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Abstract

Gene expression in eukaryotes is a complex multi-step process. It starts in the nucleus with transcrip-

tion, the synthesis of a mRNA copy from a DNA template. While in the nucleus, the RNA transcript is

subject to multiple co- and post-transcriptional modifications, including splicing, capping, polyadeny-

lation, and assembly into ribonucleoprotein complexes. Correctly processed mRNA is exported to the

cytoplasm and translated by ribosomes to form a chain of amino acids: the protein. The mRNA lifetime

in the cytoplasm is determined by the activity of a distinct set of RNA Binding Proteins, enzymes, and

functional RNAs, which promote stability or degradation.

Each step of the RNA life cycle is tightly regulated to ensure proper cellular function. The kinetic rates

governing these steps are dynamic and notably adapt to the daily fluctuations of the environment

related to the alternance of day and night. Indeed, most organisms possess an internal timing system,

called the circadian clock. The clock is a genetically encoded self-sustained transcriptional-translational

feedback loop, which operates in almost every cell and tissue of the body. It controls the temporal

gene expression program to synchronise cellular and physiological functions to the external world. In

this thesis, I explore the transcriptome of the mouse liver by combining RNA-sequencing, mathemati-

cal modelling, and single-molecule RNA-FISH (smFISH), with an emphasis on the spatio-temporal

organisation of RNA expression at the subcellular and tissue scales.

I first investigate how RNA are differentially localised at the scale of the liver tissue. Hepatocytes

are arranged in structural and functional units called lobules, and carry out different physiological

functions depending on their spatial position within the lobule. In this work, we characterised spatio-

temporal gene expression profiles, and showed that while the expression of hundreds of genes is dually

orchestrated by time and space, the circadian core clock is expressed uniformly within the liver lobule,

and is therefore robust to the heterogeneous microenvironment.

Second, I explore the RNA localisation at the scale of a hepatocyte. The subcellular distribution of

RNA in different compartments (here, the nucleus and the cytoplasm), are dictated by the balance of a

synthesis term and a decay term. To quantify the kinetic parameters driving nuclear and cytoplasmic

mRNA accumulation, I sequenced RNA from both cellular fractions from mouse livers sampled at

different times of the day. Using a mathematical model describing rhythmic pre-mRNA and mRNA

profiles, I could estimate the nuclear export rates and cytoplasmic degradation rates of ∼1400 genes.

Nuclear export occurs on a much shorter time-scale than cytoplasmic degradation, and nuclear lifetime

has only a minor contribution to the total RNA lifetime. However, a subset of metabolic genes remain

in the nucleus for more than one hour (up to four hours), which accounts for the long phase delay

between the peak times of transcription and of cytoplasmic accumulation. Furthermore, nuclear export
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Abstract

contributes to the modulation and generation of rhythmic profiles of ∼10% of the cycling nuclear

mRNA. This study provides a comprehensive estimation of the nuclear and cytoplasmic life times in

the liver and contributes to a better understanding of the dynamic regulation of the transcriptome

during the feeding-fasting cycle.

Keywords: circadian rhythms, RNA processing, RNA-seq, liver zonation, single-molecule RNA FISH,

mathematical modeling
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Résumé

L’expression génique chez les eucaryotes est un processus complexe impliquant de multiples niveaux

de régulation. Le processus commence dans le noyau avec la transcription, soit la synthèse d’une

copie d’ARN messager (ARNm) à partir d’un segment d’ADN. Pendant son séjour dans le noyau, le

transcrit d’ARN subit de multiples modifications co- et post-transcriptionnelles, notamment l’épissage,

le coiffage, la polyadénylation et l’assemblage en complexe ribonucléoprotéique. L’ARNm est ensuite

exporté vers le cytoplasme où il est traduit par les ribosomes pour produire une chaîne d’acides aminés :

la protéine. La durée de vie de l’ARNm dans le cytoplasme est déterminée par l’activité d’un ensemble

distinct de protéines de liaison à l’ARN, d’enzymes et d’ARN fonctionnels, qui favorisent sa stabilité ou,

au contraire, sa dégradation.

Chaque étape du cycle de vie de l’ARN est étroitement régulée pour assurer le bon fonctionnement

cellulaire. Les taux cinétiques qui régissent ces étapes sont dynamiques, et s’adaptent aux fluctuations

journalières de l’environnement, dûes notamment à l’alternance du jour et de la nuit. En effet, la

plupart des organismes possèdent un système interne permettant la synchronisation temporelle de

leurs fonctions cellulaires et physiologiques au monde extérieur, appelé horloge circadienne. L’horloge

est une boucle de rétroaction auto-régulée, encodée génétiquement, qui contrôle le programme

temporel d’expression des gènes dans presque toutes les cefllules et tous les organes du corps. Dans

cette thèse, j’étudie le transcriptome du foie de la souris en combinant du séquençage d’ARN à haut

débit, de la modélisation mathématique et de l’hybridation in situ en fluorescence sur molécule d’ARN

(smFISH), en mettant l’accent sur l’organisation spatio-temporelle de l’expression de l’ARN.

J’ai d’abord étudié comment les ARN sont différemment localisés à l’échelle du tissu hépatique. Les

hépatocytes sont disposés en unités structurelles et fonctionnelles appelées lobules, et remplissent

différentes fonctions physiologiques en fonction de leur position au sein du lobule. Dans ce projet,

nous avons caractérisé les profils d’expression génique spatio-temporels, et montré que si l’expression

de centaines de gènes est orchestrée à la fois dans le temps et l’espace, ce n’est pas le cas de l’horloge

circadienne qui est exprimée uniformément dans le lobule du foie, et est donc robuste à ce micro-

environnement hétérogène.

Dans un second temps, j’ai exploré la localisation de l’ARN à l’échelle d’un hépatocyte. Les distribu-

tions subcellulaires de l’ARN dans différents compartiments (ici, le noyau et le cytoplasme), découlent

de l’équilibre entre le taux de synthèse et de dégradation. Pour quantifier les paramètres cinétiques

conduisant à l’accumulation d’ARNm nucléaire et cytoplasmique, j’ai séquencé l’ARN des deux frac-

tions cellulaires à partir de foies de souris échantillonnés à différents moments de la journée. À l’aide

d’un modèle mathématique décrivant des profils rythmiques de pré-ARNm et d’ARNm, j’ai pu estimer
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Résumé

les taux d’export nucléaire et de dégradation cytoplasmique de ∼1400 gènes. L’export nucléaire se

produit sur une échelle de temps beaucoup plus courte que la dégradation cytoplasmique, et la durée

de vie nucléaire n’a qu’une contribution mineure à la durée de vie totale de l’ARN. Cependant, un

sous-ensemble de gènes métaboliques reste dans le noyau pendant plus d’une heure (jusqu’à quatre

heures), ce qui explique le long retard de phase entre les pics de transcription et d’accumulation

cytoplasmique. En outre, l’export nucléaire contribue à la modulation et à la génération de profils

rythmiques de ∼10% des ARNm nucléaires rhythmiques.

Cette étude fournit une estimation complète des durées de vie nucléaires et cytoplasmiques dans le

foie et contribue à une meilleure compréhension de la régulation dynamique du transcriptome au

cours d’une journée.
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1 Introduction

1.1 Circadian clock system in mammals

1.1.1 Overview

Most organisms, from plants, cyanobacteria, drosophila to mammals, have adapted to the daily

environmental changes. They have developed a biological endogenous timekeeping system called the

circadian clock (from the latin words circa and dies, "around a day") to anticipate and to coordinate

their behaviour and physiology to the day/night cycles, to temperature and humidity variations, social

interactions, etc. [1].

The circadian clock is organised in a hierarchical manner. In mammals, a "master clock" is located in

the suprachiasmatic nucleus (SCN), a bilateral structure in the hypothalamus. These two small regions

contain each ∼20000 coupled neurons that integrate the photic signals perceived by the retina (cones,

rods, and melanopsins containing ganglion cells) and transmitted via the retino-hypothalamic tract

[2]. When cultured individually, these neurons retain their circadian gene expression, but with low

amplitude and in poorly organized manner. In contrast, when their connectivity is maintained, which

is the case in organotypic culture, individual rhythms are stable and phase-coherent [3]. The central

pacemaker in the SCN aligns the phase of the "peripheral clocks" using various systemic routes such

as the autonomic neuronal system, or hormones such as glucocorticoids and melatonin to generate

rhythmic outputs such as the rest - activity cycle, feeding-fasting period or body temperature changes

[4, 5]. Indeed, cells of virtually all the peripheral tissues and cells contain a self-sustained molecular

clock [6, 7], particularly important in metabolic organs such as the liver, pancreas, kidney, muscle or

adipocytes [8]. Importantly, these organs are not only entrained by the SCN, but also by other external

cues like the food intake.

The circadian clock system is “entrained” by external stimuli, called Zeitgebers (ZT). In light-sensitive

organisms, daylight is the dominant synchroniser. In absence of stimulus, a condition called “free-

running”, the clock ticks at its endogenous period. In the 60’s, Aschoff examined endogenous rhythms

in humans. Volunteers were isolated in bunkers without access to daylight nor information about
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Chapter 1. Introduction

external time. By monitoring their activity pattern, urine excretion and body temperature, it was shown

that the endogenous period is highly variable, but with a mean around 25 hours, longer than the period

of Earth rotation [9]. On the other hand, the activity of mice kept in constant darkness had a shorter

period [10].

The genetic determinant of behavioral rhythmicity was first identified in 1971 by Ron Konopka in

Drosophila Melanogaster mutant lines that had aberrant locomotor activity and eclosion rhythm [11].

They discovered a gene locus, named period (or per), that was later cloned for the first time in 1984 by

the team of Jeffrey Hall and Michael Roshbash [12], and Michael Young [13]. The last three scientists

were rewarded by the Nobel Prize in Physiology or Medicine in 2017 for their “discoveries of molecular

mechanisms that control circadian rhythms”. In mammals, the group of Joseph Takahashi discovered

the first mammalian gene in a mutant mouse model: Clock [14], followed by other core clock genes,

namely Arntl (or Bmal1 [15]), Cryptochromes [16], and Period genes.

1.1.2 The molecular circadian core clock

At the molecular level, in mammals, the cell autonomous core clock is a transcriptional-translational

feedback loop (TTFL) (Fig.1.1) [17, 18]. The positive limb of the network is constituted of two tran-

scriptional activators, CLOCK and BMAL1. They activate the expression of their own repressors Cryp-

tochromes (CRY1 and CRY2) and Periods ( PER1, PER2 and PER3) by binding to regulatory elements

containing E-Boxes. CRY and PER accumulate in the cytoplasm and dimerize before they translocate

into the nucleus and interact with the CLOCK - BMAL1 complex, therefore downregulating their own

expression. The decrease of BMAL1 and CLOCK levels results in a decrease of CRY and PER levels,

which in turn lead to the accumulation of BMAL1 and CLOCK, thus starting a new cycle with a period

of ∼24 hours. A second loop is composed of the complex CLOCK-BMAL1 activating the expression of

the nuclear receptor RORα, β and γ [19], REVERb α and β [20] (encoded by Nr1d1 and Nr1d2), that

compete to respectively activate and repress the expression of BMAL1 by binding to the ROR binding

elements (ROREs). Finally, additional loops involving the ParB ZIP family members (DBP, TEF, HLF [21],

and the repressors NFIL3 encoded by E4bp4), or the bHLH proteins (DEC1, DEC2) help to maintain

the robustness of the core oscillator. Post-translational modifications also play a pivotal role [22]. For

instance, casein kinase 1 (CK1) or F-box and leucine-rich repeat protein 3 (FBXL3) phosphorylate

PER and CRY respectively, modifying the stability of PER/CRY complex, its nuclear translocation, and

eventually promoting its proteasomal degradation, with opposite effects depending on which sites are

phosphorylated. A mutation in a stabilising phosphorylation site of PER2 in human, and a mutation

causing a decreased enzymatic activity of CKI δ both provoke the Familial advanced sleep phase syn-

drome (FASPS), shortening the intrinsic period and advancing the sleep onset [23, 24]. These examples

demonstrate the importance of post-translational modifications of core clock proteins in regulating

their stability and eventually circadian period length.

