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Abstract

Quantum field theories (QFTs) are the backbone upon which the edifice of modern
physics is built. In this thesis we explore the S-matrix bootstrap which is a non-
perturbative method that constrains the vast space of QFTs by using consistency condi-
tions that they must satisfy. The thesis is divided into two parts.

In part I of the thesis we study the S-matrix bootstrap for particles with spin in 4 space-
time dimensions and apply the formalism to scattering of identical Majorana fermions to
estimate bounds on their quartic couplings and their cubic (Yukawa) coupling to scalar
particles.

In part II of the thesis, we consider the scattering of massless (Goldstone) excitations on
a long flux tube. We use the S-matrix bootstrap to constrain Wilson coefficients of higher
dimension operators in the low energy flux tube effective field theory. These constraints
naturally translate to bounds on the ground state and excited state energy levels of long
flux tubes.

The techniques used in this thesis should be extendable to many other systems, both
massive and massless. We conclude by discussing some of these possibilities.

Keywords:

Quantum field theory, S-matrix Bootstrap, Strong coupling, Non-perturbative methods,
Flux tubes
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Résumé

Les théories Quantiques des Champs (TQC) sont la colonne vertébrale sur laquelle
l’édifice de la physique moderne est bâti. Dans cette thèse, nous explorons le bootstrap
de la matrice S, qui est une méthode non-perturbative pour contraindre le vaste espace
des TQC en utilisant des conditions de cohérence qu’elles doivent satisfaire. Cette thèse
est divisée en deux parties.

Dans la partie I de la thèse, nous étudions le bootstrap de la matrice S pour des particules
avec spin dans l’espace-temps à 4 dimensions et appliquons le formalisme à la diffusion
de fermions de Majorana identiques afin d’estimer des bornes sur leurs couplages
quartiques et leur couplage cubique (de Yukawa) avec des particules scalaires.

Dans la partie II de la thèse, nous considérons la diffusion d’excitations sans masse
(de Goldstone) sur un long tube de flux. Nous utilisons le bootstrap de la matrice S
pour contraindre les coefficients de Wilson d’opérateurs de dimension supérieure dans
la théorie des champs effective des tubes de flux à basse énergie. Ces contraintes se
traduisent naturellement en bornes sur les niveaux d’énergie de l’état fondamental et de
l’état excité des longs tubes de flux.

Les techniques employées dans cette thèse devraient pouvoir être étendues à de nom-
breux autres systèmes, aussi bien massifs que sans masse. Nous concluons en discutant
certaines de ces possibilités.

Mots clés :

Théorie quantique des champs, bootstrap de la matrice S, couplage fort, méthodes
non-perturbatives, tubes de flux
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Introduction

Quantum Field Theory (QFT) is an essential tool in modern physics, as it is the frame-
work used to describe a wide range of phenomena in particle physics, cosmology and
condensed matter physics. Nevertheless, in spite of extensive research for many decades,
solving strongly coupled QFTs remains a herculean task. The standard textbook ap-
proach to interacting QFTs involves treating them as a small deformation of a free QFT
and then writing observables as a perturbative expansion around the free theory values.
Therefore this approach is unsuitable for theories such as Quantum Chromodynamics
(QCD), which is the QFT describing strong interactions, where the coupling is large and
there is no other obvious small parameter 3 which could act as a handle for perturbative
computations.

The S-matrix Bootstrap program of the 1960s [1] was envisaged as a means to non-
perturbatively solve strong interactions. The idea was that properties of analyticity,
unitarity and crossing symmetry could be used to uniquely pick out the scattering am-
plitude of strongly interacting particles such as the pion-pion amplitude. Unfortunately,
this turned out to be too ambitious and while there were some successful predictions
such as mesons lying on Regge trajectories, the program could not make sustained
progress and interest declined sharply after the 1970s.

However in the last few years, the S-matrix bootstrap program has undergone a renais-
sance, thanks to the pioneering work of [2–4], who imposed the constraints of unitarity
numerically to bound the cubic and quartic couplings of identical scalars in 2d and 4d.
Following their work, the S-matrix bootstrap program has been used in a number of
different contexts to find non-perturbative bounds [5–15].

The goal of this thesis is to expand the ambit of the modern S-matrix Bootstrap program.
We do this on two fronts. Part I of the thesis deals with the generalization of the
numerical S-matrix Bootstrap set-up of [4] to particles of any spin and any mass in four
space-time dimensions. On the other hand, in Part II, we will use S-matrix Bootstrap
techniques to deduce analytic and numerical bounds on the dynamics of long string-like

3For some computations, N = 3 is large enough for 1
N expansions to work. However note that even the

theory with N = ∞ remains unsolved.
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Introduction

objects in QFTs. In particular, these bounds will apply to confining flux tubes in Yang
Mills and QCD. The rest of the introduction will provide the motivation for the above
topics of study.

Quantum field theory

Quantum field theory as the name indicates involves the study of fields. As a quantum
mechanical theory, there is a Hilbert space and each vector in this space represents a valid
state of the physical system. The quantum fields are operators that act on this Hilbert
space of states and their dynamics is governed by a Lagrangian4. However neither the
fields nor the states themselves are observable, but instead what are observable are the
matrix elements of the fields (and their products) in between states, called correlation
functions. While correlation functions are important observables especially in statistical
physics and in cosmology, in this thesis we will mainly concentrate on the other main
observable in QFTs which is the S-matrix.

The scattering matrix (S-matrix)

The S-matrix encodes information about scattering processes in a QFT. The importance
of scattering in particle physics of course can not be overstated. For the past century, we
have figured out better and better answers to the question “What is everything made
up of?" by colliding particles against one other with more energy and observing what
happens. The first scattering experiment was by Geiger, Marsden and Rutherford, who
in 1909 scattered alpha particles off a thin gold foil and deduced the existence of the
nucleus of the atom. Since then there have been numerous scattering experiments that
led to the discovery of the various building blocks of nature one by one, culminating
with the discovery of the Higgs boson at the Large Hadron Collider in 2012 which
completed the last missing piece in the Standard Model 5.

Therefore from the particle physics viewpoint, the S-matrix is “the" observable that one
needs to compute in a QFT 6. Its definition in QFT mimics a typical scattering process -
we begin with a state consisting of n particles which are far separated in the far past,
called the incoming state. As the state evolves in time, the particles get closer to each
other and interact in some complicated manner. In the far future, they separate out
again into say m particles, giving rise to the outgoing state.

The S-matrix is the unitary transformation that relates the set of ingoing states to outgo-

4This is the typical scenario, there exist QFTs with no Lagrangian description.
5While the Standard Model is complete in the sense it accounts for all known elementary particles, there

are still phenomena such as neutrino masses, dark matter, dark energy etc. that it does not explain.
6In a theory with dynamical gravity, correlation functions are not diffeomorphism invariant and we

expect the S-matrix to be the only observable.
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Figure 1: Schematic diagram of an n→ m scattering process

ing states and the matrix element is called the n to m scattering amplitude.

Sβ
α ≡ out〈β|α〉in (1)

The unitarity of the S-matrix is the statement that probabilities are conserved in quantum
mechanics

S†S = SS† = I (2)

In QFT, scattering amplitudes are computed from correlation functions of fields using
the LSZ formula [16]. The analyticity of scattering amplitudes follows from the locality
of the interactions between the particles and from causality which states that fields at
space-like separations (anti)commute

[φ1(x), φ2(y)]± = 0 ∀ (x2 − y2) > 0. (3)

Finally crossing symmetry states that the amplitude for a process where a particle is
ingoing is the analytic continuation of the amplitude for a process where its anti-particle
is outgoing (and vice-versa). It can be understood using the LSZ formula 7.

One way to motivate the formalism of QFT is that it is the natural way to arrive at a

7See A.5.3 and B.1 for examples
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Lorentz invariant S-matrix in a quantum mechanical theory, while satisfying the cluster
decomposition principle which states that experiments at spatially distant locations
shouldn’t influence each other [17].

The old S-matrix Bootstrap

The S-matrix bootstrap program of the 1960s was a more extreme version of the view-
point above. To properly understand it, let’s take a step back and think about the usual
process for how QFTs are used. We begin by conducting a few scattering experiments
and observe some spectrum of particles and their associated properties such as scattering
cross sections. We then write a Lagrangian for the QFT and use some of the experimental
data for example the mass of particles to fix the parameters in the Lagrangian. Using
this Lagrangian we make predictions for further scattering experiments. Thus we see
that on a practical level, QFTs provide a way to deduce full information about scattering
from a partial subset. The proponents of the 1960s S-matrix Bootstrap believed that the
properties of crossing, unitarity and analyticity of the S-matrix would be rigid enough
that it should be possible to totally bypass fields and directly bootstrap the full scattering
amplitude from just basic assumptions such as the mass spectrum. This was the hope
(which didn’t pan out) for the strongly interacting pion-pion amplitude.

S-matrix Bootstrap Reloaded

Unlike the old S-matrix bootstrap of the 1960s that we just described, the modern S-
matrix Bootstrap is meant to be complimentary to usual QFT. The goal is to use the
universal properties of analyticity, crossing and unitarity that any good S-matrix should
satisfy to chart the space of allowed QFTs. In this sense, the modern S-matrix bootstrap
can be thought of as the theory version of performing a new experiment. To elaborate
on the analogy, consider a situation where a QFT with a range of parameter values
is compatible with existing experimental data. A new experiment that brings more
data would generically be incompatible with some of the parameter space and thus
reduce the space of “allowed" QFTs. In the case of S-matrix bootstrap, the idea is similar.
There may be some range of parameters in a Lagrangian or an S-matrix that at first
glance seems reasonable. However, upon studying the aforementioned constraints
of analyticity, crossing and unitarity more systematically, we can bound the space of
QFTs. This endeavour is inspired by the remarkable success of the modern conformal
bootstrap.
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Figure 1: Determination of the leading scaling dimensions in the 3d Ising model from the
mixed correlator bootstrap after scanning over the ratio of OPE coefficients λεεε/λσσε and
projecting to the (∆σ,∆ε) plane (blue region). Here we assume that σ and ε are the only
relevant Z2-odd and Z2-even scalars, respectively. In this plot we compare to the previous
best Monte Carlo determinations [18] (dashed rectangle). This region is computed at Λ = 43.

partially motivated by the present ∼ 8σ discrepancy between measurements of the heat-
capacity critical exponent α in 4He performed aboard the space shuttle STS-52 [16] and
the precise Monte Carlo simulations performed in [17]. While our new O(2) island is not
quite small enough to resolve this issue definitively, our results have some tension with the
reported 4He measurement and currently favor the Monte Carlo determinations.

This paper is organized as follows. In section 2 we review the bootstrap equations
relevant for the 3d Ising and O(N) vector models and explain the scan over relative OPE
coefficients employed in this work. In section 3 we describe our results, and in section 4 we
give a brief discussion. Details of our numerical implementation are given in appendix A.

4

Figure 2: Allowed space in the scaling dimensions of the two relevant operators in the
3d Ising model. Figure from [18]

Conformal Bootstrap

Conformal field theories (CFTs) are special QFTs which are invariant under conformal
symmetries. They describe second-order phase transitions in statistical physics systems
and are also important due to the AdS/CFT correspondence which states that quantum
gravitational theories in (d + 1) dimensional Anti-de Sitter space (AdS) are dual to
CFTs on the d dimensional boundary. In addition, CFTs are also important conceptually
because QFTs can be thought of as renormalization group flows triggered by a UV
deformation of some CFT. Moreover, these flows have a CFT at the endpoint as well.
The enhanced symmetry in CFTs allows us to prove the convergence of the operator
product expansion (OPE) in these theories which allows two operators close to each
other to be written as a sum of operators in the theory:

Oi(x)Oj(0) ∼∑
k

Cijk(x)Ok(0) (4)

By applying the OPE repeatedly, all correlation functions can be fully deduced from
a set of numbers {∆i, λijk} called CFT data that characterize the CFT 8. However a
generic set of CFT data {∆i, λijk} does not define a CFT. This is because such a set would
not satisfy the condition of OPE associativity which is the statement that an n-point
correlation function can be computed by applying the OPE in various permutations
and all of these should give the same answer. The conformal bootstrap uses this OPE
associativity property along with unitarity and analyticity9 of the correlation functions
to tightly constrain putative CFT data. This is exemplified in the famous plot of operator
dimensions in the 3d Ising model, see figure 2.

8This is true for CFTs in flat space, which is all that we will talk about in this paragraph.
9Note that these analyticity properties of correlators in CFT can be proven using OPE convergence.
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s
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Figure 3: Analytic structure of 2 to 2 amplitude S(s) in 2d

For other examples and a review of the conformal bootstrap, see [19]. While the con-
formal bootstrap is indeed quite encouraging, how do we know that it is still possible
to make progress for general QFTs where we lose the large amount of control afforded
by conformal symmetry? The answer is that unitarity and analyticity are still quite
powerful. Let’s consider a simple example to illustrate this point [3].

What is the maximum cubic coupling of a scalar in a QFT?

Consider the two to two scattering process of identical scalars in 2 space-time dimensions.
The scattering amplitude is a function of one variable s = (p1 + p2)2 , where p1 and
p2 are the momenta of the incoming particles, satisfying the following property due to
crossing symmetry

S(s) = S(4m2 − s). (5)

In the complex s plane the amplitude has branch cuts on the real s axis from s = 4m2 to
s = ∞ and the “crossed" cut from s = −∞ to s = 0. In addition we assume that there is
a cubic coupling to another stable scalar particle (called a bound state) of mass mb ≥ m,
which gives rise to a pole at s = m2

b and the crossed pole at s = 4−m2
b

S(s) ∼ g2

s−mb
near s = m2

b (6)

where the residue g2 is the non-perturbative definition of the cubic coupling of the
scalars. The amplitude is otherwise analytic in the rest of the s plane, see figure 3.

Finally, unitarity dictates that the maximum absolute value of the amplitude just on top
of the cut s = 4m2 to s = ∞ is 1:

|S(s)| ≤ 1 ∀ s ≥ 4m2 (7)
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Figure 4: Maximum cubic coupling gmax
1 between the two external particles of mass m and the

exchanged particle of mass m1. Here we consider the simplest possible spectrum where a single
particle of mass m1 shows up in the elastic S-matrix element describing the scattering process of
two mass m particles. The red dots are the numerical results. The solid line is an analytic curved
guessed above (9) and derived in the next section. The blue (white) region corresponds to allowed
(excluded) QFT’s for this simple spectrum.

the integral in (6) to obtain

S(s) ≈ S∞ −
∑

j

Jj
(

g2
j

s−m2
j

+
g2
j

4m2 − s−m2
j

)
+

M∑

a=1

ρaKa(s) (7)

where Ka(s) are explicit functions of s given in appendix A. Evaluating this expression at
some value s0 > 4m2 and plugging it into equation (2) gives us a quadratic constraint in
the space of variables g2

j , ρn and S∞. The space of solutions of the constraints is then the
intersection of all these regions for all values of s0 > 4m2.6 It now suffices to start inside this
region and move in the direction of increasing g2

1 until we hit the boundary of the region and
can move no more.

In practice, these numerics are simple enough that they can be performed in a few seconds
in Mathematica using the built-in function FindMaximum which allows one to search for
the maximum value of a function inside of some constraint region. For more details see
appendix A.

To illustrate, consider the simplest possible example in which only a particle of mass m1

couples to the external particle of mass m. In other words, we consider an S-matrix with
a single s-channel pole whose residue we are trying to maximize. We can then follow the
procedure outlined above to find the maximum value of the coupling gmax

1 for each value
of m1/m. The results are depicted in figures 4 and 5 .

6We can visualize this region as the intersection of many cylinders, given by equation (23), in a high
dimensional space.

8

Figure 4: Bound on cubic coupling of scalars in 1+1d. Figure from [3]

The question asked in the title of this paragraph translates mathematically to finding the
maximum residue of a function analytic in a domain which is bounded in modulus on
the boundary of this domain10. This is a straightforward application of the maximum
modulus principle as outlined in [4] and we get the following plot for the maximum
coupling as a function of the bound state scalar mass m2

b, see figure 4.

In the four dimensional space-time that we live in, life is not as simple and there are
many additional complications, beginning with the fact that the scattering amplitude is
a function of two variables s and t and unitarity is an integral equation. It is still possible
to apply these constraints numerically and this was the work of [4], resulting in the
following bounds on the cubic coupling of scalar particles, this time in 3+1d, see figure
5.

In chapter 1 of this thesis we will establish the formalism to deal with scattering of
particles of any spin in 3 + 1d. We will then apply the formalism to the special case of
scattering of identical Majorana fermions in chapter 2 and obtain bounds on the their
quartic couplings as well as their cubic couplings to a scalar particle.

10The domain is C\{the cuts}.
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Figure 4: Largest possible value |g|max as a function of m2
b , using a triple rho expansion of the

amplitude for the given values of Nmax and after imposing the unitarity constraints for spins up to
`max = 20. As explained in the text, the shaded area is physically incompatible with our analyticity
assumption. We added the analytic result of appendix E as the dashed line near m2

b = 4.

` ≤ `max and along a grid of values for s. Experimentally we observe that our results remain
meaningful if `max is not much smaller than Nmax and if the grid is sufficiently refined. In
appendix F we discuss the dependence on these parameters in more detail, and outline the
numerical implementation.

4 Results

In this section we present our numerical results for several maximization problems using
the S-matrix bootstrap method explained above. For most of this section we restrict our
attention to 3+1 dimensional QFTs, i.e. d = 3 in our notation. In the final subsection 4.4,
we consider 2 + 1 dimensional QFTs.

4.1 Cubic coupling

For our first result we consider a scattering amplitude with a single pole corresponding to
the exchange of a scalar particle of mass mb, exactly as in our ansatz (15), and maximize
the value of the residue g2 as a function of mb.

12

In figure 4 we plot the maximum absolute value of the coupling |g| defined as the residue
of the pole, with the different curves corresponding to different values of Nmax. We have

12For mb 6= m this in particular implies that there is by assumption no three-point coupling where all
particles have mass m. This could be due to a symmetry but we do not have to commit to an underlying
mechanism here.

12

Figure 5: Bound on cubic coupling of scalars in 3+1d

Effective Field Theory applications

Effective field theories (EFTs) are a class of QFTs which are very useful when we need
to describe the low energy physics of a particular system. Consider an example where
experimentally we only have access to energies less than some scale M. Then it is clear
that we would never see particles with energy greater than M as external states in our
experiments. Of course, the particles more energetic than the cut-off M would still
appear as virtual particles in Feynman diagrams. But is it still possible to describe the
low-energy physics using only the low-energy fields? The answer is yes, and effective
field theories are the answer. Conceptually, effective field theories can be thought
of as derived from the full microscopic theory (a.k.a the UV theory) by integrating
out the heavier states above the cut-off M, leaving only the low energy variables. In
practice what one does is to consider the symmetry of the system and write all terms
in the Lagrangian which are compatible with the given symmetries, including the non-
renormalizable ones. Note that if we were writing a fundamental theory, we would
naturally require such a theory to be UV complete, which would preclude writing
non-renormalizable terms. When writing EFTs, we already know that the theory is
not UV complete on its own because we integrated out the heavier particles that are
needed to UV complete it, and therefore non-renormalizable terms are fine to include.
At this point it seems that we are saying that there are an infinite number of terms in
the Lagrangian. What allows EFTs to still be predictive is that at a given order in E

M ,
where E is the energy scale of the process we are interested in, only a finite number of

8
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these infinite terms contribute. The coefficients of these higher dimensional terms in the
Lagrangian, called Wilson coefficients, are determined by the UV theory. However it
is often the case that either because we do not know the UV theory or because the UV
theory is strongly coupled, we can not deduce these coefficients from first principles. It
is here that we can use the techniques of the S-matrix Bootstrap to restrict the values
that these Wilson coefficients can take. To see this in a example, consider a theory of a
massless scalar φ, with a mass gap M upto which there are no other particles. At low
energies we can write an EFT involving only the field φ:

L =
1
2
(
∂µφ∂µφ

)
+ c0φ4 + c2(∂φ)4 + . . . (8)

A priori, it seems that any value of c2 should be allowed. However it was shown by [20]
that only c2 ≥ 0 is allowed by unitarity and analyticity of the scattering amplitude.
Similar bounds also apply to higher mass dimension Wilson coefficients and they were
recently studied systematically in a series of works [21–33]. In chapter 3 of this thesis
will use the spinning S-matrix bootstrap that we set up in chapter 1 to derive bounds on
the space of photon EFTs. To be more precise, consider the photon EFT

Lphoton = −1
4

FµνFµν + c1(FµνFνµ)(FαβFβα) + c2FµνFνρFρσFσµ + . . . (9)

One of our results is the range of allowed values for the dimensionless ratio c1
c2

. In
addition we will also chart the space of allowed values of the coefficients at the next
order in the photon EFT.

Confinement, flux tubes and glueballs

The problem of confinement is a long standing problem in QCD. The fundamental fields
(i.e the ones that appear in the Lagrangian), the quarks and the gluons, are coloured. The
quarks transform in the fundamental representation of the SU(3) colour group while
gluons transform in the adjoint representation. However, all observed states are colour
neutral. This phenomenon is called confinement and as yet the mechanism as to how
this happens is not fully understood. Lattice simulation indicate that upon stretching
apart two quarks, a string-like object called “flux tube" develops in between them11. The
tension of this flux tube leads to a linear potential between the quarks which ensures
that quarks are confined to the colour neutral bound state. The long distance corrections
to this linear potential in powers of 1

R (where R is distance between the quarks) naturally
correspond to the low energy dynamics of the excitations of the flux tube12. These
excitations, which we will call branons, are massless and because QCD develops a mass

11Note that the flux tube breaks in the presence of dynamical quarks.
12There are contributions from the endpoints as well [34, 35].
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gap 13, their low energy dynamics will be described by an EFT consisting only of the
branon fields Xµ.

L =
∫

d2σ
√
−h
[
`−2

s + `2
s α3 K4 + `2

s β3 K4 + . . .
]

(10)

where h = det hαβ = det∂αXµ∂βXµ is the induced metric, Kµ
αβ = ∇α∂βXµ is the extrinsic

curvature. The two K4 operators differ in terms of index contractions. Since we know
the UV theory which is QCD, in principle it should be possible to derive the Wilson
coefficients in the low energy effective Lagrangian. However due to the strong coupling
nature of QCD, this is easier said than done and in fact nothing is known about these
coefficients. One of the results of this thesis (chapter 4) is that we were able to bound the
values of the Wilson coefficients α3 and β3 purely from analyticity, crossing and unitarity
of the two to two scattering amplitude of these branons.

In chapter 5 we further extend the flux-tube system by also allowing scattering to single
glueball states in the bulk. This leads to a rich system of scattering amplitudes: Branon-
branon scattering, glueball annihilating into two branons and glueball transmission
after interacting with the flux tube. By considering this mixed system, we hope to place
bounds on the coupling between glueball and the flux-tube.

13Showing the mechanism behind the generation of this mass gap is another outstanding problem in
physics.
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Overview of Part I

This part of the thesis deals with generalizing the work of [4] to scattering of particles
with any spin and any mass in four space-time dimensions. Let us therefore begin
with a brief summary of their work which dealt with the scattering of identical neutral
scalar particles. The fact that the scattered particles are scalar implies that the scattering
amplitude is Lorentz invariant and therefore it is a function T(s, t, u) of the three Lorentz
invariant variables s, t and u, called Mandelstam variables:

s = (p1 + p2)
2 , t = (p1 − p3)

2 , u = (p1 − p4)
2 (11)

The Mandelstam variables are not independent and satisfy the following condition:

s + t + u = 4m2 (12)

where m is the mass of the scalar particle. The scattering amplitude T(s, t) ≡ T(s, t, 4m2−
s− t) is defined in the physical region:

s ≥ 4m2 and − (s− 4m2) ≤ t ≤ 0. (13)

where it describes the s channel scattering process 12→ 34. However, it is possible to
analytically continue the amplitude to the complex s and t planes. One reason to do this
is the crossing property which states that the function T(s, t) analytically continued to
the t channel physical region given by

t ≥ 4m2 and − (t− 4m2) ≤ s ≤ 0. (14)

describes the t channel scattering process 13̄→ 2̄4. An analogous statement holds upon
continuing to the u channel physical region

u ≥ 4m2 and − (u− 4m2) ≤ s ≤ 0. (15)

where the amplitude describes the u channel scattering process 14̄→ 32̄. In the present
case of identical neutral scalar scattering, all three processes are the same and hence we
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Overview of Part I

get the following symmetry of the scattering amplitude.

T(s, t) = T(t, s) = T(s, 4m2 − t) (16)

Another reason to be interested in the analytic continuation of the scattering amplitude
is that it allows us to write dispersion relations which express the full amplitude in
terms of only its discontinuity Discs(s, t) (which coincides with its imaginary part for
s, t in the physical region). This discontinuity has positivity properties that follow from
unitarity and along with crossing symmetry (16), imposes constraints on the amplitude
which can be bootstrapped to obtain non-trivial bounds on the scattering amplitude. We
now recap known non-perturbative results on the analyticity of the scattering amplitude.
Note that these results are sufficient to prove crossing symmetry for the two to two
amplitude [36]14.

Non-perturbative results on the analyticity of the amplitude

• For fixed t ∈ [−t0, 0], the amplitude T(s, t) satisfies a subtracted dispersion relation
in the s plane. Note that t0 = 28m2 for scalar scattering [38].

• For fixed s ∈ [4m2, ∞), the amplitude T(s, cos θ) as a function of the scattering
angle cos θ = 1− 2t

s−4m2 is analytic in an ellipse (called the Lehmann ellipse) with
foci −1 and +1 and semi-major axis cos θ0 > 1 [39].

• Any point (s, cos θ) in the physical region is surrounded by a neighbourhood of
analyticity whose precise form is unknown [40].

• For elastic processes, single variable dispersion relations in the three channels
implies the following domain of analyticity [41]

|st| < 256m2 s, t ∈ C\{the cuts}. (17)

• Finally by also using unitarity, it is possible to extend the domain of analyticity
which remains the state of the art [42] (to the best of the author’s knowledge):

|t| < 4m2 and s ∈ C\{the cuts} (18)

In [4], it was assumed that the scattering amplitude is analytic in the entire s and t planes
except for poles and branch cuts that are necessarily present due to propagation of
intermediate one and multi-particle states. This property, known as Landau analyticity,
can be proved to all orders in perturbation theory at least for the scattering of the lightest
particles in the theory. In this thesis we will have nothing further to add to the known

14For recent progress on proving crossing symmetry for higher particle amplitudes albeit in perturbation
theory see [37]
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results about the non-perturbative analytic structure of the amplitude. We will continue
assuming Landau analyticity for the scattering of particles with spin.

Finally unitarity of the scattering amplitude is easily imposed by decomposing the
scattering amplitude into partial waves:

S`(s) = 1 + i
√

s− 4m2

32π
√

s

∫ π

0
dθ sin θP`(cos θ)T(s, t(s, cos θ), u(s, cos θ)). (19)

in terms of which it translates to

|S`(s)|2 ≤ 1 ∀ s ≥ 4m2 and ` ∈N (20)

The idea in [4] was to write a linear ansatz for the scattering amplitude

T(s, t, u) = ∑
α

αiFi(s, t, u) (21)

where αi are parameters to be optimized over and Fi(s, t, u) are functions which in
the complex s and t planes satisfy assumed (Landau) analyticity properties. Crossing
symmetry was then solved as linear constraints on the parameters αi. This leaves
unitarity which can be re-written as the positive semi-definiteness condition

(
1 S`(s)

S`(s) 1

)
� 0 ∀ s ≥ 4m2 and ` ∈N (22)

which is linear in the parameters αi and was imposed numerically using SDPB [43].

In the presence of spin, the expressions (16) , (19) and (20) immediately become more
complicated. The goal of chapter 1 is to setup the formalism which allows to study
crossing and unitarity for amplitudes with generic masses and spins. This chapter is
mostly a review of known results [44] in a concise form.

Compared to the scalar case a generic scattering amplitude describing the process
12→ 34 has the form

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4), (23)

where pi are four-momenta and λi are helicities of scattering particles respectively. Given
the spins ji of four particles, helicities take values from the range λi = −ji, . . . + ji with
step one. There are thus

N4 ≡ (2j1 + 1)(2j2 + 1)(2j3 + 1)(2j4 + 1) (24)

components describing the scattering process 12→ 34.15 We would then like to define

15When the scattering process is parity and/or time-reversal invariant, when it contains identical and/or
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N4 scattering amplitudes which depend only on the Mandelstam variables. This can be
done in two different ways: using the center of mass frame or using tensor structures.
We denote these two options respectively by

T12→34
λ3,λ4
λ1,λ2

(s, t, u) and T I
12→34(s, t, u), (25)

where I = 1, . . . N4. The two sets of amplitudes in (25) are related by a linear transforma-
tion which depends on the Mandelstam variables only. This relation is completely fixed
once the basis of tensor structures is chosen. Both options have their advantages and
disadvantages. In the center of mass frame one can derive crossing equations once and
for all spins and masses as summarized in section 1.3 (see appendix A.5 for details).16

However, the analyticity properties of the center of mass amplitudes are subtle and
one is forced to deal with the issue of kinematic singularities discussed in section 1.7.
Analyticity is more straightforward when using tensor structures, however one needs to
study crossing case by case due to non-trivial linear relations between covariant tensor
structures. As a result we cannot give it a completely general treatment in chapter 1 and
instead employ it only in the particular example of identical neutral spin 1

2 particles in
section 2.4. In addition, the construction of general spin tensor structures is discussed to
some extent in appendix A.8.

The key element for imposing unitarity constraints are the partial amplitudes (20). In the
case of generic spin, (20) remains valid for center of mass amplitudes, if the Legendre
polynomial is replaced by the small Wigner d-matrix given in (1.9) in full generality.
This is explained in detail in section 1.5. Finally, the unitarity constraints for generic spin
are given in section 1.6.

In chapter 2, we specialize to the case of scattering of neutral spin 1
2 massive fermions,

also known as Majorana fermions [45]. This chapter should be seen as the simplest
application of the formalism given in section 1. We begin by setting up the optimization
problem taking into account the crossing and unitarity constraints. Then in section 2.5
we write an ansatz for the scattering of identical Majorana particles in a parity invariant
QFT (assuming this is the lightest particle). Finally, we present our numerical results
for the allowed values of the non-perturbative quartic and cubic (Yukawa) couplings
defined from the physical scattering amplitude in section 2.3. The universal bounds for
the quartic coupling, given in (2.93), and for the cubic couplings, shown in figures 2.5
and 2.6, are our main numerical results.

massless particles, the counting of independent amplitudes becomes much more complicated. We discuss
it in section 1.4.

16Generically, crossing equations relate physical amplitudes to the analytic continuation of other am-
plitudes beyond their physical domain. There is no general proof (especially for particles with spin) that
this continuation exists and how big is the domain where crossing equations hold. For a review of results
for scalar amplitudes, see [38]. In this work we do not address this issue and simply assume that all the
amplitudes under consideration are maximally analytic.
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In chapter 3 which is work in progress, we turn our attention to the scattering of photons,
which from the S-matrix point of view are massless spin-1 particles whose scattering
amplitudes have a definite soft (s→ 0) behaviour (3.81). Note that this soft behaviour
of the amplitude cancels out the usual IR divergences that plague scattering amplitude
of massless particles in four spacetime dimensions. We set up the numerical boostrap
problem and we will shortly use SDPB to bound the space of photon EFTs.

In the appendix A, we fill in many of the details of the presentation in the main text.
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1 Review: spinning S-matrix formal-
ism

In this chapter we study quantum systems invariant under the restricted Poincaré
symmetry group. In addition, we consider special situations where parity and/or time-
reversal symmetries are also present. Scattering amplitudes are important physical
observables in these systems. They are constrained by many non-trivial consistency
conditions.

We begin by reviewing its kinematic aspects (the ones fixed by symmetries).1 Our goal
is to provide an updated and easy to use practical summary of the basic ingredients.

1.1 States

We work in Lorentzian metric with the mostly plus signature

ηµν = {−+++}. (1.1)

The unitary irreducible representations of the restricted Poincaré group were classified
by Wigner.2 Here we will work with a particular unitary representation which is positive
energy time-like. The basis for such a representation is formed by the states

|c,~p; `, λ; γ〉 . (1.2)

where the 3-momentum ~p ∈ R3 and the helicity λ = −`,−` + 1, . . . ,+`. The other
labels are fixed within the irreducible representation and serve to specify a given state.
The label c > 0 is a continuous real parameter related to the energy p0 > 0 as

c2 = −pµ pµ = (p0)2 − (~p )2. (1.3)

1For other sources covering this topic see for example [17].
2For a textbook discussion see for example [17, 46].
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Review: spinning S-matrix formalism

It is defined as the eigenvalue of the first Casimir of the Poincaré group c2 = −P2, where
Pµ are the generators of translations. Instead of c one can equivalently label the basis
of states (1.2) using the energy p0. We will often use both labels throughout the text
interchangeably. The spin label ` = 0, 1

2 , 1, . . . is a non-negative integer or half integer
related to the eigenvalue of the second Casimir of the Poincaré group W2 = 4c2 `(`+ 1),
where Wµ is the Pauli–Lubanski pseudovector.3 The helicity label λ is the projection of
the spin vector along ~p. Finally the label γ stands for any other additional (discrete or
continuous) labels which might be required to fully specify the state. We will see one
particular case of their importance in section 1.1.3.

We will often need to use spherical coordinates in which case the three momentum is
parametrized as

~p = (p sin θ cos φ, p sin θ sin φ, p cos θ), p ≡ |~p|, 0 ≤ φ < 2π, 0 ≤ θ ≤ π, (1.4)

The helicity basis states (1.2) with non-zero three momentum ~p are defined as follows

|c,~p; `, λ; γ〉 = e−iφJ3 e−iθ J2 e+iφJ3 e−iηK3 |c,~0; `, λ; γ〉, (1.5)

where Ja and Ka with a = 1, 2, 3 are the generators of spatial rotations and boosts
respectively. The rapidity parameter η is related to the energy and momentum of the
states as

cosh η =
p0

c
, sinh η =

p
c

. (1.6)

Lastly the helicity λ in the zero three momentum state |c,~0; j, λ; γ〉 is a projection of the
spin ` onto the z axis. In other words these states are eigenstates of the J3 generators.
Given a generic 3d rotation characterized by the three Euler angles (α, β, γ) (where α

and γ parametrize rotations around the z-axis and β parametrizes rotations around the
y-axis) we have the following transformation property

R(α, β, γ)|c,~0; `, λ; γ〉 = ∑
λ′

D
(`)
λ′λ(α, β, γ)|c,~0; `, λ′; γ〉, R(~a) ≡ e−iαJ3 e−iβJ2 e−iγJ3 . (1.7)

The object D
(`)
λ′λ is known as the large Wigner D matrix and reads as

D
(`)
λ′λ(α, β, γ) = e−iαλ′d(`)λ′λ(β)e−iγλ. (1.8)

3In our conventions Wµ ≡ εµνρσ MνρPσ, where Mνρ are the generators of the Lorentz group.
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1.1. States

Here the object d(`)λ′λ is the small Wigner d matrix, its explicit expression reads4

d(`)λ′λ(β) =
√
(`+ λ)!(`− λ)!(`+ λ′)!(`− λ′)!

×
2j

∑
ν=0

(−1)ν (cos(β/2))2j+λ−λ′−2ν (− sin(β/2))λ′−λ+2ν

ν!(`− λ′ − ν)!(`+ λ− ν)!(ν + λ′ − λ)!
. (1.9)

In case both helicities λ and λ′ are equal to zero, the small Wigner d matrix reduces to
the usual Legendre polynomial

d(`)00 (β) = P`(cos β). (1.10)

The Wigner D matrices satisfy orthogonality relations. They also obey various other
useful relations, see for example appendix A.2 in [44].

Consider now a generic Poincaré transformation which consists of a translation fixed
by four Lie parameters aµ and the Lorentz transformation Λµ

ν fixed by six Lie param-
eters ρ[µν]. It transforms the 4-momentum pµ into p′µ = Λµ

ν pν. Under the Poincaré
transformation (a, ρ) the states (1.2) transform according to

U(a, ρ)|c,~p; `, λ; γ〉 = eia·p′ ×∑
λ′

D
(`)
λ′λ(α, β, γ)|c,~p ′; `, λ′; γ〉, (1.11)

where the three Wigner angles (α, β, γ) can be expressed in terms of the six Lie parame-
ters ρ[µν]. We provide an example of a Wigner angles computation in appendix A.1.4.
For the special case of pure 3d rotations, the Wigner D matrix reduces to a phase and
therefore the helicity of the state remains unchanged5

R(~a)|c,~p; `, λ; γ〉 = e−iλ ξ(~a,φ,θ)|c,~p ′; `, λ; γ〉, (1.12)

where the phase ξ has a complicated dependence on its arguments.

1.1.1 Particles

So far we discussed states and their properties in a generic Poincaré invariant quantum
theory. The related notion of particle does not exist in every QFT. The simplest context
where particles are well defined is in free QFTs. A free theory is described by a set of
one particle states (describing freely propagating particles with a given mass and spin).
Taking tensor products of these states we form a complete basis of states spanning the
Hilbert space of the theory. In interacting QFTs, particles can still be defined in the

4Note that Mathematica implements the small Wigner d matrices (1.9) with indices λ and λ′ flipped. In

other words d(`)λ′λ(β) is generated by the command WignerD[{`, λ, λ′}, β].
5Notice that this is compatible with (1.7) because the limit ~p → 0 of |c,~p; j, λ; γ〉 is only equal to

|c,~0; j, λ; γ〉 if ~p is parallel to the z-axis.
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Review: spinning S-matrix formalism

asymptotic far past and future if interactions decay sufficiently fast with distance. This
is the case for theories with a mass gap and massless theories with soft interactions
like Goldstone bosons or photons (in the absence of charged particles in the asymptotic
states). In this paper, we will only consider those theories where particles do exist. Then,
one can define two types of asymptotic states: the in states (far past) and the out states
(far future). Both the in states and the out states span the full Hilbert space of the theory.
A natural basis of in/out states is given by the tensor product of one particle in/out
states.

1.1.2 One particle states (1PS)

One particle states (1PS) are special cases of (1.2) where c takes only discrete values
corresponding to the masses of stable particles in the theory. For this reason, we will set
c = m from now on. If global symmetries are present, the label γ describes the charge or
more generically the representation under the global symmetry group. For simplicity, in
this section we ignore global symmetries, thus the 1PS will not carry any extra labels γ.

We introduce a shorthand notation for one particle states

|κ〉 ≡ |m,~p; j, λ〉. (1.13)

For indicating spin we use the label j instead of ` here to ease the visual distinction
between the 1PS and generic irreps. We normalize 1PS as follows

〈m′,~p ′; j′, λ′|m,~p; j, λ〉 = (2π)3 2p0 δ3(~p ′ − ~p) δm′mδj′ jδλ′λ

≡ δ(κ′ − κ), (1.14)

where in accordance with (1.3) the energy of the states is

p0 =
√

m2 + p2. (1.15)

In the second line of (1.14) we have introduced the shorthand notation δ(κ′ − κ) for the
set of Kronecker and Dirac delta functions. The transformation rule for a one particle
state under a Poincare transformation remains the same as in (1.11).

The case of massless particles should be treated separately since c 6= 0 in (1.2). Skipping
details, the following statement holds: massless particles can be described by the states
(1.13) with m = 0 and the range of helicities restricted to only two values λ = −j and
λ = +j.

Finally we state the transformation properties of 1PS under parity and time-reversal.
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1.1. States

For further details see appendix A.2. One has

P|m,~p; j, λ〉 = η(−1)j−λ exp(2iφλ)|m,−~p; j,−λ〉, (1.16)

T |m,~p; j, λ〉 = ε(−1)2j exp(−2iφλ)|m,−~p; j, λ〉, (1.17)

where φ is the spherical angle defined in (1.4), see also (1.27), η and ε are pure phases.
Their values are yet other quantities characterizing the state. Let us briefly discuss the
phase η called intrinsic parity. One can argue as in section 3.3 of [17], that one can always
define P in such a way that P2 = +1 or P2 = −1. As a result one has

η = ±1 or η = ±i. (1.18)

The imaginary values of intrinsic parities are only possible for fermions, however no
such fermions have been discovered so far in the nature.

1.1.3 Two particle states (2PS)

We define the two particle states (2PS) by taking the ordered tensor product of two 1PS

|κ1, κ2〉 ≡ |m1,~p1; j1, λ1〉 ⊗ |m2,~p2; j2, λ2〉. (1.19)

The normalization of the 2PS defined above follows from that of the 1PS:

〈κ1, κ2|κ3, κ4〉 = δ(κ1 − κ3)δ(κ2 − κ4). (1.20)

Two particle states do not form an irreducible representation of the restricted Poincaré
group. However, they can be decomposed into a direct sum of states (1.2) transforming
in irreducible representations. This is done by injecting the completeness relation into
2PS

|κ1, κ2〉 =
∫ d4 p

(2π)4 θ(p0)θ(−p2)∑
γ

∑
`,λ
|c,~p; `, λ; γ〉 〈c,~p; `, λ; γ|κ1, κ2〉, (1.21)

where we normalize the states (1.2) as follows6

〈c′,~p ′; `′, λ′; γ′|c,~p; `, λ; γ〉 = (2π)4δ4(p′µ − pµ) δ`′` δλ′λ δγ′γ, (1.22)

where pµ = (p0, ~p) is the 4-momentum and the symbolic expression δγ′γ will be properly
specified when the additional labels γ and γ′ are defined. We use the normalization
(1.22) for all irreducible Poincaré representations, with the exception of 1PS which are the
only states where the label c takes particular discrete values. Looking at the right-hand

6The Kronecker deltas follow from the fact that the states here are simultaneous eigenstates of the two
Casimirs (A.34) and the helicity operator (A.55).
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side of (1.21), we see that the Clebsch-Gordon coefficients of this decomposition (due to
translation invariance) obey

〈c,~p; `, λ; γ|κ1, κ2〉 ∝ (2π)4δ4(pµ − pµ
1 − pµ

2 ). (1.23)

This delta function completely removes the integration over p in (1.21). The label γ is
the multiplicity label. In the case of 2PS decomposition the multiplicity label γ consists
of only discrete parameters7 and reads as

γ = (m1, j1, λ1; m2, j2, λ2). (1.24)

Thus the label γ keeps track of which particles and what helicities were used to make
the two particle state. In what follows we will almost always drop the explicit mass and
spin labels in order to simplify the formulas. However, when dealing with particles of
different masses and spins, the mass and spin labels are important. Finally we choose to
normalize the states appearing in (1.21) according to (1.22) with

δγ′γ = δm′1m1
δm′2m2

δj′1 j1 δj′2 j2 × δλ′1λ1
δλ′2λ2

. (1.25)

1.1.4 COM two particle states

We can always use Lorentz invariance to go to the frame where the total momentum of
the two particles is 0. This frame is called the centre of mass (COM) frame. Therefore,
we do not need to know the most general decomposition (1.21), and instead it is enough
to focus on the special case of 2PS in the center of mass (COM) frame, namely the states
(1.19) obeying the constraint ~p1 = −~p2. We give a special label to such two particles
states

|(p, θ, φ); λ1, λ2〉 ≡ |m1,+~p; j1, λ1〉 ⊗ |m2,−~p; j2, λ2〉, (1.26)

where the three-momenta have the following spherical coordinates8

+~p = (p, θ, φ), −~p = (p, π − θ, π + φ), θ ∈ [0, π], φ ∈ [0, 2π]. (1.27)

7This is no longer the case for the decompositions of three or more particle states. In these cases the
multiplicity label γ would also contain continuous parameters associated with the relative momenta of the
component particles.

8 Notice that given the vector +~p in spherical coordinates, the vector opposite to it is defined as
−~p = (p, π − θ, π + φ) for φ ∈ [0, π] and −~p = (p, π − θ, −π + φ) for φ ∈ (π, 2π]. In other words in
order to describe the vector −~p in spherical coordinates one needs two different descriptions, one for
φ ∈ [0, π] and one for φ ∈ (π, 2π]. We do not indicate it in the main text, since all the consequent formulas
remain uniform in the whole range φ ∈ [0, 2π]. The reason for that is the choice of the helicity basis (1.5) and
the fact that R(φ, θ,−φ) is 2π periodic, see footnote 3. Notice also that there is a special case when θ = π.
For this particular point, we choose the spherical angles of the first state to be +~p = (p, θ = π, φ = π),
whereas the spherical angles of the second state are −~p = (p, θ = 0, φ = 0).
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1.1. States

The states (1.26) are normalized according to (1.20). By performing a change of variables
we can rewrite the normalization in terms of spherical coordinates as

〈(p, θ, φ); λ1, λ2|(p′, 0, 0); λ′1, λ′2〉 = (2π)4δ4(0)× 16π2√s√
pp′

δ(θ)δ(φ)

sin θ
×

δm′1m1
δm′2m2

δj′1 j1 δj′2 j2 × δλ1λ′1
δλ2λ′2

, (1.28)

where s = (p0
1 + p0

2)
2 is the square of the COM energy. In appendix A.1.2, we compute

the Clebsch-Gordon coefficients (1.23) for the COM states (1.26). Here we present only
the result which reads as

|(p, θ, φ); λ1, λ2〉 = ∑
`,λ

C`(p) eiφ(λ1+λ2−λ)d(`)λλ12
(θ)|c, 0; `, λ; γ〉, (1.29)

where we have

λ12 ≡ λ1 − λ2, c =
√

s =
√

m2
1 + p2 +

√
m2

2 + p2, (1.30)

with the multiplicity labels γ given in (1.24) and d(`)λλ12
(θ) given by (1.9). Using the

orthogonality of the small Wigner d matrix and the exponential function, we can invert
equation (1.29) as follows

|c, 0; `, λ; γ〉 = 2`+ 1
4πC`(p)

∫ 2π

0
dφ
∫ π

0
dθ sin θ e−iφ(λ1+λ2−λ)d(`)λλ12

(θ)|(p, θ, φ); λ1, λ2〉.
(1.31)

The coefficient C` is completely fixed by the consistency requirement that the left-hand
side of (1.29) satisfies the normalization condition (1.20) and the state in the right-hand
side of (1.29) satisfies the normalization condition (1.22). For non-identical particles it
reads as

C`(p)2 = 4π (2`+ 1)× c
p

. (1.32)

1.1.5 Identical particles

The discussion presented above should be slightly modified when the two particle state
is composed of identical particles. In the latter case it must satisfy

|κ1, κ2〉id = (−1)2j|κ2, κ1〉id. (1.33)

We have added the subscript id to explicitly indicate that the state describes a system of
two identical particles. In order to incorporate (1.33), we have (instead of simply taking
an ordered product) to take either symmetrized (in case of bosons) or anti-symmetrized
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(in case of fermions) tensor product. Such a state will thus have the following form

|κ1, κ2〉id ≡
1√
2

(
|m,~p1; j, λ1〉 ⊗ |m,~p2; j, λ2〉+ (−1)2j|m,~p2; j, λ2〉 ⊗ |m,~p1; j, λ1〉

)
.

(1.34)
The normalization of the state (1.34) follows from (1.14)

id〈κ1, κ2|κ3, κ4〉id = δ(κ1 − κ3)δ(κ2 − κ4) + (−1)2jδ(κ1 − κ4)δ(κ2 − κ3). (1.35)

As before we need to define the identical 2PS in the center of momentum. Adapting
(1.26) to the case of identical particles we get

|(p, θ, φ); λ1, λ2〉id ≡
1√
2

(
|m,+~p; j, λ1〉 ⊗ |m,−~p; j, λ2〉+ (−1)2j|m,−~p; j1, λ2〉 ⊗ |m,~p; j, λ1〉

)
. (1.36)

The normalization of the identical COM states (1.36) is fixed by (1.35). It is still given by
(1.22) but with

δγ′γ =
1
2

(
δλ1λ′1

δλ2λ′2
+ (−1)`+λ1−λ2 δλ1λ′2

δλ2λ′1

)
. (1.37)

We would now like to decompose the identical two particle state (1.36) into irreducible
representations

|c, 0, `, λ; λ1, λ2〉id ≡
1
2

(
|c, 0, `, λ; λ1, λ2〉+ (−1)`+λ1−λ2 |c, 0, `, λ; λ2, λ1〉

)
. (1.38)

The decomposition of identical 2PS is obtained straightforwardly by applying (1.29) to
both terms in the right-hand side of (1.36) which leads to

|(p, θ, φ); λ1, λ2〉id =
√

2 ∑
`,λ

C`(p)ei(λ1+λ2−λ)φd(`)λλ12
(θ)|c, 0; `, λ; λ1, λ2〉id, (1.39)

where the coefficient C` is given by (1.32). For the detailed derivation of these equations
see appendix A.3.

1.2 S-matrix elements

Given a generic state in the reference frame at t = 0, an observer in another reference
frame in the far past (t = −∞) or far future (t = +∞) will see the same state as a (linear
combination of) tensor product of one particle states which we refer to as in or out
asymptotic states respectively. Asymptotic states have a complicated time evolution.
One can however establish a formal one to one map between these states and those
of some free theory (which evolve trivially with time) by means of a pair of unitary
operators Ω− and Ω+ called the Møller operators. See section 2.1 in [13] for a recent
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discussion. In their notation

|κ〉in = Ω−|κ〉 f ree, |κ〉out = Ω+|κ〉 f ree. (1.40)

Let us now discuss inner products between asymptotic states. Since the Møller operators
are unitary, the inner products of only in states or only out states are fixed by the
normalization conditions (1.22) and (1.14). This means that the only non-trivial matrix
elements must include both in and out states.

Four-particle amplitudes

We start with the most important object for our work

out〈κ3, κ4|κ1, κ2〉in = f ree〈κ3, κ4|S|κ1, κ2〉 f ree, (1.41)

where the scattering operator S is defined via (1.40) as

S ≡ Ω†
+Ω−. (1.42)

Isometry9 of Møller operators implies unitarity of the scattering operator

S†S = 1. (1.43)

Poincaré invariance implies that10

U(a, ρ) S U−1(a, ρ) = S, (1.44)

where U represents a generic Poincaré transformation in the Hilbert space. Finally it is
convenient to split the scattering operator into the trivial part (identity operator) and
the interacting part as

S = 1 + iT. (1.45)

If T = 0 we simply recover the free theory. The matrix element (1.41) describes scattering
of two particles. Factoring out the overall delta function due to translation invariance
we can define the two to two scattering amplitude as

(2π)4δ(4)(pµ
1 + pµ

2 − pµ
3 − pµ

4 )× S12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) ≡ f ree〈κ3, κ4|S|κ1, κ2〉 f ree.
(1.46)

Equivalently we define the interacting part of the two to two scattering amplitude

(2π)4δ(4)(pµ
1 + pµ

2 − pµ
3 − pµ

4 )× T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) ≡ f ree〈κ3, κ4|T|κ1, κ2〉 f ree.
(1.47)

9An isometric operator O on a Hilbert space preserves distances. This implies that O†O = 1, however
the operator need not be surjective. A surjective isometric operator is unitary.

10See the discussion around (1.11).
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Since the (interacting) scattering amplitude is defined via the one particle states, all the
4-momenta are on-shell

p2
i = −m2

i . (1.48)

We study these amplitudes and their properties in depth in section 1.3. We sometimes
drop the subscript 12→ 34 when it is clear from the context which scattering process
we describe. However, it is necessary to keep this subscript when relating amplitudes
describing different processes. Using (1.45) we can relate the scattering amplitude (1.46)
with its interacting part (1.47) as

S12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) =[
f ree〈κ3, κ4|κ1, κ2〉 f ree

(2π)4δ(4)(pµ
1 + pµ

2 − pµ
3 − pµ

4 )

]
+ iT12→34

λ3,λ4
λ1,λ2

(p1, p2, p3, p4), (1.49)

where the first term [. . .] is a schematic expression which can be evaluated straightfor-
wardly.11 This piece is not a function but a distribution. Due to the relation (1.49), in
practice we will never need to discuss the full amplitude S and instead we will only
need the interacting T amplitude.

1.2.1 Partial amplitudes

The second matrix element we need is between the in and out states in the irreducible
representation

out〈c′,~p ′; `′, λ′; γ′|c,~p; `, λ; γ〉in = f ree〈c′,~p ′; `′, λ′; γ′|S|c,~p; `, λ; γ〉 f ree. (1.50)

Again factoring out the overall delta function due to translational invariance we can
define the partial amplitude with a definite spin ` as

(2π)4δ(4)(pµ − p′µ)δ``′δλλ′ × S`
γ′
γ (c) = f ree〈c′,~p ′; `′, λ′; γ′|S|c,~p; `, λ; γ〉 f ree. (1.51)

Equivalently we can define the interacting part of the partial amplitude as

(2π)4δ(4)(pµ − p′µ)δ``′δλλ′ × T`
γ′
γ (c) = f ree〈c′,~p ′; `′, λ′; γ′|T|c,~p; `, λ; γ〉 f ree. (1.52)

11 For example in the COM frame defined in (3.9) using the normalization condition in spherical coordi-
nates (1.28) it is straightforward to write

[
f ree〈κ3, κ4|κ1, κ2〉 f ree

(2π)4δ(4)(pµ
1 + pµ

2 − pµ
3 − pµ

4 )

]

com

=
8π
√

s√
pp′
× δ(θ)δ(φ)

sin θ
δm1m3 δm2m4 δj1 j3 δj2 j4 × δλ1λ3 δλ2λ4 .

Similarly in case of identical particles with mass m and spin j using (A.193) we have

[
f ree〈κ3, κ4|κ1, κ2〉 f ree

(2π)4δ(4)(pµ
1 + pµ

2 − pµ
3 − pµ

4 )

]

com

=
32π2√s√

s− 4m2
×
(

δ(θ)δ(φ)

sin θ
δλ1λ3 δλ2λ4 + (−1)2j δ(π − θ)δ(φ + π)

sin(π − θ)
δλ1λ4 δλ2λ3

)
.
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We prove that the left-hand side of (1.51) and (1.52) must contain δ``′δλλ′ factor in
appendix A.4.1. In a generic situation due to (1.22) the two partial amplitudes are simply
related as

S`
γ′
γ (c) = δγ′γ + iT`

γ′
γ (c). (1.53)

In practice we will only need to consider partial amplitudes where the irreps come from
the decomposition of COM two particle states (1.29). In that case the additional labels
γ are multiplicities given by (1.24). The Kronecker delta for distinct particles is given
by (1.25) and for identical particles by (1.37). We examine partial amplitudes and their
properties in detail in section 1.5. In addition, we also derive the relation between partial
and scattering amplitudes.

1.3 Scattering amplitudes and crossing

In this section we carefully study various aspects of the scattering amplitudes (1.46) and
its interacting part (1.47).

We start with the transformation property under the Poincaré group. It directly follows
from the transformation property of each state given by (1.11). In the most generic case
it reads as

Tλ3,λ4
λ1,λ2

(p1, p2, p3, p4) = ∑
λ′i

D
(j1)
λ′1λ1

(~ω1)D
(j2)
λ′2λ2

(~ω2)D
∗(j3)
λ′3λ3

(~ω3)D
∗(j4)
λ′4λ4

(~ω4)T
λ′3,λ′4
λ′1,λ′2

(p′1, p′2, p′3, p′4), (1.54)

where ~ωi ≡ (αi, βi, γi) are the Wigner angles for each one particle state defining the
(interacting) scattering amplitude.

Let us now introduce Mandelstam variables which are invariant quantities under
Lorentz transformations

s ≡ −(p1 + p2)
2, t ≡ −(p1 − p3)

2, u ≡ −(p1 − p4)
2, s + t + u =

4

∑
i=1

m2
i . (1.55)

Using these variables one can split the scattering amplitude (1.47) into parts invariant
under Lorentz transformation and parts transforming non-trivially,

Tλ3,λ4
λ1,λ2

(p1, p2, p3, p4) =
(2j1+1)...(2j4+1)

∑
I=1

TI(s, t, u)×TI
λ3,λ4
λ1,λ2

(p1, p2, p3, p4). (1.56)

We refer to the quantities TI(s, t, u) as the scalar components of the scattering amplitudes
while TI are called tensor structures. The latter ensures the correct transformation
property of the amplitude as dictated by (1.54). We abuse notation and call both the
full amplitude and its scalar components by the same symbol T. It should be clear
which is which by the presence of indices and arguments. We construct tensor structures
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explicitly for a particular example in section 2.4.1. For a general approach see appendix
A.8.

Instead of defining tensor structures and scalar components of the amplitude as in (1.56)
one can evaluate the full amplitude in a particular frame. The standard choice for this
frame is the center of mass (COM) defined as

pcom
1 = (E1, 0, 0,+p),

pcom
2 = (E2, 0, 0,−p),

pcom
3 = (E3,+p′ sin θ, 0,+p′ cos θ),

pcom
4 = (E4,−p′ sin θ, 0,−p′ cos θ).

(1.57)

Here the angle θ ∈ [0, π]. All the parameters in (1.57) can be expressed in terms of the
Mandelstam variables. In the simplest case where all four particles have the same mass
m we have

Ei =

√
s

2
, p = p′ =

√
s
4
−m2, sin θ =

2
√

tu
s− 4m2 , cos θ =

t− u
s− 4m2 . (1.58)

Instead of using (s, t, u) variables to characterize the scattering process one can also use
(s, θ) by using the relations

t = − s− 4m2

2
(1− cos θ), u = − s− 4m2

2
(1 + cos θ). (1.59)

From these expressions it is clear that the physical range of the Mandelstam variables is

s ≥ 4m2, t ∈ [4m2 − s, 0], u ∈ [4m2 − s, 0]. (1.60)

For the definition of the center of mass frame for the most generic case see appendix
A.4.3.

Using the COM frame we can define the scalar components of the interacting scattering
amplitude in either of the two equivalent ways12

Tλ3,λ4
λ1,λ2

(s, t, u) ≡ Tλ3,λ4
λ1,λ2

(pcom
1 , pcom

2 , pcom
3 , pcom

4 ),

Tλ3,λ4
λ1,λ2

(s, t, u)× (2π)4δ(4)(0) ≡ f ree〈(p′, θ, 0); λ3, λ4|T|(p, 0, 0); λ1, λ2〉 f ree,
(1.61)

As in (1.56) we abuse notation and call the full (interacting) amplitude in a generic frame
and its particular form in the COM frame by the same symbol. The difference should
always be clear from the arguments. Given the interacting scattering amplitude in the
COM frame one can unambiguously obtain the interacting scattering amplitude in a
generic frame by using (1.54). As an example, let us apply a rotation by an angle φ

12In order to see the equivalence of two definitions simply compare (1.47) evaluated in the COM frame
(3.9) with (1.26).
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1.3. Scattering amplitudes and crossing

around the z axis to (1.61). One gets the following relation

ei(λ1−λ2−λ3−λ4)φTλ3,λ4
λ1,λ2

(s, t, u)× (2π)4δ(4)(0) =

f ree〈(p′, θ, φ); λ3, λ4|T|(p, 0, 0); λ1, λ2〉 f ree (1.62)

This result will be useful when we compute the partial wave decomposition of the
scattering amplitude in section 1.5.

We note that the scalar components of the scattering amplitude defined in (1.56) and the
COM frame amplitude defined in (1.61) are simply related by a linear transformation
which depends only on s, t and u variables. This relation can be found by evaluating
(1.56) in the center of mass frame and comparing with (1.61). We will see an explicit
example of this in section 2.4.1.

1.3.1 Parity and time-reversal

Let us now discuss additional constraints which appear if the system is parity or time-
reversal invariant. In terms of the S operator (and hence also the T operator), the
following must hold

PSP† = S, T ST † = S†. (1.63)

At the level of COM amplitudes these translate into the following conditions

T12→34
λ3,λ4
λ1,λ2

(s, t, u) = η1η2η∗3 η∗4 (−1)j1+j2+j3+j4(−1)λ1+λ2+λ3+λ4 T12→34
−λ3,−λ4
−λ1,−λ2

(s, t, u),
(1.64)

T12→34
λ3,λ4
λ1,λ2

(s, t, u) = ε∗1ε∗2ε3ε4(−1)λ1−λ2−λ3+λ4 T34→12
λ1,λ2
λ3,λ4

(s, t, u). (1.65)

We derive them in appendix A.2.

1.3.2 Crossing

Our goal now is to formulate crossing equations. The case of particles with generic spin
was first addressed in [47]. It was further discussed in [44,48,49]. For a recent discussion
see also [28]. All the results presented below are carefully derived in appendix A.5.

Consider the scattering process of four particles. We denote it schematically by

12→ 34. (1.66)

Each particle is characterized by its mass, spin, helicity and 3-momentum, for instance
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1 = (m1, j1, λ1;~p1). There exist five other related process

4̄2→ 31̄, 3̄2→ 1̄4,

13̄→ 2̄4, 14̄→ 32̄.
(1.67)

together with 3̄4̄→ 1̄2̄. Here if particle i has a charge (or more generally transforms in
some representation of a global group) then particle ī has the opposite charge (transforms
in the conjugate representation). In other words ī is the antiparticle of particle i. The
scattering process (1.66) is described by the following interacting part of the amplitude

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4), (1.68)

whereas the scattering processes in (1.67) are described by

T4̄2→31̄
λ3,λ1
λ4,λ2

(p4, p2, p3, p1), T3̄2→1̄4
λ1,λ4
λ3,λ2

(p3, p2, p1, p4),

T13̄→2̄4
λ2,λ4
λ1,λ3

(p1, p3, p2, p4), T14̄→32̄
λ3,λ2
λ1,λ4

(p1, p4, p3, p2).
(1.69)

Here all 4-momenta have positive energies p0
i > 0 and are on-shell (1.48).

Under the assumption that the amplitudes in (1.68) and (1.69) can be analytically con-
tinued in pi and defined in some common domain of pi values, one can write a set of
crossing equations

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = T4̄2→31̄
+λ3,−λ1
−λ4,+λ2

(−p4, p2, p3,−p1), (1.70)

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = T13̄→2̄4
−λ2,+λ4
+λ1,−λ3

(p1,−p3,−p2, p4). (1.71)

which are referred to as the s− t crossing equations and

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = T3̄2→1̄4
−λ1,+λ4
−λ3,+λ2

(−p3, p2,−p1, p4), (1.72)

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = T14̄→32̄
+λ3,−λ2
+λ1,−λ4

(p1,−p4, p3,−p2), (1.73)

which are referred to as the s − u crossing equations. Finally the amplitude for the
process 3̄4̄ → 1̄2̄ can be related to that of the 12 → 34 process by using (1.72) and
(1.73) one after the other. There are two distinct paths for the analytic continuation
of amplitudes discussed in section A.5.1. In writing (1.70) - (1.73) we have made a
particular choice, more precisely the one given by (A.256).

Let us now focus on the 23- and 24-crossing equations given by (1.71) and (1.73) respec-
tively and evaluate them in the standard COM (3.9). We can then use the definition of
the center of mass amplitude (1.61) in the left-hand side of (1.71) and (1.73) but not in
the right-hand side. The right-hand side is not in the center of mass frame of particles 13
and 14 respectively. In order to bring them to this frame we need to perform a Lorentz
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1.3. Scattering amplitudes and crossing

transformation. The 23-crossing equation then reads

T12→34
λ3,λ4
λ1,λ2

(s, t, u) = ε′23 ∑
λ′i

eiπ(λ′1+λ′4)

× d(j1)
λ′1λ1

(α1)d
(j2)
λ′2λ2

(α2)d
(j3)
λ′3λ3

(α3)d
(j4)
λ′4λ4

(α4)T13̄→2̄4
λ′2,λ′4
λ′1,λ′3

(t, s, u), . (1.74)

where the angles αi in the equal mass case are given by

+ cos α1 = − cos α2 = − cos α3 = + cos α4 = +
st√

s(s− 4m2)
√

t(t− 4m2)
,

+ sin α1 = − sin α2 = + sin α3 = − sin α4 = − 2m
√

stu√
s(s− 4m2)

√
t(t− 4m2)

.
(1.75)

For the most general case see (A.322) and (A.323). Similarly the 24-crossing reads

T12→34
λ3,λ4
λ1,λ2

(s, t, u) = ε′24 ∑
λ′i

eiπ(λ′1+λ′3)

× d(j1)
λ′1λ1

(β1)d
(j2)
λ′2λ2

(β2)d
(j3)
λ′3λ3

(β3)d
(j4)
λ′4λ4

(β4)T14̄→32̄
λ′3,λ′2
λ′1,λ′4

(u, t, s), (1.76)

where the angles βi in the equal mass case are given by

+ cos β1 = − cos β2 = + cos β3 = − cos β4 = +
su√

s(s− 4m2)
√

u(u− 4m2)
,

+ sin β1 = − sin β2 = − sin β3 = + sin β4 = +
2m
√

stu√
s(s− 4m2)

√
u(u− 4m2)

.
(1.77)

For the most general case see (A.337) and (A.338). Notice that small Wigner d-matrices
are 4π periodic. As a result the angles αi and βi are not completely fixed by the equations
(1.75) and (1.77) since sines and cosines are 2π periodic. Any particular choice of αi

and βi satisfying (1.75) and (1.77) results in different overall phases ε′23 and ε′24 in the
crossing equations (1.74) and (1.76). In principle by carefully working with SU(2)
parametrization of rotation angles instead of SO(3), it should be possible to get the right
signs. However, in practice it is much quicker to compute these phases at leading order
in perturbation theory and since the phases are purely kinematic in nature, the result can
be used non-perturbatively. We also note that the form of crossing equations in a general
frame, (1.71) and (1.73), depends on the choice of path for the analytic continuation,
however both analytic continuations lead to the same expressions in the center of mass
frame (1.74) and (1.76).

It is interesting to consider the case when all four particles are massless. Assuming the
physical domain (1.60) of the Mandelstam variables for the process 12→ 34 in the limit
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m→ 0 the expressions (1.75) and (1.77) lead to

α1 = π, α2 = 0, α3 = 0, α4 = π, (1.78)

β1 = π, β2 = 0, β3 = π, β4 = 0. (1.79)

Using the following properties of the small Wigner d-matrices

d(j)
λ′λ(0) = δλ′,λ, d(j)

λ′λ(π) = (−1)j−λδλ′,−λ (1.80)

we get the following crossing equations

T12→34
λ3,λ4
λ1,λ2

(s, t, u) = ε′′23T13̄→2̄4
+λ2,−λ4
−λ1,+λ3

(t, s, u), (1.81)

T12→34
λ3,λ4
λ1,λ2

(s, t, u) = ε′′24T14̄→32̄
−λ3,+λ2
−λ1,+λ4

(u, t, s), (1.82)

where ε′′23 and ε′′24 are some new phases.

1.3.3 Neutral identical particles

In some practical applications one is required to study scattering processes of identical
neutral particles with mass m and spin j. We discuss this case in great detail in appendix
A.3. Here we state only the most important results.

We define the scattering amplitude of identical neutral particles in a generic and in the
center of mass frames as

Tλ3,λ4
λ1,λ2

(p1, p2, p3, p4)× (2π)4δ(4)(pµ
1 + pµ

2 − pµ
3 − pµ

4 ) ≡ id f ree〈κ3, κ4|T|κ1, κ2〉id f ree,

Tλ3,λ4
λ1,λ2

(s, t, u)× (2π)4δ(4)(0) ≡ id f ree〈(p′, θ, 0); λ3, λ4|T|(p, 0, 0); λ1, λ2〉id f ree.
(1.83)

In comparison with (1.46) we drop the subscript 12 → 34 since it does not carry any
useful information anymore. The two particle states formed from identical particles
were defined in (1.34). According to (1.33) they are (anti)symmetric under the exchange
of particles 12 and 34. Due to this condition the following equations hold

Tλ3,λ4
λ1,λ2

(s, t, u) = (−1)−λ1+λ2−λ3+λ4 Tλ3,λ4
λ2,λ1

(s, u, t), (1.84)

Tλ3,λ4
λ1,λ2

(s, t, u) = (−1)+λ1−λ2−λ3+λ4 Tλ4,λ3
λ1,λ2

(s, u, t). (1.85)

See appendix A.3.3 for details. Since the variables t and u are flipped in the left- and
right-hand side we refer to them as the t-u crossing equations. Applying them twice we
get the following kinematic constraint

Tλ3,λ4
λ1,λ2

(s, t, u) = T+λ4,+λ3
+λ2,+λ1

(s, t, u). (1.86)
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1.4. Counting scattering amplitudes

In the case of distinct particles the crossing equations (1.74) and (1.76) establish rela-
tions between different amplitudes. When particles are identical there is only a single
amplitude (1.83) and the crossing equations become constraints on this single amplitude.

One can also combine together (1.72), (1.73) and (1.70), (1.71) to obtain

Tλ3,λ4
λ1,λ2

(p1, p2, p3, p4) = T−λ1,−λ2
−λ3,−λ4

(−p3,−p4,−p1,−p2), (1.87)

Tλ3,λ4
λ1,λ2

(p1, p2, p3, p4) = T−λ2,−λ1
−λ4,−λ3

(−p4,−p3,−p2,−p1). (1.88)

Using the techniques of appendix A.5.4 one can bring both sides of these two equations
to the center of mass frame and show that

Tλ3,λ4
λ1,λ2

(s, t, u) = T−λ1,−λ2
−λ3,−λ4

(s, t, u), (1.89)

Tλ3,λ4
λ1,λ2

(s, t, u) = T−λ2,−λ1
−λ4,−λ3

(s, t, u). (1.90)

We refer to the conditions (1.86), (1.89) and (1.90) as the kinematic constraints associated
with the simultaneous permutation of particles (12)(34), (13)(24) and (14)(23) respectively.

As presented, the transition from (1.87), (1.88) to (1.89), (1.90) is very difficult. Strictly
speaking the equations (1.89) and (1.90) might have some overall helicity independent
phase which we have little control over. There is a much simpler way of deriving (1.89)
however. As discussed in appendix A.2.3 one can use the CPT theorem to obtain (1.89).
The constraint (1.90) follows from combining (1.89) with (1.86). This discussion indicates
(but not proves) that CPT transformation is equivalent to using crossing twice.

1.4 Counting scattering amplitudes

It is useful to count kinematically independent amplitudes in various cases. Looking at
the definition of the center of mass amplitude (1.61) it is obvious that the number of all
possible amplitudes N4 for four different massive particles is

N4 = (2j1 + 1)(2j2 + 1)(2j3 + 1)(2j4 + 1), (1.91)

since there are no restrictions on the helicity values. Using (1.64) we can further split the
amplitudes into parity even and parity odd ones. This is done by taking appropriate
linear combinations of

Tλ3,λ4
λ1,λ2

and T−λ3,−λ4
−λ1,−λ2

. (1.92)

Since the scattering amplitude must always contain an even number of fermions and
due to (1.18) and the comment below, the product of intrinsic parities

η1η2η∗3 η∗4 (1.93)
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entering (1.64) is either +1 or −113. Let us assume for concreteness that the product
in (1.93) is +1. (In the other case when (1.93) is −1 the role of parity even and odd
amplitudes constructed from (1.92) simply flips.) Having constructed the appropriate
linear combination from (1.92) the counting follows straightforwardly. In the case when
there are two or four fermions we have the same number of parity even N+

4 and parity
odd amplitudes N−4 which read

N±4 =
1
2
(2j1 + 1)(2j2 + 1)(2j3 + 1)(2j4 + 1). (1.94)

In case all particles are bosons we get

N±4 =
1
2
((2j1 + 1)(2j2 + 1)(2j3 + 1)(2j4 + 1)± 1) . (1.95)

The difference between (1.94) and (1.94) arises due to the fact that when all particles are
bosons there is always a parity even amplitude with all the zero helicities T00

00. The latter
is no longer true in the presence of fermions. Clearly, the following is obeyed

N4 = N+
4 + N−4 . (1.96)

If we impose parity as symmetry of our system only parity even amplitudes will survive.

It is more difficult to perform general counting when particles are identical since we need
to take into account the relations (1.86) - (1.90). However it easy to do for any particular
case of interest by forming a linear system of all the constraints (due presence of parity,
identical and massless particles), solving it and counting the number of independent
amplitudes. For example in the case of identical massive Majorana particles and identical
massive spin one particles we have

identical Majorana fermions: N+
4 = 5, N−4 = 2, (1.97)

identical spin one bosons: N+
4 = 17, N−4 = 10. (1.98)

Time-reversal does not further reduce these numbers. This can be intuitively understood
by noticing that P implies T invariance for neutral particles due to the CPT symmetry.

In case a particle with spin j is massless its helicity can only take two values +j and −j.
As a result if all four particles in the scattering process are massless and carry a non-zero
spin we always have, independently of the precise values of spin,

four different massless particles: N4 = 24 = 16. (1.99)

13Parity invariance implies that η1η2 = ±η3η4.
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In the case when all particles are identical, massless and carry a non-zero spin we have

identical massless particles: N+
4 = 5, N−4 = 2. (1.100)

It was proposed in section 6 of [50] that the number of scattering amplitudes in d
dimensions should be equal to the number of tensor structures of four-point functions
in d − 1 conformal field theories, where massless particles correspond to conserved
operators. This correspondence got an explanation in [51] where it was noted that the
conformal frame analysis of four point function is equivalent group theoretically to the
center of mass analysis of scattering amplitudes. When parity is involved or particles
are identical or massless the matching of CFT and amplitude counting is more difficult
to confirm. Here we explicitly verify this correspondence on some particular examples.
For instance (1.94) and (1.95) are in a perfect agreement with the formulas (4.47) and
(4.49) in [51], results (1.97) and (1.98) match (2.40) and (4.58) in [51], finally the very
special case (1.100) matches (3.24) in [51].14

1.5 Partial amplitudes

As we explained in section 1.1.3, the two particle states are in a reducible representation
of the Poincaré group and can be expressed as a direct sum of Poincaré irreps according
to (1.21) or (1.29) (in the special case of COM states). This leads to a decomposition
(often referred to as the partial wave decomposition) of scattering amplitudes into partial
amplitudes.

We start from the definition of the center of mass amplitude (1.62) and decompose the
two particle states there according to (1.29). As a result we get

ei(λ1−λ2−λ3−λ4)φTλ3,λ4
λ1,λ2

(s, t, u)× (2π)4δ(4)(0) = ∑
`,`′,λ,λ′

C`′(p′)C`(p)

e−i(λ3+λ4−λ)φd(`
′)

λ′λ34
(θ) d(`)λλ12

(0)〈c, 0, `′, λ′; λ3, λ4|T|c, 0, `, λ; λ1, λ2〉, (1.101)

where we have defined

λ12 ≡ λ1 − λ2, λ34 ≡ λ3 − λ4. (1.102)

The coefficient C`(p) was computed in (1.32). Using it we can write

C`(p′)C`(p) = 4π(2`+ 1)
√

s√
pp′

. (1.103)

14The number of parity even conserved tensor structures in conformal field theories was first computed
in [52], see table 1. In d = 3 it is 5 as expected.
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Due to the standard property of the small Wigner d-matrix

d(`)λλ12
(0) = δλλ12 (1.104)

the dependence on the azimuthal angle φ in (1.101) cancels out on both sides and we
obtain

Tλ3,λ4
λ1,λ2

(s, t, u)× (2π)4δ(4)(0) = ∑
`,`′,λ′

C`′(p′)C`(p)d(`
′)

λ′λ34
(θ)〈c, 0, `′, λ′; λ3, λ4|T|c, 0, `, λ12; λ1, λ2〉.

Using the definition of the partial amplitudes (1.52) the above can be written in its final
form

Tλ3,λ4
λ1,λ2

(s, t, u) = ∑
`

C`(p′)C`(p)d(`)λ12λ34
(θ)T`

λ3,λ4
λ1,λ2

(s). (1.105)

By using orthogonality of the small Wigner d matrix the decomposition (1.105) can be
inverted and leads to

T`
λ3,λ4
λ1,λ2

(s) =
2`+ 1

2C`(p′)C`(p)
×
∫ π

0
dθ sin θd(`)λ12λ34

(θ)Tλ3,λ4
λ1,λ2

(s, t, u). (1.106)

Note that t and u are functions of s and θ. In the equal mass case one has for instance
(1.59).

Analogously to (1.106) one can also write the decomposition of the full amplitude

S`
λ3,λ4
λ1,λ2

(s) =
2`+ 1

2C`(p′)C`(p)
×
∫ 2π

0

dφ

2π

∫ π

0
dθ sin θd(`)λ12λ34

(θ)Sλ3,λ4
λ1,λ2

(s, t, u). (1.107)

We need to introduce the integration over the azimuthal angle φ because the discon-
nected part of the scattering amplitude depends on it, see (1.49) and footnote 11. A
simple relation between (1.106) and (1.107) partial amplitudes follows from (1.53) and
(1.25). It reads15

S`
λ3,λ4
λ1,λ2

(s) = δm1m3 δm2m4 δj1 j3 δj2 j4 δλ1λ3 δλ2λ4 + iT`
λ3,λ4
λ1,λ2

(s). (1.108)

As a consistency check one can obtain this relation in a different way. One can plug (1.49)
evaluated in the COM frame together with the very first equation in the footnote 11 into
(1.107). The delta functions cancel all the integrals in (1.107) and we simply arrive at
(1.108).

15Here we have used a simple fact that δλiλk
δλjλl

δλijλkl
= δλiλk

δλjλl
.
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1.5.1 Identical particles

In case either the incoming particles or the outgoing particles are identical we also have
relations between the partial amplitudes due to (1.38). If the incoming particles 1 and 2
are identical we get

S`
λ3,λ4
λ1,λ2

(s) = (−1)λ2−λ1−`S`
λ3,λ4
λ2,λ1

(s). (1.109)

Similarly if the outgoing particles 3 and 4 are identical we get

S`
λ3,λ4
λ1,λ2

(s) = (−1)λ4−λ3−`S`
λ4,λ3
λ1,λ2

(s). (1.110)

For the case of all four particles being identical, we get
√

pp′ =
√

s/4−m2 due to (1.58),
and thus

S`
λ3,λ4
λ1,λ2

(s) =
√

s− 4m2

32π
√

s
×
∫ 2π

0

dφ

2π

∫ π

0
dθ sin θd(`)λ12λ34

(θ)Sλ3,λ4
λ1,λ2

(s, t, u), (1.111)

T`
λ3,λ4
λ1,λ2

(s) =
√

s− 4m2

32π
√

s
×
∫ π

0
dθ sin θd(`)λ12λ34

(θ)Tλ3,λ4
λ1,λ2

(s, t, u). (1.112)

Notice that we have used here (1.39) which contains an additional
√

2 factor compared
to a non-identical particle case. Analogously to (1.108) there is a simple relation between
the S and T partial amplitudes that follows from (1.53) and (1.37). It reads16

S`
λ3,λ4
λ1,λ2

(s) =
1
2

(
δλ1λ3 δλ2λ4 + (−1)`−λ34 δλ1λ4 δλ2λ3

)
+ iT`

λ3,λ4
λ1,λ2

(s). (1.113)

This result can also be obtained by plugging (1.49) evaluated in the COM frame together
with the second equation in the footnote 11 into (1.111). We also notice that in the case
of identical scalar particles we recover the standard result, see for example equation (10)
in [4].

Parity and time reversal

As usual parity and time reversal invariance lead to additional constraints. The parity
constraint follows directly from (A.145) and reads

S`
λ3,λ4
λ1,λ2

(s) = η1η2η∗3 η∗4 (−1)j1−j2+j3−j4−2`S`
−λ3,−λ4
−λ1,−λ2

(s). (1.114)

Similarly the time reversal constraint follows from (A.170) and reads

S12→34 `
λ3,λ4
λ1,λ2

(s) = ε∗1ε∗2ε3ε4S34→12 `
λ1,λ2
λ3,λ4

(s). (1.115)

Note that we reintroduced the subscripts 12→ 34 and 34→ 12 since Time Reversal is a
relation between these two distinct processes.

16See footnote 15.
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1.6 Unitarity

Unitarity of a quantum theory implies that the norm of any state must be non-negative,
i.e. ∀ |ψ〉 one has 〈ψ|ψ〉 ≥ 0. Now suppose we are given some set of N states |ψa〉 with
a = 1, . . . , N. Unitarity then requires that the N × N hermitian matrix with components
〈ψa|ψb〉 is positive semi-definite, namely (〈ψa|ψb〉) � 0. This formulation allows us to
impose unitarity constraints on the partial amplitudes straightforwardly.

We start by considering the incoming two particles state (formed from particles 1 and
2) together with the outgoing two particle state (formed from particles 3 and 4). We
decompose each of these states into irreducible representations according to (1.21). We
then have the following N = Nin + Nout independent states transforming in the spin `

irreducible representation of the Poincaré group

|1〉in ≡ |c,~p, `, λ; j1, j2〉in, |1〉out ≡ |c,~p, `, λ; j3, j4〉out,

|2〉in ≡ |c,~p, `, λ; j1, j2 − 1〉in, |2〉out ≡ |c,~p, `, λ; j3, j4 − 1〉out,
...

...

|Nin〉in ≡ |c,~p, `, λ;−j1,−j2〉in, |Nout〉out ≡ |c,~p, `, λ;−j3,−j4〉out, (1.116)

where the number of incoming and outgoing irreducible states is

Nin ≡ (2j1 + 1)(2j2 + 1), Nout ≡ (2j3 + 1)(2j4 + 1). (1.117)

Thus for each spin ` we can construct the following hermitian N × N matrix

H`(s)× (2π)4δ4(p′ − p)δ`′`δλ′λ =

(
in〈a′|b〉in in〈a′|b〉out

out〈a′|b〉in out〈a′|b〉out,

)
(1.118)

where s = c2 is the square of the COM frame total energy and the primes indicate that
the conjugated states to (1.116) have all the labels c, p, ` and λ primed. In defining the
matrixH`(s) we have also explicitly factored out the overall delta function appearing
due to translation invariance. According to the discussion above, unitarity then implies
that

H`(s) � 0, ∀` and s ≥ max(m1 + m2, m3 + m4)
2. (1.119)

Let us now discuss the components of the matrix (1.118). Since the Møller operators
introduced in section 1.2 to define the incoming and outgoing states are isometric, the
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1.6. Unitarity

elements in〈a′|b〉in and out〈a′|b〉out are simply fixed by the normalization condition (1.22)

in〈c′1,~p ′; `′, λ′; λ′1, λ′2|c1,~p; `, λ; λ1, λ2〉in = (2π)4δ(4)(p′µ − pµ) δ`′` δλ′λ δλ′1λ1
δλ′2λ2

,
(1.120)

out〈c′1,~p ′; `′, λ′; λ′3, λ′4|c1,~p; `, λ; λ3, λ4〉out = (2π)4δ(4)(p′µ − pµ) δ`′` δλ′λ δλ′3λ3
δλ′4λ4

.
(1.121)

On the other hand, the matrix elements out〈a′|b〉in and in〈a′|b〉out form partial amplitudes
according to (1.51)

out〈c′1,~p ′; `′, λ′; λ3, λ4|c1,~p; `, λ; λ1, λ2〉in = (2π)4δ(4)(pµ − p′µ)δ``′δλλ′ S`
λ3,λ4
λ1,λ2

(s),
(1.122)

in〈c′1,~p′; `′, λ′; λ1, λ2|c1,~p; `, λ; λ3, λ4〉out = (2π)4δ(4)(pµ − p′µ)δ``′δλλ′ S∗`
λ3,λ4
λ1,λ2

(s).
(1.123)

Plugging these to (1.118) we can schematically write the unitarity condition (1.119) as
(

δab S†
` ab

S`ab δab

)
� 0. (1.124)

1.6.1 Identical particles

In case either the incoming particles 1 and 2 or outgoing particles 3 and 4 are identical
there exist relations (1.109) and (1.110) between the partial amplitudes. This introduces
redundancies into the condition (1.124). In order to remove these redundancies we
restrict our attention to states with λ1 ≥ λ2 (in case of identical incoming particles) and
λ3 ≥ λ4 (in case of identical outgoing particles).

1.6.2 Parity invariance

In the presence of parity invariance various partial amplitudes entering (1.124) are
related according to (1.114). As a consequence the condition (1.124) again becomes
redundant. One can reformulate the condition (1.124) in an equivalent but less redundant
way by considering parity eigenstates. One then repeats the procedure above taking
into account the fact that Parity invariance forbids transitions between parity even and
parity odd states. As a result we get two separate positivity conditions for parity even
and parity odd states

H+
` (s) � 0, H−` (s) � 0. (1.125)

We will see an explicit example of this in section 2.2.
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Review: spinning S-matrix formalism

1.6.3 Time reversal invariance

Time reversal invariance relates the scattering amplitudes for the process 12 → 34 to
the scattering amplitudes for the process 34 → 12. Therefore in general time reversal
does not have any implications for the matrix H` since all its elements are scattering
amplitudes for the 12→ 34. However in the special case of elastic scattering i.e 12→ 12,
time reversal invariance (1.115) implies that the sub-matrix Sij is symmetric17

S`
λ3,λ4
λ1,λ2

(s) = S`
λ1,λ2
λ3,λ4

(s) (1.126)

1.7 Kinematic non-analyticities and constraints

This section is devoted to the study of the behaviour of COM interacting scattering
amplitudes defined in (1.61) at some very particular values of the Mandelstam variables
s, t and u. For simplicity we focus on the case of identical particles with mass m and
spin j.

