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Abstract. Due to the rapidly growing number of devices that need to
communicate securely, there is still significant interest in the development
of efficient encryption schemes. It is important to maintain a portfolio
of different constructions in order to enable a quick transition if a novel
attack breaks a construction currently in use. A promising approach is
to construct encryption schemes based on the learning parity with noise
(LPN) problem as these schemes can typically be implemented fairly
efficiently using mainly “exclusive or” (XOR) operations. Most LPN-
based schemes in the literature are asymmetric, and there is no practical
evaluation of any LPN-based symmetric encryption scheme.

In this paper, we propose a novel LPN-based symmetric encryption
scheme that is more efficient than related schemes. Apart from analyz-
ing our scheme theoretically, we provide the first practical evaluation of
a symmetric LPN-based scheme, including a study of its performance in
terms of attainable throughput depending on the selected parameters. As
the encryption scheme lends itself to an implementation in hardware, we
further evaluate it on a low-end SoC FPGA. The measurement results at-
test that our encryption scheme achieves high performance rates in terms
of throughput on such hardware, providing evidence that symmetric en-
cryption schemes based on hard learning problems may be constructed
that can compete with state-of-the-art encryption schemes.

Keywords: Symmetric encryption - learning parity with noise - LPN -
FPGA implementation

1 Introduction

There has been a substantial amount of work in recent years on the development
of encryption schemes whose security relies on the hardness of solving a difficult
learning problem. In fact, there is a strong connection between cryptography
and learning problems as shown in the seminal work by Impagliazzo and Levin
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who quite generally proved that cryptography is only possible if and only if
efficient learning is not [20]. A well studied example of such a learning problem
is learning parity with noise (LPN). In short, it is the problem of identifying an
unknown binary vector given only noisy scalar products of this vector and other
vectors chosen uniformly at random. Since computations are carried out in Zs,
the scalar product is a single bit. The scalar products are noisy in the sense that
the resulting bit is flipped with a certain probability.®

Building encryption schemes based on the LPN problem is appealing be-
cause they are expected to achieve decent throughput measured in the number
of bytes processed per second. In recent years, several encryption schemes based
on LPN have been proposed; however, barring a few exceptions, the focus has
been primarily on asymmetric cryptography (see §6 for details on related work).
All proposed schemes have in common that they require fresh, cryptographically
strong random bits for the encryption of each piece of plaintext. This require-
ment can be disadvantageous for multiple reasons: First, the generation of se-
cure random bits itself may be computationally expensive. Second, low-power
embedded devices often have a limited number of entropy sources, which makes
it challenging to produce random bits [17]. Moreover, extracting randomness
from sources with low entropy incurs a significant computational overhead [29].
Finally, if each invocation of the encryption process requires fresh randomness,
this additional randomness must either be appended to the encrypted data or
it is embedded in it. In the former case, the space complexity (or bandwidth
requirement) increases and in the latter case, we get a more complex decryption
routine and thus a lower throughput for decryption.

We propose a synchronous stream cipher, called Firekite, which uses an LPN-
based pseudo-random number generator (PRNG) with a simple structure [3] to
generate its keystream. The PRNG used in Firekite differs from the PRNG in-
troduced by Blum et al. [3] in that it handles the noise vector differently and
uses a different noise distribution. Firekite further uses a Ring-LPN hardness
assumption to reduce the key size. Unlike other proposed encryption schemes
based on the LPN problem, our scheme only requires a source of cryptographi-
cally strong random bits for key generation but not for encryption. We further
discuss how to use our scheme in practice by proposing concrete sets of param-
eters to instantiate it. As an additional contribution, the attainable throughput
based on our software implementation is measured for various parameter sets.
While the potential for efficient LPN-based cryptography has been noted before,
this is the first work that measures the actual performance of such an encryption
scheme. Moreover, as our scheme can greatly benefit from dedicated hardware,
we implemented and evaluated it on a low-power field-programmable gate array
(FPGA). To the best of our knowledge, this is also the first time any LPN-based
encryption scheme is tested and evaluated on an FPGA.

Although it is unlikely that current symmetric encryption schemes such as
AES, which is nowadays employed ubiquitously, will be broken in the near future,

5 Note that the problem is not difficult to solve without any noise, using Gaussian
elimination.
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we believe that a portfolio of cryptographic constructions must be at our disposal
for multiple reasons. First, fallback solutions are required in case one construction
is broken. Second, encryption is used in devices with different capabilities and
constraints in a multitude of scenarios, which entails that different schemes are
appropriate depending on the use case. LPN-based cryptography may prove to
be a sensible approach for specific use cases.

The paper is structured as follows. Background on LPN is provided in §2.
Our encryption scheme is introduced in §3 and analyzed in terms of security and
performance in §4 and §5, respectively. A summary of related work is provided
in §6, and §7 concludes the paper.

2 Background

LPN is a well studied problem in cryptography and machine learning. It is ap-
pealing in cryptography as it is a strong candidate for post-quantum cryptogra-
phy: while efficient algorithms for quantum computers have been found to solve
the factorization and the discrete logarithm problem [28], which are the foun-
dation of asymmetric encryption schemes used in practice, no efficient quantum
algorithm that solves the LPN problem is known. Moreover, the LPN problem
is a promising candidate because only simple operations such as “exclusive or”
(XOR) and scalar products are required, which can be implemented efficiently.

Informally, the LPN problem is asking to solve a noisy binary system of
equations. We will now provide the formal definition, which uses an LPN oracle.

Let = <2 X denote the event that z is drawn uniformly at random from the
domain X

Definition 1 (LPN Oracle). Let s X 7% and Ber, be the Bernoulli distribu-
tion with a noise parameter T €0, %[ Let Ds ; further denote the distribution
defined as

{(u,¢) | u & Zy,c=u"s+d,d+ Ber,} € Zi*

An LPN oracle (’)';)F;N outputs independent random samples according to Dy .

