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Abstract
In this thesis we explore uncertainty quantification of forward and inverse problems involving
differential equations. Differential equations are widely employed for modeling natural and
social phenomena, with applications in engineering, chemistry, meteorology, and economics.
Mathematical models of complex systems in these fields require numerical methods, which
introduce uncertainties in the outcome. Moreover, there has recently been a steep rise in the
availability of data, which also come with an uncertainty. Therefore, blending mathematical
models, data, and their respective uncertainties is nowadays of the utmost importance.

The first part of this thesis is dedicated to two novel methods for multiscale inverse problems.
We first consider an elliptic partial differential equation (PDE), with a diffusion tensor oscillating
at a small scale. Given noisy observations of the solution, we consider the problem of inferring
a slow-scale parametrization of the multiscale tensor. For this purpose, we combine numerical
homogenization, which yields a single-scale surrogate of the full model, and the ensemble Kalman
filter. The scheme we propose is accurate in the homogenized limit, and outperforms existing
methods in terms of computational cost. We then study the error due to the mismatch between
the full and the homogenized models, and show how to combine statistical techniques for model
misspecification and our scheme. We then move to multiscale diffusion processes, and consider the
problem of inferring effective dynamics from multiscale observations. A homogenized single-scale
equation reproducing the full model exists also in this case. The effective model, though, is
the subject of the inference procedure, and not only a computational tool. The resulting issue
of model misspecification is usually bypassed by subsampling at an appropriate rate, which is
non-trivial to choose, and which may give misleading results. We avoid subsampling by designing
a novel technique based on filtered data, and show how to modify classical estimators and obtain
an effective equation consistently with homogenization. Our technique is robust and can be
employed as a black-box tool for inferring effective surrogates of complex stochastic models.

In the second part we present two novel schemes belonging to the field of probabilistic numer-
ics, whose purpose is to provide a statistical description of the uncertainty due to numerical
discretization. We first consider ordinary differential equations (ODEs), and introduce a proba-
bilistic integrator based on random time steps and Runge–Kutta methods (RTS-RK). Tuning the
distribution of the time steps, we generate a probability measure on the solution which allows
for a consistent uncertainty quantification of numerical errors. Unlike previous probabilistic
methods in literature, our scheme inherits the geometric properties of the underlying deterministic
integrators. In particular, we show long-time energy conservation when the RTS-RK is applied to
Hamiltonian ODEs. We employ the idea of randomizing the discretization to propose a random
mesh finite element method (RM-FEM) for elliptic PDEs. We prove that the measure induced
by the RM-FEM on the solution can be employed to derive a posteriori error estimators. Hence,
the RM-FEM provides a consistent statistical characterization of numerical errors. For both our
novel schemes, we demonstrate the usefulness of the probabilistic approach in Bayesian inverse
problems.
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Key Words: Uncertainty quantification, Inverse problems, Multiscale differential equations,
Probabilistic numerical methods, Model misspecification.
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Sommario
L’argomento di questa tesi è la quantificazione dell’incertezza in problemi diretti e inversi per
equazioni differenziali. Le equazioni differenziali sono ampiamente utilizzate per la modellazione di
fenomeni naturali e sociali, con applicazioni in ingegneria, chimica, meteorologia ed economia. In
questi campi, si è registrato recentemente un forte aumento nella disponibilità di dati. Pertanto,
combinare i modelli matematici, i dati e le loro rispettive incertezze è oggi della massima
importanza. Inoltre, è spesso necessario impiegare metodi numerici per risolvere sistemi complessi,
il che introduce ulteriori incertezze nel risultato.

La prima parte è dedicata a due nuovi metodi per problemi inversi multiscala. Il primo problema
riguarda un’equazione ellittica alle derivate parziali (EDP), con un tensore di diffusione rapidamen-
te oscillante a una scala ε, e in particolare l’inferenza di una parametrizzazione lenta del tensore
multiscala date osservazioni corrotte della soluzione. L’omogeneizzazione numerica, che produce
un surrogato del modello completo, è combinata con il filtro di Kalman d’insieme. Lo schema
risultante è accurato nel limite ε→ 0, ed è computazionalmente vantaggioso rispetto a metodi
esistenti. L’errore dovuto al disallineamento tra il modello completo e quello omogeneizzato
è trattato con una tecnica statistica combinata in maniera ottimale con il nostro schema. Il
secondo problema concerne processi di diffusione multiscala e l’inferenza di dinamiche effettive
date osservazioni multiscala. Anche in questo scenario, esiste un’equazione omogeneizzata che
sintetizza il modello completo. L’equazione efficace, però, è l’oggetto dell’inferenza, e non uno
strumento di calcolo. Il problema di discordanza nel modello risultante è solitamente aggirato
campionando i dati a un tasso appropriato, che non è scontato da scegliere e che può dare risultati
fuorvianti. Il campionamento è aggirato tramite una nuova tecnica basata sul filtraggio dei
dati, che permette di ottenere un’equazione efficace coerente con l’omogeneizzazione. La tecnica
proposta è robusta e può essere impiegata in modo diretto per dedurre surrogati semplici di
modelli stocastici complessi.

La seconda parte è dedicata a due nuovi metodi numerici probabilistici, il cui scopo è caratterizzare
l’incertezza data dalla discretizzazione numerica in modo statistico. Il primo problema riguarda
equazioni differenziali ordinarie (EDO), per le quali è introdotto un integratore probabilistico
basato su passi temporali casuali e metodi Runge–Kutta (RTS-RK). Controllando la distribuzione
dei passi temporali, è possibile generare una misura di probabilità sulla soluzione che quantifi-
ca l’incertezza dovuta agli errori numerici. A differenza di precedenti metodi probabilistici in
letteratura, il metodo RTS-RK eredita le proprietà geometriche degli integratori deterministici
sottostanti. In particolare, l’energia è conservata per intervalli di tempo lunghi in EDO hamilto-
niane. L’idea di randomizzare la discretizzazione può essere utilizzata anche per EDP ellittiche,
per le quali è introdotto un metodo degli elementi finiti a maglia casuale (RM-FEM). La misura
indotta dal metodo RM-FEM sulla soluzione è impiegata per ricavare stimatori a posteriori
dell’errore. Il metodo RM-FEM fornisce quindi una caratterizzazione statistica consistente degli
errori numerici. Per entrambi i nuovi metodi, è dimostrata l’utilità dell’approccio probabilistico
nei problemi inversi bayesiani.
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Parole Chiave: Quantificazione dell’incertezza, Problemi inversi, Equazioni differenziali multi-
scala, Metodi numerici probabilistici, Discordanza di modello.

vi



Notation

Standard sets of numbers
N set of positive integers
R set of real numbers

Differentials
∇ gradient operator
∇· divergence operator
∆ Laplacian operator
∇2 Hessian operator

Functional spaces
Let D be an open domain of Rd, d a positive integers, and consider functions D → R.

Ck(D) space of k-times continuously differentiable functions
Lp(D) usual Lebesgue space with p ∈ [1,∞]
W k,p(D) usual Sobolev space with k ∈ N and p ∈ [1,∞]
Hk(D) Sobolev space W k,2(D)
H1

0 (D) closure in H1(D) of C∞(D) functions with compact support in D

Probability theory
Ω event space
(Ω,A) measurable space, also (Ω,F)
(Ω,A, P ) probability space, also (Ω,F , P )
B(H) Borel σ-algebra of a metric space H
X : Ω→ H with H a metric space and X measurable, H-valued random variable
µX : B(H)→ [0, 1] probability measure induced by random variable X : Ω→ H
a.s. almost surely. If A ∈ A and P (A) = 1 then A a.s.
Lp(Ω) Lebesgue space of p-integrable random variables defined on Ω

Acronyms
ODE ordinary differential equation
PDE partial differential equation
SDE stochastic differential equation
FEM finite element method
FE-HMM finite element heterogeneous multiscale method
MCMC Markov chain Monte Carlo
KL Karhunen–Loève as in KL expansion
BKE Backward Kolmogorov equation
FPE Fokker–Planck equation
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Introduction
The keyword in the title of this thesis – Probabilistic and Bayesian methods for uncertainty
quantification of deterministic and stochastic differential equations – is certainly “uncertainty
quantification” (UQ). The field of UQ is broad, and finds applications ranging in various and
diverse fields of natural and social sciences, such as geology, meteorology, oceanography, economics,
and medicine. In this thesis, we focus on forward and inverse UQ for differential problems and
their numerical solution.

Let us consider an input/output relation, that we will often call in this thesis a forward map. We
are especially interested here in forward maps which involve the solution of a deterministic or
stochastic differential equation. We then refer to forward UQ when we model the uncertainty
due to the approximations which are necessary to reproduce the forward map. Conversely, we
refer to inverse UQ in contexts of data assimilation, that is when we give a reconstruction of the
input of the forward map modeling a phenomenon given observations of its outcome.

It is customary to adopt a UQ approach for inverse problems. Indeed, inverse problems are
often ill-posed and corrupted by noise, which makes a UQ approach not only recommendable,
but almost indispensable. Moreover, with data-driven applications dominating nowadays most
fields of applied sciences, a statistical approach guarantees fast and reliable assimilation of data
into models for analytic and predictive purposes. We mainly consider in this thesis, and in
particular in Part I, inverse UQ for forward maps involving multiscale differential equations,
i.e., equations whose parameters vary on different and separated scales. In this field, it is often
possible to obtain a single-scale effective representation of the full multiscale problem, which
allows for fast evaluations of the otherwise prohibitively-expensive forward map. Additionally
to the corruption of the data and the ill-posedness, we therefore employ a UQ approach to deal
with the further difficulty stemming from the mismatch between the multiscale model and its
effective representation.

Forward UQ for deterministic differential problems is far less prominent in applied sciences. When
one is confronted with the problem of solving a differential equation, the common approach is to
apply the computationally cheapest numerical scheme to obtain a solution up to a tolerance in
its uncertainty. In this thesis, and in particular in Part II, we present two methods for forward
UQ belonging to the rapidly-emerging field of probabilistic numerics (PN), whose purpose is to
quantify the uncertainty due to approximate computations in a statistical manner, rather than
with traditional point estimates. The PN approach for deterministic forward problems can be
helpful in a wide range of applications, and especially when the output of the forward map serves
as the input for a subsequent problem in a complex system.

In the remainder of the introduction we present separately the two parts that compose this thesis.
For both parts, we follow the same strategy: first we present the general framework of the topic
of interest, then we give an overview of the state of the art and of the relevant literature, and
finally we conclude by outlining what are our main contributions.
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Introduction

Part I: Multiscale Inverse Problems and Parameter Inference
In the first part of the thesis we introduce methods to solve inverse problems featuring multiple
scales. Let X and Y be an input and an output space, respectively, let ε > 0 be a small real
number, which we call the scale-separation parameter, and let us call the forward map a function
Gε : X → Y depending on the scale-separation parameter ε. We are then interested in the solution
of inverse problems of the form

find u ∈ X given observations y = Gε(u) + β ∈ Y, (1)

where β is a possibly degenerate Y -valued random variable modeling observational noise. Solving
(1) engenders two main difficulties. First, the inverse problem (1) is ill-posed. Indeed, a possible
mismatch between the dimension of the input and output spaces and the randomness of the noise
prevent to define a unique solution u ∈ X to (1). Ill-posedness is traditionally circumvented by
employing some form of regularization or by recasting the problem in a Bayesian framework [131].
The second difficulty is due to the multiscale essence of the problem. In particular, we are
interested in forward models Gε which are highly-oscillatory at a small scale ε and which require
a numerical routine to be evaluated. The level of refinement in the numerical discretization is
constrained by the smallest scale ε, which in many applications leads to a severe increment in
computational cost. In the settings we consider in the following, the model summarized by the
forward map Gε can be replaced by a surrogate G0, which approximates Gε when ε is small, and
which is cheaper to evaluate numerically. Such a surrogate model can have two roles: either one
employs G0 as a computational tool to solve the inverse problem and retrieve the full multiscale
model, or one can desire to directly fit the cheaper surrogate to the given multiscale data, thus
obtaining a well-calibrated simple model for prediction purposes. In both scenarios, though, we
are confronted with a problem of model misspecification. Indeed, in the first case we have to deal
with the difference between Gε and G0 in the computational process that leads to the solution
of (1), while in the second case we have to make sure that the inferred simple model is a valid
surrogate for the full observed phenomenon.

An Inverse Problem Involving Multiscale PDEs. Let us be more specific and introduce
the first inverse problems which we treat in the first part of the thesis. Given a d-dimensional
domain D ⊂ Rd, we consider the elliptic partial differential equation (PDE)

−∇ · (Aεu∇pε) = f, in D,
pε = 0, on ∂D,

(2)

for a given force term f : D → R and for an elliptic diffusion tensor Aεu : D → Rd×d, highly
oscillatory at a micro scale of characteristic size ε. We suppose that the macro and micro scales
in the tensor Aεu are clearly separated, and in particular that it holds

Aεu(x) = A
(
u(x), x

ε

)
,

for a function A : R×R→ Rd×d which is periodic in its second argument. In Fig. 1 we represent
graphically an example of such a tensor, and its associated solution pε of (2). In particular, we
consider D = (0, 1)2, the force f = 1 in D, and

u(x) = 1− 9
10 sin(2πx1) sin(2πx2),

Aεu(x) =
(

1 + cos
(

2x1

ε

)2
+ cos

(
2x2

ε

)2
)
u(x) I,

where I is the identity matrix on R2 and where we fix ε = 1/16. The inverse problem we are
interested in is then to retrieve the function u, controlling the macro-scale variations of Aεu,
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Figure 1 – Example of a multiscale elliptic PDE of the form (2). On the left, the function u
controlling the slow-scale variations of the diffusion field Aεu, given in the center. On the right,
the solution pε of (2).

given a discrete set of observations derived from the solution pε. Summarizing, we can write
the problem in the form (1) by considering Gε(u) = O(pε), where pε depends on u through the
PDE (2) and where O : pε 7→ y is a given observation operator. Assuming the scale-separation
parameter ε and the map (t, x) 7→ A(t, x/ε) to be known, solving this inverse problem thus allows
to retrieve the full multiscale diffusion tensor.

As we will see in the remainder of this thesis, solving inverse problems of the form (1) often involves
evaluating the forward map Gε on several values u ∈ X, and therefore in this specific instance
solving the PDE (2) multiple times. Unfortunately, in order to obtain convergent approximations
of the solution pε it is necessary to discretize the domain D at a level of refinement which allows
to resolve Aεu at its micro scale ε. In practice, if we have a computational mesh of D with
characteristic size h, then we need to impose h� ε. This numerical constraint clearly leads to
an unbearable computational cost in case ε� |D|, which is a realistic scenario in a wide range of
applications. Fortunately, the theory of homogenization [22, 34] comes to our aid, and guarantees
that there exists an elliptic single-scale tensor A0

u such that the solution p0 of the PDE

−∇ ·
(
A0
u∇p0) = f, in D,

p0 = 0, on ∂D,
(3)

is the weak limit of the solution pε of (2) for ε→ 0. Therefore, in case ε� |D| we can replace the
full model (2) by the homogenized equation (3), which can be solved numerically with reasonable
computational resources. In particular, given a multiscale tensor Aεu, there exist numerical
schemes such as the finite element heterogeneous multiscale method (FE-HMM) [2,5] which allow
to approximate the homogenized tensor A0

u and thus the solution p0 of (3). Hence, the forward
map Gε can be replaced in (1), too, by the homogenized forward map G0 : u 7→ O(p0), where O is
the same observation operator as above, and where the dependence of p0 on u is defined through
(3). It is then interesting to study what are the effects of employing the cheaper surrogate G0

instead of the full model Gε in the solution of the inverse problem.

On top of the mathematical relevance per se of the topic introduced above, inverse problems
involving multiscale PDEs are central in several applied fields, such as thermal engineering,
geology, and medical sciences. Electrical impedance tomography [30], a technique for non-invasive
medical imaging and underground inspection among others, is one of the uttermost applications.
In this case, the operator O : pε 7→ y yields discrete observations of the outwards flow of pε
on portions of the boundary ∂D of the domain, and the inverse problem follows Calderón’s
mathematical formulation [27].
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Parameter Inference for Multiscale SDEs. The second problem we consider involves the
d-dimensional multiscale Itô stochastic differential equation (SDE)

dXε
t = −∇V (Xε

t ) dt− 1
ε
∇p
(
Xε
t

ε

)
dt+

√
2σ dWt, Xε

0 = x ∈ Rd, (4)

where we call V : Rd → R the slow-scale confining potential, the function p : Rd → R the fast-scale
potential, which we assume to be periodic, where σ > 0 is the diffusion coefficient and where Wt

is a d-dimensional standard Brownian motion. Equation (4) describes the motion of a particle,
whose position is given by the stochastic process Xε

t , subject to the multiscale potential

Vε(x) = V (x) + p
(x
ε

)
,

and perturbed by a source of Brownian noise. Let us remark that the SDE (4) is often referred
to in literature as an overdamped Langevin equation. The multiscale structure of this problem
is unveiled by introducing the rescaled process Y εt := Xε

t /ε, so that (4) can be rewritten as the
system

dXε
t = −∇V (Xε

t ) dt− 1
ε
∇p (Y εt ) dt+

√
2σ dWt, Xε

0 = x

dY εt = −1
ε
∇V (Xε

t ) dt− 1
ε2∇p (Y εt ) dt+

√
2σ
ε2 dWt, Y ε0 = x

ε
.

The variations of the fast component Y εt of the system above are then one order of magnitude
faster – with respect to the scale-separation parameter ε – than those of the slow component
Xε
t . In Fig. 2 we show the multiscale potential Vε(x) = x2/2 + sin(x/ε), where ε = 1/10, and a

realization of the corresponding stochastic process Xε
t , generated on the time interval 0 ≤ t ≤ 100,

given an initial condition Xε
0 = 4 and for a diffusion coefficient σ = 0.4. Loosely speaking, the

process Xε
t drifts towards the global minimum of the potential Vε, jumping out of its local minima

due to the Brownian term.

Similarly to the multiscale PDE (2), simulating one or multiple trajectories of the process Xε
t up

to some final time T > 0 can lead to unbearable computational cost in case ε� T . Again as in
the PDE case, the theory of homogenization applies to the SDE (4) and it is possible to obtain
coarse-grained models approximating the solution when ε is small. Let us narrow our interest to
multiscale SDEs of the form (4) with the potential V given by

V (x) =
N∑
i=1

αiVi(x), (5)

where N is a positive integer and where for i = 1, . . . , N the coefficients αi are scalars and the
functions Vi : Rd → R are independent of the scale-separation parameter ε. In this setting, there
exists a matrix K ∈ Rd×d such that the solution X0

t of the SDE

dX0
t = −

N∑
i=1

αiK∇Vi(X0
t ) dt+

√
2σK dWt, X0

0 = x, (6)

where Wt is the same d-dimensional Brownian motion as in (4), is the weak limit of Xε
t for

ε→ 0 [22, Chapter 3]. Let us remark that the concept of weak convergence is different in the
SDE and the PDE cases. Indeed, in PDEs the weak limit is meant in a functional sense, whereas
here the homogenization result holds in a probabilistic manner.

In this setting, we are interested in the inverse problem of determining the effective drift coefficients
Ai := αiK of the homogenized SDE (6) given observations from the full multiscale model (4). In
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Figure 2 – Example of a multiscale SDE of the form (4). On the left, the multiscale potential Vε,
in this case given by Vε(x) = x2/2 + sin(x/ε). On the right, a realization of the solution Xε

t of
(4) for 0 ≤ t ≤ 100.

particular, we consider data in the form of a continuous trajectory Xε := (Xε
t , 0 ≤ t ≤ T ) of the

solution of (4) up to a final time T > 0. Denoting by α ∈ RN the vector of the drift coefficients
appearing in (5), the forward model could be written as Gε : α 7→ Xε, where Xε depends on α
through (4). Let us remark that due to the presence of Brownian noise, the forward model itself
is random. Denoting by A = {Ai}Ni=1 the coefficients Ai = αiK of (6), the inverse problem then
reads

find A given observations Xε = Gε(α), (7)

where with a slight abuse of notation we confound the random variable Xε and one of its
realizations. This inverse problem only partly fits into the definition (1). Indeed, the parameter
we infer does not coincide with the one that we suppose to generate the observations, and we are
confronted with a problem of model misspecification. Moreover, we assume to observe exactly
the path Xε, i.e., the noise β in (1) to be degenerate.

Efficient parameter estimation for stochastic models is essential in a wide range of applications
in natural and social sciences. In several areas, the data originate from phenomena which vary
continuously in time and which are endowed with a multiscale structure, and therefore fit the
setting introduced above. This is the case, for example, in molecular dynamics, oceanography
and atmosphere science or in econometrics. In all those areas, extracting from data a simple
effective equation which describes the dominant slow dynamics is paramount, and leads to cheap
models which can be employed for analysis and prediction.

Comparison of the two Problems. The two problems we introduced above are similar: both
involve a multiscale differential equation and both hint at the theory of homogenization, at
some stage. We could therefore say that the two settings belong beneath the wide umbrella
of “multiscale inverse problems”. There are though some differences, both in spirit and in
mathematical formulation, which we highlight in the following.

The first fundamental difference is the role of the homogenized model. In the inverse problem
involving PDEs, the effective equation (3) is a computational tool. Indeed, the full multiscale
equation is in some situations impossible to solve numerically, and employing the single-scale
model is eventually the only viable alternative. Conversely, in the SDE setting the object of
interest of the inference procedure is the effective equation (6) itself. In fact, problem (7) can
be interpreted as an instance of data-driven homogenization: the coarse-grained model is not
deduced analytically or numerically, but via an inference procedure. In any case, in both scenarios
we have to deal with an issue model misspecification and account for the difference between the
multiscale and homogenized equations when solving the inverse problem.
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Another difference, more related to the mathematical formulation of the two problems, is related
to dimensionality. The unknown u of the PDE inverse problem has to be identified in an
infinite-dimensional space from finite-dimensional noisy information, whereas in the SDE case
we are interested in inferring a finite set of coefficients given infinite-dimensional observations.
Hence, while the former is an instance of a non-parametric inverse problem, the latter could
be referred to as a parameter inference problem in a statistical context, instead of an inverse
problem. Nevertheless, taking the limit for N →∞ in the sum appearing at the right-hand side
of (5) and choosing {Vi}i≥1 to be the basis of a functional space X would bring us back to an
infinite-dimensional setting. Still, the limit for N →∞ entails theoretical difficulties that we do
not address in this thesis, and we thus only have considered a truncated sum in (5). Since N
is arbitrary in our analysis, though, the setting we consider lays between the fully parametric –
where N is fixed – and the non-parametric – where N =∞ – cases, and is therefore referred to
in literature as semi-parametric.

Literature Review. The issue of model misspecification in the context of inverse problems
involving multiscale PDEs has already been considered in the literature. In particular, it has
been shown that it is possible to infer a coarse-grained equation from data coming from the full
model and to retrieve, in the large data limit, the correct result [100]. The papers [3, 4] focus
instead on the same inverse problem which is presented above, i.e., on retrieving the slow-scale
parametrization of the multiscale coefficient, and hence the full model. In particular, in the
paper [3] the authors solve the issue of ill-posedness of the inverse problem by applying Tikhonov
regularization, whereas in [4] they adopt a Bayesian approach for the same purpose. Let us
moreover remark that the issue of model misspecification in PDE-driven inverse problems is an
active area of research regardless of the multiscale setting. We cite [28,29], where the authors
propose statistical techniques to treat the modeling error as an additional source of random noise.
Estimating the statistics of the modeling error and blending them with those of the observational
noise, they are able to solve effectively inverse problems such as the one we consider here, with
a special regard to applications in electrical impedance tomography. Let us furthermore notice
that the techniques of [28, 29] have already been successfully applied as a black-box tool in [3] to
multiscale inverse problems involving elliptic PDEs.

In the context of multiscale SDEs, the effect of model misspecification was studied in a series
of papers [17,18,56,57,109,111,112] under the assumption of scale separation. We notice that
all these contributions are particularly centered on simple applications in molecular dynamics
(see e.g. [84] for a review). In particular, for Brownian particles moving in two-scale potentials
it was shown that, when fitting data from the full dynamics to the homogenized equation, the
maximum likelihood estimator (MLE) is asymptotically biased [112, Theorem 3.4]. To be more
precise, in the large sample size limit, the data remains consistent with the multi-scale problem at
small scale. Ostensibly this would seem related only to the estimation of the diffusion coefficient.
However, because of detail balance, it also has the effect that the MLE for the drift in a parameter
fit of a single-scale model, incorrectly identifies the coefficient of the homogenized equation. The
bias of the MLE can be eliminated by subsampling at an appropriate rate, which lies between
the two characteristic time scales of the problem [112, Theorems 3.5 and 3.6].

Similar techniques can be employed in econometrics, in particular for the estimation of the
integrated stochastic volatility in the presence of market microstructure noise. In this case, too,
the data have to be subsampled at an appropriate rate [14,104]. The correct subsampling rate can,
in some instances, be rather extreme with respect to the frequency of the data itself, resulting in
ignoring as much as 99% of the time-series. As the intuition suggests, this increases significantly
the variance of the estimator, which is usually taken care of with additional bias corrections
and variance reduction procedures. The need of such methodology is accentuated by data being
obtained at high-frequency [13,146]. Moreover, the problem of extracting large-scale variations
from multiscale data is studied in atmosphere and ocean science. In this field, too, subsampling
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the data is necessary to obtain an accurate coarse-grained model [40,145].

The necessity to subsample the data can be alleviated by using appropriate martingale estimators,
as was done in [72, 81]. This class of estimators can be applied to the case where the noise
is multiplicative and also given by a deterministic chaotic system, as opposed to white noise.
Estimators of this family have been applied to time series from paleoclimatic data and marine
biology and augmented with appropriate model selection methodologies [82].

In case the data consists of discrete observations and not of continuous samples from the SDE
solution, it is possible to employ estimators based on a spectral decomposition of the generator
of the SDE. Methodologies of this kind have been applied successfully to inference problems for
single-scale SDEs [44, 45, 78], for jump diffusions [46], as well as for multiscale SDEs [47]. A
technique that combines filtered data and a spectral decomposition of the generator for multiscale
SDEs has been developed recently in [11].

Inference of diffusion processes can be naturally performed under a Bayesian perspective. If
one focuses on the drift coefficient, the form of the likelihood function guarantees, under a
Gaussian prior hypothesis, that the posterior distribution is itself a Gaussian. The versatility of
the Bayesian approach in the infinite-dimensional case [49,131] gives the possibility to extend the
study of inferring the drift of a diffusion process to the non-parametric case [115,116].

Main Contributions. In the first part of this thesis, we introduce two novel methodologies
for multiscale inverse problems. In particular, our main focus is alleviating the issue of model
misspecification which affects both the PDE and the SDE models presented above, and which is
due to the mismatch between the multiscale and the homogenized equations. We remark that
the two methods are based respectively on our articles [9] and [8].

The first contribution of this thesis is a novel scheme based on numerical homogenization and
on the ensemble Kalman filter (EnKF) to solve inverse problems for multiscale PDEs such as
(2). The EnKF, first introduced in [53], is a Monte Carlo approximation of the standard Kalman
filter [73], and is widely employed in the engineering community for the estimation of the state of
partially-observed dynamical systems governed by a nonlinear agent. Let us consider discrete
dynamics of the form

zn+1 = Ξ(zn), (8)

where zn ∈ Z for a vector space Z and where Ξ: Z → Z is a nonlinear map. Assume that
incomplete and corrupted observations of zn are available in the form yn = Hzn + βn in another
vector space Y , for a linear function H : Z → Y and for a source of noise βn. Then, the EnKF
proceeds by updating recursively an ensemble of particles in Z, such that at time n the ensemble
summarizes statistically the knowledge on the state zn. In particular, the prediction of the
ensemble blends at each update the dynamics (8) with observations in a Bayesian-like procedure.
Kalman filters have long been used successfully in meteorology, oceanography and automation
applications.

In [68], the authors propose the application of the EnKF method to obtain a point-wise solution
to inverse problems involving PDEs. The technique they introduce, which they call ensemble
Kalman inversion (EKI), is based on an appropriate definition of the space Z and of the dynamics
(8) above, which are then employed to create a collection of replicas of approximate solutions of
the inverse problem (1). The advantages of the EKI with respect to other techniques for inverse
problems are twofold. First, it is possible to control the number of evaluations of the forward map
by parallel computations. Second, the empirical measure induced by the ensemble of particles
allows to fit the EKI into the Bayesian paradigm for the solution of (1) [125].

In this thesis, specifically in Chapter 2, we combine the well-established techniques of homog-
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enization and the EKI to build a novel scheme for solving multiscale inverse problems in an
efficient and reliable manner. Inspired by [3, 4], we first replace the expensive multiscale PDE (2)
with its homogenized surrogate (3), which is simultaneously computed and solved numerically
via the FE-HMM. We then apply the EKI employing such a cheap numerical and homogenized
approximation of the PDE model, thus benefiting from both the computational savings of ho-
mogenization – in the discretization of the PDE – and of the EKI – in the solution of the inverse
problem. We present a rigorous analysis of this novel numerical scheme, both from a point-wise
and from a Bayesian perspectives, and prove results of convergence in the homogenization regime,
i.e., when the scale-separation parameter ε vanishes, and with respect to the refinement of the
FE-HMM.

A further original contribution presented in Chapter 2 consists of combining our new method and
the statistical techniques of [28, 29] for assimilating modeling error into inverse problems. Let us
remark that these techniques had already been applied in [4] to the multiscale setting. Here, we
prove two novel results which allow to quantify the minimal number of solves of the full model so
that the modeling error is approximated to a desired accuracy. These results are of the uttermost
importance, since they apply to cases when 0 � ε � |D|, i.e., for “mid-range” values of the
scale-separation parameter, where the homogenization result does not hold in practice, and where
the full model is still too expensive to be employed. In other words, we can tackle in this case
the issue of model misspecification without renouncing to neither accuracy nor computational
efficiency.

The second contribution of this thesis is a methodology based on filtered data for efficient
estimation of the effective drift parameter of multiscale SDEs such as (4). As it is highlighted
in the literature review above, most methods for avoiding the biasedness in the inference which
is caused by model misspecification are based to some extent on subsampling, which has been
proven to be successful on a wide range of applications. Still, subsampling the data presents
some difficulties and issues which are arduous to circumvent. Indeed, the subsampling width
should be chosen, as stated above, between the slow and the fast characteristic time scales of
(4), but no clearer indication is given by the theory to this regard. In practice, the inference
results are extremely sensitive to the subsampling width, which undermines the robustness of
this method. Moreover, the scale-separation parameter ε may not be known in advance, which
makes it impossible to fix a priori a subsampling rate which accounts correctly for the model
misspecification. Finally, subsampling may lead to estimators featuring a high variance due to
the great amount of data that is discarded in the process.

In this thesis, and in particular in Chapter 4, we bypass subsampling by designing a methodology
based on filtered data. Let us consider for simplicity equation (4) in the one-dimensional case,
so that Xε

t is a scalar-valued stochastic process. We then consider a kernel k : R→ R and the
process

Zεt :=
∫ t

0
k(t− s)Xε

s ds, (9)

that is, the truncated convolution between the kernel k and the process Xε
t . We consider in

particular k to be a low-pass filter of the exponential kind, e.g., the function

k(t) = 1
δ

exp
(
− t
δ

)
, (10)

where δ > 0 is the filtering width, is a valid kernel function. Indeed, the analysis presented in
Chapter 4 is mainly developed for the kernel (10), but we nevertheless demonstrated through
numerical experiments the effectiveness of a wider class of filters. The convolution above acts
as a smoother, eliminating the fast oscillations of the original trajectory, and can be computed
in a computationally cheap fashion. In the language of signal processing, we pass the original
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Figure 3 – Filtered trajectory Zεt with an exponential kernel k in (9), from 0 ≤ t ≤ 100 on the
left and a zoom for the interval 40 ≤ t ≤ 60 on the left. The original trajectory Xε

t is the same
as Fig. 2.

trajectory Xε
t through a linear time invariant low-pass filter. We show in Fig. 3 the effect of

this filtering procedure by choosing the kernel (10) and the same trajectory as the one shown
in Fig. 2. We then combine the original trajectory Xε

t and its filtered version Zεt into a novel
estimator for the drift of the homogenized equation.

The main theoretical result we present in Chapter 4 consists of showing that our novel estimator
is asymptotically unbiased for the estimation of the drift of the homogenized equation (6). In
particular, we show that the smoothing width δ of the filter (10) can be alternatively tuned to
be proportional to the speed of the slow process or to smaller scales and provide in both cases
unbiased results. We furthermore provide sharp estimates on the minimal width with respect to
the multiscale parameter.

The problem of drift estimation can be naturally recast into a Bayesian framework. If no pre-
processing of the data is applied the posterior distribution on the unknown is asymptotically
biased, i.e., it shrinks towards the wrong value in the limit of infinite data and for vanishing ε.
By carefully replacing the filtered trajectory Zεt of (9) into a modified likelihood function, we
are able to propose a corrected Bayesian computation which allows to get a correct estimation,
asymptotically, and a homogenization-aware uncertainty quantification in the pre-asymptotic
regime.

The advantages of our filtering approach with respect to subsampling are made evident by a series
of numerical experiments on academic test cases. In particular, we show how the filtering width δ
in (9), as well as the other parameters of the filter, play a much milder role in the inference result
than does the subsampling width. This seems to be particularly accentuated when estimating a
multi-dimensional parameter, i.e., when N > 1 in (5). Hence, the methodology we propose is not
only theoretically justified, but seems to outperform existing techniques in terms of robustness
and accuracy, and can therefore be employed as a black-box tool for parameter estimation of
multiscale diffusion processes.

Part II: Probabilistic Methods for Differential Equations
In the second part of the thesis we present two novel methods for differential equations belonging
to the field of probabilistic numerics (PN). Recycling the notation we employed above, let X and
Y be an input and an output space, which we assume to be Banach spaces once equipped with
the norms ‖·‖X and ‖·‖Y , respectively, and let G : X → Y be a forward map. In particular, we
focus in this part on scenarios where evaluating G involves the solution of a differential equation.
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In this case, it is often necessary to resort to numerical approximations in order to evaluate
the forward map. Let h > 0 denote the characteristic size of the discretization employed in
the numerical approximation of the differential equation. Then, we denote by Gh : X → Y the
surrogate numerical forward map, which should satisfy the minimal requirement

lim
h→0
‖G(x)− Gh(x)‖Y = 0,

for all x ∈ X. Moreover, it is possible in a wide range of situations to find a function ψ : R→ R
with ψ(h)→ 0 when h→ 0, often a polynomial, such that

‖G(x)− Gh(x)‖Y ≤ C(x,G(x))ψ(h), (11)

where C is a bounded positive function of input and output. Results of this form are fundamental
and guarantee the good approximation of G by Gh in the asymptotic regime of h→ 0. Nevertheless,
in several situations the combination of a point-wise approximation Gh and of a convergence result
of the form (11) may not be sufficient. A notable examples of such a situation is given by chaotic
differential equations, for which the constant C(x,G(x)) in (11) may behave unpredictably over
the space X. A further example is given by scenarios in which the map G is part of a pipeline
of computations, and the output of the approximate map Gh has to be employed as the input
of a subsequent computation. In this case, it may be complicated, impossible, or insufficient
to transmit to the receiver the information contained in (11). The value Gh(x) could then be
employed with absolute certainty, thus leading to an overconfident and possibly biased solution
of the subsequent analysis. A typical example of computational pipelines for which applying
blindly a numerical approximation may lead to overconfident solutions is given by Bayesian
inverse problems, where the posterior distribution over the parameter of interest could be biased
and “thin” regardless of the quality of the approximation.

Probabilistic numerical methods provide a solution to the issues illustrated above. In particular,
all methods belonging to the field of PN share the idea of replacing the numerical forward map Gh
by a forward map G̃h, which more or less directly induces a probability distribution on Y which
reflects the quality of the numerical approximation. In some cases, the random forward map G̃h
is obtained as the combination of a classical numerical method and of random variables which
are injected to account for uncertainty. In other cases, the function G̃h builds deterministically a
probability measure – often belonging to a parameterized family – on the space Y . The output
of the method is therefore not only a point endowed with an estimate such as (11), but a full
probability measure, which can be pushed through pipelines of computations such as Bayesian
inverse problems.

Motivation. Before introducing the probabilistic methods we treat in this thesis, let us give
concrete examples motivating the need for PN.

We first consider the Lorenz system [91], which is defined by the following ordinary differential
equation (ODE)

y′1 = η(y2 − y1), y1(0) = −10,
y′2 = y1(ρ− y3)− y2, y2(0) = −1,
y′3 = y1y2 − βy3, y3(0) = 40.

(12)

It is well-known that for ρ = 28, η = 10, β = 8/3, this equation has a chaotic behaviour, i.e.,
the solution is extremely sensitive to small perturbations. Integrating numerically (12) the error
which is introduced at each time step is indeed a perturbation, thus any numerical solution
cannot be considered reliable. We force a chaotic behavior by introducing random perturbation
on the initial condition, implemented as a scalar Gaussian random variable ε ∼ N (0, σ2) and
artificially added to the first component y1(t) at time t = 0. In Fig. 4 we show M = 20 numerical
trajectories given by a second-order Runge–Kutta method for three different scales of the noise.
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Figure 4 – First component y1(t) of the solution of (12) with decreasing zero-mean Gaussian pertur-
bations on the initial condition from top to bottom (with standard deviation σ = 10−1, 10−3, 10−5,
respectively).

It is possible to remark that in each case, the numerical solutions almost coincide up to some
time t̄, thus diverging and unveiling the chaotic nature of the Lorenz system. It could be argued
that up to time t̄, the numerical solution offers a reliable approximation of the true solution as
the dynamics have not yet switched to the chaotic regime. Still, by reducing the perturbation on
the initial condition we delay the moment when numerical solutions diverge, and it is therefore
unclear from a single trajectory what the time t̄ is in practice. It is therefore not recommended to
rely on a numerical approximation for a chaotic problem, and introducing a probability measure
over the solution of the Lorenz system could be advantageous.

As we stated above, problems of Bayesian inference are most often employed to justify the
usefulness of probabilistic methods for differential equations. The impact of a probabilistic
component in the numerical approximation of inverse problems involving differential equations
has been presented in several works [32, 36, 37, 39, 87, 101]. Let us give here a proof-of-concept
example, which helps us to hint explicitly at the beneficial effect of the probabilistic approach.
We consider the simple inverse problem

find x ∈ Rn given observations y = Ax+ β ∈ Rm, (13)

where n and m are positive integers, where A ∈ Rm×n is a non-singular matrix, and where
β ∼ N (0,Γ) is a Gaussian source of noise, with Γ a positive-definite covariance on Rm. With the
notation introduced above, we have X = Rn, Y = Rm and the exact forward map G(x) = Ax.
Given a scalar h > 0, we then consider the naif numerical method which is given by the forward
map Gh(x) = (1 + h)Ax. Clearly, we have for all x ∈ Rn

‖G(x)− Gh(x)‖2 ≤ h ‖Ax‖2 ,

where ‖·‖2 is the Euclidean norm on Rm, and the method fits the framework of (11). We
furthermore consider, for the same h > 0, the probabilistic numerical method which is given by
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Truth x∗ Mean Eµ[x] Confidence Interval

Figure 5 – Posterior distribution for (13) associated to the exact, numerical and probabilistic
forward models. The true value of the unknown x∗ is shown together with the posterior mean
(dashed black line) and with a 95% confidence interval (shaded gray area).

the random forward map G̃h(x) = (1 + h)Ax+ hξ, where ξ ∼ N (0, I) is a Rm-valued standard
Gaussian random variable. Let us remark that for all x ∈ Rn it holds∥∥∥E [G̃h(x)

]
− G(x)

∥∥∥
2
≤ h ‖Ax‖2 ,

E
[∥∥∥G̃h(x)− G(x)

∥∥∥2

2

]1/2
≤
√

2h
(
E
[
‖ξ‖22

]1/2
+ ‖Ax‖2

)
=
√

2h
(√

d+ ‖Ax‖2
)
,

(14)

where E denotes expectation with respect to the random variable ξ. In this case, as we will detail
in Chapter 6, we say that the method is of first weak and mean-square order of convergence,
respectively. Let us return to the inverse problem (13). In the Bayesian framework, we set a prior
distribution µ0 on the unknown x, that we assume to be a Gaussian µ0 = N (m0, C0), and then
update it to obtain a posterior measure µ by conditioning on the observations y ∈ Rm. In this
linear and Gaussian case, the true posterior – i.e., associated to the true forward map G – is a
Gaussian µ = N (m,C), where

C−1 = A>Γ−1A+ C−1
0 ,

m = C
(
A>Γ−1y + C−1

0 m0
)
,

(15)

and where we recall that Γ is the covariance of the noise. Details on how the posterior is obtained
in this linear case are given e.g. in [131, Example 6.23]. We now consider the numerical forward
map Gh, and notice that Gh(x) = Ahx, where Ah = (1 + h)A is an approximation of the matrix
A. The posterior µh associated to Gh is therefore a Gaussian µh = N (mh, Ch), where mh and Ch
are obtained by replacing A with Ah in the formulas (15). Finally, we consider the probabilistic
forward map G̃h, and remark that replacing in (13) we obtain

y = G̃h(x) + β = Gh(x) + hξ + β.

Under the reasonable assumption that ξ and β are independent random variables, we therefore
have the model y = Gh(x) + βh, where βh ∼ N (0,Γh) and where Γh = Γ + h2I is the modified
covariance of the noise. Hence, the posterior µ̃h = N (m̃h, C̃h) associated to the probabilistic
forward model is obtained by computing m̃h and C̃h with (15) replacing A with Ah and Γ with
Γh. Let us consider an example. We fix n = m = 99 and choose the matrix A ∈ Rn×n as

A = (n+ 1)2

 2 −1
−1 2 −1

. . . . . . . . .

 ,
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i.e., the finite difference discretization of the negative second derivative on (0, 1) with an equal
spacing of 1/(n+ 1) and with Dirichlet homogeneous boundary conditions. We then fix the true
value x∗ ∈ Rn of the unknown to be given component-wise by

(x∗)i = −1
6 ti(t

2
i − 1), ti = i

n+ 1 , i = 1, . . . , n,

and generate synthetic observations y = Ax∗ + β, where β ∼ N (0,Γ) and Γ = 10−2I. We
then consider the non-informative prior µ0 = N (0, I), fix h = 0.3 and compute the posterior
distributions µ, µh and µ̃h on Rn associated to the true forward map G, to its numerical
approximation Gh and to the probabilistic map G̃h, respectively. Results are given in Fig. 5,
where we notice that the exact posterior µ is almost unbiased and the true value lays within a
95% confidence interval. Indeed, the problem is fairly simple, and it is possible to expect the true
posterior to be precise and confident. Conversely, the posterior µh is clearly biased in the mean,
and one can notice how despite this biasedness the posterior is overconfident about the inference
result. This is the issue that the PN approach is designed to solve. Indeed, applying the naive
probabilistic method associated to the forward map G̃h yields a posterior µ̃h which is still biased
in the mean, but whose underconfidence on the result clearly helps quantify the uncertainty due
to the numerical approximation.

A third motivation for the field of PN, which has been relatively overlooked in the literature, is
the design of probabilistic a posteriori error estimators for differential equations. An a posteriori
error estimator for the numerical approximation Gh(x) is a quantity Eh which is computable
without knowledge of the true solution G(x), and which gives information about the numerical
error. We say moreover that if it holds

ClowEh ≤ ‖G(x)− Gh(x)‖Y ≤ CupEh, (16)

then the estimator is reliable (upper bound) and efficient (lower bound), respectively. The
constants Clow and Cup may depend on x ∈ X, that is, on the data, but not on the true output
G(x) itself. If a quantity Eh satisfying (16) is available, then it is possible to control the quality of
the numerical approximation and often to adapt the discretization in order to achieve an optimal
scheme. Quantifying numerical errors is one of the overt goals of the PN community, and, in
our opinion, it is therefore relevant to employ the statistical information given by probabilistic
methods to build a posteriori error estimators. The design and analysis of such an error estimator
for PDEs is presented in Chapter 8, and introduced with the main contributions below.

Literature Review. Despite the relative young age of the field, there have been several
contributions to the literature of PN. We notice that the contributors to PN come from different
backgrounds, such as numerical analysis, statistics, machine learning, and optimization, and
that as a consequence the literature is diverse. In particular, several problems of linear algebra,
optimization, numerical quadrature, and differential equations have been reinterpreted under a
probabilistic perspective. We give here an overview of the literature on probabilistic methods for
ODEs and PDEs, and we refer the reader to the articles [38, 65, 102] for a complete review of the
other fields of application of PN.

For ordinary differential equations (ODEs), the methodologies can be roughly split in two different
areas. In [32, 76, 77, 92, 126,127,129,137] the authors present a series of schemes which rely in
different measure on Bayesian filtering techniques. These methodologies proceed by updating
Gaussian measures over the numerical solution with filtering formulae and evaluations of the
right-hand side of the ODE, which are interpreted as observations. While being not involved
computationally, analyzing the convergence properties of this class of methods is not always
possible, and one can only marginally rely on standard techniques for this purpose. A valuable
effort in this sense can be found in [77], where the authors show rates of convergence of the
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mean of the Gaussian measure towards the exact solution. A different approach is presented in
the series of works [39,86,134,135], where the authors propose probabilistic schemes which are
based on perturbing randomly the approximate solution and on letting evolve these perturbations
through the dynamics of the ODE. In this manner, it is possible to obtain empirical probability
measures over the otherwise deterministic numerical solution. In particular, an appropriate
random perturbation can be directly added to the state at each step of the time integration, as
it was presented and analyzed for one-step methods in [39, 85, 86], with a particular focus on
implicit schemes in [134] and for multistep methods in [135].

There has been a keen interest from the PN community on developing probabilistic numerical
solvers for partial differential equations (PDEs), too [32, 36, 37, 39, 58, 101, 106–108, 118, 119].
In [36], the authors present a meshless Bayesian method for PDEs, which they then apply to
inverse problems in [37], and in particular to a challenging time-dependent instance drawn from
an engineering application in [101]. Their methodology consists of imposing a Gaussian prior
on the space of solutions, thus updating it with evaluations of the right-hand side, which are
interpreted as noisy observations. A similar idea has been presented in [32], where the main focus
are time-dependent problems, and in [118,119], where the method is recast in the framework of
machine learning algorithms. In [107,108], a probabilistic approach involving gamblets is applied
to the solution of PDEs with rough coefficients and by multigrid schemes, with a particular
interest to reducing the complexity of implicit algorithms for time-dependent problems [108].
Moreover, in [106] the author presents a Bayesian reinterpretation of the theory of homogenization
for PDEs, which can be seen as a contribution to the field of PN. To our knowledge, the only
perturbation-based finite element (FE) probabilistic scheme for PDEs is presented in [39], where
the authors randomize FE bases by adding random fields endowed with appropriate boundary
conditions, thus obtaining an empirical measure over the space of solutions. By tuning the
covariance of these random fields, they obtain a consistent characterization of the numerical error,
which can then be employed to solve Bayesian inverse problems and to quantify the uncertainty
over their numerical solution.

Main Contributions. In the second part of this thesis, we introduce two novel probabilistic
methods, respectively for ODEs and PDEs, both based on a randomization of the discretization.
In the ODE setting, our main focus is geometric integration. In particular, the probabilistic
method we propose is tailored for ODE systems endowed with a certain geometric structure, such
as the conservation of polynomial first integrals of motion or Hamiltonian systems. In the PDE
setting, we consider an elliptic equation and present probabilistic a posteriori error estimators,
demonstrating that statistical information on the numerical solution can be readily employed for
mesh adaptation. We remark that the two methods are the subject of our articles [6] and [7],
respectively.

In Chapter 7 we introduce a probabilistic method for the autonomous ODE on Rd

y′(t) = f(y(t)), y(0) = y0, (17)
where d is a positive integer, the right-hand side f : Rd → Rd and y0 ∈ Rd is a given initial
condition. We consider moreover one-step Runge–Kutta (RK) approximations of the solution of
(17), which, given a time step h > 0, read for n = 1, 2, . . .

yn = ψh(yn−1),
where the function ψh : Rd → Rd is the numerical flow of the RK method and where yn ≈ y(nh).
The numerical flow is built to mimic the exact flow of (17), i.e., the function ϕt : Rd → Rd
such that y(t) = ϕt(y0). The first PN method based on perturbations of traditional numerical
scheme is the additive-noise Runge–Kutta method (AN-RK) proposed in [39] and further analyzed
in [85,86]. In particular, the AN-RK proceeds as

Yn = ψh(Yn−1) + ξn,
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where ξn are appropriately scaled independent and identically distributed (i.i.d.) Gaussian
random variables and where Yn ≈ y(nh) in the weak and mean-square sense of (14). By tuning
the random variables ξn, it is possible to prove that the random perturbations are on the one
hand not spoiling the convergence properties of the underlying RK method and on the other
hand capturing the numerical errors in a statistical sense. The method is moreover shown to be
applicable with success to inference problems where the right-hand side f of (17) is parameterized
by some unknown parameter.

Despite its favorable properties in forward and inverse UQ, the AN-RK lacks in some applications
of robustness and accuracy. Indeed, an additive noise contribution could produce disruptive
effects on favorable geometric features of the underlying RK method. A direct example of this
non-robust behavior is given by ODEs for which the solution is supposed to stay positive and
small. In this case, the addition of a random contribution could force the solution in the negative
plane, hence the numerical solution could be physically meaningless and numerically unstable.
Chemical reactions with small population size for one species at some time of the evolution are
typical physical examples. Moreover, quantities which are invariant on the solution of the ODE
(17) and on appropriately-chosen RK surrogates are not conserved by the AN-RK solution, always
due to the random additive source of noise. This is a critical limitation for the AN-RK, since a
large variety of physical phenomena are modeled by dynamical systems which are in some sense
geometric.

Motivated by these issues, we introduce the random time step Runge–Kutta method (RTS-RK) a
novel probabilistic method for ODEs based on a random selection of the time steps. The RTS-RK
builds a sequence of random variables employing the numerical flow ψh of a RK method and the
recursion

Yn = ψHn(Yn−1),

where Hn are appropriate i.i.d. random variables all with mean E [Hn] = h for some fixed h > 0,
and where, again, Yn ≈ y(nh). Hence, the randomness artificially injected in the RK method is
in the RTS-RK intrinsic to the scheme itself, in contrast to the AN-RK. The first property of the
RTS-RK we analyze is its convergence. Indeed, we prove that the RTS-RK converges to the true
solution y of (17) in the weak and the mean-square senses, similarly to the AN-RK. The RTS-RK
method is moreover more robust than the AN-RK in case the solution of the ODE should be
constrained to a set due to the physics of the problem. For these reasons, the RTS-RK has been
successfully applied to ODEs arising in neuroscience, such as the Hodgkin–Huxley model, in [103].

The main advantage of the RTS-RK with respect to the AN-RK, as well as to other methods for
ODEs in the PN literature, is its favorable geometric properties. Let us consider an ODE of the
form (17) and such that there exists Q : Rd → R, which we call an invariant or first integral of
the ODE, such that Q(y(t)) = Q(y(0)) for all t ≥ 0. The first geometric property we consider
concerns the exact conservation of first integrals, i.e., numerical solutions such that Q(yn) = Q(y0)
for all n = 1, 2, . . .. If Q is a linear function, then it is conserved by any RK method. This is
notably important for ODEs modeling chemical reactions, where the total mass of the system is
conserved. If Q is quadratic, then there exist RK methods which conserve exactly Q along the
numerical trajectories. Most importantly, the class of Gauss collocation RK methods conserve
quadratic first integrals. A typical example of systems with quadratic first integrals are found in
astronomy, where planetary systems conserve the total angular momentum. In these situations,
we are able to prove that if a RK method exactly conserves a first integral Q, so does the RTS-RK
based on the same numerical flow map, in a path-wise sense, while the AN-RK does not.

We then consider Hamiltonian systems, which are employed for modeling a variety of physical
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phenomena, and which can be written for an energy function Q : R2d → R as the ODE on R2d

y′ = J−1∇Q(y), y(0) = y0, J =
(

0 I
−I 0

)
, (18)

where y0 ∈ R2d is a given initial condition. The energy Q is then a first integral, meaning that it
is conserved on the solution y of (18). Moreover, the exact flow ϕt of (18) is symplectic, which
means that for all y ∈ R2d it holds

Dyϕt(y)>JDyϕt(y) = J, (19)

where Dyϕt is the Jacobian of ϕt and J is the same matrix as above. Geometrically, a symplectic
flow map ϕt has the property of preserving volumes in the state space. If the numerical flow map
ψh of a RK method satisfies (19) when it is applied to a Hamiltonian system, we say that the RK
method is symplectic. Symplectic methods are widely employed for Hamiltonian systems because
the numerical solution they provide approximately conserves the energy Q over exponentially
long times, which in turn implies a good approximation of the solution over the same time span.
A necessary condition for the approximation property, though, is that the time step is kept
constant over the time integration. In the probabilistic setting, we consider the RTS-RK built on
a symplectic integrator, and first show that the flow map associated to the RTS-RK is almost
surely symplectic. We then consider the long-time approximation of the energy function, and
show that Q is approximately conserved by the RTS-RK over polynomially long times. The
importance of this result is twofold. First, it implies that the RTS-RK method inherits the
favorable geometric properties of its deterministic counterpart, and therefore truly quantifies the
uncertainty due to numerical discretization. Second, independently of the probabilistic paradigm,
it implies that the condition of having a fixed time step to achieve long-time conservation of the
energy can be relaxed to an appropriate sequence of random time steps. This, to our knowledge,
was previously unknown in the literature.

To conclude, we apply the RTS-RK to inference problems involving Hamiltonian ODEs, and
demonstrate the advantages of adopting a probabilistic approach combined with a geometry-aware
integrator in this context. Indeed, employing e.g. the AN-RK for such a problem would introduce
an unreasonable bias in the solution due to the lack of symplecticity of its flow.

In Chapter 8 we introduce a probabilistic finite element method (FEM) for the elliptic PDE

−∇ · (A∇u) = f, in D,
u = 0, on ∂D,

(20)

where A : D → Rd×d is the diffusion coefficient, and f : D → Rd the force term. Similarly to
the ODE case and the RTS-RK, we build a probability measure on the numerical solution by
perturbing randomly the discretization itself, which in the PDE setting is a mesh of the domain
D. We then call our probabilistic method the random mesh finite element method (RM-FEM). In
particular, denoting by Vh a linear finite element space based on a mesh Th of D with characteristic
size h > 0, we consider a perturbation T̃h of the mesh, obtained by moving the vertices of Th
randomly in an appropriate fashion, and the random finite element space Ṽh which is built on the
mesh T̃h. We then construct a probabilistic approximation of the solution u of (20) by computing
alternatively either the RM-FEM solution ũh ∈ Ṽh or the RM-FEM interpolant Ĩuh ∈ Ṽh, where
Ĩ : Vh → Ṽh is an interpolation operator, and where uh is the FEM solution on Vh.

Keeping in mind the fundamental goal of PN, i.e., giving a statistical characterization of numerical
errors, we consider the problem of employing probabilistic methods to build a posteriori error
estimators for the problem (20). Indeed, for the RTS-RK and other PN methods it is possible to
show that the solution converges in the weak and mean-square senses of (14) with the same rate
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as the deterministic method they are built on. This is a consistency result, and does not imply
in practice that the error can be effectively controlled, or described in a statistical manner, by
the probabilistic approach. Some forms of adaptivity for nonlinear ODEs based on probabilistic
information can be found in [25,31,127], where the arguments are based on heuristics but are
not rigorously analyzed. Employing the RM-FEM, we are able to construct a posteriori error
estimators which can be readily employed for mesh adaptation in elliptic PDEs, and which are the
main contribution of Chapter 8. Our estimators are entirely based on probabilistic information,
are simple to compute and do not entail considerable computational cost. We present an analysis
in the one-dimensional case that shows that our error estimators based on the RM-FEM are
equivalent to a classical estimator by Babuška and Rheinboldt [19], which employs the jumps of
the derivative of the solution at the nodes to quantify the numerical errors. Our one-dimensional
theoretical analysis is complemented by a series of numerical experiments confirming the validity
of our theory in higher dimensions.

Similarly to the RTS-RK in the ODE case, and to other methods in the field of PN, we show
via numerical experiments the usefulness of the RM-FEM in the context of Bayesian inverse
problems. In particular, we consider elliptic PDEs of the form (20), where the diffusion coefficient
A is unknown and has to be retrieved through discrete observations of the solution u. We show
that the solution of the inverse problem is consistent asymptotically with respect to the mesh
spacing, and that its quality is enhanced if the latter is relatively large, i.e., if the forward model
is approximated cheaply.

Outline
The thesis is divided in two parts. Part I is made of Chapters 1 to 5, and Part II is made of
Chapters 6 to 9. We remark that Chapters 2, 4, 7 and 8 contain the original contributions of this
thesis.

In Chapter 1 we introduce inverse problems and their Bayesian interpretation. We notice that
there exist several introductions to inverse problems in the literature, most notably [49,71, 131].
Since inverse problems are the main topic of Part I and they partly motivate Part II, we set
nonetheless our notation and state basic results in this thesis.

In Chapter 2 we present the multiscale ensemble Kalman inversion for elliptic PDEs. After a
general introduction on Kalman and ensemble Kalman filtering, we present the multiscale setting
and results of convergence. We conclude with a novel quantitative characterization of classical
approximations of the modeling error, and with numerical experiments.

In Chapter 3 we introduce multiscale diffusion processes and the problem of extracting effective
diffusions from multiscale data. In particular, we report a proof of the homogenization result in
this context, together with properties of maximum likelihood estimators for the drift coefficient.

In Chapter 4 we present a new framework based on filtered data for fitting effective diffusions
to multiscale observations. In particular, we show that applying a low-pass filter to the data
allows to circumvent the model misspecification and to infer models which are consistent with
the theory of homogenization.

In Chapter 5 we draw our conclusions for Part I and present possible directions of future research.

In Chapter 6 we give a general introduction to the field of probabilistic numerics. We focus
on defining the desired properties of a probabilistic method, and show how the PN approach
can be combined with the Bayesian paradigm to enhance the solution of inverse problems. We
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particularize the discussion by giving examples of ODE solvers taken from recent literature.

In Chapter 7 we present the RTS-RK, a probabilistic Runge–Kutta method for ODEs based on
random time steps. An extensive theoretical analysis covers properties of convergence, geometric
integration and robustness, which are further demonstrated by a series of numerical examples.

In Chapter 8 we present a probabilistic FEM based on random meshes, the RM-FEM. The main
focus of the chapter is deriving a posteriori error estimators based on statistical information
drawn from the probabilistic solution. In particular, we show that our estimators are equivalent
to classical estimators in the literature, which may open the door for further developments in PN.

In Chapter 9 we draw our conclusions for Part II and present possible directions of future research.
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This first part of the thesis is devoted to inverse problems involving deterministic and stochastic
multiscale problems.

Inverse problems are the main topic of this first part of the thesis and are as well partly covered
in its second part. Therefore, we give in Chapter 1 a general introduction to inverse problems and
their Bayesian interpretation. Inverse problems are generally ill-posed in the infinite-dimensional
setting, and need therefore to be regularized. The Bayesian approach indeed allows to regularize
the problem and to simultaneously obtain a full quantification of the uncertainty over its solution,
which is achieved introducing probability measures over the unknown.

Chapter 2 is devoted to the application of the ensemble Kalman filters (EnKF) to elliptic multiscale
inverse problems, which is one of the main original contributions of this thesis. In particular, we
combine numerical homogenization techniques and the EnKF to provide effective solutions to
inverse problems involving rapidly-oscillating tensors, both pointwise and in a Bayesian fashion.
Neither the application of the EnKF nor the introduction of homogenization tools are novelties in
the literature on inverse problems. Nevertheless, we successfully combine these two methodologies
and demonstrate the validity and efficiency of our approach via a careful convergence analysis
and numerical experiments, thus providing a reliable tool for the simulation and the uncertainty
quantification of multiscale phenomena.

In Chapter 3 and Chapter 4 we present a novel methodology for the estimation of the drift
coefficient of multiscale stochastic processes of the diffusion type. Unlike elliptic partial differential
equations, where homogenization theory translates seamlessly to inverse problems, in the context
of diffusion processes one has to recur to additional treatments of the multiscale data in order to
fit an effective model. We present in detail in Chapter 3 the reasons why homogenization theory
is not sufficient to obtain a correct solution of the multiscale inverse problem in this setting.
In particular, we focus on both a maximum-likelihood and hence pointwise approach, and on
the solution of the inference problem in the Bayesian sense. Our novel contribution is given in
Chapter 4, where we present a methodology based on filtering the data which allows to obtain
efficiently and robustly an effective solution to this multiscale inverse problem. In particular,
comparing our approach with the widely-employed technique of subsampling shows numerically
the advantages of our method.

Finally, in Chapter 5 we draw our conclusions and give suggestion for possible future developments.

Let us remark that a reader interested mainly in stochastic multiscale models could skip Chapter 2
without compromising the understanding of Chapters 3 and 4. If this reading strategy is adopted,
we suggest nevertheless to at least skim through Chapter 1 in order to get acquainted with our
notation.
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1 An Introduction to Bayesian
Inverse Problems

In this short chapter we introduce inverse problems and their Bayesian interpretation. Besides
being of the uttermost relevance in several areas of applied sciences, inverse problems are one of
the leitmotifs of this thesis, and in this chapter we provide a common framework for the remainder
of this manuscript. Standard references for inverse problems and their Bayesian interpretation
are [49,71,131,132]. Throughout the chapter, we point the reader to relevant references which are
specific to the treated subject. Let us remark that some phrasings employed here are borrowed
from our original research articles [6, 7, 9].

The outline of this chapter is as follows. After introducing in Section 1.1 the general framework,
we give in Section 1.2 details on finite-dimensional approximations of infinite-dimensional inverse
problems. We conclude with a discussion on Markov chain Monte Carlo methods in Section 1.3.

1.1 The Bayesian Interpretation of Inverse Problems

Let X and Y be Banach spaces, with associated norms ‖·‖X and ‖·‖Y . Let us moreover consider a
map G : X → Y , which we call the forward map. We suppose that quantities in Y are observable
up to a source of noise, whereas those in X are not. To be precise, we consider the observational
model

y = G(u) + η, (1.1)

where for simplicity we assume the source of noise η to be Gaussian, and in particular η ∼ N (0,Γ),
with Γ a valid covariance operator on Y . We then suppose to be given observations y∗ ∈ Y and
we consider the inverse problem

find u∗ ∈ X given observations y∗ = G(u∗) + η, (1.2)

where η ∼ N (0,Γ) is an unknown realization of the noise, and where u∗ ∈ X is the true value of
the unknown, which we wish to retrieve. The inverse problem (1.2) above is ill-posed for two
reasons. First, due the source of noise it is not possible to identify u∗ exactly. Indeed, given
any u ∈ X, one can obtain y∗ by claiming the noise to be given by η = y∗ − G(u). Second, the
dimension of the spaces X and Y can present a mismatch, e.g., with X being infinite-dimensional
and Y ≡ RL, so that the problem is naturally ill-posed. Indeed, in practice it is oftentimes the
case that the observation space Y is finite-dimensional, whereas the space X of the unknown
is an infinite-dimensional function space. For this reason, we choose for simplicity to identify
Y ≡ RL and consider therefore observations to be finite-dimensional. Furthermore, we have that
the observational covariance Γ ∈ RL×L, and we consider again for simplicity Γ to be positive
definite.
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Chapter 1. An Introduction to Bayesian Inverse Problems

Adopting a Bayesian approach allows to regularize and therefore to solve (1.2). In the Bayesian
framework, the object of interest are not point values in the spaces X, but probability measures
which express prior and posterior knowledge of the unknown u. In particular, let us consider
a probability measure µ0 on the measurable space (X,B(X)), where B(X) denotes the Borel
σ-algebra on X, which encapsulates all the knowledge on the unknown which is known a priori,
and that we refer to as the prior in the following. For simplicity, we consider the prior to be
a Gaussian measure µ0 = N (m0, C0), where m0 ∈ X and where C0 is a covariance operator
on X. A broader class of prior measures could be employed, such as Besov or heavy-tailed
measures (see e.g. [49, 133]), but we restrict ourselves to the Gaussian case for simplicity. We
then compute a probability measure µy on (X,B(X)) which summarizes the knowledge on the
unknown conditional on observations y ∈ RL. The measure µy is called the posterior and its
Radon–Nykodim derivative with respect to the prior (see Section A.2) is formally given by

dµy
dµ0

(u) = 1
Zy

exp(−Φ(u; y)), (1.3)

where Zy is the normalization constant

Zy =
∫
X

exp(−Φ(u; y)) dµ0(u), (1.4)

and where for any y ∈ RL the potential Φ(·; y) : X → R is given due to the Gaussian assumption
on the noise by

Φ(u; y) = 1
2

∥∥∥Γ−1/2 (G(u)− y)
∥∥∥2

2
, (1.5)

where ‖·‖2 denotes the Euclidean norm on RL. The well-posedness of (1.3) is subject to
conditions on the forward map G and on the prior measure µ0. Minimal sets of assumptions in
various scenarios are treated extensively in [49, 131]. We consider here the following assumption
(see [131, Assumption 2.7]) which is sufficient if Y is finite-dimensional case.
Assumption 1.1. The forward map G : X → RL satisfies

(i) For all β > 0 there exists C1 = C1(β) ∈ R such that for all u ∈ X∥∥∥Γ−1/2G(u)
∥∥∥

2
≤ exp

(
β ‖u‖2X + C1

)
;

(ii) For all R > 0 there exists C2 = C2(R) > 0 such that for all u1, u2 ∈ X satisfying
max{‖u1‖X , ‖u2‖X} < R it holds∥∥∥Γ−1/2 (G(u1)− G(u2))

∥∥∥
2
≤ C2 ‖u1 − u2‖X .