Using (1.58) the center of mass frame (3.9) can be written in the following way

pcom
1 =

(√
s

2
, 0, 0,+

√
s
4
−m2

)
,

pcom
2 =

(√
s

2
, 0, 0,−

√
s
4
−m2

)
,

pcom
3 =

(√
s

2
,+

√
tu√

s− 4m2
, 0,+

t− u
2
√

s− 4m2

)
,

pcom
4 =

(√
s

2
,−

√
tu√

s− 4m2
, 0,− t− u

2
√

s− 4m2

)
.

(1.127)

The center of mass amplitude (1.61) is strictly defined in the physical domain of the
Mandelstam variables (1.60). If one attempts however to analytically continue the COM
frame amplitudes to arbitrary complex values of s, t and u, as can be already expected
from (1.127), one will encounter non-analyticities (poles and branch points) at

s = 4m2, s = 0, t = 0, u = 0. (1.128)

Some of these non-analyticities have a purely kinematic nature and have nothing to do
with the dynamics of the theory. Our goal here is to isolate them. In what follows we
will formulate the problem of kinematic non-analyticities precisely and then discuss
each of the special points (1.128) in detail. (A concrete example will be presented in
section 2.1.) For more details on the subject see chapter 7.3 in [44] and references therein.

17Note that |ε1ε2|2 = 1
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1.7. Kinematic non-analyticities and constraints

Recall the definition of helicity states (1.5), two particle center of mass states (1.26) and
center of mass amplitudes (1.61). Using them we can write explicitly the 1PS describing
the center of mass scattering process as

|m,+~pz; j, λ1〉 ≡ e−iηK3 |m,~0; j, λ1〉,
|m,−~pz; j, λ2〉 ≡ e−iπ J3 e−i(π−0)J2 e+iπ J3 e−iηK3 |m,~0; j, λ2〉,
|m,+~pθ ; j, λ3〉 ≡ e−iθ J2 e−iηK3 |m,~0; j, λ3〉,
|m,−~pθ ; j, λ4〉 ≡ e−iπ J3 e−i(π−θ)J2 e+iπ J3 e−iηK3 |m,~0; j, λ4〉,

(1.129)

where ~pz is the 3-momentum in the positive z-direction, ~pθ is the 3-momentum in the x-z
plane, J2 is the generator of rotations around the y-axis, K3 is the boost in the z-direction.
In the center of mass frame due to (1.58) the angle θ and the rapidity η defined in (1.6)
can be related to the Mandelstam variables as follows

cos θ =
t− u

s− 4m2 , sin θ =
2
√

tu
s− 4m2 , sinh η =

√
s− 4m2

2m
, cosh η =

√
s

2m
. (1.130)

The non-analyticities at s = 4m2, s = 0, t = 0 and u = 0 of these expressions enter the
center of mass amplitude (1.61) via (1.129).

The phenomena of kinematic non-analyticities is closely related to the phenomena of
kinematic constraints. When defining the COM scattering amplitudes (1.61) we have
used up all of the Lorentz symmetry to bring the scattering particles to the x-z plane.
However at the special points (1.128) we get an enhancement of symmetry. For instance
at s = 4m2 the system is SO(3) symmetric, at s = 0 the system is SO(1, 1) symmetric
and at t = 0 and u = 0 the system is SO(2) symmetric. This is straightforward
to see from (1.127).18 As a consequence of the enhanced symmetry the amplitudes
rearrange themselves into irreducible representations of the enhanced symmetry. Only
the amplitudes transforming in the trivial representations are allowed to be present,
while the rest must vanish. The latter requirement leads to kinematic constraints.19

18Notice that for the physical range of Mandelstam values t = O(s− 4m2) and u = O(s− 4m2) which
means that cos θ and sin θ are finite. This is not the case anymore once we promote s and t to independent
complex variables during the analytic continuation process.

19Kinematic constraints have recently appeared in a similar context in conformal field theories when
studying four point correlation functions of local primary operators. They received a proper group theoretic
treatment in appendix A of [51] (see also appendix D of [53]).

43



Review: spinning S-matrix formalism

Special point: s = 4m2

In order to isolate the singular behavior of the COM amplitudes at s = 4m2 we perform
a simple rewriting of the states (1.129) as follows20

|m,+~pz; j, λ1〉 = e−i θ
2 J2 X+e+i θ

2 J2 |m,~0; j, λ1〉,
|m,−~pz; j, λ2〉 = e−i θ

2 J2 e+iπ J2 X+e+i θ
2 J2 |m,~0; j, λ2〉,

|m,+~pθ ; j, λ3〉 = e−i θ
2 J2 X−e−i θ

2 J2 |m,~0; j, λ3〉,
|m,−~pθ ; j, λ4〉 = e−i θ

2 J2 e+iπ J2 X−e−i θ
2 J2 |m,~0; j, λ4〉,

(1.131)

where the operators X± are defined as

X± ≡ e±i θ
2 J2 e−iηK3 e∓i θ

2 J2 = e−i(K3 cos θ
2∓K1 sin θ

2 )η . (1.132)

In (1.132) we have used the commutation properties of the Lorentz generators (A.40).
Writing

cos
θ

2
=

√
−u

s− 4m2 , sin
θ

2
=

√
−t

s− 4m2 , (1.133)

we notice that the operators X± are completely regular at s = 4m2 since

η cos
θ

2
=

√−u
2m

+ O(s− 4m2), η sin
θ

2
=

√−t
2m

+ O(s− 4m2). (1.134)

Plugging the states (1.131) into the definition of the COM amplitudes (1.61) and using
the fact that the scattering operator is invariant under the Poincaré transformations21

(1.44) and the transformation property (1.7) we can write

Tλ3,λ4
λ1,λ2

(s, t, u) = ∑
λ′

d(j)
λ′1λ1

(
− θ

2

)
d(j)

λ′2λ2

(
− θ

2

)
d(j)

λ′3λ3

(
θ

2

)
d(j)

λ′4λ4

(
θ

2

)
Aλ′3,λ′4

λ′1,λ′2
(s, t, u),

(1.135)
where the new scattering amplitude A is defined as

Aλ3,λ4
λ1,λ2

(s, t, u) ≡
(
〈~0, λ3|X†

− ⊗ 〈~0, λ4|X†
−e−iπ J2

)
T
(

X+|~0, λ1〉 ⊗ e+iπ J2 X+|~0, λ2〉
)

.
(1.136)

From this explicit expression we see that at s = 4m2 the amplitude A is completely
regular due to (1.134), more precisely

Aλ3,λ4
λ1,λ2

(s, t, u) = O
(
(s− 4m2)0) . (1.137)

As a result the non-analytic behavior (1.133) at s = 4m2 enters the amplitude T only
20The relation e−iχJ2 eiπ J3 = eiπ J3 e+iχJ2 is used for the states 2 and 4.
21The same property holds obviously true for the T operators because of (1.45). The invariance we use

here is ei θ
2 J2 Te−i θ

2 J2 = T.

44



1.7. Kinematic non-analyticities and constraints

through the Wigner d-matrices in (1.135). Now in order to extract the precise behaviour
of the poles in the COM amplitude in practice we simply need to expand (1.135) around
s = 4m2 to the leading order using the explicit expression of the Wigner d matrices (1.9),
taking into account (1.133) and the fact that the functions A are regular at s = 4m2.

The expression (1.135) together with (1.136) can also be used to address kinematic
constraints. Expanding (1.135) to the next to leading order one finds that some linear
combinations should vanish as O

(
(s − 4m2)1

)
instead of O

(
(s − 4m2)0

)
or O

(
(s −

4m2)−1
)

. For simple examples as in section 2.1 such linear combinations can be found
manually. For more complicated cases one can invoke group theoretic arguments similar
to ones in [51].

Special points: t = 0 and u = 0

Kinematic branch points
√

t and
√

u enter the center of mass scattering amplitudes
via sin θ given (1.130). Their presence can be deduced by looking at the partial wave
decomposition (1.105) and noticing that the Wigner d matrix there can be written in the
form

d(`)λ′λ(θ) =

(
cos

θ

2

)|λ+λ′| (
sin

θ

2

)|λ−λ′|
P`

λ′λ(cos θ), (1.138)

where P`
λ′λ is a polynomial whose precise definition is irrelevant here but can be deduced

from (4.1.19) and (4.1.23) in [54]. The important point is that the polynomial P`
λ′λ depends

only on cos θ and therefore does not have any branch points as can be seen from (1.130).
Using the above, (1.133) and (1.105) we conclude that

Tλ3,λ4
λ1,λ2

(s, t, u) ∼ d(`)λ12λ34
(θ) ∼

(√
−u
)|λ12+λ34| (√−t

)|λ12−λ34|
. (1.139)

The SO(2) enhancement of symmetry at t = 0 (θ = 0) and u = 0 (θ = π), see (1.127),
leads to kinematic constraints at these two points. This is the simplest case among all
the special points and can be easily addressed in full generality. In order to deduce the
implications of this SO(2) invariance we inject the identity in the form 1 = e−iγJ3 e+iγJ3

to the left and to the right of the T operator in (1.61), where γ is some angle. Using the
invariance of the T operator (1.44) and the fact that the 1PS states along the z-direction
are the eigenstates of J3, we arrive at

Tλ3,λ4
λ1,λ2

(s, t = 0) = eiγ(λ1−λ2−λ3+λ4)Tλ3,λ4
λ1,λ2

(s, t = 0), (1.140)

Tλ3,λ4
λ1,λ2

(s, u = 0) = eiγ(λ1−λ2+λ3−λ4)Tλ3,λ4
λ1,λ2

(s, u = 0). (1.141)

These constraints should be satisfied for any value of the angle γ. Thus, the amplitudes
must vanish unless λ1 − λ2 − λ3 + λ4 = 0 in the first case and λ1 − λ2 + λ3 − λ4 = 0 in
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the second case. This is just conservation of angular momentum along the z–axis.

Special point: s = 0

Finally let us address the most complicated s = 0 case. In the vicinity of s = 0, the
rapidity parameter η can be written as

η =
iπ
2
− i
√

s
2m

+ O(s3/2). (1.142)

Let us now define the new rapidity ξ as

ξ ≡ η − iπ
2

= − i
√

s
2m

+ O(s3/2). (1.143)

By using (A.45) - (A.47) and the following property of the small Wigner d-matrix

d(j)
λ′λ(−π) = (−1)j+λδλ′,−λ, (1.144)

we can rewrite the states (1.129) in the following way

|m,+~pz; j, λ1〉 = e+
π
2 K3
(

e−iξK3 |m,~0; j, λ1〉
)

,

|m,−~pz; j, λ2〉 = (−1)j+λ2 e−
π
2 K3
(

e+iξK3 |m,~0; j,−λ2〉
)

,

|m,+~pθ ; j, λ3〉 = e−iθ J2 e+
π
2 K3
(

e−iξK3 |m,~0; j, λ3〉
)

,

|m,−~pθ ; j, λ4〉 = (−1)j+λ4 e−iθ J2 e−
π
2 K3
(

e+iξK3 |m,~0; j,−λ4〉
)

.

(1.145)
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1.7. Kinematic non-analyticities and constraints

These can be further rewritten as22

|m,+~pz; j, λ1〉 = e+
π
2 K1 e+

π
2 K3 e−iξK1

(
e−i π

2 J2 |m,~0; j, λ1〉
)

,

|m,−~pz; j, λ2〉 = e+
π
2 K1 e−

π
2 K3 e−iξK1

(
(−1)j+λ2 e+i π

2 J2 |m,~0; j,−λ2〉
)

,

|m,+~pθ ; j, λ3〉 = e+
π
2 K1 e−(θ−

π
2 )K3 e−iξK1

(
e−i π

2 J2 |m,~0; j, λ3〉
)

,

|m,−~pθ ; j, λ4〉 = e+
π
2 K1 e−(θ+

π
2 )K3 e−iξK1

(
(−1)j+λ4 e+i π

2 J2 |m,~0; j,−λ4〉
)

.

(1.146)

We use now invariance of the scattering operator under boosts and the action of rotations
on the center of mass states (1.7), which for the second and fourth particles become

(−1)j+λe+i π
2 J2 |m,~0; j,−λ〉 = (−1)j+λ ∑

λ′
dj

λ′,−λ(−
π

2
)|m,~0; j, λ′〉

= (−1)2j ∑
λ′

dj
λ′,λ(+

π

2
)|m,~0; j, λ′〉,

(1.147)

to obtain the final expression

Tλ3,λ4
λ1,λ2

(s, t, u) = ∑
λ′

d(j)
λ′1λ1

(π

2

)
d(j)

λ′2λ2

(π

2

)
d(j)

λ′3λ3

(π

2

)
d(j)

λ′4λ4

(π

2

)
Bλ′3,λ′4

λ′1,λ′2
(s, t, u), (1.148)

where the amplitude B is defines as

Bλ3,λ4
λ1,λ2

(s, t, u) ≡
(
〈m,~0; j, λ3|e+iξK1 e+

π
2 K3 ⊗ 〈m,~0; j, λ4|e+iξK1 e−

π
2 K3
)

e−θK3 T
(

e+
π
2 K3 e−iξK1 |m,~0; j, λ1〉 ⊗ e−

π
2 K3 e−iξK1 |m,~0; j, λ2〉

)
. (1.149)

Let us inspect the structure of this amplitude. We expand it around ξ = 0 or equivalently
around s = 0 according to (1.143). Schematically speaking, each term in this expansion
will contain (ξK1)

n with some non-negative integer n. We then notice that (ξK1)
n are

22The steps involved here are as follows. First, we inject the identity operators I = e±i π
2 J2 e∓i π

2 J2 to the
left and right of the e±iξK3 operator and use the following relations

e−i J2
π
2 e±iξK3 e+i J2

π
2 = e±iξK1 , e+i J2

π
2 e±iξK3 e−i J2

π
2 = e∓iξK1 .

Second, we use the following relations

e±
π
2 K3 e+i J2

π
2 = e+i J2

π
2 e±

π
2 K1 , e±

π
2 K3 e−i J2

π
2 = e−i J2

π
2 e∓

π
2 K1

to bring all the exponents containing J2 to the left. Finally, we use

e−iθ J2 e
π
2 K1 = e

π
2 K1 e−θK3 .
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the only operators which change helicities of particles.23 Now, the only non-zero terms
will be the ones with equal total helicity of the states to the left and to the right of the
scattering operator T. Given a set of helicities λi, the leading term in the ξ = 0 expansion
will contain (ξK1)

n with n = |λ1 + λ2 − λ3 − λ4|. Using (1.143) we conclude that

Bλ3,λ4
λ1,λ2

(s, t, u) =
(√

s
)|λ1+λ2−λ3−λ4| ×O(s0). (1.150)

From (1.148) and (1.150) it follows that the COM amplitudes T get a
√

s branch point
only for odd values of |λ1 + λ2 − λ3 − λ4|. The relations (1.148) and (1.150) can be also
used to address kinematic singularities. Expanding (1.148) around s = 0 at the leading
order one can find linear combinations of the amplitudes which behave as O(s1) instead
of O(s0).

23One can define the following operators

K± ≡ K1 ± iK2 ⇒ K1 =
1
2
(K+ + K−).

According to (A.40) these operators rise and lower helicities of the center of mass states as

J3K±|m,~0; j, λ〉 = (λ± 1)K±|m,~0; j, λ〉.
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2 Application: identical Majorana
fermions

We will now use the machinery set up in the previous chapter to study the two to two
scattering of identical neutral1 spin 1

2 fermions also known as Majorana fermions. We
will require invariance under parity. As a result we need to specify the intrinsic parity η

defined in (1.16). In the two to two scattering of identical particles we are sensitive only
to the value of η2. According to (1.18) there are two possibilities

η2 = −1 or η2 = +1. (2.1)

For concreteness we assume the former in this section. In the latter situation everything
in this section still remains valid except that the meaning of parity even and odd states
in section 2.2 is flipped and the role of scalar and pseudoscalar particles is exchanged
in section 2.3. Helicity of a spin 1

2 particle takes only two values: + 1
2 and − 1

2 . Thus a
priori, we have 24 = 16 helicity amplitudes. However due to the fact that the particles
are all identical these amplitudes are related according to (1.86) - (1.90). As a result we
can write the following 9 relations

T−−−− = T++
++ , T+−

−− = T−+−− , T−−−+ = T+−
++ , T−+−+ = T+−

+− , T+−
−+ = T−++− ,

T++
−+ = T−+−− , T−−+− = T+−

++ , T++
+− = T−+−− , T−+++ = T+−

++ , (2.2)

where + and − stand for + 1
2 and − 1

2 helicities respectively. Hence out of the 16 ampli-
tudes we are left with 7 independent ones. Requiring parity invariance and noticing
that due to (2.1) the product of intrinsic parities η1η2η∗3 η∗4 = +1, due to (1.64) we get in
addition the following 2 constraints

T−+−− = −T+−
++ , T++

−− = +T−−++ . (2.3)

1By neutral we mean particles not carrying any U(1) charge and in general not transforming in any
non-trivial representation of the global group. In common words it means that the particle is its own
antiparticle.
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As a result out of the 16 helicity amplitudes we are left with only 5 independent ones, in
agreement with (1.97), which we denote as

Φ1(s, t, u) ≡ T++
++ (s, t, u),

Φ2(s, t, u) ≡ T−−++ (s, t, u),

Φ3(s, t, u) ≡ T+−
+− (s, t, u),

Φ4(s, t, u) ≡ T−++− (s, t, u),

Φ5(s, t, u) ≡ T+−
++ (s, t, u).

(2.4)

It is interesting to note that the scattering of identical neutral fermions preserving parity
is automatically time-reversal invariant, this can be intuitively understood from the CPT
symmetry since charge conjugation is trivial for neutral particles, see appendix A.2.3.

As discussed in section 1.3.3, in the case of scattering of uncharged identical particles, the
crossing equations (1.74) and (1.76) form highly non-trivial constraints on the scattering
amplitudes. For instance, in the case of identical Majorana particles these crossing
equations give rise to two sets of 16 linear equations. Taking into account the relations
(2.2) and (2.3) we simply obtain two sets of 5 linear equations on the independent
amplitudes (2.4). They read as

ΦI(s, t, u) =
5

∑
J=1

CI J
st (s, t, u)ΦJ(t, s, u), (2.5)

ΦI(s, t, u) =
5

∑
J=1

CI J
su(s, t, u)ΦJ(u, t, s), (2.6)

where the s− t crossing matrix Cst is given by

Cst = −
ε′23
2




− sin2 α sin2 α − sin2 α 1 + cos2 α 4 cos α sin α

sin2 α 1 + cos2 α sin2 α sin2 α −4 cos α sin α

− sin2 α sin2 α 1 + cos2 α − sin2 α 4 cos α sin α

1 + cos2 α sin2 α − sin2 α − sin2 α 4 cos α sin α

cos α sin α − cos α sin α cos α sin α cos α sin α 2(sin2 α− cos2 α)




,

(2.7)
and the s− u crossing matrix Csu is given by

Csu = −ε′24
2




− sin2 β sin2 β 1 + cos2 β − sin2 β 4 cos β sin β

sin2 β 1 + cos2 β sin2 β sin2 β −4 cos β sin β

1 + cos2 β sin2 β − sin2 β − sin2 β 4 cos β sin β

− sin2 β sin2 β − sin2 β 1 + cos2 β 4 cos β sin β

cos β sin β − cos β sin β cos β sin β cos β sin β 2(sin2 β− cos2 β)




.

(2.8)
The angles α and β are defined as follows. Looking at the expressions (1.75) and (1.77)
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Application: identical Majorana fermions

we can make the following choice of Wigner angles

α1 = α, α2 = π + α, α3 = π − α, α4 = −α. (2.9)

β1 = β, β2 = π + β, β3 = −β, β4 = π − β, (2.10)

where the angles α and β obey

cos α =
st√

s(s− 4m2)
√

t(t− 4m2)
, sin α = − 2m

√
stu√

s(s− 4m2)
√

t(t− 4m2)
, (2.11)

cos β =
su√

s(s− 4m2)
√

u(u− 4m2)
, sin = +

2m
√

stu√
s(s− 4m2)

√
u(u− 4m2)

. (2.12)

The correct choice of the phases at (2.7) and (2.8) will be explained at the end of section
2.1. Here we simply state the correct result, which is

ε′23 = ε′24 = −1. (2.13)

There are two non-trivial consistency checks our matrices (2.7) and (2.8) pass. First, these
matrices are involutory, namely they satisfy the following conditions2

(
Cst(s, t, u)

)2
= 1,

(
Csu(s, t, u)

)2
= 1. (2.14)

Second, we can obtain the crossing matrix appearing in the t− u crossing equations as

Ctu(s, t, u) = Cst(s, t, u)Csu(t, s, u)Cst(u, s, t). (2.15)

In our case it reads as

Ctu(s, t, u) =




1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 −1




. (2.16)

This is in perfect agreement with the result (1.85).

2More accurately one should write

Cst(s, t, u)Cst(t, s, u) = 1, Csu(s, t, u)Csu(u, t, s) = 1.

However, these conditions reduce to (2.14) by noticing that the matrices Cst(s, t, u) and Cst(u, t, s) are
symmetric in the exchange of s↔ t and s↔ u respectively. This follows from the fact that the expressions
for the angles α and β given by (2.11) and (2.12) obey the symmetry s↔ t and s↔ u respectively.
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Application: identical Majorana fermions

2.1 Improved amplitudes

It is important to study the analytic structure (presence of poles and branch cuts) of
helicty amplitudes when all the Mandelstam variables s, t and u are promoted to the full
complex plane. As explained in section 1.7 in the case of scattering of spinning particles
such amplitudes develop non-analytic behaviour purely due to kinematic reasons. In
this section we show how to isolate such kinematic features in the case of Majorana
fermions and define improved amplitudes which do not have them.

Due to (1.135) all the amplitudes have a pole at s = 4m2. Expanding (1.135) around this
point we get

Φ1 =
a1

s− 4m2 + b1 + O(s− 4m2),

Φ2 =
a2

s− 4m2 + b2 + O(s− 4m2),

Φ3 =
a3

s− 4m2 + b3 + O(s− 4m2),

Φ4 =
a4

s− 4m2 + b4 + O(s− 4m2),

Φ5 =
a5

s− 4m2 + b5 + O(s− 4m2),

(2.17)

where ai and bi are some factors which are regular at s = 4m2. We do not write them
explicitly, their form can be obtained straightforwardly using computer algebra.3 We
only note that

a1 = −a2 = a3 = a4 = −ia5. (2.18)

Using (2.17) we can verify the following kinematic relation at the singular point4

Φ1 −Φ2 + Φ3 + Φ4 + 4iΦ5 = 0 + O(s− 4m2). (2.19)

Now due to (1.148) the amplitude Φ5 also develops a branch point at s = 0 as

Φ5 ∼
√

s, (2.20)

whereas all the other amplitudes are regular at s = 0. Expanding (1.148) to the leading

3Notice that identical particles and parity imply constraints on the amplitudes T according to (2.2) and
(2.3). In order to proceed with the expansion one needs to deduce the analogues of these expressions on the
regular A(s, t, u) amplitudes entering (1.135) by solving an appropriate system of linear equations.

4We expand around s = 4m2 keeping t independent. Then in the right-hand side of (2.19) the leading
and the next to leading order terms appear to be proportional to the following expression

t− u− 2i
√

tu = 2t + (s− 4m2)− 2i
√

t(4m2 − s− t) = 0 + O(s− 4m2).

In the last equality we have used the domain where t < 0 and s has a small positive imaginary part.

52



2.1. Improved amplitudes

order we can verify the following kinematical constraint

Φ1 + Φ2 −Φ3 −Φ4 = 0 + O(s). (2.21)

Finally we consider the behavior of the amplitudes at t = 0 and u = 0 points. Due to
(1.139) the amplitudes Φ1, Φ2, Φ3 and Φ4 are all analytic at these points. In contrast the
amplitude Φ5 develops a branch point both at t = 0 and u = 0 as

Φ5 ∼
√

tu. (2.22)

In addition due to (1.140) and (1.141) we have the following constraints

Φ4 = 0 + O(t), Φ5 = 0 + O(t),

Φ3 = 0 + O(u), Φ5 = 0 + O(u).
(2.23)

Now that we know precisely the non-analytic behaviour of the amplitudes, we can
define new improved amplitudes which are free of the kinematic pole at s = 4m2 and
kinematic branch points

√
s,
√

t and
√

u. We denote such improved amplitudes by
HI(s, t, u). The old amplitudes and the new improved amplitudes can be related as

ΦI(s, t, u) =
5

∑
J=1

M−1
I J (s, t, u)HJ(s, t, u), (2.24)

where M(s, t, u) is some matrix to be determined. It is constructed by requiring that

ΦI ∼
1

s− 4m2 , Φ5 ∼
√

stu (2.25)

and that the relations (2.17) along with (2.18), (2.19), (2.21) and (2.23) are fulfilled. These
requirements do not fix the matrix MI J(s, t, u) completely. One possible choice is

MI J(s, t, u) =




4
s−4m2

−4
s−4m2

2 (1−t/u)
s−4m2

2(1−u/t)
s−4m2

s+4m2

s−4m2 × 2(t−u)
m
√

stu
0 0 2

u − 2
t − 8m√

stu
0 0 2

u − 2
t − 2s

m
√

stu
0 0 2

u
2
t 0

− 4
s − 4

s
2
u + 4

s
2
t +

4
s

2(t−u)
m
√

stu




. (2.26)

We motivate this choice in section 2.4.1.

Having established the relation (2.24) we can write the crossing equations (2.5) and (2.6)
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Application: identical Majorana fermions

directly in terms of the improved amplitudes as

HI(s, t, u) =
5

∑
J=1

C̃I J
st (s, t, u)HJ(t, s, u), (2.27)

HI(s, t, u) =
5

∑
J=1

C̃I J
su(s, t, u)HJ(u, t, s), (2.28)

where the crossing matrices C̃st and C̃su read as

C̃st ≡ M(s, t, u)Cst(s, t, u)M−1(t, s, u), (2.29)

C̃su ≡ M(s, t, u)Csu(s, t, u)M−1(u, t, s). (2.30)

Plugging here the explicit expressions (2.7), (2.8) and (2.26) we get

C̃st =




− 1
4 −1 3

2 1 − 1
4

− 1
4

1
2 0 1

2
1
4

1
4 0 1

2 0 1
4

1
4

1
2 0 1

2 − 1
4

− 1
4 1 3

2 −1 − 1
4




, C̃su =




− 1
4 1 − 3

2 1 − 1
4

1
4

1
2 0 − 1

2 − 1
4

− 1
4 0 1

2 0 − 1
4

1
4 − 1

2 0 1
2 − 1

4
− 1

4 −1 − 3
2 −1 − 1

4




. (2.31)

It is remarkable that both matrices turn out to be purely numerical! Just like the original
matrices Cst and Csu, the matrices C̃st and C̃su are also involutory, i.e C̃2

st = 1 and C̃2
su = 1.

This follows from the definitions (2.29), (2.30) and the condition (2.14). Note that similar
to (2.15) we can compute the tu crossing matrix C̃tu = C̃stC̃suC̃st, it reads as

C̃tu =




1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 0 1




. (2.32)

It says that the improved amplitudes defined via (2.24) are all eigenfunctions of tu
crossing.

The overall sign of the crossing matrices (2.31) depends on the choice of phases in (2.13).
The choice made in (2.13) is the only correct one. In order to see that we can take the
Fermi lagrangian and compute the scattering of Majorana fermions to the leading order.
We do it in appendix A.6.1, the final result for the improved amplitudes is given in
(A.346). It automatically satisfies the crossing equations (2.27) and (2.28). Any other
choice of phases (2.13) leads to crossing equations which are inconsistent with the
perturbative computation of appendix A.6.1. This phase choice is independent of any
particular model and holds non-perturbatively.
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2.2. Unitarity

2.2 Unitarity

The general strategy for imposing unitarity constraints on scattering amplitudes was
provided in section 1.6. Here we apply that strategy to the case of Majorana fermions.
According to section 1.6 one needs to consider all possible states transforming in the
irreducible representations which appear in the decomposition of the two particle state
formed from two (identical) Majorana particles. These are

|c,~p, `, λ; λ1, λ2〉id, (2.33)

where λi = ± 1
2 . Since the particles are identical we can further restrict our attention to

the states with λ1 ≥ λ2. As a result we are left with only three states of the form

|c,~p, `, λ;+,+〉id, |c,~p, `, λ;−,−〉id, |c,~p, `, λ;+,−〉id. (2.34)

We further notice that due to (1.38), the first two states in (2.34) exist only for even spins
`, whereas the last state in (2.34) exists for both even and odd spins `. Using (A.145) we
can form the following three parity eigenstates out of the states (2.34)

|1〉 ≡ 1√
2
(|c,~p, `, λ;+,+〉id + |c,~p, `, λ;−,−〉id) , ` ≥ 0 (` even), (2.35)

|2〉 ≡ 1√
2
(|c,~p, `, λ;+,+〉id − |c,~p, `, λ;−,−〉id) , ` ≥ 0 (` even), (2.36)

|3〉 ≡
√

2 |c,~p, `, λ;+,−〉id, ` ≥ 1. (2.37)

The state |1〉 is parity odd while the states |2〉 and |3〉 are parity even. The states (2.35) -
(2.37) can either be in or out asymptotic states. We now form all possible inner products
between such states taking into account that parity eigenstates do not mix since we
assumed parity invariance. The states (2.35) lead to

` ≥ 0 (even) : H−` (s)× δ``′δλλ′(2π)4δ(4)(p− p′) ≡
(

in〈1′|1〉in in〈1′|1〉out

out〈1′|1〉in out〈1′|1〉out

)
,

(2.38)
where the primed states have the labels c′, ~p ′, `′ and λ′. Analogously the states (2.36)
for ` = 0 and the states (2.37) for odd ` ≥ 1 lead to

` = 0 : H+
` (s)× δ``′δλλ′(2π)4δ(4)(p− p′) ≡

(
in〈2′|2〉in in〈2′|2〉out

out〈2′|2〉in out〈2′|2〉out

)
,

(2.39)

` ≥ 1 (odd) : H+
` (s)× δ``′δλλ′(2π)4δ(4)(p− p′) ≡

(
in〈3′|3〉in in〈3′|3〉out

out〈3′|3〉in out〈3′|3〉out

)
.

(2.40)
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Finally for even ` ≥ 2, the states (2.36) and (2.37) can mix. They lead to

H+
`≥2(s)× δ``′δλλ′(2π)4δ(4)(p− p′) ≡




in〈2′|2〉in in〈2′|3〉in in〈2′|2〉out in〈2′|3〉out

in〈3′|2〉in in〈3′|3〉in in〈3′|2〉out in〈3′|3〉out

out〈2′|2〉in out〈2′|3〉in out〈2′|2〉out out〈2′|3〉out

out〈3′|2〉in out〈3′|3〉in out〈3′|2〉out out〈3′|3〉out


 .

(2.41)
Let us explicitly write the components of these matrices. The inner product of only in or
out states are fixed by our normalization conventions, which read

in〈a′|b〉in = out〈a′|b〉out = δab × δ``′δλλ′(2π)4δ(4)(p− p′). (2.42)

The inner products between in and out states lead to partial amplitudes, we have

out〈1′|1〉in = δ``′δλλ′(2π)4δ(4)(p− p′)×
(
1 + i

(
T`

++
++(s) + T`

−−
++(s)

))
,

out〈2′|2〉in = δ``′δλλ′(2π)4δ(4)(p− p′)×
(
1 + i

(
T`

++
++(s)− T`

−−
++(s)

))
,

out〈3′|3〉in = δ``′δλλ′(2π)4δ(4)(p− p′)×
(
1 + 2i T`

+−
+−(s)

)
,

out〈3′|2〉in = δ``′δλλ′(2π)4δ(4)(p− p′)×
(
2i T`

+−
++(s)

)
.

(2.43)

The partial amplitudes entering these expressions are related to scattering amplitudes
via (1.112). We recall the relation here for the reader’s convenience

T`
λ3,λ4
λ1,λ2

(s) =
√

s− 4m2

32π
√

s
×
∫ π

0
dθ sin θd(`)λ12λ34

(θ)Tλ3,λ4
λ1,λ2

(s, t, u), λij ≡ λi − λj. (2.44)

As discussed in section 1.6 unitarity requires that the matricesH−` (s) andH+
` (s) should

all be positive semi-definite for all s ≥ 4m2 and `. In what follows we will write these
conditions in the final form.

In (2.4) we denoted the five independent amplitudes by ΦI(s, t, u). In accordance we
define the five partial amplitudes as

Φ`
1(s) ≡ T`

++
++(s),

Φ`
2(s) ≡ T`

−−
++(s),

Φ`
3(s) ≡ T`

+−
+−(s),

Φ`
4(s) ≡ T`

−+
+−(s),

Φ`
5(s) ≡ T`

+−
++(s).

(2.45)

Plugging (2.42) and (2.43) into (2.38) - (2.41) we can write the semi-definite positivity
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2.3. Non-perturbative couplings

conditions on the matricesH−` (s) andH+
` (s) as

` ≥ 0 (even) :

(
1 1
1 1

)
+ i

(
0 −Φ`∗

1 (s)−Φ`∗
2 (s)

Φ`
1(s) + Φ`

2(s) 0

)
� 0, (2.46)

` = 0 :

(
1 1
1 1

)
+ i

(
0 −Φ`∗

1 (s) + Φ`∗
2 (s)

Φ`
1(s)−Φ`

2(s) 0

)
� 0, (2.47)

` ≥ 1 (odd) :

(
1 1
1 1

)
+ 2i

(
0 −Φ`∗

3 (s)
Φ`

3(s) 0

)
� 0. (2.48)

Finally, the matrix (2.41) leads to the following condition

` ≥ 2 (even) :

(
I2×2 S`†

2×2(s)
S`

2×2(s) I2×2

)
� 0, (2.49)

where we have defined

I2×2 ≡
(

1 0
0 1

)
, S`

2×2(s) ≡
(

1 0
0 1

)
+ i

(
Φ`

1(s)−Φ`
2(s) 2Φ`∗

5 (s)
2Φ`

5(s) 2Φ`
3(s)

)
. (2.50)

It is interesting to note that the equations above do not contain the partial amplitude
Φ`

4(s) at all. This is because due to the t− u crossing equations, see (2.16), one has

Φ4(s, t, u) = Φ3(s, u, t) (2.51)

Using this inside (2.44) we get the following relation among the partial amplitudes5

Φ`
4(s) = (−1)`+1Φ`

3(s). (2.52)

2.3 Non-perturbative couplings

We can use the Majorana fermion scattering amplitude to define several non-perturbative
coupling constants. These are useful parameters to describe the allowed space of QFTs.

Quartic coupling

We begin by considering the value of the amplitude at the crossing symmetric point

s = t = u =
4m2

3
. (2.53)

5In order to show this, we use (1.59) and change the integration variable in (2.44) as θ → π − θ. Using
the properties of the small Wigner d matrix we get then T`

−,+
+,−(s) = (−1)`+1T`

+,−
+,−(s).
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Application: identical Majorana fermions

At this point, the improved amplitudes HI must be invariant under both the s-t (2.27)
and the s-u (2.28) crossing equations

HI

(
4m2

3
,

4m2

3
,

4m2

3

)
=

5

∑
J=1

C̃I J
st HJ

(
4m2

3
,

4m2

3
,

4m2

3

)
,

HI

(
4m2

3
,

4m2

3
,

4m2

3

)
=

5

∑
J=1

C̃I J
suHJ

(
4m2

3
,

4m2

3
,

4m2

3

)
.

(2.54)

The most general solution reads

~H(4m2/3, 4m2/3, 4m2/3) =
λ

m2 ×




1
0
0
1
−1




, (2.55)

where ~H represents the five amplitudes collectively and λ is some parameter. We refer
to λ as the non-perturbative quartic coupling. By comparing (2.55) with the perturbative
result (A.346) we see that λ can be identified with the coupling in front of the (ΨΨ)(ΨΨ)

interaction term in the Fermi theory.

Cubic (Yukawa) couplings

Suppose now that our theory is described not only by the Majorana asymptotic state but
also by a scalar (spin zero) asymptotic state with mass M. We restrict our attention to
the values of M in the range (m, 2m), where m is the mass of the Majorana asymptotic
state. This ensures that the Majorana fermion is the lightest particle in the theory and
that the scalar boson is stable.

From general principles we expect such a scalar asymptotic state to manifest itself as
a simple pole in the improved scattering amplitudes of Majorana fermions. In full
generality one can then write

~Hbound(s, t, u) =




g2
1

s−M2

g2
2

s−M2

g2
3

s−M2

g2
4

s−M2

g2
5

s−M2




+




g′21
t−M2

g′22
t−M2

g′23
t−M2

g′24
t−M2

g′25
t−M2




+




g′′21
u−M2

g′′22
u−M2

g′′23
u−M2

g′′24
u−M2

g′′25
u−M2




+ regular, (2.56)

where gI , g′I and g′′I are 15 arbitrary parameters. In (2.56) we have written only the poles
and omitted all the regular terms at s, t, u = M2. Due to the crossing equations (2.27)
and (2.28), the values of g′I and g′′I get fixed in terms of gI . As a result we are left with 5
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2.3. Non-perturbative couplings

undetermined parameters gI . We further require that the s = M2 poles contribute only
to the zero spin partial amplitudes. This enforces the fact that the particle generating the
poles is a scalar. This leads to the following three additional constraints

g2 = g3 = g4 = 0. (2.57)

Thus we are left with only two parameters g1 and g5.

According to the discussion of section 2.2, more precisely due to the formulas (2.46) and
(2.47) one can take combinations of components of partial amplitudes to form parity
odd (-) and parity even (+) partial amplitudes which read as

Φ`
−(s) ≡ Φ`

1 + Φ`
2, Φ`

+(s) ≡ Φ`
1 −Φ`

2. (2.58)

The s = M2 poles with the parameter g1 contribute only to the parity even partial
amplitude Φ`=0

+ . We thus interpret g1 as the non-perturbative coupling describing
the interaction between two Majorana particles and a scalar parity even particle. The
corresponding pole structure of the amplitude reads as

~Hscalar(s, t, u) =
1
2

g2 × ~Pscalar(s, t, u) + regular, (2.59)

where g ≡ g1 and we have defined

~Pscalar(s, t, u) ≡




− 4
s−M2 +

1
t−M2 +

1
u−M2

1
t−M2 − 1

u−M2

− 1
t−M2 +

1
u−M2

− 1
t−M2 − 1

u−M2
1

t−M2 +
1

u−M2




(2.60)

The s = M2 poles with the parameter g5 instead contribute only to the parity odd
partial amplitude Φ`=0

− . Thus, the second parameter g5 describes non-perturbatively
the interaction between two Majorana particles and a scalar parity odd (pseudoscalar)
particle. The corresponding pole structure of the amplitude reads as

~Hpseudoscalar(s, t, u) =
1
2

g̃2 × ~Ppseudoscalar(s, t, u) + regular, (2.61)

where g̃ ≡ g5 and we have defined

~Ppseudoscalar(s, t, u) ≡




1
t−M2 +

1
u−M2

− 1
t−M2 +

1
u−M2

− 1
t−M2 +

1
u−M2

1
t−M2 +

1
u−M2

− 4
s−M2 +

1
t−M2 +

1
u−M2




. (2.62)
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The cubic couplings g ≡ g1 and g̃ ≡ g5 can also be called the non-perturbative Yukawa
coupling constants. We also remark that the masses M in (2.60) and (2.62) do not have
to be the same.

In the discussion above we fixed the overall sign in (2.59) and (2.61) so that the residue
at s = M2 has the appropriate sign in the unitarity equations (2.46) and (2.47). Alterna-
tively one can compare (2.59) and (2.61) to the perturbative results (A.350) and (A.354).
This comparison not only fixes the correct signs but also shows that g and g̃ here can
be identified with the couplings appearing in front of the ϕΨΨ and ϕ̃Ψγ5Ψ Yukawa
interactions respectively in (A.347) and (A.351).

2.4 An alternative approach to crossing equations

We have so far carefully discussed the construction of crossing equations in the COM
frame and explicitly showed it in the case of Majorana particle scattering. There is an
alternative way of approaching this topic, namely using fully covariant language based
on constructing tensor structures. This relies on the most general representation of a
scattering amplitude given in (1.56).

In what follows we will construct tensor structures in the particular example of Majorana
particle scattering and re-derive the crossing equations. We will describe a general
procedure of constructing tensor structures for particles with spin in appendix A.8.

2.4.1 Tensor structures

As we know from the COM analysis, there are 5 independent amplitudes in the case
of identical Majorana particles. As a result there will be 5 linearly independent tensor
structures. A particular choice of these tensor structures was made in [55]. It reads

TI
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = −
1
2
[ūλ4(p4)OIvλ3(p3)] · [v̄λ2(p2)OIuλ1(p1)], (2.63)

where the five 4× 4 matrices OI are given by

O1 ≡ 14×4, O2 ≡ γµ, O3 ≡
√

2 σµν, O4 ≡ i γ5γµ, O5 ≡ γ5. (2.64)

The symbol “·” in (2.63) means contraction of all the Lorentz indices among OI matrices.
Notice also that there is no summation over the repeated index I in (2.63). For the
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readers convenience we also write (2.63) explicitly

T1
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = −
1
2
[ūλ4(p4)vλ3(p3)][v̄λ2(p2)uλ1(p1)],

T2
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = −
1
2
[ūλ4(p4)γµvλ3(p3)][v̄λ2(p2)γ

µuλ1(p1)],

T3
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = − [ūλ4(p4)σµνvλ3(p3)][v̄λ2(p2)σ
µνuλ1(p1)],

T4
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = +
1
2
[ūλ4(p4)γ5γµvλ3(p3)][v̄λ2(p2)γ5γµuλ1(p1)],

T5
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = −
1
2
[ūλ4(p4)γ5vλ3(p3)][v̄λ2(p2)γ5uλ1(p1)].

(2.65)

The objects uλ(p) and vλ(p) are the usual 4-spinor solutions to the Dirac equation and

ūλ(p) ≡ u†
λ(p)γ0, v̄λ(p) ≡ v†

λ(p)γ0. (2.66)

We use the Weyl (also known as chiral) basis for the Dirac γµ matrices given in (A.102)
and the helicity basis of states. With these conventions the spinor solutions to the Dirac
equation read

u 1
2
(p) =

1√
2




√
p0 − p cos θ

2√
p0 − p sin θ

2 e+iφ
√

p0 + p cos θ
2√

p0 + p sin θ
2 e+iφ


 , u− 1

2
(p) =

1√
2




−
√

p0 + p sin θ
2 e−iφ

√
p0 + p cos θ

2
−
√

p0 − p sin θ
2 e−iφ

√
p0 − p cos θ

2


 ,

v 1
2
(p) =

1√
2




−
√

p0 + p sin θ
2 e−iφ

√
p0 + p cos θ

2√
p0 − p sin θ

2 e−iφ

−
√

p0 − p cos θ
2


 , v− 1

2
(p) =

1√
2




−
√

p0 − p cos θ
2

−
√

p0 − p sin θ
2 e+iφ

√
p0 + p cos θ

2√
p0 + p sin θ

2 e+iφ


 .

(2.67)
We notice that the objects uλ(p) and v̄λ(p) transform in the spin-1/2 representation,
namely they get rotated by D(1/2)

λ′λ , whereas the objects vλ(p) and ūλ(p) transform in

the conjugate spin-1/2 representation, namely they get rotated by D∗(1/2)
λ′λ . The tensor

structures (2.65) are constructed in such a way that all the Lorentz indices are contracted.
They depend only on the helicity labels and thus transform only in the Little group
induced representation.

The choice of tensor structures (2.65) is very convenient because of the following reason.
Plugging (2.65) into (1.56) and evaluating the amplitudes in the COM frame we get

Tλ3,λ4
λ1,λ2

(s, t, u) =
5

∑
I=1

HI(s, t, u)TI
λ3,λ4
λ1,λ2

(pcom
1 , pcom

2 , pcom
3 , pcom

4 ). (2.68)

In the left-hand side of (2.68) we get the 16 COM amplitudes. They are related by (2.2)
and (2.3). The 5 independent amplitudes were chosen in (2.4) and given special names
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ΦI(s, t, u). For the five independent amplitudes ΦI(s, t, u) the right-hand side of (2.68)
simply becomes (2.24). In other words the functions HI(s, t, u) appearing in (2.68) are
precisely the kinematic singularity free amplitudes found in section 2.1. This means that
all the kinematic singularities and constraints are taken care of by the tensor structures!
Having established this we can write (1.56) explicitly in the case of identical Majorana
fermions. It reads

Tλ3,λ4
λ1,λ2

(p1, p2, p3, p4) =
5

∑
I=1

HI(s, t, u) TI
λ3,λ4
λ1,λ2

(p1, p2, p3, p4), (2.69)

where the basis of tensor structures is given by (2.65) and the functions HI(s, t, u) in this
basis are precisely the improved amplitudes defined in section 2.1.

2.4.2 Verification of crossing matrices

In this section we will re-derive the crossing equations (2.27) and (2.28).

The amplitude (2.69) is defined for p0
i ≥ 0 (i = 1, 2, 3, 4) as usual. It can however be

analytically continued to p0
i < 0 domain. There are several options for such an analytic

continuation. Throughout this paper we use option (A.256). Let us now analytically
continue both sides of (2.69) in p2 and p3 to their negative values, we obtain

Tλ3,λ4
λ1,λ2

(p1,−p2,−p3, p4) =
5

∑
I=1

HI(s, t, u) TI
λ3,λ4
λ1,λ2

(p1,−p2,−p3, p4), (2.70)

Exchanging the role of labels 2 and 3 we get then

Tλ2,λ1
λ1,λ3

(p1,−p3,−p2, p4) =
5

∑
I=1

HI(t, s, u) TI
λ2,λ4
λ1,λ3

(p1,−p3,−p2, p4). (2.71)

Plugging (2.69) and (2.71) into the crossing equation (1.71) taken with the positive sign
for fermions, see (A.295) for details, one gets

5

∑
I=1

HI(s, t, u) TI
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) =
5

∑
I=1

HI(t, s, u) TI
−λ2,+λ4
+λ1,−λ3

(p1,−p3,−p2, p4). (2.72)

The analytic continuations of u and v objects are given in (A.293). Using these and the
explicit form of tensor structures (2.63) one gets

TI
−λ2,+λ4
+λ1,−λ3

(p1,−p3,−p2, p4) = [ūλ4(p4)OIv−λ2(−p2)] · [v̄−λ3(−p3)OIuλ1(p1)]

= − [ūλ4(p4)OIuλ2(p2)] · [ūλ3(p3)OIuλ1(p1)]

=
5

∑
I=1

C̃st
I JTI

λ3,λ4
λ1,λ2

(p1, p2, p3, p4),

(2.73)
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where the matrix C̃st
I J is precisely the crossing matrix (2.31). In the third line of (2.73) we

have used the Fierz identities, see for example [56]. Plugging (2.73) into (2.72) and using
the fact that the structures (2.63) form a basis, we obtain the final crossing equations

HI(s, t, u) =
5

∑
J=1

C̃st
I J HJ(t, s, u), (2.74)

which coincide with (2.27). Using identical arguments one can obtain the s− u crossing
equations (2.28).

At first glance, it might seem that the way of deriving crossing equations using tensor
structures is much simpler than the COM frame approach. This is not necessarily the
case especially if one works with higher spin particles. The main issue here is the
construction of a linearly independent basis of tensor structures. In practice there are
many different looking tensor structures one can write. They are however related via a
complicated set of Fierz-like identities. Luckily in the case of identical Majorana particles
the problem was already thoroughly studied and the set of linearly independent tensor
structures (2.65) was well known.

Once the linearly independent basis of structures is chosen the troubles are unfortunately
not over. In the process of deriving the crossing equations all allowed tensor structures
reappear and they need to be expressed back in terms of the chosen basis of structures
via the Fierz-like identities. In the case of identical Majorana fermions this is precisely
the step done in the last line of (2.73) which can be quite tedious for the general spin
case.
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2.5 Numerics

In this section we numerically estimate non-perturbative bounds on quantum field
theories where the scattering of Majorana particles can be defined.

In sections 2.1 and 2.2 we carefully derived the crossing equations and the unitarity
constraints which any scattering amplitude of Majorana particles must satisfy. Our
precise goal here is to derive various bounds on the non-perturbative coupling constants
that we defined in section 2.3. In section 2.5.1 we explain the numerical setup which
allows for this. We present the numerical results in sections 2.5.2 and 2.5.3.

2.5.1 Setup

We use the numerical approach of [4]. The first step of this approach is to write the
most general ansatz for the scattering amplitude. Before addressing Majorana fermions
let us quickly recap the scalar case. The non-trivial part of the scattering of identical
scalars with mass m is described by a function of three Mandelstam variables T(s, t, u).
To proceed it is crucial to assume maximal analyticity, namely that the amplitude is an
analytic function of s, t and u complex variables independently modulo the standard
branch cuts at

s ∈ [4m2,+∞], t ∈ [4m2,+∞], u ∈ [4m2,+∞], (2.75)

where m is the mass of the scalar particle. Given a z complex plane, to mimic the above
situation, one can define a function which is analytic in the whole complex plane modulo
z ∈ [4m2,+∞] branch cut. We choose6

r(z; z0) ≡
√

4m2 − z0 −
√

4m2 − z√
4m2 − z0 +

√
4m2 − z

. (2.76)

Here z0 < 4m2 is a free parameter which can be chosen at our will. We can then represent
the interacting part of the scalar amplitude as a simple power series in terms of the
functions (2.76) in the following way

T(s, t, u) =
∞

∑
a=0

∞

∑
b=0

∞

∑
c=0

αabc r(s, s0)
ar(t, t0)

br(u, u0)
c, (2.77)

where αabc are some real parameters. The ansatz (2.77) has a lot of redundancies due to
the condition s + t + u = 4m2. One can attempt to remove them in various ways. In this

6The physical domain is defined via s + iε with ε > 0. We can thus rotate the cuts using the identity
√

4m2 − s = −i
√

s− 4m2.
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paper we do it in a slightly drastic manner by imposing

αabc = 0 if abc 6= 0 . (2.78)

This choice is motivated by the Mandelstam representation [57], see appendix C in [4]
for further details. It is convenient to choose the values of s0, t0 and u0 to all be the
crossing symmetric point

s0 = t0 = u0 =
4
3

m2. (2.79)

The s− t and s− u crossing equations for the scalar amplitude are very simple. They
read

T(s, t, u) = T(t, s, u) = T(u, t, s). (2.80)

Plugging here the ansatz (2.77) we see that the coefficients αabc must be fully symmetric
under the permutation of indices a, b and c. The scalar amplitude T(s, t, u) can also have
poles when other particles exist in the theory or if the asymptotic state is allowed to have
self-interactions. In this case one should extend the ansatz (2.77) to include such poles.
We will see how it works in the case of Majorana fermions and skip further discussion
of the scalar case.

In the case of Majorana fermions we defined five amplitudes ~Φ, where the vector denotes
the five components Φ1, Φ2, Φ3, Φ4 and Φ5 collectively. These amplitudes contain
kinematic non-analyticities. In order to remove them in section 2.1 we introduced a
new set of improved amplitudes denoted by ~H. Again the vector here denotes the
five components H1, H2, H3, H4 and H5 collectively. We assume now that these five
improved amplitudes are maximally analytic. Analogously to the scalar case, this allows
us to write the following most general ansatz

~H(s, t, u) =
1
2

g2 × ~Pscalar(s, t, u) +
1
2

g̃2 × ~Ppseudoscalar(s, t, u)

+
∞

∑
a=0

∞

∑
b=0

∞

∑
c=0

~αabc r(s, s0)
ar(t, t0)

br(u, u0)
c, (2.81)

where ~Pscalar and ~Ppseudoscalar are the terms containing poles defined in (2.60) and (2.62)
and~αabc are some real parameters. In order to remove the redundancies in the ansatz
(2.81) as in the scalar case we require

~αabc = 0 if abc 6= 0 . (2.82)

The ansatz (2.81) has an infinite number of terms. In order to work with it one has to
introduce the following truncation

∞

∑
a=0

∞

∑
b=0

∞

∑
c=0
−→

a+

∑
a=0

b+c

∑
b=0

≤Nmax

∑
c=0

, (2.83)
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where Nmax is some cut-off parameter. In practice its value is taken to be around 20.

We now require the ansatz (2.81) to satisfy the crossing equations (2.27) and (2.28). The
pole terms have been already constructed to obey the crossing equations. However,
for the parameters~αabc we get a non-trivial system of linear algebraic equations with
constant coefficients (independent of s, t and u variables). For a chosen Nmax we solve
this system with computer algebra and plug the solution into (2.81). As a result we get a
fully crossing invariant expression. From now on when we refer to (2.81) we assume
that the above procedure has been done and that (2.81) is fully crossing symmetric.

The second step is to compute the partial amplitudes. In order to do that we need
to obtain the amplitudes ~Φ(s, t, u) (containing all the kinematic non-analyticities) by
plugging the ansatz (2.81) into (2.24). We then compute the partial amplitudes ~Φ`(s)
using (2.44), see also (2.4) and (2.45). In doing this one needs to perform a set of integrals
which have the following form

∫ π

0
dθ sin θ d(`)ij (θ) r

(
t(s, θ), t0

)a
r
(

u(s, θ), u0

)b
(2.84)

for the following set of indices in the d-matrix

(i, j) = {(0, 0), (1, 1), (1,−1), (0, 1)}. (2.85)

The integral (2.84) is hard to compute analytically. Hence, we perform the integration
numerically for some tabulated values a, b, ` and s. We do it with Mathematica requiring
between 20 and 30 digits of precision. The computed partial amplitudes can then be
plugged into the unitarity constraints (2.46) - (2.49). These become a set of numerical
semi-definite positivity conditions for different values of spin ` and s.

It is important to explain how we choose the values of ` and s. Let us start with the
former. In principle one needs to consider unitarity conditions for all the spins up to
` = ∞. However, realistically this is not possible and one needs to introduce another
truncation, namely we impose unitarity only for a finite set of spins

` = 0, 1, 2, . . . , Lmax. (2.86)

In the majority of computations we take the values of Lmax to be as follows

Lmax = Nmax + 20. (2.87)

In the next section we justify our choice by varying Lmax and Nmax separately. Let us
address the choice of s values now. The unitarity constraints (2.46) - (2.49) are imposed
in the region

s ∈ [4m2,+∞] (2.88)
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slightly above the branch cut. We take 300 different values of s in the region (2.88). One
can spread these points differently, in practice we use the Chebyshev distribution.7

To summarize, we wrote the unitarity constraints in terms of the unknown real co-
efficients {g2, g̃2,~αabc} originally appearing in the (crossing symmetric) ansatz (2.81).
These conditions were written in a positive semi-definite form. We can now look for
these coefficients numerically using semi-definite programming. For this we employ
SDPB [43, 58].8 In the following sections we define two different optimization problems
and provide the numerical results. All the optimization problems we consider below
use the following normalization

m = 1. (2.90)

This simply means that all the dimensionful quantities are measured in terms of the
mass of the Majorana asymptotic state.

A word about choosing various parameters of the setup such as the number of s values or
the precision of the numerical approximation for the integrals (2.84). When performing
the numerical analysis we made sure that our results do not depend on these parameters.
This is simply done by performing the same computation with two different sets of
parameters and confirming that the outcome is stable under such a change. The choice
we made in this work guarantees at least two digits of precision in the final answer.

In order to obtain the numerical results presented below we consumed 0.4 million CPU
Hours on the EPFL SCITAS cluster.

2.5.2 Quartic coupling

We now apply the strategy described in the previous section to bound the quartic
coupling defined in (2.55) in the absence of poles

g = g̃ = 0. (2.91)

At the crossing symmetric point (2.79) the r function vanishes and thus the ansatz (2.81)
depends only on the five coefficients ~α000. Crossing implies that only one of those
coefficients is really independent. By comparing the ansatz at the crossing symmetric

7More precisely, we define a variable φ(s) by r(s, s0) = eiφ(s). Notice that s ∈ [4m2,+∞] corresponds to

φ ∈ [0, π]. Then, we pick a grid φk = π
2

[
1− cos π(k−1/2)

n

]
with n = 300 and k = 1, . . . , n.

8SDPB works only with real matrices. The unitarity conditions (2.46) - (2.49) are formulated in terms of
the hermitian matrices. In order to recast those conditions into the form used by SDPB one needs to use the
equivalence

H � 0 ⇔
(

Re(H) −Im(H)
Im(H) Re(H)

)
� 0, (2.89)

where H is some hermitian matrix.
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point with (2.55) we conclude that

α2
000 = α3

000 = 0, α1
000 = α4

000 = −α5
000 = λ, (2.92)

where λ is the non-perturbative quartic coupling.

Optimization problem: we search for the coefficients~αabc such that the non-perturbative
quartic coupling λ has the smallest/largest value and the unitarity constraints (2.46) -
(2.49) are satisfied. By solving this problem numerically we conclude that the quartic
coupling must be in the following interval

λ

32π
∈ [−3.25, +1.74]. (2.93)

This is reasonably compatible with the expectation λ . (4π)2 from naive dimensional
analysis [59, 60].

Let us now discuss the details of this result. Among other parameters our numerical
setup depends on Nmax. In figures 2.1 and 2.2 we present the upper and lower bound
on λ as a function of N−1

max. The highest value we probe is Nmax = 24. One can see that
the bounds get weaker as we increase Nmax. Intuitively this is easy to understand: upon
increasing Nmax the ansatz becomes more general and thus a larger/smaller coupling is
attainable. We then perform an extrapolation of our results to Nmax = ∞. The bound
(2.93) already includes this extrapolation.

In making figures 2.1 and 2.2 we have used the spin cut-off value Lmax = Nmax + 20
as indicated in (2.87). Let us now relax that condition and see the dependence of the
bounds also on Lmax. In figures 2.3 and 2.4 we present the upper and lower bound on
the quartic coupling λ as a function of L−1

max for various values of Nmax. We also perform
a linear extrapolation to Lmax = ∞.

When constructing figures 2.1 and 2.2 one could have used the points extrapolated to
Lmax = ∞ and only then perform the extrapolation to Nmax = ∞. We have done this
exercise and found the bound [−3.34,+1.73] which is not too different from (2.93). The
reader may use the difference between these results as an indicator of the precision with
which we have estimated the optimal bounds for the quartic coupling λ.

2.5.3 Cubic Yukawa couplings

Let us now present the upper bound on the cubic (Yukawa) couplings. All the plots
below are made using (2.87) spin cut-off value. One should in principle perform the
extrapolation to Lmax = ∞. However, as seen in the previous section, the difference is
very small between the two procedures.
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Figure 2.1: Upper bound on the quartic coupling λ as a function of N−1
max. The numerical

results are indicated by the red dots. They correspond to Nmax = 10, 16, 18, 20, 22 and
24. The blue line represents the linear fit of the three points Nmax = 20, 22 and 24. It
is described by λ/(32π) = 1.74− 6.02 N−1

max equation. The spin cut-off parameter used
here is Lmax = Nmax + 20.

We start with the situation where we have a scalar particle with mass M and no pseu-
doscalar particles. In other words g̃ = 0. The bound on g as a function of M for various
values of Nmax is given in figure 2.5. As in the previous section the bound gets weaker
when the value of Nmax increases. For each M we perform a linear extrapolation to
Nmax → ∞ analogously to the previous section. The final extrapolated bound is also
shown in figure 2.5.

Now consider the case where there is a pseudoscalar particle in the theory and no scalar
particle, namely g = 0. We can construct an upper bound on the g̃ coupling as a function
of the pseudoscalar mass M. The result for different Nmax is given in figure 2.6. In the
figure we also present the extrapolated bound to Nmax → ∞. It is interesting to note that
the bound gets stronger when we approach M2 = 4 point. At M2 = 4 we are forced to
have g̃ = 0. This situation is very different from figure 2.5. As a consistency check we
compute in appendix A.7 an analytic expression for the upper bound in the vicinity of
the threshold M2 = 4. It is given by (A.376). In figure 2.6 it is indicated by the black
solid line. We see that our numerical result is in agreement with the analytic one.

Similarly to the case of the quartic coupling λ, the order of magnitude of our bounds on
Yukawa and pseudo-Yukawa couplings is compatible with the expectation g ∼ g̃ . 4π

from naive dimensional analysis [59, 60].
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Figure 2.2: Lower bound on the quartic coupling λ as a function of N−1
max. The numerical

results are indicated by the red dots. They correspond to Nmax = 10, 16, 18, 20, 22 and
24. The blue line represents the linear fit of the three points Nmax = 20, 22 and 24. It is
described by λ/(32π) = −3.25 + 13.76 N−1

max equation. The spin cut-off parameter used
here is Lmax = Nmax + 20.
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Figure 2.3: Upper bound on the quartic coupling λ as a function of L−1
max. The dots

represent the numerical results. The solid lines represent the linear extrapolation in L−1
max

based on the last four points for each Nmax. Different colours correspond to different
values of Nmax indicated in the right-hand side of the plot.
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Figure 2.4: Lower bound on the quartic coupling λ as a function of L−1
max. The dots

represent the numerical results. The solid lines represent the linear extrapolation in L−1
max

based on the last four points for each Nmax. Different colours correspond to different
values of Nmax indicated in the right-hand side of the plot.

2.6 Conclusion

We setup the formalism for the numerical S-matrix bootstrap approach to scattering am-
plitudes of spinning particles in 4d QFTs. We explained the general case and performed
the numerical analysis for the particular case of 2 to 2 scattering of identical massive
neutral spin 1

2 fermions, i.e. Majorana fermions. In principle, our nonperturbative bound
(2.93) on the quartic coupling applies to neutrinos but this is purely academic because
neutrinos are very weakly coupled with λ ∼ GFm2

ν . 10−24. Goldstinos are massless
Majorana fermions in QFTs with spontaneously broken supersymmetry and naturally
light if there is also a small explicit breaking. Our bounds also apply to such pseudo
Goldstinos.
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Figure 2.5: Upper bound on the cubic Yukawa coupling g as a function of the scalar
particle mass M. The bound is constructed for Nmax = 12, 16, 20, 24 and Lmax =
Nmax + 20. Using Nmax = 20 and Nmax = 24 we also perform a linear extrapolation of
the bound to Nmax = ∞. The latter is indicated by the dashed line.
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Figure 2.6: Upper bound on the cubic pseudo-Yukawa coupling g̃ as a function of the
scalar particle mass M. The bound is constructed for Nmax = 12, 16, 20, 24 and Lmax =
Nmax + 20. Using Nmax = 20 and Nmax = 24 we also perform a linear extrapolation
of the bound to Nmax = ∞. The latter is indicated by the dashed line. The black line
indicates an analytic prediction for the upper bound in the vicinity of M2 = 4 computed
in (A.376).

72



3 Application: Photons

In this chapter, we will consider photon-photon scattering. The photon is a massless
spin 1 particle. The Little group for massless particles is ISO(2).1 The inhomogeneous
part of this group is represented trivially in order to remove continuous degrees of
freedom. As a result the Little group effectively becomes SO(2) ' U(1) together with
the requirement of the gauge invariance (to be defined shortly). Spin 1 massless particles
are defined as the collection of +1 and −1 U(1) representations (referred to as helicities
of the particle). The formalism we developed in chapter 1 was for massive particles,
however as we will see most of the formulae can adopted with only minor modifications.

We note that photons are derivatively coupled and therefore their scattering amplitudes
do not have IR divergences. Another way to state this is that since they are derivatively
coupled, they are free in the IR. In other words they are free at large separation which
allows the definition of asymptotic states and the scattering amplitude. This is in contrast
to other theories with massless particles where there is long-range interaction (∼ 1

R ).

Kinematics

We begin with one photon states, which we denote by

|~p; λ〉 ≡ |m = 0,~p; j = 1, λ〉. (3.1)

The right-hand side of (3.1) is the standard notation for one-particle states, where m is
the mass of the particle, j is its spin, ~p is the spatial momentum and λ is the helicity.
As explained above for massless spin j = 1 particles helicity can only take two values

1The Little group is defined as the group of transformations leaving invariant the standard center of
mass frame of a massless particle in momentum space which is p̄µ ≡ {E, 0, 0, E}, where E ≥ 0 is the energy.
The symmetry leaving p̄µ invariant is ISO(2). See for example section 2.5 in [17].
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λ = ±1. The one photon states are normalized according to

〈~p1; λ1|~p2; λ2〉 = 2p1δλ2
λ1
× (2π)3δ(3)(~p1 − ~p2). (3.2)

It is now straightforward to define two photon states:

|κ1, κ2〉id ≡
1√
2

(
|~p1; λ1〉 ⊗ |~p2; λ2〉+ |~p2; λ2〉 ⊗ |~p1; λ1〉

)
, (3.3)

where the symbol ⊗ stands for the ordered tensor product. By construction it obeys the
condition |κ1, κ2〉id = |κ2, κ1〉id. The

√
2 factor in the definition is part of our conventions.

The normalization of two-particle states follows from (3.3) and (3.2). It reads

id〈κ3, κ4|κ1, κ2〉id = 4p1 p2(2π)6
(

δ(3)(~p1 − ~p3)δ
(3)(~p2 − ~p4)δ

λ3
λ1

δλ4
λ2

+ (3↔ 4)
)

. (3.4)

The scattering amplitude for the two to two scattering of photons is then given by

(2π)4δ(4)(pµ
1 + pµ

2 − pµ
3 − pµ

4 )× Sλ3,λ4
λ1,λ2

(p1, p2, p3, p4) ≡ id〈κ3, κ4|S|κ1, κ2〉id, (3.5)

where S is the scattering operator.

As usual, we separate out the free propagation I and the interacting part T of the
scattering operator

S = I + iT. (3.6)

This leads to the definition of the interacting scattering amplitude

(2π)4δ(4)(pµ
1 + pµ

2 − pµ
3 − pµ

4 )× T λ3,λ4
λ1,λ2

(p1, p2, p3, p4) ≡ id〈κ3, κ4|T|κ1, κ2〉id, (3.7)

Using (3.6) we can write the explicit relation between the scattering amplitude and its
interacting part. It reads

Sλ3,λ4
λ1,λ2

(p1, p2, p3, p4) =
id〈κ3, κ4|κ1, κ2〉id

(2π)4δ(4)(pµ
1 + pµ

2 − pµ
3 − pµ

4 )
+ iT λ3,λ4

λ1,λ2
(p1, p2, p3, p4). (3.8)

The first term in the right-hand side of (3.8) is a formal expression. It can be however
straightforwardly evaluated in the center of mass frame in spherical coordinates.

3.1 Non-perturbative S-matrix setup

The goal of this section is to derive crossing equations and unitarity constraints for
the scattering amplitude of identical spin one massless particles. In order to proceed
it is important to define the center of mass scattering amplitudes. This is crucial for
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3.1. Non-perturbative S-matrix setup

addressing unitarity constraints. The crossing equations can be studied both in a general
frame and in the center of mass frame. We will discuss both options for completeness.

The center of mass frame is defined by the following configuration of four-momenta

pcom
1 ≡

√
s

2
× (1, 0, 0,+1),

pcom
2 ≡

√
s

2
× (1, 0, 0,−1),

pcom
3 ≡

√
s

2
× (1,+ sin θ, 0,+ cos θ),

pcom
4 ≡

√
s

2
× (1,− sin θ, 0,− cos θ),

(3.9)

where θ ∈ [0, π] is the scattering angle. It is related to the Mandelstam variables as

sin θ =
2
√

tu
s

, cos θ =
t− u

s
⇔ t = − s

2
(1− cos θ), u = − s

2
(1 + cos θ). (3.10)

The center of mass amplitude is defined as

T λ3,λ4
λ1,λ2

(s, t, u) ≡ T λ3,λ4
λ1,λ2

(pcom
1 , pcom

2 , pcom
3 , pcom

4 ). (3.11)

Keep in mind the difference between the three distinct objects

T λ3,λ4
λ1,λ2

(p1, p2, p3, p4), AI(s, t, u), T λ3,λ4
λ1,λ2

(s, t, u). (3.12)

Due to the presence of identical particles and parity, there are only 5 independent center
of mass amplitudes, our choice here is

Φ1(s, t, u) ≡ T ++
++ (s, t, u),

Φ2(s, t, u) ≡ T −−++ (s, t, u),

Φ3(s, t, u) ≡ T +−
+− (s, t, u),

Φ4(s, t, u) ≡ T −++− (s, t, u),

Φ5(s, t, u) ≡ T +−
++ (s, t, u).

(3.13)

The rest of the center of mass amplitudes are related to the above 5 ones via 11 relations.
Due to the presence of identical particles we get the following 9 constraints

T −−−− = Φ1, T +−
−− = T −+−− , T −−−+ = Φ5, T −+−+ = Φ3, T +−

−+ = Φ4,

T ++
−+ = T −+−− , T −−+− = Φ5, T ++

+− = T −+−− , T −+++ = Φ5.
(3.14)

Due to the requirement of parity invariance we get in addition another two relations
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which read
T −+−− = Φ5, T ++

−− = Φ2. (3.15)

Both (3.14) and (3.15) follow straightforwardly from equations (1.64), (1.84), (1.89) and
(1.90).

Tensor structures

An alternative approach to using the centre of mass frame is to decompose the interacting
scattering amplitude (1.47) via tensor structures as follows

T λ3,λ4
λ1,λ2

(p1, p2, p3, p4) =
n

∑
I=1
AI(s, t, u)TI

λ3,λ4
λ1,λ2

(p1, p2, p3, p4). (3.16)

Here the objects TI take care of the correct Lorentz transformation properties. They are
called tensor structures. Their form is completely fixed by the kinematics. There are
n linearly independent tensor structures. The objects AI(s, t, u) are referred to as the
components of the interacting scattering amplitude. They are invariant under Lorentz
transformations. As a result they depend only on the Mandelstam variables defined as

s ≡ −(p1 + p2)
2, t ≡ −(p1 − p3)

2, u ≡ −(p1 − p4)
2, s + t + u = 0. (3.17)

The physical range of the Mandelstam variables is

s ≥ 0, t ∈ [−s, 0], u ∈ [−s, 0]. (3.18)

Contrary to tensor structures the components of interacting amplitudes AI(s, t, u) carry
the dynamical information of the theory. Before we construct these tensor structures let
us first define polarization vectors which transform under both Lorentz and little group
transformations:

εα
λ(p) =

eiλφ

√
2




0
cos θ cos φ− iλ sin φ

cos θ sin φ + iλ cos φ

− sin θ


 (3.19)

Here α = 0, 1, 2, 3 is the Lorentz index and λ = ±1 is the U(1) little group charge, also
called helicity. The polarizations enjoy gauge symmetry which is the symmetry under
the following transformations

εα
λ(p)→ εα

λ(p) + c pα, (3.20)

called the gauge transformations. Here c is some real constant.2 The tensor structures
in (3.16) are Lorentz invariant but Little group covariant. They are thus built out of

2Gauge invariance is the reminiscence of the full ISO(2) Little group. See section 5.9 of [17] for details.
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3.1. Non-perturbative S-matrix setup

4-momenta, polarizations and the Levi-Civita symbol, namely

pα
i , εα

λi
(pi), εαβγρ. (3.21)

The structures which contain the Levi-Civita symbol are parity odd and the structures
which do not contain it are manifestly parity even. Due to the presence of gauge
invariance all the tensor structure must be invariant under the gauge transformations
(3.20). As a result the polarizations must only enter through the following basic gauge
invariant building blocks

Hαβ
λi
≡ pα

i ε
β
λi
(pi)− pβ

i εα
λi
(pi),

Hλi , αβ ≡
(

Hαβ
λi

)∗
.

(3.22)

Notice also that due to (3.19) the following property holds

Hλi , αβ = Hαβ
−λi

. (3.23)

The number of linearly independent tensor structure of generic massless particles is
obviously 24 = 16. When the particles are identical or when we impose parity the
number of linearly independent structures decreases. In section 1.4, we showed that
there are only 5 parity even amplitudes for the scattering of identical massless particles
of spin j = 1. As a result there must be only

n = 5 (3.24)

linearly independent tensor structures. In this paper we choose the following basis of 5
such tensor structures

T1
λ3,λ4
λ1,λ2

= tr(Hλ1 Hλ2) tr(Hλ3 Hλ4),

T2
λ3,λ4
λ1,λ2

= tr(Hλ1 Hλ3) tr(Hλ2 Hλ4),

T3
λ3,λ4
λ1,λ2

= tr(Hλ1 Hλ4) tr(Hλ2 Hλ3),

T4
λ3,λ4
λ1,λ2

= tr(Hλ1 Hλ3 Hλ2 Hλ4),

T5
λ3,λ4
λ1,λ2

= − (p2Hλ1 p3) tr
(

Hλ2 Hλ3 Hλ4
)
+ (p1Hλ2 p4) tr

(
Hλ1 Hλ3 Hλ4

)

−
(

p2Hλ4 p3

)
tr
(

Hλ1 Hλ2 Hλ3
)
+
(

p1Hλ3 p4

)
tr
(

Hλ1 Hλ2 Hλ4
)

.

(3.25)

Here we used a short-hand notation for contraction of Lorentz indices. For instance

tr(Hλ1 Hλ2) = Hλ1, αβHβα
λ2

,

tr(Hλ1 Hλ2 Hλ3 Hλ4) = Hλ1, αβHβγ
λ2

Hλ3, γρHρα
λ4

,

(p2Hλ1 p3) = p2,αHαβ
λ1

p3,β.

(3.26)
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Identical definitions hold for any other configuration of helicities.

Evaluating (3.16) in the center of mass frame (3.9) and using the basis of tensor structures
(3.25) one establishes the relation between two sets of amplitudes defined in (3.16) and
(3.13). This relation reads

ΦI(s, t, u) =
5

∑
J=1

MI J(s, t, u)AJ(s, t, u), (3.27)

where the matrix M reads as

M(s, t, u) =




s2 0 0 s2

4 0
s2 t2 u2 − tu

2 stu
0 0 u2 u2

4 0
0 t2 0 t2

4 0
0 0 0 0 stu

4




. (3.28)

3.2 Crossing equations

The s-t and s-u crossing equations for the center of mass amplitudes in the case of
massless j = 1 particles can be obtained up to an overall phase using the arguments of
Trueman and Wick [47]. Their derivation was reviewed in chapter 1, see equations (1.81)
and (1.82), and is presented in detail in A.5. Here we simply state the result which reads

T λ3,λ4
λ1,λ2

(s, t, u) = χst T +λ2,−λ4
−λ1,+λ3

(t, s, u),

T λ3,λ4
λ1,λ2

(s, t, u) = χsu T −λ3,+λ2
−λ1,+λ4

(u, t, s),
(3.29)

where the overall phases χst and χsu remain undetermined. Using (3.13), (3.14) and (3.15)
we can rewrite the crossing equations (3.29) in terms of the 5 independent amplitudes
only. They read

ΦI(s, t, u) = χst

5

∑
J=1

Cst
I JΦJ(t, s, u), ΦI(s, t, u) = χsu

5

∑
J=1

Csu
I J ΦJ(u, t, s), (3.30)

where the crossing matrices read

Cst ≡




0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1




, Csu ≡




0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1




. (3.31)
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3.2. Crossing equations

Both matrices have the following eigenvalues {−1, 1, 1, 1, 1}. They cannot however be
simultaneously diagonalized.

The easiest way to fix the unknown phases χst and χsu in (3.30) is to plug the explicit
expressions for the scattering amplitudes (3.81) computed for the photon scattering into
the crossing equations (3.30). One then immediately concludes that

χst = χsu = +1. (3.32)

Even though this result is found in perturbation theory for a particular model, the
conclusion (3.32) remains valid in the most general situation.

For completeness let us re-derive the crossing equations (3.30) together with (3.32) in
a different way using tensor structures. We start by stating the crossing equations in a
general frame which read

T λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = T −λ2,+λ4
+λ1,−λ3

(p1,−p3,−p2, p4),

T λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = T +λ3,−λ2
+λ1,−λ4

(p1,−p4, p3,−p2).
(3.33)

They can be straightforwardly derived using the LSZ procedure, see appendix A.5.3. It is
important to recall that the scattering amplitudes are defined for non-negative energies
only, namely p0

i ≥ 0 for every particle i = 1, 2, 3, 4. The amplitudes in the right-hand
side of (3.33) however explicitly contain negative energies and must be properly defined
via the analytic continuation

pµ → complex values→ −pµ (3.34)

in the appropriate four-momenta. This procedure is ambiguous. We make a particular
choice of the analytic continuation, which in spherical coordinates reads as3

p0 → −p0, p→ −p, θ → θ, φ→ φ. (3.36)

From the definitions (3.19) and (3.22) it also follows that

εα
λ(−p) = εα

λ(p), Hαβ
λi
(−p) = −Hαβ

λi
(p). (3.37)

Let us now inspect the basis of tensor structures (3.25). Using the properties (3.23) and

3The other choice of the analytic continuations is

p0 → −p0, p→ +p, θ → π − θ, φ→ π + φ. (3.35)

Clearly both (3.35) and (3.36) lead to (3.34). For more details see appendix A.5.1.
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(3.37) we can straightforwardly write the following relations

TI
−λ2,+λ4
+λ1,−λ3

(p1,−p3,−p2, p4) =
5

∑
J=1

C̃st
I J(s, t, u)TJ

λ3,λ4
λ1,λ2

(p1, p2, p3, p4),

TI
+λ3,−λ2
+λ1,−λ4

(p1,−p4, p3,−p2) =
5

∑
J=1

C̃su
I J (s, t, u)TJ

λ3,λ4
λ1,λ2

(p1, p2, p3, p4),

(3.38)

where the matrices C̃st and C̃su read as

C̃st
I J(s, t, u) =




0 1 0 0 0
1 0 0 0 0
0 0 1 0 0

s2−t2

4s2
s2−t2

4s2
s2−t2

4s2
t2

s2 0
0 0 0 0 1




, C̃su
I J (s, t, u) =




0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

s2−u2

4s2
s2−u2

4s2
s2−u2

4s2
u2

s2 0
0 0 0 0 1




.

(3.39)
Plugging the decomposition (3.16) into the crossing equations (3.33) and using the
relations (3.38) we obtain

AI(s, t, u) =
5

∑
J=1
AJ(t, s, u) C̃st

J I(s, t, u), AI(s, t, u) =
5

∑
J=1
AJ(u, t, s) C̃su

JI (s, t, u).

(3.40)
Using (3.27) we can rewrite these equations in the form (3.30). The following consistency
relations must hold then

χstCst = M(s, t, u)(C̃st(s, t, u))T(M(t, s, u))−1,

χsuCsu = M(s, t, u)(C̃su(s, t, u))T(M(u, t, s))−1.
(3.41)

Plugging here the explicit form of the matrices (3.28), (3.31), (3.39) and taking into
account (3.32) we can explicitly verify the validity of (3.41).

The crossing equations (3.40) can be explicitly solved by introducing the three functions

f1(s|t, u), f2(s|t, u), f3(s, t, u). (3.42)

The first two functions are symmetric under the exchange of their last two arguments.
Instead the last function is symmetric under any exchange of its arguments. One can
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then show that the 5 amplitude components written as

A1(s, t, u) = f1(s|t, u) +
f2(u|s, t) + f2(t|s, u)

4
− u2 f2(u|s, t) + t2 f2(t|s, u)

4s2 ,

A2(s, t, u) = f1(t|s, u) +
f2(u|s, t) + f2(t|s, u)

4
− u2 f2(u|s, t) + t2 f2(t|s, u)

4s2 ,

A3(s, t, u) = f1(u|s, t) +
f2(u|s, t) + f2(t|s, u)

4
− u2 f2(u|s, t) + t2 f2(t|s, u)

4s2 ,

A4(s, t, u) = f2(s|t, u) +
u2 f2(u|s, t) + t2 f2(t|s, u)

s2 ,

A5(s, t, u) = f3(s, t, u)

(3.43)

automatically obey the crossing equations (3.40).

3.3 Unitarity

We now discuss the constraints on the amplitudes due to unitarity. This subsection is
an application of the general construction presented in section 1.6, which the reader is
referred to for more details. We begin by defining a short hand notation for two photon
direct product states in the COM frame:

|(p, θ, φ); λ1, λ2〉id ≡
1√
2
(|~p; λ1〉 ⊗ | −~p; λ2〉+ | − ~p; λ2〉 ⊗ |~p; λ1〉) (3.44)

where (θ, φ) are the angular coordinates of ~p and p = |~p|. We now construct two photon
Wigner irreps in the COM frame:

|c,~0, `, λ; λ1, λ2〉id =
2`+ 1

4π
√

2C`

∫ 2π

0
dφ
∫ π

0
dθ sin θe−iφ(λ1+λ2−λ)d `

λ,λ12
(θ)|(p, θ, φ); λ1, λ2〉id

(3.45)
where λ12 ≡ λ1 − λ2, c = 2p is the COM frame energy and

C` =
√

8π(2`+ 1) (3.46)

Two photon Wigner irreps in a general frame are then defined by boosting them from
the COM frame. The benefit of using these states is that physically these are two particle
states with definite spin and therefore by conservation of angular momentum, scattering
amplitudes are diagonal in this basis:

id〈c′,~p ′, `′, λ′; λ3, λ4|T|c,~p, `, λ; λ1, λ2〉id = (2π)4δ4(pµ − p′µ)δ``′δλλ′T`
λ3,λ4
λ1,λ2

(s) (3.47)
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The functions T`
λ3,λ4
λ1,λ2

(s) are called partial wave amplitudes and are related to scattering
amplitudes as follows

T`
λ3,λ4
λ1,λ2

(s) =
1

32π

∫ π

0
dθ sin θ d `

λ12,λ34
(θ)Tλ3,λ4

λ1,λ2

(
s, t(s, θ), u(s, θ)

)
(3.48)

with t(s, θ) and u(s, θ) given as in (3.10).

For the case of two photons, there are three possible Wigner irreps. We list them using
the notation + for helicity +1 and − for helicity −1 4

|c,~p, `, λ;+,+〉id, |c,~p, `, λ;−,−〉id, |c,~p, `, λ;+,−〉id (3.49)

Bose symmetry of the photons also implies the selection rule that the first two states in
the list above only exist for even `. The third state exists for all spin ` ≥ 2 5. Under a
Parity transformation, the three states transform as follows

P|c,~0, `, λ;+,+〉id = (−1)`|c,~0, `, λ;−,−〉id
P|c,~0, `, λ;−,−〉id = (−1)`|c,~0, `, λ;+,+〉id
P|c,~0, `, λ;+,−〉id = |c,~0, `, λ;+,−〉id

(3.50)

Since we consider Parity invariant theories, it is convenient to define new linear combi-
nations which are Parity eigenstates:

Parity even

|1〉 = 1√
2

(
|c,~p, `, λ;+,+〉id + |c,~p, `, λ;−,−〉id

)
` ≥ 0 and ` even

|2〉 =
√

2 |c,~p, `, λ;+,−〉id ∀ ` ≥ 2
(3.51)

Parity odd

|3〉 = 1√
2

(
|c,~p, `, λ;+,+〉id − |c,~p, `, λ;−,−〉id

)
` ≥ 0 and ` even (3.52)

In a unitary quantum theory, the norm of any state in the theory must be non-negative.

