dimethyl malonate ($46.0 \mu \mathrm{~L}, 0.400 \mathrm{mmol}, 2.0$ equiv.) and sodium hydride 60% dispersion mineral oil ($16.0 \mathrm{mg}, 0.400 \mathrm{mmol}, 2.0$ equiv.) in THF (0.5 mL) was added dropwise to the crude. The reaction mixture was stirred at room temperature for 10 minutes. Dimethyl 2-(3-azido-1-benzamidopropyl)malonate 10 ga ($51.2 \mathrm{mg}, 0.153 \mathrm{mmol}, 77 \%$) was obtained as a grey solid after purification by column chromatography on silica using 1:1 pentanes:ethyl acetate as eluent.
$\mathbf{R f}_{\mathrm{f}} 0.45$ (silica, pentanes:ethyl acetate 1:1);
Mp: $57-59^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.81-7.73(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.54-7.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}$, ArH), $7.33\left(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right.$), $4.90(\mathrm{tdd}, J=9.6,4.7,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH} \mathrm{H}_{3}\right), 3.79(\mathrm{~d}, J$ $=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.44\left(\mathrm{dd}, \mathrm{J}=7.5,6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 2.06-1.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{~N}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.1,167.8,167.0,133.9,131.7,128.6,127.0,54.3,53.0,52.8,48.5$, 47.0, 32.8;

IR (film): $\tilde{v}=3306$ (m), 2954 (m), 2096 (s), 1732 (s), 1642 (s), 1523 (s), 1257 (s), 1158 (s), 712 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{NaO}_{5}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$357.1169; Found 357.1179.

Dimethyl 2-(3-azido-1-((tert-butoxycarbonyl)amino)propyl)malonate (10gb).

Following GP C, starting from tert-butyl cyclopropylcarbamate 5 p ($31.4 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, a solution of dimethyl malonate ($46.0 \mu \mathrm{~L}, 0.400 \mathrm{mmol}, 2.0$ equiv.) and sodium hydride 60% dispersion mineral oil ($16.0 \mathrm{mg}, 0.400 \mathrm{mmol}, 2.0$ equiv.) in THF (0.5 mL) was added dropwise to the crude. The reaction mixture was stirred at room temperature for 10 minutes. Dimethyl 2-(3-azido-1-((tert-butoxycarbonyl)amino)propyl)malonate 10 gb ($42.5 \mathrm{mg}, 0.129 \mathrm{mmol}, 64 \%$) was obtained as a white solid after purification by column chromatography on silica using 5:1 pentanes:ethyl acetate as eluent.
$\mathbf{R f}_{\mathrm{f}} 0.30$ (silica, pentanes:ethyl acetate 5:1);
Mp: $78-81^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.37(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 4.34(\mathrm{td}, \mathrm{J}=9.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 3.77(\mathrm{~d}$, $\left.J=1.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.73\left(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.66(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.48-3.30(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~N}_{3}$), 1.82 (dtd, $\mathrm{J}=19.4,7.3,3.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{~N}_{3}$), $1.42\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$;
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.5,167.9,155.3,79.8,54.8,52.8,52.6,48.5,47.9,32.6,28.2$;
IR (film): $\tilde{v}=3376$ (w), 2955 (m), 2097 (s), 1734 (s), 1713 (s), 1500 (m), 1242 (s), 1161 (s);
HRMS (ESI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{NaO}_{6}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$353.1432; Found 353.1432.

tert-Butyl (4-azido-1-nitrobutan-2-yl)carbamate (10h).

Following GP C, starting from tert-butyl cyclopropylcarbamate 5 p ($31.4 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, $\mathrm{CH}_{3} \mathrm{NO}_{2}(22.0 \mu \mathrm{~L}, 0.400 \mathrm{mmol}, 2.0$ equiv.) was added to the crude followed by the addition of KOtBu 1.0 M in $t \mathrm{BuOH}(0.40 \mathrm{~mL}, 0.40 \mathrm{mmol}, 2.0$ equiv.). The reaction mixture was stirred at room temperature for 1 hour. tert-Butyl (4-azido-1-nitrobutan-2-yl)carbamate $\mathbf{1 0 h}$ (28.0 mg , $0.108 \mathrm{mmol}, 54 \%$) was obtained as a white solid after purification by column chromatography on silica using 3:1 pentanes:ethyl acetate as eluent.
\mathbf{R}_{f} : 0.45 (silica, pentanes:ethyl acetate $3: 1$);
Mp: $49-53^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.97(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 4.63\left(\mathrm{dd}, \mathrm{J}=13.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NO}_{2} \mathrm{CH}_{2}\right), 4.56$ (dd, J = 13.1, 4.4 Hz, 1H, NO2 CH2 $), 4.24(\mathrm{tt}, J=9.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), $3.47(\mathrm{dtt}, J=17.9,12.9,6.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~N}_{3}$), $1.97-1.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{~N}_{3}\right), 1.44\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$;
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=154.9,80.6,77.9,48.0,47.0,30.8,28.2$;
IR (film): $\tilde{v}=3339$ (w), 2979 (w), 2100 (s), 1692 (s), 1554 (s), 1367 (s), 1165 (s), 1062 (w);
HRMS (ESI) calcd. for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{NaO}_{4}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$282.1173; Found 282.1176.
tert-Butyl (5-azido-1-nitropentan-2-yl)carbamate (11h).

Following GP C, starting from tert-butyl cyclobutylcarbamate 5 u ($34.2 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, $\mathrm{CH}_{3} \mathrm{NO}_{2}(22.0 \mu \mathrm{~L}, 0.400 \mathrm{mmol}, 2.0$ equiv.) was added to the crude followed by the addition of KOtBu 1.0 M in $t \mathrm{BuOH}(0.40 \mathrm{~mL}, 0.40 \mathrm{mmol}, 2.0$ equiv.). The reaction mixture was stirred at room temperature for 1 hour. tert-Butyl (5-azido-1-nitropentan-2-yl)carbamate 11 h (19.0 mg , $0.070 \mathrm{mmol}, 35 \%$) was obtained as a colorless oil after purification by column chromatography on silica using 3:1 pentanes:ethyl acetate as eluent.
$\mathbf{R f}_{\mathrm{f}} 0.33$ (silica, pentanes:ethyl acetate 6:1);
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.88(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 4.61-4.38\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NO}_{2} \mathrm{CH}_{2}\right), 4.13(\mathrm{td}, \mathrm{J}=8.3$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 3.45-3.19\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 1.67\left(\mathrm{ddt}, \mathrm{J}=9.3,7.2,3.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.44\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=155.0,80.4,78.3,50.7,48.7,29.0,28.2,25.4$;
IR (film): $\tilde{v}=3667$ (w), 3340 (m), 2973 (s), 2098 (s), 1697 (s), 1550 (s), 1373 (s), 1253 (s), 1064 (s);
HRMS (ESI) calcd. for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{NaO}_{4}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$296.1329; Found 296.1332.

N-(3-Azido-1-cyanopropyl)-4-methylbenzenesulfonamide (10i).

Following GP C, starting from N-cyclopropyl-4-methylbenzenesulfonamide 5 ($42.2 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, $\operatorname{TMSCN}(38.0 \mu \mathrm{~L}, 0.300 \mathrm{mmol}, 1.5$ equiv.) was added to the crude. The reaction mixture was stirred at room temperature for 30 minutes. N-(3-Azido-1-cyanopropyl)-4-
methylbenzenesulfonamide 10i ($35.1 \mathrm{mg}, 0.126 \mathrm{mmol}$, 63%) was obtained as a beige solid after purification by column chromatography on silica using 1:1 pentanes:ethyl acetate as eluent.
$\mathbf{R}_{\mathrm{f}}: 0.50$ (silica, pentanes:ethyl acetate 1:1);
Mp: $113-116{ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.87-7.73(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.37(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 5.39(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{NH}$), 4.42 (ddd, $J=9.8,7.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), $3.64-3.49\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.02$ (dtd, $J=7.6,5.8,2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$);
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=144.9,135.7,130.2,127.3,116.7,46.9,42.3,33.0,21.7$;
IR (film): $\tilde{v}=3275$ (m), 2929 (w), 2105 (s), 1336 (s), 1161 (s), 1090 (s), 815 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{NaO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$302.0682; Found 302.0684.

N -(3-Azidopropyl)benzamide (10j).

Following GP C, starting from N-cyclopropylbenzamide $\mathbf{5 a}$ ($32.2 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, triethylsilane ($32.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}, 1.0$ equiv.) and TMSOTf ($36.0 \mu \mathrm{~L}, 0.200 \mathrm{mmol}, 1.0$ equiv.) were added to the crude. The reaction mixture was stirred at room temperature for 2 hours. N-(3-Azidopropyl)benzamide 10 j ($29.2 \mathrm{mg}, 0.143 \mathrm{mmol}, 72 \%$) was obtained as a colorless oil after purification by column chromatography on silica using 2:1 pentanes:ethyl acetate as eluent.
$\mathbf{R}_{\mathbf{f}}: 0.26$ (silica, pentanes:ethyl acetate 2:1);
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.81-7.72(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.52-7.45(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.44-7.37(\mathrm{~m}, 2 \mathrm{H}$, ArH), $6.79-6.47(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 3.53$ (qd, $J=6.7,3.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}$), 3.42 (qd, J = 6.2, 5.4, $2.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~N}_{3}$), 1.90 (dddd, $J=8.2,6.6,4.2,2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$);
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.7,134.3,131.5,128.5,126.8,49.5,37.7,28.7$;
IR (film): $\tilde{v}=3310$ (m), 2932 (w), 2092 (s), 1636 (s), 1537 (s), 1291 (m), 669 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$227.0903; Found 227.0908.

N-(5-Azido-1-phenylpent-1-yn-3-yl)benzamide (10k).

Following GP C, starting from N-cyclopropylbenzamide 5 a ($32.2 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, potassium phenylethynyltrifluoroborate ($83.2 \mathrm{mg}, 0.400 \mathrm{mmol}, 2.0$ equiv.) and boron trifluoride etherate ($100 \mu \mathrm{~L}, 0.800 \mathrm{mmol}, 4.0$ equiv.) were added to the crude. The reaction mixture was stirred at room temperature for 2 hours. N-(5-Azido-1-phenylpent-1-yn-3-yl)benzamide 10k (28.8 $\mathrm{mg}, 0.095 \mathrm{mmol}, 48 \%$) was obtained as a yellow oil after purification by column chromatography on silica using 3:1 pentanes:ethyl acetate as eluent.
\mathbf{R}_{f} : 0.43 (silica, pentanes:ethyl acetate 3:1);
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.84-7.79(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.55-7.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.48-7.42(\mathrm{~m}, 4 \mathrm{H}$, ArH), $7.35-7.29(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 6.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.37(\mathrm{dt}, J=8.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 3.72-$ $3.66\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 3.60\left(\mathrm{dt}, J=12.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 2.23-2.07\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right)$;
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.3,133.7,131.9,131.8,128.7,128.7,128.3,127.0,122.1,86.6,84.5$, 48.4, 40.7, 34.7;

IR (film): $\tilde{v}=3293$ (m), 3060 (w), 2927 (w), 2096 (s$), 1637$ (s), 1527 (s), 1443 (m), 1279 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$327.1216; Found 327.1222.
(E)-N-(5-Azido-1-phenylpent-1-en-3-yl)benzamide (10I).

