
Automation in Construction 130 (2021) 103875

Available online 12 August 2021
0926-5805/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

An integrated design tool for timber plate structures to generate joints
geometry, fabrication toolpath, and robot trajectories

Nicolas Rogeau a,b,*, Pierre Latteur c, Yves Weinand a,b

a Laboratory for Timber Constructions (IBOIS), École Polytechnique Fédérale de Lausanne (EPFL), EPFL, ENAC, IIC, IBOIS, GC H2 711(Bâtiment GC), Station 18, CH-
1015 Lausanne, Vaud, Switzerland
b The National Centre of Competence in Research (NCCR) Digital Fabrication, Swiss Federal Institute of Technology in Zurich (ETHZ), HIB E 25, Stefano-Franscini-Platz
1, CH-8093 Zurich, Zurich, Switzerland
c Institute of Mechanics, Materials and Civil Engineering (IMMC), Louvain School of Engineering (EPL), Université Catholique de Louvain, GCE, Place du Levant 1, 1348
Louvain-la-Neuve, Belgium

A R T I C L E I N F O

Keywords:
Integrated design
Timber plate structures
Wood joints
Digital fabrication
CNC machining
Robotic assembly
Robotic arm
Modular assembly
Assembly sequence
Insertion vector

A B S T R A C T

This paper presents an integrated design tool for structures composed of engineered timber panels that are
connected by traditional wood joints. Recent advances in computational architecture have permitted to automate
the fabrication and assembly of such structures using Computer Numerical Control (CNC) machines and in
dustrial robotic arms. While several large-scale demonstrators have been realized, most developed algorithms are
closed-source or project-oriented. The lack of a general framework makes it difficult for architects, engineers and
designers to effectively manipulate this innovative construction system. Therefore, this research aims at devel
oping a holistic design tool targeting a wide range of architectural applications. Main achievements include: (1) a
new data structure to deal with modular assemblies, (2) an analytical parametrization of the geometry of five
timber joints, (3) a method to generate CNC toolpath while integrating fabrication constraints, and (4) a method
to automatically compute robot trajectories for a given stack of timber plates.

1. Introduction

1.1. From traditional timber joints to Integrally Attached Timber Plate
Structures (IATPS)

Early wood architecture traces have revealed timber joints dating
back more than 7000 years ago [1]. Until the industrial revolution, it
remained the most common technique to assemble wooden pieces. Two
main structural purposes of timber joints can be distinguished:
increasing the length of the elements to achieve longer spans (e.g., roof
framing, bridge trusses) or increasing the width of the elements to cover
a larger surface (e.g., stacked walls, roof cladding). For each situation,
various joining techniques adapted to the local context were developed
and transmitted by carpenters over time [2].

With the spread of metallic connectors (e.g. screws, bolts…) which
can be easily mass-produced, and the rising cost of skilled labor in
developed countries, timber joints have gradually been abandoned by
construction companies in favor of less expensive practices that could be
more easily automated [3]. New gluing processes have also made it

possible to overcome the natural size of trees. Indeed, engineered wood
products such as glued laminated timber (glulam) and cross-laminated
timber (CLT) can cover large spans and wide surfaces with a single
element whose dimensions are limited only by logistical constraints.
With the industrialization of the construction sector, timber joints craft
was therefore narrowed down mainly to vernacular architecture and
cabinet making.

However, the recent emergence of robotics in the construction sector
has made it possible to revive ancient techniques such as traditional
timber joinery. Computer Numerical Control machines (CNC) and In
dustrial Robotic Arms (IRA) allow for automating complex fabrication
and assembly processes that would otherwise be too time-consuming for
cost-effective applications. This opportunity led to the development of
so-called Integrally Attached Timber Plate Structures (IATPS) [4]. IATPS
combine modern engineered wood panels with traditional timber joints
that are digitally fabricated. Beyond their aesthetic appeal, these joints
also fulfill a functional role as they allow each construction element to
be precisely positioned with each other. They also reduce the need for
additional connectors such as screws or nails as the assembly is

* Corresponding author at: GC H2 711 Station 18, 1015 Lausanne, Switzerland.
E-mail address: nicolas.rogeau@epfl.ch (N. Rogeau).

Contents lists available at ScienceDirect

Automation in Construction

journal homepage: www.elsevier.com/locate/autcon

https://doi.org/10.1016/j.autcon.2021.103875
Received 27 May 2021; Received in revised form 26 July 2021; Accepted 2 August 2021

mailto:nicolas.rogeau@epfl.ch
www.sciencedirect.com/science/journal/09265805
https://www.elsevier.com/locate/autcon
https://doi.org/10.1016/j.autcon.2021.103875
https://doi.org/10.1016/j.autcon.2021.103875
https://doi.org/10.1016/j.autcon.2021.103875
http://crossmark.crossref.org/dialog/?doi=10.1016/j.autcon.2021.103875&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Automation in Construction 130 (2021) 103875

2

performed solely by geometrical interlocking. Furthermore, experi
mental studies and numerical analysis of IATPS have demonstrated the
positive influence of wood-wood connections on the structural perfor
mance of the system [5].

The main interest of IATPS lies in the fact that they allow a high
degree of prefabrication. However, designing such structures is not
straightforward as multiple constraints influence the shape of the con
nections between the panels. Several workflows have been showcased
through the construction of demonstrators and real-scale flagship pro
jects (Section 1.2) and several computational tools have been developed
to assist in the 3D modeling of timber joints (Section 1.3). However,
there is a lack of a general framework linking all constraints of the
system together to allow non-experts designing IATPS and enable
broader applications of the system. A general framework for the struc
tural design of IATPS has been proposed by Rad and al. [6,7]. This
contribution aims at completing this framework by integrating fabrica
tion and assembly constraints in the 3D modeling of the connections.

1.2. Existing computational workflows for IATPS

IATPS have been showcased in several research pavilions and flag
ship buildings during the last decade (Fig. 1). Several large-scale dem
onstrators featuring finger joints have been built by researchers from the
University of Stuttgart [8,9]. For the recent BUGA Wood pavilion [10],
so-called “co-design” algorithms were developed to integrate structural
requirements and robotic fabrication aspects into the design process.
High-level of automation was reached as each unique module of the
structure was carefully assembled by two collaborative robots.

Recent projects from the Digital Timber Construction chair of Kai
serslautern University have used wedge-joints [11] and butterfly joints
[12,13] between hexagonal pieces to build doubly-curved timber vaults.
For each project, global geometry and local connection details were
controlled by custom scripts. Machining toolpath has also been auto
matically generated and simulated before exporting fabrication files to a
5-axis CNC.

Previous research conducted at the Laboratory for Timber Con
structions at Ecole Polytechnique Fédérale de Lausanne has led to the
construction of two full-scale projects: the theater of Vidy [14] in Lau
sanne and Annen head office in Manternach [15]. The first project is a
double-layered folded structure inspired by Japanese origami patterns
and the second consists of 23 doubly-curved vaults made out of timber
boxes. Through-tenon joints were used in both structures as connections
between timber panels. As for the pavilions mentioned above, para
metric scripts were developed to integrate fabrication constraints in the
design process.

For all projects presented above, the global shape was first dis
cretized using a mesh where each mesh face represents a timber panel. A
mesh data structure keeps track of the links between the elements. This
adjacency information is essential for modeling joints between two
timber plates as the shape of the connection is influenced by the relative
position of the plates. As timber panels are planar elements, all mesh

faces also need to be planar. Planarization algorithms are used to
approximate curved surfaces with planar panels [16,17]. In addition, as
timber panels are standardized products, it is often required to work
with panels of constant thickness. Ensuring both planarity and constant
thickness heavily constrains the design space to certain types of meshes.
Hexagonal patterns with trivalent vertices (Fig. 2a) allow meeting both
requirements [18].