Given this definition, we are now in the position to define the LPN problem
and the notion of an LPN solving algorithm.

Definition 2 (Search LPN). Given access to an LPN oracle OPN | find the

S, T 7
vector s. Let n' < n. We say that an algorithm M (q,t, u, 0, n')-solves the search
LPN problem, where the secret has size n and the noise parameter is T, if

PrMO7 (1) = (s1...50/) | 5 <= Z2] > 0,
M runs in time t, uses memory p, and queries the LPN oracle at most q times.

In the decisional LPN problem, the objective is to distinguish between output
from the LPN oracle and uniformly distributed random vectors of size n + 1.
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It has been proven that the search LPN and the decisional LPN problem are
equivalent [3,22].

Looking at the history of solving LPN, the first specific LPN solving algo-
rithm is BKW [4], which recovers the LPN secret bit by bit. An important im-
provement was presented by Levieil and Fouque [25] whose algorithm uses the
Walsh-Hadamard transform, which makes it possible to recover several bits of
the secret at once and requires fewer initial queries. The use of covering codes,
introduced by Guo et al. [16], further improves the performance of LPN solving
algorithms [5,32]. An analysis of the best LPN solving algorithms for a wide
range of parameters can be found in the work of Bogos and Vaudenay [5].

All these algorithms are characterized by the fact that their time complexity

is sub-exponential, 20(10%73")), and they require a sub-exponential number of

queries, 2O(ﬁ), when the noise parameter 7 is constant.®

Trading off the time complexity in favor of the number of queries, Lyuba-
shevsky [26] uses BKW as a black box and adds a processing phase at the begin-
ning of the LPN solving algorithm. With this modification, the LPN problem can
be solved requiring only a polynomial number of queries (n'™¢ for a constant

e > 0) at the expense of an increased time complexity of 20(1%(1:%("))).

3 PRNG and Firekite Construction

We first provide an overview of the LPN-based PRNG construction in §3.1. It
is important to note that the basic construction has been proposed before [3].
However, the level of detail provided in §3.1 should help the reader to better
understand how our PRNG differs from the general construction. Our PRNG is
introduced formally and in detail in §3.2. Subsequently, our encryption scheme
Firekite, which is based on this PRNG, is presented in §3.3.

3.1 Overview

The challenge of the LPN problem, as defined in §2, is to distinguish between a
source providing either random bit vectors of length n + 1 or vectors containing
n random bits plus a single bit that is the noisy scalar product of these n bits
and a secret vector s of length n. This definition can naturally be extended to
matrices and vectors: the noisy scalar product of a secret m x n-matrix M and
a random vector v, i.e., M7 v + e, where e denotes a sparse n-bit noise vector,
is hard to distinguish from a random n-bit vector. Note that addition is carried
out in Zs, i.e., addition corresponds to computing the XOR, of the inputs.

The PRNG construction exploits the fact that noisy matrix-vector products
are indistinguishable from random vectors. In order to solve the problem that
LPN-based constructions require a source of randomness, we proceed as follows:

6 A simple guessing strategy has a complexity of O <n36"176) using O (ne”176)

queries if 7 = n°.
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Fig. 1: The output of the noisy matrix-vector product is split into three compo-
nents g, v, and c.. The vector g is the output of the PRNG, whereas v’ and c/
are used iteratively to compute the next noisy matrix-vector product.

rather than having a separate mechanism, the output of a noisy matrix-vector
product is used iteratively as a source of randomness for the next noisy matrix-
vector multiplication. Concretely, given a secret matrix M and secret initial
vector v and e, the vector M7 v + e can be used to generate the input for the
next iteration.

Obviously, simply iterating this process alone does not yield a PRNG because
there is no output. This problem is addressed as follows. If n > m, the noisy
matrix-vector product of length n can be split into three pieces: m bits are used
as the next vector v/, some bits are interpreted as a compact encoding ¢,/ of the
next noise vector €/, and the remaining bits, denoted by g, constitute the output.

While the length of the noise vector is n, a concise representation of the
noise vector €’ is possible because €’ is sparse. Formally, H(e’) bits are needed to
encode €', where H(e’) denotes the entropy of the bit string e’ [3]. This process
is depicted in Figure 1.

3.2 PRNG

Having a basic understanding of the general PRNG construction, we proceed
by giving a formal specification of our PRNG. The state of the PRNG is the
pair (M, w), where M is a binary m X n-matrix, for some integer parameters
m and n, where n > m and n is a power of 2, and w is a vector of length
m + k - log(n) < n for some integer parameter k.” The matrix M is called the
secret key, which never changes. Unlike the secret M, the vector w, which is
kept secret as well, is updated during the execution of the PRNG. Appropriate
choices for the parameters m, n, and k are discussed in §4.3.

Let || denote concatenation of vectors, i.e., for two vectors v and v" of lengths
¢ and ¢, respectively, v||v” denotes the vector of length ¢ 4 ¢ for which

nea o] ifi</?
(v[[v")[i] = { v'[i — €] otherwise

for all i € {0,...,04+ ¢ —1}. We define w = v||c., where v and ¢, are vectors of
length m and k - log(n), respectively. The vector ¢, is to be understood as the

" Note that log(-) always denotes logarithm base 2 throughout this paper.
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Algorithm 1 PRNG with state (M, w)

1: Parse vlji1]jiz]| ... ||ix = w
2: Set e := \/;?:1 i

3: Compute gllw’ = MTv +e
4: wi=w

5: return g

concise formulation of a sparse vector of length n. Let b; be the unit vector of
length n where only the bit at position 7 is set to 1 (and all other bits are 0). If
ce =192 - - - ||%k, the noise vector e is defined as e = \/fz1 b;;, where i; denotes
the binary representation of a non-negative integer using log(n) bits. In other
words, ¢, encodes the positions in e where the bit is set to 1.8 As an illustrative
example, consider the case when n = 16, k = 3, and ¢, = (1001]/0100|[1100), i.e.,
the bits at indices 9, 4, and 12 are to be set (reading from left to right). Thus,
the decoded noise vector is e = (0001001000010000) (with the lowest-order bit
on the right). It is important to note that it is possible that the same index
occurs more than once, i.e., i; = i, for some j,j" € {1,...,k}. Consequently,
the number of bits set in e is upper bounded by k.