Following GP C, starting from N-cyclopropylbenzamide 5 a ($32.2 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, potassium trans-styryltrifluoroborate ($73.6 \mathrm{mg}, 0.400 \mathrm{mmol}, 2.0$ equiv.) and boron trifluoride etherate ($100 \mu \mathrm{~L}, 0.800 \mathrm{mmol}, 4.0$ equiv.) were added to the crude. The reaction mixture was stirred at room temperature for 1 hour. (E)-N-(5-Azido-1-phenylpent-1-en-3-yl)benzamide 10l $(30.8 \mathrm{mg}, 0.100 \mathrm{mmol}, 50 \%)$ was obtained as a yellow gel after purification by column chromatography on silica using 3:1 pentanes:ethyl acetate as eluent.
\mathbf{R}_{f} : 0.37 (silica, pentanes:ethyl acetate 3:1);
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.84-7.77(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.55-7.49(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.48-7.41(\mathrm{~m}, 2 \mathrm{H}$, ArH), $7.39-7.34$ (m, 2H, ArH), $7.34-7.28$ (m, 2H, ArH), $7.27-7.24$ (m, 1H, ArH), 6.62 (dd, J=15.9, 1.3 $\mathrm{Hz}, 1 \mathrm{H}$, vinylCH), 6.47 (d, J = $8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$), 6.20 (dd, $J=15.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}$, vinylCH), 4.97 (dqd, J=8.0, $6.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NLCH}$), $3.59-3.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right.$), 2.04 (qd, J = 6.8, 3.0 Hz, 2H, CH2CH2N3);
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.7,136.2,134.3,131.7,131.6,128.6,128.6,128.1,127.9,126.9$, 126.5, 49.7, 48.5, 34.1;

IR (film): $\tilde{v}=3301$ (w), 3027 (w), 2929 (w), 2096 (s), 1634 (s), 1532 (s), 1304 (m), 966 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$329.1373; Found 329.1372.

N-(1-Azidopentan-3-yl)-4-methoxybenzamide (10m).

Following GP C, starting from N-cyclopropyl-4-methoxybenzamide 5b ($38.2 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, diethylzinc solution 1.0 M in hexanes ($0.30 \mathrm{~mL}, 0.30 \mathrm{mmol}, 1.5$ equiv.) was added to the crude. The reaction mixture was stirred at room temperature for 30 minutes. N-(1-Azidopentan-3-yl)-4-methoxybenzamide 10 m ($44.6 \mathrm{mg}, 0.170 \mathrm{mmol}, 85 \%$) was obtained as a beige solid after purification by column chromatography on silica using 2:1 pentanes:ethyl acetate as eluent.
\mathbf{R}_{f} : 0.33 (silica, pentanes:ethyl acetate 2:1);
Mp: $73-76{ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.78-7.68(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.96-6.86(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.03(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}$, NH), $4.17-4.09(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.41\left(\mathrm{tt}, \mathrm{J}=12.3,7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 1.90$ (dtd, $J=14.1$, $7.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$), 1.73 (dddd, $J=14.3,8.9,7.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$), 1.59 (ddt, $J=28.8,13.8$, $7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $0.96\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$;
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.8,162.1,128.6,126.8,113.7,55.4,49.1,48.7,33.9,28.0,10.4 ;$
IR (film): $\tilde{v}=3305$ (m), 2964 (m), 2933 (m), 2096 (s), 1629 (s), 1506 (s), 1255 (s), 1029 (m), 841 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$285.1322; Found 285.1317.

N-(6-Azidohexan-3-yl)-4-methoxybenzamide (11m).

Following GP C, starting from N-cyclobutyl-4-methoxybenzamide $5 t(41.0 \mathrm{mg}, 0.200 \mathrm{mmol})$, after diazidation step is finished, diethylzinc solution 1.0 M in hexanes ($0.30 \mathrm{~mL}, 0.30 \mathrm{mmol}, 1.5$ equiv.) was added to the crude. The reaction mixture was stirred at room temperature for 30 minutes. N-(6-Azidohexan-3-yl)-4-methoxybenzamide 11 m ($43.3 \mathrm{mg}, 0.157 \mathrm{mmol}, 78 \%$) was obtained as a white solid after purification by column chromatography on silica using 2:1 pentanes:ethyl acetate as eluent.
$\mathbf{R}_{\mathrm{f}}: 0.28$ (silica, pentanes:ethyl acetate 2:1);
Mp: $55-58{ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.75-7.69(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.94-6.91(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 5.88-5.65(\mathrm{~m}, 1 \mathrm{H}$, NH), 4.08 (qd, J = 9.0, $4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.33\left(\mathrm{td}, J=6.3,3.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right.$), 1.68 (qtd, $\left.J=15.2,7.6,3.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.55-1.46\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.97\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$;
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.8,162.1,128.5,126.9,113.7,55.4,51.3,50.4,32.2,28.4,25.5,10.4$; IR (film): $\tilde{v}=3307$ (w), 2961 (w), 2933 (w), 2093 (s), 1627 (s), 1505 (s), 1250 (s), 1030 (m), 844 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$299.1478; Found 299.1480.

N-(5-Azidopent-1-en-3-yl)benzamide (10na).

Following GP C, starting from N-cyclopropylbenzamide 5 a ($32.2 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, vinylmagnesium bromide solution 1.0 M in $\mathrm{THF}(0.30 \mathrm{~mL}, 0.30 \mathrm{mmol}, 1.5$ equiv.) was added to the crude. The reaction mixture was stirred at room temperature for 30 minutes. N -(5-Azidopent-1-en-3-yl)benzamide $10 \mathrm{na}(26.3 \mathrm{mg}, 0.130 \mathrm{mmol}, 57 \%$) was obtained as a yellow oil after purification by column chromatography on silica using 3:1 pentanes:ethyl acetate as eluent.
$\mathbf{R}_{\mathrm{f}}: 0.32$ (silica, pentanes:ethyl acetate $3: 1$);
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.81-7.76(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.52-7.47(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.44-7.39(\mathrm{~m}, 2 \mathrm{H}$, ArH), 6.53 (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$), 5.85 (ddd, $J=17.2,10.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}$, vinylCH), $5.32-5.15$ (m, 2H, viny ICH_{2}), 4.79 (dddt, $J=14.6,7.2,5.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), $3.44\left(\mathrm{~h}, \mathrm{~J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 2.01-1.82(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$);
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.8,136.9,134.2,131.5,128.5,126.9,116.0,49.9,48.4,33.5$;
IR (film): $\tilde{v}=3293$ (w), 2929 (w), 2094 (s), 1632 (s), 1528 (s), 1290 (s), 921 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$203.1179; Found 203.1192.

tert-Butyl (5-azidopent-1-en-3-yl)carbamate (10nb).

Following GP C, starting from tert-butyl cyclopropylcarbamate 5 p ($31.4 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, the crude was cooled down to $-20^{\circ} \mathrm{C}$ before vinylmagnesium bromide solution 1.0M in THF ($0.30 \mathrm{~mL}, 0.30 \mathrm{mmol}, 1.5$ equiv.) was added dropwise. The reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 2 hours. tert-Butyl (5-azidopent-1-en-3-yl)carbamate 10nb ($20.0 \mathrm{mg}, 0.088 \mathrm{mmol}$, 44%) was obtained as a colorless oil after purification by column chromatography on silica using 10:1 pentanes:ethyl acetate as eluent.
$\mathbf{R}_{\mathrm{f}}: 0.33$ (silica, pentanes:ethyl acetate 10:1);
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.76$ (ddd, $J=16.6,10.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}$, vinylCH), $5.26-5.09(\mathrm{~m}, 2 \mathrm{H}$, vinylCH ${ }_{2}$), $4.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.26-4.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 3.41-3.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 1.79(\mathrm{dh}, \mathrm{J}=28.8,6.9$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$;
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=155.2,137.7,115.4,79.7,50.7,48.3,34.1,28.4 ;$
IR (film): $\tilde{v}=3337$ (w), 2978 (w), 2097 (s), 1690 (s), 1516 (s), 1366 (s), 1248 (s), 1168 (s);
HRMS (ESI) calcd. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$249.1322; Found 249.1325.

N-(3-Azido-1-phenylpropyl)benzamide (10oa).

Following GP C, starting from N-cyclopropylbenzamide 5 ($32.2 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, phenylmagnesium bromide solution 3.0 M in diethyl ether ($0.10 \mathrm{~mL}, 0.30 \mathrm{mmol}, 1.5$ equiv.) was added to the crude. The reaction mixture was stirred at room temperature for 30 minutes. N -(3-Azido-1-phenylpropyl)benzamide $\mathbf{1 0 0 a}(39.5 \mathrm{mg}, 0.141 \mathrm{mmol}, 71 \%$) was obtained as a beige solid after purification by column chromatography on silica using 3:1 pentanes:ethyl acetate as eluent.
$\mathbf{R}_{\mathbf{f}}$: 0.45 (silica, pentanes:ethyl acetate $3: 1$);
Mp: $84-86{ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=7.81-7.75(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.53-7.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.46-7.40(\mathrm{~m}, 2 \mathrm{H}$, ArH), 7.37 (dtd, J = 7.5, 6.5, 1.6 Hz, 4H, ArH), $7.33-7.27(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 6.69(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.33$ (td, J = 7.6, 6.2 Hz, 1H, NCH), 3.38 (t, J = 6.8 Hz, 2H, CH2N N_{3}), 2.29-2.09 (m, 2H, CH $\mathrm{CH}_{2} \mathrm{~N}_{3}$);
${ }^{13}$ C NMR (101 MHz, CDCl_{3}): $\delta=166.7,140.7,134.2,131.6,129.0,128.6,127.8,126.9,126.5,52.0,48.6$, 35.0;

IR (film): $\tilde{v}=3291$ (w), 3061 (w), 2093 (s), 1633 (s), 1529 (s), 1292 (s), 696 (s);
HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$303.1216; Found 303.1216.
tert-Butyl (3-azido-1-phenylpropyl)carbamate (10ob).

Following GP C, starting from tert-butyl cyclopropylcarbamate 5 p ($31.4 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, the crude was cooled down to $-20^{\circ} \mathrm{C}$ before phenylmagnesium bromide solution 3.0 M in diethyl ether ($0.10 \mathrm{~mL}, 0.30 \mathrm{mmol}, 1.5$ equiv.) was added dropwise. The reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 2 hours. tert-Butyl (3-azido-1-phenylpropyl)carbamate $\mathbf{1 0 0 b}$ (24.5 mg , $89.0 \mu \mathrm{~mol}, 44 \%)$ was obtained as a white solid after purification by column chromatography on silica using 10:1 pentanes:ethyl acetate as eluent.
\mathbf{R}_{f} : 0.36 (silica, pentanes:ethyl acetate 10:1);
MP: 84-84.5 ${ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.38-7.25(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.01-4.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 4.83-4.65(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NCH}), 3.29\left(\mathrm{tt}, \mathrm{J}=9.8,5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 2.13-1.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 1.42\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$;
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=155.1,141.5,128.8,127.6,126.3,79.7,52.7,48.5,35.8,28.3$;
IR (film): $\tilde{v}=3343$ (w), 2977 (m), 2096 (s), 1696 (s), 1512 (m), 1167 (s), 700 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$299.1478; Found 299.1486.
N-(1-Azidohex-4-yn-3-yl)benzamide (10p).