However, mesh discretization is not the only possibility for modeling
IATPS. One alternative is to rely on procedural generation algorithms
such as the one developed by Rossi and al. [19]. Complex assemblies can
be created from aggregation rules operating on a predefined set of tiles
(Fig. 2b). Aggregation is the inverse operation of discretization. Instead
of dividing a complex geometry into panels, panels are assembled iter
atively to form a complex structure based on topologic constraints. As
for meshes, aggregation methods produce an organized data structure
that contains the adjacency information necessary to model the joints.

Another possibility is to manually draw the elements in 3D without
relying on specific data structures (Fig. 2c.). While aggregation and
discretization are powerful tools to tackle complex geometries, most
architectural projects are drawn using standard CAD software without
using any computational methods. In that case, the only information
contained in the model is the plate geometry and its position in an
arbitrarily defined frame. Therefore, automating the 3d modeling of the
connections for such structures requires first to determine the relative
position of the plates to each other.

The integrated design approach employed in all the projects cited
above was based on a predefined data structure that facilitated the
modeling of connections between elements and the integration of
fabrication and assembly constraints. The drawback is that each archi
tectural project is different and therefore, a unique algorithm has to be
thought for each new construction system. This research aims to develop
a holistic design tool to generalize joinery modeling between timber
plates independently of the global geometry of a project.

1.3. Existing computational design tools for timber joints

The resurgence of timber joints in contemporary architecture has
been facilitated by the development of 3D modeling tools to automati
cally generate geometry and fabrication files for these types of connec
tions. Several Computer-Aided Design and Manufacturing (CAD/CAM)
software such as CadWork® [20], Sema [21], and Lignocam [22] inte
grate dedicated joinery modules for timber frame structures and can
export machining toolpath from 3D models. Similarly, open access web
applications such as MakerCase [23], CutCad [24], Kyub [25], and
Joinery [26] allow readily creating joints between planar pieces which
can then be cut and assembled in 3D. Another approach based on voxels
was taken by Larsson and al. [27] to develop Tsugite, an interactive
interface to explore, design, and manufacture complex joints between
timber beams. By restricting the design space to a 9x9x9 voxel grid, a
multi-criteria analysis of the joint performance can be shown to the user
after each iteration and the design can be accordingly improved.

Fig. 1. Three large-scale projects showcasing IATPS (from left to right): The folded structure of the Vidy theater (IBOIS, 2018) [14], the segmented shell of the Buga
Wood Pavilion (ICD/ITKE, 2019) [10], the double-layered vault of the Annen head office (IBOIS, 2021) [15].

N. Rogeau et al.

Automation in Construction 130 (2021) 103875

3

Custom plugins for Grasshopper, the visual scripting interface of
Rhinoceros by McNeel and Associates [28], have also been developed.
Timber Plate Structure plugin (TPS) [29] gives users the possibility to
create origami patterns with dovetails, finger joints, or miter joints.
Reindeer [30] open-source set of tools focuses on timber frame con
nections with structural analysis feedback. GluLamb [31] addresses the
specific case of curved glued laminated timber (GLT) pieces. Finally,
Emarf [32] offers various tools to generate timber joints between
extruded solids and export fabrication files. The main advantage of those
parametric solvers is the direct feedback that makes it possible to adapt
the joint geometry according to fabrication constraints. Typically,
machining toolpath can be visualized without leaving the design inter
face and its impact on the global project can therefore be considered
ahead of execution.

Assembly constraints can also inform the shape of a joint. Most
solvers leave it up to the user to assess the feasibility of the assembly as
they are tailored for standard applications. When complexity rises, two
strategies can be employed: (1) solving assembly constraints for a given
set of joints and refining the design until the assembly works or (2)
constraining the design space to generate only compatible joints. Tsugite
solver belongs to the first category as it evaluates friction areas to assess
the ease of insertion of each proposed joint. On the contrary, the TPS
plugin computes a compatible vector of insertion for each piece in the
structure before generating the joints to avoid any blocking situation.

The interlocking properties of timber joints can also be exploited in
the design of a structure. DESIA framework [33] uses directed graphs to
compute assembly sequences and vectors of insertion for a set of discrete
elements where the last piece acts as a blocking key. Graph theory was
also applied to compute assembly sequences of waffle structures
composed of intersecting planar pieces connected by half-lap joints [34].

This research aims to provide a computational design tool for timber
plate structures that may have a large number of connections. Therefore,
fabrication and assembly constraints have to be treated automatically
and cannot be left under the user's responsibility. The main challenge
was to provide a high level of automation while keeping a design space
as large as possible to accommodate different structural typologies: from
structures with a regular pattern (shell, vaults, slabs…) to more irregular
assemblies. By concentrating the research scope on timber plates, a
systematic methodology could be employed to cover all topological
cases.

The developed tool is introduced in the following sections. The
implementation of the solver and its interface are presented in Section 2.
Required inputs and working hypotheses are then detailed in Section 3.
The algorithmic framework allowing the computation of compatible
insertion vectors is explained in Section 4. The generation of the solver
outputs (joints geometry, fabrication toolpath, and robotic trajectories)
is covered in Section 5. Finally, the performance of the solver is
demonstrated in Section 6 through three case studies.

2. Solver implementation and user interface

The main concept of this new integrated design tool is to convert a
3D model into an organized data structure allowing to generate joints
geometry, fabrication toolpath, and robotic trajectories. Before detailing
the different parts of the algorithm, its general implementation and its
interface are here presented.

2.1. Implementation of a new data structure

The solver has been coded in Python 2.7 [35] and relies on the
RhinoCommon [36] library for geometric operations. Concretely, the
code is structured as four python classes:

• Plate model: methods and attributes applying to the full structure
• Plate module: methods and attributes applying to a group of plates
• Plate: methods and attributes applying to one single plate
• Toolbox: helper functions

Taking advantage of the concept of object-oriented programming
(OOP) [37], a 3D model is converted into an instance of the plate model
class. For each plate in the 3D model, an instance of the plate class is also
created. Similarly, plate modules are instantiated for each group of
plates specified by the user. This will be more detailed in Section 3.2
about the modular construction approach.

By converting 3D geometries into class instances, additional infor
mation can be attached to the elements of the structure. For example, a
plate instance carries more data than just the plate geometry. The
thickness of the plate, the plane in which the plate stands, and other
specific attributes are all computed during the instantiation of the object
and stored as variables that can be later accessed. Besides, those ele
ments can be grouped in different hierarchic levels (Module, Model) to
store topologic data about how the elements are connected.

Adding this layer of information during the conversion of the 3D
model into a class instance also allows faster feedback when performing
operations on the model. Typically, a modification of the joints geom
etry can be executed without the need to compute again all topologic
information as it is already stored in the data structure.

2.2. User interface for iterative design workflows

To facilitate the manipulation of the integrated design tool by ar
chitects and structural designers, a custom plugin has been developed in
the visual scripting environment of Grasshopper. This node-based
interface makes the tool usable without any programming knowledge.
Class methods and attributes can be accessed through different Grass
hopper components. A parametric design workflow can be easily set up
to generate different types of joints in an iterative process. This is further
demonstrated in Section 6 through three case studies.

Fig. 2. Different methods for 3D modeling IATPS: using a mesh data structure (a), using aggregation rules for a set of two tiles (b), using standard CAD software
without a specific data structure (c).

N. Rogeau et al.

Automation in Construction 130 (2021) 103875

4

3. Solver inputs

The solver requires three types of inputs: a 3D model containing all
the elements of the structure, an assembly sequence defining the order in
which to assemble the different parts, and insertion constraints
depending on the type of joints to generate. Each solver input is here
described.