4Note that |c,~p, `, λ;−,+〉id = (−1)`|c,~p, `, λ;+,−〉id by Bose symmetry.
5The total spin ` must always be greater than the difference in helicity λ1 − λ2 of the two particles
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Consider the following set of six states:

|1〉in |1〉out

|2〉in |2〉out

|3〉in |3〉out

(3.53)

Any linear combination of these states must have non-negative norm. This statement is
equivalent to the statement that the 6× 6 Hermitian matrix formed by the inner products
between the six states is positive semi-definite. Factoring out the overall delta functions
we write

(
in〈a′|b〉in in〈a′|b〉out

out〈a′|b〉in out〈a′|b〉out

)
= H`(s)× (2π)4δ4(pµ − p′µ)δ``′δλλ′ (3.54)

Unitarity as stated above then implies that

H`(s) � 0 ∀ ` and s ≥ 0. (3.55)

The inner products between two incoming states or two outgoing states are fixed by the
normalization of these states 6

in〈a′|b〉in = out〈a′|b〉out = δa′b × δ``′δλλ′(2π)4δ4(pµ − p′µ) (3.56)

The inner products between incoming and outgoing states are, by definition, the matrix
elements of the scattering operator S = 1 + iT and therefore we have

out〈1′|1〉in = δ``′δλλ′(2π)4δ4(pµ − p′µ)
(
1 + i

(
T`

+,+
+,+(s) + T`

−,−
+,+(s)

))

out〈2′|2〉in = δ``′δλλ′(2π)4δ4(pµ − p′µ)
(
1 + 2i T`

+,−
+,−(s)

)

out〈2′|1〉in = δ``′δλλ′(2π)4δ4(pµ − p′µ)
(
2i T`

+,−
+,+(s)

)

out〈1′|2〉in = δ``′δλλ′(2π)4δ4(pµ − p′µ)
(
2i T`

+,−
+,+(s)

)

out〈3′|3〉in = δ``′δλλ′(2π)4δ4(pµ − p′µ)
(
1 + i

(
T`

+,+
+,+(s)− T`

−,−
+,+(s)

))

(3.57)

Due to invariance under Parity, there is no scattering between states with different parity
eigenvalues. Hence the inner products out〈3′|1〉in and out〈3′|2〉in are 0. Therefore the
positive semi-definite condition in (3.55) simplifies into smaller matrices. Taking into
account the selection rules for the two photon Wigner irreps due to Bose symmetry, we
have

6The pre-factors in (3.51) and (3.52) ensure that all three states have the same normalization
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Parity even sector

We begin by considering parity even eigenstates (3.51). For even spin ` ≥ 2, we have

H+
` (s)× δ``′δλλ′(2π)4δ(4)(p− p′) ≡




in〈1′|1〉in in〈1′|2〉in in〈1′|1〉out in〈1′|2〉out

in〈2′|1〉in in〈2′|2〉in in〈2′|1〉out in〈2′|2〉out

out〈1′|1〉in out〈1′|2〉in out〈1′|1〉out out〈1′|2〉out

out〈2′|1〉in out〈2′|2〉in out〈2′|1〉out out〈2′|2〉out




(3.58)

The case of spin ` = 0 is special because the state |2〉 does not exist and therefore we get
a smaller matrix:

H+
0 (s)× δλλ′(2π)4δ(4)(p− p′) ≡

(
in〈1′|1〉in in〈1′|1〉out

out〈1′|1〉in out〈1′|1〉out

)
, (3.59)

We now consider odd ` ≥ 3, in which case the only state that exists is state |2〉 and
therefore we have

H+
` (s)× δ``′δλλ′(2π)4δ(4)(p− p′) ≡

(
in〈2′|2〉in in〈2′|2〉out

out〈2′|2〉in out〈2′|2〉out

)
(3.60)

Parity odd sector

We now turn to the parity odd eigenstate (3.52) which exists for even spin ` ≥ 0. We
have

H−` (s)× δ``′δλλ′(2π)4δ(4)(p− p′) ≡
(

in〈3′|3〉in in〈3′|3〉out

out〈3′|3〉in out〈3′|3〉out

)
. (3.61)

We can now plug in (3.56) and (3.57) for the inner products between states along with
(3.55) to arrive at the unitarity constrains on our scattering amplitudes. Before presenting
them, it is convenient to use the following notation for the partial amplitudes of the
independent amplitudes introduced in (3.13):

Φ`
1(s) ≡ T`

++
++(s),

Φ`
2(s) ≡ T`

−−
++(s),

Φ`
3(s) ≡ T`

+−
+−(s),

Φ`
4(s) ≡ T`

−+
+−(s),

Φ`
5(s) ≡ T`

+−
++(s).

(3.62)

The final unitarity equations read
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3.4. Effective field theory of photon scattering

Even ` ≥ 0

(
1 1
1 1

)
+ i

(
0 −Φ`∗

1 (s) + Φ`∗
2 (s)

Φ`
1(s)−Φ`

2(s) 0

)
� 0, (3.63)

Even ` ≥ 2

(
I2×2 S`†

2×2(s)
S`

2×2(s) I2×2

)
� 0, (3.64)

where we defined

I2×2 ≡
(

1 0
0 1

)
, S`

2×2(s) ≡
(

1 0
0 1

)
+ i

(
Φ`

1(s) + Φ`
2(s) 2Φ`

5(s)
2Φ`

5(s) 2Φ`
3(s)

)
. (3.65)

Odd ` ≥ 3

(
1 1
1 1

)
+ 2i

(
0 −Φ`∗

3 (s)
Φ`

3(s) 0

)
� 0. (3.66)

And ` = 0

(
1 1
1 1

)
+ i

(
0 −Φ0∗

1 (s)−Φ0∗
2 (s)

Φ0
1(s) + Φ0

2(s) 0

)
� 0, (3.67)

The equations above hold for arbitrarily high spin ` and high energy s. However a
numerical implementation of the above constraints implies discretizing the range energy
s and imposing the constraints upto some maximum spin Lmax. During our preliminary
numerical explorations, we found that imposing constraints from analyzing unitarity
equations at large spin (see appendix B.3.1) and large energy (see appendix B.3.2) were
important for convergence of the numerics.

3.4 Effective field theory of photon scattering

In the previous section, we worked out the crossing and unitarity constraints on the
photon-photon amplitude. However functions TI in eq. (1.101) parametrize the most
general Lorentz invariant amplitude of identical spin 1 massless particles. To specific
that the particles are actually photons, we need to choose a specific low energy behavior.
A convenient and physically transparent way to do this is through the low energy
effective field theory (EFT). The choice of an EFT is essentially the choice of an action
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for the low energy degrees of freedom. We would like to describe a world where
photons are the only massless particles. Furthermore, we assume parity to be an exact
symmetry. The most general Lorentz and gauge invariant Lagrangian is then a function
of (derivatives) of the field strength Fµν = ∂µ Aν − ∂ν Aµ. In other words, photons are
derivatively coupled, hence free at low energies.

Let us consider the quantum electrodynamics (QED). It is defined by the standard
Lagrangian density which reads

LQED = ψ̄(i /D−m)ψ− 1
4

FµνFµν − 1
2ξ

(∂µ Aµ)2. (3.68)

Here ψ(x) is the Dirac fermion field and the covariant derivative is

Dµ ≡ ∂µ + ieAµ, (3.69)

where e is the electric charge of ψ. The excitations of ψ(x) describe electrons with mass
m. The electromagnetic field strength tensor Fµν(x) is given by

Fµν(x) ≡ ∂µ Aν(x)− ∂ν Aµ(x), (3.70)

where Aµ(x) is the electromagnetic potential. The excitations of Aµ(x) describe photons.

For the range of energies E much smaller than the electron mass m, namely when
E << m we can write the effective field theory (EFT) of the photons scattering. It reads
as

LEFT = −1
4

FµνFµν + L8 + . . . , (3.71)

where L8 describes the first non-trivial interaction part between four photons. The
subscript 8 indicates its mass dimension. The ellipsis indicate terms with higher mass
dimensions. The form of L8 can be straightforwardly obtained from (3.68) and reads as

L8 = c1(FµνFνµ)(FαβFβα) + c2FµνFνρFρσFσµ, (3.72)

where the coefficients c1 and c2 are given in terms of the electromagnetic structure
constant α ≡ e2/4π by [61]

c1 = − 1
36

α2

m4 c2 =
7

90
α2

m4 . (3.73)

Using (3.72) we can compute the leading non-trivial part of the photon scattering. It
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3.4. Effective field theory of photon scattering

reads

T Tree
EFT

λ3,λ4
λ1,λ2

(p1, p2, p3, p4) =

8c1

(
tr(Hλ1 Hλ2) tr(Hλ3 Hλ4) + tr(Hλ1 Hλ3) tr(Hλ2 Hλ4) + tr(Hλ1 Hλ4) tr(Hλ2 Hλ3)

)

+8c2

(
tr(Hλ1 Hλ2 Hλ3 Hλ4) + tr(Hλ1 Hλ3 Hλ2 Hλ4) + tr(Hλ1 Hλ2 Hλ4 Hλ3)

)
. (3.74)

We can decompose this result into the basis of tensor structures (3.25) using (3.16). We
get then

AEFT
1 (s, t, u) = 8c1 + 2c2 ×

s2 − 2st− 2t2

s2 + O(s2),

AEFT
2 (s, t, u) = 8c1 + 2c2 ×

s2 − 2st− 2t2

s2 + O(s2),

AEFT
3 (s, t, u) = 8c1 + 2c2 ×

s2 − 2st− 2t2

s2 + O(s2),

AEFT
4 (s, t, u) = 16c2 ×

s2 + st + t2

s2 + O(s2),

AEFT
5 (s, t, u) = 0 + O(s2).

(3.75)

We can do the same for the dimension 10 operator as well:

L10 = c3Fab∂bFµν∂aFνρF µ
ρ ++c4(∂aFµν∂aFνµ)(FρσFσρ) + c5∂aFµνFνρ∂aFρσFσµ, (3.76)

Computing the tree-level amplitude of this L10, we obtained:

T10(s, t, u) = 6c3

{
− (p2Hλ1 p3) tr

(
Hλ2 Hλ3 Hλ4

)
+ (p1Hλ2 p4) tr

(
Hλ1 Hλ3 Hλ4

)

−
(

p2Hλ4 p3

)
tr
(

Hλ1 Hλ2 Hλ3
)
+
(

p1Hλ3 p4

)
tr
(

Hλ1 Hλ2 Hλ4
)}

+ 4c4

(
s tr(Hλ1 Hλ2) tr(Hλ3 Hλ4) + t tr(Hλ1 Hλ3) tr(Hλ2 Hλ4) + u tr(Hλ1 Hλ4) tr(Hλ2 Hλ3)

)

+ 4c5

(
s tr(Hλ1 Hλ3 Hλ2 Hλ4) + t tr(Hλ1 Hλ2 Hλ3 Hλ4) + u tr(Hλ1 Hλ2 Hλ4 Hλ3)

)

(3.77)

Therefore, in terms of the functions f ′s, the tree-level amplitude is parametrized by

f1(s|t, u) = 8c1 + 4c4s (3.78)

f2(s|t, u) = 8c2 + 4c5s (3.79)

f3(s, t, u) = 6c3 (3.80)
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In terms of the COM frame amplitudes, we have

ΦEFT
1 (s, t, u) = 2(4c1 + 3c2)s2 + 4c4s3 + O(s4),

ΦEFT
2 (s, t, u) = 2(4c1 + c2)(s2 + t2 + u2)

+ (12c4 − 6c5 + 6c3)stu + O(s4),

ΦEFT
3 (s, t, u) = 2(4c1 + 3c2)u2 + 4c4u3 + O(s4),

ΦEFT
4 (s, t, u) = 2(4c1 + 3c2)t2 + 4c4t3 + O(s4),

ΦEFT
5 (s, t, u) =

3
2

c3stu + O(s5).

(3.81)

This is the soft behaviour that we will impose on our amplitudes and in fact take to be
the distinguishing feature of photon scattering.

Allowed space in c1 and c2

Consider the dimension 8 Wilson coefficients c1 and c2. From the work of [62] it is
known that the following two quantities must be positive

2c1 + c2 ≥ 0 and c2 ≥ 0 (3.82)

These inequalities are saturated by free theories. We now plot the values of dimensionless
ratio c2

2(c1+c2)
∈ [0, 1] for two perturbative examples - scalar QED i.e photon coupled to a

massive charged scalar and spinor QED i.e photon coupled to a massive Dirac fermion.

free
0

free
1

spinor

0.78
scalar
0.22

Figure 3.1: Allowed space of c2
2c1+2c2

with some known examples.

Future plans

In the future we would like to bound the allowed space at the next order i.e in the space
of the dimension 10 Wilson coefficients c3, c4 and c5.
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Overview of Part II

The first part of the thesis was concerned with scattering of particles in four spacetime
dimensions. In this second part of the thesis, we will instead be considering quantum
field theories which have long string-like excitations in D spacetime dimensions 7.
Examples of such QFTs are Yang-Mills, QCD, the Abelian Higgs model, Ising model in
3d etc. While the string itself lives in D dimensional spacetime (called the target space),
scattering that takes place on it is naturally described by a 2 spacetime dimensional
theory. The scattering amplitude S(s, t, u) of the massless branons is now a function of
only 1 variable due to the kinematical fact that in 2d we have to have either forward
scattering

t = −s and u = 0 (3.83)

or backward scattering
u = −s and u = 0 (3.84)

As a function of s, the amplitude S(s) is defined for

s ≥ 0 (3.85)

As usual, we can analytically continue this function to the complex plane which allows us
to use the machinery of complex analysis to gain insights about the space of S matrices.

In chapter 4, we consider the two to two scattering of excitations (a.k.a branons) on
these long strings which we will refer to henceforth as flux-tubes. As mentioned in the
introduction to the thesis, our goal in this chapter is to bound the low energy EFT of
these branons. In section 4.1, we introduce the problem in more detail and then set up
the bootstrap problem in section 4.2. Using the Schwarz-Pick theorem we are able to get
bounds for D = 3 and D = 4 flux-tubes. The bounds from Schwarz-Pick are optimal for
D = 3 but not D = 4 flux tubes as they only use part of the unitarity constraints. We
therefore use numerics to augment these bounds. In 4.3, we translate these bounds to
constraints on the non-universal corrections to the energy spectrum of flux tubes. These
two sections constitute the major results of this part of the thesis. Finally in 4.4 we look
at the resonance spectrum of the S-matrices that lie on the boundary of our allowed

7We will mainly focus on the cases of D = 3 or D = 4
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space of S-matrices.

In chapter 5, which describes work in progress, we add a glueball to the branon system
considered above. At present we only consider the case of D = 3 target space. We set
up the bootstrap problem and we will shortly run numerics to bound for example the
coupling of the glueball to the fluxtube. Another possibility is to add input from the
lattice about the mass of the glueball and then see how this effects the space of S-matrices
found in chapter 4.
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4 Fluxtube S-matrix Bootstrap

4.1 Introduction

Unraveling the dual string description of Yang-Mills theory is an old-standing problem.
A first step towards achieving this goal is solving for the spectrum of long strings or
confining flux tubes of pure glue. At low energies, the massless flux tube excitations (or
branons) decouple from the massive short strings (or glueballs)1 and can be described by
a two dimensional worldsheet theory which can be formulated in terms of an effective
Lagrangian or in terms of the branon S-matrix. Both approaches have their advantages
and limitations.

The flux tube’s effective Lagrangian density is built out of derivatives of the fields
Xµ describing the embedding of the worldsheet in spacetime. At low energies, it
is dominated by the square root of the induced metric determinant h = det hαβ =

det ∂αXµ∂βXνηµν, i.e. the Nambu-Goto lagrangian. Any interaction consistent with the
bulk D-dimensional Poincaré symmetry is also permitted. Thus, the action is written in
terms of curvature invariants [63, 64],

A =
∫

d2σ
√
−h
[
`−2

s +R+ K2 + `2
s K4 + . . .

]
, (4.1)

where R(hαβ) is the Ricci scalar and Kµ
αβ = ∇α∂βXµ is the extrinsic curvature tensor

and implicit are Wilson coefficients multiplying any of these structures in the effective
Lagrangian. The parameter `s is called the string length. In static gauge Xµ(σ) =

(σα, Xi), where i = 1, . . ., D−2 are the transverse excitations of the flux tube.

Nicely, Ricci is a total derivative and K2 vanishes on-shell so the first two terms in the
effective field theory expansion can be dropped. Therefore, the low energy dynamics of
(4.1) is tightly constrained by the non-linearly realized target Poincaré symmetry. This

1If the number of colours Nc tends to infinity, then the flux tubes decouple from the glueballs at any
energy (independent of Nc).
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is known as low energy universality [63–65]. The leading deviations from the Nambu-
Goto predictions for physical observables arise from K4 operators in (4.1), namely effects
of O(∂8X4). More precisely, there are two K4 operators, differing by the contractions
of the indices and correspondingly two coefficients α3 and β3 which do depend on the
specific underlying confining theory.

We will constrain them in this paper and thus bound interesting physical quantities
which depend on them. To constrain these parameters we turn to the on-shell approach
to the flux tube world-sheet theory pioneered by [63] which is based on the branon
S-matrix. The 2 → 2 scattering amplitudes can be decomposed into channels, i.e.
irreducible representations of the symmetry group O(D−2). The low energy expansion
of the phase shifts in each channel can be written as (see 4.2.1 for details)

2δsym =
s
4
+ α2s2 + α3s3 + O(s4)

2δanti =
s
4
− α2s2 + (α3+2β3)s3 + O(s4) (4.2)

2δsing =
s
4
− (D−3)α2s2 + (α3−(D−2)β3)s3 + O(s4)

where α2 = D−26
384π and s is the square of the center of mass energy. Here and below we

set `s = 1. The low energy universality mentioned above is manifest here up to O(s2)

included [63]. The non-universal K4 terms in (4.1) contribute at O(s3) and are encoded in
the parameters α3 and β3 in (4.2). The high degree of universality of the branon S-matrix
is to be contrasted with a theory of compact goldstones like the Pion, whose S-matrix
shows departures from universality already at O(s2). To this order, the phase shifts are
real because inelastic processes like 2→ 4 give rise to imaginary contributions of O(s6).

We will see below that by requiring a consistent UV completion of the branon S-matrix,
we can put bounds on its low energy expansion and thus bound the effective field
theory parameters. This immediately leads to many interesting bounds on various low
energy physical observables. One such interesting observable is the finite volume energy
spectrum which we can compute in perturbation theory from the action (4.1) above. For
example, for the ground state, we will find

E0(R) =
√

R2 − π
3 (D− 2) +

δ(D)

R7 + O(1/R9) , (4.3)

where R is the length of the flux tube loop and

δ(D) =
32π6(2− D)((D−2)α3+(D−4)β3)

225
. (4.4)

Note that the leading confining potential E0(R) ∼ R all the way upto the sub-sub-sub-
leading corrections of O(1/R5) are universal and captured by the square root term in
(4.3).
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Similar formulae governing the first few universal terms of the large R expansion can
be written for excited states as well [63, 64]. A particular feature of those results is that
they exhibit quite a lot of degeneracy: for very large radius the energy levels typically
depend only on the total left and right moving momentum but not on the individual
momenta of the branons. Level splitting of these energy levels starts at O(1/R7) and
directly probes the non-universal parameters α3 and β3 introduced above (see equation
(4.27) below for a concrete example).

In summary, at very low energy, i.e. very long flux tubes, universality powerfully
constrains everything. Eventually non-universal terms kick in. We then have a triangle
of three important players: the effective field theory Lagrangian (4.1), the branon S-
matrix (4.2) and the finite volume spectrum (4.3). The main result of this paper is a
bound on the low energy expansion of the S-matrix following from the existence of its
consistent UV completion. This immediately translates into rigorous bounds for the
other two players in the triangle.

More speculatively, we will also study the boundary of the allowed S-matrix space and
find a remarkable numerical coincidence: on that boundary lies an S-matrix exhibiting a
resonance with the quantum numbers, mass and width exactly as predicted in [66, 67]
and dubbed as the QCD worldsheet axion there. Amusingly, at that same point, the
S-matrix we obtain also contains three further heavier excitations which we call the
dilaton, the symmetron and the axion*. Given the remarkable numerical coincidence
w.r.t. the QCD axion, it is tempting to speculate that they should be present in the QCD
flux tube.

Lattice Monte Carlo simulations of pure Yang-Mills provide precious information on
the dynamics of confining flux tubes. The measurements of the low energy spectrum
support the outlined picture of universality at large radius – see [68] for a review – and
should hopefully be sensitive to the non-universal corrections soon, e.g. [69] for D=3.
They also favor the existence of the conjectured axion excitation [66, 67, 70, 71]; it would
be very interesting to look for other more massive excitations.

4.2 2D massless S-matrix Bootstrap

Massless excitations in 2D can be left (L) or right (R) movers. In this section, we study
the L-R scattering amplitude of branons.2

2A general 2D massless S-matrix has non-trivial L-L, L-R and R-R components [72]. Lorentz invariance
implies that the L-L components is a function of the ratio pL

1 /pL
2 of the momenta of the incoming left-moving

particles. This means that the L-L and the R-R amplitudes are independent of the energy scale. Therefore,
the branons must have trivial L-L and R-R scattering because their interactions turn off at low energies [73].
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4.2.1 Setup

A long flux tube in D dimensions breaks the target Poincaré symmetry to ISO(1, 1)×
O(D− 2).3 This leads to D− 2 Goldstone bosons or branons. Consider now the 2→ 2
scattering amplitude of these branons,

Scd
ab(s) = σ1(s)δabδcd + σ2(s)δc

aδd
b + σ3(s)δd

a δc
b , (4.5)

where the indices run over the D − 2 transverse directions and s is the square of the
center-of-mass energy. Crossing symmetry leads to

σ2(−s) = σ2(s) , σ3(−s) = σ1(s) . (4.6)

The amplitude (4.5) can also be decomposed in partial waves of O(D−2) namely, the
singlet, the anti-symmetric tensor and the symmetric traceless tensor (see [6, 7] for
details),

Ssing = e2iδsing = (D− 2)σ1 + σ2 + σ3

Santi = e2iδanti = σ2 − σ3 (4.7)

Ssym = e2iδsym = σ2 + σ3

where δrep may have an imaginary part due to particle production. In this basis, unitarity
is simply

|Srep(s)|2 ≤ 1 , ∀s > 0 . (4.8)

The amplitudes σi(s) are analytic functions of s in the upper and the lower half plane
related by 4

σi(s∗) = [σi(s)]
∗ . (4.9)

Therefore, it is enough to know the amplitudes in the upper half plane, where equa-
tions (4.6) and (4.9) lead to

σ2(−s∗) = [σ2(s)]
∗ , σ3(−s∗) = [σ1(s)]

∗ . (4.10)

The Nambu-Goto lagrangian leads to the low energy expansion of the phase shifts as
2δrep = s

4 + O(s2). In principle, higher order terms may also include non-analytic terms
of the form sp(log s)k with p > k > 0. Furthermore, we know that Im δrep = O(s6)

because particle production starts with |M2→4|2 ∼ l12
s [74]. Using just these facts and

(4.10) we can derive the low energy expansion (4.2) with α2, α3 and β3 as real parameters.
In the context of the flux tube theory α2 = D−26

384π is universal and α3 and β3 are non-

3We assume that the D-dimensional theory and the flux tube preserve parity. It would be interesting to
generalize our study of branon scattering in the absence of parity, e.g. due to a θ-term.

4This is just real analyticity for massive particles. For massless particles, the s-channel and the t-channel
cuts touch at s = 0 and cover the entire real axis of s.
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Figure 4.1: Allowed region in the {γ̃3, γ̃5, γ̃7} space for a generic D=3 flux tube S-matrix,
with γ̃n=γn + (−1)(n+1)/2 1

n23n−1 . The S-matrix at the cusp (black point) is associated
to the goldstone (goldstino) S-matrix describing the flow from tricritical Ising to free
fermions: it saturates the Schwarz-Pick inequality. The edge in red corresponds to
double CDD solutions, saturating the 2-point Schwarz-Pick bound and the full orange
surface is determined by the 3-point Schwarz-Pick inequality and it is saturated by a
triple CDD family.

universal coefficients related to the two independent K4 terms in (4.1). In appendix C.1,
we push this expansion up to O(s6) and find perfect agreement with the O(s4) results
of [75].

4.2.2 D = 3 Flux Tubes

To start with, we focus on the D = 3 target space. In this case, only δsing ≡ δ is
meaningful and the amplitude S = e2iδ obeys S(−s∗) = [S(s)]∗ for s in the upper half
plane. Furthermore, it was shown in [76] that Im δ = O(s8). This implies

2δ(s) =
s
4
+ γ3s3 + γ5s5 + γ7s7 + iγ8s8 + O(s9) , (4.11)

where γ3, γ5, γ7 are non-universal parameters. On the other hand, γ8 is determined
by the probability of particle production at leading order P2→n≥4 = 2γ8s8 + O(s9) . As
explained in [76], γ8 ∝ γ2

3 is not an independent parameter. We shall now show that the
coefficients γ3, γ5, γ7 can only take values in the region depicted in figure 4.1.

97



Fluxtube S-matrix Bootstrap

s > 0t = �s > 0

s = 0

s = 0s =�

s > 0

s < 0

s

�

Figure 4.2: Left: domain of analyticity of a generic massless two-dimensional S-matrix.
The cut, in black, is all over the real axis; the threshold at s = 0 it is in general a
branch point singularity. Right: we map the upper half plane to the unit disc through
s → χ = (4 + is)/(4− is). The real axis is mapped to the boundary of the unit circle,
the threshold to χ = 1 and s = ∞ to χ = −1.

The S-matrix S(z) is a holomorphic function from the upper half plane H to the the unit
disc D because unitarity on the real axis along with the maximum modulus principle
implies that |S(z)| ≤ 1 in the full upper half plane. Next, we construct a new function

S(1)(z|w) ≡ S(z)− S(w)

1− S(z)S(w)

/
z− w
z− w

, (4.12)

where w is any point in the upper half plane. It is easy to see that (as a holomorphic
function of z) this function (a) has no singularities in the upper half plane and (b) is
again bounded by 1 for z on the real line.5 By the maximum modulus principle, it is
bounded everywhere on the upper half plane: |S(1)(z|w)|Im(z)≥ 0 ≤ 1. This is the content
of the so-called Schwarz-Pick theorem.

Inserting (4.11) in the Schwarz-Pick combination (4.12) and expanding for small and
imaginary z and w, we find

S(1)(ix|iy) = −1 +
(

1
96

+ 8γ3

)
x y + · · · ≥ −1 . (4.13)

This leads to our first bound
γ3 ≥ −

1
768

. (4.14)

In Appendix C.2, we show that the bound cannot be improved by approaching the
origin z=w=0 in any other direction in the upper half plane. The authors of [67, 76]
estimated γ3 ≈ 3× 10−4 from lattice data for SU(6) YM [77].

Similarly, one can define S(2)(z|q, w) by replacing S(z) by S(1)(z|q) in (4.12). Such

5For z on the real line, |z− w|/|z− w| = 1 and notice that S(z), S(w) ∈ D and S(z)−S(w)

1−S(z)S(w)
is a Mobius

transformation that maps the unit disc D to itself.
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Schwarz-Pick multi-point generalizations [78] can be used to derive (see appendix C.2)

γ̃3 ≥ 0

γ̃5 ≥ 4γ̃2
3 −

1
64

γ̃3 (4.15)

γ̃7 ≥
γ̃2

5
γ̃3

+
1

4096
γ̃3 +

1
64

γ̃5 −
1
16

γ̃2
3

where γ̃n=γn + (−1)(n+1)/2 1
n23n−1 . The allowed region is shown in figure 4.1.

It is interesting that Schwarz-Pick inequalities exploit both unitarity and analyticity by
exploring the region of purely imaginary Mandelstam s – orthogonal to real physical s –
to efficiently bound the space of 2→ 2 S-matrices.

4.2.3 D = 4 Flux Tubes

In D = 4 dimensions, the branon S-matrix possesses an O(2) symmetry. In addition,
the crossing and unitary equations are invariant under Ssing ↔ Santi interchange corre-
sponding to β3 ↔ −β3 in (4.2). Universality fixes the low energy expansion of the phase
shifts up to order s2 included. The leading non-universal behavior depends on the two
coefficients α3 and β3 introduced in (4.2).

Crossing mixes the various irreps but the symmetric channel S-matrix is still bounded
by 1 along all the real s-axis6 so we can still apply the first Schwarz-Pick inequality in
this channel as in the previous section. Moreover, it can be applied to the two crossing
symmetric combinations in D = 4: S± = 1/2(Ssing ± Ssym). This analysis leads to

α3 ≥ −
1

768
+

121
9216π2 , (4.16)

α3 ≥ −
1

768
+ |β3| . (4.17)

This is however not the full allowed {α3, β3} space as we have yet to explore all channels
and their interrelations. To find the optimal bounds we proceed numerically in the spirit
of [3, 4, 8]. We map the upper half plane to the unit disk with the real axis mapped to the
unit circle, see figure 4.2. By assumption the S-matrix is analytic in the interior of the
disk and we can represent it as a Taylor expansion. Our numerical ansatz is then given
by the truncated Taylor series

Sansatz =
Nmax

∑
n=0

anχn , |χ| ≤ 1 . (4.18)

6By crossing |Scrossed
sym | = 1

2 |Ssing + Santi| ≤ 1. This actually holds for any O(N = D − 2) theory as
pointed out in [7].
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Allowed

↵3 = � 1

768
+

121

9216⇡2
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Figure 4.3: Allowed region in the {β3, α3} parameter space of flux tube S-matrice in
D = 4 as obtained by numerics. The horizontal red line represents the absolute minimum
of α3 as predicted analytically by the Schwarz-Pick theorem applied to the symmet-
ric channel. The additional red lines can be obtained applying Schwarz-Pick to the
additional crossing symmetric combinations S±(s).

Then we minimize the linear functional α3 in the vector space of the Taylor coefficients
{an} as a function of β3, given the quadratic constraints |Sansatz(χ)| ≤ 1 for each χ on the
upper boundary of the disk and for each Srep. Further details are given in appendix C.4
along with more general numerical results obtained as byproduct of our explorations
but that are not relevant in the context of flux tube theories.

The numerical result of the optimization problem is shown in figure 4.3. The analytic
bound in (4.17) would allow all the points above the Schwarz-Pick line (in red), while
we see numerically that the effect of bounding the other channels produces the region
depicted in blue. When β3 = 0 the numerical bound and the analytic one coincide. At
this point, the S-matrix satisfies Yang-Baxter and it is a pure phase in all channels. Its
expression can be predicted analytically and is given in appendix C.3.

4.3 Energy spectrum in finite volume

We just saw how many constraints on the long Flux Tube follow from the general
principles of the S-matrix theory. Here we translate them into constraints on large
volume observables. We start with the flux tube ground state energy E0(R).

At very large R we read off the string tension from E0(R) ' R/`2
s . Recall that the

corrections up to 1/R5 to this confining result are universal and given by the square root
in (4.3). The sub-sub-sub-subleading term is not uniquely fixed by symmetry and is the
subject of this section.

Computing the non-universal correction in (4.3) is straightforward in perturbation
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theory (sum of connected vacuum Feynman diagrams), albeit increasingly complex as
we move to higher orders in 1/R. The leading correction δ(D) comes from the two K4

possible interactions which we parametrize as

Lnon-univ = ∂a∂bXi∂a∂bX j∂c∂dXk∂c∂dXl × (4.19)

×
[
4δikδjl(α3 + β3)− 2δijδkl(α3 + 3β3)

]
.

Here we parametrize the coefficient of the two invariant structures so to match the eye
pleasing expressions (4.2), as can be verified by a straightforward tree level computation.
Thus, the leading order non-universal contribution to the vacuum energy density is

= f (D)
[
∂µ∂ν∂ρ∂σ∆R(0)

]2 , (4.20)

where f (D) = 4(2 − D)((D−2)α3+(D−4)β3). The derivative of the finite volume
propagator is given by ∂µ∆R(x)=∑n ∂µ∆(x + n), where ∂µ∆(x) = −xµ/(2π x2) and
nµ = (0, nR) is a displacement vector in the winding direction. The zero mode nµ =

(0, 0) gives a short-distance divergence in the limit x → 0 leading to (4.20). This is
regulated by a local counter-term, which at this order simply amounts to neglecting
the zero mode. Thus, after a bit of algebra and excluding the zero mode, we are
led to

[
∂µ∂ν∂ρ∂σ∆R(0)

]2
ren. = 288/π2 ∑∞

n,m=1 1/(R8n4m4)=8π6/225R8, which gives the
desired relation (4.4) between the first non-universal correction to the energy and the
first non-universal low energy S-matrix parameters or Wilson coefficients. See appendix
C.6 for further details. (In D = 3, physical quantities only depend on the combination
α3 − β3 = γ3.)

Since we bounded the later low energy parameters, see figures 4.1 and 4.3, we automati-
cally obtain bounds on the Wilson coefficients and on the ground state energy. In three
and four dimensions, for instance, we find the following bound on the deviation from
the square root formula

δ(3) = −32π6γ3

225
≤ π6

5400
, (4.21)

and

δ(4) = −128π6α3

225
≤ π6

1350
− 121π4

16200
. (4.22)

Note that the right hand side of (4.22) is negative so the square root formula must
be corrected; the right hand side of (4.21) is positive, in nice agreement with the fact

that integrable D = 3 Strings have precisely Eint
0 =

√
R2 − π

3 . Note also that the four
dimensional bound (4.22) is saturated when β3 = 0 (see figure 4.3) which corresponds
to the particular point where integrability is preserved.

In fact, if we exploit the low energy integrability of the theory we can bypass the
Lagrangian approach altogether and, by means of the so called Thermodynamic Bethe
Ansatz (TBA), compute (4.3) in terms of the S-matrix.
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This is particularly clean in D = 3 since there is only a single branon and a single
corresponding pseudo-energy in this case. The ground state energy then reads

E0(R) = R +
1

πR

∫ ∞

0
dx log(1− e−ε(x)) , (4.23)

where the pseudo-energy ε is the solution to the integral equation

ε(x) = x +
1

2π

∫ ∞

0

dx′

x′
K log(1− e−ε(x′)) , (4.24)

with the kernelK = x′ ∂
∂x′ δ( 4xx′

R2 ) and the phase shift is given by the low energy expansion
(4.11). (The TBA aficionado might notice that this equation is a bit unusual; in terms of
x = eθ we see that a sum of rapidities shows up as opposed to the more conventional
difference. This is because of the pure L/R scattering of our problem.) Expanding the
pseudo-energy as

ε(x) = x +
a(x)
R2 +

b(x)
R4 +

c(x)
R6 +O

(
1

R8

)
, (4.25)

and collecting powers of R we can straightforwardly find all the functions a, b, c, . . . and
hence the ground state energy,

E0 = R− π

6R
− π2

72R3−
π3

432R5−
5π4

10368R7 −
32π6γ3

225R7 + . . . (4.26)

We recognize that the first five terms are precisely the expansion of the square root
in (4.3) while the last term is nothing but (4.4) with D = 3 and α3 − β3 ≡ γ3.

For D = 4 we can proceed in the same fashion as long as we restrict ourselves to the
integrable subspace β3 = 0. In this case, we get a set of TBA equations [67] which
can also be simplified into a single equation and solved in a large R expansion, see
appendix C.5.1 for details.

Next we have excited states which we can analyze in a similar way, either through
perturbation theory or through the excited state TBA. Of particular relevance is the level
splitting between the first few energy levels since this degeneracy lifting is a sharp
signature of the non-universal terms. For instance, in D = 3 the first level splitting
between the second and third excited states (in the zero momentum sector) reads

E2 branons(2,−2)− E4 branons(1, 1,−1,−1)

= −2455552π6γ3

5R7 + O
(
1/R9) , (4.27)

where the arguments refer to the individual mode numbers. The basic logic that goes
into computing (4.27) is analogous to the derivation of (4.26), therefore the details are
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given in appendix C.5.2. There we also establish the bound on (4.27), that immediately
follows from (4.15), and comment on potential comparisons with LMC data in the future.

Note that in our current logic, we can not completely ignore the Lagrangian since we are
exploiting the thermodynamic Bethe ansatz, which only allows us to relate the S-matrix
and the energy levels when the system is integrable. It should be possible – and very
interesting – to relate more generally the various energy levels with the two-to-two
S-matrix, together with all higher point amplitudes of non-integrable theories. The
Lüscher corrections [79] provide the leading term and generalized Lüscher corrections
have been recently explored e.g. in [80]. Perhaps the recent rederivation of the TBA in
more diagrammatic terms, see e.g. [81], can provide some insights for such putative
description. Or, developing the approach of [82] for the flux tube may turn out useful. It
would be great to adapt these ideas to our setup and re-derive (4.22) without expanding
around the integrable theory.

4.4 Resonances

Given the bounds in figures 4.1 and 4.3 it is natural to ask which S-matrices lie on
those boundaries. This is particularly relevant in 4D since Lattice MC shows a rich
phenomenology, with the presence of a parity odd resonance [70, 71], dubbed QCD
worldsheet axion in the S-matrix approach to the long flux tube [66, 67].

In D = 3 we can find the S-matrices at the boundary of figure 4.1 analytically. Given that
in this case there is no strong evidence for resonances from the lattice data, we present
this analysis in appendix C.2.4. Furthermore, ref. [83] suggests that indeed the D = 3
QCD Flux-Tube has no resonances, in appendix C.7 we discuss how our bounds can be
improved if we incorporate this further assumption into the analytic properties of the
S-matrix. Finally, let us mention that at the cusp of figure 4.1 Scusp = (8i− s)/(8i + s).
Nicely, this is an important S-matrix, albeit in a different context: it describes the RG
flow from the tricritical Ising fixed point to the free fermion theory [84]. 7

Next we turn to D = 4, where the boundary must be studied numerically. Here we find
some remarkable surprises. A first nice surprise is that the S-matrices which saturate
the bound have zeros, which physically correspond to resonances. Figure 4.4 describes
the position of these resonances in the anti-symmetric channel as we move along the
boundary of figure 4.3. Depending on whether we are to the right or left of the integrable
β3 = 0 point, there is one (β3 < 0) or two zeros there (β3 > 0). As we move along
the boundary in the region β3 > 0, the sharpest of these resonances passes spot on by
the values of the worldsheet axion. The two dots correspond to estimates based on
SU(3) [66, 67] and SU(5) [83] lattice MC simulations [70]. Because of these encouraging

7Precisely, SGoldstino = −Scusp, where the overall minus sign could be easily incorporated in the formulas
of the main text.
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�anti
<latexit sha1_base64="KgRQXP/iAWCx+qUW8L5757VgG58=">AAACCHicbVC7TgMxEPTxDOEVHh2NRYREFd0hJCgjKKAMEnlISRTtOZtgYftO9h4inPIDfAUtVHSIlr+g4F+4hBSQMNVoZlc7O2GspCPf//Tm5hcWl5ZzK/nVtfWNzcLWds1FiRVYFZGKbCMEh0oarJIkhY3YIuhQYT28PR/59Tu0TkbmmgYxtjX0jexJAZRJncJu6wK0hk7aIrynFAzJ4bBTKPolfww+S4IJKbIJKp3CV6sbiUSjIaHAuWbgx9ROwZIUCof5VuIwBnELfWxm1IBG107H6Yf8IHFAEY/Rcqn4WMTfGylo5wY6zCY10I2b9kbif14zod5pO5UmTgiNGB0iqXB8yAkrs1qQd6VFIhglRy4NF2CBCK3kIEQmJllP+ayPYPr7WVI7KgUZvzouls8mzeTYHttnhyxgJ6zMLlmFVZlgD+yJPbMX79F79d6895/ROW+ys8P+wPv4BlZ6mlM=</latexit><latexit sha1_base64="KgRQXP/iAWCx+qUW8L5757VgG58=">AAACCHicbVC7TgMxEPTxDOEVHh2NRYREFd0hJCgjKKAMEnlISRTtOZtgYftO9h4inPIDfAUtVHSIlr+g4F+4hBSQMNVoZlc7O2GspCPf//Tm5hcWl5ZzK/nVtfWNzcLWds1FiRVYFZGKbCMEh0oarJIkhY3YIuhQYT28PR/59Tu0TkbmmgYxtjX0jexJAZRJncJu6wK0hk7aIrynFAzJ4bBTKPolfww+S4IJKbIJKp3CV6sbiUSjIaHAuWbgx9ROwZIUCof5VuIwBnELfWxm1IBG107H6Yf8IHFAEY/Rcqn4WMTfGylo5wY6zCY10I2b9kbif14zod5pO5UmTgiNGB0iqXB8yAkrs1qQd6VFIhglRy4NF2CBCK3kIEQmJllP+ayPYPr7WVI7KgUZvzouls8mzeTYHttnhyxgJ6zMLlmFVZlgD+yJPbMX79F79d6895/ROW+ys8P+wPv4BlZ6mlM=</latexit><latexit sha1_base64="KgRQXP/iAWCx+qUW8L5757VgG58=">AAACCHicbVC7TgMxEPTxDOEVHh2NRYREFd0hJCgjKKAMEnlISRTtOZtgYftO9h4inPIDfAUtVHSIlr+g4F+4hBSQMNVoZlc7O2GspCPf//Tm5hcWl5ZzK/nVtfWNzcLWds1FiRVYFZGKbCMEh0oarJIkhY3YIuhQYT28PR/59Tu0TkbmmgYxtjX0jexJAZRJncJu6wK0hk7aIrynFAzJ4bBTKPolfww+S4IJKbIJKp3CV6sbiUSjIaHAuWbgx9ROwZIUCof5VuIwBnELfWxm1IBG107H6Yf8IHFAEY/Rcqn4WMTfGylo5wY6zCY10I2b9kbif14zod5pO5UmTgiNGB0iqXB8yAkrs1qQd6VFIhglRy4NF2CBCK3kIEQmJllP+ayPYPr7WVI7KgUZvzouls8mzeTYHttnhyxgJ6zMLlmFVZlgD+yJPbMX79F79d6895/ROW+ys8P+wPv4BlZ6mlM=</latexit><latexit sha1_base64="KgRQXP/iAWCx+qUW8L5757VgG58=">AAACCHicbVC7TgMxEPTxDOEVHh2NRYREFd0hJCgjKKAMEnlISRTtOZtgYftO9h4inPIDfAUtVHSIlr+g4F+4hBSQMNVoZlc7O2GspCPf//Tm5hcWl5ZzK/nVtfWNzcLWds1FiRVYFZGKbCMEh0oarJIkhY3YIuhQYT28PR/59Tu0TkbmmgYxtjX0jexJAZRJncJu6wK0hk7aIrynFAzJ4bBTKPolfww+S4IJKbIJKp3CV6sbiUSjIaHAuWbgx9ROwZIUCof5VuIwBnELfWxm1IBG107H6Yf8IHFAEY/Rcqn4WMTfGylo5wY6zCY10I2b9kbif14zod5pO5UmTgiNGB0iqXB8yAkrs1qQd6VFIhglRy4NF2CBCK3kIEQmJllP+ayPYPr7WVI7KgUZvzouls8mzeTYHttnhyxgJ6zMLlmFVZlgD+yJPbMX79F79d6895/ROW+ys8P+wPv4BlZ6mlM=</latexit>

Yang Baxter:�3=0
<latexit sha1_base64="Q+G1ab2/x5rOeg+fPMdGk8s6Az4=">AAACFnicbVA9SwNBEN3z2/gVtbRZEgQLkTsVFEEI2lgqGKPkQphbx7i4t3fszknCcb0/wV9hq5Wd2Npa+F/cxBR+verx3gwz70WpkpZ8/90bGR0bn5icmi7NzM7NL5QXl85skhmBdZGoxJxHYFFJjXWSpPA8NQhxpLAR3Rz2/cYtGisTfUq9FFsxdLS8kgLISe1yJQ8Ju5RfgO7wA+gSmr0iXA8jJGhv5fuFX7TLVX/DH4D/JcGQVNkQx+3yR3iZiCxGTUKBtc3AT6mVgyEpFBalMLOYgriBDjYd1RCjbeWDLAVfzSxQwlM0XCo+EPH7Rg6xtb04cpMx0LX97fXF/7xmRle7rVzqNCPUon+IpMLBISuMdCUhv5QGiaD/OXKpuQAD5CqRHIRwYuZaK7k+gt/p/5KzzY3A8ZPtau1g2MwUW2EVtsYCtsNq7IgdszoT7I49sEf25N17z96L9/o1OuINd5bZD3hvn+0on1s=</latexit><latexit sha1_base64="Q+G1ab2/x5rOeg+fPMdGk8s6Az4=">AAACFnicbVA9SwNBEN3z2/gVtbRZEgQLkTsVFEEI2lgqGKPkQphbx7i4t3fszknCcb0/wV9hq5Wd2Npa+F/cxBR+verx3gwz70WpkpZ8/90bGR0bn5icmi7NzM7NL5QXl85skhmBdZGoxJxHYFFJjXWSpPA8NQhxpLAR3Rz2/cYtGisTfUq9FFsxdLS8kgLISe1yJQ8Ju5RfgO7wA+gSmr0iXA8jJGhv5fuFX7TLVX/DH4D/JcGQVNkQx+3yR3iZiCxGTUKBtc3AT6mVgyEpFBalMLOYgriBDjYd1RCjbeWDLAVfzSxQwlM0XCo+EPH7Rg6xtb04cpMx0LX97fXF/7xmRle7rVzqNCPUon+IpMLBISuMdCUhv5QGiaD/OXKpuQAD5CqRHIRwYuZaK7k+gt/p/5KzzY3A8ZPtau1g2MwUW2EVtsYCtsNq7IgdszoT7I49sEf25N17z96L9/o1OuINd5bZD3hvn+0on1s=</latexit><latexit sha1_base64="Q+G1ab2/x5rOeg+fPMdGk8s6Az4=">AAACFnicbVA9SwNBEN3z2/gVtbRZEgQLkTsVFEEI2lgqGKPkQphbx7i4t3fszknCcb0/wV9hq5Wd2Npa+F/cxBR+verx3gwz70WpkpZ8/90bGR0bn5icmi7NzM7NL5QXl85skhmBdZGoxJxHYFFJjXWSpPA8NQhxpLAR3Rz2/cYtGisTfUq9FFsxdLS8kgLISe1yJQ8Ju5RfgO7wA+gSmr0iXA8jJGhv5fuFX7TLVX/DH4D/JcGQVNkQx+3yR3iZiCxGTUKBtc3AT6mVgyEpFBalMLOYgriBDjYd1RCjbeWDLAVfzSxQwlM0XCo+EPH7Rg6xtb04cpMx0LX97fXF/7xmRle7rVzqNCPUon+IpMLBISuMdCUhv5QGiaD/OXKpuQAD5CqRHIRwYuZaK7k+gt/p/5KzzY3A8ZPtau1g2MwUW2EVtsYCtsNq7IgdszoT7I49sEf25N17z96L9/o1OuINd5bZD3hvn+0on1s=</latexit><latexit sha1_base64="Q+G1ab2/x5rOeg+fPMdGk8s6Az4=">AAACFnicbVA9SwNBEN3z2/gVtbRZEgQLkTsVFEEI2lgqGKPkQphbx7i4t3fszknCcb0/wV9hq5Wd2Npa+F/cxBR+verx3gwz70WpkpZ8/90bGR0bn5icmi7NzM7NL5QXl85skhmBdZGoxJxHYFFJjXWSpPA8NQhxpLAR3Rz2/cYtGisTfUq9FFsxdLS8kgLISe1yJQ8Ju5RfgO7wA+gSmr0iXA8jJGhv5fuFX7TLVX/DH4D/JcGQVNkQx+3yR3iZiCxGTUKBtc3AT6mVgyEpFBalMLOYgriBDjYd1RCjbeWDLAVfzSxQwlM0XCo+EPH7Rg6xtb04cpMx0LX97fXF/7xmRle7rVzqNCPUon+IpMLBISuMdCUhv5QGiaD/OXKpuQAD5CqRHIRwYuZaK7k+gt/p/5KzzY3A8ZPtau1g2MwUW2EVtsYCtsNq7IgdszoT7I49sEf25N17z96L9/o1OuINd5bZD3hvn+0on1s=</latexit>

1 zero:�3<0
<latexit sha1_base64="yEWa/IxJQc3iYIUGvx39mnnix7c=">AAACEXicbVDLSgNBEJyNrxhfqx5FGAyCBwm7KijiIejFYwTzgGwIvWMnDs4+mOkV47InP8Gv8Konb+LVL/Dgv7iJOfiqU1HVTXeVHytpyHHercLE5NT0THG2NDe/sLhkL680TJRogXURqUi3fDCoZIh1kqSwFWuEwFfY9K9Ohn7zGrWRUXhOgxg7AfRD2ZMCKJe69nrqEd5Q6vJb1NFh5m17PhJ0d9OjzMm6dtmpOCPwv8QdkzIbo9a1P7yLSCQBhiQUGNN2nZg6KWiSQmFW8hKDMYgr6GM7pyEEaDrpKEbGNxMDFPEYNZeKj0T8vpFCYMwg8PPJAOjS/PaG4n9eO6HeQSeVYZwQhmJ4iKTC0SEjtMz7QX4hNRLB8HPkMuQCNBChlhyEyMUkL6yU9+H+Tv+XNHYqbs7P9srV43EzRbbGNtgWc9k+q7JTVmN1Jtgde2CP7Mm6t56tF+v1a7RgjXdW2Q9Yb5/NsZ0k</latexit><latexit sha1_base64="yEWa/IxJQc3iYIUGvx39mnnix7c=">AAACEXicbVDLSgNBEJyNrxhfqx5FGAyCBwm7KijiIejFYwTzgGwIvWMnDs4+mOkV47InP8Gv8Konb+LVL/Dgv7iJOfiqU1HVTXeVHytpyHHercLE5NT0THG2NDe/sLhkL680TJRogXURqUi3fDCoZIh1kqSwFWuEwFfY9K9Ohn7zGrWRUXhOgxg7AfRD2ZMCKJe69nrqEd5Q6vJb1NFh5m17PhJ0d9OjzMm6dtmpOCPwv8QdkzIbo9a1P7yLSCQBhiQUGNN2nZg6KWiSQmFW8hKDMYgr6GM7pyEEaDrpKEbGNxMDFPEYNZeKj0T8vpFCYMwg8PPJAOjS/PaG4n9eO6HeQSeVYZwQhmJ4iKTC0SEjtMz7QX4hNRLB8HPkMuQCNBChlhyEyMUkL6yU9+H+Tv+XNHYqbs7P9srV43EzRbbGNtgWc9k+q7JTVmN1Jtgde2CP7Mm6t56tF+v1a7RgjXdW2Q9Yb5/NsZ0k</latexit><latexit sha1_base64="yEWa/IxJQc3iYIUGvx39mnnix7c=">AAACEXicbVDLSgNBEJyNrxhfqx5FGAyCBwm7KijiIejFYwTzgGwIvWMnDs4+mOkV47InP8Gv8Konb+LVL/Dgv7iJOfiqU1HVTXeVHytpyHHercLE5NT0THG2NDe/sLhkL680TJRogXURqUi3fDCoZIh1kqSwFWuEwFfY9K9Ohn7zGrWRUXhOgxg7AfRD2ZMCKJe69nrqEd5Q6vJb1NFh5m17PhJ0d9OjzMm6dtmpOCPwv8QdkzIbo9a1P7yLSCQBhiQUGNN2nZg6KWiSQmFW8hKDMYgr6GM7pyEEaDrpKEbGNxMDFPEYNZeKj0T8vpFCYMwg8PPJAOjS/PaG4n9eO6HeQSeVYZwQhmJ4iKTC0SEjtMz7QX4hNRLB8HPkMuQCNBChlhyEyMUkL6yU9+H+Tv+XNHYqbs7P9srV43EzRbbGNtgWc9k+q7JTVmN1Jtgde2CP7Mm6t56tF+v1a7RgjXdW2Q9Yb5/NsZ0k</latexit><latexit sha1_base64="yEWa/IxJQc3iYIUGvx39mnnix7c=">AAACEXicbVDLSgNBEJyNrxhfqx5FGAyCBwm7KijiIejFYwTzgGwIvWMnDs4+mOkV47InP8Gv8Konb+LVL/Dgv7iJOfiqU1HVTXeVHytpyHHercLE5NT0THG2NDe/sLhkL680TJRogXURqUi3fDCoZIh1kqSwFWuEwFfY9K9Ohn7zGrWRUXhOgxg7AfRD2ZMCKJe69nrqEd5Q6vJb1NFh5m17PhJ0d9OjzMm6dtmpOCPwv8QdkzIbo9a1P7yLSCQBhiQUGNN2nZg6KWiSQmFW8hKDMYgr6GM7pyEEaDrpKEbGNxMDFPEYNZeKj0T8vpFCYMwg8PPJAOjS/PaG4n9eO6HeQSeVYZwQhmJ4iKTC0SEjtMz7QX4hNRLB8HPkMuQCNBChlhyEyMUkL6yU9+H+Tv+XNHYqbs7P9srV43EzRbbGNtgWc9k+q7JTVmN1Jtgde2CP7Mm6t56tF+v1a7RgjXdW2Q9Yb5/NsZ0k</latexit>

2 zeros:�3>0
<latexit sha1_base64="PBwq8bLZW0Jn6PDDS5+C0n1Gdq0=">AAACEnicbVDLSgNBEJz1GeNr1aMgg0HwILIbBcWDBL14jGAekA2hd9LRwdkHM71iXPbmJ/gVXvXkTbz6Ax78FzcxB43WqajqprvKj5U05Dgf1sTk1PTMbGGuOL+wuLRsr6zWTZRogTURqUg3fTCoZIg1kqSwGWuEwFfY8K9PB37jBrWRUXhB/RjbAVyGsicFUC517I3UI7yltMzvUEfmKPN2PB8JOnvpceZkHbvk7DpD8L/EHZESG6HasT+9biSSAEMSCoxpuU5M7RQ0SaEwK3qJwRjENVxiK6chBGja6TBHxrcSAxTxGDWXig9F/LmRQmBMP/DzyQDoyox7A/E/r5VQ77CdyjBOCEMxOERS4fCQEVrmBSHvSo1EMPgcuQy5AA1EqCUHIXIxyRsr5n244+n/knp51835+X6pcjJqpsDW2SbbZi47YBV2xqqsxgS7Z4/siT1bD9aL9Wq9fY9OWKOdNfYL1vsXt2SdpA==</latexit><latexit sha1_base64="PBwq8bLZW0Jn6PDDS5+C0n1Gdq0=">AAACEnicbVDLSgNBEJz1GeNr1aMgg0HwILIbBcWDBL14jGAekA2hd9LRwdkHM71iXPbmJ/gVXvXkTbz6Ax78FzcxB43WqajqprvKj5U05Dgf1sTk1PTMbGGuOL+wuLRsr6zWTZRogTURqUg3fTCoZIg1kqSwGWuEwFfY8K9PB37jBrWRUXhB/RjbAVyGsicFUC517I3UI7yltMzvUEfmKPN2PB8JOnvpceZkHbvk7DpD8L/EHZESG6HasT+9biSSAEMSCoxpuU5M7RQ0SaEwK3qJwRjENVxiK6chBGja6TBHxrcSAxTxGDWXig9F/LmRQmBMP/DzyQDoyox7A/E/r5VQ77CdyjBOCEMxOERS4fCQEVrmBSHvSo1EMPgcuQy5AA1EqCUHIXIxyRsr5n244+n/knp51835+X6pcjJqpsDW2SbbZi47YBV2xqqsxgS7Z4/siT1bD9aL9Wq9fY9OWKOdNfYL1vsXt2SdpA==</latexit><latexit sha1_base64="PBwq8bLZW0Jn6PDDS5+C0n1Gdq0=">AAACEnicbVDLSgNBEJz1GeNr1aMgg0HwILIbBcWDBL14jGAekA2hd9LRwdkHM71iXPbmJ/gVXvXkTbz6Ax78FzcxB43WqajqprvKj5U05Dgf1sTk1PTMbGGuOL+wuLRsr6zWTZRogTURqUg3fTCoZIg1kqSwGWuEwFfY8K9PB37jBrWRUXhB/RjbAVyGsicFUC517I3UI7yltMzvUEfmKPN2PB8JOnvpceZkHbvk7DpD8L/EHZESG6HasT+9biSSAEMSCoxpuU5M7RQ0SaEwK3qJwRjENVxiK6chBGja6TBHxrcSAxTxGDWXig9F/LmRQmBMP/DzyQDoyox7A/E/r5VQ77CdyjBOCEMxOERS4fCQEVrmBSHvSo1EMPgcuQy5AA1EqCUHIXIxyRsr5n244+n/knp51835+X6pcjJqpsDW2SbbZi47YBV2xqqsxgS7Z4/siT1bD9aL9Wq9fY9OWKOdNfYL1vsXt2SdpA==</latexit><latexit sha1_base64="PBwq8bLZW0Jn6PDDS5+C0n1Gdq0=">AAACEnicbVDLSgNBEJz1GeNr1aMgg0HwILIbBcWDBL14jGAekA2hd9LRwdkHM71iXPbmJ/gVXvXkTbz6Ax78FzcxB43WqajqprvKj5U05Dgf1sTk1PTMbGGuOL+wuLRsr6zWTZRogTURqUg3fTCoZIg1kqSwGWuEwFfY8K9PB37jBrWRUXhB/RjbAVyGsicFUC517I3UI7yltMzvUEfmKPN2PB8JOnvpceZkHbvk7DpD8L/EHZESG6HasT+9biSSAEMSCoxpuU5M7RQ0SaEwK3qJwRjENVxiK6chBGja6TBHxrcSAxTxGDWXig9F/LmRQmBMP/DzyQDoyox7A/E/r5VQ77CdyjBOCEMxOERS4fCQEVrmBSHvSo1EMPgcuQy5AA1EqCUHIXIxyRsr5n244+n/knp51835+X6pcjJqpsDW2SbbZi47YBV2xqqsxgS7Z4/siT1bD9aL9Wq9fY9OWKOdNfYL1vsXt2SdpA==</latexit>

SU(3)
<latexit sha1_base64="6eyvSGC33FEUN4z1h9Lul1dXomw=">AAACB3icbVC7TsNAEDyHVwgvQ0qaExFSaCIbkKCMoKEMAieREis6XzbhlPNDd2ukyPIH8BW0UNEhWj6Dgn/BNi4gMNVoZvdmb7xICo2W9WFUlpZXVteq67WNza3tHXN3r6vDWHFweChD1feYBikCcFCghH6kgPmehJ43u8z93j0oLcLgFucRuD6bBmIiOMNMGpn1ZFg8kngyhvTGaZ4cpSOzYbWsAvQvsUvSICU6I/NzOA557EOAXDKtB7YVoZswhYJLSGvDWEPE+IxNYZDRgPmg3aTITelhrBmGNAJFhaSFCD83EuZrPfe9bNJneKcXvVz8zxvEODl3ExFEMULA8yAUEoogzZXIWgE6FgoQWX45UBFQzhRDBCUo4zwT46ymWtaHvfj7v6R73LIzfn3aaF+UzVTJPjkgTWKTM9ImV6RDHMLJnDySJ/JsPBgvxqvx9j1aMcqdOvkF4/0LcZ6ZLQ==</latexit><latexit sha1_base64="6eyvSGC33FEUN4z1h9Lul1dXomw=">AAACB3icbVC7TsNAEDyHVwgvQ0qaExFSaCIbkKCMoKEMAieREis6XzbhlPNDd2ukyPIH8BW0UNEhWj6Dgn/BNi4gMNVoZvdmb7xICo2W9WFUlpZXVteq67WNza3tHXN3r6vDWHFweChD1feYBikCcFCghH6kgPmehJ43u8z93j0oLcLgFucRuD6bBmIiOMNMGpn1ZFg8kngyhvTGaZ4cpSOzYbWsAvQvsUvSICU6I/NzOA557EOAXDKtB7YVoZswhYJLSGvDWEPE+IxNYZDRgPmg3aTITelhrBmGNAJFhaSFCD83EuZrPfe9bNJneKcXvVz8zxvEODl3ExFEMULA8yAUEoogzZXIWgE6FgoQWX45UBFQzhRDBCUo4zwT46ymWtaHvfj7v6R73LIzfn3aaF+UzVTJPjkgTWKTM9ImV6RDHMLJnDySJ/JsPBgvxqvx9j1aMcqdOvkF4/0LcZ6ZLQ==</latexit><latexit sha1_base64="6eyvSGC33FEUN4z1h9Lul1dXomw=">AAACB3icbVC7TsNAEDyHVwgvQ0qaExFSaCIbkKCMoKEMAieREis6XzbhlPNDd2ukyPIH8BW0UNEhWj6Dgn/BNi4gMNVoZvdmb7xICo2W9WFUlpZXVteq67WNza3tHXN3r6vDWHFweChD1feYBikCcFCghH6kgPmehJ43u8z93j0oLcLgFucRuD6bBmIiOMNMGpn1ZFg8kngyhvTGaZ4cpSOzYbWsAvQvsUvSICU6I/NzOA557EOAXDKtB7YVoZswhYJLSGvDWEPE+IxNYZDRgPmg3aTITelhrBmGNAJFhaSFCD83EuZrPfe9bNJneKcXvVz8zxvEODl3ExFEMULA8yAUEoogzZXIWgE6FgoQWX45UBFQzhRDBCUo4zwT46ymWtaHvfj7v6R73LIzfn3aaF+UzVTJPjkgTWKTM9ImV6RDHMLJnDySJ/JsPBgvxqvx9j1aMcqdOvkF4/0LcZ6ZLQ==</latexit><latexit sha1_base64="6eyvSGC33FEUN4z1h9Lul1dXomw=">AAACB3icbVC7TsNAEDyHVwgvQ0qaExFSaCIbkKCMoKEMAieREis6XzbhlPNDd2ukyPIH8BW0UNEhWj6Dgn/BNi4gMNVoZvdmb7xICo2W9WFUlpZXVteq67WNza3tHXN3r6vDWHFweChD1feYBikCcFCghH6kgPmehJ43u8z93j0oLcLgFucRuD6bBmIiOMNMGpn1ZFg8kngyhvTGaZ4cpSOzYbWsAvQvsUvSICU6I/NzOA557EOAXDKtB7YVoZswhYJLSGvDWEPE+IxNYZDRgPmg3aTITelhrBmGNAJFhaSFCD83EuZrPfe9bNJneKcXvVz8zxvEODl3ExFEMULA8yAUEoogzZXIWgE6FgoQWX45UBFQzhRDBCUo4zwT46ymWtaHvfj7v6R73LIzfn3aaF+UzVTJPjkgTWKTM9ImV6RDHMLJnDySJ/JsPBgvxqvx9j1aMcqdOvkF4/0LcZ6ZLQ==</latexit>SU(5)
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Figure 4.4: At the S-matrix space boundary we encounter S-matrices with zeros, that is
resonances. In the antisymmetric channel, to the left of the integrable point there is one
single resonance while to the right of the integrable point there are two resonances, a
broad one and a sharp one. Curiously, as we move along the boundary we encounter S-
matrices whose resonance mass and with are in precise agreement with those predicted
in [67, 83] as extracted from SU(3) (right point) and SU(5) (left point) lattice data.

numerical coincidences we will denote these two points along the boundary as the
SU(3) point and SU(5) point.

Remarkably, at these points, we find other zeros in the S-matrices. One broader resonance
shows up in the same anti-symmetric channel along with a resonance in each of the other
two channels. The spectrum, measured as s0 = (m + iΓ/2)2 at the position Srep(s0) = 0,
for the SU(3) and SU(5) points is given by

spectrum [m, Γ] SU(3) SU(5)

axion [1.85, 0.39] [1.64, 0.22]
axion* [3.25, 8.84] [2.83, 7.02]
symmetron [2.36, 4.99] [2.34, 4.54]
dilaton [1.88, 3.37] [1.84, 3.52]

Even though these values should obviously be taken as benchmark values only, could
these resonances be further excitations present in the Yang-Mills long flux tubes? Of
course, these explorations must be taken with a grain of salt since there is a priori
no strong reason for the real flux tube to be close to the boundary (recall that these
S-matrices cannot represent the elastic scattering of branons all the way up to the UV
since particle production kicks in eventually [74]).
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4.4. Resonances

Furthermore, we find that the axion coupling to the world-sheet branons Q ≈
√

8Γ/m5/2

(valid for Γ � m) shows a plateau for almost all the values of β3 > 0, apart from
an initial transient. The value of this plateau surprisingly coincides within a good
numerical accuracy with Qintegrable =

√
7/(16π) [83]. The integrable value of Q is fixed

by demanding that the presence of the axion results in a vanishing 2 → 4 scattering
amplitude as the axion mass goes to zero. It is plausible, given our current numerical
explorations, that this plateau holds all the way up to β3 → ∞, where the axion becomes
massless. Since the family of S-matrices we find, coincidentally, contain the SU(3) and
SU(5) axions, it would be tempting to believe that all SU(N) axions lie somewhere
along the trajectory in figure 4.4 and a natural candidate for the large-N axion would
be the massless resonance in the limit β3 → ∞. However, this is excluded by current
lattice simulations [71] and it is an open question how to relate a “blind to color" S-
matrix approach to the large-N limit. In appendix C.4.4 we give further details on the
resonances.

Finally let us mention a small curiosity. The world-sheet axion is the sharpest excitation
by far. One could imagine a dilation like excitation, governing the flux tube thickness,
to be the lightest scalar mode in some flux tube theories. Could it be that perhaps the
broad dilaton identified here becomes sharper in some other circumstances? As it turns
out, there is a region where the dilaton and axion swap their roles; it is nothing but the
reflection symmetry of figure 4.3 discussed in section 4.2.3. So it is natural to expect
flux tube theories – albeit with very different physics – living on the left shore. The left
and right shores of figure 4.3 can therefore also be called the dilaton and axion shores
respectively. In recent QCD explorations [8] a boundary of the physical S-matrix of pions
was analyzed and there also the two shores had somehow mirror physical properties (as
far as which channels are attractive/repulsive, which ones contain the ρ particle etc); the
two dimensional setup here highlights in a very sharp way some of the features which
are quite challenging to probe numerically there.
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5 Glueball-Branon Bootstrap

We consider the scattering between branons on a long flux tube in 3d 1 and a scalar
glueball in the bulk. The presence of the long flux tube breaks the 3 dimensional Poincare
group to the 2 dimensional one: ISO(1,1). We further assume that the full theory is Parity
invariant which means that there is an additional Z2 symmetry which is essentially a
reflection about the flux tube.

We begin by describing the kinematics.

5.1 Kinematics

5.1.1 Branon states

One particle branon states |p〉 are normalized according to

〈p′|p〉 = (2π)2|p|δ(p− p′) (5.1)

where p refers to the spatial momentum of the branon states, p > 0 for right-movers
and p < 0 for left-movers. Since the branons are massless E = |p|.

It is then straightforward to describe two branon states:

〈p3, p4|p1, p2〉 = (2π)2(2|p1|)(2|p2|) (δ(p1 − p3)δ(p1 − p4) + 3↔ 4) (5.2)

Branon states have eigenvalue (−1)N under the Z2 symmetry, where N is the number of
branons. In particular, the two branon state is Z2 invariant.

1We stick to 3d for simplicity.
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5.1.2 Glueball states

One particle glueball states are labelled by their mass m, p which is their spatial momen-
tum in the direction of the flux tube and q is their transverse momentum:

|m, p, q,+〉 (5.3)

The energy of the glueball is given by E = (p2 + q2 + m2)1/2. The ’+‘ sign in the
states above indicates that these states are the Z2 even combination of glueball states:
|m, p, q,+〉 = 1√

2
(|m, p, q〉+ |m, p,−q〉) 2. These single glueball states are normalized

as follows:
〈m, p′, q′,+|m, p, q,+〉 = (2π)2(2E)δ(p− p′)δ(q− q′). (5.4)

Due to the above fact, we restrict q ≥ 0.

5.2 Scattering amplitudes

We define the interacting part of the S matrix via the equation

S = 1 + iT (5.5)

Scattering amplitudes are now defined as matrix elements of the T matrix:

Branon-Branon amplitude

〈p3, p4|T|p1, p2〉 = (2π)2δ(2)(pa
1 + pa

2 − pa
3 − pa

4)M(s) (5.6)

Here s = −(p1 + p2)2.

Glueball-Glueball amplitude

〈m, p2, q2,+|T|m, p1, q1,+〉 = (2π)2δ(2)(pa
1 − pa

2)G(s) (5.7)

For a glueball state, pa
i = (Ei, pi) and qi is fixed by the mass shell condition. Note that

s = E2
i − p2

i = q2
i + m2.

Glueball-Branon amplitude

〈m, p3, q3,+|T|p1, p2〉 = (2π)2δ(2)(pa
1 + pa

2 − pa
3)F(s) (5.8)

2Z2 invariance implies that there is no scattering of two branon states to the Z2 odd glueball states.
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5.3. Properties of the amplitudes

CPT invariance implies that the amplitude for incoming glueball going to two outgoing
branons is the same as the above amplitude:

〈p1, p2|T|m, p3, q3,+〉 = (2π)2δ(2)(pa
1 + pa

2 − pa
3)F(s) (5.9)

5.3 Properties of the amplitudes

5.3.1 Crossing symmetry

Crossing relates the s channel branon-branon amplitude to the t channel:

M(−s) = M(s) (5.10)

5.3.2 Unitarity

The unitarity of the S matrix S†S = 1 implies that the T matrix satisfies −i(T − T†) =

T†T. We can now take appropriate matrix elements of this equation and plugging in a
complete set of states on the right hand side we get the following unitarity relations 3:

2 Im M(s) =
1
2s
|M(s)|2 + 1

2
√

s−m2
|F(s)|2Θ(s−m2) + ... (5.11)

2 Im G(s) =
1

2
√

s−m2
|G(s)|2Θ(s−m2) +

1
2s
|F(s)|2 + ... (5.12)

2 Im F(s) =
1

2
√

s−m2
G∗(s)F(s)Θ(s−m2) +

1
2s

F∗(s)M(s) + ...

(5.13)

These equations hold for s > 0 and the ... correspond to contributions from four or
higher particle branon states and multi-particle glueball states.

We can write the above equations in matrix form as follows:

2 Im M �M†ρM (5.14)

where the matrix M is given by:

M =

(
M F
F G

)
(5.15)

3For the derivation, see appendix D.1
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and the matrix ρ is given by:

ρ =

(
1
2s Θ(s) 0

0 1
2
√

s−m2 Θ(s−m2)

)
(5.16)

The unitarity condition in equation 5.14 is equivalent to the following semi-definite
condition: (

1
√

ρM

(
√

ρM)† 2 Im M

)
� 0 (5.17)

5.3.3 Analyticity

We assume that the only non-analyticities are the ones mandated by unitarity and
crossing, which means that we expect that the branon-branon scattering amplitude M(s)
has a branch cut all across the real line s ∈ R. The glueball-glueball amplitude G(s) and
glueball-branon amplitude F(s) just have a cut on the positive real axis s ≥ 0.

Moreover, the amplitudes are real analytic:

M(s∗) = [M(s)]∗ (5.18)

G(s∗) = [G(s)]∗ (5.19)

F(s∗) = [F(s)]∗ (5.20)

5.4 Numerics

In this section we will set the glueball mass m = 1.

5.4.1 Mapping the functions to unit disk

For the branon-branon amplitude, we use the same map as before:

s→ χ =
4 + is
4− is

(5.21)

For the glueball-branon and glueball-glueball amplitude, we use the ρ map:

s→ ρ =

√−s0 −
√−s√−s0 +
√−s

(5.22)
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5.4. Numerics

where s0 < 0 can be chosen arbitrarily. (For example we could chose it to be -1 in units
of m2.)

5.4.2 Taylor expansion in terms of χ and ρ variables

From analyticity and crossing, we have the following properties:

M(−s∗) = [M(s)]∗

G(s∗) = [G(s)]∗

F(s∗) = [F(s)]∗ (5.23)

in terms of the χ and ρ variables this translates to 4:

M(χ∗) = [M(χ)]∗

G(ρ∗) = [G(ρ)]∗

F(ρ∗) = [F(ρ)]∗ (5.24)

Therefore we make the following Taylor expansions:

M(χ) =
N

∑
j=1

cj(χ− 1)j

G(ρ) =
N

∑
j=0

gj (ρ− 1)j

F(ρ) =
N

∑
j=0

f j (ρ− 1)j (5.25)

here all the coefficients are real as a result of equation 5.24.

To simplify the relation between the coefficients cj, gj and f j and the coefficients in an
expansion in powers of s, we expand around χ = 1 and ρ = 1.

5.4.3 Relation to low energy s→ 0 expansion

In 2d, there is a simple relation between the full 2 to 2 amplitude S(s) and interacting
amplitude M(s):

S(s) = 1 +
i

2s
M(s) (5.26)

4Here we have used the fact that χ(−s∗) = χ(s)∗ and ρ(s∗) = ρ(s)∗
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Glueball-Branon Bootstrap

Since we fixed the glueball mass m = 1, the string length ls is a parameter in the low
energy expansion:

2δ(s) =
s

4 l2
s
+O(s2) (5.27)

where S(s) = e2iδ(s), this implies that the two branon amplitude in the χ plane has the
following leading behaviour at χ = 1:

M(χ) = − 2
l2
s
(χ− 1)2 +O((χ− 1)3) (5.28)

Comparing with (5.25), we see that this means that c0 = c1 = 0 and c2 = − 2
l2
s
. For the

glueball-glueball amplitude G(s) and branon-glueball amplitude F(s), we assume the
following behavour at low energy, taking inspiration from low energy EFT:

G(s) = g̃s +
λ2

16πm
s log s (5.29)

and
F(s) =

λ

2
√

m
s (5.30)

This behaviour comes from the simplest interaction we can write between the glueball
field φ and the branon field π: λφ (∂π)2. Since s ∼ (ρ − 1)2, the f2 coefficient is a
measure of the strength of coupling of the glueball to the flux tube so an interesting
question we can ask is - what is the allowed space in f2 vs ls?

5.4.4 Slow glueball s→ m2

We can also consider the point s→ m2. We can re-write the unitarity equations 5.11 and
5.12 in the following form where the left hand sides are the probabilities of two branon
to two branon scattering and glueball transmission respectively:

∣∣∣∣1 +
iM(s)

2s

∣∣∣∣
2

= 1− |F(s)|2
4s
√

s−m2
Θ(s−m2)− . . . , s ≥ 0

∣∣∣∣1 +
iG(s)

2
√

s−m2

∣∣∣∣
2

= 1− |F(s)|2
4s
√

s−m2
− . . . , s ≥ m2 (5.31)

Thus the behaviour of G(s) near s = m2 is directly related to the probability of transmis-
sion of a very slow moving glueball.

The simplest behaviour consistent with the above unitarity equations is to have

M(s) ∼ (s−m2)0

G(s) ∼ (s−m2)1/2

F(s) ∼ (s−m2)1/4

(5.32)
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5.4. Numerics

The point s = m2 is far from the regime of validity of the low energy EFT but we can use
non-relativistic QM to see what the amplitudes behave like. This is a good approximaton
because the glueball has low momenta near this point.

NR approximation for glueball transmission near s = m2

Due to translational symmetry along the flux tube we can ignore one of the dimensions
and therefore we have a 1d NRQM problem with a delta function potential:

V(x) = αδ(x) (5.33)

This is of course a standard problem in QM, only thing we have to remember is that our
scattering states are the parity invariant combination of plane wave states:

ψ+(x) = e−iq|x| + Sg(q)eiq|x| (5.34)

where q is the transverse momentum and Sg(q) is the scattering amplitude for the
glueball.

Sg(q) =
2iq + α

2iq− α
= −1− 4iq

α
+ . . . (5.35)

We can expand for small q and use the fact that Sg(q) = 1 + iG(s)
2
√

s−m2

G(s) = 4i
√

s−m2 − 8q
√

s−m2

α
+ . . . (5.36)

where the transverse momentum q =
√

s− k2 −m2. So it appears that the leading
behaviour of the glueball transmission amplitude is fixed and independent of the
coupling to the flux tube.

5.4.5 Future plans

We intend use our numerical ansatz (5.25) to estimate the allowed space in glueball
coupling λ as a function of string length ls. In addition we plan to follow [85] and
formulate the corresponding dual problem which would allow us to approach the
optimum bound from both the allowed (primal) and the disallowed (dual) side.
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Conclusion

In this thesis we extended the modern S-matrix Bootstrap program in two ways. In part I,
we generalized the numerical approach of [4] to particles with any spin and mass in four
space-time dimensions. Prior to our work, the S-matrix bootstrap had only been used
to study scattering of scalar particles in various contexts in four spacetime dimensions.
This thesis therefore unlocks a much broader class of scattering problems to be studied
using the S-matrix bootstrap. We then used our formalism to find novel bounds on the
quartic and Yukawa couplings of identical Majorana fermions. Our work paves the way
for investigations of more physically relevant systems such as pion-nucleon scattering.
This would give access to observables such as the mass of the deuteron.

We could also consider pure Yang-Mills which have stable glueballs (both with and
without spin). We could bootstrap the scattering amplitude of these particles and see if
the SU(3) theory has a special place near the boundary of the allowed space of these
scattering amplitudes.

Another direction of future study would be massless Majorana fermions. This could be
used to derive bounds on the low energy effective field theories for massless Goldstinos
[86, 87].

In part I, we also analysed the scattering of photons and we will shortly bound the space
of low energy effective field theories of photons.

One could try to repeat the same for gravitons. However in four dimensions, we run into
IR divergences which actually implies that the usual S-matrix does not exist. One way
to bypass this would be to work in higher dimensions, say five spacetime dimensions.

Of course the general idea to bound low energy effective field theory using the consis-
tency and UV completeness of the S-matrix is not new [20–33]. The numerical techniques
we use in this thesis are in some sense a systematic method to optimize such bounds.

In this context, we would like to comment that our numerical problem is formulated as a
primal problem, in the language of convex optimization. In other words at each step we
construct consistent S-matrices and approach the boundary of the space of S-matrices
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from the inside. In the dual approach, at each step physically inconsistent S-matrices
are ruled out. The dual formulation of the S-matrix bootstrap was recently set up for 2d
systems in [85] and for scalars in 4d in [88]. Generalizing this to Majorana particles in 4d
and then comparing with our primal bounds in (2.93) and figures 2.5 and 2.6 would be
very interesting.

In part II of the thesis, we found a new application of S-matrix bootstrap techniques,
using them to constrain the non-universal corrections to dynamics of flux tubes. These
bounds also apply to any string-like object that exhibits the same symmetry breaking
pattern.

A possible direction of future study would be to specialize further and use input from
lattice studies of Yang-Mills flux tubes to narrow down the space of flux-tube S-matrices.
By studying the space it should be possible to in turn make predictions for the lattice 5.

Another possibility which we also pursue in part II is to input (and extract) information
about Yang-Mills theory by including scattering to glueballs in the bulk with the flux
tube.

Having listed some concrete problems that can be treated using the methods used in
this thesis, we now discuss some more open directions of future research.

Open directions

The modern S-matrix bootstrap while still in the nascent stage, has already proven to be
remarkably successful in 2d where many integrable theories have been found to lie on
the boundary of allowed space of S-matrices [3, 7, 11]. Note that the S-matrices of these
integrable theories in 2d were already known. However in 4d spacetime, we do not
yet have even a single example of a non-perturbatively defined scattering amplitude.
Finding such an S-matrix would be a fantastic outcome for the S-matrix bootstrap. More
pragmatically, one can hope to find perturbative scattering amplitudes lying on or close
to the boundary of allowed space of theories.

We must also remark on the additional features of S-matrices in four dimensions that
we do not yet describe with the modern S-matrix bootstrap. As pointed out in [14] the
properties of elastic unitarity and particle production are important aspects of scattering
amplitudes. In particular, they would be crucial in the endeavour of finding examples
of non-perturbative physical S-matrices.

In addition we know from theories such as QCD that there exist bounds states of spin
J ≥ 2. At present there is no easy way to include such bound states in the numerical
ansatz we use for the S-matrix bootstrap. This problem is related to that of including

5See appendix C.4.3 for a sample of such a study
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Regge trajectories in the S-matrix bootstrap since it is known that a spin J ≥ 2 bound state
or resonance must lie on a Regge trajectory of higher spin bound states/resonances [89].

We could also ask about theories with massless particles which are not free in the IR,
such as QED. In these cases the usual S-matrix is not defined and instead one needs
to consider the “dressed" S-matrix [90]. However hardly anything is known about the
analytic structure of these dressed S-matrices. On a related note, celestial CFT correlators
were proposed as more natural objects for the study of scattering involving photons and
gravitons in [91].

It is curious to note that while there have been a large number of studies of the S-matrix
bootstrap in two and four spacetime dimensions, the case of 2+1d scattering has been
mostly neglected until now. Recall that in 2+1d, particles no longer have to be either
bosons or fermions and can in fact be anyons [92]. As shown by computations in Chern-
Simons-matter theories [93], crossing equations have to be modified to account for non-
trivial phases of anyon statistics. It would interesting to develop a relativistic S-matrix
theory for these anyons. A related problem with applications to quantum computation
is the system of 3 + 1d photons coupled to 2 + 1d anyons on the boundary [94].

On the technical side, the results on the analyticity of scattering amplitudes that we
quoted in part I are from the 70s. Perhaps it is time to revisit them more seriously and try
to improve them either using newer developments in multi-variable complex analysis or
by using our improved understanding of QFTs from the past 50 years. In this regard it
may be fruitful to consider scattering amplitudes as the flat space limit of AdS boundary
correlators. A concrete position-space prescription to extract scattering amplitudes from
boundary correlators was given recently in [95]. It might be possible to leverage the
proven boundedness and analyticity properties of these correlators to deduce analyticity
of flat space amplitudes.
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A Appendices to spinning S-matrix
bootstrap

A.1 Details of working with spin

In this appendix we provide many technical details which support the discussion in the
main text of part I of the thesis. We start in appendix A.1.1 by reviewing 3d Euclidean
rotations and then move to the discussion of the Poincaré group in appendix A.1.2.
These cover most of the basics required in section 1.1. We define the vector and spinor
representations in appendix A.1.3. Finally we derive the Wigner angles in a particular
situation (crucial for appendix A.5.4) in appendix A.1.4.

A.1.1 Euclidean rotations in 3d

Rotations in 3d are generated by three generators J1, J2 and J3 which satisfy the algebra

[Ji, Jj] = iεijk Jk . (A.1)

Physically, these three generators correspond to infinitesimal rotations about the 3 axes.
The Casimir operator which commutes with all the generators is

J2 ≡ J2
1 + J2

2 + J2
3 , [J2, Ji] = 0. (A.2)

Any generic rotation can be written as

R(θi) = exp

(
−

3

∑
k=1

iθk Jk

)
. (A.3)

For our purposes a more useful way to write a rotation is to use the Euler angles (α, β, γ)

instead of angles θi. A generic rotation in the Euler form reads as

R(α, β, γ) ≡ exp(−iαJ3) exp(−iβJ2) exp(−iγJ3). (A.4)
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The Euler angles α, β and γ can be related to the θi angles in (A.3). We do not write this
relation explicitly since it is complicated and not very illuminating.

In quantum mechanical theories, the classical group of symmetries gets extended and
therefore in the case at hand, we need to consider the central extension of SO(3) which
is the SU(2) group. Henceforth when we talk about rotations we will mean the SU(2)
group. The unitary representations of the SU(2) are finite-dimensional and are classified
by the eigenvalue of the Casimir operator J2. The usual basis for these representations is
formed by choosing eigenvectors of the J3 operator and thus these vectors are labelled
by two parameters ` and λ:

J2|`, λ〉 = `(`+ 1)|`, λ〉,
J3|`, λ〉 = λ|`, λ〉,

(A.5)

where ` is a non-negative integer or half-integer and λ = −`,−`+ 1, . . . , `− 1, `.

Given such a spin ` representation, a generic rotation parametrized using Euler angles
as in (A.4) acts on it in the following way

R(α, β, γ)|`, λ〉 = ∑
λ

|`, λ′〉〈`, λ′|R|`, λ〉 = ∑
λ′

D `
λ′λ(α, β, γ)|`, λ′〉, (A.6)

where in the first equality we inject an identity operator as a sum over all the states and
in the second equality we have defined the Wigner D-matrix

D `
λ′λ(α, β, γ) ≡ 〈`, λ′|R(α, β, γ)|`, λ〉 = exp

(
−i(αλ′ + γλ)

)
× d`λ′λ(β), (A.7)

and the (small) Wigner d-matrix

d`λ′λ(β) ≡ 〈`, λ′| exp(−iβJ2)|`, λ〉. (A.8)

Since the rotation operator is unitary, the inverse of a rotation can be written in terms of
the complex conjugate of a D-matrix as

〈`, λ′|R−1(α, β, γ)|`, λ〉 = 〈`, λ|R(α, β, γ)|`, λ′〉∗ = D ` ∗
λλ′(α, β, γ). (A.9)

The general form of (A.8) has the following simple expression

d`λ′λ(β) =
√
(j + λ′)!(j− λ′)!(j + λ)!(j− λ)!

×∑
ν

(−1)ν (cos(β/2))2j+λ−λ′−2ν (− sin(β/2))λ′−λ+2ν

ν!(j− λ′ − ν)!(j + λ− ν)!(ν + λ′ − λ)!
.