Following GP C, starting from N-cyclopropylbenzamide 5 a ($32.2 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, 1-propynylmagnesium bromide solution 0.5 M in THF ($0.60 \mathrm{~mL}, 0.30 \mathrm{mmol}, 1.5$ equiv.) was added to the crude. The reaction mixture was stirred at room temperature for 30 minutes. N-(1-Azidohex-4-yn-3-yl)benzamide 10p ($31.5 \mathrm{mg}, 0.130 \mathrm{mmol}, 65 \%$) was obtained as a colorless oil after purification by column chromatography on silica using 4:1 pentanes:ethyl acetate as eluent.
$\mathbf{R f}_{\mathrm{f}} 0.26$ (silica, pentanes:ethyl acetate 4:1);
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.81-7.74(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.52-7.47(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.45-7.39(\mathrm{~m}, 2 \mathrm{H}$, ArH), $6.57(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.04$ (dddd, $J=10.3,8.1,5.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 3.63-3.43(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~N}_{3}$), 2.09 - 1.93 (m, 2H, CH2CH2N N_{3}), $1.83\left(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$);
${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.3,133.8,131.7,128.5,127.0,80.5,76.8,48.3,40.3,34.7,3.5$;
IR (film): $\tilde{v}=3292$ (w), 2920 (w), 2092 (s), 1634 (s), 1523 (s), 1263 (s), 1155 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$265.1060; Found 265.1059.

N-(4-Azidobutan-2-yl)benzamide (10qa).

Following GP C, starting from N-cyclopropylbenzamide 5 ($32.2 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, methylmagnesium bromide solution 3.0 M in THF ($0.10 \mathrm{~mL}, 0.30 \mathrm{mmol}, 1.5$ equiv.) was added to the crude. The reaction mixture was stirred at room temperature for 30 minutes. N-(4-Azidobutan-2-yl)benzamide 10qa ($22.6 \mathrm{mg}, 0.104 \mathrm{mmol}, 52 \%$) was obtained as a pale yellow oil after purification by column chromatography on silica using 3:1 pentanes:ethyl acetate as eluent.
$\mathbf{R}_{\mathbf{f}}$: 0.29 (silica, pentanes:ethyl acetate $3: 1$);
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.78-7.72(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.51-7.46(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.43-7.38(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{ArH}), 6.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 4.31(\mathrm{tdd}, J=8.1,6.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 3.49-3.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right)$, $1.89-1.77\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 1.28\left(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$;
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.9,134.5,131.4,128.5,126.8,48.6,43.9,35.7,20.8$; IR (film): $\tilde{v}=3303$ (w), 2971 (w), 2093 (s), 1633 (s), 1535 (s), 1289 (m), 694 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$241.1060; Found 241.1062.

Benzyl (4-azidobutan-2-yl)carbamate (10qb).

Following GP C, starting from benzyl cyclopropylcarbamate $\mathbf{5 q}$ ($38.2 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, the crude was cooled down to $-20^{\circ} \mathrm{C}$ before methylmagnesium bromide solution 3.0 M in THF ($0.10 \mathrm{~mL}, 0.30 \mathrm{mmol}, 1.5$ equiv.) was added drpwise. The reaction mixture was stirred at -20 ${ }^{\circ} \mathrm{C}$ for 2 hours. Benzyl (4-azidobutan-2-yl)carbamate $10 \mathrm{qb}(23.0 \mathrm{mg}, 93.0 \mu \mathrm{~mol}, 46 \%)$ was obtained as a colorless oil after purification by column chromatography on silica using 4:1 pentanes:ethyl acetate as eluent.
\mathbf{R}_{f} : 0.45 (silica, pentanes:ethyl acetate 4:1);

```
'1H NMR (400 MHz, CDCl )
3.85(p,J=7.1 Hz,1H,NCH), 3.36(t,J=7.0 Hz, 2H,CH2N3),1.71(dq, J=14.7, 7.0 Hz, 2H,CH2CH2N N
1.19 (d, J = 6.7 Hz, 3H, CH3);
'3}\mp@subsup{}{}{13}\mathrm{ NMR (101 MHz, CDCl )
IR (film): \tilde{v}=3326 (w), 2969 (m), 2096 (s), 1695 (s), 1529 (m), 1245 (s), 1072 (m);
```

HRMS (ESI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$271.1165; Found 271.1167.

5. Scope of the 1,2-difunctionalization reaction

General Procedure D (GP D):

In a 12*75 mm Borosilicate glass tube, the corresponding enamide 12a or enecarbamate 12b (0.200 $\mathrm{mmol}, 1.0$ equiv.), (Diacetoxyiodo)benzene ($83.7 \mathrm{mg}, 0.260 \mathrm{mmol}, 1.3$ equiv.) and CuTc ($0.8 \mathrm{mg}, 0.004$ $\mathrm{mmol}, 0.02$ equiv.) were measured on analytical balance. The tube was then closed with a rubber septum and sealed off with parafilm. Evacuate-refill cycle three times with nitrogen were performed to remove O_{2} and extra-dry acetonitrile ($2.0 \mathrm{~mL}, 0.1 \mathrm{M}$) was added under nitrogen atmosphere, followed by the addition of TMSN_{3} (94% purity purchased from $\mathrm{TCl}, 62.0 \mu \mathrm{~L}, 0.440 \mathrm{mmol}, 2.2$ equiv.). The reaction mixture was stirred at room temperature for 10 minutes. Upon completion, the mixture was quenched by the addition of water (10 mL). The aqueous layer was then extracted with
dichloromethane ($10 \mathrm{~mL} \times 3$). The organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude mixture was purified by column chromatography (SiO_{2}, pentanes/EtOAc).

1-(1,2-Diazidoethyl)pyrrolidin-2-one (13a).

Following GP D, starting from 1-vinylpyrrolidin-2-one 12a (22.2 mg, 0.200 mmol), 1-(1,2-diazidoethyl)pyrrolidin-2-one 13a ($36.9 \mathrm{mg}, 0.189 \mathrm{mmol}, 95 \%$) was obtained as a colorless oil after purification by column chromatography on silica using 1:1 pentanes:ethyl acetate as eluent.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.80(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 3.55-3.46\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.46-3.29(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{NCH}_{2}+\mathrm{N}_{3} \mathrm{CH}_{2}$), $2.69-2.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}\right), 2.34-1.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR data correspond to the reported values. ${ }^{[16]}$

Benzyl (1,2-diazidoethyl)carbamate (13b).

Following GP D, starting from benzyl vinylcarbamate 12b ($35.4 \mathrm{mg}, 0.200 \mathrm{mmol}$), benzyl (1,2diazidoethyl)carbamate 13 b ($43.5 \mathrm{mg}, 0.167 \mathrm{mmol}, 83 \%$) was obtained as a colorless oil after purification by column chromatography on silica using 6:1 pentanes:ethyl acetate as eluent.
$\mathbf{R}_{\mathbf{f}}: 0.42$ (silica, pentanes:ethyl acetate 6:1);
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.45-7.29(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.74(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$), 5.47 ($\mathrm{dt}, \mathrm{J}=9.7$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), $5.17\left(\mathrm{~s}, 2 \mathrm{H}\right.$, benzylic CH_{2}), 3.47 (dd, $\mathrm{J}=12.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}$), 3.33 (dd, $J=12.7,4.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}$);
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=155.4,135.4,128.6,128.5,128.2,67.7,67.2,53.6 ;$
IR (film): $\tilde{v}=3310$ (w), 2097 (s), 1698 (s), 1508 (m), 1213 (s), 1045 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{7} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 284.0866$; Found 284.0867.

General Procedure E (GP E):

In a 12*75 mm Borosilicate glass tube, the corresponding enamide 12a or enecarbamate 12b (0.200 $\mathrm{mmol}, 1.0$ equiv.), (Diacetoxyiodo)benzene ($83.7 \mathrm{mg}, 0.260 \mathrm{mmol}, 1.3$ equiv.) and CuTc ($0.8 \mathrm{mg}, 0.004$ $\mathrm{mmol}, 0.02$ equiv.) were measured on analytical balance. The tube was then closed with a rubber septum and sealed off with parafilm. Evacuate-refill cycle three times with nitrogen were performed to remove O_{2} and extra-dry acetonitrile ($2.0 \mathrm{~mL}, 0.1 \mathrm{M}$) was added under nitrogen atmosphere, followed by the addition of TMSN_{3} (94% purity purchased from $\mathrm{TCI}, 62.0 \mu \mathrm{~L}, 0.440 \mathrm{mmol}, 2.2$ equiv.). The reaction mixture was stirred at room temperature for 10 minutes before nucleophile (and if needed the Lewis acid/base) was added. The nucleophilc substitution step was not sensitive to air and nucleophile can be added directly by injection if it is in liquid state or by removing the cap and adding from the top if it is in solid state. The progress of the reaction was monitored by TLC. Upon completion, the mixture was quenched by the addition of water $(10 \mathrm{~mL})$. The aqueous layer was then extracted

[^9]with dichloromethane ($10 \mathrm{~mL} \times 3$). The organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude mixture was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentanes/EtOAc).

1-(2-Azido-1-(1H-indol-3-yl)ethyl)pyrrolidin-2-one (14a).

Following GP E, starting from 1-vinyl-2-pyrrolidinone 12a ($22.2 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, indole ($35.1 \mathrm{mg}, 0.300 \mathrm{mmol}, 1.5$ equiv.) and boron trifluoride etherate ($50.0 \mu \mathrm{~L}, 0.400$ $\mathrm{mmol}, 2.0$ equiv.) were added to the crude. The reaction mixture was stirred at room temperature for 16 hours. 1-(2-Azido-1-(1H-indol-3-yl)ethyl)pyrrolidin-2-one 14a ($44.9 \mathrm{mg}, 0.167 \mathrm{mmol}, 83 \%$) was obtained as a dark red solid after purification by column chromatography on silica using ethyl acetate as eluent.

Rf: 0.44 (silica, ethyl acetate);
Mp: $113-117{ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.84(\mathrm{~s}, 1 \mathrm{H}$, indole NH$), 7.60(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.40(\mathrm{dt}, J=8.2,0.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.22 (ddd, $J=8.2,7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.16 (dd, $J=2.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.11 (ddd, $J=$ $8.0,7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 5.81 (ddd, $J=8.9,5.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), 3.89 (dd, J = 12.5, 8.9 Hz, $1 \mathrm{H}, \mathrm{NCH}_{2}$), 3.79 (dd, $J=12.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}$), 3.32 (ddd, $J=9.6,8.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}_{3} \mathrm{CH}_{2}$), 2.98 (ddd, $J=9.6,8.5$, $5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}_{3} \mathrm{CH}_{2}$), $2.56-2.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}\right), 2.04-1.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.84$ (dddd, J=16.0, 9.5, 4.9, $3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$);
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.5,136.1,126.2,122.7,122.3,120.1,119.0,111.4,111.2,51.1$, 47.2, 43.4, 31.4, 17.8;

IR (film): $\tilde{v}=3254$ (w), 2095 (s), 1658 (s), 1421 (m), 1285 (m), 743 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$270.1349; Found 270.1358.

1-(2-Azido-1-(2-hydroxynaphthalen-1-yl)ethyl)pyrrolidin-2-one (14b).