All together, these interlocked feedback loops generate intracellular cycles of 24 hours, and modulate

the phases of expression of various target genes, based on the combination of cis-elements in the

promoters and enhancers. There are additional layers of post-transcriptional and post-translational

regulation that modulate the final rhythmic output, and will be covered later in this chapter.
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1.1. Circadian clock system in mammals

Figure 1.1 – Molecular architecture of the circadian clock in mammals. The clock is a self-sustained transcriptional-
translational feedback loop. The network consists of two transcription factors, CLOCK and BMAL1, which activate
the expression of their own repressors Cryptochromes (CRY1 and CRY2) and Periods (PER1, PER2 and PER3). CRYs
and PERs accumulate and reduce the transcriptional activity of CLOCK - BMAL1 complex, which in turn leads
to their own extinction. Then, BMAL1 and CLOCK activity rises again, generating a new cycle with a period of
approximately 24 hours. Stability and localisation of PER and CRY are modulated by the kinases CKI and FBXL3. A
second feedback loop is composed of the complex CLOCK-BMAL1 activating the expression of the target genes
RORα, β, and γ, and REVERBα andvβ, which compete to respectively activate and repress the expression of
BMAL1. The molecular clock also targets thousands of downstream clock-controlled genes to couple circadian
cycles and physiological pathways.

1.1.3 The intricate interplay between the circadian clock and metabolism

The core mechanism of the transcriptional-translational feedback loop is universal in virtually all

the cells in the body. In addition, precise combinations of tissue-specific transcription factors and

promoters shape the rhythmic gene expression program in each organ [25]. For instance, liver-specific

nuclear receptor HNF4α represses the activity of BMAL1:CLOCK and further regulate key hepatic

functions in lipid, glucose and amino acid homeostasis [26]. A comparative study in the primate Papio

anubis (baboon) compared the transcriptome in 64 tissues, and showed that more than 80% of the

protein-coding genes were cycling in at least one tissue, however, the overlap between cycling genes

was small across tissues [27]. Many genes were expressed in several tissues, but were rhythmic in

some while constant in others, highlighting the fact that expression and rhythmic expression are tissue-

specific. Similarly, studies in different mouse tissues showed that at least half of all the expressed genes

cycles in at least one tissue. Again, the overlap of the rhythmic gene set between organs was very small,

with less than 1% of the genes that oscillate in all the tissues [28]. Metabolically active tissues have the

largest proportion of cycling genes, such as the liver (one the most studied organ in chronobiology),

kidney, lung, brown fat, and heart. They carry out a large panel of catabolic and anabolic functions

that require time coordination to prevent two opposite and incompatible processes from running

simultaneously. The intimate connection between the clock system and cellular metabolic processes

allows the organism to anticipate physiological needs and to respond to environmental changes [29].
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In metabolic organs, food (un)availability is the dominant Zeitgeber. For instance, an inverted feeding

regimen can uncouple the SCN oscillator from the peripheral tissues oscillators (liver, kidney, heart, and

pancreas). After a week of restricted day-time feeding, the phases of clock genes in those tissues became

antiphasic to the phase of the SCN. The shift was particularly fast in the liver [30], and shown to be

entrained by glucocorticoids signalling pathway [31, 32]. When the feeding pattern is arrhythmic (mice

are continuously provided with a small amount of food), 70% of the rhythmic genes under ad libitum

feeding regimen lost their rhythm. Core clock gene expression, on the other hand, remained unaffected

by the feeding rhythm. This suggested that in the liver, rhythmic food intake is the dominant Zeitgeber

for a majority of genes [33]. One way that feeding cues are integrated by the core clock circuitry are

insulin and insulin-like Growth Factor 1 (ILGF-1), which increase PER2 translation efficiency [34].

The importance of a healthy timing system is illustrated by metabolic dysfunctions arising in night-shift

or rotation shift workers whose circadian rhythm is disrupted (prevalence of cardiovascular disease,

obesity, prevalence of some cancers). In 2019, the International Agency for Research on Cancer (IARC)

classified night-shift work as “probably carcinogenic to human”, even though more epidemiological

studies are needed to confirm this claim in humans [35]. In rodents, metabolic disturbances have

been described in mutant mice. For instance, the arrhythmic Bmal1-KO mice show signs of premature

ageing like sarcopenia, loss of body weight and impaired glucose tolerance. CLOCK-KO mice are, on

the other hand, obese and hyperphagic. Both mutant lines lost diurnal variations of triglycerides and

glucose [36]. Conversely, a strict rhythmic pattern of feeding can improve metabolic functions. For

example, mice fed with a high fat diet ad libitum exhibited dampened metabolic and physiological

oscillations in addition to obesity, liver steatosis and other metabolic syndromes, while mice under

a time-restricted feeding were protected against the adverse consequences of a high fat diet, and

preserved robust circadian and metabolic oscillations [37]. The beneficial effects of a time-restricted

feeding was observed even in fruit flies: those fed only during the day had a better sleep quality (less

napping and longer sleep time during the night), and a slower decline in heart function as they aged

[38].

The extensive crosstalk between the circadian cellular oscillator and the metabolic system relies

on the overlap of some of their transcriptional networks [29]. One of these connections happens

through the rhythmic production of NAD+, a central cofactor involved in redox reactions. CLOCK

and BMAL1 cyclically transcribe Nampt, the rate-limiting enzyme of the NAD+ salvage pathway [39].

They thus regulate the rhythmic availability of NAD+, and by extension, the activity of NAD-dependent

enzymes activities, such as SIRTUINS. SIRT1 is a histone deacetylase that regulates metabolic processes,

including gluconeogenesis through the activation of PGC-1. It also binds CLOCK:BMAL1 and helps

the remodelling of chromatin, promotes the degradation of PER2, thus creating a metabolic feedback

loop tied to the circadian clockwork circuitry. Decline of NAD+ rhythm has been associated to ageing

and metabolic stress [40]. Another way in which metabolism and the clock interact is through AMPK

(AMP-activated protein kinase). When the cellular energy state is low, the high AMP/ATP ratio triggers

a signalling cascade that leads to the activation of AMPK, which switches on catabolic pathways that

produce ATP, while switching off ATP-consuming processes. In addition, AMPK phosphorylates and

destabilses CRY1, promoting its degradation [41].
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1.1. Circadian clock system in mammals

1.1.4 The clock in the mammalian liver

Figure 1.2 – Entrainment of the circadian clock in metabolic organs. Metabolic organs including liver, pancreas,
kidneys, heart and adipose tissues are entrained by multiple Zeitgebers. Light/dark and temperature cycles
indirectly affect peripheral organs by first entraining the central clock in the SCN, which systematically propagates
the signals to peripheral tissues using neural and hormonal pathways. Circadian clocks of metabolic organs are
also directly entrained by Zeitgebers such as feeding and fasting or physical activity. In these organs, the circadian
clock regulates various metabolic processes (blue box). Scheme created with BioRender.

One of the most studied metabolic organs in chronobiology is the liver. Genome-wide investigations

showed that 10 to 20% of the transcriptome is rhythmic [42], including many key rate-limiting enzymes

involved in metabolic functions [43]. It maintains energy homeostasis throughout the day by balancing

carbohydrate and lipid metabolism. It helps digestion by producing and recycling bile acids. It clears

out blood from xenobiotics and old red blood cells. It is also the major site of protein synthesis, releasing

in the bloodstream proteins such as Albumin, hormones, complement system proteins, and blood

clotting factors. It has to adapt to very different physiological requirements along the day in order to

maintain energy homeostasis. Changes are particularly important at the transition between the active

and rest phases, to which the liver responds by two “peaks” of transcriptional activity, just before dawn

and before dusk (ZT10 and ZT20) [44]. Additionally, proteomics [45], metabolomics and lipidomics

[46] analysis revealed a widespread effect of post-transcriptional and post-translational regulation [47].

Maintenance of a constant level of blood glucose is a crucial role of the liver. This is achieved by a

balance of breakdown and production of glucose [48]. When food consumption is maximal at the

beginning of the active phase, the expression of glucose transporter and glucagon receptor increases.

The excess glucose is stored as a form of glycogen polymers by a CLOCK-controlled gene Gys2 [49],

whose transcription peaks around ZT12 and activity late at night. Between meals, gluconeogenesis

produces de novo glucose, a process catalysed by the rate-limiting enzyme PCK1 (or PEPCK1), and

is stimulated by the circadian release of glucocorticoids from the adrenal cortex. CRY1 has been

shown to interact with the glucocorticoid receptor, hence inhibiting the expression of genes containing

glucocorticoid-responsive elements (GREs) like Pck1. CRY1 inhibits the phosphorylation of CREB, a

transcription factor that promotes the expression of Pck1 and G6pc when phosphorylated [50]. Finally,

CRY1 also promotes the degradation of FOXO1, a positive regulator of Pck1 and G6pc, further inhibiting

gluconeogenesis [51].
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The liver manages excessive carbohydrates, proteins, and fat by transforming these macromolecules

into fatty acids (lipogenesis) and assembling them into triglycerides for long term storage, or by

excreting them in the form of lipoproteins. In a fasted state, it consumes nonesterified fatty acids

released by adipocytes, and produces energy and ketone bodies through β-oxidation. Many of the

key enzymes in the lipid metabolism are rhythmic in the liver, such as Elovl3, Elovl6, Fas, Agpat, Lpin,

and the nuclear receptor PPARs and the coactivator PGC-1, and SREBP (master regulator of lipid

metabolism). The α isoform of PPAR is abundant in the liver, and is a direct target of BMAL1:CLOCK.

Conversely, Bmal1 promoter contains PPRE domain, and is thus under the control of PPARα [52]. The

repressor REVERBα, together with the histone deacetylase HDAC3 and NCor1, is another central node

linking the circadian clock and lipid metabolism. The complex rhythmically binds to many gene loci

coding for proteins involved in lipogenesis [53]. The absence of either HDAC3 or REVERBα-/β provokes

lipid accumulation in the liver (steatosis). REVERBα is also involved in bile acid metabolism. For

instance, it regulates the activity of SREBP, a transcription factor that promotes insulin-driven lipogenic

activity, through cyclic transcription of Insig2, a protein responsible for the sequestration of SREBP

[54]. Importantly, REVERBα negatively regulates the rate-limiting enzyme converting cholesterol to

bile acid, Cyp7a1.

Another crucial role of the liver is the removal of xenobiotic compounds from blood. Detoxification

occurs in three phases. In Phase I, lipid-soluble compounds are modified and inactivated by oxidation,

reduction or hydrolysis, mostly by Cytochrome P450 enzymes (CYPs). The products from Phase I are

made more water-soluble during Phase II, so they are easier to be excreted into the bile acids, urine

or feces. Phase III enzymes include transporters in charge of excretion of the metabolites. When a

lipid-soluble xenobiotic crosses the cell membrane, it is detected by nuclear receptors such as CAR or

SHP, both showing clear diurnal oscillations in the liver. CAR further regulates the expression of POR

(Cytochrome P450 oxydoreductase) and ALAS1, a rate-limiting enzyme in the heme synthesis. Both

proteins are necessary to activate the Cytochrome P450, as all CYPs need a heme as a prosthetic group.

Proteomics data have revealed that many proteins of Phase I, II and III accumulated rhythmically

in mouse liver [45]. The detoxification-related transcription factors Dbp, Tef, Hlf are direct output

mediators of CLOCK/BMAL1 transcription [55]. They promote the transcription of downstream genes

containing D-Boxes, in competition with the repressor NFIL3 (transcribed by REV-ERB / RORs). Some

enzymes of Phase I, II and III (CYP2A4, CYP2A5, CYP3A4, ABCB1) are direct targets of the PARbZIP

transcription factors. Moreover, they are thought to coordinate the expression of the other Cytochrome

P450 enzymes by directly regulating the expression of CAR. The importance of the PARbZIP genes was

demonstrated by the phenotypes of triple KO mouse (Dbp, Tef and Hlf knock-out) [56]. There was a

high juvenile morbidity rate, mainly due to an epileptic seizure. Adult triple KO mice that survived

showed signs of premature ageing and premature death, probably due to impaired detoxification

processes.

Through these few examples, we see the intricate and bi-directional interplay between the circadian

liver oscillator, and the complex physiological machinery. This link is particularly prominent in the

liver, where most of its key functions are timely coordinated in order to respond and anticipate daily

variation of nutrients availability.
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1.2 Circadian regulation of gene expression

Core clock proteins are regulatory proteins driving the rhythmic transcription of thousands of genes,

ultimately producing cycling physiological/ biochemical outputs. Daily fluctuations of RNA and protein

levels do not only stem from a rhythmically regulated transcription, but also at post-transcriptional

and post-translational level. In eukaryotes, RNA is synthesised in the nucleus, processed (5’capped,

3’-cleaved, polyadenylated, spliced, decorated by methyl-groups), and exported to the cytoplasm

where it is translated and finally degraded [57]. Virtually any step of the RNA life cycle can be regulated

in a circadian manner, generating de novo rhythms or modulating temporal patterns of circadian RNA /

proteins [58]. For the last decade, many genome-wide studies quantified the extent of rhythmic post-

transcriptional and post-translational regulation, with sometimes discrepant results that undeniably

arise from different experimental design and data analysis methods, even when performed in the

same tissue, such as the mouse liver [59, 54, 47, 60, 45, 61]. In the following paragraphs, I will focus on

the main RNA processing steps known to be under circadian control, from chromatin accessibility to

mRNA degradation. Translational and post-translational regulatory processes such as the acetylation

[62] and phosphorylation [63] additionally generate rhythms at the level of protein accumulation, but

will not be covered here.