(A.10)

Note that setting the λ′ and λ indices to 0 gives the familiar Legendre polynomials

d`00(β) = P`(cos β). (A.11)
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The small Wigner d-matrix is real. From its explicit expression one can conclude

d`λ′λ(β) = (−1)λ′−λd`−λ′,−λ(β) = (−1)λ′−λd`λλ′(β). (A.12)

As a consequence we also have

D `∗
λ′λ(α, β, γ) = (−1)λ′−λD `

−λ′,−λ(α, β, γ). (A.13)

The Wigner D-matrix satisfies the following important orthogonality relations

∑
λ′

D `∗
λ′λ2

(α, β, γ)D `
λ′λ1

(α, β, γ) = δλ1λ2 , (A.14)

∫ 2π

0
dα
∫ +1

−1
d cos β

∫ 2π

0
dγ D `1∗

λ′1λ1
(α, β, γ)D `2

λ′2λ2
(α, β, γ) =

8π2

2`1 + 1
δ`1`2 δλ′1λ′2

δλ1λ2 .

(A.15)

The small Wigner d matrix satisfies the following orthogonality condition instead

∫ π

0
dβ sin β d `1

λ′λ(β)d `2
λ′λ(β) =

2
2`1 + 1

δ`1`2 (A.16)

Since the spin ` representations described above are unitary, the dual representation is
the same as the complex conjugate representation and moreover, as the spin ` represen-
tations are irreducible, the complex conjugate representations are also irreducible. We
denote the basis of states in the dual spin ` representation by

|`, λ′〉dual.

Under rotations they transform as

R(α, β, γ)|`, λ〉dual = ∑
λ′

D `∗
λ′λ(α, β, γ)|`, λ′〉dual. (A.17)

The dual representations are actually equivalent to the standard spin ` representations.
In order to show that let us rewrite (A.13) in the following form

D `∗
λ′λ(α, β, γ) = ∑

λ1,λ2

(
U−1

)
λ′λ1

D `
λ1λ2

(α, β, γ)Uλ2λ, (A.18)

where we have defined

Uλ′λ ≡ d`λ′λ(+π) = (−1)`−λδλ′,−λ,
(

U−1
)

λ′λ
= (−1)`+λδλ′,−λ.

(A.19)

In order to confirm that U−1U = UU−1 = 1 and to show the results below, notice the
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following identity
1 = (−1)2(`±λ), (A.20)

which holds true since `± λ is always an integer. Using (A.19) we can then relate the
basis states in two representation as follows

|`, λ〉dual = ∑
λ′

Uλ′λ|`, λ′〉 = (−1)`−λ|`,−λ〉. (A.21)

In order to show this, we simply rotate both sides of (A.21). It then follows that

R(α, β, γ)|`, λ〉dual = ∑
λ′,λ′′

D `
λ′′λ′(α, β, γ)Uλ′λ|`, λ′′〉

= ∑
µ,λ′,λ′′,λ′′′

Uλ′′µ

(
U−1

)
µλ′′′

D `
λ′′′λ′(α, β, γ)Uλ′λ|`, λ′′〉

= ∑
µ,λ′′

Uλ′′µD `∗
µλ(α, β, γ)|`, λ′′〉

= ∑
µ

D `∗
µλ(α, β, γ)|`, µ〉dual.

(A.22)

Where in the first line we used (A.6), in the second line we inserted the identity, we used
(A.18) in the third line and finally we used (A.21) in the fourth line. Thus we see that
the identification (A.21) leads consistently to (A.17).

A.1.2 Poincaré group

We now consider the group of symmetries of Minkowski space i.e. the Poincaré group.
We begin by recalling its defining representation, mainly to set the notation, and then
we recall its algebra and unitary representations.

Defining representation

Given a 4-vector
xµ ≡ {t,~x}, µ = 0, 1, 2, 3, (A.23)

one can define the following transformation

xµ −→ x′µ = aµ + Λ(ω)µ
νxν, (A.24)

where aµ and ωρσ are Lie parameters of the transformation. The transformation matrix
Λ obeys the constraint

ηµν = Λµ
ρΛν

σηρσ, ηµν = {−+++}, (A.25)

where ηµν is the metric. This implies that ωρσ = −ωσρ.
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The transformations (A.24) form the Poincaré group, which is also known as the inho-
mogeneous Lorentz group. It is denoted by

ISO(1, 3) ≡ R1,3 oO(1, 3), O(1, 3) = SO+(1, 3)o P o T, (A.26)

where R1,3 is the group of 4d Minkowski translations, SO+(1, 3) is the proper or-
thochronous Lorentz group and P and T are discrete transformations called parity
and time reversal which act on the coordinates as follows

xµ −→ (t,−~x), xµ −→ (−t,~x). (A.27)

We restrict the O(1, 3) group to its SO+(1, 3) subgroup by requiring that the generic
Lorentz transformation Λ(a, ω) obeys

det Λ = +1, Λ0
0 ≥ +1. (A.28)

We require our quantum system to be invariant only under the restricted Poincaré group
denoted by

ISO+(1, 3) ≡ R1,3 o SO+(1, 3). (A.29)

Parity or time reversal symmetry may or may not be present. The discussion above was
about the classical group of symmetries. Once again, in quantum mechanical theories
the Lorentz group SO(1, 3) is centrally extended to its double-cover, the SL(2, C) group.

Poincaré Algebra

A generic Poincaré transformation can be written in terms of infinitesimal generators

U(a, ω) = exp(−iaµPµ)Λ(ω), Λ(ω) ≡ exp
(
− i

2
ωρσ Mρσ

)
. (A.30)

Here Pµ and Mρσ are the generators of translations and 4d Lorentz tranformations
respectively. The generators satisfy the following algebra

[Pµ, Pν] = 0, (A.31)

[Mµν, Pλ] = i (ηµλPν − ηνλPµ), (A.32)

[Mµν, Mλσ] = i (ηµλ Mνσ − ηνλ Mµσ + ηµσ Mλν − ηνσ Mλµ). (A.33)

There are two Casimir operators which commute with all the generators, they are

C1 ≡ −P2, C2 ≡W2, Wµ ≡ εµνρσ MνρPσ. (A.34)
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where Wµ is called the Pauli-Lubanski pseudovector. Using the definitions (A.34) and
the commutation relations (A.31) and (A.32) we can write1

W2 = −2 Mµν Mνµ C1 − 4 Pµ Mµν MνσPσ. (A.36)

Let us consider the purely Lorentz part Λ(ω) of the generic Poincaré transforma-
tion (A.30). It is convenient to split it into two parts. First, we define boosts

B(~η) ≡ exp
(
−iηiKi

)
, Ki ≡ M0i, ηi ≡ ω0i, (A.37)

where Ki are the three boost generators. Second, we define rotations

R(~θ) ≡ exp
(
−iθi Ji

)
, Ji ≡ 1

2
εijk Mjk, θi ≡ εijkωjk, (A.38)

where Ji are the generators of rotations around ith axis and θi are the angles of rotations
around the ith axis. For completeness we also write explicitly

~J = {M23, M31, M12}, ~θ = {ω23, ω31, ω12}. (A.39)

Pure rotations form an SO(3) subgroup of the Lorentz group which one can verify
by computing the algebra of the operators ~J = {M23, M31, M12} and seeing that it
matches (A.1). In terms of boost and rotation generator the Lorentz algebra (A.33) can
be rewritten as

[Ji, Jj] = +iεijk Jk, [Ji, Kj] = +iεijkKk, [Ki, Kj] = −iεijk Jk. (A.40)

We can use the above commutation relations along with the Baker-Campbell-Hausdorff
formula

eξ ABe−ξ A = B + ξ[A, B] +
ξ2

2
[A, [A, B]] + . . . (A.41)

to get commutation relations between finite boosts and rotations. We list here three such
relations that will turn out to be useful later

e−i J2θe−iK3ηei J2θ = e−i(K3 cos θ+K1 sin θ)η , (A.42)

e−i J2θe−i J3φei J2θ = e−i(J3 cos θ+J1 sin θ)φ, (A.43)

e−i J3φe−i J2θei J3φ = e−i(J2 cos φ−J1 sin φ)θ . (A.44)

1The Lorentzian 4d epsilon symbol εµνλσ is fully antisymmetric. It is defined by ε0123 = −ε0123 = +1.
Instead the Euclidean 4d epsilon symbol obeys instead ε1234 = ε1234 = +1. It has the following property

4

∑
a=1

εabcdεab′c′d′ = δb
b′δ

c
c′δ

d
d′ − δb

b′δ
c
d′δ

d
c′ − δb

c′δ
c
b′δ

d
d′ + δb

c′δ
c
d′δ

d
b′ − δb

d′δ
c
c′δ

d
b′ + δb

d′δ
c
b′δ

d
c′ . (A.35)
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In particular, we will use the following special cases of the above equations repeatedly

e±iπ J2 e−iK3η = eiK3ηe±iπ J2 , (A.45)

e±iπ J2 e−i J3φ = ei J3φe±iπ J2 , (A.46)

e±iπ J3 e−i J2θ = ei J2θe±iπ J3 . (A.47)

Unitary representation

We now review the unitary representation of the restricted Poincaré group ISO+(1, 3).
We refer to vectors in this representation as states. The unitary representation is charac-
terized by the eigenvalues of two Casimirs −P2 and W2 as defined in (A.34).

Let us denote the eigenvalue of the first Casimir −P2 by

c2 = −P2 = −p2. (A.48)

We focus on the case when c2 > 0 only. We can chose the basis of states to be eigenvalues
of ~P. We denote such a basis by

|c,~p; . . .〉, (A.49)

where the dots stand for other labels yet to be discussed. Notice that the energy p0 is
related to c as

c2 = −p2 ⇒ p0 = +
√

c2 + ~p2. (A.50)

Thus, we can also use p0 instead of c to label the representation. There are two discon-
nected but equivalent regions for p0 which can be related by time-reversal. We consider
only positive energy states i.e those with p0 > 0.

We now focus on the center of mass states, namely the states with ~p = 0. We notice
that 3d spatial rotations leave the ~p = 0 condition invariant. This means that the set of
states (A.49) with ~p = 0 must furnish a representation of the SU(2) group.2 We often
refer to this group as the Little group. SU(2) representations were already discussed in
section A.1.1. They are labeled by the (half)integer `. The basis of states is labeled by the
eigenvalues of the J3 generator. We can thus fill the dots in (A.49) when ~p = 0

|c,~0; `, λ〉. (A.51)

Under 3d rotation the state (A.51) transforms according to (A.4),

R(α, β, γ)|c,~0; `, λ〉 = ∑
λ′

D `
λ′λ(α, β, γ)|c,~0; `, λ′〉. (A.52)

2This follows for example from the equality W2|c,~0; . . .〉 = −4 P2 J2 |c,~0; . . .〉, which can be deduced
using the results of appendix A.1.2. We see that the second Casimir W2 for the center of mass states simply
reduces to the J2 Casimir of the SU(2) group defined in (A.2).
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We now need to define a basis of states with generic values of ~p from (A.51) by applying
an appropriate Lorentz transformation which we denote by Uh(~p). In other words

|c,~p; `, λ〉 = Uh(~p)|c,~0; `, λ〉. (A.53)

The most convenient choice of the transformation Uh(~p) is as follows

Uh(~p) = R(φ, θ,−φ) exp(−iηK3), (A.54)

where (φ, θ,−φ) are the three Wigner angles and η is the rapidity related to the four-
momentum by (1.6). Here the boost generates a non-zero 3-momentum along the z-axis.
The rotation then brings this 3-momentum to the required direction ~p, where (φ, θ) are
the spherical angles of ~p.3

The choice (A.54) is known as the helicity boost and the basis (A.53) is known as the
helicity basis. This name comes from the fact that the states are the eigenstates of the
helicity operator defined as

H ≡ (~J · ~P). (A.55)

In other words one has
H|c,~p; `, λ〉 = λ p |c,~p; `, λ〉, (A.56)

where p is the length of ~p. Moreover the helicity label λ remains invariant under any 3d
rotation as can be seen from

R(α, β, γ)|c,~p; `, λ; γ〉 = R(α, β, γ)R(φ, θ,−φ)B3(η)|c,~0; `, λ; γ〉
= R(α′, β′, γ′)B3(η)|c,~0; `, λ; γ〉
= R(α′, β′,−α′) exp(−i(α′ + γ′)J3)B3(η)|c,~0; `, λ; γ〉
= exp(−iλ(α′ + γ′))R(α′, β′,−α′)B3(η)|c,~0; `, λ; γ〉
= exp(−iλ(α′ + γ′))Uh(~p ′)|c,~0; `, λ; γ〉,
= exp(−iλ(α′ + γ′))|c,~p ′; `, λ; γ〉.

(A.57)

Here in the second line we use the fact two rotations give another rotation, and the
parameters (α′, β′, γ′) can be expressed in terms of (α, β, γ, φ, θ). In the fourth line we
use the fact that J3 commutes with K3. Finally we obtain the three-momentum ~p ′ which
has (α′, β′) spherical angles and |~p ′| = |~p |. Thus, contrary to the rotations of the center
of mass states (A.52), the rotation of a state in a generic frame with non-zero momentum
~p only changes the direction of its three-momentum but not its helicity. This can be
understood intuitively since the helicities in the helicity eigenstates are always aligned
with the three-momentum.

3 Notice that a rotation R(φ, θ, γ) with any value of γ would do the job. Such a rotation is 4π periodic
in φ. With the particular choice γ = −φ, the rotation becomes instead 2π periodic in φ, namely R(φ +
2π, θ,−(φ + 2π)) = R(φ, θ,−φ).
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Finally let us discuss transformation properties of the states (A.53) under a generic
Poincaré transformation U(a, ω), where a and ω are its Lie parameters as discussed in
appendix (A.1.2). One has

U(a, ω)|c,~p; `, λ; γ〉 = exp(−iaµPµ)Λ(ω)|c,~p; `, λ; γ〉
= exp(−iaµPµ)Uh(~p ′)Uh(~p ′)−1Λ(ω)Uh(~p)|c,~0; `, λ; γ〉
= exp(−iaµPµ)Uh(~p ′)R(α, β, γ)|c,~0; `, λ; γ〉
= exp(−iaµ p′µ)∑

λ′
D `

λ′λ(α, β, γ)|c,~p ′; `, λ′; γ〉.

(A.58)

Here in the second line we inserted the identity operator in the form

I = Uh(~p ′)Uh(~p ′)−1. (A.59)

The key point lies in the third line where we notice that the following product of Lorentz
group elements is a pure rotation

R(α(p, ω), β(p, ω), γ(p, ω)) = Uh(~p ′)−1Λ(ω)Uh(~p), p′µ ≡ Λµ
ν(w)pν. (A.60)

This can be seen as follows. The transformation (A.60) takes rest frame states to rest
frames states in the following way:~0→ ~p→ ~p ′ →~0. The rotation (A.60) is known as a
Wigner rotation. In the third line of (A.58) we use (A.52). Finally the action of Uh(~p ′)
just sends the COM frame state to the helicity state with final momentum ~p ′.

The Wigner angles (α, β, γ) in the left-hand side of (A.60) are determined in terms of
(p, ω). They can be computed for example by choosing a particular finite dimensional
representation and comparing the final matrices in the left- and right-hand side of (A.60).
However these expressions are too cumbersome to be presented in the most general
case. In practice we only need to consider a few special cases. The most important one
for our paper is discussed in appendix A.1.4.

Clebsch-Gordan coefficients

In this appendix we compute in detail the Clebsch-Gordan coefficient C`
λ defined in

(1.23). For convenience let us recall its definition here

(2π)4δ(4)(pµ − pµ
1 − pµ

2 )δαγ × C`
λ(~p1,~p2, α) ≡ 〈c,~p; `, λ; γ|κ1, κ2〉, (A.61)

where κ1 and κ2 are the one-particle states (with masses m1, m2, spins j1, j2, helicities λ1,
λ2 and three-momenta ~p1, ~p2) and α is the multiplicity label of the two-particle states
which reads as

α = (m1, m2, j1, j2, λ1, λ2). (A.62)
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Using it the decomposition of generic two particle states can be written as

|κ1, κ2〉 = ∑
`,λ

C`
λ(~p1,~p2, α)|c,~p; `, λ; α〉. (A.63)

We start by bringing the states in the right-hand side of (A.61) to the center of mass
frame. This is done by injecting an identity operator

I = Uh(~p)U−1
h (~p) (A.64)

composed out of the helicity boosts (A.54) into the definition of the Clebsch-Gordan
coefficient (A.61), we then have

C`
λ(~p1,~p2) = C`

λ(~p
′

1 ,−~p ′1 , α)×D
j1
λ′1λ1

(~ω1)D
j2
λ′2λ2

(~ω2). (A.65)

The value of ~p in (A.64) is chosen in such a way that the inverse helicity boost U−1
h (~p)

brings the pair of vectors (~p1,~p2) to (~p ′1 ,−~p ′1 ) which are in the center of mass frame.
The Wigner angles ~ω1 and ~ω2 correspond to the Wigner rotations W1 and W2 defined as

Wi ≡ U−1
h (Λ~pi)ΛUh(~pi), Λ = U−1

h (~p). (A.66)

In practice we never need the general expression (A.65). We will therefore not attempt to
derive the Wigner angles ~ω1 and ~ω2. What we will need instead is the Clebsch-Gordan
coefficient in the center of mass frame

C`
λ(~p,−~p, α), (A.67)

which enters in the right-hand side of (A.65). Notice that we dropped the primes and
the subscripts compared to (A.65). Recalling the definition of the two-particle center of
mass states (1.26)

|(p, θ, φ); λ1, λ2〉 ≡ |m1,~p; j1, λ1〉 ⊗ |m2,−~p; j2, λ2〉, (A.68)

where (p, θ, φ) are the spherical coordinates of ~p, and using the definition (A.61) we can
write the Clebsch-Gordan coefficient (A.67) as

(2π)4δ(4)(0)× C`
λ(~p,−~p, α) ≡ 〈c,~0; `, λ; λ1, λ2|(p, θ, φ); λ1, λ2〉. (A.69)

We also notice that the state (A.68) obeys the following relation

R(φ, θ,−φ)|(p, 0, 0); λ1, λ2〉 = e−2iφλ2 |(p, θ, φ); λ1, λ2〉. (A.70)

We prove it later in this section.
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In order to compute the Clebsch-Gordan coefficient (A.69) we inject the identity operator

I = R(φ, θ,−φ)R−1(φ, θ,−φ) (A.71)

in the right-hand side of (A.69). Due to (A.52) and (A.70) the matrix element in the
right-hand side of (A.69) becomes

〈c, 0, `, λ|(p, θ, φ); λ1, λ2〉 = e+2iφλ2 ∑
λ′

D `
λλ′(φ, θ,−φ) 〈c, 0, `, λ′|(p, 0, 0); λ1, λ2〉

= e+2iφλ2D `
λ λ12

(φ, θ,−φ) 〈c, 0, `, λ12|(p, 0, 0); λ1, λ2〉.
(A.72)

In the second line we have used the fact that the states here are eigenvectors of the J3

generator and we have defined

λ12 ≡ λ1 − λ2. (A.73)

Finally, we denote the matrix element in the right-hand side of the second line in (A.72)
by

(2π)4δ(4)(0)× C`(p) ≡ 〈c1, 0, `, λ12|(p, 0, 0); λ1, λ2〉. (A.74)

As indicated, the coefficient C`(p) can only depend on the spin label ` and the length p.
Its value is fixed by the choice of normalization. We will derive it shortly. Plugging (A.72)
and (A.74) into (A.69) we derive the final expression of the Clebsch-Gordan coefficient

C`
λ(~p,−~p, α) = C`(p)e+2iφλ2D `

λ λ12
(φ, θ,−φ). (A.75)

Using (A.75), see also (A.68), we can write the decomposition (A.63) in the center of
mass frame. It reads

|(p, θ, φ); λ1, λ2〉 = e+2iφλ2 ∑
`,λ

C`(p) D `
λλ12

(φ, θ,−φ)|c,~0; `, λ; α〉

= ∑
`,λ

C`(p) ei(λ1+λ2−λ)φd`λλ12
(θ)|c,~0; `, λ; α〉. (A.76)

We can invert the above equation using (A.15) and the orthogonality of the exponential
function

|c,~0; `, λ; α〉 = 2`+ 1
4πC`(p)

∫ 2π

0
dφ
∫ +1

−1
d cos θe−i(λ1+λ2−λ)φd`λλ12

(θ)|(p, θ, φ); λ1, λ2〉.
(A.77)
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Derivation of (A.70)

Let us denote the vector ~p aligned with the direction of the z-axis by ~pz. Notice that as
defined both ~p and ~pz have the same length p. Using the definition (A.68) we can write

R(φ, θ,−φ)|(p, 0, 0); λ1, λ2〉 =
(R(φ, θ,−φ)|m1,~pz; j1, λ1〉)⊗ (R(φ, θ,−φ)|m2,−~pz; j2, λ2〉) . (A.78)

From (A.57) it is clear that the rotation operators bring the two one-particle states from
~pz and −~pz configuration to the ~p and −~p configuration with some additional phases ξ1

and ξ2. In other words

R(φ, θ,−φ)|(p, 0, 0); λ1, λ2〉 = ei(ξ1+ξ2)|(p, θ, φ); λ1, λ2〉 (A.79)

The goal of this section is to compute the phases ξ1 and ξ2.

Let us start from the state with ~pz. Its spherical angles are (0, 0). Using the definition of
the helicity basis (A.53) we can simply write

R(φ, θ,−φ)|m1,~pz; j1, λ1〉 = R(φ, θ,−φ)R(0, 0, 0)e−iηK3 |m1,~0; j1, λ1〉
= |m1,~p; j1, λ1〉.

(A.80)

Thus, we conclude that
ξ1 = 0. (A.81)

Let us now address the state with −~pz. According to (1.27) its spherical angles are (π, π)

instead. Using again the definition of the helicity basis (A.53) we can write

R(φ, θ,−φ)|m2,~pz; j2, λ2〉 = R(φ, θ,−φ)R(π, π,−π)e−iηK3 |m2,~0; j2, λ2〉
= R(π + φ, π − θ,−π − φ)e−2iφJ3 e−iηK3 |m2,~0; j2, λ2〉
= e−2iφλ2 |m2,−~p; j2, λ2〉.

(A.82)

In the second line of (A.82) we have repeatedly used the identities (A.46) and (A.47). In
the last line we have used the fact that J3 and K3 commute and that the center of mass
state is the eigenstate of the J3 generator. Thus, we conclude that

ξ2 = −2λ2φ. (A.83)

Combining (A.79) with (A.81) and (A.83) we arrive at the desired property (A.70).
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Computation of (A.74)

The coefficient C`(p) in (A.74) is fixed by the normalization condition (1.14). In what
follows we carefully compute it. Using (1.20) and performing the change of variables,
see appendix A of [13] for details, we get

〈κ′1, κ′2|κ1, κ2〉 = (2π)64p0
1 p0

2 δ(3)(~p ′1 − ~p1)δ
(3)(~p ′2 − ~p2)δα′α (A.84)

= (2π)64

√
−p2

p2 δ(4)(p′µ − pµ)δ(cos θ′ − cos θ)δ(φ′ − φ)δα′α, (A.85)

where α is given by (A.62) and

δα′α ≡ δm′1m1
δm′2m2

δj′1 j1 δj′2 j2 δλ′1λ1
δλ′2λ2

. (A.86)

Now let us take the norm of both sides of (A.77) and use (1.22) and (A.85) to get

δ`′` δλ′λ δγ′γ =

(
2`+ 1

4π|C`(p)|

)2

(2π)24

√
−p2

p2

×
∫ 2π

0
dφ
∫ +1

−1
d cos θe−i(λ1+λ2−λ)φd`λλ12

(θ)

×
∫ 2π

0
dφ′

∫ +1

−1
d cos θ′ei(λ′1+λ′2−λ′)φ′d`λ′λ′12

(θ′)

× δ(cos θ′ − cos θ)δ(φ′ − φ)δα′α.

(A.87)

The delta functions over the angular coordinates removes two of the integrals and sets
φ′ = φ and cos θ′ = cos θ. We can then use the orthogonality of the small Wigner d
matrix (A.16) along with the orthogonality of the exponential function to obtain

1 =

(
2`+ 1

4π|C`(p)|

)2

(2π)24

√
−p2

p2
4π

2`+ 1
. (A.88)

Noticing that in the center of mass frame −p2 = c2, we immediately get

|C`(p)|2 = 4π(2`+ 1)× c
p

. (A.89)

The phase of the C`(p) coefficient is unobservable. In all the final formulas it will enter
in the form (A.89). Thus we can simply set this phase to zero and obtain the final
expression

C`(p) =
√

4π(2`+ 1)× c
p

. (A.90)
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A.1.3 Finite dimensional Lorentz representations

Let us discuss two particular finite-dimensional representations on the Lorentz group,
namely the vector and spinor representations.

Vector representation

The generators of the Lorentz transformation (A.30) obey the algebra (A.33). In the
vector representation of the Lorentz group, the generators satisfying (A.33) can be
written as

[
Mµν

]
ρσ

= −i (δµ
ρδν

σ − δµ
σδν

ρ) ⇒
[

Mµν
]ρ

σ = −i (ηµρδν
σ − δ

µ
σ ηνρ). (A.91)

According to (A.37) and (A.38) they split into generators of boosts and rotations as

[
K1
]ρ

σ = i




0 +1 0 0
+1 0 0 0
0 0 0 0
0 0 0 0


 ,

[
J1
]ρ

σ = −i




0 0 0 0
0 0 0 0
0 0 0 +1
0 0 −1 0


 ,

[
K2
]ρ

σ = i




0 0 +1 0
0 0 0 0
+1 0 0 0
0 0 0 0


 ,

[
J2
]ρ

σ = −i




0 0 0 0
0 0 0 −1
0 0 0 0
0 +1 0 0


 ,

[
K3
]ρ

σ = i




0 0 0 +1
0 0 0 0
0 0 0 0
+1 0 0 0


 ,

[
J3
]ρ

σ = −i




0 0 0 0
0 0 +1 0
0 −1 0 0
0 0 0 0


 . (A.92)

Using (A.37) the matrices of finite transformations follow straightforwardly, for instance
for the boost along the z-axis we get

B3(η)
µ

ν =




cosh η 0 0 sinh η

0 1 0 0
0 0 1 0

sinh η 0 0 cosh η


 . (A.93)

Similarly using (A.38) for the rotation around the y-axis and z-axis we get respectively

R2(β)µ
ν =




1 0 0 0
0 cos β 0 sin β

0 0 1 0
0 − sin β 0 cos β


 , R3(γ)

µ
ν =




1 0 0 0
0 cos γ − sin γ 0
0 sin γ cos γ 0
0 0 0 1


 .

(A.94)
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In defining a 1PS we apply a boost along the positive direction of the z-axis to the particle
at rest. The boost parameter can be found from




p0

0
0
p


 = B3(η)




m
0
0
0


 , η ≥ 0. (A.95)

Using (A.93) we get

cosh η =
p0

m
, sinh η =

p
m

. (A.96)

Consider now a state with the three-momentum ~p constrained to the xz-plane

pµ = {p0, px, 0, pz}. (A.97)

In terms of rapidity and spherical coordinates it is described by the following parameters

pµ : (η, θ). (A.98)

The components of the vector (A.97) can be expressed in terms of the components (A.98)
as

p0 = m cosh η, p = m sinh η, px = p sin θ, pz = p cos θ. (A.99)

By definition (1.5) the helicity state is constructed by applying (A.54) to the center of
mass states. We have 



p0

px

0
pz


 = Uh(p)




m
0
0
0


 , (A.100)

where in the vector representation the matrix Uh(p) reads as

Uh(p) = R2(θ)B3(η) =




cosh η 0 0 sinh η

sinh η sin θ cos θ 0 cosh η sin θ

0 0 1 0
sinh η cos θ − sin θ 0 cosh η cos θ


 . (A.101)
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Spinor representation

In order to define the spinor representation of the Lorentz group, we first define the
4× 4 gamma matrices in our conventions4

γµ ≡
(

0 σµ

σ̄µ 0

)
, (A.102)

where
σµ = (I,~σ) and σ̄µ = (I,−~σ) (A.103)

and~σ are the usual 2× 2 Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.104)

From the explicit form of the gamma matrices it is easy to verify that they satisfy

{γµ, γν} = −2ηµν, (A.105)

where {A, B} ≡ AB + BA is the anti-commutator. We can now define the generators of
the spinorial representation of the Lorentz group:

Sµν ≡ i
4
[γµ, γν]. (A.106)

These generators satisfy the Lorentz algebra (A.33) and we can split them into boost
generators Ki = S0i and rotation generators Ji = 1

2 εijkSjk. For the reader’s convenience,
we write out these matrices explicitly

K1 =




0 − i
2 0 0

− i
2 0 0 0

0 0 0 i
2

0 0 i
2 0


 , K2 =




0 − 1
2 0 0

1
2 0 0 0
0 0 0 1

2
0 0 − 1

2 0


 , K3 =




− i
2 0 0 0

0 i
2 0 0

0 0 i
2 0

0 0 0 − i
2


 ,

J1 =




0 1
2 0 0

1
2 0 0 0
0 0 0 1

2
0 0 1

2 0


 , J2 =




0 − i
2 0 0

i
2 0 0 0
0 0 0 − i

2
0 0 i

2 0


 , J3 =




1
2 0 0 0
0 − 1

2 0 0
0 0 1

2 0
0 0 0 − 1

2


 .

4Note that we work in the Weyl (also known as chiral) basis for the gamma matrices.
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Using (A.37) and (A.38) the matrices of finite transformations follow straightforwardly,
for instance for a boost along the z-axis by rapidity η we get

B3(η) =




e−
η
2 0 0 0

0 eη/2 0 0
0 0 eη/2 0
0 0 0 e−

η
2


 , (A.107)

while for rotations about the y-axis by an angle θ we get

R2(θ) =




cos
(

θ
2

)
− sin

(
θ
2

)
0 0

sin
(

θ
2

)
cos

(
θ
2

)
0 0

0 0 cos
(

θ
2

)
− sin

(
θ
2

)

0 0 sin
(

θ
2

)
cos

(
θ
2

)


 . (A.108)

In case of a rotation about the z-axis by an angle φ we have

R3(φ) =




e−
iφ
2 0 0 0

0 e
iφ
2 0 0

0 0 e−
iφ
2 0

0 0 0 e
iφ
2




. (A.109)

A.1.4 An example of the Wigner rotation

Consider now the vector (A.98) and the following Lorentz transformation applied to it

Λ = R2(ψ2)B3(χ)R2(ψ1), ψi ∈ [0, π], (A.110)

which implements a rotation around the y-axis by an angle ψ1 followed by a boost along
the positive z-axis with the rapidity parameter χ and another rotation around the y-axis
by an angle ψ2. As a result we get the following 4-momentum

p′µ = Λµ
ν pν (A.111)

which is described by the parameters

p′µ : (η′, θ′). (A.112)

and also lies in the xz-plane. The four-vector p′µ can be generated using the helicity boost
Uh(p′) = Uh(η

′, θ′) analogously to (A.100). The components of p′µ can be found from
(A.111). The values of (η′, θ′) in the helicity boost matrix then follow straightforwardly.

The Wigner rotation associated to generic Lorentz transformations are defined in (A.60).
In case of the Lorentz transformation (A.110), upon plugging the above results in the
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definition (A.60), we get the following explicit result

Rwigner = U−1
h (p′)Λ Uh(p) =




1 0 0 0
0 cos ω 0 sin ω

0 0 1 0
0 − sin ω 0 cos ω


 , (A.113)

where the Wigner angle written in compact form read as

cos ω =
p0 p′0 −m2 cosh χ

p p′
, sin ω =

m sinh χ

p′
sin(θ + ψ1). (A.114)

The Wigner angle ω depends on five parameters (η, θ, χ, ψ1, ψ2). The full form of the
angle ω reads as

cos ω =
A√

B2 − 1
, sin ω =

sin(θ + ψ1) sinh χ√
B2 − 1

, (A.115)

where we have defined

A ≡ sinh η cosh χ + cosh η sinh χ cos(θ + ψ1), (A.116)

B ≡ cosh η cosh χ + sinh η sinh χ cos(θ + ψ1). (A.117)

A.2 Parity and time-reversal

In this section we will discuss the discrete symmetries of the full Poincaré group, namely
parity P and time-reversal T .

A.2.1 Parity

Parity in the defining vector representation of the Lorentz group is given by the following
matrix

P =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 . (A.118)

We denote the parity operator in the (infinite-dimensional) unitary representation by the
same symbol P . It obeys the following commutation relations with the generators of the
Poincaré group

PPµP† = (P0,−~P), PKiP† = −Ki, P JiP† = Ji. (A.119)
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In what follows we will use (A.119) to derive the action of parity on one- and two-
particle states. We will then derive constraints on the scattering amplitudes due to parity.
Let us begin with the following preliminary computation of the parity transformation
property of the helicity boost operator (A.54),

PUh(~p)P† =PR(φ, θ,−φ)P†PB3(η)P†

=R(φ, θ,−φ)B3(−η)

=R(φ, θ,−φ)R(0, π, 0)B3(η)R†(0, π, 0).

(A.120)

Here in the first line we injected the identity I = P†P , we then used the commutation
properties (A.119) in the second line. Finally, in the third line we used (A.45).

One-particle states

Consider the action of parity on a one-particle state (1.13) in the rest frame. Since parity
commutes with all of the rotation generators Ji, it must leave the helicity of the particle
invariant.5 Therefore the most general possible action is a simple multiplication by a
phase which we denote by η. In other words

P|m,~0; j, λ〉 = η|m,~0; j, λ〉. (A.121)

This phase η is called the intrinsic parity of the particle. Due to the discussion of section
3.3 in [17], one can always define parity operator P in such a way that either P2 = +1
or P2 = −1. As a result, applying (A.121) consecutively we conclude that

η2 = +1 or η2 = −1. (A.122)

We can now deduce the action of parity on a generic one-particle state (1.13), see also
(A.53). One has

P|m,~p; j, λ〉 = PUh(~p)|m,~0; j, λ〉
= PUh(~p)P†P|m,~0; j, λ〉
= ηR(φ, θ,−φ)R(0, π, 0)B3(η)R†(0, π, 0)|m,~0; j, λ〉
= η(−1)j+λR(φ, θ,−φ)R(0, π, 0)B3(η)|m,~0; j,−λ〉.

(A.123)

Here in the third line we used (A.120) and (A.121), instead in the fourth line we used
(A.52), (A.6) and the following property of the small Wigner d-matrix

dj
λ′λ(−π) = (−1)j+λ′δ−λ,λ′ . (A.124)

5This can be seen by applying parity to the eigenvector conditions (A.5).
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Next, by repeatedly using (A.46) and (A.47) one can show that

R(φ, θ,−φ)R(0, π, 0) = R(φ + π, π − θ,−(φ + π))e−i(2π+2φ)J3 . (A.125)

Inserting this relation into (A.123) and using the fact that J3 commutes with K3 and that
the ~p = 0 state is the eigenstate of J3 we conclude that

P|m,~p; j, λ〉 = η(−1)j+λe+i(2π+2φ)λR(φ + π, π − θ,−(φ + π))B3(η)|m,~0; j,−λ〉
= η(−1)j+3λe2iλφUh(−~p)|m,~0; j,−λ〉
= η(−1)j−λe2iλφ|m,−~p; j,−λ〉.

(A.126)
Here in the second line we used (1.27) and (A.54). In the third line we used (A.53) and
the fact that

e4iπλ = e4iπ j = +1 (A.127)

for any λ and j which are integer or half-integer. Summarizing, the final expression for
the action of the parity operator on a one-particle states reads as

P|m,~p; j, λ〉 = η(−1)j−λe2iλφ|m,−~p; j,−λ〉. (A.128)

Two-particle COM states

From the action of parity on one-particle states (A.128), one can conclude the action of
parity on two-particle center of mass states defined in (1.26). One has

P|(p, θ, φ), λ1, λ2〉 = P (|m1,~p; j1, λ1〉 ⊗ |m2,−~p; j2, λ2〉)
= η1η2(−1)j1−λ1(−1)j2−λ2 e2iφλ1 e2i(φ+π)λ2 |m1,−~p; j1,−λ1〉 ⊗ |m2,~p; j2,−λ2〉
= η1η2(−1)j1−j2−λ1−λ2 e2iφ(λ1+λ2)|(p, π − θ, φ + π),−λ1,−λ2〉,

where η1 and η2 are the intrinsic parities of the first and the second particle respectively.
Notice also that in the third line we used for the second particle the identity

1 = e2πi(λ±j), (A.129)

which holds true since λ± j is always an integer. To summarize, we have

P|(p, θ, φ), λ1, λ2〉 = η1η2(−1)j1−j2−λ1−λ2 e2iφ(λ1+λ2)|(p, π − θ, φ + π),−λ1,−λ2〉.
(A.130)

In principle (A.130) is our final answer. However, for applications to scattering ampli-
tudes we need to bring (A.130) to a different form. We focus on the case where φ = 0,
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when (A.130) simplifies to

P|(p, θ, 0), λ1, λ2〉 = η1η2(−1)j1−j2−λ1−λ2 |(p, π − θ, π),−λ1,−λ2〉. (A.131)

Here the two-particle state in the right-hand side by definition reads as

|(p, π − θ, π),−λ1,−λ2〉 = |m1,−~p, j1,−λ1〉 ⊗ |m2,~p, j2,−λ2〉, (A.132)

where the three-vector~p has (θ, 0) spherical angles and the three-vector−~p has (π− θ, π)

spherical angles. Using (A.46) and (A.47) one can derive the following relations

R(π, π − θ,−π) = e−iπ J2 R(0, θ,−2π), (A.133)

R(0, θ, 0) = e−iπ J2 R(π, π − θ,−π). (A.134)

Using the definition of helicity states (A.53) and the relation (A.133) we conclude that
the first one-particle state in (A.132) can be written as

|m1,−~p; j1,−λ1〉 = R(π, π − θ,−π)B(η)|m1,~0; j1,−λ1〉
= e−iπ J2 R(0, θ, 0)e2πi J3 B3(η)|m1,~0; j1,−λ1〉
= e−2πiλ1 e−iπ J2 R(0, θ, 0)B3(η)|m1,~0; j1,−λ1〉
= (−1)−2j1 e−iπ J2 |m1,~p; j1,−λ1〉.

(A.135)

In the third line we used the fact that J3 commutes with K3 and that the state with ~p = 0
is the eigenstate of J3. In the last equality we used (A.129). Analogously using (A.134)
for the second one-particle state in (A.132) we conclude that

|m2,~p; j2,−λ2〉 = e−iπ J2 |m2,−~p; j2,−λ2〉. (A.136)

Plugging (A.135) and (A.136) into (A.132) we obtain the following relation

|(p, π − θ, π),−λ1,−λ2〉 = (−1)−2j1 e−iπ J2 |(p, θ, 0),−λ1,−λ2〉. (A.137)

Finally, plugging (A.137) into (A.131) and using an obvious identity (−1)−j−λ = (−1)j+λ

which holds true since j + λ is always an integer, we obtain the desired expression

P|(p, θ, 0); λ1, λ2〉 = η1η2(−1)j1+j2+λ1+λ2 e−iπ J2 |(p, θ, 0);−λ1,−λ2〉. (A.138)

The benefit of this equation is that the states in the left- and right-hand side are in the
same configuration contrary to (A.131).

Two-particle irreps

The two-particle states can be decomposed into states in the irreducible representation
of the Poincaré group. We refer to them as the two-particle irreps. In the center of mass
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Figure A.1: The geometric picture behind (A.131) and (A.137). Particle 1 is red and
particle 2 is blue.

frame such a decomposition and its inverse are given by (A.76) and (A.77) respectively.
Applying parity to (A.77) and using (A.130) we get

P|c, 0; `, λ; λ1, λ2〉 = N
∫ 2π

0
dφ
∫ π

0
dθ sin θ e−iφ(λ1+λ2−λ)d(`)λλ12

(θ)P|(p, θ, φ); λ1, λ2〉
(A.139)

= ηcom
12 N

∫ 2π

0
dφ
∫ π

0
dθ sin θ ei(λ1+λ2+λ)φd(`)λλ12

(θ)|(p, π − θ, φ + π),−λ1,−λ2〉,

where we have defined

N ≡ 2`+ 1
4πC`(p)

, ηcom
12 ≡ η1η2(−1)j1−j2−λ1−λ2 . (A.140)

Changing the integration variables from θ and φ to θ′ ≡ π − θ and φ′ ≡ φ + π, using
the following property of the small Wigner d-matrix

d(`)λ′λ(π − θ) = (−1)`+λ′d(`)λ′,−λ(θ), (A.141)

the second line of (A.139) can be written as

P|c, 0; `, λ; λ1, λ2〉 = (−1)−λ1−λ2−λ(−1)`+ληcom
12 N

×
∫ 3π

π
dφ′

∫ π

0
dθ′ sin θ′ei(λ1+λ2+λ)φ′d(`)λ,−λ12

(θ′)|(p, θ′, φ′),−λ1,−λ2〉. (A.142)

Consider now a function f (φ) which is 2π periodic in φ. The following property then
holds ∫ 2π

0
dφ f (φ) =

∫ φ0+2π

φ0

dφ f (φ) (A.143)

for any real φ0. We notice that both ei(λ1+λ2+λ)φ′ and |(p, θ′, φ′),−λ1,−λ2〉 are 2π peri-
odic in φ′. The former follows from the fact that λ1 + λ2 + λ is always an integer. The
latter follows from our definition of the helicity basis (A.54), see in particular footnote 3.
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We can then use the definition (A.77) one more time to conclude that

P|c, 0; `, λ; λ1, λ2〉 = (−1)−λ1−λ2−λ(−1)`+ληcom
12 |c, 0; `, λ;−λ1,−λ2〉. (A.144)

Plugging in (A.140) and using (A.129) the above can be brought to the following final
form

P|c, 0; `, λ; λ1, λ2〉 = η1η2(−1)`−j1+j2 |c, 0; `, λ;−λ1,−λ2〉. (A.145)

Constraints on scattering amplitudes

In parity invariant theories the scattering operators S and T obey

S = PSP† = P†SP , T = PTP† = P†TP . (A.146)

Using (A.146) in the definition of the center of mass amplitude (1.61) we obtain the
following constraint on the COM scattering amplitudes

〈(p′, θ, 0); λ3, λ4|T|(p, 0, 0); λ1, λ2〉 = 〈(p′, θ, 0); λ3, λ4|P†TP|(p, 0, 0); λ1, λ2〉. (A.147)

Using (A.138) the right-hand side of this equation can be written as

〈(p′, θ, 0); λ3, λ4|P†TP|(p, 0, 0); λ1, λ2〉 = η1η2η∗3 η∗4 (−1)j1+j2+λ1+λ2(−1)j3+j4+λ3+λ4

〈(p′, θ, 0);−λ3,−λ4|eiπ J2 Te−iπ J2 |(p, 0, 0);−λ1,−λ2〉. (A.148)

Plugging this into (A.147), using the fact the scattering operator T is invariant under ro-
tations and invoking the definition of the COM amplitudes we obtain the final constraint

T12→34
λ3,λ4
λ1,λ2

(s, t, u) = η1η2η∗3 η∗4 (−1)j1+j2+j3+j4(−1)λ1+λ2+λ3+λ4 T12→34
−λ3,−λ4
−λ1,−λ2

(s, t, u).
(A.149)

A.2.2 Time-reversal

In the defining vector representation time-reversal is given by the following matrix

T =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 . (A.150)

We use the same symbol T to denote the time-reversal operator in the (infinite-dimensional)
unitary representation. Using (A.150) one can deduce the following commutation
properties of the time-reversal operator with finite rotations and boosts in the unitary
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representation
T e−iθi JiT † = e−iθi Ji and T e−iηiKiT † = eiηiKi . (A.151)

Similarly, the action of time-reversal on the translation operators is given by

T e−iP0tT † = e+iP0t and T e+i~P·~xT † = e+i~P·~x. (A.152)

We recall now that T is anti-unitary, namely it obeys the following condition

T iT † = −i. (A.153)

Using these facts we deduce the following commutation relations of T with the genera-
tors of the Poincaré group

T PµT † = (P0,−~P), T KiT † = Ki, T JiT † = −Ji. (A.154)

In what follows we will use (A.154) to derive the action of time-reversal on one- and
two-particle states. Then (as in the previous section) we will derive constraints on
the scattering amplitudes. As before, we begin by computing the the transformation
property of the helicity eigenstate boost (A.54) under time-reversal,

T Uh(~p)T † =T R(φ, θ,−φ)T †T B3(η)T †

=R(φ, θ,−φ)B3(−η)

=R(φ, θ,−φ)R(0, π, 0)B3(η)R†(0, π, 0).

(A.155)

Here in the first line we injected the identity I = T †T , we then used the commutation
properties (A.154) together with (A.153) in the second line. Finally, in the third line we
used (A.45). Interestingly enough, (A.155) is the same as (A.120). Thus, we expect that
in what follows we will be able to utilize many intermediate results from the previous
section.

One-particle states

Let us first deduce the action of time-reversal on a one-particle state in the rest frame.
Consider the following relation

T R(α, β, γ)|m,~0; j, λ〉 = T R(α, β, γ)T †T |m,~0; j, λ〉
= R(α, β, γ)T |m,~0; j, λ〉,

(A.156)

which holds true due to (A.153) and (A.154). On the other hand we also have

T R(α, β, γ)|m,~0; j, λ〉 = T D `
λ′λ(α, β, γ)|m,~0; j, λ〉

= D `∗
λ′λ(α, β, γ)T |m,~0; j, λ′〉.

(A.157)
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Here in the first line we simply used (A.52). Instead the second line follows from (A.153)
and the explicit form of the large Wigner D-matrix, see (A.7) and (A.10). Comparing the
above two expressions we conclude that

R(α, β, γ)T |m,~0; j, λ〉 = D `∗
λ′λ(α, β, γ)T |m,~0; j, λ′〉. (A.158)

By comparing (A.158) with (A.17), we see that the time reversal transformed one-particle
states (in the center of mass) are in the dual spin ` representation. Using (A.21) we
conclude that6

T |m,~0; j, λ〉 = ε (−1)j−λ|m,~0; j,−λ〉, (A.159)

where ε is the proportionality coefficient obeying |ε|2 = 1. One can always define T in
such a way that T 2 = +1 or T 2 = −1. Thus, we have

ε2 = +1 or ε2 = −1. (A.160)

In order to obtain the action of time-reversal on a one-particle state, we use the definition
of the helicity basis (A.53) and (A.155). We have

T |m,~p; j, λ〉 = T Uh(~p)|m,~0, j, λ〉
= T Uh(~p)T †T |m,~0, j, λ〉
= R(φ, θ,−φ)R(0, π, 0)B(+~η)R†(0, π, 0)T |m,~0, j, λ〉
= ε(−1)j−λR(φ, θ,−φ)R(0, π, 0)B(+η)R†(0, π, 0)|m,~0, j,−λ〉
= εR(φ, θ,−φ)R(0, π, 0)B(+~η)|m,~0, j, λ〉.

(A.161)

In going from the fourth to the fifth line we used (A.124) and (A.129). Utilizing (A.125)
and (A.129) the above result can be brought to the following final form

T |m,~p; j, λ〉 = ε(−1)2je−2iλφ|m,−~p, j; λ〉. (A.162)

Two-particle COM states

From the action of time-reversal on one-particle states (A.128), one deduces the action of
time-reversal on two-particle center of mass states defined in (1.26). One has

T |(p, θ, φ); λ1, λ2〉 = T (|m1,~p, j1, λ1〉 ⊗ |m2,−~p, j2, λ2〉) (A.163)

= ε1ε2(−1)2j1(−1)2j2 e−2iφλ1 e−2i(φ+π)λ2 |m1,−~p, j1, λ1〉 ⊗ |m2,~p, j2, λ2〉.

Using (A.129) we can bring the above to the final form

T |(p, θ, φ); λ1, λ2〉 = ε1ε2(−1)2j1 e−2i(λ1+λ2)φ|(p, π − θ, φ + π); λ1, λ2〉. (A.164)

6From J3T = −T J3 and (A.5) we could have only concluded that helicity flips under-time reversal.
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Two-particle irreps

Let us repeat that the two-particle states can be decomposed into states in the irreducible
representation of the Poincaré group. We refer to them as the two-particle irreps. In the
center of mass frame such a decomposition and its inverse were given by (A.76) and
(A.77) respectively. Applying time-reversal to (A.77) and using (A.164) we get

T |c, 0; `, λ; λ1, λ2〉 = N
∫ 2π

0
dφ
∫ π

0
dθ sin θ T e−i(λ1+λ2−λ)φd(`)λλ12

(θ)|(p, θ, φ); λ1, λ2〉

= N
∫ 2π

0
dφ
∫ π

0
dθ sin θ e+i(λ1+λ2−λ)φd(`)λλ12

(θ)T |(p, θ, φ); λ1, λ2〉
(A.165)

= εcom
12 N

∫ 2π

0
dφ
∫ π

0
dθ sin θ e−i(λ1+λ2+λ)φd(`)λλ12

(θ)|(p, π − θ, φ + π), λ1, λ2〉.

Notice that in going from the first to the second line we used (A.153). The constant N
was defined in (A.140) and we have introduced for brevity

εcom
12 ≡ ε1ε2(−1)2j1 . (A.166)

Changing the integration variables from θ and φ to θ′ ≡ π − θ and φ′ ≡ φ + π, using
the following property of the small Wigner d-matrix

d(`)λ′λ(π − θ) = (−1)λ−`d(`)−λ′λ(θ), (A.167)

we can bring (A.165) to the following form

T |c, 0; `, λ; λ1, λ2〉 = εcom
12 N ei(λ1+λ2+λ)π(−1)λ1−λ2−`

×
∫ 3π

π
dφ′

∫ π

0
dθ′ sin θ′ e−i(λ1+λ2+λ)φd(`)−λλ12

(θ′)|(p, θ′, π′), λ1, λ2〉. (A.168)

Using (A.77) and (A.143) we conclude that

T |c, 0; `, λ; λ1, λ2〉 = εcom
12 ei(λ1+λ2+λ)π(−1)λ1−λ2−`|c, 0; `,−λ; λ1, λ2〉. (A.169)

Using (A.166) and the obvious identity (−1)`−λ = (−1)λ−` which holds true since `− λ

is always an integer, we obtain our final expression

T |c, 0, `, λ; λ1, λ2〉 = ε1ε2(−1)`−λ|c, 0, `,−λ; λ1, λ2〉. (A.170)
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Constraints on scattering amplitudes

In time-reversal invariant theories the scattering operators S and T obey

T ST † = S†, T TT † = T†. (A.171)

Consider the states

|ψ〉 = |(p′, θ, 0); λ3, λ4〉, |φ〉 = T|(p, 0, 0); λ1, λ2〉. (A.172)

By definition the anti-unitary time-reversal operator T satisfies

〈T ψ|T φ〉∗ = 〈ψ|φ〉, (A.173)

where
|T φ〉 ≡ T |φ〉 and |T ψ〉 ≡ T |ψ〉. (A.174)

Using (A.164) and time-reversal invariance of the T operator (A.171), we have

|T φ〉 = TT |(p, 0, 0); λ1, λ2〉
= ε1ε2(−1)2j1 T†|(p, π, π), λ1, λ2〉

(A.175)

and
〈T ψ| = ε∗3ε∗4(−1)2j3〈(p, π − θ, π), λ3, λ4|. (A.176)

Plugging (A.175) and (A.176) along with the definitions (A.172) into (A.173), we arrive
at

〈(p′, θ, 0); λ3, λ4|T|(p, 0, 0); λ1, λ2〉 =
ε∗1ε∗2ε3ε4(−1)2j1(−1)2j3〈(p′, π − θ, π); λ3, λ4|T†|(p, π, π); λ1, λ2〉∗

ε∗1ε∗2ε3ε4(−1)2j1(−1)2j3〈(p, π, π); λ1, λ2|T|(p′, π − θ, π); λ3, λ4〉.
(A.177)

We are now left with bringing the matrix element in the last line of (A.177) to the
standard COM frame. For that we will use the following identity

R(π, π + θ′ − θ,−π) = R(π, π − θ, 0)R(0, θ′, 0)eiπ J3 , (A.178)

which is a simple reorganization of exponents in the definition of the Euler rotation
(A.4).

Let us start by the following rewriting of the 34 two-particle state

|(p′, π − θ, π); λ3, λ4〉 = e2iπλ4 R(π, π − θ,−π)|(p′, 0, 0); λ3, λ4〉
= e2iπλ4 R(π, π − θ, 0)R(0, 0, 0)eiπ J3 |(p′, 0, 0); λ3, λ4〉
= eiπ(λ3+λ4)R(π, π − θ, 0)|(p′, 0, 0); λ3, λ4〉.

(A.179)

147



Appendix A. Appendices to spinning S-matrix bootstrap

z

x

~p2, λ2

~p1, λ1

~p3, λ3

~p4, λ4

π − θ

π − θ
Rz(π)

z

x

~p2, λ2

~p1, λ1

~p3 , λ3

~p4 , λ4

π − θ

π − θ

Ry(θ − π)
z

x

~p1, λ1

~p2, λ2
~p3, λ3

~p4, λ4 θ
θ

Figure A.2: The geometric picture involved in going from (A.177) to (A.181). Particle 1
is red, particle 2 is blue, particle 3 is magenta and particle 4 is cyan.

Here in the first line we used (A.70). We used (A.178) with θ′ = 0 in the second
line. Finally we used the fact that the states with the momentum along the z-axis are
eigenstates of J3 generators. Analogously we can write the 12 two-particle state as

|(p, π, π); λ1, λ2〉 = e2iπλ2 R(π, π,−π)|(p, 0, 0); λ1, λ2〉
= e2iπλ2 R(π, π − θ, 0)R(0, θ, 0)eiπ J3 |(p, 0, 0); λ1, λ2〉
= eiπ(λ1+λ2)R(π, π − θ, 0)|(p, θ, 0); λ1, λ2〉,

(A.180)

where in the second line we used (A.178) with θ′ = θ. Plugging both (A.179) and (A.180)
into the last line of (A.177) we conclude that

〈(p′, θ, 0); λ3, λ4|T|(p, 0, 0); λ1, λ2〉 = ε∗1ε∗2ε3ε4(−1)2j1(−1)2j3 eiπ(−λ1−λ2+λ3+λ4)

〈(p, θ, 0); λ1, λ2| (R(π, π − θ, 0))† TR(π, π − θ, 0)|(p′, 0, 0); λ3, λ4〉. (A.181)

Using the fact that the scattering operator is invariant under rotations and that according
to (A.230) - (A.232) the Mandelstam variables remain invariant under the exchange
p ↔ p′, we can use the definition of the center of mass amplitudes (1.61) and write
(A.181) in its final form

T12→34
λ3,λ4
λ1,λ2

(s, t, u) = ε∗1ε∗2ε3ε4(−1)λ1−λ2−λ3+λ4 T34→12
λ1,λ2
λ3,λ4

(s, t, u). (A.182)

Here we also simplified the phases according to (A.129). Notice that whereas parity
(1.64) imposes a constraint on the same amplitude, time reversal relates the process
12→ 34 to the process 34→ 12, which are in general different.

A.2.3 PT

Let us conclude this appendix by discussing the situation when our physical system
is symmetric under simultaneous application of parity and time-reversal, in other
words under the PT transformation. Due to (A.128) and (A.162), the one-particle states
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transform under PT as follows

PT |m,~p; j, λ〉 = ηε(−1)j−λ|m,~p; j,−λ〉. (A.183)

One can then derive constraints posed by PT on scattering amplitudes. The simplest
way to obtain them is to combine (A.149) and (A.182). One then has

T12→34
λ3,λ4
λ1,λ2

(s, t, u) = ζ∗1ζ∗2ζ3ζ4(−1)j1−j2−j3+j4 T34→12
−λ1,−λ2
−λ3,−λ4

(s, t, u), (A.184)

where we have defined the phases as

ζi ≡ ε iηi. (A.185)

It is interesting to consider the case of identical neutral particles with spin j and the
phase ζ. Then the equation (A.184) becomes

Tλ3,λ4
λ1,λ2

(s, t, u) = T−λ1,−λ2
−λ3,−λ4

(s, t, u), (A.186)

where we have removed the subscript 12→ 34 since all the particles are identical and
used the fact that |ζ|2 = 1.

Any consistent quantum field theory must be CPT invariant [96]. This means that one
can always introduce the so called CPT operator which we denote by Σ. In the system
of neutral particles one can choose

Σ = PT . (A.187)

As a result the constraint (A.186) on the scattering amplitudes of identical particles is
not an additional assumption but rather a consequence of the CPT theorem.

A.3 Identical particles

In this appendix we consider the special situation where a two-particle state (2PS)
describes a system of two identical particles with mass m and spin j. Such a system
possesses Bose or Fermi (anti-)symmetry. In other words, the two-particle state must
satisfy

|κ1, κ2〉id = (−1)2j|κ2, κ1〉id. (A.188)

Here we have added a subscript id to explicitly indicate that the state describes a system
of two identical particles. In order to satisfy (A.188), we have to take the symmetrized,
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in case of bosons, and the anti-symmetrized, in case of fermions, tensor product, i.e

|κ1, κ2〉id ≡
1√
2

(
|m,~p1; j, λ1〉 ⊗ |m,~p2; j, λ2〉+ (−1)2j|m,~p2; j, λ2〉 ⊗ |m,~p1; j, λ1〉

)
.

(A.189)
We remind the reader that ⊗ denotes the ordered tensor product that was used in (1.19)
to define generic two-particle states. The normalization of the state (A.189) follows from
(1.14) and reads

id〈κ1, κ2|κ3, κ4〉id = δ(κ1 − κ3)δ(κ2 − κ4) + (−1)2jδ(κ1 − κ4)δ(κ2 − κ3). (A.190)

A.3.1 Two-particle COM states

As before we need to define the identical 2PS in the center of momentum. Adapting
(1.26) to the case of identical particles we get

|(p, θ, φ); λ1, λ2〉id ≡
1√
2

(
|m,+~p; j, λ1〉 ⊗ |m,−~p; j, λ2〉+ (−1)2j|m,−~p; j, λ2〉 ⊗ |m,~p; j, λ1〉

)
. (A.191)

In the notation (1.26) this can be equivalently written as

|(p, θ, φ); λ1, λ2〉id =
1√
2

(
|(p, θ, φ); λ1, λ2〉+ (−1)2j|(p, π − θ, π + φ); λ2, λ1〉

)
.

(A.192)
The normalization of these states is fixed by (1.35). Analogously to (1.28) we can write it
in spherical coordinates as

id〈(p, θ, φ); λ1, λ2|(p′, 0, 0); λ′1, λ′2〉id = (2π)4δ4(0)× 16π2√s√
pp′
×

(
δ(θ)δ(φ)

sin θ
δλ1λ′1

δλ2λ′2
+ (−1)2j δ(π − θ)δ(φ + π)

sin(π − θ)
δλ2λ′1

δλ1λ′2

)
. (A.193)

The symmetry (A.188) for the two-particle states in the center of mass reads as

|(p, θ, φ); λ1, λ2〉id = (−1)2j|(p, π − θ, φ + π); λ2, λ1〉id. (A.194)

Let us now restrict our attention on the special case φ = 0 and derive the following two
relations

|(p, θ, 0); λ1, λ2〉id = e−iπ J2 |(p, θ, 0); λ2, λ1〉id, (A.195)

|(p, θ, 0); λ1, λ2〉id = (−1)λ1−λ2 e−iπ J3 |(p, π − θ, 0); λ2, λ1〉id. (A.196)
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Figure A.3: The geometric picture behind (A.195). The particles are identical and are
therefore represented by the same colour.

The first one simply follows from (A.194) with φ = 0 and (A.137). The second one
follows from (A.194) with φ = 0 and (A.70). More precisely

|(p, θ, φ); λ1, λ2〉id = (−1)2je2iπλ1 R(π, π − θ,−π)|(p, 0, 0); λ2, λ1〉id
= (−1)2je2iπλ1 e−iπ J3 R(0, π − θ, 0)e+iπ J3 |(p, 0, 0); λ2, λ1〉id
= (−1)2jeiπ(λ2+λ1)e−iπ J3 R(0, π − θ, 0)|(p, 0, 0); λ2, λ1〉id
= (−1)2jeiπ(λ1+λ2)e−iπ J3 |(p, π − θ, 0); λ2, λ1〉id.

(A.197)

In the first and the fourth line we used (A.70). In the second line we simply used the
definition of Euler rotations (A.4). Finally in the third line we used the fact that the states
with the three-momentum along the z-axis are eigenvector of J3. Using (A.129) in the
last line of (A.197) we obtain (A.196).

A.3.2 Two-particle irreps

We would now like to decompose identical two particle states (A.189) into irreducible
representations analogously to the generic two-particle state decomposition (1.29). The
two-particle states in the irreducible representation are denoted by

|c, 0, `, λ; λ1, λ2〉id. (A.198)

As before the subscript id emphasizes the fact that we do not deal with a generic situation
but with the identical particle case. In what follows we need to define the states (A.198)
precisely and fix their normalization.

In a generic situation, the two-particle states in the reducible and irreducible representa-
tions are related by (A.77). Since the Lorentz transformation property of the states are
the same for identical and distinct particles, we can just use the decomposition formula
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Figure A.4: The geometric picture behind (A.196). The particles are identical and are
therefore represented by the same colour.

(A.77) but with an unspecified normalization Nid which we fix later in the section. One
has

|c,~0; `, λ; λ1, λ2〉id = Nid

∫ 2π

0
dφ
∫ +1

−1
d cos θe−i(λ1+λ2−λ)φd`λλ12

(θ)|(p, θ, φ); λ1, λ2〉id.

(A.199)
We can use this formula to deduce the symmetry property of the state (A.198) under the
exchange of two particles. Plugging (A.194) into the right-hand side of (A.199) we get

(−1)2jNid

∫ 2π

0
dφ
∫ π

0
dθ sin θ e−i(λ1+λ2−λ)φd(`)λλ12

(θ)|(p, π − θ, φ + π); λ2, λ1〉id =

(−1)2jNid

∫ 3π

π
dφ′

∫ π

0
dθ′ sin θ′e−i(λ1+λ2−λ)(φ′−π)d(`)λλ12

(π − θ′)|(p, θ′, φ′); λ2, λ1〉id =

(−1)2jeiπ(λ1+λ2−λ)(−1)`+λ×

Nid

∫ 3π

π
dφ′

∫ π

0
dθ′ sin θ′e−i(λ1+λ2−λ)φ′d(`)λλ21

(θ′)|(p, θ′, φ′); λ2, λ1〉id.

(A.200)
In the second line we changed the integration variables from θ and φ to θ′ ≡ π − θ and
φ′ ≡ φ + π. In the third line we used (A.141) to rewrite the small Wigner d-matrix. Also
recall the definition

λ12 ≡ λ1 − λ2. (A.201)

The last line in (A.200) simply contains the two-particle irrep (A.199). In order to see
this, we refer the reader to (A.143) and the discussion below. Combining (A.199) and
(A.200), and taking into account (A.129) we finally get7

|c,~0; `, λ; λ1, λ2〉id = (−1)`+λ1−λ2 |c, 0; `, λ; λ2, λ1〉id. (A.202)

7Notice that due to (A.202) the two-particle irreps with λ1 = λ2 exist only for even spins `. When
λ1 6= λ2 we can form two linear combinations from two-particle irreps, one of which exists only for even
spins ` and the other one only for odd `.
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We can now define two-particle irreps (A.198) describing identical particles in terms of
generic two-particle irreps by requiring that (A.198) automatically satisfies the condition
(A.202). Our choice here is as follows

|c, 0, `, λ; λ1, λ2〉id ≡
1
2

(
|c, 0, `, λ; λ1, λ2〉+ (−1)`+λ1−λ2 |c, 0, `, λ; λ2, λ1〉

)
. (A.203)

The normalization of the states (A.203) follows from the normalization of each of the
two terms fixed by (1.22) together with (1.25). As a result the normalization of the states
(A.203) is given by (1.22) along with

δγ′γ =
1
2

(
δλ1λ′1

δλ2λ′2
+ (−1)`+λ1−λ2 δλ1λ′2

δλ2λ′1

)
. (A.204)

Having defined (A.203), we can apply (1.29) to both terms in the right-hand side of
(A.192). Using the property of the small Wigner d-matrix (A.141) we get

|(p, θ, φ); λ1, λ2〉id =
√

2 ∑
`,λ

C`(p)ei(λ1+λ2−λ)φd(`)λλ12
(θ)|c, 0; `, λ; λ1, λ2〉id, (A.205)

where the coefficient C`(p) is given by (1.32). As before we can invert the above equation
to get precisely (A.199) with

Nid =
2`+ 1

4π
√

2C`(p)
. (A.206)

A.3.3 Constraints on scattering amplitudes

Consider now the scattering of identical particles.8 The amplitude describing such a
situation is defined as

Tλ3,λ4
λ1,λ2

(s, t, u)× (2π)4δ(4)(0) ≡ id〈(p′, θ, 0); λ3, λ4|T|(p, 0, 0); λ1, λ2〉id, (A.207)

where the identical two-particle states were defined in (A.192). We now deduce con-
straints the amplitude (A.207) must obey in order to incorporate the symmetry property
(A.194). In practice we will use (A.194) rewritten in the form (A.196).

Let us start with the outgoing particles 3 and 4. Using (A.196) one can rewrite the

8More generally one can consider scattering processes with only incoming or outgoing particles being
identical. As presented, most of the results in this section still apply to these situations.
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right-hand side of (A.207) as

id〈(p′, θ, 0);λ3, λ4|T|(p, 0, 0); λ1, λ2〉id
= (−1)λ3−λ4

id〈(p′, π − θ, 0); λ4, λ3|eiπ J3 T|(p, 0, 0); λ1, λ2〉id
= (−1)λ3−λ4

id〈(p′, π − θ, 0); λ4, λ3|eiπ J3 Te−iπ J3 eiπ J3 |(p, 0, 0); λ1, λ2〉id
= (−1)λ3−λ4+λ1−λ2

id〈(p′, π − θ, 0); λ4, λ3|T|(p, 0, 0); λ1, λ2〉id.
(A.208)

In the third line we simply injected the identity operator made out of z-rotations. In
the fourth line we used the fact that the states with the momentum along the z-axis
are eigenstates of J3 generators. Looking at the definition of the Mandelstam variables
(A.231) and (A.232) we see that the exchange θ ↔ π − θ simply corresponds to t ↔ u.
Combining (A.208) with (A.207) we obtain

Tλ3,λ4
λ1,λ2

(s, t, u) = (−1)λ1−λ2−λ3+λ4 Tλ4,λ3
λ1,λ2

(s, u, t), (A.209)

which is nothing but the (34) t− u crossing equation.

Let now address the incoming particles 1 and 2. First, we need the following relation
which holds true for generic two-particle states (and therefore also for identical two-
particle states)

|(p, θ, 0); λ3, λ4〉 = (−1)λ3−λ4 e−iπ J3 e−iπ J2 |(p, π − θ, 0); λ3, λ4〉. (A.210)

It simply follows from (A.70) and (A.47), see also (A.4) and (A.54). Due to (A.196) and
(A.70) we also have the following relation for identical particles

|(p, 0, 0); λ1, λ2〉id = (−1)λ1−λ2 e−iπ J3 e−iπ J2 |(p, 0, 0); λ2, λ1〉id. (A.211)

Using both (A.210) and (A.210) in the right-hand side of (A.207), and the fact that the
scattering operator is invariant under rotations we conclude that

Tλ3,λ4
λ1,λ2

(s, t, u) = (−1)λ1−λ2+λ3−λ4 Tλ3,λ4
λ2,λ1

(s, u, t), (A.212)

which is nothing but the (12) t− u crossing equation.

Combining both crossing equations (A.209) and (A.212) we obtain the following purely
kinematic constraint

Tλ3,λ4
λ1,λ2

(s, t, u) = Tλ4,λ3
λ2,λ1

(s, t, u). (A.213)

Here we used the fact that λ1 − λ2 + λ3 − λ4 is always an integer.
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A.4 Center of mass frame

In this section we define the center of mass frame describing two-, three- and four-point
amplitudes.

A.4.1 Two-point amplitudes

We start with the two-point amplitude defined in (1.52). It reads

f ree〈c1,~p1; `1, λ1; γ1|T|c2,~p2; `2, λ2; γ2〉 f ree. (A.214)

It is non-zero only for ~p1 = ~p2 due to translation symmetry. By using the three boost
generators one can set

~p1 = ~p2 = 0. (A.215)

The remaining symmetry is SO(3). The matrix element (A.214) at the point (A.215) must
be invariant under this SO(3) symmetry. Applying an SO(3) rotation to (A.214) we get

f ree〈c1,~0; `1, λ1; γ1|T|c2,~0; `2, λ2; γ2〉 f ree =

∑
λ′1,λ′2

f ree〈c1,~0; `1, λ′1; γ1|T|c2,~0; `2, λ′2; γ2〉 f ree ×D
∗(`1)
λ′1λ1

( ~ω1)D
(`2)
λ′2λ2

( ~ω2). (A.216)

In order to make the amplitude invariant one has to demand that

f ree〈c1,~0; `1, λ1; γ1|T|c2,~0; `2, λ2; γ2〉 f ree ∝ δ`1`2 δλ1λ2 . (A.217)

Then due to the orthogonality (A.14) the Wigner D-matrices disappear completely and
one recovers the invariance of the two-point amplitude. The condition (A.217) means
that there is only one independent two-point amplitude

N2 = 1. (A.218)

A.4.2 Three-point amplitudes

Consider the following matrix element

out〈κ1, κ2|c,~p; `, λ; γ〉in = f ree〈κ1, κ2|S|c,~p; `, λ; γ〉 f ree. (A.219)

It appears in the discussion of poles, see for example section 2.5.1 in [13]. It also appears
in computations of partial amplitudes, see the end of appendix A.8. It is interesting to
ask what happens if the ket state in (A.219) is actually a one particle state, namely when

155



Appendix A. Appendices to spinning S-matrix bootstrap

we deal with the following object

out〈κ1, κ2|κ3〉in = f ree〈κ1, κ2|S|κ3〉 f ree. (A.220)

It describes the decay process of the asymptotic state 3 into two asymptotic states 1
and 2. Strictly speaking such a matrix element must be zero, since asymptotic states by
definition cannot decay.9 In some circumstances when a particle is unstable but lives
long enough it might be useful however to treat it as an approximate asymptotic state
and prescribe physical meaning to (A.220).

Let us discuss the spin structure of (A.220) in the COM frame. By using the three boosts
we can set ~p3 = 0. By using two rotations we can move to the following final frame

pµ
1 = {E1, 0, 0, +p},

pµ
2 = {E2, 0, 0, −p},

pµ
3 = {E3, 0, 0, 0},

(A.221)

where the energies read as

E1 =

∣∣∣m2
3 + m2

1 −m2
2

∣∣∣
2 m3

, E2 =

∣∣∣m2
3 −m2

1 + m2
2

∣∣∣
2 m3

, E3 = m3 (A.222)

and we have

p =
1

2m3

√
(m3 + m1 + m2)(m3 −m1 −m2)(m3 −m1 + m2)(m3 + m1 −m2). (A.223)

The value p should be real, this enforces the condition

m3 ≥ m1 + m2. (A.224)

Having chosen the frame (A.221) one is left with a single generator of rotations around
the z-axis. This means that one has a remaining SO(2) symmetry and the matrix element
(A.220) in the frame (A.221) must be invariant under it. To find the consequence of this
symmetry one can inject the identity operator composed out of z-rotations into (A.220)
twice and requiring that the matrix element remains invariant. It leads to the following
constraint

λ3 = λ1 − λ2. (A.225)

Given the condition (A.225) one can easily count the number of different three-point

9If a particle is unstable an observer after waiting long enough will see the decay product which is
described by true asymptotic states.
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amplitudes N3. It is given by

N3 =
+j1

∑
λ1=−j1

+j2

∑
λ2=−j2

+j3

∑
λ3=−j3

δλ1+λ2,λ3 . (A.226)

This expression was rewritten in a compact form in [51], it reads as

N3 = (2j1 + 1)(2j2 + 1)− r(r + 1), r ≡ max(j1 + j2 − j3, 0), j1 ≤ j2 ≤ j3. (A.227)

A.4.3 Four-point amplitudes

The four-point amplitude was defined in (1.41). Using all the generators of the Lorentz
group, we can bring this amplitude to the following frame

pµ
1 = {E1, 0, 0,+p},

pµ
2 = {E2, 0, 0,−p},

pµ
3 = {E3,+p′ sin θ, 0,+p′ cos θ},

pµ
4 = {E4,−p′ sin θ, 0,−p′ cos θ},

(A.228)

where p ≥ 0, p′ ≥ 0 and θ ∈ [0, π] and the energies are given by

E1 =
√

m2
1 + p2, E2 =

√
m2

2 + p2, E3 =
√

m2
3 + p′2, E4 =

√
m2

4 + p′2. (A.229)

The Mandelstam variables in the COM frame (A.228) then read as

s = (E1 + E2)
2 = (E3 + E4)

2, (A.230)

t = m2
1 + m2

3 − 2E1E3 + 2pp′ cos θ, (A.231)

u = m2
1 + m2

4 − 2E1E4 − 2pp′ cos θ. (A.232)

In the case of four-point COM amplitudes there is no additional symmetry left. Thus,
the total number of amplitudes is obtained by simply counting all possible helicity
configurations

N4 = (2`1 + 1)(2`2 + 1)(2`3 + 1)(2`4 + 1). (A.233)

The relations (A.230) - (A.232) express the Mandelstam variables (s, t, u) in terms of
(p, p′, θ). We can also invert these relations as follows. From (A.230) we get

p =
L12(s)
2
√

s
, p′ =

L34(s)
2
√

s
, (A.234)
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where we have defined

Lij(s) ≡
√(

s− (mi −mj)2
)(

s− (mi + mj)2
)

. (A.235)

Plugging (A.234) into (A.229) we get the energies

E1 =
s + m2

1 −m2
2

2
√

s
, E2 =

s−m2
1 + m2

2

2
√

s
, E3 =

s + m2
3 −m2

4

2
√

s
, E4 =

s−m2
3 + m2

4

2
√

s
.

(A.236)

Subtracting (A.232) from (A.231) and using (A.234) and (A.236) we get

cos θ =
s(t− u) + (m2

1 −m2
2)(m

2
3 −m2

4)

L12(s)L34(s)
. (A.237)

In the range θ ∈ [0, π] we can also write unambiguously

sin θ =
√

1− cos2 θ =
2
√

s
√

Φ
L12(s)L34(s)

, (A.238)

where we have defined

Φ ≡ stu− s(m2
2 −m2

4)(m
2
1 −m2

3)− t (m2
1 −m2

2)(m
2
3 −m2

4) + ∆t (m2
1m2

4 −m2
2m2

3)

= stu− s(m2
2 −m2

3)(m
2
1 −m2

4) + u(m2
1 −m2

2)(m
2
3 −m2

4) + ∆u(m2
1m2

3 −m2
2m2

4)

(A.239)

together with

∆t ≡ −m2
1 + m2

2 + m2
3 −m2

4, ∆u ≡ −m2
1 + m2

2 −m2
3 + m2

4. (A.240)

Let us study the physical ranges of the Mandelstam variables. From (A.229) and (A.230)
the following inequalities follow

s ≥ max
(
(m1 + m2)

2, (m3 + m4)
2
)

. (A.241)

Notice, that due to (A.241) all the energies Ei in (A.236) are positive and L12(s), L34(s)
are real as they should be. Since the value of cos θ is bounded to be in the [−1,+1]
interval, we can derive the following constraints on the values of the variable t from
(A.237)

t ∈ [v +
L12(s)L34(s)

2s
, v− L12(s)L34(s)

2s
],

v ≡ 1
2
(m2

1 + m2
2 + m2

3 + m2
4 − s)− (m2

1 −m2
2)(m

2
3 −m2

4)

2s
.

(A.242)
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From (A.241) and (A.242) in the equal mass case we recover the familiar result

s ∈ [4m2, ∞), t ∈ [−(s− 4m2), 0]. (A.243)

There is a very special situation when

L12(s) = 0 or L34(s) = 0. (A.244)

From (A.234) we see that this corresponds to when either incoming or outgoing particles
are at rest. In such a situation we cannot define the angle between incoming and
outgoing particles which can be see from (A.237) which is singular at (A.244). The
values of s which lead to (A.244) are

s = (m1 ±m2)
2, s = (m3 ±m4)

2 . (A.245)

A.5 Crossing equations

The goal of this appendix is to prove the crossing relations in a general frame (1.70) -
(1.73) and then derive the crossing equations in the COM frame (1.74) and (1.76) together
with the Wigner angles αi and βi.

A.5.1 Analytic continuation of four-momenta

Consider the interacting part of the scattering amplitude

Tλ3,λ4
λ1,λ2

(pµ1
1 , pµ2

2 , pµ3
3 , pµ4

4 ). (A.246)

This function is defined only for non-negative energies p0
i ≥ 0, provided that the

following constraint is satisfied
p2

i = −m2
i , (A.247)

where mi ≥ 0 are the masses of particles. However crossing requires us to evaluate
the amplitude (A.246) at −pµ

i points which means that one must extend the definition
of (A.246) also to negative values of energies p0

i . This can be done by analytically
continuing the amplitude (A.246) in each component of four 4-vectors pµ

i to the full
complex plane while keeping the constraints (A.247) satisfied.10 To perform this analytic
continuation, one needs to choose the path in (complexified) momentum space.

To continue the discussion in more detail let us focus for simplicity on a function of a

10In other words by using the analytic continuation, the amplitude (A.246) can be defined as a function
of 4× 4 = 16 complex variables which satisfy the four constraints (A.247).
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single 4-momentum
f (pµ) (A.248)

defined for p0 ≥ 0 and p2 = −m2 with the non-negative mass m. The case of four
4-momenta (A.246) follows straightforwardly by the repeated use of the steps here for
each i = 1, 2, 3, 4. Using the spherical coordinates p, θ and φ one can write

p0 =
√

p2 + m2,





p1 = p sin θ cos φ,

p2 = p sin θ sin φ,

p3 = p cos θ,

(A.249)

where p ≥ 0 is the length of the 3-vector ~p. The relation p2 = −m2 can be rewritten as

p = i
√
(m− p0)(p0 + m). (A.250)

If we promote p0 to the full complex plane, the function (A.250) will have an analytic
structure as depicted on figure A.5 with two branch points ±m and two branch cuts
ending in these points.

In order to study crossing we need to defined (A.248) at the following point

f (−pµ). (A.251)

This can be achieved by performing the following analytic continuation

p0 + iε→ complex value→ −p0 − iε, ~p→ complex value→ −~p. (A.252)

In the p0 complex plane two different paths for such an analytic continuation are depicted
in figure A.5 11. Note that the original domain of physical energy p0 ≥ m by convention
lies slightly above the right-hand branch cut.

Now let us investigate the behavior of the function (A.250) depending on the chosen
path of the analytic continuation. If the path does not cross any branch cuts we simply
get

p→ complex value→ +p. (A.253)

In case we cross once one of the branch cuts we get an extra phase due to the monodromy
around the associated branch point which leads to

p0 ±m→ (p0 ±m)e2πi.

11To be precise, the two different paths for analytic continuation take us to two different points on the
Riemann surface. We thank Brando Bellazzini for this comment.

160



A.5. Crossing equations

p0

m−m

A.C. 1

A.C. 2

A

B

Figure A.5: The complex p0 plane. We depict the analytic structure of the function p(p0)
defined in (A.250). It has two branch cuts. The original domain of the function p is given
by positive values p0 slightly above the right cut. We define p for negative values of p0

by an analytic continuation. The two different options are depicted in red and blue. Two
paths together encircle the +m branch point and thus differ by a monodromy around
that point.

As a result for this path we get the following

p→ complex value→ −p. (A.254)

To summarize, the analytic continuation (A.252) can be implemented in two different
ways depending on the path chosen on figure A.5. The two distinct options (A.253) and
(A.254) due to (A.249) read as

p0 → −p0, p→ +p, θ → π − θ, φ→ π + φ, (A.255)

p0 → −p0, p→ −p, θ → θ, φ→ φ. (A.256)

The first option (A.255) is commonly used in the literature. The second option (A.256)
is more suitable for massless particles since two branch cuts in figure A.5 unite and
one cannot choose a path for the analytic continuation without crossing any of the two
branch cuts. For treating massless particles one can also use the first option (A.255) and
take the limit m→ 0 at the very end.

The helicity states are defined via (1.5) and at a practical level depend only on the
rapidity and two angles (η, θ, φ). Using the definition of rapidity (1.6) we can write
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(A.255) and (A.256) as

η → iπ − η, θ → π − θ, φ→ π + φ, (A.257)

η → iπ + η, θ → θ, φ→ φ. (A.258)

A.5.2 Crossing equations in a general frame

Given an amplitude of the 12→ 34 process in a generic frame we would like to relate it
in this appendix to the four “crossed” amplitudes associated to the following processes

4̄2→ 31̄, 13̄→ 2̄4, 3̄2→ 1̄4, 14̄→ 32̄. (A.259)

We refer to these relations as the crossing equations. To be concrete we will focus on
writing the crossing equations for 12→ 34 and 4̄2→ 31̄ amplitudes, the rest will follow
by analogy.

Given an amplitude
T12→34

λ3,λ4
λ1,λ2

(p1, p2, p3, p4), (A.260)

one can obtain the amplitude 4̄2 → 31̄ by crossing particles 1 and 4. The ingoing
particle 1 becomes then the outgoing one and the outgoing particle 4 becomes the
ingoing one. As a result we need to make the following replacements: pµ

1 → −pµ
1 and

pµ
4 → −pµ

4 . Moreover if a particle 1 has a charge (or more generally transforms in some
representation of a global group) the particle ī has the opposite charge (transforms in
the conjugate representation). As a result (A.260) under crossing 1-4 becomes

T4̄2→31̄
λ3,λ1
λ4,λ2

(−p4, p2, p3,−p1). (A.261)

In both (A.260) and (A.261) all 4-momenta have positive energies p0
i > 0 and are on-shell

(1.48).

Without using the LSZ reduction formula one can only postulate crossing. It states that
one can define a single “mother amplitude” with complex values of 4-momenta such
that all the amplitudes in (A.260) and (A.261) are its boundary values. This is known as
the Mandelstam hypothesis. One cannot however simply equate (A.260) and (A.261). At
the very least these amplitudes should have the same Lorentz transformation properties.
We will use this requirement to fix the crossing equations up to an overall phase. This is
the original way by which general spin crossing equations were derived in [47].

Consider the transformation property of the amplitude describing the 12→ 34 process
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under generic Lorentz transformations Λ. According to (1.54) it reads as

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = (A.262)

∑
λ′i

D
(j1)
λ′1λ1

(p1, Λ)D
(j2)
λ′2λ2

(p2, Λ)D
∗(j3)
λ′3λ3

(p3, Λ)D
∗(j4)
λ′4λ4

(p4, Λ)T12→34
λ′3,λ′4
λ′1,λ′2

(p′1, p′2, p′3, p′4).

Similarly the crossed amplitude describing the 4̄2→ 31̄ process transforms as

T4̄2→31̄
λ3,λ1
λ4,λ2

(−p4, p2, p3,−p1) = (A.263)

∑
λ′i

D
∗(j1)
λ′1λ1

(−p1, Λ)D
(j2)
λ′2λ2

(p2, Λ)D
∗(j3)
λ′3λ3

(p3, Λ)D
(j4)
λ′4λ4

(−p4, Λ)T4̄2→31̄
λ′3,λ′1
λ′4,λ′2

(−p′4, p′2, p′3,−p′1).

In the equations (A.262) and (A.263) we have schematically denoted the arguments of
the Wigner D-matrices by (pi, Λ). In practice they depend only on three Wigner angles
which correspond to the pi → Λpi Lorentz transformation. We denote these angles as

D
(ji)
λ′iλi

(αi, βi, γi) ≡ D
(ji)
λ′iλi

(+p, Λ), (A.264)

D
(ji)
λ′iλi

(ᾱi, β̄i, γ̄i) ≡ D
(j)
λ′λi

(−pi, Λ), (A.265)

where i = 1, 2, 3, 4. The Wigner angles (αi, βi, γi) generically differ from (ᾱi, β̄i, γ̄i). They
are however closely related. The main technical task of this appendix is to understand
precisely how.

We would like to equate the amplitudes which transform in the same way under Lorentz
transformations. Thus, in practice we need to compare the transformation properties of
(A.262) and (A.263). This in turn boils down to comparing the Wigner D-matrices

D
(j1)
λ′1λ1

(+p1, Λ) vs. D
∗(j1)
λ′1λ1

(−p1, Λ) and D
∗(j4)
λ′4λ4

(+p4, Λ) vs. D
(j4)
λ′4λ4

(−p4, Λ).