Following GP E, starting from 1-vinyl-2-pyrrolidinone 12a ($22.2 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, 2-naphthol ($57.6 \mathrm{mg}, 0.400 \mathrm{mmol}, 2.0$ equiv.) and boron trifluoride etherate ($50.0 \mu \mathrm{~L}, 0.400$ $\mathrm{mmol}, 2.0$ equiv.) were added to the crude. The reaction mixture was stirred at room temperature for 16 hours. 1-(2-Azido-1-(2-hydroxynaphthalen-1-yl)ethyl)pyrrolidin-2-one 14b ($44.8 \mathrm{mg}, 0.151 \mathrm{mmol}$, 76%) was obtained as a white solid after purification by recrystallization in dichloromethane and pentanes.
\mathbf{R}_{f} : 0.23 (silica, pentanes:ethyl acetate 1:1);
Mp: 210-212 ${ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR (500 MHz, Methanol $-d_{4}$): $\delta=8.13(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.74(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.44$ (ddd, J = 8.5, 6.8, 1.5 Hz, 1H, ArH), 7.29 (ddd, J = 7.9, 6.7, 1.0 Hz, 1H, ArH), 7.10 (d, J = 8.9 Hz, 1H, ArH), 6.13 (dd, $J=9.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), 4.41 (dd, $J=12.7,9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}_{3} \mathrm{CH}_{2}$), 3.97 (dd, $J=12.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{N}_{3} \mathrm{CH}_{2}$), 3.75 (ddd, J = 10.3, $8.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}$), 3.16 (ddd, $J=10.3,8.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}$), 2.42 (ddd, $J=17.1,9.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $2.35-2.27\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.00$ (dddd, $J=15.4,12.7,5.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}\right), 1.90-1.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}\right)$;
${ }^{13} \mathrm{C}$ NMR (126 MHz , Methanol- d_{4}): $\delta=177.6,156.2,135.2,131.9,130.5,129.7,128.2,124.1,123.5$, 119.3, 113.5, 52.8, 51.7, 45.4, 32.0, 18.9;

IR (film): $\tilde{v}=3064$ (w), 2098 (s), 1646 (s), 1435 (m), 1243 (m), 818 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$319.1165; Found 319.1166.

1-(1-Azido-4-oxo-4-phenylbutan-2-yl)pyrrolidin-2-one (14c).

Following GP E, starting from 1-vinyl-2-pyrrolidinone 12a ($22.2 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, trimethyl((1-phenylvinyl)oxy)silane ($82.0 \mu \mathrm{~L}, 0.400 \mathrm{mmol}, 2.0$ equiv.) and TMSOTf ($72.0 \mu \mathrm{~L}$, $0.400 \mathrm{mmol}, ~ 2.0$ equiv.) were added to the crude. The reaction mixture was stirred at room temperature for 16 hours. 1-(1-Azido-4-oxo-4-phenylbutan-2-yl)pyrrolidin-2-one 14c ($54.4 \mathrm{mg}, 0.200$ $\mathrm{mmol},>99 \%$) was obtained as a yellow solid after purification by column chromatography on silica using ethyl acetate as eluent.
$\mathbf{R}_{\mathrm{f}}: 0.41$ (silica, ethyl acetate);
Mp: $40-42{ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.98-7.84(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.59-7.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.44(\mathrm{dd}, \mathrm{J}=8.4,7.0$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $4.38\left(\mathrm{tt}, \mathrm{J}=8.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}\right.$), 3.83 (dd, $J=12.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}_{3} \mathrm{CH}_{2}$), 3.62 (dd, J=17.1, $\left.7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhC}(\mathrm{O}) \mathrm{CH}_{2}\right), 3.58-3.52\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.52-3.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{N}_{3} \mathrm{CH}_{2}+\mathrm{NCH}_{2}\right), 3.20(\mathrm{dd}, \mathrm{J}=17.2$, $\left.5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhC}(\mathrm{O}) \mathrm{CH}_{2}\right), 2.39-2.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}\right), 2.03-1.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$;
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=197.0,175.6,136.3,133.5,128.7,128.0,51.9,50.1,47.5,38.1,31.5$, 18.6;

IR (film): $\tilde{v}=2921$ (w), 2099 (s), 1684 (s), 1285 (m), 757 (w);
HRMS (ESI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$273.1346; Found 273.1348.

1-(1-Azidopent-4-en-2-yl)pyrrolidin-2-one (14d).

Following GP E, starting from 1-vinyl-2-pyrrolidinone 12a ($22.2 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, allyltrimethylsilane ($63.0 \mu \mathrm{~L}, 0.400 \mathrm{mmol}, 2.0$ equiv.) and $\mathrm{TiCl}_{4}(55.0 \mu \mathrm{~L}, 0.500 \mathrm{mmol}, 2.5$ equiv.) were added to the crude. The reaction mixture was stirred at room temperature for 16 hours. 1-(1-Azidopent-4-en-2-yl)pyrrolidin-2-one 14d ($26.4 \mathrm{mg}, 0.136 \mathrm{mmol}, 68 \%$) was obtained as a yellow oil after purification by column chromatography on silica using pentanes:ethyl acetate 2:3 as eluent.
$\mathbf{R}_{\mathrm{f}}: 0.25$ (silica, pentanes:ethyl acetate $2: 3$);
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.70$ (ddt, $J=17.1,10.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}$, vinyl CH), $5.17-5.01(\mathrm{~m}, 2 \mathrm{H}$, vinyl CH_{2}), 4.28 (qd, $J=7.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), 3.45 (dd, $J=12.7,7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}_{3} \mathrm{CH}_{2}$), 3.41-3.29 (m,3H, $\mathrm{N}_{3} \mathrm{CH}_{2}$ $+\mathrm{NCH}_{2}$), 2.39 (ddd, J = 8.4, 7.0, $2.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}$), 2.32 (ddt, J=8.0, 6.9, 1.4 Hz, 2H, allyl CH2), 2.07 - 1.92 (m, 2H, CH2);
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.5,133.6,118.0,52.2,50.6,43.6,34.0,31.2,18.4 ;$
IR (film): $\tilde{v}=2976$ (w), 2098 (s), 1681 (s), 1421 (m), 1284 (m), 920 (w);
HRMS (ESI) calcd. for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$217.1060; Found 217.1065.

Methyl 4-azido-3-(((benzyloxy)carbonyl)amino)butanoate (14e).

Following GP E, starting from benzyl vinylcarbamate $\mathbf{1 2 b}$ ($35.4 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, tert-butyl[(1-methoxyvinyl)oxy]dimethylsilane ($132 \mu \mathrm{~L}, 0.600 \mathrm{mmol}, 3.0$ equiv.) was added to the crude. The reaction mixture was stirred at room temperature for 4 hours. Methyl 4-azido-3(((benzyloxy)carbonyl)amino)butanoate $14 \mathrm{e}(54.7 \mathrm{mg}, 0.187 \mathrm{mmol}, 94 \%)$ was obtained as a colorless oil after purification by column chromatography on silica using pentanes:ethyl acetate 3:1 as eluent.
$\mathbf{R}_{\mathbf{f}}$: 0.35 (silica, pentanes:ethyl acetate 3:1);
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.41-7.29(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 5.10\left(\mathrm{~s}, 2 \mathrm{H}\right.$, benzylic $\left.\mathrm{CH}_{2}\right), 4.17$ (dt, J = 8.7, $5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), $3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.60-3.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{N}_{3} \mathrm{CH}_{2}\right), 2.62$ (dd, J = 6.0, 2.9 Hz , $2 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}$);
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.2,155.5,136.1,128.5,128.2,128.1,66.9,53.4,51.9,47.5,35.8 ;$
IR (film): $\tilde{v}=3329$ (w), 2953 (w), 2098 (s), 1697 (s), 1522 (s), 1214 (s), 1050 (s), 737 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{NaO}_{4}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$315.1064; Found 315.1066.

Dimethyl 2-(2-azido-1-(((benzyloxy)carbonyl)amino)ethyl)malonate (14f).

Following GP E, starting from benzyl vinylcarbamate 12b ($35.4 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, a solution of dimethyl malonate ($46.0 \mu \mathrm{~L}, 0.400 \mathrm{mmol}, 2.0$ equiv.) and sodium hydride 60% dispersion mineral oil ($16.0 \mathrm{mg}, 0.400 \mathrm{mmol}, 2.0$ equiv.) in THF (0.5 mL) was added dropwise to the crude. The reaction mixture was stirred at room temperature for 10 minutes. Dimethyl 2-(2-azido-1(((benzyloxy)carbonyl)amino)ethyl)malonate 14 f ($69.4 \mathrm{mg}, 0.198 \mathrm{mmol}, 99 \%$) was obtained as a colorless oil after purification by column chromatography on silica using pentanes:ethyl acetate 3:1 as eluent.
$\mathbf{R f}_{f}$: 0.30 (silica, pentanes:ethyl acetate 3:1);
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.41-7.28(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.77(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.10(\mathrm{~s}, 2 \mathrm{H}$, benzylic $\left.\mathrm{CH}_{2}\right), 4.52-4.42(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 3.77(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.63$ (dd, $J=12.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}_{3} \mathrm{CH}_{2}$), 3.45 (dd, $J=12.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}_{3} \mathrm{CH}_{2}$);
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.1,167.4,155.6,136.1,128.5,128.2,128.0,67.0,53.0,52.9,52.5$, 51.9, 50.1;

IR (film): $\tilde{v}=3361$ (w), 2954 (w), 2101 (s), 1722 (s), 1506 (m), 1218 (s), 1059 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{NaO}_{6}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$373.1119; Found 373.1115.

Benzyl (1-azido-3-nitropropan-2-yl)carbamate (14g).

Following GP E, starting from benzyl vinylcarbamate $\mathbf{1 2 b}$ ($35.4 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, $\mathrm{CH}_{3} \mathrm{NO}_{2}(22.0 \mu \mathrm{~L}, 0.400 \mathrm{mmol}, 2.0$ equiv.) was added to the crude followed by the addition of KOtBu 1.0 M in $t \mathrm{BuOH}(0.40 \mathrm{~mL}, 0.40 \mathrm{mmol}, 2.0$ equiv.). The reaction mixture was stirred at room temperature for 1 hour. Benzyl (1-azido-3-nitropropan-2-yl)carbamate $\mathbf{1 4 g}$ ($49.7 \mathrm{mg}, 0.178 \mathrm{mmol}, 89 \%$) was obtained as a colorless oil after purification by column chromatography on silica using pentanes:ethyl acetate 3:1 as eluent.
$\mathbf{R f}_{\mathrm{f}} 0.39$ (silica, pentanes:ethyl acetate 3:1);
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.40-7.30(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.36(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.12(\mathrm{~s}, 2 \mathrm{H}$, benzylic CH_{2}), $4.63\left(\mathrm{dd}, J=13.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NO}_{2} \mathrm{CH}_{2}\right.$), $4.53\left(\mathrm{dd}, J=13.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NO}_{2} \mathrm{CH}_{2}\right.$), $4.41(\mathrm{dt}, J=8.8$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), 3.67 (dd, $J=12.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}_{3} \mathrm{CH}_{2}$), $3.59\left(\mathrm{dd}, \mathrm{J}=12.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}_{3} \mathrm{CH}_{2}\right.$);
${ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=155.3,135.6,128.6,128.4,128.2,75.0,67.5,51.3,48.7$;
IR (film): $\tilde{v}=3310$ (w), 2106 (s), 1698 (s), 1554 (s), 1259 (m), 1063 (w);
HRMS (ESI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{NaO}_{4}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$302.0860; Found 302.0865.

Benzyl (1-azidobut-3-en-2-yl)carbamate (14h).