3.1. Hypothesis about the initial 3D model

To run the solver, a 3D model of the global geometry of a timber plate
structure first needs to be provided. At this stage, joints are not modeled
yet. The 3D model is a collection of timber plates that can be manually
drawn or algorithmically generated in Rhinoceros CAD software. A plate
is defined as a planar structural element with a small thickness
compared to the planar dimensions [38]. It is geometrically represented
as a collection of connected surfaces forming a closed polyhedron (see
Fig. 3). Besides, a plate must follow the following requirements: (1) all
surfaces composing the plate should be planar, (2) all vertices should be
trivalent (having exactly three neighbors), and (3) each vertex of the top
face should be directly connected to exactly one vertex of the bottom
face and conversely. Plates with internal holes are included in this
definition while those with curved edges or warped faces are excluded.

The type of joint which can be generated between two plates is
conditioned by their relative position. Five topologic cases are supported
by the solver (Fig. 4). The contact zone is defined as the surface (or the
volume for intersecting plates) shared by two adjacent plates. Edgewise
connections are a particular type of side-to-face connections with the
contact zone being on the plate edge. For each relative position, a type of
joint has been studied and parametrized (see Section 5.1). To ensure the
3D model can be properly interpreted by the solver, each pair of adja
cent plates must respect one of the five contact types.

3.2. Assembly sequence and modular construction approach

In addition to the 3D model, the user is asked to provide an assembly
sequence defining the order of assembly of the elements. Some solvers
such as DESIA [33] can automatically compute an assembly sequence for
a given set of elements. However, for real construction projects, as
sembly steps are often constrained by other factors than the geometry of
the pieces. Besides, large-scale structures are often subdivided into
smaller modules that can be preassembled off-site. The range of possi
bilities for a modular assembly sequence is extremely wide as plates can
be grouped in a lot of different manners. To avoid constraining the solver
to linear assemblies and enable the use of modules, the assembly
sequence is here considered as a design variable under the responsibility
of the user. The sequence input is written as a list of integers using Py
thon syntax (Fig. 5). Each integer refers to a plate in the list of elements
of the 3D model. To change the order of the assembly, the user can either
change the order of the collection of plates, either swap integers in the
assembly sequence.

3.3. Insertion constraints for timber joints

The goal of the solver is to generate timber joints that are compatible
with the assembly sequence. To do so, the direction of the assembly has
to be predetermined before generating the joints geometry. Otherwise,
non-compatible joints could lead to blocking situations where pieces
cannot be assembled (Fig. 6). To summarize, the shape of a connection is
induced by the type of joint, by the assembly sequence, and by the
adjacent plates. The algorithms leading to the determination of the as
sembly direction are detailed in Section 4.

Timber joints can be inserted in one or more directions depending on
their geometry. The direction of the assembly is represented by an
insertion vector while the insertion domain shows all possible insertion
vectors for a given joint (Fig. 7a). Before a joint has been created be
tween two plates, the assembly can potentially be performed from all
directions. Therefore, the largest insertion domain is a hemisphere ori
ented to the normal of the contact zone (Fig. 7b). However, most types of
joints cannot be adapted to work for any insertion vector. To ensure the
generation of the joint geometry remains possible, it is necessary to
constraint the insertion domain to a portion of that sphere before
computing the insertion vectors (Fig. 7c). This is a way of informing the
solver about the type of joint that will later be created.

Mathematically, an insertion constraint is defined as the locus of all
the points on the unit sphere from which an insertion vector can be
created by linking the sphere center. The locus can be tridimensional (a
piece of the unit sphere), bidimensional (an arc on a unit circle) or
unidimensional (a point on the surface of the sphere). The solver sup
ports five contact types (Fig. 4). Per default, it provides a different
insertion constraint for each of them (Fig. 8). Custom constraints can
also be specified by the user via the Grasshopper plugin interface.

4. Solver algorithms

This section describes all the necessary steps to transform the 3D
model into an instance of the “Model” class (see Section 2.1) using the
inputs provided by the user. The topology of the structure is first
computed by looking at the contacts between the plates. Then, the as
sembly sequence is parsed to extract the different assembly steps.
Finally, insertion vectors are computed for each plate and module in the
structure.

4.1. Computing adjacency information from plate contacts

The 3D model input only provides geometries without any attached
data. Conversely, a mesh data structure stores information about the
adjacency of its elements. Therefore, the first step of the algorithmic
framework is to find all contact zones where a joint could be created.
This is achieved by intersecting the plates with each other. If the inter
section returns neither a surface nor a volume, the pair is discarded.
Otherwise, the contact type is determined by comparing the orientation
of the normal to each neighboring plate with the normal of the contact
zone (Fig. 9). A plane is also generated at the center of the contact zone.

Fig. 3. Plate faces refer to the two largest surfaces of the poly-surface while other surfaces are designated as sides.

N. Rogeau et al.

Automation in Construction 130 (2021) 103875

5

Fig. 4. Possible contact types for an assembly of two plates and their associated timber joints.

Fig. 5. A modular assembly sequence of timber plates expressed as a list of lists of integers.

Fig. 6. Generating joints without considering the assembly sequence can lead to blocking situations (a). The goal of the solver is to first compute a compatible
direction of assembly before generating joints geometry (b).

Fig. 7. Each timber joint has an insertion domain that represents all possible insertion vectors for the assembly of the pieces (a). Without joint, the insertion domain
is represented by a half-sphere (b). Insertion constraints ensure joints can be generated once the insertion vector has been deduced.

N. Rogeau et al.

Automation in Construction 130 (2021) 103875

6

It will be the frame of reference for the joint that will later be created
between both plates.

Adjacency information can be represented using a graph where each
node of the graph is a plate and each link represents a contact between
two plates (Fig. 10, left). In the model instance, this information is stored

using a list of pairs of integers based on plate numbers (Fig. 10, right).
Parallel lists are used to store the contact type, the contact zone, and the
contact plane for each pair of plates. In addition, an insertion constraint
is selected in function of the contact type and oriented according to the
contact plane.

Fig. 8. The solver provides a default insertion constraint for each contact type.

Fig. 9. Decision tree of the algorithm used to identify the different contact types.

Fig. 10. Plate contacts can be represented with an adjacency graph where each link represents a contact between two plates. Contact types, contact zones, contact
planes, and insertion constraints are stored in parallel lists inside the model instance.

N. Rogeau et al.

Automation in Construction 130 (2021) 103875

7

4.2. Computing assembly steps from the assembly sequence

The second step of the algorithmic framework is to parse the as
sembly sequence input. Each pair of square brackets implies the
instantiation of a module. A module is a pre-assembled group of plates
that moves as one single object. Modules and plates can be combined to
form larger modules. In the example of Fig. 11, the module “[1,2,–3]” is
associated with the plates “0” and “4” to form the module “[0,
[1,2,3],4]”. This module is then assembled with the module “[[5,[6,7]],
[8,9]]” to complete the model. As for a simple plate, an insertion vector
needs to be associated with each module to specify the assembly di
rection. However, at this stage, insertion vectors are not yet determined.

The assembly sequence is successively divided into different sub
sequences that define the order of assembly of the elements constituting
each module. A tree graph can be used to represent the development of
the assembly sequence associated with the model into the subsequences
associated with all modules (Fig. 11, top left). Since a plate can be part of
several modules, smaller modules need to be assembled first. Therefore,
the order of the assembly steps is obtained by navigating the tree from
bottom to top (Fig. 11, top right). Consequently, in the example of
Fig. 11, the first module to assemble is “[6,7]”. Modules that are on the
same level of the tree graph are assembled from left to right respecting
the ascending order of the plate integers. Hence, the next module to
assemble is “[1,2,3]” followed by “[5,[6,7]]” and “[8,9]”. Several steps
can be required to assemble a module. For the module “[1,2,3]”, plate
“2” is first inserted into plate “1”. Then, plate “3” is inserted into plate
“2”. A total of nine steps are necessary to complete the assembly of the
input geometry of Fig. 11.