Figure 1.3 – Overview of gene expression regulatory steps putatively affected by the circadian clock (non-
exhaustive). The RNA is transcribed by the RNA Polymerase II. Introns can be removed either during tran-
scription (co-transcriptional splicing) or after completion of transcription and addition of the Poly(A) tail (post-
transcriptional splicing). An intron can be alternatively spliced, sometimes resulting in the retention of the entire
intronic region. The mRNA is bound by various RNA Binding Proteins (RBPs) and further modified, for example
by the addition of methyl groups. Once fully mature, it is exported to the cytoplasm where it is translated by
ribosomes. The mRNA is eventually degraded: deadenylases remove the Poly(A) tail and decapping enzymes
remove the 5’cap, and the unprotected mRNA is cleaved by exonucleases.
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1.2.1 Circadian regulation of transcription

Rhythmic transcription is the starting point of rhythmic gene expression, and has been extensively

studied in the circadian context. Recruitment and loading of the transcriptional machinery on DNA at

the transcription start site result from the combinatorial effect of core clock proteins and tissue-specific

transcription factors [8]. Circadian changes of chromatin conformation also happens at a larger scale,

involving enhancers networks [64, 65, 66]. For instance, Mermet et al. found a distal regulatory element

(enhancer) making rhythmic contacts with the promoter of Cry1 in mouse liver [64]. These interactions

were abolished in Bmal1-KO mice. Knocking out 300 bp of the contacted regulatory region in mice

was sufficient to compromise the rhythmic expression of Cry1 and decrease the level of CRY1, and

shortened the locomotor activity period by 15 minutes. Thus, even a short genomic region distant from

the promoter - combined with other factors - is necessary to fine tune rhythmic behavior.

The main circadian transcription factors are BMAL1 and CLOCK. They participate in making the chro-

matin accessible with the help of numerous histone modifiers such as p300 [67] and CBP (acetylation of

H3K9 and H3K27), and MLL1 and MLL3 (histone methyltransferases). In mouse liver, more than 2000

DNA locations are targeted by BMAL1:CLOCK heterodimer, and most of them are enriched around ZT6,

as revealed by CHIP-seq experiments [68]. The accessibility of DNA has been assessed by mapping

DNAse1 Hypersensitive Sites (DHSs) [69], showing that more than 8% of 65000 detected DHSs were

diurnally cycling. Moreover, phases were matching those of chromatin opening histone modification

(H3K27ac), and high density of RNA Polymerase 2 (PolII). Koike et al. performed an extensive analysis

of the mouse liver cistrome using CHIP-seq of most of the core clock genes (BMAl1, CLOCK, NPAS2,

PERs and CRYs) and mapped histone marks [47]. They revealed thousands of cyclic DNA-binding sites

(up to 16’000 for the repressor CRY1), and drew a detailed circadian transcriptional landscape.

For many mammalian genes, transcription does not occur continuously, but rather in bursts [70].

Indeed, the gene promoter alternates from open to closed state based on several parameters [71], such

as histone marks, nucleosome occupancy, DNA looping [64], and transcription factors availability. The

rate of switching between the “on” and “off” state is called the burst frequency. During the “on” period,

many PolII may load on the gene, producing a batch of transcripts. The number of produced transcripts

per burst episode is called the burst size. This model of transcription explains why the distribution

of number of RNA molecules per cell is likely to follow a negative binomial distribution rather than a

Poisson distribution (expected for a continuous production) [72].

Bursting parameters vary greatly between genes [73], and are also tissue-specific. For instance, Glul is

bursty in the mouse intestinal epithelial cells, but not in the liver [74]. In culture cells, transcriptional

bursting was also shown to vary temporally, as the rhythmic transcription of core clock genes predom-

inantly arose from daily changes in their burst frequencies (but not the burst sizes) [75, 76]. In the

mammalian liver, it has been shown that the burst frequency but not the burst size is responsible for

the increased expression of Cry1 gene. Thus, stochastic gene expression is another layer of rhythmic

gene expression.
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1.2.2 Evidences for post-transcriptional circadian regulation

Rhythmic chromatin remodelling and transcription factors binding are not always sufficient to drive

rhythmic transcription. Indeed, only a fraction of genes with a binding site targeted by BMAL1:CLOCK

oscillate at the transcription level (26% in [77]), and their phase distribution is heterogeneous despite

the tight time-window of DNA binding. To monitor bona fide transcription, intronic reads from whole

tissue RNA-seq are often used as a suitable proxy for transcription, either coming from total RNA-seq

[47, 60], Nascent-seq [59], PRO-seq, or GRO-seq. Several studies have shown a bimodal distribution of

intron peaking at dawn and dusk (ZT9 and ZT21), driven by the coordinated transcription regulation

by BMAL1-bound E/E’ boxes and ROR bound ROR-elements [60, 69]. The peaks coincide with the two

waves of global PolII occupancy, another indicator of transcriptional status [47]. However, in the study

by Koike et al, 70% of the cycling introns were not followed by cycling exons, meaning that rhythmicity

generated at the transcription level does not always propagate to the mRNA level. This pattern is likely

due to a long mRNA half-life, which dampens the oscillation [54]. Actually, only 22% of cycling exons

were preceded by cycling introns, meaning that the majority of rhythmic mRNAs is driven by post-

transcriptional processes such as splicing, polyadenylation, export, and mRNA turnover. Another study

in the mouse liver using nascent-RNA-seq also revealed that only 28% of rhythmic mRNA oscillations

were driven by rhythmic transcription [59]. The extent of post-transcriptional regulation is still debated,

as other groups showed smaller fraction of de novo rhythm in mRNA accumulation: 86% of mRNA

rhythms were matching PolII loading profiles in [54], and 72% of rhythmic mRNA have rhythmic intron

profile in total RNA-seq [60]. In the second study, interestingly, it seems like post-transcriptionally

induced rhythmicity was more affected in Bmal1-KO than rhythmic transcription. Two other studies

applied similar mathematical models to liver RNA-seq data and estimated the proportion of genes

being post-transcriptionally regulated to be around 30% [78, 79]. 20% of the observed rhythm in mRNA

accumulation was solely due to rhythmic degradation [78]. Discrepancies may come from different

experimental designs (light-dark or dark-dark cycles, feeding paradigm, sampling density), type of data

(total or nascent RNA-seq), or statistical methods (based on cutoff, model selection). Despite these

differences, it is undeniable that post-transcriptional processes play a crucial role to tune the phase,

boost the amplitude, or generate de novo rhythms. Indeed, a simple kinetic model with a rhythmic

production and a constant degradation (mRNA half-life) describes that if transcription is the only

rhythmic step, the amplitude dampens as rhythm propagates [80]. The more stable the transcript, the

more the profile flattens and the phase is delayed. This behavior was observed in all the previously

mentioned studies. Thus, additional layers of regulation are often necessary to maintain, or amplify

these rhythms.

Therefore, mounting evidence supports the idea of an important role of the regulatory processes in

controlling circadian rhythms, both during transcription (co-transcriptional splicing, recruitment

of export machinery, SR proteins, and specific RNA-Binding proteins), and post-transcriptionally

(RNA-editing, nuclear retention and nuclear export, regulation cytoplasmic stability and translation

efficiency).
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1.2.3 Splicing

One of the first steps during the processing of eukaryotic RNA is splicing, which is the removal of

non-coding introns from the RNA precursor (pre-mRNA) to produce mature messenger RNA (mRNA).

This step is carried out by the spliceosome, a multi-mega dalton complex consisting of five small

nuclear RNAS (snRNAs: U1, U2, U4, U5 and U6) and their associated small nuclear ribonucleoproteins

(snRNPs). The spliceosome assembles in a stepwise manner on each intron by recognising consensus

sequences: 5’ splice sites (ss), branchpoint sequence and 3’ ss. It then catalyzes two transesterification

steps to excise the intron, and ligates the upstream and downstream exons [81]. Spliced introns (lariat)

are then quickly degraded. Gene architecture and splicing mechanisms differ between organisms. In

lower complexity organisms such as yeasts, genes contain on average 1 intron. On the other hand, in

mammals (notably humans), genes contain a median number of 8 introns, and the length is usually

longer, from 1kb to 100 kb [82]. For comparison, the average length of exon in humans is 170nt [83].

Short and long introns are spliced with two different strategies. Spliceosome assembles across short

introns (<250nt) by a model called “intron-definition” model, while longer introns found in mammals

are removed by “exon-definition”, where the spliceosomal assembly occurs across an exon [84].

Co- and post-transcriptional splicing

Splicing happens concurrently with PolII elongation in all studied organisms, including budding and

fission yeasts [85, 86], Drosophila [87], and mammals [88, 89, 90]. However, some of the introns are

also excised after the release of the transcript from chromatin, especially the terminal intron [91].

The extent of co- versus post-transcriptional splicing is still debated [92]. Transcription and splicing

could be coordinated processes, or coincidentally happen at the same time due to similar kinetics

[93]. Global analysis of splicing relies on purification of chromatin-bound nascent transcripts and

subsequent sequencing, with or without metabolic labeling. With conventional RNA-seq methods,

such as the Illumina platform, transcripts are fragmented to generate the library. Mapping short reads

(∼60 - 100 nt) does not allow a precise identification of isoforms. However, several metrics measuring

the amount of co-transcriptional splicing have been developed, by focussing on reads mapping on

spliced exon-exon junction versus unspliced exon-intron junction [93]. Several studies estimated

co-transcriptional splicing frequencies: 75% in budding yeast [85], 83% in Drosophila S2 cells [87],

88% in mouse cell line (MEL) [94], around 75% in human cell lines [91], and 84 % in human tissues

(adult and fetal brains and livers)[89]. Surprisingly, in the mouse liver, co-transcriptional efficiency

was only 45% [90]. An independent group quantified again the mouse liver data, and confirmed the

low co-transcriptional efficiency [93], showing that the extent of post-transcriptional splicing varies

between tissues. If RNA PolII are uniformly distributed along a gene body, more reads would map

on the 5’end than on the 3’end in nascent-seq. The same 5’-3’ profile should be found within the

individual intron if splicing is “perfectly” co-transcriptional. In human macrophages, many genes did

not display the typical 5’-3’ gradient along the gene body, and introns were present at a similar level

than exon [95]. This observation indicates that not fully-spliced transcripts remain tethered to the

chromatin for a while, and suggests post-transcriptional splicing events to be relatively frequent.

More recently, several studies used long-read sequencing in order to investigate splicing dynamics
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[96, 94, 85]. Long-reads can identify different transcript isoforms, as well as determine the splicing

order (“is the first transcribed intron spliced first?”). The distance between an exon-intron splice

junction and the PolII position gives an estimation of the time-scale at which transcription and splicing

occur. PolII position is given by the 3’end of nascent RNA, when reads are sufficiently long. Budding

yeast S.Cerevisiae is a simple model to study splicing, as most genes contain only one intron and there

is no alternative splicing. In this organism, for 50% of the genes, splicing is completed when PolII is

45 nucleotides downstream the 3’SS [85]. In a more complex, multi-introns model, such as murine

erythroleukemia cells (MEL), splicing events were completed, on average, in a spatial window of 75

to 300 nt upstream PolII position [94]. Thus, spliceosomes are physically close to the transcription

machinery, and splicing occurs in the same time-scale. An “all-or-none” behavior was also highlighted

(either all intron spliced, or none), as also shown in fission and budding yeasts [86, 97]. Moreover, the

authors of [94] showed a coordination between splicing and 3’end processing: unspliced transcripts

tend to be poorly cleaved, while completely spliced transcripts also have an efficient 3’ cleavage. The

estimation of physical proximity of RNA PolII and splicing events is discrepant between groups. Drexler

et al. used Nanopore technology to sequence nascent RNAs from human cells (K562 and BL1184) and

Drosophila S2 cells, labeled with 4sU and purified by cellular fractionation [96]. The vast majority of

human transcripts were not spliced until after PolII had moved at least 4kb downstream a 3’SS. In

Drosophila, however, splicing occurred on a much shorter scale (2kb for the majority of genes). The

different kinetics are probably related to the different splicing mechanism (“exon-definition” for long

mammalian intron, and “intron-definition” for short fly introns). Moreover, order of intron splicing

did not follow the “first-come, first-served” model, thus , introns that are transcribed first are not

necessarily spliced first.