Following GP E, starting from benzyl vinylcarbamate 12b ($35.4 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, the crude was cooled down to $-20^{\circ} \mathrm{C}$ before vinylmagnesium bromide solution 1.0 M in THF ($0.30 \mathrm{~mL}, 0.30 \mathrm{mmol}, 1.5$ equiv.) was added dropwise. The reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 2 hours. Benzyl (1-azidobut-3-en-2-yl)carbamate 14h ($25.2 \mathrm{mg}, 0.102 \mathrm{mmol}, 51 \%$) was obtained as a colorless oil after purification by column chromatography on silica using pentanes:ethyl acetate 7:1 as eluent.
\mathbf{R}_{f} : 0.33 (silica, pentanes:ethyl acetate 7:1);
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.42-7.33(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.82$ (ddd, J=17.3, 10.5, 5.5 Hz, 1 H, vinyl CH), $5.34-5.20\left(\mathrm{~m}, 2 \mathrm{H}\right.$, vinyl $\left.\mathrm{CH}_{2}\right), 5.13\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.08-4.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 4.48-4.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH})$, 3.48 (qd, $J=12.5,4.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}$);
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=155.6,136.1,134.9,128.5,128.2,128.1,117.3,67.0,54.6,52.7 ;$
IR (film): $\tilde{v}=3328$ (w), 2099 (s), 1699 (s), 1522 (m), 1241 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$269.1009; Found 269.1017.

Benzyl (2-azido-1-phenylethyl)carbamate (14i).

Following GP E, starting from benzyl vinylcarbamate $\mathbf{1 2 b}$ ($35.4 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, the crude was cooled down to $-20^{\circ} \mathrm{C}$ before phenylmagnesium bromide solution 3.0 M in diethyl ether ($0.10 \mathrm{~mL}, 0.30 \mathrm{mmol}, 1.5$ equiv.) was added dropwise. The reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 2 hours. Benzyl (2-azido-1-phenylethyl)carbamate $14 \mathrm{i}(35.2 \mathrm{mg}, 0.119 \mathrm{mmol}, 59 \%$) was obtained as a colorless oil after purification by column chromatography on silica using pentanes:ethyl acetate 7:1 as eluent.
$\mathbf{R}_{\mathbf{f}}$: 0.34 (silica, pentanes:ethyl acetate 7:1);
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.42-7.30(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 5.41(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.12(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{PhCH})_{2}$), $5.02-4.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 3.65\left(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right)$;
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=155.6,138.8,136.1,128.9,128.5,128.5,128.2,128.2,126.5,67.1,55.5$, 54.5;

IR (film): $\tilde{v}=3319$ (w), 2097 (s), 1693 (s), 1523 (m), 1241 (s), 1043 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$319.1165; Found 319.1170.

Benzyl (1-azidopent-3-yn-2-yl)carbamate (14j).

Following GP E, starting from benzyl vinylcarbamate 12b ($35.4 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, the crude was cooled down to $-20^{\circ} \mathrm{C}$ before 1-propynylmagnesium bromide solution 0.5 M in THF ($0.60 \mathrm{~mL}, 0.30 \mathrm{mmol}, 1.5$ equiv.) was added dropwise. The reaction mixture was stirred at -20 ${ }^{\circ} \mathrm{C}$ for 2 hours. Benzyl (1-azidopent-3-yn-2-yl)carbamate 14 j ($22.0 \mathrm{mg}, 85.0 \mu \mathrm{~mol}, 43 \%$) was obtained as a colorless oil after purification by column chromatography on silica using pentanes:ethyl acetate 7:1 as eluent.
$\mathbf{R}_{\mathbf{f}}$: 0.38 (silica, pentanes:ethyl acetate 7:1);
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$; a mixture of rotamers in a ratio of $1: 1$ was observed, which was partly resolved): $\delta=7.40-7.30(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 5.13\left(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PhCH}_{2}+\mathrm{NH}\right.$), 4.63 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NCH}$), 3.43 (t, J $=5.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}$), $1.83\left(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$;
${ }^{13}$ C NMR (101 MHz, CDCl 3): $\delta=155.2,136.0,128.5,128.2,128.1,81.6,75.3,67.1,55.1,43.8,3.5 ;$
IR (film): $\tilde{v}=3327$ (w), 2969 (m), 2099 (s), 1700 (s), 1508 (s), 1237 (s), 1051 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$281.1009; Found 281.1014

Benzyl (1-azido-4-phenylbut-3-yn-2-yl)carbamate (14k).

Following GP E, starting from benzyl vinylcarbamate 12b ($35.4 \mathrm{mg}, 0.200 \mathrm{mmol}$), after diazidation step is finished, the crude was cooled down to $-20^{\circ} \mathrm{C}$ before 1-propynylmagnesium bromide solution 1.0 M in THF ($0.30 \mathrm{~mL}, 0.30 \mathrm{mmol}, 1.5$ equiv.) was added dropwise. The reaction mixture was stirred at -20 ${ }^{\circ} \mathrm{C}$ for 2 hours. Benzyl (1-azido-4-phenylbut-3-yn-2-yl)carbamate 14k ($25.7 \mathrm{mg}, 80.0 \mu \mathrm{~mol}, 40 \%$) was obtained as a colorless oil after purification by column chromatography on silica using pentanes:ethyl acetate 7:1 as eluent.
$\mathbf{R f}_{\mathrm{f}} 0.38$ (silica, pentanes:ethyl acetate 7:1);
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.47-7.29(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 5.29(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.22-5.12(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{PhCH}_{2}$), 4.94 (dd, $J=8.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), 3.56 (qd, $J=12.2,4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}$);
${ }^{13}$ C NMR (101 MHz, CDCl_{3}): $\delta=155.2,135.9,131.8,128.8,128.6,128.3,128.3,128.2,121.8,85.0,84.9$, 67.3, 55.0, 44.4;

IR (film): $\tilde{v}=3321$ (w), 2101 (s), 1702 (s), 1518 (m), 1239 (s), 1046 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$343.1165; Found 343.1165.

6. Mechanistic studies

6.1 Scheme S5 (TEMPO experiment)

Following GP B, starting from N-cyclopropyl-4-methoxybenzamide $\mathbf{5 b}$ ($38.2 \mathrm{mg}, 0.200 \mathrm{mmol}$), TEMPO ($62.4 \mathrm{mg}, 0.400 \mathrm{mmol}, 2.0$ equiv.) was added since the beginning. After stirring for 10 minutes, N-(1-azido-3-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)propyl)-4-methoxybenzamide 15 ($5.0 \mathrm{mg}, 0.012 \mathrm{mmol}$, $6 \%)$ was obtained as a white solid after purification by column chromatography on silica using 3:1 pentanes:ethyl acetate as eluent.

N-(1-Azido-3-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)propyl)-4-methoxybenzamide (15).

\mathbf{R}_{f} : 0.44 (silica, pentanes:ethyl acetate 3:1);
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.86-7.74(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.51(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 6.98-6.88(\mathrm{~m}, 2 \mathrm{H}$, ArH), 5.93 (ddd, $J=8.9,5.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), 4.21 (td, $\left.J=9.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.91-3.87(\mathrm{~m}, 1 \mathrm{H}$, OCH_{2}), $3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.04\left(\mathrm{ddt}, \mathrm{J}=14.1,10.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right.$), 1.89 (dtd, $\mathrm{J}=14.4,5.2,2.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $1.57-1.45$ ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.27-1.07$ ($\mathrm{m}, 12 \mathrm{H}, 4 \times \mathrm{CH}_{3}$);
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.0,162.6,129.1,125.6,113.7,72.7,65.6,59.9,59.8,55.4,39.8,39.6$, 33.0, 33.0, 32.7, 20.8, 20.3, 17.0;

IR (film): $\tilde{v}=3308$ (w), 2931 (m), 2105 (s$), 1644$ (m), 1606 (m), 1502 (s), 1256 (s), 1030 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{5} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 390.2500$; Found 390.2506.

6.2 Scheme S6 (Using Methyl acrylate as radical trapping reagent)

Methyl 2,6-diazido-6-benzamidohexanoate (16).

Following GP B, starting from N-cyclopropyl-benzamide 5 a ($32.2 \mathrm{mg}, 0.200 \mathrm{mmol}$), methyl acrylate ($27.0 \mu \mathrm{~L}, 0.300 \mathrm{mmol}, 1.5$ equiv.) was added since the beginning. After stirring for 10 minutes, Methyl 2,6-diazido-6-benzamidohexanoate 16 ($6.0 \mathrm{mg}, 0.018 \mathrm{mmol}, 9 \%$) was obtained as a colorless oil after purification by column chromatography on silica using 3:1 pentanes:ethyl acetate as eluent.
$\mathbf{R f}_{\mathrm{f}} 0.27$ (silica, pentanes:ethyl acetate 3:1);
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of two diastereoisomers in a 1:1 ratio: the signals corresponding to the two diastereoisomers are not resolved): $\delta=7.81$ ($\mathrm{dt}, J=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.60-7.53(\mathrm{~m}, 1 \mathrm{H}$, ArH), $7.50-7.44(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.59-6.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 5.75(\mathrm{dt}, \mathrm{J}=9.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 3.90(\mathrm{dd}, \mathrm{J}=$ $8.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}_{3} \mathrm{CH}$), $3.80\left(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.95-1.71\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.62-1.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of two diastereoisomers in a 1:1 ratio: the signals corresponding to the two diastereoisomers are partially resolved): $\delta=170.7,167.4,133.0,132.3,128.8,127.1,66.7$, 66.7, 61.7, 52.7, 34.1, 30.6, 21.4;

IR (film): $\tilde{v}=3312$ (w), 2954 (w), 2102 (s), 1741 (m), 1647 (m), 1523 (s), 1242 (m), 715 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{7} \mathrm{NaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 354.1285$; Found 354.1282.

6.3 Scheme S7 (Comparing reactivity of cyclopropyl ring with $\mathbf{C = C}$ bond)

N-Cinnamyl-N-cyclopropylbenzamide (17).

Following a modified version of a reported procedure, ${ }^{[17]}$ to a solution of Cinnamyl bromide (709 mg , $3.60 \mathrm{mmol}, 1.2$ equiv.) and $\mathrm{NaH}(60 \%$ dispersion in mineral oil, $156 \mathrm{mg}, 3.90 \mathrm{mmol}, 1.3$ equiv.) in THF $(10 \mathrm{~mL})$ was slowly added a solution of N-cyclopropyl-benzamide 5 ($483 \mathrm{mg}, 3.00 \mathrm{mmol}$) in THF (5 mL) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 16 hours. Upon completion, the mixture was quenched by addition of $1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$. The aqueous layer was then extracted with dichloromethane. The organic layer was washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. N-Cinnamyl- N-cyclopropylbenzamide 17 was obtained as a yellow oil (773 mg , $2.79 \mathrm{mmol}, 93 \%)$ after purification by column chromatography on silica using 3:1 pentanes:ethyl acetate as eluent.
$\mathbf{R}_{\mathbf{f}}$: 0.30 (silica, pentanes:ethyl acetate 3:1);
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.55-7.46(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.44-7.36(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 7.36-7.30(\mathrm{~m}, 2 \mathrm{H}$, ArH), $7.28-7.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 6.59(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}$, vinyl CH), $6.34(\mathrm{~s}, 1 \mathrm{H}$, vinyl CH$), 4.30(\mathrm{~s}, 2 \mathrm{H}$, NCH_{2}), $2.80(\mathrm{tt}, \mathrm{J}=6.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 0.57\left(\mathrm{~d}, \mathrm{~J}=34.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$;
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.4,137.3,136.7,132.6,129.5,128.6,128.0,127.7,127.2,126.4$, 125.2, 49.8, 31.6, 9.7;

IR (film): $\tilde{v}=3025$ (w), 1631 (s), 1402 (s), 1289 (m), 965 (m), 697 (s);
HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NNaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$300.1359; Found 300.1372.
N-Cyclopropyl-N-(2,3-diazido-3-phenylpropyl)benzamide (18).