4.3. Computing compatible insertion vectors for each plate and module

At this stage, contact types and assembly steps have been retrieved
from user inputs. The purpose of this third part of the algorithmic
framework is to compute insertion vectors for all the elements (plates
and modules) of the model at each assembly step. With modular as
semblies, a single element can be part of several subsequences. There
fore, while each contact zone needs to be associated with only one
insertion vector to generate a joint, the contact zones of one plate can
have different vectors of insertion (like C1 and C2 in Fig. 12). However, if
two contact zones are involved in the same assembly step (like C2 and C3
in Fig. 12), the same insertion vector needs to be applied.

By representing the assembly sequence as a graph, adjacency and

assembly information can be compared. To find the insertion vector
associated with an assembly step, all contacts between the plate(s) to
assemble and the plate(s) appearing before it in the subsequence are
considered. In the example of Fig. 12, the first subsequence only implies
plates 3 and 4. Therefore, only one contact will be involved in the
determination of the insertion vector. On the contrary, for the second
subsequence, the module “[3,4]” has four contacts reported on the ad
jacency graph with plates 0, 1, and 2. As those plate numbers appear
before “[3,4]” in the subsequence, a common insertion vector will be
generated for the four contacts.

Insertion constraints are used to compute an insertion vector for all
contact zones involved in an assembly step. Four different cases can be
considered depending on whether the element to be assembled is a plate
or a module and the number of adjacent plates. (Fig. 13). When
assembling a plate that has only one contact with one adjacent plate
(Fig. 13, top left), the insertion vector is directly found by taking the
average point on the domain of the insertion constraint. When assem
bling a plate that has more than one contact (Fig. 13, bottom left), the
vector is found by intersecting the domains of all the insertion con
straints associated with those contacts. A similar method is described in
chapter 4 of Christopher Robeller's thesis [4]. This method is here
extended to modular assemblies. When a module is inserted in the
structure (Fig. 13, top and bottom right), all the insertion constraints
associated with the contacts between the plates of the module and the
plate(s) already in place are regrouped and intersected to compute a
compatible insertion vector. The intersection process has also been
optimized compared to the initial method as it does not rely on solid
intersections but only on faster point-point, point-curve and point-
surface intersections. Finally, if the intersection of the constraints
returns no result for one assembly step, the solver asks the user to modify
one of the solver inputs.

5. Solver outputs

Once an insertion vector has been computed for each assembly step
and associated with each contact zone, joints can finally be generated. In
this section, the parametrization of five different joints (one for each
contact type) is presented. The generation of CNC toolpath and robotic
trajectories to automate the fabrication and the assembly of the pieces is
also detailed.

Fig. 11. Developing all subsequences from the input sequence allows ordering the assembly steps.

N. Rogeau et al.

Automation in Construction 130 (2021) 103875

8

5.1. Generating joints geometry

For each contact type, one timber joint has been studied and
parametrized (Fig. 14). Those joints have been selected among others for
their common use in timber construction or for their geometric and
aesthetic interest. However, other joints could easily be parametrized by
following a similar logic to the one presented here. The shape of each
joint can be controlled by a set of user-defined parameters. For example,
for the dowel joint, the number of dowels, their radius, and inclination

can be adjusted. Similarly, for the through-tenon joint, parameters allow
modifying the number of tenons as well as their dimensions and spacing.

The objective was to provide a purely analytical description of the
shape of each joint to remain independent of any computational library
or programming language. The parametric equations of all the points
necessary to create four of those five joints are given in the appendix.
The half-lap joint is here the only exception. Its geometric construction
requires the use of solid Boolean operations that prevented a purely
mathematical approach. For this particular type of joint, it is, therefore,

Fig. 12. In this example, plate 4 has three contact zones (C1, C2, C3) and two insertion vectors (V1 and V2) since it is involved in two subsequences. The aim of the
algorithm is to associate one insertion vector to each contact zone by crossing adjacency and assembly information.

Fig. 13. A compatible insertion vector is found by intersecting the insertion constraints from the contact zones between the plate(s) to assemble and the plate(s)
already in place.

N. Rogeau et al.

Automation in Construction 130 (2021) 103875

9

necessary to rely on an existing library of geometric algorithms. The
parametrization of the half-lap joint is nevertheless detailed in Fig. 15.

For all timber joints, the solver splits the output into three lists: one
list of 3D solids to add to the plate geometry, another to subtract from
the plate, and the last one for independent solids such as external keys or
dowels (Fig. 16). The final geometry of each plate is obtained by per
forming Boolean operations with the solids of the first two lists (e.g.
tenons are merged with the plate initial geometry while mortises are
subtracted). However, those operations require a high computational
time. To keep fast feedback and enable an iterative process, the solver
keeps all joints as distinct geometries separated from the plate. When the
user is satisfied with the design, joints are ultimately merged within the
plate for visualization purposes.

5.2. Generating fabrication toolpath for CNC machining

The interest of developing an accurate 3D modeling tool for timber
joints in IATPS is to enable a direct workflow from design to fabrication.
The parameterization of each joint presented in this paper encompasses
creating a 3D solid for visualization purposes and polylines and surfaces
informing the milling process. This geometric data can be interpreted by
CAD-CAM software to generate a machining toolpath which can then be
exported to a CNC using a standard machine language as G-Code [39].
Although a CNC router allows cutting complex joints into standardized
timber panels, it also brings some constraints to the design mainly due to
axis reachability and cutting tools characteristics.

The “inside corner” problem is a well-known example of CNC
fabrication constraints (see Fig. 17a). Due to the circular cross-section of
CNC milling bits, it is impossible to cut sharp corners with a CNC. For
timber joints, this is typically problematic to fabricate a mortise
matching a rectangular tenon. To make both parts compatible, removing
a bit more material is necessary. This can be done by extending the
cutting toolpath to create notches in the corners. As those fabrication
details can impact both the structural performance and the aesthetic of
the connections, there is an interest in integrating them in an iterative
design workflow [4]. Consequently, the developed tool automates the

generation of those notches and updates the machining toolpath
accordingly. It also provides the possibility to choose between two al
ternatives: dog-bone fillets (Fig. 17b) or T-bone fillets (Fig. 17c) [40].

Other functionalities have also been developed to ease the manipu
lation of the 3D model. All plates can be scaled and reoriented inde
pendently with their attributes. They can also be automatically laid flat
in an array or a grid to visualize fabrication toolpath better or stacked on
top of each other to prepare robotic trajectories (see Section 5.3). Per
default, the bottom face of each plate is facing downward. However, the
top and bottom faces can be inverted by the user to specify the best
cutting approach for non-orthogonal machining (using more than three
axes).

The solver returns two types of outputs for fabrication purposes:
contours and surfaces. Contours are pairs of closed polylines that can be
interpolated to create multiple milling passes. The orientation of the
cutting tool is given by joining each pair of corresponding vertices from
the top polyline to the bottom polyline. Surfaces are typically used to
chamfer tenons (as illustrated in the appendix). The orientation of the
cutting tool is here given by the normal of the surface, and a snake-like
surfacing toolpath can then be generated according to the tool radius.

5.3. Generating robot trajectories for an automated assembly process

One objective of this research is to propose a general framework for
the automated assembly of timber plate structures. By splitting the as
sembly sequence into modules, groups of plates can be preassembled off-
site with an industrial robotic arm. A robotic insertion strategy for
timber joints based on the visual detection of fiducial markers has
already been detailed in a previous paper [41]. Therefore, only
geometrical considerations about the robot trajectories will be discussed
here. Tridimensional path planning usually requires a long computa
tional time as checking for object collisions is a complex task, and the
solution space is vast [42]. To enable fast feedback for designers, a more
straightforward approach was taken. A potential trajectory based on
nine predefined moves is extrapolated from the vector of insertion
associated with each plate (Fig. 18). The open-source plugin Robots [43]

Fig. 14. Five types of timber joints have been parametrized and can be generated with the solver.