In words, the first assumption above guarantees exponential boundedness of the forward operator,
whereas the second requirement is that of G to be Lipschitz. Let us stress that Assumption 1.1
is an assumption on the forward map, and does not involve the inversion procedure. Under
Assumption 1.1 and if µ0 is a valid Gaussian probability measure on X, the posterior is indeed
given by (1.3), and the inverse problem is well-posed and Lipschitz with respect to the data in
the Hellinger metrics dHell, which for two probability measure ν1 and ν2 on (X,B(X)) reads

dHell(ν1, ν2) :=

√√√√1
2

∫
X

(√
dν1

dν0
−
√

dν2

dν0

)2

dν0,

where ν0 is a probability measure on X such that ν1 � ν0 and ν2 � ν0 (see Section A.2). This is
formalized by the following result (see [131, Corollary 4.4] for a proof).
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Proposition 1.2. Let Assumption 1.1 hold, and let µ0 be a Gaussian measure on X such that
µ0(X) = 1. Then, the posterior µy given in (1.3) exists and is unique. Moreover, for all R > 0
there exists C = C(R) such that for all y1, y2 ∈ RL satisfying max{‖y1‖2 , ‖y2‖2} < R it holds

dHell(µy1 , µy2) ≤ C
∥∥∥Γ−1/2(y1 − y2)

∥∥∥
2
.

In the following, we drop for economy of notation the dependence on the data y from the posterior
µy and the normalization constant Zy of (1.4), and simply write µ and Z.

In practice, it is not always possible to evaluate exactly the forward map G, but it is possible
to approximate its action on X numerically. A notable example is the one of inverse problems
involving differential equations. Let h > 0 be a discretization parameter, as, for example, the
mesh size in a finite element method, or the time step in a ODE solver. We then denote by
Gh : X → RL an approximation of the forward map G, whose quality is driven by the parameter
h. Maintaining the observation model (1.1) and the same prior for the parameter as above, we
consider the approximate posterior µh whose Radon–Nikodym derivative with respect to the
prior is formally given by

dµh
dµ0

(u) = 1
Zh

exp(−Φh(u; y)), (1.6)

where the potential Φh is given by

Φh(u; y) = 1
2

∥∥∥Γ−1/2 (Gh(u)− y)
∥∥∥2

2
,

and where the normalization constant Zh is defined equivalently to (1.4). A natural question
arising from this setting is whether the approximate posterior µh converges to the true posterior µ
in the limit h→ 0. This is indeed guaranteed, and the following result holds (see [131, Corollary
4.9] for a proof).

Proposition 1.3. Let Assumption 1.1 hold for G and for Gh uniformly in h, and let the prior
µ0 be a measure on (X,B(X)) satisfying µ0(X) = 1. Then, the posterior measures µ and µh are
well-defined in the sense of Proposition 1.2. Moreover, if for all β > 0 there exists C1 = C1(β) > 0
such that for all u ∈ X it holds

‖G(u)− Gh(u)‖2 ≤ C1 exp
(
β ‖u‖2X

)
ψ(h),

where ψ(h)→ 0 for h→ 0, then
dHell(µ, µh) ≤ Cψ(h),

where C > 0 is a constant independent of h.

1.1.1 A Simple ODE Example

We conclude this section with an example in a simple setting, which shows how one should
proceed in order to apply Propositions 1.2 and 1.3. Let us consider the ordinary differential
equation (ODE) on R

z′(t) = − exp(u)z(t), t ≥ 0,
z(0) = z0 ∈ R,

(1.7)

where u ∈ R is a real parameter. We choose this exponential model for the parameter multiplying
the right-hand side so to make sure that the coefficient λ = exp(u) is positive given any sample
from a Gaussian prior on u, and in turn the ODE (1.7) is Lyapunov stable. Imposing a prior on
the logarithm of the parameter of interest is a known trick if the well-posedness of the forward
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model depends on the sign of the coefficient of interest, and is referred to as the log-normal prior
in literature. Given T > 0, we consider the forward map G : R→ R such that

G(u) = z(T ) = exp(− exp(u)T )z0. (1.8)

We then consider the inverse problem

find u ∈ R given an observation y∗ = G(u∗) + η,

where η ∼ N (0, γ2) and γ > 0 denotes the observational standard deviation. We start by verifying
the assumptions for well-posedness on the forward map.

Lemma 1.4. The forward map G given in (1.8) satisfies Assumption 1.1.

Proof. For Assumption 1.1(i), it is sufficient to notice that − exp(u) < 0 ≤ |u|2 so that

γ−1 |G(u)| ≤ exp
(
T |u|2 + log |z0| − log γ

)
.

Maximizing |G′(u)| it is easy to verify that the Lipschitz constant of G is exp(−1) |z0|, which
shows that G satisfies Assumption 1.1(ii).

Posing a Gaussian prior µ0 = N (m0, C0) on (R,B(R)) for the parameter u, it is clear that
µ0(R) = 1, and therefore by Lemma 1.4 the posterior is well-defined and given by (1.3). Let
us now consider a positive integer N , and a fixed time step h = T/N . We then consider the
implicit Euler approximation of (1.7), which setting z0 to the initial condition reads for all
n = 0, . . . , N − 1

zn+1 = (1 + h exp(u))−1zn.

We then have the approximate forward map

Gh(u) = zN = (1 + h exp(u))−N z0. (1.9)

We verify the assumptions for well-posedness of the inverse problem for the numerical forward
map.

Lemma 1.5. The forward map Gh of (1.9) satisfies Assumption 1.1 uniformly in h.

Proof. For Assumption 1.1(i), we remark that since h > 0, it holds

1
1 + h exp(u) < 1 ≤ exp

(
h |u|2

)
,

so that replacing T = Nh

γ−1 |Gh(u)| ≤ exp
(
T |u|2 + log |z0| − log γ

)
.

For Assumption 1.1(ii), direct calculations show that the maximum of |G′(u)| is attained in
ū = − log T and that

|G′(ū)| =
(

1 + 1
N

)−(N+1)
|z0| .

Therefore the Lipschitz constant of G is a growing function of N , which for N = 1 equals
G′(ū) = |z0| /4 and for N →∞ is bounded by exp(−1) |z0|, which proves the desired result.
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For the same reasons as above, we can therefore conclude that the posterior µh given by (1.6)
is well-defined and Lipschitz in the data. We conclude this simple example with the following
result, which is a corollary of Proposition 1.3 in this simple setting.

Corollary 1.6. Let µ and µh be the posterior distributions on (R,B(R)) for the parameter u of
(1.7) with the exact and approximate forward maps G and Gh defined in (1.8) and (1.9). Then, it
holds

dHell(µ, µh) ≤ Ch,
for a constant C > 0 independent of h.

Proof. Since both maps G and Gh are contractive, and by the order-one convergence of the implicit
Euler method, it holds

|G(u)− Gh(u)| ≤ Ch |z0| ,
for a constant C > 0 independent of u and h (see [62] or [136, Chapter 7]). Hence, the desired
result follows from Proposition 1.3.

1.2 Finite-Dimensional Approximations
In this section, we introduce a finite-dimensional approximation based on the Karhunen–Loève
expansion (KL) of the otherwise infinite-dimensional inverse problem (1.2), which is employed
in practice to compute its solution. We refer the reader to the research article [48], and more
marginally to [63,93] for further details and results concerning the content of this section.

Let for simplicity the prior µ0 = N (0, C0) and let us denote by {(λi, ϕi)}i≥1 the ordered
eigenvalues/eigenfunctions of the prior covariance C0, and remark that {ϕi}i≥1 is an orthonormal
basis for X. Then, the KL expansion guarantees that the random variable

u =
∑
i≥1

√
λiϕiξi,

where ξ := {ξi}i≥1 are independent and identically distributed (i.i.d.) random variables distributed
as N (0, 1), satisfies u ∼ µ0. We then let M be a positive integer and truncate the sum above as

u =
M∑
i=1

√
λiϕiξi, (1.10)

thus obtaining a function u ∈ X which is approximately distributed as µ0. To be precise, let us
introduce the space XM = span{ϕi}Mi=1, and denote by X⊥ the orthogonal complement of XM

in X. We then denote by PM : X → XM the projection operator over the first M elements of
the basis {ϕi}i≥1 of X, i.e., for any u in X

PMu =
M∑
i=1

(u, ϕi)ϕi,

with (·, ·) the inner product defined on X. Let now K : RM → X, K : ξ 7→ u be the map defined
by (1.10), and let νM0 = N (0, I), with I being the M ×M -dimensional identity matrix, be the
measure induced by the random variable ξ = {ξi}Mi=1 on the measurable space (RM ,B(RM )).
Due to orthogonality, the prior measure µ0 can then be decomposed as µ0 = µM0 ⊗µ⊥0 , where µM0
and µ⊥0 are independent probability measures on (XM ,B(XM )) and (X⊥,B(X⊥)), respectively.
In particular, µM0 is the push-forward measure of νM0 through K, i.e.

µM0 (B) = νM0 ({ξ : K(ξ) ∈ B}),
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Chapter 1. An Introduction to Bayesian Inverse Problems

for all B ∈ B(XM ). Let us moreover remark that direct calculations with (1.10) show that
µM0 = N (0, CM0 ), where CM0 is the truncated spectral decomposition of C0, i.e.

CM0 =
M∑
i=1

λiϕiϕ
>
i . (1.11)

We then consider the approximated posterior µ̃ on (X,B(X)) which is given by

dµ̃
dµ0

(u) = 1
Z̃

exp(−Φ(PMu; y)),

where Z̃ is the normalization constant

Z̃ =
∫
X

exp(−Φ(PMu; y)) dµ0(u).

Let us remark that for all u ∈ X⊥ we have PMu = 0 and therefore

dµ̃
dµ0

(u) =
(

exp(−Φ(0; y))
∫
X

dµ0(u)
)−1

exp(−Φ(0; y)) = 1,

so that on X⊥ we have µ̃ = µ0. We can then write µ̃ = µM ⊗ µ⊥, where µ⊥ = µ⊥0 and where µM
is the measure on (XM ,B(XM )) defined by

dµM
dµM0

(u) = 1
ZM

exp(−Φ(u; y)), (1.12)

for all u ∈ XM , where
ZM =

∫
XM

exp(−Φ(u; y)) dµM0 (u).

Let us remark that µM is a finite-dimensional measure, and that it is therefore amenable for
computations. Moreover, reminding the notation νM0 = N (0, I) for the prior on the coefficients
of the KL expansion (1.10), the measure µM is the push-forward through K of the posterior
measure νM on (RM ,B(RM )) given by

dνM
dνM0

(ξ) = 1
ZMξ

exp(−Φ(K(ξ); y)),

for ξ ∈ RM , with
ZMξ =

∫
RM

exp(−Φ(K(ξ); y)) dνM0 (u).

Indeed, since K(RM ) = XM a change of variable yields ZMξ = ZM and for all B ∈ B(XM )

µM (B) = 1
ZM

∫
B

exp(−Φ(u; y)) dµM0 (u)

= 1
ZMξ

∫
{ξ : K(ξ)∈B}

exp(−Φ(K(ξ); y)) dνM0 (ξ) = νM ({ξ : K(ξ) ∈ B}).

In practice, we therefore compute the posterior νM over the M scalar coefficients of the KL
expansion (1.10), and then push it forward through the operator K to obtain the measure µM for
the unknown. Let us remark that results of convergence for expectations taken with respect to
µM and µ are stated and rigorously proved in [48], where the main focus are inverse problems
involving elliptic PDEs.
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1.3. Markov Chain Monte Carlo Methods

1.3 Markov Chain Monte Carlo Methods

In this section, we introduce the class of Markov chain Monte Carlo methods (MCMC), which
can be employed to approximate the solution of Bayesian inverse problems. We point the reader
to the references [71, 80, 122,131], where these methods are introduced and extensively analyzed.
In Section 1.1, we laid the theoretical basis of the Bayesian approach to inverse problems defined
on a Hilbert space X. In particular, under a set of assumptions we guaranteed the well-posedness
of a posterior probability measure µ on X which encapsulates the knowledge on an unknown
u ∈ X given finite-dimensional observations y ∈ RL. Moreover, in Section 1.2 we introduced a
finite-dimensional approximation of the posterior measure, which makes the Bayesian inverse
problem amenable in practice. The methods belonging to the MCMC class yield a methodology
to finally approximate the solution of the inverse problem.

Let µ be a probability measure on X, let Ψ: X → R be a smooth real-valued target function
defined on X. We consider the problem of approximating the quantity Eµ[Ψ], where Eµ denotes
expectation with respect to µ, i.e.

Eµ[Ψ] =
∫
X

Ψ(u) dµ(u). (1.13)

Given a positive integer NMC and a set of i.i.d. realizations {u(i)}NMC
i=1 in X such that u(1) ∼ µ,

the Monte Carlo method allows to approximate the quantity of interest Eµ[Ψ] with the average
Eµ[Ψ] defined as

Eµ[Ψ] := 1
NMC

NMC∑
i=1

Ψ(u(i)). (1.14)

Therefore, given a measure µ, in order to obtain an approximation of the quantity of interest Eµ[Ψ]
it is sufficient to generate independent samples from µ and computing the averaged functional
Eµ[Ψ]. Let us remark that the since the final goal is computing the high-dimensional integral
(1.13), Monte Carlo methods can be interpreted as quadrature formulas. The approximation
properties of the Monte Carlo method are well-known. In particular, Monte Carlo approximations
do not suffer from the so-called curse of dimensionality, i.e., their quality is dimension-independent.
Moreover, the Monte Carlo estimate is unbiased, i.e., we have that E[Eµ[Ψ]] = Eµ[Ψ], where
the outer expectation on the left-hand side is taken with respect to the sample {u(i)}NMC

i=1 .
Nevertheless, the rate of convergence of Eµ[Ψ] towards Eµ[Ψ] is just of order 1/2, in the sense√

Var(Eµ[Ψ]) ≤ CN−1/2,

for a constant C > 0 independent of the dimension d and where, again, the variance is taken
with respect to the sample. Let us consider the case of µ being the posterior measure which we
derived in Section 1.1. In this case, (1.3) yields

Eµ[Ψ] =
∫
X

Ψ(u) dµ(u) = 1
Z

∫
X

Ψ(u) exp(−Φ(u; y)) dµ0(u)

= Eµ0 [Z−1Ψ exp(−Φ(·; y))]

where we recall that µ0 is a Gaussian prior measure on X, and Z the normalization constant given
in (1.4). In order to approximate Eµ[Ψ], one could then in principle generate i.i.d. samples from
the prior µ0, which is relatively simple in the Gaussian case, and then compute the approximation
(1.14) with the function Z−1Ψ exp(−Φ(·; y)). The problem, evidently, is that the normalization
constant Z is unknown. Moreover, approximating Z requires the computation of the high-
dimensional integral (1.4), and is therefore as involved as the original problem of approximating
Eµ[Ψ].

29



Chapter 1. An Introduction to Bayesian Inverse Problems

The MCMC methods are designed to approximate expectations under measures for which the
normalization constant is unknown, and are therefore adequate for Bayesian inverse problems.
As it is suggested by their name, MCMC methods proceed by generating samples which form a
Markov chain over the space X. In particular, this Markov chain is ergodic (see Section A.4) with
respect to the measure µ, so that if the number of samples is sufficiently high, an average over
the chain provides a good approximation of the expectation Eµ[Ψ] due to the ergodic theorem
(see Theorem A.14).

The class of MCMC methods comprises several members. We choose here to describe the
random walk Metropolis–Hastings (RWMH) algorithm, first introduced in [64], and analyzed in
an infinite-dimensional setting which is suitable for inverse problems in [63]. With a reference
to the notation introduced in Section 1.2, let XM ⊂ X be the finite-dimensional subspace
XM = span{ϕi}Mi=1, and let µM0 = N (0, CM0 ), where CM0 is the covariance defined in (1.11).
Moreover, let QM = N (0, CMQ ) be a Gaussian distribution on XM , which we call the proposal
distribution. Given an initial guess u(1) ∈ XM , the RWMH proceeds for i = 2, . . . , NMC as

(i) Sample ∆u(i) ∼ QM and set û(i) ∼ u(i−1) + ∆u(i);
(ii) Set u(i) = û(i) with probability α, and u(i) = u(i−1) with probability 1− α, where

α = min {exp(α̂), 1} ,
α̂ = − Φ(û(i); y) + Φ(u(i−1); y)

− 1
2

((
û(i), (CM0 )−1û(i)

)
−
(
u(i−1), (CM0 )−1u(i−1)

))
,

(1.15)

and where Φ(·; y) is the potential of (1.5).

Let us remark that the acceptance probability α above is, in practice, the ratio between the
posterior densities evaluated at the previous guess. Indeed, let for the sake of clarity µM admit a
density πM with respect to the Lebesgue measure, so that (1.12) can be rewritten in terms of
densities as

πM (u) = 1
ZM

exp (−Φ(u; y))πM0 (u),

where πM0 is the prior Gaussian density

πM0 (u) = 1
ZM0

exp
(
−1

2(u, (CM0 )−1u)
)
,

with ZM0 being the normalization constant. Then, (1.15) can be rewritten as

α = min
{

πM (û(i))
πM (u(i−1)) , 1

}
,

i.e., as the ratio of the posterior density computed in the proposed value û(i) and on the previous
value u(i−1).
Remark 1.7. We note that the proposal distribution is the only element of the RWMH algorithm
which can be tuned. The easiest choice, at least for implementation, would be to fix QM =
N (0, σ2I) for some user-prescribed variance σ2. Unfortunately, the quality of the resulting Markov
chain is not robust with respect to σ. In particular, if σ is too small, the probability to accept is
too large and the Markov chain fails to effectively explore the posterior. At the other end of the
spectrum, if σ is too large the probability of accepting a new sample reduces drastically, and the
Markov chain presents a sticky behavior. One possible choice is to employ the robust adaptive
Metropolis algorithm (RAM) (see [143] for details), in which the proposal covariance CMQ is
adapted on the fly to obtain a user-specified final acceptance ratio, i.e. the ratio between the
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accepted and the total number samples, which should be roughly 25% (see e.g. [143]). An option
specifically tailored for high-dimensional inverse problems is the preconditioned Crank–Nicolson
MCMC (pCN-MCMC), which is presented in details and analyzed in [41,63].
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2 Multiscale Ensemble Kalman
Inversion

In this chapter, we introduce a methodology based on homogenization and on the Ensemble
Kalman filter (EnKF) to solve multiscale inverse problems. In particular, we consider inverse
problems driven by elliptic PDEs with highly oscillatory tensors, and apply homogenization and
the finite element heterogeneous multiscale method (FE-HMM) to solve the forward problem,
and the EnKF for the inverse problem. This chapter is based on our research article [9], from
which we borrow some phrasings here, and is one of the original contributions of this thesis.

The outline of the chapter is as follows. In Section 2.1 we briefly introduce the Kalman filter and
the ensemble Kalman filter (EnKF) in their natural context of state estimation for dynamical
systems. Then, in Section 2.2 we introduce the technique of ensemble Kalman inversion, which
allows to compute the solution to inverse problems as the ones presented in Chapter 1, in both a
pointwise and a Bayesian fashions. The remainder of the chapter is dedicated to the application
of ensemble Kalman inversion to problems involving multiscale elliptic PDEs. In particular, we
present the problem in Section 2.3 and state our main theoretical results in Section 2.4, which
are then proved in Section 2.5. In Section 2.6, we consider a standard technique to account for
modeling error in the solution of the inverse problem, and prove two novel theoretical results
which allow to balance precision and computational overheads. Finally, we show a numerical
experiment in Section 2.7, which corroborates our analysis and showcases the potential of our
new methodology.

2.1 Kalman and Ensemble Kalman Filters
In this section, we give a general introduction of the Kalman and the EnKF. The seminal work by
Kalman, which first proposed the algorithm we present here, is [73]. The EnKF was introduced
in [53], and we furthermore point the reader to the works [54,55], which are standard references
in the field.

Let Z be a Hilbert space, let Ξ: Z → Z and let z0 ∈ Z be an initial value. We consider the
discrete recursion

zn = Ξ(zn−1), n = 1, 2, . . . (2.1)
We equip the dynamics above with an observation model. In particular, let Y ⊂ Z be a Hilbert
space and let H : Z → Y be a linear map. We then consider observations to be given by

yn = Hzn + ηn, (2.2)

where we assume that {ηn}n≥1 is a sequence of i.i.d. random variables such that η1 ∼ N (0,Γ),
where Γ is a positive definite covariance matrix on Y . Kalman filters proceed by updating a
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probability distribution on Z which describes the partially-observed dynamics and which accounts
for both the recurrence relation (2.1) and for the observation model (2.2). In the following,
we first consider the standard Kalman filter, which is an exact model for updating Gaussian
distributions when Ξ is a linear map, and then proceed with the EnKF, which is a particle-based
approximation for general non-linear dynamics.

2.1.1 The Kalman Filter

Kalman filters proceed recursively to estimate the state of dynamics of the form (2.1) when
observations are provided by the model (2.2). At each time n, the estimation is performed in
two steps. First, equation (2.1) is employed in the so-called prediction step, and then (2.2) is
employed to correct the prediction in the update or analysis step. In this section, we assume for
simplicity the observable space Y to be finite-dimensional.

Let Ξ be a linear map, and let us assume that at the time instant n−1 the state zn−1 is distributed
as a Gaussian zn−1 ∼ N (mn−1, Cn−1), wheremn−1 ∈ Z and Cn−1 is a positive-definite covariance
operator on Z. Employing the dynamics (2.1), we obtain an updated distribution for the next
time step, which is Gaussian due to the assumption of linearity on the dynamics. At the prediction
step, we indeed get the partially-updated random variable ẑn which satisfies

ẑn ∼ N (m̂n, Ĉn), m̂n = Ξmn−1, Ĉn = ΞCn−1Ξ∗, (2.3)

where Ξ∗ : Z → Z is the adjoint of Ξ. The distribution over ẑn can be interpreted as a prior
knowledge on the value of the state at the next time, before observations are assimilated. We
now consider the observations, and thus the update step. Due to the Gaussian assumption on the
noise ηn ∼ N (0,Γ) and since we assume Y to be finite-dimensional, we have that the likelihood
of yn given a value ẑn can be written up to a proportionality constant as

L(yn | ẑn) ∝ exp
(
−1

2

∥∥∥Γ−1/2(yn −Hẑn)>
∥∥∥2

2

)
.

The update step is then given by Bayes’ rule. Denoting by µ̂n the Gaussian distribution of the
partially updated state ẑn, taking into account the data at time n yields up to a proportionality
constant

dµn
dµ̂n

(ẑn | yn) ∝ L(yn | ẑn).

Let us remark that µn is then a Gaussian measure (see e.g. [131, Section 6.4]). In particular, one
obtains by completing the square

ẑn | yn ∼ N (mn, Cn),
mn = m̂n +Kn (yn −Hm̂n) , Cn = (I −KnH)Ĉn,
where Kn : Y → Z, Kn = ĈnH

∗Rn,

with Rn : Y → Y, Rn =
(
HĈnH

∗ + Γ
)−1

,

(2.4)

where H∗ is the adjoint of H. The recursion is completed by defining the state at the next time
as zn := ẑn | yn. Let us comment on the update formula above. The matrix Kn : Y → Z, called
the Kalman gain, weighs the importance of the data with respect to the dynamics. Indeed, let us
consider heuristically two extreme cases:

• If the dynamics are more certain than the observations, i.e., “Ĉn � Γ” then

Rn ≈ Γ−1 =⇒ Kn ≈ ĈnH∗Γ−1 ≈ 0
=⇒ mn ≈ m̂n, Cn ≈ Ĉn,
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so that the prior prediction is not majorly influenced by the assimilation of new data and
the update step is only driven by the dynamics;

• If the observations are more certain than the dynamics, i.e., “Γ� Ĉn” then

Rn ≈ (H∗)−1Ĉ−1
n H−1 =⇒ Kn ≈ ĈnH∗(H∗)−1Ĉ−1

n H−1 = H−1

=⇒ mn ≈ H−1yn, Cn ≈ 0,

so that the posterior mean mn is only determined by the data, and the posterior has a high
precision independently of the previous state.

In all situations which are mid-range between the two examined above, the Kalman gain yields
the correct balance, in a Bayesian sense, between the prior belief and the precision with which we
observe data. Resuming all the considerations above, we now express the Kalman filter in an
algorithmic form. Given an initial state z0 ∼ N (m0, C0), with C0 being possibly singular, the
algorithm proceeds for n = 1, 2, . . . as

(i) Propagate the random variable zn−1 → ẑn with (2.3);
(ii) Update the random variable to the next time point ẑn → zn with (2.4).

2.1.2 The Ensemble Kalman Filter

The EnKF is a Monte Carlo-type approximation of the Kalman filter presented above in case the
dynamics are nonlinear. Let us point out that without either the Gaussian assumption on the
initial state or the linearity of the dynamics, it would not be possible to find a closed-form solution
to the recursive estimation of the state. The EnKF proceeds by propagating and updating
an ensemble of “particles”, which empirically approximate the distribution of the state. In
particular, let J be a positive integer and let {z(j)

n−1}Jj=1, with z
(j)
n−1 ∈ Z for all j = 1, . . . , J ,

be the ensemble at time n − 1. As for the Kalman filter, we then follow a prediction-update
procedure for propagating the particles. Indeed, the prediction step yields a partially-updated
ensemble {ẑ(j)

n }Jj=1 defined by

ẑ(j)
n = Ξ(ẑ(j)

n−1), j = 1, . . . , J, n = 1, 2, . . . , (2.5)

i.e., the step in the dynamics is applied independently to each particle of the ensemble. Let us
remark that in the Kalman filter the prediction mean and covariance m̂n and Ĉn are necessary
for the computation of the Kalman gain, and hence of the updated estimation. Therefore, we
compute here and denote again by m̂n and Ĉn the sample mean and covariance of the predicted
ensemble, i.e.,

m̂n = 1
J

J∑
j=1

z(j)
n , Ĉn = 1

J

J∑
j=1

(
z(j)
n − m̂n

)
⊗
(
z(j)
n − m̂n

)
, (2.6)

where ⊗ denotes the tensor product in Z. The update step is then given for j = 1, . . . , J by

z(j)
n = ẑ(j)

n +Kn

(
y(j)
n −Hẑ(j)

n

)
,

where Kn = ĈnH
∗Rn,

with Rn =
(
HĈnH

∗ + Γ
)−1

,

(2.7)

which is equivalent particle-by-particle to the update of the Kalman filter (2.4), with the empirical
covariance replacing the exact predicted covariance. The only detail which is different concerns
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the observations y(j)
n , which are given by

y(j)
n = yn + η(j)

n , j = 1, . . . , J

where η(j)
n ∼ N (0,Γ) are i.i.d. random variables distributed as the noise. In practice, randomizing

the data across the ensemble allows for a better exploration of the state space, and therefore for
an enhanced diversity in the ensemble. Let us remark that the empirical mean and covariance of
the updated ensemble serve as a point estimate and a confidence indicator in state estimation.
Therefore, given an initial ensemble {z(j)

0 }Jj=1, the EnKF proceeds for n = 1, 2, . . . as

(i) Propagate the ensemble {z(j)
n−1}Jj=1 → {ẑ

(j)
n }Jj=1 with (2.5);

(ii) Compute the predicted mean and covariance m̂n and Ĉn with (2.6);
(iii) Update the ensemble {ẑ(j)

n }Jj=1 → {z
(j)
n }Jj=1 with (2.7).

The initial ensemble {z(j)
0 }Jj=1 can be constructed in different ways. For example, if the initial

state z0 ∈ Z of the dynamics is known, then one can choose to have J replicas of z0 in the initial
ensemble, randomized with an appropriate source of noise. Otherwise, if the distribution of z0 is
known, then a good choice is to fix z(j)

0 ∼ z0 i.i.d. for j = 1, . . . , J .
Remark 2.1. Let us assume that the computational bottleneck for the execution of the EnKF is
the evaluation of the map Ξ. In this case, the prediction step (2.5) is computationally dominant
for a run of the EnKF. Let us suppose that we run the algorithm for N steps, and with J
particle. Then, the prediction step is repeated N · J times, and therefore the cost is equivalent to
N · J evaluations of Ξ. Nonetheless, let us remark that the prediction step (2.5) can be easily
parallelized, since the forward operator is applied independently to each particle. Hence, for a
reasonable number of particles (or a high number of computing units), we have that the overall
cost is of order O(N).

2.2 Ensemble Kalman Inversion
In this section, we present the ensemble Kalman inversion technique for inverse problems. We
refer the reader to the research articles [35, 67, 68, 114, 125], where this methodology has been
developed and analyzed extensively.

Let X and Y be Hilbert spaces, with Y being finite-dimensional for simplicity, and let us consider
the inverse problem

find u ∈ X given observations y = G(u) + η ∈ Y, (2.8)

where the operator G : X → Y is a generic forward map and the noise η follows the Gaussian
distribution η ∼ N (0,Γ) with a symmetric positive definite covariance Γ. The problem (2.8)
is static, and in order to apply the Kalman filtering techniques described above it is therefore
necessary to introduce dynamics artificially. For this purpose, let us consider the product space
Z = X × Y and the map Ξ: Z → Z given by

Ξ(z) =
(

u
G(u)

)
, for z =

(
u
v

)
∈ Z.

The dynamics are then given by the recursion

zn = Ξ(zn−1), n = 1, 2, . . . , (2.9)

which, consistently with the problem (2.8), are equipped with the observation equation

yn = Hzn + ηn, (2.10)
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where H : Z → Y is the projection operator defined by H = (0 I) and {ηn}n∈N is an i.i.d.
sequence of random variables distributed identically to the noise of the inverse problem (2.8), i.e.,
ηn ∼ N (0,Γ). In fact, let us remark that combining (2.9) and (2.10) one gets yn = G(un) + ηn,
which is in law equivalent to the equality appearing in (2.8). The EnKF described in Section 2.1.2
can then be seamlessly applied to the dynamics (2.9) and (2.10).

The initialization and termination of the EnKF are peculiar in the context of inverse problems.
In particular, coherently to this framework and with a reference to Chapter 1, we assume prior
knowledge is available on the parameter u ∈ X and that it is summarized by a probability
measure µ0 on X. In this case, one can draw J i.i.d. samples ψ(j) from µ0 and fix the initial
ensemble as

z
(j)
0 =

(
ψ(j)

G(ψ(j))

)
.

Let us remark that during the run of the EnKF, the X-component of the particles never leaves
the set A = span{ψ(j)}Jj=1 [68, Theorem 2.1]. Hence, another possible choice would be to choose
a J-dimensional subset A ⊂ X beforehand, and then fix {ψ(j)}Jj=1 to be a basis for A. For
example, the set {ψ(j)}Jj=1 could be a basis of eigenfunctions for the covariance operator of a
Gaussian prior measure µ0, as illustrated in Section 1.2.

Concerning termination, let us fix the total number of iterations of the EnKF to a positive integer
N . At the final step, we project the particles on the space X and compute a sample average of
the ensemble to obtain the estimate

uEnKF = 1
J

J∑
j=1

H⊥z
(j)
N = 1

J

J∑
j=1

u
(j)
N ,

where H⊥ : Z → X is defined by H⊥ = (I 0). The value uEnKF ∈ X then serves as a point
estimate for the solution of the inverse problem (2.8).

2.2.1 The Bayesian Interpretation

It is possible without any additional cost to recast the EnKF inversion in a Bayesian framework
as the one of Chapter 1. We refer the reader to [125] for more details and further insight on the
content of this section. Let us recall that in the Bayesian framework, given a prior measure µ0 on
X, then the solution to the inverse problem is expressed in terms of a posterior distribution µ
whose Radon–Nykodim derivative is given by

dµ
dµ0

(u) = 1
Z

exp (−Φ(u; y)) , (2.11)

where, due to the Gaussian assumption on the noise and since Y is finite-dimensional, the
potential is given by

Φ(u; y) = 1
2

∥∥∥Γ−1/2(y − G(u))
∥∥∥2

2
,

and where Z is the normalization constant

Z =
∫
X

exp (−Φ(u; y)) dµ0(u). (2.12)

We now let N be a positive integer and ∆ = 1/N be a “step size”. The transition from the prior
µ0 to the posterior µ can be split in N steps by introducing the probability measures µn on X
defined recursively for n = 1, 2, . . . , N as

dµn
dµn−1

(u) = 1
Zn

exp (−∆Φ(u; y)) , (2.13)

37



Chapter 2. Multiscale Ensemble Kalman Inversion

where Zn is the normalization constant, defined as above. We then have by the chain rule

dµN
dµ0

(u) =
N∏
n=1

dµn
dµn−1

(u) =
(

N∏
n=1

Zn

)−1

exp(−Φ(u; y)).

Let us remark that for all n = 1, . . . , N the normalizing constants satisfy

Zn =
∫
X

exp(−∆Φ(u; y)) dµn−1(u)

=
∫
X

exp(−∆Φ(u; y))dµn−1

dµn−2
(u) dµn−2(u)

= 1
Zn−1

∫
X

exp(−2∆Φ(u; y)) dµn−2(u)

= (· · · ) = 1
Zn−1Zn−2 · · ·Z1

∫
X

exp(−n∆Φ(u; y)) dµ0(u).

Therefore, it clearly holds
N∏
n=1

Zn =
∫
X

exp(−Φ(u; y)) dµ0(u) = Z,

where Z is given in (2.12). Hence, we have that µN = µ, and in words we have that doing N
steps of the form (2.13) gradually transforms the prior µ0 in the posterior µ.

Let us consider the prediction step (2.5) and let us modify the update step (2.7) by replacing the
observation error covariance Γ by the rescaled matrix ∆−1Γ. Then, let {u(j)

n }Jj=1 be the set of the
X components of the ensemble of particles {z(j)

n }Jj=1 at the n-th step of the EnKF. Moreover, let

µ̂n(du) = 1
J

J∑
j=1

δ
u

(j)
n

(du),

where δu is the Dirac mass concentrated in u ∈ X, be the empirical distribution on X which is
induced by the ensemble. It has been shown in [125] that µ̂n is a good approximation of the
measure µn defined in (2.13). Therefore, the evolution of the ensemble in the EnKF algorithm,
and thus of the empirical measures it induces on X, mimics the step-by-step evolution of the
prior distribution µ0 to the posterior µ. Hence, after N steps the algorithm produces a set of
samples from the posterior which can be employed in the same manner as other Monte Carlo
algorithms for solving in practice the inverse problem and give a full uncertainty quantification of
the inversion procedure (see Section 1.3).
Remark 2.2. Due to their sequential nature, the computational cost of MCMC algorithms is of the
order of O(J) evaluations of the forward map G to obtain J samples approximately distributed
from the posterior distribution. Conversely, in case sufficient computational power is available the
EnKF requires O(N) evaluations of the forward map G to obtain the same number of samples
from the posterior, as per Remark 2.1, where N is the number of steps which are necessary to
reach the posterior µ = µN from the prior µ0. Therefore, choosing a large ensemble and letting it
evolve over relatively few steps, i.e., if N � J , the computational advantage of the EnKF over
standard MCMC algorithms is relevant.

2.3 Multiscale Ensemble Kalman Inversion
In this chapter, we consider the application of ensemble Kalman inversion to a multiscale inverse
problem of the form

find u ∈ X given observations y = Gε(u) + η ∈ Y, (2.14)
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2.3. Multiscale Ensemble Kalman Inversion

where ε > 0 is the multiscale parameter, which often is ε� 1, the operator Gε : X → Y is the
multiscale forward map and where, as above, η ∼ N (0,Γ) for some symmetric positive definite
covariance Γ on Y . Let D ⊂ Rd be an open bounded domain and let H1

0 (D) denote the space of
functions v : D → R in L2(D) with first order weak derivatives in L2(D) and whose trace on ∂D
vanishes. We consider the forward map Gε to be the composition Gε = O ◦ Sε of an observation
operator O : H1

0 (D)→ Y and a multiscale solution operator Sε : X → H1
0 (D). In particular, for

u ∈ X, the operator Sε : u 7→ pε ∈ H1
0 (D) where pε is the weak solution of the elliptic PDE{

−∇ · (Aεu∇pε) = f, in D,
pε = 0, on ∂D,

(2.15)

for a right-hand side f ∈ L2(D). We assume that the tensor Aεu : D → Rd×d is a parametrized
multiscale tensor admitting explicit scale separation between slow and fast spatial variables, i.e.,

Aεu(x) = A
(
u(x), x

ε

)
,

where the map (t, x) 7→ A(t, x/ε) is assumed to be known and where A is periodic in its second
argument. In other words, the unknown u of the inverse problem (2.14) governs the slow-scale
variations of the rapidly-oscillating tensor Aεu.

Let us consider now the application of ensemble Kalman inversion to the inverse problem (2.14).
Since the PDE (2.15) does not in general admit a closed-form solution, one has to employ a
numerical approximation to evaluate the forward map Gε. If ε is small and we employ the finite
element method (FEM), a fine discretization is needed to resolve the smallest scale and thus
evaluate the forward operator Gε, which clearly leads to a high computational cost. Indeed, as
per Remark 2.1, a run of the EnKF algorithm would lead to O(N) solutions of (2.15), which is
clearly unfeasible.

In order to approach the multiscale problem more efficiently we recur to the theory of homoge-
nization (see the standard references [22,34,113]), which ensures the existence of a non-oscillating
homogenized tensor A0

u, such that for ε→ 0 the solution pε of (2.15) tends weakly in H1
0 (D) to

the solution p0 of the problem {
−∇ · (A0

u∇p0) = f, in D,
p0 = 0, on ∂D.

(2.16)

Hence, the homogenized problem is a good surrogate of (2.15) when ε� 1, and its non-oscillating
nature allows us to discretize it with FEM on an arbitrarily coarse mesh, whose maximum
diameter is denoted by h. Therefore, denoting by G0

h : O ◦ S0
h, where S0

h : u 7→ p0
h, the numerical

solution of (2.16), we study in this chapter the behavior of the EnKF when Gε is replaced by its
cheap approximation G0

h. Let us denote by {u
0,(j)
n,h }Jj=1 the X components of the ensemble obtained

after n iterations of the EnKF algorithm with the forward operators G0
h in the prediction step

(2.5). With this notation, given an initial ensemble {u0,(j)
0,h }Jj=1, at each step n = 0, 1, . . . , N − 1,

our algorithm proceeds as

(i) For each u0,(j)
n,h , evaluate numerically the forward map G0

h, thus completing the prediction
step (2.5);

(ii) Perform the analyis step (2.7) to obtain the updated ensemble {u0,(j)
n+1,h}Jj=1.

We evaluate the forward map G0
h employing the finite element heterogeneous multiscale method

(FE-HMM) [2, 5]. The FE-HMM yields an approximation of the solution of (2.16) computed
on a macro-mesh with size h with a two steps procedure. First, one computes the value of the

39



Chapter 2. Multiscale Ensemble Kalman Inversion

homogenized tensor A0
u on the quadrature points through the solution of appropriate elliptic

equations, which are called in literature the cell problems. Then, one employs these pre-computed
values to obtain the homogenized solution on the macro-mesh with standard finite elements.
Remark 2.3. Other methodologies for solving (2.14) have been developed in [3,4,100]. In particular,
while the focus of [100] are one-dimensional problems, in [3] the authors solve the same inverse
problem we consider here by means of Tikhonov regularization, and in [4] they employ MCMC
techniques as the one presented in Section 1.3.

2.4 Statement of the Main Results
Let us first introduce some assumptions and notation which will be employed in the analysis.
First, we introduce a regularity assumption on tensors which will be fulfilled by Aεu and A0

u for
our analysis.
Assumption 2.4. The tensor Au : D → Rd×d satisfies for all u, u1, u2 ∈ X and ξ ∈ Rd

‖Au1 −Au2‖L∞(D;Rd×d) ≤M ‖u1 − u2‖X , Auξ · ξ ≥ α0 ‖ξ‖22 ,

where M and α0 are positive constants.

We now introduce a regularity assumption on the observation operator.
Assumption 2.5. The observation operator O : H1

0 (D)→ Y satisfies for all p1, p2 ∈ H1
0 (D)

‖O(p1)−O(p2)‖Y ≤ CO ‖p1 − p2‖L2(D) ,

where CO is a positive constant.

Note that since O is defined on H1
0 (D) ⊂ L2(D), Assumption 2.5 is stronger than Lipschitz

continuity. Finally, we introduce an assumption on the algorithm which will be employed in the
analysis.
Assumption 2.6. All the particles in the ensemble lie at each iteration in a ball BR(u∗) for some
R > 0 sufficiently big, where u∗ is the true value of the unknown.
Remark 2.7. Let us remark that Assumption 2.6 reduces the possible outcomes of the algorithm
even if R can be chosen arbitrarily big. Therefore, in the following all the expectations in the
statements and in the proofs have to be intended as conditional expectations given that all
particles lie in a ball BR(u∗) centered in the true value of the unknown. For example, when we
write the expectation of the norm (see (2.17)) of an ensemble uN = {u(j)

N }Jj=1 of particles at the
N -th step of the algorithm what we mean is

E [‖uN‖] = E
[
‖uN‖ | u(j)

n ∈ BR(u∗), ∀j = 1, . . . , J, n = 0, . . . , N
]
.

This abuse of notation is repeated throughout this chapter, and expectations should be thought
as above anytime Assumption 2.6 holds.

For clarity, we present the analysis in the finite-dimensional setting X = RM and Y = RL
but claim that it can be readily generalized to the infinite-dimensional case. For an ensemble
u = {u(j)}Jj=1 of particles in RM , we introduce the ensemble norm

‖u‖ := 1
J

J∑
j=1

∥∥∥u(j)
∥∥∥

2
, (2.17)
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which is indeed a norm and where ‖·‖2 is the Euclidean norm in RM . Moreover, given a scalar
α, we define the linear combination w = u+ αv between two ensembles u and v with the same
number of particles J as {w(j) = u(j) + αv(j)}Jj=1.

We can now present the first main result of this work, in which we study the convergence of the
ensemble obtained by the EnKF employing G0

h to the one obtained employing the exact operator
Gε linked to the PDE (2.15).

Theorem 2.8. Let u0
N,h = {u0,(j)

N,h }Jj=1, uεN = {uε,(j)N }Jj=1 be the ensembles after N iterations of
the EnKF method with forward operators G0

h and Gε respectively. Then, if Aεu and A0
u satisfy

Assumption 2.4 and if Assumption 2.5 and Assumption 2.6 hold, we have

E
[∥∥uεN − u0

N,h

∥∥]→ 0 as ε, h→ 0.

In particular, if the exact solution p0 of the homogenized problem (2.16) is in Hq+1(D) with q ≥ 1
and we employ polynomials of degree r for the finite element basis, then

E
[∥∥uεN − u0

N,h

∥∥] ≤ C(ε+ hs+1),

where s = min{r, q} and C > 0 is a constant independent of h and ε.

The proof of this result is the main focus of Section 2.5.1. The second main theoretical result
concerns the Bayesian interpretation of the EnKF methodology for inverse problems in the
multiscale setting. Let µ0 be a prior measure on X and the ensembles u0

N,h = {u0,(j)
N,h }Jj=1,

uεN = {uε,(j)N }Jj=1 resulting from the EnKF algorithms as in Theorem 2.8 both initialized with an
i.i.d. sample from µ0. We consider the discrete probability measures

µε = 1
J

J∑
j=1

δ
u
ε,(j)
N

and µ0
h = 1

J

J∑
j=1

δ
u

0,(j)
N,h

, (2.18)

i.e., the EnKF approximations of the posterior µ on u defined in (2.11). Our goal is providing a
metric on how far the two measures are from each other with respect to ε and h. Let us remark
that due to the randomization of the data at each step of the EnKF algorithm, both µε and µ0

h

are random probability measures. We now introduce the metric we consider for comparing the
two measures, which is the equivalent to weak convergence in the context of random measures
(see Section A.1).
Definition 2.9. Let (Ω,F , P ) be a probability space. A sequence of random measures {µn}n∈N
on a metric space (E,B(E)) dependent on a random variable ξ on (Ω,F , P ) is said to weakly
converge in L1(Ω) to a random measure µ on the same metric space if for all bounded continuous
functions f ∈ C0

B(E) we have

Eξ
[∣∣∣∣∫

E

f dµn −
∫
E

f dµ

∣∣∣∣]→ 0.

In this case we write µn
L1

−−⇀ µ.

We can now state our second main result, whose proof is the main focus of Section 2.5.2.
Theorem 2.10. Let the hypotheses of Theorem 2.8 be satisfied. Then the sequence of random
measures {µε − µ0

h}ε,h, where µε and µ0
h are defined in (2.18), satisfies

{µε − µ0
h}ε,h

L1

−−⇀ 0 as ε, h→ 0.

Remark 2.11. It is possible to verify that in both Theorem 2.8 and Theorem 2.10 the limits with
respect to ε and h can be interchanged.
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2.5 Convergence Analysis
In this section we prove Theorem 2.8 and Theorem 2.10, the main results of this chapter. As
announced above, the analysis is carried out in the finite-dimensional case X = RM and Y = RL,
but it can be generalized to the infinite-dimensional setting. For the purpose of the analysis, we
introduce on top of the forward maps Gε and G0

h, which have been introduced in Section 2.3, the
operator G0 = O ◦ S0, where S0 : X → H1

0 (D) is the exact solution operator associated with the
homogenized PDE (2.16).

2.5.1 Convergence of the Point Estimate

We now focus on Theorem 2.8. It is clear from the desired bound that the effects of homogenization
and discretization can be analysed separately. In particular, we first show the convergence of the
ensemble generated employing the forward operator Gε to the one generated employing the exact
homogenized operator G0 for ε→ 0. Then, in an analogous fashion, we prove the convergence of
the ensemble generated with G0

h to the ensemble generated employing G0. In order to introduce
a compact notation, we denote by UJ,M the set of ensembles of dimension J with elements in
RM and we consider the homogenization error function e : R× UJ,M → R, which is defined for a
generic ensemble u as

e(ε, u) = 1
J

J∑
j=1

∥∥∥Gε(u(j))− G0(u(j))
∥∥∥

2
, (2.19)

and a discretization error function ẽ : R× UJ,M → R as

ẽ(h, u) = 1
J

J∑
j=1

∥∥∥G0
h(u(j))− G0(u(j))

∥∥∥
2
. (2.20)

Before proving the main theorem, we introduce some preliminary results.

Let us first consider a generic forward operator involving an elliptic PDE and show that the
associated forward map is Lipschitz continuous.

Lemma 2.12. Let G : RM → RL, G = O ◦ S be a forward operator such that O : H1
0 (D)→ RL

is Lipschitz and S : RM → H1
0 (D), S : u 7→ p is defined by the solution of{

−∇ · (Au∇p) = f, in D,
p = 0, on ∂D,

(2.21)

where D ⊂ Rd is an open bounded set, the right-hand side f ∈ L2(D) and the tensor Au satisfies
Assumption 2.4. Then G is Lipschitz continuous.

The proof of Lemma 2.12 is given in Section 2.8. In the following Lemma, whose proof is also
given in Section 2.8, we consider the homogenization error defined in (2.19) and show that it
vanishes in the limit ε→ 0.

Lemma 2.13. Let e be defined as (2.19). Under Assumption 2.5, we have for all u ∈ UJ,M

e(ε, u)→ 0 as ε→ 0.

Moreover, if the solution of the homogenized problem (2.16) is in H2(D) independently of u, then
there exists K > 0 independent of ε and u such that

e(ε, u) ≤ Kε.
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Finally, we consider the particle empirical covariances of ensembles given by the EnKF algorithm,
thus proving their boundedness and Lipschitz continuity. The proof of this Lemma can be found
in Section 2.8.

Lemma 2.14. Let Cup(u) ∈ RM×L and Cpp(u) ∈ RL×L be defined as

Cup(u) = 1
J

J∑
j=1

(
u(j) − ū

)(
G(u(j))− Ḡ

)>
,

Cpp(u) = 1
J

J∑
j=1

(
G(u(j))− Ḡ

)(
G(u(j))− Ḡ

)>
,

where ū ∈ RM and Ḡ ∈ RL are the empirical averages

ū = 1
J

J∑
j=1

u(j), Ḡ = 1
J

J∑
j=1
G(u(j)),

and let G : RM → RL be Lipschitz with constant CG. Then, there exist four constants Ci > 0,
i = 1, . . . , 4, such that

(i) ‖Cup(u)‖2 ≤ C1,
(ii) ‖Cpp(u)‖2 ≤ C2,

(iii) ‖Cup(u1)− Cup(u2)‖2 ≤ C3 ‖u1 − u2‖,
(iv) ‖Cpp(u1)− Cpp(u2)‖2 ≤ C4 ‖u1 − u2‖,

for all ensembles u, u1, u2 ∈ UJ,M which are stable in the sense of Assumption 2.6.

In order to clarify the exposition, we first consider the amplification of the error over one step
between the EnKF algorithms employing the multiscale and the homogenized forward operators
respectively, which is summarized in the following lemma.

Lemma 2.15. For all n = 0, . . . , N − 1, let u0
n = {u0,(j)

n }Jj=1,uεn = {uε,(j)n }Jj=1 be the ensembles
of particles at the n-th iteration of the EnKF for the forward operators G0 and Gε respectively.
Then, if Aεu and A0

u satisfy Assumption 2.4 and under Assumptions 2.5 and 2.6, there exist
positive constants α and γ such that

E
[∥∥uεn+1 − u0

n+1
∥∥] ≤ αE

[∥∥uεn − u0
n

∥∥]+ γ E
[
e(ε, u0

n)
]
,

where e(ε, u) is given in (2.19).

Proof. First, due to Assumption 2.5 and denoting by Cp the Poincaré constant we have

‖O(p1)−O(p2)‖2 ≤ CO ‖p1 − p2‖L2(D) ≤ COCp ‖∇p1 −∇p2‖L2(D;Rd) ,

which shows that O is Lipschitz with constant COCp. Therefore, applying Lemma 2.12, we
deduce that both G0 and Gε are Lipschitz with constant CG independent of ε. The Kalman
update formulas (2.7) restricted to the u variable read (see [68])

u
ε,(j)
n+1 = uε,(j)n + Cup(uεn)(Cpp(uεn) + Γ)−1(yn+1 − Gε(uε,(j)n )), (2.22)

u
0,(j)
n+1 = u0,(j)

n + Cup(u0
n)(Cpp(u0

n) + Γ)−1(yn+1 − G0(u0,(j)
n )). (2.23)
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Combining (2.22) and (2.23), we have

E
[∥∥uεn+1 − u0

n+1
∥∥] = 1

J

J∑
j=1

E
[∥∥∥uε,(j)n + Cup(uεn)(Cpp(uεn) + Γ)−1(y(j)

n+1 − Gε(uε,(j)n ))

−u0,(j)
n − Cup(u0

n)(Cpp(u0
n) + Γ)−1(y(j)

n+1 − G0(u0,(j)
n ))

∥∥∥
2

]
,

and using the triangle inequality we obtain

E
[∥∥uεn+1 − u0

n+1
∥∥] ≤ E

[∥∥uεn − u0
n

∥∥]+ S1 + S2 + S3, (2.24)

where

S1 = 1
J

J∑
j=1

E
[∥∥Cup(uεn)− Cup(u0

n)
∥∥

2

∥∥(Cpp(uεn) + Γ)−1∥∥
2

∥∥∥y(j)
n+1 − Gε(uε,(j)n )

∥∥∥
2

]
,

S2 = 1
J

J∑
j=1

E
[∥∥Cup(u0

n)
∥∥

2

∥∥(Cpp(uεn) + Γ)−1 − (Cpp(u0
n) + Γ)−1∥∥

2

×
∥∥∥y(j)
n+1 − Gε(uε,(j)n )

∥∥∥
2

]
,

(2.25)

S3 = 1
J

J∑
j=1

E
[∥∥Cup(u0

n)
∥∥

2

∥∥(Cpp(u0
n) + Γ)−1∥∥

2

∥∥∥G0(u0,(j)
n )− Gε(uε,(j)n )

∥∥∥
2

]
. (2.26)

Let us introduce two useful inequalities which will be employed in the following. Given A and B
square invertible matrices of the same size, it holds∥∥A−1 −B−1∥∥

2 ≤
∥∥A−1∥∥

2

∥∥B−1∥∥
2 ‖A−B‖2 . (2.27)

Moreover, if A is positive semi-definite and B is positive definite, it holds∥∥(A+B)−1∥∥
2 ≤

∥∥B−1∥∥
2 . (2.28)

Let us first consider S1. Applying Lemma 2.14 and (2.28) to the first two factors gives

S1 ≤
C3

J

J∑
j=1

E
[∥∥uεn − u0

n

∥∥∥∥Γ−1∥∥
2

∥∥∥y(j)
n+1 − Gε(uε,(j)n )

∥∥∥
2

]
.

Moreover, since y(j)
n+1 = y + η

(j)
n+1 and since y = Gε(u∗) + η, where u∗ is the true value of the

unknown and η is the true realization of the noise, the triangle inequality yields∥∥∥y(j)
n+1 − Gε(uε,(j)n )

∥∥∥
2
≤
∥∥∥Gε(u∗)− Gε(uε,(j)n )

∥∥∥
2

+
∥∥∥η(j)
n+1 + η

∥∥∥
2
,

which, since Gε is Lipschitz and due to Assumption 2.6, implies∥∥∥y(j)
n+1 − Gε(uε,(j)n )

∥∥∥
2
≤ CGR+

∥∥∥η(j)
n+1 + η

∥∥∥
2
.

Hence, we get

S1 ≤
1
J
C3
∥∥Γ−1∥∥

2

J∑
j=1

E
[∥∥uεn − u0

n

∥∥(CGR+
∥∥∥η(j)
n+1 + η

∥∥∥
2

)]
.

Finally, the random variables ζ(j)
n+1 := η

(j)
n+1 + η are i.i.d., distributed as ζ ∼ N (0, 2Γ) and

independent of uεn and u0
n, which implies first

E[‖ζ‖2] ≤
√

E[‖ζ‖22] ≤
√

2tr(Γ),
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and second, defining α1 := C3
∥∥Γ−1

∥∥
2 (CGR+

√
2tr(Γ)), yields the final bound

S1 ≤ α1 E
[∥∥uεn − u0

n

∥∥] . (2.29)

Let us now consider the second term S2. We apply Lemma 2.14 to the norm of Cup(u0
n). Moreover,

applying the inequalities (2.27), (2.28) and Lemma 2.14 gives∥∥(Cpp(uεn) + Γ)−1 − (Cpp(u0
n) + Γ)−1∥∥

2 ≤ C4
∥∥Γ−1∥∥2

2

∥∥uεn − u0
n

∥∥ .
Reasoning as for S1 for the third factor appearing in (2.25) finally yields

S2 ≤ α2 E
[∥∥uεn − u0

n

∥∥] , (2.30)

where α2 := C1C4
∥∥Γ−1

∥∥2
2 (CGR+

√
2tr(Γ)). We now consider the last term S3. The first factor

appearing in (2.26) can be bounded by Lemma 2.14 and for the second factor we use (2.28), thus
obtaining ∥∥(Cpp(u0

n) + Γ)−1∥∥
2 ≤

∥∥Γ−1∥∥
2 .

Regarding the third factor of (2.26), we apply the triangle inequality and the Lipschitz continuity
of the forward operator Gε, which yield∥∥∥G0(u0,(j)

n )− Gε(uε,(j)n )
∥∥∥

2
≤
∥∥∥G0(u0,(j)

n )− Gε(u0,(j)
n )

∥∥∥
2

+ CG

∥∥∥u0,(j)
n − uε,(j)n

∥∥∥
2
.

Substituting back into S3 and by definition of e(ε, u0
n) and of the ensemble norm we obtain

S3 ≤ C1
∥∥Γ−1∥∥

2 E
[
e(ε, u0

n)
]

+ C1
∥∥Γ−1∥∥

2 CG E
[∥∥u0

n − uεn
∥∥] .

Therefore, defining α3 = C1
∥∥Γ−1

∥∥
2 CG and γ = C1

∥∥Γ−1
∥∥

2 we have the bound

S3 ≤ α3 E
[∥∥u0

n − uεn
∥∥]+ γ E

[
e(ε, u0

n)
]
. (2.31)

Finally, defining α := 1 + α1 + α2 + α3, and using the results (2.24), (2.29), (2.30) and (2.31), we
obtain the desired result.

We now present the main result about global multiscale convergence of the EnKF algorithm.
Proposition 2.16. With the assumptions and notation of Lemma 2.15, letting uε0 = u0

0 be the
same initial ensemble, we have

E
[∥∥uεN − u0

N

∥∥]→ 0 as ε→ 0.

Moreover, if the solution of the homogenized problem (2.16) is sufficiently regular, namely
p0 ∈ H2(D), then there exists K1 > 0 independent of ε such that

E
[∥∥uεN − u0

N

∥∥] ≤ K1ε.

Proof. Since uε0 = u0
0, iterating the estimate of Lemma 2.15 yields

E
[∥∥uεN − u0

N

∥∥] ≤ γ N−1∑
i=0

αN−1−i E
[
e(ε, u0

i )
]
.

Applying Lemma 2.13, we have e(ε, u0
i )→ 0 for all i = 0, . . . , N − 1, hence as ε→ 0

E
[∥∥uεN − u0

N

∥∥]→ 0.

Moreover, if p0 belongs to H2(D), applying Lemma 2.13 gives

E
[∥∥uεN − u0

N

∥∥] ≤ K1ε,

where K1 = γ(αN − 1)K/(α− 1), which is the desired result.
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We now consider convergence with respect to the FEM discretization of the homogenized problem.
First, we introduce a preliminary result, which plays the role of Lemma 2.13 in the context of
numerical convergence and whose proof is given in Section 2.8.

Lemma 2.17. Let ẽ be defined in (2.20) and let Assumption 2.5 hold. If the exact solution p0

of the homogenized problem (2.21) is in Hq+1(D), the right-hand side f is in Hq−1(D) and we
employ polynomials of degree r for the finite element basis, then

ẽ(h, u) ≤ K̃hs+1,

where s = min{r, q}.

We can now state the main result concerning convergence with respect to the numerical discretiza-
tion of the homogenized problem.

Proposition 2.18. Let u0
N = {u0,(j)

N }Jj=1, u0
N,h = {u0,(j)

N,h }Jj=1 be the ensembles of particles at
the last iteration of the iterative ensemble Kalman filter for the forward operators G0 and G0

h

respectively. Then, under Assumption 2.4, Assumption 2.5, Assumption 2.6 and if the exact
solution p0 of the homogenized problem (2.21) is in Hq+1(D) and we use polynomials of degree r
for the finite element basis, we have

E
[∥∥u0

N,h − u0
N

∥∥] ≤ K2h
s+1,

where s = min{r, q} and K2 is a positive constant independent of h.

Proof. The proof of Proposition 2.18 is identical to the proof of Proposition 2.16, except that
all the ensembles {uεn}Nn=1 obtained by the multiscale operator Gε have to be replaced by the
ensembles {u0

n,h}Nn=1 obtained by the finite element discretization of the homogenized operator
G0
h. Moreover Lemma 2.13 for the error e has to be replaced by Lemma 2.17 for the error ẽ.

We can finally prove Theorem 2.8 and thus conclude this section.

Proof of Theorem 2.8. An application of the triangle inequality yields

E
[∥∥uεN − u0

N,h

∥∥] ≤ E
[∥∥uεN − u0

N

∥∥]+ E
[∥∥u0

N − u0
N,h

∥∥] .
The two addends can be bounded applying Proposition 2.16 and Proposition 2.18, thus obtaining
the desired result for C = max{K1,K2}.

2.5.2 Convergence of the Posterior Distributions

In this section, we give the proof of Theorem 2.10, i.e., the convergence of the discrete posterior
measures µε to µ0

h introduced in (2.18) as ε, h→ 0. Let u∗ ∈ RM and let BR(u∗) be the ball of
radius R centered in u∗ with respect to the norm ‖·‖s with s ∈ [1,∞]. Due to the discrete nature
of these distributions, we study convergence with respect to the Wasserstein metrics, for which
we report its standard definition in the metric spaces (BR(u∗), ‖·‖s), which can be found, e.g.,
in [124].

Definition 2.19. Let µ and ν be two probability measures on the metric space (BR(u∗), ‖·‖s).
The Wasserstein distance between µ and ν is defined for all p ∈ [1,∞) as

Wp,s(µ, ν) =
(

inf
γ∈Γ(µ,ν)

∫
BR(u∗)×BR(u∗)

‖u− v‖ps dγ(u, v)
)1/p

, (2.32)
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where Γ(µ, ν) denotes the collection of all joint distributions on BR(u∗)×BR(u∗) with marginals
µ and ν on the first and second factors respectively.

Remark 2.20. If µ and ν are two discrete distributions on finite state spaces, respectively
Ω1 = {u1, . . . , uK1} and Ω2 = {v1, . . . , vK2} included in BR(u∗), then (2.32) can be written as

Wp,s(µ, ν) =

 inf
γ∈RK1×K2

µ,ν

K1∑
i=1

K2∑
j=1
‖ui − vj‖ps γij

1/p

, (2.33)

where RK1×K2
µ,ν is the space of K1 ×K2-dimensional matrices such that

K2∑
j=1

γij = µ(ui) for all i = 1, . . .K1,

K1∑
i=1

γij = ν(vj) for all j = 1, . . .K2.

We now show that the distance W1,2 is bounded by the distance induced by the ensemble norm
defined in (2.17). This result will be crucial later to prove Theorem 2.8.

Lemma 2.21. Let u1 = {u(j)
1 }Jj=1, u2 = {u(j)

2 }Jj=1 be two ensembles of particles and let µ1, µ2
be the corresponding empirical distributions defined as sum of Dirac masses

µ1 = 1
J

J∑
j=1

δ
u

(j)
1
, µ2 = 1

J

J∑
j=1

δ
u

(j)
2
.

Then for all s ∈ [1,∞] and p ∈ [1,∞) it holds

Wp,s(µ1, µ2) ≤

 1
J

J∑
j=1

∥∥∥u(j)
1 − u

(j)
2

∥∥∥p
s

 1
p

and, in particular,
W1,2(µ1, µ2) ≤ ‖u1 − u2‖ .

Proof. Take γ∗ defined as

γ∗(u(j)
1 , u

(i)
2 ) =

{
J−1, if i = j,

0, if i 6= j,

such that the matrix (γ)ji = γ∗(u(j)
1 , u

(i)
2 ) is in RJ×Jµ1,µ2

, and note that

J∑
j=1

J∑
i=1

∥∥∥u(j)
1 − u

(i)
2

∥∥∥p
s
γji = 1

J

J∑
j=1

∥∥∥u(j)
1 − u

(j)
2

∥∥∥p
s
.

Therefore, by definition of Wasserstein distance for discrete distributions on finite spaces (2.33),
we deduce that

Wp,s(µ1, µ2) ≤

 1
J

J∑
j=1

∥∥∥u(j)
1 − u

(j)
2

∥∥∥p
s

 1
p

,

which is the desired result. Finally, taking p = 1 and s = 2 and recalling the ensemble norm
defined in (2.17), we obtain the second inequality.
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We now analyze the relationship between the weak L1 convergence introduce in Definition 2.9
and the convergence with respect to the expectation of the Wasserstein distance for random
probability measures. In particular, we prove that the latter implies the former, which was already
proved in [124] for non-random measures. Here, we extend the result to random probability
measures. The proof of the following Lemma is given in Section 2.8.

Lemma 2.22. Let (Ω,F , P ) be a probability space. Let the sequence {µn}n∈N and µ be random
probability measures on the metric space (BR(u∗), ‖·‖s) dependent on the random variable ξ on
(Ω,F , P ). If

Eξ[W1,s(µn, µ)]→ 0,

then µn
L1

−−⇀ µ.