Following GP D, starting from N-Cinnamyl- N-cyclopropylbenzamide 17 ($27.7 \mathrm{mg}, 0.100 \mathrm{mmol}$), N -cyclopropyl- N-(2,3-diazido-3-phenylpropyl)benzamide 18 ($39.2 \mathrm{mg}, 0.092 \mathrm{mmol}, 92 \%$) was obtained as a colorless oil after purification by column chromatography on silica using 2:1 pentanes:ethyl acetate as eluent.
\mathbf{R}_{f} : 0.59 (silica, pentanes:ethyl acetate 2:1);
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of two diastereoisomers in a 1.2:1 ratio: the signals corresponding to the two diastereoisomers are partially resolved): $\delta=7.57-7.30(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 4.66(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}$, 1 H , benzylic CH minor), 4.55 ($\mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}$, benzylic CH major), 4.25 ($\mathrm{q}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}_{3} \mathrm{CH}$), 3.94 ($\mathrm{d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}$ minor), $3.64\left(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right.$ major), $3.39\left(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right.$ major), $3.35\left(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right.$ minor), $2.95-2.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 0.74-0.49\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.49-$ 0.32 (m, 2H, CH2);
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of two diastereoisomers in a 1.2:1 ratio: the signals corresponding to the two diastereoisomers are partially resolved): $\delta=172.8,136.8,136.7,135.6,135.3,129.8,129.8$, $129.2,129.1,129.1,129.0,128.0,128.0,127.6,127.4,127.2,127.1,68.0,67.3,64.2,63.8,50.5,49.5$, 33.5, 11.1, 10.3;

IR (film): $\tilde{v}=3062$ (w), 2095 (s), 1631 (s), 1401 (m), 1248 (m), 699 (s);
HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{7} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+} 362.1724$; Found 362.1722.

N-(2-azido-3-hydroxy-3-phenylpropyl)-N-cyclopropylbenzamide (19).

Following GP B, starting from N-Cinnamyl- N-cyclopropylbenzamide 17 ($27.7 \mathrm{mg}, 0.100 \mathrm{mmol}$), N -cyclopropyl-N-(2,3-diazido-3-phenylpropyl)benzamide 18 ($3.0 \mathrm{mg}, 0.008 \mathrm{mmol}, 8 \%$) and N -(2-azido-3-hydroxy-3-phenylpropyl)- N-cyclopropylbenzamide $19(5.0 \mathrm{mg}, 0.014 \mathrm{mmol}, 14 \%$, d.r. $4: 1$, only the major diastereoisomer was fully characterized) was obtained as a white solid after purification by preparative TLC on silica using 2:1 pentanes:ethyl acetate as eluent.
$\mathbf{R f}_{\mathrm{f}} 0.27$ (silica, pentanes:ethyl acetate 2:1);
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.54-7.31(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 4.68(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}), 4.08$ (ddd, $\mathrm{J}=$ $\left.8.2,5.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}_{3} \mathrm{CH}\right), 4.04-3.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.55\left(\mathrm{dd}, \mathrm{J}=14.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.78(\mathrm{tt}, \mathrm{J}=$ 7.1, $4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), $0.60-0.11\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$;
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.1,136.3,136.3,130.0,128.8,128.5,128.0,127.4,127.4,75.7,68.7$, 52.5, 34.1, 10.4, 8.7;

IR (film): $\tilde{v}=3343$ (w), 2924 (w), 2101 (s), 1614 (m), 1414 (m), 1287 (w), 700 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 337.1659$; Found 337.1668.

6.4 Cyclic voltammetry experiments

Procedure: Cyclic voltammetry was performed with a Biologic SP-150 Potentiostat, with a threeelectrode cell configuration: a glassy carbon electrode as the working electrode, Pt wire as the counter electrode and a $\mathrm{Ag} / \mathrm{Ag}^{+}$quasi-reference electrode with $0.01 \mathrm{M} \mathrm{AgBF}_{4}$ in acetonitrile. $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ was employed as the electrolyte and acetonitrile was used as solvent.
Ferrocene was used to calibrate the potential of $\mathrm{Ag} / \mathrm{Ag}^{+}$quasi-reference electrode.

Result:
$\mathrm{E}_{1 / 2}{ }^{\text {red }}(\mathbf{5 b})=+1.67 \mathrm{~V}$ vs SCE in $\mathrm{MeCN} ; \mathrm{E}_{1 / 2}{ }^{\text {red }}(\mathbf{5 m})=+1.92 \mathrm{~V}$ vs SCE in MeCN ;
$\mathrm{E}_{1 / 2}{ }^{\text {red }}(\mathbf{5 p})=+2.0 \mathrm{~V}$ vs SCE in $\mathrm{MeCN} ; \mathrm{E}_{1 / 2}{ }^{\text {red }}(\mathbf{5 r})=+2.23 \mathrm{~V}$ vs SCE in MeCN.

$\mathrm{E}_{1 / 2}{ }^{\text {red }}=+1.67 \mathrm{~V}$

$\mathrm{E}_{1 / 2}{ }^{\text {red }}=+1.92 \mathrm{~V}$

$\mathrm{E}_{1 / 2}{ }^{\text {red }}=+2.23 \mathrm{~V}$

6.5 Fluorination byproduct

N-(1-Azido-3-fluorobutyl)-4-methoxybenzamide (20)

Following modified GP B, starting from 4-methoxy- N-(trans-2-methylcyclopropyl)benzamide 5xa (41.0 $\mathrm{mg}, 0.200 \mathrm{mmol}$) with insufficient amount of CuTc catalyst, N-(1-Azido-3-fluorobutyl)-4methoxybenzamide 20 can be observed, which co-eluted with diazidation product 6xa during purification by column chromatography. Therefore, no pure $\mathbf{2 0}$ was obtained, but its existence was confirmed by:
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-171.6,-174.0$;
HRMS: (ESI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{FN}_{4} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$289.1071; Found 289.1072.

6.6 Scheme S8 (Asymmetric azidation attempts)

1xb, 0.05 mmol

N-(3-azido-3-phenylpropyl)-4-methoxybenzamide (21).

Following modified GP C, CuTc ($0.40 \mathrm{mg}, 2.0 \mu \mathrm{~mol}, 0.04$ equiv.), 4-methoxy- N-(trans-2phenylcyclopropyl)benzamide $5 \mathbf{x b} \quad(13.4 \mathrm{mg}, 50.0 \mu \mathrm{~mol})$ and (E)-2-((S)-4-(tert-butyl)-4,5-dihydrooxazol-2-yl)-2-((S)-4-(tert-butyl)oxazolidin-2-ylidene)acetonitrile ($0.73 \mathrm{mg}, 2.5 \mu \mathrm{~mol}, 0.05$ equiv.) were measured on analytical balance. The tube was then closed with a rubber septum and sealed off with parafilm. Evacuate-refill cycle three times with nitrogen were performed to remove O_{2} and extra-dry acetonitrile (0.5 mL) was added under nitrogen atmosphere, followed by the addition of TMSN_{3} (94% purity purchased from $\mathrm{TCI}, 16.0 \mu \mathrm{~L}, 0.110 \mathrm{mmol}, 2.2$ equiv.). The mixture was stirred at room temperature for 20 minutes before a solution of Selectfluor ($19.5 \mathrm{mg}, 55.0 \mu \mathrm{~mol}, 1.1$ equiv.) in acetonitrile (0.5 mL) was added by syringe. The reaction mixture was stirred at room temperature for 10 minutes. After the diazidation step is finished, triethylsilane ($8.0 \mu \mathrm{~L}, 0.050 \mathrm{mmol}, 1.0$ equiv.) and TMSOTf ($9.0 \mu \mathrm{~L}, 0.050 \mathrm{mmol}, 1.0$ equiv.) were added to the crude. The reaction mixture was stirred at room temperature for 2 hours. N -(3-azido-3-phenylpropyl)-4-methoxybenzamide 21 was obtained as a white solid ($8.0 \mathrm{mg}, 0.026 \mathrm{mmol}, 52 \%$) after purification by preparative TLC on silica using $1: 1$ pentanes:ethyl acetate as eluent. Chiral HPLC conditions: er $=49.8: 50.2$; Chiralpak IB 80:20 Hexane/ $\mathrm{iPrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 31 \mathrm{~min} . \operatorname{tr}($ minor $)=20.6 \mathrm{~min}$. and $\operatorname{tr}($ major $)=24.9 \mathrm{~min} . \lambda=260 \mathrm{~cm}^{-1}$.
$\mathbf{R}_{\mathbf{f}}: 0.28$ (silica, pentanes:ethyl acetate 1:1);
Mp: $81-82^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.70-7.61(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.46-7.37(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.37-7.30(\mathrm{~m}, 3 \mathrm{H}$, ArH), $6.97-6.83(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.32-6.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 4.60\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}_{3} \mathrm{CH}\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.59-3.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.16-2.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$;
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=166.9,162.2,139.0,129.0,128.6,128.6,126.8,126.6,113.7,64.8,55.4$, 37.4, 35.9;

IR (film): $\tilde{v}=3312$ (w), 2932 (w), 2095 (s), 1630 (m), 1503 (s), 1254 (s), 1030 (m);
HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{NaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 333.1322$; Found 333.1328.

7. X-ray structure of xx

Crystal Data and Experimental (10a, Thermal ellipsoids are shown at the 50\% level)

A single crystals was grown by slow diffusion of the solvent of $\mathbf{1 0 a}$ in CDCl_{3}. Supplementary crystallographic data for this compound have been deposited at Cambridge Crystallographic Data Centre (2085561) and can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

Experimental. Single colourless prism crystals of 10a (mw-4-16-4) were used as supplied. A suitable crystal with dimensions $0.34 \times 0.09 \times 0.07 \mathrm{~mm}^{3}$ was selected and mounted on a SuperNova, Dual, Cu at home/near, Atlas diffractometer. The crystal was kept at a steady $T=140.01(10) \mathrm{K}$ during data collection. The structure was solved with the SheIXT 2018/2 (Sheldrick, 2015) solution program using dual methods and by using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with ShelXL 2018/3 (Sheldrick, 2015) using full matrix least squares minimisation on \boldsymbol{F}^{2}.

Crystal Data. $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{2}, M_{r}=363.42$, monoclinic, $\mathrm{P}_{1} / \mathrm{c}(\mathrm{No.14}$), $\mathrm{a}=9.77714(16) \AA$ A, $\mathrm{b}=28.6855(5) \mathrm{A}$, $\mathrm{c}=13.2347(2) \AA, \beta=91.2051(16)^{\circ}, \alpha=\gamma=90^{\circ}, V=3711.00(11) \AA^{3}, T=140.01(10) \mathrm{K}, Z=8, Z^{\prime}=2, \mu(\mathrm{Cu}$ $\left.\mathrm{K}_{\alpha}\right)=0.708,31976$ reflections measured, 7180 unique ($\mathrm{R}_{\text {int }}=0.0364$) which were used in all calculations. The final $w R_{2}$ was 0.1198 (all data) and R_{1} was 0.0427 ($1 \geq 2 \sigma(\mathrm{I})$).