We are now in the position to describe the PRNG algorithm. In the first step,
vector v is set to the first m bits in w, and the remaining & - log(n) bits of w

are interpreted as the concise formulation c. = i1||i2]| ... ||éx of the noise vector
e. Next, the noise vector is set to the decoded form of c., i.e., e = \/j:1 bi;,
where each index i, is extracted from c. = i1||i2| ... |lix. In the main step, the

n-bit vector M7 v + e is computed, which is interpreted as the concatenation of
vectors g and w’ of lengths n — (m + k - log(n)) and m + k - log(n), respectively.
Finally, the internal state (M, w) is updated to (M, w’) and the output of the
PRNG is simply the vector g.

From the description of the algorithm it follows that the algorithm can be
implemented using only XOR operations, except for the decoding of the noise
vector. The steps of the PRNG algorithm are summarized in Algorithm 1.

3.3 Firekite

The PRNG described in §3.2 can theoretically be used as the basis of several
cryptographic constructions. Firekite is a synchronous stream cipher that uses
this PRNG, initialized with the secret state (M,w), to produce the keystream
directly. Formally, the encryption of a data item d of length n — (m + k - log(n))
is PRNG() + d, where PRNG() is to be understood as the invocation of the
PRNG returning the next random vector g of length n — (m + k - log(n)). Thus,
the plaintext vectors are processed sequentially, and the output g of the PRNG
depends on the internal vector w, which is updated for each invocation of the
PRNG. As for any synchronous stream cipher, a ciphertext can be decrypted by
simply applying Algorithm 1 again on the ciphertext to obtain the plaintext.

8 Intuitively, the length of c. is an approximation of the entropy H(e) of e.
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As we will see, when setting the parameters m, n, and k to appropriate values,
the matrix M becomes quite large. For the sake of a low memory footprint and
efficient key distribution and management, it is preferable to have short keys.
This problem can be addressed by moving from the LPN problem to a variant of
the Ring-LPN problem [18]: Consider the ring R of all polynomials in X over Z
with binary coefficients reduced modulo X® — 1 for a suitable parameter b > n,
i.e., a parameter b for which it holds that (X® — 1)/(X — 1) is irreducible. Let
o < 74 and ¢; == X'"1q for i € {2,...,b}. The b x b-matrix @ consists of the
TOWS q1,. .., (. In other words, the i"* row of Q) can be constructed by rotating
the first row to the left by ¢ — 1 positions. The Ring-LPN conjecture states that
the problem remains hard when using the matrix ) in place of a fully random
matrix, subject to the constraint that the polynomial is irreducible. Thus, the
key used in Firekite is the random b-bit vector ¢;. It is worth noting that an
attacker might obtain the parity of the secret due to the factor X — 1 but no
more information about the secret is revealed.

As described in §3.1, we require that m < n and for n to be a power of 2.
Thus, the matrix @ from the Ring-LPN instance cannot be used directly. Instead,
given desired parameters n and m and the b-bit key, the matrix M is derived
from the key by generating the first m rows of @) and dropping the last b —n
columns.

The security implications of this transformation and details on the security of
Firekite in general are provided in §4. Moreover, for the Ring-LPN construction,
we show in §4.3 that the key size is reduced from mn to n+ ¢, where c is a small
constant, for suggested parameter sets.

As mentioned before, the internal state w has to be kept secret. If an attacker
can control the initialization of w as part of a chosen-ciphertext attack, the
attacker can mount a key recovery attack to obtain the secret matrix M. The
initial vector w can be derived from a public m-bit nonce N using a standard
technique: Let Cp = ¢|lc+ 1| -+ - ||le + k — 1 be a vector of length klog(n), where
¢ =n—m — klog(n), and let wy := N||Cy. Given the secret key M and the
vector wq derived from the nonce N, we compute

1ooljia| .- |Jig == we—1
2. e:= \/?:1 bij
3. gllwe = MTv+e

iteratively for ¢ € {1,...,r} for some constant r (defined below) and define
w = wy. Thus, the procedure essentially consists of r successive executions of
Algorithm 1, discarding the vector ¢ in each iteration.

We set the value of r as follows: In each iteration, the noise vector contributes
k=% bits on average to vector v because the length of v is m and the noise bits
are spread uniformly across n bits. The number of possibilities to choose k7
positions in vector v (with replacement) is m*% . During r trials, we assume
that r—1 of the corresponding noise vectors look random, which implies that the
total number of combinations is m*% ("1 Thus, the number of combinations
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exceeds (2™)? by setting r = 1+ {W’zm)—‘ This heuristic argument suggests

that v is fully random for this choice of .”

This nonce-based variant can also be utilized to turn Firekite into a non-
sequential stream cipher by providing a new nonce after a certain number of
invocations of the PRNG. It is worth pointing out, however, that the number
of invocations must be significantly larger than r to ensure that the cost of
processing the nonce does not introduce a substantial overhead.

4 Security Analysis

In order to solve Ring-LPN based on irreducible polynomials, we can apply the
same algorithms that solve LPN. It is intuitive that instances where the matrix M
is also secret, which is the case in Firekite, require more effort from an attacker
compared to the traditional LPN or Ring-LPN instances that are instantiated
with the same parameters. On the other hand, utilizing only the top m rows of
the Ring-LPN matrix @) as described in §3.2 to generate matrix M can only have
a negative impact on security. As there are no known techniques to break Ring-
LPN instances for irreducible polynomials faster than standard LPN instances, we
conjecture that using a secret matrix M derived from the b-bit key @)1 does not
result in a substantially reduced security compared to using a fully random m xn-
matrix M. Therefore, we do not distinguish between these two constructions in
the following and simply consider a secret matrix M.