We can now complete the proof of Theorem 2.10.

Proof of Theorem 2.10. Applying Lemma 2.21 and due to Theorem 2.8, we deduce that for
ε, h→ 0 it holds

E[W1,2(µε, µ0
h)]→ 0.

Note that the only difference in the update step of the EnKF when used for a point estimate and
in the Bayesian framework is that Γ is replaced by ∆−1Γ where ∆ = 1/N . The constants of the
proof of Theorem 2.8 depend on

∥∥Γ−1
∥∥

2, which is now replaced by
∥∥(∆−1Γ)−1

∥∥
2, which can be

bounded by
∥∥Γ−1

∥∥
2 as ∥∥(∆−1Γ)−1∥∥

2 = ∆
∥∥Γ−1∥∥

2 ≤
∥∥Γ−1∥∥

2 .

Finally, applying Lemma 2.22, we obtain the desired result.

2.6 Modeling Error
In this section, we consider the effects of model misspecification due to the homogenization and
discretization error. All the results presented in Section 2.5 concern the asymptotic case h, ε→ 0,
which may unrealistic in applications. Let us recall that the inverse problem involves predicting
the unknown u from observations originated by the model

y = Gε(u) + η, (2.34)

where η ∼ N (0,Γ) is the noise. Since evaluating Gε is too expensive and in many applications
unfeasible, we wish to employ the cheaper forward operator G0

h. Hence, we rewrite (2.34) as

y = G0
h(u) + E(u) + η, (2.35)

where
E(u) := Gε(u)− G0

h(u).

The quantity E(u) represents the error introduced by misspecification of the forward model.
Equation (2.35) shows that the observed data y can be seen as data originating by the discrete
homogenized model which is affected by two sources of errors, the original noise and the modeling
error. This formulation of modeling error was originally presented in [29], and then applied to
multiscale inverse problems in [4]. Following [4, 29], we assume that the modeling error is a
Gaussian random variable independent of the noise η, so that E ∼ N (m,Σ) for all u, and write

y = G0
h(u) +m+ ζ + η, (2.36)
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where ζ ∼ N (0,Σ). There is no theoretical guarantee for the modeling error to be distributed as
a Gaussian in this framework. Nevertheless, it has been shown in [99] that in the one-dimensional
case a Gaussian assumption can be employed effectively for the modeling error, thus partially
justifying our choice. We then define

ỹ = y −m and η̃ = η + ζ ∼ N (0,Γ + Σ)

and, from (2.36), we obtain
ỹ = G0

h(u) + η̃. (2.37)
Therefore, if the mean m and covariance Σ of the modeling error are known, a more reliable
solution of the inverse problem can be obtained applying the EnKF to (2.37). The modeling
error distribution, by assumption fully determined by its mean and covariance, is approximated
offline. We sample NE unknowns {ui}NEi=1 from µ0 and, for all i = 1, . . . , NE , we apply both the
forward operators Gε(ui) and G0

h(ui). Then we compute

Ei = Gε(ui)− G0
h(ui),

and the mean m and the covariance Σ are obtained as the empirical mean and covariance of the
sample {Ei}NEi=1. This procedure is computationally involved due to the multiple evaluations of Gε,
but it has to be performed only once and can then be applied to different sets of observations and
true values u∗. Let us also remark that on the one hand, due to the theory of homogenization, the
modeling error can be considered negligible when ε is very small, and the expensive estimation
of E may not be necessary. On the other hand, when ε is larger, the homogenized equation
does not provide with a good approximation of the multiscale problem, and an estimation of
E is required. One may rightfully argue that in case ε = O(1), it is possible to evaluate the
forward operator Gε without a large computational effort. Hence, the techniques presented in
this section are relevant for mid-range values of ε, for which E is significant with respect to the
noise η. Moreover, we remarked that in practice a small number NE can be employed to obtain
a satisfactory approximation of the modeling error. A theoretical justification of this practical
consideration is provided by Theorems 2.23 and 2.24.

In order to obtain a more reliable approximation of the distribution of the modeling error, we can
follow a dynamic approach based on the estimation of the mean m and the covariance Σ online,
i.e., during the run of the EnKF algorithm. This methodology has been developed in [28], and it
consists of splitting the EnKF run on L levels, thus obtaining a new estimation of the modeling
error sequentially at the end of each level. In practice, given a prior µ0, and initializing µ0

0 ≡ µ0
and ` = 0, the procedure can be algorithmically summarized as:

1. approximate the distribution ν` = N (m`,Σ`) of the modeling error with samples of E
obtained from µ`0;

2. run the EnKF corrected by the modeling error ν` for N ` steps and obtain the discrete
approximation of the posterior

µ`N` = 1
J

J∑
j=1

δ
u
`(j)
n

;

3. set µ`+1
0 = µ`N` , `← `+ 1 and if ` < L return to 1.

Intuitively, this approach yields a better approximation of the modeling error. Indeed, we are
sampling the modeling error from probability measures which are progressively closer to the
posterior. Still, the dynamic update is performed online and is therefore computationally more
expensive than approximating the modeling error fully offline.

Finally, we are interested in studying whether the simple offline method for estimating the
modeling error provides indeed a good approximation. In this direction, we give in Theorems 2.23
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and 2.24 a criterion on how to choose the number NE of full multiscale problems which has to
be solved in order to have a reliable approximation of the true mean m∗ and covariance Σ∗ of
the modeling error with respect to ε and h. Before stating the theoretical results, let us recall
Hoeffding’s inequality, which will be employed in the proofs. Let {Yi}Ni=1 be independent random
variables with values in [a, b], and let Ȳ be the sample average of {Yi}Ni=1. Then, the Hoeffding’s
inequality states that for all η ∈ R it holds

P
(∣∣Ȳ − E[Y ]

∣∣ ≥ η) ≤ 2 exp
(
− 2η2N

(b− a)2

)
.

Theorem 2.23. Let α ∈ (0, 1), η > 0 and CE = max{K, K̃}, where K and K̃ are the constants
of Lemma 2.13 and Lemma 2.17, respectively. Let {Ei}NEi=1 ⊂ RL be given by

Ei = Gε(ui)− G0
h(ui) for all i = 1, . . . , NE ,

for a sample of realizations {ui}NEi=1 drawn from a prior distribution µ0, let m be the sample mean
of {Ei}NEi=1 and m∗ = E[Ei]. If

NE ≥ 4C2
E
L

η2 log
(

2L
α

)[
ε2 + h2(s+1)

]
,

where s is given by Lemma 2.17, then

P (‖m−m∗‖2 ≤ η) ≥ 1− α.

Proof. First, note that the modeling error is bounded, indeed by Lemma 2.13 and Lemma 2.17,
we have for each i = 1, . . . , NE

‖Ei‖2 =
∥∥Gε(ui)− G0

h(ui)
∥∥

2

≤
∥∥Gε(ui)− G0(ui)

∥∥
2 +

∥∥G0(ui)− G0
h(ui)

∥∥
2

≤ Kε+ K̃hs+1,

so each component (Ei)l, for l = 1, . . . , L, is bounded by the same constant

|(Ei)l| ≤ ‖Ei‖2 ≤ Kε+ K̃hs+1 ≤ CE(ε+ hs+1). (2.38)

Observe that if
|ml −m∗l | ≤

η√
L

for each l = 1, . . . , L,

then

‖m−m∗‖2 =
(

L∑
l=1
|ml −m∗l |

2

) 1
2

≤ η,

which implies that

P (‖m−m∗‖2 ≤ η) ≥ P
(
|ml −m∗l | ≤

η√
L
, ∀ l = 1, . . . , L

)
. (2.39)

Using (2.38) and applying Hoeffding’s inequality we have

P

(
|ml −m∗l | ≥

η√
L

)
≤ 2 exp

(
− 2η2NE

4LC2
E(ε+ hs+1)2

)
≤ 2 exp

(
− η2NE

4LC2
E(ε2 + h2(s+1))

)
.

(2.40)
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Let us define the events Al =
{
|ml −m∗l | ≤

η√
L

}
for each l = 1, . . . , L. Then, we have

P

(
|ml −m∗l | ≤

η√
L
∀ l = 1, . . . , L

)
= P

(
L⋂
l=1

Al

)
,

and, applying the De Morgan’s laws and the union bound, we obtain

P

(
L⋂
l=1

Al

)
= 1− P

( L⋂
l=1

Al

)C = 1− P
(

L⋃
l=1

ACl

)
≥ 1−

L∑
l=1

P (ACl ). (2.41)

Therefore, thanks to (2.39), (2.40) and (2.41), we have

P (‖m−m∗‖2 ≤ η) ≥ 1− L max
l=1,...,L

P

(
|ml −m∗l | ≥

η√
L

)
≥ 1− 2L exp

(
− η2NE

4LC2
E(ε2 + h2(s+1))

)
,

(2.42)

and if NE satisfies the hypothesis we obtain the desired result.

Theorem 2.24. Let α ∈ (0, 1), η > 0 and CE = max{K, K̃}, where K and K̃ are the constants
of Lemma 2.13 and Lemma 2.17, respectively. Let {Ei}NEi=1 ⊂ RL be given by

Ei = Gε(ui)− G0
h(ui) for all i = 1, . . . , NE ,

for a sample of realizations {ui}NEi=1 drawn from a prior distribution µ0, let m and Σ be the sample
mean and covariance of {Ei}NEi=1 and m∗ = E[Ei] and Σ∗ = E[(Ei −m∗)(Ei −m∗)>]. If

NE ≥ ĈC4
E
L2

η2 log
(

2L(L+ 1)
α

)[
ε4 + h4(s+1)

]
,

where s is given by Lemma 2.17 and Ĉ is specified in the proof, then

P (‖Σ− Σ∗‖2 ≤ η) ≥ 1− α.

Proof. First, repeating verbatim the first part of the proof of Theorem 2.23 we have

|(Ei)l| ≤ ‖Ei‖2 ≤ Kε+ K̃hs+1 ≤ CE(ε+ hs+1). (2.43)

Let us now rewrite the covariance matrix Σ∗ and its estimator Σ as

Σ∗ = E[(Ei −m∗)(Ei −m∗)>] = E[EiE>i ]−m∗(m∗)>,

and

Σ = 1
NE

NE∑
i=1

(Ei −m)(Ei −m)> = 1
NE

NE∑
i=1
EiE>i −mm>.

Then by triangle inequality it holds

‖Σ− Σ∗‖2 ≤
∥∥∥∥∥ 1
NE

NE∑
i=1
EiE>i − E[EiE>i ]

∥∥∥∥∥
2

+
∥∥mm> −m∗(m∗)>∥∥2 ,

and due to the elementary inequality
∥∥ab>∥∥2 ≤ ‖a‖2 ‖b‖2 and the bound (2.43) we have∥∥mm> −m∗(m∗)>∥∥2 =

∥∥(m−m∗)m> +m∗(m−m∗)>
∥∥

2

≤ 2CE(ε+ hs+1) ‖m−m∗‖2 ,
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which implies

‖Σ− Σ∗‖2 ≤
∥∥∥∥∥ 1
NE

NE∑
i=1
EiE>i − E[EiE>i ]

∥∥∥∥∥
2

+ 2CE(ε+ hs+1) ‖m−m∗‖2 .

Therefore, we obtain

P (‖Σ− Σ∗‖2 ≤ η) ≥ P
(∥∥∥∥∥ 1

NE

NE∑
i=1
EiE>i − E[EiE>i ]

∥∥∥∥∥
2

≤ η

2 ,

‖m−m∗‖2 ≤
η

4CE(ε+ hs+1)

)
,

which, applying P (A,B) = 1− P (AC ∪BC) ≥ 1− P (AC)− P (BC), yields

P (‖Σ− Σ∗‖2 ≤ η) ≥ 1− P
(∥∥∥∥∥ 1

NE

NE∑
i=1
EiE>i − E[EiE>i ]

∥∥∥∥∥
2

≥ η

2

)

− P
(
‖m−m∗‖2 ≥

η

4CE(ε+ hs+1)

)
.

(2.44)

We then bound the two terms in the right-hand side separately. By equation (2.42) in the proof
of Theorem 2.23 we first have

P

(
‖m−m∗‖2 ≥

η

4CE(ε+ hs+1)

)
≤ 2L exp

(
− η2NE

32LC4
E(ε+ hs+1)4

)
. (2.45)

Then, similarly to the last part of the proof of Theorem 2.23, since ‖·‖2 ≤ ‖·‖F where ‖·‖F
denotes the Frobenius norm, we have

P

(∥∥∥∥∥ 1
NE

NE∑
i=1
EiE>i − E[EiE>i ]

∥∥∥∥∥
2

≥ η

2

)

≤ L2 max
j,k=1,...,L

P

(∣∣∣∣∣ 1
NE

NE∑
i=1

(Ei)j(Ei)k − E[(Ei)j(Ei)k]
∣∣∣∣∣ ≥ η

2L

)
,

and applying the Hoeffding’s inequality to the random variables (Ei)j(Ei)k for all j, k = 1, . . . , L,
which are bounded by C2

E(ε+ hs+1)2 due to (2.43), we obtain

P

(∥∥∥∥∥ 1
NE

NE∑
i=1
EiE>i − E[EiE>i ]

∥∥∥∥∥
2

≥ η

2

)
≤ 2L2 exp

(
− η2NE

8L2C4
E(ε+ hs+1)4

)
. (2.46)

Finally, equations (2.45) and (2.46) together with (2.44) imply

P (‖Σ− Σ∗‖2 ≤ η) ≥ 1− 2L(L+ 1) exp
(
− η2NE

ĈL2C4
E(ε4 + h4(s+1))

)
,

where Ĉ = 256 and if NE satisfies the hypothesis we obtain the desired result.

Remark 2.25. Note that, in Theorem 2.23 and Theorem 2.24, as expected, the number NE of
full multiscale problems tends to infinity if we require no error between the sample and the
true mean and covariance (η → 0) or certainty that the error is below a certain value (α→ 0).
Moreover, observe that for any given accuracy the number of samples required NE is a increasing
function of ε and h, so that if the model G0

h is a good approximation of G, thus computationally
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expensive, then only few samples are needed. In particular, notice that in order to obtain a good
approximation of the true mean, the number of full multiscale problems is

NE = O
(
η−2 log(α−1)

(
ε2 + h2(s+1)

))
,

while to have a reliable approximation of the covariance matrix it is required that

NE = O
(
η−2 log(α−1)

(
ε4 + h4(s+1)

))
.

2.7 Numerical Experiments
In this section, we present numerical experiments to illustrate the potential of ensemble Kalman
inversion for multiscale elliptic problems. In particular, we consider the framework of the boundary
problem first introduced in Calderón’s seminal work [27]. We refer moreover the reader to the
research article [4], from which we borrow the experimental setting.

Let us consider a class of parametrized multiscale locally periodic tensors of the type Aεu(x) =
A(u(x), x/ε), where u : D → R, u ∈ X is the unknown of our inverse problem. In particular, we
assume to know the map (t, x) 7→ A(t, x/ε) for all x ∈ D and t ∈ R and we want to estimate the
function u given measurements computed from the model{

−∇ · (Aεu∇pε) = 0 in D,
pε = g on ∂D.

(2.47)

Remark 2.26. Note that we presented the theory for Dirichlet homogeneous boundary conditions,
i.e., in case g ≡ 0. Nevertheless, all our results hold for a generic smooth Dirichelet boundary
condition by a standard “lifting” argument. For more details, we refer the reader to [123, Remark
8.10].

We let u ∈ X where X is the admissible set

X = {u ∈ L∞(D) : u− ≤ u(x) ≤ u+},

where u− and u+ are two given scalars. Moreover, we let observations consist of integrals of
the normal flux multiplied by a compactly-supported function on a portion of the boundary
of the domain. More precisely, we consider I ∈ N disjoint portions of D, which we denote by
Γi ∈ ∂D, i = 1, . . . , I, Γi ∩ Γj = ∅ for i 6= j, and I functions ϕi ∈ H1/2(∂D) with compact
support supp (ϕi) ⊂ Γi for all i = 1, . . . , I. Moreover, we solve (2.47) for K ∈ N Dirichlet data gk,
k = 1, . . . ,K, and we denote by pεk the solution of the problem. Let ΛAεu : H1/2(∂D)→ H−1/2(∂D)
be the operator which maps the Dirichlet data g to the normal flux of the solution pε of (2.47)

ΛAεug = Aεu∇pε · ν,

where ν is the exterior unit normal vector to ∂D. In literature, the function ΛAεu is often referred
to as the Dirichlet-to-Neumann map (see e.g. [4]). We then define the multiscale forward operator
Gε : X → RL where L = IK by components as

Gε(u)ik = Gε(u)l =
〈
ΛAεugk, ϕi

〉
H−1/2(∂D),H1/2(∂D) , (2.48)

for i = 1, . . . , I and k = 1, . . . ,K. Let us remark that with an abuse of notation we can rewrite
perhaps more intuitively (2.48) as

Gε(u)ik =
∫

Γi
Aεu∇pεk · νϕids.
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The final vector of observations y is given by the sum of the operator Gε and a source of Gaussian
noise

y = Gε(u) + η,

where η ∼ N (0,Γ) and Γ is a given positive definite covariance matrix. We impose on the
unknown u a Gaussian prior measure µ0 = N (0, C), where we choose C to be the exponential
covariance operator defined by

C(x1, x2) = δ exp
(
−
‖x1 − x2‖2

λ

)
, (2.49)

where δ, λ ∈ R+ and x1, x2 ∈ D. The parameter λ is a correlation length that describes how the
values at different positions of the functions supported by the prior measure are related, while
the parameter δ is an amplitude scaling factor. Let us remark that functions drawn from the
prior distribution could exhibit multiple scales, thus interfering in the homogenized problem.
We control this issue by tuning the parameters δ and λ, which, as illustrated by our numerical
experiments, suffices in practice. Another choice for controlling the smoothness and scale-length
of samples from the prior would be to a prior covariance of the Matérn kind. Let us finally
remark that we solve in practice the inverse problem in a M -dimensional subspace XM ⊂ X by
considering truncated KL expansions as in Section 1.2.

The approximated operator G0
h, to which we apply the EnKF as described above, is obtained

via an application of the FE-HMM [2,5]. Denoting by A0
u the homogenized tensor obtained via

the FE-HMM, and by p0
h the homogenized solution computed on a coarse mesh Th of D with

maximum element size h > 0, we define the discrete homogenized operator G0
h : X → RL as

G0
h(u)l = G0

h(u)ik =
〈
ΛA0

u
gk, ϕi

〉
H−1/2(∂D),H1/2(∂D) , (2.50)

for i = 1, . . . , I and k = 1, . . . ,K, or, with the same abuse of notation as above

Gε(u)ik =
∫

Γi
A0
u∇(p0

h)k · νϕids,

where (p0
h)k is the FE-HMM solution computed with the k-th boundary condition gk.

2.7.1 Data

We now detail the specific setting for our experiments. We let the domain D be the unit square
D = (0, 1)2, and consider exact tensor Aεu∗ given by

a11

(
u∗(x), x

ε

)
= eu

∗(x)
(

cos2
(

2πx1

ε

)
+ 1
)

+ cos2
(

2πx2

ε

)
,

a12

(
u∗(x), x

ε

)
= 0,

a21

(
u∗(x), x

ε

)
= 0,

a22

(
u∗(x), x

ε

)
= eu

∗(x)
(

sin
(

2πx2

ε

)
+ 2
)

+ cos2
(

2πx1

ε

)
,

where
u∗(x) = log(1.3 + 0.3χD1 − 0.4χD2),
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Figure 2.1 – Exact unknown u∗ employed for numerical experiments.

with χ denoting the indicator function, and the sets D1 and D2 defined by

D1 =
{
x = (x1, x2) :

(
x1 −

5
16

)2
+
(
x2 −

11
16

)2
≤ 0.025

}
,

D2 =
{
x = (x1, x2) :

(
x1 −

11
16

)2
+
(
x2 −

5
16

)2
≤ 0.025

}
.

We show the exact unknown u∗ in Fig. 2.1. Let us remark that the tensor Aεu satisfies Assump-
tion 2.4. In particular, for any ξ ∈ R2 and u ∈ X we have

Aεuξ · ξ = a1,1

(
u(x), x

ε

)
ξ2
1 + a2,2

(
u(x), x

ε

)
ξ2
2 ≥ eu(x)(ξ2

1 + ξ2
2) ≥ eu

−
‖ξ‖22 ,

which shows that the elliptic assumption holds.

We fix the number of Dirichlet conditions {gk}3k=1 to K = 3. In particular, we choose gk =
√
`kϑk,

where {(`k, ϑk)}3k=1 are the three eigenvalues/eigenfunction pairs corresponding to the smallest
eigenvalues of the one-dimensional Laplace operator with homogeneous Dirichlet boundary
conditions on (0, 1). These functions are orthonormal with respect to the scalar product in
L2(∂D), which ensures that each boundary condition yields independent information. The
boundary integrals in (2.48) and (2.50) are computed on I = 12 portions Γi, three for each
side of the square D. In particular, all Γi have length equal to 0.2 and consist of the intervals
(0.1, 0.3), (0.4, 0.6) and (0.7, 0.9), with respect to the local coordinates of each side of D. The
functions {ϕi}12

i=1 are hat functions with supp(ϕi) = Γi, which take value one at the midpoint of
Γi and value 0 at the extremes of Γi. We refer the reader to [4] for a sensitivity analysis with
respect to the number of Dirichlet conditions K.

We choose the noise covariance as Γ = γ2I, where I is the identity matrix and γ = 0.01. We
fix moreover δ = 0.05 and λ = 0.5 as the parameters of the prior covariance (2.49). Finally, we
choose to truncate the KL expansion after M = 100 terms, thus computing the solution of the
inverse problem on the finite-dimensional subset XM ⊂ X such that dim(XM ) = 100. Let us
remark that the true unknown u∗ is discontinuous, and does not therefore belong to XM .

In all the numerical scenarios we consider below, observations are generated by a reference solution
computed with the FEM on a refined mesh with maximum element size hobs = 2−12. Moreover,
the macro-mesh size in the FE-HMM is fixed to h = 2−5, again for all experiments.

2.7.2 Results

We first fix the multiscale parameter ε = 2−5 and the ensemble size J = 500 and study the
evolution of the EnKF estimate with respect to the number of steps N . In Fig. 2.2 we plot the
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Figure 2.2 – EnKF estimation after N = {10, 50, 250, 500} iterations.

Figure 2.3 – EnKF estimation with ensemble size J = {10, 100, 500, 1000}.

estimation uEnKF after 10, 50, 250 and 500 iterations of the ensemble Kalman algorithm. We
clearly see that the approximation gets better as the number of iterations increases and that
convergence has been reached. In particular, already after N = 250 iterations the algorithm seem
to have reached convergence.

Next, we perform a sensitivity analysis with respect to the ensemble size. In Fig. 2.3 we show
numerical results for varying number of particles J , all computed with 500 iterations of the EnKF
and for the multiscale parameter ε = 2−5. As expected, the quality of the approximation is
enhanced by taking larger ensembles. In particular, note that if the number of particles is chosen
too small, e.g. J = 10, then the approximation of the inverse problem is not satisfying.

We then fix both the ensemble size to J = 500 and the number of iterations to N = 500 and
consider different values of the multiscale parameter. Results, shown in Fig. 2.4, highlight how
replacing the full model with its homogenized surrogate is a viable solution when ε� 1, whereas
in case ε is not small the EnKF method fails to identify the solution of the inverse problem
satisfactorily.

In order to account for the mismatch between homogenized and multiscale model, we therefore
consider the modeling error techniques presented in Section 2.6. In particular, we show in Fig. 2.5
numerical results when the offline modeling error estimation is applied with NE = 20 samples.
Comparing the results with Fig. 2.4, in particular for ε = 1/4, shows the beneficial effect of
explicitly accounting for model misspecification.

Finally, in Fig. 2.6 we show the results obtained by applying the ensemble Kalman method
with dynamic updating of the modeling error distribution with L = 5 levels, N `

E = 4 samples
and N ` = 100 iterations at each level ` = 1, . . . ,L. For fairness of comparison with the offline
approach, we consider 20 solves of the full multiscale problem and 500 iterations of the EnKF.
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Figure 2.4 – EnKF estimation for the multiscale parameter ε = {1/4, 1/8, 1/16, 1/32}.

Figure 2.5 – EnKF with offline modeling error estimation for the multiscale parameter ε =
{1/4, 1/8, 1/16, 1/32}.

Figure 2.6 – EnKF with online iterative modeling error estimation for the multiscale parameter
ε = {1/4, 1/8, 1/16, 1/32}.

Comparing these plots with the ones in Fig. 2.5, we note that updating the distribution of the
modeling error dynamically still improves the results.

2.8 Proof of Technical Results
We conclude the chapter by giving the proof of some technical results, which were omitted in the
text to enhance readability.

Proof of Lemma 2.12. Let u1, u2 ∈ RM , and p1 = S(u1), p2 = S(u2). From the weak formulations
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of (2.21) we get that∫
D

(
Au1∇p1 −Au2∇p2

)
· ∇v = 0 for all v ∈ H1

0 (D),

which yields ∫
D

Au1(∇p1 −∇p2) · ∇v = −
∫
D

(Au1 −Au2)∇p2 · ∇v.

Then choosing v = p1 − p2, by the hypotheses on Au and applying the Hölder inequality we
obtain

α0 ‖∇p1 −∇p2‖2L2(D;Rd) ≤M ‖u1 − u2‖2 ‖∇p2‖L2(D;Rd) ‖∇p1 −∇p2‖L2(D;Rd) ,

which due a standard coercivity argument implies

‖∇p1 −∇p2‖L2(D;Rd) ≤
MCp
α2

0
‖f‖L2(D) ‖u1 − u2‖2 , (2.51)

where Cp is the Poincaré constant associated to the domain D. Hence (2.51) shows that S is
Lipschitz with constant

LS = MCp
α2

0
‖f‖L2(D) .

Finally, since G is the composition of two Lipschitz operators, we deduce that it is also Lipschitz
with constant LG = LOLS .

Proof of Lemma 2.13. Let us consider an ensemble u ∈ UJ,M with particles u(j) ∈ RM , for
j = 1, . . . , J . For each particle we have∥∥∥Gε(u(j))− G0(u(j))

∥∥∥
2

=
∥∥∥O(Sε(u(j)))−O(S0(u(j)))

∥∥∥
2

≤ CO
∥∥∥pε(u(j))− p0(u(j))

∥∥∥
L2(D)

,

where we write explicitly the dependence of the solutions pε and p0 on the particle they are
generated by. Due to homogenization theory (see e.g. [113, Theorem 19.1]), we have that
pε(u(j))→ p0(u(j)) in L2(D) for all j = 1, . . . , J , which implies

e(ε, u) = 1
J

J∑
j=1

∥∥∥Gε(u(j))− G0(u(j))
∥∥∥

2
≤ CO

J

J∑
j=1

∥∥∥pε(u(j))− p0(u(j))
∥∥∥
L2(D)

→ 0.

Moreover, if the solution of the homogenized problem p0 is sufficiently smooth independently
of u, namely p0 ∈ H2(D), letting C > 0 be a constant independent of ε, we have by [98] for all
j = 1, . . . , J ∥∥∥pε(u(j))− p0(u(j))

∥∥∥
L2(D)

≤ Cε,

which implies

e(ε, u) = 1
J

J∑
j=1

∥∥∥Gε(u(j))− G0(u(j))
∥∥∥

2
≤ CO

J

J∑
j=1

∥∥∥pε(u(j))− p0(u(j))
∥∥∥
L2(D)

≤ COCε,

and defining K = COC gives the desired result.
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Proof of Lemma 2.14. First, for all x ∈ BR(u∗) we have

‖x‖2 ≤ ‖x− u
∗‖2 + ‖u∗‖2 ≤ R+ ‖u∗‖2 =: m,

‖G(x)‖2 ≤ ‖G(x)− G(u∗)‖2 + ‖G(u∗)‖2 ≤ CG ‖x− u
∗‖2 + ‖G(u∗)‖2

≤ CGR+ ‖G(u∗)‖2 =: M.

(2.52)

We can also deduce the same bounds for the mean values

‖ū‖2 ≤
1
J

J∑
j=1

∥∥∥u(j)
∥∥∥

2
≤ m, and

∥∥Ḡ∥∥2 ≤
1
J

J∑
j=1

∥∥∥G(u(j))
∥∥∥

2
≤M. (2.53)

Then by (2.52) and (2.53) we get

‖Cup(u)‖2 = sup
x∈RL : ‖x‖2=1

∥∥∥∥∥∥ 1
J

J∑
j=1

(u(j) − ū)(G(u(j))− Ḡ)>x

∥∥∥∥∥∥
2

≤ 1
J

J∑
j=1

(∥∥∥G(u(j))
∥∥∥

2
+
∥∥Ḡ∥∥2

)(∥∥∥u(j)
∥∥∥

2
+ ‖ū‖2

)
≤ 4Mm,

and defining C1 = 4Mm we get (i). The argument is similar for the matrix Cpp(u), for which we
have

‖Cpp(u)‖2 ≤
1
J

J∑
j=1

(∥∥∥G(u(j))
∥∥∥

2
+
∥∥Ḡ∥∥2

)2
≤ 4M2,

and defining C2 = 4M2 we get (ii). Before proving (iii) and (iv), we need the following estimates
for two ensemble of particles u1 and u2

‖ū1 − ū2‖2 =

∥∥∥∥∥∥ 1
J

J∑
j=1

(u(j)
1 − u

(j)
2 )

∥∥∥∥∥∥
2

≤ 1
J

J∑
j=1

∥∥∥u(j)
1 − u

(j)
2

∥∥∥
2

= ‖u1 − u2‖ ,

∥∥Ḡ1 − Ḡ2
∥∥

2 =

∥∥∥∥∥∥ 1
J

J∑
j=1

(G(u(j)
1 )− G(u(j)

2 ))

∥∥∥∥∥∥
2

≤ CG
J

J∑
j=1

∥∥∥u(j)
1 − u

(j)
2

∥∥∥
2

= CG ‖u1 − u2‖ .

(2.54)

Then we have
‖Cup(u1)− Cup(u2)‖2

= sup
x∈RL : ‖x‖2=1

∥∥∥∥∥∥ 1
J

J∑
j=1

[
(u(j)

1 − ū1)(G(u(j)
1 )− Ḡ1)>x− (u(j)

2 − ū2)(G(u(j)
2 )− Ḡ2)>x

]∥∥∥∥∥∥
2

≤ 1
J

J∑
j=1

(∥∥∥u(j)
1

∥∥∥
2

+ ‖ū1‖2
)(∥∥∥G(u(j)

1 )− G(u(j)
2 )
∥∥∥

2
+
∥∥Ḡ2 − Ḡ1

∥∥
2

)

+ 1
J

J∑
j=1

(∥∥∥u(j)
1 − u

(j)
2

∥∥∥
2

+ ‖ū2 − ū1‖2
)(∥∥∥G(u(j)

2 )
∥∥∥

2
+
∥∥Ḡ2

∥∥
2

)
,

and since G is Lipschitz and due to (2.52), (2.53), (2.54), we obtain

‖Cup(u1)− Cup(u2)‖2 ≤ 2m(CGJ ‖u1 − u2‖+ CG ‖u1 − u2‖)
+ (J ‖u1 − u2‖+ ‖u1 − u2‖)2M

≤ 2(J + 1)(mCG +M) ‖u1 − u2‖ ,
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and defining C3 = 2(J + 1)(mCG + M) we get (iii). The argument is similar for the matrix
Cpp(u), for which we have

‖Cpp(u1)− Cpp(u2)‖2 ≤
1
J

J∑
j=1

(∥∥∥G(u(j)
1 )
∥∥∥+

∥∥Ḡ1
∥∥

2

)(∥∥∥G(u(j)
1 )− G(u(j)

2 )
∥∥∥

2
+
∥∥Ḡ2 − Ḡ1

∥∥
2

)

+ 1
J

J∑
j=1

(∥∥∥G(u(j)
1 )− G(u(j)

2 )
∥∥∥

2
+
∥∥Ḡ2 − Ḡ1

∥∥
2

)(∥∥∥G(u(j)
2 )
∥∥∥+

∥∥Ḡ2
∥∥)

≤ 4(J + 1)MCG ,

and defining C4 = 4(J + 1)MCG we get (iv), which concludes the proof.

Proof of Lemma 2.17. Let us consider an ensemble u ∈ UJ,M with particles u(j) ∈ RM , for
j = 1, . . . , J . For each particle we have∥∥∥G0

h(u(j))− G0(u(j))
∥∥∥

2
=
∥∥∥O(S0

h(u(j)))−O(S0(u(j)))
∥∥∥

2
≤ CO

∥∥∥p0
h(u(j))− p0(u(j))

∥∥∥
L2(D)

,

where we write explicitly the dependence of the solutions p0 and p0
h on the particle they are

generated by. Then due to standard a priori error estimates of FEM (see e.g. [33, Theorem
3.2.5]) and higher order boundary regularity results for elliptic partial differential equations (see
e.g. [52, Theorem 6.3.5]) we have for all j = 1, . . . , J∥∥∥p0

h(u(j))− p0(u(j))
∥∥∥
L2(D)

≤ C
∣∣∣p0(u(j))

∣∣∣
Hs+1(D)

hs+1 ≤ C ‖f‖Hq−1(D) h
s+1,

where C > 0 is a constant independent of h. Therefore, we obtain

ẽ(h, u) = 1
J

J∑
j=1

∥∥∥G0
h(u(j))− G0(u(j))

∥∥∥
2
≤ COC ‖f‖Hq−1(D) h

s+1,

and defining K̃ = COC ‖f‖Hq−1(D) gives the desired result.

Proof of Lemma 2.22. We follow the same steps of the proof of Theorem 5.9 in [124]. Let us first
recall the duality formula for the Wasserstein distance with p = 1

W1,s(µn, µ) = sup
ϕ∈Φ

{∫
BR(u∗)

ϕd(µn − µ)
}
,

where Φ is the set of all globally Lipschitz continuous functions ϕ : BR(u∗)→ R with Lipschitz
constant CLip ≤ 1. Note that if ϕ ∈ Φ, then also −ϕ ∈ Φ. Hence we deduce that

W1,s(µn, µ) = sup
ϕ∈Φ

{∣∣∣∣∣
∫
BR(u∗)

ϕd(µn − µ)
∣∣∣∣∣
}
.

Then, we have

sup
ϕ∈Φ

Eξ

[∣∣∣∣∣
∫
BR(u∗)

ϕd(µn − µ)
∣∣∣∣∣
]
≤ Eξ

[
sup
ϕ∈Φ

{∣∣∣∣∣
∫
BR(u∗)

ϕd(µn − µ)
∣∣∣∣∣
}]

= Eξ[W1,s(µn, µ)],
where the right hand side vanishes by hypothesis. Therefore, we obtain

Eξ

[∣∣∣∣∣
∫
BR(u∗)

ϕdµn −
∫
BR(u∗)

ϕdµ

∣∣∣∣∣
]
→ 0,

for all ϕ ∈ Φ. Finally, the desired result follows by a standard density argument.
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3 Multiscale Diffusions: Homoge-
nization and Drift Estimation

In this chapter we introduce multiscale diffusion processes, and the problem of inferring from
data an effective equation that captures its slow variations. Let us remark that in this chapter
we mainly present standard material in the topics of homogenization and inference of multiscale
diffusion processes, and its content can be found either in classical references or in more recent
research articles, which are pointed in each relevant section. Moreover, let us remark that some
results and phrasings of this chapter are taken from our original paper [8], whose content is
explored in more detail in Chapter 4.

Let N and d be positive integers, let ε > 0 denote the scale-separation parameter and let T > 0
be a final time. Then, let Xε = (Xε

t , 0 ≤ t ≤ T ) be the stochastic process with values in Rd
solution to the stochastic differential equation (SDE)

dXε
t = −

N∑
i=1

αi∇Vi(Xε
t ) dt− 1

ε
∇p
(
Xε
t

ε

)
dt+

√
2σ dWt, (3.1)

where we denote by V : Rd → RN , V : x 7→ V (x) := (V1(x), V2(x), . . . , VN (x))> and Vi : Rd → R
the slow-scale potential and by α := (α1, α2, . . . , αN )> ∈ RN its associated drift coefficient.
Moreover, we denote by p : Rd → R the fast-scale potential, which we assume to be L-periodic in
all directions for a period L > 0. Finally, we denote by σ ∈ R+ the diffusion coefficient and by
W = (Wt, t ≥ 0) a d-dimensional standard Brownian motion.

Our first goal in this chapter is to determine an effective or homogenized model which captures
the slow-scale variations of (3.1). In particular, let X = (Xt, 0 ≤ t ≤ T ) be the stochastic process
with values in Rd be the solution of the single-scale SDE

dXt = −
N∑
i=1

Ai∇Vi(Xε
t ) dt+

√
2Σ dWt. (3.2)

Then, X is a surrogate of Xε when the scale-separation parameter ε is small. Here, the effective
drift and diffusion coefficients are given by Ai = αiK for i = 1, . . . , N , and Σ = σK, where
K ∈ Rd×d is the matrix defined by

K :=
∫
Y

(I +DyΦ(y)) (I +DyΦ(y))> µ(dy), (3.3)

where Y := [0, L]d and where the function Φ: Rd → Rd is the solution to the so-called cell problem

L0Φ = ∇yp(y), L0 = −∇yp(y) · ∇y + σ∆y, (3.4)
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Chapter 3. Multiscale Diffusions: Homogenization and Drift Estimation

defined on Y and endowed with periodic boundary conditions. Let us remark that for a vector-
valued function the operator L0 is applied component-wise, as in

L0Φ := (L0Φ1,L0Φ2, · · · ,L0Φd)>.

The integral in (3.3) is taken with respect to the probability measure µ(dy) on Y defined by

µ(dy) = ρ(y) dy, ρ(y) = 1
Z
e−p(y)/σ, Z =

∫
Y
e−p(y)/σ dy. (3.5)

The measure µ is connected to the fast variations of the process Xε
t solution of (3.1), in a sense

which will be made clearer in the remainder of this chapter.
Example 3.1. Let us consider the simplest case d = N = 1, so that Y = [0, L]. In this case, one
can compute a closed-form solution to the cell problem (3.4), whose derivative is given by

Φ′(y) = L

Ẑ
e−p(y)/σ − 1, Ẑ =

∫
Y
ep(y)/σ dy.

Substituting into the formula for K, which is in this case a scalar, one easily gets [112, Equation
(1.12)]

K = L2

ZẐ
, Z =

∫
Y
e−p(y)/σ dy,

where we recall Z to be the normalization constant given in (3.5). Let us remark that the
Cauchy–Schwarz inequality yields√

ZẐ ≥
∫
Y
e−p(y)/(2σ)ep(y)/(2σ) dy = L,

so that 0 < K ≤ 1. Moreover, we notice that K → 1 for σ → ∞ and that K is an increasing
function of the diffusion coefficient σ, so that for a finite value σ <∞ it actually holds 0 < K < 1.
In Fig. 3.1 we demonstrate graphically the effects of varying σ on the homogenized model.
We consider (3.1) with ε = 0.1, the drift coefficient α = 1, the slow and fast-scale potentials
V (x) = x2/2 and p(y) = sin(y) and depict the full multiscale potential Vε(x) = αV (x) + p(x/ε),
along with its slow-scale component αV and with the homogenized potential AV . We vary
σ ∈ {0.5, 1, 2} and notice that for small values of the diffusion coefficient the homogenized drift is
sensibly less steep than the slow-scale component of the multiscale potential, whereas for σ = 2
the two are almost indistinguishable.

Before proceeding with the homogenization result, we present in Section 3.1 a result on the
geometric ergodicity of the processes Xε and X (see Section A.4), as well as of weak convergence
of their invariant measures. We then present the homogenization result in two steps. First, in
Section 3.2 we show a classical formal derivation of equation (3.2), which heavily relies on the
connection between SDEs and their associated backward Kolmogorov equation (BKE) introduced
in Section A.3. Second, in Section 3.3, we present a rigorous proof of convergence for the multiscale
process Xε towards its single-scale surrogate X in the asymptotic limit ε→ 0.

The theory of homogenization, which we briefly introduced above and which is explored more
thoroughly in the following, is a powerful tool to determine an effective model of the form
(3.2). Nevertheless, there are severe downsides which prevent its application in a wide range
of applications. In particular, for high-dimensional problems, i.e., when d is large, solving the
cell problem (3.4) can be computationally expensive or even unfeasible. Moreover, the fast-scale
potential p in (3.1) above must be known in order to compute the coefficients of the effective
equation, which is not the case in most practical applications.
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3.1. Ergodic Properties

Figure 3.1 – Multiscale and homogenized confining potentials for the quadratic potential V (x) =
x2/s and p(y) = sin(y), with ε = 0.1. From left to right, growing the diffusion coefficient σ yields
for the homogenization coefficient K → 1.

An alternative approach is provided by data-driven homogenization. Let us suppose that we
observe a continuous-time process Xε, whose time evolution can be modeled by (3.1). In the
framework of data-driven homogenization, one determines an effective equation of the form (3.2)
given these observations Xε from (3.1). We consider a setting where the slow-scale potential V is
known, but the fast scale potential p, the scale-separation parameter ε and the drift and diffusion
coefficients α and σ are not. Clearly, in this case the theory of homogenization is not a viable
approach to determine the effective model and one has to rely on statistical tools. The main
desideratum of the resulting model is for it to be consistent with the theory of homogenization.
Indeed, when an arbitrarily large amount of data is available (i.e., for T → ∞) and in the
homogenization regime (i.e., for ε → 0) the statistically-inferred effective coefficients should
coincide with the values predicted by the theory of homogenization. Unfortunately, if traditional
statistical techniques are applied in this multiscale context without additional care, the resulting
effective coefficient are asymptotically distant from the desired ones, due to an issue of model
misspecification.

In Section 3.4 we introduce and derive from (3.2) a maximum likelihood estimator (MLE) of
the drift coefficient, and show in Section 3.5 the issues that arise due to model misspecification.
We then recast in Section 3.6 the problem of estimating the drift in the framework of Bayesian
inference (see also Chapter 1).

3.1 Ergodic Properties

We first discuss the ergodic properties of the solutions Xε and X of (3.1) and (3.2), respectively.
Let us introduce a dissipative framework and the regularity assumptions which are fundamental
for the theoretical analysis of both this chapter and for Chapter 4. The setting and results of this
section can be found in [8, 94,112,116].
Assumption 3.2. The fast and slow-scale confining potentials p and V in (3.1) satisfy

(i) p ∈ C∞(R) and is L-periodic for some L > 0;
(ii) Vi ∈ C∞(R) for all i = 1, . . . , N is polynomially bounded from above and bounded from

below, and there exist a, b > 0 such that

− α · V ′(x)x ≤ a− bx2;
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Chapter 3. Multiscale Diffusions: Homogenization and Drift Estimation

(iii) V ′ is Lipschitz continuous, i.e. there exists a constant C > 0 such that

‖V ′(x)− V ′(y)‖2 ≤ C |x− y| ,

and the components V ′i are polynomially bounded for all i = 1, . . . , N .

Crucially, Assumption 3.2 is sufficient for both Xε and X to be geometrically ergodic (see
Section A.4), as per, e.g., [94]. We resume this in the following result.

Proposition 3.3. Under Assumption 3.2, the processes Xε and X solutions of (3.1) are geo-
metrically ergodic, and their invariant measures µε and µ0, respectively, satisfy

µε(dx) = ρε(x) dx, ρε(x) = 1
Cε

exp
(
−α · V (x)

σ
− 1
σ
p
(x
ε

))
,

µ0(dx) = ρ0(x) dx, ρ0(x) = 1
C0

exp
(
−α · V (x)

σ

)
,

where Cε and C0 are the normalization constants

Cε =
∫
Rd

exp
(
−α · V (x)

σ
− 1
σ
p
(x
ε

))
dx, C0 =

∫
Rd

exp
(
−α · V (x)

σ

)
dx.

Proof. For geometric ergodicity, we refer to [94]. It is moreover possible to verify through direct
calculations involving the stationary Fokker–Planck equation (see Sections A.3 and A.4) that ρε
and ρ0 are indeed the invariant densities of Xε and X, respectively.

We conclude this section with a first homogenization result, which guarantees weak convergence
for the multiscale invariant measure µε towards the homogenized measure µ0 for ε → 0. Let
us remark that we employ the symbol ⇒ for weak convergence of probability measures, see
Section A.1. We point the reader to [112, Proposition 5.2] for a detailed proof.

Proposition 3.4. Let µε and µ0 be the probability measures defined in Proposition 3.3. Then, it
holds µε ⇒ µ0.

Proof. We first notice that by definition of weak convergence of probability measures, if ρε ⇀ ρ0

in L1(Rd), where ⇀ denotes weak convergence in Lp spaces, then µε ⇒ µ. Indeed, given a
continuous and bounded function f , by definition of weak convergence in L1(Rd) we have

lim
ε→0

∫
Rd
f(x)ρε(x) dx =

∫
Rd
f(x)ρ0(x) dx,

which shows µε ⇒ µ0. It remains to show ρε ⇀ ρ0 in L1(Rd), which is implied by the standard
two-scale convergence result [34, Lemma 9.1], and which therefore concludes the proof.

3.2 Derivation of the Homogenized Equation

In this section, we present a formal derivation of the homogenized model (3.2) based on an
asymptotic expansion of the Backward Kolmogorov Equation (BKE), which we introduced in
Section A.3. The discussion is based on [113, Chapter 11], where a more general but slightly
different framework is considered, and more marginally on [22, Chapter 3] and on [112]. We
remark that in [50] the authors propose numerical methods adapted to the setting we introduce
here. In this section we consider for simplicity only the case N = 1 in (3.1).
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3.2. Derivation of the Homogenized Equation

Let us introduce the rescaled process Y εt := Xε
t /ε, so that considering the evolution of Xε

t and
Y εt yields the system of coupled SDEs

dXε
t = −α∇V (Xε

t ) dt− 1
ε
∇p(Y εt ) dt+

√
2σ dWt,

dY εt = −α
ε
∇V (Xε

t ) dt− 1
ε2∇p(Y

ε
t ) dt+

√
2σ
ε2 dWt,

(3.6)

which reveals the slow/fast structure of this multiscale model. The generator Lε of the joint
process (Xε

t , Y
ε
t )> ∈ R2d reads

Lε := 1
ε2L0 + 1

ε
L1 + L2, (3.7)

with
L0 = −∇yp(y) · ∇y + σ∆y,

L1 = −∇yp(y) · ∇x − α∇xV (x) · ∇y + 2σ∇x · ∇y,
L2 = −α∇xV (x) · ∇x + σ∆x,

where we denote by ∇x and ∇y the gradient operator with respect to the variables x and y
respectively, and by ∆x and ∆y the Laplacian with respect to the same variables.

It is possible to show that L0 is the generator of Y εt conditioned on Xε
t . Hence, if we consider

the natural assumption that the process Y εt is ergodic if the slow variable Xε
t = x is fixed, this

implies that (see Section A.4)

L01(y) = 0, (3.8)
L∗0ρ(y;x) = 0, (3.9)

where 1(y) denotes functions which are constant with respect to y, and where ρ(y;x) denotes
the density of the invariant measure of Y εt for any fixed Xε

t = x. In particular, we have that
ρ(y;x) = ρ(y) is independent of x and is given by (3.5), which can directly verified to satisfy
(3.9). We state explicitly the trivial equality

∇ρ(y) = − 1
σ
ρ(y)∇p(y), i = 1, . . . , d, (3.10)

since we will employ it multiple times in the following. Let us now consider the BKE for (3.6)
and expand its solution u = u(t, x, y) in powers of ε as

u = u0 + εu1 + ε2u2 + · · · . (3.11)

Our goal is now deriving an effective BKE valid for the leading term u0 only. Substituting (3.11)
into the BKE and equating terms with the same powers of ε yields for the leading order terms
the equations

L0u0 = 0, (3.12)
L0u1 = −L1u0, (3.13)
L0u2 = −L1u1 − L2u0 + ∂tu0. (3.14)

Equation (3.12) together with (3.8) imply that u0 is a constant with respect to y, in particular
u0 = u0(t, x). We can therefore rewrite (3.13) as

L0u1 = −L1u0 = ∇yp(y) · ∇xu0. (3.15)

If we now impose
u1 = Φ · ∇xu0,
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where Φ is the solution of the cell problem (3.4), then it is direct to verify the function u1 satisfies
(3.15). Let us remark that since L0 is a differential operator in y only, any function of the form
u1 = Φ · ∇xu0 + 1(y) would have been a solution, but we set the constant term to zero as it
does not intervene in the following. It remains now to consider (3.14). Due to (3.8) and to
the Fredholm alternative (see Theorem A.12), the right-hand side of (3.14) has to satisfy for
solvability

0 =
∫
Y

(−L1u1 − L2u0 + ∂tu0) ρ(y) dy. (3.16)

We compute the terms in the equation above singularly. Let us first remark that after some
algebraic manipulations we can rewrite

L1u1 = −αDyΦ∇xV (x) · ∇xu0 + (2σDyΦ−∇yp(y)⊗ Φ) : ∇2
xu0,

where ⊗ denotes the tensor product v ⊗ w = vw> for vectors v, w ∈ Rd. Considering the second
term, we can write it as

L2u0 = −α∇xV (x) · ∇xu0 + σI : ∇2
xu0.

Hence, we have
L1u1 + L2u0 =− α(I +DyΦ)∇xV (x) · ∇xu0

+ (σI + 2σDyΦ−∇yp(y)⊗ Φ) : ∇2
xu0.

(3.17)

We now remark that it holds∫
Y
∇yp(y)⊗ Φ(y)ρ(y) dy = σ

∫
Y
DyΦ(y)ρ(y) dy,

which can be derived employing (3.10) and an integration by parts. Integrating (3.17), we can
thus write ∫

Y
(L1u1 + L2u0) ρ(y) dy = −αK∇xV (x) · ∇xu0 + σK : ∇2

xu0, (3.18)

where K ∈ Rd×d is given by
K :=

∫
Y

(I +DyΦ(y)) ρ(y) dy.

For this matrix K and the one with identified by the same symbol given in (3.3) to actually be
the same matrix, it remains to show that∫

Y
DyΦ(y)DyΦ(y)>ρ(y) dy = −

∫
Y
DyΦ(y)>ρ(y) dy,

which can be rewritten component-wise as∫
Y
∇yΦj(y) · ∇yΦi(y)ρ(y) dy = −

∫
Y
∂yiΦj(y)ρ(y) dy, i, j = 1, . . . , d. (3.19)

Indeed, applying an integration by parts and the identity (3.10) yields for all i, j = 1, . . . , d∫
Y
∇yΦj(y) · ∇yΦi(y)ρ(y) dy = −

∫
Y

Φj(y)∇y · (ρ(y)∇yΦi(y)) dy

= −
∫
Y

Φj(y) (∇yρ(y) · ∇yΦi(y) + ρ(y)∆yΦi(y)) dy

= −
∫
Y

Φj(y)
(
− 1
σ
∇yp(y) · ∇yΦi(y) + ∆yΦi(y)

)
ρ(y) dy.
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We now identify in the integrand on the right-hand side the quantity L0Φi, so that by the cell
problem (3.4), employing (3.10) and with a further integration by parts we obtain∫

Y
∇yΦj(y) · ∇yΦi(y)ρ(y) dy = −

∫
Y

1
σ

Φj(y)L0Φi(y)ρ(y) dy

= −
∫
Y

1
σ

Φj(y)∂yip(y)ρ(y) dy

=
∫
Y

Φj(y)∂yiρ(y) dy

= −
∫
Y
∂yiΦj(y)ρ(y) dy,

which shows (3.19) and thus that the symmetric positive semi-definite matrix K is given by (3.3).
Finally, we have by (3.16) and (3.18) that

∂tu0 = −αK∇xV (x) · ∇xu0 + σK : ∇2
xu0,

which is exactly the BKE corresponding to (3.2) by defining A := αK and Σ := σK, and which
therefore concludes the derivation of the homogenized model.

3.3 The Convergence Theorem
In this section, we present a rigorous proof of the homogenization result for multiscale diffusion
processes. The discussion is mainly based on [113, Chapter 18], where a more general but slightly
different framework is considered, and more marginally on [22, Chapter 3] and on some results
of [8, 112]. As for the previous section, we consider here for simplicity only the case N = 1 in
(3.1).

Theorem 3.5. Let (Ω,F , P ) be a probability space, H = C0((0, T ),Rd) and T > 0. Moreover,
let Xε, X : Ω→ H be the solutions of (3.1) and (3.2), respectively, with the same initial condition
Xε

0 = X0 in law. Then, it holds Xε ⇒ X in H for ε→ 0.

Proof. The proof is achieved with a careful term-by-term analysis of the integral expression for
Xε
t , i.e.,

Xε
t −Xε

0 = −α
∫ t

0
∇xV (Xε

s ) ds− 1
ε

∫ t

0
∇yp(Y εs ) ds+

√
2σWt

= J1 + J2 +
√

2σWt,

(3.20)

where we introduced the notation

J1 := −α
∫ t

0
∇xV (Xε

s ) ds, J2 := −1
ε

∫ t

0
∇yp(Y εs ) ds.

We first consider the term J1 above. Let us introduce the function χ : Rd × Rd → Rd solution of
the elliptic PDE

L0χ(x, y) = −α(I +DyΦ(y))∇xV (x) + αK∇xV (x),∫
Y
χ(x, y)µ(dy) = 0,

(3.21)

on Y with periodic boundary conditions, where L0 is introduced in (3.4), and where the measure
µ and the matrix K are introduced in (3.3). Let us remark that since the right-hand side of
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(3.21) is centered with respect to the measure µ by definition of K, existence and uniqueness of χ
are guaranteed by the Fredholm alternative (see Theorem A.12). We now apply the Itô formula
to the process χt := χ(Xε

t , Y
ε
t ), where (Xε

t , Y
ε
t ) is the solution of (3.6). It holds

dχt = −Lεχt dt+
(
√

2σDxχt +
√

2σ
ε2 Dyχt

)
dWt,

where Lε = ε−2L0 + ε−1L1 + L2 is introduced in (3.7) and is applied to χt component-wise. In
integral form, we have the identity∫ t

0
L0χs ds = ε2(χt − χ0)− ε

∫ t

0
(L1χs + εL2χs) ds+ ε

√
2σ
∫ t

0
(εDxχs +Dyχs) dWs,

which we can rewrite in light of (3.21) as

J1 = −α
∫ t

0
(K −DyΦ(Y εs ))∇xV (Xε

s ) ds+ J
(1)
1 + J

(2)
1 , (3.22)

where
J

(1)
1 = ε2(χt − χ0)− ε

∫ t

0
(L1χs + εL2χs) ds,

J
(2)
1 = ε

√
2σ
∫ t

0
(εDxχs +Dyχs) dWs.

Let us now consider J2. The Itô formula applied to Φ(Y εt ), where Φ is the solution of the cell
problem (3.4) yields

dΦ(Y εt ) = 1
ε2 (L0Φ(Y εt )− εαDyΦ(Y εt )∇xV (Xε

t )) dt+
√

2σ
ε2 DyΦ(Y εt ) dWt.

Passing to the integral form and by the cell problem (3.4) we have

J2 = −α
∫ t

0
DyΦ(Y εs ) ds+

√
2σ
∫ t

0
DyΦ(Y εs ) dWs + J

(1)
2 , (3.23)

where
J

(1)
2 = −ε (Φ(Y εt )− Φ(Y ε0 )) .

We now consider (3.22), (3.23) and (3.20) to obtain

Xε
t −Xε

0 = −
∫ t

0
A∇xV (Xε

s ) ds+
√

2σ
∫ t

0
(I +DyΦ(Y εs )) dWs + J

(1)
1 + J

(2)
1 + J

(1)
2 ,

where we replaced A = αK as in (3.2). Under the assumptions on V and p, it is possible to show
that χ and Φ are bounded along with their derivatives [113, Lemma 18.3]. It is then direct to
show that for ε→ 0

J
(1)
1 , J

(2)
1 , J

(1)
2 → 0, in Lp(Ω),

which implies weak convergence. Introducing the notation

St :=
√

2σ
∫ t

0
(I +DyΦ(Y εs )) dWs,

we now show employing the functional central limit theorem for martingales (see Theorem A.22)
that S ⇒

√
2ΣW for ε→ 0 in H, where Σ = σK. Let us remark that the quadratic variation of

S is given by

〈S〉t = 2σ
∫ t

0
(I +DyΦ(Y εs ))(I +DyΦ(Y εs ))> ds.
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Moreover, by definition of Σ (i.e., of K) it holds

Eµ
[
2σ(I +DyΦ(Y εs ))(I +DyΦ(Y εs ))> − 2Σ

]
= 0,

where µ is the measure given in Eq. (3.5). Therefore, by [112, Lemma 5.6], there exists a constant
C > 0 independent of T and ε such that

Eµ
ε

‖〈S〉t − 2Σt‖2 ≤ C
(
ε4 + ε2T 2 + ε2T

)
,

which implies that 〈S〉t → 2Σt in L2, and thus 〈S〉t ⇒ 2Σt for ε → 0. Hence, Theorem A.22
yields for ε→ 0

S ⇒
√

2ΣW, in H.
We can now conclude. Indeed, we have shown that there exists a process ϑt such that

Xε
t −Xε

0 = −
∫ t

0
A∇xV (Xε

s ) ds+ ϑt,

and satisfying ϑ⇒
√

2ΣW in H and for ε→ 0. Moreover, the mapping ϑ 7→ Xε is continuous [113,
Lemma 18.2], and since weak convergence is preserved by continuous mappings (see Theorem A.5),
we have that Xε ⇒ X for ε→ 0, where X is the solution to (3.2) with initial condition X0 = Xε

0 ,
which concludes the proof.

Remark 3.6. The assumption X0 = Xε
0 in law can be relaxed. In particular, let X0 ∼ ν0 and

Xε
0 ∼ νε for some probability measure ν0, νε. If νε ⇒ ν0, then Theorem 3.5 holds. In particular,

this holds true by Proposition 3.4 in case Xε
0 ∼ µε and X0 ∼ µ0, i.e., if Xε and X are at

stationarity.

3.4 Maximum Likelihood Estimation of the Drift

We now consider the problem of estimating the drift coefficient A of (3.2) when data in the form
of a continuous time series are provided. For a final time T > 0, in this section we consider
data to consist of a generic continuous process Y := (Yt, 0 ≤ t ≤ T ), abstracting ourselves
from the multiscale setting which is the topic of this chapter. The case Y = Xε, i.e., when
the data originates from the multiscale model (3.1), is treated in details in Section 3.5 and in
Chapter 4. We here consider for simplicity equation (3.2) in the one-dimensional case but with
a multi-dimensional drift coefficient A, or in symbols we have d = 1 and a generic N . In this
case, the slow-scale potential V : R→ RN , and we denote by V ′(x) := (V ′1(x), . . . , V ′N (x))>, and
similarly for higher order derivatives.

The path-wise likelihood function of the data Y given the drift coefficient A and associated to
the equation (3.2) is given by

LT (Y | A) = exp
(
−IT (Y | A)

2Σ

)
, (3.24)

where the negative log-likelihood IT (Y | A) reads

IT (Y | A) =
∫ T

0
A · V ′(Yt) dYt + 1

2

∫ T

0
(A · V ′(Yt))2 dt.

In the following, we drop for economy of notation the dependence of LT and IT on the final time,
and simply write L and I. The MLE Â(Y, T ) is then clearly the unique minimiser of the function
I(Y | A), which is quadratic with respect to A, and is the solution of the linear system

−M(Y )Â(Y, T ) = v(Y ),

M(Y ) := 1
T

∫ T

0
V ′(Yt)⊗ V ′(Yt) dt, v(Y ) := 1

T

∫ T

0
V ′(Yt) dYt.

(3.25)
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In the following, we omit in case of no ambiguity the argument Y from the matrix M and the
right-hand side v. Let us remark that the square matrix M is by definition symmetric positive
semi-definite. We introduce an assumption of positive definitess so that Â(Y, T ) is well-defined.
Assumption 3.7. For all T > 0 and for all Y ∈ C0((0, T )) the symmetric matrix M(Y ) is positive
definite and there exists λ̄ > 0 such that λmin(M(X)) ≥ λ̄.

When data are finite-dimensional, and when the law underlying the model one wants to fit to data
admits a probability density with respect to the Lebesuge measure, the likelihood function is given
by the joint density of the data. Let us provide an example for clarity. Let Y = (Y1, Y2, . . . , Yn),
with Yi ∈ R for i = 1, . . . , n be a data set consisting of independent observations, and let us
compute the likelihood that the data is produced by a Gaussian distribution N (µ, 1), of unknown
mean µ and of unitary variance, for simplicity. The likelihood function, in this case, can be
written due to the independence of the data points as

L(Y | µ) = 1√
2π

n∏
i=1

exp
(
− (Yi − µ)2

2

)
,

and the MLE for the mean µ is clearly the sample average of Y . In the SDE context of this
chapter, observations consist of a continuous path, and the model we wish to fit to data induces
a measure on the infinite-dimensional space H = C0((0, T )). In particular, denoting by B(H) the
Borel σ-algebra on H we denote by µX the measure induced by the process X := (Xt, 0 ≤ t ≤ T )
solution of (3.2) on the measurable space (H,B(H)). In this framework, it is not possible to work
with densities since the Lebesgue measure is not defined, and therefore the viable alternative is
finding a measure on H with respect to which µX is absolutely continuous. A reasonable choice is
to pick µW , i.e., the measure induced by Brownian motion on (H,B(H)), as a reference measure.
Our goal for the rest of this section is therefore first showing that µX � µW , and then that the
Radon–Nykodim derivative (see Section A.2) of µX with respect to µW reads

dµX
dµW

(Y | A) = L(Y | A), (3.26)

where L is given in (3.24).
Remark 3.8. We note that the multi-dimensional inference setting we consider here is often
referred to in literature as the semi-parametric framework (see e.g. [81]). In particular the
components Vi, i = 1, . . . , N of the slow-scale potential can be interpreted as the known basis
functions of a truncated expansion (e.g. a Taylor expansion) for an unknown confining potential
Vα : R→ R given by

Vα(x) =
N∑
i=1

αiVi(x).

In words, one can think of inference to be performed not on a space of parameters, but on a
finite-dimensional space of functions.

3.4.1 A Heuristic Derivation of the Likelihood

Before entering the details of the theoretical derivation, we now briefly present a heuristic
argument which suggests that the likelihood function is indeed given by (3.24). The calculations
presented here can be found in [110, Chapter 5] or [79, Chapter 6]. Let for simplicity N = 1, and
let V (x) = x2/2, so that (3.2) reads

dXt = −AXt dt+
√

2Σ dWt, (3.27)
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i.e., Xt is an Ornstein–Uhlenbeck process. Given a positive integer n, we consider the Euler–
Maruyama approximation of (3.27), which for a sequence of time points 0 ≤ t0 < t1 . . . < tn = T ,
with ti = ih for a time step h = T/n and an initial condition Xh

t0 = x0 reads for all i = 0, . . . , n−1

Xh
ti+1

= (1−Ah)Xh
ti +
√

2Σ ∆Wti , (3.28)

where ∆Wti := Wti+1 −Wti are the Brownian increments, which satisfy ∆Wti ∼ N (0, h). Hence,
we clearly have that the measure of the random variable Xh

ti+1
| Xh

ti is N ((1 − Ah)Xh
ti , 2Σh).

Therefore, the joint distribution µhX of Xh := (Xh
t1 , X

h
t2 , . . . , X

h
tn)> admits by the Markov property

a density phX with respect to the Lebesgue measure which reads

phX(x1, x2, . . . , xN | A) = 1√
4πΣh

n−1∏
i=0

exp
(
− (xi+1 − (1−Ah)xi)2

4Σh

)
,

where we highlight the dependence on A of the left-hand side. Similarly, the joint distribution
µhW of the rescaled vector of Brownian motion values W :=

√
2Σ(Wt1 ,Wt2 , . . . ,Wtn)> admits a

density phW with respect to the Lebesgue measure which satisfies

phW (x1, x2, . . . , xN ) = 1√
4πΣh

n−1∏
i=0

exp
(
− (xi+1 − xi)2

4Σh

)
.

Taking the ratio phX/p
h
W is clearly equivalent to computing the Radon–Nykodim derivative

dµhX/dµhW , which after algebraic simplifications can be written as

dµhX
dµhW

(x1, x2, . . . , xn | A) = exp
(
− 1

2Σ

n−1∑
i=0

Axi∆xi −
1

4Σ

n−1∑
i=0

(Axi)2h

)
,

where ∆xi := xi+1 − xi. We now have an expression for the likelihood function. Assuming we
are given discretized observations Y := (Yt1 , Yt2 . . . , Ytn)> and wish to compute their likelihood
with respect to discretized model (3.28), we then obtain

Lh(Y | A) := dµhX
dµhW

(Y | A) = exp
(
− 1

2Σ

n−1∑
i=0

AYti∆Yti −
1

4Σ

n−1∑
i=0

(AYti)2h

)
,

where again ∆Yti := Yti+1 − Yti . We therefore conclude this heuristic derivation by noticing that
in the limit h→ 0 we have that Lh → L, where L is given in (3.24).