N. Rogeau et al.

Automation in Construction 130 (2021) 103875

10

is then used to check if there are no obstructions and if the robot can
reach all positions. Note that other robotic simulation plugins could also
be used in function of the model of the robot. If necessary, the user can
tweak the trajectory with some additional parameters. The direction of
each movement is fixed but lengths can be modified. While this semi-
automated method eventually requires some manual adjustment, it

simplifies the assembly process using a predictive but parametric
trajectory.

6. Solver application and performance

The developed solver has been tested on different 3D models to

Fig. 15. Parametric construction of the half-lap joint as implemented in the solver. The use of solid Boolean operations to get the chamfer planes precluded a purely
mathematical description of the joint geometry. For the other joints, the equations can be found in the appendix.

Fig. 16. Joint geometry is stored as three lists of solids and kept separated from the plate geometry until the design is fixed. Solid Boolean operations allow
integrating the joints inside the plates to display the result.

N. Rogeau et al.

Automation in Construction 130 (2021) 103875

11

assess its performance. This section presents three structures for which
joints geometry, fabrication toolpath, and robotic trajectories have been
automatically generated. Further investigations are still required to
tackle the physical assembly of those structures with a robotic arm.
Major challenges remain to insert all types of joints with varying plate
configurations [41]. The purpose of those case studies is exclusively to
demonstrate the range of applications of the integrated design tool by
applying the solver on different geometries.

6.1. Case study 1: curved beam

For the first case study (Fig. 19), a 4-m-long curved beam made out of
18 timber panels was considered. Through-tenons joints were applied on
face-to-side contacts to connect the beam web with both flanges. The top
flange is more segmented, being composed of 7 panels to obtain a curved
shape. The bottom flange is composed of three longer panels. Therefore,

different parameters were used for the top and bottom layers. A single
10 cm wide tenon was generated for each contact zone in the top flange
while two tenons of 5 cm were used for the contact zones in the lower
flange. Finger joints were used for side-to-side connections in both
flanges. However, all contacts between web elements were discarded to
avoid assembly issues. Due to the angle between the top flange plates, a
slight chamfer needs to be surfaced on top of the fingers, as shown on the
bottom right of Fig. 19. The fabrication toolpath also includes dog-bone
notches for outer and inner milling curves. To simulate the robotic as
sembly of the structure, an ABB 6400 robot equipped with a gripping
end-effector was reproduced in the parametric environment. The tra
jectory of each plate was validated after adjusting the position of the
plate stack and the other parameters mentioned in the previous section.

Fig. 17. Integrating corner notches into fabrication toolpath.

N. Rogeau et al.

Automation in Construction 130 (2021) 103875

12

6.2. Case study 2: boxed vault

The second case study is a boxed vault composed of 20 hexagonal
modules of 7 plates (Fig. 20). A doubly-curved NURBS surface was first
segmented by projecting a hexagonal tiling pattern on it. Boxes were
then extruded by intersecting bisector planes from each mesh edge [44].
Boxes are slightly shifted about each other, as no optimization algorithm
was used to planarize the initial geometry. For this example, a modular
assembly sequence was set as input: each group of seven plates forms a
module to which a vector of insertion and a subsequence are assigned.
Regarding the joints, sunrise dovetails were applied on all edgewise
connections to connect the plates of the box, while dowel joints were
used to connect the boxes. Fig. 20 highlights how the solver not only
creates the joints geometry but also gives a complete overview of the
different steps of the construction process. This goes from the preview of

t-bone notches for the manufacturing process to the simulation of the
insertion of the different elements (here performed manually) for the
assembly of the structure.

6.3. Case study 3: timber frame

For the third case study, a modular assembly sequence was also used.
The structure is composed of two arches of 13 plates each and 21 purlins
(Fig. 21). In this scenario, both arches are preassembled with a robot
while the purlins are added manually. Therefore, the plates of the arches
are grouped in two distinct modules in the input sequence. Dowel joints
were generated at each face-to-face contact to create a rigid connection
between the pieces of the arches. Half-lap joints were used for the pur
lins with a guiding slope to ease the assembly and dog-bone notches in
the corners. Robotic trajectories have been generated for one of the arch

Fig. 18. The different steps of the robotic trajectory are similar for each plate. However, distances can be adjusted, and intermediary points can be added to work
around obstacles and avoid collisions.

Fig. 19. Application of the solver on a segmented curved beam made out of 18 panels.

N. Rogeau et al.

Automation in Construction 130 (2021) 103875

13

modules after scaling it down according to the size of our robot model.
The entire assembly sequence for this module was successfully simulated
using the output of the solver.

6.4. Computational performance

The performance of the solver is presented in Fig. 22 for the three
case studies. The computational time associated with each step of the
algorithm is detailed. Boolean operations remain the most computa
tionally intensive task, with more than 2 min required to merge the
joints and the notches of the complete boxed vault. The model instan
tiation also requires a consequent time to compute since finding all
contact zones relies also on Boolean operations. Besides, this part of the
algorithm runs in the order of n2 as each pair of plates needs to be tested.
Therefore, computing the adjacency of an assembly of a thousand plates
might take a considerable amount of time. However, only generating the
joints geometry remains quite fast. For the second case study, 1365
solids were generated in less than 5 s. This maintains the possibility to
explore different design options quickly before performing the Boolean
operations. The time needed to create a joint depends on its geometric
complexity. The simple cylinder of a dowel joint is typically much faster
to generate than a half-lap joint with rounded guiding slopes. It should
also be noted that working inside the Grasshopper environment requires
creating a new copy of the model instance before executing any task
which added between 1 and 2 s of delay to every step. Finally, it is rarely
necessary to work on the entire model at once. Only performing Boolean
operations on one plate or module greatly enhances the solver's
responsivity.

The solver was also tested in a workshop with architecture students
who had only very limited knowledge of parametric design. This was a
good opportunity for testing the user experience of the developed
Grasshopper plugin for non-experts. Surprisingly, students were rapidly
capable of designing relatively complex assemblies of a dozen plates.
The tool also proved to be particularly effective to explain and visualize
assembly constraints. The documentation of the potential sources of
error in the workflow was also greatly improved after students'
feedback.

7. Conclusion and outlook

An integrated design tool for timber plate structures connected by
wooden joints has been developed and tested on three case studies. It
offers an effective way to integrate digital fabrication and robotic as
sembly constraints into the design of standard and bespoke structures.
Compatible timber joints are automatically created by interpreting an
assembly sequence set by the user. This sequence can also be divided
into modules allowing a multi-step assembly. By generalizing the joinery
system, more freedom is given to the designer, and the impact of con
struction constraints on the project can be better understood. Besides,
this opens the possibility to easily extend the library of joints by
following the same framework.

The application of the algorithm to three case studies resulted in a
relatively high calculation time, especially for large assemblies. This is
caused mainly by three factors. First, the solver needs to look for all
contacts between the elements since no information about adjacency is
provided. Second, Boolean operations are computationally-intensive
tasks. Third, the Grasshopper environment requires creating a new
copy of all properties stored in the model at each step to avoid conflicts
when running parallel tasks. However, using this node-based visual
scripting platform, it is possible to complete the complex modeling of all
timber joints independently of the model instantiation. This drastically
reduces the delay between two iterations, maintaining a high level of
interactivity. Besides, it is not necessary to merge the joints with their
parent plate to visualize the joints. Boolean operations can therefore be
postponed after the end of the design process.

The solver could also be optimized to reduce calculation times. A list
of all adjacent plates could optionally be provided by the user in addi
tion to the assembly sequence, avoiding the need to compute plate in
tersections. If the global shape of the model is designed using a mesh
data structure, adjacency information could easily be transferred from
the mesh to the plate model. Finally, implementing external libraries
optimized for Boolean operations could also speed up the process.

The joinery solver could also be extended to beam elements or more
complex polyhedra. Similar logic to plates could be considered,
although plates have the advantage of having only two potential ori
entations, which reduces the amount of user input required. The current

Fig. 20. Application of the solver on a boxed vault composed of 20 hexagonal modules of 7 plates.