However, we must analyze the implication of generating the noise vector as
described in §3.2. While the PRNG proposed in prior art [3] is based on an LPN
instance where the noise vector has a Hamming weight of k, the noise vector has
a Hamming weight of at most k in our case. In this section, we first show that
an LPN instance based on our distribution of noise bits is still hard.

In order to be able to study the performance of Firekite in practice, we need
to instantiate it with secure parameters. To this end, we transform the problem
of breaking our scheme into the LPN problem in §4.2. This transformation allows
us to find concrete parameters for our scheme based on the best known attacks
against the well-studied LPN problem. In §4.3, we then discuss how to derive
parameters for practical use and provide exemplary parameters.

4.1 Security Reduction for Noise Distribution

A well-known result about PRNGs states that it suffices to show the pseudo-
randomness of a single application of the PRNG (e.g., §3.3.2 in [15]). Hence, we
need to prove that it is hard to distinguish the output M7 v+ e from bits chosen
uniformly at random. We will now prove that we get an LPN variant that is hard
when using the noise distribution of Firekite as opposed to setting each bit in
the vector e independently according to the noise parameter 7€ 0, %[ as defined
in Definition 1.

° Note that the square in (2™)? is a safety margin.
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Let N, denote the Hamming weight of the noise vector, i.e., the number of
bits that are set to 1 in the n-bit noise vector. In the standard LPN setting, it
holds that E [N:PN] = 7n. In Firekite (FK), the Hamming weight of the noise
vector corresponds to the number of distinct elements when picking k out of n
elements uniformly at random with replacement. Hence, we have that

E[NfK]:n-<1—(1—%>k>. (1)

Using the inequality
re

(1+$)T§1+m

for # € (=1, =%5] and r > 1, we obtain that

k
= . — _ — > _—
E[NIK] =2 n <1 (1 n))_n+k_1 (3)

110

5, Wwe obtain that

Furthermore, observing that % <

k>E[NF¥X] ¢ ;

k. (4)

We assume for the sake of contradiction that an LPN instance with the
Firekite noise distribution can be broken, i.e., solved efficiently. Given a standard
LPN instance where the size of the secret is n and the noise parameter is 7, we
set k such that ™n < k, e.g., by setting k = %TTL.

Since NLPN follows a binomial distribution, we have that Pr[NLPN
|E [NEPN]]] € £2(1/n). For the chosen parameters, it is thus likely that the
number of noise bits set to 1 is less than k. If we assume that LPN with our
noise distribution can be solved efficiently, then LPN with noise parameter 7 can
be solved efficiently too: the noise of any given LPN instance could come from
our noise distribution with probability at least £2(1/n). Hence it follows that the
attacker can solve LPN with a complexity that is O(n) times larger than the
complexity needed to break LPN with the Firekite noise distribution.

Thus, we can use essentially the same proof as for a constant Hamming
weight [3] to show that the Firekite noise distribution is secure under the as-
sumption that LPN is a hard problem.

4.2 Transformation to LPN Problem

In the standard LPN problem, the goal is to reconstruct a secret vector s given
pairs of the form (u,c), where u is a random vector and ¢ = u”s + e, with

10 While this inequality is true for any LPN instance, the ratio k/n is much smaller for
parameters we propose in §4.3. Thus, tighter bounds on E [NfK] can be derived for
recommended parameters.
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e € {0, 1}, is a noisy scalar product of v and s. The basic problem underlying
Firekite restricts the input provided to an attacker. Specifically, the attacker sees
only (parts of) ¢ = MTv + e, ie., both M and v are kept secret. We show in
this section that Firekite is based on a problem that can be transformed into
the LPN problem.

Let H = I||X be a parity-check matrix of dimensions (n —m) x n, where I
is the (n —m) x (n — m)-identity matrix and X is a (n —m) x m-matrix such
that HM™ = 0. Furthermore, let M; and My denote the matrices comprising
the first (n — m) and last m columns of M, respectively. Thus, it holds that
M = M;||My and X = M{(MJI)~*. Since HMT = 0, we have that

(HM")yv = H(M"v) = H(c+e) = (I|X)e+ (I|| X)e = 0. (5)

Let ¢ and € denote the subvectors consisting of the last m elements of ¢ and e,
respectively. For the j component c; of c it holds that

¢ © ij6—|— e;j + ijé, (6)

where x; is the j% row of X, for any j € {1,...,n — m}. By defining n; =
ej + x;fré, we get
Cj © :CJTE + ;.

Since c; and ¢ are known, x; is a secret, and 7; is a noise bit, this corresponds to
a standard LPN problem with the goal of recovering z; for all j € {1,...n—m}.
The noise bit 7); consists of noise bit e; plus % additional noise bits in expectation
because the expected number of bits set in x; is 5. Once all vectors z1, ..., Ty _m
(and thus X) are recovered, M can be recovered as well. Hence, the problem can
be transformed into an equivalent LPN problem with higher noise.

While this transformation merely shows that the problem underlying Firekite
is at most as hard as LPN, we believe the inverse to be true as well, i.e., we
conjecture that the two problems are equivalent. As the above transformation
is the best available method to attack the problem, we use it to derive secure
parameters based on the most efficient known attacks against the standard LPN
problem in the next section.