3.4.2 A Rigorous Derivation of the Likelihood

We now present the derivation of (3.24), which is based on an application of Girsanov’s theorem.
For the sake of simplicity, we fix in this section the diffusion coefficient so that 2Σ = 1 in (3.2),
and note that this choice does not affect the generality of the discussion. We refer the reader
to [88, Chapters 6 and 7], where the derivation we present in this section is covered to greater
extent, and to [20,24,110,120] for further details and insights.

The key object in the derivation of the likelihood function (3.24) is the stochastic process
β := (βt, 0 ≤ t ≤ T ) defined as

βt := exp
(∫ t

0
A · V ′(Xs) dWs −

1
2

∫ t

0
(A · V ′(Xs))2 ds

)
. (3.29)
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Indeed, employing the SDE (3.2) we obtain at final time

βT = exp
(∫ T

0
A · V ′(Xt)(dXt +A · V ′(Xt) dt)− 1

2

∫ T

0
(A · V ′(Xt))2 dt

)

= exp
(∫ T

0
A · V ′(Xt) dXt + 1

2

∫ T

0
(A · V ′(Xt))2 dt

)
,

(3.30)

and notice that, formally, β−1
T = L(X | A), where L is the likelihood function defined in (3.24).

Given the natural probability space (Ω,F , P ), such that W is a standard Brownian motion, let
us remark that βT can be interpreted in a twofold manner. On the one hand, we can write
βT = βT (ω), so that βT : Ω → R is a non-negative random variable defined on Ω. On the
other hand, considering the last line of (3.30) we can see βT to be a function of an element
x ∈ H = C0((0, T )) and write

βT (x) = exp
(∫ T

0
A · V ′(xt) dxt + 1

2

∫ T

0
(A · V ′(xt))2 dt

)
,

so that βT : H → R is a non-negative measurable function defined on H. Considering the second
writing and recalling (3.26), our goal is then showing that

dµX
dµW

(x) = β−1
T (x),

where µX and µW are the measures induced by X and W , respectively, on (H,B(H)).

We start by stating Girsanov’s theorem, which allows to interpret the process X as a Brownian
motion after a change of measure on (Ω,F).

Theorem 3.9 (Girsanov). Let Q be the probability measure on (Ω,F) with Radon–Nykodim
derivative

dQ
dP (ω) = βT (ω),

where β is defined in (3.29). Then, the process X solution of (3.2) is a Brownian motion with
respect to Q.

The proof of Girsanov’s theorem, stated in more general frameworks, can be found in [88, Chapter
6] or [120, Chapter VIII]. We nevertheless remark that the condition E [βT ] = 1, where E denotes
expectation with respect to P , is necessary for Q to be a probability measure. Indeed, if Q is a
probability measure we have

1 = Q(Ω) =
∫

Ω
βT (ω) dP (ω) = E [βT ] .

We verify that this necessary condition holds in our framework. An application of the Itô formula
yields

dβt = (A · V ′(Xt))βt dWt,

or in integral form and since β0 = 1 P -a.s.,

βt = 1 +
∫ t

0
(A · V ′(Xs))βs dWs.

Hence, we have E [βT ] = 1 and Q is indeed a probability measure on (Ω,F). Let us remark
that in (3.26) we have a change of measure in (H,B(H)), whereas Girsanov’s theorem provides
a change of measure on (Ω,F). In the following lemma we give a first characterization of the
relationship between the measures µW and µX .
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Lemma 3.10. Let µW and µX be the probability measures on (H,B(H)) induced by the Brownian
motion W and by the solution X of (3.2), respectively. Then µW � µX and

dµW
dµX

(x) = βT (x),

where β is defined in (3.29).

Proof. By definition of the induced measure µW on (H,B(H)) and Theorem 3.9, it holds for all
B ∈ B(H)

µW (B) = P ({ω : W (ω) ∈ B}) = Q ({ω : X(ω) ∈ B}) .
Now, since dQ = βT (ω) dP , we have by a change of variable

µW (B) =
∫
{ω : X(ω)∈B}

βT (ω) dP (ω) =
∫
B

βT (x) dµX(x),

which concludes the proof due to Theorem A.7.

In the following result, we finally prove that (3.26) holds employing Lemma 3.10 and inverting
the Radon–Nykodim derivative by an application of Theorem A.8.
Proposition 3.11. Let the potential V be such that∫ T

0
(A · V ′(Xt))2 dt <∞, (3.31)

holds P -a.s., where X is the solution of (3.2). Then µX ∼ µW and

dµX
dµW

(x) = β−1
T (x).

Proof. We first show that βT > 0 P -a.s., which under (3.31) is implied by∫ T

0
(A · V (Xt)) dWt <∞, P -a.s.

Indeed, we have by Jensen’s inequality, Itô isometry and (3.31)

E

[∣∣∣∣∣
∫ T

0
A · V (Xt) dWt

∣∣∣∣∣
]2

≤ E

[∫ T

0
(A · V (Xt))2 dt

]
<∞.

Then βT > 0 follows by noticing that for any random variable Z : Ω→ R such that E [|Z|] <∞,
it holds Z <∞ P -a.s. Theorem A.8 and Lemma 3.10 then imply

dP
dQ (ω) = β−1

T (ω).

We conclude proceeding similarly to the proof of Lemma 3.10. In particular, it holds for all
B ∈ B(H)

µX(B) = P ({ω : X(ω) ∈ B}) =
∫
{ω : X(ω)∈B}

β−1
T (ω) dQ(ω) =

∫
B

β−1
T (x) dµW (x),

which proves the desired result.

Proposition 3.11 concludes the derivation of the likelihood function, and consequently of the MLE
for the drift coefficient (3.25), and closes this section.
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3.4.3 Asymptotic Consistency of the MLE

We now consider the estimator Â introduced in (3.25) and show that if we are confronted with
data (X, 0 ≤ t ≤ T ) coming from the model (3.2) itself, then the estimator is asymptotically
consistent, in the limit of an infinite amount of data (i.e., for T →∞). The following result is
classic in the literature of statistical estimation of diffusion processes, and its proof can be found,
for example, in the books [20, 24, 83, 88, 89] or in the more recent articles [115, 116]. In particular,
we report here a proof based on [116].

Theorem 3.12. Let Assumption 3.2 hold and let X be the solution of (3.2) with drift coefficient
A ∈ RN . Then

lim
T→∞

Â(X,T ) = A, a.s.,

where Â is the MLE defined in (3.25).

Proof. By definition of the MLE and replacing (3.2) we have the decomposition

Â(X,T ) = −M−1 1
T

∫ T

0
V ′(Xt)

(
− (A · V ′(Xt)) dt+

√
2Σ dWt

)
.

Let us remark that it holds

1
T

∫ T

0
V ′(Xt) (−A · V ′(Xt)) dt = −MA,

so that

Â(X,T ) = A−R(T ), R(T ) := M−1
√

2Σ
T

∫ T

0
V ′(Xt) dWt.

It remains to show that R(T ) → 0 a.s. for T → ∞. The ergodic theorem (see Theorem A.14)
yields

lim
T→∞

R(T ) = Eµ
0
[V ′(X)⊗ V ′(X)]−1 lim

T→∞

√
2Σ
T

∫ T

0
V ′(Xt) dWt.

Due to [116, Lemma 6.1], it holds under Assumption 3.2

lim
T→∞

√
2Σ
T

∫ T

0
V ′(Xt) dWt = 0, a.s.,

in RN , which proves R(T )→ 0 a.s. and the desired result.

Let us remark that it could be further possible to prove a central limit theorem (CLT) to
show that the quantity

√
T (Â − A) follows asymptotically a Gaussian distribution. This is

achieved employing some form of the martingale CLT (see Section A.5). We refer the reader
to [110, Chapter 5] for the proof in a specific one-dimensional case or to [20, 24, 83, 88, 89, 139] for
further details.

3.5 Drift Estimation of Multiscale Diffusions

We now consider the case when the data is generated by the model (3.1), and we wish to retrieve
the drift coefficient of the effective equation of the form Eq. (3.2) from the data. As we stated in
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the introduction of this chapter, this problem can be interpreted as an instance of data-driven
homogenization. Replacing a trajectory Xε = (Xε

t , 0 ≤ t ≤ T ) into (3.1) yields

−M(Xε)Â(Xε, T ) = v(Xε). (3.32)

The homogenization results Proposition 3.4 and Theorem 3.5, which show that Xε and X, the
solution of (3.2) are close if ε is small, would suggest that Â(Xε, T ) is close to Â(X,T ), which
in turn converges to A by Theorem 3.12 for T →∞. Hence, one would reasonably expect that
Â(Xε, T ) is an asymptotically consistent estimator for A, with respect to ε → 0 and T → ∞.
This is not the case, and the MLE tends to the drift coefficient α of the multiscale equation
(3.1). We report here the proof of this negative result for completeness, and refer the reader
to [112, Theorem 3.4] for the original proof. We introduce for economy of notation the quantities

Mε := Eµ
ε

[V ′(Xε)⊗ V ′(Xε)], M0 := Eµ
0
[V ′(X)⊗ V ′(X)], (3.33)

where µε and µ0 are the invariant measures of Xε and X, given in Proposition 3.3.

Theorem 3.13. Let Assumption 3.2 hold and let Xε = (Xε
t , 0 ≤ t ≤ T ) be the solution of (3.1)

with drift coefficient α ∈ RN . Then

lim
T→∞

Â(Xε, T ) = α, a.s.,

where Â is the MLE defined in (3.25).

Proof. Proceeding as in the proof of Theorem 3.12, we obtain the decomposition

Â(Xε, T ) = α+Rε1(T )−Rε2(T ),

with
Rε1(T ) := M(Xε)−1 1

εT

∫ T

0
V ′(Xε

t )p′
(
Xε
t

ε

)
dt,

Rε2(T ) := M(Xε)−1
√

2Σ
T

∫ T

0
V ′(Xε

t ) dWt.

For Rε2(T ), the same reasoning as in the proof of Theorem 3.12 allows to conclude that Rε2(T )→ 0
a.s. for T →∞, uniformly in ε. It now suffices to show that Rε1(T ) vanishes asymptotically. Let
us remark that the ergodic theorem yields

lim
T→∞

Rε1(T ) = 1
ε
M−1

ε Eµ
ε

[
V ′(Xε)p′

(
Xε

ε

)]
, a.s.

Substituting the invariant density of Xε and integrating by parts we obtain

1
ε
Eµ

ε

[
V ′(Xε)p′

(
Xε

ε

)]
= 1
ε

∫
R
V ′(x)p′

(x
ε

)
ρε(x) dx

= −σ
∫
R
V ′(x) exp

(
− 1
σ
α · V (x)

)
d

dx exp
(
− 1
σ
p
(x
ε

))
dx

= σ Eµ
ε

[V ′′(Xε)]−Mεα,

so that
lim
T→∞

Rε1(T ) = −α+ σM−1
ε Eµ

ε

[V ′′(Xε)], a.s.

Taking the limit for ε→ 0 and due to Proposition 3.4, we obtain

lim
ε→0

lim
T→∞

Rε1(T ) = −α+ σM−1
0 Eµ

0
[V ′′(X)], a.s.
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Substituting the invariant density of X and an integration by parts yield

Eµ
0
[V ′′(X)] = −

∫
R
V ′(x) d

dx exp
(
− 1
σ
α · V (x)

)
dx

= 1
σ
M0α,

(3.34)

so that, finally
lim
ε→0

lim
T→∞

Rε1(T ) = −α+ α = 0, a.s.,

which proves the desired result.

We remark that the result above can yield to arbitrarily large errors in the solution of the inference
problem. Indeed, as demonstrated by Example 3.1, if the diffusion coefficient σ is small then the
effective drift A can be sensibly smaller than α. In Chapter 4 we explain how the MLE (3.32)
can be corrected by pre-processing the multiscale data in order to correct the negative result
of Theorem 3.13. In particular, we briefly introduce the subsampling technique of [112], and
then show in detail a filtering methodology, which we introduced in [8], and which is one of the
original contributions of this thesis.

3.6 The Bayesian Framework
The problem of inferring the drift coefficient of diffusion processes can be seamlessly recast
in a Bayesian framework, which yields a complete uncertainty quantification of the inference
procedure (see Chapter 1 for details). In particular, due to the quadratic dependence on A of
the log-likelihood logL (3.24), we can show that the parameter A follows a Gaussian posterior
distribution. We refer the reader to our work [8] and to [115,145] for further details.

Let T > 0 and let us consider a generic continuous stream of data Y = (Yt, 0 ≤ t ≤ T ). Moreover,
let us fix a Gaussian prior measure µ0 = N (A0, C0) on the drift coefficient A of (3.2), where the
mean A0 ∈ RN and where we assume that C0 is a non-singular covariance matrix on RN . Then,
we can compute the posterior measure µT on A, which by Bayes’ theorem satisfies

dµT
dµ0

(A | Y ) = 1
Z
L(Y | A), Z =

∫
Rd
L(Y | A) dµ0(A),

where the likelihood L(Y | A) is given in (3.24). Computing explicitly the posterior density πT
of µT with respect to the Lebesgue measure, one obtains

log πT (A | Y ) = − logZ − T

2ΣA · v(Y )− T

4ΣA ·M(Y )A

− 1
2(A−A0) · C−1

0 (A−A0),

where M and v are defined in (3.25). Since the log-posterior density is quadratic in A, the
posterior is Gaussian, and it is therefore sufficient to determine its mean and covariance to fully
characterize it. Let us denote by by mT (Y ) and CT (Y ) the posterior mean and covariance,
respectively. Completing the squares in the log-posterior density, we formally obtain

CT (Y )−1 = C−1
0 + T

2ΣM(Y ), mT (Y ) = CT (Y )
(
C−1

0 A0 −
T

2Σv(Y )
)
. (3.35)

Under Assumptions 3.2 and 3.7, one can show that the posterior at time T > 0 is well defined
and is indeed given by µT (· | Y ) = N (mT (Y ), CT (Y )).
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Let us first state and prove an auxiliary result, which guarantees that the mean and the covariance
of the posterior tend respectively to the MLE Â(Y, T ) and to zero.
Lemma 3.14. Let mT (Y ) and CT (Y ) be defined in (3.35). Then, under Assumptions 3.2 and 3.7
it holds

lim
T→∞

∥∥∥mT (Y )− Â(Y, T )
∥∥∥

2
= 0, in probability,

lim
T→∞

‖CT (Y )‖2 = 0, a.s.,

where Â(Y, T ) is the MLE defined in (3.25).

Proof. In the proof, we drop for brevity the dependence on Y from the quantities M , v, mT and
CT . Let us first consider the covariance matrix. An algebraic identity yields

CT = 2Σ
T

(
M−1 −Q−1) , Q = M + T

2ΣMC0M. (3.36)

Let us first remark that due to Assumption 3.7 and to the ergodic theorem it holds for all T > 0∥∥M−1∥∥
2 ≤

1
λ̄
, a.s.

a.s., where λ̄ is given in Assumption 3.7. We now have that for generic symmetric positive definite
matrices R and S it holds ∥∥(R+ S)−1∥∥

2 ≤
∥∥S−1∥∥

2 .

Applying this inequality to Q−1, we obtain∥∥Q−1∥∥
2 ≤

2Σ
T

∥∥(MC0M)−1∥∥
2 ≤

2Σ
T

∥∥M−1∥∥2
2

∥∥C−1
0
∥∥

2 ≤
2Σ
T λ̄2

∥∥C−1
0
∥∥

2 , a.s.,

which implies
lim
T→∞

∥∥Q−1∥∥
2 = 0, a.s.

Finally, the triangle inequality and (3.36) yield

lim
T→∞

‖CT ‖2 = 0, a.s.

We now consider the mean. Replacing the expression of the MLE and due to the Cauchy–Schwarz
and triangle inequalities, we obtain∥∥∥mT − Â(Y, T )

∥∥∥
2

= 2Σ
T

∥∥∥∥M−1C−1
0 A0 −Q−1

(
C−1

0 A0 −
T

2Σv
)∥∥∥∥

2

≤ 2Σ
T λ̄

∥∥C−1
0
∥∥

2

(
‖A0‖2 + 1

λ̄
‖v‖2 + 2Σ

T λ̄

∥∥C−1
0
∥∥

2 ‖A0‖2

)
.

Moreover, the ergodic theorem and the weak law of large numbers for martingales (see Section A.5)
guarantee that ‖v‖2 is bounded in probability for T →∞. Therefore

lim
T→∞

∥∥∥mT − Â(Y, T )
∥∥∥

2
= 0, in probability,

which concludes the proof.

In the following theorem, we show that asymptotically with respect to the final time T the
posterior distribution shrinks to the MLE. We characterize the contraction by verifying that the
posterior measure concentrates in arbitrarily small balls. Let us finally remark that the measure
µT is a random measure, and therefore we average the posterior distribution with respect to the
measure induced by the Brownian motion W . Let us remark that the choice of the contraction
measure and the proof, which we report here for completeness, are inspired by [115, Theorem 5.2]
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Theorem 3.15. Under Assumptions 3.2 and 3.7, the posterior measure µT (· | Y ) satisfies for
all c > 0

lim
T→∞

E
[
µT

({
a :
∥∥∥a− Â(Y, T )

∥∥∥
2
≥ c
}
| Y
)]

= 0,

where E denotes expectation with respect to the Brownian motion W and where Â(Y, T ) is the
MLE defined in (3.25).

Proof. The triangle inequality yields

E
[
µT

({
a :
∥∥∥a− Â(Y, T )

∥∥∥
2
≥ c
}
| Y
)]
≤ E

[
µT

({
a : ‖a−mT ‖2 ≥

c

2

}
| Y
)]

+ P
(∥∥∥mT − Â(Y, T )

∥∥∥
2
≥ c

2

)
.

The second term vanishes due to Lemma 3.14. For the first term, Markov’s inequality yields

µT

({
a : ‖a−mT ‖2 ≥

c

2

}
| Y
)
≤ 4
c2

∫
RN
‖a−mT ‖22 µT (da | Y ),

and a change of variable simply gives∫
RN
‖a−mT ‖22 µT (da | Y ) = tr(CT ).

Then, again by Lemma 3.14, this implies the desired result.

We now consider the case of interest of this chapter, i.e., when data are given by the multiscale
model (3.1). Theorem 3.15 implies that the Bayesian and the maximum likelihood approaches are
in asymptotically equivalent. Moreover, by Theorem 3.13 we know that the MLE is biased when
data are given by the multiscale model. Hence, we expect that the in the Bayesian framework,
too, the inference procedure fails in this case. This is given by the following result, first appeared
in [8].
Theorem 3.16. Let T > 0 and Xε = (Xε

t , 0 ≤ t ≤ T ) be the solution of (3.1). Then, under the
assumptions of Theorem 3.15, it holds

lim
ε→0

lim
T→∞

E [µT ({a : ‖a− α‖2 ≥ c} | X
ε)] = 0,

where α is the drift coefficient of the multiscale equation (3.1).

Proof. Let us remark that since Lemma 3.14 holds without assumptions on the data, the covariance
CT vanishes independently of ε. Hence, by the proof of Theorem 3.15 it suffices to prove

lim
ε→0

lim
T→∞

‖mT (Xε)− α‖2 = 0, in probability.

Indeed, the triangle inequality yields

‖mT (Xε)− α‖2 ≤
∥∥∥mT (Xε)− Â(Xε, T )

∥∥∥
2

+
∥∥∥α− Â(Xε, T )

∥∥∥
2
.

The first term vanishes in probability due to Lemma 3.14 and independently of ε, and the second
due to Theorem 3.13, which concludes the proof.

We conclude this section and this chapter by remarking that the result above has the same
consequences in the Bayesian setting as Theorem 3.13 has for the MLE. In particular, it shows that
the posterior distribution obtained when data is not pre-processed concentrates asymptotically
on the drift coefficient of the multiscale equation (3.1). In Chapter 4, we show how the filtering
methodology proposed in our work [8] can be employed to successfully retrieve the drift of the
homogenized equation in the Bayesian framework.
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4 The Filtered Data Approach for
Inference of Effective Diffusions

The final results of Chapter 3, in particular Theorems 3.13 and 3.16, show that in both the
maximum likelihood and the Bayesian approaches standard techniques fail in the context of
data-driven homogenization. In this chapter, we present a methodology based on filtered data
which allows to successfully infer the effective drift coefficient given observations deriving from
multiscale phenomena. The content of this chapter is based on our research article [8], and is one
of the original contributions of this thesis.

The outline of this chapter is as follows. In Section 4.1 we recall from Chapter 3 the problem
of interest and detail the methodology of subsampling, first introduced in [112], to obtain
unbiased drift estimation of multiscale diffusions. Then, in Section 4.2 we introduce our filtering
methodology, and analyze in Section 4.3 the ergodic properties that descend from the definition
of the method. In Sections 4.4 and 4.5 we then prove the main results of this chapter, i.e., the
unbiasedness of the filtering-based MLE in the homogenized and the multiscale regimes. In
Section 4.6 we briefly consider the estimation of the effective diffusion coefficient. We then consider
in Section 4.7 how to integrate our scheme in the Bayesian framework which we introduced in
Chapter 1 and specialized to the context of inference of multiscale diffusions in Section 3.6. Finally,
in Section 4.8 we present a series of numerical experiments which corroborate our theoretical
findings and illustrate the potential and the robustness of our new methodology with respect to
preexisting techniques.

4.1 The Subsampling Method for Drift Estimation

Let ε > 0 and let us consider the SDE (3.1), which fixing the dimension d = 1 for simplicity reads

dXε
t = −α · V ′(Xε

t ) dt− 1
ε
p′
(
Xε
t

ε

)
dt+

√
2σ dWt, (4.1)

where we recall α ∈ RN and σ > 0 are the drift and diffusion coefficients, respectively, and
where V : R→ RN and p : R→ R are the slow and fast components of the confining potential,
respectively. We report here the effective equation, which reads

dXt = −A · V ′(Xt) dt+
√

2Σ dWt, (4.2)

where A = αK and Σ = Kσ are the effective drift and diffusion coefficients, whose derivation is
shown in detail in Section 3.2. Let us recall that given continuous-time data Y = (Yt, 0 ≤ t ≤ T ),
we derived in Section 3.4 the MLE for the drift coefficient, which is given by an application of
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Girsanov’s theorem and is the solution of the linear system

−M(Y )Â(Y, T ) = v(Y ),

M(Y ) := 1
T

∫ T

0
V ′(Yt)⊗ V ′(Yt) dt, v(Y ) := 1

T

∫ T

0
V ′(Yt) dYt.

(4.3)

Due to Theorem 3.13, we have that asymptotically the MLE Â(Xε, T ) computed with data from
(4.1) is biased, and tends to the drift coefficient of the unhomogenized model α. A technique
which is widely employed in practical applications to correct this issue of model misspecification
is that of subsampling the data, which has been introduced in [112] and further applied, e.g.,
in [14, 17,18, 146]. In particular, let δ > 0 be the subsampling rate, let T = nδ with n a positive
integer and let us consider a discrete sampling {Xε

jδ}nj=0 of the continuous data Xε. The drift
estimator is then computed as the solution of the linear system

−Mδ(Xε)Âδ(Xε, T ) = vδ(Xε),

Mδ(Xε) := δ

T

n−1∑
j=0

V ′(Xε
jδ)⊗ V ′(Xε

jδ), vδ(Xε) := 1
T

n−1∑
j=0

V ′(Xε
jδ)
(
Xε

(j+1)δ −X
ε
jδ

)
,

which can be seen as an Euler–Maruyama discretization of Â(Xε, T ). The following result, whose
statement and original proof are given in [112, Theorem 3.5], shows that by carefully choosing
the subsampling rate the estimator Âδ(Xε, T ) is asymptotically unbiased with respect to the
effective drift coefficient A.

Theorem 4.1. Under Assumptions 3.2 and 3.7, let 0 < ζ < 1 and γ > ζ. If δ = εζ and
n = dε−γe, then

lim
ε→0

Âδ(Xε, T ) = A, in probability,

where A is the drift coefficient of (4.2).

This unbiasedness result is crucial, and shows that subsampling the data allows, asymptotically,
to obtain estimators for the effective drift coefficient which are consistent with the theory of
homogenization. Nevertheless, there are three main drawbacks to subsampling:

1. The scale separation parameter ε has to be known in advance in order to tune the subsam-
pling width δ coherently with Theorem 4.1. In practical applications, the parameter ε is
unknown;

2. In finite computations, i.e., for δ < 0 and T <∞, numerical experiments demonstrate that
the estimator Âδ(Xε, T ) is not robust with respect to the filtering width δ = εζ . An optimal
value of ζ = 2/3 is suggested in [112], but in applications even following this suggestion
does not always result on reliable results;

3. In practice, if ε� 1 and δ = εζ , then subsampling leads to disregarding a high percentage of
the data, which sometimes could be as high as 99%. First, this leads to an inevitable increase
of the variance of the estimator with respect to data. Second, in modern applications
accumulating and exploiting a large amount of data is fundamental, and disregarding
information seems unreasonable, or even unjustifiable.

The novel methodology based on filtered data we present in this chapter allows to bypass each
of these three issues. Moreover, our novel approach can be naturally employed in the Bayesian
framework of Section 3.6, and thus correct the faulty behavior highlighted by Theorem 3.16.
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4.2 The Filtered Data Approach
We now introduce our methodology based on filtered data to address the issue that the MLE
estimator, when confronted with multiscale data, is biased. Let β, δ > 0 and let us consider a
family of exponential kernel functions k : R+ → R defined as

k(r) = Cβδ
−1/βe−r

β/δ, Cβ = β Γ(1/β)−1, (4.4)

where Cβ is chosen so that the kernel is normalized, in the sense∫ ∞
0

k(r) dr = 1,

and where Γ(·) is the gamma function. We then consider the filtered process Zε := (Zεt , 0 ≤ t ≤ T )
defined by the truncated convolution

Zεt :=
∫ t

0
k(t− s)Xε

s ds.

The process Zε can be interpreted as a smoothed version of the original trajectory Xε. In fact, in
the field of signal processing the kernel (4.4) belongs to the class of low-pass linear time-invariant
filters, which cut the high frequencies in a signal to highlight its slowest components. In the
following, rigorous analysis is conducted only when β = 1. Nonetheless, numerical experiments
show that for higher values of β the performances of estimators computed employing the filter
are more robust and qualitatively better.
Remark 4.2. Given a trajectoryXε, it is relatively inexpensive to compute Zε from a computational
standpoint. In particular, the process Zε is the truncated convolution of the kernel with the
process Xε. Hence, computational tools based on the Fast Fourier Transform (FFT) exist and
allow to compute Zε fast component-wise. Moreover, the process Zε can be computed, in case
β = 1, in a recursive manner and therefore “online”.

Given a trajectory Xε and the filtered data Zε, the estimator of the drift coefficient we propose
is given by the solution of the linear system

−M̃−1(Xε)Âk(Xε, T ) = ṽ(Xε)

M̃(Xε) = 1
T

∫ T

0
V ′(Zεt )⊗ V ′(Xε

t ) dt, ṽ(Xε) = 1
T

∫ T

0
V ′(Zεt ) dXε

t .
(4.5)

For economy of notation we drop explicit reference to the dependence of M̃ and ṽ on Xε. Let us
remark that the formula above is obtained by replacing in the matrix and in the right-hand side
only one instance of Xε

t with Zεt . In particular, it is fundamental for proving unbiasedness to
keep in the definition of ṽ the differential of the original process dXε

t (see Remark 4.10). Let us
furthermore remark that Âk(Xε, T ) need not be the minimizer of some likelihood function based on
filtered data, but just as a perturbation of Â(Xε, T ). Indeed, likewise the subsampling estimator
Âδ(Xε, T ), we work directly at the level of estimators and after the likelihood maximization. The
only theoretical guarantee which is still needed for the well-posedness of Âk(Xε, T ) is for M̃ to
be invertible.

Given this considerations, we now set the boundaries of our analysis to the dissipative case which
is considered in Chapter 3, too. In particular, the assumption below is repeatedly evoked in the
rest of the chapter.
Assumption 4.3. Assumptions 3.2 and 3.7 hold, and the matrix M̃ defined in (4.5) is invertible.
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Figure 4.1 – Filtering a trajectory Xε obtained with V (x) = x2/2, p(y) = cos(y), α = 1, σ = 0.5
and ε = 0.1. The filtering width is δ = {1,

√
ε, ε} from top to bottom, respectively, and β = 1.

Remark 4.4. In the following, in particular in the proof of Lemma 4.6, we will employ Assumption
3.2(ii) for the whole drift of the SDE (4.1), i.e., the function

V ε(x) := α · V (x) + p
(x
ε

)
.

Since p ∈ C∞(R) and is periodic, all derivatives of p are in L∞(R). Therefore, the assumption
above is sufficient for V ε to satisfy Assumption 3.2(ii) with different values for a and b. In
particular, assume Assumption 3.2(ii) holds for V . Then, we have for all γ > 0 by Young’s
inequality

−(V ε)′(x)x ≤ a− bx2 − 1
ε
p′
(x
ε

)
x

≤
(
a+ 1

2ε2γ
‖p′‖2L∞(R)

)
−
(
b− γ

2

)
x2.

Hence, Assumption 3.2(ii) holds for V ε with a coefficient b which is arbitrarily close to the
coefficient for V , alone.

Let us from now on consider β = 1. For this value of β, the parameter δ appearing in (4.4)
regulates the width of the filtering window. In practice, larger values of δ will lead to trajectories
which are smoother and for which fast-scale oscillations are practically canceled. Let us remark
that the filtering width resembles the subsampling step employed for the estimator Âδ(Xε, T )
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introduced and analyzed in [112]. For subsampling, the choice guaranteeing asymptotically
unbiased results is δ = εζ with ζ ∈ (0, 1), and a similar analysis is due for our technique. For
visualization purposes, we depict in Figure 4.1 the filtered trajectory Zε for three different values
of δ, namely δ = {1,

√
ε, ε}. With δ = 1, all oscillations at the fast scale are canceled and the

filtered trajectory Zε presents only slow-scale variations. Reducing the value of δ, fast-scale
oscillations are progressively taken into account.

In the following, we first focus on the ergodic properties of the process Zε when it is coupled
with the process Xε. This analysis is practically independent of the choice of δ, and is therefore
presented on its own. Then, we focus on two different cases which depend on the choice of the
width δ of the filter. First, in Section 4.4, we consider δ to be independent of ε, and therefore
we filter at the speed of the homogenized process. In this case, we are able to prove that our
estimator of the drift coefficient of the homogenized equation is asymptotically unbiased almost
surely. This result will be presented in Theorem 4.15. We then move on in Section 4.5 to the
case δ ∝ εζ , which corresponds to filtering the data at the speed of the multiscale process. In
this case, we show that under some conditions on the exponent ζ, we can still obtain estimators
which are asymptotically unbiased in probability. This result is proved in Theorem 4.21. For this
second case, we widely employ techniques and estimates from [112].

4.3 Ergodic Properties

Let us consider the filtering kernel (4.4) with β = 1, i.e.,

k(r) = 1
δ
e−r/δ.

In this case, Leibniz integral rule yields the equality

dZεt = k(0)Xε
t dt+

∫ t

0
k′(t− s)Xε

s dsdt = 1
δ

(Xε
t − Zεt ) dt,

which can be interpreted as an ordinary differential equation for Zεt driven by the stochastic signal
Xε. Considering the processes Xε and Zε together, we obtain the system of two one-dimensional
SDEs

dXε
t = −α · V ′(Xε

t ) dt− 1
ε
p′
(
Xε
t

ε

)
dt+

√
2σ dWt,

dZεt = 1
δ

(Xε
t − Zεt ) dt.

(4.6)

The first ingredient for studying the ergodic properties of the two-dimensional process (Xε, Zε)> :=
((Xε

t , Z
ε
t )>, 0 ≤ t ≤ T ) is verifying that the measure induced by the stochastic process admits a

smooth density with respect to the Lebesgue measure. Since noise is present only on the first
component, this is a consequence of the theory of hypo-ellipticity, as summarized in the following
Lemma, whose proof is given in Section 4.9.1.
Lemma 4.5. Let (Xε, Zε)> be the solution of (4.6) and let µ̃εt be the measure induced by the
joint process at time t. Then, the measure µ̃εt admits a smooth density ρ̃εt with respect to the
Lebesgue measure.

Once it is established that the law of the process admits a smooth density for all times t > 0,
which satisfies a time-dependent Fokker–Planck equation (see Section A.3), we are interested in
the limiting properties of this law. In particular, Proposition 3.3 guarantees that the process Xε

is geometrically ergodic (see Section A.4), and we wish the couple (Xε, Zε)> to inherit the same
property. The following Lemma guarantees that the couple is indeed geometrically ergodic, and
its proof is given in Section 4.9.1.
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Lemma 4.6. Let Assumption 4.3 hold and let b > 0 be given in Assumption 3.2(ii). Then, if
δ > 1/(4b), the process (Xε, Zε)> solution of (4.6) is geometrically ergodic. Moreover, denoting
by µ̃ε the invariant measure of the couple (Xε, Zε)>, its density with respect to the Lebesgue
measure ρ̃ε is the solution to the stationary Fokker–Planck equation

σ∂2
xxρ̃

ε(x, z) + ∂x

((
α · V ′(x) + 1

ε
p′
(x
ε

))
ρ̃ε(x, z)

)
+ 1
δ
∂z ((z − x)ρ̃ε(x, z)) = 0. (4.7)

Remark 4.7. The condition δ > 1/(4b) is not very restrictive. Let the parameter dimension N = 1
and let V (x) ∝ x2r for an integer r > 1. Then, Assumption 3.2(ii) holds for an arbitrarily large
b > 0. Therefore, the parameter of the filter δ can be chosen along the entire positive real axis. A
similar argument can be employed for higher dimensions N > 1.

In a general case, it is not possible to find an explicit solution to (4.7). Nevertheless, it is possible
to show some relevant properties of the solution itself, which are summarized in the following
Lemma, whose proof is given in Section 4.9.1.

Lemma 4.8. Under the assumptions of Lemma 4.6, let ρ̃ε be the solution of (4.7) and let us
write

ρ̃ε(x, z) = ρε(x)ψε(z)Rε(x, z), (4.8)
where ρε and ψε are the marginal densities of Xε and Zε respectively, i.e.,

ρε(x) =
∫
R
ρ̃ε(x, z) dz, ψε(z) =

∫
R
ρ̃ε(x, z) dx.

Then, it holds

σδ

∫
R

∫
R
V ′(z)ρε(x)ψε(z)∂xRε(x, z) dxdz = Eµ̃

ε

[(Xε − Zε)2V ′′(Zε)]. (4.9)

Remark 4.9. Lemma 4.8, and in particular the equality (4.9), plays a fundamental role in the
proof of unbiasedness of the estimator based on filtered data. In particular, this equality allows
to bypass the explicit knowledge of the function Rε(x, z), which governs the correlation between
the processes Xε and Zε at stationarity, for which a closed-form expression is not available in
the general case. Moreover, let us remark that the marginal invariant density ρε of Xε is known
explicitly by Proposition 3.3.
Remark 4.10. Let us return to the definition of Âk and replace the differential dXε

t with dZεt in
ṽ. In this case, it holds

lim
T→∞

1
T

∫ T

0
V ′(Zεt ) dZεt = lim

T→∞

1
δT

∫ T

0
V ′(Zεt )(Xε

t − Zεt ) dt = 1
δ
Eµ

ε

[V ′(Zε)(Xε − Zε)] = 0,

where the last equality is obtained as in the proof of Lemma 4.8, with the choice f(x, z) = V (z)
at the last line. Therefore, we stress again that it is indeed necessary to employ the original
differential dXε

t in the vector ṽ in the definition (4.5) of Âεk.
Remark 4.11. Let us consider the kernel (4.4) with β > 1. In this case, the steps leading to the
system (4.6) do not yield a system of Itô SDEs, but of stochastic delay differential equations.
The analysis of the estimator in case β > 1 is therefore based on different arguments than the
one we present in this work.

4.4 Filtered Data in the Homogenized Regime

In this section, we analyze the behavior of the estimator Âk(Xε, T ) based on filtered data given
in (4.5) when the filtering width δ is independent of ε. The analysis in this case is based on
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the convergence of the couple (Xε, Zε)> with respect to the multiscale parameter ε → 0. In
particular, Proposition 3.4 guarantees that the invariant measure of Xε converges weakly to the
invariant measure of X, the solution of the homogenized equation (4.2). The following result
guarantees the same kind of convergence for the couple (Xε, Zε)>.

Lemma 4.12. Under Assumption 4.3, let µ̃ε be the invariant measure of the couple (Xε, Zε)>.
If δ is independent of ε, then the measure µ̃ε converges weakly to the measure µ̃0(dx,dz) =
ρ̃0(x, z) dxdz, whose density ρ̃0 is the unique solution of the stationary Fokker–Planck equation

Σ∂2
xxρ̃

0(x, z) + ∂x
(
A · V ′(x)ρ̃0(x, z)

)
+ 1
δ
∂z
(
(z − x)ρ̃0(x, z)

)
= 0, (4.10)

where A and Σ are the coefficients of the homogenized equation (4.2).

Proof. Let (X,Z)> :=
(
(Xt, Zt)>, 0 ≤ t ≤ T

)
be the solution of

dXt = −A · V ′(Xt) dt+
√

2Σ dWt,

dZt = 1
δ

(Xt − Zt) dt,

with (X0, Z0)> ∼ µ̃0. The arguments of Section 4.3 can be repeated to conclude that the invariant
measure of (X,Z)> admits a smooth density ρ̃0 which satisfies (4.10). Moreover, the proof of
Theorem 3.5 can be readily adapted for the couple (Xε, Zε)> to show that (Xε, Zε)> ⇒ (X,Z)>
in C0([0, T ];R2), provided that (Xε

0 , Z
ε
0)> ∼ µ̃ε. This implies that µ̃ε ⇒ µ̃0 for ε → 0, and

therefore concludes the proof.

Example 4.13. A closed form solution of (4.10) can be obtained in a simple case. Let the dimension
of the parameter N = 1 and let V (x) = x2/2. Then, the analytical solution is given by

ρ̃0(x, z) = 1
C0

exp
(
−AΣ

x2

2 −
1
δΣ

(x− (1 +Aδ)z)2

2

)
,

where
C0 =

∫
R

∫
R

exp
(
−AΣ

x2

2 −
1
δΣ

(x− (1 +Aδ)z)2

2

)
dx dz = 2πΣ

√
δ

(1 +Aδ)
√
A
.

This is the density of a multivariate normal distribution N (0,Γ), where the covariance matrix is
given by

Γ = Σ
A(1 +Aδ)

(
1 +Aδ 1

1 1

)
.

Let us remark that this distribution can be obtained from direct computations involving Gaussian
processes. In particular, we have that X is in this case an Ornstein–Uhlenbeck process and it is
therefore known that X ∼ GP(mt, C(t, s)), where at stationarity mt = 0 and

C(t, s) = Σ
A
e−A|t−s|.

The basic properties of Gaussian processes imply that Z is a Gaussian process, and that the
couple (X,Z)> is a Gaussian process, too, whose mean and covariance are computable explicitly.

We now present an analogous result to Lemma 4.8 for the limit distribution.

Corollary 4.14. Let ρ̃0 be the solution of (4.10) and let us write

ρ̃0(x, z) = ρ0(x)ψ0(z)R0(x, z),
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where ρ0 and ψ0 are the marginal densities, i.e.,

ρ0(x) =
∫
R
ρ̃0(x, z) dz, ψ0(z) =

∫
R
ρ̃0(x, z) dx.

Then, if A and Σ are the coefficients of the homogenized equation (4.2), it holds

Σδ
∫
R

∫
R
V ′(z)ρ0(x)ψ0(z)∂xR0(x, z) dx dz = Eµ̃

0
[(X − Z)2V ′′(Z)].

Proof. The proof is directly obtained from Lemma 4.8 setting p(y) = 0 and replacing α, σ by
A,Σ respectively.

Let us recall the notation

Mε := Eµ
ε

[V ′(Xε)⊗ V ′(Xε)], M0 := Eµ
0
[V ′(X)⊗ V ′(X)], (4.11)

which we introduced in (3.33), and let us moreover denote by

M̃ε := Eµ̃
ε

[V ′(Zε)⊗ V ′(Xε)], M̃0 := Eµ̃
0
[V ′(Z)⊗ V ′(X)], (4.12)

the equivalent quantities in the context of the estimator (4.5). We can now state and prove the
main result of this section, namely the convergence of the estimator based on filtered data of the
drift coefficient of the homogenized equation.

Theorem 4.15. Under Assumption 4.3, let Âk(Xε, T ) be defined in (4.5) with δ independent of
ε. Then

lim
ε→0

lim
T→∞

Âk(Xε, T ) = A, a.s.,

where A is the drift coefficient of the homogenized equation (4.1).

Proof. Replacing the expression of dXε
t into (4.5), we get for ṽ

ṽ = −M̃α− 1
T

∫ T

0

1
ε
p′
(
Xε
t

ε

)
V ′(Zεt ) dt+

√
2σ
T

∫ T

0
V ′(Zεt ) dWt.

Therefore, we have

Âk(Xε, T ) = α+ Iε1(T )− Iε2(T ),

Iε1(T ) := 1
T
M̃−1

∫ T

0

1
ε
p′
(
Xε
t

ε

)
V ′(Zεt ) dt, Iε2(T ) :=

√
2σ
T

M̃−1
∫ T

0
V ′(Zεt ) dWt

(4.13)

We study the terms Iε1(T ) and Iε2(T ) separately. First, the ergodic theorem (Theorem A.14)
applied to Iε1(T ) yields

lim
T→∞

Iε1(T ) = M̃−1
ε Eµ̃

ε

[
1
ε
p′
(
Xε

ε

)
V ′(Zε)

]
, a.s. (4.14)

Replacing the decomposition (4.8), the expression of the density ρε of the marginal measure of
Xε and integrating by parts, we have

Eµ̃
ε

[
1
ε
p′
(
Xε

ε

)
V ′(Zε)

]
= − σ

Cε

∫
R

∫
R

d
dx

(
e−

1
σ p( xε )

)
e−

1
σα·V (x)V ′(z)ψε(z)Rε(x, z) dx dz

= σ

Cε

∫
R

∫
R
e−

1
σ p( xε )∂x

(
e−

1
σα·V (x)Rε(x, z)

)
V ′(z)ψε(z) dxdz,
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which implies

Eµ̃
ε

[
1
ε
p′
(
Xε

ε

)
V ′(Zε)

]
= −

(∫
R

∫
R
V ′(z)⊗ V ′(x)ρ̃ε(x, z) dxdz

)
α

+ σ

∫
R

∫
R
V ′(z)ρε(x)ψε(z)∂xRε(x, z) dx dz

= −M̃εα+ σ

∫
R

∫
R
V ′(z)ρε(x)ψε(z)∂xRε(x, z) dx dz.

Replacing the equality above into (4.14), we obtain

lim
T→∞

Iε1(T ) = −α+ M̃−1
ε σ

∫
R

∫
R
V ′(z)ρε(x)ψε(z)∂xRε(x, z) dxdz, a.s.

We now remark that the right-hand side is exactly the quantity appearing in Lemma 4.8. Therefore,
we have

lim
T→∞

Iε1(T ) = −α+ 1
δ
M̃−1

ε Eµ̃
ε

[(Xε − Zε)2V ′′(Zε)], a.s. (4.15)

Since δ is independent of ε, we can pass to the limit as ε goes to zero and Lemma 4.12 yields

lim
ε→0

lim
T→∞

Iε1(T ) = −α+ 1
δ
M̃−1

0 Eµ̃
0
[(X − Z)2V ′′(Z)], a.s. (4.16)

Due to Corollary 4.14, we have

1
δ
Eµ̃

0
[(X − Z)2V ′′(Z)] = Σ

∫
R

∫
R
V ′(z)ρ0(x)ψ0(z)∂xR0(x, z) dxdz,

and moreover, an integration by parts yields

1
δ
Eµ̃

0
[(X − Z)2V ′′(Z)] = −Σ

∫
R

∫
R
V ′(z)(ρ0)′(x)ψ0(z)R0(x, z) dx dz

= − Σ
C0

∫
R

∫
R
V ′(z) d

dx

(
e−

1
ΣA·V (x)

)
ψ0(z)R0(x, z) dx dz

=
(∫

R

∫
R
V ′(z)⊗ V ′(x)ρ̃0(x, z) dxdz

)
A

= M̃0A.

We can therefore conclude that

lim
ε→0

lim
T→∞

Iε1(T ) = −α+A, a.s. (4.17)

We now consider the second term Iε2(T ), and rewrite it as

Iε2(T ) =
√

2σIε2,1(T )Iε2,2(T ),

where

Iε2,1(T ) :=
(

1
T

∫ T

0
V ′(Zεt )⊗ V ′(Xε

t ) dt
)−1(

1
T

∫ T

0
V ′(Zεt )⊗ V ′(Zεt ) dt

)
,

Iε2,2(T ) :=
(

1
T

∫ T

0
V ′(Zεt )⊗ V ′(Zεt ) dt

)−1(
1
T

∫ T

0
V ′(Zεt ) dWt

)
.

The ergodic theorem yields

lim
T→∞

Iε2,1(T ) = M̃−1
ε Eµ̃

ε

[V ′(Zε)⊗ V ′(Zε)] =: γε,
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where γε is bounded uniformly in ε due to the theory of homogenization, Assumption 3.2(iii)-3.7
and Lemma 4.30. Moreover, always due to Lemma 4.30 and Assumption 3.2(iii) we have that
V ′(Zε) is square integrable, and hence [116, Lemma 6.1] yields

lim
T→∞

Iε2,2(T ) = 0, a.s.,

independently of ε. Therefore
lim
ε→0

lim
T→∞

Iε2(T ) = 0, a.s.,

which, together with (4.17) and (4.13), proves the desired result.

Remark 4.16. Let us remark that the assumption that δ is independent of ε is necessary to pass
from (4.15) to (4.16) but is not needed before (4.15). Moreover, the term Iε2(t) in the proof
vanishes a.s. independently of ε. Therefore, in the analysis of the case δ = O(εζ) it will be
sufficient for unbiasedness to show that

lim
ε→0

1
δ
M̃−1

ε Eµ̃
ε

[(Xε − Zε)2V ′′(Zε)] = A,

which is a non-trivial limit since δ → 0 for ε→ 0.

4.5 Filtered Data in the Multiscale Regime

We now consider the case of the filtering width δ = O(εζ), where ζ > 0 will be specified in the
following. In this case, the filtered process resembles more the original process Xε, as can be
noted in Figure 4.1. Moreover, the techniques employed for proving Theorem 4.15 can only
be partly exploited, as highlighted by Remark 4.16. In fact, in order to prove unbiasedness it
is necessary to characterize precisely the difference between the processes Zε and Xε. A first
characterization is given by the following Proposition, whose proof can be found in Section 4.9.2.

Proposition 4.17. Let Assumption 4.3 hold and ε, δ > 0 be sufficiently small. Then, it holds
for every t > 0

Xε
t − Zεt = δBεt +R(ε, δ),

where the stochastic process Bεt is defined as

Bεt :=
√

2σ
∫ t

0
k(t− s)(1 + Φ′(Y εs )) dWs, (4.18)

where Φ is the solution of the cell problem (3.4), Ws is the Brownian motion appearing in (4.1)
and Y εt = Xε

t /ε. Moreover, Bεt and the remainder R(ε, δ) satisfy for every p ≥ 1 the estimates

Eµ
ε

[|Bεt |
p]1/p ≤ Cδ−1/2, (4.19)

and (
Eϕ

ε

|R(ε, δ)|p
)1/p

≤ C
(
δ + ε+ max{1, t}e−t/δ

)
, (4.20)

where C is independent of ε, δ and t, and µε is the invariant measure of Xε.

It is clear from the Proposition above that understanding the properties of the process Bεt is key
to understanding the behavior of the difference between Xε and Zε. In particular, we can write
the dynamics of Bεt with an application of the Itô formula (or the stochastic version of Leibniz
integral rule) and due to the properties of the smoothing kernel k as

dBεt = −1
δ
Bεt dt+

√
2σ
δ

(1 + Φ′(Y εt )) dWt.
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4.5. Filtered Data in the Multiscale Regime

This equation can be coupled with the dynamics of the processes Xε
t , Y εt and Zεt , thus describing

the evolution of the quadruple (Xε, Y ε, Zε, Bε) together. In particular, it is possible to show that
the results of Section 4.3 hold for the quadruple, and the properties of the invariant measure of
the quadruple can be exploited to prove the unbiasedness of the estimator in the case δ = O(εζ)
in the same way as in the case δ independent of ε. In this context, a further assumption on the
potential V is necessary.
Assumption 4.18. The derivatives V ′′ and V ′′′ of the potential V : R→ RN are component-wise
polynomially bounded, and the second derivative is Lipschitz, i.e., there exists a constant L > 0
such that

‖V ′′(x)− V ′′(y)‖ ≤ L |x− y| ,
for all x, y ∈ R.

In light of Remark 4.16, it is fundamental to understand the behavior of the quantity
1
δ

(Xε
t − Zεt )2V ′′(Zεt ),

as well as its limit for t→∞ and for ε→ 0. Let us remark that due to Proposition 4.17 we have
1
δ

(Xε
t − Zεt )2V ′′(Zεt ) ≈ δ(Bεt )2V ′′(Zεt ),

and therefore studying the right hand side of the approximate equality above is the goal of
the upcoming discussion. The following result, whose proof is in Section 4.9.3, gives a first
characterization.

Lemma 4.19. Under Assumptions 4.3 and 4.18, let ηε be the invariant measure of the quadruple
(Xε, Y ε, Zε, Bε). Then it holds

δ Eη
ε [

(Bε)2V ′′(Zε)
]

= σ Eη
ε

[(1 + Φ′(Y ε))2V ′′(Zε)] + R̃(ε, δ),

where the remainder R̃(ε, δ) satisfies∣∣∣R̃(ε, δ)
∣∣∣ ≤ C (δ1/2 + ε

)
.

Let us remark that the quantity appearing above hints towards the theory of homogenization. In
fact, we recall from Chapter 3 that the homogenization coefficient K is given by

K =
∫ L

0
(1 + Φ′(y))2

µ(dy),

where µ is the marginal measure of the process Y ε when coupled with Xε. Therefore, the next
step is the homogenization limit, i.e., the limit of vanishing ε, which is considered in the following
Lemma, and whose proof is given in Section 4.9.3.

Lemma 4.20. Let the assumptions of Lemma 4.19 hold, and let δ = εζ with ζ > 0. Then, it
holds

lim
ε→0

σ Eη
ε

[(1 + Φ′(Y ε))2V ′′(Zε)] =M0A,

where A is the drift coefficient of the homogenized equation (4.2), andM0 is the matrix defined
in (4.11).

Provided with the results presented above, we can prove the following Theorem, stating that the
estimator Âk(Xε, T ) is asymptotically unbiased even in the case of the filtering width δ vanishing
with respect to the multiscale parameter ε.
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Theorem 4.21. Let Assumption 4.3 and the assumptions of Lemmas 4.6 and 4.20 hold. Let
Âk(Xε, T ) be defined in (4.5) and δ = εζ with ζ ∈ (0, 2). Then

lim
ε→0

lim
T→∞

Âk(Xε, T ) = A, in probability,

where A is the drift coefficient of the homogenized equation (4.2).

Proof. Let us introduce the notation

Aε(δ) := 1
δ
M̃−1

ε Eµ̃
ε

[(Xε − Zε)2V ′′(Zε)],

where M̃ε is defined in (4.12). Then following the proof of Theorem 4.15 and in light of
Remark 4.16, we only need to show that if δ = εζ with ζ ∈ (0, 2) we have

lim
ε→0
Aε(δ) = A, in probability.

Using Proposition 4.17 and geometric ergodicity for taking the limit for t→∞ (Lemma 4.6), we
have the following equality

Aε(δ) = M̃−1
ε

1
δ

lim
t→∞

E[(Xε
t − Zεt )2V ′′(Zεt )]

= M̃−1
ε

1
δ

lim
t→∞

E
[
(δBεt +R(ε, δ))2

V ′′(Zεt )
]

=: M̃−1
ε lim

t→∞
(Jε1 (t) + Jε2 (t) + Jε3 (t)) ,

where R(ε, δ) is given in Proposition 4.17, E denotes the expectation with respect to the Wiener
measure and

Jε1 (t) = δ E
[
(Bεt )2V ′′(Zεt )

]
,

Jε2 (t) = 2E [BεtR(ε, δ)V ′′(Zεt )] ,

Jε3 (t) = 1
δ
E
[
R(ε, δ)2V ′′(Zεt )

]
.

Let us consider the three terms separately. First, by geometric ergodicity and applying Lemma 4.19
and Lemma 4.20 we get

lim
ε→0

lim
t→∞

Jε1 (t) = lim
ε→0

δ Eη
ε [

(Bε)2V ′′(Zε)
]

= lim
ε→0

(
σ Eη

ε

[V ′′(Zε)(1 + Φ′(Y ε))2] + R̃(ε, δ)
)

=M0A.

Let us now consider Jε2 (t). Considering Hölder conjugates p, q, r the Hölder inequality yields

|Jε2 (t)| ≤ E[(Bεt )p]1/p E[R(ε, δ)q]1/q E[V ′′(Zε)r]1/r.

Now, we can bound the first two terms with (4.19) and (4.20), respectively. The third term is
bounded due to Assumption 4.18 and Lemma 4.30. Hence, we have for t sufficiently large

|Jε2 (t)| ≤ C
(
δ1/2 + εδ−1/2

)
.

We consider now Jε3 (t). The Hölder inequality yields for conjugates p and q

|Jε3 (t)| ≤ E[R(ε, δ)2p]1/p E[V ′′(Zεt )q]1/q,
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which, similarly as above, yields for t sufficiently large

|Jε3 (t)| ≤ C
(
δ + ε2δ−1) .

Therefore, since δ = O(εζ) for ζ ∈ (0, 2), the terms Jε2 (t) and Jε3 (t) vanish in the limit for t→∞
and ε→ 0. Furthermore, by Lemma 4.33 and by weak convergence of the invariant measure µε
to µ0, we have

lim
ε→0
M̃ε =M0.

Therefore
lim
ε→0
Aε(δ) =M−1

0 M0A = A,

which implies the desired result.

We conclude this section with a negative convergence result, i.e., that if δ = εζ with ζ > 2, the
estimator based on filtered data converges to the coefficient α of the unhomogenized equation.
This result is relevant for two reasons. First, it shows the sharpness of the bound on ζ in the
assumptions of Theorem 4.21. Second, it shows an interesting switch between two completely
different regimes at ζ = 2, which happens arbitrarily fast in the limit ε→ 0.

Theorem 4.22. Let Assumption 4.3 and the assumptions of Lemmas 4.6 and 4.20 hold. Let
Âk(Xε, T ) be defined in (4.5) and δ = εζ with ζ > 2. Then

lim
ε→0

lim
T→∞

Âk(Xε, T ) = α, in probability,

where α is the drift coefficient of the multiscale equation (4.1).

The proof of Theorem 4.22 is given in Section 4.9.3.

4.6 The Diffusion Coefficient

Estimating the effective diffusion coefficient Σ of the homogenized SDE (4.2) is as well a relevant
problem. Indeed, knowing Σ besides the drift coefficient A gives a complete estimation of
the model (4.2), which is effective for the multiscale data generated by (4.1) in the sense of
homogenization theory. The standard approach for estimating the diffusion coefficient is to
approximate the quadratic variation of the path. In [112, Theorem 3.4], the authors show that
this approach fails in case the data is not pre-processed, meaning that the quadratic variation of
Xε equals the diffusion coefficient σ of (4.1), even in the limit for ε→ 0. They propose therefore
the estimator Σ̂δ based on subsampling and defined as

Σ̂δ := 1
2T

n∑
i=1

(
Xε
iδ −Xε

(i−1)δ

)2
,

where δ is the subsampling width and where T = nδ. It is possible to show that Σ̂δ indeed
estimates the effective diffusion coefficient Σ asymptotically for ε→ 0 and T →∞ [112, Theorem
3.6].

Despite the focus of this chapter being mainly the estimation of the effective drift coefficient, we
propose here the estimator for Σ in (4.2) based on filtered data and given by

Σ̂k(Xε, T ) := 1
δT

∫ T

0
(Xε

t − Zεt )2 dt, (4.21)
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where again we employ the subscript k for reference to the kernel (4.4) of the filter. The estimator
Σ̂ is unbiased for the effective diffusion coefficient Σ in case β = 1 and when we filter data at
the multiscale regime, i.e., when δ is a vanishing function of ε. In particular, the following result
holds.

Theorem 4.23. Let the assumptions of Theorem 4.21 hold. Then, if δ = εζ , with ζ ∈ (0, 2), it
holds

lim
ε→0

lim
T→∞

Σ̂k(Xε, T ) = Σ, in probability,

where Σ is the diffusion coefficient of the homogenized equation (4.2).

Proof. First, the ergodic theorem yields

lim
T→∞

Σ̂k = 1
δ
Eµ̃

ε [
(Xε − Zε)2] ,

then applying Proposition 4.17 at stationarity we obtain

lim
T→∞

Σ̂k = δ Eµ̃
ε [

(Bε)2]+ 2Eµ̃
ε

[BεR(ε, δ)] + 1
δ
Eµ̃

ε [
R(ε, δ)2]

=: Iε1 + Iε2 + Iε3 ,

and due to the Cauchy-Schwarz inequality and estimates (4.19) and (4.20) we have

|Iε2 | ≤ C
(
δ1/2 + εδ−1/2

)
and |Iε3 | ≤ C

(
δ + ε2δ−1) , (4.22)

for a constant C > 0 independent of ε and δ. Let us now consider Iε1 . Employing equation (4.35)
with the function f(z, b) = 1/2b2 gives

Eη
ε [

(Bε)2] = σ

δ
Eη

ε

[1 + Φ′(Y ε)] = σK

δ
= Σ
δ
,

which together with bounds (4.22) and the hypothesis on δ implies

lim
ε→0

lim
T→∞

Σ̂ = Σ, in probability,

which is the desired result.

4.7 Filtering the Data in The Bayesian Framework
In Section 3.6 we have presented how the problem of estimating the drift coefficient for multiscale
diffusion processes can be recast in a Bayesian framework. In particular, Theorem 3.16 highlights
at the posterior level the biasedness issue which occurs if data from the multiscale model are
employed without additional care. In this section, we present how to correct this faulty behavior
by employing filtered data.

We recall that without pre-processing the data, the posterior distribution is given by the Gaussian
µ(· | Xε) = N (mT (Xε), CT (Xε)), where

CT (Xε)−1 = C−1
0 + T

2ΣM(Xε), mT (Xε) = CT (Xε)
(
C−1

0 A0 −
T

2Σv(Xε)
)
, (4.23)

and where M(Xε) and v(Xε) are given in (4.3). Let us consider the modified likelihood function

L̃(Xε | A) = exp
(
− Ĩ(Xε | A)

2Σ

)
,
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where

Ĩ(Xε | A) =
∫ T

0
A · V ′(Zεt ) dXε

t + 1
2

∫ T

0
(A · V ′(Xε

t ))2 dt

= ṽ(Xε) ·A+ 1
2A ·M(Xε)A,

and where ṽ(Xε) is given in (4.5). Since M(Xε) is symmetric positive definite by Assumption 4.3,
the function L̃(Xε | A) is indeed a valid Gaussian likelihood function. Proceeding as in Section 3.6
and fixing a prior µ0 = N (A0, C0) on the parameter, we then obtain the modified posterior
measure µ̃T (· | Xε) = N (m̃T (Xε), CT (Xε)), whose mean and covariance are given by

CT (Xε)−1 = C−1
0 + T

2ΣM(Xε), m̃T (Xε) = CT (Xε)
(
C−1

0 A0 −
T

2Σ ṽ(Xε)
)

Let us remark that the posterior µ̃T has the same covariance as µT given in (4.23) and that
therefore it is indeed a valid Gaussian posterior distribution. Nevertheless, in order to employ
the tool of convergence introduced in Theorem 3.15, we need to study the properties of the MLE
based on the likelihood L̃(Xε | A), i.e., the solution of the linear system

−M(Xε)Ãk(Xε, T ) = ṽ(Xε). (4.24)

The following theorem guarantees the unbiasedness of this estimator under a condition on the
parameter δ of the filter.

Theorem 4.24. Let the assumptions of Theorem 4.21 hold. Then, if δ = εζ , with ζ ∈ (0, 2), it
holds

lim
ε→0

lim
T→∞

Ãk(Xε, T ) = A, in probability,

for Ãk(Xε, T ) defined in (4.24).

Proof. We first consider the difference between the two estimators Ãk(Xε, T ) and Âk(Xε, T ). In
particular, the ergodic theorem and an algebraic equality imply

lim
T→∞

(
Ãk(Xε, T )− Âk(Xε, T )

)
=
(
M−1

ε − M̃−1
ε

)
lim
T→∞

ṽ

= −M−1
ε

(
Mε − M̃ε

)
M̃−1

ε lim
T→∞

ṽ

=M−1
ε

(
Mε − M̃ε

)
lim
T→∞

Âk(Xε, T ),

almost surely, whereMε and M̃ε are defined in (4.11) and (4.12), respectively. Therefore, due
to Assumption 4.3 which allows controlling the norm ofM−1

ε and due to Lemma 4.33 we have
for a constant C > 0

lim
T→∞

∥∥∥Ãk(Xε, T )− Âk(Xε, T )
∥∥∥

2
≤ C

(
ε+ δ1/2

)
, (4.25)

where we remark that Âk(Xε, T ) has a bounded norm for ε sufficiently small due to Theorem 4.21.
Now, the triangle inequality yields∥∥∥Ãk(Xε, T )−A

∥∥∥
2
≤
∥∥∥Ãk(Xε, T )− Âk(Xε, T )

∥∥∥
2

+
∥∥∥Âk(Xε, T )−A

∥∥∥
2
.

Therefore, due to Theorem 4.21, the inequality (4.25) and since δ = εζ , the desired result
holds.
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Remark 4.25. One could argue that we could have carried on the whole analysis for the estimator
Ãk(Xε, T ) instead of the estimator Âk(Xε, T ). Nevertheless, the latter guarantees the strong
result of almost sure convergence in case δ is independent of ε, which is false for the former.
Conversely, analysing the properties of the estimator Ãk(Xε, T ) is fundamental for the Bayesian
setting, in which the matrix M̃ cannot be employed as its symmetric part is not positive definite
in general.

In light of Theorem 3.15, the result above guarantees that the mean of the posterior distribution
µ̃T (· | Xε) converges to the drift coefficient of the homogenized equation. Since the covariance
matrix is the same for µT (· | Xε) and µ̃T (· | Xε), it is possible to prove a positive convergence
result for µ̃T (· | Xε), which is given by the following Theorem.

Theorem 4.26. Let the assumptions of Theorem 4.24 hold. Then, the modified posterior measure
µ̃T (· | Xε) = N (m̃T (Xε), CT (Xε)) satisfies

lim
ε→0

lim
T→∞

E [µ̃T ({a : ‖a−A‖2 ≥ c} | X
ε)] = 0,

where E denotes expectation with respect to the Wiener measure and A is the drift coefficient of
the homogenized equation (4.2).

Proof. The proof follows from the proof of Theorem 3.16 and from Theorem 4.24.

4.8 Numerical Experiments
In this section we show numerical experiments confirming our theoretical findings and showcasing
the potential of the filtered data approach to overcome model misspecification arising when
multiscale data is used to fit homogenized models.
Remark 4.27. In practice, we consider for numerical experiment the data to be in the form of a
high-frequency discrete time series from the solution Xε of (4.1). Let n be a positive integer,
τ = T/n be the time step at which data is observed, and let Xε := (Xε

0 , X
ε
τ , . . . , X

ε
nτ ). We then

compute the estimator Âk as the solution of the linear system

− M̃−1
τ (Xε)Âk,τ (Xε, T ) = ṽτ (Xε),

where

M̃τ (Xε) = τ

T

n−1∑
j=0

V ′(Zεjτ )⊗ V ′(Xε
jτ ), ṽτ (Xε) = 1

T

n−1∑
j=0

V ′(Zεjτ )(Xε
(j+1)τ −X

ε
jτ ).

We take in all experiments τ � ε2, so that the discretization of the data has negligible effects
and does not compromise the validity of our theoretical results.