Crystal Data and Experimental (14b, Thermal ellipsoids are shown at the 50\% level)

After purification of xx by recrystallization in dichloromethane and pentanes, single crystals were obtained and measured directly. Supplementary crystallographic data for this compound have been deposited at Cambridge Crystallographic Data Centre (2085562) and can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

Experimental. Single clear pale colourless prism crystals of $\mathbf{1 4 b}$ ($\mathbf{m w - 4 - 1 4 3 - 1}$) were used as supplied. A suitable crystal with dimensions $0.19 \times 0.14 \times 0.08 \mathrm{~mm}^{3}$ was selected and mounted on a SuperNova, Dual, Cu at home/near, Atlas diffractometer. The crystal was kept at a steady $T=$ 140.00 (10) K during data collection. The structure was solved with the ShelXT (Sheldrick, 2015) solution program using dual methods and by using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with ShelXL 2018/3 (Sheldrick, 2015) using full matrix least squares minimisation on $\boldsymbol{F}^{\mathbf{2}}$.

Crystal Data. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}, M_{r}=296.33$, monoclinic, $P 2_{1} / c$ (No. 14), $\mathrm{a}=8.19152(19) \AA, \mathrm{b}=$ $21.2742(5) \AA ̊, \mathrm{c}=8.40359(19) \AA \AA, \beta=97.861(2)^{\circ}, \alpha=\gamma=90^{\circ}, V=1450.71(6) \AA^{3}, T=140.00(10) \mathrm{K}$, $Z=4, Z^{\prime}=1, \mu\left(\mathrm{Cu} \mathrm{K}_{\alpha}\right)=0.758,8484$ reflections measured, 3016 unique $\left(\mathrm{R}_{\text {int }}=0.0166\right)$ which were used in all calculations. The final $w R_{2}$ was 0.1009 (all data) and R_{1} was 0.0363 ($\mathrm{I} \geq 2 \sigma(\mathrm{I})$).

Compound	10a (MW-4-16-4)	Compound	14b (mw-4-143-1)
Formula	$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{2}$	Formula	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.301	$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.357
μ / mm^{-1}	0.708	μ / mm^{-1}	0.758
Formula Weight	363.42	Formula Weight	296.33
Colour	colourless	Colour	clear pale colourless
Shape	prism	Shape	prism
Size/mm ${ }^{3}$	$0.34 \times 0.09 \times 0.07$	Size/mm ${ }^{3}$	$0.19 \times 0.14 \times 0.08$
T/K	140.01(10)	T/K	140.00 (10)
Crystal System	monoclinic	Crystal System	monoclinic
Space Group	$P 2_{1} / \mathrm{c}$	Space Group	$P 2{ }_{1} / \mathrm{c}$
$a / \AA{ }^{\text {a }}$	9.77714(16)	$a / \AA{ }^{\text {a }}$	8.19152(19)
b / \AA	28.6855(5)	b/Å	21.2742(5)
c / \AA	13.2347(2)	c / \AA	8.40359(19)
$\alpha /{ }^{\circ}$	90	$\alpha /{ }^{\circ}$	90
$\beta /^{\circ}$	91.2051(16)	$\beta /{ }^{\circ}$	97.861(2)
$\gamma /{ }^{\circ}$	90	$\gamma /{ }^{\circ}$	90
V / \AA^{3}	3711.00(11)	V / \AA^{3}	1450.71(6)
Z	8	Z	4
Z'	2	Z^{\prime}	1
Wavelength/Å	1.54184	Wavelength/Å	1.54184
Radiation type	Cu K α	Radiation type	$\mathrm{Cu} \mathrm{K}_{\alpha}$
$\Theta_{\text {min }} /{ }^{\circ}$	3.081	$\Theta_{\text {min }} /{ }^{\circ}$	4.156
$\Theta_{\max } /{ }^{\circ}$	71.750	$\Theta_{\max } /{ }^{\circ}$	76.485
Measured Refl's.	31976	Measured Refl's.	8484
Indep't Refl's	7180	Indep't Refl's	3016
Refl's I $\geq 2 \sigma$ (I)	5795	Refl's I $\geq 2 \sigma$ (I)	2720
$R_{\text {int }}$	0.0364	$R_{\text {int }}$	0.0166
Parameters	507	Parameters	264
Restraints	0	Restraints	0
Largest Peak/e \AA^{-3}	0.196	Largest Peak	0.279
Deepest Hole/e \AA^{-3}	-0.262	Deepest Hole	-0.177
GooF	1.030	GooF	1.024
$w R_{2}$ (all data)	0.1198	$w R_{2}$ (all data)	0.1009
$w R_{2}$	0.1110	$w R_{2}$	0.0975
R_{1} (all data)	0.0541	R_{1} (all data)	0.0403
$\underline{R_{1}}$	0.0427	R_{1}	0.0363

8. NMR spectra of new compounds

N -Cyclopropyl-3-methylbenzamide ($5 \mathbf{j}$)
${ }^{1} \mathrm{H}$-NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{llll}60 & 150 & 140 & 130\end{array}$
120
$100 \quad \begin{aligned} & 90 \\ & \mathrm{f} 1(\mathrm{ppm})\end{aligned}$

4-Methoxy-N-(1-methylcyclopropyl)benzamide (5w)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR ($\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N-(1,3-Diazidopropyl)benzamide (6a)
 ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^10]
${ }^{13} \mathrm{C}$-NMR ($\mathbf{1 0 1 ~ M H z , ~} \mathrm{CDCl}_{3}$)

N-(1,3-Diazidopropyl)-4-methylbenzamide (6c)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N-(1,3-Diazidopropyl)-4-fluorobenzamide (6d)

${ }^{1} \mathrm{H}$-NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

会皆

4-Chloro- N -(1,3-diazidopropyl)benzamide (6e)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4－Bromo－N－（1，3－diazidopropyl）benzamide（6f） ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

玉迅き

					$\stackrel{\square}{-}$								－				
	1				，						1					1	
8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0		4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

${ }^{13}$ C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4-Cyano- N-(1,3-diazidopropyl)benzamide (6 g)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N-(1,3-Diazidopropyl)-4-nitrobenzamide (6h)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

N-(1,3-Diazidopropyl)-3-methoxybenzamide (6i)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N -(1,3-Diazidopropyl)-3-methylbenzamide (6j)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N-(1,3-Diazidopropyl)-2-methoxybenzamide (6k)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N -(1,3-Diazidopropyl)-2-methylbenzamide (61)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

N-(1,3-Diazidopropyl)pivalamide (6 m)
${ }^{1} \mathrm{H}$-NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

${ }^{13}$ C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Abstract

N -(1,3-diazidopropyl)cyclohexanecarboxamide (6n)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\stackrel{8}{8}$

${ }^{13} \mathrm{C}$-NMR ($\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N-(1,3-Diazidopropyl)-2-phenylacetamide (60)
${ }^{1} \mathrm{H}$-NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

tert-Butyl (1,3-diazidopropyl)carbamate (6p)
${ }^{1} \mathrm{H}$-NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

						$\stackrel{3}{2}$			d				崇			
8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	$\begin{gathered} 4.51\left(\mathrm{ppm}{ }^{4.0}\right. \\ \mathrm{S} 75^{4} \end{gathered}$	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