In order to do this recall that according to (A.58) and (A.60) the Wigner rotation matrices
are defined as

D
(j)
λ′λ(α, β, γ) = D

(j)
λ′λ(+p, Λ) : R(α, β, γ) = Uh(+p′)−1ΛUh(+p), (A.266)

D
(j)
λ′λ(ᾱ, β̄, γ̄) = D

(j)
λ′λ(−p, Λ) : R(ᾱ, β̄, γ̄) = Uh(−p′)−1ΛUh(−p), (A.267)

where the helicity transformation Uh(+p) is defined via (A.54). We repeat this definition
here for convenience

Uh(+p) = R(φ, θ,−φ)× B3(η). (A.268)

The quantity Uh(−p) is defined from Uh(+p) by analytic continuation. As discussed in
the previous section there are two distinct ways to do it, using (A.257) or (A.258). Below
we address the two options separately.
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Analytic continuation 1

Using (A.268) and (A.257) we get

Uh(−p) = R(π + φ, π − θ, −π − φ)× B3(iπ − η). (A.269)

We can then focus on the vector representation defined in appendix A.1.3 and compute
the Wigner angles in (A.266) and (A.267) brute force using computer algebra.12,13,14

Comparing the results we conclude that

ᾱ = −α + 2φ′, β̄ = −β, γ̄ = −γ− 2φ. (A.270)

From the properties of the Wigner D-matrix it then follows that

D
(j)
λ′,λ(ᾱ, β̄, γ̄) = e−2iφ′λ′D

(j)
λ′,λ(−α,−β,−γ)e+2iφλ

= ei(π−2φ′)λ′e−i(π−2φ)λD
∗(j)
λ′λ (α, β, γ),

(A.271)

see appendix A.2 of [44] for the summary of properties of D matrices. In other words

D
(j)
λ′λ(−p, Λ) = ei(π−2φ′)λ′e−i(π−2φ)λD

∗(j)
λ′λ (+p, Λ). (A.272)

With the help of (A.272) one can rewrite the transformation property (A.263) in the
following form15

T4̄2→31̄
λ3,λ1
λ4,λ2

(−p4, p2, p3,−p1) = ∑
λ′i

e−i(π−2φ′1)λ
′
1 e+i(π−2φ1)λ1 ei(π−2φ′4)λ

′
4 e−i(π−2φ4)λ4

(A.273)

D
(j1)
λ′1λ1

(+p1, Λ)D
(j2)
λ′2λ2

(+p1, Λ)D
∗(j3)
λ′3λ3

(+p1, Λ)D
∗(j4)
λ′4λ4

(+p4, Λ)T4̄2→31̄
λ′3,λ′1
λ′4,λ′2

(−p′4, p′2, p′3,−p′1), ,

12Given a generic 3× 3 rotation matrix it is straightforward to determine tan α, cos β and tan γ without
any ambiguity. In order to determine the rest of trigonometric functions it is necessary to choose the region
of β angle. One can either have β ∈ [0, π] or β ∈ [0,−π].

13By convention β ∈ [0, π], however we are free to choose either β̄ ∈ [0, π] or β̄ ∈ [0,−π]. We make the
latter choice, however both options lead to the same conclusion at the very end.

14We first perform this computation for a generic infinitesimal Lorentz transformation. We then focus on
some simple finite transformations like boosts along the x, y and z axes separately.

15In writing this formula we assumed that the relation between D
∗(j)
λ′λ (−p, Λ) and D

(j)
λ′λ(+p, Λ) is obtained

from (A.272) by taking complex conjugation. This is not quite correct because we are interested in the
analytic continuation along the same path in the p0 complex plane and not along the complex conjugated
path. However, the two continuations are related by a monodromy around square root branch points that
can only give rise to an overall helicity-independent phase which is irrelevant for the discussion below.
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which can be rewritten as


e−i(π−2φ1)λ1 e+i(π−2φ4)λ4 T4̄2→31̄

λ3,λ1
λ4,λ2

(−p4, p2, p3,−p1)


 = ∑

λ′i

D
(j1)
λ′1λ1

(+p1, Λ)D
(j2)
λ′2λ2

(+p1, Λ)

D
∗(j3)
λ′3λ3

(+p1, Λ)D
∗(j4)
λ′4λ4

(+p4, Λ)


e−i(π−2φ′1)λ

′
1 ei(π−2φ′4)λ

′
4 T4̄2→31̄

λ′3,λ′1
λ′4,λ′2

(−p′4, p′2, p′3,−p′1)


.

(A.274)

Comparing (A.262) and (A.274) we see that the following two objects transform in the
same way under generic Lorentz transformations

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) vs. e−i(π−2φ1)λ1 ei(π−2φ4)λ4 T4̄2→31̄
λ3,λ1
λ4,λ2

(−p4, p2, p3,−p1).
(A.275)

As a result, the only way to write crossing equations which involve objects transforming
in the same way under generic Lorentz tranformation is to equate the objects in (A.275).
This procedure leaves undetermined an overall helicity independent phase. The other
crossing equations follow by simply re-labeling the indices.

Our final answer reads as

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = ε
(1)
14 e−i(π−2φ1)λ1 ei(π−2φ4)λ4 T4̄2→31̄

λ3,λ1
λ4,λ2

(−p4, p2, p3,−p1),

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = ε
(1)
23 e−i(π−2φ2)λ2 ei(π−2φ3)λ3 T13̄→2̄4

λ2,λ4
λ1,λ3

(p1,−p3,−p2, p4),

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = ε
(1)
13 e−i(π−2φ1)λ1 ei(π−2φ3)λ3 T3̄2→14̄

λ1,λ4
λ3,λ2

(−p3, p2,−p1, p4),

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = ε
(1)
24 e−i(π−2φ2)λ2 ei(π−2φ4)λ4 T14̄→32̄

λ3,λ2
λ1,λ4

(p1,−p4, p3,−p2),
(A.276)

where ε
(1)
14 , ε

(1)
23 , ε

(1)
13 and ε

(1)
24 are the helicity independent phases unfixed by this proce-

dure.

Analytic continuation 2

Using (A.268) and (A.258) we get

Uh(−p) = R(φ, θ, −φ)× B3(iπ + η) = −Uh(+p)R(π, 0, 0). (A.277)

Plugging it into (A.267) one gets

D
(j)
λ′λ(ᾱ, β̄, γ̄) = D

(j)
λ′λ(−p, Λ) : R(ᾱ, β̄, γ̄) = R−1(π, 0, 0)

(
Uh(+p′)−1ΛUh(+p)

)
R(π, 0, 0)

= R−1(π, 0, 0)R(α, β, γ)R(π, 0, 0). (A.278)
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Using the properties of the small Wigner d-matrices we can write then

D
(j)
λ′λ(ᾱ, β̄, γ̄) = e+iπλ′D

(j)
λ′λ(α, β, γ)e−iπλ = D

∗(j)
−λ′,−λ(α, β, γ). (A.279)

In other words we get
D

(j)
λ′λ(−p, Λ) = D

∗(j)
−λ′,−λ(+p, Λ). (A.280)

Using this we can write the transformation property (A.263) as16

T4̄2→31̄
λ3,λ1
λ4,λ2

(−p4, p2, p3,−p1) = (A.281)

∑
λ′i

D
(j1)
−λ′1,−λ1

(+p1, Λ)D
(j2)
λ′2λ2

(+p2, Λ)D
∗(j3)
λ′3λ3

(+p3, Λ)D
∗(j4)
−λ′4,−λ4

(+p4, Λ)T4̄2→31̄
λ′3,λ′1
λ′4,λ′2

(−p′4, p′2, p′3,−p′1).

Let us rename λ1 and λ4 and call them −λ1 and −λ4. We can also do the same for λ′1
and λ′4 since they are dummy indices and the summation covers all the options. We get
then

T4̄2→31̄
+λ3,−λ1
−λ4,+λ2

(−p4, p2, p3,−p1) = (A.282)

∑
λ′i

D
(j1)
λ′1,λ1

(+p1, Λ)D
(j2)
λ′2λ2

(+p2, Λ)D
∗(j3)
λ′3λ3

(+p3, Λ)D
∗(j4)
λ′4,λ4

(+p4, Λ)T4̄2→31̄
+λ′3,−λ′1
−λ′4,+λ′2

(−p′4, p′2, p′3,−p′1).

Comparing (A.262) and (A.282) we conclude that the following two objects transform in
the same way under the generic Lorentz transformations

T12→34
λ3,λ4
λ1,λ2

(+p1, p2, p3,+p4) vs. T4̄2→31̄
+λ3,−λ1
−λ4,+λ2

(−p4, p2, p3,−p1). (A.283)

Analogous discussion holds for other crossings we can thus write the following equa-
tions

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = ε
(2)
14 T4̄2→31̄

+λ3,−λ1
−λ4,+λ2

(−p4,+p2,+p3,−p1),

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = ε
(2)
23 T13̄→2̄4

−λ2,+λ4
+λ1,−λ3

(+p1,−p3,−p2,+p4),

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = ε
(2)
13 T3̄2→14̄

−λ1,+λ4
−λ3,+λ2

(−p3,+p2,−p1,+p4),

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = ε
(2)
24 T14̄→32̄

+λ3,−λ2
+λ1,−λ4

(+p1,−p4,+p3,−p2),

(A.284)

where as before ε
(2)
14 , ε

(2)
23 , ε

(2)
13 and ε

(2)
24 are the helicity independent phases unfixed by

this procedure.

16See footnote 15.
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A.5.3 Crossing equations in a general frame: LSZ derivation

In this section we derive the crossing equation (1.71) from the LSZ reduction formula in
the case of spin 1/2 fermion scattering. The latter is carefully discussed in section 41
of [97]. The LSZ reduction formula in this case reads as

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) =
∫

d4x1 d4x2 d4x3 d4x4

× e−ip3x3 [ūλ3(p3)(−i/∂3 + m3)]α3

× e−ip4x4 [ūλ4(p4)(−i/∂4 + m4)]α4

× 〈Ω|T{Ψα4(x4)Ψα3(x3)Ψα1(x1)Ψα2(x2)}|Ω〉connected

× [(i
←−
/∂ 1 + m1)uλ1(p1)]α1 eip1x1

× [(i
←−
/∂ 2 + m2)uλ2(p2)]α2 eip2x2 , (A.285)

where |Ω〉 denotes the vacuum state and Ψi(x) are 4-component Majorana or Dirac
fields with masses mi. Analogously one can write

T13̄→2̄4
λ2,λ4
λ1,λ3

(p1, p3, p2, p4) =
∫

d4x1 d4x2 d4x3 d4x4

× eip3x3 [v̄λ3(p3)(−i/∂3 + m3)]α3

× e−ip4x4 [ūλ4(p4)(−i/∂4 + m4)]α4

× 〈Ω|T{Ψα4(x4)Ψα2(x2)Ψα1(x1)Ψα3(x3)}|Ω〉connected

× [(i
←−
/∂ 1 + m1)uλ1(p1)]α1 eip1x1

× [(i
←−
/∂ 2 + m2)vλ2(p2)]α2 e−ip2x2 . (A.286)

In the above equations all the momenta have positive energy, namely p0
i > 0 . In

order to relate the two processes (A.285) and (A.286) one can analytically continue the
latter process in p2 and p3 to allow for negative energies. Assuming such an analytic
continuation exists one gets

T13̄→2̄4
λ2,λ4
λ1,λ3

(p1,−p3,−p2, p4) =
∫

d4x1 d4x2 d4x3 d4x4

× e−ip3x3 [v̄λ3(−p3)(−i/∂3 + m3)]α3

× e−ip4x4 [ūλ4(p4)(−i/∂4 + m4)]α4

× 〈Ω|T{Ψα4(x4)Ψα2(x2)Ψα1(x1)Ψα3(x3)}|Ω〉connected

× [(i
←−
/∂ 1 + m1)uλ1(p1)]α1 eip1x1

× [(i
←−
/∂ 2 + m2)vλ2(−p2)]α2 eip2x2 . (A.287)

167



Appendix A. Appendices to spinning S-matrix bootstrap

Notice also that the anticommutation of fermionic operators manifests itself in the
following relation

〈Ω|T{Ψα4(x4)Ψα2(x2)Ψα1(x1)Ψα3(x3)}|Ω〉 =
− 〈Ω|T{Ψα4(x4)Ψα3(x3)Ψα1(x1)Ψα2(x2)}|Ω〉. (A.288)

According to appendix A.5.1 there are two ways of choosing the analytic continuation
when writing (A.287). Below we discuss both of them in order.

Analytic continuation 1

Using the analytic continuation (A.255) and the definition (2.67) it follows straightfor-
wardly

uλ(−p) = eiλ(π+2φ)vλ(p), ūλ(−p) = eiλ(π−2φ)v̄λ(p),

vλ(−p) = eiλ(π−2φ)uλ(p), v̄λ(−p) = eiλ(π+2φ)ūλ(p).
(A.289)

Plugging (A.289) and (A.288) into (A.287) and comparing the result with (A.285) we
arrive at the following crossing equation

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = −e−iλ2(π−2φ2)e−iλ3(π+2φ3)T13̄→2̄4
λ2,λ4
λ1,λ3

(p1,−p3,−p2, p4).
(A.290)

Analogously one derives the other three crossing equations. The complete summary of
crossing equations reads

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = −e−iλ1(π−2φ1)e−iλ4(π+2φ4)T4̄2→31̄
λ3,λ1
λ4,λ2

(−p4, p2, p3,−p1),

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = −e−iλ2(π−2φ2)e−iλ3(π+2φ3)T13̄→2̄4
λ2,λ4
λ1,λ3

(p1,−p3,−p2, p4),

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = −e−iλ1(π−2φ1)e−iλ3(π+2φ3)T3̄2→1̄4
λ1,λ4
λ3,λ2

(−p3, p2,−p1, p4),

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = −e−iλ2(π−2φ2)e−iλ4(π+2φ4)T14̄→32̄
λ3,λ2
λ1,λ4

(p1,−p4, p3,−p2).
(A.291)

We can now compare the above to (A.276) and deduce the undetermined phases17

ε
(1)
14 = ε

(1)
23 = ε

(1)
13 = ε

(1)
24 = +1. (A.292)

Analytic continuation 2

Using the analytic continuation (A.256) and the definition (2.67) it follows straightfor-
wardly

uλ(−p) = i v−λ(p), ūλ(−p) = i v̄−λ(p),

vλ(−p) = i u−λ(p), v̄λ(−p) = i ū−λ(p).
(A.293)

17Here we use the fact that e2iπλ = −1 since λ is half-integer.
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Plugging (A.293) and (A.288) into (A.287) and comparing the result with (A.285) we
arrive at the following crossing equation

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = T13̄→2̄4
−λ2,+λ4
+λ1,−λ3

(p1,−p3,−p2, p4). (A.294)

Analogously one derives the other three crossing equations. The complete summary of
crossing equations reads

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = T4̄2→31̄
+λ3,−λ1
−λ4,+λ2

(−p4, p2, p3,−p1),

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = T13̄→2̄4
−λ2,+λ4
+λ1,−λ3

(p1,−p3,−p2, p4),

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = T3̄2→1̄4
−λ1,+λ4
−λ3,+λ2

(−p3, p2,−p1, p4),

tT12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = T14̄→32̄
+λ3,−λ2
+λ1,−λ4

(p1,−p4, p3,−p2).

(A.295)

Comparing the above with (A.284), we see that all the previously undetermined phases
are

ε
(2)
14 = ε

(2)
23 = ε

(2)
13 = ε

(2)
24 = +1. (A.296)

Concluding remarks

We have derived in this appendix the crossing equations for generic spin 1/2 particles
in a general frame using the LSZ reduction formula. These depend on the analytic
continuation. For the analytic continuation (A.255) our crossing equations are given
by (A.291). For the analytic continuation (A.256) our crossing equations are given by
(A.295). All these formulas remain (almost) the same even if some of the particles have
spin different from 1/2. This follows from the fact that the spin structures of a generic
spin particle can be represented by products of u and v objects. The only change in the
crossing equations comes in the overall sign since some particles can now commute
instead.

A.5.4 Crossing equations in the center of mass frame

The goal of this appendix is to write the crossing equations (A.276) and (A.284) in the
center of mass frame. We will see that both analytic continuations lead to the same center
of mass equations. The crossing equations 1-4 and 2-3 are called the s− t equations.
Since they carry identical information, we focus on only on the 2-3 crossing equation.
Instead the crossing equations 1-3 and 2-4 are called the s− u equations. Since they also
carry the same information we focus on only the 2-4 crossing equation. The discussion
of the s− u center of mass equations is identical to the s− t one, we will therefore only
provide the final results without any intermediate steps.
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s− t crossing equation

According to appendix A.5.2 the 2-3 crossing equation depending on the analytic contin-
uation can take either of the two forms

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = ε
(1)
23 e−i(π−2φ2)λ2 ei(π−2φ3)λ3 T13̄→2̄4

λ2,λ4
λ1,λ3

(P1, P2, P3, P4),
(A.297)

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = ε
(2)
23 T13̄→2̄4

−λ2,+λ4
+λ1,−λ3

(P1, P2, P3, P4), (A.298)

where we have defined

P1 ≡ p1, P2 ≡ −p3, P3 ≡ −p2, P4 ≡ p4. (A.299)

In the right hand-side of (A.297) and (A.298) P1 and P2 describe the incoming particles 1
and 3̄ respectively, whereas P3 and P4 describe the outgoing particles 2̄ and 4 respectively.
The Mandelstam variables associated to the left-hand side are as usual

s ≡ −(p1 + p2)
2, t ≡ −(p1 − p3)

2, u ≡ −(p1 − p4)
2. (A.300)

Instead the Mandelstam variables associated to the right-hand side are

S ≡ −(P1 + P2)
2 = −(p1 − p3)

2 = t,

T ≡ −(P1 − P3)
2 = −(p1 + p2)

2 = s,

U ≡ −(P1 − P4)
2 = −(p1 − p4)

2 = u.

(A.301)

The Mandelstam variables remain invariant by definition under any Lorentz transfor-
mation.

Let us now evaluate the left-hand side of (A.297) and (A.298) in the center of mass frame
of the 12→ 34 process denoted by pcom

i . It is defined in (3.9), we write it here again for
convenience

pcom
1 ≡ (E1, 0, 0,+p),

pcom
3 ≡ (E3,+p′ sin θ, 0,+p′ cos θ),

pcom
2 ≡ (E2, 0, 0,−p),

pcom
4 ≡ (E4,−p′ sin θ, 0,−p′ cos θ).

(A.302)

The main feature of this frame is that it respects the center of mass conditions

pcom
1 + pcom

2 = (E1 + E2, 0, 0, 0),

pcom
3 + pcom

4 = (E3 + E4, 0, 0, 0).
(A.303)
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s channel COM frame

1
2

4

3
(i) Lorentz (complex)

12

3

4

(ii) Cross 2↔ 3

1
3

4

2

t channel COM frame

Figure A.6: Schematic picture of (23) crossing for COM frame amplitudes.

Then the right-hand side of (A.297) and (A.298) will depend on

Pcom
1 ≡ (E1, 0, 0, p),

Pcom
2 ≡ (−E3,−p′ sin θ, 0,−p′ cos θ),

Pcom
3 ≡ (−E2, 0, 0, p),

Pcom
4 ≡ (E4,−p′ sin θ, 0,−p′ cos θ).

(A.304)

The latter obey
Pcom

1 − Pcom
3 = (E1 + E2, 0, 0, 0),

Pcom
4 − Pcom

2 = (E3 + E4, 0, 0, 0).
(A.305)

However, this is not the standard COM frame of the process 13̄→ 2̄4. We refer to (A.304)
as the (23) crossed COM frame.

Once the left-hand sides of (A.297) and (A.298) are evaluated in the 12 → 34 COM
frame which respects (A.303) we do not get closed expressions since the right-hand
side is not in the 13̄→ 2̄4 COM frame but rather in the (23) crossed COM frame18. We
therefore need an additional Lorentz transformation. It turns out to be simpler to bring
the left-hand side to the (23) crossed COM frame. This way upon (23) crossing we end
up in the COM frame for the 13̄→ 2̄4. This is illustrated in figure A.6.

18Recall that we defined the amplitudes as functions of Mandelstam invariants in the COM frame.

171



Appendix A. Appendices to spinning S-matrix bootstrap

We consider the Lorentz transformation Λ such that

pcom
1 = (E1, 0, 0,+p)

pcom
2 = (E2, 0, 0,−p)

pcom
3 = (E3,+p′ sin θ, 0,+p′ cos θ)

pcom
4 = (E4,−p′ sin θ, 0,−p′ cos θ)

=⇒

p̂com
1 = (Ê1, 0, 0,+p̂),

p̂com
2 = (Ê2,−p̂′ sin θ̂, 0,−p̂′ cos θ̂),

p̂com
3 = (Ê3, 0, 0, p̂),

p̂com
4 = (Ê4,−p̂′ sin θ̂, 0,−p̂′ cos θ̂),

(A.306)
where Êi, p̂, , p̂′ and θ̂ are the components of the 4-momenta in the new frame. The
frame described by the right-hand side (A.306) is precisely the (23) crossed frame (A.304)
since

p̂com
1 − p̂com

3 = (Ê1 − Ê3, 0, 0, 0),

p̂com
4 − p̂com

2 = (Ê4 − Ê2, 0, 0, 0).
(A.307)

Due to the results of appendix A.4.3 we have

E1 =
s + m2

1 −m2
2

2
√

s
, E2 =

s−m2
1 + m2

2

2
√

s
, E3 =

s + m2
3 −m2

4

2
√

s
, E4 =

s−m2
3 + m2

4

2
√

s
,

(A.308)

p =
L12(s)
2
√

s
, p′ =

L34(s)
2
√

s
. (A.309)

These are originally defined in the physical range of parameters of the 12→ 34 process,
where in the case of identical particles we have

12→ 34 : s ≥ 4m2, t ∈ [4m2 − s , 0]. (A.310)

Remember that s is regularized as s + iε, where ε > 0. We can unambiguously continue
all the formulas valid in the domain (A.310) to the physical domain of the 13̄ → 2̄4
process which for identical particles read as

13̄→ 2̄4 : t ≥ 4m2, s ∈ [4m2 − t , 0]. (A.311)

The Lorentz transformation which allows for (A.306) and (A.307) has the following form

Λ = R2(ψ2)B3(χ)R2(ψ1), (A.312)

where R2 and B3 are finite rotations around the y-axis and boost in the z-direction. Their
form in the vector representation is given in appendix A.1.3. By requiring (A.307) we
can determine the unknown parameters ψ1, ψ2 and χ. First, using the rotation R2(ψ1)

we make the x-components of pcom
1 and pcom

3 equal. This is achieved for example with

cos ψ1 =
p− p′ cos θ√

p2 + p′2 − 2pp′ cos θ
, sin ψ1 =

p′ sin θ√
p2 + p′2 − 2pp′ cos θ

. (A.313)

Second, using the boost B3(χ) along the z-axis we make the z-components of the rotated
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vectors pcom
1 and pcom

3 equal. This is achieved with

cosh χ =
E1 − E3√

(E1 − E3)2 − p2 − p′2 + 2pp′ cos θ
=

m2
1 −m2

2 −m2
3 + m2

4

2
√

s
√

t
, (A.314)

sinh χ = −
√

p2 + p′2 − 2pp′ cos θ√
(E1 − E3)2 − p2 − p′2 + 2pp′ cos θ

= −

√
s−1(m2

1 −m2
2 −m2

3 + m2
4)

2 − 4t

2
√

t
.

Third, the rotation R2(ψ2) brings us to the desired frame. However, we will not need
the explicit expression for the angle ψ2. As a result we get the following expressions

Ê1 =
m2

1 −m2
3 + t

2
√

t
, Ê2 =

m2
4 −m2

2 − t
2
√

t
, Ê3 =

m2
1 −m2

3 − t
2
√

t
, Ê4 =

m2
4 −m2

2 + t
2
√

t
,

(A.315)

p̂2 =
(L13(t))2

4t
, p̂′ 2 =

(L24(t))2

4t
. (A.316)

There were several choices of signs in (A.314). We picked one such that the energy Ê1 in
(A.315) is non-negative in the physical domain (A.311) of the process 13̄→ 2̄4.

Assuming that we have determined the correct values of parameters ψ1, ψ2 and χ, we
can then straightforwardly compute the Wigner angles using the results of appendix
A.1.4, which read

cos αi =
Ei Êi −m2

i cosh χ

pi p̂i
, sin αi =

mi sinh χ

p̂i
sin(θi + ψ1). (A.317)

Here the Wigner angles with the subscript i = 1, 2, 3, 4 correspond to Lorentz transfor-
mations of pcom

i in (A.306). The spherical angles of the four-particles in (A.306) before
the Lorentz transformation read as

p1 = p2 = p, θ1 = 0, θ2 = π, p3 = p4 = p′, θ3 = θ, θ4 = θ + π. (A.318)

Using the transformation property (1.54) of scattering amplitudes we can then write

T12→34
λ3,λ4
λ1,λ2

(pcom
1 , pcom

2 , pcom
3 , pcom

4 ) =

∑
λ′i

d(j1)
λ′1λ1

(α1)d
(j2)
λ′2λ2

(α2)d
(j3)
λ′3λ3

(α3)d
(j4)
λ′4λ4

(α4)T12→34
λ′3,λ′4
λ′1,λ′2

( p̂com
1 , p̂com

3 , p̂com
2 , p̂com

4 ). (A.319)

Analytic continuation 1

Having performed the Lorentz transformations (A.306) we ended up with (A.315). These
expressions contain an ambiguity on how to take a square root. This is related to the
choice of the analytic continuation discussed in section A.5. For the choice (A.255) in the
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domain (A.311) we have

p̂ = +
L13(t)
2
√

t
, p̂′ = +

L24(t)
2
√

t
. (A.320)

The spherical angles of the four-momenta p̂com
i after the Lorentz transformation read as

p̂1 = p̂3 = p̂, θ̂1 = θ̂3 = 0, p̂2 = p̂4 = p̂′, θ̂2 = θ̂4 = θ̂ + π. (A.321)

Using these, the boost (A.314) and (A.317) we obtain in full generality the cosines19

cos α1 =
+(s + m2

1 −m2
2)(t + m2

1 −m2
3) + 2m2

1 ∆t

L12(s)L13(t)
,

cos α2 =
−(s−m2

1 + m2
2)(t + m2

2 −m2
4) + 2m2

2 ∆t

L12(s)L24(t)
,

cos α3 =
−(s + m2

3 −m2
4)(t−m2

1 + m2
3) + 2m2

3 ∆t

L34(s)L13(t)
,

cos α4 =
+(s + m2

4 −m2
3)(t + m2

4 −m2
2) + 2m2

4 ∆t

L34(s)L24(t)
,

(A.322)

together with sines

sin α1 = − 2m1
√

Φ
L12(s)L13(t)

, sin α2 = +
2m2
√

Φ
L12(s)L24(t)

,

sin α3 = − 2m3
√

Φ
L34(s)L13(t)

, sin α4 = +
2m4
√

Φ
L34(s)L24(t)

,

(A.323)

where the objects Φ and ∆t were defined (A.239) and (A.240).

Using the crossing relation (A.297), where we set φ2 = π and φ3 = 0, and plugging it
into (A.319) we get

T12→34
λ3,λ4
λ1,λ2

(pcom
1 , pcom

2 , pcom
3 , pcom

4 ) = ε
(1)
23 ∑

λ′i

eiπ(λ′2+λ′3)

d(j1)
λ′1λ1

(α1)d
(j2)
λ′2λ2

(α2)d
(j3)
λ′3λ3

(α3)d
(j4)
λ′4λ4

(α4)T13̄→2̄4
λ′2,λ′4
λ′1,λ′3

( p̂com
1 ,− p̂com

3 ,− p̂com
2 , p̂com

4 ). (A.324)

There is one last important subtlety we need to take into account. Consider the four-
momentum of particle 3 in the left- and right-hand side of (A.306). Before the Lorentz
transformation the spherical angles of the pcom

3 are (θ3, φ3) = (θ, 0) by definition of the
center of mass frame. After the Lorentz transformation the spherical angles of − p̂com

3

19The values computed here match precisely the ones of formula (13) in [49]. Notice that our process
12→ 34 corresponds to their ac→ bd. Thus, in order to see the equivalence one needs to identify the labels
as 1 = a, 2 = c, 3 = b and 4 = d.
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are (θ̂3, φ̂3).20 They can take one of the two option

(θ̂, 0) or (θ̂, π) = (−θ̂, 0). (A.325)

It is hard to see which option is correct from the above arguments. To check this we
pick random values of s and t from the domain (A.311). We observe that θ̂ ∈ [−π, 0]
which favors the second option in (A.325) is correct. As a result the amplitude in the
right-hand side of (A.324) depends on the −θ̂. In order to rewrite it in terms of +θ̂ we
use (1.105) and the following properties of the Wigner d-matrix

d(j)
λ′λ(−ω) = (−1)λ′−λd(j)

λ′λ(+ω) (A.326)

which lead to

Tλ′2,λ′4
λ′1,λ′3

(S, T(S,−θ̂), U(S,−θ̂)) = eiπ(λ′1−λ′3−λ′2+λ′4)Tλ′2,λ′4
λ′1,λ′3

(S, T(S,+θ̂), U(S,+θ̂)). (A.327)

Plugging (A.327) in the right-hand side of (A.324) and using the definition (1.61) we
arrive at the final crossing equation

T12→34
λ3,λ4
λ1,λ2

(s, t, u) = ε
(1)
23 ∑

λ′i

eiπ(λ′1+λ′4)

d(j1)
λ′1λ1

(α1)d
(j2)
λ′2λ2

(α2)d
(j3)
λ′3λ3

(α3)d
(j4)
λ′4λ4

(α4)T13̄→2̄4
λ′2,λ′4
λ′1,λ′3

(t, s, u). (A.328)

Focusing on the case of identical particles one can check that applying (A.328) twice
gives back the initial process 12 → 34. If we chose the other option in (A.325) the
resulting crossing equations would not have passed this consistency check.

Analytic continuation 2

For the choice of the analytic continuation (A.256) in the domain (A.311) we have instead

p̂ = ±L13(t)
2
√

t
, p̂′ = ±L24(t)

2
√

t
, (A.329)

where the minus is taken for the crossed particles 2 and 3, and the plus is taken for the
unchanged particles 1 and 4. In other words after the Lorentz transformation (A.306)
we get

p̂1 = +
L13(t)
2
√

t
, p̂2 = −L24(t)

2
√

t
, p̂3 = −L13(t)

2
√

t
, p̂4 = +

L24(t)
2
√

t
. (A.330)

Then the cosine and sine of Wigner angles will be given by (A.322) and (A.323) with
an additional overall sign in both sines and cosines for particle 2 and 3. Denoting the

20We discuss here − p̂com
3 because it is the quantity which enters the right-hand side of (A.324).
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angles for the second analytic continuation by α
(2)
i in other words we see that21

α
(2)
1 = α1, α

(2)
2 = α2 + π, α

(2)
3 = α3 + π, α

(2)
4 = α4. (A.331)

Using the crossing relation (A.298) and plugging it into (A.319) we simply get

T12→34
λ3,λ4
λ1,λ2

(pcom
1 , pcom

2 , pcom
3 , pcom

4 ) = ε
(2)
23 ∑

λ′i

d(j1)
λ′1λ1

(α
(2)
1 )d(j2)

λ′2λ2
(α

(2)
2 )

d(j3)
λ′3λ3

(α
(2)
3 )d(j4)

λ′4λ4
(α

(2)
4 )T13̄→2̄4

−λ′2,+λ′4
+λ′1,−λ′3

( p̂com
1 ,− p̂com

3 ,− p̂com
2 , p̂com

4 ). (A.332)

Plugging (A.327) and (A.331) in the right-hand side of (A.332) and using the definition
(1.61) we arrive at the final equation

T12→34
λ3,λ4
λ1,λ2

(s, t, u) = ε
(2)
23 ∑

λ′i

eiπ(λ′1−λ′3−λ′2+λ′4)d(j1)
λ′1λ1

(α1)d
(j2)
λ′2λ2

(α2 + π)

d(j3)
λ′3λ3

(α3 + π)d(j4)
λ′4λ4

(α4)T13̄→2̄4
−λ′2,+λ′4
+λ′1,−λ′3

(t, s, u). (A.333)

Renaming the dummy indices λ′2 → −λ′2 and λ′3 → −λ′3 and using the following
property

eiπ jd(j)
λ′λ(ω) = eiπλ′d(j)

−λ′λ(ω + π) (A.334)

it is straightforward to see that (A.333) is equivalent to (A.328) up to an overall phase.

Concluding remarks

Let us conclude by stressing that Wigner small d-matrices obey the following property

d(`)λ′λ(ω + 2π) = e2πi `d(`)λ′λ(ω). (A.335)

This means that for bosonic particles Wigner small d-matrices are 2π periodic instead
for fermionic particles they are 4π periodic. As a result the knowledge of (A.322) and
(A.323) does not always fix the Wigner angles αi uniquely since the sine and cosine are
2π periodic functions. This issue appears only for fermionic particles and causes an
ambiguity in the overall phase in the crossing equations. Extra input is needed to fix
this ambiguity.

21Since Wigner d-matrices are 4π periodic we might make an overall sign mistake in the final crossing
equation by choosing (A.331).
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s− u crossing equation

We now consider the s− u crossing equation due to (2-4) permutation in the center of
mass frame. It is given by

T12→34
λ3,λ4
λ1,λ2

(s, t, u) = ε
(1)
24 ∑

λ′i

eiπ(λ′1+λ′3)

d(j1)
λ′1λ1

(β1)d
(j2)
λ′2λ2

(β2)d
(j3)
λ′3λ3

(β3)d
(j4)
λ′4λ4

(β4)T14̄→32̄
λ′3,λ′2
λ′1,λ′4

(u, t, s). (A.336)

The cosines of Wigner angles read as22

cos β1 =
+(s + m2

1 −m2
2)(u + m2

1 −m2
4) + 2m2

1 ∆u

L12(s)L14(u)
,

cos β2 =
−(s + m2

2 −m2
1)(u + m2

2 −m2
3) + 2m2

2 ∆u

L12(s)L23(u)
,

cos β3 =
+(s + m2

3 −m2
4)(u + m2

3 −m2
2) + 2m2

3 ∆u

L34(s)L23(u)
,

cos β4 =
−(s + m2

4 −m2
3)(u + m2

4 −m2
1) + 2m2

4 ∆u

L34(s)L14(u)
.

(A.337)

The sines of Wigner angles read as

sin β1 = +
2m1
√

Φ
L12(s)L14(u)

, sin β2 = − 2m2
√

Φ
L12(s)L23(u)

,

sin β3 = − 2m3
√

Φ
L34(s)L23(u)

, sin β4 = +
2m4
√

Φ
L34(s)L14(u)

,

(A.338)

where the objects Φ and ∆u are defined in (A.239) and (A.240).

A.6 Perturbative amplitudes

To complement the discussion of the main text we derive several perturbative results in
this section. The computations done in this section closely follow Part II of [97]. Let us
start by considering the following free Lagrangian density

LΨ
f ree ≡

i
2

Ψγµ∂µΨ− 1
2

mΨΨ, (A.339)

where Ψ is the four component Majorana field. It obeys the Majorana condition

Ψ = ΨTC, (A.340)
22The values computed here match precisely the ones of formula (26) in [49]. Notice that our process

12→ 34 corresponds to their ac→ bd. Thus, in order to see the equivalence one needs to identify the labels
as 1 = a, 2 = c, 3 = b and 4 = d.
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where C is the charge conjugation matrix defined as

C ≡




0 −1 0 0
+1 0 0 0
0 0 0 +1
0 0 −1 0


 . (A.341)

When acting on the vacuum Majorana field creates a neutral spin 1
2 particle. The intrinsic

parity, defined in (1.16), for such a particle can only be

η = ±i. (A.342)

This is the only option compatible with the Majorana condition (A.340).

In what follows we will compute scattering amplitudes of spin 1
2 particles in Fermi,

Yukawa and pseudo-Yukawa theories to the leading order. We will conclude with a brief
discussion on counting interaction terms in the effective Lagrangian using scattering
amplitudes.

A.6.1 Fermi theory

Consider the Fermi theory defined by the following Lagrangian density

L = LΨ
f ree +

λ

8m2 (ΨΨ)(ΨΨ), (A.343)

where λ is the coupling known as the Fermi constant. After performing a standard
computation one can obtain the following expressions for the scattering amplitudes of
Majorana particles to the leading order

Tλ3,λ4
λ1,λ2

(p1, p2, p3, p4) =
λ

m2 ×
(
[ūλ3(p3)uλ1(p1)][ūλ4(p4)uλ2(p2)]

− [ūλ4(p4)uλ1(p1)][ūλ3(p3)uλ2(p2)] + [v̄λ2(p2)uλ1(p1)][ūλ3(p3)vλ4(p4)]

)
, (A.344)

where u and v are the spinor solutions of the Dirac equation. Their explicit form is given
in (2.67). By using the five tensor structures (2.65) and Fierz identities one can bring the
result (A.344), as expected from (1.56), to the following form

Tλ3,λ4
λ1,λ2

(p1, p2, p3, p4) =
5

∑
I=1

HI(s, t, u)×TI
λ3,λ4
λ1,λ2

(p1, p2, p3, p4), (A.345)
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where the functions HI (with I = 1, . . . , 5) denoted collectively by ~H read as

~H(s, t, u) =
λ

m2 ×




1
0
0
1
−1




. (A.346)

A.6.2 Yukawa theory

We consider now the Yukawa theory defined by the following Lagrangian density

L = LΨ
f ree −

1
2

∂µ ϕ∂µ ϕ− 1
2

M2 ϕ2 +
1
2

gϕΨΨ. (A.347)

Due to (A.342) the interaction is parity invariant only if the scalar field has the intrinsic
parity

ηφ = +1. (A.348)

Again performing a standard computation one gets the following scattering amplitude
of neutral spin 1

2 particles to the leading order

Tλ3,λ4
λ1,λ2

(p1, p2, p3, p4) = g2 ×

 [ūλ3(p3)uλ1(p1)][ūλ4(p4)uλ2(p2)]

−t + M2

− [ūλ4(p4)uλ1(p1)][ūλ3(p3)uλ2(p2)]

−u + M2 +
[v̄λ2(p2)uλ1(p1)][ūλ3(p3)vλ4(p4)]

−s + M2


. (A.349)

By using the five tensor structures (2.65) one can bring the above expression to the form
(A.345), where

~H(s, t, u) =
g2

2
×




− 4
s−M2 +

1
t−M2 +

1
u−M2

1
t−M2 − 1

u−M2

− 1
t−M2 +

1
u−M2

− 1
t−M2 − 1

u−M2
1

t−M2 +
1

u−M2




. (A.350)

A.6.3 Pseudo-Yukawa theory

The pseudo-Yukawa theory is defined by the Lagrangian density

L = LΨ
f ree −

1
2

∂µ ϕ̃∂µ ϕ̃− 1
2

M2 ϕ̃2 +
1
2

g̃ϕ̃Ψγ5Ψ. (A.351)
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Due to (A.342) the interaction is parity invariant only if the scalar field has the intrinsic
parity

ηφ̃ = −1, (A.352)

hence we refer to φ̃ as pseudo-scalar. As before we compute the scattering amplitude to
the leading order and obtain

Tλ3,λ4
λ1,λ2

(p1, p2, p3, p4) = g̃2 ×

 [ūλ3(p3)γ5uλ1(p1)][ūλ4(p4)γ

5uλ2(p2)]

−t + M2

− [ūλ4(p4)γ
5uλ1(p1)][ūλ3(p3)γ5uλ2(p2)]

−u + M2 +
[v̄λ2(p2)γ5uλ1(p1)][ūλ3(p3)γ5vλ4(p4)]

−s + M2


.

(A.353)

Again by using the five tensor structures (2.65) one can bring the above expression to
the form (A.345), where

~H(s, t, u) =
g̃2

2
×




1
t−M2 +

1
u−M2

− 1
t−M2 +

1
u−M2

− 1
t−M2 +

1
u−M2

1
t−M2 +

1
u−M2

− 4
s−M2 +

1
t−M2 +

1
u−M2




. (A.354)

A.6.4 Counting couplings at a given order in EFT

Let us consider the effective Lagrangian density of a single Majorana field Ψ describing
the two to two scattering process schematically denoted by ΨΨ→ ΨΨ. It reads

L = LΨ
f ree + L4 + L5 + L6 + . . . , (A.355)

where Ln with n = 4, 5, 6 are the dimension 4, 5 and 6 terms. The question we will
address now is how to count the number of linearly independent terms in such an
effective Lagrangian density at each order n.

We start with n = 4. It is well known that there is only one linearly independent term
(ΨΨ)(ΨΨ) as was used in (A.343). Naively, one can write however many more terms
by appropriately combining

ΨΨ, Ψγ5Ψ, ΨγµΨ, Ψγµγ5Ψ, ΨσµνΨ. (A.356)

Let us now rewrite the Majorana field in terms of a two component left-handed Weyl
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spinor χ, one has

Ψ =

(
χα

χ† α̇

)
. (A.357)

It is then straightforward to show that23

ΨγµΨ = χ†σµχ− χ†σµχ = 0, (A.358)
i
2

ΨσµνΨ = χσµνχ− χ†σµνχ = 0. (A.359)

As a result at the n = 4 level we can write only four terms

L4 3
{
(ΨΨ)(ΨΨ), (Ψγ5Ψ)(Ψγ5Ψ), (Ψγµγ5Ψ)(Ψγµγ5Ψ), (ΨΨ)(Ψγ5Ψ)

}
. (A.360)

Rewriting these in terms of the Weyl spinor χ we see see that they are either proportional
to each other or vanish

(ΨΨ)(ΨΨ) =
(

χχ + χ†χ†
)2

= 2(χχ)(χ†χ†),

(Ψγ5Ψ)(Ψγ5Ψ) =
(
−χχ + χ†χ†

)2
= −2(χχ)(χ†χ†),

(Ψγµγ5Ψ)(Ψγµγ5Ψ) =
(
−2χ†σµχ

) (
−2χ†σµχ

)
= 4(χχ)(χ†χ†),

(ΨΨ)(Ψγ5Ψ) =
(

χχ + χ†χ†
) (
−χχ + χ†χ†

)
= 0. (A.361)

If one is interested in the counting of independent terms only, instead of performing the
above algebra one could notice that L4 terms in the leading order generate the improved
scattering amplitudes ~H(s, t, u) at the crossing symmetric point (2.53). Crossing equa-
tions severely restrict the form of the improved amplitudes at the crossing symmetric
point, see (2.55). The latter contains only one independent parameter. One concludes
that there should be only a single parameter in the effective Lagrangian density L4.

As another example let us consider the n = 6 part. One can write

L6 3
{
(Ψ∂2Ψ)(ΨΨ), (Ψ∂µΨ)(Ψ∂µΨ), (Ψ∂µ∂νΨ)(ΨγµγνΨ), . . .

}
. (A.362)

The improved amplitudes generated by such terms at the leading order will have the
following most general form

~H(s, t, u) = (s− 4m2/3)× ~A + (t− 4m2/3)× ~B + (u− 4m2/3)× ~C, (A.363)

where ~A, ~B and ~C are some real constants. They are constrained by the crossing equations

23Note that all the Weyl indices here have been contracted appropriately.
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(2.27) and (2.28) which require (A.363) to take the following form

~H(s, t, u) =
1

m4




a× (s− 4m2/3)
b× (s + 2t− 4m2)

1
3 (a + 2b)× (s + 2t− 4m2)

b× (s− 4m2/3)
(a + 4b)× (s− 4m2/3)




, (A.364)

where a and b are the undetermined parameters. One concludes that there are only two
linearly independent terms in (A.362).

A.7 Bound state close to the two-particle threshold

In section 2.3 we studied the non-perturbative structure of the scattering amplitude of
neutral spin 1

2 particles with mass m in the presence of a scalar particle with mass M.
Such a particle can be interpreted as a bound state of two fermions. The structure of the
improved scattering amplitude is given by (2.59) and (2.60) for the parity even scalar
particle and by (2.61) and (2.62) for parity odd scalar particle. The structure of the center
of mass amplitudes is obtained by plugging these into (2.24).

In this appendix we study the behavior of the center of mass amplitudes in the presence
of bound states in the limit when M→ 2m. We follow the analysis presented in appendix
E of [4]. The leading behavior of the COM amplitudes is obtained by taking the following
limit

M = (2− ε)m, s = (2m + Eε)2, (A.365)

where E ≥ 0 is kept fixed as we take the limit ε → 0. Applying it to (2.24) combined
with (2.59) and (2.61) in the leading order in ε we get

~Φscalar(E) =
g2

4
E

E + m
×




−1
+1
0
0
0




, ~Φpseudoscalar(E) =
g̃2

4
m

E + m
1
ε
×




1
1
0
0
0




. (A.366)

We see that the amplitude with the scalar particle is completely finite in this limit,
however the amplitude with the pseudoscalar particle diverges. The partial amplitudes
were defined in (2.44). Plugging there the expressions (A.366), replacing s by M2 and
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A.7. Bound state close to the two-particle threshold

only then taking the limit (A.365) we get

~Φ`=0
scalar(E) =

ig2

64π

1
1 + m/E

√
ε×




−1
+1
0
0
0




,

~Φ`=0
pseudoscalar(E) =

ig̃2

64π

1
1 + E/m

1√
ε
×




1
1
0
0
0




.

(A.367)

Notice that poles coming from scalar particles can appear only in ` = 0 partial ampli-
tudes as is explicitly stated here.

According to (2.58) we can take combination of partial amplitude components to define
parity even Φ`

+(s) and parity odd Φ`
−(s) partial amplitudes. In terms of the objects

(2.58) unitarity takes a very simple form

|1 + iΦ`
+(s)| ≤ 1, |1 + iΦ`

−(s)| ≤ 1. (A.368)

Using (A.367) in our context we can the write

scalar exchange: Φ`=0
+ (E) = − g2

32π

1
1 + m/E

√
ε, Φ`=0

− (E) = 0, (A.369)

pseudoscalar exchange: Φ`=0
− (E) =

g̃2

32π

1
1 + E/m

1√
ε

, Φ`=0
+ (E) = 0. (A.370)

In the limit ε → 0 the partial amplitudes (A.369) vanish and we cannot say anything
interesting about the coupling g2. Instead (A.370) diverges. In order to have a partial
amplitudes which is able to satisfy unitarity (A.368) we need the scaling

g̃2 = a
√

ε, (A.371)

with a finite as ε → 0. It is also convenient to make a change of variables from E to z
variable which are related via

E = −m
(z− 1)2

(z + 1)2 . (A.372)

This maps the cut in the E plane to the boundary of the unit disk in z. Plugging the

183



Appendix A. Appendices to spinning S-matrix bootstrap

above into (A.370) we get

Φ`=0
− (z) =

ia
128π

(1 + z)2

z
. (A.373)

Using it and taking the leading behavior in small z, the unitarity conditions (A.368)
leads to ∣∣∣∣

a
128π

1
z

∣∣∣∣ ≤ 1, (A.374)

which should be satisfied on the boundary of the disc described by z = eiφ, where
φ ∈ [0, 2π]. It is then straightforward to see that the maximally allowed value of a which
obeys the unitarity condition (A.374) is

a = 128π. (A.375)

Plugging it into (A.371) and expressing ε in terms of m and M from (A.365) we get the
analytic upper bound

g̃2 ≤ 128π

√
2m−M

m
. (A.376)

A.8 General spin tensor structures

We have introduced the notion of tensor structures in (1.56). Even though one can
completely avoid talking about them, it is sometimes beneficial to know a basis of
tensor structures explicitly. In the case of Majorana fermions the detailed discussion
of tensor structures was given in section 2.4. In this appendix we will briefly explain
how to construct tensor structures for amplitudes with generic spin. There are several
possible ways of doing this. One way is to treat particles with generic spin as multi-
spinors simply described by tensor products of u and v objects defined in section 2.4.
This approach was employed in [28]. Here we describe another approach used in [98].
(In the massless case it reduces to the well known spinor-helicity formalism, see for
example [99].) We chose the latter because it closely resembles various approaches used
in the CFT literature [50, 100–104].

Index free formalism

In section 1.1, more precisely in equation (1.2), we have chosen the basis of states to
be |c,~p; `, λ〉, where λ = −`, . . . ,+` are the helicity labels. It is convenient to move to
another basis where instead of helicities λ we use a symmetrized set of indices

(a1 . . . a2`), (A.377)
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where a1, a2, . . . are the indices in the fundamental representation of the SU(2) Little
group.24 In other words we can have two equivalent bases

|c,~p; `, λ〉 ↔ |c,~p; `〉(a1 ...a2`). (A.378)

It is then extremely convenient to introduce index free notation by contracting the states
with a complex vector (spinor polarization)

sa =

(
ξ

η

)
, (A.379)

where ξ and η are simply the components of the spinor polarization. With the help of
(A.379) one can define the Little group index-free states

|c,~p; `〉(s) ≡ |c,~p; `〉(a1 ...a2`) × sa1 . . . sa2` . (A.380)

The relation between the two bases (A.378) can be determined by requiring

|c,~p; `〉(s) =
`

∑
λ=−`

|c,~p; `, λ〉 × ξλη`−λ. (A.381)

We have defined in (1.47) the interacting part of the scattering amplitude of four particles.
In index free notation it reads

(2π)4δ(4)(pµ
1 + pµ

2 − pµ
3 − pµ

4 )× T12→34(pi, si) ≡(
(s3)〈m3,~p3; `3| ⊗ (s4)〈m4,~p4; `4|

)
T
(
|m1,~p1; `1〉(s1)⊗ |m2,~p2; `2〉(s2)

)
. (A.382)

Analogously to (1.56) we can perform the decomposition of the index free interacting
scattering amplitudes

T12→34(pi, si) =
(2j1+1)...(2j4+1)

∑
I=1

TI(s, t, u) TI(pi, si), (A.383)

where TI(pi, si) are the index-free tensor structures.

Auxiliary objects

The index-free tensor structures appearing in (A.383) are kinematic objects constructed
from the 4-momenta pµ

i and the spinor polarizations sa
i . The former have Lorentz indices

24Here we simply use the fact that any generic irreducible representation j of the SU(2) can be represented

as ` =
(

1
2 ⊗ . . .⊗ 1

2

)
sym

.
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and the latter have Little group indices. In order to contract them we need to somehow
introduce an auxiliary object which has both Lorentz and Little group indices and can
be an intermediary in the contraction of the two. In what follows we will define such an
auxiliary object.

We use the two-component spinor notation of Wess and Bagger [105]. Given a 4-
momentum pµ one can define the standard SL(2, C) matrices using (A.103),

pαα̇ ≡ p · σαα̇, p̄β̇β ≡ p · σ̄β̇β. (A.384)

The indices are raised and lowered by the ε-symbols εαβ and εα̇β̇, where ε12 = −ε12 = +1.
The representation (A.384) leads to

p2 = −det p = −det p̄, (A.385)

pi · pj = −
1
2

tr [pip̄j]. (A.386)

One can introduce the following two objects which have one Lorentz index β or β̇ and
one Little group index b = 1, 2 (in the fundamental representation)25

hβ
b, h̄b

β̇ (A.387)

related by hermitian conjugation

(
hβ

b
)†

= h̄bβ̇,
(

h̄b
β̇

)†

= hβb. (A.388)

The Little group indices are raised and lowered by the ε-symbol εab = −εab, where
ε12 = +1. By taking these objects and contracting their Little group indices one can
represent the SL(2, C) matrices as

pαβ̇ = hα
bh̄b β̇, p̄α̇β = hβbh̄b

α̇. (A.389)

By definition the Little group transformations leave (A.385) invariant. Using the repre-
sentation (A.389) and this invariance one can compute the actual expressions of h and h̄.
They read

matrix hβ
b = matrix h̄bβ̇ =

1√
2
√

m + p0

(
m + p0 + p3 p1 − i p2

p1 + i p2 m + p0 − p3

)
. (A.390)

25These “spinor-helicity" variables are denoted by λ and λ̃ in [98].
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Tensor invariants

We can build tensor structures in (A.383) as products of elementary tensor invariants.
These tensor invariants are in turn built out of

piαβ̇, hiβ
b, h̄ib

β̇, sb
i (A.391)

by fully contracting their indices with all possible invariant objects such as the Kronecker
and the Levi-Civita symbols. Notice also that one can pair hi and sj by contracting their
Little group indices only if i = j because each particle has its own little group. For
transparency we indicate this contraction by “·”. Below we make a summary of all the
possible invariants.

Type I consists of invariant objects with an even number of 4-momenta

〈iiijjj〉 ≡ si · hα
i δ

β
α hj β · sj,

〈iiimnjjj〉 ≡ si · hα
i α(pmp̄n)

β hj β · sj,

〈iiimnprjjj〉 ≡ si · hα
i α(pmp̄nppp̄r)

β hj β · sj,

. . . . . .

(A.392)

Type I* consists of structures related by complex conjugation to the ones of type I

[iiijjj] ≡ si · h̄i α̇ δα̇
β̇

h̄β̇
j · sj,

[iiimnjjj] ≡ si · h̄i α̇
α̇(p̄mpn)β̇ h̄β̇

j · sj,

[iiimnprjjj] ≡ si · h̄i α̇
α̇(p̄mpnp̄ppr)β̇ h̄β̇

j · sj,

. . . . . .

(A.393)

Type II consists of invariant objects with an odd number of 4-momenta

〈iiimjjj] ≡ si · hα
i pm αβ̇ h̄β̇

j · sj,

〈iiimnpjjj] ≡ si · hα
i α(pmp̄npp)β̇ h̄β̇

j · sj,

. . . . . .

(A.394)
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Type II* consists of structures related by complex conjugation to the ones of type II

[iiimjjj〉 ≡ si · h̄i α̇ p̄α̇β
m hj β · sj,

[iiimnpjjj〉 ≡ si · h̄i α̇
α̇(p̄mpnp̄p)

β hj β · sj,

. . . . . .

(A.395)

Type III and III* consists of invariant objects involving the εµνρσ or εµνρσ symbols

〈iiimnpjjj] ≡ si · hα
i (pm µ pn ν pp ρεµνρκσκ)αβ̇ h̄β̇

j · sj,

[iiimnpjjj〉 ≡ si · h̄i α̇ (pm µ pn ν pp ρεµνρκ σ̄κ)
α̇β hj β · sj.

(A.396)

Basis of tensor structures

There are a large number of relations among tensor invariants. For instance due to the
following properties of σ-matrices

σµσ̄νσρ = −ηµνσρ + ηµρσν − ηνρσµ − iεµνρκσκ,

σ̄µσνσ̄ρ = −ηµνσ̄ρ + ηµρσ̄ν − ηνρσ̄µ + iεµνρκ σ̄κ,
(A.397)

see for example [56] for details, any invariant with many products of 4-momenta
(pm p̄n pp . . .) can be reduced to the ones involving at most two 4-momenta. As a result
the most generic tensor structure can be represented by

TI = 〈iiijjj〉Aij [iiijjj]Bij 〈iiimjjj]Cij 〈iiimnjjj〉Dij [iiimnjjj]Eij 〈iiimnpjjj]Fij , (A.398)

where A, B, C D, E and F are exponents fixed by the requirement26,27

TI ∝ s2`1
1 s2`2

2 s2`3
3 s2`4

4 . (A.399)

The latter is simply the statement that the amplitude must be a polynomial in each
si with the degree fixed by the spin of the ith particle. This directly follows from the
definition of the index-free states (A.380).

Constructing all the possible structures according to (A.398) still gives a set of linearly
dependent objects. Eliminating all the dependent structures and forming the basis is the
most challenging part of the formalism. It can be done for particles with low spin, but it
does not seem to be a viable procedure for higher spin particles. Below we simply give

26Notice that the exponent F is either 0 or 1 since any pair of ε-symbols can be written in terms of the
metric.

27Notice also that `1 + `2 + `3 + `4 must be even otherwise one will never be able to fully contract all the
Little group indices and form tensor invariants. This is a standard selection rule which comes out naturally
from this formalism.
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a taste of what kind of relations one could expect.

First, one can show that

〈iiimjjj] = +[jjjmiii〉, 〈iiimnpjjj] = +[jjjmnpiii〉. (A.400)

This is the reason why type II* and type III* invariants have not being included in
(A.398). Second, due to

σµσ̄ν + σνσ̄µ = 2ηµν (A.401)

one can show that
〈iiijjj〉 = −〈jjjiii〉, 〈iiimnjjj〉 = −〈jjjnmiii〉,
[iiijjj] = −[jjjiii], [iiimnjjj] = −[jjjnmiii]

(A.402)

together with
〈iiimnjjj〉+ 〈iiinmjjj〉 = 2 (km · kn) 〈iiijjj〉,
[iiimnjjj] + [iiinmjjj] = 2 (km · kn) [iiijjj].

(A.403)

These relations enforce for instance that type I and I* structures must vanish unless iii 6= jjj
and that without loss of generality one can choose m < n. Third, one can write a number
of Schouten identities. Some of them are

〈iiijjj〉〈kkklll〉+ 〈iiikkk〉〈jjjlll〉+ 〈iiilll〉〈jjjkkk〉 = 0,

〈iiijjj〉〈kkklmmm] + 〈iiikkk〉〈jjjlmmm] + 〈jjjlll〉〈iiilmmm] = 0,

〈iiijkkk]〈lllmnnn] + 〈iiilll〉[kkkjmnnn] + 〈lll jkkk]〈iiimnnn] = 0.

(A.404)

Finally, one should take into account the conservation of 4-momenta

pµ
1 + pµ

2 = pµ
3 + pµ

4 (A.405)

and its consequences.

Partial amplitudes

For completeness let us mention that using tensor structures one can also compute
partial amplitudes.

In (1.101) we have shown how to decompose the scattering amplitudes into partial
amplitudes by injecting a complete set of states. The main objects in this decomposition
to be determined is the following matrix element

〈κ1, κ2|c,~p, `, λ〉, (A.406)

where |κ1〉 and |κ2〉 are the 1PS and |c,~p, `, λ〉 is a generic irrep with spin ` and helicity
λ. The objects (A.406) are the Clebsch-Gordan coefficients of the decomposition. They
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were computed in appendix A.1.2 in full generality using group-theoretic arguments. In
the COM frame they are basically the Wigner d-matrices.

We can repeat this procedure in the index-free formalism by injecting a complete set of
states in the following form

I =
∫ d4 p

(2π)4 θ(p0)∑
γ

∑
`

|c,~p; `; γ〉(s)×
↔
Ds × (s)〈c,~p; `; γ|, (A.407)

where γ are all the additional indices characterizing the state and
↔
Ds is the “gluing”

operator defined as

↔
Ds ≡

1
(2`)!2

(
←
∂

a1

s . . .
←
∂

a2`

s )(
→
∂ s, a1 . . .

→
∂ s, a2`). (A.408)

It simply contracts all the Little group indices of two states. The Clebsch-Gordon
coefficient (A.406) then becomes

C`(s1, s2, s) ≡
(
(s1)〈m1,~p1; `1| ⊗ (s2)〈m2,~p2; `2|

)
|c,~p, `〉(s3). (A.409)

One can explicitly construct tensor structures for (A.409). The partial amplitudes is
given then by gluing left- and right-hand sides of the amplitudes after the injection of
the identity (A.407), namely

C`(s1, s2, s)×
↔
Ds × C`(s3, s4, s). (A.410)

Here we keep the expressions slightly schematic by dropping the dependence of the
4-momenta and focusing only on the spin dependence. The resulting expression (A.410)
should encode the Wigner d-matrix. For instance we have explicitly checked that for the
scalar particles (when there is no dependence on s1, s2, s3 and s4) the expression (A.410)
is proportional to the Legendre polynomial P`.
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B Appendices to photon bootstrap

B.1 LSZ derivation of crossing equations

The LSZ reduction formula for the scattering process 12→ 34 of four spin-1 particles
can be written in the following form [97].

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) =
∫

d4x1 d4x2 d4x3 d4x4

× e−ip3x3 ε
µ3
λ3
(p3)(−∂2

3)

× e−ip4x4 ε
µ4
λ4
(p4)(−∂2

4)

× 〈Ω|T{Aµ4(x4)Aµ3(x3)Aµ1(x1)Aµ2(x2)}|Ω〉connected

× (−
←−
∂2

1 )ε
µ1∗
λ1

(p1) eip1x1

× (−
←−
∂2

2 )ε
µ2∗
λ2

(p2) eip2x2 , (B.1)

where |Ω〉 denotes the vacuum state and Aµi(x) are spin 1 fields (massive or massless).
Similarly we can write the LSZ reduction formula for the process 13̄→ 2̄4

T13̄→2̄4
λ2,λ4
λ1,λ3

(p1, p3, p2, p4) =
∫

d4x1 d4x2 d4x3 d4x4

× e−ip2x2 ε
µ2
λ2
(p2)(−∂2

2)

× e−ip4x4 ε
µ4
λ4
(p4)(−∂2

4)

× 〈Ω|T{Aµ4(x4)Aµ2(x2)Aµ1(x1)Aµ3(x3)}|Ω〉connected

× (−
←−
∂2

1 )ε
µ1∗
λ1

(p1) eip1x1

× (−
←−
∂2

3 )ε
µ3∗
λ3

(p3) eip3x3 , (B.2)

Note that the amplitudes above are defined for positive energy momenta, namely p0
i > 0.

Crossing symmetry is the statement that the amplitudes for the two processes above
are related by analytic continuation. Consider the 13̄ → 24 process and analytically
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continue the expression (B.2) in p2 and p3 to allow for negative energies.

T13̄→2̄4
λ2,λ4
λ1,λ3

(p1,−p3,−p2, p4) =
∫

d4x1 d4x2 d4x3 d4x4

× eip2x2 ε
µ2
λ2
(−p2)(−∂2

2)

× e−ip4x4 ε
µ4
λ4
(p4)(−∂2

4)

× 〈Ω|T{Aµ4(x4)Aµ2(x2)Aµ1(x1)Aµ3(x3)}|Ω〉connected

× (−
←−
∂2

1 )ε
µ1∗
λ1

(p1) eip1x1

× (−
←−
∂2

3 )ε
µ3∗
λ3

(−p3) e−ip3x3 , (B.3)

We see that the above expression looks very similar to (B.1) except for the correlator and
the polarization vectors which are evaluated at negative energies. Using the fact that
bosonic operators commute we see that the correlation functions are equal

〈Ω|T{Aµ4(x4)Aµ3(x3)Aµ1(x1)Aµ2(x2)}|Ω〉 =
〈Ω|T{Aµ4(x4)Aµ2(x2)Aµ1(x1)Aµ3(x3)}|Ω〉 (B.4)

We now consider the negative energy polarization vectors ε
µ
λ(−p). They are the analytic

continuations of the positive energy polarizations, which were defined in (3.19). Since we
deal with massless particles in this work, we choose the following analytic continuation
for the momenta

p0 → −p0 , p→ −p, θ → θ, φ→ φ (B.5)

which ensures that pµ → −pµ. Under this analytic continuation we see from the explicit
form (3.19) that

ε
µ
λ(−p) = ε

µ
λ(p) = ε

µ∗
−λ(p) (B.6)

Thus by using (B.6) and (B.4) in (B.3) and then comparing with (B.1) we have

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = T13̄→2̄4
−λ2,+λ4
+λ1,−λ3

(p1,−p3,−p2, p4). (B.7)

Analogously one derives the other three crossing equations. The complete summary of
crossing equations reads

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = T4̄2→31̄
+λ3,−λ1
−λ4,+λ2

(−p4, p2, p3,−p1),

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = T13̄→2̄4
−λ2,+λ4
+λ1,−λ3

(p1,−p3,−p2, p4),

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = T3̄2→1̄4
−λ1,+λ4
−λ3,+λ2

(−p3, p2,−p1, p4),

tT12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = T14̄→32̄
+λ3,−λ2
+λ1,−λ4

(p1,−p4, p3,−p2).

(B.8)
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B.1.1 All incoming amplitude

Using the LSZ reduction formula (B.1) it is possible to define an unphysical 4 photons to
nothing amplitude by analytic continuation:

Tλ1,λ2,λ3,λ4(p1, p2, p3, p4) ≡ T−λ3,−λ4
λ1, λ2

(p1, p2,−p3,−p4) (B.9)

=
∫

d4x1 d4x2 d4x3 d4x4

× eip3x3 ε
µ3∗
λ3

(p3)(−∂2
3)

× eip4x4 ε
µ4∗
λ4

(p4)(−∂2
4)

× 〈Ω|T{Aµ4(x4)Aµ3(x3)Aµ1(x1)Aµ2(x2)}|Ω〉connected

× (−
←−
∂2

1 )ε
µ1∗
λ1

(p1) eip1x1

× (−
←−
∂2

2 )ε
µ2∗
λ2

(p2) eip2x2 , (B.10)

where we used (B.6). The benefit of defining this unphysical amplitude is that it is
manifestly S4 permutation invariant.

B.2 Perturbative computations

B.2.1 Tree-level amplitude

In this section, we explicitly compute the tree-level amplitude of the dimension 8
interacting EFT Lagrangian (3.72).
In order to do so, notice that the interpolation of the massless vector field at the origin
gives the polarization vector:

〈0|Aµ(0)|~p, λ〉 ≡ ελ, µ(p) , (B.11)

giving at any space-time position:

〈0|Aµ(x)|~p, λ〉 = 〈0|e−iP·x Aµ(0)eiP·x|~p, λ〉 = ελ, µ(p)eip·x (B.12)

Using this, we can straightforwardly interpolate the electromagnetic tensor (3.70):

〈0|Fµν(x)|~p, λ〉 = i
[
pµελ, ν(p)(p)− pνελ, µ(p)(p)

]
eip·x = iHλ, µν(p)eip·x (B.13)

〈~p, λ|Fµν(x)|0〉 = −i
[
Hλ, µν(p)

]∗ e−ip·x ≡ −iHλ
µν(p)e−ip·x (B.14)

Then, the tree-level amplitude is obtained by computing:
(

id〈κ3, κ4|
∫

d4xL8(x)|κ1, κ2〉id
)

connected
(B.15)
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Focussing on the first operator gives
(

id〈κ3, κ4|
∫

d4xc1Fµν(x)Fνν(x)Fαβ(x)Fβα(x)|κ1, κ2〉id
)

connected
(B.16)

= c18(−i)2i2
[

tr(Hλ1 Hλ2) tr(H∗λ3
H∗λ4

) + tr(Hλ1 H∗λ3
) tr(Hλ2 H∗λ4

)

+ tr(Hλ1 H∗λ4
) tr(Hλ2 H∗λ3

)

] ∫
d4xei(p1+p2−p3−p4)·x (B.17)

= 8c1

[
tr(Hλ1 Hλ2) tr(Hλ3 Hλ4) + tr(Hλ1 Hλ3) tr(Hλ2 Hλ4)

+ tr(Hλ1 Hλ4) tr(Hλ2 Hλ3)

]
(2π)4δ(4)(p1 + p2 − p3 − p4) , (B.18)

and similarly for the second operator. The tree-level amplitude is therefore

T λ3,λ4
λ1,λ2

(p1, p2, p3, p4) =

8c1

[
tr(Hλ1 Hλ2) tr(Hλ3 Hλ4) + tr(Hλ1 Hλ3) tr(Hλ2 Hλ4) + tr(Hλ1 Hλ4) tr(Hλ2 Hλ3)

]

+8c2

[
tr
(

Hλ1 Hλ3 Hλ2 Hλ4
)
+ tr

(
Hλ1 Hλ2 Hλ3 Hλ4

)
+ tr

(
Hλ1 Hλ2 Hλ4 Hλ3

) ]
.

(B.19)

B.3 Asymptotic unitarity constraints

B.3.1 Large spin

In this section we follow the analysis of Appendix D.4 in [4] to estimate the behaviour of
partial waves at large spin. The first step is to use the Froissart-Gribov projection and
write partial waves as a contour integral in the complex z = cos θ plane. To this end we
define

e `λµ(z) =
(−1)λ−µ

2
[Γ(`+ λ + 1)Γ(`− λ + 1)Γ(`+ µ + 1)Γ(`− µ + 1)]

1
2

(
1 + z

2

) λ+µ
2
(

1− z
2

)− λ−µ
2

×
(

z− 1
2

)−`−µ−1 1
Γ(2`+ 2) 2F1

(
`+ λ + 1, `+ µ + 1, 2`+ 2,

2
1− z

)

(B.20)
valid for λ + µ ≥ 0 and λ − µ ≥ 0. For other ranges of parameters, the function is
defined by its symmetry properties

e `λµ(z) = (−1)λ−µe `µλ(z) = (−1)λ−µe `−λ,−µ(z) (B.21)
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This function has a branch cut in the complex z plane between −1 and 1 and its disconti-
nuity there is the Wigner d function1:

e `λµ(z + iε)− e `λµ(z− iε) = −iπd `
λµ(z) (B.22)

We now recall the definition of partial wave amplitudes

T`λ3,λ4
λ1,λ2

(s) =
∫ +1

−1
dz d `

λ12λ34
(z) Tλ3,λ4

λ1,λ2
(s, z) (B.23)

At this point we would like to use (B.22) write the above equation as a contour integral.
But before we do that we need to first extract the kinematic singularities of the scattering
amplitude in the z plane2. We therefore write

Tλ3,λ4
λ1,λ2

(s, z) = bλµ(z)T̂
λ3,λ4
λ1,λ2

(s, z) (B.24)

where we have defined the b function

bλµ(z) =
(

1 + z
2

) |λ+µ|
2
(

1− z
2

) |λ−µ|
2

(B.25)

and the function T̂ no longer has any kinematic singularities in the z plane. We can now
re-write the partial wave integral as a contour integral

T`λ3,λ4
λ1,λ2

(s) =
1

iπ

∮

C
bλ12λ34(z)e

`
λ12λ34

(z)T̂λ3,λ4
λ1,λ2

(s, z) (B.26)

with the contour C encircling the line segment [−1, 1] anti-clockwise. Opening the
contour and dropping the arcs at infinity, which we can do for sufficiently large `3, we
arrive at the (generalized) Froissart-Gribov projection formula

T`λ3,λ4
λ1,λ2

(s) =
1

iπ

(∫ ∞

zt

dz bλ12λ34(z) e `λ12λ34
(z)DisctT̂

λ3,λ4
λ1,λ2

(s, z)

+
∫ −∞

−zu

dz bλ12λ34(z) e `λ12λ34
(z)DiscuT̂λ3,λ4

λ1,λ2
(s, z)

)
(B.27)

where the 1st term is due to the t channel branch cut from [zt, ∞) and the 2nd term is
due to the u channel branch cut from (−∞,−zu]4.

1In this respect, its a generalization of the Legendre Q function which obeys an analogous relation to the
Legendre P polynomial.

2The amplitudes T(s, z) have kinematic branch points at z = +1 and z = −1:

T(s, z) ∼
(

1 + z
2

) |λ+µ|
2
(

1− z
2

) |λ−µ|
2

(regular)

.
3Note that e` ∼ z−l for large |z|.
4Note that we do not consider possible bound state terms in this analysis.
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For theories with a mass gap, zt = 1 + 2t0
s−4m2 > 1 and zu = 1 + 2u0

s−4m2 > 1 and due to
the exponential decay in spin of the e function, the partial wave amplitudes also have
an exponential fall off in spin. For theories with massless particles this is not the case,
because zt → 1 and zu → 1.

We therefore consider the large `, z→ 1+ limit of the hypergeometric function and find

2F1

(
`+ λ + 1, `+ µ + 1, 2`+ 2,

2
1− z

)
≈ 2 Γ(2`+ 2)

Γ(`+ µ + 1)Γ(`− µ + 1)

×
(
`+ λ + 1
`− µ

) µ−λ
2
(

z− 1
2

)`+1+ µ+λ
2

× Kλ−µ

(√
2(`+ λ + 1)(`− µ)(z− 1)

)
.

(B.28)
Hence we find the approximation for the e function valid for ` � 1 and z → 1+ and
λ� `, µ� `

e `λµ(z) ≈ (−1)λ−µ

(
1 + z

2

) λ+µ
2
(

1− z
2

)− λ−µ
2
(

z− 1
2

) λ−µ
2

Kλ−µ

(√
2(`+ λ + 1)(`− µ)(z− 1)

)
.

(B.29)
For the other limit `� 1 and z→ −1−, we use the relation

e `λµ(−z) = (−1)l−λ+1e `λ,−µ(z) (B.30)

The other piece in (B.27) is the discontinuity of the amplitude T̂ ≡ T
b . In our numerics

we parametrize the T amplitude as follows:

T = ∑
abc

αabcr
a(s)rb(t)rc(u) (B.31)

Therefore the t channel discontinuity comes from

r(t(s, z + iε))b − r(t(s, z− iε))b = 2ib
√

2s
√

z− 1 (B.32)

and the u channel discontinuity comes from

r(u(s, z− iε))c − r(u(s, z + iε))c = 2ic
√

2s
√
−z− 1 (B.33)

By making a change of variable z → −z for the u channel contribution and using the
symmetry properties (B.30) of the e function and the b function

bλµ(−z) = bλ,−µ(z) (B.34)
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we can reduce all our computations to that of integrals of the following form:

∫ ∞

1
dz (1 + z)m (1− z)n√z− 1Ka

(
c
√

z− 1
)

(B.35)

To perform this integral we make a change of variable (z− 1) = ξ2 and then expand in
the variable ξ we get the following type of integrals which are easily evaluated

∫ ∞

0
dξ ξb Ka (cξ) =

2b−1

cb+1 Γ
(

b− a + 1
2

)
Γ
(

b + a + 1
2

)
(B.36)

Since c ∼ `, we see that the leading contribution comes from the lowest order term in
the ξ expansion. We are now in a position to write the leading large ` behaviour of our
ansaetze:

Φ`
1 ≡ T`+,+

+,+(s) ≈
1
`3 ∑

abc
α
(1)
abc

(
b rc(−s) + (−1)`c rb(−s)

)√
s ra(s)

Φ`
2 ≡ T`−,−

+,+(s) ≈
1
`3 ∑

abc
α
(2)
abc

(
b rc(−s) + (−1)`c rb(−s)

)√
s ra(s)

Φ`
3 ≡ T`+,−

+,−(s) ≈
1
`3 ∑

abc
α
(3)
abc

(
b rc(−s)− (−1)`15 c rb(−s)

)√
s ra(s)

Φ`
4 ≡ T`−,+

+,−(s) ≈
1
`3 ∑

abc
α
(4)
abc

(
−15 b rc(−s) + (−1)`c rb(−s)

)√
s ra(s)

Φ`
5 ≡ T`+,−

+,+(s) ≈
1
`3 ∑

abc
α
(5)
abc

(
−3 b rc(−s)− (−1)`3 c rb(−s)

)√
s ra(s)

(B.37)

Actually we can simplify the above expressions by noting that

∑
abc

α
(3)
abc c = 0 (B.38)

since this combination is the coefficient in front of r(s)ar(t)b√u and we know that the
amplitude Φ3 starts off as u2 near u = 0. Similarly, since Φ4 ∼ t2 at t = 0, we have

∑
abc

α
(4)
abc b = 0 (B.39)

and since Φ5 ∼ t at t = 0 and Φ5 ∼ u at u = 0

∑
abc

α
(5)
abc b = ∑

abc
α
(5)
abc c = 0 (B.40)
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Using these results we can update our large spin approximations for Φ3, Φ4 and Φ5:

Φ`
3 ≡ T`+,−

+,−(s) ≈
1
`3 ∑

abc
α
(3)
abc b
√

s ra(s)rc(−s)

Φ`
4 ≡ T`−,+

+,−(s) ≈
(−1)`

`3 ∑
abc

α
(4)
abcc
√

s ra(s)rb(−s)

Φ`
5 ≡ T`+,−

+,+(s) ≈ O(`−4)

(B.41)

We can now derive constraints as follows - consider the combination Φ`
1−Φ`

2 for even `

Φ`
1 −Φ`

2 ≈
2
l3 ∑

abc

(
α
(1)
abc − α

(2)
abc

)
b
√

s ra(s) rc(−s) (B.42)

where we used the fact that Φ1 and Φ2 are invariant under t− u crossing which implies
that α

(1)
abc = α

(1)
acb and α

(2)
abc = α

(2)
acb. By unitarity |1 + i(Φ`

1 −Φ`
2)| ≤ 1, from which we get

the condition

∑
abc

(
α
(1)
abc − α

(2)
abc

)
b
√

s Im(ra(s)) rc(−s) ≥ 0 (B.43)

Similarly we get from |1 + 2iΦ`
3| ≤ 1 (` odd)

∑
abc

α
(3)
abcb
√

s Im(ra(s)) rc(−s) ≥ 0 (B.44)

Finally we come to the condition (3.64). Since the off-diagonal term Φ5 ∼ O(`−4), at
O(`−3), the condition simplifies to |1 + i(Φ`

1 + Φ`
2)| ≤ 1 and we get

∑
abc

(
α
(1)
abc + α

(2)
abc

)
b
√

s Im(ra(s)) rc(−s) ≥ 0 (B.45)

B.3.2 Large energy

In this subsection we are interested in the large energy limit s → ∞. We would like
to study what happens to the unitarity constraints in this limit and implement them
as additional constraints on our ansatz. Once again the details are dependent on how
we parametrize our amplitude. Consider directly writing an ansatz for the scattering
amplitude T:

T = ∑
abc

αabcr
a(s)rb(t)rc(u) (B.46)
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We therefore begin by considering the s→ ∞ limit of a monomial term in the ansatz:

ra(s)rb(t)rc(u) ≈ (−1)a+b+c


1− 2√

s

(
ia +

√
2b√

1− z
+

√
2c√

1 + z

)
+ i

4
√

2a
s

(
b√

1− z
+

c√
1 + z

)

+
1
s

(
−2a2 +

8bc√
1− z

√
1 + z

+
4b2

1− z
+

4c2

1 + z

)
+ . . .

(B.47)
Using the expansion above, we can write the s→ ∞ expansion of the partial waves

Φ`
I ≈∑

abc
(−1)a+b+cαabc


I `; 0,0

λ12,λ34
− 2√

s

(
ia I `; 0,0

λ12,λ34
+
√

2b I
`; 1

2 ,0
λ12,λ34

+
√

2c I
`; 0, 1

2
λ12,λ34

)

+ i
4
√

2a
s

(
b I

`; 1
2 ,0

λ12,λ34
+ c I

`; 0, 1
2

λ12,λ34

)

+
1
s

(
−2a2 I `; 0,0

λ12,λ34
+ 8bc I

`; 1
2 , 1

2
λ12,λ34

+ 4b2 I `; 1,0
λ12,λ34

+ 4c2 I `; 0,1
λ12,λ34

)
+ . . .

(B.48)
where we defined the integrals

I `; m,n
λ,µ ≡ 1

32π

∫ +1

−1

d `
λ,µ(z)

(1− z)m(1 + z)n (B.49)

We now analyze the unitarity equations order by order in 1
s .

O(1):

Consider first the spin 0 partial waves

Φ0
1 + Φ0

2 ≈
1

32π ∑
abc

(−1)a+b+c
(

α
(1)
abc + α

(2)
abc

)

1 + O

(
1√

s

)


Φ0
1 −Φ0

2 ≈
1

32π ∑
abc

(−1)a+b+c
(

α
(1)
abc − α

(2)
abc

)

1 + O

(
1√

s

)


(B.50)

and thus we get a constraint from |1 + i(Φ0
1 + Φ0

2)| ≤ 1:

∑
abc

(−1)a+b+c
(

α
(1)
abc + α

(2)
abc

)
= 0 (B.51)
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and another from |1 + i(Φ0
1 −Φ0

2)| ≤ 1:

∑
abc

(−1)a+b+c
(

α
(1)
abc − α

(2)
abc

)
= 0 (B.52)

Next we consider we consider odd spin ` partial waves:

Φ`
3 ≈∑

abc
(−1)a+b+cα

(3)
abc


I `; 0,0

2,2 + O
(

1√
s

)
 (B.53)

Hence from |1 + 2iΦ`
3| ≤ 1 we conclude

∑
abc

(−1)a+b+cα
(3)
abc = 0 (B.54)

Finally we consider even spin ` ≥ 2 partial waves:

Φ`
5 ≈∑

abc
(−1)a+b+cα

(5)
abc


I `; 0,0

2,0 + O
(

1√
s

)
 (B.55)

Since Φ1, Φ2 and Φ3 are all 0 at this order due to (B.51), (B.52), (B.54), the unitarity
condition (2.47) implies

∑
abc

(−1)a+b+cα
(5)
abc = 0 (B.56)

We now go to the next order in 1
s in the unitarity equations.

O(s−1/2):

Once again we begin by considering the spin 0 partial waves

Φ0
1 + Φ0

2 ≈
1

32π ∑
abc

(−1)a+b+c
(

α
(1)
abc + α

(2)
abc

)

− 2√

s
ia +

real√
s
+ O

(
1
s

)


Φ0
1 −Φ0

2 ≈
1

32π ∑
abc

(−1)a+b+c
(

α
(1)
abc − α

(2)
abc

)

− 2√

s
ia +

real√
s
+ O

(
1
s

)


(B.57)
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Hence from |1 + i(Φ0
1 + Φ0

2)| ≤ 1, we have5

∑
abc

(−1)a+b+c
(

α
(1)
abc + α

(2)
abc

)
a ≤ 0 (B.58)

and from |1 + i(Φ0
1 −Φ0

2)| ≤ 1, we have:

∑
abc

(−1)a+b+c
(

α
(1)
abc − α

(2)
abc

)
a ≤ 0 (B.59)

Next we consider odd spin ` partial waves

Φ`
3 ≈∑

abc
(−1)a+b+cα

(3)
abc


− 2√

s
ia I `; 0,0

2,2 +
real√

s
+ O

(
1
s

)
 (B.60)

Using the result

I `; 0,0
2,2 ≡ 1

32π

∫
dz d`2,2(z) < 0 ∀ ` odd (B.61)

we deduce from |1 + 2iΦ`
3| ≤ 1 that

∑
abc

(−1)a+b+cα
(3)
abc a ≥ 0 (B.62)

Finally we consider even spin ` ≥ 2 partial waves:

Φ`
1 + Φ`

2 ≈
1

32π ∑
abc

(−1)a+b+c
(

α
(1)
abc + α

(2)
abc

)

 real√

s
+ O

(
1
s

)


Φ`
3 ≈∑

abc
(−1)a+b+cα

(3)
abc


− 2√

s
ia I `; 0,0

2,2 +
real√

s
+ O

(
1
s

)


Φ`
5 ≈∑

abc
(−1)a+b+cα

(5)
abc


− 2√

s
ia I `; 0,0

2,0 − 4
√

2√
s

b I
`; 1

2 ,0
2,0 + O

(
1
s

)


(B.63)

where we used the t− u symmetry of the amplitude Φ5 and also the result I `; 0,0
0,0 = 0 for

` 6= 0. In the unitarity condition (3.64), the imaginary parts of Φ`
1 +Φ`

2 and Φ`
3 at O

(
1√

s

)

contribute at O
(

1√
s

)
while their real parts contribute at next order O

( 1
s

)
. However note

that for the off-diagonal term Φ`
5, both the real and imaginary part at O

(
1√

s

)
contribute

at order O
(

1√
s

)
. Studying the eigenvalues of the unitarity matrix in (2.47) at this order,

5Note that the real part real√
s only contributes at next order O

(
1
s

)
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we see that imaginary part Im(Φ`
5) must be 0:

∑
abc

(−1)a+b+cα
(5)
abc a = 0 (B.64)

Note that by crossing symmetry this implies that the real part Re(Φ`
5) must also be 0 at

this order:

∑
abc

(−1)a+b+cα
(5)
abc b = 0 (B.65)

In addition because

I `; 0,0
2,2 ≡ 1

32π

∫
dz d`2,2(z) > 0 ∀ ` even (B.66)

we also see that

∑
abc

(−1)a+b+cα
(3)
abc a ≤ 0 (B.67)

Along with (B.62), this leads to

∑
abc

(−1)a+b+cα
(3)
abc a = 0 (B.68)

Having analyzed at the consequences of unitarity at O
(

1√
s

)
, we now delve into the next

order.