4.8.1 Parameters of the Filter

For the first preliminary experiments, we consider N = 1 and the quadratic potential V (x) = x2/2.
In this case, the solution of the homogenized equation is an Ornstein–Uhlenbeck process. Moreover,
we set the the fast potential in the multiscale equation (4.1) as p(y) = cos(y). In all experiments,
data is generated employing the Euler–Maruyama method with a fine time step.
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Figure 4.2 – Results for Section 4.8.1. On both figures, horizontal lines represent α and A,
the drift coefficients of the unhomogenized and homogenized equations, and the grey vertical
line represents the lower bound for the validity of Theorem 4.21. The curved lines (dashed,
dotted and dash-dotted) represent on figure (a) the values of Âk(Xε, T ) for ε = {0.1, 0.05, 0.025},
respectively, computed with T = 103. On figure (b), they correspond to the values of Âk(Xε, T ) at
T = {100, 300, 1000}, respectively, computed with ε = 0.05. We plot next to both figures (a) and
(b) a zoom on a neighbourhood of ε2 to show the transition between the two regimes highlighted
by the theoretical results. Note that the δ-axis is in logarithmic scale and is normalized with
respect to ε.

Verification of Theoretical Results

We first demonstrate numerically the validity of Theorem 4.15, Theorem 4.21 and Theorem 4.22,
i.e., the unbiasedness of Âk(Xε, T ) for δ = εζ with ζ ∈ [0, 2) and biasedness for ζ > 2. Let us
recall that for ζ = 0 the analysis and the theoretical result are fundamentally different than
for ζ ∈ (0, 2). We consider ε ∈ {0.1, 0.05, 0.025}, the diffusion coefficient σ = 1 and generate
data Xε

t for 0 ≤ t ≤ T with T = 103. Then we filter the data by choosing δ = εζ , and
ζ = 0, 0.1, 0.2, . . . , 3, and compute Âk(Xε, T ). Results are displayed in Figure 4.2, and show that
for ζ > 2, i.e., δ = o(ε2), the estimator tends to the drift coefficient α of the unhomogenized
equation. Conversely, as predicted by the theory, for ζ ∈ [0, 2) the estimator tends to A, the
drift coefficient of the homogenized equation. Therefore, the point δ = ε2 acts asymptotically
as a switch between two completely different regimes, which is theoretically sharp in the limit
for T →∞ and ε→ 0. Let us remark that the results displayed in Figure 4.2.(a) demonstrate
that the transition occurs more rapidly for the smallest values of ε. Moreover, in Figure 4.2.(b),
one can see how with bigger final times T the estimator is closer both to A when ζ ∈ [0, 2] and
to α when ζ > 2. Still, we observe that in finite computations the switch between A and α is
smoother than what we expect from the theory, which suggests to fix, if possible, δ = 1.
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Figure 4.3 – Results for Section 4.8.1. The case of δ = 1 is highlighted as a solid dot for the
filtered data technique, as the analysis and theoretical result is different in this case. The three
rows correspond to σ = 0.5, 0.7, 1.0 from top to bottom, and the dashed line corresponds to the
true value of A.

Comparison with Subsampling

We now compare the results given by the filtered data technique with the results given by
subsampling the data, i.e., the difference between the estimators Âk(Xε, T ) and Âδ(Xε, T ). We
fix the diffusion coefficient σ = 0.5, the multiscale parameter ε = 0.1 and generate data for
0 ≤ t ≤ T with T = 103. We choose δ = εζ and vary ζ ∈ [0, 1], where δ is the filtering and the
subsampling width, respectively. Moreover, for the filtered data approach we consider both β = 1
and β = 5. We report in Figure 4.3 the experimental results. Let us remark that:

(i) for σ = 0.5 the results given by subsampling and by the filter with β = 1 are similar, while
for higher values of σ the filtered data approach seems better than subsampling;

(ii) in general, choosing a higher value of β seems beneficial for the quality of the estimator;
(iii) the dependence on δ of numerical results given by the filter seems relevant only in case

β = 1 and for small values of σ. For β = 1 and higher values of σ, the estimator is stable
with respect to this parameter. This can be observed for a higher value of β but we have
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Figure 4.4 – Results for the estimator based on filter data with respect to the parameter β (Section
4.8.1). The result for β = 1, for which there are theoretical guarantees given by Theorem 4.21, is
highlighted as a solid dot. From left to right we consider different values of σ, and the dashed
line corresponds to the true value of A.

Figure 4.5 – Numerical results for Section 4.8.2. Comparison between the density of the estimator
of the drift based on filtered data with β = {1, 5}, the estimator based on subsampling and the
estimator based on shift-subsampling and averaging of (4.27). On the left and on the right, the
final time is T = {500, 1000}, respectively.

no theoretical guarantee in this case.

The Influence of β

We finally test the variability of the estimator with respect to β in (4.4). We consider δ = ε,
which corresponds to ζ = 1 and seems to be the worst-case scenario for the filter, at least for
β = 1. We consider again σ = 0.5, 0.7, 1 and vary β = 1, 2, . . . , 10. Results, given in Figure 4.4,
show empirically that the estimator stabilizes fast with respect to β. Nevertheless, there is no
theoretical guarantee supporting this empirical observation.

4.8.2 Variance of the Estimators

We now compare the estimators Âk based on filtered data and Âδ based on subsampling in terms
of variance. We consider for this experiment the SDE (4.1) with N = 1, the bistable potential
V (x) = x4/4−x2/2, the multiscale drift coefficient α = 1, the diffusion coefficient σ = 1 and with
ε = 0.1. We then let Xε = (Xt, 0 ≤ t ≤ T ) be the solution of (4.1) and generate Ns = 500 i.i.d.
samples of Xε. We then compute the estimators Âk and Âδ on each of the realizations of Xε, thus
obtaining Ns replicas {Â(i)

k }
Ns
i=1 and {Â(i)

δ }
Ns
i=1. For the estimator Âk, we consider the kernel (4.4)

with β = {1, 5} and with δ = 1. For the estimator Âδ, we employ the subsampling width δ = ε2/3,
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Coefficient Multiscale Homogenized No preprocessing Filtering Subsampling
α A Â Âk Âδ

1 -1 -0.62 -0.92 -0.70 -0.59
2 -0.5 -0.31 -0.70 -0.27 0.05
3 0.5 0.31 0.55 0.31 0.14
4 1 0.62 1.22 0.57 0.13

Figure 4.6 – Results for Section 4.8.3. In the figure, from left to right the potential function
estimated with the data itself, the filter, subsampled data. In the table, numerical results for the
single components of the true and estimated drift coefficients.

which is heuristically optimal following [112]. It could be argued that another estimator based on
subsampling and shifting could be employed to reduce the variance. In particular, we let τ > 0
be the time step at which the data is observed. Indeed, in practice we work with high-frequency
discrete data, and observe Xε := (Xε

0 , X
ε
τ , . . . , X

ε
nτ ), with nτ = T . We assume for simplicity that

the subsampling width δ is a multiple of τ and compute for all k = 0, 1, . . . , δ/τ − 1

Âδ,k(Xε, T ) = −
∑n−1
j=0 V

′(Xε
jδ+k)(Xε

(j+1)δ+k −X
ε
jδ+k)

δ
∑n−1
j=0 V

′(Xε
jδ+k)2

, (4.26)

i.e. the subsampling estimator obtained by shifting the origin by kτ . We then average over the
index k and obtain the new estimator

Âavg
δ (Xε, T ) = τ

δ

δ/τ−1∑
k=0

Âδ,k(Xε, T ). (4.27)

We include this estimator in the numerical study for completeness, and compute Ns replicas of
Âavg
δ on all the realizations of Xε. Results, given in Figure 4.5 for the final times T = {500, 1000},

show that our novel approach does not outperform subsampling in terms of variance, but clearly
does in terms of bias. Moreover, we notice numerically that the shifted-averaged estimator Âavg

δ

does not reduce sensibly the variance in this case with respect to Âδ. In fact, this is only partly
surprising, since the estimators Âδ,k of (4.26) are highly correlated. Finally, we notice that the
filtering estimator Âk with β = 5 has a lower variance with respect to the same estimator with
β = 1. This confirms that choosing a higher value of β improves the estimation of the effective
drift coefficient.
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4.8.3 Multidimensional Drift Coefficient

Let us consider the Chebyshev polynomials of the first kind, i.e., the polynomials Ti : R → R,
i = 0, 1, . . ., defined by the recurrence relation

T0(x) = 1, T1(x) = x, Ti+1(x) = 2xTi(x)− Ti−1(x).

We consider the potential function V (x) = (V1(x), V2(x), V3(x), V4(x))>, with

Vi(x) = Ti(x), i = 1, . . . , 4,

thus considering the semi-parametric framework (see Remark 3.8). The potential V then satisfies
Assumption 4.3 whenever N is even and if the leading coefficient αN is positive. We set N = 4
and the drift coefficient α = (−1,−1/2, 1/2, 1). With this drift coefficient, the potential function
is of the bistable kind. Moreover, we set ε = 0.05, the diffusion coefficient σ = 1, the fast
potential p(y) = cos(y) and simulate a trajectory of Xε for 0 ≤ t ≤ T with T = 103 employing
the Euler–Maruyama method with time step ∆t = ε3. We estimate the drift coefficient A ∈ R4

with the estimators:

(i) Â(Xε, T ) based on the data Xε itself;
(ii) Âδ(Xε, T ) based on subsampled data with subsampling parameter δ = ε2/3;
(iii) Âk(Xε, T ) based on filtered data Zε computed with β = 1 and δ = 1.

In particular, we pick this specific value of δ for the subsampling following the optimality criterion
given in [112]. Results, given in Figure 4.6, show that the filter-based estimation captures well
the homogenized potential as well as the coefficient A. Moreover, it is possible to remark the
negative result given by Theorem 3.13 holds in practice, i.e., with no pre-processing the estimator
Â(Xε, T ) tends to the drift coefficient α of the unhomogenized equation. Finally, we can observe
that the subsampling-based estimator fails to capture the homogenized coefficients. Indeed, the
estimator strongly depends on the sampling rate and on the diffusion coefficient, as shown in the
numerical experiments of [112]. Even though the authors suggest the choice of δ = ε2/3, this is
just an heuristic and is not guaranteed to be the optimal value in all cases. In the asymptotic
limit of ε→ 0 and T →∞, any valid choice of the subsampling rate is guaranteed theoretically to
work, but not in the pre-asymptotic regime. Moreover, in [112] the authors suggest that different
subsampling rates may be employed for different components of the drift coefficient, which renders
the subsampling approach complex to apply in practice. Our estimator, conversely, seems to
perform better with no particular tuning of the parameters even in this multi-dimensional case,
which demonstrates the robustness of our novel approach.

4.8.4 The Bayesian Approach: Bistable Potential

In this numerical experiment we consider N = 2 and the bistable potential, i.e., the function V
defined as

V (x) =
(
x4

4 −x
2

2

)>
,

with coefficients α1 = 1 and α2 = 2. We then consider the multiscale equation with σ = 0.7,
the fast potential p(y) = cos(y) and ε = 0.05, thus simulating a trajectory Xε. We adopt here a
Bayesian approach and compute the posterior distribution µ̃T obtained with the filtered data
approach introduced in Section 4.7. The parameters of the filter are set to β = 1 and δ = ε in
(4.4). We choose the non-informative prior µ0 = N (0, I), where I is the identity matrix in R2.
Let us remark that in order to compute the posterior covariance the diffusion coefficient Σ of
the homogenized equation has to be known. In this case, we pre-compute the value of Σ via
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Figure 4.7 – Results for Section 4.8.4. Posterior distributions over the parameter A = (A1, A2)>
for the bistable potential obtained with the filtered data approach. The figures refer to final time
T = 100, 200, 400 from left to right, respectively. The MLE Ãk(Xε, t) is represented with a circle,
while the true value A of the drift coefficient of the homogenized equation is represented with a
cross.

the coefficient K and the theory of homogenization, but notice that Σ could be estimated either
employing the subsampling technique of [112] or using the estimator Σ̂k based on filtered data
defined in (4.21). In particular, in this case Σ ≈ 0.2807, and we compute numerically

Σ̂k(Xε, 100) = 0.2901, Σ̂k(Xε, 200) = 0.2835, Σ̂k(Xε, 400) = 0.2813,

so that employing the estimator Σ̂k instead of the true value would have negligible effects on the
computation of the posterior over the effective drift coefficient. We stop computations at times
T = {100, 200, 400} in order to observe the shrinkage of the Gaussian posterior towards the MLE
Ãk(Xε, T ) with respect to time. In Figure 4.7, we observe that the posterior does indeed shrink
towards the MLE, which in turn gets progressively closer to the true value of the drift coefficient
A of the homogenized equation.

4.9 Proof of Technical Results
We conclude the chapter by giving the proof of some technical results, which were omitted in the
text to enhance readability.

4.9.1 Proofs of Sections 4.3

Proof of Lemma 4.5. We have to show that the joint process solution to (4.6) is hypo-elliptic.
Denoting as f : R→ R the function

f(x) = −α · V ′(x)− 1
ε
p′
(x
ε

)
,

the generator of the process (Xε, Zε)> is given by

L = f∂x + σ∂2
xx + 1

δ
(x− z)∂z =: X0 + σX 2

1 ,

where
X0 = f∂x + 1

δ
(x− z)∂z, X1 = ∂x.
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The commutator [X0,X1] applied to a test function v then gives

[X0,X1]v = f∂2
xv + 1

δ
(x− z)∂x∂zv − ∂x

(
f∂xv + 1

δ
(x− z)∂zv

)
= −∂xf∂xv −

1
δ
∂zv.

Consequently,
Lie (X1, [X0,X1]) = Lie

(
∂x,−∂xf∂x −

1
δ
∂z

)
,

which spans the tangent space of R2 at (x, z), denoted Tx,zR2. The desired result then follows
from Hörmander’s theorem (see e.g. [110, Chapter 6]).

Proof of Lemma 4.6. Lemma 4.5 guarantees that the Fokker–Planck equation can be written
directly from the system (4.6). For geometric ergodicity, let

S(x, z) :=
(
−α · V ′(x)− 1

εp
′(xε )

1
δ (x− z)

)
·
(
x
z

)
= −

(
α · V ′(x) + 1

ε
p′
(x
ε

))
x+ 1

δ
(xz − z2).

Due to Assumption 4.3, Remark 4.4 and Young’s inequality, we then have for all γ > 0

S(x, z) ≤ a+
(

1
2γδ − b

)
x2 + 1

δ

(γ
2 − 1

)
z2.

We choose γ = γ∗ := 1− bδ +
√

1 + (1− bδ)2 > 0 so that

C(γ∗) := − 1
2γ∗δ + b = −1

δ

(
γ∗

2 − 1
)
,

and we notice that C(γ∗) > 0 if δ > 1/(4b). In this case, we have

S(x, z) ≤ a− C(γ∗)
∥∥∥(x z

)>∥∥∥2
,

and problem (4.6) is dissipative. It remains to prove the irreducibility condition [94, Condition
4.3]. We remark that the system (4.6) fits the framework of the example the end of [94, Page 199],
and therefore [94, Condition 4.3] is satisfied. The result then follows from [94, Theorem 4.4].

Proof of Lemma 4.8. Let us remark that the marginal density ρε of Xε satisfies the stationary
FPE

σ(ρε)′′(x) + d
dx

((
α · V ′(x) + 1

ε
p′
(x
ε

))
ρε(x)

)
= 0, (4.28)

In view of (4.8) and integrating (4.7) with respect to x, we then obtain in light of (4.28)

∂x (σρεψε∂xRε) + ∂z

(
1
δ

(z − x)ρεψεRε
)

= 0.

We now multiply the equation above by a continuous differentiable function f : R2 → RN ,
f = f(x, z), and integrate with respect to x and z. An integration by parts yields

σ

∫
R

∫
R
∂xf(x, z)ρε(x)ψε(z)∂xRε(x, z) dxdz

= 1
δ

∫
R

∫
R
∂zf(x, z)(x− z)ρε(x)ψε(z)Rε(x, z) dxdz,
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which implies the following identity in RN

σδ

∫
R

∫
R
∂xf(x, z)ρε(x)ψε(z)∂xRε(x, z) dx dz = Eµ̃

ε

[∂zf(Xε, Zε)(Xε − Zε)] .

Finally, choosing
f(x, z) = (x− z)V ′(z) + V (z),

we obtain the desired result.

4.9.2 Proof of Proposition 4.17

Preliminary estimates

In order to prove the characterization provided by Proposition 4.17, we need to prove two
additional results on the filter. First, we prove a Jensen-like inequality for the kernel.
Lemma 4.28. Let δ > 0 and k(r) be defined as

k(r) = 1
δ
e−r/δ.

Then, for any t > 0, p ≥ 1 and any function g ∈ C0([0, t]) it holds∣∣∣∣∫ t

0
k(t− s)g(s) ds

∣∣∣∣p ≤ ∫ t

0
k(t− s) |g(s)|p ds.

Proof. Let us first note that ∫ t

0
k(t− s) ds = 1− e−t/δ.

Therefore, the measure κt(ds) on [0, t] defined as

κt(ds) := k(t− s)
1− e−t/δ ds,

is a probability measure. An application of Jensen’s inequality therefore yields∣∣∣∣∫ t

0
k(t− s)g(s) ds

∣∣∣∣p ≤ (1− e−t/δ)p
∫ t

0
|g(s)|p κt(ds)

= (1− e−t/δ)p−1
∫ t

0
k(t− s) |g(s)|p ds.

Finally since 0 < (1− e−t/δ) < 1 and p ≥ 1, this implies the desired result.

The following lemma characterizes the action of the filter when it is applied to polynomials.
Lemma 4.29. With the notation of Lemma 4.28, it holds for all p ≥ 0∫ t

0
k(t− s)(t− s)p ds ≤ Cδp,

where C > 0 is a positive constant independent of δ.

Proof. The change of variable u = (t− s)/δ yields∫ t

0
k(t− s)(t− s)p ds = δp

∫ t/δ

0
upe−u du = δpγ

(
p+ 1, t

δ

)
,

where γ is the lower incomplete Gamma function, which is bounded by the complete Gamma
function Γ(p+ 1) independently of the second argument.
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Proof of Proposition 4.17

Denoting Y εt := Xε
t /ε, we will make use of the decomposition [112, Formula 5.8]

Xε
t −Xε

s = −
∫ t

s

(α · V ′(Xε
r ))(1 + Φ′(Y εr )) dr

+
√

2σ
∫ t

s

(1 + Φ′(Y εr )) dWr − ε(Φ(Y εt )− Φ(Y εs )),
(4.29)

which is obtained applying the Itô formula to Φ, the solution of the cell problem (3.4) Recall
that by definition of Zεt we have

Xε
t − Zεt =

∫ t

0
k(t− s)(Xε

t −Xε
s ) ds+ e−t/δXε

t .

Plugging the decomposition (4.29) into the equation above, we obtain

Xε
t − Zεt = Iε1(t) + Iε2(t) + Iε3(t) + Iε4(t),

where
Iε1(t) := −

∫ t

0
k(t− s)

∫ t

s

(α · V ′(Xε
r ))(1 + Φ′(Y εr )) dr ds,

Iε2(t) :=
√

2σ
∫ t

0
k(t− s)

∫ t

s

(1 + Φ′(Y εr )) dWr ds,

Iε3(t) := −ε
∫ t

0
k(t− s)(Φ(Y εt )− Φ(Y εs )) ds,

Iε4(t) = e−t/δXt.

Let us analyze the terms above singularly. For Iε1(t), one can show [112, Proposition 5.8]∫ t

s

(α · V ′(Xε
r ))(1 + Φ′(Y εr )) dr = (t− s)(A · V ′(Xε

t )) +Rε1(t− s),

where the remainder Rε1 satisfies

Eµ
ε

[|Rε1(t− s)|p]1/p ≤ C(ε2 + ε(t− s)1/2 + (t− s)3/2). (4.30)

Therefore, it holds

Iε1(t) = −(A · V ′(Xε
t ))
∫ t

0
k(t− s)(t− s) ds+

∫ t

0
k(t− s)Rε1(t− s) ds

= −δ(A · V ′(Xε
t )) + e−t/δ(t+ δ)(A · V ′(Xε

t )) + R̃ε1(t),
where we exploited the equality∫ t

0
k(t− s)(t− s) ds = δ − e−t/δ(t+ δ),

and where
R̃ε1(t) :=

∫ t

0
k(t− s)Rε1(t− s) ds.

Now, Lemma 4.28, the inequality (4.30) and Lemma 4.29 yield for all p ≥ 1

Eµ
ε
[∣∣∣R̃ε1(t)

∣∣∣p] ≤ C ∫ t

0
k(t− s)Eµ

ε

|Rε1(t− s)|p ds

≤ C
∫ t

0
k(t− s)(ε2p + εp(t− s)p/2 + (t− s)3p/2) ds

≤ C
(
ε2p + εpδp/2 + δ3p/2

)
,
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where C is a positive constant independent of ε and δ. Therefore, for δ sufficiently small, we get(
Eϕ

ε

|Iε1(t)|p
)1/p

≤ C
(
δ + ε2 + εδ1/2 + te−t/δ

)
.

We now consider the second term. Let us introduce the notation

Qεt :=
∫ t

0
(1 + Φ′(Y εr )) dWr,

and therefore rewrite
Iε2(t) =

√
2σ
∫ t

0
k(t− s)(Qεt −Qεs) ds.

An application of the Itô formula to u(s,Qεs) where u(s, x) = k(t− s)x yields

Iε2(t) =
√

2σ
(
Qεt

∫ t

0
k(t− s) ds−Qεt + δ

∫ t

0
k(t− s) (1 + Φ′(Y εs )) dWs

)
= δBεt −

√
2σe−t/δQεt =: δBεt −Rε2(t).

(4.31)

where Bεt is defined in (4.18). For the remainder Rε2(t), let us remark that for all p ≥ 1 it holds

E [|Qεt |
p]2 ≤ E

[
|Qεt |

2p
]
≤ Ctp−1

∫ t

0
E |1 + Φ′(Y εr )|2p dr ≤ Ctp

where we applied Jensen’s inequality, an estimate for the moments of stochastic integrals [74,
Formula (3.25), p. 163] and the boundedness of Φ. Therefore we have

Eµ
ε

[|Rε2(t)|p]1/p ≤ C
√
te−t/δ. (4.32)

In order to obtain the bound (4.19) on Bεt , let us remark that from (4.31) it holds for a constant
C > 0 depending only on p

E [|Bεt |
p]1/p ≤ Cδ−1 (E |Iε2(t)|p)1/p + Cδ−1 (E |Rε2(t)|p)1/p

.

The second term is bounded exponentially fast with respect to t and δ due to (4.32). For the
first term, applying Lemma 4.28, the inequality [74, Formula (3.25), p. 163] and Lemma 4.29 we
obtain for a constant C > 0 independent of δ and t

E [|Iε2(t)|p] ≤ C
∫ t

0
k(t− s)E |Qt −Qs|p ds

≤ C
∫ t

0
k(t− s)(t− s)p/2 ds ≤ Cδp/2.

Therefore, it holds for δ sufficiently small

E [|Bεt |
p]1/p ≤ Cδ−1/2,

which proves the bound (4.19). Let us now consider Iε3(t). Since Φ is bounded, we simply have

|Iε3(t)| ≤ Cε,

almost surely. Finally, due to [112, Corollary 5.4], we know that Xε
t has bounded moments of all

orders and therefore
Eµ

ε

[|Iε4(t)|p]1/p ≤ Ce−t/δ,
which concludes the proof.
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4.9.3 Proofs of Section 4.5

Preliminary estimates

The following lemma shows that Zε has bounded moments of all orders.

Lemma 4.30. Under Assumption 4.3, let Zε be distributed as the invariant measure µ̃ε of the
couple (Xε, Zε)>. Then for any p ≥ 1 there exists a constant C > 0 uniform in ε such that

Eµ̃
ε

|Zε|p ≤ C.

Proof. Let Xε
t be at stationarity with respect to its invariant measure µε. Let Zεt be the

corresponding filtered process. By definition of Zεt and applying Lemma 4.28 we have

Eµ
ε

|Zεt |p = Eµ
ε

∣∣∣∣∫ t

0
k(t− s)Xε

s ds
∣∣∣∣p

≤
∫ t

0
k(t− s)Eµ

ε

|Xε
s |p ds,

which, together with the definition of k and the fact that Xε
s has bounded moments of all

orders [112, Corollary 5.4], implies for a constant C > 0

Eµ
ε

|Zεt |p ≤ C.

In order to conclude, we remark that due to Lemma 4.6 we have for all t ≥ 0

Eµ̃
ε

|Zε|p ≤ Eµ
ε

|Zεt |
p + Ce−λt,

which, for t sufficiently big, yields the desired result.

Corollary 4.31 is a direct consequence of Proposition 4.17 and provides a rough estimate of the
difference between the trajectories Xε

t and Zεt when they are at stationarity.

Corollary 4.31. Under Assumption 4.3, let the couple (Xε, Zε)> be distributed as its invariant
measure µ̃ε. Then, if δ ≤ 1, it holds for any p ≥ 1(

Eµ̃
ε

|Xε − Zε|p
)1/p

≤ C
(
ε+ δ1/2

)
,

for a constant C > 0 independent of ε and δ.

Proof. Let p ≥ 1, then due to Proposition 4.17 there exists a constant C > 0 depending only on
p such that

Eµ
ε

|Xε
t − Zεt |

p ≤ C
(
εp + δp/2

)
.

Let us now remark that this result holds for Xε
t being at stationarity and for Zεt being its filtered

process, and not for a couple (Xε, Zε)> ∼ µ̃ε. In order to conclude, we remark that due to
Lemma 4.6 we have for all t ≥ 0

Eµ̃
ε

|Xε − Zε|p ≤ Eµ̃
ε

|Xε
t − Zεt |

p + Ce−λt,

which, for t sufficiently big, yields the desired result.
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The result above can be in some sense rather counter-intuitive. Indeed, for a fixed ε > 0 and
for δ → 0 independently of ε, one expects the filtered trajectory Zε to approach Xε. This is
provided by the following Lemma.

Lemma 4.32. Under Assumption 4.3, let the couple (Xε, Zε)> be distributed as its invariant
measure µ̃ε. Then, if δ ≤ 1, it holds for any p ≥ 1(

Eµ̃
ε

|Xε − Zε|p
)1/p

≤ C
(
δε−1 + δ1/2

)
,

for a constant C > 0 independent of ε and δ.

Proof. By equation (4.1) we have for all 0 ≤ s < t

Xε
t −Xε

s = −α
∫ t

s

V ′(Xε
r ) dr − 1

ε

∫ t

s

p′
(
Xε
r

ε

)
dr +

√
2σ(Wt −Ws).

Therefore, by Assumption 4.3 and since Xε
t has bounded moments of all orders at stationarity [112,

Corollary 5.4], it holds for any p ≥ 1 and a constant C > 0

Eµ
ε

|Xε
t −Xε

s |
p ≤ C

(
(t− s)p + (t− s)pε−p + (t− s)p/2

)
, (4.33)

where µε is the invariant measure of Xε. By definition of Zεt we have

Xε
t − Zεt =

∫ t

0
k(t− s)(Xε

t −Xε
s ) ds+ e−t/δXε

t ,

which, applying Lemma 4.28, the inequality (4.33) and Lemma 4.29, implies

Eµ
ε

|Xε
t − Zεt |

p ≤ C
(∫ t

0
k(t− s)Eµ

ε

|Xε
t −Xε

s |
p ds+ e−pt/δ Eµ̃

ε

|Xε
t |
p

)
≤ C

(
δp + δpε−p + δp/2 + e−pt/δ

)
.

Geometric ergodicity (Lemma 4.6) then implies for µ̃ε the measure of the couple (Xε, Zε)>

Eµ̃
ε

|Xε − Zε|p ≤ Eµ
ε

|Xε
t − Zεt |

p + Ce−λt,

which, for t sufficiently big and since δ ≤ 1 yields the desired result.

Let us conclude with a last preliminary estimate concerning the matrices M̃ε andMε defined in
(4.12) and (4.11), respectively.

Lemma 4.33. Let the assumptions of Corollary 4.31 hold. Then the matrices Mε and M̃ε

satisfy ∥∥∥Mε − M̃ε

∥∥∥
2
≤ C

(
ε+ δ1/2

)
,

for a constant C > 0 independent of ε and δ.

Proof. Applying Jensen’s and Cauchy–Schwarz inequalities we have∥∥∥Mε − M̃ε

∥∥∥
2
≤ Eµ̃

ε

‖(V ′(Zε)− V ′(Xε))⊗ V ′(Xε)‖2

≤
(
Eµ̃

ε

‖V ′(Zε)− V ′(Xε)‖22
)1/2 (

Eµ̃
ε

‖V ′(Xε)‖22
)1/2

.
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The Lipschitz condition on V ′ together with the boundedness of the moments of Xε and
Corollary 4.31 yield for a constant C > 0∥∥∥Mε − M̃ε

∥∥∥
2
≤ C

(
Eµ̃

ε

|Zε −Xε|2
)1/2

≤ C
(
ε+ δ1/2

)
,

which is the desired result.

Proof of Lemma 4.19

Let us consider the following system of stochastic differential equations for the processes
Xε
t , Z

ε
t , B

ε
t , Y

ε
t

dXε
t = −α · V ′(Xε

t ) dt− 1
ε
p′(Y εt ) dt+

√
2σ dWt,

dZεt = 1
δ

(Xε
t − Zεt ) dt,

dBεt = −1
δ
Bεt dt+

√
2σ
δ

(1 + Φ′(Y εt )) dWt,

dY εt = −1
ε
α · V ′(Xε

t ) dt− 1
ε2 p
′(Y εt ) dt+

√
2σ
ε

dWt,

whose generator L̃ε is given by

L̃ε =−
(
α · V ′(x) + 1

ε
p′(y)

)
∂x + 1

δ
(x− z)∂z −

1
δ
b∂b −

(
1
ε
α · V ′(x) + 1

ε2 p
′(y)

)
∂y

+ σ

(
∂2
xx + 2

ε
∂2
xy + 1

ε2 ∂
2
yy

)
+ σ

(
2(1 + Φ′(y))

δ
∂2
xb + 2(1 + Φ′(y))

εδ
∂2
yb + (1 + Φ′(y))2

δ2 ∂2
bb

)
.

Let us denote by ϕε : R3 × [0, L]→ R, ϕε = ϕε(x, z, b, y), the density of the invariant measure ηε
of the quadruple (Xε

t , Z
ε
t , B

ε
t , Y

ε
t ). Then ϕε solves the stationary FPE L̃∗εϕε = 0 (see Section A.3),

i.e., explicitly

0 = ∂x

((
α · V ′(x) + 1

ε
p′(y)

)
ϕε
)

+ 1
δ
∂z ((z − x)ϕε)

+ 1
δ
∂b(bϕε) + ∂y

((
1
ε
α · V ′(x) + 1

ε2 p
′(y)

)
ϕε
)

+ σ

(
∂2
xxϕ

ε + 2
ε
∂2
xyϕ

ε + 1
ε2 ∂

2
yyϕ

ε

)
+ σ

(
2
δ
∂2
xb ((1 + Φ′(y))ϕε) + 2

εδ
∂2
yb ((1 + Φ′(y))ϕε)

)
+ σ

(
1
δ2 ∂

2
bb

(
(1 + Φ′(y))2ϕε

))
.

(4.34)

We now multiply the equation above by a continuous differentiable function f : R2 → RN ,
f = f(z, b), and integrate with respect to x, z, b and y. Then an integration by parts yields∫

R3×[0,L]
∂bf(z, b)bϕε

=
∫
R3×[0,L]

∂zf(z, b)(x− z)ϕε + σ

δ

∫
R3×[0,L]

∂2
bbf(z, b)(1 + Φ′(y))2ϕε,
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which implies the following identity in RN

δ Eη
ε

[∂bf(Zε, Bε)Bε] = σ Eη
ε [
∂2
bbf(Zε, Bε)(1 + Φ′(Y ε))

]
+ δ Eη

ε

[∂zf(Zε, Bε)(Xε − Zε)] .
(4.35)

Choosing
f(z, b) = 1

2b
2V ′′(z),

we obtain

δ Eη
ε [

(Bε)2V ′′(Zε)
]

= σ Eη
ε

[V ′′(Zε)(1 + Φ′(Y ε))] + δ

2 Eη
ε [

(Bε)2V ′′′(Zε)(Xε − Zε)
]

=: σ Eη
ε

[V ′′(Zε)(1 + Φ′(Y ε))] + R̃(ε, δ).

We now consider the remainder and, applying Hölder’s inequality, Corollary 4.31, Lemma 4.30,
Assumption 4.18 and (4.19), we get for p, q, r such that 1/p+ 1/q + 1/r = 1∣∣∣R̃(ε, δ)

∣∣∣ ≤ Cδ (Eηε |Bε|2p)1/p (
Eη

ε

|V ′′′(Zε)|q
)1/q (

Eη
ε

|Xε − Zε|r
)1/r

≤ C(δ1/2 + ε),

which completes the proof.

Proof of Lemma 4.20

Let us introduce the notation

∆(ε) =
∣∣∣σ Eηε [V ′′(Zε)(1 + Φ′(Y ε))2]−M0A

∣∣∣ ,
and note that the aim is to show that limε→0 ∆(ε) = 0. By the triangle inequality we get

∆(ε) ≤
∣∣∣σ Eηε [V ′′(Zε)(1 + Φ′(Y ε))2]− σ Eη

ε

[V ′′(Xε)(1 + Φ′(Y ε))2]
∣∣∣

+
∣∣∣σ Eηε [V ′′(Xε)(1 + Φ′(Y ε))2]− ΣEϕ

0
[V ′′(X)]

∣∣∣
=:∆1(ε) + ∆2(ε).

We first study ∆1(ε) and due to the boundedness of Φ′, Assumption 4.18 and Corollary 4.31 we
have

∆1(ε) ≤ C Eη
ε

|Xε − Zε| ≤ C(δ1/2 + ε) = C(εζ/2 + ε),
which implies

lim
ε→0

∆1(ε) = 0.

We now consider ∆2(ε). Integrating equation (4.34) with respect to z and b we obtain the
Fokker–Planck equation for the stationary marginal density λ : R × [0, L], λ = λ(x, y), of the
couple (Xε, Y ε)

∂x

((
α · V ′(x) + 1

ε
p′(y)

)
λ

)
+ ∂y

((
1
ε
α · V ′(x) + 1

ε2 p
′(y)

)
λ

)
+σ
(
∂2
xxλ+ ∂2

xy

(
2
ε
λ

)
+ ∂2

yy

(
1
ε2λ

))
= 0,

whose solution is given by

λ(x, y) = 1
Cλ

exp
(
−α · V (x)

σ
− 1
σ
p(y)

)
,
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where
Cλ =

∫
R

∫ L

0
exp

(
−α · V (x)

σ
− 1
σ
p(y)

)
dx dy

=
(∫

R
exp

(
−α · V (x)

σ

)
dx
)(∫ L

0
exp

(
− 1
σ
p(y)

)
dy
)

=: CλxCλy .

Therefore, since Σ = Kσ and by (3.3) and Proposition 3.3 we have

σ Eη
ε

[V ′′(Xε)(1 + Φ′(Y ε))2] = σ

(∫
R
V ′′(x) 1

Cλx
exp

(
−α · V (x)

σ

)
dx
)

×

(∫ L

0
(1 + Φ′(y))2 1

Cλy
exp

(
− 1
σ
p(y)

)
dy
)

= σK Eµ
0
[V ′′(X)] = ΣEµ

0
[V ′′(X)].

Moreover, by (3.34) we have ΣEµ
0
[V ′′(X)] =M0A, which shows that ∆2(ε) = 0 and completes

the proof.

Proof of Theorem 4.22

Let us consider the decomposition (4.13), i.e.,

Âk(Xε, T ) = α+ Iε1(T )− Iε2(T ),

where Iε1(T ) is defined in (4.13) and satisfies

lim
T→∞

Iε1(T ) = M̃−1
ε Eµ̃

ε

[
1
ε
p′
(
Xε

ε

)
V ′(Zε)

]
, a.s.

and, by the proof of Theorem 4.15 we have independently of ε

lim
T→∞

Iε2(T ) = 0, a.s.

A Taylor expansion of the first order of V ′ yields

V ′(Zε) = V ′(Xε) + V ′′(X̃ε)(Zε −Xε),

where X̃ε is a random variable which assumes values between Xε and Zε. We can therefore write

lim
T→∞

Iε1(T ) = M̃−1
ε

(
1
ε
Eµ̃

ε

[
p′
(
Xε

ε

)
V ′(Xε)

]
+ 1
ε
Eµ̃

ε

[
p′
(
Xε

ε

)
V ′′(X̃ε)(Zε −Xε)

])
=: M̃−1

ε (Jε1 + Jε2 ) .

We now consider the two terms separately and show they vanish for ε→ 0. Proceeding as in the
proof of Theorem 3.13, we directly obtain that

lim
ε→0
M̃−1

ε Jε1 = 0. (4.36)

We now turn to Jε2 . The Hölder’s inequality with conjugate exponents p and q and the assumptions
on p and V yield

|Jε2 | ≤ Cε−1
(
Eµ̃

ε
∣∣∣X̃ε

∣∣∣q)1/q (
Eµ̃

ε

|Zε −Xε|p
)1/p

.
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Since X̃ε assumes values between Xε and Zε, it has bounded moments by [112, Corollary 5.4]
and Lemma 4.30. Hence, applying Lemma 4.32 we have

|Jε2 | ≤ C
(
δε−2 + δ1/2ε−1

)
,

which, since δ = εζ with ζ > 2, implies

lim
ε→0
|Jε2 | = 0. (4.37)

Finally, Lemma 4.33 and the weak convergence of the invariant measure µε to µ0 imply

lim
ε→0
M̃ε =M0,

which, together with (4.36), (4.37) implies that Iε1(T )→ 0 for T →∞ and ε→ 0, which implies
the desired result.
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5 Conclusion of Part I

In this first part of the thesis we introduced two novel methods to solve inverse problems in the
context of multiscale elliptic PDEs and multiscale SDEs of the Langevin type. Despite both
inverse problems being amenable to the theory of homogenization, the misspecification due to
the replacement of a multiscale equation with a single-scale effective model has to be treated in a
substantially different manner in the PDE and the SDE cases. In particular, for elliptic PDEs
the theory of homogenization translates naturally to inverse problems, and multiscale data are
assimilated seamlessly by a coarse-grained model. Conversely, if data arising from a multiscale
diffusion process are directly employed to infer the parameters of an effective SDE, the resulting
coefficients are biased with respect to the one predicted by homogenization theory. In this case,
it is necessary to employ additional techniques of pre-processing of the data in order to correct
this issue of unbiasedness.

In Chapter 1 we gave a brief but general introduction to Bayesian inverse problems, with which
we lay the basis for our notation and for some concepts which are repeatedly employed throughout
the thesis. In particular, we focused on finite-dimensional approximations of otherwise infinite-
dimensional inverse problems and on practical techniques to compute their solution. We remark
that more complete and deeper introductions to the topic of inverse problems and their Bayesian
interpretation have been presented in the literature (e.g. [49, 71,131]).

In Chapter 2 we presented a methodology based on numerical homogenization and on the EnKF for
inverse problems involving multiscale elliptic PDEs with tensors highly oscillatory at a scale ε� 1.
By combining the EnKF and the FE-HMM we managed to significantly reduce the computational
cost for elliptic inverse problems which would be otherwise computationally involved or unfeasible.
Our main theoretical result was showing that the ensemble of particles approximating the unknown
parameter generated by our multiscale algorithm converges to the ensemble generated by the true
model as the small scale parameter ε and the numerical discretization parameter h go to zero.
In particular, Theorem 2.8 gives guarantees in the asymptotic regime of pointwise estimations
derived from the EnKF, while Theorem 2.10 enables to deduce convergence when the EnKF is
recast into a Bayesian framework. Hence when ε� 1 and the full model is expensive to solve, the
multiscale numerical method we propose is both accurate and efficient to solve inverse problems
involving in multiscale elliptic PDEs.

If the scale-separation parameter ε is not in the asymptotic regime, or the discretization is not
refined, then our method may fail to retrieve the unknown due to the misspecification of the model.
In order to alleviate this issue, we equipped our method with a technique which allows to account
for the discrepancy between the artificial homogenized surrogate forward model and the true
multiscale data. This technique requires additional offline or online computations involving the
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numerical solution of the full multiscale problem. The optimal number of such additional solves
is quantified in Theorem 2.23 and Theorem 2.24. In particular, we have proved that the number
of solves needed to reach any required accuracy tends to zero when the small scale parameter
ε and the numerical discretization parameter h vanish. Hence, we were able to conclude that
accounting for model misspecification is particularly beneficial for mid-range values of ε, when a
small number of full solves should be computationally affordable.

In Chapter 3 we introduced multiscale diffusion processes of the overdamped Langevin kind, and
the problem of inferring their drift coefficient. In particular, we focused on the ergodic properties
of such stochastic processes, and we have shown a traditional homogenization result, which
guarantees that there exists an effective SDE that captures the slow variation of the multiscale
model. Then, we considered the inference problem for the drift coefficient and we showed a
derivation based on Girsanov’s change of measure formula of the MLE for the drift of the effective
model. We then considered the case of interest, i.e., when multiscale data are observed and
inserted in the estimation procedure. In this case, we have shown that the MLE is asymptotically
biased, and that therefore the theory of homogenization does not translate from the forward to
the inverse problem. We concluded by showing how this issue of model misspecification also
affects the Bayesian setting, which naturally arises in this scenario.

In Chapter 4 we presented a novel methodology based on filtered data for the estimation of
the drift of the homogenized diffusion process, which allows to overcome the issue of model
misspecification and the asymptotic biasedness of estimators when one is confronted with mul-
tiscale data. In particular, we proved asymptotic unbiasedness of estimators drawn from our
methodology. Moreover, we were able to derive a modified Bayesian approach which guarantees
robust uncertainty quantification and posterior contraction, based on the same filtered data
approach. Numerical experiments demonstrate how the estimator based on filtered data requires
less knowledge of the characteristic time-scales of the multiscale equation with respect to subsam-
pling, and how it can be employed as a black-box tool for parameter estimation on a range of
academic examples.

The topics of Bayesian inverse problems and parameter inference for deterministic and stochastic
multiscale models have been widely explored in the literature. Nevertheless, we believe that
several research directions could be interesting and relevant. In particular, we think it would be
worth to:

(i) Adapt the EnKF/FE-HMM approach to a wider class of multiscale inverse problems,
involving parabolic or hyperbolic differential equations;

(ii) Apply the EnKF/FE-HMM methodology to real-world data to demonstrate their practical
usefulness;

(iii) Analyze the filtered data approach when the coefficient β > 1 in (4.4), which seems to
give more robust results in practice. Other implementations of low-pass filters could be of
interest, too;

(iv) Extend the analysis of Chapter 4 to the non-parametric framework, i.e., adapt the method-
ology to infer the drift function. This could be most likely achieved by means of Bayesian
regularization techniques;
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The second part of this thesis is devoted to probabilistic numerical methods for differential
equations.

Probabilistic numerics (PN) is a relatively new and rapidly expanding field of numerical analysis,
whose main aim is introducing appropriate probability measures over approximate solutions of
otherwise deterministic problems. The underlying goal is obtaining richer information from a
numerical method by equipping its pointwise output with a full quantification of the uncertainty
due to approximate computations. Characterizing the error in a probabilistic fashion is particularly
helpful in case the numerical method is one component of a more complex pipeline of computations,
such as inverse problems.

In Chapter 6 we introduce the field of PN, setting an abstract framework for probabilistic
numerical schemes and introducing the notation which we employ in the subsequent chapters.
Specifically, we consider in Chapter 6 the two sub-fields of perturbation-based and measure-valued
probabilistic schemes, and define some of their properties. We focus primarily on perturbation-
based methods, for which we prove a novel result on Monte Carlo estimators, which implies that
any family of draws from the probabilistic solution has a good quality regardless of the sample
size. We then explain how it is in practice possible to combine PN schemes with the Bayesian
paradigm in order to enhance the solution of inverse problems. We finally conclude by detailing
a probabilistic numerical scheme for ODEs for each of the two sub-fields of PN, arguing about
their respective advantages and disadvantages.

In Chapter 7 we introduce the random time step Runge–Kutta method (RTS-RK), a perturbation-
based probabilistic method for geometric and chaotic ODEs. The conception and analysis of
the RTS-RK is one of the original contributions of this thesis. After analyzing in detail the
convergence properties of the RTS-RK, we focus on its geometric features, such as the exact
conservation of polynomial invariants and, most importantly, its symplecticity for Hamiltonian
equations. In particular, the RTS-RK is to our knowledge the first geometry-aware method to be
proposed in the field of PN. The potential of the RTS-RK in the context of geometric ODEs and
inference problems is illustrated by an exhaustive series of numerical experiments.

In Chapter 8 we present the random mesh finite element method (RM-FEM), a perturbation-based
probabilistic numerical scheme for elliptic PDEs, which is one of the original contributions of this
thesis. The RM-FEM shares its fundamental idea with the RTS-RK, i.e., to randomly perturb the
discretization instead of the solution itself, which is instead the main strategy in the literature for
deriving perturbation-based probabilistic solvers for differential equations. Our main contribution
in this chapter is deriving a posteriori error estimators which are entirely based on probabilistic
information and which are rigorously justified in the one-dimensional case. Numerical experiments
illustrate the correctness of these estimators in several academic examples, and the potential of
the RM-FEM when employed together with the Bayesian approach to solve inverse problems.

Finally, in Chapter 9 we draw our conclusions and give suggestion for possible future developments.

We suggest a reader who is mainly interested in PN solvers for elliptic PDEs and therefore wishes
to skip Chapter 7, to read Chapter 6 to get acquainted with our notation and to have a reference
frame for the field of PN.

115





6 An Introduction to Probabilistic
Numerics

In this chapter we give an introduction to probabilistic numerics (PN). The main idea associating
all contributions to the field of PN is to introduce a probability measure over the solution of
traditional numerical methods. The underlying rationale is to quantify the uncertainty due to
numerical errors in a probabilistic manner, rather than with standard error estimates. Indeed,
a probability measure over approximate solutions can be readily pushed through a pipeline of
computations, thus justifying the need of probabilistic methods especially when the solution of
the problem at hand is employed as the input of a subsequent analysis. Let us refer the reader to
the review papers [38,65,102], which both give an historical framework for the field of PN and
summarize the most recent developments, and which partially inspired us in the writing of this
chapter. Some notation and results, especially concerning the application of probabilistic methods
to Bayesian inverse problems, are taken from [87]. Moreover, let us remark that some phrasings
employed here are borrowed from our articles [6, 7], and that Theorem 6.7 is a generalization of
our result [6, Theorem 3].

The outline of this chapter is as follows. In Section 6.1 we define some fundamental properties and
desiderata of probabilistic methods, with a particular focus on convergence and on Monte Carlo
estimators. We proceed by describing in Section 6.2 how probabilistic methods can be employed
in the framework of Bayesian inverse problems (see Chapter 1 for an introduction), which has
been identified in several contributions to the literature of PN as one of the most successful
applications of this class of numerical schemes. We conclude this chapter with Section 6.3, in
which we describe two probabilistic methods for ODEs belonging to two different sub-classes of
PN.

6.1 Definition and Properties of Probabilistic Methods
In this section, we first introduce an abstract and generic framework for probabilistic numerical
methods, and then define their convergence properties.

Let X and Y be possibly infinite-dimensional Banach spaces, which we call respectively the input
and output spaces. One can think of the space X as a container for all the relevant data of a
specific problem, whose solution (or a quantity of interest derived from the solution) lies in the
space Y . Let moreover G : X → Y be a function, which we call the forward map. We consider
scenarios where it is not possible to evaluate G exactly as, for example, it is the case when
evaluating G involves the solution of a differential problem. We then let h > 0 be a discretization
parameter and call a map Gh : X → Y a numerical method for G if Gh approximates G on Y .
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The field of PN can be roughly split in two classes of methods, whose purpose is common
but whose definition is intrinsically different. In particular, the shared goal is accounting in a
probabilistic manner for the uncertainty due to discretization of the forward map G. The first
class is the one of perturbation-based probabilistic methods, which are constructed on existing
numerical schemes, then randomized by appropriate perturbations. The second class is the one
of the measure-valued probabilistic methods, which build a probability measure on the output
space Y , often adopting a Bayesian approach. We now give a definition of the two classes.

Definition 6.1. Let h > 0 be a discretization parameter and let (Ω,F , P ) be a probability
space. Given a map G : X → Y , we call a random variable G̃h : Ω×X → Y a perturbation-based
numerical method if for all ω ∈ Ω the map G̃h(ω, ·) : X → Y is a numerical method for G.

Definition 6.2. Let h > 0 be a discretization parameter, let F(Y ) be a σ-algebra on Y and let
M(Y ) be the space of probability measures on (Y,F(Y )). Given a map G, we call a measure-valued
probabilistic method a map G̃h : X →M(Y ) such that for all u ∈ X the measure G̃h(u) ∈M(Y )
contains information on G.

Remark 6.3. The definitions above are abstract and do not agree with other definitions which
could be found in literature. For example, in the review article [38] the authors restrict the scope
to methods which are, in some sense, Bayesian.
Remark 6.4. In practice, the output of measure-valued probabilistic methods is often restricted
to subspaces ofM(Y ) of families of measures which are fully determined by a finite number of
parameters. In particular, many probabilistic methods which have been proposed in the literature
are tailored to ouptut Gaussian measures on Y , which are chosen due to their versatility and
natural aptitude to the Bayesian framework.

In the following, we mainly focus on sampling-based probabilistic methods and their properties.
Indeed, the two probabilistic schemes for ODEs and PDEs which we present in Chapters 7
and 8, respectively, can be ascribed to this class. Nevertheless, we describe for completeness
in Section 6.3.2 a numerical scheme which belongs to the class of measure-valued probabilistic
methods.

6.1.1 Convergence

In this section, we define the notion of convergence which can be employed for perturbation-
based probabilistic numerical methods. Let us recall that for a deterministic numerical method
Gh : X → Y , it is customary to say that it has order of convergence r with respect to h if it holds
for all u ∈ X

‖Gh(u)− G(u)‖Y ≤ Ch
r,

for a constant C > 0 which is independent of h, but which possibly depends on u ∈ X.

Let us introduce some notation. For a sampling-based numerical method, we denote by νh ∈M(Y )
the measure on (Y,F(Y )) which is induced by G̃h, i.e.

νh(F ) = P (G̃h(·, u) ∈ F ),

for all F ∈ F(Y ). The measure νh clearly depends on the data u ∈ X, but we omit the
dependence of νh on u for economy of notation. For the same reason, we omit in the following
the dependence of G̃h on the event ω ∈ Ω and simply write G̃h(u). We moreover denote by Eνh
the expectation with respect to νh. Endowed with the probability measure νh, we can employ for
probabilistic methods the standard definitions of weak and mean-square convergence which are
familiar, for example, in the literature on numerical methods for SDEs (see e.g. the standard
references [79,95,96]).
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Definition 6.5. The probabilistic method G̃h has weak order of convergence r > 0 if for any
sufficiently smooth function Ψ: Rd → R there exists a constant C > 0 independent of h such that∣∣∣Eνh [Ψ(G̃h(u))

]
−Ψ(G(u))

∣∣∣ ≤ Chr,
holds for all u ∈ X.

Definition 6.6. The probabilistic method G̃h has mean-square order of convergence r > 0 if
there exists a constant C > 0 independent of h such that

Eνh
[∥∥∥G̃h(u)− G(u)

∥∥∥2

Y

]1/2
≤ Chr,

holds for all u ∈ X.

Let us comment on the two definitions above. First, it is clear by Jensen’s inequality that
mean-square convergence is stronger than weak convergence, and a method with mean-square
order r has weak order r, too. Second, we can in both cases separate the effects due discretization
and those due to the randomization of the method. In particular, for weak convergence we have
by the triangle inequality∣∣∣Eνh [Ψ(G̃h(u))

]
−Ψ(G(u))

∣∣∣ ≤ |Ψ(Gh(u))−Ψ(G(u))|+
∣∣∣Eνh [Ψ(G̃h(u))

]
−Ψ(Gh(u))

∣∣∣ ,
so that the first term can be bounded by considering the convergence of the numerical method,
and the second term by analyzing the random perturbation introduced by the probabilistic
scheme. For the mean-square convergence, we have

Eνh
[∥∥∥G̃h(u)− G(u)

∥∥∥2

Y

]
≤ 2 ‖Gh(u)− G(u)‖2Y + 2Eνh

[∥∥∥G̃h(u)− Gh(u)
∥∥∥2

Y

]
,

and again the two terms are due to discretization and randomization, respectively. One of the
goals in probabilistic methods is to find the correct tuning of the random perturbations so that
the two terms above are balanced with respect to the discretization parameter h, and therefore
the randomization of the scheme is consistent in accounting for numerical errors in a probabilistic
manner.

A further goal, which has been little explored in the literature of PN, is the one of employing the
probabilistic map G̃h to derive a posteriori estimators for the numerical error. This is the main
topic of Chapter 8, where we derive an a posteriori error estimators based on the finite element
method (FEM) for an elliptic PDE.

6.1.2 A Result on Monte Carlo Estimators

In order to obtain an approximation of the map G with a perturbation-based numerical method,
one has to recur to a Monte Carlo approximation. Indeed, the expectation Eνh is not computable,
as these methods often involve one or more high-dimensional support random variables in their
definition. This has been identified as a weakness for perturbation-based methods with respect
to measure-valued probabilistic schemes, since the latter generate a probability measure on the
output deterministically and without the practical need of any sampling strategy. An exhaustive
discussion about this issue can be found in [76, Section 2]. In this section, we present a result on
Monte Carlo estimators drawn from the measure νh on Y induced by a convergent perturbation-
based probabilistic method. In particular, we show that the quality of Monte Carlo estimators
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is in this context driven by the discretization parameter h, and can be thought of as being
independent of the dimension of the sample.

Let us remark that the following result and its proof can be found in our article [6, Theorem 3],
where it is specialized to the probabilistic method of ODEs, which is the focus of Chapter 7

Theorem 6.7. Let G : X → Y be a forward map and let h > 0 be a discretization parameter.
Moreover, let G̃h : Ω × X → Y be a perturbation-based probabilistic method in the sense of
Definition 6.1 with weak and mean-square order of convergence pw and ps, respectively. Let
moreover Ψ: Y → R be a Lipschitz continuous function, let u ∈ X and let for a positive integer
M

EνhM

[
Ψ(G̃h(u))

]
:= 1

M

M∑
i=1

Ψ
(
G̃(i)
h (u)

)
,

where {G̃(i)
h }Mi=1 are i.i.d. realizations of the probabilistic method. Then, it holds

EM
[(
EνhM

[
Ψ(G̃h(u))

]
−Ψ(G(u))

)2
]1/2

≤ C
(
hpw + hps√

M

)
,

where EM denotes expectation with respect to the sample, and where C is a positive constant
independent of h and M , but possibly depending on u.

Proof. We drop in the proof for economy of notation the dependence on u ∈ X, and we introduce
the mean-square error (MSE)

MSE := EM
[(
EνhM

[
Ψ(G̃h)

]
−Ψ(G)

)2
]
. (6.1)

The variance-bias decomposition of the MSE yields

MSE = VarM
(
EνhM

[
Ψ(G̃h)

])
+
(
EM

[
EνhM

[
Ψ(G̃h)

]]
−Ψ(G)

)2
,

where VarM denotes variance with respect to the sample. For the second term, due to the
unbiasedness of Monte Carlo estimators it holds

EM
[
EνhM

[
Ψ(G̃h)

]]
−Ψ(G) = Eνh

[
Ψ(G̃h)

]
−Ψ(G),

and hence, since the method has weak order pw, we obtain

MSE ≤ VarM
(
EνhM

[
Ψ(G̃h)

])
+ Ch2pw . (6.2)

Moreover, since the samples are i.i.d. and distributed as G̃h, the variance satisfies

VarM
(
EνhM

[
Ψ(G̃h)

])
= 1
M

Varνh
(

Ψ(G̃h)
)
, (6.3)

where Varνh denotes variance with respect to the measure νh. Since G is deterministic, and hence
independent of νh, the variance of the estimator can then be bounded by exploiting the Lipschitz
continuity of Ψ and the independence of the samples as

Varνh
(

Ψ(G̃h)
)

= Varνh
(

Ψ(G̃h)−Ψ(G)
)

≤ Eνh
[(

Ψ(G̃h)−Ψ(G)
)2
]

≤ C Eνh
[∥∥∥G̃h − G∥∥∥2

Y

]
,
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where C > 0 is independent of h. Finally, since G̃h has mean-square order ps, we get

Varνh
(

Ψ(G̃h)
)
≤ Ch2ps ,

which, together with (6.1), (6.2) and (6.3), proves the desired result.

Remark 6.8. The first clear implication of Theorem 6.7 is that

lim
h→0

EM
[(
EνhM

[
Ψ(G̃h(u))

]
−Ψ(G(u))

)2
]1/2

= 0,

so that if the probabilistic discretization G̃h of the forward map G is refined, then the Monte Carlo
estimator is close to the true value regardless of the number of samples M . For a general h > 0,
it is customary to choose the number of samples M so that the sources of bias and variance are
balanced. In this case, a reasonable choice is

M = O
(
h2(ps−pw)

)
, (6.4)

so that it holds

EM
[(
EνhM

[
Ψ(G̃h(u))

]
−Ψ(G(u))

)2
]1/2

≤ Chpw .

Let us remark that it is often possible to tune probabilistic methods (see e.g. [6, 7, 39]) so that
ps = pw. In this case, the indication provided by (6.4) is M = O(1) with respect to h, i.e., one
can fix the number of samples to be independent of the discretization parameter.

6.2 Probabilistic Numerics and Bayesian Inverse Problems
We consider in this section the application of probabilistic numerical methods for the solution of
Bayesian inverse problems, which we have introduced in Chapter 1. We restrict the scope of the
discussion here to problems where the output space Y is finite-dimensional, and in particular
Y ≡ RL. Given a forward map G : X → Y , we recall that inverse problems can be stated as

find u ∈ X given observations y = G(u) + η,

where we assume η ∼ N (0,Γ) for a positive-definite covariance matrix Γ on Y . Given a prior
measure µ0 = N (m0, C0) on X, we then have that the solution to the inverse problem is given
under Assumption 1.1 by the posterior distribution µ whose Radon–Nykodim derivative with
respect to µ0 is given by

dµ
dµ0

(u) = 1
Z

exp (−Φ(u; y)) , (6.5)

for all u ∈ X, where Z is the normalization constant

Z =
∫
X

exp(−Φ(u; y)) dµ0(u),

and where the potential Φ is defined as

Φ(u; y) = 1
2

∥∥∥Γ−1/2 (G(u)− y)
∥∥∥2

2
.

We recall moreover that if we replace the exact forward map G by a numerical surrogate Gh,
and compute the posterior measure µh associated to the approximate forward map, then by
Proposition 1.3 the measure µh is a good approximation of the true posterior µ. In particular,
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if Gh has order of convergence r, then the same order of convergence holds for the posterior
measures with respect to the Hellinger distance.

The convergence result provided by Proposition 1.3 is fundamental and guarantees that the solution
of the inverse problem is correct in the asymptotic limit of infinite computations. Nevertheless, it
has been demonstrated heuristically in diverse settings that the approximate posterior measure
µh can be overly confident on the parameter if h > 0 is a finite value [6, 7, 32,36,37,39,87,101].
In particular, this issue is amplified in case the observation model is much more precise than
the approximation quality of the forward model, i.e., heuristically, in case ‖Γ‖ � hr. It is
nonetheless useful in applications to have a cheap surrogate which can be evaluated quickly,
without renouncing to a complete uncertainty quantification of the solution to the inverse problem.
Probabilistic numerical methods can be employed for this purpose.

Let us introduce for all y ∈ Y the random potential Φ̃h : Ω×X → R which is defined as

Φ̃h(ω, u; y) = 1
2

∥∥∥Γ−1/2
(
G̃h(ω, u)− y

)∥∥∥2

2
,

where G̃h is a perturbation-based probabilistic method for G as in Definition 6.1. Letting
M(X) denote the space of probability measures on X, we then consider the random measure
µ̃h : Ω→M(X) whose Radon–Nykodim derivative with respect to the prior is given by

dµ̃h
dµ0

(ω, u) = 1
Z̃h(ω)

exp
(
−Φ̃h(ω, u; y)

)
, (6.6)

where Z̃h : Ω→ R is the random normalization constant

Z̃h(ω) =
∫
X

exp
(
−Φ̃h(ω, u; y)

)
dµ0(u),

so that µ̃h ∈ M(X) for all ω ∈ Ω. In the following, we drop for economy of notation the
dependence on the event ω ∈ Ω on the quantities introduced above. Similarly to the Monte
Carlo approximation introduced in Section 6.1.2, we now describe a methodology to compute in
practice a deterministic approximation of the random measure µ̃h. We refer the reader to [87],
where this topic is treated in depth, and from which we borrow some notation and results here.
There are two possibilities to compute a deterministic posterior measure from (6.6). The first,
which is called the marginal approximation, is to compute the measure µ̃h,mar defined as

dµ̃h,mar

dµ0
(u) = 1

Eνh
[
Z̃h

] Eνh [exp
(
−Φ̃h(u; y)

)]
, (6.7)

where we recall that Eνh denotes expectation with respect to the measure induced by the
probabilistic map on Y . Under some mild technical assumptions, it is possible to prove for a
forward map G̃h with mean-square order of convergence ps that the measures µ̃h and µ̃h,mar
satisfy respectively

Eνh
[
dHell(µ̃h, µ)2]1/2 ≤ Chps ,
dHell(µ̃h,mar, µ) ≤ Chps ,

(6.8)

where C is a positive constant independent of h and where µ is the true posterior given in
(6.5) [87, Theorems 3.1, 3.2].

The second possibility to obtain a deterministic posterior measure from the random measure µ̃h
is to proceed with a Monte Carlo estimation. Indeed, letting M be a positive integer, one can
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generate M i.i.d. realizations of the probabilistic map, i.e., of the random potential Φ̃h, which we
call {Φ̃(i)

h }Mi=1. Then, an approximation of µ̃h is given by the measure µ̃h,MC defined as

dµ̃h,MC

dµ0
(u) = 1

M

M∑
i=1

dµ̃(i)
h

dµ0
(u) = 1

M

M∑
i=1

1
Z̃

(i)
h

exp
(
−Φ̃(i)

h (u; y)
)
, (6.9)

where {µ̃(i)
h }Mi=1 are M realizations of the random posterior (6.6) and where for all i = 1, . . . ,M

Z
(i)
h =

∫
X

exp
(
−Φ̃(i)

h (u; y)
)

dµ0(u).

There is no work in the literature, to our knowledge, in which the posterior µ̃h,MC is considered
and analyzed. Numerical experiments and a partial analysis lead us to conjecture that the quality
of the approximation of µ by µ̃h,MC can be described similarly to Theorem 6.7, and proving such
an approximation property could be an interesting line for future work.
Remark 6.9. There exist other approaches to factor the effects of discretization into Bayesian
inverse problems. In particular, numerical error can be treated as modeling discrepancies, and
the techniques introduced in Section 2.6 can therefore be applied.

6.2.1 Sampling from the Posterior

In Chapter 1 we have introduced a methodology to draw samples from the posterior distribution
and thus approximate the solution of Bayesian inverse problems. In particular, we considered in
Section 1.2 a procedure based on the Karhunen–Loève (KL) expansion to obtain finite-dimensional
approximations of inverse problem. Then, in Section 1.3 we presented the Metropolis–Hastings
(MH) algorithm, and more in general Markov chain Monte Carlo methods (MCMC), which allow
to sample from the posterior distribution. Here, we consider the random posterior measure µ̃h of
(6.6) and detail how to obtain samples and thus solve the inverse problem. In particular, given
a smooth function Ψ: X → R, we are interested in approximating the quantity of interest Q
defined as

Q := Eνh
[
Eµ̃h [Ψ]

]
.

We first consider the measure µ̃h,MC of (6.9), for which the application of standard MH is direct.
Let in particular the measure νh be independent on the prior µ0, so that one can evaluate on
multiple values u ∈ X for any fixed realization of G̃h. Then, letting MMC be a positive integer, we
generate MMC i.i.d. realizations of the probabilistic method, which correspond to MMC posterior
measures {µ̃(i)

h }
MMC
i=1 . For each of these posteriors, we generate Mchain samples employing the

MH algorithm, where Mchain is a positive integer. Schematically, the algorithm to generate
MMC ·Mchain samples approximately distributed as µ̃h proceeds for i = 1, . . . ,MMC as

(i) Generate independently a realization G̃(i)
h of the random forward map;

(ii) Generate Mchain samples {u(i,j)}Mchain
j=1 from the posterior µ̃(i)

h associated to G̃(i)
h with the

MH algorithm.