4.3 Parameters

The parameters n, m, and k must be carefully chosen to maximize security and

performance while keeping the size of the key and internal state small. In order to

determine a level of security for a specific set of parameters, we use the following
n—1

approach. Since the expected number of noise bits set in e is n (1 — (T)k)

according to Equation (1), we define the probability that any specific bit in e is

setas T :=1— ("T_l)k Recall, however, that the noise bits are not set according
to a binomial distribution.’ Since the noise 7; is the combination of 2 + 1 noise

1 In particular, the variance is substantially lower.
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Parameters Properties
m n k | Key Size (b) e r  Sec. Level
216 1024 16 1061 0.63 18 82.76
216 2048 32 2053  0.72 18 82.76
216 4096 54 4099  0.79 21 80.69
216 8192 112 8219  0.80 20 82.60
216 16,384 216 16,421 0.80 21 80.68
224 32,768 416 32,771 0.80 22 80.66
224 65,536 834 65,539  0.79 22 80.82

Table 1: Parameters for 80-bit security and the resulting key sizes (corresponding
to parameter b), @ and r values, and computed security levels.

terms in expectation, the bias is approximately (1 — 27)% !, which is small
for a reasonably large m. Given that the bias is low, the most efficient method
to solve the LPN problem is the algorithm by Levieil and Fouque [25]. This
algorithm can be seen as a Gaussian elimination algorithm performed on blocks
of bits (instead of single bits) where at the end the Walsh-Hadamard transform
is applied to retrieve a block of the secret. Since 7 approximately determines
the ratio of k over n, suitable parameters can easily be computed based on their
algorithm. Although the execution of the algorithm by Levieil and Fouque solely
retrieves a single vector x;, we use the resulting computational complexity as a
bound to derive the entire matrix M. This is a conservative estimate as it may
be possible to retrieve all n — m with the same amortized complexity.

The fact that the choice of parameters has a direct impact on performance
must also be taken into account. Naturally, the larger the vector g is in relation
to m, the more bits are used directly for encryption and fewer invocations of
Algorithm 1 are needed. Let

n— (m+ klogn)
n

a=a(m,n, k) =

denote the fraction of the output of Algorithm 1 that is used for encryption. A
simple model of the amortized cost of Algorithm 1 in terms of the number of
instructions that need to be executed per bit is

(m,n, k) == %m + N(n,k), (7

where p is the number of bits for which an XOR operation can be computed
in a single instruction and N(n, k) captures the amortized per-bit overhead to
compute and apply the noise vector. The factor % is due to the fact that in
expectation m/2 bits in vector v are set and p bits are processed together. The
term N (n, k) is roughly proportional to k/n and thus only marginally increases
the amortized cost. Profiling of our implementation confirms that this model is

fairly accurate in that 95% of the computation is spent on the matrix-vector
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Parameters Properties
m n k | Key Size (b) e r  Sec. Level
352 1024 16 1061 0.50 17 129.07
352 2048 32 2053  0.66 17 129.07
352 4096 58 4099  0.74 18 128.95
352 8192 120 8219  0.77 18 128.99
352 16,384 228 16,421 0.78 18 128.93
352 32,768 456 32,771 0.78 18 128.93
352 65,536 906 65,539  0.77 19 128.92

Table 2: Parameters for 128-bit security and the resulting key sizes (correspond-
ing to parameter b), o and r values, and computed security levels.

multiplication, which corresponds to the first term in Equation (7). Evidently,
m contributes directly to the amortized cost and must be minimized. However,
a reduction of m must be compensated with an increase of the number k& of
noise bits in order to keep the same level of security. Since every increment of k
requires an additional log(n) bits, @ becomes smaller, which negatively affects
the amortized cost according to Equation (7). In practice, the search space can
be restricted quite well because an efficient implementation imposes additional
constraints, e.g., all vectors should fit into an integer number of bytes.

Table 1 and Table 2 provide parameters for 80-bit and 128-bit security, re-
spectively, for an increasing length n. As mentioned before, the values in the
table are derived analytically, based on the algorithm by Levieil and Fouque.
A first observation is that the security level remains basically the same when
scaling n and k in the same manner while keeping m constant. This behavior is
expected because a constant ratio of n and k implies that the probability that
any bit is flipped remains constant as well. The effect of scaling the parameter n
will be examined more closely in §5.1. The tables further show that it is possible
to have keys lengths, which correspond to the length b of @1 as defined in §3.2,
that are comparable to the lengths of keys in standard asymmetric encryption
schemes. However, it is impossible to have key lengths similar to the lengths of
standard symmetric encryption schemes because m must be in the order of hun-
dreds of bits, and it must hold that n is significantly larger than m to ensure that
« is not too small. Moreover, we see that increasing n only leads to an increase of
« up to a certain point because more bits are needed to encode a single noise bit
index as n grows larger. The tables also provide the number r of rounds needed
to initialize vector w for the nonce-based variant for each set of parameters. We
see that r only varies slightly for the proposed sets of parameters. Finally, it is
important to note that increasing the security level does not affect the key size.
Still, the increase of m invariably leads to a larger computational cost. Hence it
follows that the right choice of parameters highly depends on the requirements
in terms of performance and memory constraints. A general recommendation
would be to use n = 4096 (i.e., b = 4099) and m and k as given in the two
tables for either 80-bit or 128-bit security. These parameters achieve a decent



Towards Efficient LPN-Based Symmetric Encryption 13

trade-off between performance and space. As we will see in §5.2, the memory
requirements for these parameters are small enough for use on a standard low-
end FPGA. For certain architectures with plenty of memory and wide buses, the
last row in the two tables, i.e., the parameters for n = 65,536 (i.e., b = 65,539)
might be preferable for performance reasons. The actual performance for specific
parameter ranges is investigated in the subsequent section, which will provide
further justification for our choice of recommended parameters.

5 Performance Evaluation

The primary objective is to evaluate the performance in terms of throughput,
which is the number of bytes that can be encrypted or decrypted per second. As
discussed in §4, the choice of parameters crucially affects not only the attained
level of security but also the performance. Therefore, performance is evaluated
for a range of parameters corresponding to different security levels.