O(s−1):

Since the spin 0 partial waves can be non-zero at the previous order O
(

1√
s

)
, we can not

use them to make any further deductions at O
( 1

s

)
. We therefore begin with even spin

` > 2 partial waves 6:

Φ`
1 −Φ`

2 ≈∑
abc

(−1)a+b+c
(

α
(1)
abc − α

(2)
abc

)(
− 1√

s
b + i

2
s

ab
)

4
√

2 I
`; 1

2 ,0
0,0 (B.69)

Hence from |1 + i(Φ`
1 −Φ`

2)| ≤ 1 we get 7

40π ∑
abc

(−1)a+b+c
(

α
(1)
abc − α

(2)
abc

)
ab ≥

(
∑
abc

(−1)a+b+c
(

α
(1)
abc − α

(2)
abc

)
b

)2

(B.70)

6A factor of 2 comes from t− u symmetry of these amplitudes.
7Where we used the result that Il < I2 = 1

40
√

2π
.
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This is a quadratic constraint in the parameters αI
abc. To implement it on SDPB, we

re-write it as follows:

M ≡
(

M11 M12

M21 M22

)
� 0 (B.71)

where
M11 = 40π ∑

abc
(−1)a+b+c

(
α
(1)
abc + α

(2)
abc

)
ab

M21 = M12 = ∑
abc

(−1)a+b+c
(

α
(1)
abc + α

(2)
abc

)
b

M22 = 1

(B.72)

We now consider odd spin ` partial waves:

Φ`
3 ≈∑

abc
(−1)a+b+cα

(3)
abc

[(
− 1√

s
b + i

2
s

ab
)

2
√

2 I
`; 1

2 ,0
2,2 +

(
− 1√

s
c + i

2
s

ac
)

2
√

2 I
`; 0, 1

2
2,2

]

(B.73)
Therefore from the unitarity equation |1 + 2iΦ`

3| ≤ 1, we have

1√
2

∑
abc

(−1)a+b+cα
(3)
abc

(
abI `; 1

2 ,0
2,2 + acI `; 0, 1

2
2,2

)
≥
(

∑
abc

(−1)a+b+cα
(3)
abc

(
bI `; 1

2 ,0
2,2 + cI `; 0, 1

2
2,2

))2

(B.74)
As before, to input these constraints into SDPB, we re-write so that it is linear in the
parameters. Moreover, we will need to impose the constraints for various values of the
spin `:

N ` ≡
(

N `
11 N `

12
N `

21 N `
22

)
� 0 ∀ ` odd (B.75)

where

N `
11 =

1√
2

∑
abc

(−1)a+b+cα
(3)
abc

(
ab I

`; 1
2 ,0

2,2 + ac I
`; 0, 1

2
2,2

)

N `
21 = N`

12 = ∑
abc

(−1)a+b+cα
(3)
abc

(
b I

`; 1
2 ,0

2,2 + c I
`; 0, 1

2
2,2

)

N `
22 = 1

(B.76)

Finally going back to even spin `, we have

Φ`
1 + Φ`

2 ≈∑
abc

(−1)a+b+c
(

α
(1)
abc + α

(2)
abc

)(
− 1√

s
b + i

2
s

ab
)

4
√

2 I
`; 1

2 ,0
0,0 (B.77)

Φ`
3 is still given by (B.73) and Φ`

5 is given by

Φ`
5 ≈∑

abc
(−1)a+b+cα

(5)
abc

(
− 1√

s
b + i

2
s

ab
)

4
√

2 I
`; 1

2 ,0
2,0 (B.78)
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The unitarity equation (3.64) then implies the following two conditions:

(2i11 − r2
11)(2i22 − r2

22) ≥ 4 i2
21

(2i11 − r2
11) ≥ 0

(2i22 − r2
22) ≥ 0

(B.79)

where
i11 = 8

√
2 ∑

abc
(−1)a+b+c

(
α
(1)
abc − α

(2)
abc

)
ab I

`; 1
2 ,0

0,0

r11 = −4
√

2 ∑
abc

(−1)a+b+c
(

α
(1)
abc − α

(2)
abc

)
b I

`; 1
2 ,0

0,0

i21 = 8
√

2 ∑
abc

(−1)a+b+cα
(5)
abc ab I

`; 1
2 ,0

2,0

r21 = 2 ∑
abc

(−1)a+b+cα
(5)
abc

(
−a2 I `; 0,0

2,0 + 4bc I
`; 1

2 , 1
2

2,0 + 4b2 I `; 1,0
2,0

)

i22 = 4
√

2 ∑
abc

(−1)a+b+cα
(3)
abc

(
ab I

`; 1
2 ,0

2,2 + ac I
`; 0, 1

2
2,2

)

r22 = −2
√

2 ∑
abc

(−1)a+b+cα
(3)
abc

(
b I

`; 1
2 ,0

2,2 + c I
`; 0, 1

2
2,2

)

(B.80)

We can impose the conditions in (B.79) by adding two extra slack variables β1 and β2

and writing the following three conditions:

(
(2i11 − β1) r11

r11 1

)
� 0 ∀ ` ≥ 2 even (B.81)

(
(2i22 − β2) r22

r22 1

)
� 0 ∀ ` ≥ 2 even (B.82)

(
β1 2i21

2i21 β2

)
� 0 ∀ ` ≥ 2 even (B.83)
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C Appendices to flux-tube bootstrap

C.1 Low energy expansion

Loop diagrams in the branon effective field theory may lead to non-analytic terms of
the form sp(log s)k with p > k > 0. Thus, we consider the following general low energy
expansion

σ1 =
6

∑
p=1

p−1

∑
k=0

(ap,k + ibp,k)(is)p [log(−is)]k

σ2 = 1 +
6

∑
p=1

p−1

∑
k=0

cp,k(is)p [log(−is)]k (C.1)

σ3 =
6

∑
p=1

p−1

∑
k=0

(ap,k − ibp,k)(is)p [log(−is)]k

where the coefficients a, b and c are real due to (4.10). Next we impose that 2δrep =
s
4 + O(s2) and

Im 2δrep = ηreps6 + O(s7) , (C.2)

because particle production starts with |M2→4|2 ∼ l12
s . In fact, the leading term in the

probability of particle production

Prep→n≥4 branons = 2ηreps6 + O(s7) , (C.3)
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is universal and can be computed using the leading order expressions forM2→4 in [74].
Using the ansatz (C.1) in (4.7) and imposing (C.2) we find

2δsym =
s
4
+ α2s2 + α3s3 +

(
α4 +

(D− 4)α2
2

2π
log s

)
s4

+

(
α5 −

(D− 4)α2β3

π
log s

)
s5 (C.4)

+

(
iηsym + α6 +

q log s
2π(D− 2)

+
(D− 4)2α3

2
4π2 log2 s

)
s6 + O

(
s7) ,

2δanti =
s
4
− α2s2 + (α3 + 2β3)s3

−
(

α4 +
(D− 4)α2

2
2π

log s
)

s4

+

(
α5 + 2β5 +

Dα2β3

π
log s

)
s5 (C.5)

+

(
iηanti − α6 +

(D− 4)α2
2

2

− q log s
2π(D− 2)

− (D− 4)2α3
2

4π2 log2 s
)

s6 + O
(
s7) ,

and

2δsing =
s
4
− (D− 3)α2s2 + (α3 − (D− 2)β3)s3

− (D− 3)
(

α4 +
(D− 4)α2

2
2π

log s
)

s4

+

(
α5 − (D− 2)β5 −

D(D− 3)α2β3

π
log s

)
s5 (C.6)

+

(
iηsing +

(D− 3)
(
(D− 4)(D− 2)α2

2 − 12α6
)

12

−q(D−3) log s
2π(D−2)

− (D−4)2(D−3)α3
2

4π2 log2 s
)

s6 + O
(
s7) .

where α2, α3, β3, α4, α5, β5, α6 are real parameters and q ≡ 2ηsing−Dηsym+(D−2)(ηanti+2(D−4)α2α4+Dβ2
3).

Notice that the coefficient of the logs do not involve extra free parameters. The non-
linearly realized Poincaré symmetry fixes α2 = D−26

384π . On the other hand, α3, β3, α4, α5, β5, α6

are non-universal parameters related to K4,∇2K4,∇4K4 and∇6K4 terms in the effective
action (4.1). The universal coefficient of the s4 log s terms agrees with the results of [75].
The terms of order s5 and s6 are new. Notice that for D = 4 the first non-analytic term is
s5 log s and it is proportional to the non-universal coefficient β3.
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C.2. Schwarz-Pick

C.2 Schwarz-Pick

C.2.1 Maximum Modulus Principle

Holomorphic functions are equal to the average of their neighbouring points,

f (z) =
∮

|w−z|=ε

dw
2πi

f (w)

z− w
=

2π∫

0

dθ

2π
f (z + εeiθ) , (C.7)

and therefore can not have local maxima or minima inside any domain. All maxima or
minima must be at the boundary.

In particular, if a function’s modulus is bounded by 1 on a boundary of a connected
domain and has no singularities inside that domain then the function’s modulus must
be bounded by 1 everywhere inside the domain as well. This is known as the maximum
modulus principle.

C.2.2 Schwarz-Pick

Schwarz-Pick multi-point lemmas are simple but very powerful extensions of the maxi-
mum modulus principle.

Consider a function f (0)(z) regular inside a unit disk and bounded as | f (0)(z)||z|≤1 ≤ 1
everywhere. Out of it construct a new function

f (1)(z) := ∆(1)[ f ](z|w) ≡ f (0)(z)− f (0)(w)

1− f (0)(z) f (0)(w)

/
z− w

1− zw
(C.8)

where |w| < 1. Since w is strictly inside the disk, this function has no singularities as
can be easily checked. Moreover, it is still bounded along the unit circle: take z = eiφ,
then the combination (z− w)/(1− w̄z) in eq. (C.8) can be written as

z− w
1− w̄z

=
1−wr cos φ−wi sin φ−i(wi cos φ−wr sin φ)

1−wr cos φ−wi sin φ+i(wi cos φ−wr sin φ)
, (C.9)

showing that it is a pure phase (the same happens when we replace f (0)(z) with z). As
such, by maximum modulus principle, it is bounded everywhere and | f (1)(z)||z|≤1 ≤ 1,
just like we had for the original function.

We could now go on constructing a new function f (2) which would depend on a new
parameter corresponding to a new point w′ strictly inside the unit disk and so on. Each
of these new functions would again be bounded everywhere inside the disk. This is the
content of the Schwarz-Pick multi-point lemmas [78].
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There is a cute relation between these lemmas and some AdS2 geometry: it is a well
established fact in complex analysis that analytic functions are either isometries or
contractions of the Poincaré disk

d(h)( f (z), f (w)) ≤ d(h)(z, w) , (C.10)

with d(h)(z, w)=2 tanh−1 |(z−w)/(1 − zw̄)| the definition of the hyperbolic distance.
Eq. (C.8) is known in the mathematical literature as “hyperbolic quotient” and its
infinitesimal form

dh f
dhz

= f ′(z)
1− |z|2

1− | f (z)|2 , (C.11)

is known as the hyperbolic derivative.

The isometries of the disc are given by the single CDD zeros

f (1)CDD(z|z0) = eiα z− z0

1− z̄0z
, (C.12)

and it is easy to check ∆(1)[ f (1)CDD] is a pure phase. If we consider a generic product of
CDD zeros

f (n)CDD(z|z0, z1, . . . , zn−1) =
n−1

∏
i=0

f (1)CDD(z|zi) , (C.13)

then ∆(1)[ f (n)CDD] ∼ f (n−1)
CDD or equivalently ∆(n)[ f (n)CDD] is a pure phase. Of course, there

are functions like e(z−1)/(z+1) that, though saturating unitarity, are not CDDs. Indeed
they can be represented as infinite products of CDDs and they satisfy all the finite n
Schwarz-Pick inequalities, but we do not know any functional bound saturated by those
functions.

C.2.3 Application 1: expansion around the center of the disk

As a first application let us consider a function defined on the unit disk as a Taylor
expansion of the form

f (0)(z) =
∞

∑
n=0

anzn, (C.14)

and let us assume it is bounded within the unit disc so | f (0)(z)||z|=1 ≤ 1. The simplest
question one could ask is: “what is its maximum/minimum value for z = 0?”. The
answer is given by the maximum modulus principle as explained above and it is
| f (0)| = 1 or equivalently |a0| ≤ 1. A slightly non-trivial question one could then ask is:
“given a value of a0, what are the bounds on the derivative of the function at zero i.e. a1?”
If we construct ∆(1)[ f (0)], or alternatively the hyperbolic derivative and we require its
boundeness we readily get that |a1| ≤ 1−a2

0. It is easy to guess that applying ∆(2) will
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a0
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Figure C.1: Allowed space for the first three Taylor coefficients {a0, a1, a2} of analytic
functions from disk to disk as derived using the Schwarz-Pick lemmas.

give a bound on a2 as a function of a0 and a1

|a2| ≤
(a2

0 − 1)2 + a2
1(2a0 − 1)

2(a2
0 − 1)

, (C.15)

yielding the nice manifold in figure C.1. We cannot plot the higher order constraints but
we can derive them analytically. What we would get is an algebraic manifold contained
in the vector space of the Taylor expansion coefficients where all the analytic functions
on the unit disc reside. In our language, this is the space of generic massless S-matrices
in 1 + 1 dimensions.

C.2.4 Application 2: expansion around the threshold

Let us now turn to the application of the above inequalities to f (0) the D = 3 flux-tube
branon S-matrix when z, w, w′, . . . are all close to 1. When translated back to s, this
limit corresponds to the very low energy region where we can relate the coefficients of
the Taylor expansion of f (0) to the effective field theory parameters. Furthermore, we
assume that the threshold is a regular point, which is not the most general behavior for
flux tube S-matrices, but, as explained in appendix C.1, it is true up to some high order
in s.

For instance, if
f (0) = S = ei(γ1s+iγ2s2+γ3s3+iγ4s4+γ5s5+... ) , (C.16)

and we take s = εeiθ , with −π ≤ θ ≤ π, then the maximum modulus principle implies
that

| f (0)|=1−2 sin θγ1ε+(2 sin2 θγ2
1−2 cos 2θγ2)ε

2+O(ε3) ≤ 1. (C.17)

For generic θ this condition is equivalent to a positive condition on γ1 ≥ 0. Since
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γ1 is related to the strength of the tree-level interaction, we notice that in this simple
framework the maximum modulus principle is equivalent to the causality bound derived
in [20]. Moreover, at θ = 0 we don’t get any bound on γ1, but only on γ2 ≥ 0. Notice
that the maximum modulus principle for θ = 0 is equivalent to unitarity. This is a
general feature of the parametrization we chose in eq. (C.16) compatible with crossing
and real analyticity: odd powers are pure phases, even powers contribute to inelasticity.
Therefore, we could set γ2n = 0 and focus only on the pure phase coefficients where
unitarity has nothing to say about them.

To make contact with flux tube theories (4.11) we set γ1 = 1/4. We map the upper
half-plane to the unit disk and taking first z → w and then 1−z = εeiφ+O(ε2) in the
Schwarz-Pick lemma we are left with

1≥| f (1)| = 1−16 sec φ εγ2 +O(ε2)+. . . (C.18)

If unitarity is saturated the first term vanishes. At the next order

| f (1)| = 1− 1
12

ε2 cos2 φ(1 + 768γ3) +O(ε3) , (C.19)

the term of O(ε2) must be negative leading to

γ3 ≥ −
1

768
. (C.20)

Combining the constraint above with the one from unitarity γ4 ≥ 0 at order ε4 we get
figure C.2. Assuming unitarity saturation, i.e. γ2n = 0, we can recursively generate new
constraints on the higher derivative coefficients using higher order multi-point lemmas –
see also (4.16) and figure 4.1.

If at some order inelasticity kicks in then the Schwarz-Pick inequalities are not saturated
and we no longer get any sharp bounds.

As explained in the main text, figure 4.1 represents the space of all integrable S-matrices
compatible with the D = 3 flux-tube universal low-energy behaviour 4.11. Using the
language introduced in this section we would interpret its geometric features saying that
the cusp saturates ∆(1), the red edge ∆(2) and the surface ∆(3) Schwarz-Pick constraints.
For this reason, it is a theorem that the cusp S-matrix is given by a single CDD, the red
edge by products of two CDD and the orange surface by products of three CDD factors

Ssurf =

(1+3z)(5+z(6+5z))γ̃3−256(z−1)3γ̃2
3+64γ̃5(z−1)2(3z+1)

(z+3)(5+z(6+5z))γ̃3+256(z−1)3γ̃2
3+64γ̃5(z−1)2(z+3)

(C.21)
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Figure C.2: Allowed region in the {γ3, γ4} plane. The unitarity vertical bound is
saturated by the integrable S-matrix family in (C.23). The Schwarz-Pick bound would
be saturated by theories with a very small amount of particle production localized at
threshold for which we don’t have an analytic ansatz. The corner at the intersection of
the two bounds is saturated by a known integrable theory describing the RG flow from
tricritical Ising fixed point to the free fermion.

which for γ̃3 = 0 and γ̃5 = 0 reduces to

Scusp =
1 + 3z
z + 3

, (C.22)

and saturating the second Scwharz-Pick inequality γ̃5 = 4γ̃2
3 − 1/64γ̃3 reduces to

Sedge =
1 + 4z + 3z2 + 128(z− 1)2γ̃3

3 + 4z + z2 + 128(z− 1)2γ̃3
. (C.23)

whose resonance positions are shown in figure C.3 in the unit disk (to go to the s plane,
use z = χ(s) = (4 + is)/(4− is)).

Note that these resonances along the red edge of figure 4.1 can be separated into two
possibilities – see also figure C.3: they can both be at purely imaginary s (or real χ) or
they can be in a pair, symmetric with respect to reflections on the imaginary axis (i.e.
given by a complex conjugate pair in χ). These two possibilities are separated by a
“collision", represented by the green cross in figure C.3. At that point, the two zeros
collide and the S-matrix simply becomes a perfect square with a double zero. This
happens at some point along the red edge of the three dimensional figure 4.1.

In the same figure we have the S-matrices on the orange surface, given by (C.21) which
have three zeros and again, there is a point on that surface where the three collide. The
corresponding S-matrix at that point has a triple zero. Together with the black cusp in
figure 4.1 which was given by a single CDD factor, we see that we have a family of three
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<latexit sha1_base64="3UzZWAk1LkYkB8FnFHk2TuIaqGo=">AAACDXicbVA9SwNBEN3z2/gVtRKbxSBYhTsVtBRtLBWMCrkQ5jaTuGR379idE8IR/An+Clut7MTW32Dhf3ETU2jiqx7vzTDzXpIp6SgMP4Op6ZnZufmFxdLS8srqWnl949qluRVYE6lK7W0CDpU0WCNJCm8zi6AThTdJ92zg39yjdTI1V9TLsKGhY2RbCiAvNctbRUxStTDugNbQPIgpjaVpU6/fLFfCajgEnyTRiFTYCBfN8lfcSkWu0ZBQ4Fw9CjNqFGBJCoX9Upw7zEB0oYN1Tw1odI1iGKHPd3MHlPIMLZeKD0X8vVGAdq6nEz+pge7cuDcQ//PqObWPG4U0WU5oxOCQz4vDQ05Y6btB3pIWiWDwOXJpuAALRGglByG8mPuySr6PaDz9JLner0aeXx5WTk5HzSywbbbD9ljEjtgJO2cXrMYEe2BP7Jm9BI/Ba/AWvP+MTgWjnU32B8HHN/kpnEY=</latexit><latexit sha1_base64="3UzZWAk1LkYkB8FnFHk2TuIaqGo=">AAACDXicbVA9SwNBEN3z2/gVtRKbxSBYhTsVtBRtLBWMCrkQ5jaTuGR379idE8IR/An+Clut7MTW32Dhf3ETU2jiqx7vzTDzXpIp6SgMP4Op6ZnZufmFxdLS8srqWnl949qluRVYE6lK7W0CDpU0WCNJCm8zi6AThTdJ92zg39yjdTI1V9TLsKGhY2RbCiAvNctbRUxStTDugNbQPIgpjaVpU6/fLFfCajgEnyTRiFTYCBfN8lfcSkWu0ZBQ4Fw9CjNqFGBJCoX9Upw7zEB0oYN1Tw1odI1iGKHPd3MHlPIMLZeKD0X8vVGAdq6nEz+pge7cuDcQ//PqObWPG4U0WU5oxOCQz4vDQ05Y6btB3pIWiWDwOXJpuAALRGglByG8mPuySr6PaDz9JLner0aeXx5WTk5HzSywbbbD9ljEjtgJO2cXrMYEe2BP7Jm9BI/Ba/AWvP+MTgWjnU32B8HHN/kpnEY=</latexit><latexit sha1_base64="3UzZWAk1LkYkB8FnFHk2TuIaqGo=">AAACDXicbVA9SwNBEN3z2/gVtRKbxSBYhTsVtBRtLBWMCrkQ5jaTuGR379idE8IR/An+Clut7MTW32Dhf3ETU2jiqx7vzTDzXpIp6SgMP4Op6ZnZufmFxdLS8srqWnl949qluRVYE6lK7W0CDpU0WCNJCm8zi6AThTdJ92zg39yjdTI1V9TLsKGhY2RbCiAvNctbRUxStTDugNbQPIgpjaVpU6/fLFfCajgEnyTRiFTYCBfN8lfcSkWu0ZBQ4Fw9CjNqFGBJCoX9Upw7zEB0oYN1Tw1odI1iGKHPd3MHlPIMLZeKD0X8vVGAdq6nEz+pge7cuDcQ//PqObWPG4U0WU5oxOCQz4vDQ05Y6btB3pIWiWDwOXJpuAALRGglByG8mPuySr6PaDz9JLner0aeXx5WTk5HzSywbbbD9ljEjtgJO2cXrMYEe2BP7Jm9BI/Ba/AWvP+MTgWjnU32B8HHN/kpnEY=</latexit><latexit sha1_base64="3UzZWAk1LkYkB8FnFHk2TuIaqGo=">AAACDXicbVA9SwNBEN3z2/gVtRKbxSBYhTsVtBRtLBWMCrkQ5jaTuGR379idE8IR/An+Clut7MTW32Dhf3ETU2jiqx7vzTDzXpIp6SgMP4Op6ZnZufmFxdLS8srqWnl949qluRVYE6lK7W0CDpU0WCNJCm8zi6AThTdJ92zg39yjdTI1V9TLsKGhY2RbCiAvNctbRUxStTDugNbQPIgpjaVpU6/fLFfCajgEnyTRiFTYCBfN8lfcSkWu0ZBQ4Fw9CjNqFGBJCoX9Upw7zEB0oYN1Tw1odI1iGKHPd3MHlPIMLZeKD0X8vVGAdq6nEz+pge7cuDcQ//PqObWPG4U0WU5oxOCQz4vDQ05Y6btB3pIWiWDwOXJpuAALRGglByG8mPuySr6PaDz9JLner0aeXx5WTk5HzSywbbbD9ljEjtgJO2cXrMYEe2BP7Jm9BI/Ba/AWvP+MTgWjnU32B8HHN/kpnEY=</latexit>

�̃3 ! 0
<latexit sha1_base64="MB2vMlFd0FxIkciTRodJLA0jOa0=">AAACCXicbVC7TsNAEDyHd3gFEBXNiQiJCtmABCWChjJIJCDFVrS+LOGUO9u6WyNFVr6Ar6CFig7R8hUU/Avn4ILXVKOZXc3uxJmSlnz/3atNTc/Mzs0v1BeXlldWG2vrHZvmRmBbpCo11zFYVDLBNklSeJ0ZBB0rvIqHZ6V/dYfGyjS5pFGGkYZBIm+kAHJSr7FZhCRVH8MBaA29g5BS7o97jaa/50/A/5KgIk1WodVrfIT9VOQaExIKrO0GfkZRAYakUDiuh7nFDMQQBth1NAGNNiom54/5Tm7BxWZouFR8IuL3jQK0tSMdu0kNdGt/e6X4n9fN6eY4KmSS5YSJKIPcrzgJssJI1wvyvjRIBOXlyGXCBRggQiM5COHE3BVVd30Ev7//Szr7e4HjF4fNk9OqmXm2xbbZLgvYETth56zF2kywgj2wR/bk3XvP3ov3+jVa86qdDfYD3tsnzWuZ6A==</latexit><latexit sha1_base64="MB2vMlFd0FxIkciTRodJLA0jOa0=">AAACCXicbVC7TsNAEDyHd3gFEBXNiQiJCtmABCWChjJIJCDFVrS+LOGUO9u6WyNFVr6Ar6CFig7R8hUU/Avn4ILXVKOZXc3uxJmSlnz/3atNTc/Mzs0v1BeXlldWG2vrHZvmRmBbpCo11zFYVDLBNklSeJ0ZBB0rvIqHZ6V/dYfGyjS5pFGGkYZBIm+kAHJSr7FZhCRVH8MBaA29g5BS7o97jaa/50/A/5KgIk1WodVrfIT9VOQaExIKrO0GfkZRAYakUDiuh7nFDMQQBth1NAGNNiom54/5Tm7BxWZouFR8IuL3jQK0tSMdu0kNdGt/e6X4n9fN6eY4KmSS5YSJKIPcrzgJssJI1wvyvjRIBOXlyGXCBRggQiM5COHE3BVVd30Ev7//Szr7e4HjF4fNk9OqmXm2xbbZLgvYETth56zF2kywgj2wR/bk3XvP3ov3+jVa86qdDfYD3tsnzWuZ6A==</latexit><latexit sha1_base64="MB2vMlFd0FxIkciTRodJLA0jOa0=">AAACCXicbVC7TsNAEDyHd3gFEBXNiQiJCtmABCWChjJIJCDFVrS+LOGUO9u6WyNFVr6Ar6CFig7R8hUU/Avn4ILXVKOZXc3uxJmSlnz/3atNTc/Mzs0v1BeXlldWG2vrHZvmRmBbpCo11zFYVDLBNklSeJ0ZBB0rvIqHZ6V/dYfGyjS5pFGGkYZBIm+kAHJSr7FZhCRVH8MBaA29g5BS7o97jaa/50/A/5KgIk1WodVrfIT9VOQaExIKrO0GfkZRAYakUDiuh7nFDMQQBth1NAGNNiom54/5Tm7BxWZouFR8IuL3jQK0tSMdu0kNdGt/e6X4n9fN6eY4KmSS5YSJKIPcrzgJssJI1wvyvjRIBOXlyGXCBRggQiM5COHE3BVVd30Ev7//Szr7e4HjF4fNk9OqmXm2xbbZLgvYETth56zF2kywgj2wR/bk3XvP3ov3+jVa86qdDfYD3tsnzWuZ6A==</latexit><latexit sha1_base64="MB2vMlFd0FxIkciTRodJLA0jOa0=">AAACCXicbVC7TsNAEDyHd3gFEBXNiQiJCtmABCWChjJIJCDFVrS+LOGUO9u6WyNFVr6Ar6CFig7R8hUU/Avn4ILXVKOZXc3uxJmSlnz/3atNTc/Mzs0v1BeXlldWG2vrHZvmRmBbpCo11zFYVDLBNklSeJ0ZBB0rvIqHZ6V/dYfGyjS5pFGGkYZBIm+kAHJSr7FZhCRVH8MBaA29g5BS7o97jaa/50/A/5KgIk1WodVrfIT9VOQaExIKrO0GfkZRAYakUDiuh7nFDMQQBth1NAGNNiom54/5Tm7BxWZouFR8IuL3jQK0tSMdu0kNdGt/e6X4n9fN6eY4KmSS5YSJKIPcrzgJssJI1wvyvjRIBOXlyGXCBRggQiM5COHE3BVVd30Ev7//Szr7e4HjF4fNk9OqmXm2xbbZLgvYETth56zF2kywgj2wR/bk3XvP3ov3+jVa86qdDfYD3tsnzWuZ6A==</latexit>

�̃3 ! 0
<latexit sha1_base64="MB2vMlFd0FxIkciTRodJLA0jOa0=">AAACCXicbVC7TsNAEDyHd3gFEBXNiQiJCtmABCWChjJIJCDFVrS+LOGUO9u6WyNFVr6Ar6CFig7R8hUU/Avn4ILXVKOZXc3uxJmSlnz/3atNTc/Mzs0v1BeXlldWG2vrHZvmRmBbpCo11zFYVDLBNklSeJ0ZBB0rvIqHZ6V/dYfGyjS5pFGGkYZBIm+kAHJSr7FZhCRVH8MBaA29g5BS7o97jaa/50/A/5KgIk1WodVrfIT9VOQaExIKrO0GfkZRAYakUDiuh7nFDMQQBth1NAGNNiom54/5Tm7BxWZouFR8IuL3jQK0tSMdu0kNdGt/e6X4n9fN6eY4KmSS5YSJKIPcrzgJssJI1wvyvjRIBOXlyGXCBRggQiM5COHE3BVVd30Ev7//Szr7e4HjF4fNk9OqmXm2xbbZLgvYETth56zF2kywgj2wR/bk3XvP3ov3+jVa86qdDfYD3tsnzWuZ6A==</latexit><latexit sha1_base64="MB2vMlFd0FxIkciTRodJLA0jOa0=">AAACCXicbVC7TsNAEDyHd3gFEBXNiQiJCtmABCWChjJIJCDFVrS+LOGUO9u6WyNFVr6Ar6CFig7R8hUU/Avn4ILXVKOZXc3uxJmSlnz/3atNTc/Mzs0v1BeXlldWG2vrHZvmRmBbpCo11zFYVDLBNklSeJ0ZBB0rvIqHZ6V/dYfGyjS5pFGGkYZBIm+kAHJSr7FZhCRVH8MBaA29g5BS7o97jaa/50/A/5KgIk1WodVrfIT9VOQaExIKrO0GfkZRAYakUDiuh7nFDMQQBth1NAGNNiom54/5Tm7BxWZouFR8IuL3jQK0tSMdu0kNdGt/e6X4n9fN6eY4KmSS5YSJKIPcrzgJssJI1wvyvjRIBOXlyGXCBRggQiM5COHE3BVVd30Ev7//Szr7e4HjF4fNk9OqmXm2xbbZLgvYETth56zF2kywgj2wR/bk3XvP3ov3+jVa86qdDfYD3tsnzWuZ6A==</latexit><latexit sha1_base64="MB2vMlFd0FxIkciTRodJLA0jOa0=">AAACCXicbVC7TsNAEDyHd3gFEBXNiQiJCtmABCWChjJIJCDFVrS+LOGUO9u6WyNFVr6Ar6CFig7R8hUU/Avn4ILXVKOZXc3uxJmSlnz/3atNTc/Mzs0v1BeXlldWG2vrHZvmRmBbpCo11zFYVDLBNklSeJ0ZBB0rvIqHZ6V/dYfGyjS5pFGGkYZBIm+kAHJSr7FZhCRVH8MBaA29g5BS7o97jaa/50/A/5KgIk1WodVrfIT9VOQaExIKrO0GfkZRAYakUDiuh7nFDMQQBth1NAGNNiom54/5Tm7BxWZouFR8IuL3jQK0tSMdu0kNdGt/e6X4n9fN6eY4KmSS5YSJKIPcrzgJssJI1wvyvjRIBOXlyGXCBRggQiM5COHE3BVVd30Ev7//Szr7e4HjF4fNk9OqmXm2xbbZLgvYETth56zF2kywgj2wR/bk3XvP3ov3+jVa86qdDfYD3tsnzWuZ6A==</latexit><latexit sha1_base64="MB2vMlFd0FxIkciTRodJLA0jOa0=">AAACCXicbVC7TsNAEDyHd3gFEBXNiQiJCtmABCWChjJIJCDFVrS+LOGUO9u6WyNFVr6Ar6CFig7R8hUU/Avn4ILXVKOZXc3uxJmSlnz/3atNTc/Mzs0v1BeXlldWG2vrHZvmRmBbpCo11zFYVDLBNklSeJ0ZBB0rvIqHZ6V/dYfGyjS5pFGGkYZBIm+kAHJSr7FZhCRVH8MBaA29g5BS7o97jaa/50/A/5KgIk1WodVrfIT9VOQaExIKrO0GfkZRAYakUDiuh7nFDMQQBth1NAGNNiom54/5Tm7BxWZouFR8IuL3jQK0tSMdu0kNdGt/e6X4n9fN6eY4KmSS5YSJKIPcrzgJssJI1wvyvjRIBOXlyGXCBRggQiM5COHE3BVVd30Ev7//Szr7e4HjF4fNk9OqmXm2xbbZLgvYETth56zF2kywgj2wR/bk3XvP3ov3+jVa86qdDfYD3tsnzWuZ6A==</latexit>

z=1
<latexit sha1_base64="jvXthqQHgS1UbzE2ZThHwFLCVqw=">AAAB93icbVBNS8NAFNz4WetX1aOXxSJ4KokIehGKXjxWMG2hDWWzfa1LN5uw+yLU0N/gVU/exKs/x4P/xU3MQVvnNMy8x5s3YSKFQdf9dJaWV1bX1isb1c2t7Z3d2t5+28Sp5uDzWMa6GzIDUijwUaCEbqKBRaGETji5zv3OA2gjYnWH0wSCiI2VGAnO0Er+Y3Y58wa1uttwC9BF4pWkTkq0BrWv/jDmaQQKuWTG9Dw3wSBjGgWXMKv2UwMJ4xM2hp6likVggqwIO6PHqWEY0wQ0FZIWIvzeyFhkzDQK7WTE8N7Me7n4n9dLcXQRZEIlKYLi+SEUEopDhmthWwA6FBoQWZ4cqFCUM80QQQvKOLdiamup2j68+e8XSfu04Vl+e1ZvXpXNVMghOSInxCPnpEluSIv4hBNBnsgzeXGmzqvz5rz/jC455c4B+QPn4xtP6JMR</latexit><latexit sha1_base64="jvXthqQHgS1UbzE2ZThHwFLCVqw=">AAAB93icbVBNS8NAFNz4WetX1aOXxSJ4KokIehGKXjxWMG2hDWWzfa1LN5uw+yLU0N/gVU/exKs/x4P/xU3MQVvnNMy8x5s3YSKFQdf9dJaWV1bX1isb1c2t7Z3d2t5+28Sp5uDzWMa6GzIDUijwUaCEbqKBRaGETji5zv3OA2gjYnWH0wSCiI2VGAnO0Er+Y3Y58wa1uttwC9BF4pWkTkq0BrWv/jDmaQQKuWTG9Dw3wSBjGgWXMKv2UwMJ4xM2hp6likVggqwIO6PHqWEY0wQ0FZIWIvzeyFhkzDQK7WTE8N7Me7n4n9dLcXQRZEIlKYLi+SEUEopDhmthWwA6FBoQWZ4cqFCUM80QQQvKOLdiamup2j68+e8XSfu04Vl+e1ZvXpXNVMghOSInxCPnpEluSIv4hBNBnsgzeXGmzqvz5rz/jC455c4B+QPn4xtP6JMR</latexit><latexit sha1_base64="jvXthqQHgS1UbzE2ZThHwFLCVqw=">AAAB93icbVBNS8NAFNz4WetX1aOXxSJ4KokIehGKXjxWMG2hDWWzfa1LN5uw+yLU0N/gVU/exKs/x4P/xU3MQVvnNMy8x5s3YSKFQdf9dJaWV1bX1isb1c2t7Z3d2t5+28Sp5uDzWMa6GzIDUijwUaCEbqKBRaGETji5zv3OA2gjYnWH0wSCiI2VGAnO0Er+Y3Y58wa1uttwC9BF4pWkTkq0BrWv/jDmaQQKuWTG9Dw3wSBjGgWXMKv2UwMJ4xM2hp6likVggqwIO6PHqWEY0wQ0FZIWIvzeyFhkzDQK7WTE8N7Me7n4n9dLcXQRZEIlKYLi+SEUEopDhmthWwA6FBoQWZ4cqFCUM80QQQvKOLdiamup2j68+e8XSfu04Vl+e1ZvXpXNVMghOSInxCPnpEluSIv4hBNBnsgzeXGmzqvz5rz/jC455c4B+QPn4xtP6JMR</latexit><latexit sha1_base64="jvXthqQHgS1UbzE2ZThHwFLCVqw=">AAAB93icbVBNS8NAFNz4WetX1aOXxSJ4KokIehGKXjxWMG2hDWWzfa1LN5uw+yLU0N/gVU/exKs/x4P/xU3MQVvnNMy8x5s3YSKFQdf9dJaWV1bX1isb1c2t7Z3d2t5+28Sp5uDzWMa6GzIDUijwUaCEbqKBRaGETji5zv3OA2gjYnWH0wSCiI2VGAnO0Er+Y3Y58wa1uttwC9BF4pWkTkq0BrWv/jDmaQQKuWTG9Dw3wSBjGgWXMKv2UwMJ4xM2hp6likVggqwIO6PHqWEY0wQ0FZIWIvzeyFhkzDQK7WTE8N7Me7n4n9dLcXQRZEIlKYLi+SEUEopDhmthWwA6FBoQWZ4cqFCUM80QQQvKOLdiamup2j68+e8XSfu04Vl+e1ZvXpXNVMghOSInxCPnpEluSIv4hBNBnsgzeXGmzqvz5rz/jC455c4B+QPn4xtP6JMR</latexit>

z=�1
<latexit sha1_base64="m+o5cqHb4k6wbeMV8Be13fFNTbc=">AAAB+nicbVC7TsNAEDzzDOEVoKQ5ESHRENkICRqkCBrKIJGHlETR+bIJp5zP1t0aKRj/BC1UdIiWn6HgXzgbF5Aw1WhmVzs7fiSFQdf9dBYWl5ZXVktr5fWNza3tys5uy4Sx5tDkoQx1x2cGpFDQRIESOpEGFvgS2v7kKvPb96CNCNUtTiPoB2ysxEhwhlbqPCQXaXKceoNK1a25Oeg88QpSJQUag8pXbxjyOACFXDJjup4bYT9hGgWXkJZ7sYGI8QkbQ9dSxQIw/STPm9LD2DAMaQSaCklzEX5vJCwwZhr4djJgeGdmvUz8z+vGODrvJ0JFMYLi2SEUEvJDhmthiwA6FBoQWZYcqFCUM80QQQvKOLdibJsp2z682e/nSeuk5ll+c1qtXxbNlMg+OSBHxCNnpE6uSYM0CSeSPJFn8uI8Oq/Om/P+M7rgFDt75A+cj2+O8ZRU</latexit><latexit sha1_base64="m+o5cqHb4k6wbeMV8Be13fFNTbc=">AAAB+nicbVC7TsNAEDzzDOEVoKQ5ESHRENkICRqkCBrKIJGHlETR+bIJp5zP1t0aKRj/BC1UdIiWn6HgXzgbF5Aw1WhmVzs7fiSFQdf9dBYWl5ZXVktr5fWNza3tys5uy4Sx5tDkoQx1x2cGpFDQRIESOpEGFvgS2v7kKvPb96CNCNUtTiPoB2ysxEhwhlbqPCQXaXKceoNK1a25Oeg88QpSJQUag8pXbxjyOACFXDJjup4bYT9hGgWXkJZ7sYGI8QkbQ9dSxQIw/STPm9LD2DAMaQSaCklzEX5vJCwwZhr4djJgeGdmvUz8z+vGODrvJ0JFMYLi2SEUEvJDhmthiwA6FBoQWZYcqFCUM80QQQvKOLdibJsp2z682e/nSeuk5ll+c1qtXxbNlMg+OSBHxCNnpE6uSYM0CSeSPJFn8uI8Oq/Om/P+M7rgFDt75A+cj2+O8ZRU</latexit><latexit sha1_base64="m+o5cqHb4k6wbeMV8Be13fFNTbc=">AAAB+nicbVC7TsNAEDzzDOEVoKQ5ESHRENkICRqkCBrKIJGHlETR+bIJp5zP1t0aKRj/BC1UdIiWn6HgXzgbF5Aw1WhmVzs7fiSFQdf9dBYWl5ZXVktr5fWNza3tys5uy4Sx5tDkoQx1x2cGpFDQRIESOpEGFvgS2v7kKvPb96CNCNUtTiPoB2ysxEhwhlbqPCQXaXKceoNK1a25Oeg88QpSJQUag8pXbxjyOACFXDJjup4bYT9hGgWXkJZ7sYGI8QkbQ9dSxQIw/STPm9LD2DAMaQSaCklzEX5vJCwwZhr4djJgeGdmvUz8z+vGODrvJ0JFMYLi2SEUEvJDhmthiwA6FBoQWZYcqFCUM80QQQvKOLdibJsp2z682e/nSeuk5ll+c1qtXxbNlMg+OSBHxCNnpE6uSYM0CSeSPJFn8uI8Oq/Om/P+M7rgFDt75A+cj2+O8ZRU</latexit><latexit sha1_base64="m+o5cqHb4k6wbeMV8Be13fFNTbc=">AAAB+nicbVC7TsNAEDzzDOEVoKQ5ESHRENkICRqkCBrKIJGHlETR+bIJp5zP1t0aKRj/BC1UdIiWn6HgXzgbF5Aw1WhmVzs7fiSFQdf9dBYWl5ZXVktr5fWNza3tys5uy4Sx5tDkoQx1x2cGpFDQRIESOpEGFvgS2v7kKvPb96CNCNUtTiPoB2ysxEhwhlbqPCQXaXKceoNK1a25Oeg88QpSJQUag8pXbxjyOACFXDJjup4bYT9hGgWXkJZ7sYGI8QkbQ9dSxQIw/STPm9LD2DAMaQSaCklzEX5vJCwwZhr4djJgeGdmvUz8z+vGODrvJ0JFMYLi2SEUEvJDhmthiwA6FBoQWZYcqFCUM80QQQvKOLdibJsp2z682e/nSeuk5ll+c1qtXxbNlMg+OSBHxCNnpE6uSYM0CSeSPJFn8uI8Oq/Om/P+M7rgFDt75A+cj2+O8ZRU</latexit>

z=�1

3
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Figure C.3: Resonance positions as we move along the red edge of figure 1: At the cusp
we have a virtual state at χ = −1/3 (or s = 8i) and the S-matrix can be identified with
the goldstino S-matrix of Zamolodchikov [84]. As we move away from the cusp another
zero comes in from i∞; eventually the two zeros collide at s = 16i and move away
acquiring a real part; in this region they become closer and closer to more conventional
sharp resonances until they eventually collide with the s = t = 0 threshold.

S-matrices

Sn = (−1)n
(

s− 8i n
s + 8i n

)n

(C.24)

with n = 1, 2, 3 which we can single out as somehow special. We can connect them
by a triangle as represented in figure C.4. The region inside the triangle is compact, in
contrast to the infinite orange surface in figure 4.1; it is defined by the condition that
all zeros there are purely real (in χ). Again, let us stress that n = 1 is related to a cusp,
n = 2 to an edge and n = 3 to a face.

There is a clear higher dimensional generalization we could make here if we stick to the
family of purely elastic S-matrices that saturate unitarity and therefore have γ2n = 0. If
we further add γ9 to our analysis, for example, we would now have a four dimensional
space and the triangle would be the base of a tetrahedron with the fourth new vertex
corresponding to an S-matrix S4 corresponding to the collision of four zeros. Inside the
tetrahedron all zeros would be real (in χ). This is schematically represented in figure C.5.
The tetrahedron itself would be the base for a 4 dimensional polyhedra with an extra
cusp S5 (schematically, this is where the dashed purple lines in the figure would meet –
of course we can only draw their three-dimensional projections). This would go on thus
defining a sequence of S-matrices given by (C.24) for any n ≥ 1.

So we could ask whether this sequence of vertices in this infinite dimensional space of
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C.3. Yang-Baxter equation and analytic solution
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inside the triangle: 

3 real zeros

outside the triangle: 

1 real zero + 2 conjugates

Scusp(s) ⌘ S1
<latexit sha1_base64="z7PYlcFnXcdrjo6+TpOv172vuNc=">AAACEHicbVC7TgJBFJ31ifhCLbWYSEywIbvGREuijSUGeSRANrPDBSfMPpy5QySbbfwEv8JWKztj6x9Y+C8uuIWCpzo5597ce44XSaHRtj+thcWl5ZXV3Fp+fWNza7uws9vQoVEc6jyUoWp5TIMUAdRRoIRWpID5noSmN7yc+M0RKC3C4AbHEXR9NghEX3CGqeQWDmpu3EG4x5gbHSVJSR934M6IEa25jlso2mV7CjpPnIwUSYaqW/jq9EJufAiQS6Z127Ej7MZMoeASknzHaIgYH7IBtFMaMB90N56mSOiR0QxDGoGiQtKpCL83YuZrPfa9dNJneKtnvYn4n9c22D/vxiKIDELAJ4dQSJge0lyJtB6gPaEAkU0+ByoCypliiKAEZZynokn7yqd9OLPp50njpOyk/Pq0WLnImsmRfXJISsQhZ6RCrkiV1AknD+SJPJMX69F6td6s95/RBSvb2SN/YH18A5t4nRM=</latexit><latexit sha1_base64="z7PYlcFnXcdrjo6+TpOv172vuNc=">AAACEHicbVC7TgJBFJ31ifhCLbWYSEywIbvGREuijSUGeSRANrPDBSfMPpy5QySbbfwEv8JWKztj6x9Y+C8uuIWCpzo5597ce44XSaHRtj+thcWl5ZXV3Fp+fWNza7uws9vQoVEc6jyUoWp5TIMUAdRRoIRWpID5noSmN7yc+M0RKC3C4AbHEXR9NghEX3CGqeQWDmpu3EG4x5gbHSVJSR934M6IEa25jlso2mV7CjpPnIwUSYaqW/jq9EJufAiQS6Z127Ej7MZMoeASknzHaIgYH7IBtFMaMB90N56mSOiR0QxDGoGiQtKpCL83YuZrPfa9dNJneKtnvYn4n9c22D/vxiKIDELAJ4dQSJge0lyJtB6gPaEAkU0+ByoCypliiKAEZZynokn7yqd9OLPp50njpOyk/Pq0WLnImsmRfXJISsQhZ6RCrkiV1AknD+SJPJMX69F6td6s95/RBSvb2SN/YH18A5t4nRM=</latexit><latexit sha1_base64="z7PYlcFnXcdrjo6+TpOv172vuNc=">AAACEHicbVC7TgJBFJ31ifhCLbWYSEywIbvGREuijSUGeSRANrPDBSfMPpy5QySbbfwEv8JWKztj6x9Y+C8uuIWCpzo5597ce44XSaHRtj+thcWl5ZXV3Fp+fWNza7uws9vQoVEc6jyUoWp5TIMUAdRRoIRWpID5noSmN7yc+M0RKC3C4AbHEXR9NghEX3CGqeQWDmpu3EG4x5gbHSVJSR934M6IEa25jlso2mV7CjpPnIwUSYaqW/jq9EJufAiQS6Z127Ej7MZMoeASknzHaIgYH7IBtFMaMB90N56mSOiR0QxDGoGiQtKpCL83YuZrPfa9dNJneKtnvYn4n9c22D/vxiKIDELAJ4dQSJge0lyJtB6gPaEAkU0+ByoCypliiKAEZZynokn7yqd9OLPp50njpOyk/Pq0WLnImsmRfXJISsQhZ6RCrkiV1AknD+SJPJMX69F6td6s95/RBSvb2SN/YH18A5t4nRM=</latexit><latexit sha1_base64="z7PYlcFnXcdrjo6+TpOv172vuNc=">AAACEHicbVC7TgJBFJ31ifhCLbWYSEywIbvGREuijSUGeSRANrPDBSfMPpy5QySbbfwEv8JWKztj6x9Y+C8uuIWCpzo5597ce44XSaHRtj+thcWl5ZXV3Fp+fWNza7uws9vQoVEc6jyUoWp5TIMUAdRRoIRWpID5noSmN7yc+M0RKC3C4AbHEXR9NghEX3CGqeQWDmpu3EG4x5gbHSVJSR934M6IEa25jlso2mV7CjpPnIwUSYaqW/jq9EJufAiQS6Z127Ej7MZMoeASknzHaIgYH7IBtFMaMB90N56mSOiR0QxDGoGiQtKpCL83YuZrPfa9dNJneKtnvYn4n9c22D/vxiKIDELAJ4dQSJge0lyJtB6gPaEAkU0+ByoCypliiKAEZZynokn7yqd9OLPp50njpOyk/Pq0WLnImsmRfXJISsQhZ6RCrkiV1AknD+SJPJMX69F6td6s95/RBSvb2SN/YH18A5t4nRM=</latexit>

S1 = ei
s
4

<latexit sha1_base64="2nBY+AHlotYERX1C6xeOWInANX4=">AAACD3icbVC7TsNAEDyHVwivAGWaExESFbJRJGiQImgogyAPKQnR+rKBE+ezdbdGiiwXfAJfQQsVHaLlEyj4FxyTAghTjWZ2tTvjR0pact0PpzA3v7C4VFwurayurW+UN7daNoyNwKYIVWg6PlhUUmOTJCnsRAYh8BW2/dvTid++Q2NlqC9pHGE/gGstR1IAZdKgXLkYJD2pRzROj/Eqkb2RAZHYNKml6aBcdffdHHyWeFNSZVM0BuXP3jAUcYCahAJru54bUT8BQ1IoTEu92GIE4hausZtRDQHafpKHSPlubIFCHqHhUvFcxJ8bCQTWjgM/mwyAbuxfbyL+53VjGh31E6mjmFCLySGSCvNDVhiZtYN8KA0SweRz5FJzAQaI0EgOQmRinNVVyvrw/qafJa2DfS/j57Vq/WTaTJFV2A7bYx47ZHV2xhqsyQS7Z4/siT07D86L8+q8fY8WnOnONvsF5/0L7wCdXg==</latexit><latexit sha1_base64="2nBY+AHlotYERX1C6xeOWInANX4=">AAACD3icbVC7TsNAEDyHVwivAGWaExESFbJRJGiQImgogyAPKQnR+rKBE+ezdbdGiiwXfAJfQQsVHaLlEyj4FxyTAghTjWZ2tTvjR0pact0PpzA3v7C4VFwurayurW+UN7daNoyNwKYIVWg6PlhUUmOTJCnsRAYh8BW2/dvTid++Q2NlqC9pHGE/gGstR1IAZdKgXLkYJD2pRzROj/Eqkb2RAZHYNKml6aBcdffdHHyWeFNSZVM0BuXP3jAUcYCahAJru54bUT8BQ1IoTEu92GIE4hausZtRDQHafpKHSPlubIFCHqHhUvFcxJ8bCQTWjgM/mwyAbuxfbyL+53VjGh31E6mjmFCLySGSCvNDVhiZtYN8KA0SweRz5FJzAQaI0EgOQmRinNVVyvrw/qafJa2DfS/j57Vq/WTaTJFV2A7bYx47ZHV2xhqsyQS7Z4/siT07D86L8+q8fY8WnOnONvsF5/0L7wCdXg==</latexit><latexit sha1_base64="2nBY+AHlotYERX1C6xeOWInANX4=">AAACD3icbVC7TsNAEDyHVwivAGWaExESFbJRJGiQImgogyAPKQnR+rKBE+ezdbdGiiwXfAJfQQsVHaLlEyj4FxyTAghTjWZ2tTvjR0pact0PpzA3v7C4VFwurayurW+UN7daNoyNwKYIVWg6PlhUUmOTJCnsRAYh8BW2/dvTid++Q2NlqC9pHGE/gGstR1IAZdKgXLkYJD2pRzROj/Eqkb2RAZHYNKml6aBcdffdHHyWeFNSZVM0BuXP3jAUcYCahAJru54bUT8BQ1IoTEu92GIE4hausZtRDQHafpKHSPlubIFCHqHhUvFcxJ8bCQTWjgM/mwyAbuxfbyL+53VjGh31E6mjmFCLySGSCvNDVhiZtYN8KA0SweRz5FJzAQaI0EgOQmRinNVVyvrw/qafJa2DfS/j57Vq/WTaTJFV2A7bYx47ZHV2xhqsyQS7Z4/siT07D86L8+q8fY8WnOnONvsF5/0L7wCdXg==</latexit><latexit sha1_base64="2nBY+AHlotYERX1C6xeOWInANX4=">AAACD3icbVC7TsNAEDyHVwivAGWaExESFbJRJGiQImgogyAPKQnR+rKBE+ezdbdGiiwXfAJfQQsVHaLlEyj4FxyTAghTjWZ2tTvjR0pact0PpzA3v7C4VFwurayurW+UN7daNoyNwKYIVWg6PlhUUmOTJCnsRAYh8BW2/dvTid++Q2NlqC9pHGE/gGstR1IAZdKgXLkYJD2pRzROj/Eqkb2RAZHYNKml6aBcdffdHHyWeFNSZVM0BuXP3jAUcYCahAJru54bUT8BQ1IoTEu92GIE4hausZtRDQHafpKHSPlubIFCHqHhUvFcxJ8bCQTWjgM/mwyAbuxfbyL+53VjGh31E6mjmFCLySGSCvNDVhiZtYN8KA0SweRz5FJzAQaI0EgOQmRinNVVyvrw/qafJa2DfS/j57Vq/WTaTJFV2A7bYx47ZHV2xhqsyQS7Z4/siT07D86L8+q8fY8WnOnONvsF5/0L7wCdXg==</latexit>

S2
<latexit sha1_base64="6aQKaxd457c4scxKvijVA3fuLyw=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIjJCgjaCiDQkKkxIrOl0045Xy27tagyMon0EJFh2j5Hgr+hbNxAQlTjWZ2tbMTxFIYdN1Pp7Syura+Ud6sbG3v7O5V9w+6Jko0hw6PZKR7ATMghYIOCpTQizWwMJBwF0yvMv/uAbQRkbrFWQx+yCZKjAVnaKV2e9gYVmtu3c1Bl4lXkBop0BpWvwajiCchKOSSGdP33Bj9lGkUXMK8MkgMxIxP2QT6lioWgvHTPOqcniSGYURj0FRImovweyNloTGzMLCTIcN7s+hl4n9eP8HxhZ8KFScIimeHUEjIDxmuhe0A6EhoQGRZcqBCUc40QwQtKOPcioktpWL78Ba/XybdRt2z/Oas1rwsmimTI3JMTolHzkmTXJMW6RBOJuSJPJMX59F5dd6c95/RklPsHJI/cD6+AXnTkgE=</latexit><latexit sha1_base64="6aQKaxd457c4scxKvijVA3fuLyw=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIjJCgjaCiDQkKkxIrOl0045Xy27tagyMon0EJFh2j5Hgr+hbNxAQlTjWZ2tbMTxFIYdN1Pp7Syura+Ud6sbG3v7O5V9w+6Jko0hw6PZKR7ATMghYIOCpTQizWwMJBwF0yvMv/uAbQRkbrFWQx+yCZKjAVnaKV2e9gYVmtu3c1Bl4lXkBop0BpWvwajiCchKOSSGdP33Bj9lGkUXMK8MkgMxIxP2QT6lioWgvHTPOqcniSGYURj0FRImovweyNloTGzMLCTIcN7s+hl4n9eP8HxhZ8KFScIimeHUEjIDxmuhe0A6EhoQGRZcqBCUc40QwQtKOPcioktpWL78Ba/XybdRt2z/Oas1rwsmimTI3JMTolHzkmTXJMW6RBOJuSJPJMX59F5dd6c95/RklPsHJI/cD6+AXnTkgE=</latexit><latexit sha1_base64="6aQKaxd457c4scxKvijVA3fuLyw=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIjJCgjaCiDQkKkxIrOl0045Xy27tagyMon0EJFh2j5Hgr+hbNxAQlTjWZ2tbMTxFIYdN1Pp7Syura+Ud6sbG3v7O5V9w+6Jko0hw6PZKR7ATMghYIOCpTQizWwMJBwF0yvMv/uAbQRkbrFWQx+yCZKjAVnaKV2e9gYVmtu3c1Bl4lXkBop0BpWvwajiCchKOSSGdP33Bj9lGkUXMK8MkgMxIxP2QT6lioWgvHTPOqcniSGYURj0FRImovweyNloTGzMLCTIcN7s+hl4n9eP8HxhZ8KFScIimeHUEjIDxmuhe0A6EhoQGRZcqBCUc40QwQtKOPcioktpWL78Ba/XybdRt2z/Oas1rwsmimTI3JMTolHzkmTXJMW6RBOJuSJPJMX59F5dd6c95/RklPsHJI/cD6+AXnTkgE=</latexit><latexit sha1_base64="6aQKaxd457c4scxKvijVA3fuLyw=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIjJCgjaCiDQkKkxIrOl0045Xy27tagyMon0EJFh2j5Hgr+hbNxAQlTjWZ2tbMTxFIYdN1Pp7Syura+Ud6sbG3v7O5V9w+6Jko0hw6PZKR7ATMghYIOCpTQizWwMJBwF0yvMv/uAbQRkbrFWQx+yCZKjAVnaKV2e9gYVmtu3c1Bl4lXkBop0BpWvwajiCchKOSSGdP33Bj9lGkUXMK8MkgMxIxP2QT6lioWgvHTPOqcniSGYURj0FRImovweyNloTGzMLCTIcN7s+hl4n9eP8HxhZ8KFScIimeHUEjIDxmuhe0A6EhoQGRZcqBCUc40QwQtKOPcioktpWL78Ba/XybdRt2z/Oas1rwsmimTI3JMTolHzkmTXJMW6RBOJuSJPJMX59F5dd6c95/RklPsHJI/cD6+AXnTkgE=</latexit>
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<latexit sha1_base64="bFW1bi7/6GFZn7Hn/KsvnNF+2IQ=">AAAB9XicbVC7TsNAEDzzDOEVoKQ5ESFRRTYgQRlBQxkU8pASKzpfNuGU89m6W4MiK59ACxUdouV7KPgXzsYFJEw1mtnVzk4QS2HQdT+dpeWV1bX10kZ5c2t7Z7eyt982UaI5tHgkI90NmAEpFLRQoIRurIGFgYROMLnO/M4DaCMidYfTGPyQjZUYCc7QSs3m4GxQqbo1NwddJF5BqqRAY1D56g8jnoSgkEtmTM9zY/RTplFwCbNyPzEQMz5hY+hZqlgIxk/zqDN6nBiGEY1BUyFpLsLvjZSFxkzDwE6GDO/NvJeJ/3m9BEeXfipUnCAonh1CISE/ZLgWtgOgQ6EBkWXJgQpFOdMMEbSgjHMrJraUsu3Dm/9+kbRPa57lt+fV+lXRTIkckiNyQjxyQerkhjRIi3AyJk/kmbw4j86r8+a8/4wuOcXOAfkD5+Mbe2KSAg==</latexit><latexit sha1_base64="bFW1bi7/6GFZn7Hn/KsvnNF+2IQ=">AAAB9XicbVC7TsNAEDzzDOEVoKQ5ESFRRTYgQRlBQxkU8pASKzpfNuGU89m6W4MiK59ACxUdouV7KPgXzsYFJEw1mtnVzk4QS2HQdT+dpeWV1bX10kZ5c2t7Z7eyt982UaI5tHgkI90NmAEpFLRQoIRurIGFgYROMLnO/M4DaCMidYfTGPyQjZUYCc7QSs3m4GxQqbo1NwddJF5BqqRAY1D56g8jnoSgkEtmTM9zY/RTplFwCbNyPzEQMz5hY+hZqlgIxk/zqDN6nBiGEY1BUyFpLsLvjZSFxkzDwE6GDO/NvJeJ/3m9BEeXfipUnCAonh1CISE/ZLgWtgOgQ6EBkWXJgQpFOdMMEbSgjHMrJraUsu3Dm/9+kbRPa57lt+fV+lXRTIkckiNyQjxyQerkhjRIi3AyJk/kmbw4j86r8+a8/4wuOcXOAfkD5+Mbe2KSAg==</latexit><latexit sha1_base64="bFW1bi7/6GFZn7Hn/KsvnNF+2IQ=">AAAB9XicbVC7TsNAEDzzDOEVoKQ5ESFRRTYgQRlBQxkU8pASKzpfNuGU89m6W4MiK59ACxUdouV7KPgXzsYFJEw1mtnVzk4QS2HQdT+dpeWV1bX10kZ5c2t7Z7eyt982UaI5tHgkI90NmAEpFLRQoIRurIGFgYROMLnO/M4DaCMidYfTGPyQjZUYCc7QSs3m4GxQqbo1NwddJF5BqqRAY1D56g8jnoSgkEtmTM9zY/RTplFwCbNyPzEQMz5hY+hZqlgIxk/zqDN6nBiGEY1BUyFpLsLvjZSFxkzDwE6GDO/NvJeJ/3m9BEeXfipUnCAonh1CISE/ZLgWtgOgQ6EBkWXJgQpFOdMMEbSgjHMrJraUsu3Dm/9+kbRPa57lt+fV+lXRTIkckiNyQjxyQerkhjRIi3AyJk/kmbw4j86r8+a8/4wuOcXOAfkD5+Mbe2KSAg==</latexit><latexit sha1_base64="bFW1bi7/6GFZn7Hn/KsvnNF+2IQ=">AAAB9XicbVC7TsNAEDzzDOEVoKQ5ESFRRTYgQRlBQxkU8pASKzpfNuGU89m6W4MiK59ACxUdouV7KPgXzsYFJEw1mtnVzk4QS2HQdT+dpeWV1bX10kZ5c2t7Z7eyt982UaI5tHgkI90NmAEpFLRQoIRurIGFgYROMLnO/M4DaCMidYfTGPyQjZUYCc7QSs3m4GxQqbo1NwddJF5BqqRAY1D56g8jnoSgkEtmTM9zY/RTplFwCbNyPzEQMz5hY+hZqlgIxk/zqDN6nBiGEY1BUyFpLsLvjZSFxkzDwE6GDO/NvJeJ/3m9BEeXfipUnCAonh1CISE/ZLgWtgOgQ6EBkWXJgQpFOdMMEbSgjHMrJraUsu3Dm/9+kbRPa57lt+fV+lXRTIkckiNyQjxyQerkhjRIi3AyJk/kmbw4j86r8+a8/4wuOcXOAfkD5+Mbe2KSAg==</latexit>

Figure C.4: The triangular area depicted in orange represents the face in the allowed
{γ̃3, γ̃5} region where the three zeros of the S-matrix are real. The three edges of the
triangle correspond, respectively, to one single CDD S1, a double CDD S2, and a triple
CDD zero S3. The red edge between S1 and S2 is the projection of a finite arc of the red
edge in fig. 4.1 and correspond to two real distinct CDD zeros. All the S-matrices on
the orange edges contain at the same time a double and a single CDD zero. Finally, the
interior of the triangle has three CDD zeros all distinct. The unlabeled black dots are the
projections of the higher order zeros in (C.24) which converge to eis/4.

polyhedra would converge towards anything interesting. Indeed, beautifully, we have

lim
n→∞

Sn = eis/4 (C.25)

the famous integrable flux tube S-matrix [63, 73]. In practice, already for n = 3 on the
orange surface we would be very close to eis/4 for most values of s. At higher energies
we would see deviations. The higher n is in (C.24), the larger is the range in s where the
S-matrix is indistinguishable from the integrable flux tube S-matrix.

C.3 Yang-Baxter equation and analytic solution

For massless S-matrices with O(N) symmetry, the Yang-Baxter equation takes the form:

Scb2
a2a3

(θ23)Sb3b1
a1c (θ13) = Scb1

a1a3
(θ13)Sb3b2

a2c (θ23) , (C.26)

where θ is the rapidity defined by pL = − exp(−θ) for left-movers and pR = exp(θ) for
right-movers and θij ≡ θi − θj.

In terms of the amplitudes defined by the equation 4.5, this implies the condition
σ1 = σ3 = 0 for N > 2. However for N = 2, we have the following relaxed condition:

σ3(s) = −σ1(s) . (C.27)

This is the case for flux tubes in 4 dimensions, where the remnant symmetry of the
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Appendix C. Appendices to flux-tube bootstrap

�̃3
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�̃7
<latexit sha1_base64="pPFXOqb49fyjDfOjwRkTGJLRoFE=">AAACAHicbVA9TwJBEN3DL8Qv1NJmIzGxInfGBEuijSUm8pEAkrllwA27d5fdORNCaPwVtlrZGVv/iYX/xT2kUPBVL+/NZN68MFHSku9/ermV1bX1jfxmYWt7Z3evuH/QsHFqBNZFrGLTCsGikhHWSZLCVmIQdKiwGY6uMr/5gMbKOLqlcYJdDcNIDqQActJdh6TqY2cIWkOv0iuW/LI/A18mwZyU2By1XvGr049FqjEiocDaduAn1J2AISkUTgud1GICYgRDbDsagUbbncxST/lJaoFinqDhUvGZiL83JqCtHevQTWqge7voZeJ/XjulwUV3IqMkJYxEdsh9ibNDVhjp6kDelwaJIEuOXEZcgAEiNJKDEE5MXT8F10ew+P0yaZyVA8dvzkvVy3kzeXbEjtkpC1iFVdk1q7E6E8ywJ/bMXrxH79V7895/RnPefOeQ/YH38Q02l5bu</latexit><latexit sha1_base64="pPFXOqb49fyjDfOjwRkTGJLRoFE=">AAACAHicbVA9TwJBEN3DL8Qv1NJmIzGxInfGBEuijSUm8pEAkrllwA27d5fdORNCaPwVtlrZGVv/iYX/xT2kUPBVL+/NZN68MFHSku9/ermV1bX1jfxmYWt7Z3evuH/QsHFqBNZFrGLTCsGikhHWSZLCVmIQdKiwGY6uMr/5gMbKOLqlcYJdDcNIDqQActJdh6TqY2cIWkOv0iuW/LI/A18mwZyU2By1XvGr049FqjEiocDaduAn1J2AISkUTgud1GICYgRDbDsagUbbncxST/lJaoFinqDhUvGZiL83JqCtHevQTWqge7voZeJ/XjulwUV3IqMkJYxEdsh9ibNDVhjp6kDelwaJIEuOXEZcgAEiNJKDEE5MXT8F10ew+P0yaZyVA8dvzkvVy3kzeXbEjtkpC1iFVdk1q7E6E8ywJ/bMXrxH79V7895/RnPefOeQ/YH38Q02l5bu</latexit><latexit sha1_base64="pPFXOqb49fyjDfOjwRkTGJLRoFE=">AAACAHicbVA9TwJBEN3DL8Qv1NJmIzGxInfGBEuijSUm8pEAkrllwA27d5fdORNCaPwVtlrZGVv/iYX/xT2kUPBVL+/NZN68MFHSku9/ermV1bX1jfxmYWt7Z3evuH/QsHFqBNZFrGLTCsGikhHWSZLCVmIQdKiwGY6uMr/5gMbKOLqlcYJdDcNIDqQActJdh6TqY2cIWkOv0iuW/LI/A18mwZyU2By1XvGr049FqjEiocDaduAn1J2AISkUTgud1GICYgRDbDsagUbbncxST/lJaoFinqDhUvGZiL83JqCtHevQTWqge7voZeJ/XjulwUV3IqMkJYxEdsh9ibNDVhjp6kDelwaJIEuOXEZcgAEiNJKDEE5MXT8F10ew+P0yaZyVA8dvzkvVy3kzeXbEjtkpC1iFVdk1q7E6E8ywJ/bMXrxH79V7895/RnPefOeQ/YH38Q02l5bu</latexit><latexit sha1_base64="pPFXOqb49fyjDfOjwRkTGJLRoFE=">AAACAHicbVA9TwJBEN3DL8Qv1NJmIzGxInfGBEuijSUm8pEAkrllwA27d5fdORNCaPwVtlrZGVv/iYX/xT2kUPBVL+/NZN68MFHSku9/ermV1bX1jfxmYWt7Z3evuH/QsHFqBNZFrGLTCsGikhHWSZLCVmIQdKiwGY6uMr/5gMbKOLqlcYJdDcNIDqQActJdh6TqY2cIWkOv0iuW/LI/A18mwZyU2By1XvGr049FqjEiocDaduAn1J2AISkUTgud1GICYgRDbDsagUbbncxST/lJaoFinqDhUvGZiL83JqCtHevQTWqge7voZeJ/XjulwUV3IqMkJYxEdsh9ibNDVhjp6kDelwaJIEuOXEZcgAEiNJKDEE5MXT8F10ew+P0yaZyVA8dvzkvVy3kzeXbEjtkpC1iFVdk1q7E6E8ywJ/bMXrxH79V7895/RnPefOeQ/YH38Q02l5bu</latexit>

�̃5
<latexit sha1_base64="DNrz12g+ZMqu3TtNf8CV78EeiMs=">AAACAHicbVA9TwJBEN3DL8Qv1NJmIzGxIndGoyXRxhIT+UgAydwy4Ibdu8vunAkhNP4KW63sjK3/xML/4h5SKPiql/dmMm9emChpyfc/vdzS8srqWn69sLG5tb1T3N2r2zg1AmsiVrFphmBRyQhrJElhMzEIOlTYCIdXmd94QGNlHN3SKMGOhkEk+1IAOemuTVL1sD0AraF71i2W/LI/BV8kwYyU2AzVbvGr3YtFqjEiocDaVuAn1BmDISkUTgrt1GICYggDbDkagUbbGU9TT/hRaoFinqDhUvGpiL83xqCtHenQTWqgezvvZeJ/Xiul/kVnLKMkJYxEdsh9idNDVhjp6kDekwaJIEuOXEZcgAEiNJKDEE5MXT8F10cw//0iqZ+UA8dvTkuVy1kzeXbADtkxC9g5q7BrVmU1JphhT+yZvXiP3qv35r3/jOa82c4++wPv4xszeZbs</latexit><latexit sha1_base64="DNrz12g+ZMqu3TtNf8CV78EeiMs=">AAACAHicbVA9TwJBEN3DL8Qv1NJmIzGxIndGoyXRxhIT+UgAydwy4Ibdu8vunAkhNP4KW63sjK3/xML/4h5SKPiql/dmMm9emChpyfc/vdzS8srqWn69sLG5tb1T3N2r2zg1AmsiVrFphmBRyQhrJElhMzEIOlTYCIdXmd94QGNlHN3SKMGOhkEk+1IAOemuTVL1sD0AraF71i2W/LI/BV8kwYyU2AzVbvGr3YtFqjEiocDaVuAn1BmDISkUTgrt1GICYggDbDkagUbbGU9TT/hRaoFinqDhUvGpiL83xqCtHenQTWqgezvvZeJ/Xiul/kVnLKMkJYxEdsh9idNDVhjp6kDekwaJIEuOXEZcgAEiNJKDEE5MXT8F10cw//0iqZ+UA8dvTkuVy1kzeXbADtkxC9g5q7BrVmU1JphhT+yZvXiP3qv35r3/jOa82c4++wPv4xszeZbs</latexit><latexit sha1_base64="DNrz12g+ZMqu3TtNf8CV78EeiMs=">AAACAHicbVA9TwJBEN3DL8Qv1NJmIzGxIndGoyXRxhIT+UgAydwy4Ibdu8vunAkhNP4KW63sjK3/xML/4h5SKPiql/dmMm9emChpyfc/vdzS8srqWn69sLG5tb1T3N2r2zg1AmsiVrFphmBRyQhrJElhMzEIOlTYCIdXmd94QGNlHN3SKMGOhkEk+1IAOemuTVL1sD0AraF71i2W/LI/BV8kwYyU2AzVbvGr3YtFqjEiocDaVuAn1BmDISkUTgrt1GICYggDbDkagUbbGU9TT/hRaoFinqDhUvGpiL83xqCtHenQTWqgezvvZeJ/Xiul/kVnLKMkJYxEdsh9idNDVhjp6kDekwaJIEuOXEZcgAEiNJKDEE5MXT8F10cw//0iqZ+UA8dvTkuVy1kzeXbADtkxC9g5q7BrVmU1JphhT+yZvXiP3qv35r3/jOa82c4++wPv4xszeZbs</latexit><latexit sha1_base64="DNrz12g+ZMqu3TtNf8CV78EeiMs=">AAACAHicbVA9TwJBEN3DL8Qv1NJmIzGxIndGoyXRxhIT+UgAydwy4Ibdu8vunAkhNP4KW63sjK3/xML/4h5SKPiql/dmMm9emChpyfc/vdzS8srqWn69sLG5tb1T3N2r2zg1AmsiVrFphmBRyQhrJElhMzEIOlTYCIdXmd94QGNlHN3SKMGOhkEk+1IAOemuTVL1sD0AraF71i2W/LI/BV8kwYyU2AzVbvGr3YtFqjEiocDaVuAn1BmDISkUTgrt1GICYggDbDkagUbbGU9TT/hRaoFinqDhUvGpiL83xqCtHenQTWqgezvvZeJ/Xiul/kVnLKMkJYxEdsh9idNDVhjp6kDekwaJIEuOXEZcgAEiNJKDEE5MXT8F10cw//0iqZ+UA8dvTkuVy1kzeXbADtkxC9g5q7BrVmU1JphhT+yZvXiP3qv35r3/jOa82c4++wPv4xszeZbs</latexit>

�̃9
<latexit sha1_base64="j4XFwaCSnUVU/QE5n+EDUdSGNRs=">AAACAHicbVA9TwJBEN3DL8Qv1NJmIzGxInfGRO2INpaYyEcCSOaWATfs3l1250wIofFX2GplZ2z9Jxb+F/eQQsFXvbw3k3nzwkRJS77/6eWWlldW1/LrhY3Nre2d4u5e3capEVgTsYpNMwSLSkZYI0kKm4lB0KHCRji8yvzGAxor4+iWRgl2NAwi2ZcCyEl3bZKqh+0BaA3di26x5Jf9KfgiCWakxGaodotf7V4sUo0RCQXWtgI/oc4YDEmhcFJopxYTEEMYYMvRCDTazniaesKPUgsU8wQNl4pPRfy9MQZt7UiHblID3dt5LxP/81op9c87YxklKWEkskPuS5wessJIVwfynjRIBFly5DLiAgwQoZEchHBi6vopuD6C+e8XSf2kHDh+c1qqXM6aybMDdsiOWcDOWIVdsyqrMcEMe2LP7MV79F69N+/9ZzTnzXb22R94H985tZbw</latexit><latexit sha1_base64="j4XFwaCSnUVU/QE5n+EDUdSGNRs=">AAACAHicbVA9TwJBEN3DL8Qv1NJmIzGxInfGRO2INpaYyEcCSOaWATfs3l1250wIofFX2GplZ2z9Jxb+F/eQQsFXvbw3k3nzwkRJS77/6eWWlldW1/LrhY3Nre2d4u5e3capEVgTsYpNMwSLSkZYI0kKm4lB0KHCRji8yvzGAxor4+iWRgl2NAwi2ZcCyEl3bZKqh+0BaA3di26x5Jf9KfgiCWakxGaodotf7V4sUo0RCQXWtgI/oc4YDEmhcFJopxYTEEMYYMvRCDTazniaesKPUgsU8wQNl4pPRfy9MQZt7UiHblID3dt5LxP/81op9c87YxklKWEkskPuS5wessJIVwfynjRIBFly5DLiAgwQoZEchHBi6vopuD6C+e8XSf2kHDh+c1qqXM6aybMDdsiOWcDOWIVdsyqrMcEMe2LP7MV79F69N+/9ZzTnzXb22R94H985tZbw</latexit><latexit sha1_base64="j4XFwaCSnUVU/QE5n+EDUdSGNRs=">AAACAHicbVA9TwJBEN3DL8Qv1NJmIzGxInfGRO2INpaYyEcCSOaWATfs3l1250wIofFX2GplZ2z9Jxb+F/eQQsFXvbw3k3nzwkRJS77/6eWWlldW1/LrhY3Nre2d4u5e3capEVgTsYpNMwSLSkZYI0kKm4lB0KHCRji8yvzGAxor4+iWRgl2NAwi2ZcCyEl3bZKqh+0BaA3di26x5Jf9KfgiCWakxGaodotf7V4sUo0RCQXWtgI/oc4YDEmhcFJopxYTEEMYYMvRCDTazniaesKPUgsU8wQNl4pPRfy9MQZt7UiHblID3dt5LxP/81op9c87YxklKWEkskPuS5wessJIVwfynjRIBFly5DLiAgwQoZEchHBi6vopuD6C+e8XSf2kHDh+c1qqXM6aybMDdsiOWcDOWIVdsyqrMcEMe2LP7MV79F69N+/9ZzTnzXb22R94H985tZbw</latexit><latexit sha1_base64="j4XFwaCSnUVU/QE5n+EDUdSGNRs=">AAACAHicbVA9TwJBEN3DL8Qv1NJmIzGxInfGRO2INpaYyEcCSOaWATfs3l1250wIofFX2GplZ2z9Jxb+F/eQQsFXvbw3k3nzwkRJS77/6eWWlldW1/LrhY3Nre2d4u5e3capEVgTsYpNMwSLSkZYI0kKm4lB0KHCRji8yvzGAxor4+iWRgl2NAwi2ZcCyEl3bZKqh+0BaA3di26x5Jf9KfgiCWakxGaodotf7V4sUo0RCQXWtgI/oc4YDEmhcFJopxYTEEMYYMvRCDTazniaesKPUgsU8wQNl4pPRfy9MQZt7UiHblID3dt5LxP/81op9c87YxklKWEkskPuS5wessJIVwfynjRIBFly5DLiAgwQoZEchHBi6vopuD6C+e8XSf2kHDh+c1qqXM6aybMDdsiOWcDOWIVdsyqrMcEMe2LP7MV79F69N+/9ZzTnzXb22R94H985tZbw</latexit>

S1
<latexit sha1_base64="u3j6468rG5uGf63rmJgnCA0bnks=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIQ8psaLzZRNOOZ+tuzUosvIJtFDRIVq+h4J/4WxcQMJUo5ld7ewEsRQGXffTKa2srq1vlDcrW9s7u3vV/YOOiRLNoc0jGelewAxIoaCNAiX0Yg0sDCR0g+l15ncfQBsRqTucxeCHbKLEWHCGVmq1ht6wWnPrbg66TLyC1EiB5rD6NRhFPAlBIZfMmL7nxuinTKPgEuaVQWIgZnzKJtC3VLEQjJ/mUef0JDEMIxqDpkLSXITfGykLjZmFgZ0MGd6bRS8T//P6CY4v/VSoOEFQPDuEQkJ+yHAtbAdAR0IDIsuSAxWKcqYZImhBGedWTGwpFduHt/j9Mumc1T3Lb89rjauimTI5IsfklHjkgjTIDWmSNuFkQp7IM3lxHp1X5815/xktOcXOIfkD5+MbeESSAA==</latexit><latexit sha1_base64="u3j6468rG5uGf63rmJgnCA0bnks=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIQ8psaLzZRNOOZ+tuzUosvIJtFDRIVq+h4J/4WxcQMJUo5ld7ewEsRQGXffTKa2srq1vlDcrW9s7u3vV/YOOiRLNoc0jGelewAxIoaCNAiX0Yg0sDCR0g+l15ncfQBsRqTucxeCHbKLEWHCGVmq1ht6wWnPrbg66TLyC1EiB5rD6NRhFPAlBIZfMmL7nxuinTKPgEuaVQWIgZnzKJtC3VLEQjJ/mUef0JDEMIxqDpkLSXITfGykLjZmFgZ0MGd6bRS8T//P6CY4v/VSoOEFQPDuEQkJ+yHAtbAdAR0IDIsuSAxWKcqYZImhBGedWTGwpFduHt/j9Mumc1T3Lb89rjauimTI5IsfklHjkgjTIDWmSNuFkQp7IM3lxHp1X5815/xktOcXOIfkD5+MbeESSAA==</latexit><latexit sha1_base64="u3j6468rG5uGf63rmJgnCA0bnks=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIQ8psaLzZRNOOZ+tuzUosvIJtFDRIVq+h4J/4WxcQMJUo5ld7ewEsRQGXffTKa2srq1vlDcrW9s7u3vV/YOOiRLNoc0jGelewAxIoaCNAiX0Yg0sDCR0g+l15ncfQBsRqTucxeCHbKLEWHCGVmq1ht6wWnPrbg66TLyC1EiB5rD6NRhFPAlBIZfMmL7nxuinTKPgEuaVQWIgZnzKJtC3VLEQjJ/mUef0JDEMIxqDpkLSXITfGykLjZmFgZ0MGd6bRS8T//P6CY4v/VSoOEFQPDuEQkJ+yHAtbAdAR0IDIsuSAxWKcqYZImhBGedWTGwpFduHt/j9Mumc1T3Lb89rjauimTI5IsfklHjkgjTIDWmSNuFkQp7IM3lxHp1X5815/xktOcXOIfkD5+MbeESSAA==</latexit><latexit sha1_base64="u3j6468rG5uGf63rmJgnCA0bnks=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNJRBIQ8psaLzZRNOOZ+tuzUosvIJtFDRIVq+h4J/4WxcQMJUo5ld7ewEsRQGXffTKa2srq1vlDcrW9s7u3vV/YOOiRLNoc0jGelewAxIoaCNAiX0Yg0sDCR0g+l15ncfQBsRqTucxeCHbKLEWHCGVmq1ht6wWnPrbg66TLyC1EiB5rD6NRhFPAlBIZfMmL7nxuinTKPgEuaVQWIgZnzKJtC3VLEQjJ/mUef0JDEMIxqDpkLSXITfGykLjZmFgZ0MGd6bRS8T//P6CY4v/VSoOEFQPDuEQkJ+yHAtbAdAR0IDIsuSAxWKcqYZImhBGedWTGwpFduHt/j9Mumc1T3Lb89rjauimTI5IsfklHjkgjTIDWmSNuFkQp7IM3lxHp1X5815/xktOcXOIfkD5+MbeESSAA==</latexit>

S2
<latexit sha1_base64="6aQKaxd457c4scxKvijVA3fuLyw=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIjJCgjaCiDQkKkxIrOl0045Xy27tagyMon0EJFh2j5Hgr+hbNxAQlTjWZ2tbMTxFIYdN1Pp7Syura+Ud6sbG3v7O5V9w+6Jko0hw6PZKR7ATMghYIOCpTQizWwMJBwF0yvMv/uAbQRkbrFWQx+yCZKjAVnaKV2e9gYVmtu3c1Bl4lXkBop0BpWvwajiCchKOSSGdP33Bj9lGkUXMK8MkgMxIxP2QT6lioWgvHTPOqcniSGYURj0FRImovweyNloTGzMLCTIcN7s+hl4n9eP8HxhZ8KFScIimeHUEjIDxmuhe0A6EhoQGRZcqBCUc40QwQtKOPcioktpWL78Ba/XybdRt2z/Oas1rwsmimTI3JMTolHzkmTXJMW6RBOJuSJPJMX59F5dd6c95/RklPsHJI/cD6+AXnTkgE=</latexit><latexit sha1_base64="6aQKaxd457c4scxKvijVA3fuLyw=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIjJCgjaCiDQkKkxIrOl0045Xy27tagyMon0EJFh2j5Hgr+hbNxAQlTjWZ2tbMTxFIYdN1Pp7Syura+Ud6sbG3v7O5V9w+6Jko0hw6PZKR7ATMghYIOCpTQizWwMJBwF0yvMv/uAbQRkbrFWQx+yCZKjAVnaKV2e9gYVmtu3c1Bl4lXkBop0BpWvwajiCchKOSSGdP33Bj9lGkUXMK8MkgMxIxP2QT6lioWgvHTPOqcniSGYURj0FRImovweyNloTGzMLCTIcN7s+hl4n9eP8HxhZ8KFScIimeHUEjIDxmuhe0A6EhoQGRZcqBCUc40QwQtKOPcioktpWL78Ba/XybdRt2z/Oas1rwsmimTI3JMTolHzkmTXJMW6RBOJuSJPJMX59F5dd6c95/RklPsHJI/cD6+AXnTkgE=</latexit><latexit sha1_base64="6aQKaxd457c4scxKvijVA3fuLyw=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIjJCgjaCiDQkKkxIrOl0045Xy27tagyMon0EJFh2j5Hgr+hbNxAQlTjWZ2tbMTxFIYdN1Pp7Syura+Ud6sbG3v7O5V9w+6Jko0hw6PZKR7ATMghYIOCpTQizWwMJBwF0yvMv/uAbQRkbrFWQx+yCZKjAVnaKV2e9gYVmtu3c1Bl4lXkBop0BpWvwajiCchKOSSGdP33Bj9lGkUXMK8MkgMxIxP2QT6lioWgvHTPOqcniSGYURj0FRImovweyNloTGzMLCTIcN7s+hl4n9eP8HxhZ8KFScIimeHUEjIDxmuhe0A6EhoQGRZcqBCUc40QwQtKOPcioktpWL78Ba/XybdRt2z/Oas1rwsmimTI3JMTolHzkmTXJMW6RBOJuSJPJMX59F5dd6c95/RklPsHJI/cD6+AXnTkgE=</latexit><latexit sha1_base64="6aQKaxd457c4scxKvijVA3fuLyw=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIjJCgjaCiDQkKkxIrOl0045Xy27tagyMon0EJFh2j5Hgr+hbNxAQlTjWZ2tbMTxFIYdN1Pp7Syura+Ud6sbG3v7O5V9w+6Jko0hw6PZKR7ATMghYIOCpTQizWwMJBwF0yvMv/uAbQRkbrFWQx+yCZKjAVnaKV2e9gYVmtu3c1Bl4lXkBop0BpWvwajiCchKOSSGdP33Bj9lGkUXMK8MkgMxIxP2QT6lioWgvHTPOqcniSGYURj0FRImovweyNloTGzMLCTIcN7s+hl4n9eP8HxhZ8KFScIimeHUEjIDxmuhe0A6EhoQGRZcqBCUc40QwQtKOPcioktpWL78Ba/XybdRt2z/Oas1rwsmimTI3JMTolHzkmTXJMW6RBOJuSJPJMX59F5dd6c95/RklPsHJI/cD6+AXnTkgE=</latexit>