N. Rogeau et al.

Automation in Construction 130 (2021) 103875

14

framework targets translational assemblies with pieces moving accord
ing to one insertion vector. More complex insertion trajectories
involving rotations could also be considered.

In conclusion, this research constitutes a first attempt at generalizing
the design process of IATPS. While the computational performance of
the solver could still be improved, its application to three case studies
demonstrated the interest in connecting architectural design, digital
fabrication, and robotic assembly under one roof. Parallel investigations
have been carried on the mechanical characterization of such structures
[6], and a logical development would be to also integrate structural

feedback into this general design framework.
This contribution opens new perspectives for IATPS. The develop

ment of this new tool facilitates the manipulation of this innovative
structural system by architects and structural designers who are not
necessarily familiar with coding. Consequently, this fosters the shift in
the status of IATPS from iconic research pavilions to a more widespread
and highly automated building system that allows for both standardized
and bespoke structures.

Fig. 21. Application of the solver on a timber frame composed of two arches of 13 pieces each and 21 purlins.

Fig. 22. Computational time of each operation for each case study. Joints abbreviations: DJ = Dowel joint, TT = through-tenon joint, SD = Sunrise Dovetails, FJ =
Finger Joint, HL = Half-lap joint.

N. Rogeau et al.

Automation in Construction 130 (2021) 103875

15

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This research was supported by the NCCR Digital Fabrication, funded

by the Swiss National Science Foundation (NCCR Digital Fabrication
Agreement #51NF40-141853). The authors would like to thank Alex
andre Flamant for his contribution to the equations describing joints
geometry, and Dr. Julien Gamerro and Dr. Aryan Rezaei Rad for their
support in reviewing the paper.

Appendix A. Parametrization of the dowel joint

N. Rogeau et al.

Automation in Construction 130 (2021) 103875

16

N. Rogeau et al.

Automation in Construction 130 (2021) 103875

17

Appendix B. Parametrization of the through-tenon joint

N. Rogeau et al.

Automation in Construction 130 (2021) 103875

18

N. Rogeau et al.

Automation in Construction 130 (2021) 103875

19

Appendix C. Parametrization of the sunrise dovetail joint

N. Rogeau et al.

Automation in Construction 130 (2021) 103875

20

N. Rogeau et al.

Automation in Construction 130 (2021) 103875

21

Appendix D. Parametrization of the finger joint

N. Rogeau et al.

Automation in Construction 130 (2021) 103875

22

N. Rogeau et al.

Automation in Construction 130 (2021) 103875

23

References

[1] W. Tegel, R. Elburg, D. Hakelberg, H. Stäuble, U. Büntgen, Early neolithic water
wells reveal the world’s oldest wood architecture, PLoS One 7 (2012), https://doi.
org/10.1371/journal.pone.0051374.

[2] W. Graubner, Encyclopedia of Wood Joints, Chrysalis Books, 1992 (ISBN
9780713470918).

[3] T. Benson, Building the Timber Frame House: The Revival of a Forgotten Craft,
Touchstone, 1981 (ISBN 9781439107072).

[4] C.W.M. Robeller, Integral Mechanical Attachment for Timber Folded Plate
Structures, Ecole Polytechnique Fédérale de Lausanne, 2015, https://doi.org/
10.5075/epfl-thesis-6564.

[5] J. Gamerro, I. Lemaître, Y. Weinand, Mechanical characterization of timber
structural elements using integral mechanical attachments, in: World Conference
on Timber Engineering, Seoul, 2018, https://doi.org/10.5075/epfl-ibois-256646.

[6] A. Rezaei Rad, H. Burton, N. Rogeau, P. Vestartas, Y. Weinand, A framework to
automate the design of digitally-fabricated timber plate structures, Comp. Struct.
244 (2021), https://doi.org/10.1016/j.compstruc.2020.106456.

[7] A. Rezaei Rad, H.V. Burton, Y. Weinand, Macroscopic model for spatial timber
plate structures with integral mechanical attachments, J. Struct. Eng. 146 (2020),
https://doi.org/10.1061/(ASCE)ST.1943-541X.0002726.

[8] O.D. Krieg, T. Schwinn, A. Menges, J.-M. Li, J. Knippers, A. Schmitt, V. Schwieger,
Biomimetic lightweight timber plate shells: computational integration of robotic
fabrication, architectural geometry and structural design, in: Advances in
Architectural Geometry, London, 2014, pp. 109–125, https://doi.org/10.1007/
978-3-319-11418-7_8.

[9] T. Schwinn, D. Sonntag, T. Grun, J.H. Nebelsick, J. Knippers, A. Menges, Potential
applications of segmented shells in architecture, in: Biomimetics for Architecture,
Birkhäuser, 2019, pp. 116–125, https://doi.org/10.1515/9783035617917-015.

[10] H.J. Wagner, M. Alvarez, A. Groenewolt, A. Menges, Towards digital automation
flexibility in large-scale timber construction: integrative robotic prefabrication and
co-design of the BUGA Wood Pavilion, Construct. Robot. 4 (2020) 187–204,
https://doi.org/10.1007/s41693-020-00038-5.

[11] V.E. Tagliaboschi, Hexbox Canopy: A Rapid Assembly Segmented Timber Shell
with Wedge Joints, Università di Pisa, 2020, https://doi.org/10.13140/
RG.2.2.28481.10084.

[12] C. Robeller, V. Viezens, Timberdome: construction system for CLT-segmental plate
shells without screws, in: 24th International Timber Construction Forum, Garmisch
Partenkirchen, Germany, 2018. https://www.forum-holzbau.com/pdf/41_IHF201
8_Robeller_Viezens.pdf (accessed May 3, 2021).

[13] C. Robeller, N. Von Haaren, Recycleshell: wood-only shell structures made from
cross-laminated timber (CLT) production waste, J. Int. Assoc. Shell Spatial Struct.
61 (2020) 125–139, https://doi.org/10.20898/j.iass.2020.204.045.

[14] C. Robeller, J. Gamerro, Y. Weinand, Thétre Vidy Lausanne - a double-layered
timber folded plate structure, J. Int. Assoc. Shell Spatial Struct. 58 (2017) 295–314,
https://doi.org/10.20898/j.iass.2017.194.864.

[15] C. Robeller, M. Konakovic, M. Dedijer, M. Pauly, Y. Weinand, A double-layered
timber plate shell: computational methods for assembly, prefabrication, and
structural design, in: Advances in Architectural Geometry 2016, Zurich, 2016,
pp. 104–122, https://doi.org/10.3218/3778-4_9.

[16] W. Wang, D.-M. Yan, Y. Liu, D. Yan, B. Chan, R. Ling, F. Sun, Hexagonal Meshes
With Planar Faces, University of Honk Kong, 2008. https://www.researchgate.net/
publication/268324026 (accessed July 10, 2020).

[17] R. Mesnil, A re-parameterization approach for the construction of domes with
planar facets, J. Int. Assoc. Shell Spatial Struct. 59 (2018) 286–295, https://doi.
org/10.20898/j.iass.2018.198.016.

[18] H. Pottman, A. Asperl, M. Hofer, A. Kilian, Architectural Geometry, 1st ed., Bentley
Institute Press, Exton, 2007 (ISBN 9780934493045).

[19] A. Rossi, O. Tessmann, Collaborative assembly of digital materials, in: Proceedings
of the 37th Annual Conference of the Association for Computer Aided Design in
Architecture, Cambridge, 2017, pp. 512–521 (ISBN 9780692965061).

[20] Cadwork, Variant. https://www.cadwork.com/cwen/Modules/Variant-p
arametric, 2018 (accessed January 30, 2020).

[21] SEMA, Prefabrication, (n.d.). https://www.sema-soft.de/en/software/timber
-construction/prefabrication/ (accessed January 30, 2020).