The quantity of interest Q is finally approximated by the quantity QMC computed as

QMC = 1
MMC ·Mchain

MMC∑
i=1

Mchain∑
j=1

Ψ
(
u(i,j)

)
.

A different approach has to be adopted for the marginal approximation µ̃h,mar of (6.7). In
particular, due to its definition it is natural to apply the pseudo-marginal Metropolis–Hastings
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(PMMH) of [16] to generate samples from µ̃h,mar. As above, let Mchain and MMC be positive
integers. Then, the PMMH simply generates Mchain samples with a MH algorithm, where in
the acceptance ratio (1.15) the likelihood function on the proposed value is replaced by a Monte
Carlo estimator on MMC samples. Even though the acceptance ratio is not computed exactly,
the unbiasedness of the Monte Carlo estimator of the likelihood is sufficient ot guarantee that the
resulting Markov chain is ergodic with respect to µ̃h,mar (see e.g. [16]). Following this approach,
we obtain Mchain samples {u(i)}Mchain

i=1 distributed as µ̃h,mar and approximate the quantity of
interest Q with the quantity Qmar given by

Qmar = 1
Mchain

Mchain∑
j=1

Ψ
(
u(i)
)
.

Remark 6.10. The two approaches described above are substantially different in terms of computa-
tional cost. In particular, let Mtot be a positive integer and let us suppose that we wish to sample
Mtot values approximately distributed from the posterior µ̃h of (6.6). If we choose the approxima-
tion given by µ̃h,MC, it is sufficient to choose MMC and Mchain such that Mtot = MMC ·Mchain,
and thus we have

costMC = Mtot,

where cost is measured in terms of evaluations of the approximated forward map. Conversely,
if we choose the marginal approximation provided by µ̃h,mar we need to run the PM-MCMC
algorithm for Mtot iterations, each of which involves MMC evaluations of the forward map. Hence,
the cost in this case is

costmar = Mtot ·MMC.

Moreover, in this second case it is known [15,16] that choosing a small value forMMC might result
in a “sticky” behavior of the resulting Markov chain, i.e., it can be difficult due to the variance of
the Monte Carlo approximation to escape states with a relatively low probability. Nevertheless,
employing the marginal approximation µ̃h,marg has the advantage of being theoretically justified
by (6.8), i.e., by [87, Theorem 3.1].

6.3 Probabilistic Solvers for ODEs

We conclude this chapter by introducing two methods for ordinary differential equations (ODE)
which are contributions to the field of PN. In particular, we present first the additive-noise
Runge–Kutta integrator of [39], which is a perturbation-based probabilistic method in the sense
of Definition 6.1, and then the numerical method based on the Kalman filter of [76], which,
conversely, is a measure-valued probabilistic method in the sense of Definition 6.2.

Let d be a positive integer and let us consider the ODE on Rd

y′(t) = f(y(t)), y(0) = y0, (6.10)

where we assume that the right-hand side f : Rd → Rd is globally Lipschitz continuous, and where
y0 ∈ Rd is a given initial condition. We consider for simplicity the ODE to be autonomous, and
remark that any right-hand side which depends explicitly on the independent time variable t can
be rewritten in the form (6.10) by augmenting the state space.

Let us frame the ODE (6.10) into the setting of Section 6.1. If we consider a final time T > 0, the
data of the problem are the right-hand side f and the initial condition y0. Therefore, we have that
the input space X is given by X = C0,1((0, T );Rd)×Rd, where we denote by C0,1((0, T );Rd) the
space of Rd-valued Lipschitz continuous functions. Let us remark that X is a Banach space. The
forward operator G maps in this framework the input into the solution y(t) for 0 ≤ t ≤ T . With
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the assumption f ∈ C0,1((0, T );Rd), we have that the unique solution y of (6.10) is continuously
differentiable, i.e., the output space Y = C1((0, T ),Rd). Let us remark that in the autonomous
case the solution y(t) can be conveniently written as

y(t) = ϕt(y0; f), (6.11)

where for any f ∈ C0,1((0, T );Rd) the function ϕt(·; f) : Rd → Rd is called the flow map of the
ODE (6.10). Therefore, defining

G : X → Y,

(f, y0) 7→ {ϕt(y0; f)}0≤t≤T ,

we can write the problem of solving the ODE (6.10) into the abstract framework we introduced
in Section 6.1.

6.3.1 The Additive Noise Runge–Kutta Method

We now present the probabilistic Runge–Kutta method based on additive noise, first introduced
in [39] and further analyzed in [86]. We refer the reader to the standard references [60–62] for an
exhaustive introduction on Runge–Kutta methods and their properties.

Let T > 0 be a final time, let N be a positive integer and let 0 = t0 < t1 < . . . < tN = T be
a time grid. Moreover, let hn := tn − tn−1 be a sequence of time steps, and call h := maxi hi.
Runge–Kutta methods approximate the solution y of (6.10) on the points of the time grid by
mimicking the flow (6.11) through the recursion

yn = ψhn(yn−1; f), n = 1, . . . , N, (6.12)

where y0 is the initial condition of the ODE and where for any t > 0 and f ∈ C0,1((0, T );Rd)
the function ψt(·; f) : Rd → Rd is called the numerical flow. In particular, for all n = 1, . . . , N
the value yn then serves as an approximation of the exact solution y(tn). In the following, we
drop for economy of notation the dependence of ψ on the right-hand side f , and simply write
ψt(y). Let us remark that since the value yn is uniquely determined by the previous iterate yn−1,
Runge–Kutta schemes belong to the class of one-step methods. Given a positive integer s, a time
step h > 0 and a vector y ∈ Rd, the numerical flow map ψh applied to y is uniquely determined
by a set of real coefficients {bi}si=1 and {aij}si,j=1 and by the relation

ki = f

y + h
s∑
j=1

aijkj

 , i = 1, . . . , s,

ψh(y) = y + h
s∑
i=1

biki,

where the vectors {ki}si=1 of Rd are called the internal stages. Carefully setting the number
of stages and the coefficients, one can obtain Runge–Kutta methods which are tailored for a
wide and diverse range of time-dependent problems. In particular, if the coefficients satisfy the
so-called order conditions (see e.g. [61, Chapter III.2]), it is possible to build a numerical flow
map such that for all h > 0 it holds

sup
y∈Rd

‖ψh(y)− ϕh(y)‖ ≤ Chq+1, (6.13)

where the exponent q ≥ 1 is called the local order of the Runge–Kutta method, and where C is
a positive constant independent of h. In this case, the one-step error propagates through the
dynamics induced by the numerical flow map on Rd as described by the following result (see
e.g. [61, Theorem 3.4]).
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Theorem 6.11. Let f ∈ C0,1((0, T );Rd) and let the Runge–Kutta method have local order q ≥ 1.
Then, it holds

sup
n=1,...,N

‖y(tn)− yn‖2 ≤ Ch
q,

where C > 0 is a constant independent of the time step h.

Let us frame Runge–Kutta methods in the notation of Section 6.1. Fixed a set of coefficients
{bi}si=1 and {aij}si,j=1, as well as a sequence of time steps {hi}Ni=1, the method takes as an input
the same couple (f, y0) and outputs an approximation of the solution y computed with the
recursion (6.12) on the points of the time grid. Hence, we can write the Runge–Kutta method as
a function Gh : X → Y N ≡ (R+ × Rd)N such that

Gh : X → Y N ,

(f, y0) 7→ {(tn, yn)}Nn=1.

Convergence is then measured following Theorem 6.11 by comparing values on the points of the
time grid, i.e., we equip the space Y N with the norm

‖y‖Y N = sup
n=1,...,N

‖yi‖2 . (6.14)

Let us consider for simplicity an uniformly-spaced time grid, i.e., ti = hi for a fixed time step
h = T/N . The additive-noise Runge–Kutta scheme (AN-RK) constructs a sequence of random
variables {Yn}Nn=1 with values in Rd by adding at each step of the recursion (6.12) random
contributions to the numerical flow, i.e.,

Yn = ψh(Yn−1) + ξn, n = 1, . . . , N, (6.15)

where Y0 = y0 is given by the initial condition of (6.10), and where the random variable
ξ := {ξn}Nn=1 has i.i.d. Gaussian components with values in Rd. The following assumption on ξ
is crucial to prove results of weak and mean-square convergence.
Assumption 6.12. There exists p ≥ 1/2 and a symmetric positive definite matrix Q ∈ Rd×d such
that ξ1 ∼ N (0, Qh2p+1).

In practice, the assumption above allows to calibrate the randomness introduced by the prob-
abilistic method with the error due to discretization. Indeed, if h � 1 then the error is small,
and the random contributions tend to vanish. Let us remark that the Gaussian requirement of
Assumption 6.12 has been weakened in [86].

The probabilistic method given by the recursion (6.15) can be framed into the setting of Defini-
tion 6.1 by considering the random forward map G̃h : Ω×X → Y N defined as

G̃h : Ω×X → Y N ,

ω × (f, y0) 7→ {(tn, Yn(ω))}Nn=1.
(6.16)

The following weak and mean-square convergence results hold, in the sense of Definitions 6.5
and 6.6 [39, Theorems 2.2 and 2.4].

Theorem 6.13. Let T > 0, N be a positive integer and h = T/N . Moreover, let Assumption 6.12
hold and let the Runge–Kutta method identified by the flow ψh have order of convergence q, as
defined in (6.13). Then, the AN-RK method G̃h : X × Ω → Y N of (6.16) has weak order of
convergence pw = min{2p, q} and mean-square order of convergence ps = min{p, q} with respect
to the norm (6.14).
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Remark 6.14. In [39], the authors rightfully argue that the correct scaling for the user-prescribed
random perturbations is therefore p = q, where p is given in Assumption 6.12 and q is the order
of the Runge–Kutta method identified by ψt. In this case, we have the natural consequence that
both the weak and strong order of convergence are pw = ps = q. Moreover, by Remark 6.8 it
suffices to choose M = O(1) samples to obtain accurate Monte Carlo estimations of quantities
based on the probabilistic solution.

6.3.2 A Probabilistic ODE Solver Based on Filtering

We now present a filtering-based Bayesian probabilistic ODE solver, which was introduced in [126]
and further developed in [76, 77, 137]. In particular, we focus on the version given in [76] and
analyzed in [77], which is based on the Kalman filter. Let us recall the reader that the formulation
of the Kalman filer in a general framework is reported in Chapter 2. In this section we consider
for simplicity the ODE (6.10) in the one-dimensional case, i.e., we fix d = 1. A discussion on
generalization to higher dimensions can be found in [76,77].

The main idea underlying filtering-based probabilistic solvers for ODEs is introducing a prior
model for the q-th derivative of the solution y of (6.10), with q being an integer such that q ≥ 1.
In particular, the choice that is explored in [76,77] is to assume that, a priori, the quantity y(q)

acts as Brownian motion, so that the prior model for the solution y itself is that of an iterated
Brownian integral (q times). Hence, the prior model reads

dy(k)
t = y

(k+1)
t dt, k = 0, 1, . . . , q − 1,

dy(q)
t = σ2 dWt,

(6.17)

where Wt is a one-dimensional Brownian motion. Denoting Zt = (yt, y′t, y
(2)
t , . . . , y

(q)
t )>, so that

Zt is a stochastic process with values in Rq+1, we can rewrite (6.17) more compactly as the Itô
SDE

dZt = FZt dt+ Σ dWt, (6.18)

where, this time, Wt is a (q + 1)-dimensional Brownian motion and where the matrices F,Σ ∈
R(q+1)×(q+1) are given by

F =



0 1 0 · · · 0
0 1 · · · 0

. . . . . . ...
... 0 1
0 · · · 0

 , Σ =

0 · · · 0
... . . . ...
0 · · · σ2

 .

The properties of the solution of (6.18) are known. In particular, let us remark that (6.18) admits
the explicit solution

Zt+h = exp(Fh)Zt +
∫ t+h

t

exp (F (t+ h− s)) Σ dWs,

where h > 0 is a given time step. Moreover, the solution Zt is distributed as a Gaussian for all
t ≥ 0. Therefore, introducing the matrices

Q(h) := Cov
(∫ t+h

t

exp (F (t+ h− s)) Σ dWs

)
, A(h) := exp(Fh),
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we can completely define the distribution of Zt+h with the relations

E[Zt+h] = A(h)E[Zt],
Cov(Zt+h) = A(h)Cov(Zt)A(h)> +Q(h),

where for a random vector X we write Cov(X) := E[XX>] − E[X]E[X]>. For the sake of
completeness, let us remark that due to the Itô isometry it holds

Q(h) =
∫ t+h

t

exp (F (t+ h− s)) ΣΣ> exp (F (t+ h− s))> ds.

Let us moreover remark that in this simple scenario both A(h) and Q(h) can be computed
explicitly, as shown in [76, 77] and references therein. The prior model we introduced above
is employed in the prediction step of the Kalman filter (see Chapter 2). In particular, let us
assume that Zt ∼ N (mt, Ct), for some mean mt ∈ Rq+1 and a positive definite covariance
Ct ∈ R(q+1)×(q+1). Then, the prediction step yields the random variable Ẑt+h ∼ N (m̂t+h, Ĉt+h)
where

m̂t+h = A(h)mt, Ĉt+h = A(h)CtA(h)> +Q(h). (6.19)

In the spirit of Kalman filtering, the random variable Ẑt+h has to be confronted with observations
in order to obtain with Bayes’ rule the final distribution at time t+ h, but in the framework of
ODEs no “real” observations are provided. Nevertheless, the right-hand side f of (6.10) yields
information on the first derivative y′, i.e., on the second component of the vector Zt+h. Therefore,
an observation model is given by the equation

yt+h = HZt+h, H :=
(
0 1 0 · · · 0

)
.

The value of Zt+h is unknown beforehand and a surrogate has to be computed. In [76], the
authors make the strong modeling assumption

y = f̂ + η, in law, with η ∼ N (0,Γ) , (6.20)

where denoting µ̂t+h = N (m̂t+h, Ĉt+h) the predicted distribution of Ẑt+h we define

f̂ = Eµ̂t+h [f ], Γ = Varµ̂t+h(f).

Let us remark that in [76] the authors propose a series of methodologies to approximate the
otherwise unknown quantities f̂ and Γ, e.g. by means of a Monte Carlo simulation or by Bayesian
quadrature. Endowed with the observation model (6.20), we can finally perform the update step,
which reads

Zt+h := Ẑt+h | Yt+h ∼ N (mt+h, Ct+h),
mt+h = m̂t+h +Kt+h (yt+h −Hm̂t+h) , Ct+h = (I −Kt+hH)Ĉt+h,
where Kt+h = Ĉt+hH

>Rt+h,

with Rt+h =
(
HĈt+hH

> + Γ
)−1

,

(6.21)

and where we recall that Kt+h is the Kalman gain. The two steps of prediction and update
are repeated until the final time T is reached. We refer the reader to Fig. 6.1 for a schematic
representation of this filtering methodology.

The method we described above naturally falls in the category of the measure-valued probabilistic
methods of Definition 6.2. In particular, the whole recursion can be easily written as G̃h : X →
N (Y ), where we denote by N (Y ) the space of Gaussian measures on Y . We remark moreover
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Input:
Zt ∼ N (mt, Ct)

Prediction (prior):
Ẑt+h ∼ N (m̂t+h, Ĉt+h)

Observations (likelihood):
ŷ′t+h ∼ N

(
Eµ̂t+h [f ],Varµ̂t+h(f)

)

Update (posterior):
Zt+h ∼ N (mt+h, Ct+h)

(6.19) (6.21)

µ̂t+h := N (m̂t, Ĉt)
(6.21)

t← t+ h

Figure 6.1 – Flow diagram for the filtering method for ODEs of [76,77].

Figure 6.2 – Numerical results for the filtering probabilistic method for ODEs. The final time T is
fixed to T = 20 and the right-hand side of (6.10) is f(t, y) = −(y − sin(t) cos(2t))/2. Results for
q = 2 in the prior model (6.18), for σ2 = 0.1 in (6.17) and for time steps h = {T/32, T/64, T/128}.
A reference solution is given in red, the mean estimate of the filter in a solid black line and the
boundaries of a 95% confidence interval in dashed black lines. The confidence interval itself is
represented by a shaded gray area.

that since the update step of Kalman filtering is motivated by Bayes’ rule, this methodology can
be described as being Bayesian.

Let us consider a numerical example on a simple test case. In particular, let (6.10) hold with a
non-homogeneous right-hand side given by

f(t, y) = −1
2(y − sin(t) cos(2t)), (6.22)

and with initial condition y0 = 0. We set the final time to T = 20, and consider the prior model
(6.18) with q = 2 and the pre-multiplying factor for the Brownian noise σ2 = 0.1. Moreover, we
generate the observations in (6.20) with a standard Monte Carlo simulation. Finally, we consider
the time step to be given by h = {T/32, T/64, T/128} in order to verify the influence of h on the
numerical output. In Fig. 6.2 we notice heuristically that for h→ 0 the output mean converges
to the exact solution while the uncertainty shrinks to zero. In fact, the convergence properties of
this probabilistic method have been analyzed in a simple setting in [77], and it has been proved
that the mean indeed converges to the exact solution for h→ 0.

We believe there are a series of advantages and disadvantages of the filtering approach for ODEs
illustrated above. In particular, we identified the following advantages:

• The output measure on the solution is Gaussian, and can therefore be readily pushed
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through pipelines of computations, which can be practical in real-world applications;
• The recursion described by the diagram in Fig. 6.1 is fully deterministic and computationally

rather inexpensive, conversely to the sampling-based method of Section 6.3.1.

In our opinion, though, the downsides of this methodology which should be accounted for are:

• The method seems to us too rigid in its implementation. Runge–Kutta methods, for
example, have been demonstrated to work theoretically and in practice on a diverse and
large class of problems. Squandering the versatility of Runge–Kutta methods for the sake
of maintaining a Bayesian/Gaussian approach seems unreasonable, especially in light of
Theorem 6.7;

• The procedure to generate data and thus perform the update step seems unnatural and
difficult to justify from a theoretical standpoint. In particular, as per [102], the methodology
introduced here cannot be labeled as Bayesian due to this specific misstep in the algorithm;

• The theoretical analysis is industrious and justifies convergence theoretically only for a
restrained set of possible implementations of the method. In particular, in [77] the authors
show linear convergence with respect to h for q = 2 in (6.18), and suggest that a higher
order holds for q > 2;

• Some numerical experiments we performed seem to show that the method is prone to
instabilities on stiff problems (see e.g. [62]) in case the coefficient q of (6.18) is chosen to be
relatively large.
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7 Probabilistic Geometric Integra-
tion of ODEs

In this chapter, we introduce a perturbation-based probabilistic numerical method for quantifying
the uncertainty induced by the time integration of ordinary differential equations (ODEs). The
method is based on a randomization of the time discretization and on Runge–Kutta integrators,
and we therefore call it random time step Runge–Kutta method (RTS-RK). A source of inspiration
for the RTS-RK is undeniably given by the additive noise Runge–Kutta method (AN-RK) of [39,86],
which we summarized in Section 6.3.1, and which is fundamental in the field of perturbation-based
solvers for ODEs. Nevertheless, the AN-RK fails in some instances to reproduce the favorable
properties of the Runge–Kutta method it is built on. This degradation is particularly accentuated
in the context of ODEs with certain geometric properties, such as the conservation of polynomials
invariants and Hamiltonian systems. This motivates the RTS-RK, whose intrinsic randomization,
opposed to the extrinsic source of additive noise of the AN-RK, allows to create a family of
probabilistic solutions which all possess the geometric properties of the underlying Runge–Kutta
integrator. The content of this chapter is based on our article [6], and is one of the original
contribution of this thesis.

The outline of this chapter is as follows. In Section 7.1 we introduce the setting for probabilistic
numerics and present our novel numerical scheme. We then show in Section 7.2 and Section 7.3
the properties of weak and mean-square convergence of the numerical solution towards the
exact solution of the ODE. The geometric properties of the numerical scheme are presented in
Section 7.4 and Section 7.5, while in Section 7.6 we introduce Bayesian inverse problems in the
ODE setting, and show how our method can be integrated in existing sampling strategies. Finally,
we show a series of numerical experiments which validate our analysis and illustrate the potential
of our method in Section 7.7.

7.1 Random Time Step Runge–Kutta Method

Let us consider the setting of Section 6.3, i.e., let f : Rd → Rd be a Lipschitz continuous function
let us consider the ODE

y′(t) = f(y(t)), y(0) = y0 ∈ Rd. (7.1)

We recall from Section 6.3 that the solution y(t) can be written for simplicity by employing the
flow ϕt : Rd → Rd, which satisfies

y(t) = ϕt(y0).

Moreover, given a time step h, we recall from Section 6.3 that a Runge–Kutta method can be
written in terms of a numerical flow ψt : Rd → Rd, which is uniquely determined by the coefficients

131



Chapter 7. Probabilistic Geometric Integration of ODEs

t

y(t)

y0

y1

Y1

t0 t0 + h t0 +H0

Figure 7.1 – Graphical representation of one step of the RTS-RK method with ψh(y) = y+ hf(y).
The red arrow is the stochastic contribution due to random time-stepping.

of the method, as
yk+1 = ψh(yk), k = 0, 1, . . . .

Maintaining the same notation as in Section 6.3.1, we present and analyze in this chapter the
random time-stepping Runge–Kutta method (RTS-RK), i.e., the scheme defined by the recurrence
relation

Yk+1 = ψHk(Yk), k = 0, 1, . . . , (7.2)
where Yk is still a random variable approximating y(tk) and the time steps Hk are locally given
by a sequence of i.i.d. random variables with values in R+. A graphical representation of one
step of the RTS-RK method is given in Fig. 7.1. Let us finally remark that the sequence Yk,
k = 0, 1, . . ., form a homogeneous Markov chain, as the transition probability is independent of
the index k.
Remark 7.1. We note that simulating the AN-RK method of Section 6.3.1 and the RTS-RK
method is equivalent in terms of computational cost.

7.1.1 Assumptions and Notation

We now present the main assumptions and notations which are used throughout the rest of this
work. Firstly, we have to consider the possible values taken by the random step sizes, which have
to satisfy restrictions that are necessary not to spoil the properties of deterministic methods.
Assumption 7.2. The i.i.d. random variables Hk satisfy for all k = 0, 1, . . .

(i) Hk > 0 a.s.,
(ii) there exists h > 0 such that E [Hk] = h,
(iii) there exist p ≥ 1/2 and C > 0 independent of k such that Var(Hk) = Ch2p+1.

The class of random variables satisfying the hypotheses above is general. However, it is practical
for an implementation point of view to have examples of these variables.
Example 7.3. Let us consider the random variables {Hk}k≥0 such that

Hk
i.i.d.∼ U(h− hp+1/2, h+ hp+1/2), 0 < h < 1, p ≥ 1/2.

We easily verify that the assumptions (i) and (ii) are verified as h < 1, and that (iii) is verified
with C = 1/3. Another choice of random variables could simply be

Hk
i.i.d.∼ logN

(
log h− log

√
1 + h2p, log(1 + h2p)

)
, (7.3)

for which the properties above are trivially verified (with C = 1), provided p > 1/2.
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We secondly introduce an assumption on the deterministic method underlying the RTS-RK
scheme, identified by its numerical flow ψh.
Assumption 7.4. The Runge–Kutta method defined by the numerical flow {ψt}t≥0 is of order q
in the sense of (6.13), i.e., for h small enough, there exists a constant C > 0 such that

‖ψh(y)− ϕh(y)‖ ≤ Chq+1, ∀y ∈ Rd.

Remark 7.5. Depending on the domain of definition of the vector field f , the choice of an
unbounded distribution for the time step could give rise to two critical issues. In particular,

(i) if f : D → Rd, where D ∈ Rd is a bounded open subset of Rd, allowing the time step to
assume unbounded values as, e.g., in case of the log-normal distribution (7.3), may force
the solution outside D,

(ii) if ψh is the numerical flow of an implicit method, the solution could be ill-posed.

In both the two cases above, we suggest to employ uniform time steps as in Example 7.3, which
allow the time steps to be small enough almost surely. For the former issue, more sophisticated
techniques of path rejection could be employed [97], but the mean-square convergence properties
which will be examined in Section 7.3 would not hold.

In order to avoid the second issue presented in Remark 7.5, we introduce a further assumption.
Assumption 7.6. If the map ψt is implicit, the time steps Hk satisfy Hk ≤M <∞ almost surely,
where M is small enough for the scheme to be well-posed.

Let us finally remark that the choice of the distribution of the time steps is artificial and therefore
arbitrary. Hence, choosing a bounded distribution does not represent a limitation to the numerical
scheme.

7.2 Weak Convergence Analysis
In this section, we analyze the RTS-RK in terms of its weak convergence, in the sense of
Definition 6.5. In the following, we denote by Clb(Rd,R) for any integer l the functions in Cl(Rd,R)
with all derivatives up to order l bounded uniformly in Rd. Moreover, we consider the integration
of (7.1) over the finite length domain [0, T ], where T > 0 is the final time.

Let us introduce the Lie derivative of the flow L = f · ∇, which allows us to adopt the semi-group
notation for the exact solution of (7.1) (see e.g. [60, Section III.5.1] or [113, Section 4.3]) and
write for any smooth function Ψ

Ψ(ϕh(y)) = ehLΨ(y). (7.4)
Moreover, let us recall that the probabilistic numerical solution {Yk}k≥0 forms a homogeneous
Markov chain. Therefore, given h > 0 there exists an operator Ph, the generator [110, Section
2.3], such that

E [Ψ(Yk+1) | Yk = y] = (PhΨ)(y).
In order to have an analogy with the notation (7.4), we adopt the exponential form of the
infinitesimal generator and denote in the following Ph = ehLh , where we explicitly write the
dependence of the Markov generator on the step size h. Furthermore, due to the homogeneity of
the Markov chain, we can write

E [Ψ(Yk+1) | Y0 = y] = ehLh E [Ψ(Yk) | Y0 = y] . (7.5)

We can now prove that the RTS-RK converges weakly after one step.
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Lemma 7.7. Let Assumption 7.2, Assumption 7.4 and Assumption 7.6 hold and let f in (7.1)
be sufficiently smooth. If E

[
H4

0
]
<∞, there exists a constant C > 0 independent of h and y such

that for any function Ψ ∈ Clb(Rd,R), with l = max{q, 3}

|E [Ψ(Y1) | Y0 = y]−Ψ(ϕh(y))| ≤ Chmin{2p+1,q+1}.

Proof. Since f is sufficiently smooth, the map t 7→ ψt(y) is of class C2(R+,Rd) and Lipschitz
continuous with constant Lψ independent of y. Let us expand the functional Ψ computed on the
numerical solution as

Ψ(Y1) = Ψ(ψH0(Y0))

= Ψ
(
ψh(Y0) + (H0 − h)∂tψh(Y0) + 1

2(H0 − h)2∂ttψh(Y0) +O(|H0 − h|3)
)

= Ψ(ψh(Y0)) +
(

(H0 − h)∂tψh(Y0) + 1
2(H0 − h)2∂ttψh(Y0)

)
· ∇Ψ(ψh(Y0))

+ 1
2(H0 − h)2∂tψh(Y0)∂tψh(Y0)> : ∇2Ψ(ψh(Y0)) +O(|H0 − h|3),

(7.6)

where we denote by ∇2Ψ the Hessian matrix of Ψ, and by : the inner product on matrices induced
by the Frobenius norm on Rd, i.e., A : B = tr(A>B). Taking the conditional expectation with
respect to Y0 = y and applying Assumption 7.2 we get

ehLhΨ(y)−Ψ(ψh(y)) = 1
2Ch

2p+1∂ttψh(y) · ∇Ψ(ψh(y))

+ 1
2Ch

2p+1∂tψh(y)∂tψh(y)> : ∇2Ψ(ψh(y)) +O(h3p+3/2),
(7.7)

where we exploited Hölder’s inequality for the last term. Moreover, expanding Ψ around y we get

Ψ(ψh(y)) = Ψ
(
ψ0(y) + h∂tψ0(y) +O(h2)

)
= Ψ(y) +O(h),

which implies

ehLhΨ(y)−Ψ(ψh(y)) = 1
2Ch

2p+1∂ttψh(y) · ∇Ψ(y)

+ 1
2Ch

2p+1∂tψh(y)∂tψh(y)> : ∇2Ψ(y) +O(h2p+1).
(7.8)

Let us remark that due to the smoothness of the flow we have

ehLΨ(y)−Ψ(ψh(y)) = O(hq+1). (7.9)

Combining (7.9) and (7.8) we have the one-step weak error of the probabilistic method on the
original ODE, i.e.,

ehLΨ(y)− ehLhΨ(y) = O(hmin{2p+1,q+1}),

which proves the desired result.

Remark 7.8. Let us remark that rigorously if ∂ttψh(y) is bounded independently of y then the
equality (7.6) holds. In fact, as it can be noticed in (7.7), a weaker and sufficient requirement is
that hp+1/2∂ttψh(y) is bounded independently of h.

In order to obtain a result on the global order of convergence we need a further stability assumption,
which is the same as Assumption 3 in [39].
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Assumption 7.9. The function f and the distribution of the random time steps Hk, k = 0, 1, . . .,
are such that the operator ehLh satisfies for all functions g ∈ Cqb (Rd,R) and a positive constant L,

sup
u∈Rd

∣∣ehLhg(u)
∣∣ ≤ (1 + Lh) sup

u∈Rd
|g(u)| , (7.10)

where L may depend on f and on the distribution of the random time steps, but not on g or h.
Remark 7.10. Let us remark that in order for ψh to satisfy Assumption 7.4, i.e., for ψh to be
of order q, the right hand side f must be of class Cqb (Rd,Rd) (see, e.g. [61, Theorem II.3.1]).
Therefore, in order to apply the bound (7.10) to composite functions Ψ ◦ ϕh : Rd → R where
Ψ ∈ C∞b (Rd,R), by the chain rule we need Assumption 7.9 to hold for functions in Cqb (Rd,R).
This fact will be exploited in the proof of Theorem 7.12 below.

We now give a lemma useful for bounding discrete sequences, which is taken from [96, Lemma
1.6].

Lemma 7.11. Suppose that for arbitrary N and k = 0, . . . , N we have

ek ≤ (1 +Ah)ek−1 +Bhr,

where h = T/N , A > 0, B ≥ 0, r ≥ 1 and ek ≥ 0, k = 0, . . . , N . Then

ek ≤ eAT e0 + B

A
(eAT − 1)hr−1.

The proof of Lemma 7.11 follows from the discrete Grönwall inequality. We can now state the
main result on weak convergence.

Theorem 7.12. Let the assumptions of Lemma 7.7 and Assumption 7.9 hold. Then, there
exists a constant C > 0 independent of h and of the initial condition such that for all functions
Ψ ∈ Clb(Rd,R), with l = max{q, 3}

|E [Ψ(Yk)]−Ψ(y(kh)))| ≤ Chmin{2p,q}, (7.11)

for all k = 1, 2, . . . , N and T = Nh.

Proof. Let us introduce the following notation

wk(u) = Ψ(ϕtk(u)),
Wk(u) = E [Ψ(Yk) | Y0 = u] .

By the triangle inequality and the Markov property (7.5), we have

sup
u∈Rd

|Wk(u)− wk(u)| ≤ sup
u∈Rd

∣∣ehLwk−1(u)− ehLhwk−1(u)
∣∣

+ sup
u∈Rd

∣∣ehLhwk−1(u)− ehLhWk−1(u)
∣∣ .

We then apply Lemma 7.7 to the first term and Assumption 7.9 to the second and denote
ek := supu∈Rd |Wk(u)− wk(u)|, thus obtaining

ek ≤ Chmin{2p+1,q+1} + (1 + Lh)ek−1.

We can therefore apply Lemma 7.11 with A = L and r = min{2p+ 1, q + 1}, and therefore get
for a constant C > 0

sup
u∈Rd

|wk(u)−Wk(u)| ≤ Chmin{2p,q},

which is the desired result.
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Remark 7.13. In [39], Conrad et al. define ordinary and stochastic modified equations in order to
prove a result of weak convergence applying techniques of backward error analysis. In particular,
they show that their probabilistic solver approximates in the weak sense a stochastic differential
equation (SDE) where the deterministic part is given by the original ODE. For our probabilistic
solver, it is possible to prove that the numerical solutions approximates in the weak sense the
solution of an SDE which depends on the derivative of the map t 7→ ψt(y). Such a construction
is shown in Section 7.8.
Remark 7.14. Let us recall that the random variable Yk given by RTS-RK is thought of as an
approximation of y(kh) regardless of the value of the sum of the random time steps. Hence,
the comparison in (7.11) is legitimate and does not induce time misalignment between true and
numerical solutions. This basic property applies to all results in the following.

7.3 Mean-square Convergence Analysis
The second property of the RTS-RK method we analyze is its mean-square order of convergence,
in the sense of Definition 6.6. We start by analysing how the method converges with respect to
the mean step size h in the local sense, i.e., after one step of the numerical integration.

Lemma 7.15. Under Assumption 7.2, Assumption 7.4 and Assumption 7.6 the numerical solution
Y1 given by one step of the RTS-RK method (7.2) satisfies

E
[
‖Y1 − y(h)‖2

]1/2
≤ Chmin{p+1/2,q+1}, (7.12)

where C is a real positive constant independent of h and of the initial condition y0 and the
coefficients p, q are given in the assumptions.

Proof. By the triangle and Young’s inequalities we have for all y ∈ Rd

E
[
‖ψH0(y)− ϕh(y)‖2

]
≤ 2E

[
‖ψH0(y)− ψh(y)‖2

]
+ 2 ‖ψh(y)− ϕh(y)‖2 .

We now consider Assumption 7.4 and Assumption 7.2, thus getting

E
[
‖ψH0(y)− ϕh(y)‖2

]
≤ 2L2

ψ E
[
|H0 − h|2

]
+ 2C1h

2(q+1)

= 2L2
ψC2h

2p+1 + 2C1h
2(q+1)

≤ C2h2 min{p+1/2,q+1},

where C1 and C2 are the constants given in Assumption 7.4 and Assumption 7.2 respectively.
This is the desired result with C = max{2L2

ψC2, 2C1}1/2.

As a consequence of the one-step convergence, we can prove a result of global mean-square
convergence.

Theorem 7.16. Let f be globally Lipschitz and tk = kh for k = 1, 2, . . . , N , where Nh = T .
Then, under the assumptions of Lemma 7.15 the numerical solution given by (7.2) satisfies

sup
k=1,2,...,N

E
[
‖Yk − y(tk)‖2

]1/2
≤ Chmin{p,q}, (7.13)

where C is a real positive constant independent of h and of the initial condition.

In order to prove this result, let us introduce the following lemma.
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Lemma 7.17. Given the ODE (7.1) with f globally Lipschitz, then for any y and w in Rd and
0 < h < 1 we have

‖ϕh(y)− ϕh(w)‖ ≤ (1 + Ch) ‖y − w‖ , (7.14)
‖ϕh(y)− ϕh(w)− (y − w)‖ ≤ Ch ‖y − w‖ , (7.15)

where C is a positive constant independent of h and of the initial condition y0.

The proof of Lemma 7.17 follows from the global Lipschitz continuity of f and the Grönwall
inequality. We can now prove the main result on mean-square convergence.

Proof of Theorem 7.16. In the following, we denote by C a constant that does not depend on
h and on the initial condition y0 whose value may change from line to line. Let us define
e2
k := E

[
‖Yk − y(tk)‖2

]
. Adding and subtracting the exact flow applied to the numerical solution,

we obtain
e2
k+1 = E

[
‖ψHk(Yk)− ϕh(Yk)‖2

]
+ E

[
‖ϕh(Yk)− ϕh(y(tk))‖2

]
+ 2E

[(
(ϕh(Yk)− ϕh(y(tk)))> (ψHk(Yk)− ϕh(Yk))

)]
.

(7.16)

Let us consider the three terms in (7.16) separately. For the first term, we have by Lemma 7.15

E
[
‖ψHk(Yk)− ϕh(Yk)‖2

]
≤ Chmin{2p+1,2(q+1)}. (7.17)

For the second term, due to (7.14), we have

E
[
‖ϕh(Yk)− ϕh(y(tk))‖2

]
≤ (1 + Ch)2e2

k. (7.18)

Let us now define Z = ϕh(Yk)− ϕh(y(tk))− (Yk − y(tk)). We can rewrite the scalar product as

E
[
(ϕh(Yk)− ϕh(y(tk)))> (ψHk(Yk)− ϕh(Yk))

]
= E

[
(Yk − y(tk))> (ψHk(Yk)− ϕh(Yk))

]
+ E

[
Z> (ψHk(Yk)− ϕh(Yk))

]
.

(7.19)

We bound the two terms in (7.19) separately. For the first term, by the law of total expectation,
we have

E
[
(Yk − y(tk))> (ψHk(Yk)− ϕh(Yk))

]
= E

[
E
[
(Yk − y(tk))> (ψHk(Yk)− ϕh(Yk)) | Yk

]]
= E

[
(Yk − y(tk))> E [ψHk(Yk)− ϕh(Yk) | Yk]

]
.

Applying the Cauchy–Schwarz inequality to the outer expectation we get

E
[
(Yk − y(tk))> (ψHk(Yk)− ϕh(Yk))

]
≤ E

[
‖E [ψHk(Yk)− ϕh(Yk) | Yk]‖2

]1/2
ek

≤ Chmin{2p+1,q+1}ek,

where we applied Lemma 7.7. We now consider the second term in (7.19). By the Cauchy–Schwarz
inequality we have

E
[
Z> (ψHk(Yk)− ϕh(Yk))

]
≤ E

[
‖Z‖2

]1/2
E
[
‖ψHk(Yk)− ϕh(Yk)‖2

]1/2
.
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We now apply (7.15) and Lemma 7.15 to obtain

E
[
Z> (ψHk(Yk)− ϕh(Yk))

]
≤ Chmin{p+3/2,q+2}ek.

We can hence bound the scalar product in (7.19) with Young’s inequality and assuming h < 1 as

E
[
(ϕh(Yk)− ϕh(y(tk)))> (ψHk(Yk)− ϕh(Yk))

]
≤ Chmin{p+3/2,q+1}ek

≤ he2
k

2 + C
hmin{2p+2,2q+1}

2 .

(7.20)

Combining (7.17), (7.18) and (7.20), we have

e2
k+1 ≤ Chmin{2p+1,2q+1} + (1 + Ch)e2

k,

which implies the desired result by Lemma 7.11 and since e0 = 0.

Remark 7.18. The difference between global and local orders of convergence, i.e., between (7.12)
and (7.13), is not exactly one, as it usually is in the purely deterministic case. In fact, due to the
independence of the random variables there is only a 1/2 loss in the random part of the exponent,
while the natural loss of one order is verified in the deterministic component.
Remark 7.19. As for the additive noise method proposed in [39], the result of mean-square
convergence suggests that a reasonable choice for the noise scale p is to fix p = q, where q is
the order of the Runge–Kutta method ψh. In this way, the properties of convergence of the
underlying deterministic method are preserved, while yielding a probabilistic interpretation of
the numerical solution.
Remark 7.20. Let Ψ: Rd → R be a function in C∞b (Rd,R), let T > 0 and let us consider the
problem of approximating the quantity Ψ(y(T )). As highlighted in Section 6.1.2, in perturbation-
based methods such as the RTS-RK one has to recur to Monte Carlo approximations. In particular,
let M be a positive integer and let

Ψ̂M,N := 1
M

M∑
i=1

Ψ(Y (i)
N ),

where {Y (i)
N }Mi=1 are i.i.d. samples from the RTS-RK approximating the solution y(T ) at final

time. Due to Theorem 7.16 and Theorem 7.12, Theorem 6.7 applies and it therefore holds

E
[(

Ψ̂M,N −Ψ(y(T ))
)2
]
≤ C

(
h2 min{2p,q} + h2 min{p,q}

M

)
. (7.21)

Balancing the two terms for the different values that p can take yields the optimal choice of the
number of trajectories

M =


O(1), if p ≥ q,
O(h2(p−q)), if p < q ≤ 2p,
O(h−2p), if 2p < q.

Hence, if the scaling p = q is chosen following the indication of Remark 7.19, then it is sufficient
to sample O(1) trajectories to obtain convergent and optimal Monte Carlo estimators. Let us
finally remark that in order to have uncertainty quantification for a fixed value h > 0 it is still
necessary to draw M > 1 samples. Indeed, Theorem 6.7 does not provide an indication of how
the value of M should be chosen in order to have a good empirical description of the probability
measure induced by the RTS-RK method, but still ensures quantitatively that the Monte Carlo
estimators drawn from this distribution have a good quality.
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7.4 Conservation of First Integrals
There exist numerical methods for ODEs endowed with certain geometric properties which are
particularly useful when integrating ODEs with a similar geometric structure [60]. Wwe investigate
here whether the random choice of time steps in (7.2) spoils the properties of the underlying
deterministic Runge–Kutta method. We consider here the conservation of first integrals of motion,
and start by recalling the definition of first integral for an ODE.

Definition 7.21. Given a function I : Rd → R, then I(y) is a first integral of (7.1) if I ′(y)f(y) = 0
for all y ∈ Rd.

If this property of the ODE is conserved by a numerical integrator, i.e., if for the any y ∈ Rd it is
true that I(ψh(y)) = I(y), then we say that the numerical method conserves the first integral. In
particular, this implies that the first integral I is conserved along the trajectory of the numerical
solution, i.e., I(yk) = I(y0) for all k ≥ 0.
Example 7.22. To illustrate this concept we first discuss the case of linear first integrals, which
can be seen as a general case of the conservation of mass in physical systems. Let us consider a
linear first integral I(y) = v>y and any Runge–Kutta method with coefficients {bi}si=1, {aij}si,j=1.
Then, we have for a time step H0 > 0

I(Y1) = v>y0 +H0

s∑
i=1

biv
>f

y0 +H0

s∑
j=1

aijKj

 ,

where {Ki}si=1 are the internal stages of the Runge–Kutta method. Since I(y) is a first integral,
v>f(y) = 0 for any y ∈ Rd. Hence I(Y1) = I(y0) and iteratively I(Yk) = I(y0) for all k ≥ 0 along
the numerical trajectory. The equality above shows that any RTS-RK method conserves linear
first integrals path-wise, or in the strong sense.

It is known that no Runge–Kutta method can conserve any polynomial invariant of order
n ≥ 3 [60, Theorem IV.3.3]. Nonetheless, for some particular problems there exist tailored
Runge–Kutta methods which can conserve polynomial invariants of higher order. We therefore
can state the following general result.

Theorem 7.23. Let I(y) be a first integral for (7.1) and ψh be the numerical flow of a Runge–
Kutta scheme for (7.1). If the scheme defined by ψh conserves I(y) for any h > 0, then the
RTS-RK method given in (7.2) conserves I(y) almost surely.

Proof. If I(ψh(y)) = I(y) for any h, then I(ψH0(y)) = I(y) almost surely for any value that H0
can assume.

We now consider quadratic first integrals, i.e., first integrals of the form I(y) = y>Sy with S a
symmetric matrix, which are conserved by Runge–Kutta methods that satisfy the hypotheses of
Cooper’s theorem [60, Theorem IV.2.2]. The conservation of quadratic first invariants is of the
utmost importance, e.g., for Hamiltonian systems, as it implies the symplecticity of the scheme.
It is known [60, Theorem IV.2.1] that all Gauss methods conserve quadratic first integrals. The
simplest member of this class of methods is the implicit midpoint rule, which is a one-stage
method defined by coefficients b1 = 1 and a11 = 1/2.

Corollary 7.24. If the Runge–Kutta scheme defined by ψh conserves quadratic first integrals
then the numerical method (7.2) conserves quadratic first integrals almost surely.

Proof. This result is a direct consequence of Theorem 7.23.
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The properties above for the RTS-RK method are not satisfied by the additive noise method
presented in [39]. In particular, let us remark that the conservation of first integrals is exact
for any trajectory of the RTS-RK method, and is not an average property. In other words, we
can say that (7.2) conserves linear first integrals in the strong sense. For the AN-RK method of
Section 6.3.1, we have

I(Y1) = v>y0 + h
s∑
i=1

biv
>f

y0 + h
s∑
j=1

aijKj

+ v>ξ0(h),

= v>(y0 + ξ0(h)).

If the random variable ξ0 is zero-mean, then E [I(Y1)] = I(y0) and iteratively along the solution
E [I(Yk)] = I(y0). Linear first integrals are therefore conserved in average, but not in a path-wise
fashion. For quadratic first integrals, we have instead that the additive noise method does not
conserve them neither path-wise nor in the weak sense, as we have

I(Y1) = (ψh(y0) + ξ0(h))>S(ψh(y0) + ξ0(h))
= I(y0) + 2ξ0(h)>Sψh(y0) + ξ0(h)>Sξ0(h).

Under Assumption 6.12, i.e., if the random variables are zero-mean and if there exists a matrix
Q such that E

[
ξ0(h)ξ0(h)>

]
= Qh2p+1 for some p ≥ 1 (see [39, Assumption 1]) we then have

E [I(Y1)] = I(y0) +Q : Sh2p+1. (7.22)

Hence, along the trajectories of the solution a bias is introduced in the first integral which persists
even in the mean sense. In general, Theorem 7.23 is not valid for the additive noise method,
as the random contribution drives the first integral far from its true value at each time step.
In practice, this could produce large deviations of the numerical approximation from the true
solution, especially in the long time regime.

7.5 Hamiltonian systems
A class of dynamical systems of particular interest for their geometric properties is the class
of Hamiltonian systems. Given a function Q : R2d → R, called the Hamiltonian, Hamiltonian
systems can be written as

y′ = J−1∇Q(y), y(0) = y0 ∈ R2d, (7.23)

where the matrix J ∈ R2d×2d is defined as

J =
(

0 I
−I 0

)
,

and where I is the identity matrix in Rd×d. The Hamiltonian Q is a first integral for (7.23),
hence we require numerical integrators to conserve the energy, or at least not to deviate from
its true value in an uncontrolled fashion. As it was shown in the previous section, when Q is a
polynomial it is possible to obtain exact conservation with deterministic integrators and with
their probabilistic counterparts obtained with the RTS-RK method. If Q is not a polynomial,
exact conservation is in general not achievable, but a good approximation of the energy over long
time spans is achievable through the notion of symplectic differentiable maps.

Definition 7.25 (Definition VI.2.2 in [60]). Let U ⊂ R2d be a non-empty open set. A differen-
tiable map g : U → R2d is called symplectic if the Jacobian matrix g′ is everywhere symplectic,
i.e., if

(g′)>Jg′ = J.

140



7.5. Hamiltonian systems

It is well-known that the flow ϕt : R2d → R2d of any system of the form (7.23) is symplectic.
In a natural manner, a numerical integrator is called symplectic if its numerical flow ψh is a
symplectic map whenever it is applied to a smooth Hamiltonian system [60, Definition VI.3.1].
In the following, we will analyse both the local and global properties of the RTS-RK method
built on symplectic integrators and applied to (7.23).

7.5.1 Symplecticity of the RTS-RK Method

It has been pointed out [60, Section VIII.1] that applying an adaptive step size technique to
a symplectic method can destroy its symplecticity. Therefore, Skeel and Gear [128] write any
adaptive technique in terms of a map τ(y, h) such that the k-th time step hk is selected as
hk = τ(yk, h), where h is a base value for the time step. Hence, in order to have again a
symplectic method for variable time steps, the new condition to be satisfied is

V >JV = J, V = ∂yψτ(y,h)(y) + ∂tψτ(y,h)(y)∂yτ(y, h)>.

Let us now consider the RTS-RK method based on a symplectic deterministic integrator. We
have the following lemma.

Lemma 7.26. If the flow ψh of the deterministic integrator is symplectic, then the flow of the
random time-stepping probabilistic method (7.2) is symplectic.

Proof. For the RTS-RK scheme, the k-th time step Hk is generated by a random mapping as
Hk = τ(y, h) = τ(h) = hΘk, where Θk are appropriately scaled random variables such that Hk

satisfies Assumption 7.2. Hence, τ is independent of y, i.e., ∂yτ(y, h) = 0, and with the notation
introduced above

V = ∂yψτ(h)(y).

Therefore, by the symplecticity of ψt the condition V >JV = J is satisfied and the flow map of
the RTS-RK method is symplectic.

Let us remark that the local symplecticity of the flow map is not sufficient for good conservation
of the Hamiltonian for the numerical solution. Global properties of approximation of the energy
are therefore presented below.

7.5.2 Long-time Conservation of Hamiltonians

We now wish to study the mean conservation of the Hamiltonian along the trajectories of the
RTS-RK method based on symplectic integrators. Our goal is obtaining a bound on the quantity
E [|Q(Yn)−Q(y0)|] that holds over long times. Showing theoretically long time conservation of
the energy function in Hamiltonian systems requires backward error analysis. In the following, we
will introduce the basis of this technique and show how they apply to our probabilistic integrator.
For further details, a comprehensive treatment of backward error analysis ought to be found
in [60, Chapter IX].

The first ingredient needed to perform a rigorous backward error analysis is a rather strong
assumption on the regularity of the ODE, see e.g. [60, Section IX.7].
Assumption 7.27. The function f is analytic in a neighbourhood of the initial condition y0 and
there exist constants C,R > 0 such that ‖f(y)‖ ≤ C for ‖y − y0‖ ≤ 2R.
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In general, backward error analysis is based on determining a modified equation y′ = f̃(y) such
that the numerical approximation is its exact solution. Hence, the function f̃ will both depend
on the original ODE and on the numerical flow map ψh. In particular, for an integrator of order
q the modified equation is given by a function f̃ defined as

f̃(y) = f(y) + hqfq+1(y) + hq+1fq+2(y) + . . . ,

where the functions {fi}i>q are uniquely determined by f , its derivatives and by the coefficients
of the Runge–Kutta method. The exactness of the numerical solution for the modified equation
is nonetheless only formal, as the infinite sum defining f̃ is not guaranteed to converge. Thus, it
is necessary to truncate the sum in order to perform a rigorous analysis, i.e.,

f̃(y) = f(y) + hqfq+1(y) + hq+1fq+2(y) + . . .+ hN−1fN (y). (7.24)

where q < N <∞ is the truncation index. Let us remark that in the following we will always
refer to the truncated function above when using the symbol f̃ . The truncation of the infinite sum
implies that the numerical solution is not exact for the modified equation anymore. In particular,
the error committed over one step on the modified equation is given by (see e.g. [60, Theorem
IX.7.6])

‖ϕ̃h(y)− ψh(y)‖ ≤ Che−κ/h, (7.25)
where ϕ̃ is the exact flow of the modified equation and κ and C are constants depending on the
coefficients of the method and on the regularity of f .

It is possible to prove (see e.g. [60, Section IX.8]) that for a Hamiltonian system (7.23) and a
symplectic integrator the modified equation is still a Hamiltonian system, i.e., there exists a
modified Hamiltonian Q̃ defined as

Q̃(y) = Q(y) + hqQq+1(y) + . . .+ hN−1QN (y), (7.26)

such that f̃ = J−1∇Q̃. The estimate (7.25) implies that the modified Hamiltonian is almost
conserved by the symplectic integrator. In particular, if Q is Lipschitz, we have∣∣∣Q̃(ψh(y))− Q̃(y)

∣∣∣ ≤ Che−κ/h. (7.27)

The bound above guarantees that the modified Hamiltonian is well approximated for a long time,
and as a consequence that the original Hamiltonian is almost conserved for the same time span.
In particular, the following result is valid, see e.g. [60, Theorem IX.8.1.] or [21].

Theorem 7.28. Under Assumption 7.27 and for h sufficiently small, if the numerical solution
yn given by a symplectic method of order q applied to an Hamiltonian system is close enough to
the initial condition y0, then

Q̃(yn) = Q̃(y0) +O(e−κ/2h),
Q(yn) = Q(y0) +O(hq).

over exponentially long time intervals nh ≤ eκ/2h.

The randomisation of the time steps implies that a general modified equation does not exist.
Nonetheless, due to Lemma 7.26, it is possible to construct locally a random Hamiltonian modified
equation at each time step. We thus define at each step the random modified Hamiltonian as

Q̂j(y) = Q(y) +Hq
jQq+1(y) + . . .+HN−1

j QN (y). (7.28)

As for the deterministic case, the random modified Hamiltonian Q̂ will be almost conserved by
the numerical flow. In particular, we define the random local truncation error as

ηj := Q̂j(ψHj (y))− Q̂j(y), (7.29)
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which, in light of (7.27), satisfy
|ηj | ≤ CHje

−κ/Hj , (7.30)
almost surely. In order to prove the conservation of the Hamiltonian over long time for the
RTS-RK method, it is necessary to introduce a technical assumption on the higher moments of
the random time steps.
Assumption 7.29. There exists r̄ > 1 such that for any 1 < r < r̄, the random time steps {Hj}j≥0
satisfy

E
[
Hr
j

]
= hr + Crh

2p+r−1,

where p is defined in Assumption 7.2 and Cr > 0 satisfies C2r > 2Cr and is independent of h.
Moreover, there exists m,M > 0 with M > m such that mh ≤ Hj ≤ Mh almost surely for all
j ≥ 0.

This assumption guarantees that the higher moments of the random time steps are close to the
corresponding powers of h in the mean and mean-square sense. In particular, it is possible to
verify that

E
[
Hr
j − hr

]
= Crh

2p+r−1,

E
[
(Hr

j − hr)2] = (C2r − 2Cr)h2p+2r−1.

Then, for any r, s > 1 such that r + s < R, it holds

E
[
Hr+s
j − hr+s

]
= Ĉr,sh

s E
[
Hr
j − hr

]
,

E
[
(Hr+s

j − hr+s)2] = C̃r,sh
2s E

[
(Hr

j − hr)2] ,
where Ĉr,s = Cr+s/Cr and C̃r,s = (C2(r+s) − 2Cr+s)/(C2r − 2Cr). Finally, let us remark that
Assumption 7.29 is satisfied for the uniform random time steps Hj

i.i.d.∼ U(h− hp+1/2, h+ hp+1/2)
introduced in Example 7.3. Let us now give an explicit which holds for the random variables ηj
defined in (7.29).
Lemma 7.30. Suppose that Assumption 7.2, Assumption 7.6 and Assumption 7.29 hold true,
and suppose that 0 < h ≤ 1. Then the random variables ηj defined in (7.29) satisfy

E [|ηj |r] ≤ Chmin{r,p+r−3/2}e−rκ/(Mh),

where C > 0 is independent of h and for all r ∈ N with r ≥ 1.

The proof of Lemma 7.30 is given in Section 7.8. Let us furthermore introduce two lemmas,
which will be employed for proving long-time conservation of Hamiltonians. Let us remark that
Lemma 7.31 holds for generic positive integers n, q,N .
Lemma 7.31. Let n, q,N be positive integers with N > q, and let us define the sets of real
numbers a = an,q,N := {ajk, j = 0, . . . , n−1, k = q, . . . , N−1} and b = bn := {bj , j = 0, . . . , n−1}.
Then n−1∑

j=0

N−1∑
k=q

ajk + bj

2

=
n−1∑
j=0

a2
jq + 2

n−1∑
j=1

j−1∑
i=0

ajqaiq +R(a) + S(a, b),

where the remainder R(a) can be written as R = R1 +R2 +R3, with

R1(a) =
n−1∑
j=0

N−1∑
k=q+1

a2
jk, R2(a) = 2

n−1∑
j=0

N−1∑
k=q+1

k−1∑
l=q

ajkajl,

R3(a) = 2
n−1∑
j=1

j−1∑
i=0

N−1∑
k=q

N−1∑
l=q

l+k>2q

ajkail,
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and the remainder S(a, b) can be written as S = S1 + S2 + S3 + S4, with

S1(a, b) =
n−1∑
j=0

b2j , S2(a, b) = 2
n−1∑
j=1

j−1∑
i=0

bibj ,

S3(a, b) = 2
n−1∑
j=1

N−1∑
k=q

bjajk, S4(a, b) = 2
n−1∑
j=1

n−1∑
i=0

bj N−1∑
k=q

aik + bi

N−1∑
k=q

ajk

 .

The proof of Lemma 7.31 is given in Section 7.8.
Lemma 7.32. Let Assumption 7.2 hold with p ≥ 3/2 and h < 1, and let Assumption 7.4,
Assumption 7.27 and Assumption 7.29 hold. Moreover, let q be specified in Assumption 7.4 and
N be the truncation index of the modified right hand side (7.24). Let us consider the sets of
real-valued random variables ∆ := {∆j,k(Hk

j − hk), j = 0, . . . , n − 1, k = q, . . . , N − 1}, where
∆j,k := Qk+1(Yj) − Qk+1(Yj+1) and η := {ηj , j = 0, . . . , n − 1}. Then, with the notation of
Lemma 7.31, there exist positive constants C1, C2 independent of h and n, but possibly dependent
on q and N , such that

E [R(∆)] ≤ C1

(
tnh

2(p+q+1/2) + t2nh
2(2p+q−1/2)

)
,

E [S(∆, η)] ≤ C2

(
(tnh+ t2n)e−2κ/(Mh) + (tnhp+q+1/2 + t2nh

2p+q−1)e−κ/(Mh)
)
,

where tn = nh.

The proof of Lemma 7.32 is also given in Section 7.8. It is now possible to prove a result of long
conservation of the Hamiltonian for symplectic RTS-RK methods.
Theorem 7.33. Let 0 < h ≤ 1. Suppose that Assumption 7.2 holds for p ≥ 3/2, that Assump-
tion 7.6 and Assumption 7.27 hold, and that Assumption 7.29 holds with r̄ sufficiently large.
Moreover, let Yn be the solution given by the RTS-RK method built on a symplectic integrator
of order q applied to a Hamiltonian system with Hamiltonian Q. If Y0 = y0 and the numerical
solution Yn is close enough to the initial condition y0 almost surely, then there exist a constant
C > 0 independent of h and n such that

E [|Q(Yn)−Q(y0)|] ≤ Chq,

for time intervals of length

tn = O
(

min
{
h1−2p, eκ/(4Mh)h−(2p+2q−1)/4, eκ/(2Mh)

})
where p is given in Assumption 7.2 and M in Assumption 7.29.

Proof. In the following proof, we denote by C a positive constant independent of h and n which
can possibly change value from line to line. Let us first consider the modified Hamiltonian Q̃ and
expand the difference Q̃(Yn)− Q̃(y0) in a telescopic sum as

Q̃(Yn)− Q̃(y0) =
n−1∑
j=0

(
Q̃(Yj+1)− Q̃(Yj)

)
. (7.31)

We then consider each element of the sum, add and subtract the random modified Hamiltonian
Q̂j computed in Yj+1 thus obtaining

Q̃(Yj+1)− Q̃(Yj) = Q̃(Yj+1)− Q̂j(Yj+1) + Q̂j(Yj+1)− Q̃(Yj)
= Q̃(Yj+1)− Q̂j(Yj+1) + Q̂j(Yj)− Q̃(Yj) + ηj .
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Hence, by applying the definition (7.26) of Q̃ and (7.28) of Q̂j , we get

Q̃(Yj+1)− Q̃(Yj) =
N−1∑
k=q

(Hk
j − hk)∆j,k + ηj ,

where ∆j,k is defined in Lemma 7.32. Going back to (7.31), applying Jensen’s inequality and
Lemma 7.31 we obtain

E
[∣∣∣Q̃(Yn)− Q̃(y0)

∣∣∣]2 ≤ E


n−1∑
j=0

N−1∑
k=q

(Hk
j − hk)∆j,k + ηj

2


=
n−1∑
j=0

E
[
(Hq

j − h
q)2∆2

j,q

]
+ 2

n−1∑
j=1

j−1∑
i=0

E
[
(Hq

j − h
q)∆j,q(Hq

i − h
q)∆i,q

]
+ E [R(∆)] + E [S(∆, η)] .

(7.32)

The first term in (7.32) satisfiesn−1∑
j=0

E
[
(Hq

j − h
q)2∆2

j,q

]1/2

≤ C
√
tnh

p+q, (7.33)

due to (7.52). Now, considering (7.54), we obtain that the second term in (7.32) satisfies2
n−1∑
j=1

j−1∑
i=0

E
[
(Hq

j − h
q)∆j,q(Hq

i − h
q)∆i,q

]1/2

≤ Ctnh2p+q−1.

For the remainder term E [R(∆)], due to Lemma 7.32 we get

E [R(∆)]1/2 ≤ C
(√

tnh
p+q+1/2 + tnh

2p+q−1/2
)
.

For the remainder term E [S(∆, η)], due to Lemma 7.32 and since h ≤ 1 and p ≥ 3/2 by
assumption, we get

E [S(∆, η)]1/2 ≤ C
(
t2n

(
e−2κ/(Mh) + hp+q+1/2e−κ/(Mh)

))1/2

≤ Ctn
(
e−κ/(Mh) + h(2p+2q+1)/4e−κ/(2Mh)

)
.

(7.34)

Finally, taking the square root of both sides of (7.32), replacing the expressions we obtained
above and since h ≤ 1, we get that the modified Hamiltonian satisfies

E
[∣∣∣Q̃(Yn)− Q̃(y0)

∣∣∣] ≤ C (√tnhp+q + tnh
2p+q−1

+ tn

(
e−κ/(Mh) + h(2p+2q+1)/4e−κ/(2Mh)

))
.

Hence, imposing for a constant C > 0

tn ≤ C min{h1−2p, eκ/(4Mh)h−(2p+2q−1)/4, eκ/(2Mh)},
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and since exponential terms are dominated by polynomial terms (see e.g. [60, Theorem IX.8.1]),
we obtain

E
[∣∣∣Q̃(Yn)− Q̃(y0)

∣∣∣] ≤ Chq. (7.35)

Finally, applying the triangle inequality, since for all y ∈ Rd it holds
∣∣∣Q(y)− Q̃(y)

∣∣∣ ≤ Chq by
definition of the modified Hamiltonian Q̃ and due to (7.35) we get

E [|Q(Yn)−Q(y0)|] ≤ E
[∣∣∣Q(Yn)− Q̃(Yn)

∣∣∣]+ E
[∣∣∣Q(y0)− Q̃(y0)

∣∣∣]+ E
[∣∣∣Q̃(Yn)− Q̃(y0)

∣∣∣]
≤ Chq,

which is the desired result.

Remark 7.34. The result of Theorem 7.33 is consistent with the theory of deterministic symplectic
integrators. In fact, in the limit p→∞, one can choose the coefficient M in Assumption 7.29
arbitrarily close to 1 and we have

E [|Q(Yn)−Q(y0)|]=O(hq),

for exponentially long time spans tn = O
(
eκ/(2h)), which is consistent with the theory of

deterministic symplectic integrators summarised by Theorem 7.28.
Remark 7.35. It has been observed (see for example [59, 60]) that adopting variable step sizes
in symplectic integration destroys the good properties of conservation of the Hamiltonian. In
particular, the error on the Hamiltonian has a linear drift in time, i.e., the approximation has the
same quality as the one given by a standard non-symplectic algorithm. Conversely, Theorem 7.33
proves that random step sizes do not spoil, under the assumptions specified above, the good long
time properties of symplectic integrators with fixed step size.
Remark 7.36. As it can be noticed in the proof of Lemma 7.32, we introduce the assumption
p ≥ 3/2 in order to simplify the terms composing the remainder S(∆, η). In case 1 ≤ p < 3/2,
e.g. when the symplectic Euler method is employed (q = 1) and the natural scaling p = q is
chosen, the O(hq) approximation of the Hamiltonian still holds but with a slight reduction in the
exponential terms appearing in the time span of validity.
Remark 7.37. Let us remark that in order for (7.34) to hold we implicitly assumed tn ≥ 1 to
bound

√
tn ≤ tn. If tn < 1, we can bound every appearance of tn from (7.33) to (7.34) as tn ≤ 1,

and the desired result would still hold.

7.6 Bayesian Inference
In this section, we introduce a Bayesian inverse problem in the ODE setting and illustrate how the
RTS-RK method can be employed in this framework. Let us recall that Bayesian inverse problems
are introduced in Chapter 1 and the application of probabilistic methods in this framework in
Section 6.2. Here, we give only the details which are specific to the ODE case.

Let us consider a function fϑ : Rd → Rd which depends on a real parameter ϑ ∈ X, where
X ≡ Rn, and the ODE

y′ϑ = fϑ(y), y(0) = y0 ∈ Rd.

We write in this case that the exact solution is given by yϑ(t) = ϕt(y0;ϑ), where we write explicitly
the dependence of the flow on the parameter. Let us remark that the initial condition y0 could
be as well subject to inference, and it can be seamlessly included in the inversion procedure.

Let us remark that we could as well consider a non-parametric setting such as the one introduced
in Chapter 1, thus approaching the problem with a finite-dimensional approximation as in
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Section 1.2. Nevertheless, we consider here for simplicity X to be finite-dimensional, and note
that this suffices for demonstrating the potential of probabilistic methods in Bayesian inversion.