The procedure to obtain the desired measurement results is the same for
all experiments: Random input data is allocated in memory, which is then en-
crypted and the time required for this encryption is measured. This process is
repeated 20 times and all measured times are recorded. The reported through-
put is simply the ratio of the input size and the median of all recorded times
in seconds required to process the input. Note that we solely report the median
value because the variance is so small that the differences would hardly be visible
in the figures. Similarly, the input size was varied from tens of kilobytes up to
one gigabyte without any significant impact on performance on all considered
platforms, suggesting that the measured throughput reflects the throughput that
would be observed in real-world applications.

The impact of the parameters on performance is analyzed in §5.1 using our
software implementation. We further explore the potential of parallelization and
evaluate performance gains in a multi-threaded environment. It is important to
note that this implementation is neither tested nor analyzed sufficiently for prac-
tical use. In particular, it might be susceptible to side-channel attacks because
the implementation uses direct memory access and executes XOR operations
conditional on the bits in the secret state w. While an optimized, well-tested
implementation might yield somewhat different numbers, we believe that the
evaluation results capture the relative performance with respect to parameter-
ization reasonably well. Since Firekite is better suited to be run on dedicated
hardware, we further implemented it on a low-power FPGA. The evaluation
results on this platform are presented in §5.2. Unlike the software implementa-
tion, the constant-time FPGA implementation is significantly better protected
against side-channel attacks.

Naturally, a base of comparison is needed to put the performance numbers
into perspective. We chose to compare our software and hardware implementa-
tion against the Advanced Encryption Standard (AES) [8] due to its ubiquity
and high level of efficiency. This comparison is meant to illustrate how close an
LPN-based scheme can come to a state-of-the-art symmetric encryption scheme
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in terms of performance on the given hardware. A thorough comparison against
multiple state-of-the-art stream ciphers on different hardware platforms is be-
yond the scope of this work.

5.1 Performance on a Desktop Computer

The experiments to analyze the impact of the parameters on performance were
conducted on a quad-core Intel Core i5-4570 at 3.2 GHz with 8GB of DDR3
memory (at 1.6 GHz). Our Firekite implementation is written in C++ and con-
sists of roughly 2000 lines of code. It is compiled using the optimization flags -03
and -funroll-loops for most classes. The additional compilation flag -mavx2 is
added for the core classes that perform XOR operations in order to make use of
Advanced Vector Extensions (AVX),'? which add several SIMD instructions that
operate on 256 bit inputs. Thus, an XOR operation can be applied to p = 256
bits per cycle. Recall that the amortized number of instructions to encrypt a
single bit is roughly proportional to 1/p according to Equation (7), i.e., any
non-trivial increase of p leads to a substantial improvement of throughput.

The level of security is raised primarily by increasing the number m of n-bit
vectors. Equation (7) states that the computational effort grows linearly with
m, which implies that a greater level of security results in a lower throughput.
In order to test this hypothesis, values for m and %k have been chosen that
maximize throughput while achieving a security level of 80, 90,...,150 for the
two recommended values for n, i.e., n = 4096 and n = 65,536. As discussed in
§4.3, the algorithm by Levieil and Fouque is used to determine the security level
of a specific set of parameters m, n, and k based on the transformation to the
standard LPN problem (see §4.2).

The measured throughput for the chosen parameter sets is given in Figure 2.
It is evident from this figure that the hypothesis is true in that the performance
degrades when increasing the security level. While the rate of degradation slightly
decreases for larger levels of security, the simplified model that assumes a linear
relationship between security level and throughput is fairly accurate.

An interesting observation is that there is a substantial gap in the attained
throughput for n = 4096 and n = 65,536. A plausible explanation for this gap is
that a larger n is likely to result in fewer cache misses. The effect of increasing
n is studied in a second experiment. Specifically, all valid values for n in the
range from n = 2'° to n = 2'® are tested. The parameters m and k have been
set to values that maximize throughput for the two security levels 80 and 128.
The result of this experiment is depicted in Figure 3.

The figure shows that the vector length n considerably affects performance.
When n is small, there are frequent cache misses, leading to a low throughput.
The rate at which performance improves slows down when reaching n = 4096.
Thus, this value for n is a good choice when memory is limited. However, there is

2 Note that the flag -mavx can be used instead, in which case the PXOR instruction
is used in place of VPXORS, resulting in 256-bit operations but with fewer execution
ports.
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Fig.2: The change in throughput is Fig.3: The effect on the throughput
shown for n = 4096 and n = 65,536 when increasing the vector length from
when increasing the security level from n = 2'° to n = 2'® is shown for the
80 to 150 in increments of 10. security levels 80 and 128.

a substantial improvement when increasing n from 2'° to 2'6. This improvement
is due to the fact that 16 is a power of 2, which enables multiple optimizations:
First, the noise vector can be constructed efficiently as 16 bits can efficiently
be read sequentially. Moreover, when setting m and k to values so that an is
divisible by 256, aligned memory access is possible for efficient use of the AVX
instructions. On the given test machine, throughput dropped significantly when
increasing n further for two reasons. First, the optimizations for n = 26 are
not possible for these vector lengths. Second, if the vectors become too long,
cache misses become more frequent and parts of the vectors need to be loaded
repeatedly. In fact, the drop is so steep that the throughput for n = 2'7 is lower
than for n = 2'2. Naturally, results may vary depending on the given hardware
architecture. In particular, the peak may occur for a different value of n.

Having discussed how the parameters affect performance in terms of through-
put, we proceed to analyze the potential for parallelization. It is easy to see that
the computation of MTv + e can be parallelized well. The basic principle is to
partition M into ¢t matrices My, ..., M; of dimension % x n and assigning each
partition to one of ¢ threads. Additionally, vector v and ¢, are also partitioned
into smaller vectors roughly of size m/t and klog(n)/t, respectively. Each thread
i € {1,...,t} then computes MIv; and e;, which requires a fraction of 1/t of
the entire computational effort. Subsequently, the ¢ matrix-vector products are
added together and the logical or of all ¢ noise vectors is computed. Finally, the
resulting noise vector is added to the computed matrix-vector product.