To summarise, co-transcriptional splicing probably predominates for most introns. Transcription

and splicing occur at similar rates and are physically closed, and splicing is coupled to other co-

transcriptional processes such as 3’end cleaving and 5’ capping [98]. But it is also clear that a fraction

of introns is removed after transcription completion, and that amount varies between organisms

and tissues. Even within a gene, splicing does not affect all the introns the same way: terminal

intron and introns flanking alternatively spliced exons are removed more slowly than the constitutive

introns [87, 91], Co-transcriptional splicing allows a fast and efficient RNA processing, while post-

transcriptional could offer extra time for further regulation [99].

Circadian regulation of splicing efficiency

Splicing efficiency is sensitive to various environmental stresses, such as heat shock, osmotic change, or

genotoxic agents [100], but has not yet been described as a rhythmically regulated step genome-wide.

However, a gene-specific example of altered splicing efficiency has been shown for Cirbp mRNA, encod-

ing the cold-inducible RNA-binding protein CIRBP. In NIH3T3 fibroblasts, Cirbp mRNA shows robust

oscillations that are driven by physiologically relevant temperature variations. However, pre-mRNA

level stays constant at different temperatures. Gotic. et al. introduced the concept of splicing efficiency,

or splicing “proneness”, which is the fraction of pre-mRNAs available for splicing. A mathematical

model showed that splicing efficiency of Cirbp pre-mRNA was higher at low temperature, which results
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in a rhythmic accumulation of Cirbp and the CIRBP protein. CIRBP interacts with several clock mRNAs,

and particularly Clock. Loss of CIRBP in NIH3T3 fibroblasts resulted in depletion of cytoplasmic Clock,

but not in the nucleus, suggesting that CIRBP normally protects Clock mRNA in the cytoplasm, or

alternatively, promotes its fast export.

Alternative splicing

A single gene locus can produce different transcripts based on the choice of splicing sites, a process

called alternative splicing (AS). AS increases the variety of isoforms and proteins, but also generates

premature termination codon (PTC), which results in a fast translation-dependent degradation, namely

nonsense-mediated decay (NMD). It is a widespread phenomenon in mammals, as 80% of multi-exon

genes are affected by AS [101]. It is regulated by splicing factors that either promote or block the access

to splice sites from the spliceosomes.

Many splicing factors are robustly cycling [102, 103]. They include RNA-binding proteins (RBPs) such as

heterogeneous RNA Proteins (hnRNPs), and SR proteins that can be additionally rhythmically phospho-

rylated [104]. Rhythmic alternative splicing events happen on a genome-wide scale in many organisms

and metabolic tissues such as mouse liver [103] and pancreas (regulated by THRAP3)[105], mainly

driven by temperature variations. AS can feedback to the circadian clock system: for example, U2af26

has two rhythmic, light-inducible isoforms that interact with PER1 protein, modifying its stability and

impacting the entire clock system in mice [104]. It was later shown that temperature variation was

driving alternative splicing of U2af26 and other mRNAs, thanks to rhythmic phosphorylation of some

SR proteins [106].

Splicing efficiency and alternative splicing have thus been shown in specific cases to be a rhythmic

regulatory step, mainly driven by temperature variations.

Intron retention

Fully-transcribed, polyadenylated RNA retaining an intron are called RI-RNA. Retained introns are

defined by weak splice sites, are often flanked by alternatively splicing exons, are shorter than the

average intron, and have a high G/C content [107, 108]. They are particularly prevalent in neurons

and immune cells and affect up to 80% of protein coding genes in all tissues [109]. The presence of an

unspliced intron has different consequences on the transcript’s fate [110]. Some RI-RNA are exported

to the cytoplasm. Presence of the intron can influence translational initiation efficiency and mRNA

stability, but also introduces a PTC that leads to NMD degradation [110]. But the role of intron retention

is more often associated with the nucleus. Indeed, RI-RNA are usually enriched in the nucleus, and

some introns are exclusively found there, in which case they are referred to as “detained intron” [108].

In the nucleus, RI-RNA are either degraded by the nuclear exosome, or serve as a pool of precursor

RNAs, awaiting for an external signal to trigger their maturation, export, and translation. For instance,

half of Clk1/4 transcripts retain introns 3 and 4 [111], and are abundant in the nucleus. Heat-shock

events or inhibition of Clk1/4 kinase activity by a drug both triggered the maturation of the unspliced

transcripts by dephosphorylated SR proteins. The subsequent elevated level of CLl1/4 kinases in turn
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phosphorylated back SR proteins and downregulated the splicing event. This is an elegant model

for homeostatic auto-regulation based on a reservoir of immature RNA transcripts in the nucleus.

Another example is in mouse neural cells, where a pool of polyadenylated RI-RNA stably accumulates

in the nucleus. Upon neural activity, these RI-RNA are spliced, exported, and actively transcribed [112].

Therefore, Intron Retention is a post-transcriptional mechanism for fine-tuning gene expression, for

example by retaining mature, polyadenylated mRNAs in the nucleus [107].

1.2.4 Nuclear export

A newly synthesised pre-mRNA is never “naked”, but is always associated with a spectrum of ribonuclear

proteins, which mediate and coordinate different processing steps [113]. They ensure that only correctly

processed mRNAs transit through nuclear pore and reache the cytoplasmic translation machinery,

avoiding the translation of spurious transcripts with potential harmful side-effects [114]. The general

mRNA export pathway requires the recruitment of the TRansport-EXport TREX protein complex, mainly

composed of the THO subcomplex (THOC1/2/3/6/7), Alyref, UAP56, and plethora of other proteins,

during transcription elongation [115]. The subunits of the complex are recruited by different elements,

such as the C-terminal Domain of the RNA PolII and by the spliceosome machinery, thus coupling

the process of transcription, splicing, and export. The complex then facilitates the loading of other

factors and adaptors proteins such as SR proteins onto the mRNA and the packaging of the functional

mRNA–protein complexes (mRNPs) for nuclear export. mRNA is then handed over to the transport

receptors NXF1:NXT1, which physically interacts with the nuclear pore and promotes the shuttling of

the transcript. The translocation through the nuclear pore itself is fast, occurring in about 0.5 second

[116].

Variation of export rates depend on several factors. For instance, 5’ capping, splicing and polyadeny-

lation enhance the recruitment of the TREX complex and therefore, promote nuclear export [114].

However, splicing is not a necessary step for efficient export, as intron-less RNAs derived from cDNA

are also well exported by the TREX pathway [117]. Interactions with RNA-Binding proteins, which

recognise specific sequences (motifs), secondary structure, or RNA modifications, also dictate the fate

of the transcripts. In search of cis-acting motifs explaining the long retention of some specific RNAs,

two parallel high-throughput studies have identified sequences enriched for cytosins, which promote

nuclear localisation of the transcripts [118, 119]. Specifically, sequences enriched in Alu repeats drive

the nuclear localisation through binding of the hnRNPK (Heterogeneous nuclear ribonucleoproteins)

on C-rich regions. Interestingly, hnRNPK has been shown to stabilise the circadian gene Per3 [120].

Several other RBPs have been shown to interact with the circadian clock molecular machinery. For

example, CIRBP interacts with the circadian clock machinery, potentially regulating the export of Clock:

depletion of CIRBP led to a reduction of rhythms in cultured mouse fibroblasts [121], and Clock mRNAs

were enriched in the nucleus, either because the lack of CIRBP resulted in an inefficient export, or

because of a fast degradation in the cytoplasm. Another RBP, NONO, is a core component of nuclear

paraspeckles (see 1.2.5). It binds hundreds of rhythmically expressed transcripts in mouse liver tissue

[122]. Loss of NONO protein results in loss of rhythmicity in some target genes, but also in both

phase advance and phase delay of the peak time of the remaining rhythmic genes in the cytoplasm.

13



Chapter 1. Introduction

This suggests that NONO can both slow down or fasten processing steps (including export). NONO

additionally modulates circadian rhythm expression through its binding to PER1 protein. Knockdown

of this protein in mouse fibroblasts and Drosophila cells caused attenuation of rhythms [123].

Importantly, the mechanisms regulating nuclear export differ depending on whether the RNA is coding,

in which case the ultimate function is to be translated by ribosomes in the cytoplasm, or non-coding,

and have therefore a functional role in specific location (ribosomal RNA, tRNA, small nuclear RNA,

small nucleolar RNA, long non-coding RNA). Recently, a lot of effort has been put into finding cis-

and trans- acting elements driving the subcellular localisation of long non-coding RNA, particularly

through regulating their nuclear retention, or conversly, their export [114, 124, 125]. Long-non coding

RNA (lncRNA) are transcripts > 200nt that are often capped with 7-methyl guanosine (m7G) at their

5’end and polyadenylated at their 3’end. Because they do not produce any protein, their localisation

is tightly linked to their functions [124]. For a long time, lncRNA were thought to be enriched in the

nucleus, where they regulate chromatin structure (FIRRE), gene expression (XIST for X chromosome

inactivation), or act as scaffold of nuclear condensates (MALAT1, NEAT1). However, many lncRNA are

also exported to the cytoplasm, either through the NFX1 pathway for single- or few-exon transcripts

with long exons or high A/U content, or through the TREX complex for G/C-rich transcripts [126].

Studying the localisation of lncRNA not only helps to understand their biological functions, but can also

reveal specific motifs or features that could also be valid to regulate protein coding mRNAs localisation

[126].

mRNA export is therefore one of the many important layers in the regulation of mammalian gene

expression pathway, most likely coupled with other processes such as splicing and polyadenylation

[113]. An additional role of the nuclear retention time is the buffering of noise arising from stochastic

bursts of transcription [127]. The discontinuous synthesis of RNA generates large fluctuations of

transcripts abundance, but such noise can be attenuated in the cytoplasm by imposing a (constant)

time delay at the nuclear pore [128].

1.2.5 Nuclear speckles and paraspeckles are hotspots of RNA processing factors

Nuclear speckles

Nuclear speckles (NS) are phase-separated membraneless organelles found in the nucleus, in the

interchromatin space. These compartments are condensates of RNA-Binding Proteins, built around

the scaffold long-non-coding RNAs Malat1. A striking amount of poly(A)+ transcripts transit through

NS, suggesting that they are a hotspots for mRNA processing [129].

Nuclear speckles are sometimes called “splicing speckles” due to the high concentration of splicing

factors (snRNPS), SR and SR-like proteins such as SON, SRRM1, SRRM2, SRSF1 and SC35 among the

hundred of proteins found in this compartment with distinct roles (transcription regulators, 3’ end

processing, mRNA modification, and mRNA packing and export) [130]. NS act as storage/ modification

sites of splicing factors, but also as active splicing sites containing active spliceosomes [129]. In HeLA

cells, 20% of active spliceosomes are not in the chromatin fraction (co-transcriptional splicing), but
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rather found in NS [131]. Moreover, the long-non coding RNA Malat1 has been shown to indirectly

interact with many nascent transcripts and to localise to chromatin near active transcription sites,

further suggesting its role in pre-mRNA processing [132]. Liao et al. proposed an interesting model

called “interfacial splicing model”: exonic sequences are sequestered “inside” the NS by SR proteins,

while intronic sequences are in the nucleoplasm, bound by hnRNPs [133]. The partitioning of the

transcript exposes the exon-intron splice site at the interface of the NS, where spliceosomes are

preferentially located.

In addition to splicing factors, NS are enriched in export factors like components of the TREX complex

and proteins of the exon-junction complex (EJC) that assemble on exon-exon junctions after splicing.

TREX and EJC are recruited on the pre-mRNA during splicing [134]. Interestingly, even intronless

transcripts transit through NS to gain export-competence by associating with the TREX complex,

suggesting that even if splicing and export are coupled, they can also act independently [135]. Another

role of NS is to enhance transcriptional activity. Indeed, several studies using smFISH showed that

highly transcribed genes are in close proximity to nuclear speckles, and transcriptional bursting

frequency is increased [136]. Highly expressed genes that tend to be close to NSs have a higher splicing

efficiency, probably due to the higher concentration and availability of splicing factors [137]. Thus,

nuclear speckles act as a hub of RNA processing factors, potentially coupling efficient transcription,

splicing, and packing RNA into export-ready mRNA-protein complexes.