We let in this case the forward model G : X → Rm be given by G = O ◦ S, where the solution
operator S : X → C0([0, T ]) maps the parameter ϑ into the flow {ϕt(y0;ϑ)}0≤t≤T , and where
O : C0([0, T ])→ Rm outputs pointwise observations of the solution, i.e.

O ({ϕt(y0;ϑ)}0≤t≤T ) =
(
y(t∗1) y(t∗2) · · · y(t∗m)

)>
,

for observation points 0 < t∗1 < t∗2 < . . . < t∗m ≤ T . We then consider the observation model

z = G(ϑ) + β,

where β ∼ N (0,Γ) is a Gaussian source of noise, and the inverse problem

find ϑ ∈ X given observations z∗ = G(ϑ∗) + β,

where ϑ∗ ∈ X is the true value of the parameter. Given a Gaussian prior µ0 = N (0,Γ0), where
Γ0 is a positive-definite covariance matrix on X, the inverse problem is well-posed in the Bayesian
sense (see e.g. [87]), and the posterior µ is given by

dµ
dµ0

(ϑ) = 1
Z

exp (−Φ(ϑ; z)) ,

where for any z ∈ Rm the potential Φ(·; z) : X → R is given by

Φ(ϑ; z) = 1
2

∥∥∥Γ−1/2 (G(ϑ)− z)
∥∥∥2

2
,

where we recall that Γ is the covariance of the Gaussian noise, and where Z is the normalization
constant

Z =
∫
X

exp (−Φ(ϑ; z)) dµ0(ϑ).

It is then possible to consider the deterministic and the probabilistic approximations µh and µ̃h
of the posterior, respectively, as described in detail in Section 6.2. In particular, the measures µh
and µ̃h are obtained respectively by discretizing the solution operator S with a Runge–Kutta
integrator and with the RTS-RK method based on the same deterministic scheme. For the
RTS-RK, we then have the random forward operator G̃h = O ◦ S̃h, where S̃h associates the
parameter ϑ to the random approximate RTS-RK solution. Let us recall that µ̃h is thus a random
measure, and should be approximated deterministically. We choose in this setting to consider the
marginal approximation µ̃h,mar defined in Section 6.2, which we recall to be given by

dµ̃h,mar

dµ0
(ϑ) = 1

E
[
Z̃h

] E [exp
(
−Φ̃h(ϑ; z)

)]
,

where expectation is with respect to the measure induced by the random time steps, where the
random potential Φ̃h is given by

Φ̃h(ϑ; z) = 1
2

∥∥∥Γ−1/2
(
G̃h(ϑ)− z

)∥∥∥2

2
,

and where Z̃h is the random normalization constant

Z̃h =
∫
X

exp
(
−Φ̃h(ϑ; z)

)
dµ0(ϑ).
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σ = 0.1 σ = 0.05 σ = 0.025 σ = 0.0125

-1 0 1 2 3 -1 0 1 2 3

-1 0 1 2 3 -1 0 1 2 3

Figure 7.2 – True analytical posterior distributions in the linear case of Section 7.6.1 and its
approximations with the deterministic explicit Euler method and with the AN-RK and the
RTS-RK both based on the explicit Euler method. In this case, h = 0.5 and the variance σ2 of
the observation error is reduced progressively. The true value of the initial condition ϑ∗ = 1 is
shown with a vertical black dashed line.

Sampling from µ̃h is performed employing the pseudo-marginal Metropolis–Hastings (PMMH)
of [16], as described in Section 6.2. We remark that employing the deterministic approximation
µ̃h,mar and the PMMH instead of the alternative µ̃h,MC entails a higher computational cost
by Remark 6.10. Nevertheless, practical numerical experiments led us to employ the marginal
approximation, since in this ODE setting we consider examples where the dimension of the
parameter is much smaller than the dimension of the support random variable (i.e., of the
sequence of random time steps).

7.6.1 Closed-form Posteriors for a Linear Problem

We consider here a very simple example for which it is possible to compute explicitly the posterior
distributions introduced above, and which illustrates the application of probabilistic methods for
ODEs to inverse problems. In particular, let us consider the following one dimensional ODE

y′(t) = −y(t), y(0) = ϑ,
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where we consider the initial condition ϑ ∈ R to be the parameter of interest, and where in this
case the right-hand side is known. Given a fixed T > 0, we consider the problem of inferring the
initial condition ϑ from a single observation z = ϕT (ϑ∗) + β, where ϑ∗ is a true value for the
initial condition and where β ∼ N (0, σ2). As a prior, we fix µ0 = N (0, 1).

In this simple scenario, the exact forward map admits a closed-form expression. In particular, it
holds

G(ϑ) = exp(−T )ϑ.

The forward map is therefore linear with respect to ϑ, and simple manipulations with Gaussian
densities yield the exact posterior µ given by

µ = N
(

z exp(−T )
σ2 + exp(−2T ) ,

σ2

σ2 + exp(−2T )

)
. (7.36)

Consistently, in case the observational noise σ2 vanishes we have that the observation z →
ϑ∗ exp(−T ), and therefore the posterior µ shrinks to the true value ϑ∗.

Let us now consider the numerical approximation of this simple inverse problem by means of the
explicit Euler method. In particular, we assume T being sufficiently small so that we perform
only one step of the method, i.e., we fix h = T . Hence, the numerical forward map is in this case
given by

Gh(ϑ) = (1− h)ϑ.

The numerical forward map is also linear with respect to the parameter ϑ, and therefore the
posterior µh is Gaussian. In particular, simple calculations with Gaussian densities give

µh = N
(

(1− T )z
σ2 + (1− T )2 ,

σ2

σ2 + (1− T )2

)
, (7.37)

where we recall that T = h. In the same limit of σ2 → 0 as above, we get in this case that the
posterior distribution shrinks to a value ϑlim which is given by

ϑlim = exp(−T )
1− T ϑ∗.

Let us remark that in the limit for T → 0 (i.e., for h→ 0), we have ϑlim → ϑ∗, but for a fixed
positive value T > 0 the posterior µh presents a bias in the inference of the initial condition.

Let us consider the AN-RK of Section 6.3.1 built on one step of the explicit Euler method, i.e.,
the random approximation y(T ) ≈ Y1, where Y1 = (1− h)ϑ+ ξ. We consider Assumption 6.12
to hold with Q ≡ 1 and p = q = 1, so that ξ ∼ N (0, h3). The random forward map G̃h is then
defined as

G̃h(ϑ) = (1− h)ϑ+ ξ.

The marginal posterior distribution µ̃h,mar admits in this simple case a closed-form expression,
and manipulations with Gaussian densities yield

µ̃h,mar = N
(

(1− T )z
σ̃2 + (1− T )2 ,

σ̃2

σ̃2 + (1− T )2

)
.

where σ̃2 = σ2 + T 3 and where we remind that T = h. Therefore, in this case the distribution
µ̃h,mar is not degenerate in the limit for σ2 → 0, but we actually have a limiting distribution
µ̃lim
h,mar given by

µ̃lim
h,mar = N

(
(1− T ) exp(−T )ϑ∗
T 3 + (1− T )2 ,

T 3

T 3 + (1− T )2

)
. (7.38)
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Let us remark that consistently the posterior µ̃lim
h,mar shrinks to the true value ϑ∗ in case T (i.e.,

h). Nevertheless, the relevant feature of µ̃lim
h,mar is that while the mean of the limiting distribution

is still biased from ϑ∗, a positive variance accounts for the uncertainty in the solution of the
inverse problem.

Let us now consider the RTS-RK based on one step of the explicit Euler with step size distribution
H ∼ U(T − T p+1/2, T + T p+1/2), where we recall again that T = h and where we fix p = q = 1
following Remark 7.19. In this case, the random forward model G̃h is given by

G̃h(ϑ) = (1−H)ϑ.

Let us remark that the random perturbation introduced by the probabilistic method does not
follow a Gaussian distribution, and hence the marginal posterior µ̃h,mar is not Gaussian even
though the forward map is linear with respect to ϑ. Nevertheless, it is possible to compute a
closed-form expression for the density of µ̃h,mar with respect to the Lebesgue measure, i.e., the
function π̃h,mar : R→ R such that µ̃h,mar(dϑ) = π̃h,mar(ϑ) dϑ. In particular, it holds

π̃h,mar(ϑ) ∝ exp
(
−ϑ

2

2

)
1
ϑ

(
FN

(
((1− T ) + T 3/2)ϑ− z

σ

)
−FN

(
((1− T )− T 3/2)ϑ− z

σ

))
,

(7.39)

where the symbol ∝ denotes equality up to multiplicative constants independent of ϑ and such
that π̃h,mar integrates to one over R, and where FN is the distribution function of a N (0, 1)
random variable. We compute also in this case the limit for σ2 → 0, which yields the limiting
distribution µ̃lim

h,mar(dϑ) = π̃lim
h,mar(ϑ) dϑ, where the limiting density satisfies

π̃lim
h,mar(ϑ) ∝ exp

(
−ϑ

2

2

)
1
ϑ
χ{ϑmin≤ϑ≤ϑmax},

with χ being the indicator function and where ϑmin and ϑmax are given by

ϑmin = exp(−T )ϑ∗
((1− T ) + T 3/2) , ϑmax = exp(−T )ϑ∗

((1− T )− T 3/2) .

We remark that in this case, too, the limit for vanishing observational noise yields a posterior
with a positive variance. Moreover, in the limit for T → 0 (i.e., h→ 0), we have that ϑmin and
ϑmax both tend to ϑ∗, and therefore the posterior µ̃lim

h,mar consistently collapses to the true value
ϑ∗.

In order to represent graphically the findings above, we fix T = h = 0.5 and consider σ =
{0.1, 0.05, 0.025, 0.0125}, thus generating four observational noises ηi as ηi = σiZ for a random
variable Z ∼ N (0, 1). In Fig. 7.2 we show the posteriors (7.36), (7.37), (7.38) and (7.39), which
confirm our claim, i.e., that probabilistic methods take into account the uncertainty in the forward
model due to numerical approximation and transfer it to the posterior belief.

7.7 Numerical Experiments
In this section, we present a series of numerical experiments which validate our analysis, and
which illustrate the potential of the RTS-RK method on equations with geometric properties and
Bayesian inference problems.
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Figure 7.3 – Convergence for the RTS-RK built on the explicit trapezoidal (ET) and fourth-order
Runge–Kutta (RK4) as a function of the value of p of Assumption 7.2. First row: weak order of
convergence (Theorem 7.12). Second row: mean-square order of convergence (Theorem 7.16). In
the left column, the reference slopes 1 and 2 are displayed (solid and dashed lines), while in the
right column reference slopes 2, 3 and 4 are displayed (solid, dashed and dash-dotted lines).

7.7.1 Convergence

In order to verify the result predicted by Theorems 7.12 and 7.16, we consider the FitzHugh–
Nagumo equation, which is defined as

y′1 = c

(
y1 −

y3
1
3 + y2

)
, y1(0) = −1,

y′2 = −1
c

(y1 − a+ by2), y2(0) = 1,
(7.40)

where a, b, c are real parameters with values a = 0.2, b = 0.2, c = 3. We integrate the equation
from time t0 = 0 to final time T = 1. The reference solution is generated with a high-order
method on a fine time scale. The deterministic integrators we choose in this experiment are the
explicit trapezoidal rule (ET) and the classic fourth-order Runge–Kutta method (RK4), which
verify Assumption 7.4 with q = 2 and q = 4, respectively. The random steps are uniform as in
Example 7.3. We vary their mean in the range hi = 0.125 · 2−i with i = 0, 1, . . . , 4, and we vary
the value of p in Assumption 7.2 in order to verify the theoretical convergence results.
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Figure 7.4 – Convergence of the square root of the MSE of the Monte Carlo estimator for the
random time-stepping explicit trapezoidal (ET) (left column) and fourth-order Runge–Kutta
(RK4) (right column) with respect to the time step h (first row) and the number of trajectories
M (second row). The dashed line corresponds to the prediction of Theorem 6.7.

For weak convergence, we consider p ∈ {0.5, 1, 1.5} for the ET and p ∈ {1, 1.5, 2, 2.5} for RK4.
Theorem 7.12 then predicts weak order pw = {1, 2, 2} for the ET and pw = {2, 3, 4, 4} for the
RK4. The functional Ψ: Rd → R of the solution we consider is defined as Ψ(x) := x>x. Finally,
we consider 106 trajectories of the numerical solution in order to approximate the expectation
with a Monte Carlo sum. Results (Fig. 7.3) show that the order of convergence predicted by
Theorem 7.12 is confirmed by numerical experiments.

For mean-square convergence, we consider p ∈ {1, 2, 3} for the ET and p ∈ {2, 3, 4, 5} for the
RK4. Theorem 7.16 then predicts strong order ps = {1, 2, 2} for the ET and ps = {2, 3, 4, 4} for
the RK4. We simulate 103 realizations of the numerical solution and compute the approximate
mean-square order of convergence for each value of h with a Monte Carlo mean. Results (Fig. 7.3)
show that the orders predicted by Theorem 7.16 are confirmed numerically.
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7.7.2 Mean-square Convergence of Monte Carlo Estimators

We shall now verify numerically the validity of Theorem 6.7 for the RTS-RK method. We consider
the ODE (7.40), with final time T = 1 and the same parameters as above. In this case as well, we
consider the ET rule and the RK4 with uniform random time steps having mean hi = 0.125 · 2−i
with i = 0, 1, . . . , 7. For the explicit trapezoidal rule, we fix M = 103 and p = 1, so that for
bigger values of h the first term in the bound (7.21) dominates, while in the regime of small h,
the higher order of the first term makes the second term larger in magnitude. This behavior
results in the change of slope in the convergence plot which can be observed in Fig. 7.4, both in
the theoretical estimate and in the numerical results. We perform the same experiment using the
RK4, fixing M = 104 and p = 1.5, thus obtaining a numerical confirmation of the theoretical
result.

As a second experiment, we consider the same setup as above but wish to verify the dependence
of the MSE on the number of samples M , which we vary as M = 2i, with i = 0, 1, . . . , 9. For
the explicit trapezoidal rule, we consider p = q = 2, which is the optimal choice for the intrinsic
variability of the RTS-RK method. Moreover, we fix h = 0.05. In this case, the bound (7.21)
reduces to

MSE(Ψ̂N,M ) ≤ Ch2q
(

1 + 1
M

)
.

In Fig. 7.4 we show that the convergence of the MSE depends onM as predicted by the theoretical
bound. We repeat the same experiment using the fourth order explicit Runge–Kutta method, for
which we take h = 0.01 and p = q = 4, thus confirming numerically our theoretical result.

7.7.3 Robustness

In this numerical experiment we verify the robustness of RTS-RK when applied to chemical
reactions. Let us consider the Peroxide-Oxide chemical reaction, which is macroscopically defined
by the following balance equation

O2 + 2NADH + 2H+ → 2H2O + 2NAD+,

where NADH and NAD+ are the oxidized and reduced form of the nicotinamide adenine dinu-
cleotide (NAD) respectively. This reaction has to be catalyzed by an enzyme to take place, which
reacts with the reagents to create intermediate products of the reaction. A successful model [105]
to describe the time-evolution of the chemical system is the following

B + X k1−→ 2X, 2X k2−→ 2Y, A + B + Y k3−→ 3X,

X k4−→ P, Y k5−→ Q, X0
k6−→ X,

A0
k7←→ A, B0

k8−→ B.

Here, A and B are respectively [O2] and [NADH], P, Q are the products and X, Y are intermediate
results of the reaction process. It is therefore possible to model the time evolution of the reaction
with the following system of nonlinear ODEs

A′ = k7(A0 −A)− k3ABY, A(0) = 6,
B′ = k8B0 − k1BX− k3ABY, B(0) = 58,
X′ = k1BX− 2k2X2 + 3k3ABY − k4X + k6X0, X(0) = 0,
Y′ = 2k2X2 − k5Y − k3ABY, Y (0) = 0,

(7.41)
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Figure 7.5 – Fifty trajectories of the numerical value of the concentration of the X species for the
random time-stepping and additive noise methods (above and below respectively).

where A0 = 8, B0 = 1, X0 = 1 and the real parameters ki, i = 1, . . . , 8 representing the reaction
rates take values

k1 = 0.35, k2 = 250, k3 = 0.035, k4 = 20,
k5 = 5.35, k6 = 10−5, k7 = 0.1, k8 = 0.825.

It has been shown [105] that for these values of the parameters the system exhibits a chaotic
behavior. In particular, at long time the trajectories lie in a strange attractor, and the system
shows a strong sensitivity to perturbations on the initial condition.

Since the components of the solution represent the concentration of chemicals, we require the
numerical solution to be positive. Apart from physical considerations, we observe numerically
that if one of the components takes negative values, the solution shows strong instabilities. For
the RTS-RK method, the distribution of the random time steps can be selected so that the
probability of obtaining a negative solution is zero, see e.g. Example 7.3. In contrast, for the
additive noise method we can have disruptive effects even for h small if the solution has a small
magnitude, as the probability for negative populations will never be zero. Hence, in this case
employing the additive noise method likely produces instabilities regardless of the chosen time
step.

Let us apply the AN-RK and the RTS-RK methods to (7.41). We choose h = 0.05 as the mean of
uniformly distributed time steps for the RTS-RK and as the time step for the AN-RK, while we
employ the Runge–Kutta–Chebyshev method (RKC) (see [138]) as deterministic integrator. Since
the RKC has order 1, we fix p = q = 1. As the problem is stiff, stabilized methods prevent a step
size restriction while remaining explicit. We note that the RKC method is a stabilized numerical
integrator of first order and that higher order explicit stabilized methods such as ROCK2 or
ROCK4 [1, 10] could also be used as deterministic solvers for the RTS-RK method. It can be
seen in Fig. 7.5 that the RTS-RK method maintains the numerical solution positive and captures
the chaotic nature of the chemical reaction. In contrast, the additive noise scheme produces
negative values, thus showing strong instabilities in the long-time behavior. In particular, all the
numerical trajectories turn negative or diverge before approximately t = 25, which is the reason
why after this time they are not displayed in Fig. 7.5.
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Figure 7.6 – Trajectories of (7.42) given by the RTS-RK method (7.2) for 0 ≤ t ≤ 200 and
3800 ≤ t ≤ 4000 (first row), and by AN-RK method (see Section 6.3.1) for 0 ≤ t ≤ 200 and
200 ≤ t ≤ 400 (second row). Error on the angular momentum I defined in (7.43) for 0 ≤ t ≤ 4000
given by the two methods.

7.7.4 Conservation of Quadratic First Integrals

A simple model for the two-body problem in celestial mechanics is the Kepler system with a
perturbation, which reads

w′1 = v1, v′1 = − w1

‖q‖3
− δw1

‖q‖5
,

w′2 = v2, v′2 = − w2

‖q‖3
− δw2

‖q‖5
,

(7.42)

where v1, v2 are the two components of the velocity and w1, w2 are the two components of the
position. We set the perturbation parameter δ to be equal to 0.015 and the initial condition to be

w1(0) = 1− e, w2(0) = 0, v1(0) = 0, v2(0) =
√

(1 + e)/(1− e),

where e = 0.6 is the eccentricity. It is well-known that this equation has the Hamiltonian and
the angular momentum as quadratic first integrals. In particular, we focus here on the angular
momentum, which reads

I(v, w) = w1v2 − w2v1. (7.43)
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We consider the simplest Gauss collocation method, namely the implicit midpoint rule, as
the deterministic Runge–Kutta method. It is known that Gauss collocation methods conserve
quadratic first integrals. According to Theorem 7.23, we expect therefore that the RTS-RK
implemented on the implicit midpoint rule also conserves quadratic first integrals. We integrate
(7.42) with uniformly distributed random time steps with mean h = 0.01 from time t = 0 to time
t = 4000 which corresponds to approximately 636 revolutions of the system (long-time behavior).
Since the implicit midpoint rule is of order q = 2, we choose p = 2 for the RTS-RK method.
Moreover, we consider the AN-RK method with h = 0.01, expecting that the first integral will
not be conserved. We observe in Fig. 7.6 that the method (7.2) conserves the angular momentum,
while for AN-RK method the approximate conservation of the quadratic first integral shown in
(7.22) is lost when integrating (7.42) over long time.

7.7.5 Conservation of Hamiltonians

Let us consider the pendulum problem, which is given by the Hamiltonian Q : R2 → R defined by

Q(v, w) = v2

2 − cosw,

where y = (v, w)> ∈ R2. We wish to study the validity of Theorem 7.33, i.e., show that the mean
error on the Hamiltonian is of order O(hq) for time spans of polynomial length and then it grows
proportionally to the square root of time. We consider the initial condition (v0, w0) = (1.5,−π)
and integrate the equation employing RTS-RK based on the implicit midpoint method (q = 2)
choosing p = q, which is the optimal scaling of the noise. We choose uniform time steps, vary their
mean h ∈ {0.2, 0.1, 0.05, 0.025}, integrate the dynamical system up to the final time T = 106 and
study the time evolution of the mean numerical error on the Hamiltonian Q. Results are shown in
Fig. 7.7, where it is possible to notice that the error is bounded by O(hq) (horizontal black lines)
for long time spans. After this stationary phase, the error on the Hamiltonian appears to grow
as the square root of time. The oscillations of the error which are shown in Fig. 7.7 are present
even when integrating the pendulum system with a deterministic symplectic scheme. Moreover,
considering T = 103, the time step h ∈ {0.2, 0.1} and keeping all other parameters as above,
we compute the mean Hamiltonian and represent it in Fig. 7.7 together with an approximate
confidence interval. We arbitrarily fix a confidence interval at two standard deviations from the
mean, and we employ it to show the path-wise variability of the value of the Hamiltonian. As
expected, the variability decreases dramatically with respect to the time step h.

7.7.6 Bayesian inference

For the last numerical experiment we consider the Hénon–Heiles equation, a Hamiltonian system
with energy Q : R4 → R defined by

Q(v, w) = 1
2 ‖v‖

2 + 1
2 ‖w‖

2 + w2
1w2 −

1
3w

3
2, (7.44)

where v, w ∈ R2 are the velocity and position respectively and where we denote by y = (v, w)> ∈
R4 the solution. We consider an initial condition such that Q(y0) = 0.13, for which the system
exhibits a chaotic behaviour [66]. In the spirit of Section 7.6, we are interested in recovering the
true value of the initial condition y0 through a single observation yobs of the solution (v, w) at
a fixed time tobs = 10. The exact forward operator G is therefore defined as G(y0) = ϕtobs(y0).
Noise is then set to be a Gaussian random variable β ∼ N (0, σ2I), where σ = 5 · 10−4, and we fix
a standard Gaussian prior on the initial condition, i.e., µ0 = N (0, I). We choose the observational
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Figure 7.7 – (a): Time evolution of the mean error for the pendulum problem and different values
of the time step h. The black lines represent the theoretical estimate given by Theorem 7.33, while
the colored lines represent the experimental results. The mean was computed by averaging 20
realisations of the numerical solution. (b1) and (b2): Time evolution of the mean Hamiltonian
for two different values of the time step. The mean Hamiltonian is depicted together with an
approximate confidence interval, whose width is proportional to the standard deviation of the
Hamiltonian over 200 trajectories.

noise to have a small variance (i.e., of order O(10−8)) as in this case classical solvers present the
misleading overconfident behaviour explained in Section 6.2 and Section 7.6.

Since the equation is Hamiltonian, we choose to employ a classical second-order (q = 2) symplectic
method, the Störmer–Verlet scheme [60, 130, 142], for which one step is defined in the general
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Figure 7.8 – Posterior distributions for the initial position and velocity of the Hénon-Heiles system
with different values of h = {0.2, 0.1, 0.05, 0.025}. First row: initial velocity v0. Second row:
initial position w0. First column: deterministic Heun’s method. Second column: deterministic
Störmer–Verlet scheme. Third column: RTS-RK Störmer–Verlet (p = 2).

case as
vn+1/2 = vn −

h

2∇wQ(vn, wn),

wn+1 = wn + h

2
(
∇vQ(vn+1/2, wn) +∇vQ(vn+1/2, wn+1)

)
,

vn+1 = vn+1/2 −
h

2∇wQ(vn+1/2, wn+1).

As the Hamiltonian Q given by (7.44) is separable, i.e., Q(v, w) = Q1(v) + Q2(w), where
Q1, Q2 : R2 → R, the Störmer–Verlet scheme simplifies to

vn+1/2 = vn −
h

2∇wQ2(wn),

wn+1 = wn + h∇vQ1(vn+1/2),

vn+1 = vn+1/2 −
h

2∇wQ2(wn+1).

Hence, in the separable case the Störmer–Verlet scheme is explicit and the evaluation of the
flow consists only of three evaluations of the derivatives of Q. We then employ this method
both with a fixed time step h and as a basic integrator for the RTS-RK method (with uniformly
distributed time steps and p = 2), thus computing the posterior distributions µh and µ̃h,mar
defined in Section 7.6, respectively. Moreover, we compute the posterior distribution given by a
non-symplectic method, the Heun’s scheme, which is a classical second order method. For the
deterministic integrator, we generate samples from the distributions with the MH algorithm, and
for the measure µ̃h,mar we employ the PMMH. Finally, we vary the time step h for the three
methods above in order to study whether the approximate posterior concentrates towards the
true value of the initial condition.
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We can observe in Fig. 7.8 that the posterior distributions given by Heun’s method are concentrated
away from the true value of the initial condition for the larger values of the time step. In fact,
Heun’s method is not symplectic, and a deviation on the energy Q is produced when integrating
the dynamical system forward in time. Hence, initial conditions with a different energy level with
respect to the observation are mapped by the approximate forward model to points which are
close to the observations, and as a result the posterior distribution is concentrated far from the
true value. This behaviour is corrected using the Störmer–Verlet method due to its symplecticity.
However, we remark that the posterior distribution for h = 0.2 is still concentrated on a biased
value of the initial condition, without any indication of this bias given by the posterior’s variance.
Applying the RTS-RK method together with PMMH instead gives nested posterior distributions
whose variance quantifies the uncertainty of the numerical solver. This favourable behaviour is
possible due to the numerical error quantification of probabilistic methods, which has been already
shown in [37,39], together with the good energy conservation properties of the RTS-RK method
when a symplectic integrator is used as its deterministic component as proved in Theorem 7.33.

7.8 Proof of Technical Results
In this section, we prove technical result which were left unproved in the text in order to enhance
readability.

7.8.1 A Modified Stochastic Differential Equation

In Remark 7.13, we claim the existence of a modified stochastic differential equation (SDE) whose
solution is well approximated by the RTS-RK method. Let us denote by f̃ the function defining
the modified equation corresponding to the numerical flow ψh truncated after l terms, i.e.,

f̃(y) = f(y) + hqfq+1(y) + hq+1fq+2(y) + . . .+ hlfl+1(y).

Details about the construction of such a function can be found in Section 7.5.2. In particular,
analyticity of the function f is needed for a rigorous backward error analysis to hold. Therefore,
we will refer in this section to Assumption 7.27 (see Section 7.5.2). For the additive noise method
presented in [39], the authors consider the SDE

dY = f̃(Y ) dt+
√
Qh2p dW, (7.45)

where W is a d-dimensional standard Brownian motion. It is possible to show [39, Theorem 2.4]
that the solution of (7.45) satisfies

|E [Ψ(YN )−Ψ(Y (T ) | Y0 = y]| ≤ Ch2p,

where T = Nh and YN is the numerical solution given by the additive noise method after N
steps. Here, we present a similar construction for the RTS-RK method. In particular, let us
consider the modified SDE

dỸ =
(
f̃(Ỹ ) + 1

2Ch
2p∂ttψh(Ỹ )

)
dt+

√
Ch2p∂tψh(Ỹ )∂tψh(Ỹ )> dW, (7.46)

where C is given in Assumption 7.2.(iii). Let us denote by L̃ the generator of (7.46), which can
be written explicitly as

L̃ =
(
f̃ + 1

2Ch
2p∂ttψh

)
· ∇+ 1

2Ch
2p∂tψh∂tψ

>
h : ∇2,
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and, adopting the semi-group notation, it satisfies

E
[
Ψ(Ỹ (h)) | Ỹ (0) = y

]
= ehL̃Ψ(y).

In the following lemma, we consider the error over one step between the numerical solution given
by the RTS-RK method and the solution of (7.46) in the weak sense. The proof is inspired by
the calculations presented in [39, Section 2.4].

Lemma 7.38. Under the assumptions of Lemma 7.7 and if Assumption 7.27 holds, then∣∣∣E [Ψ(Y1)−Ψ(Ỹ (h)) | Y0 = y
]∣∣∣ ≤ Ch2p+1,

where C is a positive constant independent of h and of y, Ỹ is the solution of (7.46) and Y1 is
the numerical solution given by the RTS-RK method after one step.

Proof. Let us consider the modified ODE

ŷ′(t) = f̃(ŷ), (7.47)

and denote its flow as ϕ̂t. The generator L̂ = f̃ · ∇ satisfies, adopting the semi-group notation,

Ψ(ϕ̂h(y)) = ehL̂Ψ(y).

We can now compute the distance between the solution to (7.46) and (7.47) as

ehL̃Ψ(y)− ehL̂Ψ(y) = ehf̃ ·∇
(
e

1
2Ch

2p+1∂ttψh·∇+ 1
2Ch

2p+1∂tψh∂tψ
>
h :∇2

− I
)

Ψ(y)

= (1 +O(h))
(

1
2Ch

2p+1∂ttψh · ∇

+ 1
2Ch

2p+1∂tψh∂tψ
>
h : ∇2 +O

(
h4p+1))Ψ(y)

= 1
2Ch

2p+1∂ttψh · ∇Ψ(y) + 1
2Ch

2p+1∂tψh∂tψ
>
h : ∇2Ψ(y) +O

(
h4p+1) .

Let us recall that equation (7.8) gives

ehLhΨ(y)−Ψ(ψh(y)) = 1
2Ch

2p+1∂ttψh(y) · ∇Ψ(y)

+ 1
2Ch

2p+1∂tψh(y)∂tψh(y)> : ∇2Ψ(y) +O(h2p+1),

which implies that

ehL̃Ψ(y)− ehLhΨ(y) = ehL̂Ψ(y)−Ψ(ψh(y)) +O(h2p+1).

Now, the theory of backward error analysis (see Section 7.5.2 or e.g. [60, Chapter IX]) guarantees
that

ehL̂Ψ(y)−Ψ(ψh(y)) = O(hq+l+2).

Choosing l = 2p− q − 1, we have therefore

ehL̃Ψ(y)− ehLhΨ(y) = O(h2p+1),

which is the desired result.
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The error can be then propagated to final time as in Theorem 7.12, as presented in the following
theorem.

Theorem 7.39. Under the assumptions of Lemma 7.38 and Theorem 7.12, and if there exists a
constant L > 0 independent of h such that for all Ψ ∈ C∞b (Rd,R)

sup
u∈Rd

∣∣∣ehL̃Ψ(u)
∣∣∣ ≤ (1 + Lh) sup

u∈Rd
|Ψ(u)| ,

then it holds ∣∣∣E [Ψ(YN )−Ψ(Ỹ (T )) | Y0 = y
]∣∣∣ ≤ Ch2p,

where T = Nh and C is a positive constant independent of h and of y, Ỹ is the solution of (7.46)
and YN is the numerical solution given by the RTS-RK method after N steps.

Proof. The proof follows by replacing L with L̃ and Lemma 7.7 with Lemma 7.38 in the proof of
Theorem 7.12.

7.8.2 Proof of Lemma 7.30

In the following, we denote by Ja, bK the interval Ja, bK = [a, b] if a < b and Ja, bK = [b, a] if a ≥ b.
Let us first consider r ≥ 2 and the function γr(x) = xre−rκ/x, whose first derivative is given by

γ′r(x) = rxr−2(x+ κ)e−rκ/x.

Under Assumption 7.29 we have that Hj ≤Mh almost surely, and hence for any t ∈ Jh,HjK

|γ′r(t)| ≤ r(Mh)r−2(Mh+ κ)e−rκ/(Mh),

where we exploited that e−rκ/x is a growing function of x. The fundamental theorem of calculus
gives

|γr(Hj)| =
∣∣∣γr(h) +

∫ Hj

h

γ′r(t) dt
∣∣∣

≤ γr(h) + r(Mh)r−2(Mh+ κ)e−rκ/(Mh) |Hj − h| , almost surely.

Taking expectation on both sides and since by (7.30) it holds |ηj |r ≤ Cγr(Hj) we obtain

E [|ηj |r] ≤ C
(
γr(h) + rMr−2hp+r−3/2(Mh+ κ)e−rκ/(Mh)

)
,

which proves the desired inequality. This is because Assumption 7.29 and Assumption 7.2.(ii)
imply that M ≥ 1, and because Mh can be bounded by M . Let us now consider r = 1. In this
case we have for t ∈ Jh,HjK

|γ′1(t)| ≤ (mh)−1(Mh+ κ)e−κ/(Mh), almost surely.

Hence, we apply the same reasoning as above and obtain almost surely

|γ1(Hj)| ≤ γ1(h) + (mh)−1(Mh+ κ)e−κ/(Mh) |Hj − h| ,

which implies the desired result by proceeding as above.
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7.8.3 Proof of Lemma 7.31

We first expand the square asn−1∑
j=0

N−1∑
k=q

ajk + bj

2

=
n−1∑
j=0

N−1∑
k=q

ajk + bj

2

+ 2
n−1∑
j=1

j−1∑
i=0

N−1∑
k=q

ajk + bj

N−1∑
k=q

aik + bi

 .

(7.48)

Then, we expand the square in the first sum and obtainN−1∑
k=q

ajk + bj

2

=

N−1∑
k=q

ajk

2

+ b2j + 2bj
N−1∑
k=q

ajk

=
N−1∑
k=q

a2
jk + 2

N−1∑
k=q+1

k−1∑
l=q

ajkajl + b2j + 2bj
N−1∑
k=q

ajk

= a2
jq +

N−1∑
k=q+1

a2
jk + 2

N−1∑
k=q+1

k−1∑
l=q

ajkajl + b2j + 2bj
N−1∑
k=q

ajk.

(7.49)

We then rewrite the term appearing in the double sum in (7.48) asN−1∑
k=q

ajk + bj

N−1∑
k=q

aik + bi

 = ajqaiq +
N−1∑
k=q

N−1∑
l=q

l+k>2q

ajkail

+ bj

N−1∑
k=q

aik + bi

N−1∑
k=q

ajk + bibj

(7.50)

Substituting the expressions (7.49) and (7.50) in (7.48), we finally getn−1∑
j=0

N−1∑
k=q

ajk + bj

2

=
n−1∑
j=0

a2
jq + 2

n−1∑
j=1

j−1∑
i=0

ajqaiq +R(a) + S(a, b),

where the remainder R(a) can be written as R = R1 +R2 +R3 where

R1(a) =
n−1∑
j=0

N−1∑
k=q+1

a2
jk, R2(a) = 2

n−1∑
j=0

N−1∑
k=q+1

k−1∑
l=q

ajkajl,

R3(a) = 2
n−1∑
j=1

j−1∑
i=0

N−1∑
k=q

N−1∑
l=q

l+k>2q

ajkail,

and the remainder S(a, b) can be written as S = S1 + S2 + S3 + S4 where

S1(a, b) =
n−1∑
j=0

b2j , S2(a, b) = 2
n−1∑
j=1

j−1∑
i=0

bibj ,

S3(a, b) = 2
n−1∑
j=1

N−1∑
k=q

bjajk, S4(a, b) = 2
n−1∑
j=1

n−1∑
i=0

bj N−1∑
k=q

aik + bi

N−1∑
k=q

ajk

 ,

which proves the desired result.
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7.8.4 Proof of Lemma 7.32

In the following, all the constants are independent of h and n, but can depend on N and
q. Moreover, since h < 1, we often apply hr ≤ hs for r ≥ s. We first notice that, under
Assumption 7.4 and Assumption 7.27, we get for all j = 0, . . . , n− 1 and k = q, . . . , N − 1

|∆j,k| = |Qk+1(Yj)−Qk+1(Yj+1)|
≤ C

∥∥ψ0(Yj)− ψHj (Yj)
∥∥

≤ C∆ |Hj | ,
(7.51)

almost surely and where C∆ is independent of h. Above, we exploited that Qk+1 is Lipschitz
continuous for all k = q, . . . , N + 1 due to Assumption 7.27. Let us now consider R(∆). Due to
(7.51) and to Assumption 7.29, we have

E
[
(Hk

j − hk)2∆2
j,k

]
≤ C2

∆ E
[
Hk+1
j −Hjh

k)2]
= C2

∆

(
h2(k+1) + C2(k+1)h

2p+2(k+1)−1 + h2(k+1) + C2h
2p+2k+1

−2h2k+2 − 2Ck+2h
2p+2k+1)

= C2
∆
(
(C2(k+1) + C2 − 2Ck+2)h2p+2k+1)

≤ Ch2p+2k+1,

(7.52)

where C > 0 is a positive constant. Now, since k ≥ q + 1, we get

E
[
(Hk

j − hk)2∆2
j,k

]
≤ Ch2(p+q+1).

Hence, for R1(∆) there exists a constant C̃1 such that

E [R1(∆)] ≤ C̃1nh
2(p+q+1).

We now proceed to the second remainder R2(∆). Applying the Cauchy–Schwarz inequality and
(7.52) we get

E
[
(Hk

j − hk)∆j,k(H l
j − hl)∆j,l

]
≤ E

[
(Hk

j − hk)2∆2
j,k

]1/2 E [(H l
j − hl)2∆2

j,l

]1/2
≤ Ch2p+k+l+1,

where C > 0 is a positive constant. Now, since in the definition of R2(a) in (7.51) we have
k ≥ q + 1 and l ≥ q, we have here k + l ≥ 2q + 1. Therefore, there exists a constant C̃2 such that

E [R2(∆)] ≤ C̃2nh
2(p+q+1).

We now consider the term R3(∆). Since Hi and Hj are independent for i 6= j, we have

E
[
(Hk

j − hk)∆j,k(H l
i − hl)∆i,l

]
= E

[
(Hk

j − hk)∆j,k

]
E
[
(H l

i − hl)∆i,l

]
.

Computing the two factors singularly, we have due to (7.51) and to Assumption 7.29

E
[
(Hk

j − hk)∆j,k

]
≤ C∆ E

[
Hk+1
j −Hjh

k
]

= C∆Ck+1h
2p+k,

(7.53)

and analogously for E
[
(H l

i − hl)∆i,l

]
. Then, since k + l ≥ 2q + 1

E
[
(Hk

j − hk)∆j,k(H l
i − hl)∆i,l

]
≤ C2

∆Ck+1Cl+1h
2(2p+q+1/2). (7.54)
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Hence, we have for a constant C̃3 > 0

E [R3(∆)] ≤ C̃3n
2h2(2p+q+1/2).

Finally, replacing tn = nh, we can write for a constant C > 0

E [R(∆)] ≤ (C̃1 + C̃2)nh2(p+q+1) + C̃3n
2h2(2p+q+1/2)

= (C̃1 + C̃2)tnh2(p+q+1/2) + C̃3t
2
nh

2(2p+q−1/2).

Let us now consider S(∆, η). First, we notice that under the assumption p ≥ 3/2 we have for any
r ≥ 1, min{r, p+ r − 3/2} = r, and therefore Lemma 7.30 simplifies to

E [|ηj |r] ≤ Chre−rκ/(Mh).

We first consider S1(∆, η). Applying Lemma 7.30 with r = 2, we obtain for a constant Ĉ1 > 0

E [S1(∆, η)] ≤ Ĉ1nh
2e−2κ/(Mh).

For the second term S2(∆, η), we have by (7.30) that |ηi| ≤ CHie−κ/Hi and ηj ≤ CHje−κ/Hj

almost surely. These two bounds are independent for i 6= j and therefore, applying Lemma 7.30
with r = 1, we have for a constant Ĉ2 > 0

E [S2(∆, η)] ≤ Ĉ2n
2h2e−2κ/(Mh).

We now consider the third remainder S3(∆, η). Applying the Cauchy–Schwarz inequality, we
obtain

E
[
ηj(Hk

j − hk)∆j,k

]
≤ E

[
η2
j

]1/2 E [(Hk
j − hk)2∆2

j,k

]1/2
.

Applying Lemma 7.30 with r = 2 to the first factor and (7.52) to the second we get

E
[
ηj(Hk

j − hk)∆j,k

]
≤ Che−κ/(Mh)hp+k+1/2

= Chp+k+3/2e−κ/(Mh)

Now, since k ≥ q, we have for a constant Ĉ3 > 0

E [S3(∆, η)] ≤ Ĉ3nh
p+q+3/2e−κ/(Mh).

Finally, we consider the last term S4(∆, η). Since by (7.30) it holds |ηj | ≤ CHje
−κ/Hj almost

surely, and this bound is independent of Hi for i 6= j, applying (7.53) and Lemma 7.30 we have

E
[
ηj(Hk

i − hk)∆i,k

]
= E [ηj ]E

[
(Hk

i − hk)∆i,k

]
≤ Che−κ/(Mh)h2p+k,

which, since k ≥ q, implies that there exists a constant Ĉ4 > 0 such that

E [S4(∆, η)] ≤ Ĉ4n
2h2p+q+1e−κ/(Mh).

Finally, replacing tn = nh, we can write

E [S(∆, η)] ≤ (Ĉ1nh
2 + Ĉ2n

2h2)e−2κ/(Mh) + (Ĉ3nh
p+q+3/2 + Ĉ4n

2h2p+q+1)e−κ/(Mh)

= (Ĉ1tnh+ Ĉ2t
2
n)e−2κ/(Mh) + (Ĉ3tnh

p+q+1/2 + Ĉ4t
2
nh

2p+q−1)e−κ/(Mh),

which completes the proof.
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8 Probabilistic Error Estimators
with Random Mesh FEM

In this chapter we introduce the random mesh finite element method (RM-FEM) for elliptic PDEs.
The RM-FEM is, to our knowledge, the second proposal in literature of a perturbation-based
probabilistic method for PDEs in the sense of Definition 6.1, after the one presented in [39]. In
particular, the RM-FEM is based on the finite element method (FEM) and proceeds to construct
a probability measure over the solution by randomizing the discretization. In fact, we note here
that the RM-FEM shares the basic ideas with the RTS-RK method presented in Chapter 7,
where the randomization affects the space discretization instead of the time discretization. While
Bayesian inverse problems remain a relevant application for the RM-FEM, in the framework of
elliptic PDEs we are able to propose probabilistic a posteriori error estimator, which allow for
adaptivity and goal-oriented implementations of the FEM. The content of this chapter is based
on our article [7], and is one of the original contributions of this thesis.

The outline of this chapter is as follows. In Section 8.1 we state the problem of interest, introduce
the RM-FEM and the main assumptions and notation required by our analysis. We then present
the two main applications of the RM-FEM, i.e., a posteriori error estimators and Bayesian inverse
problems, in Sections 8.2 and 8.3, respectively. For both applications, a series of numerical
experiments in the one and two-dimensional cases illustrate the usefulness and efficiency of the
RM-FEM. In Section 8.4 we present a rigorous a priori and a posteriori error analysis.

8.1 Random Mesh Finite Element Method

8.1.1 Notation

Let d = 1, 2, 3 and D ⊂ Rd be an open bounded domain with sufficiently smooth boundary ∂D.
For v ∈ Rd, we denote by ‖v‖2 the Euclidean norm on Rd. We denote by L2(D) the space of
square integrable functions, by (·, ·) the natural L2(D) inner product, and by Hp(D) the Sobolev
space of functions with p weak derivatives in L2(D). Moreover, we denote by H1

0 (D) the space of
functions in H1(D) vanishing on ∂D in the sense of traces, by H−1(D) the dual of H1

0 (D) and
by 〈·, ·〉 the natural pairing between H−1(D) and H1

0 (D). We equip the space H1
0 (D) with the

norm ‖v‖H1
0 (D) = ‖∇v‖L2(D), i.e. the H1(D) seminorm.

For an event space Ω, with a σ-algebra A and a probability measure P , we let the triple (Ω,A, P )
denote a probability space. For an event A ∈ A, we say that A occurs almost surely (a.s.) if
P (A) = 1. For n ∈ N we call random variables the measurable functions X : Ω → Rn, and
denote by L2(Ω) the space of square integrable random variables, with associated inner product.
Denoting by B(Rn) the Borel σ-algebra on Rn, we say that a probability measure µX on the
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measurable space (Rn,B(Rn)) satisfying µX(B) = P (X−1(B)) for all B ∈ B(Rn) is the measure
induced by X, or equivalently the distribution of X. For a set of random variables {Xi}ni=1
which are independent and identically distributed, we say they are i.i.d., and denoting by µ their
common induced measure on (Rn,B(Rn)), we write {Xi}ni=1

i.i.d.∼ µ.

8.1.2 Problem and Method Presentation

Let κ ∈ L∞(D,Rd×d), f ∈ H−1(D) and u be the weak solution of the partial differential equation
(PDE)

−∇ · (κ∇u) = f, in D,
u = 0, on ∂D,

(8.1)

i.e., the function u ∈ V ≡ H1
0 (D) satisfying

a(u, v) = F (v), a(u, v) :=
∫
D

κ∇u · ∇v dx, F (v) := 〈f, v〉, (8.2)

for all functions v ∈ V . We assume there exist positive constants κ and κ̄ such that for all ξ ∈ Rd

κ ‖ξ‖22 ≤ κξ · ξ ≤ κ̄ ‖ξ‖
2
2 ,

where ‖·‖2 is the Euclidean norm on Rd, so that there exist constants m,M > 0 such that for all
u, v ∈ V it holds

|a(u, v)| ≤M ‖u‖V ‖v‖V , |a(u, u)| ≥ m ‖u‖2V .
The Lax–Milgram theorem then guarantees that the problem (8.2) is well-posed.

Let N be a positive integer and let Th =
⋃N
i=1Ki be a partition of D, where for all i = 1, . . . , N ,

the element Ki ⊂ D is a segment, triangle or tetrahedron for d = 1, 2, 3 respectively. We denote
by hi = diam(Ki) the radius of the smallest ball containing Ki, and by h = maxi hi the maximum
radius, indexing the mesh Th. We denote by Vh the set of all vertices of the elements of Th,
and in particular as VIh ⊂ Vh the set of vertices which do not lie on the boundary of D, and by
VBh = Vh \ VIh. Moreover, we denote by NI the number of internal vertices, i.e., NI =

∣∣VIh∣∣. We
assume the partition to be conforming, i.e., if two elements have non-empty intersection, than
the latter consists of a point (for d = 1), of either a vertex or a side (for d = 2), and of either a
vertex, a segment or a face (for d = 3). We then denote by Vh ⊂ V , dim(Vh) <∞ the space of
continuous piecewise linear finite elements on Th, i.e.,

Vh := {v ∈ V : v
∣∣
K
∈ P1, ∀K ∈ Th},

where P1 is the space of linear functions. Let us remark that imposing uh = 0 on ∂D yields
dim(Vh) = NI . The FEM proceeds by finding uh ∈ Vh such that

a(uh, vh) = F (vh), (8.3)

for all vh ∈ Vh, which is equivalent to solving the linear system Au = f , where

uj = uh(xj), xj ∈ VIh, Aij = a(ϕj , ϕi), fj = F (ϕj), i, j = 1, . . . , NI ,

and where {ϕj}N−1
j=1 are the Legendre basis functions defined on the internal vertices of Th. The

assumptions on κ guarantee that A is symmetric positive definite, and in turn that u is uniquely
defined and the problem (8.3) is well-posed.

We now introduce the random-mesh finite element method (RM-FEM), which is based on a
random perturbation of the mesh Th obtained by moving the internal vertices. First, we here
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detail how we build perturbed meshes and which kind of random perturbations we consider to be
admissible. Let p ≥ 1, α := {αi : Ω→ Rd}NIi=1 be a sequence of random variables and let us define
the set of internal points ṼIh = {x̃i}NIi=1 where

x̃i := xi + hpαi. (8.4)

We then define the set of perturbed vertices as Ṽh = ṼIh ∪ VBh , i.e., the vertices on the boundary
are left unchanged. The perturbed mesh is then simply T̃h =

⋃N
i=1 K̃i, where each element

K̃i has the same vertices as its corresponding element Ki in the original mesh, modulo the
random perturbation (8.4). In other words, we compute the internal points of the perturbed
mesh following (8.4), and keep the connectivity structure of the original mesh Th. Clearly, the
mesh so defined is not conforming for any sequence of random variable α, for which we therefore
introduce an assumption.
Assumption 8.1. The sequence of random variables α is such that

(i) its components αi admit densities Fαi with respect to the Lebesgue measure on Rd, which
satisfy supp(Fαi) ⊂ Bri , where Bri ⊂ Rd is the ball centered in the origin and of radius
ri > 0, and which are radial, i.e., Fαi(x) = Fαi(‖x‖2),

(ii) the perturbed mesh T̃h is conforming a.s.

Let us remark that the assumption (i) actually implies for all p ≥ 1 the assumption (ii) a.s.,
provided the radii ri are chosen small enough. We assume in (i) the densities Fαi to be radial
functions so that the random perturbations do not have a privileged direction.
Example 8.2. In the one-dimensional case, let 0 = x0 < x1 < . . . < xN = 1 so that we have
NI = N − 1. Denoting Ki = (xi, xi−1) we call h̄i the minimum element size for the two intervals
sharing the point xi as a vertex, i.e., h̄i := min{hi, hi+1}. Then, a choice of random variables
satisfying Assumption 8.1 is given by

αi =
(
h−1h̄i

)p
ᾱi, i = 1, . . . , N − 1, {ᾱi}N−1

i=1
i.i.d.∼ U

((
−1

2 ,
1
2

))
,

where for a set D ∈ Rd we denote by U(D) the uniform distribution over D. With this choice,
indeed, we have that x̃i < x̃i−1 a.s., and therefore the perturbed mesh is conforming. In the
two-dimensional case, we introduce for i = 1, . . . , NI the notation

∆i = {K ∈ Th : K has xi as a vertex}.

Analogously to the one-dimensional case, we write h̄i := minj:Kj∈∆i
hj . In this case, it is possible

to verify that choosing for all i = 1, . . . , NI

αi = (h−1h̄i)pᾱi, i = 1, . . . , NI , {ᾱi}NIi=1
i.i.d.∼ U

(
B1/2

)
,

then α satisfies Assumption 8.1. We verify this graphically in Fig. 8.1, where we show a realization
of the perturbed mesh based on a generic Delaunay mesh and on a structured mesh on D = (0, 1)2

along with the sets where the perturbed points are constrained to belong a.s. We notice that for
p > 1 the magnitude of the perturbations clearly tends to vanish. Finally, we remark that similar
admissible perturbations can be introduced in higher dimensions.

Having defined the perturbed mesh, we now proceed with describing the RM-FEM. Let Ṽh be the
space of continuous piecewise linear finite elements on T̃h. Let moreover {ϕ̃i}NIi=1 be the Legendre
basis functions defined on the internal vertices of T̃h and Ĩ : C0(D) ∩ V → Ṽh be the Lagrange
interpolation operator onto Ṽh, i.e., for a function v ∈ C0(D) ∩ V and for x ∈ D we define

Ĩv(x) :=
NI∑
i=1

v(xi)ϕ̃i(x).
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Figure 8.1 – A realization of T̃h for p = {1, 1.5} based on two meshes Th of D = (0, 1)2. On
the first line, a Delaunay mesh. On the second line, a structured mesh. The regions where the
perturbed points are included a.s. are depicted by light grey circles.

We are then interested in the two functions belonging to the finite element space Ṽh whose
definition we give below.

Definition 8.3. Let uh ∈ Vh be defined in (8.3). We define the RM-FEM interpolant as the
random function Ĩuh ∈ Ṽh, where Ĩ is the Lagrange interpolant onto Ṽh.

Definition 8.4. Given the random finite element space Ṽh, we define the RM-FEM solution as
the unique random function ũh ∈ Ṽh such that

a(ũh, ṽh) = F (ṽh),

for all ṽh ∈ Ṽh.

Remark 8.5. Clearly, either for any fixed p ≥ 1 and h→ 0 or for any fixed h < 1 and p→∞, the
functions uh, Ĩuh and ũh tend to coincide. We visualize this for uh and ũh in Fig. 8.2, where
we simply fix κ = 1 and the right-hand side f such that u = sin(2πx) in (8.1), and consider the
effects of increasing p and decreasing h. For this simple problem, we notice that for p = 2 and
N = 20 the FEM solution uh and the RM-FEM solution ũh are almost indistinguishable.
Remark 8.6. All the quantities distinguished by a tilde (e.g., T̃h, Ṽh, Ĩ) are random variables
with values in appropriate spaces. For example ũh is a random function ũh : Ω×D → R, such
that Ω×D 3 (ω, x) 7→ ũh(ω, x). For economy of notation, in the following we drop the argument
ω from all random variables.
Remark 8.7. The coefficient p in (8.4) has the same role as the coefficient identified by the same
symbol in both [6, 39], i.e., it controls the variability of the probabilistic solutions by tuning the
variability of the noise which is applied to the method.
Remark 8.8. Let us remark that the RM-FEM interpolant Ĩuh is well-defined even allowing the
vertices of Th which lay on the boundary ∂D to be perturbed, as far as the perturbation moves
them inside the domain D. The random RM-FEM interpolant Ĩuh does not in this case belong
to the space V in this case since it is not defined on the whole domain D and does not satisfy
boundary conditions. For practical applications, one can nevertheless employ the RM-FEM
interpolant defined on a smaller domain, which results from a perturbation of all vertices of Th,
including those on the boundaries.
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Figure 8.2 – Comparison between the RM-FEM and the FEM solutions. We display the solution
uh and 50 realizations of ũh, by row respectively for p = {1, 2} and by column for N = {5, 10, 20}.

Before proceeding with the two main applications of the RM-FEM, i.e., a posteriori error
estimators and Bayesian inverse problems, we state an a priori error estimate, which suggests
how to balance the sources of error due to numerical discretization and to the randomization of
the method, respectively.

Theorem 8.9. Let the solution u of (8.1) satisfy u ∈ H2(D). Then, it holds

‖ũh − u‖V ≤ Ch, a.s.,

for a constant C > 0 independent of h. Moreover, if p = 1 in (8.4) the numerical and discretization
errors are balanced with respect to h, i.e., it holds

‖uh − ũh‖V = O(h) = O(‖u− uh‖V ), a.s.

This results indicates that one should fix p = 1 in (8.4) in order to obtain a family of probabilistic
solutions whose statistical properties should reflect the true error. This is crucial when the
RM-FEM is employed in a pipeline of computations such as Bayesian inverse problems, which
will be presented in detail in Section 8.3. The proof of Theorem 8.9 is elementary and discussed
in Section 8.4.1.

8.2 A Posteriori Error Estimators based on the RM-FEM
The first and foremost application of the RM-FEM is deriving a posteriori error estimators which
are entirely based on the statistical information carried on by the mesh perturbation. We say
that a quantity Eh is an a posteriori error estimator if it gives an error estimate on the numerical
approximation and is computable only by knowledge of the numerical solution. Moreover, if there
exist constants Cup and Clow independent of h and of u such that

ClowEh ≤ ‖u− uh‖V ≤ CupEh, (8.5)
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we say that the a posteriori error estimator is reliable and efficient, respectively. Indeed, the
upper bound above guarantees that when the estimator is small, so is the numerical error. The
lower bound, instead, gives an insurance on the quality of the estimator, as it shows that the
estimation of the error is not exceedingly pessimistic. There exist in the literature a huge number
of a posteriori error estimators, and we refer the reader to the surveys given e.g. in [12, 141].
Most a posteriori error estimators are expressed in the form

Eh =
( ∑
K∈Th

η2
K

)1/2

,

where the ηK are local quantities depending on the solution and the data on the element K and
its neighbors. For example, in the two-dimensional case a valid a posteriori error estimator is
given by the expression of its local components

η2
K = h2

K ‖f‖
2
L2(K) + hK ‖J∇uh · νKK‖2L2(∂K) ,

where J·K is the jump operator and νK denotes the unitary vector normal to the boundary of
K (see e.g. [140, Section 3] or [12, Chapter 2]). Other a posteriori error estimators are based
on recovered gradients, which are employed as surrogates of the gradient of the exact solution
to estimate the error. A notable member of these methodologies is the Zienkiewicz–Zhu (ZZ)
patch recovery technique [147,148], which is proved to be superconvergent on special meshes, and
which is in practice widely employed on any mesh.

It has been heuristically noted for ODEs in [25, 31, 127] that information on the variability of
a probabilistic solution can be employed to estimate the error and thus adapt the numerical
discretization. Indeed, building probabilistic solution to otherwise deterministic problems should
pursue the goal of quantifying numerical errors through uncertainty. Guided by this observation,
we now introduce two probabilistic error estimators for elliptic PDEs.

Definition 8.10. Let Ĩuh be the RM-FEM interpolant defined in Definition 8.3 and for each
K ∈ Th, let us denote by K̃ ∈ T̃h its corresponding element in T̃h. We define the first RM-FEM a
posteriori error estimator as

Ẽh,1 :=
( ∑
K∈Th

η̃2
K,1

)1/2

, with η̃2
K,1 = h

−(p−1)
K E

[∥∥∥∇(uh − Ĩuh)
∥∥∥2

L2(K̃)

]
.

Moreover, we define the second RM-FEM a posteriori error estimator as

Ẽh,2 :=
( ∑
K∈Th

η̃2
K,2

)1/2

, with η̃2
K,2 = h

−(2p−2)
K |K|E

[∥∥∥∇uh∣∣K −∇Ĩuh∣∣K̃∥∥∥2
]
.

Remark 8.11. The scaling factors h−(p−1)
K and h−(2p−2)

K in the definition of η̃K,1 and η̃K,2 are
necessary to obtain well-calibrated error estimators. This is made clearer in the one-dimensional
case by the analysis presented in Section 8.4.2. For higher dimensions, they can be partially
explained with the ansatz (8.13), especially for the first estimator Ẽh,1, and they appear in practice
to be the correct scaling.
Remark 8.12. Computing the estimator Ẽh,1 is more involved than the estimator Ẽh,2. Indeed, for
the latter it is sufficient to compute the interpolant Ĩuh and the gradients over each element of
uh and of the interpolant. For Ẽh,1, instead, one has to compute on each element K̃ the quantity∥∥∥∇(uh − Ĩuh)

∥∥∥
L2(K̃)

.
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By construction, each element K̃ overlaps with the elements corresponding to its neighbors in
the original mesh in a non-trivial manner, and if d > 1 one has to rely to the construction of
a “super-mesh” (see e.g. [42,43]) such that on each of its elements the quantity ∇(uh − Ĩuh) is
constant. A super-mesh has to be built for each realization of the perturbed mesh T̃h, which
could therefore be expensive.

In this article, we show in the one-dimensional case that the estimators given in Definition 8.10
are reliable and efficient in the sense of (8.5). In the statement of our theoretical result, which is
given below, we make use of a quantity Λ ∈ R which is of higher order in most practical scenarios
and which is defined as

Λ2 := hζ
N∑
j=1

∫
Kj

(f(x) + Cj)2 dx, (8.6)

where for each Kj the real constant Cj will be specified in the analysis of Section 8.4.2 (see
e.g. [19, Equation (8.7)]). Moreover, we consider one-dimensional meshes which are λ-quasi-
uniform, i.e., we assume there exists a constant λ ∈ (1,∞) such that it holds

1
λ
≤ hj
hj−1

≤ λ, j = 2, . . . , N,

uniformly in h. Finally, we consider perturbations satisfying

αi =
(
h−1h̄i

)p
ᾱi, i = 1, . . . , N − 1,

where h̄i = min{hi, hi+1} and for a i.i.d. sequence of random variables {ᾱi}N−1
i=1 such that

|ᾱ1| ≤ 1/2 a.s. These perturbations are indeed the same as the ones presented in Example 8.2,
but without the assumption of {ᾱi}Ni=1 to be uniformly distributed, which is not necessary in
the following. In practice, a uniform distribution is nevertheless advisable, as it is still general
enough and satisfies the radial assumption of Assumption 8.1(i). We moreover introduce the
following technical assumption on the perturbation.
Assumption 8.13. Let the family of meshes Th be λ-quasi-uniform, let p be the coefficient
introduced in (8.4) and assume that for all h and p there exists C > 0 such that

4hp−1E |ᾱ1|2

E |ᾱ1|
+ C < 1 + λ−(p−1).

Remark 8.14. We note that Assumption 8.13 holds for p > 1 and h sufficiently small, and is
therefore not restrictive in practice.

We can now state the main result involving a posteriori error estimators.

Theorem 8.15. Let the dimension d = 1, let p > 1 in (8.4) and let Assumption 8.1 hold.
Moreover, let Ẽh,1, Ẽh,2 and Λ be given in Definition 8.10 and (8.6) respectively and let the family
of meshes Th be λ-quasi-uniform. Then, there exists C > 0 independent of h and of the solution
u such that it holds for k ∈ {1, 2}

‖u− uh‖V ≤ C̃(Ẽ2
h,k + Λ2)1/2,

up to higher order terms in h and under Assumption 8.13 for k = 1. If additionally κ ∈ C2(D)
and f ∈ C1(D), then there exist constants C̃low and C̃up independent of h and of the solution u
such that for k ∈ {1, 2} it holds

C̃lowẼh,k ≤ ‖u− uh‖V ≤ C̃upẼh,k,

up to higher order terms in h and under Assumption 8.13 for k = 1.
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Let us notice that the estimators given in Definition 8.10 involve the computation of an expectation
with respect to the random perturbations of the mesh, and therefore a Monte Carlo simulation is
needed in practice. Let NMC be a positive integer, k ∈ {1, 2} and {Ẽ(i)

h,k}Mi=1 be i.i.d. realizations
of the estimator Ẽh,k, obtained with independent perturbations of the mesh. Then, in practice
we compute

Ẽh,k := 1
NMC

NMC∑
i=1

Ẽ
(i)
h,k. (8.7)

Remark 8.16. It could be suggested that the application of Monte Carlo techniques increases
dramatically the simulation time. We argue that in practice the computational overhead is
not relevant, mainly for three reasons. First, due to Theorem 6.7 the variance of Monte Carlo
estimators drawn from probabilistic numerical methods decreases with respect to the discretization
size h. Hence, the number of simulations M does not need to be large, nor increasing if h→ 0,
to guarantee a good quality of the estimator. The same arguments hold for the RM-FEM, too.
Second, the Monte Carlo estimation is completely parallelizable, thus reducing the cost by a factor
equal to the number of available computing units. Finally, the computation of the RM-FEM
interpolant Ĩuh is not computationally involved, and neither is when repeated NMC times.

8.2.1 Numerical Experiments

We now present numerical experiments on one and two-dimensional test cases to demonstrate the
validity of our a posteriori error estimators. In particular, we are interested in determining whether
the probabilistic error estimators introduced in Definition 8.10 are indeed reliable estimators for
the numerical error in the FEM, and in employing these estimators for local refinements of the
mesh. Setting a tolerance γ > 0, our goal is building a mesh Th such that

‖u− uh‖V
‖uh‖V

≤ γ. (8.8)

Replacing the numerator with Ẽh,k, k ∈ {1, 2}, we notice that the condition (8.8) is satisfied if it
holds for all K ∈ Th

η̃K,k ≤
γ ‖uh‖V
C̃up
√
N

=: γloc. (8.9)

Indeed, in this case

‖u− uh‖2V ≤ C̃
2
upẼ2

h,k = C̃2
up
∑
K∈Th

η̃2
K,k ≤ γ2 ‖uh‖2V ,

and thus (8.8) holds. Let us remark that C̃2
up is not known a priori in practice, and therefore

we just decide to employ the condition (8.9) fixing C̃up = 1 in our experiments. We therefore
adapt the mesh by computing the local contributions and comparing them with γloc, thus locally
refining the mesh if the condition (8.9) is not met, and coarsening if the local estimators are
excessively small with respect to γloc.

In the following we employ for both the one and the two-dimensional cases the uniform distributions
given in Example 8.2 for the random perturbations of the points. In light of Lemma 8.19 and
Lemma 8.20, we decide to correct the estimators by normalizing them with respect to the random
perturbations. In particular, in the following, the estimators are normalized as Ẽh,1 ← Ẽh,1/E ‖ᾱ1‖
and Ẽh,2 ← Ẽh,2/E ‖ᾱ1‖2.
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Figure 8.3 – Results for the one-dimensional experiment of Section 8.2.1. First and second rows:
numerical and exact solutions uh and u on the left, local contributions to the error estimators
of Definition 8.10 compared with the true error ‖u− uh‖K on the right, at initialization and
termination of the adaptivity procedure. Third row: on the left convergence of the global error
‖u− uh‖V and of the estimator Eh until the tolerance γ, on the right the effectivity index.