In reality, this process is slightly more complex because there are several
constraints that must be respected when partitioning M, v, and e. Obviously,
m/t may not be an integer number, therefore it must be guaranteed that the
partitioning uniquely assigns each bit in v to a thread. The splitting of ¢, is more
involved because care has to be taken that each partition consists of a multiple
of log(n) bits as these many bits encode a single index in the noise vector.
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Fig.4: The effect of using multiple threads on throughput is shown. One, two,
and four threads (1T, 2T, 4T) are used for vector lengths n = 4096 (4K) and
n = 65,536 (64K). The results are provided for security levels 80 and 128.

In our next experiment, one, two, and four threads (denoted by 1T, 2T,
and 4T, respectively) are used to process the provided input and the processing
time is measured. Figure 4 summarizes the results for both recommended vector
lengths, n = 4096 (4K) and n = 65,536 (64K), and security levels 80 and 128.
The measurement results indicate that spreading the computational task across
multiple threads indeed leads to a higher throughput. The improvement is more
substantial for vectors of larger size and for higher security levels, i.e., when
parameters n and m are larger. This is due to the fact that increasing these pa-
rameters results in more work that can be partitioned among the threads. As an
example, throughput increases by merely 26% (21%) when using two threads in-
stead of one (four threads instead of two) for 80-bit security and a vector length
n of 4096. By contrast, for n = 65,536 and 128-bit security, the throughput
improves by 70% and 48% when increasing the number of threads from one to
two and from two to four, respectively, resulting in an overall speed-up factor
of approximately 2.5. While a multi-threaded execution evidently improves per-
formance, the overhead to synchronize the threads and the effort to merge the
partial results from all threads limits the potential of parallelization.

Finally, Table 3 compares the performance numbers against the performance
of the AES implementation of OpenSSL.

Hardware acceleration was disabled for some experiments to show the huge
effect of having hardware support in the form of the AES_NT instruction. Firekite
only reaches a similar performance level when hardware acceleration is disabled,
n = 65,536, and when using multiple threads. While Firekite makes use of
AVX/AVX2 instructions, we conjecture that support for operands the size of
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Algorithm Mode ~ HWA | Throughput [MB/s]
AES-128 CBC v 738
AES-128 CTR v 2864
AES-128 CBC X 357
AES-128 CTR X 258
Firekite (128-bit)  4K/1T X 115
Firekite (128-bit) 4K /4T X 221
Firekite (128-bit)  64K/1T X 165
Firekite (128-bit) 64K /4T X 415

Table 3: The throughput of AES-128 in CBC and CTR mode with and without
hardware acceleration (HWA) are listed, as well as throughput of Firekite for
the configurations 4K /1T, 4K /4T, 64K/1T, and 64K /4T for 128-bit security.

n, e.g., n = 4096, would be required to become competitive. Naturally, Firekite
would further greatly benefit from hardware support for the decoding of the
noise vector. Thus, we conclude that hardware support is a general requirement
for high performance.

5.2 Performance on an FPGA

Both AES and Firekite have been implemented for execution on a Cyclone V
FPGA, which is a low-cost and low-power system on a chip with a dual-core
ARM Cortex-A9 MPCore processor at 925 MHz.'® It offers 41,910 adaptive
logic modules, 166,036 registers, and 553 RAM blocks. Even though 1GB of
external RAM is available and accessible through a dedicated controller, only
on-chip RAM is used in our implementation for performance reasons as the
access latency for on-chip RAM is lower. Encryption modules were added to
the system with a softcore NIOS II CPU instantiated in the FPGA fabric.
Specifically, version f of the CPU is used, which is characterized by high-speed
pipelined data paths and available on-board data and instruction caches. Each
of the encryption modules contains read and write direct memory access (DMA)
units to minimize memory access latencies. The frequency of the clock supplied
to all units is 50 MHz.

The goal for the implementation of both AES and Firekite is to utilize the
available resources to the largest extent possible in order to maximize perfor-
mance in terms of the number of bytes that are encrypted per cycle. A custom
implementation of AES with the S-box implemented as a lookup table is used in
our experiments. We distinguish between single port (SP) and dual port (DP)
memory access: for SP memory access it is only possible to read from memory
or write to memory but not in the same cycle, whereas DP memory access uses
two ports to enable reading and writing at the same time. Consequently, the im-
plementation for SP and DP memory access differ substantially, notably in that

'3 https://www.verical.com/datasheet /intel-fpga-5CSXFC6D6F31C6-N-5759991.pdf.
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Fig. 5: The number of encrypted bytes/cycle is shown for AES and Firekite using
DP (top) and SP (bottom) memory access, for a bus size of 32, 64, and 128 bit.
Results are provided for both sequential (S) and parallelized (P) AES executions.

only the DP implementation is pipelined, i.e., data is scheduled for encryption
(or decryption) as soon as it is fetched from memory.

For AES, we consider a parallelizable mode (CTR) and a non-parallelizable
mode (CBC). In non-parallelizable modes, batches of data must be encrypted
sequentially; moreover, the encryption of the next batch can only be started
after it has been fetched from memory. However, it is important to note that
both modes are pipelined for DP memory access. For the more complex version
with DP memory access, four stages can be executed in parallel on this FPGA,
whereas it is possible to execute 32 stages in parallel for the simpler version with
a single-port DMA component. Thus, the sole advantage of the parallelizable
modes is that more data can be fetched in parallel, resulting in larger bursts,
fewer memory accesses, and consequently higher memory performance. We there-
fore expect parallelizable modes to perform slightly better, in particular when
coupled with dual port memory access.