Nuclear paraspeckles

Like nuclear speckles, nuclear paraspeckles (NPS) are membrane-less, phase-separated organelles

found in the interchromatin region, but distinct from nuclear speckles. They were discovered more

recently than nuclear speckles (nuclear speckles: 2002 [138], nuclear paraspeckles: 1910 by Cajal y

Ramos). They are present in all mammalian cells, except embryonic cells. They assemble around a

scaffold long non-coding RNA Neat1. More than 40 proteins have been characterized in the complex.

NONO, SFPQ, PSPC1, RBM14, HNRNPK, FUS and SWI/SNF are essential for the stable assembly of

NPS [139].

Nuclear paraspeckles play multiple roles in gene expression regulation, particularly in retaining certain

RNA species. For example, mRNAs containing inverted repeats of Alu sequences (IRAlus) are likely

to form double-stranded RNA regions and are targeted to Adenosine-to-Inosine editing by the ADAR

protein [140]. These hyperedited mRNAs can be bound by nuclear paraspeckles components, and thus

be retained in the nucleus [141]. One well-identified example is the mouse Cat2 mRNA, important for

the cellular stress response [142]. One of the isoforms, CTN-RNA, contains inverted repeat elements

in its 3’UTR. CTN-RNA are retained in nuclear paraspeckles, but upon cellular stress, the retention

element in the 3’UTR is cleaved off and the shorter transcripts are released into the cytoplasm where

it is translated. In rat pituitary cell line (GH4C1), components of the nuclear paraspeckles display

rhythmic accumulation (NONO, SFPQ, PSPC1, RBM14, and Neat1), leading to rhythmic variations in

paraspeckle number [143]. By fusing an IRAlu element in the 3’UTR of an EGFP reporter, Torres et.al

showed that the reporter mRNA was retained in the nucleus and released in the cytoplasm in a circadian

manner, ultimately producing cycling EGFP [143]. The disruption of paraspeckles by knocking down
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Neat1 abolished rhythmic EGFP production. Therefore, nuclear retention by paraspeckles appears to

be a post-transcriptional mechanism involved in circadian gene expression.

Interestingly, in mouse liver cells, the mRNA and protein level of NONO is constant throughout the

day. However, the subnuclear localisation of NONO changes in response to glucose: during feeding

time, or following an intraperitoneal injection of glucose, NONO localises in nuclear paraspeckles

[122]. NONO binds around a thousand mRNAs in the liver, and about one third exhibits circadian

accumulation. The majority of NONO binding sites were within introns, suggesting that NONO plays a

role in processing pre-mRNAs. In a mouse model lacking NONO, a hundred of the cycling NONO targets

become arrhythmic. The remaining rhythmic mature transcripts, mainly involved in glucose and lipid

metabolism, were on average delayed by 2 hours, while their transcription phase was unaffected.

This delay in mRNA accumulation in absence of NONO suggests that in normal conditions, NONO

post-transcriptionally enhances RNA processing efficiency, generating robust in-phase oscillations.

Nuclear paraspeckles are usually thought to prevent RNA export, therefore, this novel proposed role of

NONO might be independent from its association with paraspeckles.

1.2.6 N 6-methyladenosine (m6A) RNA methylation

mRNAs undergo various modification throughout the maturation process. The most common mRNA

modification is N6-methyladenosine (m6A) methylation [144]. m6A are deposited by "writers", a

complex including the core methyltransferases METTL3, METTL14, and several auxiliary proteins such

as WTAP, VIRMA, and RBM15. m6A are preferentially deposited within long exons, near stop codons, and

at the 3’UTR, but also in intronic regions [145]. The modification is reversible, and m6A can be removed

by demethylases (also called “erasers”) ALKBH5 and FTO. The marks are then decoded by “readers”

proteins, linking mRNA to the correct downstream processing pathway. Readers include heterogeneous

nuclear ribonucleoproteins HNRNPA2B1, HNRNPC, and YTHDC1 in the nucleus, and YTHDF1/2/3

in the cytoplasm [145]. m6A methylation regulates gene expression by influencing a wide range of

processing steps. The nuclear readers HNRNPA2B1 and YTHDC1 mediate alternative splicing [146]. The

export is slowed down when METTL3 is depleted [147], and enhanced when the demethylase ALKBH5

is downregulated [148]. In the cytoplasm, YTHDF1 increases translational efficiency by recruiting

translation initiation factors[149], while YTHDF2 promotes mRNA deadenylation and degradation by

recruiting the deadenylase complex CCR4-NOT [150]. Additionally, it recruits RNaseP/MRP complex to

promote endoribonucleolcytic cleavage [151].

The global coordination of methylation by writers, erasers, and readers could be a mechanism to

sort transcripts into a “fast track” for processing, translation and decay [144]. m6A methylation plays

an interesting role in setting the correct circadian period length [147]. Global inhibition of RNA

methylation by DAA, an inhibitor of methylation, lengthened the circadian periods of cultured cells and

locomotor activity of mice by 3h and 1h. Moreover, the specific knockdown of METTL3 in U2OS and

MEFS cells caused a prolonged nuclear retention of two clock genes Per2 and Bmal1, which resulted in

a lengthened circadian period. Thus, suppression of METTL3 was sufficient to slow down the clock by

delaying RNA processing (potentially the export step).
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1.2.7 Modulation of cytoplasmic mRNA stability

In the cytoplasm, mature mRNAs interact with initiation factors that bind to the 5’cap and to the 5’UTR

to induce the formation of the translation initiation complex, which in turn facilitates the recruitment

and the assembly of the 40S and the 60S ribosomal subunit, and eventually starts the elongation

of an amino acid chain (protein synthesis). The mRNA transcript is protected against degradation

by the presence of the 5’ 7-methylguanosine cap and of the 3’end poly(A) tail that interact with the

cytoplasmic proteins eIF4E and with the poly(A)-binding protein (PABP) [152]. Degradation is initiated

if the transcript is internally cleaved by endonucleases, but for the majority of genes, degradation occurs

when one of the two protective features is missing, either through decapping, or through shortening of

the poly(A) tail by deadenylases. One deadenylase, Nocturnin (Ccnrl4), is rhythmically transcribed in

various mouse tissues [153]. Hundreds of genes in the mouse liver were found to show rhythmicity in

poly(A) tail length (defined by the ratio of "long" versus "short" tail) [154], although the variation in

length was not directly related to the deadenylase activity of NOCTURNIN [153]. Moreover, the poly(A)

tail lengths correlate well with protein levels encoded by those mRNAs, further suggesting the role of

the poly(A) tail, and particularly the deadenylation rate, in the regulation cytoplasmic mRNA stability

[155].

Interaction with RBPs is another mechanism influencing rhythmic RNA degradation. For example,

the three Periods genes in mice are targeted by different RBPs: Per3 is stabilised by the heterogeneous

ribonucleoprotein hnRNP K and destabilised by hnRNP D [120]. Per2 is destabilised by PTB (hnRNP 1)

[156]. Additionally, hnRNP proteins can also increase the translational efficiency, as shown for Per1

with its interaction with hnRNP Q. Per1 translational efficiency is also regulated by another RBP called

LARK [157]. Regulation of the stability of Per gene has been first demonstrated in Drosophila [158],

with Per transcript being more stable during the rising phase, and destabilised during the descending

phase. Mathematical models showed that theoretically, varying the degradation rate allows fine-tuning

the phases and amplifying amplitudes [54, 78, 79]. Two studies estimated that ∼30% of the mouse liver

rhythmic transcriptome is subject to rhythmic degradation [78, 79].

Collectively, all the RNA processing steps including transcription (chromatin conformation, tran-

scription factors recruitment, histone modification, RNA Polymerase recruitment), co- and post-

transcriptional modifications occurring in the nucleus (splicing, methylation, loading of RBPs, re-

tention in nuclear and paranuclear speckles, export through the nuclear pores) and regulation of

cytoplasmic mRNA stability, shape the circadian transcriptome. This complex regulatory network

ensures a tight temporal coordination of biological functions.
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1.3 Liver zonation

Most hepatic functions are not only temporarily partionned, but also spatially: specific subpopulations

of hepatocytes carry out different biochemical functions based on their location within the liver, a

phenomenon called liver zonation.

1.3.1 Structural organisation of the murine liver

Despite its homogeneous aspect, the liver is highly structured on the cellular scale. It is mainly made

of hepatocytes (60% of the liver cell population, and 80% of the mass), and non-parenchymal cells:

endothelial cells, cholangiocytes (lining bile ducts), Kupffer cells (resident macrophages) and Stellate

cells (storage of fat and vitamin A). Hepatocytes are arranged in lobules, which are anatomical and

functional subunits containing morphologically indistinguishable hepatocytes arranged in 10 to 15

concentric layers [159], often represented with a hexagonal shape, although it is not always the case,

especially in rodents. Blood from two different sources enters into the lobules from the periphery

(corner of the hexagon): 75% of the blood supply comes through the portal vein (PV), originating from

the gastro-intestinal tract, and transports macromolecules (nutrients, toxins) absorbed in the intestines.

The remaining 25% of the blood supply enters the lobule from hepatic arterioles, and provides oxygen

to liver cells [159]. Once in the lobule, blood travels through small capillaries called sinusoids and

drains to the central vein (CV). Bile flows in the opposite direction in bile canaliculi, from the center

toward the periphery of the lobule. Bile is then excreted and stored in the gallbladder, awaiting for fat-

containing bolus to enter the intestines. Historically, the lobules were divided in three discrete zones,

with associated genes and proteins: the periportal zone (PP) around the portal node (portal veins, bile

duct and hepatic arterioles), the pericentral zone (PC, around the central vein), and the midlobular

zone (Mid), comprised between the PP and PC zones. Recently, the group of Itzkovitz refined the

"porto-central" axis and subdivided the lobule in 9 continuous layers[160]. The concentration of

oxygen, morphogens (particularly Wnt ligands [161]), nutrients, hormones (insulin, glucagon, thyroid

hormones) and other biomolecules change as the blood runs along the porto-central axis. This spatial

polarisation of the microenvironment dictates the functional roles of hepatocytes and their gene

expression profile based on their position. Such compartmentalisation of metabolic pathways is

thought to allow two (or more) opposite pathways using the same substrate to run in parallel, and

avoid competition for the same substrates [162], much like the time-gating by the circadian clock.

Furthermore, metabolic cascades can be spatially distributed, such that an intermediate metabolite

can be transferred from one cell to another, similar to a “production line” [163].
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Figure 1.4 – Structure of the liver lobules and zonated liver functions. A: Classic hexagonal representation of a
liver lobule with a central vein (CV) in the middle, et portal triad at the periphery. Portal triad contains a portal
vein (PV), hepatic arteriole, and bile duct. Blood flows from the portal vein and hepatic arterioles toward the
central vein through sinusoids, lined by fenestrated endothelial cells. The liver also contains Kupffer cells (resident
macrophages) and Stellate cells in the small space between the sinusoid and the cord of hepatocytes, named Space
of Disse (not represented). The cord of hepatocytes is divided in three zones: Pericentral zone (PC), Midlobular
zone (Mid) and Periportal zone (PP). Gradients of oxygen, Ras, and Wnt determine the zonation of metabolic
functions listed in the blue and red box. B: histological staining of mouse liver sections showing the zonated
patterns of: E-CADHERIN and N-CADHERIN (immunofluorescence), Pck1 (white dots, smRNA-FISH), and GLUL
(immunofluorescence combined with membrane staining with Phalloidin). PV = portal vein, CV = central vein.

1.3.2 Zonated hepatic functions

Early studies of zonation used immunohistochemistry, immunofluorescence, and ISH techniques.

Later, perfusion by digitonin followed by collagenase allowed the collection of a large amount of cells:

portal, respectively retrograde perfusion of digitonin damages periportal, respectively pericentral cells.

The undamaged cells are then collected by collagenase infusion. The first genome-wide study was

performed by Brauening and colleagues, who quantified gene expression of periportal and pericentral

hepatocytes with microarray, confirming the zonation of many previously known metabolic functions.

In 2017, the group of Itzkovitz performed an elegant genome-wide reconstruction of spatial gene

expression profiles. They combined two powerful methods - single-molecule RNA Fluorescent in situ

hybridisation (smRNA-FISH) and single-cell RNA-sequencing (scRNA-seq) of dissociated hepatocytes –
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to infer the position of each cell within the lobule. The transcriptome of each hepatocyte was compared

to the spatial patterns of 6 zonated landmark genes determined by smRNA-FISH. Once the hepatocytes’

coordinates were recovered, the spatial profiles of all the genes expressed in the liver were reconstructed.