[22] Lignocam, (n.d.). https://www.lignocam.com/index.php/fr/btlx (accessed
December 2, 2019).

[23] J. Hollander, MakerCase. https://www.makercase.com/, 2019 (accessed March 20,
2019).

[24] F. Heller, J. Thar, D. Lewandowski, M. Hartmann, P. Schoonbrood, S. Sophy,
S. Voelker, J. Borchers, CutCAD - an open-source tool to design 3D objects in 2D,
in: Proceedings of the Designing Interactive Systems Conference, Association for
Computing Machinery, Hong Kong, 2018, pp. 1135–1139 (ISBN 9781450351980).

[25] P. Baudisch, A. Silber, Y. Kommana, M. Gruner, L. Wall, K. Reuss, L. Heilman,
R. Kovacs, D. Rechlitz, T. Roumen, Kyub: a 3D editor for modeling sturdy laser-cut
objects, in: Proceedings of the Conference on Human Factors in Computing
Systems, Association for Computing Machinery, Glasgow, 2019 (ISBN
9781450359702).

[26] C. Zheng, E.Y.L. Do, J. Budd, Joinery: parametric joint generation for laser cut
assemblies, in: Proceedings of the Special Interest Group on Computer-Human
Interaction Conference on Creativity and Cognition, Association for Computing
Machinery, Singapore, 2017, pp. 63–74 (ISBN 9781450344036).

[27] M. Larsson, H. Yoshida, N. Umetani, T. Igarashi, Tsugite: interactive design and
fabrication of wood joints, in: Proceedings of the 33rd Annual Symposium on User
Interface Software and Technology, Association for Computing Machinery, 2020,
pp. 317–327 (ISBN 9781450375146).

[28] McNeel and Associates, Grasshopper - Algorithmic Modeling for Rhino, (n.d.). http
s://www.grasshopper3d.com/ (accessed February 9, 2021).

[29] C. Robeller, Y. Weinand, Interlocking folded plate – integral mechanical
attachment for structural wood panels, Int. J. Space Struct. 30 (2015) 111–122,
https://doi.org/10.1260/0266-3511.30.2.111.

[30] J.H. Mork, M. Luczkowski, S.H. Dyvik, B. Manum, A. Rønnquist, A parametric
toolkit for advanced timber structures, in: 6th Forum Wood Building Nordic,
Trondheim, 2017. https://www.researchgate.net/publication/332621926
(accessed March 2, 2020).

[31] T. Svilans, Integrated Material Practice in Free-form Timber Structures, Royal
Danish Academy of Fine Arts, 2020. https://adk.elsevierpure.com/en/publicati
ons/integrated-material-practice-in-free-form-timber-structures (accessed
February 9, 2021).

[32] VUILD Architects, EMARF. https://emarf.co/, 2021 (accessed February 9, 2021).
[33] Z. Wang, P. Song, M. Pauly, Desia: a general framework for designing interlocking

assemblies, in: Transactions on Graphics, Association for Computing Machinery,
2018, https://doi.org/10.1145/3272127.3275034.

N. Rogeau et al.

https://doi.org/10.1371/journal.pone.0051374
https://doi.org/10.1371/journal.pone.0051374
http://refhub.elsevier.com/S0926-5805(21)00326-5/rf0010
http://refhub.elsevier.com/S0926-5805(21)00326-5/rf0010
http://refhub.elsevier.com/S0926-5805(21)00326-5/rf0015
http://refhub.elsevier.com/S0926-5805(21)00326-5/rf0015
https://doi.org/10.5075/epfl-thesis-6564
https://doi.org/10.5075/epfl-thesis-6564
https://doi.org/10.5075/epfl-ibois-256646
https://doi.org/10.1016/j.compstruc.2020.106456
https://doi.org/10.1061/(ASCE)ST.1943-541X.0002726
https://doi.org/10.1007/978-3-319-11418-7_8
https://doi.org/10.1007/978-3-319-11418-7_8
https://doi.org/10.1515/9783035617917-015
https://doi.org/10.1007/s41693-020-00038-5
https://doi.org/10.13140/RG.2.2.28481.10084
https://doi.org/10.13140/RG.2.2.28481.10084
https://www.forum-holzbau.com/pdf/41_IHF2018_Robeller_Viezens.pdf
https://www.forum-holzbau.com/pdf/41_IHF2018_Robeller_Viezens.pdf
https://doi.org/10.20898/j.iass.2020.204.045
https://doi.org/10.20898/j.iass.2017.194.864
https://doi.org/10.3218/3778-4_9
https://www.researchgate.net/publication/268324026
https://www.researchgate.net/publication/268324026
https://doi.org/10.20898/j.iass.2018.198.016
https://doi.org/10.20898/j.iass.2018.198.016
http://refhub.elsevier.com/S0926-5805(21)00326-5/rf0090
http://refhub.elsevier.com/S0926-5805(21)00326-5/rf0090
http://refhub.elsevier.com/S0926-5805(21)00326-5/rf0095
http://refhub.elsevier.com/S0926-5805(21)00326-5/rf0095
http://refhub.elsevier.com/S0926-5805(21)00326-5/rf0095
https://www.cadwork.com/cwen/Modules/Variant-parametric
https://www.cadwork.com/cwen/Modules/Variant-parametric
https://www.sema-soft.de/en/software/timber-construction/prefabrication/
https://www.sema-soft.de/en/software/timber-construction/prefabrication/
https://www.lignocam.com/index.php/fr/btlx
https://www.makercase.com/
http://refhub.elsevier.com/S0926-5805(21)00326-5/rf0110
http://refhub.elsevier.com/S0926-5805(21)00326-5/rf0110
http://refhub.elsevier.com/S0926-5805(21)00326-5/rf0110
http://refhub.elsevier.com/S0926-5805(21)00326-5/rf0110
http://refhub.elsevier.com/S0926-5805(21)00326-5/rf0115
http://refhub.elsevier.com/S0926-5805(21)00326-5/rf0115
http://refhub.elsevier.com/S0926-5805(21)00326-5/rf0115
http://refhub.elsevier.com/S0926-5805(21)00326-5/rf0115
http://refhub.elsevier.com/S0926-5805(21)00326-5/rf0115
http://refhub.elsevier.com/S0926-5805(21)00326-5/rf0120
http://refhub.elsevier.com/S0926-5805(21)00326-5/rf0120
http://refhub.elsevier.com/S0926-5805(21)00326-5/rf0120
http://refhub.elsevier.com/S0926-5805(21)00326-5/rf0120
http://refhub.elsevier.com/S0926-5805(21)00326-5/rf0125
http://refhub.elsevier.com/S0926-5805(21)00326-5/rf0125
http://refhub.elsevier.com/S0926-5805(21)00326-5/rf0125
http://refhub.elsevier.com/S0926-5805(21)00326-5/rf0125
https://www.grasshopper3d.com/
https://www.grasshopper3d.com/
https://doi.org/10.1260/0266-3511.30.2.111
https://www.researchgate.net/publication/332621926
https://adk.elsevierpure.com/en/publications/integrated-material-practice-in-free-form-timber-structures
https://adk.elsevierpure.com/en/publications/integrated-material-practice-in-free-form-timber-structures
https://emarf.co/
https://doi.org/10.1145/3272127.3275034

Automation in Construction 130 (2021) 103875

24

[34] Y. Schwartzburg, M. Pauly, Fabrication-aware design with intersecting planar
pieces, Comp. Graph. Forum 32 (2013) 317–326, https://doi.org/10.1111/
cgf.12051.

[35] Python Software Foundation, Welcome to Python.org. https://www.python.org/,
2021 (accessed April 6, 2021).

[36] Robert McNeel & Associates, RhinoCommon API, (n.d.). https://developer.rhi
no3d.com/api/RhinoCommon/ (accessed January 31, 2020).