S3
<latexit sha1_base64="bFW1bi7/6GFZn7Hn/KsvnNF+2IQ=">AAAB9XicbVC7TsNAEDzzDOEVoKQ5ESFRRTYgQRlBQxkU8pASKzpfNuGU89m6W4MiK59ACxUdouV7KPgXzsYFJEw1mtnVzk4QS2HQdT+dpeWV1bX10kZ5c2t7Z7eyt982UaI5tHgkI90NmAEpFLRQoIRurIGFgYROMLnO/M4DaCMidYfTGPyQjZUYCc7QSs3m4GxQqbo1NwddJF5BqqRAY1D56g8jnoSgkEtmTM9zY/RTplFwCbNyPzEQMz5hY+hZqlgIxk/zqDN6nBiGEY1BUyFpLsLvjZSFxkzDwE6GDO/NvJeJ/3m9BEeXfipUnCAonh1CISE/ZLgWtgOgQ6EBkWXJgQpFOdMMEbSgjHMrJraUsu3Dm/9+kbRPa57lt+fV+lXRTIkckiNyQjxyQerkhjRIi3AyJk/kmbw4j86r8+a8/4wuOcXOAfkD5+Mbe2KSAg==</latexit><latexit sha1_base64="bFW1bi7/6GFZn7Hn/KsvnNF+2IQ=">AAAB9XicbVC7TsNAEDzzDOEVoKQ5ESFRRTYgQRlBQxkU8pASKzpfNuGU89m6W4MiK59ACxUdouV7KPgXzsYFJEw1mtnVzk4QS2HQdT+dpeWV1bX10kZ5c2t7Z7eyt982UaI5tHgkI90NmAEpFLRQoIRurIGFgYROMLnO/M4DaCMidYfTGPyQjZUYCc7QSs3m4GxQqbo1NwddJF5BqqRAY1D56g8jnoSgkEtmTM9zY/RTplFwCbNyPzEQMz5hY+hZqlgIxk/zqDN6nBiGEY1BUyFpLsLvjZSFxkzDwE6GDO/NvJeJ/3m9BEeXfipUnCAonh1CISE/ZLgWtgOgQ6EBkWXJgQpFOdMMEbSgjHMrJraUsu3Dm/9+kbRPa57lt+fV+lXRTIkckiNyQjxyQerkhjRIi3AyJk/kmbw4j86r8+a8/4wuOcXOAfkD5+Mbe2KSAg==</latexit><latexit sha1_base64="bFW1bi7/6GFZn7Hn/KsvnNF+2IQ=">AAAB9XicbVC7TsNAEDzzDOEVoKQ5ESFRRTYgQRlBQxkU8pASKzpfNuGU89m6W4MiK59ACxUdouV7KPgXzsYFJEw1mtnVzk4QS2HQdT+dpeWV1bX10kZ5c2t7Z7eyt982UaI5tHgkI90NmAEpFLRQoIRurIGFgYROMLnO/M4DaCMidYfTGPyQjZUYCc7QSs3m4GxQqbo1NwddJF5BqqRAY1D56g8jnoSgkEtmTM9zY/RTplFwCbNyPzEQMz5hY+hZqlgIxk/zqDN6nBiGEY1BUyFpLsLvjZSFxkzDwE6GDO/NvJeJ/3m9BEeXfipUnCAonh1CISE/ZLgWtgOgQ6EBkWXJgQpFOdMMEbSgjHMrJraUsu3Dm/9+kbRPa57lt+fV+lXRTIkckiNyQjxyQerkhjRIi3AyJk/kmbw4j86r8+a8/4wuOcXOAfkD5+Mbe2KSAg==</latexit><latexit sha1_base64="bFW1bi7/6GFZn7Hn/KsvnNF+2IQ=">AAAB9XicbVC7TsNAEDzzDOEVoKQ5ESFRRTYgQRlBQxkU8pASKzpfNuGU89m6W4MiK59ACxUdouV7KPgXzsYFJEw1mtnVzk4QS2HQdT+dpeWV1bX10kZ5c2t7Z7eyt982UaI5tHgkI90NmAEpFLRQoIRurIGFgYROMLnO/M4DaCMidYfTGPyQjZUYCc7QSs3m4GxQqbo1NwddJF5BqqRAY1D56g8jnoSgkEtmTM9zY/RTplFwCbNyPzEQMz5hY+hZqlgIxk/zqDN6nBiGEY1BUyFpLsLvjZSFxkzDwE6GDO/NvJeJ/3m9BEeXfipUnCAonh1CISE/ZLgWtgOgQ6EBkWXJgQpFOdMMEbSgjHMrJraUsu3Dm/9+kbRPa57lt+fV+lXRTIkckiNyQjxyQerkhjRIi3AyJk/kmbw4j86r8+a8/4wuOcXOAfkD5+Mbe2KSAg==</latexit>

S4
<latexit sha1_base64="U0gwoZfOOJwcP2haViLcHP/XXVk=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrJRJCgjaCiDQkKkxIrOl0045Xy27tagyMon0EJFh2j5Hgr+hbNxAQlTjWZ2tbMTxFIYdN1Pp7Syura+Ud6sbG3v7O5V9w+6Jko0hw6PZKR7ATMghYIOCpTQizWwMJBwF0yvMv/uAbQRkbrFWQx+yCZKjAVnaKV2e9gYVmtu3c1Bl4lXkBop0BpWvwajiCchKOSSGdP33Bj9lGkUXMK8MkgMxIxP2QT6lioWgvHTPOqcniSGYURj0FRImovweyNloTGzMLCTIcN7s+hl4n9eP8HxhZ8KFScIimeHUEjIDxmuhe0A6EhoQGRZcqBCUc40QwQtKOPcioktpWL78Ba/Xybds7pn+U2j1rwsmimTI3JMTolHzkmTXJMW6RBOJuSJPJMX59F5dd6c95/RklPsHJI/cD6+AXzxkgM=</latexit><latexit sha1_base64="U0gwoZfOOJwcP2haViLcHP/XXVk=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrJRJCgjaCiDQkKkxIrOl0045Xy27tagyMon0EJFh2j5Hgr+hbNxAQlTjWZ2tbMTxFIYdN1Pp7Syura+Ud6sbG3v7O5V9w+6Jko0hw6PZKR7ATMghYIOCpTQizWwMJBwF0yvMv/uAbQRkbrFWQx+yCZKjAVnaKV2e9gYVmtu3c1Bl4lXkBop0BpWvwajiCchKOSSGdP33Bj9lGkUXMK8MkgMxIxP2QT6lioWgvHTPOqcniSGYURj0FRImovweyNloTGzMLCTIcN7s+hl4n9eP8HxhZ8KFScIimeHUEjIDxmuhe0A6EhoQGRZcqBCUc40QwQtKOPcioktpWL78Ba/Xybds7pn+U2j1rwsmimTI3JMTolHzkmTXJMW6RBOJuSJPJMX59F5dd6c95/RklPsHJI/cD6+AXzxkgM=</latexit><latexit sha1_base64="U0gwoZfOOJwcP2haViLcHP/XXVk=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrJRJCgjaCiDQkKkxIrOl0045Xy27tagyMon0EJFh2j5Hgr+hbNxAQlTjWZ2tbMTxFIYdN1Pp7Syura+Ud6sbG3v7O5V9w+6Jko0hw6PZKR7ATMghYIOCpTQizWwMJBwF0yvMv/uAbQRkbrFWQx+yCZKjAVnaKV2e9gYVmtu3c1Bl4lXkBop0BpWvwajiCchKOSSGdP33Bj9lGkUXMK8MkgMxIxP2QT6lioWgvHTPOqcniSGYURj0FRImovweyNloTGzMLCTIcN7s+hl4n9eP8HxhZ8KFScIimeHUEjIDxmuhe0A6EhoQGRZcqBCUc40QwQtKOPcioktpWL78Ba/Xybds7pn+U2j1rwsmimTI3JMTolHzkmTXJMW6RBOJuSJPJMX59F5dd6c95/RklPsHJI/cD6+AXzxkgM=</latexit><latexit sha1_base64="U0gwoZfOOJwcP2haViLcHP/XXVk=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrJRJCgjaCiDQkKkxIrOl0045Xy27tagyMon0EJFh2j5Hgr+hbNxAQlTjWZ2tbMTxFIYdN1Pp7Syura+Ud6sbG3v7O5V9w+6Jko0hw6PZKR7ATMghYIOCpTQizWwMJBwF0yvMv/uAbQRkbrFWQx+yCZKjAVnaKV2e9gYVmtu3c1Bl4lXkBop0BpWvwajiCchKOSSGdP33Bj9lGkUXMK8MkgMxIxP2QT6lioWgvHTPOqcniSGYURj0FRImovweyNloTGzMLCTIcN7s+hl4n9eP8HxhZ8KFScIimeHUEjIDxmuhe0A6EhoQGRZcqBCUc40QwQtKOPcioktpWL78Ba/Xybds7pn+U2j1rwsmimTI3JMTolHzkmTXJMW6RBOJuSJPJMX59F5dd6c95/RklPsHJI/cD6+AXzxkgM=</latexit>

S5
<latexit sha1_base64="PS+Sel0Y/L07XJimBAq2PWU5KX0=">AAAB9XicbVC7TsNAEDzzDOEVoKQ5ESFRRTYCQRlBQxkU8pASKzpfNuGU89m6W4MiK59ACxUdouV7KPgXzsYFJEw1mtnVzk4QS2HQdT+dpeWV1bX10kZ5c2t7Z7eyt982UaI5tHgkI90NmAEpFLRQoIRurIGFgYROMLnO/M4DaCMidYfTGPyQjZUYCc7QSs3m4HxQqbo1NwddJF5BqqRAY1D56g8jnoSgkEtmTM9zY/RTplFwCbNyPzEQMz5hY+hZqlgIxk/zqDN6nBiGEY1BUyFpLsLvjZSFxkzDwE6GDO/NvJeJ/3m9BEeXfipUnCAonh1CISE/ZLgWtgOgQ6EBkWXJgQpFOdMMEbSgjHMrJraUsu3Dm/9+kbRPa57lt2fV+lXRTIkckiNyQjxyQerkhjRIi3AyJk/kmbw4j86r8+a8/4wuOcXOAfkD5+MbfoCSBA==</latexit><latexit sha1_base64="PS+Sel0Y/L07XJimBAq2PWU5KX0=">AAAB9XicbVC7TsNAEDzzDOEVoKQ5ESFRRTYCQRlBQxkU8pASKzpfNuGU89m6W4MiK59ACxUdouV7KPgXzsYFJEw1mtnVzk4QS2HQdT+dpeWV1bX10kZ5c2t7Z7eyt982UaI5tHgkI90NmAEpFLRQoIRurIGFgYROMLnO/M4DaCMidYfTGPyQjZUYCc7QSs3m4HxQqbo1NwddJF5BqqRAY1D56g8jnoSgkEtmTM9zY/RTplFwCbNyPzEQMz5hY+hZqlgIxk/zqDN6nBiGEY1BUyFpLsLvjZSFxkzDwE6GDO/NvJeJ/3m9BEeXfipUnCAonh1CISE/ZLgWtgOgQ6EBkWXJgQpFOdMMEbSgjHMrJraUsu3Dm/9+kbRPa57lt2fV+lXRTIkckiNyQjxyQerkhjRIi3AyJk/kmbw4j86r8+a8/4wuOcXOAfkD5+MbfoCSBA==</latexit><latexit sha1_base64="PS+Sel0Y/L07XJimBAq2PWU5KX0=">AAAB9XicbVC7TsNAEDzzDOEVoKQ5ESFRRTYCQRlBQxkU8pASKzpfNuGU89m6W4MiK59ACxUdouV7KPgXzsYFJEw1mtnVzk4QS2HQdT+dpeWV1bX10kZ5c2t7Z7eyt982UaI5tHgkI90NmAEpFLRQoIRurIGFgYROMLnO/M4DaCMidYfTGPyQjZUYCc7QSs3m4HxQqbo1NwddJF5BqqRAY1D56g8jnoSgkEtmTM9zY/RTplFwCbNyPzEQMz5hY+hZqlgIxk/zqDN6nBiGEY1BUyFpLsLvjZSFxkzDwE6GDO/NvJeJ/3m9BEeXfipUnCAonh1CISE/ZLgWtgOgQ6EBkWXJgQpFOdMMEbSgjHMrJraUsu3Dm/9+kbRPa57lt2fV+lXRTIkckiNyQjxyQerkhjRIi3AyJk/kmbw4j86r8+a8/4wuOcXOAfkD5+MbfoCSBA==</latexit><latexit sha1_base64="PS+Sel0Y/L07XJimBAq2PWU5KX0=">AAAB9XicbVC7TsNAEDzzDOEVoKQ5ESFRRTYCQRlBQxkU8pASKzpfNuGU89m6W4MiK59ACxUdouV7KPgXzsYFJEw1mtnVzk4QS2HQdT+dpeWV1bX10kZ5c2t7Z7eyt982UaI5tHgkI90NmAEpFLRQoIRurIGFgYROMLnO/M4DaCMidYfTGPyQjZUYCc7QSs3m4HxQqbo1NwddJF5BqqRAY1D56g8jnoSgkEtmTM9zY/RTplFwCbNyPzEQMz5hY+hZqlgIxk/zqDN6nBiGEY1BUyFpLsLvjZSFxkzDwE6GDO/NvJeJ/3m9BEeXfipUnCAonh1CISE/ZLgWtgOgQ6EBkWXJgQpFOdMMEbSgjHMrJraUsu3Dm/9+kbRPa57lt2fV+lXRTIkckiNyQjxyQerkhjRIi3AyJk/kmbw4j86r8+a8/4wuOcXOAfkD5+MbfoCSBA==</latexit>

Figure C.5: Schematic representation of the compact region in the allowed {γ̃3, γ̃5, γ̃7}
space where all the zeros are purely real. In the interior of the tetrahedron there are
4 distinct CDD zeros. As we hit one of the faces two things can happen: two zeros
collide becoming a double zero or, as in the case of the orange face (the same shown in
figure C.4), one zero goes at infinity. The purple dotted lines are the three-dimensional
projections of the edges of the hyper-tetrahedron in the allowed {γ̃3, γ̃5, γ̃7, γ̃9} space:
every time we add an extra dimension a higher multiplicity zero cusp appears. Extrapo-
lating to n→ ∞ we encounter the eis/4 cusp.

goldstone bosons is O(2). In terms of the isospin amplitudes, this implies that σsing =

σanti = σ1 + σ2 and σsym = σ2 − σ1. Moreover, we can make use of the crossing and
analyticity relations (4.10) to deduce that

σsym(−s∗) = σsing(s)∗ = σanti(s)∗ . (C.28)

The symmetric channel S-matrix is bounded by 1 for any s ∈ R, hence (C.28) now
implies that the antisymmetric and the singlet channel amplitudes are also bounded
by 1 for s ∈ R. Under the assumption of integrability, these inequalities are saturated
and the isospin amplitudes are a product of CDDs.1 We therefore consider the following
simple ansatz for the solution that satisfies Yang-Baxter:

σsym =
(s− a)a∗

(s− a∗)a

σsing = σanti =
(s + a∗)a
(s + a)a∗

(C.29)

where we have used (C.28) to relate the CDD zeroes in the 3 channels. To find the

1Any holomorphic function f (z) from the upper half plane H to the unit disc D that satisfies | f (z)| = 1
for z ∈ R must be a product of CDDs.
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C.4. Numerics

location of the zero a, we expand the above ansatz at s = 0 and match with the low
energy expansion (4.2) and we find a = 8/(32α2 − i). We can also read of the following
relation between the α2 and α3 coefficients

α3 = − 1
768

+ 4α2
2 . (C.30)

Substituting α2 = − 22
384π , we get a ≈ −3.5 + i6.0 and

α3 = − 1
768

+
121

9216π2 , (C.31)

which saturates the Schwarz-Pick bound (4.17).

C.4 Numerics

For numerics we parametrize smooth S-matrices as Taylor expansions on the upper half
plane or – mapped to the unit disk – as

σ1(χ) =
Nmax

∑
n=0

(an + ibn)χ
n

σ2(χ) =
Nmax

∑
n=0

cnχn

σ3(χ) =
Nmax

∑
n=0

(an − ibn)χ
n (C.32)

where real analyticity simply amounts to the statement that the coefficients {an, bn, cn}
are real and the χ map was defined in figure 4.2. Given a set {an, bn, cn} we can simply
expand the amplitudes close to s = 0 (or χ = 1) to read off the threshold parameters (4.2).

As mentioned in the main text, the isospin amplitudes diagonalise unitarity constraints
and in the χ disc we have:

|σrep(eiθ)| ≤ 1 , ∀ θ ∈ [0, π] . (C.33)

This is easily imposed as a semi definite constraint: We first divide the range of θ into a
grid, and then for a given point on the grid and for each one of the isospin amplitudes,
eq. (C.33) is the same as the condition

U ≡
(

1 +R I
I 1−R

)
� 0 . (C.34)

whereR = Re(σrep(eiθ)) and I = Im(σrep(eiθ)).
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Appendix C. Appendices to flux-tube bootstrap

↵2
<latexit sha1_base64="bWynZ/EEMQ2SR66evWERHJk4Guc=">AAAB+nicbVC7TsNAEDyHVwivACXNiQiJKrIjJCgjaCiDRB5SYkXryyY55fzQ3RopMvkJWqjoEC0/Q8G/YBsXkDDVaGZXOztepKQh2/60SmvrG5tb5e3Kzu7e/kH18KhjwlgLbItQhbrngUElA2yTJIW9SCP4nsKuN7vJ/O4DaiPD4J7mEbo+TAI5lgIolXoDUNEUho1htWbX7Rx8lTgFqbECrWH1azAKRexjQEKBMX3HjshNQJMUCheVQWwwAjGDCfZTGoCPxk3yvAt+FhugkEeouVQ8F/H3RgK+MXPfSyd9oKlZ9jLxP68f0/jKTWQQxYSByA6RVJgfMkLLtAjkI6mRCLLkyGXABWggQi05CJGKcdpMJe3DWf5+lXQadSfldxe15nXRTJmdsFN2zhx2yZrslrVYmwmm2BN7Zi/Wo/VqvVnvP6Mlq9g5Zn9gfXwDcj2UQg==</latexit><latexit sha1_base64="bWynZ/EEMQ2SR66evWERHJk4Guc=">AAAB+nicbVC7TsNAEDyHVwivACXNiQiJKrIjJCgjaCiDRB5SYkXryyY55fzQ3RopMvkJWqjoEC0/Q8G/YBsXkDDVaGZXOztepKQh2/60SmvrG5tb5e3Kzu7e/kH18KhjwlgLbItQhbrngUElA2yTJIW9SCP4nsKuN7vJ/O4DaiPD4J7mEbo+TAI5lgIolXoDUNEUho1htWbX7Rx8lTgFqbECrWH1azAKRexjQEKBMX3HjshNQJMUCheVQWwwAjGDCfZTGoCPxk3yvAt+FhugkEeouVQ8F/H3RgK+MXPfSyd9oKlZ9jLxP68f0/jKTWQQxYSByA6RVJgfMkLLtAjkI6mRCLLkyGXABWggQi05CJGKcdpMJe3DWf5+lXQadSfldxe15nXRTJmdsFN2zhx2yZrslrVYmwmm2BN7Zi/Wo/VqvVnvP6Mlq9g5Zn9gfXwDcj2UQg==</latexit><latexit sha1_base64="bWynZ/EEMQ2SR66evWERHJk4Guc=">AAAB+nicbVC7TsNAEDyHVwivACXNiQiJKrIjJCgjaCiDRB5SYkXryyY55fzQ3RopMvkJWqjoEC0/Q8G/YBsXkDDVaGZXOztepKQh2/60SmvrG5tb5e3Kzu7e/kH18KhjwlgLbItQhbrngUElA2yTJIW9SCP4nsKuN7vJ/O4DaiPD4J7mEbo+TAI5lgIolXoDUNEUho1htWbX7Rx8lTgFqbECrWH1azAKRexjQEKBMX3HjshNQJMUCheVQWwwAjGDCfZTGoCPxk3yvAt+FhugkEeouVQ8F/H3RgK+MXPfSyd9oKlZ9jLxP68f0/jKTWQQxYSByA6RVJgfMkLLtAjkI6mRCLLkyGXABWggQi05CJGKcdpMJe3DWf5+lXQadSfldxe15nXRTJmdsFN2zhx2yZrslrVYmwmm2BN7Zi/Wo/VqvVnvP6Mlq9g5Zn9gfXwDcj2UQg==</latexit><latexit sha1_base64="bWynZ/EEMQ2SR66evWERHJk4Guc=">AAAB+nicbVC7TsNAEDyHVwivACXNiQiJKrIjJCgjaCiDRB5SYkXryyY55fzQ3RopMvkJWqjoEC0/Q8G/YBsXkDDVaGZXOztepKQh2/60SmvrG5tb5e3Kzu7e/kH18KhjwlgLbItQhbrngUElA2yTJIW9SCP4nsKuN7vJ/O4DaiPD4J7mEbo+TAI5lgIolXoDUNEUho1htWbX7Rx8lTgFqbECrWH1azAKRexjQEKBMX3HjshNQJMUCheVQWwwAjGDCfZTGoCPxk3yvAt+FhugkEeouVQ8F/H3RgK+MXPfSyd9oKlZ9jLxP68f0/jKTWQQxYSByA6RVJgfMkLLtAjkI6mRCLLkyGXABWggQi05CJGKcdpMJe3DWf5+lXQadSfldxe15nXRTJmdsFN2zhx2yZrslrVYmwmm2BN7Zi/Wo/VqvVnvP6Mlq9g5Zn9gfXwDcj2UQg==</latexit>

↵3
<latexit sha1_base64="SXy7ojnWghRcKczaLy1ycLGNzZ0=">AAAB+nicbVC7TsNAEDyHVwivACXNiQiJKrIBCcoIGsogkYeUWNH6sklOOT90t0aKTH6CFio6RMvPUPAv2MYFJEw1mtnVzo4XKWnItj+t0srq2vpGebOytb2zu1fdP2ibMNYCWyJUoe56YFDJAFskSWE30gi+p7DjTW8yv/OA2sgwuKdZhK4P40COpABKpW4fVDSBwfmgWrPrdg6+TJyC1FiB5qD61R+GIvYxIKHAmJ5jR+QmoEkKhfNKPzYYgZjCGHspDcBH4yZ53jk/iQ1QyCPUXCqei/h7IwHfmJnvpZM+0MQsepn4n9eLaXTlJjKIYsJAZIdIKswPGaFlWgTyodRIBFly5DLgAjQQoZYchEjFOG2mkvbhLH6/TNpndSfldxe1xnXRTJkdsWN2yhx2yRrsljVZiwmm2BN7Zi/Wo/VqvVnvP6Mlq9g5ZH9gfXwDc8yUQw==</latexit><latexit sha1_base64="SXy7ojnWghRcKczaLy1ycLGNzZ0=">AAAB+nicbVC7TsNAEDyHVwivACXNiQiJKrIBCcoIGsogkYeUWNH6sklOOT90t0aKTH6CFio6RMvPUPAv2MYFJEw1mtnVzo4XKWnItj+t0srq2vpGebOytb2zu1fdP2ibMNYCWyJUoe56YFDJAFskSWE30gi+p7DjTW8yv/OA2sgwuKdZhK4P40COpABKpW4fVDSBwfmgWrPrdg6+TJyC1FiB5qD61R+GIvYxIKHAmJ5jR+QmoEkKhfNKPzYYgZjCGHspDcBH4yZ53jk/iQ1QyCPUXCqei/h7IwHfmJnvpZM+0MQsepn4n9eLaXTlJjKIYsJAZIdIKswPGaFlWgTyodRIBFly5DLgAjQQoZYchEjFOG2mkvbhLH6/TNpndSfldxe1xnXRTJkdsWN2yhx2yRrsljVZiwmm2BN7Zi/Wo/VqvVnvP6Mlq9g5ZH9gfXwDc8yUQw==</latexit><latexit sha1_base64="SXy7ojnWghRcKczaLy1ycLGNzZ0=">AAAB+nicbVC7TsNAEDyHVwivACXNiQiJKrIBCcoIGsogkYeUWNH6sklOOT90t0aKTH6CFio6RMvPUPAv2MYFJEw1mtnVzo4XKWnItj+t0srq2vpGebOytb2zu1fdP2ibMNYCWyJUoe56YFDJAFskSWE30gi+p7DjTW8yv/OA2sgwuKdZhK4P40COpABKpW4fVDSBwfmgWrPrdg6+TJyC1FiB5qD61R+GIvYxIKHAmJ5jR+QmoEkKhfNKPzYYgZjCGHspDcBH4yZ53jk/iQ1QyCPUXCqei/h7IwHfmJnvpZM+0MQsepn4n9eLaXTlJjKIYsJAZIdIKswPGaFlWgTyodRIBFly5DLgAjQQoZYchEjFOG2mkvbhLH6/TNpndSfldxe1xnXRTJkdsWN2yhx2yRrsljVZiwmm2BN7Zi/Wo/VqvVnvP6Mlq9g5ZH9gfXwDc8yUQw==</latexit><latexit sha1_base64="SXy7ojnWghRcKczaLy1ycLGNzZ0=">AAAB+nicbVC7TsNAEDyHVwivACXNiQiJKrIBCcoIGsogkYeUWNH6sklOOT90t0aKTH6CFio6RMvPUPAv2MYFJEw1mtnVzo4XKWnItj+t0srq2vpGebOytb2zu1fdP2ibMNYCWyJUoe56YFDJAFskSWE30gi+p7DjTW8yv/OA2sgwuKdZhK4P40COpABKpW4fVDSBwfmgWrPrdg6+TJyC1FiB5qD61R+GIvYxIKHAmJ5jR+QmoEkKhfNKPzYYgZjCGHspDcBH4yZ53jk/iQ1QyCPUXCqei/h7IwHfmJnvpZM+0MQsepn4n9eLaXTlJjKIYsJAZIdIKswPGaFlWgTyodRIBFly5DLgAjQQoZYchEjFOG2mkvbhLH6/TNpndSfldxe1xnXRTJkdsWN2yhx2yRrsljVZiwmm2BN7Zi/Wo/VqvVnvP6Mlq9g5ZH9gfXwDc8yUQw==</latexit>

�3
<latexit sha1_base64="oJF4TY+dhJu1d+bPOs1j6RDbL4M=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIBCcoIGsogkYeURNH6sgmnnB+6WyNFVj6CFio6RMvXUPAvnI0LSJhqNLOrnR0/VtKQ6346pZXVtfWN8mZla3tnd6+6f9A2UaIFtkSkIt31waCSIbZIksJurBECX2HHn95kfucRtZFReE+zGAcBTEI5lgLISp2+jwTD82G15tbdHHyZeAWpsQLNYfWrP4pEEmBIQoExPc+NaZCCJikUziv9xGAMYgoT7FkaQoBmkOZx5/wkMUARj1FzqXgu4u+NFAJjZoFvJwOgB7PoZeJ/Xi+h8dUglWGcEIYiO0RSYX7ICC1tD8hHUiMRZMmRy5AL0ECEWnIQwoqJLaZi+/AWv18m7bO6Z/ndRa1xXTRTZkfsmJ0yj12yBrtlTdZigk3ZE3tmL07qvDpvzvvPaMkpdg7ZHzgf36awk88=</latexit><latexit sha1_base64="oJF4TY+dhJu1d+bPOs1j6RDbL4M=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIBCcoIGsogkYeURNH6sgmnnB+6WyNFVj6CFio6RMvXUPAvnI0LSJhqNLOrnR0/VtKQ6346pZXVtfWN8mZla3tnd6+6f9A2UaIFtkSkIt31waCSIbZIksJurBECX2HHn95kfucRtZFReE+zGAcBTEI5lgLISp2+jwTD82G15tbdHHyZeAWpsQLNYfWrP4pEEmBIQoExPc+NaZCCJikUziv9xGAMYgoT7FkaQoBmkOZx5/wkMUARj1FzqXgu4u+NFAJjZoFvJwOgB7PoZeJ/Xi+h8dUglWGcEIYiO0RSYX7ICC1tD8hHUiMRZMmRy5AL0ECEWnIQwoqJLaZi+/AWv18m7bO6Z/ndRa1xXTRTZkfsmJ0yj12yBrtlTdZigk3ZE3tmL07qvDpvzvvPaMkpdg7ZHzgf36awk88=</latexit><latexit sha1_base64="oJF4TY+dhJu1d+bPOs1j6RDbL4M=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIBCcoIGsogkYeURNH6sgmnnB+6WyNFVj6CFio6RMvXUPAvnI0LSJhqNLOrnR0/VtKQ6346pZXVtfWN8mZla3tnd6+6f9A2UaIFtkSkIt31waCSIbZIksJurBECX2HHn95kfucRtZFReE+zGAcBTEI5lgLISp2+jwTD82G15tbdHHyZeAWpsQLNYfWrP4pEEmBIQoExPc+NaZCCJikUziv9xGAMYgoT7FkaQoBmkOZx5/wkMUARj1FzqXgu4u+NFAJjZoFvJwOgB7PoZeJ/Xi+h8dUglWGcEIYiO0RSYX7ICC1tD8hHUiMRZMmRy5AL0ECEWnIQwoqJLaZi+/AWv18m7bO6Z/ndRa1xXTRTZkfsmJ0yj12yBrtlTdZigk3ZE3tmL07qvDpvzvvPaMkpdg7ZHzgf36awk88=</latexit><latexit sha1_base64="oJF4TY+dhJu1d+bPOs1j6RDbL4M=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIBCcoIGsogkYeURNH6sgmnnB+6WyNFVj6CFio6RMvXUPAvnI0LSJhqNLOrnR0/VtKQ6346pZXVtfWN8mZla3tnd6+6f9A2UaIFtkSkIt31waCSIbZIksJurBECX2HHn95kfucRtZFReE+zGAcBTEI5lgLISp2+jwTD82G15tbdHHyZeAWpsQLNYfWrP4pEEmBIQoExPc+NaZCCJikUziv9xGAMYgoT7FkaQoBmkOZx5/wkMUARj1FzqXgu4u+NFAJjZoFvJwOgB7PoZeJ/Xi+h8dUglWGcEIYiO0RSYX7ICC1tD8hHUiMRZMmRy5AL0ECEWnIQwoqJLaZi+/AWv18m7bO6Z/ndRa1xXTRTZkfsmJ0yj12yBrtlTdZigk3ZE3tmL07qvDpvzvvPaMkpdg7ZHzgf36awk88=</latexit>

↵2 = � 22

384⇡
<latexit sha1_base64="7gjJ63NcxiwJ9iCG9K5AaXxW+YA=">AAACD3icbVC7TsNAEDzzDOEVoKQ5ESHRgOwQiTRIETSUIJEEKY6i9bEhp5zt090aKbJS8Al8BS1UdIiWT6DgX3CMC15TjWZ2tTsTaCUtue67MzM7N7+wWFoqL6+srq1XNjbbNk6MwJaIVWyuArCoZIQtkqTwShuEMFDYCUanU79zi8bKOLqkscZeCDeRHEgBlEn9yrYPSg+hXzve9wcGRFqrTdLDRt3XctKvVN0DNwf/S7yCVFmB837lw7+ORRJiREKBtV3P1dRLwZAUCidlP7GoQYzgBrsZjSBE20vzEBO+m1igmGs0XCqei/h9I4XQ2nEYZJMh0ND+9qbif143oUGjl8pIJ4SRmB4iqTA/ZIWRWTvIr6VBIph+jlxGXIABIjSSgxCZmGR1lbM+vN/p/5J27cDL+EW92jwpmimxbbbD9pjHjliTnbFz1mKC3bEH9sienHvn2XlxXr9GZ5xiZ4v9gPP2CU9Sm7s=</latexit><latexit sha1_base64="7gjJ63NcxiwJ9iCG9K5AaXxW+YA=">AAACD3icbVC7TsNAEDzzDOEVoKQ5ESHRgOwQiTRIETSUIJEEKY6i9bEhp5zt090aKbJS8Al8BS1UdIiWT6DgX3CMC15TjWZ2tTsTaCUtue67MzM7N7+wWFoqL6+srq1XNjbbNk6MwJaIVWyuArCoZIQtkqTwShuEMFDYCUanU79zi8bKOLqkscZeCDeRHEgBlEn9yrYPSg+hXzve9wcGRFqrTdLDRt3XctKvVN0DNwf/S7yCVFmB837lw7+ORRJiREKBtV3P1dRLwZAUCidlP7GoQYzgBrsZjSBE20vzEBO+m1igmGs0XCqei/h9I4XQ2nEYZJMh0ND+9qbif143oUGjl8pIJ4SRmB4iqTA/ZIWRWTvIr6VBIph+jlxGXIABIjSSgxCZmGR1lbM+vN/p/5J27cDL+EW92jwpmimxbbbD9pjHjliTnbFz1mKC3bEH9sienHvn2XlxXr9GZ5xiZ4v9gPP2CU9Sm7s=</latexit><latexit sha1_base64="7gjJ63NcxiwJ9iCG9K5AaXxW+YA=">AAACD3icbVC7TsNAEDzzDOEVoKQ5ESHRgOwQiTRIETSUIJEEKY6i9bEhp5zt090aKbJS8Al8BS1UdIiWT6DgX3CMC15TjWZ2tTsTaCUtue67MzM7N7+wWFoqL6+srq1XNjbbNk6MwJaIVWyuArCoZIQtkqTwShuEMFDYCUanU79zi8bKOLqkscZeCDeRHEgBlEn9yrYPSg+hXzve9wcGRFqrTdLDRt3XctKvVN0DNwf/S7yCVFmB837lw7+ORRJiREKBtV3P1dRLwZAUCidlP7GoQYzgBrsZjSBE20vzEBO+m1igmGs0XCqei/h9I4XQ2nEYZJMh0ND+9qbif143oUGjl8pIJ4SRmB4iqTA/ZIWRWTvIr6VBIph+jlxGXIABIjSSgxCZmGR1lbM+vN/p/5J27cDL+EW92jwpmimxbbbD9pjHjliTnbFz1mKC3bEH9sienHvn2XlxXr9GZ5xiZ4v9gPP2CU9Sm7s=</latexit><latexit sha1_base64="7gjJ63NcxiwJ9iCG9K5AaXxW+YA=">AAACD3icbVC7TsNAEDzzDOEVoKQ5ESHRgOwQiTRIETSUIJEEKY6i9bEhp5zt090aKbJS8Al8BS1UdIiWT6DgX3CMC15TjWZ2tTsTaCUtue67MzM7N7+wWFoqL6+srq1XNjbbNk6MwJaIVWyuArCoZIQtkqTwShuEMFDYCUanU79zi8bKOLqkscZeCDeRHEgBlEn9yrYPSg+hXzve9wcGRFqrTdLDRt3XctKvVN0DNwf/S7yCVFmB837lw7+ORRJiREKBtV3P1dRLwZAUCidlP7GoQYzgBrsZjSBE20vzEBO+m1igmGs0XCqei/h9I4XQ2nEYZJMh0ND+9qbif143oUGjl8pIJ4SRmB4iqTA/ZIWRWTvIr6VBIph+jlxGXIABIjSSgxCZmGR1lbM+vN/p/5J27cDL+EW92jwpmimxbbbD9pjHjliTnbFz1mKC3bEH9sienHvn2XlxXr9GZ5xiZ4v9gPP2CU9Sm7s=</latexit>

D=4 Flux Tube Section
<latexit sha1_base64="F51CJ0cwYAwrla1C5pyuzg9jwkw=">AAACFHicbVC7SgNBFJ2Nrxhfq5Y2g4lgFXYloI0QVMQyYl6QhDA7uYlDZh/M3JGEJa2f4FfYamUntvYW/ou7MYVGT3U451zuvceLpNDoOB9WZmFxaXklu5pbW9/Y3LK3d+o6NIpDjYcyVE2PaZAigBoKlNCMFDDfk9Dwhuep37gDpUUYVHEcQcdng0D0BWeYSF2bthFGGBcu4tNJqUAvpRnRqvGA3gBPE5OunXeKzhT0L3FnJE9mqHTtz3Yv5MaHALlkWrdcJ8JOzBQKLmGSaxsNEeNDNoBWQgPmg+7E008m9MBohiGNQFEh6VSEnxMx87Ue+16S9Bne6nkvFf/zWgb7J51YBJFBCHi6CIWE6SLNlUgqAtoTChBZejlQEVDOFEMEJSjjPBFN0lku6cOd//4vqR8V3YRfl/Lls1kzWbJH9skhcckxKZMrUiE1wsk9eSRP5Nl6sF6sV+vtO5qxZjO75Bes9y9JW53i</latexit><latexit sha1_base64="F51CJ0cwYAwrla1C5pyuzg9jwkw=">AAACFHicbVC7SgNBFJ2Nrxhfq5Y2g4lgFXYloI0QVMQyYl6QhDA7uYlDZh/M3JGEJa2f4FfYamUntvYW/ou7MYVGT3U451zuvceLpNDoOB9WZmFxaXklu5pbW9/Y3LK3d+o6NIpDjYcyVE2PaZAigBoKlNCMFDDfk9Dwhuep37gDpUUYVHEcQcdng0D0BWeYSF2bthFGGBcu4tNJqUAvpRnRqvGA3gBPE5OunXeKzhT0L3FnJE9mqHTtz3Yv5MaHALlkWrdcJ8JOzBQKLmGSaxsNEeNDNoBWQgPmg+7E008m9MBohiGNQFEh6VSEnxMx87Ue+16S9Bne6nkvFf/zWgb7J51YBJFBCHi6CIWE6SLNlUgqAtoTChBZejlQEVDOFEMEJSjjPBFN0lku6cOd//4vqR8V3YRfl/Lls1kzWbJH9skhcckxKZMrUiE1wsk9eSRP5Nl6sF6sV+vtO5qxZjO75Bes9y9JW53i</latexit><latexit sha1_base64="F51CJ0cwYAwrla1C5pyuzg9jwkw=">AAACFHicbVC7SgNBFJ2Nrxhfq5Y2g4lgFXYloI0QVMQyYl6QhDA7uYlDZh/M3JGEJa2f4FfYamUntvYW/ou7MYVGT3U451zuvceLpNDoOB9WZmFxaXklu5pbW9/Y3LK3d+o6NIpDjYcyVE2PaZAigBoKlNCMFDDfk9Dwhuep37gDpUUYVHEcQcdng0D0BWeYSF2bthFGGBcu4tNJqUAvpRnRqvGA3gBPE5OunXeKzhT0L3FnJE9mqHTtz3Yv5MaHALlkWrdcJ8JOzBQKLmGSaxsNEeNDNoBWQgPmg+7E008m9MBohiGNQFEh6VSEnxMx87Ue+16S9Bne6nkvFf/zWgb7J51YBJFBCHi6CIWE6SLNlUgqAtoTChBZejlQEVDOFEMEJSjjPBFN0lku6cOd//4vqR8V3YRfl/Lls1kzWbJH9skhcckxKZMrUiE1wsk9eSRP5Nl6sF6sV+vtO5qxZjO75Bes9y9JW53i</latexit><latexit sha1_base64="F51CJ0cwYAwrla1C5pyuzg9jwkw=">AAACFHicbVC7SgNBFJ2Nrxhfq5Y2g4lgFXYloI0QVMQyYl6QhDA7uYlDZh/M3JGEJa2f4FfYamUntvYW/ou7MYVGT3U451zuvceLpNDoOB9WZmFxaXklu5pbW9/Y3LK3d+o6NIpDjYcyVE2PaZAigBoKlNCMFDDfk9Dwhuep37gDpUUYVHEcQcdng0D0BWeYSF2bthFGGBcu4tNJqUAvpRnRqvGA3gBPE5OunXeKzhT0L3FnJE9mqHTtz3Yv5MaHALlkWrdcJ8JOzBQKLmGSaxsNEeNDNoBWQgPmg+7E008m9MBohiGNQFEh6VSEnxMx87Ue+16S9Bne6nkvFf/zWgb7J51YBJFBCHi6CIWE6SLNlUgqAtoTChBZejlQEVDOFEMEJSjjPBFN0lku6cOd//4vqR8V3YRfl/Lls1kzWbJH9skhcckxKZMrUiE1wsk9eSRP5Nl6sF6sV+vtO5qxZjO75Bes9y9JW53i</latexit>

↵3 = � 1

768
+ 4↵2

2
<latexit sha1_base64="ldcC1DdCLggQC9g/pviuNu5/pek=">AAACJXicbVDLSsNAFJ34tr6qLt0MFkEQJanFdiOIblwqWFtoarmZ3urQyYOZG6GEfIef4Fe41ZU7EVyIv2Ias/B1Vodz7vN4kZKGbPvNmpicmp6ZnZsvLSwuLa+UV9cuTRhrgU0RqlC3PTCoZIBNkqSwHWkE31PY8oYnY791i9rIMLigUYRdH64DOZACKJN6ZSdx8yGJxn7qgopuoLd/uOsONIjESZP6QSPdqfHCqV5V0165Yu/ZOfhf4hSkwgqc9crvbj8UsY8BCQXGdBw7om4CmqRQmJbc2GAEYgjX2MloAD6abpJflfKt2ACFPELNpeK5iN87EvCNGfleVukD3Zjf3lj8z+vENGh0ExlEMWEgxotIKswXGaFllhnyvtRIBOPLkcuAC9BAhFpyECIT4yzEUpaH8/v7v+Syuudk/LxWOToukpljG2yTbTOH1dkRO2VnrMkEu2MP7JE9WffWs/VivX6VTlhFzzr7AevjE7LjpN4=</latexit><latexit sha1_base64="ldcC1DdCLggQC9g/pviuNu5/pek=">AAACJXicbVDLSsNAFJ34tr6qLt0MFkEQJanFdiOIblwqWFtoarmZ3urQyYOZG6GEfIef4Fe41ZU7EVyIv2Ias/B1Vodz7vN4kZKGbPvNmpicmp6ZnZsvLSwuLa+UV9cuTRhrgU0RqlC3PTCoZIBNkqSwHWkE31PY8oYnY791i9rIMLigUYRdH64DOZACKJN6ZSdx8yGJxn7qgopuoLd/uOsONIjESZP6QSPdqfHCqV5V0165Yu/ZOfhf4hSkwgqc9crvbj8UsY8BCQXGdBw7om4CmqRQmJbc2GAEYgjX2MloAD6abpJflfKt2ACFPELNpeK5iN87EvCNGfleVukD3Zjf3lj8z+vENGh0ExlEMWEgxotIKswXGaFllhnyvtRIBOPLkcuAC9BAhFpyECIT4yzEUpaH8/v7v+Syuudk/LxWOToukpljG2yTbTOH1dkRO2VnrMkEu2MP7JE9WffWs/VivX6VTlhFzzr7AevjE7LjpN4=</latexit><latexit sha1_base64="ldcC1DdCLggQC9g/pviuNu5/pek=">AAACJXicbVDLSsNAFJ34tr6qLt0MFkEQJanFdiOIblwqWFtoarmZ3urQyYOZG6GEfIef4Fe41ZU7EVyIv2Ias/B1Vodz7vN4kZKGbPvNmpicmp6ZnZsvLSwuLa+UV9cuTRhrgU0RqlC3PTCoZIBNkqSwHWkE31PY8oYnY791i9rIMLigUYRdH64DOZACKJN6ZSdx8yGJxn7qgopuoLd/uOsONIjESZP6QSPdqfHCqV5V0165Yu/ZOfhf4hSkwgqc9crvbj8UsY8BCQXGdBw7om4CmqRQmJbc2GAEYgjX2MloAD6abpJflfKt2ACFPELNpeK5iN87EvCNGfleVukD3Zjf3lj8z+vENGh0ExlEMWEgxotIKswXGaFllhnyvtRIBOPLkcuAC9BAhFpyECIT4yzEUpaH8/v7v+Syuudk/LxWOToukpljG2yTbTOH1dkRO2VnrMkEu2MP7JE9WffWs/VivX6VTlhFzzr7AevjE7LjpN4=</latexit><latexit sha1_base64="ldcC1DdCLggQC9g/pviuNu5/pek=">AAACJXicbVDLSsNAFJ34tr6qLt0MFkEQJanFdiOIblwqWFtoarmZ3urQyYOZG6GEfIef4Fe41ZU7EVyIv2Ias/B1Vodz7vN4kZKGbPvNmpicmp6ZnZsvLSwuLa+UV9cuTRhrgU0RqlC3PTCoZIBNkqSwHWkE31PY8oYnY791i9rIMLigUYRdH64DOZACKJN6ZSdx8yGJxn7qgopuoLd/uOsONIjESZP6QSPdqfHCqV5V0165Yu/ZOfhf4hSkwgqc9crvbj8UsY8BCQXGdBw7om4CmqRQmJbc2GAEYgjX2MloAD6abpJflfKt2ACFPELNpeK5iN87EvCNGfleVukD3Zjf3lj8z+vENGh0ExlEMWEgxotIKswXGaFllhnyvtRIBOPLkcuAC9BAhFpyECIT4yzEUpaH8/v7v+Syuudk/LxWOToukpljG2yTbTOH1dkRO2VnrMkEu2MP7JE9WffWs/VivX6VTlhFzzr7AevjE7LjpN4=</latexit>

Schwarz-Pick
<latexit sha1_base64="g9kRma/QUSvp1OcvP4LCaHaG39U=">AAACFHicbVC7TgJBFJ31ifhCLW0mEhMbya4x0ZJoY4lRHgkQcne4wITZR2buqrjZ1k/wK2y1sjO29hb+i8tKoeCpTs65z+OGShqy7U9rbn5hcWk5t5JfXVvf2CxsbddMEGmBVRGoQDdcMKikj1WSpLARagTPVVh3h+djv36D2sjAv6ZRiG0P+r7sSQGUSp0Cj1vZkFhjN2kR3lF8JQa3oO8PK1IMk6RTKNolOwOfJc6EFNkElU7hq9UNROShT0KBMU3HDqkdgyYpFCb5VmQwBDGEPjZT6oOHph1nRyR8PzJAAQ9Rc6l4JuLvjhg8Y0aem1Z6QAMz7Y3F/7xmRL3Tdiz9MCL0xXgRSYXZIiO0TCNC3pUaiWB8OXLpcwEaiFBLDkKkYpRmlk/zcKa/nyW1o5KT8svjYvlskkyO7bI9dsAcdsLK7IJVWJUJ9sCe2DN7sR6tV+vNev8pnbMmPTvsD6yPb10tn8U=</latexit><latexit sha1_base64="g9kRma/QUSvp1OcvP4LCaHaG39U=">AAACFHicbVC7TgJBFJ31ifhCLW0mEhMbya4x0ZJoY4lRHgkQcne4wITZR2buqrjZ1k/wK2y1sjO29hb+i8tKoeCpTs65z+OGShqy7U9rbn5hcWk5t5JfXVvf2CxsbddMEGmBVRGoQDdcMKikj1WSpLARagTPVVh3h+djv36D2sjAv6ZRiG0P+r7sSQGUSp0Cj1vZkFhjN2kR3lF8JQa3oO8PK1IMk6RTKNolOwOfJc6EFNkElU7hq9UNROShT0KBMU3HDqkdgyYpFCb5VmQwBDGEPjZT6oOHph1nRyR8PzJAAQ9Rc6l4JuLvjhg8Y0aem1Z6QAMz7Y3F/7xmRL3Tdiz9MCL0xXgRSYXZIiO0TCNC3pUaiWB8OXLpcwEaiFBLDkKkYpRmlk/zcKa/nyW1o5KT8svjYvlskkyO7bI9dsAcdsLK7IJVWJUJ9sCe2DN7sR6tV+vNev8pnbMmPTvsD6yPb10tn8U=</latexit><latexit sha1_base64="g9kRma/QUSvp1OcvP4LCaHaG39U=">AAACFHicbVC7TgJBFJ31ifhCLW0mEhMbya4x0ZJoY4lRHgkQcne4wITZR2buqrjZ1k/wK2y1sjO29hb+i8tKoeCpTs65z+OGShqy7U9rbn5hcWk5t5JfXVvf2CxsbddMEGmBVRGoQDdcMKikj1WSpLARagTPVVh3h+djv36D2sjAv6ZRiG0P+r7sSQGUSp0Cj1vZkFhjN2kR3lF8JQa3oO8PK1IMk6RTKNolOwOfJc6EFNkElU7hq9UNROShT0KBMU3HDqkdgyYpFCb5VmQwBDGEPjZT6oOHph1nRyR8PzJAAQ9Rc6l4JuLvjhg8Y0aem1Z6QAMz7Y3F/7xmRL3Tdiz9MCL0xXgRSYXZIiO0TCNC3pUaiWB8OXLpcwEaiFBLDkKkYpRmlk/zcKa/nyW1o5KT8svjYvlskkyO7bI9dsAcdsLK7IJVWJUJ9sCe2DN7sR6tV+vNev8pnbMmPTvsD6yPb10tn8U=</latexit><latexit sha1_base64="g9kRma/QUSvp1OcvP4LCaHaG39U=">AAACFHicbVC7TgJBFJ31ifhCLW0mEhMbya4x0ZJoY4lRHgkQcne4wITZR2buqrjZ1k/wK2y1sjO29hb+i8tKoeCpTs65z+OGShqy7U9rbn5hcWk5t5JfXVvf2CxsbddMEGmBVRGoQDdcMKikj1WSpLARagTPVVh3h+djv36D2sjAv6ZRiG0P+r7sSQGUSp0Cj1vZkFhjN2kR3lF8JQa3oO8PK1IMk6RTKNolOwOfJc6EFNkElU7hq9UNROShT0KBMU3HDqkdgyYpFCb5VmQwBDGEPjZT6oOHph1nRyR8PzJAAQ9Rc6l4JuLvjhg8Y0aem1Z6QAMz7Y3F/7xmRL3Tdiz9MCL0xXgRSYXZIiO0TCNC3pUaiWB8OXLpcwEaiFBLDkKkYpRmlk/zcKa/nyW1o5KT8svjYvlskkyO7bI9dsAcdsLK7IJVWJUJ9sCe2DN7sR6tV+vNev8pnbMmPTvsD6yPb10tn8U=</latexit>

Figure C.6: Allowed region in the generic {α2, β3, α3} parameter space compatible with
D = 4 flux tube S-matrices. The light blue surface is given by the Schwarz-Pick bound in
the symmetric channel; the orange surface by the numerics. They are tangent along the
line β3 = 0 (in red) where the S-matrix satisfy Yang-Baxter and is given in appendix C.3.
The black dashed line denotes the flux-tube α2 as predicted by the 1-loop universal
2→ 2 scattering.

Experimentally, we find that a Chebyshev grid of points gives the best results and a grid
size of around 200 points is sufficient for Nmax all the way up to 100.

C.4.1 The space of S-matrices compatible with D = 4 flux tubes universality

In section 4.2.3 we fixed α2 to be the universal value predicted by non-linearly realized
Poincaré as for flux tube theories. From a general S-matrix perspective it is a legitimate
question to first ask about the allowed space of {α2, β3, α3} parameters and look for any
structure pointing to the physical section at fixed α2. So, the question we ask is: “what is
the minimum of α3 at fixed α2 and β3?”

The answer is shown in figure C.6. The orange surface is the numerical minimum bound,
the blue surface is the Schwarz-Pick analytic bound (C.30) and the red line is their
intersection. The black dashed line denotes the physical section at fixed α2 = − 22

384π .
There is no sign along this general boundary that any value of α2 plays a special role,
except perhaps, α2 = 0: it seems that at fixed α2 > 0 there is a cusp for β3 = 0 that
becomes smooth as we go to α2 < 0. We do not know the reason for this, since we did
not fully explore the features of the S-matrices saturating this minimal surface in general.
It would be nice to perform a detailed analysis in the future.

The red line at β3 = 0, as explained in Appendix C.3, is saturated by S-matrices satisfying
Yang-Baxter and we have analytic solutions for them, see eq. (C.29).
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C.4. Numerics
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Figure C.7: The phase shifts respectively in the symmetric, antisymmetric and singlet
channel at the SU(3) point (solid line) and SU(5) point (dashed line).

C.4.2 Resonances along the boundary at the physical values of α2.

In figure C.7 we plot the phase of each irrep channel as a function of the momenta – in
solid/dashed the SU(3)/SU(5) point S-matrix. These graphs show nice phase-shifts
that are characteristic of resonance behaviour. Such phase-shifts are generated by zeros
in the complex s-plane, see ref. [5] for a discussion. Measuring zeros in the complex
energy plane from experimental or lattice MC data is not an easy task and in general one
needs to use dispersive methods to analytically continue the real data to the complex
plane; a procedure often plagued by numerical instabilities. Fortunately, we have the
full S-matrix in the physical upper half s-plane (or the χ unit disk) and thus we can
easily identify the zeros corresponding to the phase-shifts of figure C.7.

For the flux tube value α2 = − 22
384π , there is a unique S-matrix at each boundary point

of the {β3, α3} space shown in figure 4.3. In figure C.8 we show the position of the
resonances for the S-matrices in a section of the boundary. The SU(3)/SU(5) benchmark
points in the table of sec. 4.4 are denoted with a circle/diamond. The triangle signals
the resonances at the integrable point β3 = 0. Note that the symmetry β3 ↔ −β3 of the
crossing equations introduced in the main text is now visible in the symmetric positions
of the resonances in the singlet and antisymmetric channels. The symmetron resonance
is invariant under β3 ↔ −β3, hence we only show β3 > 0.
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Appendix C. Appendices to flux-tube bootstrap
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s=1
<latexit sha1_base64="/tbqnl6H8JVoRO52jgbKrIEDvhQ=">AAAB/HicbVC7TsNAEDyHVwivACXNiQiJKrIREjRIETSUQSIPkVjR+bIJp5zP1t0aKbLCV9BCRYdo+RcK/oWzcQEJU41mdrWzE8RSGHTdT6e0tLyyulZer2xsbm3vVHf32iZKNIcWj2SkuwEzIIWCFgqU0I01sDCQ0AkmV5nfeQBtRKRucRqDH7KxEiPBGVrpzqQXs75QI5wOqjW37uagi8QrSI0UaA6qX/1hxJMQFHLJjOl5box+yjQKLmFW6ScGYsYnbAw9SxULwfhpnnhGjxLDMKIxaCokzUX4vZGy0JhpGNjJkOG9mfcy8T+vl+Do3E+FihMExbNDKCTkhwzXwlYBdCg0ILIsOVChKGeaIYIWlHFuxcR2U7F9ePPfL5L2Sd2z/Oa01rgsmimTA3JIjolHzkiDXJMmaRFOFHkiz+TFeXRenTfn/We05BQ7++QPnI9vrsOVkQ==</latexit><latexit sha1_base64="/tbqnl6H8JVoRO52jgbKrIEDvhQ=">AAAB/HicbVC7TsNAEDyHVwivACXNiQiJKrIREjRIETSUQSIPkVjR+bIJp5zP1t0aKbLCV9BCRYdo+RcK/oWzcQEJU41mdrWzE8RSGHTdT6e0tLyyulZer2xsbm3vVHf32iZKNIcWj2SkuwEzIIWCFgqU0I01sDCQ0AkmV5nfeQBtRKRucRqDH7KxEiPBGVrpzqQXs75QI5wOqjW37uagi8QrSI0UaA6qX/1hxJMQFHLJjOl5box+yjQKLmFW6ScGYsYnbAw9SxULwfhpnnhGjxLDMKIxaCokzUX4vZGy0JhpGNjJkOG9mfcy8T+vl+Do3E+FihMExbNDKCTkhwzXwlYBdCg0ILIsOVChKGeaIYIWlHFuxcR2U7F9ePPfL5L2Sd2z/Oa01rgsmimTA3JIjolHzkiDXJMmaRFOFHkiz+TFeXRenTfn/We05BQ7++QPnI9vrsOVkQ==</latexit><latexit sha1_base64="/tbqnl6H8JVoRO52jgbKrIEDvhQ=">AAAB/HicbVC7TsNAEDyHVwivACXNiQiJKrIREjRIETSUQSIPkVjR+bIJp5zP1t0aKbLCV9BCRYdo+RcK/oWzcQEJU41mdrWzE8RSGHTdT6e0tLyyulZer2xsbm3vVHf32iZKNIcWj2SkuwEzIIWCFgqU0I01sDCQ0AkmV5nfeQBtRKRucRqDH7KxEiPBGVrpzqQXs75QI5wOqjW37uagi8QrSI0UaA6qX/1hxJMQFHLJjOl5box+yjQKLmFW6ScGYsYnbAw9SxULwfhpnnhGjxLDMKIxaCokzUX4vZGy0JhpGNjJkOG9mfcy8T+vl+Do3E+FihMExbNDKCTkhwzXwlYBdCg0ILIsOVChKGeaIYIWlHFuxcR2U7F9ePPfL5L2Sd2z/Oa01rgsmimTA3JIjolHzkiDXJMmaRFOFHkiz+TFeXRenTfn/We05BQ7++QPnI9vrsOVkQ==</latexit><latexit sha1_base64="/tbqnl6H8JVoRO52jgbKrIEDvhQ=">AAAB/HicbVC7TsNAEDyHVwivACXNiQiJKrIREjRIETSUQSIPkVjR+bIJp5zP1t0aKbLCV9BCRYdo+RcK/oWzcQEJU41mdrWzE8RSGHTdT6e0tLyyulZer2xsbm3vVHf32iZKNIcWj2SkuwEzIIWCFgqU0I01sDCQ0AkmV5nfeQBtRKRucRqDH7KxEiPBGVrpzqQXs75QI5wOqjW37uagi8QrSI0UaA6qX/1hxJMQFHLJjOl5box+yjQKLmFW6ScGYsYnbAw9SxULwfhpnnhGjxLDMKIxaCokzUX4vZGy0JhpGNjJkOG9mfcy8T+vl+Do3E+FihMExbNDKCTkhwzXwlYBdCg0ILIsOVChKGeaIYIWlHFuxcR2U7F9ePPfL5L2Sd2z/Oa01rgsmimTA3JIjolHzkiDXJMmaRFOFHkiz+TFeXRenTfn/We05BQ7++QPnI9vrsOVkQ==</latexit>

symmetron
<latexit sha1_base64="pyV074HTrFz0v0BmVf6So3M41lQ=">AAACEXicbVC7TsMwFHV4lvIqMCIkiwqJqUoQEowVLIxFog+piSrHvS1WHSeybxBVlIlP4CtYYWJDrHwBA/+CGzpAy5mOzrnX9/iEiRQGXffTWVhcWl5ZLa2V1zc2t7YrO7stE6eaQ5PHMtadkBmQQkETBUroJBpYFEpoh6PLid++A21ErG5wnEAQsaESA8EZWqlXOcj84pFMQz/3Ee4xM+MoAtSxyvNeperW3AJ0nnhTUiVTNHqVL78f8zQChVwyY7qem2CQMY2CS8jLfmogYXzEhtC1VLEITJAVCXJ6lBqGMU1AUyFpIcLvjYxFxoYL7WTE8NbMehPxP6+b4uA8yIRKUgTFJ4dQSCgOGa6F7QdoX2hAZJPkQIWinGmGCFpQxrkVU1tY2fbhzf5+nrROap7l16fV+sW0mRLZJ4fkmHjkjNTJFWmQJuHkgTyRZ/LiPDqvzpvz/jO64Ex39sgfOB/fxTye/w==</latexit><latexit sha1_base64="pyV074HTrFz0v0BmVf6So3M41lQ=">AAACEXicbVC7TsMwFHV4lvIqMCIkiwqJqUoQEowVLIxFog+piSrHvS1WHSeybxBVlIlP4CtYYWJDrHwBA/+CGzpAy5mOzrnX9/iEiRQGXffTWVhcWl5ZLa2V1zc2t7YrO7stE6eaQ5PHMtadkBmQQkETBUroJBpYFEpoh6PLid++A21ErG5wnEAQsaESA8EZWqlXOcj84pFMQz/3Ee4xM+MoAtSxyvNeperW3AJ0nnhTUiVTNHqVL78f8zQChVwyY7qem2CQMY2CS8jLfmogYXzEhtC1VLEITJAVCXJ6lBqGMU1AUyFpIcLvjYxFxoYL7WTE8NbMehPxP6+b4uA8yIRKUgTFJ4dQSCgOGa6F7QdoX2hAZJPkQIWinGmGCFpQxrkVU1tY2fbhzf5+nrROap7l16fV+sW0mRLZJ4fkmHjkjNTJFWmQJuHkgTyRZ/LiPDqvzpvz/jO64Ex39sgfOB/fxTye/w==</latexit><latexit sha1_base64="pyV074HTrFz0v0BmVf6So3M41lQ=">AAACEXicbVC7TsMwFHV4lvIqMCIkiwqJqUoQEowVLIxFog+piSrHvS1WHSeybxBVlIlP4CtYYWJDrHwBA/+CGzpAy5mOzrnX9/iEiRQGXffTWVhcWl5ZLa2V1zc2t7YrO7stE6eaQ5PHMtadkBmQQkETBUroJBpYFEpoh6PLid++A21ErG5wnEAQsaESA8EZWqlXOcj84pFMQz/3Ee4xM+MoAtSxyvNeperW3AJ0nnhTUiVTNHqVL78f8zQChVwyY7qem2CQMY2CS8jLfmogYXzEhtC1VLEITJAVCXJ6lBqGMU1AUyFpIcLvjYxFxoYL7WTE8NbMehPxP6+b4uA8yIRKUgTFJ4dQSCgOGa6F7QdoX2hAZJPkQIWinGmGCFpQxrkVU1tY2fbhzf5+nrROap7l16fV+sW0mRLZJ4fkmHjkjNTJFWmQJuHkgTyRZ/LiPDqvzpvz/jO64Ex39sgfOB/fxTye/w==</latexit><latexit sha1_base64="pyV074HTrFz0v0BmVf6So3M41lQ=">AAACEXicbVC7TsMwFHV4lvIqMCIkiwqJqUoQEowVLIxFog+piSrHvS1WHSeybxBVlIlP4CtYYWJDrHwBA/+CGzpAy5mOzrnX9/iEiRQGXffTWVhcWl5ZLa2V1zc2t7YrO7stE6eaQ5PHMtadkBmQQkETBUroJBpYFEpoh6PLid++A21ErG5wnEAQsaESA8EZWqlXOcj84pFMQz/3Ee4xM+MoAtSxyvNeperW3AJ0nnhTUiVTNHqVL78f8zQChVwyY7qem2CQMY2CS8jLfmogYXzEhtC1VLEITJAVCXJ6lBqGMU1AUyFpIcLvjYxFxoYL7WTE8NbMehPxP6+b4uA8yIRKUgTFJ4dQSCgOGa6F7QdoX2hAZJPkQIWinGmGCFpQxrkVU1tY2fbhzf5+nrROap7l16fV+sW0mRLZJ4fkmHjkjNTJFWmQJuHkgTyRZ/LiPDqvzpvz/jO64Ex39sgfOB/fxTye/w==</latexit>

axion
<latexit sha1_base64="CDH1DOgXn2nuU2fSucS4TkIFa2Q=">AAACDXicbVC7SgNBFJ31GeMraiU2g0GwCrsiaBm0sYxgHpCEcHdyEwdnH8zclYRl8RP8Clut7MTWb7DwX5ysKTTxVIdz7p1z5/ixkoZc99NZWFxaXlktrBXXNza3tks7uw0TJVpgXUQq0i0fDCoZYp0kKWzFGiHwFTb9u8uJ37xHbWQU3tA4xm4Aw1AOpACyUq+0n3byR1KN/axDOKIURtbJsl6p7FbcHHyeeFNSZlPUeqWvTj8SSYAhCQXGtD03pm4KmqRQmBU7icEYxB0MsW1pCAGabpqnZ/woMUARj1FzqXgu4u+NFAJjxoFvJwOgWzPrTcT/vHZCg/NuKsM4IQzFJIikwjzICC1tN8j7UiMRTC5HLkMuQAMRaslBCCsmtqyi7cOb/f08aZxUPMuvT8vVi2kzBXbADtkx89gZq7IrVmN1JtgDe2LP7MV5dF6dN+f9Z3TBme7ssT9wPr4BMAydCA==</latexit><latexit sha1_base64="CDH1DOgXn2nuU2fSucS4TkIFa2Q=">AAACDXicbVC7SgNBFJ31GeMraiU2g0GwCrsiaBm0sYxgHpCEcHdyEwdnH8zclYRl8RP8Clut7MTWb7DwX5ysKTTxVIdz7p1z5/ixkoZc99NZWFxaXlktrBXXNza3tks7uw0TJVpgXUQq0i0fDCoZYp0kKWzFGiHwFTb9u8uJ37xHbWQU3tA4xm4Aw1AOpACyUq+0n3byR1KN/axDOKIURtbJsl6p7FbcHHyeeFNSZlPUeqWvTj8SSYAhCQXGtD03pm4KmqRQmBU7icEYxB0MsW1pCAGabpqnZ/woMUARj1FzqXgu4u+NFAJjxoFvJwOgWzPrTcT/vHZCg/NuKsM4IQzFJIikwjzICC1tN8j7UiMRTC5HLkMuQAMRaslBCCsmtqyi7cOb/f08aZxUPMuvT8vVi2kzBXbADtkx89gZq7IrVmN1JtgDe2LP7MV5dF6dN+f9Z3TBme7ssT9wPr4BMAydCA==</latexit><latexit sha1_base64="CDH1DOgXn2nuU2fSucS4TkIFa2Q=">AAACDXicbVC7SgNBFJ31GeMraiU2g0GwCrsiaBm0sYxgHpCEcHdyEwdnH8zclYRl8RP8Clut7MTWb7DwX5ysKTTxVIdz7p1z5/ixkoZc99NZWFxaXlktrBXXNza3tks7uw0TJVpgXUQq0i0fDCoZYp0kKWzFGiHwFTb9u8uJ37xHbWQU3tA4xm4Aw1AOpACyUq+0n3byR1KN/axDOKIURtbJsl6p7FbcHHyeeFNSZlPUeqWvTj8SSYAhCQXGtD03pm4KmqRQmBU7icEYxB0MsW1pCAGabpqnZ/woMUARj1FzqXgu4u+NFAJjxoFvJwOgWzPrTcT/vHZCg/NuKsM4IQzFJIikwjzICC1tN8j7UiMRTC5HLkMuQAMRaslBCCsmtqyi7cOb/f08aZxUPMuvT8vVi2kzBXbADtkx89gZq7IrVmN1JtgDe2LP7MV5dF6dN+f9Z3TBme7ssT9wPr4BMAydCA==</latexit><latexit sha1_base64="CDH1DOgXn2nuU2fSucS4TkIFa2Q=">AAACDXicbVC7SgNBFJ31GeMraiU2g0GwCrsiaBm0sYxgHpCEcHdyEwdnH8zclYRl8RP8Clut7MTWb7DwX5ysKTTxVIdz7p1z5/ixkoZc99NZWFxaXlktrBXXNza3tks7uw0TJVpgXUQq0i0fDCoZYp0kKWzFGiHwFTb9u8uJ37xHbWQU3tA4xm4Aw1AOpACyUq+0n3byR1KN/axDOKIURtbJsl6p7FbcHHyeeFNSZlPUeqWvTj8SSYAhCQXGtD03pm4KmqRQmBU7icEYxB0MsW1pCAGabpqnZ/woMUARj1FzqXgu4u+NFAJjxoFvJwOgWzPrTcT/vHZCg/NuKsM4IQzFJIikwjzICC1tN8j7UiMRTC5HLkMuQAMRaslBCCsmtqyi7cOb/f08aZxUPMuvT8vVi2kzBXbADtkx89gZq7IrVmN1JtgDe2LP7MV5dF6dN+f9Z3TBme7ssT9wPr4BMAydCA==</latexit>

axion*
<latexit sha1_base64="k+EaXOIP8hw6cdFNOMKxNs2+rg0=">AAACDnicbVC7SgNBFJ31bXyt2mkzGASxCLsiaCnaWCoYE0iWcHdyE4fMPpi5K8qy4Cf4FbZa2Ymtv2DhvzhZU2jiqQ7n3DvnzglTJQ153qczNT0zOze/sFhZWl5ZXXPXN65NkmmBdZGoRDdDMKhkjHWSpLCZaoQoVNgIB2dDv3GL2sgkvqL7FIMI+rHsSQFkpY67lbfLR3KN3aJNeEc53Flnvyg6btWreSX4JPFHpMpGuOi4X+1uIrIIYxIKjGn5XkpBDpqkUFhU2pnBFMQA+tiyNIYITZCX8QXfzQxQwlPUXCpeivh7I4fImPsotJMR0I0Z94bif14ro95xkMs4zQhjMQwiqbAMMkJLWw7yrtRIBMPLkcuYC9BAhFpyEMKKmW2rYvvwx38/Sa4Par7ll4fVk9NRMwtsm+2wPeazI3bCztkFqzPBHtgTe2YvzqPz6rw57z+jU85oZ5P9gfPxDaD4nTw=</latexit><latexit sha1_base64="k+EaXOIP8hw6cdFNOMKxNs2+rg0=">AAACDnicbVC7SgNBFJ31bXyt2mkzGASxCLsiaCnaWCoYE0iWcHdyE4fMPpi5K8qy4Cf4FbZa2Ymtv2DhvzhZU2jiqQ7n3DvnzglTJQ153qczNT0zOze/sFhZWl5ZXXPXN65NkmmBdZGoRDdDMKhkjHWSpLCZaoQoVNgIB2dDv3GL2sgkvqL7FIMI+rHsSQFkpY67lbfLR3KN3aJNeEc53Flnvyg6btWreSX4JPFHpMpGuOi4X+1uIrIIYxIKjGn5XkpBDpqkUFhU2pnBFMQA+tiyNIYITZCX8QXfzQxQwlPUXCpeivh7I4fImPsotJMR0I0Z94bif14ro95xkMs4zQhjMQwiqbAMMkJLWw7yrtRIBMPLkcuYC9BAhFpyEMKKmW2rYvvwx38/Sa4Par7ll4fVk9NRMwtsm+2wPeazI3bCztkFqzPBHtgTe2YvzqPz6rw57z+jU85oZ5P9gfPxDaD4nTw=</latexit><latexit sha1_base64="k+EaXOIP8hw6cdFNOMKxNs2+rg0=">AAACDnicbVC7SgNBFJ31bXyt2mkzGASxCLsiaCnaWCoYE0iWcHdyE4fMPpi5K8qy4Cf4FbZa2Ymtv2DhvzhZU2jiqQ7n3DvnzglTJQ153qczNT0zOze/sFhZWl5ZXXPXN65NkmmBdZGoRDdDMKhkjHWSpLCZaoQoVNgIB2dDv3GL2sgkvqL7FIMI+rHsSQFkpY67lbfLR3KN3aJNeEc53Flnvyg6btWreSX4JPFHpMpGuOi4X+1uIrIIYxIKjGn5XkpBDpqkUFhU2pnBFMQA+tiyNIYITZCX8QXfzQxQwlPUXCpeivh7I4fImPsotJMR0I0Z94bif14ro95xkMs4zQhjMQwiqbAMMkJLWw7yrtRIBMPLkcuYC9BAhFpyEMKKmW2rYvvwx38/Sa4Par7ll4fVk9NRMwtsm+2wPeazI3bCztkFqzPBHtgTe2YvzqPz6rw57z+jU85oZ5P9gfPxDaD4nTw=</latexit><latexit sha1_base64="k+EaXOIP8hw6cdFNOMKxNs2+rg0=">AAACDnicbVC7SgNBFJ31bXyt2mkzGASxCLsiaCnaWCoYE0iWcHdyE4fMPpi5K8qy4Cf4FbZa2Ymtv2DhvzhZU2jiqQ7n3DvnzglTJQ153qczNT0zOze/sFhZWl5ZXXPXN65NkmmBdZGoRDdDMKhkjHWSpLCZaoQoVNgIB2dDv3GL2sgkvqL7FIMI+rHsSQFkpY67lbfLR3KN3aJNeEc53Flnvyg6btWreSX4JPFHpMpGuOi4X+1uIrIIYxIKjGn5XkpBDpqkUFhU2pnBFMQA+tiyNIYITZCX8QXfzQxQwlPUXCpeivh7I4fImPsotJMR0I0Z94bif14ro95xkMs4zQhjMQwiqbAMMkJLWw7yrtRIBMPLkcuYC9BAhFpyEMKKmW2rYvvwx38/Sa4Par7ll4fVk9NRMwtsm+2wPeazI3bCztkFqzPBHtgTe2YvzqPz6rw57z+jU85oZ5P9gfPxDaD4nTw=</latexit>

dilaton
<latexit sha1_base64="591SFijq9b1yAgYMBQJ+hQkeAwA=">AAACD3icbVC7TsMwFHV4lvIKMHaxqJCYqgQhwVjBwlgk+pDaqnKc22LVcSL7BlFFGfgEvoIVJjbEyicw8C+4oQO0nOnonHt9rk+QSGHQ8z6dpeWV1bX10kZ5c2t7Z9fd22+ZONUcmjyWse4EzIAUCpooUEIn0cCiQEI7GF9O/fYdaCNidYOTBPoRGykxFJyhlQZuJesVj2QawryHcI9ZKCTDWOX5wK16Na8AXST+jFTJDI2B+9ULY55GoJBLZkzX9xLsZ0yj4BLyci81kDA+ZiPoWqpYBKafFfk5PUqNjaUJaCokLUT4vZGxyJhJFNjJiOGtmfem4n9eN8XheT8TKkkRFJ8GoZBQBBmuhW0HaCg0ILLp5UCFopxphghaUMa5FVNbV9n24c//fpG0Tmq+5den1frFrJkSqZBDckx8ckbq5Io0SJNw8kCeyDN5cR6dV+fNef8ZXXJmOwfkD5yPb84Rneg=</latexit><latexit sha1_base64="591SFijq9b1yAgYMBQJ+hQkeAwA=">AAACD3icbVC7TsMwFHV4lvIKMHaxqJCYqgQhwVjBwlgk+pDaqnKc22LVcSL7BlFFGfgEvoIVJjbEyicw8C+4oQO0nOnonHt9rk+QSGHQ8z6dpeWV1bX10kZ5c2t7Z9fd22+ZONUcmjyWse4EzIAUCpooUEIn0cCiQEI7GF9O/fYdaCNidYOTBPoRGykxFJyhlQZuJesVj2QawryHcI9ZKCTDWOX5wK16Na8AXST+jFTJDI2B+9ULY55GoJBLZkzX9xLsZ0yj4BLyci81kDA+ZiPoWqpYBKafFfk5PUqNjaUJaCokLUT4vZGxyJhJFNjJiOGtmfem4n9eN8XheT8TKkkRFJ8GoZBQBBmuhW0HaCg0ILLp5UCFopxphghaUMa5FVNbV9n24c//fpG0Tmq+5den1frFrJkSqZBDckx8ckbq5Io0SJNw8kCeyDN5cR6dV+fNef8ZXXJmOwfkD5yPb84Rneg=</latexit><latexit sha1_base64="591SFijq9b1yAgYMBQJ+hQkeAwA=">AAACD3icbVC7TsMwFHV4lvIKMHaxqJCYqgQhwVjBwlgk+pDaqnKc22LVcSL7BlFFGfgEvoIVJjbEyicw8C+4oQO0nOnonHt9rk+QSGHQ8z6dpeWV1bX10kZ5c2t7Z9fd22+ZONUcmjyWse4EzIAUCpooUEIn0cCiQEI7GF9O/fYdaCNidYOTBPoRGykxFJyhlQZuJesVj2QawryHcI9ZKCTDWOX5wK16Na8AXST+jFTJDI2B+9ULY55GoJBLZkzX9xLsZ0yj4BLyci81kDA+ZiPoWqpYBKafFfk5PUqNjaUJaCokLUT4vZGxyJhJFNjJiOGtmfem4n9eN8XheT8TKkkRFJ8GoZBQBBmuhW0HaCg0ILLp5UCFopxphghaUMa5FVNbV9n24c//fpG0Tmq+5den1frFrJkSqZBDckx8ckbq5Io0SJNw8kCeyDN5cR6dV+fNef8ZXXJmOwfkD5yPb84Rneg=</latexit><latexit sha1_base64="591SFijq9b1yAgYMBQJ+hQkeAwA=">AAACD3icbVC7TsMwFHV4lvIKMHaxqJCYqgQhwVjBwlgk+pDaqnKc22LVcSL7BlFFGfgEvoIVJjbEyicw8C+4oQO0nOnonHt9rk+QSGHQ8z6dpeWV1bX10kZ5c2t7Z9fd22+ZONUcmjyWse4EzIAUCpooUEIn0cCiQEI7GF9O/fYdaCNidYOTBPoRGykxFJyhlQZuJesVj2QawryHcI9ZKCTDWOX5wK16Na8AXST+jFTJDI2B+9ULY55GoJBLZkzX9xLsZ0yj4BLyci81kDA+ZiPoWqpYBKafFfk5PUqNjaUJaCokLUT4vZGxyJhJFNjJiOGtmfem4n9eN8XheT8TKkkRFJ8GoZBQBBmuhW0HaCg0ILLp5UCFopxphghaUMa5FVNbV9n24c//fpG0Tmq+5den1frFrJkSqZBDckx8ckbq5Io0SJNw8kCeyDN5cR6dV+fNef8ZXXJmOwfkD5yPb84Rneg=</latexit>

dilaton*
<latexit sha1_base64="qE7agtqj9HBEqm02Lh5vMjGYTRM=">AAACEHicbVC7TsMwFHXKq5RXgBEGiwoJMVQJQoKxgoWxSPQhtVXluLfFquNE9g2iirLwCXwFK0xsiJU/YOBfcEMHaDnT0Tn3+lyfIJbCoOd9OoWFxaXlleJqaW19Y3PL3d5pmCjRHOo8kpFuBcyAFArqKFBCK9bAwkBCMxhdTvzmHWgjInWD4xi6IRsqMRCcoZV67n7ayR9JNfSzDsI9pn0hGUbqOMt6btmreDnoPPGnpEymqPXcr04/4kkICrlkxrR9L8ZuyjQKLiErdRIDMeMjNoS2pYqFYLppfkBGDxNjc2kMmgpJcxF+b6QsNGYcBnYyZHhrZr2J+J/XTnBw3k2FihMExSdBKCTkQYZrYesB2hcaENnkcqBCUc40QwQtKOPciontq2T78Gd/P08aJxXf8uvTcvVi2kyR7JEDckR8ckaq5IrUSJ1w8kCeyDN5cR6dV+fNef8ZLTjTnV3yB87HNz/cnhw=</latexit><latexit sha1_base64="qE7agtqj9HBEqm02Lh5vMjGYTRM=">AAACEHicbVC7TsMwFHXKq5RXgBEGiwoJMVQJQoKxgoWxSPQhtVXluLfFquNE9g2iirLwCXwFK0xsiJU/YOBfcEMHaDnT0Tn3+lyfIJbCoOd9OoWFxaXlleJqaW19Y3PL3d5pmCjRHOo8kpFuBcyAFArqKFBCK9bAwkBCMxhdTvzmHWgjInWD4xi6IRsqMRCcoZV67n7ayR9JNfSzDsI9pn0hGUbqOMt6btmreDnoPPGnpEymqPXcr04/4kkICrlkxrR9L8ZuyjQKLiErdRIDMeMjNoS2pYqFYLppfkBGDxNjc2kMmgpJcxF+b6QsNGYcBnYyZHhrZr2J+J/XTnBw3k2FihMExSdBKCTkQYZrYesB2hcaENnkcqBCUc40QwQtKOPciontq2T78Gd/P08aJxXf8uvTcvVi2kyR7JEDckR8ckaq5IrUSJ1w8kCeyDN5cR6dV+fNef8ZLTjTnV3yB87HNz/cnhw=</latexit><latexit sha1_base64="qE7agtqj9HBEqm02Lh5vMjGYTRM=">AAACEHicbVC7TsMwFHXKq5RXgBEGiwoJMVQJQoKxgoWxSPQhtVXluLfFquNE9g2iirLwCXwFK0xsiJU/YOBfcEMHaDnT0Tn3+lyfIJbCoOd9OoWFxaXlleJqaW19Y3PL3d5pmCjRHOo8kpFuBcyAFArqKFBCK9bAwkBCMxhdTvzmHWgjInWD4xi6IRsqMRCcoZV67n7ayR9JNfSzDsI9pn0hGUbqOMt6btmreDnoPPGnpEymqPXcr04/4kkICrlkxrR9L8ZuyjQKLiErdRIDMeMjNoS2pYqFYLppfkBGDxNjc2kMmgpJcxF+b6QsNGYcBnYyZHhrZr2J+J/XTnBw3k2FihMExSdBKCTkQYZrYesB2hcaENnkcqBCUc40QwQtKOPciontq2T78Gd/P08aJxXf8uvTcvVi2kyR7JEDckR8ckaq5IrUSJ1w8kCeyDN5cR6dV+fNef8ZLTjTnV3yB87HNz/cnhw=</latexit><latexit sha1_base64="qE7agtqj9HBEqm02Lh5vMjGYTRM=">AAACEHicbVC7TsMwFHXKq5RXgBEGiwoJMVQJQoKxgoWxSPQhtVXluLfFquNE9g2iirLwCXwFK0xsiJU/YOBfcEMHaDnT0Tn3+lyfIJbCoOd9OoWFxaXlleJqaW19Y3PL3d5pmCjRHOo8kpFuBcyAFArqKFBCK9bAwkBCMxhdTvzmHWgjInWD4xi6IRsqMRCcoZV67n7ayR9JNfSzDsI9pn0hGUbqOMt6btmreDnoPPGnpEymqPXcr04/4kkICrlkxrR9L8ZuyjQKLiErdRIDMeMjNoS2pYqFYLppfkBGDxNjc2kMmgpJcxF+b6QsNGYcBnYyZHhrZr2J+J/XTnBw3k2FihMExSdBKCTkQYZrYesB2hcaENnkcqBCUc40QwQtKOPciontq2T78Gd/P08aJxXf8uvTcvVi2kyR7JEDckR8ckaq5IrUSJ1w8kCeyDN5cR6dV+fNef8ZLTjTnV3yB87HNz/cnhw=</latexit>

↵3
<latexit sha1_base64="SXy7ojnWghRcKczaLy1ycLGNzZ0=">AAAB+nicbVC7TsNAEDyHVwivACXNiQiJKrIBCcoIGsogkYeUWNH6sklOOT90t0aKTH6CFio6RMvPUPAv2MYFJEw1mtnVzo4XKWnItj+t0srq2vpGebOytb2zu1fdP2ibMNYCWyJUoe56YFDJAFskSWE30gi+p7DjTW8yv/OA2sgwuKdZhK4P40COpABKpW4fVDSBwfmgWrPrdg6+TJyC1FiB5qD61R+GIvYxIKHAmJ5jR+QmoEkKhfNKPzYYgZjCGHspDcBH4yZ53jk/iQ1QyCPUXCqei/h7IwHfmJnvpZM+0MQsepn4n9eLaXTlJjKIYsJAZIdIKswPGaFlWgTyodRIBFly5DLgAjQQoZYchEjFOG2mkvbhLH6/TNpndSfldxe1xnXRTJkdsWN2yhx2yRrsljVZiwmm2BN7Zi/Wo/VqvVnvP6Mlq9g5ZH9gfXwDc8yUQw==</latexit><latexit sha1_base64="SXy7ojnWghRcKczaLy1ycLGNzZ0=">AAAB+nicbVC7TsNAEDyHVwivACXNiQiJKrIBCcoIGsogkYeUWNH6sklOOT90t0aKTH6CFio6RMvPUPAv2MYFJEw1mtnVzo4XKWnItj+t0srq2vpGebOytb2zu1fdP2ibMNYCWyJUoe56YFDJAFskSWE30gi+p7DjTW8yv/OA2sgwuKdZhK4P40COpABKpW4fVDSBwfmgWrPrdg6+TJyC1FiB5qD61R+GIvYxIKHAmJ5jR+QmoEkKhfNKPzYYgZjCGHspDcBH4yZ53jk/iQ1QyCPUXCqei/h7IwHfmJnvpZM+0MQsepn4n9eLaXTlJjKIYsJAZIdIKswPGaFlWgTyodRIBFly5DLgAjQQoZYchEjFOG2mkvbhLH6/TNpndSfldxe1xnXRTJkdsWN2yhx2yRrsljVZiwmm2BN7Zi/Wo/VqvVnvP6Mlq9g5ZH9gfXwDc8yUQw==</latexit><latexit sha1_base64="SXy7ojnWghRcKczaLy1ycLGNzZ0=">AAAB+nicbVC7TsNAEDyHVwivACXNiQiJKrIBCcoIGsogkYeUWNH6sklOOT90t0aKTH6CFio6RMvPUPAv2MYFJEw1mtnVzo4XKWnItj+t0srq2vpGebOytb2zu1fdP2ibMNYCWyJUoe56YFDJAFskSWE30gi+p7DjTW8yv/OA2sgwuKdZhK4P40COpABKpW4fVDSBwfmgWrPrdg6+TJyC1FiB5qD61R+GIvYxIKHAmJ5jR+QmoEkKhfNKPzYYgZjCGHspDcBH4yZ53jk/iQ1QyCPUXCqei/h7IwHfmJnvpZM+0MQsepn4n9eLaXTlJjKIYsJAZIdIKswPGaFlWgTyodRIBFly5DLgAjQQoZYchEjFOG2mkvbhLH6/TNpndSfldxe1xnXRTJkdsWN2yhx2yRrsljVZiwmm2BN7Zi/Wo/VqvVnvP6Mlq9g5ZH9gfXwDc8yUQw==</latexit><latexit sha1_base64="SXy7ojnWghRcKczaLy1ycLGNzZ0=">AAAB+nicbVC7TsNAEDyHVwivACXNiQiJKrIBCcoIGsogkYeUWNH6sklOOT90t0aKTH6CFio6RMvPUPAv2MYFJEw1mtnVzo4XKWnItj+t0srq2vpGebOytb2zu1fdP2ibMNYCWyJUoe56YFDJAFskSWE30gi+p7DjTW8yv/OA2sgwuKdZhK4P40COpABKpW4fVDSBwfmgWrPrdg6+TJyC1FiB5qD61R+GIvYxIKHAmJ5jR+QmoEkKhfNKPzYYgZjCGHspDcBH4yZ53jk/iQ1QyCPUXCqei/h7IwHfmJnvpZM+0MQsepn4n9eLaXTlJjKIYsJAZIdIKswPGaFlWgTyodRIBFly5DLgAjQQoZYchEjFOG2mkvbhLH6/TNpndSfldxe1xnXRTJkdsWN2yhx2yRrsljVZiwmm2BN7Zi/Wo/VqvVnvP6Mlq9g5ZH9gfXwDc8yUQw==</latexit>