This study revealed an unexpected breadth of liver spatial heterogeneity, with ∼ 50% of genes having a

spatially non-uniform pattern. Among them, functions related to carbohydrate catabolic and anabolic

processes, ammonia removal, xenobiotics detoxification, bile acid and cholesterol synthesis, fatty

acid metabolism, Wnt and Ras targets, and hypoxia-induced genes were zonated, and will be briefly

described later.

Because mRNA levels do not necessarily match protein levels (that ultimately dictate a cell function),

the same group investigated again zonation profiles, but this time, at the level of proteins [163]. They

sorted single hepatocytes by FACS based on known zonated membrane markers (CDH1, CD73) and

reconstructed a proteomics zonation map. They demonstrated that 50% of the 3000 detected proteins

were zonated, with a high correlation with their matching mRNA profiles. Interestingly, a key hepatic

transcription factor, HNF4α, is uniformly expressed within a lobule but has a zonated protein profile

(Periportal). Moreover, some miRNA such as miR-122-5p and miR-30a-5p were zonated with an inverted

pattern compared to their target genes, suggesting that zonation is also regulated post-transcriptionally.

Spatial patterns can be “steep” and restricted to a few layers of hepatocytes, as seen with the expression

of Glutamine Synthetase (Glul, Fig.1.4), or have smoother gradient-like patterns. Moreover, some

genes such as Hamp are enriched in the midlobular zone [160]. Patterns are more or less dynamic in

response to changes of nutrients, drugs, hormones, etc [164]. Metabolism of glucose was one of the first

functions to be studied in the context of liver zonation, by several seminal works by Jungermann and

coworkers. For instance, they showed that gluconeogenesis - driven by the rate-limiting enzyme Pck1-

is carried out by periportal hepatocytes [165](Fig.1.4). Calculation of the glucose / glucose-6-phosphate

flux in the periportal and pericentral zones in rat liver showed that glycolysis, the antagonist pathway

of gluconeogenesis, mainly occurs in pericentral hepatocytes. This polarisation of gluconeogenesis

/ glycolysis was further confirmed by gene expression studies by Brauening et al. in 2006. However,

glucokinase mRNA is not zonated, suggesting that regulation of its activity is post-translational [166].

Lipid metabolism is another zonated hepatic activity. The observation that steatosis (the accumula-

tion of lipid droplets in hepatocytes that eventually provoke cirrhosis) primarily occurs around the

central vein suggested the idea that de novo lipogenesis occurs more in the pericentral zone, while

the consumption of lipid (fatty acid degradation), happens more in the periportal area. Expression

Plpp2, and Apoc2, key enzymes in fatty acid β-oxidation, are mainly in the periportal zone [166]. The

activity of CPT1, a rate-limiting enzyme involved in the translocation of fatty acid from the cytosol

to the mitochondria, is also higher in the periportal zone [167], even if the gene expression profile is

homogeneous within the lobule [168]. On the other hand, the activity of acetyl-CoA carboxylase (ACC),

ATP citrate lyase (ACLY), and Fatty Acid Synthase (FASN), involved in lipogenesis, were higher in the

pericentral zone [169]. Surprisingly, the mRNA expression levels of these three genes is higher in the

periportal area[168]. Therefore, there are contradicting studies between the mRNA expression and

enzymatic activity, suggesting that lipid metabolism may not be as clearly zonated as other hepatic

functions, and depends on various parameters such as sex and fasted/fed state [170].
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One main function of hepatocytes is the production of bile acids, which helps the absorption of fat in

the intestines. In the classic pathway, cholesterol taken from the blood is converted into bile acids by a

cascade of enzymatic steps. The rate-limiting enzyme, CYP7A1, is expressed pericentrally. The next

enzyme in the chain, CYP8B1, is depleted in the first pericentral layer and peaks in the second layer of

hepatocytes. This suggests that the intermediate metabolites produced by CYP7A1 may be transferred

to the next layers of cells. CYP27A1 and BAAT, enzymes acting in later steps of the cascade, are also

depleted in the most pericentral layer. This is a nice example of the “production line” pattern, where

spatial order matches the cascade sequence [160].

The liver is in charge of whole-body drug clearance. Many of the enzymes involved in xenobiotics

metabolism (members of the Cytochrome P450 family) are located around the central vein (CYP2E1,

CYP1A2, CYP2B, etc.), except CYP2F2 that is periportal [171]. Other key enzymes involved in the early

steps of detoxification were found pericentrally: Flavin-containing monooxygenases (Fmo1, 2, 5),

the rate-limiting enzyme of heme biosynthesis Alas1, and the sensors of xenobiotics Ahr and Nr1i3

(CAR) [168]. The spatial patterns of Phase II enzymes are more complexe: glucuronidation happens

in the pericentral zone, while glutathione conjugation is periportal [171]. The zonation of xenobiotic

metabolism can explain heterogeneous patterns found in drug-induced liver pathology. For instance,

the intermediate molecules produced during acetaminophen degradation by Cyp450 are cytotoxic.

Overdose of acetaminophen thus damage exclusively hepatocytes expressing CYP2E1 and CYP1A2

[172], resulting in tissue necrosis around the central vein.

A last zonated hepatic activity is the urea cycle: ammonia and glutamine are taken up and metabolised

to urea by periportal hepatocytes (Cps1, Arg1). This process releases glutamate in the bloodstream.

The excess ammonia that was not metabolised by periportal hepatocytes reaches the central zone.

There, NH4+ is further transformed to glutamine by glutamine synthetase (GLUL), which additionally

needs glutamate for this process. The glutamate-glutamine homeostasis is an example of "spatial

recycling", where a metabolites produced in one zone (glutamate) is recycled in another zone [173]. Of

note, Glutamine Synthetase is exclusively expressed around the central vein (1-3 layers of hepatocytes)

and has been considered as a “stable” zonation marker (Fig.1.4).

1.3.3 Factors regulating hepatic zonation

The blood flowing in the sinusoids is a mixture of blood from the portal vein and the hepatic arteriole.

Its composition gradually changes, as oxygen is consumed, metabolites are produced or eliminated and

substrates are modified. Partial oxygen pressure is high in periportal blood, and drops by 50% in pericen-

tral blood [174]. Thus, it is not surprising that periportal hepatocytes contain more oxygen-demanding

mitochondria. Protein translation and subsequent secretion is another high ATP-demanding task.

Thus, Albumin, complement system proteins, and blood clotting factors are preferentially produced by

periportal hepatocytes, although these tasks are not strictly restricted (Alb mRNA is highly expressed

in every layer). Cells adapt their transcriptional program to oxygen availability via hypoxia-inducible

factor (HIF). The three isoforms of HIF are preferentially expressed in the pericentral area, where

oxygen pressure is lower.
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One of the most well-known master regulator of the zonation pattern is the Wnt/ β-catenin signalling

pathway [161, 175]. In absence of a ligand, β-catenin is bound to the cell membrane and interacts

with cadherins (of note, E-cadherin is exclusively periportal while N-cadherin is pericentral, Fig.1.4).

β-catenin resides in a “destruction” multiprotein complex together with GSK3, APC, CK1, Axin, and

DVL. When a Wnt ligand binds to Frizzled and to its co-receptors, such as LRP5 and LRP6, the Axin

complex is dismantled, β-catenin is stabilised, translocates into the nucleus. There, it interacts with

the DNA-bound TCF and LEF on Wnt Response Element (WRE), activating the expression of target

genes. When β-catenin is absent, TCF4 preferentially binds HNF4α consensus sites in the opposite

periportal region [176], positively regulating some genes involved in lipid and glucose metabolism.

Studies in liver tumors and other transgenic mice first suggested the idea that Wnt/ β-catenin signalling

pathway was associated with the pericentral zone. In liver-specific APC-KO mice, where β-catenin

is not repressed anymore, investigators observed a “pericentralisation” of the lobule, resulting in a

reduced expression of Pck1 and urea cycle enzymes, and the expansion of the Glutamine Synthetase

positive area [161]. On the other hand, transgenic mice with liver-specific loss of β-catenin resulted in

the absence of the pericentral Cyp1a2 and Cyp2e1 [177]. Finally, in the genome-wide study by the group

of Itzkovitz [160], about 30% of the zonated genes were known Wnt target genes. Positively regulated

genes were more pericentral, whereas negatively regulated genes were periportal. Liver endothelial

cells lining the central vein secrete some of the Wnt ligands (WNT2, WNT9B [178, 179]), creating

short-range gradients. β-catenin acts in concert with Hedgehog signalling pathway (Hh). Hh signalling

components have the opposite spatial pattern (periportal enrichment). The mutual repression of the

two pathways could shape the homeostatic liver functions [180]. A mathematical model explained

how a shift of balance of one of them, as it is the case in mutant mice, lead to a pericentralisation or

periportalisation of the lobule [181].

Altogether, these studies show that zonation of liver function is orchestrated by the tight balance of

nutrients, oxygen and hormones availability (e.g. glucagon [182]), and interacting signalling pathways,

including local gradients of Wnt ligands expressed by endothelial cells and Hedgehog. Additional

pathways modulate gene expression, such as Ras / MAPK/ ERK, are thought to be periportal [166].

1.3.4 Zonation of polyploidy

Hepatocytes have a distinguishable morphological feature: polyploidy, which is an increase of the

number of chromosome sets per cell, and of the number of nuclei per cell. At birth, most hepatocytes are

mono-nucleated with a standard two sets of genome copies. After weaning, bi-nucleated hepatocytes

are generated following cytokinesis failure [183], probably in response to insulin signalling. Ploidy

increases following mitotic failure, producing nuclei with 2, 4, 8, up to 16 copies of the genome. The

majority of the hepatocytes are mononucleated with 2n or 4n, or binucleated with 2x2n or 2x4n. These

proportions vary with age, stress, or surgery [184]. A study based on 3D reconstruction of mouse liver

showed an enrichment of 2n cells around the portal vein, and a depletion of 2x2n cells in the midlobular

zone [185]. Another study confirmed some of these zonation profiles by establishing a spatial map of

polyploidy in the liver of mice aged between 2 weeks and 12 months [186]. Polyploidisation progresses

with age, but the speed varies depending on the zone. Finally, the ploidy might be diurnally orchestrated
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[62]: by quantifying tissue sections, the authors observed that the percentage of 2x2n hepatocytes was

maximal around ZT6, while the proportion of 1x4n cells was antiphasic. Cells with other combinations

of nuclei and ploidy were not rhythmic. This observation suggests a possible link between ploidy, the

liver zonation and circadian rhythm.

1.3.5 Dynamic regulation of the liver zonation

Many of the key zonated hepatic functions are also temporarily regulated, orchestrated by the interplay

of the circadian clock, feeding cycles, and systemic signals. For instance, the rate-limiting enzyme of

gluconeogenesis Pck1, a well-characterized portally expressed gene is maximally transcribed toward

the end of the fasting time (ZT10) for de novo glucose synthesis. However, the spatial zonation profiles

have always been analysed as a static phenomenon. Few groups studied the dynamical aspect of the

zonation, but always in the frame of nutrient changes (especially for carbohydrate metabolism [162])

or in relation with ageing [186]. To bridge the gap between the fields of the circadian rhythms and

the liver zonation, Naef laboratory at EPFL and the Itzkovitz laboratory at the Weizmann Institute

of Science published a collaborative work [168]. Single-cell RNA-seq of hepatocytes was performed

at four different time-points of the day (early morning, mid-day, early night and mid-night), as in

[187]. Spatial profiles were reconstructed based on 27 zonated, non-rhythmic landmark genes from

the previously published dataset [187]. A mixed-effect model describing both spatial (position along

the 8 layers) and temporal (phase and amplitude) features were fitted to the reconstructed profiles.

In total, ∼5000 genes were classified based on their probability of being zonated (Z), rhythmic (R),

independent rhythmic-zonated (Z + R; rhythmic parameters are the same in all layers) or interacting (Z

× R; rhythmic parameters depend on the layer). 30% of the genes expressed in the liver are significantly

zonated, 20% are rhythmic, and 7% are both temporally and spatially controlled. Dually regulated genes

include the well known key hepatic functions such as carbohydrate, lipid, and amino acid metabolism,

but also previously unknown zonated functions such as protein synthesis, proteasomal activity and

mitophagy. This study revealed the broad richness of the spatio-temporal gene expression dynamics in

the mammalian liver.
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2 Objectives of the thesis and presented

work

The liver is a central hub for whole-body metabolic homeostasis. It is tightly regulated by the endoge-

nous circadian clock and the feeding cycles to perform the right functions at the right time of the

day [188]. As one of the organs with the highest number of cycling genes, the mammalian liver has

been extensively studied by chronobiologists [28]. Several high-throughput time-course studies have

investigated the circadian rhythms of the hepatic cistrome, transcriptome, proteome, acetylome, and

lipidome, revealing the richness and the complexity of temporal coordination of hepatic functions

and the extensive crosstalk between the circadian clock and metabolism (to cite only few studies:

[47, 59, 60, 45, 62, 46]).