One-Dimensional Case

We first consider d = 1 and the two-point boundary value problem (8.15) with κ and the exact
solution u given by

κ(x) = 1 + x3, u(x) = x3 sin(aπx) exp(−b(x− 0.5)2),

where we fix a = 15 and b = 50, and where we choose the right-hand side f so that u is indeed the
solution. As a goal, we set the tolerance γ = 10−2 in (8.8) and stop the algorithm when condition
(8.9) is met by all elements of the mesh. We consider the RM-FEM implemented with uniform
random variables as in Example 8.2 and fix p = 3 in (8.4). Moreover, we consider NMC = 20
realizations of the probabilistic mesh to approximate the error estimator as in (8.7). We then
compute both the error estimators given in Definition 8.10 and employ Ẽh,1 for adapting the
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Figure 8.4 – Exact solution u1 for the experiment of Section 8.2.1. Both the contour and the
three-dimensional view highlight the steep gradient that features u1.

mesh by refinement and coarsening, guided by the condition (8.9). The adaptivity algorithm is
initialized with a mesh Th built on N = 30 elements of equal size and proceeds by refinement and
coarsening. Results, given in Fig. 8.3, confirm the validity of our probabilistic error estimators.
In particular, we remark that the local error estimators succeed in identifying the regions where
the mesh has to be refined, thus getting a solution with an approximately equal distribution of
the error over the domain. Both probabilistic estimators, moreover, succeed in bounding the
global error until the tolerance is reached, with the estimator Ẽh,2 which appears to be more
efficient than Ẽh,1.

Two-Dimensional Case

We now present two numerical experiments conducted in the two-dimensional case. In particular,
for both experiments we only focus on the computation of Ẽh,2 in Definition 8.10, since in view of
Remark 8.12 this second estimator is computationally easier to implement than Ẽh,1 for d > 1.
To account for errors on the boundary elements, we decide for these experiments to perturb all
points, including those on the boundaries, following Remark 8.8. In order for Ĩuh, and thus Ẽh,2
to be well-defined, we reflect the perturbed boundary points symmetrically to the boundary ∂D
in case they are outside the domain. For both experiments, we implement the RM-FEM with
a uniform distribution for the random perturbations, as described in Example 8.2. Moreover,
we fix p = 3 and compute the Monte Carlo approximation (8.7) on NMC = 500 realizations of
the random mesh. For the adaptivity algorithm, we start from a coarse mesh and apply regular
local refinements if the condition (8.9) is not met by the local error estimator η̃K,2. In the
two-dimensional case we do not apply coarsening to the mesh.

We first consider D = (0, 1)2, the conductivity κ = 1, so that (8.1) reduces to −∆u = f with
homogeneous Dirichlet boundary conditions. Moreover, we choose the right-hand side f such that

u1(x, y) = −x(1− x)y(1− y) arctan
(
β

(
x+ y√

2
− 4

5

))
,

where β > 0. The solution has a steep transition around the line {y = 4
√

2/5 − x}, whose
steepness is proportional to the parameter β. In Fig. 8.4, we show the exact solution for β = 20,
which we fix for this experiment. We initialize the adaptivity procedure with a mesh with
maximum element size h = 1/5 and proceed with adaptation until a tolerance γ = 0.1. In Fig. 8.5
we show the convergence of Ẽh,2 with respect to the convergence of the true error, as well as the
the effictivity index for this experiment. We can see that the estimator indeed captures the error
globally. In Fig. 8.6, we show the behavior of the local contributions η̃K,2 with respect to the
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Figure 8.5 – Error convergence and effectivity index for the first experiment (function u1) of
Section 8.2.1

true error on each element, as well as the mesh adaptation. We can see that the error estimator
succeeds in identifying the region where gradients are the steepest and proposes a mesh which
appears adapted to this problem.

We then consider the L-shaped domain with the re-entrant corner on the origin, i.e. D =
(−1, 1)2 \ (−1, 0)2. We set κ = 1, f = 0 and fix a inhomogeneous Dirichlet boundary conditions
u = g on ∂D, with g chosen such that the exact solution satisfies

u2(r, ϑ) = r2/3 sin
(

2
3

(
ϑ+ π

2

))
,

where (r, ϑ) ∈ R+ × (0, 2π] are the polar coordinates in R2. The exact solution of this problem
is given in Fig. 8.7. Let us remark that the gradient of the exact solution is singular at the
re-entrant corner, and we expect the mesh to be refined consequently at the singularity. For this
experiment, we fix the tolerance γ = 0.03, and initialize the mesh to have a maximum element
size of h = 1/3. Results, given in Fig. 8.8 and Fig. 8.9, show on the one hand that the estimator
reproduces well the behavior of the global error during adaptation, and on the other hand that
the mesh is progressively refined at the singularity as expected.

8.3 The RM-FEM for Bayesian Inverse Problems
In this section, we consider the application of the RM-FEM to Bayesian inverse problems. Let us
recall that an introduction to Bayesian inverse problems is given in Chapter 1, and a general
introduction of how to fit probabilistic methods in this framework is given in Section 6.2, where
we also motivate the insertion of probabilistic forward maps into inverse problems. Here, we give
only the details which are pertinent to the particular case of elliptic PDEs, and refer the reader to
the aforementioned introductions for theoretical results and further details on implementation. In
particular, we consider the framework of [49, Section 3.4] and introduce the parameterized PDE

−∇ · (exp(ϑ)∇u) = f, in D,
u = 0, on ∂D,

(8.10)

where D is an open bounded set of Rd and ϑ : D → R is a scalar function. We let ϑ be such
that problem (8.10) is well-posed, i.e., κ = exp(ϑ) ∈ L∞(D) and κ ≥ κ > 0, and we denote by X
the space of admissible values for ϑ. We introduce the solution operator S : X → V such that
S : ϑ 7→ u, and the observation operator O : V → Rm, which maps the solution of the PDE to point
evaluations inside the domain on points x∗ = x∗1, . . . , x

∗
m, i.e. O : u 7→ y := (u(x∗1), . . . , u(x∗m))>.

Moreover, we denote by G = O ◦ S, G : X → Rm, the so-called forward operator, which maps the
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Iter. 2 Iter. 3 Iter. 4 Iter. 5

Figure 8.6 – Per row: True local error, local error estimator η̃K,2 and mesh Th at each iteration
of the adaptivity algorithm for the function u1 of Section 8.2.1. The color bar is shared by the
first and the second rows.

parameter to the observations. We then have the Gaussian observation model

y = G(ϑ) + β, β ∼ N (0,Σ),

where Σ ∈ Rm×m is a non-singular covariance matrix on Rm. Given an observation y∗ =
(u(x∗1), . . . , u(x∗m))> associated to an unknown value ϑ∗ ∈ X and corrupted by observational
noise β ∈ Rm the inverse problem can then be stated as:

find ϑ∗ ∈ X given observations y∗ = G(ϑ∗) + β. (8.11)

As discussed in Chapter 1, the randomness and the mismatch between the dimension of the
unknown and of the observation make problem (8.11) ill-posed. We choose to restrict ourselves
to the space H = C0(D) ∩ V , which is a valid subspace of admissible values for ϑ, i.e., H ⊂ X.
We then consider a Gaussian prior measure µ0 = N (0,Γ0), where Γ0 = −∆−α with α > d/2 and
where we equip the Laplacian with homogeneous boundary conditions. Fractional powers of the
Laplacian should be understood as per [131, Section 2]. With this choice, we have that µ0(H) = 1,
and therefore µ0 is a valid prior on the space H (see e.g. [131, Theorem 3.1]). Moreover, we
remark that the forward operator G satisfies Assumption 1.1 due to the discussion of [131, Section
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Figure 8.7 – Exact solution u2 for the experiment of Section 8.2.1

Figure 8.8 – Error convergence and effectivity index for the second experiment (function u2) of
Section 8.2.1

3.3]. Hence, the Bayesian inverse problem is well-posed and the posterior is given by
dµ
dµ0

(ϑ) = 1
Z

exp(−Φ(ϑ; y)),

where Z is the normalization constant

Z =
∫
H

exp(−Φ(ϑ; y)) dµ0(ϑ),

and where for any y ∈ Rm the potential Φ(·; y) : X → R is given due to the Gaussian assumption
on the noise β ∼ N (0,Σ) by

Φ(ϑ; y) = 1
2

∥∥∥Σ−1/2 (G(ϑ)− y)
∥∥∥2

2
.

We consider the approximated posterior µh, obtained applying the forward map Gh = O◦Sh, where
O is the observation operator defined above, and where Sh : X → Vh maps a log-conductivity in
the FEM solution uh ∈ Vh. Moreover, we define following Section 6.2 the random posterior µ̃h,
which is obtained by discretizing the forward map with the RM-FEM as G̃h = O ◦ S̃h, where the
solution operator S̃h : X → Ṽh maps a log-conductivity ϑ ∈ X to the RM-FEM solution ũh ∈ Ṽh
of Definition 8.4.

An approximate solution of the inverse problem is computed in practice employing the truncated
Karhunen–Loève (KL) expansion based on the eigenfunctions of the prior covariance Γ0, as
described in Section 1.2, and by approximating the posterior µ̃h with its Monte Carlo surrogate
µ̃h,MC defined in Section 6.2. We note that the marginal approximation µ̃h,mar could be employed,
too, but due to the high dimension of the problem such a choice would entail a significant
additional computational cost, as per Remark 6.10.
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Iter. 2 Iter. 3 Iter. 4 Iter. 5

Figure 8.9 – Per row: True local error, local error estimator η̃K,2 and mesh Th at each iteration
of the adaptivity algorithm for the function u2 of Section 8.2.1. The color bar is shared by the
first and the second rows.

8.3.1 Numerical Experiments

In this section we present numerical experiments highlighting the beneficial effects of adopting
the probabilistic framework of the RM-FEM in the context of Bayesian inverse problems.

One-Dimensional Case

We first consider D = (0, 1) and solve the inverse problem presented above for two different
true diffusion fields κ∗. In both cases, we consider the prior on H to be given by N (0,Γ0), with
Γ−1

0 = −d2/dx2 with homogeneous boundary conditions, so that the Bayesian inverse problem is
well-posed. First, we consider κ∗1 = exp(ϑ∗1), where the log-conductivity ϑ∗1 ∈ H is given by

ϑ∗1(x) =
4∑
j=1

ξj
√
λjϕj(x),

with ξ1 = ξ2 = 1, ξ3 = ξ4 = 1/4, and where {(λi, ϕi)}4i=1 are the first four ordered eigenpairs
of Γ0. Second, we consider ϑ∗2 ∈ X ∩HC , so that the true conductivity does not belong to the
domain in which we solve the inverse problem, but it is still admissible for (8.10) to be well-posed.
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Truth κ∗ Mean Eµ[κ] Confidence Interval

Figure 8.10 – Numerical results for κ∗1 in Section 8.3.1. In all plots, the solid line represents the
true conductivity, the dashed line is the posterior mean, and the shaded grey area is a confidence
interval. In the first row, results are obtained by approximating the forward map with FEM, and
in the second with the RM-FEM.

In particular, we consider the discontinuous conductivity

κ∗2(x) =


1.5, 0.2 < x < 0.6,
0.5, 0.6 < x < 0.8,
1, otherwise,

and infer ϑ∗2 = log(κ∗2). For both problems, we choose the right-hand side in (8.10) as f(x) =
sin(2πx). Synthetic observations are obtained as point evaluations of a reference solution on
points x∗i = i/10, for i = 1, . . . , 9, corrupted by Gaussian noise N (0, 10−8I). The forward map is
approximated with FEM and RM-FEM. The mesh Th for the FEM is equally spaced, and we
vary the number of elements N = {10, 20, 40}. For the RM-FEM, we consider p = 1 in (8.4) as
per Theorem 8.9 and implement the random perturbations with an uniform distribution as in
Example 8.2.

We sample with the MH algorithm from the posterior distributions µh and µ̃h, withMMC = 2 ·105

for µh and with MMC = 50 and Mchain = 2 · 105 for µ̃h. Knowing for the first conductivity κ∗1
that the true conductivity is fully determined by four coefficients, we fix the truncation index
NKL = 4 in the Karhunen–Loève expansion. For the second conductivity κ∗2, we fix NKL = 9.
We then approximate the mean and pointwise standard deviation for the deterministic and
probabilistic posteriors, respectively. Moreover, we arbitrarily fix a pointwise confidence interval
at twice the standard deviation away from the mean. Numerical results are given in Fig. 8.10 and
Fig. 8.11. Results highlight that for a coarse approximation, specifically for N = 10, the posterior
distribution µh is overconfident on the result. Indeed, the posterior mean fails to capture precisely
the true conductivity in both the continuous and discontinuous case, and the confidence interval
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Truth κ∗ Mean Eµ[κ] Confidence Interval

Figure 8.11 – Numerical results for κ∗2 in Section 8.3.1 In all plots, the solid line represents the
true conductivity, the dashed line is the posterior mean, and the shaded grey area is a confidence
interval. In the first row, results are obtained by approximating the forward map with FEM, and
in the second with the RM-FEM.

is extremely sharply concentrated around the mean. Conversely, the distribution µ̃h based on the
probabilistic forward model accounts better for the uncertainty due to numerical discretization.
Increasing the number of elements N , the mean computed under µh and µ̃h tends to approximate
better the true conductivity field. In particular, for N = 40 the posteriors µh and µ̃h are already
practically undistinguishable and are close to the true field. Moreover, let us remark that while
the width of the confidence interval seems independent of N for µh, it shrinks coherently to the
discretization for µ̃h. Finally, we note that for κ∗2 even for larger values of N the posterior µ̃h
seems to capture with its uncertainty local errors in the solution of the inverse problem. Indeed,
the posterior mean is particularly off the true field on the left side of the domain, where the
confidence interval is wider with respect to areas where the solution is more accurate.

Two-Dimensional Case

We consider now a two dimensional example on the domain D = (0, 1)2. We fix a Gaussian
prior µ0 on H for the log-conductivity ϑ chosen as µ0 = N (0,Γ0), where Γ0 = −∆−1.3 with
homogeneous boundary conditions, so that the inverse problem is well-posed. We fix NKL = 6
and let the true conductivity κ∗ = exp(ϑ∗) in (8.10) be given by

ϑ∗ =
6∑
i=1

√
λiϕiξ

∗
i ,

where {(λi, ϕi)}6i=1 are the first six ordered eigenpairs of Γ0, and where ξ∗i = (−1)i+1 · 10
for i = 1, 2, . . . , 6. Let us remark that ϑ∗ ∈ H. The right-hand side in (8.10) is chosen as
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Figure 8.12 – Numerical results for Section 8.3.1. First row: True conductivity field κ∗ and
posterior mean field κ̂µh estimated with MCMC and different values of h. Second row: Mean
error vs standard deviation under µh and µ̃h. On the left, L2(D) error on the mean field vs L2(D)
norm of the punctual standard deviation under µh and µ̃h. On the right, error with respect to
exact KL coefficients, and standard deviations under µh and µ̃h.

f(x, y) = 8π2 sin(2πx) sin(2πy). Synthetic observations are obtained by evaluating a reference
solution on m = 50 random locations sampled from U(D) and then corrupted by an observational
noise distributed as N (0, 10−6I). We then approximate the forward map in the inverse problem
with the FEM and the RM-FEM. We choose a structured mesh Th as the one in Example 8.2 (or
the second row of Fig. 8.1). In particular, in this case we let h denote the constant length of the
short side of the triangular elements, i.e., the inverse of the number of subdivisions of each side
of D. In particular, we consider h = 0.1 · 2−i, i = 0, 1, . . . , 3. The RM-FEM is implemented with
p = 1 in (8.4) as per Theorem 8.9, and with an uniform choice for the random perturbations as
the one described in Example 8.2.

Employing the notation introduced in Section 6.2, we then sample from the posterior distributions
µh and µ̃h employing the RAM method of [143] considering only the first NKL = 6 coefficients
in the KL expansion. In particular, we consider NMC = 105 samples for the deterministic case,
and for the probabilistic case we generate Nchain = 105 samples for NMC = 24 parallel chains,
each corresponding to a realization of the random mesh in the RM-FEM. We then compute
for each value of h the mean and standard deviation of the field computed under µh (resp. µ̃h)
and denote their Monte Carlo approximations as κ̂µh and σ̂κµh (resp. κ̂

µ̃h
, σ̂κ

µ̃h
). Moreover, we

consider the statistics of the 6-dimensional coefficient σ of the KL expansion, and denote by ξ̂µh
and σ̂ξµh the Monte Carlo approximation of mean and standard deviation computed under µh
(resp. ξ̂µh , σ̂

ξ

µ̃h
). We show in Fig. 8.12 the posterior mean κ̂µh for three values of h, compared to

the truth κ∗, and remark that the mean approximation is sensibly better for smaller values of h.
The mean value under the probabilistic posterior µ̃h is not shown, as it is essentially equal to the
deterministic case. The beneficial effect of employing the RM-FEM-based posterior distribution
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µ̃h, with respect to the FEM-based posterior µh, consists of the approximate equalities∥∥∥σ̂κ
µ̃h

∥∥∥
L2(D)

= O
(∥∥∥κ∗ − κ̂µ̃h∥∥∥L2(D)

)
,

∥∥∥σ̂ξ
µ̃h

∥∥∥ = O
(∥∥∥ξ∗ − ξ̂µ̃h∥∥∥) ,

which indicate that the error on the conductivity field, or on the coefficients of its KL expansion,
are well represented by the uncertainty in the posterior distribution. This is shown in Fig. 8.12,
where we notice that under µh the standard deviation is practically independent of h and small
with respect to the error on the solution of the inverse problem. Conversely, under µ̃h we have
that the posterior standard deviation converges accordingly to the error, both for the L2-norm of
the error on the mean and for the coefficients of the KL expansion.

8.4 Error Analysis for the RM-FEM
In this section, we present our a priori and our a posteriori error analysis for the RM-FEM. Let
us remark that while the a priori error analysis is carried on for a general space dimension d and
the adaptive algorithm has been shown to be efficient in higher dimensions (see Section 8.2.1),
we present a rigorous a posteriori error analysis only in case d = 1. Conversely, in the a priori
analysis we fix the coefficient p = 1 in (8.4), whereas in the a posteriori analysis we consider
general perturbations, i.e., general coefficients p ≥ 1 in the same equality.

8.4.1 A Priori Error Estimates

We first prove the a priori error estimate given in Theorem 8.9. The convergence properties of
the FEM for the elliptic problem (8.1) are well-established. In particular, without any additional
assumptions on the exact solution, i.e., when u ∈ V , it holds ‖u− uh‖V → 0 for h→ 0. Under
the more restrictive assumption u ∈ H2(D) ∩ V , we have a linear convergence rate, i.e.

‖u− uh‖V ≤ Ch |u|H2(D) , (8.12)

for a constant C > 0, which is independent of h and u [26, 33, 117]. It is desirable that the
RM-FEM is endowed with the same property. Moreover, we wish the error due to randomization
to be balanced with the error due to the FEM discretization, which is shown in the proof of
Theorem 8.9 below.

Proof of Theorem 8.9. Since (8.12) holds independently of the mesh, we have

‖u− ũh‖V ≤ C̃h |u|H2(D) , a.s.,

for a constant C̃ independent of h and u and of the coefficient p in (8.4). Hence, by the triangle
inequality we have for p = 1

‖uh − ũh‖V ≤ ‖u− uh‖V + ‖u− ũh‖V ≤ (C + C̃)h |u|H2(D) , a.s.,

i.e., we have O(‖uh − ũh‖V ) = O(‖u− uh‖V ), which shows the desired result.

Let us remark that we have shown above that the probabilistic solution converges with the same
rate with respect to h in case p = 1, but we have not considered the case p > 1, for which
the probabilistic term may be of higher order. Indeed, a preliminary theoretical and numerical
investigation leads us to conjecture that(

E ‖uh − ũh‖2V
)1/2

≤ Ch(p+1)/2, (8.13)
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so that, at least in the mean-square sense, the error due to randomization should converge faster
than the error due to discretization if p > 1.

8.4.2 A Posteriori Error Analysis in the One-Dimensional Case

In this section we prove our main result for the a posteriori error estimator of the RM-FEM
given in Definition 8.10, namely Theorem 8.15. Our goal is to prove in the one-dimensional case
that the probabilistic a posteriori error estimators are reliable and efficient, i.e., that there exist
positive constants C̃low and C̃up independent of h and u such that

C̃lowẼh,k ≤ ‖u− uh‖V ≤ C̃lowẼh,k. (8.14)

for k = {1, 2}. Consider the elliptic two-point boundary value problem

− (κu′)′ = f, in D,
u(0) = u(1) = 0,

(8.15)

where κ ∈ L∞(D) satisfies κ(x) ≥ κ almost everywhere in D, and where we assume f ∈ L1(D).
We recall that the notation for one-dimensional problems has been introduced and discussed in
Example 8.2 and at the end of Section 8.2. Additionally, we introduce here for a function w
which is piecewise constant on each Ki ∈ Th the jump operator

JwKxi := w
∣∣
Ki
− w

∣∣
Ki+1

, i = 1, . . . , N − 1, JwKx0
= JwKxN = 0.

Our strategy for proving that the error estimator introduced in Definition 8.10 satisfies (8.14)
relies on showing it is equivalent to known valid estimators. In particular, we consider the
following estimator, defined in [19, Definition 6.3].

Definition 8.17. Let κ be the diffusion coefficient of (8.15) satisfy κ ∈ C0(D) and κ ≥ κ > 0.
We define the error estimator

E2
h :=

N∑
j=1

η2
j , ηj :=

∥∥κ−1`j
∥∥
L2(Kj)

,

with `j : Kj → R the linear function defined by `j(xj−1) = τj,1, `j(xj) = −τj,0 where

τj,k = hj
hj−k+1 + hj−k

Ju′hKxj−k κ(xj−k).

Clearly, the quantity Eh is computable up to quadrature error due to the approximation of the
local estimators ηj . Let us finally introduce more precisely the higher-order quantity Λ appearing
in (8.6), i.e.,

Λ2 := hζ
N∑
j=1

∫
Kj

(f(x) + `′j(x))2 dx, (8.16)

where ζ ∈ (0, 1) is arbitrary and `j are the linear functions employed in Definition 8.17. We can
now state the main result concerning the estimator Eh, which summarizes [19, Theorems 8.1 and
8.2].

Theorem 8.18. Let Eh and Λ be defined in Definition 8.17 and (8.16), respectively. Then, it
holds up to higher order terms in h

‖u− uh‖V ≤ C
(
E2
h + Λ2)1/2 ,
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for a constant C independent of h and of the solution u. If moreover the family of meshes Th is
λ-quasi-uniform and if κ ∈ C2(D) and f ∈ C1(D) then, up to higher order terms, it holds

ClowEh ≤ ‖u− uh‖V ≤ CupEh,

for constants Clow, Cup independent of h and u.

We recall that in the one dimensional case the probabliistic error estimators for the RM-FEM are
given by

Ẽh,1 :=
(

N∑
i=1

η̃2
Ki,1

)1/2

, with η̃2
Ki,1 = h

−(p−1)
i E

[∥∥∥u′h − (Ĩuh)′
∥∥∥2

L2(K̃i)

]
.

Ẽh,2 :=
(

N∑
i=1

η̃2
Ki,2

)1/2

, with η̃2
Ki,2 = h

−(2p−3)
i E

∥∥∥∥∥u′
∣∣
hK − (Ĩuh)′

∣∣
K̃

∥∥∥∥∥
2
 .

Our strategy to prove Theorem 8.15 relies on showing that the deterministic estimator Eh of
Definition 8.17, as well as its probabilistic counterparts Ẽh,1 and Ẽh,2 above are all equivalent to
the quantity

J (uh) :=
N−1∑
i=1

h̄i Ju′hK
2
,

i.e., the sum of all squared jumps of the derivatives on the internal nodes. We first prove the
equivalence for Ẽh,1.

Lemma 8.19. Let Assumption 8.1 hold. Then, if the mesh is λ-quasi-uniform it holds(
E |ᾱ1|

(
1 + λ−(p−1))

2 − 2hp−1 E |ᾱ1|2
)
J 2(uh) ≤ Ẽ2

h,1 ≤
E |ᾱ1|

(
1 + λp−1)
2 J 2(uh),

where Ẽh,1 is given in Definition 8.10.

Proof. Let K̃i, i = 1, . . . , N , be a generic element of the perturbed mesh and let us compute the
derivative of the interpolant on K̃i, which is given by

(Ĩuh)′
∣∣
K̃i

= uh(x̃i)− uh(x̃i−1)
x̃i − x̃i−1

,

where an exact Taylor expansion allows to compute

uh(x̃i−1) = uh(xi−1) + hpαi−1u
′
h(x̃i−1).

Hence, it holds

(Ĩuh)′
∣∣
K̃i

= xi − xi−1

x̃i − x̃i−1
u′h
∣∣
Ki

+ hp
αiu
′
h(x̃i)− αi−1u

′
h(x̃i−1)

x̃i − x̃i−1
,

which we can rewrite rearranging terms as

(Ĩuh)′
∣∣
K̃i
− u′h

∣∣
Ki

= hp
αi

(
u′h(x̃i)− u′h

∣∣
Ki

)
+ αi−1

(
u′h
∣∣
Ki
− u′h(x̃i−1)

)
x̃i − x̃i−1

. (8.17)
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It is clear then that the expression above depends on the signs of the variables αi−1 and αi.
For simplicity of notation, we therefore introduce the events A(si,sj)

i,j ∈ A, where si, sj ∈ {+,−},
defined as

A
(si,sj)
i,j := {ω ∈ Ω: αi(ω) ∈ Rsi , αj(ω) ∈ Rsj}.

We now define eh := uh − Ĩuh and write for any i = 1, . . . , N

E ‖e′h‖
2
L2(K̃i) = E (Ii−1,i + Ii + Ii+1,i) ,

with
Ii,j :=

∫
Ki∩K̃j

(e′h)2 dx,

and where we write Ii := Ii,i and adopt the convention I0,1 = IN+1,N = 0. In what follows we
study E Ii,j . We first consider Ii, which we express by the law of total expectation as

E Ii =
∑

si−1,si∈{−,+}

E
[
Ii | A(si−1,si)

i−1,i

]
P (A(si−1,si)

i−1,i ). (8.18)

In the trivial case αi−1 > 0 and αi < 0, i.e., if A(+,−)
i−1,i occurs, we have K̃i ∩Ki = K̃i and therefore

E[Ii | A(+,−)
i−1,i ] = 0. If A(−,−)

i−1,i occurs, the equality (8.17) simplifies to

(Ĩuh)′
∣∣
K̃i
− u′h

∣∣
Ki

= − hpαi−1

x̃i − x̃i−1
Ju′hKxi−1

.

Since in this case
∣∣∣Ki ∩ K̃i

∣∣∣ = x̃i − xi−1, integrating yields

Ii = h2p(x̃i − xi−1)
(x̃i − x̃i−1)2 α2

i−1 Ju′hK
2
xi−1

. (8.19)

Similar calculations allow to show that if A(+,+)
i−1,i occurs, it holds

Ii = h2p(xi − x̃i−1)
(x̃i − x̃i−1)2 α2

i Ju′hK
2
xi
, (8.20)

Finally, if A(−,+)
i−1,i occurs, we get

Ii = h2p(xi − xi−1)
(x̃i − x̃i−1)2 ξ2

i . (8.21)

where we denote
ξi := αi−1 Ju′hKxi−1

+ αi Ju′hKxi . (8.22)

We thus have an expression for E Ii due to (8.18). We now turn to Ii−1,i. Since K̃i ∩Ki−1 = ∅ if
αi−1 > 0, we have by the law of total expectation

E Ii−1,i = E
[
Ii−1,i | A(−,−)

i−1,i

]
P (A(−,−)

i−1,i ) + E
[
Ii−1,i | A(−,+)

i−1,i

]
P (A(−,+)

i−1,i ). (8.23)

Let us remark that adding and subtracting u′h
∣∣
Ki

yields

(Ĩuh)′
∣∣
K̃i
− u′h

∣∣
Ki−1

= (Ĩuh)′
∣∣
K̃i
− u′h

∣∣
Ki
− Ju′hKxi−1

.

The same computations employed for Ii allow to conclude that

Ii−1,i =


− hpαi−1

(
hpαi−1

x̃i − x̃i−1
+ 1
)2

Ju′hK
2
xi−1

, if A(−,−)
i−1,i occurs,

− hpαi−1

(
hp

x̃i − x̃i−1
ξi + Ju′hKxi−1

)2
, if A(−,+)

i−1,i occurs.
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which, replaced into (8.23) gives the final expression for E Ii−1,i. Similarly, for Ii+1,i we have

E Ii+1,i = E
[
Ii+1,i | A(+,+)

i−1,i

]
P (A(+,+)

i−1,i ) + E
[
Ii+1,i | A(−,+)

i−1,i

]
P (A(−,+)

i−1,i ),

where

Ii+1,i =


hpαi

(
hpαi

x̃i − x̃i−1
− 1
)2

Ju′hK
2
xi
, if A(+,+)

i−1,i occurs,

hpαi

(
hp

x̃i − x̃i−1
ξi − Ju′hKxi

)2
, if A(−,+)

i−1,i occurs.

We now reassemble the quantity Ii + Ii−1,i + Ii+1,i by grouping terms with regards to their
conditioning on the sign of (αi−1, αi). In particular, some algebraic simplifications yield

Ii + Ii−1,i + Ii+1,i =



hpαi Ju′hK
2
xi
− h2pα2

i

x̃i − x̃i−1
Ju′hK

2
xi
, if A(+,+)

i−1,i occurs,

− hpαi−1 Ju′hK
2
xi−1
−

h2pα2
i−1

x̃i − x̃i−1
Ju′hK

2
xi−1

, if A(−,−)
i−1,i occurs,

hpαi Ju′hK
2
xi
− hpαi−1 Ju′hK

2
xi−1
− h2p

x̃i − x̃i−1
ξ2
i , if A(−,+)

i−1,i occurs.

We now can compute the estimator Ẽh,1 by summing its local contributions, as in

Ẽ2
h,1 =

N∑
i=1

η2
K,1 =

N∑
i=1

h
−(p−1)
i ‖e′h‖

2
L2(K̃i)

=
N∑
i=1

h
−(p−1)
i E(Ii + Ii−1,i + Ii+1,i) =: J1 + J2,

where J1 and J2 are given by

J1 := hp

2

N∑
i=1

h
−(p−1)
i

(
Ju′hK

2
xi
E [αi | αi > 0]− Ju′hK

2
xi−1

E [αi−1 | αi < 0]
)
,

J2 := −h
2p

4

N∑
i=1

h
−(p−1)
i

(
Ju′hK

2
xi−1

E
[

α2
i−1

x̃i − x̃i−1
| A(−,−)

i−1,i

]
+ Ju′hK

2
xi
E
[

α2
i

x̃i − x̃i−1
| A(+,+)

i−1,i

]
+E

[
ξ2
i

x̃i − x̃i−1
| A(−,+)

i−1,i

])
.

Let us consider J1 and J2 separately. Rearranging the sum, noticing that under Assumption 8.1(i)
it holds E [αi | αi > 0] = −E [αi | αi < 0] = E |αi| and recalling that αi = (h̄ih−1)pᾱi, we obtain

J1 = hp

2

N−1∑
i=1

(
h
−(p−1)
i + h

−(p−1)
i+1

)
Ju′hK

2
xi
E [αi | αi > 0]

= E |ᾱ1|
2

N−1∑
i=1

(
h
−(p−1)
i + h

−(p−1)
i+1

)
h̄pi Ju′hK

2
xi
.

Now, let us remark that if the mesh is λ-quasi-uniform, it holds(
1 + λ−(p−1)

)
h̄i ≤

(
h
−(p−1)
i + h

−(p−1)
i+1

)
h̄pi ≤

(
1 + λp−1) h̄i,

which implies

E |ᾱ1|
(
1 + λ−(p−1))

2 J 2(uh) ≤ J1 ≤
E |ᾱ1|

(
1 + λp−1)
2 J 2(uh). (8.24)
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We now turn to J2. Clearly, we have J2 ≤ 0, which implies the desired upper bound together
with (8.24). For the lower bound, we remark that in both cases A(+,+)

i−1,i and A(−,−)
i−1,i occur, we

have that x̃i − x̃i−1 ≥ hi/2, and if A(−,+)
i−1,i occurs, we have x̃i − x̃i−1 ≥ hi. Hence, simplifying the

conditioning in the first and second terms, we obtain

J2 ≥ −
h2p

4

N∑
i=1

h−pi

(
2 Ju′hK

2
xi
E
[
α2
i | αi > 0

]
+ 2 Ju′hK

2
xi−1

E
[
α2
i−1 | αi−1 < 0

]
+ E

[
ξ2
i | A

(−,+)
i−1,i

])
.

We now consider ξi given in (8.22) and use (a + b)2 ≤ 2(a2 + b2) for a = αi−1 Ju′hKxi−1
and

b = αi Ju′hKxi to obtain

E
[
ξ2
i | A

(−,+)
i−1,i

]
≤ 2 Ju′hK

2
xi−1

E
[
α2
i−1 | αi−1 < 0

]
+ 2 Ju′hK

2
xi
E
[
α2
i | αi > 0

]
.

Therefore

J2 ≥ −h2p
N∑
i=1

h−pi

(
Ju′hK

2
xi
E
[
α2
i | αi > 0

]
+ Ju′hK

2
xi−1

E
[
α2
i−1 | αi−1 < 0

])
.

Rewriting the sum and replacing the definition of αi yields

J2 ≥ −
N−1∑
i=1

h̄2p
i Ju′hK

2
xi

(
h−pi E

[
ᾱ2
i | ᾱi > 0

]
+ h−pi+1 E

[
ᾱ2
i | ᾱi < 0

])
.

Now h̄i = min{hi, hi+1} implies h−pi ≤ h̄
−p
i and h−pi+1 ≤ h̄

−p
i , which gives

J2 ≥ −2
N−1∑
i=1

h̄pi Ju′hK
2
xi

(
1
2 E

[
ᾱ2
i | ᾱi > 0

]
+ 1

2 E
[
ᾱ2
i | ᾱi < 0

])

≥ −2E |ᾱ1|2
N−1∑
i=1

h̄pi Ju′hK
2
xi
,

where we applied the law of total expectation on the second line. Finally, we have h̄i ≤ h and
p ≥ 1, which yield

J2 ≥ −2E |ᾱ1|2 hp−1J 2(uh).
Combining this with (8.24) then yields the desired lower bound and thus concludes the proof.

Let us remark that the coefficient appearing in the lower bound of Lemma 8.19 is positive if
Assumption 8.13 holds. We now prove the equivalence of the estimator Ẽh,2 given in Definition 8.10
with J (uh).

Lemma 8.20. Let Assumption 8.1 hold and let the mesh Th be λ-quasi uniform. Then, it holds

E |ᾱ1|2

2(1 + λ)2λ2p−1J
2(uh) ≤ Ẽ2

h,2 ≤ 3E |ᾱ1|2 J 2(uh),

where Ẽh,2 is given in Definition 8.10.

Proof. As |Ki| = hi, we have

Ẽh,2 =
N∑
i=1

h
−(2p−3)
i E

[∣∣∣u′h∣∣Ki − (Ĩuh)′
∣∣
K̃i

∣∣∣2] .
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Proceeding similarly to (8.19), (8.20) and (8.21) and applying the law of total expectation, we
obtain

E
[∣∣∣u′h∣∣Ki − (Ĩuh)′

∣∣
K̃i

∣∣∣2] = h2p

4 Ju′hK
2
xi
E
[

α2
i

(x̃i − x̃i−1)2 | A
(+,+)
i−1,i

]
+ h2p

4 Ju′hK
2
xi−1

E
[

α2
i−1

(x̃i − x̃i−1)2 | A
(−,−)
i−1,i

]
+ h2p

4 E
[

ξ2
i

(x̃i − x̃i−1)2 | A
(−,+)
i−1,i

]
,

(8.25)

where we recall the notation ξi introduced in (8.22). Let us first consider the lower bound. Since
ξ2
i ≥ 0 a.s., and x̃i− x̃i−1 ≤ (1 +λ)hi a.s. under the assumption that the mesh is λ-quasi-uniform,
we have

E
[∣∣∣u′h∣∣Ki − (Ĩuh)′

∣∣
K̃i

∣∣∣2] ≥ h2ph−2
i

4(1 + λ)2

(
Ju′hK

2
xi
E
[
α2
i | αi > 0

]
+ Ju′hK

2
xi−1

E
[
α2
i−1 | αi−1 < 0

])
.

Assembling the sum, rearranging terms and recalling that αi = (h−1h̄i)pᾱi with h̄i = min{hi, hi+1},
we then obtain

Ẽ2
h,2 ≥

1
2(1 + λ)2

N−1∑
i=1

h̄2p
i h

1−2p
i Ju′hK

2
xi

(
1
2 E

[
ᾱ2
i | ᾱi > 0

]
+ 1

2 E
[
ᾱ2
i | ᾱi < 0

])

≥ E |ᾱ1|2

2(1 + λ)2λ2p−1

N−1∑
i=1

h̄i Ju′hK
2
xi

= E |ᾱ1|2

2(1 + λ)2λ2p−1J
2(uh),

where we employed the law of total expectation and the inequality h1−2p
i ≤ λ1−2ph̄1−2p

i on the
second line. Hence, we proved the lower bound. For the upper bound, using again the inequality
(a+ b)2 ≤ 2(a2 + b2) we obtain

ξ2
i ≤ 2α2

i Ju′hK
2
xi

+ 2α2
i−1 Ju′hK

2
xi−1

, a.s,

so that
E
[

ξ2
i

(x̃i − x̃i−1)2 | A
(−,+)
i−1,i

]
≤ 2 Ju′hK

2
xi
E
[

α2
i

(x̃i − x̃i−1)2 | A
(−,+)
i−1,i

]
+ 2 Ju′hK

2
xi−1

E
[

α2
i−1

(x̃i − x̃i−1)2 | A
(−,+)
i−1,i

]
.

Under A(−,+)
i−1,i , we have x̃i − x̃i−1 ≥ hi, which implies

E
[

ξ2
i

(x̃i − x̃i−1)2 | A
(−,+)
i−1,i

]
≤ 2h−2

i

(
Ju′hK

2
xi
E
[
α2
i | αi > 0

]
+ Ju′hK

2
xi−1

E
[
α2
i−1 | αi−1 < 0

])
.

Then, considering that under A(+,+)
i−1,i or A(−,−)

i−1,i it holds x̃i − x̃i−1 ≥ hi/2 and plugging into (8.25)
we have

E
[∣∣∣u′h∣∣Ki − (Ĩuh)′

∣∣
K̃i

∣∣∣2] ≤ 3
2h
−2
i h2p

(
Ju′hK

2
xi
E
[
α2
i | αi > 0

]
+ Ju′hK

2
xi−1

E
[
α2
i−1 | αi−1 < 0

])
.

We can therefore reassemble and rearrange the sum following the same procedure as for the lower
bound, which, together with h1−2p

i ≤ h̄1−2p
i , yields

Ẽ2
h,2 ≤ 3E |ᾱ1|2 J 2(uh),

which proves the desired result.
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We finally prove the equivalence of the deterministic error estimator Eh given in Definition 8.17
with the quantity J (uh).

Lemma 8.21. Let the mesh Th be λ-quasi-uniform. Then, it holds

λm2

6(1 + λ)3M2J
2(uh) ≤ E2

h ≤
2λ2M2

3(1 + λ)m2J
2(uh),

where Eh is given in Definition 8.17 and where m = κ and M = ‖κ‖L∞(D).

Proof. Simple algebraic computations yield

‖`j‖2L2(Kj) = hj
3
(
τ2
j,0 − τj,0τj,1 + τ2

j,1
)
,

where `j are the linear functions employed in Definition 8.17. Applying the inequalities (a2 +
b2)/2 ≤ a2 − ab+ b2 ≤ 2(a2 + b2) we obtain

hj
6M2

(
τ2
j,0 + τ2

j,1
)
≤ η2

j ≤
2hj
3m2

(
τ2
j,0 + τ2

j,1
)
.

We now remark that if the mesh Th is λ-quasi-uniform and under the assumptions on κ it holds
for k ∈ {0, 1}

m2

(1 + λ)2 Ju′hK
2
xj−k

≤ τ2
j,k ≤

λ2M2

(1 + λ)2 Ju′hK
2
xj−k

,

which, in turn, implies

m2hj
6(1 + λ)2M2

(
Ju′hK

2
xj−1

+ Ju′hK
2
xj

)
≤ η2

j ≤
2λ2M2hj

3(1 + λ)2m2

(
Ju′hK

2
xj−1

+ Ju′hK
2
xj

)
.

We now focus on the upper bound. Reassembling the global error estimator Eh, we have

E2
h ≤

2λ2M2

3(1 + λ)2m2

N∑
j=1

hj

(
Ju′hK

2
xj−1

+ Ju′hK
2
xj

)

= 2λ2M2

3(1 + λ)2m2

N−1∑
j=1

(hj + hj+1) Ju′hK
2
xj

≤ 2λ2M2

3(1 + λ)m2J
2(uh),

where we recall h̄j = min{hj , hj+1}, so that hj + hj+1 ≤ (1 + λ)h̄j . We conclude the proof
proceeding similarly for the lower bound as in Lemma 8.20.

We can finally prove Theorem 8.15 and conclude the error analysis.

Proof of Theorem 8.15. Let us first consider Ẽh,1. Under Assumption 8.13, we have for the lower
bound of Lemma 8.19(

E |ᾱ1|
(
1 + λ−(p−1))

2 − 2hp−1 E |ᾱ1|2
)
J 2(uh) ≥ C E |ᾱ1| J 2(uh)

for a constant C > 0. Hence, due to Lemma 8.21 we have that there exists a constant Ĉ such that

Ẽh,1 ≥ ĈEh,
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and therefore, Theorem 8.18 implies

‖u− uh‖V ≤ CupEh ≤ CupĈẼh,1,

which yields the desired upper bound with C̃up = ĈCup. The lower bound follows equivalently
under the additional regularity required by Theorem 8.18. Similarly, the results for Ẽh,2 follows
from Lemmas 8.19 and 8.21, together with Theorem 8.18.
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9 Conclusion of Part II

In this second part of the thesis we introduced two probabilistic numerical methods for differential
equations, namely the random time step Runge–Kutta method (RTS-RK) for ODEs and the
random mesh finite element method (RM-FEM) for elliptic PDEs.

In Chapter 6 we introduced a general framework for the field of probabilistic numerics (PN). In
particular, we divided the field of PN in two macro-areas: the perturbation-based and the measure-
valued numerical methods. Moreover, we defined two notions of convergence for probabilistic
methods and we showed a contraction result for Monte Carlo estimators drawn from perturbation-
based schemes. We furthermore detailed how PN and the Bayesian approach can be combined to
enhance the quality of the solution of inverse problems in terms of uncertainty quantification.
Finally, we demonstrated by an example involving ODEs the differences between perturbation-
based and measure-valued probabilistic methods, and argued what are the advantages and
disadvantages of each of these two classes.

In Chapter 7 we presented the RTS-RK, a novel perturbation-based probabilistic scheme for
ODEs built on Runge–Kutta integrators and on a random selection of the time steps. After
analyzing the weak and mean-square convergence properties of the scheme, we focused on its
geometric properties. In this regard, we have shown that the RTS-RK preserves the geometric
properties of the Runge–Kutta method it is built on, and in particular the conservation of first
integrals and the approximation of Hamiltonians over long time intervals are guaranteed for the
RTS-RK. We remark that the predecessor of the RTS-RK, the additive noise method of [39, 86],
fails instead to represent the uncertainty of the underlying Runge–Kutta integrator on a large
class of geometric ODEs. Finally, we applied the RTS-RK to Bayesian inference problems and
we showed heuristically its advantageous properties in this context. The validity of our analysis
is corroborated by an extensive series of numerical examples, which show the potential of the
RTS-RK and its relevance within the field of PN.

In Chapter 8 we introduced a novel probabilistic methods for PDEs based on the FEM and
random meshes, the RM-FEM. We demonstrated how our methodology can be successful when
employed in pipelines of computations, such as Bayesian inverse problems. We also show a
rigorous use of probabilistic methods for a posteriori error estimators, often speculated in the field.
A series of numerical experiments in the one and two-dimensional case illustrate the potential of
the RM-FEM for both inverse problems and mesh adaptation.

The area of PN has been enriched in the last decade with a relatively large amount of contributions
from researches belonging to different areas: numerical analysis, optimization, statistics and
eventually machine learning. Nevertheless, PN as it is meant nowadays is a relatively recent
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field of research, and several interesting questions are still open. In particular, some future work
that is associated to the content of this second part of the thesis and which we believe could be
relevant is:

(i) Extending the result on Monte Carlo estimators of Theorem 6.7 to the deterministic
approximations of the random measures arising when a PN method is applied to Bayesian
inverse problems;

(ii) Introducing and analyzing probabilistic a posteriori error estimators for time-dependent
problems, thus designing a PN-based routine for time step adaptation;

(iii) Generalizing the analysis of the RM-FEM to higher-dimensional elliptic PDEs;
(iv) Applying the mesh refinement strategy presented in Chapter 8 and based on the RM-FEM

to nonlinear PDEs, for which a posteriori a error estimators can be proved to be reliable
and efficient only in special cases;

(v) Combining the RM-FEM and the RTS-RK (or other perturbation-based probabilistic
methods) in a random-space/random-time adaptive scheme for parabolic and/or hyperbolic
PDEs.

192



A Probability Theory

We briefly cover here some topics of probability theory and stochastic calculus. Our goal is
twofold. On the one hand, we set here our notation on probability theory, which is adopted
throughout the thesis. On the other hand, we introduce for completeness a series of standard
results which are repeatedly employed in different chapters of this thesis. Let us remark that for
the sake of simplicity we oftentimes restrict the setting for results which could be presented and
applied to a broader scope. The frameworks we consider are nevertheless sufficient for providing
a theoretical basis to this thesis. In order to mitigate the lack of generalization, we provide
throughout the chapter references to broader and deeper discussions about the different topics.

A.1 Weak Convergence
We introduce in this section the notion of weak convergence of probability measures and of
random variables on metric spaces. For a wider discussion about the topic and its implications,
we refer the reader to [23], [69, Chapter 18], [121, Appendix A], and [113, Chapter 3.5]

Definition A.1. Let (H, λ) be a metric space with the Borel σ-algebra B(H). Let {µn}n≥0 be a
sequence of probability measures on (H,B(H)), and let µ be another measure on the same space.
We say that µn converges weakly to µ, in symbols µn ⇒ µ, if for all continuous and bounded
functions f defined on H it holds

lim
n→∞

∫
H
f(x)µn(dx) =

∫
H
f(x)µ(dx).

Remark A.2. Weak convergence could be defined differently to Definition A.1 by employing a
series of equivalent conditions which have to be satisfied by µn and µ. The equivalence between
these criteria often goes under the name of Portmanteau theorem [23, Theorem 2.1].

Given a probability space (Ω,F , P ) and a random variable X : Ω → H, we denote by µX the
probability measure induced by X on (H,B(H)), i.e., for any B ∈ B(H)

µX(B) = P ({ω : X(ω) ∈ B}) = P (X−1(B)).

We now give the definition of weak convergence of random variables.

Definition A.3. Let {(Ωn,Fn, Pn)}n≥0 be a sequence of probability spaces and let {Xn : Ωn →
H}n≥0 be a sequence of random variables. Moreover, let (Ω,F , P ) and X : Ω→ H be another
probability space and another random variable. We say that Xn converges weakly to X, in
symbols Xn ⇒ X, if µXn ⇒ µX .
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Remark A.4. Let Xn : Ω → R and X : Ω → R be real-valued random variables defined on a
common probability space (Ω,F , P ). Moreover, denote by FXn : R→ R (resp. FX) the probability
function

FXn(x) = P
(
X−1
n (−∞, x)

)
,

and equivalently for X and FX . Oftentimes, in this setting it is said that Xn converges weakly
to X if FXn(x)→ FX(x) for all x ∈ R where FX is continuous. It is possible to show that this
notion of weak convergence and the one of Definition A.3 are in fact equivalent for real-valued
random variables.

The following result guarantees that weak convergence of random variables is preserved by
continuous mappings.

Theorem A.5. Let {(Ωn,Fn, Pn)}n≥0 be a sequence of probability spaces and let {Xn : Ωn →
H1}n≥0 be a sequence of random variables with values on a metric space (H1, λ1). Moreover, let
(Ω,F , P ) and X : Ω→ H1 be another probability space and another random variable, such that
Xn ⇒ X. Let f : H1 → H2, where (H2, λ2) is a metric space, be a continuous function. Then, it
holds f(Xn)⇒ f(X).

We conclude by recalling that weak convergence is indeed the weakest convergence for random
variables. In particular, convergence in probability for a sequence of random variables implies
its weak convergence. The converse is not true, unless the limit of the sequence is a constant c.
Only in this case, we have that Xn ⇒ c implies Xn → c in probability.

A.2 The Radon–Nykodim Theorem
In this section we briefly present the Radon–Nykodim theorem, a change of measure formula
which is a fundamental tool of probability theory. Complete discussions on this topic can be
found in [69, Chapter 28], [88, Chapter 6] or in [75, Chapter 9]

Definition A.6. Let (Ω,A) be a measurable space and let P and Q be two probability measures
defined on (Ω,A). We say that P is absolutely continuous with respect to Q, in symbols P � Q,
if P (A) = 0 for all A ∈ A such that Q(A) = 0. If furthermore Q� P we say that the probability
measures P and Q are equivalent, and write P ∼ Q.

We now introduce the Radon–Nykodim theorem.

Theorem A.7. Let (Ω,A) be a measurable space and let P and Q be two probability measures
on (Ω,A), such that P � Q. Then, there exists a A-measurable non-negative random variable X
such that

P (A) =
∫
A

X dQ,

for all A ∈ A. Furthermore, X is unique Q-a.s.

We call X the Radon–Nykodim derivative of P with respect to Q and write

dP
dQ (ω) = X(ω),

omitting the argument ω for economy of notation when it does not compromise clarity. The
following result gives the conditions on the Radon–Nykodim derivative so that it is invertible.
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Theorem A.8. With the notation of Theorem A.7, if X > 0 Q-a.s., then P ∼ Q and

dQ
dP (ω) = X−1(ω),

for all ω ∈ Ω.

A.3 Connections between SDEs and PDEs
In this section, we consider the connections between SDEs and some specific parabolic PDEs. In
particular, we discuss the backward Kolmogorov equation (BKE) and the Fokker–Planck equation
(FPE). For a broader discussion on the topic we refer the reader, e.g., to [110]. Let F : Rd → Rd
and G : Rd → Rd×m and let X = (Xt, 0 ≤ t ≤ T ) be the Rd-valued stochastic process solution to
the autonomous Itô SDE

dXt = F (Xt) dt+G(Xt) dWt, X0 = x0, (A.1)

where Wt is a m-dimensional Brownian motion. We let F and G satisfy the usual assumptions
under which (A.1) admits a unique strong solution. We call generator of the SDE (A.1) the
differential operator L which acts on any function u ∈ C0

b (Rd), the space of continuous and
bounded functions, as

Lu = F · ∇u+ 1
2GG

> : ∇2u.

where we denote by ∇2u the Hessian of u and by : the Frobenius inner product for matrices,
i.e., for two square matrices A,B ∈ Rd×d we have A : B = tr(A>B). Heuristically, the generator
quantifies the infinitesimal average rate of change of the function u computed on the solution
of (A.1). In particular, denoting by Pt the family of operators on C0

b (Rd), indexed by t ≥ 0 and
such that

(Ptu)(x) = E[u(Xt) | X0 = x],

we have that L is defined with the limit

Lu := lim
t→0

Ptu− u
t

(A.2)

provided it exists. Let us remark that the operator Pt forms a semigroup with respect to t, which
is often called the Markov semigroup associated to (A.1).

The first parabolic PDE which we introduce is the BKE. Let T > 0 and u be the solution to the
final-value PDE

−∂tu(t, x) = Lu(t, x), x ∈ Rd, 0 ≤ t < T,

u(T, x) = ϕ(x), x ∈ Rd.
(A.3)

for any function ϕ : Rd → R which is sufficiently smooth for (A.3) to be well-posed. Then the
following result, which is referred to in literature as the Kolmogorov representation formula,
holds.

Theorem A.9. Let X be the solution of (A.1) and let L be the generator (A.2). Moreover, let
ϕ, F and G be smooth enough so that equation (A.3) is well-posed. Then, the solution u of the
BKE (A.3) satisfies

E [ϕ(Xt) | XT = x] = u(t, x),

where E denotes expectation with respect to the Brownian motion W .
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The proof of Theorem A.9 is given in [110, Chapter 2]. In words, solving the BKE allows to
compute the average of functionals of the solution of the SDE without simulating the SDE itself.
Since we assumed the equation (A.1) to be autonomous, i.e., the functions F and G do not have
explicit dependence on the time variable, the BKE can be rewritten after a time inversion as an
initial-value PDE which reads

∂tu(t, x) = Lu(t, x), x ∈ Rd, 0 ≤ t < T,

u(0, x) = ϕ(x), x ∈ Rd.

Similarly to Theorem A.9, the Kolmogorov representation for this form of the BKE reads

E [ϕ(Xt) | X0 = x] = u(t, x).

We now present the FPE, which describes the time evolution of the probability density of the
solution of (A.1). Let us denote by L∗ the L2-adjoint of L, which acts on a sufficiently function
ρ : R× Rd → R as

L∗ρ = −∇ · (Fρ) + 1
2GG

> : ∇2ρ. (A.4)

The FPE is the initial-value parabolic PDE

∂tρ(t, x) = L∗ρ(t, x), x ∈ Rd, t > 0,
ρ(0, x) = ρ0(x), x ∈ Rd,

(A.5)

for an initial condition ρ0 such that ρ0(x) ≥ 0 for all x ∈ Rd and such that in the weak sense∫
Rd
ρ0(x) dx = 1,

i.e., for ρ0 a probability density function on Rd.

The following result, due to Kolmogorov, provides the connection between the density of the
solution of its associated SDE and the FPE.

Theorem A.10. Let the initial condition x0 of (A.1) admit a density ρ0 with respect to the
Lebesgue measure on (Rd,B(Rd)). Moreover, let ρ0, F and G be smooth enough so that equation
(A.5) is well-posed. Let µt denote the measure on Rd induced by the solution X of (A.1) at time
t, and assume that µt admits a density ρX(t, y) with respect to the Lebesgue measure. Then, the
function ρX is the unique solution of the FPE (A.5).

The proof of Theorem A.10 can be found e.g. in [110, Chapter 4], where boundary conditions are
treated and several properties of the FPE are analyzed in details.

A.4 Ergodic Processes
In this section we consider a class of ergodic stochastic processes. For the sake of simplicity, we
restrict ourselves to diffusion processes, i.e., stochastic processes which can be written as the
solutions of SDEs of the form (A.1). For a complete discussion on ergodic processes, we refer the
reader to [22,51,110,112].

Heuristically, we say that a stochastic process X = (Xt, t ≥ 0) is ergodic if its induced measure
µt on (Rd,B(Rd)) tends to an invariant measure for t→∞, which we here denote by µ∞. The
FPE defined in (A.5), which describes the time evolution of the measure µt of Xt, plays therefore
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a crucial role in the definition and in the study of ergodic processes. If the measure µt tends
to an invariant measure µ∞, then the density ρ∞ should satisfy ∂tρ∞ = 0, which plugging into
(A.5) yields

L∗ρ∞ = 0,

which we call the stationary FPE. Indeed, this characterization of the invariant density can be
employed to define ergodic diffusion processes, as in the definition below.

Definition A.11. Let L∗ be defined in (A.4). We say that X = (Xt, t ≥ 0) solution of (A.1) is
ergodic if and only if there exists a unique ρ∞ such that∫

Rd
ρ∞(x) dx = 1, Ker(L∗) = span{ρ∞}.

We call the measure µ∞ such that µ∞(dx) = ρ∞(x) dx the invariant measure, and ρ∞ the
invariant density.

The ergodicity of X has an implication for the kernel of the generator L. In particular, we have
that since dim(Ker(L∗)) = 1, then dim(Ker(L)) = 1, and therefore that

Ker(L) = span{1}, (A.6)

where 1 denotes constant functions. It is trivial to notice that L1 = 0 by the definition of L.
The fact that the dimension of the kernel of L does not exceed one is implied by Fredholm’s
alternative, which we state here and which is given e.g. in [52, Appendix D] or [113, Theorem
2.42].

Theorem A.12. Let L be a compact operator on a Hilbert space. Then exactly one of the two
following alternatives holds

(i) Lu = f and L∗ρ = g have a unique solution for all f and g,
(ii) dim(Ker(L)) = dim(Ker(L∗)).

The proof of the Fredholm’s alternative can be found e.g. in [52]. Clearly, in case X is ergodic
alternative (ii) and thus (A.6) hold. Let us further remark that in this case (or more in general,
if alternative (ii) holds), the non-homogeneous equations Lu = f and L∗ρ = g admit a solution if
and only if a centering condition is verified. Indeed, multiplying the first equation by ρ∞ and
integrating we obtain

(Lu, ρ∞) = (f, ρ∞).

Now, on the right hand side it clearly holds (Lu, ρ∞) = (u,L∗ρ∞) = 0, so that for Lu = f to
be solvable we need (f, ρ∞) = 0. In other words, the equation Lu = f is solvable if and only if
f ∈ Ker⊥(L∗). In the same way, we obtain that the equation L∗ρ = g is solvable if and only if
(g, 1) = 0, i.e., if g is a function with zero average.
Example A.13. Let d = 1 and α and σ be positive real numbers. We consider the Ornstein–
Uhlenbeck process X, i.e. the solution of

dXt = −αXt dt+
√

2σ dWt,

with a given initial condition X0. Direct calculations with the Itô formula allow to compute the
exact solution of the SDE above, which reads

Xt = X0 +
√

2σ
∫ t

0
e−α(t−s) dWs, (A.7)
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from which one can easily infer that

Xt ∼ N
(
e−αt,

(
1− e−2αt) σ

α

)
.

Taking informally the limit for t → ∞ shows that the invariant distribution is the Gaussian
µ∞ = N (0, σ/α). Let us verify this employing the theoretical tools introduced above. The adjoint
of the generator is in this case given by

L∗ρ = αxρ′ + αρ+ σρ′′.

Replacing the density ρ∞, which is given by

ρ∞ =
√

α

2πσ exp
(
−αx

2

2σ

)
,

we obtain L∗ρ∞ = 0, which shows that µ∞ is indeed the invariant measure of (A.7).

Ergodic processes are characterized by the fundamental property that time averages tend asymp-
totically to space averages mediated by their invariant measure. We now formalize this result,
known as the ergodic theorem.

Theorem A.14. Let X = (Xt, t ≥ 0) be an ergodic process with values in Rd, and let µ∞ denote
its invariant measure on (Rd,B(Rd)). Then, for all continuous functions ϕ it holds

lim
T→∞

1
T

∫ t

0
ϕ(Xt) = Eµ∞ [ϕ(X)], (A.8)

almost surely.

The rate of convergence in (A.8) can be quantified in specific cases. In particular, if the convergence
rate is exponential in time, we say that the process is geometrically ergodic, which we formalize
in the definition below.

Definition A.15. The process X = (Xt, t ≥ 0) solution of (A.1) is geometrically ergodic if there
exist constants C, λ > 0 such that for all measurable f : Rd → R satisfying for some integer q > 0

ϕ(x) ≤ 1 + ‖x‖q2 ,

it holds
|Eϕ(Xt)− Eµ∞ [ϕ(X)]| ≤ C (1 + ‖X0‖q2) e−λt,

where E denotes expectation with respect to the Brownian motion.

A.5 Martingales
In this section, we set our notation and give a brief introduction on the theory of martingales, as
well as a short series of convergence results. The topics introduced here are treated in a broader
and deeper manner in the classic books [90,110,120].

We start by recalling the definition of a martingale.

Definition A.16. Let (Ω,F , P ) be a probability space with a filtration Ft, and letM = (Mt, t ≥
0) be a Ft-adapted process with values in Rd. If

(i) E [|Mt|] <∞ for all t ≥ 0,

198



A.5. Martingales

(ii) E[Mt | Fs] = Ms, for all 0 ≤ s ≤ t,

then we say that M is a Ft-martingale. If moreover E[|Mt|2] <∞ for all t ≥ 0, we say that M
is a square-integrable martingale.

Let us remark that since Mt is Ft-adapted, the property (i) can be rewritten as

E[Mt −Ms | Fs] = 0,

which can be a convenient rewriting in some applications. A notable example of a martingale is
given by the Itô integral. In particular, let W be a standard Brownian motion and let Zt be a
real-valued stochastic process which is Ft-adapted, where Ft is the natural filtration generated
by W , and such that ∫ t

0
E
[
|Zs|2

]
ds <∞ (A.9)

Then, the stochastic integral

It =
∫ t

0
Zs dWs, (A.10)

is a square-integrable Ft-martingale.

An important quantity associated to any martingale is its quadratic variation. Let X = (Xt, t ≥ 0)
be a real-valued stochastic process. The quadratic variation of X, denoted 〈X〉 := (〈X〉t, t ≥ 0),
is the process defined by

〈X〉t := lim
n∆→∞

n∆∑
i=1

(Xti −Xti−1)2,

where for ∆ > 0, the partition 0 = t0 < t1 < · · · < tn∆ = t of the interval [0, t] has characteristic
size ∆, and where the limit is taken in probability. If X is a martingale, its quadratic variation
can be alternatively defined as follows (see e.g. [90, Chapter 1§8], [113, Chapter 3]).

Definition A.17. Let M = (Mt, t ≥ 0) be a Ft-martingale with values in Rd. Then, let Q be a
non-decreasing Rd×d-valued process such that the process M ⊗M −Q is an Ft-martingale. We
call Q the quadratic variation of M and write Q = 〈M〉.

Under the condition that the martingale M is square-integrable, its quadratic variation is a
well-defined stochastic process. This is given in by the following result (see e.g. [120, Chapter
IV]).

Theorem A.18. Let M = (Mt, t ≥ 0) be a square-integrable Ft-martingale with values in Rd.
Then, its quadratic variation 〈M〉 exists and is unique.

For the Itô integral I given in (A.10) the quadratic variation can be computed explicitly, as shown
in the following result. While existence and uniqueness of the quadratic variation is guaranteed
because I is square-integrable under (A.9), proving that the explicit expression is indeed given
by (A.11) relies on the Itô isometry.

Corollary A.19. Let Zt be a Ft-adapted stochastic process with values in Rd and let

It =
∫ t

0
Zs dWs.

Then, if (A.9) holds, the quadratic variation of I is given by

〈I〉t =
∫ t

0
ZsZ

>
s ds. (A.11)
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We conclude by presenting convergence results for continuous-time martingales. We restrict the
setting to the one-dimensional case, and remark that generalizations and broader discussions on
the topic can be found in [70,90]. The first convergence theorem we state is the strong law of
large numbers for martingales.

Theorem A.20. Let M = (Mt, t ≥ 0) be a real-valued and square-integrable martingale such
that 〈M〉∞ =∞ a.s. Then,

lim
t→∞

Mt

〈M〉t
= 0, a.s.

Intuitively, Theorem A.20 is a generalization of

lim
t→∞

Wt

t
= 0, (A.12)

a.s. and for a Brownian motion W , which can be shown to hold by considering that W̃ = (W̃t =
tW (1/t), t ≥ 0), and W̃0 = 0 a.s., is a Brownian motion. Indeed, it holds 〈W 〉t = t, so that (A.12)
is a particular instance of Theorem A.20. We now introduce the central limit theorem (CLT) for
martingales, which describe the long-time behavior of sufficiently well-behaved martingales after
being appropriately rescaled.

Theorem A.21. Let M = (Mt, t ≥ 0) be a real-valued and square-integrable martingale such
that

lim
t→∞

E
[∣∣∣∣ 〈M〉tt − C

∣∣∣∣] = 0,

for some C > 0. Then, it holds for t→∞

Mt√
t
⇒ Z, Z ∼ N (0, C).

The last convergence result we present is the functional CLT for martingales. This result
guarantees weak convergence of a sequence of multivariate continuous martingales to a rescaled
multi-dimensional Brownian motion. Convergence is granted under the condition that the
quadratic variation of the elements of the sequence converges weakly to a linear function of time.
We refer to [144], [51, Chapter 7] or [70, Section VIII.3b] for a proof.

Theorem A.22. Let {Mn}n=1,2,... be a sequence of continuous square-integrable Ft-martingales
with values in Rd and let C ∈ Rd×d be a symmetric positive semi-definite matrix. If for n→∞

〈Mn〉t ⇒ Ct,

then, for n→∞
Mn ⇒

√
CW, with

√
C
√
C
>

= C

where W is a d-dimensional standard Brownian motion.
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