�3
<latexit sha1_base64="oJF4TY+dhJu1d+bPOs1j6RDbL4M=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIBCcoIGsogkYeURNH6sgmnnB+6WyNFVj6CFio6RMvXUPAvnI0LSJhqNLOrnR0/VtKQ6346pZXVtfWN8mZla3tnd6+6f9A2UaIFtkSkIt31waCSIbZIksJurBECX2HHn95kfucRtZFReE+zGAcBTEI5lgLISp2+jwTD82G15tbdHHyZeAWpsQLNYfWrP4pEEmBIQoExPc+NaZCCJikUziv9xGAMYgoT7FkaQoBmkOZx5/wkMUARj1FzqXgu4u+NFAJjZoFvJwOgB7PoZeJ/Xi+h8dUglWGcEIYiO0RSYX7ICC1tD8hHUiMRZMmRy5AL0ECEWnIQwoqJLaZi+/AWv18m7bO6Z/ndRa1xXTRTZkfsmJ0yj12yBrtlTdZigk3ZE3tmL07qvDpvzvvPaMkpdg7ZHzgf36awk88=</latexit><latexit sha1_base64="oJF4TY+dhJu1d+bPOs1j6RDbL4M=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIBCcoIGsogkYeURNH6sgmnnB+6WyNFVj6CFio6RMvXUPAvnI0LSJhqNLOrnR0/VtKQ6346pZXVtfWN8mZla3tnd6+6f9A2UaIFtkSkIt31waCSIbZIksJurBECX2HHn95kfucRtZFReE+zGAcBTEI5lgLISp2+jwTD82G15tbdHHyZeAWpsQLNYfWrP4pEEmBIQoExPc+NaZCCJikUziv9xGAMYgoT7FkaQoBmkOZx5/wkMUARj1FzqXgu4u+NFAJjZoFvJwOgB7PoZeJ/Xi+h8dUglWGcEIYiO0RSYX7ICC1tD8hHUiMRZMmRy5AL0ECEWnIQwoqJLaZi+/AWv18m7bO6Z/ndRa1xXTRTZkfsmJ0yj12yBrtlTdZigk3ZE3tmL07qvDpvzvvPaMkpdg7ZHzgf36awk88=</latexit><latexit sha1_base64="oJF4TY+dhJu1d+bPOs1j6RDbL4M=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIBCcoIGsogkYeURNH6sgmnnB+6WyNFVj6CFio6RMvXUPAvnI0LSJhqNLOrnR0/VtKQ6346pZXVtfWN8mZla3tnd6+6f9A2UaIFtkSkIt31waCSIbZIksJurBECX2HHn95kfucRtZFReE+zGAcBTEI5lgLISp2+jwTD82G15tbdHHyZeAWpsQLNYfWrP4pEEmBIQoExPc+NaZCCJikUziv9xGAMYgoT7FkaQoBmkOZx5/wkMUARj1FzqXgu4u+NFAJjZoFvJwOgB7PoZeJ/Xi+h8dUglWGcEIYiO0RSYX7ICC1tD8hHUiMRZMmRy5AL0ECEWnIQwoqJLaZi+/AWv18m7bO6Z/ndRa1xXTRTZkfsmJ0yj12yBrtlTdZigk3ZE3tmL07qvDpvzvvPaMkpdg7ZHzgf36awk88=</latexit><latexit sha1_base64="oJF4TY+dhJu1d+bPOs1j6RDbL4M=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIBCcoIGsogkYeURNH6sgmnnB+6WyNFVj6CFio6RMvXUPAvnI0LSJhqNLOrnR0/VtKQ6346pZXVtfWN8mZla3tnd6+6f9A2UaIFtkSkIt31waCSIbZIksJurBECX2HHn95kfucRtZFReE+zGAcBTEI5lgLISp2+jwTD82G15tbdHHyZeAWpsQLNYfWrP4pEEmBIQoExPc+NaZCCJikUziv9xGAMYgoT7FkaQoBmkOZx5/wkMUARj1FzqXgu4u+NFAJjZoFvJwOgB7PoZeJ/Xi+h8dUglWGcEIYiO0RSYX7ICC1tD8hHUiMRZMmRy5AL0ECEWnIQwoqJLaZi+/AWv18m7bO6Z/ndRa1xXTRTZkfsmJ0yj12yBrtlTdZigk3ZE3tmL07qvDpvzvvPaMkpdg7ZHzgf36awk88=</latexit>

s=�4
<latexit sha1_base64="0j+uBxyTmnBK/NjT2gnwf10o5/Y=">AAAB+nicbVC7TsNAEDzzDOEVoKQ5ESHRENkoEjRIETSUQSIPKbGi82UTTjmfrbs1UmT8E7RQ0SFafoaCf+EcXEDCVKOZXe3sBLEUBl3301laXlldWy9tlDe3tnd2K3v7bRMlmkOLRzLS3YAZkEJBCwVK6MYaWBhI6AST69zvPIA2IlJ3OI3BD9lYiZHgDK3UNelllp5m9UGl6tbcGegi8QpSJQWag8pXfxjxJASFXDJjep4bo58yjYJLyMr9xEDM+ISNoWepYiEYP53lzehxYhhGNAZNhaQzEX5vpCw0ZhoGdjJkeG/mvVz8z+slOLrwU6HiBEHx/BAKCbNDhmthiwA6FBoQWZ4cqFCUM80QQQvKOLdiYpsp2z68+e8XSfus5ll+W682ropmSuSQHJET4pFz0iA3pElahBNJnsgzeXEenVfnzXn/GV1yip0D8gfOxzeIhJRQ</latexit><latexit sha1_base64="0j+uBxyTmnBK/NjT2gnwf10o5/Y=">AAAB+nicbVC7TsNAEDzzDOEVoKQ5ESHRENkoEjRIETSUQSIPKbGi82UTTjmfrbs1UmT8E7RQ0SFafoaCf+EcXEDCVKOZXe3sBLEUBl3301laXlldWy9tlDe3tnd2K3v7bRMlmkOLRzLS3YAZkEJBCwVK6MYaWBhI6AST69zvPIA2IlJ3OI3BD9lYiZHgDK3UNelllp5m9UGl6tbcGegi8QpSJQWag8pXfxjxJASFXDJjep4bo58yjYJLyMr9xEDM+ISNoWepYiEYP53lzehxYhhGNAZNhaQzEX5vpCw0ZhoGdjJkeG/mvVz8z+slOLrwU6HiBEHx/BAKCbNDhmthiwA6FBoQWZ4cqFCUM80QQQvKOLdiYpsp2z68+e8XSfus5ll+W682ropmSuSQHJET4pFz0iA3pElahBNJnsgzeXEenVfnzXn/GV1yip0D8gfOxzeIhJRQ</latexit><latexit sha1_base64="0j+uBxyTmnBK/NjT2gnwf10o5/Y=">AAAB+nicbVC7TsNAEDzzDOEVoKQ5ESHRENkoEjRIETSUQSIPKbGi82UTTjmfrbs1UmT8E7RQ0SFafoaCf+EcXEDCVKOZXe3sBLEUBl3301laXlldWy9tlDe3tnd2K3v7bRMlmkOLRzLS3YAZkEJBCwVK6MYaWBhI6AST69zvPIA2IlJ3OI3BD9lYiZHgDK3UNelllp5m9UGl6tbcGegi8QpSJQWag8pXfxjxJASFXDJjep4bo58yjYJLyMr9xEDM+ISNoWepYiEYP53lzehxYhhGNAZNhaQzEX5vpCw0ZhoGdjJkeG/mvVz8z+slOLrwU6HiBEHx/BAKCbNDhmthiwA6FBoQWZ4cqFCUM80QQQvKOLdiYpsp2z68+e8XSfus5ll+W682ropmSuSQHJET4pFz0iA3pElahBNJnsgzeXEenVfnzXn/GV1yip0D8gfOxzeIhJRQ</latexit><latexit sha1_base64="0j+uBxyTmnBK/NjT2gnwf10o5/Y=">AAAB+nicbVC7TsNAEDzzDOEVoKQ5ESHRENkoEjRIETSUQSIPKbGi82UTTjmfrbs1UmT8E7RQ0SFafoaCf+EcXEDCVKOZXe3sBLEUBl3301laXlldWy9tlDe3tnd2K3v7bRMlmkOLRzLS3YAZkEJBCwVK6MYaWBhI6AST69zvPIA2IlJ3OI3BD9lYiZHgDK3UNelllp5m9UGl6tbcGegi8QpSJQWag8pXfxjxJASFXDJjep4bo58yjYJLyMr9xEDM+ISNoWepYiEYP53lzehxYhhGNAZNhaQzEX5vpCw0ZhoGdjJkeG/mvVz8z+slOLrwU6HiBEHx/BAKCbNDhmthiwA6FBoQWZ4cqFCUM80QQQvKOLdiYpsp2z68+e8XSfus5ll+W682ropmSuSQHJET4pFz0iA3pElahBNJnsgzeXEenVfnzXn/GV1yip0D8gfOxzeIhJRQ</latexit>

s=4
<latexit sha1_base64="vKFtM4VtNgYqYdVpI2HbTCbp1KE=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoBeh6MVjBdMW2lA229e6dLMJuy9CCf0NXvXkTbz6czz4X9zEHLQ6p2HmPd68CRMpDLruh1NZWV1b36hu1ra2d3b36vsHXROnmoPPYxnrfsgMSKHAR4ES+okGFoUSeuHsOvd7D6CNiNUdzhMIIjZVYiI4Qyv5JrtctEb1htt0C9C/xCtJg5TojOqfw3HM0wgUcsmMGXhugkHGNAouYVEbpgYSxmdsCgNLFYvABFkRdkFPUsMwpgloKiQtRPi5kbHImHkU2smI4b1Z9nLxP2+Q4uQiyIRKUgTF80MoJBSHDNfCtgB0LDQgsjw5UKEoZ5ohghaUcW7F1NZSs314y9//Jd2zpmf5bavRviqbqZIjckxOiUfOSZvckA7xCSeCPJIn8uzMnRfn1Xn7Hq045c4h+QXn/QtJkJMN</latexit><latexit sha1_base64="vKFtM4VtNgYqYdVpI2HbTCbp1KE=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoBeh6MVjBdMW2lA229e6dLMJuy9CCf0NXvXkTbz6czz4X9zEHLQ6p2HmPd68CRMpDLruh1NZWV1b36hu1ra2d3b36vsHXROnmoPPYxnrfsgMSKHAR4ES+okGFoUSeuHsOvd7D6CNiNUdzhMIIjZVYiI4Qyv5JrtctEb1htt0C9C/xCtJg5TojOqfw3HM0wgUcsmMGXhugkHGNAouYVEbpgYSxmdsCgNLFYvABFkRdkFPUsMwpgloKiQtRPi5kbHImHkU2smI4b1Z9nLxP2+Q4uQiyIRKUgTF80MoJBSHDNfCtgB0LDQgsjw5UKEoZ5ohghaUcW7F1NZSs314y9//Jd2zpmf5bavRviqbqZIjckxOiUfOSZvckA7xCSeCPJIn8uzMnRfn1Xn7Hq045c4h+QXn/QtJkJMN</latexit><latexit sha1_base64="vKFtM4VtNgYqYdVpI2HbTCbp1KE=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoBeh6MVjBdMW2lA229e6dLMJuy9CCf0NXvXkTbz6czz4X9zEHLQ6p2HmPd68CRMpDLruh1NZWV1b36hu1ra2d3b36vsHXROnmoPPYxnrfsgMSKHAR4ES+okGFoUSeuHsOvd7D6CNiNUdzhMIIjZVYiI4Qyv5JrtctEb1htt0C9C/xCtJg5TojOqfw3HM0wgUcsmMGXhugkHGNAouYVEbpgYSxmdsCgNLFYvABFkRdkFPUsMwpgloKiQtRPi5kbHImHkU2smI4b1Z9nLxP2+Q4uQiyIRKUgTF80MoJBSHDNfCtgB0LDQgsjw5UKEoZ5ohghaUcW7F1NZSs314y9//Jd2zpmf5bavRviqbqZIjckxOiUfOSZvckA7xCSeCPJIn8uzMnRfn1Xn7Hq045c4h+QXn/QtJkJMN</latexit><latexit sha1_base64="vKFtM4VtNgYqYdVpI2HbTCbp1KE=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoBeh6MVjBdMW2lA229e6dLMJuy9CCf0NXvXkTbz6czz4X9zEHLQ6p2HmPd68CRMpDLruh1NZWV1b36hu1ra2d3b36vsHXROnmoPPYxnrfsgMSKHAR4ES+okGFoUSeuHsOvd7D6CNiNUdzhMIIjZVYiI4Qyv5JrtctEb1htt0C9C/xCtJg5TojOqfw3HM0wgUcsmMGXhugkHGNAouYVEbpgYSxmdsCgNLFYvABFkRdkFPUsMwpgloKiQtRPi5kbHImHkU2smI4b1Z9nLxP2+Q4uQiyIRKUgTF80MoJBSHDNfCtgB0LDQgsjw5UKEoZ5ohghaUcW7F1NZSs314y9//Jd2zpmf5bavRviqbqZIjckxOiUfOSZvckA7xCSeCPJIn8uzMnRfn1Xn7Hq045c4h+QXn/QtJkJMN</latexit>

Figure C.8: Zeros trajectory in the unit disk as we move along the boundary of the
allowed region in the {α3, β3} space (bottom-right) plot. In each channel we mark with
an upper-triangle the zeros at the integrable point, with a circle those at the SU(3) point
and with a diamond at the SU(5) point.

C.4.3 Exploring the boundary and the spectrum fixing the axion

The last numerical problem we address in this section is what happens to the spectrum
if we fix the experimentally observed world-sheet axion. For instance, we can minimize
the value of α3 at any fixed β3 and look at the S-matrix optimizing the bound, given the
additional condition that S(saxion) = 0. The result when we fix the axion at the SU(3)
value is shown in figure C.9.

As we might expect, imposing an additional condition shrinks the allowed space of
parameters, but interestingly, while the previous bound was smooth, now there is a kink.
Moreover, the resonance spectrum is somehow stable: for any value of β3 we find an
axion*, a dilaton and a symmetron and for the range of β3 we scanned their position
does not vary much. Another game one could play is to fix β3, α3 and the axion at the
experimentally estimated values and repeat the analysis of the spectrum varying some
other higher order parameter or bounding it. We leave this interesting analysis to future
explorations.
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C.4. Numerics

s=0
<latexit sha1_base64="Pt+kMxR3A36LcHS0aTFtYJL6fm0=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0lE0ItQ9OKxgmkLbSib7WtdutmE3RehhP4Gr3ryJl79OR78L25iDto6p2HmPd68CRMpDLrup1NZWV1b36hu1ra2d3b36vsHHROnmoPPYxnrXsgMSKHAR4ESeokGFoUSuuH0Jve7j6CNiNU9zhIIIjZRYiw4Qyv5Jruau8N6w226Begy8UrSICXaw/rXYBTzNAKFXDJj+p6bYJAxjYJLmNcGqYGE8SmbQN9SxSIwQVaEndOT1DCMaQKaCkkLEX5vZCwyZhaFdjJi+GAWvVz8z+unOL4MMqGSFEHx/BAKCcUhw7WwLQAdCQ2ILE8OVCjKmWaIoAVlnFsxtbXUbB/e4vfLpHPW9Cy/O2+0rstmquSIHJNT4pEL0iK3pE18wokgT+SZvDgz59V5c95/RitOuXNI/sD5+AZDVJMJ</latexit><latexit sha1_base64="Pt+kMxR3A36LcHS0aTFtYJL6fm0=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0lE0ItQ9OKxgmkLbSib7WtdutmE3RehhP4Gr3ryJl79OR78L25iDto6p2HmPd68CRMpDLrup1NZWV1b36hu1ra2d3b36vsHHROnmoPPYxnrXsgMSKHAR4ESeokGFoUSuuH0Jve7j6CNiNU9zhIIIjZRYiw4Qyv5Jruau8N6w226Begy8UrSICXaw/rXYBTzNAKFXDJj+p6bYJAxjYJLmNcGqYGE8SmbQN9SxSIwQVaEndOT1DCMaQKaCkkLEX5vZCwyZhaFdjJi+GAWvVz8z+unOL4MMqGSFEHx/BAKCcUhw7WwLQAdCQ2ILE8OVCjKmWaIoAVlnFsxtbXUbB/e4vfLpHPW9Cy/O2+0rstmquSIHJNT4pEL0iK3pE18wokgT+SZvDgz59V5c95/RitOuXNI/sD5+AZDVJMJ</latexit><latexit sha1_base64="Pt+kMxR3A36LcHS0aTFtYJL6fm0=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0lE0ItQ9OKxgmkLbSib7WtdutmE3RehhP4Gr3ryJl79OR78L25iDto6p2HmPd68CRMpDLrup1NZWV1b36hu1ra2d3b36vsHHROnmoPPYxnrXsgMSKHAR4ESeokGFoUSuuH0Jve7j6CNiNU9zhIIIjZRYiw4Qyv5Jruau8N6w226Begy8UrSICXaw/rXYBTzNAKFXDJj+p6bYJAxjYJLmNcGqYGE8SmbQN9SxSIwQVaEndOT1DCMaQKaCkkLEX5vZCwyZhaFdjJi+GAWvVz8z+unOL4MMqGSFEHx/BAKCcUhw7WwLQAdCQ2ILE8OVCjKmWaIoAVlnFsxtbXUbB/e4vfLpHPW9Cy/O2+0rstmquSIHJNT4pEL0iK3pE18wokgT+SZvDgz59V5c95/RitOuXNI/sD5+AZDVJMJ</latexit><latexit sha1_base64="Pt+kMxR3A36LcHS0aTFtYJL6fm0=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0lE0ItQ9OKxgmkLbSib7WtdutmE3RehhP4Gr3ryJl79OR78L25iDto6p2HmPd68CRMpDLrup1NZWV1b36hu1ra2d3b36vsHHROnmoPPYxnrXsgMSKHAR4ESeokGFoUSuuH0Jve7j6CNiNU9zhIIIjZRYiw4Qyv5Jruau8N6w226Begy8UrSICXaw/rXYBTzNAKFXDJj+p6bYJAxjYJLmNcGqYGE8SmbQN9SxSIwQVaEndOT1DCMaQKaCkkLEX5vZCwyZhaFdjJi+GAWvVz8z+unOL4MMqGSFEHx/BAKCcUhw7WwLQAdCQ2ILE8OVCjKmWaIoAVlnFsxtbXUbB/e4vfLpHPW9Cy/O2+0rstmquSIHJNT4pEL0iK3pE18wokgT+SZvDgz59V5c95/RitOuXNI/sD5+AZDVJMJ</latexit>

s=1
<latexit sha1_base64="/tbqnl6H8JVoRO52jgbKrIEDvhQ=">AAAB/HicbVC7TsNAEDyHVwivACXNiQiJKrIREjRIETSUQSIPkVjR+bIJp5zP1t0aKbLCV9BCRYdo+RcK/oWzcQEJU41mdrWzE8RSGHTdT6e0tLyyulZer2xsbm3vVHf32iZKNIcWj2SkuwEzIIWCFgqU0I01sDCQ0AkmV5nfeQBtRKRucRqDH7KxEiPBGVrpzqQXs75QI5wOqjW37uagi8QrSI0UaA6qX/1hxJMQFHLJjOl5box+yjQKLmFW6ScGYsYnbAw9SxULwfhpnnhGjxLDMKIxaCokzUX4vZGy0JhpGNjJkOG9mfcy8T+vl+Do3E+FihMExbNDKCTkhwzXwlYBdCg0ILIsOVChKGeaIYIWlHFuxcR2U7F9ePPfL5L2Sd2z/Oa01rgsmimTA3JIjolHzkiDXJMmaRFOFHkiz+TFeXRenTfn/We05BQ7++QPnI9vrsOVkQ==</latexit><latexit sha1_base64="/tbqnl6H8JVoRO52jgbKrIEDvhQ=">AAAB/HicbVC7TsNAEDyHVwivACXNiQiJKrIREjRIETSUQSIPkVjR+bIJp5zP1t0aKbLCV9BCRYdo+RcK/oWzcQEJU41mdrWzE8RSGHTdT6e0tLyyulZer2xsbm3vVHf32iZKNIcWj2SkuwEzIIWCFgqU0I01sDCQ0AkmV5nfeQBtRKRucRqDH7KxEiPBGVrpzqQXs75QI5wOqjW37uagi8QrSI0UaA6qX/1hxJMQFHLJjOl5box+yjQKLmFW6ScGYsYnbAw9SxULwfhpnnhGjxLDMKIxaCokzUX4vZGy0JhpGNjJkOG9mfcy8T+vl+Do3E+FihMExbNDKCTkhwzXwlYBdCg0ILIsOVChKGeaIYIWlHFuxcR2U7F9ePPfL5L2Sd2z/Oa01rgsmimTA3JIjolHzkiDXJMmaRFOFHkiz+TFeXRenTfn/We05BQ7++QPnI9vrsOVkQ==</latexit><latexit sha1_base64="/tbqnl6H8JVoRO52jgbKrIEDvhQ=">AAAB/HicbVC7TsNAEDyHVwivACXNiQiJKrIREjRIETSUQSIPkVjR+bIJp5zP1t0aKbLCV9BCRYdo+RcK/oWzcQEJU41mdrWzE8RSGHTdT6e0tLyyulZer2xsbm3vVHf32iZKNIcWj2SkuwEzIIWCFgqU0I01sDCQ0AkmV5nfeQBtRKRucRqDH7KxEiPBGVrpzqQXs75QI5wOqjW37uagi8QrSI0UaA6qX/1hxJMQFHLJjOl5box+yjQKLmFW6ScGYsYnbAw9SxULwfhpnnhGjxLDMKIxaCokzUX4vZGy0JhpGNjJkOG9mfcy8T+vl+Do3E+FihMExbNDKCTkhwzXwlYBdCg0ILIsOVChKGeaIYIWlHFuxcR2U7F9ePPfL5L2Sd2z/Oa01rgsmimTA3JIjolHzkiDXJMmaRFOFHkiz+TFeXRenTfn/We05BQ7++QPnI9vrsOVkQ==</latexit><latexit sha1_base64="/tbqnl6H8JVoRO52jgbKrIEDvhQ=">AAAB/HicbVC7TsNAEDyHVwivACXNiQiJKrIREjRIETSUQSIPkVjR+bIJp5zP1t0aKbLCV9BCRYdo+RcK/oWzcQEJU41mdrWzE8RSGHTdT6e0tLyyulZer2xsbm3vVHf32iZKNIcWj2SkuwEzIIWCFgqU0I01sDCQ0AkmV5nfeQBtRKRucRqDH7KxEiPBGVrpzqQXs75QI5wOqjW37uagi8QrSI0UaA6qX/1hxJMQFHLJjOl5box+yjQKLmFW6ScGYsYnbAw9SxULwfhpnnhGjxLDMKIxaCokzUX4vZGy0JhpGNjJkOG9mfcy8T+vl+Do3E+FihMExbNDKCTkhwzXwlYBdCg0ILIsOVChKGeaIYIWlHFuxcR2U7F9ePPfL5L2Sd2z/Oa01rgsmimTA3JIjolHzkiDXJMmaRFOFHkiz+TFeXRenTfn/We05BQ7++QPnI9vrsOVkQ==</latexit>

symmetron
<latexit sha1_base64="pyV074HTrFz0v0BmVf6So3M41lQ=">AAACEXicbVC7TsMwFHV4lvIqMCIkiwqJqUoQEowVLIxFog+piSrHvS1WHSeybxBVlIlP4CtYYWJDrHwBA/+CGzpAy5mOzrnX9/iEiRQGXffTWVhcWl5ZLa2V1zc2t7YrO7stE6eaQ5PHMtadkBmQQkETBUroJBpYFEpoh6PLid++A21ErG5wnEAQsaESA8EZWqlXOcj84pFMQz/3Ee4xM+MoAtSxyvNeperW3AJ0nnhTUiVTNHqVL78f8zQChVwyY7qem2CQMY2CS8jLfmogYXzEhtC1VLEITJAVCXJ6lBqGMU1AUyFpIcLvjYxFxoYL7WTE8NbMehPxP6+b4uA8yIRKUgTFJ4dQSCgOGa6F7QdoX2hAZJPkQIWinGmGCFpQxrkVU1tY2fbhzf5+nrROap7l16fV+sW0mRLZJ4fkmHjkjNTJFWmQJuHkgTyRZ/LiPDqvzpvz/jO64Ex39sgfOB/fxTye/w==</latexit><latexit sha1_base64="pyV074HTrFz0v0BmVf6So3M41lQ=">AAACEXicbVC7TsMwFHV4lvIqMCIkiwqJqUoQEowVLIxFog+piSrHvS1WHSeybxBVlIlP4CtYYWJDrHwBA/+CGzpAy5mOzrnX9/iEiRQGXffTWVhcWl5ZLa2V1zc2t7YrO7stE6eaQ5PHMtadkBmQQkETBUroJBpYFEpoh6PLid++A21ErG5wnEAQsaESA8EZWqlXOcj84pFMQz/3Ee4xM+MoAtSxyvNeperW3AJ0nnhTUiVTNHqVL78f8zQChVwyY7qem2CQMY2CS8jLfmogYXzEhtC1VLEITJAVCXJ6lBqGMU1AUyFpIcLvjYxFxoYL7WTE8NbMehPxP6+b4uA8yIRKUgTFJ4dQSCgOGa6F7QdoX2hAZJPkQIWinGmGCFpQxrkVU1tY2fbhzf5+nrROap7l16fV+sW0mRLZJ4fkmHjkjNTJFWmQJuHkgTyRZ/LiPDqvzpvz/jO64Ex39sgfOB/fxTye/w==</latexit><latexit sha1_base64="pyV074HTrFz0v0BmVf6So3M41lQ=">AAACEXicbVC7TsMwFHV4lvIqMCIkiwqJqUoQEowVLIxFog+piSrHvS1WHSeybxBVlIlP4CtYYWJDrHwBA/+CGzpAy5mOzrnX9/iEiRQGXffTWVhcWl5ZLa2V1zc2t7YrO7stE6eaQ5PHMtadkBmQQkETBUroJBpYFEpoh6PLid++A21ErG5wnEAQsaESA8EZWqlXOcj84pFMQz/3Ee4xM+MoAtSxyvNeperW3AJ0nnhTUiVTNHqVL78f8zQChVwyY7qem2CQMY2CS8jLfmogYXzEhtC1VLEITJAVCXJ6lBqGMU1AUyFpIcLvjYxFxoYL7WTE8NbMehPxP6+b4uA8yIRKUgTFJ4dQSCgOGa6F7QdoX2hAZJPkQIWinGmGCFpQxrkVU1tY2fbhzf5+nrROap7l16fV+sW0mRLZJ4fkmHjkjNTJFWmQJuHkgTyRZ/LiPDqvzpvz/jO64Ex39sgfOB/fxTye/w==</latexit><latexit sha1_base64="pyV074HTrFz0v0BmVf6So3M41lQ=">AAACEXicbVC7TsMwFHV4lvIqMCIkiwqJqUoQEowVLIxFog+piSrHvS1WHSeybxBVlIlP4CtYYWJDrHwBA/+CGzpAy5mOzrnX9/iEiRQGXffTWVhcWl5ZLa2V1zc2t7YrO7stE6eaQ5PHMtadkBmQQkETBUroJBpYFEpoh6PLid++A21ErG5wnEAQsaESA8EZWqlXOcj84pFMQz/3Ee4xM+MoAtSxyvNeperW3AJ0nnhTUiVTNHqVL78f8zQChVwyY7qem2CQMY2CS8jLfmogYXzEhtC1VLEITJAVCXJ6lBqGMU1AUyFpIcLvjYxFxoYL7WTE8NbMehPxP6+b4uA8yIRKUgTFJ4dQSCgOGa6F7QdoX2hAZJPkQIWinGmGCFpQxrkVU1tY2fbhzf5+nrROap7l16fV+sW0mRLZJ4fkmHjkjNTJFWmQJuHkgTyRZ/LiPDqvzpvz/jO64Ex39sgfOB/fxTye/w==</latexit>

axion
<latexit sha1_base64="CDH1DOgXn2nuU2fSucS4TkIFa2Q=">AAACDXicbVC7SgNBFJ31GeMraiU2g0GwCrsiaBm0sYxgHpCEcHdyEwdnH8zclYRl8RP8Clut7MTWb7DwX5ysKTTxVIdz7p1z5/ixkoZc99NZWFxaXlktrBXXNza3tks7uw0TJVpgXUQq0i0fDCoZYp0kKWzFGiHwFTb9u8uJ37xHbWQU3tA4xm4Aw1AOpACyUq+0n3byR1KN/axDOKIURtbJsl6p7FbcHHyeeFNSZlPUeqWvTj8SSYAhCQXGtD03pm4KmqRQmBU7icEYxB0MsW1pCAGabpqnZ/woMUARj1FzqXgu4u+NFAJjxoFvJwOgWzPrTcT/vHZCg/NuKsM4IQzFJIikwjzICC1tN8j7UiMRTC5HLkMuQAMRaslBCCsmtqyi7cOb/f08aZxUPMuvT8vVi2kzBXbADtkx89gZq7IrVmN1JtgDe2LP7MV5dF6dN+f9Z3TBme7ssT9wPr4BMAydCA==</latexit><latexit sha1_base64="CDH1DOgXn2nuU2fSucS4TkIFa2Q=">AAACDXicbVC7SgNBFJ31GeMraiU2g0GwCrsiaBm0sYxgHpCEcHdyEwdnH8zclYRl8RP8Clut7MTWb7DwX5ysKTTxVIdz7p1z5/ixkoZc99NZWFxaXlktrBXXNza3tks7uw0TJVpgXUQq0i0fDCoZYp0kKWzFGiHwFTb9u8uJ37xHbWQU3tA4xm4Aw1AOpACyUq+0n3byR1KN/axDOKIURtbJsl6p7FbcHHyeeFNSZlPUeqWvTj8SSYAhCQXGtD03pm4KmqRQmBU7icEYxB0MsW1pCAGabpqnZ/woMUARj1FzqXgu4u+NFAJjxoFvJwOgWzPrTcT/vHZCg/NuKsM4IQzFJIikwjzICC1tN8j7UiMRTC5HLkMuQAMRaslBCCsmtqyi7cOb/f08aZxUPMuvT8vVi2kzBXbADtkx89gZq7IrVmN1JtgDe2LP7MV5dF6dN+f9Z3TBme7ssT9wPr4BMAydCA==</latexit><latexit sha1_base64="CDH1DOgXn2nuU2fSucS4TkIFa2Q=">AAACDXicbVC7SgNBFJ31GeMraiU2g0GwCrsiaBm0sYxgHpCEcHdyEwdnH8zclYRl8RP8Clut7MTWb7DwX5ysKTTxVIdz7p1z5/ixkoZc99NZWFxaXlktrBXXNza3tks7uw0TJVpgXUQq0i0fDCoZYp0kKWzFGiHwFTb9u8uJ37xHbWQU3tA4xm4Aw1AOpACyUq+0n3byR1KN/axDOKIURtbJsl6p7FbcHHyeeFNSZlPUeqWvTj8SSYAhCQXGtD03pm4KmqRQmBU7icEYxB0MsW1pCAGabpqnZ/woMUARj1FzqXgu4u+NFAJjxoFvJwOgWzPrTcT/vHZCg/NuKsM4IQzFJIikwjzICC1tN8j7UiMRTC5HLkMuQAMRaslBCCsmtqyi7cOb/f08aZxUPMuvT8vVi2kzBXbADtkx89gZq7IrVmN1JtgDe2LP7MV5dF6dN+f9Z3TBme7ssT9wPr4BMAydCA==</latexit><latexit sha1_base64="CDH1DOgXn2nuU2fSucS4TkIFa2Q=">AAACDXicbVC7SgNBFJ31GeMraiU2g0GwCrsiaBm0sYxgHpCEcHdyEwdnH8zclYRl8RP8Clut7MTWb7DwX5ysKTTxVIdz7p1z5/ixkoZc99NZWFxaXlktrBXXNza3tks7uw0TJVpgXUQq0i0fDCoZYp0kKWzFGiHwFTb9u8uJ37xHbWQU3tA4xm4Aw1AOpACyUq+0n3byR1KN/axDOKIURtbJsl6p7FbcHHyeeFNSZlPUeqWvTj8SSYAhCQXGtD03pm4KmqRQmBU7icEYxB0MsW1pCAGabpqnZ/woMUARj1FzqXgu4u+NFAJjxoFvJwOgWzPrTcT/vHZCg/NuKsM4IQzFJIikwjzICC1tN8j7UiMRTC5HLkMuQAMRaslBCCsmtqyi7cOb/f08aZxUPMuvT8vVi2kzBXbADtkx89gZq7IrVmN1JtgDe2LP7MV5dF6dN+f9Z3TBme7ssT9wPr4BMAydCA==</latexit>

axion*
<latexit sha1_base64="k+EaXOIP8hw6cdFNOMKxNs2+rg0=">AAACDnicbVC7SgNBFJ31bXyt2mkzGASxCLsiaCnaWCoYE0iWcHdyE4fMPpi5K8qy4Cf4FbZa2Ymtv2DhvzhZU2jiqQ7n3DvnzglTJQ153qczNT0zOze/sFhZWl5ZXXPXN65NkmmBdZGoRDdDMKhkjHWSpLCZaoQoVNgIB2dDv3GL2sgkvqL7FIMI+rHsSQFkpY67lbfLR3KN3aJNeEc53Flnvyg6btWreSX4JPFHpMpGuOi4X+1uIrIIYxIKjGn5XkpBDpqkUFhU2pnBFMQA+tiyNIYITZCX8QXfzQxQwlPUXCpeivh7I4fImPsotJMR0I0Z94bif14ro95xkMs4zQhjMQwiqbAMMkJLWw7yrtRIBMPLkcuYC9BAhFpyEMKKmW2rYvvwx38/Sa4Par7ll4fVk9NRMwtsm+2wPeazI3bCztkFqzPBHtgTe2YvzqPz6rw57z+jU85oZ5P9gfPxDaD4nTw=</latexit><latexit sha1_base64="k+EaXOIP8hw6cdFNOMKxNs2+rg0=">AAACDnicbVC7SgNBFJ31bXyt2mkzGASxCLsiaCnaWCoYE0iWcHdyE4fMPpi5K8qy4Cf4FbZa2Ymtv2DhvzhZU2jiqQ7n3DvnzglTJQ153qczNT0zOze/sFhZWl5ZXXPXN65NkmmBdZGoRDdDMKhkjHWSpLCZaoQoVNgIB2dDv3GL2sgkvqL7FIMI+rHsSQFkpY67lbfLR3KN3aJNeEc53Flnvyg6btWreSX4JPFHpMpGuOi4X+1uIrIIYxIKjGn5XkpBDpqkUFhU2pnBFMQA+tiyNIYITZCX8QXfzQxQwlPUXCpeivh7I4fImPsotJMR0I0Z94bif14ro95xkMs4zQhjMQwiqbAMMkJLWw7yrtRIBMPLkcuYC9BAhFpyEMKKmW2rYvvwx38/Sa4Par7ll4fVk9NRMwtsm+2wPeazI3bCztkFqzPBHtgTe2YvzqPz6rw57z+jU85oZ5P9gfPxDaD4nTw=</latexit><latexit sha1_base64="k+EaXOIP8hw6cdFNOMKxNs2+rg0=">AAACDnicbVC7SgNBFJ31bXyt2mkzGASxCLsiaCnaWCoYE0iWcHdyE4fMPpi5K8qy4Cf4FbZa2Ymtv2DhvzhZU2jiqQ7n3DvnzglTJQ153qczNT0zOze/sFhZWl5ZXXPXN65NkmmBdZGoRDdDMKhkjHWSpLCZaoQoVNgIB2dDv3GL2sgkvqL7FIMI+rHsSQFkpY67lbfLR3KN3aJNeEc53Flnvyg6btWreSX4JPFHpMpGuOi4X+1uIrIIYxIKjGn5XkpBDpqkUFhU2pnBFMQA+tiyNIYITZCX8QXfzQxQwlPUXCpeivh7I4fImPsotJMR0I0Z94bif14ro95xkMs4zQhjMQwiqbAMMkJLWw7yrtRIBMPLkcuYC9BAhFpyEMKKmW2rYvvwx38/Sa4Par7ll4fVk9NRMwtsm+2wPeazI3bCztkFqzPBHtgTe2YvzqPz6rw57z+jU85oZ5P9gfPxDaD4nTw=</latexit><latexit sha1_base64="k+EaXOIP8hw6cdFNOMKxNs2+rg0=">AAACDnicbVC7SgNBFJ31bXyt2mkzGASxCLsiaCnaWCoYE0iWcHdyE4fMPpi5K8qy4Cf4FbZa2Ymtv2DhvzhZU2jiqQ7n3DvnzglTJQ153qczNT0zOze/sFhZWl5ZXXPXN65NkmmBdZGoRDdDMKhkjHWSpLCZaoQoVNgIB2dDv3GL2sgkvqL7FIMI+rHsSQFkpY67lbfLR3KN3aJNeEc53Flnvyg6btWreSX4JPFHpMpGuOi4X+1uIrIIYxIKjGn5XkpBDpqkUFhU2pnBFMQA+tiyNIYITZCX8QXfzQxQwlPUXCpeivh7I4fImPsotJMR0I0Z94bif14ro95xkMs4zQhjMQwiqbAMMkJLWw7yrtRIBMPLkcuYC9BAhFpyEMKKmW2rYvvwx38/Sa4Par7ll4fVk9NRMwtsm+2wPeazI3bCztkFqzPBHtgTe2YvzqPz6rw57z+jU85oZ5P9gfPxDaD4nTw=</latexit>

dilaton
<latexit sha1_base64="591SFijq9b1yAgYMBQJ+hQkeAwA=">AAACD3icbVC7TsMwFHV4lvIKMHaxqJCYqgQhwVjBwlgk+pDaqnKc22LVcSL7BlFFGfgEvoIVJjbEyicw8C+4oQO0nOnonHt9rk+QSGHQ8z6dpeWV1bX10kZ5c2t7Z9fd22+ZONUcmjyWse4EzIAUCpooUEIn0cCiQEI7GF9O/fYdaCNidYOTBPoRGykxFJyhlQZuJesVj2QawryHcI9ZKCTDWOX5wK16Na8AXST+jFTJDI2B+9ULY55GoJBLZkzX9xLsZ0yj4BLyci81kDA+ZiPoWqpYBKafFfk5PUqNjaUJaCokLUT4vZGxyJhJFNjJiOGtmfem4n9eN8XheT8TKkkRFJ8GoZBQBBmuhW0HaCg0ILLp5UCFopxphghaUMa5FVNbV9n24c//fpG0Tmq+5den1frFrJkSqZBDckx8ckbq5Io0SJNw8kCeyDN5cR6dV+fNef8ZXXJmOwfkD5yPb84Rneg=</latexit><latexit sha1_base64="591SFijq9b1yAgYMBQJ+hQkeAwA=">AAACD3icbVC7TsMwFHV4lvIKMHaxqJCYqgQhwVjBwlgk+pDaqnKc22LVcSL7BlFFGfgEvoIVJjbEyicw8C+4oQO0nOnonHt9rk+QSGHQ8z6dpeWV1bX10kZ5c2t7Z9fd22+ZONUcmjyWse4EzIAUCpooUEIn0cCiQEI7GF9O/fYdaCNidYOTBPoRGykxFJyhlQZuJesVj2QawryHcI9ZKCTDWOX5wK16Na8AXST+jFTJDI2B+9ULY55GoJBLZkzX9xLsZ0yj4BLyci81kDA+ZiPoWqpYBKafFfk5PUqNjaUJaCokLUT4vZGxyJhJFNjJiOGtmfem4n9eN8XheT8TKkkRFJ8GoZBQBBmuhW0HaCg0ILLp5UCFopxphghaUMa5FVNbV9n24c//fpG0Tmq+5den1frFrJkSqZBDckx8ckbq5Io0SJNw8kCeyDN5cR6dV+fNef8ZXXJmOwfkD5yPb84Rneg=</latexit><latexit sha1_base64="591SFijq9b1yAgYMBQJ+hQkeAwA=">AAACD3icbVC7TsMwFHV4lvIKMHaxqJCYqgQhwVjBwlgk+pDaqnKc22LVcSL7BlFFGfgEvoIVJjbEyicw8C+4oQO0nOnonHt9rk+QSGHQ8z6dpeWV1bX10kZ5c2t7Z9fd22+ZONUcmjyWse4EzIAUCpooUEIn0cCiQEI7GF9O/fYdaCNidYOTBPoRGykxFJyhlQZuJesVj2QawryHcI9ZKCTDWOX5wK16Na8AXST+jFTJDI2B+9ULY55GoJBLZkzX9xLsZ0yj4BLyci81kDA+ZiPoWqpYBKafFfk5PUqNjaUJaCokLUT4vZGxyJhJFNjJiOGtmfem4n9eN8XheT8TKkkRFJ8GoZBQBBmuhW0HaCg0ILLp5UCFopxphghaUMa5FVNbV9n24c//fpG0Tmq+5den1frFrJkSqZBDckx8ckbq5Io0SJNw8kCeyDN5cR6dV+fNef8ZXXJmOwfkD5yPb84Rneg=</latexit><latexit sha1_base64="591SFijq9b1yAgYMBQJ+hQkeAwA=">AAACD3icbVC7TsMwFHV4lvIKMHaxqJCYqgQhwVjBwlgk+pDaqnKc22LVcSL7BlFFGfgEvoIVJjbEyicw8C+4oQO0nOnonHt9rk+QSGHQ8z6dpeWV1bX10kZ5c2t7Z9fd22+ZONUcmjyWse4EzIAUCpooUEIn0cCiQEI7GF9O/fYdaCNidYOTBPoRGykxFJyhlQZuJesVj2QawryHcI9ZKCTDWOX5wK16Na8AXST+jFTJDI2B+9ULY55GoJBLZkzX9xLsZ0yj4BLyci81kDA+ZiPoWqpYBKafFfk5PUqNjaUJaCokLUT4vZGxyJhJFNjJiOGtmfem4n9eN8XheT8TKkkRFJ8GoZBQBBmuhW0HaCg0ILLp5UCFopxphghaUMa5FVNbV9n24c//fpG0Tmq+5den1frFrJkSqZBDckx8ckbq5Io0SJNw8kCeyDN5cR6dV+fNef8ZXXJmOwfkD5yPb84Rneg=</latexit>

↵3
<latexit sha1_base64="SXy7ojnWghRcKczaLy1ycLGNzZ0=">AAAB+nicbVC7TsNAEDyHVwivACXNiQiJKrIBCcoIGsogkYeUWNH6sklOOT90t0aKTH6CFio6RMvPUPAv2MYFJEw1mtnVzo4XKWnItj+t0srq2vpGebOytb2zu1fdP2ibMNYCWyJUoe56YFDJAFskSWE30gi+p7DjTW8yv/OA2sgwuKdZhK4P40COpABKpW4fVDSBwfmgWrPrdg6+TJyC1FiB5qD61R+GIvYxIKHAmJ5jR+QmoEkKhfNKPzYYgZjCGHspDcBH4yZ53jk/iQ1QyCPUXCqei/h7IwHfmJnvpZM+0MQsepn4n9eLaXTlJjKIYsJAZIdIKswPGaFlWgTyodRIBFly5DLgAjQQoZYchEjFOG2mkvbhLH6/TNpndSfldxe1xnXRTJkdsWN2yhx2yRrsljVZiwmm2BN7Zi/Wo/VqvVnvP6Mlq9g5ZH9gfXwDc8yUQw==</latexit><latexit sha1_base64="SXy7ojnWghRcKczaLy1ycLGNzZ0=">AAAB+nicbVC7TsNAEDyHVwivACXNiQiJKrIBCcoIGsogkYeUWNH6sklOOT90t0aKTH6CFio6RMvPUPAv2MYFJEw1mtnVzo4XKWnItj+t0srq2vpGebOytb2zu1fdP2ibMNYCWyJUoe56YFDJAFskSWE30gi+p7DjTW8yv/OA2sgwuKdZhK4P40COpABKpW4fVDSBwfmgWrPrdg6+TJyC1FiB5qD61R+GIvYxIKHAmJ5jR+QmoEkKhfNKPzYYgZjCGHspDcBH4yZ53jk/iQ1QyCPUXCqei/h7IwHfmJnvpZM+0MQsepn4n9eLaXTlJjKIYsJAZIdIKswPGaFlWgTyodRIBFly5DLgAjQQoZYchEjFOG2mkvbhLH6/TNpndSfldxe1xnXRTJkdsWN2yhx2yRrsljVZiwmm2BN7Zi/Wo/VqvVnvP6Mlq9g5ZH9gfXwDc8yUQw==</latexit><latexit sha1_base64="SXy7ojnWghRcKczaLy1ycLGNzZ0=">AAAB+nicbVC7TsNAEDyHVwivACXNiQiJKrIBCcoIGsogkYeUWNH6sklOOT90t0aKTH6CFio6RMvPUPAv2MYFJEw1mtnVzo4XKWnItj+t0srq2vpGebOytb2zu1fdP2ibMNYCWyJUoe56YFDJAFskSWE30gi+p7DjTW8yv/OA2sgwuKdZhK4P40COpABKpW4fVDSBwfmgWrPrdg6+TJyC1FiB5qD61R+GIvYxIKHAmJ5jR+QmoEkKhfNKPzYYgZjCGHspDcBH4yZ53jk/iQ1QyCPUXCqei/h7IwHfmJnvpZM+0MQsepn4n9eLaXTlJjKIYsJAZIdIKswPGaFlWgTyodRIBFly5DLgAjQQoZYchEjFOG2mkvbhLH6/TNpndSfldxe1xnXRTJkdsWN2yhx2yRrsljVZiwmm2BN7Zi/Wo/VqvVnvP6Mlq9g5ZH9gfXwDc8yUQw==</latexit><latexit sha1_base64="SXy7ojnWghRcKczaLy1ycLGNzZ0=">AAAB+nicbVC7TsNAEDyHVwivACXNiQiJKrIBCcoIGsogkYeUWNH6sklOOT90t0aKTH6CFio6RMvPUPAv2MYFJEw1mtnVzo4XKWnItj+t0srq2vpGebOytb2zu1fdP2ibMNYCWyJUoe56YFDJAFskSWE30gi+p7DjTW8yv/OA2sgwuKdZhK4P40COpABKpW4fVDSBwfmgWrPrdg6+TJyC1FiB5qD61R+GIvYxIKHAmJ5jR+QmoEkKhfNKPzYYgZjCGHspDcBH4yZ53jk/iQ1QyCPUXCqei/h7IwHfmJnvpZM+0MQsepn4n9eLaXTlJjKIYsJAZIdIKswPGaFlWgTyodRIBFly5DLgAjQQoZYchEjFOG2mkvbhLH6/TNpndSfldxe1xnXRTJkdsWN2yhx2yRrsljVZiwmm2BN7Zi/Wo/VqvVnvP6Mlq9g5ZH9gfXwDc8yUQw==</latexit>

�3
<latexit sha1_base64="oJF4TY+dhJu1d+bPOs1j6RDbL4M=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIBCcoIGsogkYeURNH6sgmnnB+6WyNFVj6CFio6RMvXUPAvnI0LSJhqNLOrnR0/VtKQ6346pZXVtfWN8mZla3tnd6+6f9A2UaIFtkSkIt31waCSIbZIksJurBECX2HHn95kfucRtZFReE+zGAcBTEI5lgLISp2+jwTD82G15tbdHHyZeAWpsQLNYfWrP4pEEmBIQoExPc+NaZCCJikUziv9xGAMYgoT7FkaQoBmkOZx5/wkMUARj1FzqXgu4u+NFAJjZoFvJwOgB7PoZeJ/Xi+h8dUglWGcEIYiO0RSYX7ICC1tD8hHUiMRZMmRy5AL0ECEWnIQwoqJLaZi+/AWv18m7bO6Z/ndRa1xXTRTZkfsmJ0yj12yBrtlTdZigk3ZE3tmL07qvDpvzvvPaMkpdg7ZHzgf36awk88=</latexit><latexit sha1_base64="oJF4TY+dhJu1d+bPOs1j6RDbL4M=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIBCcoIGsogkYeURNH6sgmnnB+6WyNFVj6CFio6RMvXUPAvnI0LSJhqNLOrnR0/VtKQ6346pZXVtfWN8mZla3tnd6+6f9A2UaIFtkSkIt31waCSIbZIksJurBECX2HHn95kfucRtZFReE+zGAcBTEI5lgLISp2+jwTD82G15tbdHHyZeAWpsQLNYfWrP4pEEmBIQoExPc+NaZCCJikUziv9xGAMYgoT7FkaQoBmkOZx5/wkMUARj1FzqXgu4u+NFAJjZoFvJwOgB7PoZeJ/Xi+h8dUglWGcEIYiO0RSYX7ICC1tD8hHUiMRZMmRy5AL0ECEWnIQwoqJLaZi+/AWv18m7bO6Z/ndRa1xXTRTZkfsmJ0yj12yBrtlTdZigk3ZE3tmL07qvDpvzvvPaMkpdg7ZHzgf36awk88=</latexit><latexit sha1_base64="oJF4TY+dhJu1d+bPOs1j6RDbL4M=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIBCcoIGsogkYeURNH6sgmnnB+6WyNFVj6CFio6RMvXUPAvnI0LSJhqNLOrnR0/VtKQ6346pZXVtfWN8mZla3tnd6+6f9A2UaIFtkSkIt31waCSIbZIksJurBECX2HHn95kfucRtZFReE+zGAcBTEI5lgLISp2+jwTD82G15tbdHHyZeAWpsQLNYfWrP4pEEmBIQoExPc+NaZCCJikUziv9xGAMYgoT7FkaQoBmkOZx5/wkMUARj1FzqXgu4u+NFAJjZoFvJwOgB7PoZeJ/Xi+h8dUglWGcEIYiO0RSYX7ICC1tD8hHUiMRZMmRy5AL0ECEWnIQwoqJLaZi+/AWv18m7bO6Z/ndRa1xXTRTZkfsmJ0yj12yBrtlTdZigk3ZE3tmL07qvDpvzvvPaMkpdg7ZHzgf36awk88=</latexit><latexit sha1_base64="oJF4TY+dhJu1d+bPOs1j6RDbL4M=">AAAB+XicbVC7TsNAEDyHVwivACXNiQiJKrIBCcoIGsogkYeURNH6sgmnnB+6WyNFVj6CFio6RMvXUPAvnI0LSJhqNLOrnR0/VtKQ6346pZXVtfWN8mZla3tnd6+6f9A2UaIFtkSkIt31waCSIbZIksJurBECX2HHn95kfucRtZFReE+zGAcBTEI5lgLISp2+jwTD82G15tbdHHyZeAWpsQLNYfWrP4pEEmBIQoExPc+NaZCCJikUziv9xGAMYgoT7FkaQoBmkOZx5/wkMUARj1FzqXgu4u+NFAJjZoFvJwOgB7PoZeJ/Xi+h8dUglWGcEIYiO0RSYX7ICC1tD8hHUiMRZMmRy5AL0ECEWnIQwoqJLaZi+/AWv18m7bO6Z/ndRa1xXTRTZkfsmJ0yj12yBrtlTdZigk3ZE3tmL07qvDpvzvvPaMkpdg7ZHzgf36awk88=</latexit>

s=4
<latexit sha1_base64="vKFtM4VtNgYqYdVpI2HbTCbp1KE=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoBeh6MVjBdMW2lA229e6dLMJuy9CCf0NXvXkTbz6czz4X9zEHLQ6p2HmPd68CRMpDLruh1NZWV1b36hu1ra2d3b36vsHXROnmoPPYxnrfsgMSKHAR4ES+okGFoUSeuHsOvd7D6CNiNUdzhMIIjZVYiI4Qyv5JrtctEb1htt0C9C/xCtJg5TojOqfw3HM0wgUcsmMGXhugkHGNAouYVEbpgYSxmdsCgNLFYvABFkRdkFPUsMwpgloKiQtRPi5kbHImHkU2smI4b1Z9nLxP2+Q4uQiyIRKUgTF80MoJBSHDNfCtgB0LDQgsjw5UKEoZ5ohghaUcW7F1NZSs314y9//Jd2zpmf5bavRviqbqZIjckxOiUfOSZvckA7xCSeCPJIn8uzMnRfn1Xn7Hq045c4h+QXn/QtJkJMN</latexit><latexit sha1_base64="vKFtM4VtNgYqYdVpI2HbTCbp1KE=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoBeh6MVjBdMW2lA229e6dLMJuy9CCf0NXvXkTbz6czz4X9zEHLQ6p2HmPd68CRMpDLruh1NZWV1b36hu1ra2d3b36vsHXROnmoPPYxnrfsgMSKHAR4ES+okGFoUSeuHsOvd7D6CNiNUdzhMIIjZVYiI4Qyv5JrtctEb1htt0C9C/xCtJg5TojOqfw3HM0wgUcsmMGXhugkHGNAouYVEbpgYSxmdsCgNLFYvABFkRdkFPUsMwpgloKiQtRPi5kbHImHkU2smI4b1Z9nLxP2+Q4uQiyIRKUgTF80MoJBSHDNfCtgB0LDQgsjw5UKEoZ5ohghaUcW7F1NZSs314y9//Jd2zpmf5bavRviqbqZIjckxOiUfOSZvckA7xCSeCPJIn8uzMnRfn1Xn7Hq045c4h+QXn/QtJkJMN</latexit><latexit sha1_base64="vKFtM4VtNgYqYdVpI2HbTCbp1KE=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoBeh6MVjBdMW2lA229e6dLMJuy9CCf0NXvXkTbz6czz4X9zEHLQ6p2HmPd68CRMpDLruh1NZWV1b36hu1ra2d3b36vsHXROnmoPPYxnrfsgMSKHAR4ES+okGFoUSeuHsOvd7D6CNiNUdzhMIIjZVYiI4Qyv5JrtctEb1htt0C9C/xCtJg5TojOqfw3HM0wgUcsmMGXhugkHGNAouYVEbpgYSxmdsCgNLFYvABFkRdkFPUsMwpgloKiQtRPi5kbHImHkU2smI4b1Z9nLxP2+Q4uQiyIRKUgTF80MoJBSHDNfCtgB0LDQgsjw5UKEoZ5ohghaUcW7F1NZSs314y9//Jd2zpmf5bavRviqbqZIjckxOiUfOSZvckA7xCSeCPJIn8uzMnRfn1Xn7Hq045c4h+QXn/QtJkJMN</latexit><latexit sha1_base64="vKFtM4VtNgYqYdVpI2HbTCbp1KE=">AAAB93icbVBNS8NAFNzUr1q/qh69LBbBU0mkoBeh6MVjBdMW2lA229e6dLMJuy9CCf0NXvXkTbz6czz4X9zEHLQ6p2HmPd68CRMpDLruh1NZWV1b36hu1ra2d3b36vsHXROnmoPPYxnrfsgMSKHAR4ES+okGFoUSeuHsOvd7D6CNiNUdzhMIIjZVYiI4Qyv5JrtctEb1htt0C9C/xCtJg5TojOqfw3HM0wgUcsmMGXhugkHGNAouYVEbpgYSxmdsCgNLFYvABFkRdkFPUsMwpgloKiQtRPi5kbHImHkU2smI4b1Z9nLxP2+Q4uQiyIRKUgTF80MoJBSHDNfCtgB0LDQgsjw5UKEoZ5ohghaUcW7F1NZSs314y9//Jd2zpmf5bavRviqbqZIjckxOiUfOSZvckA7xCSeCPJIn8uzMnRfn1Xn7Hq045c4h+QXn/QtJkJMN</latexit>

s=�4
<latexit sha1_base64="0j+uBxyTmnBK/NjT2gnwf10o5/Y=">AAAB+nicbVC7TsNAEDzzDOEVoKQ5ESHRENkoEjRIETSUQSIPKbGi82UTTjmfrbs1UmT8E7RQ0SFafoaCf+EcXEDCVKOZXe3sBLEUBl3301laXlldWy9tlDe3tnd2K3v7bRMlmkOLRzLS3YAZkEJBCwVK6MYaWBhI6AST69zvPIA2IlJ3OI3BD9lYiZHgDK3UNelllp5m9UGl6tbcGegi8QpSJQWag8pXfxjxJASFXDJjep4bo58yjYJLyMr9xEDM+ISNoWepYiEYP53lzehxYhhGNAZNhaQzEX5vpCw0ZhoGdjJkeG/mvVz8z+slOLrwU6HiBEHx/BAKCbNDhmthiwA6FBoQWZ4cqFCUM80QQQvKOLdiYpsp2z68+e8XSfus5ll+W682ropmSuSQHJET4pFz0iA3pElahBNJnsgzeXEenVfnzXn/GV1yip0D8gfOxzeIhJRQ</latexit><latexit sha1_base64="0j+uBxyTmnBK/NjT2gnwf10o5/Y=">AAAB+nicbVC7TsNAEDzzDOEVoKQ5ESHRENkoEjRIETSUQSIPKbGi82UTTjmfrbs1UmT8E7RQ0SFafoaCf+EcXEDCVKOZXe3sBLEUBl3301laXlldWy9tlDe3tnd2K3v7bRMlmkOLRzLS3YAZkEJBCwVK6MYaWBhI6AST69zvPIA2IlJ3OI3BD9lYiZHgDK3UNelllp5m9UGl6tbcGegi8QpSJQWag8pXfxjxJASFXDJjep4bo58yjYJLyMr9xEDM+ISNoWepYiEYP53lzehxYhhGNAZNhaQzEX5vpCw0ZhoGdjJkeG/mvVz8z+slOLrwU6HiBEHx/BAKCbNDhmthiwA6FBoQWZ4cqFCUM80QQQvKOLdiYpsp2z68+e8XSfus5ll+W682ropmSuSQHJET4pFz0iA3pElahBNJnsgzeXEenVfnzXn/GV1yip0D8gfOxzeIhJRQ</latexit><latexit sha1_base64="0j+uBxyTmnBK/NjT2gnwf10o5/Y=">AAAB+nicbVC7TsNAEDzzDOEVoKQ5ESHRENkoEjRIETSUQSIPKbGi82UTTjmfrbs1UmT8E7RQ0SFafoaCf+EcXEDCVKOZXe3sBLEUBl3301laXlldWy9tlDe3tnd2K3v7bRMlmkOLRzLS3YAZkEJBCwVK6MYaWBhI6AST69zvPIA2IlJ3OI3BD9lYiZHgDK3UNelllp5m9UGl6tbcGegi8QpSJQWag8pXfxjxJASFXDJjep4bo58yjYJLyMr9xEDM+ISNoWepYiEYP53lzehxYhhGNAZNhaQzEX5vpCw0ZhoGdjJkeG/mvVz8z+slOLrwU6HiBEHx/BAKCbNDhmthiwA6FBoQWZ4cqFCUM80QQQvKOLdiYpsp2z68+e8XSfus5ll+W682ropmSuSQHJET4pFz0iA3pElahBNJnsgzeXEenVfnzXn/GV1yip0D8gfOxzeIhJRQ</latexit><latexit sha1_base64="0j+uBxyTmnBK/NjT2gnwf10o5/Y=">AAAB+nicbVC7TsNAEDzzDOEVoKQ5ESHRENkoEjRIETSUQSIPKbGi82UTTjmfrbs1UmT8E7RQ0SFafoaCf+EcXEDCVKOZXe3sBLEUBl3301laXlldWy9tlDe3tnd2K3v7bRMlmkOLRzLS3YAZkEJBCwVK6MYaWBhI6AST69zvPIA2IlJ3OI3BD9lYiZHgDK3UNelllp5m9UGl6tbcGegi8QpSJQWag8pXfxjxJASFXDJjep4bo58yjYJLyMr9xEDM+ISNoWepYiEYP53lzehxYhhGNAZNhaQzEX5vpCw0ZhoGdjJkeG/mvVz8z+slOLrwU6HiBEHx/BAKCbNDhmthiwA6FBoQWZ4cqFCUM80QQQvKOLdiYpsp2z68+e8XSfus5ll+W682ropmSuSQHJET4pFz0iA3pElahBNJnsgzeXEenVfnzXn/GV1yip0D8gfOxzeIhJRQ</latexit>

Figure C.9: Zeros trajectory in the unit disk of each irrep S-matrix as we move along the
boundary of the allowed region in {β3, α3} parameter space (bottom-right) at fixed SU(3)
axion as given in tab. 4.4. In gray are the old resonance trajectories without the axion
imposed. In the bound figure (bottom-right) we show in gray shades the old smooth
boundary: the presence of a fixed resonance sharply cut the allowed region giving rise
to a kink at the point where the optimal bound allows to emerge the resonance we fix.

C.4.4 Coupling Q

When a resonance is close to the real energy axis, the phase of the S-matrix jumps
by π as it passes close to it. A neat example is given in figure C.7 where there is a
clear jump in the phase of the antisymmetric channel when evaluated close to the
resonance. To estimate the coupling to the sharp axion resonance we do a “narrow
width” approximation

S(s)
∣∣∣
s∼m2

res

= − s + sm − isΓ/2
s− sm + isΓ/2

= e2iδres(s) , (C.35)

where the unitarity cuts are neglected and sΓ = mresΓ. Therefore,

1
Γ
=
√

s
∂δres(s)

∂s

∣∣∣∣∣
s=m2

res

, (C.36)

up to terms of O(sΓ/sm). From equation (C.36) and the parametrisation of the phase as
a function of Q 2δres(s)|= arctan Q2s3

8(m2−s) [67, 83], we have Γ = m5Q2/8 . which is used
in section ??.
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Appendix C. Appendices to flux-tube bootstrap

C.5 Integrability computations

C.5.1 TBA

When expanding the TBA equation at large radius as discussed in the text we end up
with simple integrals to evaluate. In fact, all we need is

∫ xn

ex − 1
= n! ζn+1 ≡ In , (C.37)

plus two other integrals obtained from this one by integrating by parts:

∫
xn log(1− e−x)=− In+1

n + 1
,
∫ xn

(ex − 1)2=− nIn−1−In .

Only even zeta’s are generated leading to all the π’s in the final result (4.26). Expanding
to higher orders we find

E0 =
√

R2 − π
3 −

32π6γ3

225R7 −
64π7γ3

675R9 −
2π8γ3

45 + 32768π10γ5
3969

R11

−
16384π11γ2

3
4725 + 22π9γ3

1215 + 32768π11γ5
3969

R13 (C.38)

−
208384π12γ2

3
50625 + 1001π10γ3

145800 + 26624π12γ5
5103 + 524288π14γ7

225
R15

+ O(R−17) .

For D = 4 we have two goldstone particles and hence two pseudo-energies and thus
a priori, we have two coupled differential equations to solve. Nicely, for the ground
state energy they can be reduced to a single equation [67] which differs from the D = 3
equations (4.24), (4.23) in a few factors of 2 only, precisely stemming from the fact that
we have now twice as many goldstone particles:

E0(R) = R +
2

πR

∫ ∞

0
dx log(1− e−ε(x)) (C.39)

ε(x) = x +
1

2π

∫ ∞

0

dx′

x′
K log(1− e−ε(x′)), (C.40)

K = x′
∂(δsym+δanti)

∂x′
= 2

(
xx′

R2 +3α3

(
4xx′

R2

)3

+. . .
)

.

Expanding again as in (4.25) and using again the integrals (C.37) leads to an expansion

E0 = R− π

3R
− π2

18R3−
π3

54R5−
5π4

648R7 −
128π6α3

225R7 + . . . (C.41)

perfectly reproducing (4.3) and (4.22).

220
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C.5.2 Level Splitting

Another quantity which is very sensitive to the deviation from universality of the S-
matrix low energy parameters is the level splitting between various excited energy levels
of the flux tube. In three dimensions, for example, their degeneracy is broken precisely
by the non-universal parameter γ3 so we can translate the bound γ3 > −1/768 directly
into a bound on how much the levels can split. This is simplest to do in the integrability
context where those energy levels are given by a TBA generalization valid for the excited
states [106].

Here they simplify quite a lot due to the bosonic nature of the particles (very rare
in integrable models) which allows for particles to have the same momenta and also
because of the absence of LL and RR scattering in this spontaneous symmetry breaking
setup. If we consider N right movers with the same mode number n and N left movers
with the same mode number−n then each quanta will have the same momentum +p/−
p for right/left movers respectively where p is quantized through a souped up set
of Bethe ansatz equations which include finite size corrections and which also yield
the (D = 3) exited state energy as

E = R + 2Np +

∞∫

0

dx
πR

log(1− e−ε(x)) (C.42)

2πn = pR+2Nδ

(
4p2

R2

)
+

∞∫

0

dx
2πx
K
(

4px
R2

)
log(1−e−ε(x)) ,

ε(x) =x+ 2Nδ

(
4xp
R2

)
+

∞∫

0

dx′

2πx′
K
(

4xx′

R2

)
log(1−e−ε(x′)) ,

which can be solved using the ansatz in (4.25) for the pseudo-energy and an ansatz of
the form

p =
2πn

R
+

p1

R3 +
p2

R5 +
p3

R7 +O
(

1
R8

)
. (C.43)

for the momentum. Note, without the need for any computation, that if the phase
shift is linear δ(x) ∼ x, as it is for the first few universal terms, then we can rescale
p and the corresponding mode number to absorb N completely leading to the above
mentioned degeneracy: the energy only depends on N × n in this case. The breaking of
the degeneracy will thus be directly proportional to the first non-universal deviation
from the eis S-matrix. The simplest example is (4.27) which upon using our bound
implies the upper bound

EN=2,n=2 − EN=4,n=1 ≤
9592 π6

15R7 + O(R−9) , (C.44)

on the degeneracy of the first two degenerate states.
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While a small degeneracy is indeed nicely measured in the lattice, it is unfortunately
quite challenging to compare it with this analytic bound. In short, because of all the π’s
in the expressions above, we need a radius of about R ∼ 10 `s to be able to properly order
the terms in the low energy expansion while most lattice data is given up to R ∼ 6 `s. It
would be very nice to produce larger radius data.

C.6 Perturbative Flux Tube Computations

As explained in 4.3 the strategy that we follow to compute (4.3) consists in organizing
the calculation by dividing the action (4.1) into two pieces

A = Aint + A
��int . (C.45)

Aint produces an integrable S-matrix up to O(s3). This S-matrix is fed into the TBA,
which returns the universal part of E0(R). The piece A

��int consists of the leading order
breaking of integrability. In particular, this invovles the leading non-universal operators
– see below for a clarification. We work at leading order in perturbation theory with the
integrability breaking piece A

��int. Thus, the leading order non-universal contribution to
the vacuum energy density is

=
32π6(2− D)((D−2)α3+(D−4)β3)

225R8 , (C.46)

after regularizing out the zero mode.

Before closing this section we must explain two effects that we have glossed over. First,
recall that the low energy universality of the NG theory implies that all the one-loop
leading order scattering amplitudes are universal. In particular, the one-loop 2 → 4
processes are non-zero away from D = 3, 26. Interestingly, this implies that, in the
absence of further massless degrees of freedom, the NG theory is not integrable away
from D = 3, 26 [74]. These one-loop six-point amplitudes can be reproduced with the
following local operator

(∂µ∂νXi)2
[
(∂ρX j)4 − 1

2
∂ρX j∂σX j∂ρXk∂σXk

]
, (C.47)

where the overall normalization is unimportant for our purposes. Generically, (C.47)
implies O(1/R7) deviations from the finite volume spectrum associated to the integrable
S-matrix in appendix C.5.1. Indeed, (C.47) is added in Aint and subtracted in A

��int. For
the vacuum energy density, we must compute a single insertion of (C.47)

= ∂ν∂α∂β∆R(0) ∂ν∂γ∂β∆R(0) ∂α∂γ∆R(0) = 0 ,
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C.7. Axionic String Ansatz: no resonances

where we omitted the symmetry factor. Given that the latter diagram vanishes, we
conclude that at O(1/R7) the vacuum energy is insensitive to (C.47) and therefore the
unique deviation from the square root formula at O(1/R7) is given by (C.46).

In D = 3, the presence of the leading non-universal operator induces 2 → 4 particle
production at O(`8

s s5) in the M-matrix element [76]. Therefore, one could expect an
O(1/R9) contribution to the vacuum energy from this process. However, similarly to
(C.47), this process can be reproduced by a local operator (∂µ∂νX)2(∂ρX)2 that has a
vanishing vacuum expectation value at finite volume.

The second effect is about the Einstein-Hilbert operator R introduced in ??. It is an
evanescent operator, i.e. its contribution to the tree-level S-matrix vanishes for d = 2
world-sheet spacetime dimensions; but, when dressed with virtual corrections in di-
mensional regularization, gives a non-zero contribution to the S-matrix. Its presence
is needed for a consistent one-loop renormalization of the NG theory. Thus R ap-
pears as a 1/ε + ω3 counter-term in dimensional regularization [63], where ω3 is a
finite non-universal choice for the counter-term. At O(s3) the 2 → 2 S-matrix of
the renormalized NG theory involves two-loop Feynman diagrams from the NG ver-
tices

√−det ∂αXµ∂βXµ and one loop diagrams with a single insertion of theR and NG
vertices. A priori, one could expect that ω3 together with the constants α3 and β3 in (4.19)
make up a triad of possible non-universal deformations at O(s3). However, the O(s3)

contribution of ω3 is analytic and thus can be absorbed in the K4 = O(∂8X4) operators,
i.e. in a shift of the {α3, β3} parameters [75].

C.7 Axionic String Ansatz: no resonances

Here we elaborate further on the analysis of 4.2.2, by assuming that there are no reso-
nances on the D = 3 flux tube, namely the Axionic String Ansatz (ASA) [83]. If there are
no resonances, then the phase shift δ(s) = 1

2i log S(s) is analytic in the upper half plane.
Let us derive a dispersion relation for the phase shift. We start from the identity

2δ(s)− s
4

s2 =
∮

s

dz
2πi

[
1

z− s
− 1

z + s

]
2δ(z)− z

4
z2 (C.48)

where the contour goes around s in the upper half plane. Assuming that δ(s)/s3 → 0
for |s| → ∞ in the upper half plane, we can open the contour to the real axis to obtain

2δ(s) =
s
4
+

2s3

π

∫ ∞

−∞
dz

Im δ(z)
z2(z2 − s2)

(C.49)

This gives
γ3/γ7 = 〈z4〉 , γ5/γ7 = 〈z2〉 (C.50)
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with

〈zn〉 =
∫ ∞

−∞
dz ρ(z)zn , ρ(z) =

2
πγ7

Im δ(z)
z8 . (C.51)

Notice that ρ(z) = ρ(−z) is a non-negative normalized distribution
∫

dz ρ(z) = 1.
Therefore, we conclude the

γ3, γ5, γ7 ≥ 0 . (C.52)

Furthermore the large s behavior of the phase shift is given by

2δ(s) =
(

1
4
− γ7〈z6〉

)
s + . . . (C.53)

Causality allows for a time-delay but not a time advance. This implies that the coefficient
of the linear term in s at high energies must be positive [73, 107]. In other words,

`2
UV = `2

s
(
1− 4γ7〈z6〉

)
> 0 . (C.54)

We can derive more inequalities. Firstly,
〈(

z2 − 〈z2〉
)2
〉
≥ 0⇒ γ3γ7 ≥ γ2

5 (C.55)

Secondly, 〈
z2 (z2 − 〈z2〉

)2
〉
≥ 0⇒ 〈z6〉 ≥ 2〈z4〉〈z2〉 − 〈z2〉3 (C.56)

together with 〈z6〉 ≤ 1
4γ7

, leads to

γ2
7 ≥ 4γ5(2γ3γ7 − γ2

5) . (C.57)

These give an upper and lower bound on γ3,

γ2
5

γ7
≤ γ3 ≤

γ2
7 + 4γ3

5
8γ5γ7

. (C.58)

This must fit inside the allowed region in figure 4.1. Notice that the new region has an
edge where the upper and lower bounds coincide,

γ2
7 = 4γ3

5 = 4γ3γ5γ7 . (C.59)

At this edge, `UV = 0 because

∫ ∞

−∞
dz

Im δ(z)
z2 =

π

8
(C.60)
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and the distribution is delta-function type,

ρ(z) =
1
2

δ(z− z0) +
1
2

δ(z + z0)

where 4γ7z6
0 = 1.

Can we confirm or disprove the ASA? In principle, the ASA can be disproved if one
measures low energy constants γ3, γ5, . . . incompatible with the constraints (C.52) or
(C.58). Currently, the available estimate γ3 ≈ 3× 10−4 (from lattice data for SU(6)
YM [67, 76, 77]) is compatible with the ASA.
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D Appendices to glueball-branon
bootstrap

D.1 Derivation of the unitarity equations

D.1.1 Phase space integrals

We will first compute two phase space integrals: two branon phase space ρbb(s) and the
one glueball phase space ρg(s).

Two branon phase-space

ρbb(s) =
∫ 1

2
dp5

2|p5|
dp6

2|p6|
δ(2)(P a − pa

5 − pa
6) (D.1)

Note that P is the total momentum. Due to Lorentz invariance, the above integral only
depends on s = P2. Therefore, to evaluate the integral, we choose to go to the center of
mass frame where P = (

√
s, 0), which gives the integral:

ρbb(s) =
∫ 1

2
dp5

2|p5|
dp6

2|p6|
δ(p5 − p6)δ(

√
s− |p5| − |p6|)

=
∫ 1

2
dp6

(2|p6|)2 δ(
√

s− 2|p6|) (D.2)

There are two solutions: p6 = ±
√

s
2 and we also get a factor of 1

2 since δ(λx) = δ(x)
λ . Thus

we get our result:

ρbb(s) =
1
2s

(D.3)

One glueball phase-space

ρg(s) =
∫ dp5dq5

2(p2
5 + q2

5 + m2)1/2
δ(2)(P a − pa

5) (D.4)
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where once again, Lorentz invariance implies that it is just a function of s = P2. We go
to the center of mass frame P = (

√
s, 0), which gives the integral:

ρg(s) =
∫ dp5dq5

2(p2
5 + q2

5 + m2)1/2
δ(p5)δ

(√
s−

√
p2

5 + q2
5 + m2

)

=
∫ dq5

2(q2
5 + m2)1/2

δ

(√
s−

√
q2

5 + m2

)
(D.5)

In this case q5 ≥ 0 and hence there is only one solution q5 =
√

s−m2 and since
δ( f (x)) = ∑i

δ(x−xi)
f ′(xi)

(where xi are the zeroes of f ), we have

ρg(s) =
1

2
√

s−m2
(D.6)

D.1.2 Unitarity equation for branon-branon scattering

We begin with the equation −i(T − T†) = T†T, and taking matrix elements between
two particle branon states:

−i〈p3, p4|T − T†|p1, p2〉 = 〈p3, p4|T†T|p1, p2〉 (D.7)

Using the definition 5.6, we see that left hand side is proportional to Im M(s):

−i〈p3, p4|T − T†|p1, p2〉 = (2π)2δ(2)(pa
1 + pa

2 − pa
3 − pa

4) 2 Im M(s) (D.8)

while on the right hand side we plug in a complete set of states to get:

〈p3, p4|T†T|p1, p2〉 =
∫

dΠbb〈p3, p4|T†|p5, p6〉〈p5, p6|T|p1, p2〉

+ Θ(s−m2)
∫

dΠg〈p3, p4|T†|m, p5, q5,+〉〈m, p5, q5,+|T|p1, p2〉
+ contributions from other states (D.9)

where dΠbb = 1
2

dp5
(2π)2|p5|

dp6
(2π)2|p6| and dΠg = dp5dq5

(2π)22(p2
5+q2

5+M2)1/2 . Note that q5 only runs
from 0 to ∞. The Θ function appears because glueball intermediate states are only
possible for s ≥ m2.

Consider the first term, due to momentum conservation we get the delta function factors
δ(2)(pa

1 + pa
2− pa

5− pa
6)× δ(2)(pa

3 + pa
4− pa

5− pa
6). On the support of these delta functions,

we can replace them with δ(2)(pa
1 + pa

2− pa
5− pa

6)× δ(2)(pa
1 + pa

2− pa
3− pa

4). Moreover, in
2D, momentum conservation implies that pa

5 and pa
6 are permutations of pa

1 and pa
2, hence

we also get [M(s)]∗M(s). The remaining integral gives ρbb(s). Putting these together,

228



D.1. Derivation of the unitarity equations

we may write the first term as:
∫

dΠbb〈p3, p4|T†|p5, p6〉〈p5, p6|T|p1, p2〉 = (2π)2δ(2)(pa
1 + pa

2 − pa
3 − pa

4)

×ρbb(s)[M(s)]∗M(s) (D.10)

We now go back to the second term in equation D.9, once again by momentum conserva-
tion, we can pull out a factor δ(2)(pa

1 + pa
2 − pa

3 − pa
4), the remaining integral gives ρg(s)

and hence we have:
∫

dΠg〈p3, p4|T†|m, p5, q5〉〈m, p5, q5|T|p1, p2〉 = (2π)2δ(2)(pa
1 + pa

2 − pa
3 − pa

4)

×ρg(s)[F(s)]∗F(s) (D.11)

Thus by putting all these together,

2 Im M(s) =
1
2s
|M(s)|2 + 1

2
√

s−m2
|F(s)|2Θ(s−m2) + ... (D.12)

D.1.3 Unitarity equation for glueball-glueball scattering

Once again we begin with the equation −i(T − T†) = T†T, but this time we take matrix
elements between two 1-particle glueball states:

−i〈m, p2, q2,+|T − T†|m, p1, q1,+〉 = 〈m, p2, q2,+|T†T|m, p1, q1,+〉 (D.13)

Using equation 5.7, we can write the left hand side as:

−i〈m, p2, q2,+|T − T†|m, p1, q1,+〉 = (2π)2δ(2)(pa
1 − pa

2) 2 Im G(s) (D.14)

To evaluate the right hand side, we plug in a complete set of states to get:

〈m, p2, q2,+|T†T|m, p1, q1,+〉 =
∫

dΠbb〈m, p2, q2,+|T†|p5, p6〉〈p5, p6|T|m, p1, q1,+〉

+ Θ(s−m2)
∫

dΠg〈m, p2, q2,+|T†|m, p5, q5,+〉
×〈m, p5, q5,+|T|m, p1, q1,+〉

+ contributions from other states (D.15)

Consider the first term, momentum conservation leads to δ(2)(pa
1 − pa

5 − pa
6)× δ(2)(pa

2 −
pa

5 − pa
6) which can be rewritten as δ(2)(pa

1 − pa
2)× δ(2)(pa

1 − pa
5 − pa

6). The remaining

229



Appendix D. Appendices to glueball-branon bootstrap

integral is precisely ρbb(s) and we have:
∫

dΠbb〈m, p2, q2,+|T†|p5, p6〉〈p5, p6|T|m, p1, q1,+〉 = (2π)2δ(2)(pa
1 − pa

2)

×ρbb(s)[F(s)]∗F(s)(D.16)

Similarly, upon considering the second term, momentum conservation leads to a
δ(2)(pa

1 − pa
2) factor, while the remaining integral gives ρg(s) and hence we have:

∫
dΠg〈m, p2, q2,+|T†|m, p5, q5,+〉〈m, p5, q5,+|T|m, p1, q1,+〉 = (2π)2δ(2)(pa

1 − pa
2)

×ρg(s)[G(s)]∗G(s)

(D.17)

Putting all the pieces together, we have:

2 Im G(s) =
1

2
√

s−m2
|G(s)|2Θ(s−m2) +

1
2s
|F(s)|2 + ... (D.18)

D.1.4 Unitarity equation for glueball-branon scattering

Once again we begin with the equation −i(T − T†) = T†T, and take matrix elements
between two particle branon state and a glueball state:

−i〈m, p3, q3,+|T − T†|p1, p2〉 = 〈m, p3, q3,+|T†T|p1, p2〉 (D.19)

Using equations 5.8 and 5.9, the left hand side becomes:

−i〈m, p3, q3,+|T − T†|p1, p2〉 = (2π)2δ(2)(pa
1 + pa

2 − pa
3) 2 Im F(s) (D.20)

To evaluate the right hand side, we plug in a complete set of states to get:

〈m, p3, q3,+|T†T|p1, p2〉 =
∫

dΠbb〈m, p3, q3,+|T†|p5, p6〉〈p5, p6|T|p1, p2〉

+ Θ(s−m2)
∫

dΠg〈m, p3, q3,+|T†|m, p5, q5,+〉
×〈m, p5, q5,+|T|p1, p2〉

+ contributions from other states (D.21)

Following the same procedure as before, for each term we can pull out a momentum
preserving delta function and the remaining part becomes the respective phase space
integral. In other words we have

∫
dΠbb〈m, p3, q3,+|T†|p5, p6〉〈p5, p6|T|p1, p2〉 = (2π)2δ(2)(pa

1 + pa
2 − pa

3)

×ρbb(s)[F(s)]∗M(s) (D.22)
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and
∫

dΠg〈m, p3, q3,+|T†|m, p5, q5,+〉〈m, p5, q5,+|T|p1, p2〉 = (2π)2δ(2)(pa
1 + pa

2 − pa
3)

×ρg(s)[G(s)]∗F(s)

(D.23)

Therefore we have

2 Im F(s) =
1

2
√

s−m2
G∗(s)F(s)Θ(s−m2) +

1
2s

F∗(s)M(s) + ... (D.24)

D.2 Perturbative amplitudes

Consider the following Action

S =
1
2

∫
d3x

[
(∇φ)2 −m2]+ 1

2

∫
d2x(∂π)2 +

λ

2
√

m

∫
d2xφ(∂π)2 (D.25)

where φ is the glueball field in 3D and π is the branon field on the flux tube. We couple
the two via the term proportional to λ. Our objective here is to only derive tree level
amplitudes and try to get a feel for the s = 0 expansion of the amplitudes. The Feynman
rules are:

• Glueball propagator: i
p2+q2−m2

• Branon progator: i
p2

• Vertex: i λ√
m p1.p2, (here p1 and p2 are momenta of the branon)

We can now compute the branon-branon amplitude M, the glueball-glueball amplitude
G and the glueball-branon amplitude F. We get at leading order

M(s) =
λ2

16m
√

s−m2
s2 (D.26)

F(s) =
λ

2
√

m
s (D.27)

G(s) = − λ2

16πm
s
(

8
3
− log s

)
(D.28)

Of course the Lagrangian was not reparametrization invariant. It would be interesting to
start with a reparametrization invariant coupling say

√
gφ and compute the amplitudes

to leading order in perturbation theory.
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