In this thesis, I explore different aspects of temporal gene expression regulation in the mouse liver, with

an emphasis on in situ localisation of RNA transcripts.

Spatio-temporal gene expression profile in the mammalian liver

First, I investigated how RNA transcripts are differentially expressed at the tissue scale. In the liver, cells

are arranged in a structural unit called a lobule, in which blood flow generates gradients of oxygen and

morphogens. This polarised microenvironment leads to a differential gene expression and dictates

the physiological status of hepatocytes, a phenomenon called liver zonation. Many zonated genes are

additionally modulated by the circadian clock or the feeding/fasting cycle, showing robust rhythmic

patterns at the tissue level. Until now, circadian gene expression studies have been systematically

performed at the bulk level, while single-cell spatial studies have neglected the temporal regulation

of the liver. Thus, how rhythms are implemented in the different zones within the lobule and at the

single-cell level remained unknown. Moreover, the spatial pattern of core clock genes, which regulate

the rhythmic expression of many zonated genes, have never been described. In this project, I quantified

spatial gene expression profiles using single-molecule RNA Fluorescent in situ hybridisation (smFISH).

I developed an image analysis pipeline to detect, quantify, localise, and model smFISH signals in liver

tissues. This work became part of the collaborative project between the Naef group and the Itzkovitz

group from the Weizmann Institute of Science (Rehovot, Israel). My work contributed to the paper

“Space-time logic of liver gene expression at sub-lobular scale”, published in Nature Metabolism by

the following authors (co-first authors in bold): C. Droin, J. El Kholtei, K. Bahar Halpern, C.Hurni, M.
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Rozenberg, S. Muvkadi, S. Itzkovitz, F. Naef [168]. I validated spatio-temporal gene expression profiles

in liver tissue by smFISH. Particularly, I showed that the circadian clock is largely non-zonated, and is

therefore robust to heterogeneous niche signals in the different lobular zones.

Comprehensive analysis of the circadian hepatic transcriptome at subcellular scale

Second, I explored the localisation of RNA transcripts at the scale of liver cells, comprising a majority of

hepatocytes. The eukaryotic RNA is subject to extensive regulation from transcription to degradation.

The interplay of the kinetic parameters governing each step between these two endpoints influences

the transcript abundance in different subcellular compartments. Moreover, each of these steps provides

an opportunity to regulate gene expression in a circadian manner, in order to tune the phase, modulate

the amplitude, or generate de novo post-transcriptional rhythms. In this work, I investigated the

differential accumulation of nuclear and cytoplasmic transcripts by combining time course RNA-seq

experiments of fractionated mouse liver cells, mathematical modelling, and smFISH. I investigated

how the combination of rates of different RNA processing steps, specifically the nuclear export rate,

cytoplasmic degradation rate, and the extent of co- and post-transcriptional splicing, can shape the

subcellular RNA distribution at different times of the day.

First, I explored the relationship between two RNA populations (nuclear pre-mRNA and nuclear mRNA,

or nuclear mRNA and cytoplasmic mRNA) without the temporal dimension. I showed that while

the majority of protein coding transcripts are more abundant in the cytoplasmic fraction relative to

the nuclear fraction, those that are nuclear-enriched often code for nuclear proteins, suggesting a

concordance of RNA and protein localisation. Correlation with transcript length showed that short

protein coding mRNAs are more abundant in the cytoplasm, while longer transcripts are preferentially

found in the nucleus. Additionally, transcript length also influences the extent of co- versus post-

transcriptional splicing: long transcripts are more co-transcriptionally spliced, while short pre-mRNA

are already polyadenylated before splicing completion.

Then, I used a mathematical model previously developed in the Naef laboratory in order to estimate

nuclear export rates and cytoplasmic degradation rates. By comparing rhythmic profiles (phases and

relative amplitudes) of nuclear pre-mRNA, nuclear mRNA, and cytoplasmic mRNA, I could infer the

nuclear and cytoplasmic lifetime of ∼1400 genes. The median half-life of a rhythmic transcript in the

cytoplasm is 2.5h, while the median nuclear lifetime is shorter than 30 minutes. For a majority of the

genes, nuclear lifetime has only a minor contribution to the total RNA lifetime. However, a subset of

metabolic genes remain in the nucleus for more than one hour (up to four hours), which accounts

for the long phase delay between the peak times of transcription and of cytoplasmic accumulation.

Additionally, we observed rhythmic patterns in the nucleus that most likely originate from a rhythmic

regulation of the nuclear export rate, affecting ∼10% of the oscillations of nuclear transcriptome, and

driving the rhythms of ∼100 nuclear mRNAs. This work suggests that mRNA oscillations can be post-

transcriptionally regulated at the level of nuclear export, and provides a global and quantitative view of

these processes.
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Circadian and chromatin contacts-dependent modulation of transcriptional burst-
ing parameters

Finally, I estimated transcriptional bursting parameters of a core clock gene, Cry1, in mouse liver tissue.

I used smFISH probes targeting intronic and exonic region of Cry1, and inferred the burst frequency

(rate of switching between periods of transcriptional inactivity and activity) and burst intensity (av-

erage number of RNAs transcribed per burst episode) at two times of the day. I also estimated these

parameters in a mouse model with a deletion of an enhancer that is rhythmically recruited to the Cry1

promoter (Cry1∆e mice, [64]). I showed that the burst fraction (proportional to the burst frequency),

but not the burst size, regulates the rhythmic gene expression level of Cry1. Moreover, the burst fraction

of Cry1 is modulated by rhythmic promoter-enhancer contacts. This project is a contribution to the

paper of my colleagues Jérôme Mermet and Jake Yeung: “Clock-dependent chromatin topology mod-

ulates circadian transcription and behavior”, published in Genes and Development by the following

authors (first authors in bold): Jérôme Mermet, Jake Yeung, Clémence Hurni, Daniel Mauvoisin, Kyle

Gustafson, Céline Jouffe, Damien Nicolas, Yann Emmenegger, Cédric Gobet , Paul Franken, Frédéric

Gachon, Félix Naef [64].
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3 Spatio-temporal gene expression pro-

file in the mammalian liver

3.1 Background

Many physiological functions of the liver are temporally orchestrated by the interplay of the endogenous

circadian clock, systemic signals, and feeding rhythms [189]. In addition to being regulated in time,

the liver is also structured in space [162]. It is composed of repeating anatomical units termed lobules

in which blood flow creates gradients of oxygen and morphogens from the portal vein to the central

vein. These variations of the microenvironment lead to differential gene expression and dictate the

physiological status of hepatocytes. This phenomenon is called liver zonation (see 1.3.1). Despite

the known tight temporal regulation and the extensive zonation of the liver functions, how time and

space act in concert is still unknown. Studying chronobiology at the scale of a lobule could reveal

new diurnally regulated liver functions that are usually hidden in bulk analysis, and unveil spatial

parameters of circadian genes.

3.2 Results

3.2.1 Single-molecule RNA-FISH to explore spatio-temporal patterns

In order to characterise spatio-temporal mRNA profiles, we performed single-molecule RNA-FISH

(smFISH) on liver sections at different times of the day. Each microscopy image contains a central

vein (CV) and a portal vein (PV) that were manually detected based on the presence or absence of

the bile ducts. For some smFISH experiments, we also used an immunostaining against Glutamine

Synthetase, a well-characterised marker of the central vein. The Euclidean distance between the CV

and PV was calculated, and each detected mRNA dot was assigned either the pericentral zone (PC),

midlobular zone (Mid), or periportal zone (PP) based on its distance from the closest vein (Fig.3.1).

Because the smFISH protocol was not compatible with immunostaining of the hepatocyte membrane,

we could not count the exact number of RNA molecules per cell. Instead, we quantified a “density

per nucleus”: we divided the total number of detected dots by the number of segmented nuclei. To

assess the rhythmicity of mRNA profiles in the three zones, we fitted the mRNA counts with a harmonic
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regression within a generalised linear model (GLM) framework. We modelled mRNA counts with a

negative binomial distribution where the mean of the distribution is also a function of the number of

nuclei (Fig.3.1.D). The rhythmicity parameters a and b and the mean level m can be shared between

PC, PP and Mid (same phase and amplitude), or can be independent. The most parsimonious model is

selected based on the Bayesian Information Criterion (BIC). The dispersion parameter θ was assumed

to be shared across all zones and time points, and was also estimated as part of the GLM framework.

We subsequently compared the smFISH profiles to the spatial profiles reconstructed from single-cell

RNA-seq (scRNA-seq). The scRNA-seq dataset was provided by collaborators from the Itzkovitz lab

(Weizmann Institute of Science, Israel). In 2017, the group of Itzkovitz reconstructed the spatial mRNA

expression profiles along the porto-central axis of thousands of genes in the liver ([160], see 1.3.1). They

performed single-cell RNA-sequencing of dissociated hepatocytes, and compared the expression level

of 6 landmark genes whose spatial profiles were previously characterised by smFISH. They could thus

infer the position of each hepatocyte within the layers of the liver lobule, and revealed that ∼50% of

genes have a spatially non-uniform pattern. They further extended this work by performing the same

experiment at four times of the day (ZT0, ZT6, ZT12 and ZT18). The reconstructed spatio-temporal

patterns were fitted by a mixed-effect linear model developed by C.Droin, co-first author of [168].

Briefly, the static spatial profile is described by a polynomial up to degree 2, while temporal profile is

represented by a sine and cosine function (harmonic regression). Additionally, interactions between

time and space are described as space-dependent oscillatory functions. Then, the BIC is used to select

the most parsimonious model for each gene. RNA profiles are classified in 5 groups based on the

retained parameters. The simplest model is the flat (F) model, when only the intercept is retained.

Purely rhythmic genes (R) have only the rhythmic space-independent parameters. Purely zonated

genes (Z) have only the zonation parameters (mean and slope). If the model comprises the rhythmic

and the zonation parameters but not the interaction term, the gene is classified as "Z+R", where

zonation and time independently modulate the spatio-temporal pattern. The most complex model

comprises all the parameters with a time-space interaction term and is referred to as "ZxR", where

the spatial profile varies with time (or the phase and amplitude vary depending on the layer). Dually

regulated genes represented 7% of the expressed genes, and mostly consist in Z + R genes, with only a

minority of Z x R patterns.
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3.2. Results

Figure 3.1 – Characterisation of spatio-temporal gene expression profiles based on smFISH. A: smFISH targeting
Agxt at ZT4. Nuclei are stained in blue (DAPI staining). Scale bar: 100µm. B: detected RNA transcripts appear as
grey dots. Those assigned to the PC, Mid of PP zones are colored in red, purple and blue, respectively. C: Extended
harmonic regression model for spatio-temporal expression profiles (scRNA-seq). yt is the log-transformed gene
expression, x denotes the layer index, t denotes time, and i denotes the biological replicates. The model includes
a static but zonated layer-dependent mean µ(x), as well as layer-dependent harmonic coefficients a(x) and b(x).
All layer-dependent coefficients are modelled as second order polynomials. Temporal dependency is modelled
with 24-h periodic harmonic functions. µi are random effects needed since the data is longitudinal in space (8
layers measured in each animal). D: Harmonic regression model for spatio-temporal expression profiles (smFISH).
yt is the number of mRNA per zone and per time-point, which follows a negative Binomial distribution. µz,t is
mRNA counts in zone z, mz is the average mRNA level in zone z, az and bz the coefficient of the cosine and sine

function, Nz the number of nuclei in the zone z and is used as an offset of the model, ω the frequency (
2∗pi

24 ). az ,
bz and mz can be shared between the three zones, or can be independent.