[37] D. Molloy, Chapter 1 - Introduction to Object-oriented Programming. http://ee402.
eeng.dcu.ie/introduction/chapter-1—introduction-to-object-oriented-progr
amming, 2020 (accessed April 29, 2021).

[38] S. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd ed.,
McGraw-Hill Book Company, New York, 1959 (ISBN 9780070647794).

[39] International Organization for Standardization, ISO 6983-1:2009, Automation
Systems and Integration, Numerical Control of machiNes, Program Format and
Definitions of Address Words, Part 1: Data Format for Positioning, Line Motion and
Contouring Control Systems. https://www.iso.org/standard/34608.html, 2009
(accessed April 6, 2021).

[40] N. Padfield, More Elegant CNC Dogbones, Fablab RUC. https://fablab.ruc.
dk/more-elegant-cnc-dogbones/, 2017 (accessed March 16, 2021).

[41] N. Rogeau, V. Tiberghien, P. Latteur, Y. Weinand, Robotic insertion of timber joints
using visual detection of fiducial markers, in: 37th International Symposium on
Automation and Robotics in Construction, Kitakyushu, Japan, 2020, pp. 491–498,
https://doi.org/10.22260/ISARC2020/0068.

[42] A. Gandia, S. Parascho, R. Rust, G. Casas, F. Gramazio, M. Kohler, Towards
Automatic Path Planning for Robotically Assembled Spatial Structures, in: Robotic
Fabrication in Architecture, Art and Design 2018, Zurich, 2018, pp. 60–73 (ISBN
9783319922942).

[43] V. Soler, Robots. https://github.com/visose/Robots/wiki, 2020 (accessed March
16, 2021).

[44] P. Vestartas, N. Rogeau, J. Gamerro, Y. Weinand, Modelling workflow for
segmented timber shells using wood-wood connections, in: Impact: Design With All
Senses - Proceedings of the 2019 Design Modelling Symposium, Berlin, 2020,
pp. 596–607, https://doi.org/10.1007/978-3-030-29829-6_46.

Glossary

Adjacency list: List of lists containing all neighbors of each cell of a graph.
Assembly sequence: List of integers describing in which order building components have to

be assembled. Integers can also be grouped in subsidiary lists to express intermediary
steps in a modular assembly process (see subsequence).

B-rep (Boundary representation): Solid represented by its envelope.
CNC (Computer Numerical Control) machine: Milling machine that can be controlled by a

computer to automate the cutting of flat panels allowing the realization of bespoke
structures from standardized elements.

Contact type: Topologic relation between two plates describing if two plates intersect each

other or are juxtaposed and, for the second case, which of their faces is in contact with
the other plate (e.g. if the top face of plate A is connected to a side face of plate B, the
contact type is labeled “Face-to-side”). The contact type has a direct impact on the type
of joints that can be created between both plates.

Contact vector: a local vector of insertion associated with a contact zone between two
plates. Contact vectors are determined in function of the contact type.

Contact zone: Planar surface resulting from the intersection of two juxtaposed plates.
Fabrication toolpath: Pair of curves representing the trajectory of a cutting tool. The lower

curve gives the position while the upper curve gives the orientation.
G-code: Standard programming language which can be interpreted by most CNC machine

to execute a fabrication toolpath.
IATPS (Integrally Attached Timber Plate Structures): Structure composed of standard timber

panels which are connected by timber joints. The joints are integrated into the shape
of the elements and prefabricated using a CNC machine.

Insertion domain: Set of vectors representing all possible directions to assemble two pieces.
Timber joints geometry constraints the insertion domain to certain directions of as
sembly. Insertion domains can be represented in the 3D space as pieces of spheres.

Insertion vector: Vector representing the direction of assembly of one element or one group
of elements (module).

Instantiation: In object-oriented programming, construction of a distinct object based on a
class containing specific methods and attributes. All class instances share the same
data structure but store different values.

IRA (Industrial Robotic Arm): Articulated robot composed of a chain of connected links
which can be programmed to perform actions similar to a human arm.

Plate (class): A python class that stores the plate geometry and other attributes such as the
plate contour, the plate thickness, and the geometry of the associated joints.

Plate (geometry): Closed polyhedron that has its two largest faces parallel to each other and
all its vertices trivalent. Each vertex of the top face should also be directly connected to
exactly one vertex of the bottom face and conversely.

Plate faces: Top and bottom faces of a plate, parallel to each other and larger than all other
faces.

Plate model: A Python class representing a collection of plates. The adjacency graph and the
assembly sequence are its main attributes.

Plate module: A Python class representing a portion of a plate model. In addition to the
model attributes, the module is characterized by a subsequence and a vector of
insertion.

Plate neighbor: Adjacent plate which shares a contact zone (surface or volume) with
another plate.

Plate sides: Faces which are forming the edges of the plates between the top and bottom
plate faces.

Robotic trajectory: Series of robot positions expressed as a list of frames.
Subsequence: Part of an assembly sequence defining the order of insertion for the plates of a

specific module in the plate model.
Timber joinery: Technique to connect two pieces of wood solely through their geometry

(form-closure) and without the use of mechanical (nails, screws) or chemical (glue)
fasteners.

N. Rogeau et al.

https://doi.org/10.1111/cgf.12051
https://doi.org/10.1111/cgf.12051
https://www.python.org/
https://developer.rhino3d.com/api/RhinoCommon/
https://developer.rhino3d.com/api/RhinoCommon/
http://ee402.eeng.dcu.ie/introduction/chapter-1---introduction-to-object-oriented-programming
http://ee402.eeng.dcu.ie/introduction/chapter-1---introduction-to-object-oriented-programming
http://ee402.eeng.dcu.ie/introduction/chapter-1---introduction-to-object-oriented-programming
http://refhub.elsevier.com/S0926-5805(21)00326-5/rf0170
http://refhub.elsevier.com/S0926-5805(21)00326-5/rf0170
https://www.iso.org/standard/34608.html
https://fablab.ruc.dk/more-elegant-cnc-dogbones/
https://fablab.ruc.dk/more-elegant-cnc-dogbones/
https://doi.org/10.22260/ISARC2020/0068
http://refhub.elsevier.com/S0926-5805(21)00326-5/rf0190
http://refhub.elsevier.com/S0926-5805(21)00326-5/rf0190
http://refhub.elsevier.com/S0926-5805(21)00326-5/rf0190
http://refhub.elsevier.com/S0926-5805(21)00326-5/rf0190
https://github.com/visose/Robots/wiki
https://doi.org/10.1007/978-3-030-29829-6_46

	An integrated design tool for timber plate structures to generate joints geometry, fabrication toolpath, and robot trajectories
	1 Introduction
	1.1 From traditional timber joints to Integrally Attached Timber Plate Structures (IATPS)
	1.2 Existing computational workflows for IATPS
	1.3 Existing computational design tools for timber joints

	2 Solver implementation and user interface
	2.1 Implementation of a new data structure
	2.2 User interface for iterative design workflows

	3 Solver inputs
	3.1 Hypothesis about the initial 3D model
	3.2 Assembly sequence and modular construction approach
	3.3 Insertion constraints for timber joints

	4 Solver algorithms
	4.1 Computing adjacency information from plate contacts
	4.2 Computing assembly steps from the assembly sequence
	4.3 Computing compatible insertion vectors for each plate and module

	5 Solver outputs
	5.1 Generating joints geometry
	5.2 Generating fabrication toolpath for CNC machining
	5.3 Generating robot trajectories for an automated assembly process

	6 Solver application and performance
	6.1 Case study 1: curved beam
	6.2 Case study 2: boxed vault
	6.3 Case study 3: timber frame
	6.4 Computational performance

	7 Conclusion and outlook
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Parametrization of the dowel joint
	Appendix B Parametrization of the through-tenon joint
	Appendix C Parametrization of the sunrise dovetail joint
	Appendix D Parametrization of the finger joint
	References