The parameters that are used for the Firekite implementation are m = 512,
n = 4096, and k = 64, which corresponds to a security level of 183. These
parameters have been chosen because parameters that are powers of 2 simplify
the design. The key advantage in comparison to AES is that all computations
can, in theory, be carried out in parallel. The top-level diagram is similar to the
diagram for AES and is omitted. The implementation uses numerous registers on
the datapath. In order to save space, the rows of matrix M are constructed when
needed as described in §3.2. The largest amount of space in the FPGA fabric
is consumed by the computational blocks that are used to perform the XOR
operations and decode the noise vectors. Since the resources on this FPGA do
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not suffice to perform all operations of Algorithm 1 in one cycle, the computation
is executed in 32 cycles. In addition to an SP DMA version, a version with DP
memory access was developed as well, which introduces extra registers to enable
the parallelization of all operations.

As mentioned before, performance is measured in terms of the number of
bytes that are encrypted per cycle. The numbers are derived by encrypting a
payload of 48KB and dividing 49,152 by the number of used cycles. Figure 5
summarizes the results for AES, with and without parallelization, and Firekite
for SP and DP memory access. Furthermore, the effect of using different bus
sizes is presented as well.

The results are encouraging as Firekite encrypts more bytes per cycles when
using either DP or SP DMA components, except for SP memory access and a
bus size of 128 bits. The throughput of Firekite is higher by a factor of 1.64 to
2.54 (depending on the bus size) for DP memory access, and even 2.87 to 5.5
times larger for SP memory access. As far as resource consumption is concerned,
Firekite uses more registers than AES as expected (roughly 20-25K vs. 4-11K).
However, the versions of AES using parallelization (both DP and SP memory
access) actually use slightly more combinational logic elements (34K vs. 35-36K).

These numbers naturally do not imply that Firekite generally performs bet-
ter. First of all, it requires significantly more registers and would clearly not
perform well when constrained to a small number of registers. Second, the re-
sults might be quite different on a different platform. Finally, there are numerous
light-weight encryption schemes that would reach a considerably higher through-
put given the same resources. Nonetheless, the results demonstrate that an LPN-
based encryption scheme can reach decent performance levels, which means that
such schemes can potentially become viable alternatives to state-of-the-art sym-
metric encryption schemes for specific architectures in the future.

6 Related Work

One main application of LPN and variants of LPN is authentication, and a
plethora of LPN-based authentication protocols have been proposed: HB [19],
HB [21], HBT (6], HB# [14], AUTH [24], and Lapin [18] among others [7, 27].
Several encryption schemes also base their security on the hardness of LPN [1,9-
13,23, 31]. Constructions of pseudo-random number generators [2,3] and pseudo-
random functions [30] based on LPN have been presented as well.

Alekhnovich [1] proposed two constructions for public-key encryption
schemes that encrypt a given plaintext bit for bit. Improvements were intro-
duced by Damgard et al. [9] and by Déttling et al. [11]. A more efficient scheme
building on top of the work of Dottling et al. was presented by Kiltz et al. [23].
HELEN [12] is another encryption scheme that bases its security on LPN and
the decisional minimum distance problem. More recently, Yu and Zhang [31]
illustrated how LPN can be used in a tag-based encryption scheme.

The work that is most closely related to ours presents the symmetric encryp-
tion scheme LPN-C [13]. The secret key in their scheme is a random matrix M.
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It uses an error correcting code C with generator matrix G to encrypt a plaintext
vector d: the ciphertext is (v, y) for a random vector v and y := MTv+e+ G -d,
where e is a noise vector whose bits are sampled from a Bernoulli distribution. In
order to decrypt (v,y), y+ M7Tv = e+ G -d is computed and then d is recovered
by running the decoding algorithm of C.

Clearly, there are similarities between LPN-C and Firekite: both schemes
use a random matrix M as the secret key and the computation of a ciphertext
includes a term of the form M7Tv 4 e. However, the two encryption schemes are
quite different in several respects. First of all, LPN-C uses an error-correcting
code C, which is not required for Firekite. Another differentiating factor is the
distribution of the bits in the noise vectors. It is a binomial distribution in
the case of LPN-C, whereas the distribution for Firekite has a lower variance,
and the hamming weight of the noise vector is upper bounded by k. Since the
error-correcting code can only successfully recover the plaintext if the number of
noise bits does not exceed a given threshold, it is possible that decryption fails
with a certain (small) probability. Alternatively, the authors suggest to truncate
the binomial distribution to ensure that the Hamming weight of noise vectors
does not exceed the correction capacity of C. However, this modification can
have a negative impact on the security of the scheme. By contrast, there are
no decryption failures for Firekite. What is more, unlike Firekite, LPN-C must
generate fresh random numbers for each messages.

While the work introducing LPN-C does not contain any measurement re-
sults, it is evident from the specification that LPN-C is unlikely to reach the
same level of performance as Firekite for recommended parameters. The lower
performance is partly due to the use of an error-correcting code, which may in-
cur a substantial overhead. More importantly, LPN-C requires a much larger m,
e.g., m = 512 for a security level of 80, because the vector v is made public. Ac-
cording to current knowledge, state-of-the-art attacks can exploit this additional
information to recover the secret key more efficiently.

7 Conclusion

We introduced a novel LPN-based synchronous stream cipher, called Firekite,
that has a simple structure and is parallelizable, particularly when given hard-
ware support. This is the first work that presents performance numbers of any
LPN-based scheme by benchmarking both a software and a hardware implemen-
tation. Moreover, it is the first LPN-based scheme that achieves decent through-
put numbers on dedicated hardware, albeit at the cost of higher resource usage
than state-of-the-art symmetric encryption schemes.

We hope that these results stimulate interest and trigger more research in this
direction in order to further explore the potential of practical encryption based
on LPN, which may lead to the development of viable alternatives to commonly
used symmetric encryption schemes.
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