${ }^{13}$ C-NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Benzyl (1,3-diazidopropyl)carbamate (6q)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


~~~~

\({ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


N -(1,3-Diazidopropyl)-4-methoxy-N-methylbenzamide (6s)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\) ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\), 298K)

\({ }^{13} \mathrm{C}\)－NMR（ \(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ，298K）
\begin{tabular}{|c|c|c|}
\hline N & 㗊 & 言宗 \\
\hline 1 & I & 1 ｜ \\
\hline
\end{tabular}





\({ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}\right.\) ，Acetone－ \(\mathrm{d}_{6}\) ，261．7 K）


N -(1,4-Diazidobutyl)-4-methoxybenzamide (6t)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

\({ }^{13}\) C-NMR ( \(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

tert-Butyl (1,4-diazidobutyl)carbamate (6u)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

\({ }^{13}\) C-NMR ( \(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & 1 & 1 & 1 & & 1 & 1 & T & 1 & T & 1 & 1 & 1 & 1 & & \\
\hline 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & \[
\begin{gathered}
80 \\
\text { f1 (ppm) }
\end{gathered}
\] & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\
\hline
\end{tabular}

\section*{N-(1,3-Diazidobutyl)-4-methoxybenzamide (6xa)}

\section*{\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\) )}


\({ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


\section*{N-(1,3-Diazido-3-phenylpropyl)-4-methoxybenzamide (6xb)}
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\) )


\({ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

\(N\)-(1,3-Diazido-3,3-difluoropropyl)-4-methoxybenzamide (6y) \({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


\(N\)-(1,4-Diazido-3-phenylbutyl)-4-methoxybenzamide (6z)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


\({ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


\section*{(1,3-Diazidopropyl)benzene (8)}
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)



\({ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


N -(3-Azido-1-(3-methyl-1H-indol-2-yl)propyl)-4-methoxybenzamide (10a)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

\({ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


N -(4-Azido-1-(3-methyl-1H-indol-2-yl)butyl)-4-methoxybenzamide (11a)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


\({ }^{13}\) C-NMR ( \(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


N-(3-Azido-1-(2-hydroxynaphthalen-1-yl)propyl)-4-methoxybenzamide (10ba)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.\), Acetone- \(\boldsymbol{d}_{6}\) )

\({ }^{13}\) C-NMR ( 101 MHz , Acetone- \(d_{6}\) )



Benzyl (3-azido-1-(2-hydroxynaphthalen-1-yl)propyl)carbamate (10bb)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

\({ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


N-(3-Azido-1-(2-oxocyclohexyl)propyl)benzamide (10c)

\section*{\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)}


\({ }^{13}\) C-NMR ( \(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\(N\)-(5-Azido-1-oxo-1-phenylpentan-3-yl)benzamide (10d)

\section*{\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)}
\(\stackrel{8}{8}\)




\({ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


Methyl 5-azido-3-benzamidopentanoate (10e)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)
끙


性 懒 1 ।

\({ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

\(N\)-(1-Azidohex-5-en-3-yl)benzamide (10f)

\section*{\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.\) )}



\({ }^{13}\) C-NMR ( \(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


Dimethyl 2-(3-azido-1-benzamidopropyl)malonate (10ga)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

\({ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


Dimethyl 2-(3-azido-1-((tert-butoxycarbonyl)amino)propyl)malonate (10gb)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

\({ }^{13}\) C-NMR ( \(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )







tert-Butyl (4-azido-1-nitrobutan-2-yl)carbamate (10h)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

\({ }^{13} \mathrm{C}-\mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

tert-Butyl (5-azido-1-nitropentan-2-yl)carbamate (11h)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


\({ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


N -(3-Azido-1-cyanopropyl)-4-methylbenzenesulfonamide (10i) \({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

\({ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)



\(\begin{array}{llllllllllllllllll}150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 \\ f 1(\mathrm{ppm})\end{array} 70\)

N -(3-Azidopropyl)-4-methoxybenzamide ( 10 j )

\section*{\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)}


\section*{}




\({ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

ñ




N-(5-Azido-1-phenylpent-1-yn-3-yl)benzamide (10k)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)



\({ }^{13} \mathrm{C}-\mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

( \(E\) )- N -(5-Azido-1-phenylpent-1-en-3-yl)benzamide (10I)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)
응



\({ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


N -(1-Azidopentan-3-yl)-4-methoxybenzamide (10m)

\section*{\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)}

\({ }^{13}\) C-NMR ( \(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

~o


\(\stackrel{\stackrel{0}{\circ}}{\stackrel{1}{1}}\)


N -(6-Azidohexan-3-yl)-4-methoxybenzamide (11m)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

\({ }^{13} \mathrm{C}-\mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)



N -(5-Azidopent-1-en-3-yl)benzamide (10na) \({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


\({ }^{13}\) C-NMR ( \(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




tert-Butyl (5-azidopent-1-en-3-yl)carbamate (10nb)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

\section*{ \\ \(\underbrace{\dot{-j} \underbrace{\dot{j}}}\) \\ \(\underbrace{\infty}_{\sim_{m}^{\infty}}\) \\ }

\({ }^{13}\) C-NMR ( \(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


N-(3-Azido-1-phenylpropyl)benzamide (10oa)

\section*{\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)}

\({ }^{13}\) C-NMR ( \(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )
tert-Butyl (3-azido-1-phenylpropyl)carbamate (10ob)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\) ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




\({ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


\section*{N-(1-Azidohex-4-yn-3-yl)benzamide (10p)}
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)



\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & \[
\begin{aligned}
& \text { ord } \\
& \underset{y}{-1} \underset{\sim}{i}
\end{aligned}
\] & & \[
\underset{\alpha}{\text { do }}
\] & & & \[
\stackrel{-}{C}
\] & & & \[
\underset{\sim}{\infty}
\] & & & 꺽 & & & & \\
\hline 1 & 1 & 1 & & 1 & & 1 & & 1 & 1 & & 1 & 1 & 1 & 1 & 1 & & 1 & 1 & 1 \\
\hline 9.0 & 8.5 & 8.0 & & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & \[
\begin{gathered}
4.5 \\
\mathrm{f} 1(\mathrm{ppm})
\end{gathered}
\] & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 \\
\hline
\end{tabular}
\({ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


N -(4-Azidobutan-2-yl)benzamide (10qa)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


\({ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


Benzyl (4-azidobutan-2-yl)carbamate (10qb)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

\({ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


Benzyl (1,2-diazidoethyl)carbamate (13b)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

\({ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


1-(2-Azido-1-(1H-indol-3-yl)ethyl)pyrrolidin-2-one (14a)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


\({ }^{13}\) C-NMR ( \(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



1-(2-Azido-1-(2-hydroxynaphthalen-1-yl)ethyl)pyrrolidin-2-one (14b)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\) ( 500 MHz , Methanol- \(\mathrm{d}_{4}\) )




\({ }^{13}\) C-NMR ( 126 MHz , Methanol- \(\mathrm{d}_{4}\) )




1-(1-Azido-4-oxo-4-phenylbutan-2-yl)pyrrolidin-2-one (14c)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& \text { 'dor } \\
& \text { in }
\end{aligned}
\] &  & & & & & & & & or' & & & \[
\begin{aligned}
& \text { T } \\
& \text { d }
\end{aligned}
\] & & & & \\
\hline 1 & 1 & T & 1 & & 1 & & & 1 & 1 & T & 1 & , & 1 & 1 & 1 & 1 & 1 \\
\hline 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & & & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 \\
\hline
\end{tabular}
\({ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)



1-(1-Azidopent-4-en-2-yl)pyrrolidin-2-one (14d)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)




\({ }^{13}\) C-NMR ( \(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


Methyl 4-azido-3-(((benzyloxy)carbonyl)amino)butanoate (14e)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

デ



\({ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)
~




Dimethyl 2-(2-azido-1-(((benzyloxy)carbonyl)amino)ethyl)malonate (14f)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)




N


\({ }^{13} \mathrm{C}-\mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


Benzyl (1-azido-3-nitropropan-2-yl)carbamate (14g)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & \(\left.{ }_{\text {f1 }}^{4.0} \mathrm{Ppm}\right)\) & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 \\
\hline & & & & & & & & S118 & & & & & & & & \\
\hline
\end{tabular}
\({ }^{13}\) C-NMR ( \(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


Benzyl (1-azidobut-3-en-2-yl)carbamate (14h)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)



\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & &  & \[
\underset{\substack{\infty \\ o \\ \hline}}{ }
\] & & \[
\stackrel{\underset{\sim}{\mathrm{j}}}{ }
\] & & & & & & & \\
\hline 8 & 7.5 & 7 & 6 & 6 & 5 & 5 & 15 & & 1 & 1 & 1 & 1 & 1.5 & 1 & 1 & 1 \\
\hline 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & \[
\begin{gathered}
4.0 \\
\mathrm{f} 1(\mathrm{ppm})
\end{gathered}
\] & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 \\
\hline
\end{tabular}
\({ }^{13}\) C-NMR ( \(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


Benzyl (2-azido-1-phenylethyl)carbamate (14i)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)



\(\qquad\)

\({ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)
```
M
```





Benzyl (1-azidopent-3-yn-2-yl)carbamate (14j)
\({ }^{1} \mathrm{H}\)-NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


\({ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


Benzyl (1-azido-4-phenylbut-3-yn-2-yl)carbamate (14k)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

\({ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


N-(1-Azido-3-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)propyl)-4-methoxybenzamide (15) \({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

\({ }^{13}\) C-NMR ( \(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



Methyl 2,6-diazido-6-benzamidohexanoate (16)
\({ }^{1} \mathrm{H}\)-NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


\({ }^{13}\) C-NMR ( \(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


N-Cinnamyl- N -cyclopropylbenzamide (17)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)




\({ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


N-Cyclopropyl-N-(2,3-diazido-3-phenylpropyl)benzamide (18)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

\section*{}

\({ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


\(N\)-(2-azido-3-hydroxy-3-phenylpropyl)-N-cyclopropylbenzamide (19)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

\({ }^{13}\) C-NMR ( \(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


N-(3-azido-3-phenylpropyl)-4-methoxybenzamide (21)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)




\({ }^{13} \mathrm{C}-\mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


HPLC

\section*{Racemic}


Signal 5: DAD1 E, Sig=260,4 Ref=360,100
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & RetTime [min] & Type & \begin{tabular}{l}
Width \\
[min]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU} * \mathrm{~s}]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & Area \% \\
\hline 1 & 20.459 & BB & 0.5313 & 306.83521 & 8.96500 & 49.9731 \\
\hline 2 & 24.699 & BB & 0.6316 & 307.16583 & 7.53440 & 50.0269 \\
\hline
\end{tabular}

\section*{With CN-BOX}


Signal 5: DAD1 E, Sig=260,4 Ref=360,100
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
{[\mathrm{min}]}
\end{gathered}
\] & Type & \begin{tabular}{l}
Width \\
[min]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}^{*}\right]}
\end{gathered}
\] & Height [mAU] & Area \% \\
\hline 1 & 20.602 & BB & 0.5300 & 1527.54224 & 44.55735 & 49.8299 \\
\hline 2 & 24.864 & BB & 0.6410 & 1537.97205 & 37.30072 & 50.1701 \\
\hline
\end{tabular}

N -(1-Azido-3-iodopropyl)benzamide (22)

\section*{\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)}


\section*{}


\({ }^{13}\) C-NMR ( \(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\({ }^{13}\) C-NMR (201 MHz, CDCl 3 )


N-(3-Azido-1-methoxypropyl)-4-methoxybenzamide (25)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)



N-(4-azidobutan-2-yl)-4-methoxybenzamide (26)
\({ }^{1} \mathrm{H}-\mathrm{NMR}\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

\({ }^{13} \mathrm{C}-\mathrm{NMR}\left(201 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)
~~~~


[^0]: ${ }^{\mathrm{a}}$ Isolated yield on a scale of 0.2 mmol . bYield determined by ${ }^{1} \mathrm{H}$ NMR using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as internal standard. ${ }^{\mathrm{c}_{1}} \mathrm{~mol} \% \mathrm{CuTc}$ was used. ${ }^{\mathrm{d}} 6 \mathrm{~mol} \%$ CuTc was used. ${ }^{e} 0.1 \mathrm{mmol}$ scale.

[^1]: ${ }^{[a]}{ }^{1} \mathrm{H}$ NMR yield using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as internal standard. ${ }^{[b]}$ Isolated yield.

[^2]: ${ }^{1}$ Baburajan, P.; Elango, K. P. Tetrahedron Lett. 2014, 55, 1006-1010.
 ${ }^{2}$ Wang, M.-M.; Waser, J. Angew. Chem. Int. Ed. 2019, 58, 13880-13884.
 ${ }^{3}$ Wang, M.-M.; Waser, J. Angew. Chem. Int. Ed. 2020, 59, 16420-16424.
 ${ }^{4}$ Wang, M.-M.; Jeon, S.; Waser, J. Org. Lett. 2020, 22, 9123-9127.
 ${ }^{5}$ Sureshbabu, P.; Sadaf, A.; Chaudhary, P.; Kandasamy, J. Org. Biomol. Chem. 2019, 17, 845-850.

[^3]: ${ }^{6}$ Zhang, Y.; Liu, B.; Gou, Z.; Li, Y.; Zhang, X.; Wang, Y.; Yu, S.; Li, Y.; Sun, D. Bioorg. Med. Chem. Lett. 2015, 25, 791-794.

[^4]: ${ }^{7}$ Kondo, H.; Itami, K.; Yamaguchi, J. Chem. Sci. 2017, 8, 3799-3803.
 ${ }^{8}$ Muth, F.; Gunther, M.; Bauer, S. M.; Doring, E.; Fischer, S.; Maier, J.; Druckes, P.; Koppler, J.; Trappe, J.; Rothbauer, U.; Koch, P.; Laufer, S. A. J. Med. Chem. 2015, 58, 443-456.

[^5]: ${ }^{9}$ Jeffery, J. L.; Bartlett, E. S.; Sarpong, R. Angew. Chem. Int. Ed. 2013, 52, 2194-2197.
 ${ }^{10}$ Miyamura, S.; Araki, M.; Suzuki, T.; Yamaguchi, J.; Itami. K. Angew. Chem. Int. Ed. 2015, 54, 846-851.

[^6]: ${ }^{11}$ Tam, E.; Rita.; Liu, Y.; Chen, A. Eur. J. Org. Chem. 2015, 1100-1107.
 ${ }^{12}$ Tars, K.; Leitan, J.; Kazaks, A.; Zelencova, D.; Liepinsh, E.; Kuka, J.; Makrecka, M.; Lola, D.; Andrianovs, V.; Gustina, D.; Grinberga, S.; Liepinsh, E.; Kalvinsh, I.; Dambrova, M.; Loza, E.; Pugovics, O. J. Med. Chem. 2014, 57, 2213-2236.

[^7]: ${ }^{13}$ Shaw, M. H.; McCreanor, N. G.; Whittingham, W. G.; Bower, J. F. J. Am. Chem. Soc. 2015, 137, 463-468.
 ${ }^{14}$ O’Sullivan, S.; Doni, E.; Tuttle, T.; Murphy. J. A. Angew. Chem. Int. Ed. 2014, 53, 474-478.

[^8]: ${ }^{15}$ Li, P.; Ma, N.; Wang, Z.; Dai, Q.; Hu, C. J. Org. Chem. 2018, 83, 8233-8240.

[^9]: ${ }^{16}$ Yuan, Y.-A.; Lu, D.-F.; Chen, Y.-R.; Xu, H. Angew. Chem. Int. Ed. 2016, 55, 534-538.

[^10]: $170 \quad 160$
 $150 \quad 14$
 12