To validate the spatio-temporal profiles predicted from single-cell RNA-seq data, we performed smFISH

on representative liver genes. We first targeted the liver-specific gene Agxt (Alanine-Glyoxylate And

Serine-Pyruvate Aminotransferase), which codes for an enzyme that converts glyoxylate and L-alanine

to glycine. We selected this gene because it is rhythmic at the whole tissue level [60], and because

it was previously shown to be enriched in the periportal zone [160]. We performed smFISH on liver

tissue every 4 hours and quantified the spatio-temporal pattern as explained above (Fig.3.2.A). The

spatio-temporal pattern is best fitted with the model that shares the same rhythmic parameters for all

three zones, with a zone-specific mean expression level. Agxt is maximally expressed in all three zones

at ZT6.6, with a log2FC of 1.1. It is more expressed around the periportal zone, and decreases around

the pericentral vein. Thus, according to smFISH data, the pattern of Agxt corresponds to a “Z+R” model:

the zonated profile oscillates in time while keeping its slope (no zone-dependent rhythmicity). The

mean expression level in the PP zone is very close to the mean of the Mid zone, as seen by the “plateau”

on the spatial profile (Fig.3.2). Of note, the first and the second best models have a very close BIC
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value. The second best model is the one with the same mean, phase and amplitude for the PP and

Mid zone (phase: ZT 6.6 and amplitude: 1.2), while PC has its own independent parameters (phase:

ZT 7.0, amplitude = 0.78). By scRNA-seq, Agxt was also classified as a “Z+R” pattern, peaking at ZT5.

Additionally, the spatial profile is described by a polynomial of degree 2, therefore, we observe the

same “curved” profile in both smFISH and scRNA-seq. Thus, the reconstructed scRNA-seq and smFISH

profiles were consistent.

We also quantified the spatio-temporal profiles of Actb (Fig.3.3.A). Actb is maximally expressed at ZT1,

with the same mean, amplitude and phase in all three zones, suggesting that it is a purely rhythmic

gene (R) (Fig.3.3.B). The second best fitted model is the one with the same rhythmic parameters, but

with a lower mean expression level in PP zone compared to the PC and Mid zone, suggesting that Actb

could be slightly zonated. By scRNA-seq, Actb was classified as a purely zonated gene (Z). Even if ZT0

appears to be higher than ZT12 in the raw data (Fig. 3.3.D, shaded line), a model without rhythmic

parameters was preferred. The low temporal resolution of the scRNA-seq dataset (sampled every 6

hours) could explain why Actb oscillations were not detected by scRNA-seq. Moreover, the expression

at the PC is predicted to be only 25% higher than in the PP zone. As a comparison, Agxt increases by

42% between the PC and PP zones. Thus, such small slopes might be difficult to be accurately detected

by smFISH.
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3.2. Results

Figure 3.2 – Spatio-temporal profile of Agxt. A: smFISH of Agxt on liver FFPE tissue (red dots). Representative
images at ZT0, 4, 8, 12, 16 and 20. Maximal projection of all z-stacks. CV = central vein, PV = portal vein. Blue:
nuclei stained with DAPI. scale bar: 100µm B: Quantification of mRNA transcripts on smFISH images. A harmonic
generalised linear model assuming a negative binomial distribution is fitted to the number of mRNA in each three
zones and divided by the total number of nuclei per image (see 6.4.1). Here, the best model includes a zone-specific
mean, and shared rhythmic parameters (same amplitude and phase for the three zones). Only one mouse per time
point were used(n = 6). 5-6 images were taken per animal (technical replicates) and the average number of mRNA
molecules per number of nuclei per image is represented by a datapoint. Quantification was done on a total of
4174 nuclei for PC zone, 5064 nuclei for PP zone, and 1357 for the Mid zone. C: same quantification as in B, but
represented as a spatial profile. D: Reconstructed spatio-temporal profile based on scRNA-seq data. X-axis: lobule
layers from PC to PP. Y-axis: log2(Expression) expressed as the fraction of total UMI per cell. Agxt is classified as
"Z+R".
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Figure 3.3 – Spatio-temporal profile of Actb. A: smFISH of Actb on liver FFPE tissue (red dots). Representative
images at ZT0, 4, 8, 12, 16 and 20. Maximal projection of all z-stacks. CV = central vein, PV = portal vein. Blue:
nuclei stained with DAPI. scale bar: 100µm. Large bright oval shapes are erythrocytes. B: Quantification of mRNA
transcripts on smFISH images. A harmonic generalized linear model assuming a negative binomial distribution
is fitted to the number of mRNA in each three zones and divided by the total number of nuclei per image (see
6.4.1). Here, the best model includes shared rhythmic parameters (same amplitude and phase for the three zones).
Only one mouse per time point were used (n = 6). 5-6 images were taken per animal (technical replicates) and the
average number of mRNA molecules per number of nuclei per image is represented by a datapoint. Quantification
was done on a total of 6184 nuclei for PC zone, 9038 nuclei for PP zone and 2616 for the Mid zone. C: same
quantification as in B, but represented as a spatial profile. D: Reconstructed spatio-temporal profile based on
scRNA-seq data. X-axis: lobule layers from PC to PP. Y-axis: log2(Expression) expressed as the fraction of total UMI
per cell. Actb is classified as "Z".
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3.2.2 Clock genes are uniformly expressed within the liver lobule

Given that many of the zonated genes are also transcribed in a circadian manner, we assessed whether

core clock genes were sensitive to spatial regulation and were also differentially expressed within

the lobule. We selected Per1, a core clock gene involved in repressing the transcriptional activity of

BMAL1/CLOCK, which peaks in the early night. Per1 was previously shown to be slightly enriched in

the periportal area [160]. We also targeted Bmal1 (also known as Arntl), which peaks at the end of the

night time. Arntl was classified as purely rhythmic (R) by both scRNA-seq and smFISH, peaking at ZT23

in smFISH and at ZT21.5 in scRNA-seq (Fig.3.5.A-D). Per1 was also classified as R despite the slight

periportal enrichment observed in the raw data (Fig. 3.5.A, E-G). By smFISH, the best model was also

the one with the same mean, amplitude and phase for all three zones (Fig.3.5.E, black line). The second

best model, where all three zones have different means but same rhythmic parameters, has an almost

equivalent BIC value (1946.732 versus 1946.737). In this model, Per1 is more expressed in the periportal

zone, consistent with the raw data of scRNA-seq. We also verified the profiles of two core clock genes

Cry1 and Rorγ, and members of the PARbZip family (the activators Tef and Hlf and the repressor Nfil3)

by smFISH. Consistent with their predicted models by scRNA-seq, no zonation patterns were detected

for these genes (data not shown). Thus, the temporal profiles of clock genes are consistently detected

by both smFISH and scRNA-seq, but the classification of profiles with a small slope is very delicate, and

these genes can often be attributed to different models with comparable scores. The profiles of other

reference core clock genes were also assigned to the rhythmic category (Fig.3.4). This suggests that

the circadian clock is largely non-zonated, as confirmed by smFISH. Therefore, the circadian clock is

robust to the heterogeneous hepatic microenvironment.
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Figure 3.4 – Spatial and temporal profiles and fits of circadian core-clock genes from scRNA-seq data. Layer 1 is the
most pericentral layer, layer 8 is the most periportal layer. Shaded line: raw data with corresponding standard
error, in bold line: fitted data. All circadian clock genes have been assigned to the purely rhythmic model (R).
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Figure 3.5 – Spatio-temporal profiles of Arntl and Per1. A: smFISH of Arntl in white and Per1 in red on liver
cryosections. Livers were sampled every 3 hours, and were not from the same animals as for Agxt and Actb.
Representative images at ZT0, 6, 12 and 18. Maximal projection of all z-stacks. CV = central vein, PV = portal vein.
Blue: nuclei stained with DAPI. scale bar: 100µm. B: Quantification of mRNA transcripts on smFISH images. A
harmonic generalized linear model assuming a negative binomial distribution is fitted to the number of mRNA
in each three zones and divided by the total number of nuclei per image. Here, the best model includes shared
rhythmic parameters (same amplitude and phase for the three zones). 5-8 images were taken per animal (technical
replicates) and the average number of mRNA molecules per number of nuclei per image is represented by a
datapoint. Quantification was done on a total of 6400 nuclei for PC zone, 6179 nuclei for PP zone and 2419 for the
Mid zone. C: same quantification as in B, but represented as a spatial profile. D: Reconstructed spatio-temporal
profiles based on scRNA-seq data. X-axis: lobule layers from PC to PP. Y-axis: log2(Expression) expressed as the
fraction of total UMI per cell. Arntl is classified as “R”. E: Quantification of Per1. The black line shows the fit for
the model where all the parameters are shared between the three zones. Additionally, the red, purple and blue
line represent the fit by the model where the amplitude and phase are common, but the mean is different. This
corresponds to a “Z+R” model. Note that the phase fitted by the model (ZT14) is not optimal by visual inspection:
this is because the temporal profile does not follow a cosinus. A different shape (function) may better fit the
measurements. F: Spatial representation of Per1 quantified by smFISH. G: Reconstructed spatio-temporal profile
based on scRNA-seq data. Per1 is classified as R.36



3.3. Concluding remarks

3.3 Concluding remarks

smRNA-FISH is a sensitive, albeit low-throughput method to accurately detect, localise, and quantify

individual RNA molecules [190]. Thus, in addition to generating appealing and colorful images, smFISH

can be used to quantify gene expression profiles in time and space. We used smFISH as an orthogonal

approach to validate spatio-temporal profiles predicted from scRNA-seq data, from purely rhythmic to

dually regulated Z+R profiles. Overall, the profiles were consistent between smFISH and scRNA-seq,

but we also observed some limitations, particularly when two competing models result in close BIC

values. These discrepancies most likely reflect uncertainties in the spatial analysis of smFISH in tissues.

We also used a less refined spatial resolution, defining only three zones instead of eight layers as in

[160]. Moreover, the low temporal resolution of the scRNA-seq dataset decreases its power to detect

rhythmic patterns. Additionally, mice used for the smFISH experiments and the scRNA-seq were under

different feeding regimens, which could affect their physiological status [60] (night-restricted feeding

for the smFISH, ad libitum for the scRNA-seq). But for clock genes as for other genes expressed in the

liver, the predicted spatio-temporal profiles were noticeably similar using both approaches.

By combining smFISH on intact liver tissue and zonation profiles from scRNA-seq, we showed that

while core clock genes are temporally oscillating, their spatial patterns are homogeneous between

the liver zones. This suggests that the clock is robust to zonated signals in the different lobular zones.

Thus, the spatial patterns of rhythmic metabolic functions (carbohydrate metabolism, xenobiotic

metabolism, lipid metabolism, etc.) are regulated by independent factors.
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3.4 Space-time logic of liver gene expression at sublobular scale: Ab-

stract

This work was published in Nature Metabolism by the following authors (first authors in bold): C.

Droin, J. El Kholtei, K. Bahar Halpern, C.Hurni, M. Rozenberg, S. Muvkadi, S. Itzkovitz, F. Naef, [168].

The mammalian liver is a central hub for systemic metabolic homeostasis. Liver tissue is spatially

structured, with hepatocytes operating in repeating lobules, and sub-lobule zones performing distinct

functions. The liver is also subject to extensive temporal regulation, orchestrated by the interplay of the

circadian clock, systemic signals and feeding rhythms. However, liver zonation has previously been

analysed as a static phenomenon, and liver chronobiology has been analysed at tissue-level resolution.

Here, we use single-cell RNA-seq to investigate the interplay between gene regulation in space and time.

Using mixed-effect models of messenger RNA expression and smFISH validations, we find that many

genes in the liver are both zonated and rhythmic, and most of them show multiplicative space-time

effects. Such dually regulated genes cover not only key hepatic functions such as lipid, carbohydrate

and amino acid metabolism, but also previously unassociated processes involving protein chaperones.

Our data also suggest that rhythmic and localized expression of Wnt targets could be explained by

rhythmically expressed Wnt ligands from non-parenchymal cells near the central vein. Core circadian

clock genes are expressed in a non-zonated manner, indicating that the liver clock is robust to zonation.

Together, our scRNA-seq analysis reveals how liver function is compartmentalized spatio-temporally at

the sub-lobular scale.
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4 Comprehensive analysis of the circa-

dian hepatic transcriptome at subcel-

lular scale
4.1 Background

Every step of the RNA life cycle is tightly regulated to ensure proper cellular function. Gene expression

begins with transcription, where transcription factors and co-activators bind to DNA gene regulatory

elements and recruit RNA Polymerase II (PolII) to form the RNA transcription complex, and synthesise a

pre-mRNA copy of the DNA template. While in the nucleus, the RNA transcript is subject to multiple co-

and post-transcriptional modifications, including splicing, 5’ capping, 3’ end processing, polyadenyla-

tion, methylation, assembly into ribonucleoprotein (RNP) complexe, before being exported through the

nuclear pores [191]. After reaching the cytoplasm, the RNP interacts with translation initiation factors

to start the production of a functional protein. The mRNA lifetime in the cytoplasm is determined by

the activity of a distinct set of RNA Binding Proteins (RBPs), enzymes, and functional RNAs, which

promotes stability, or conversely degradation through deadenylation, endonucleolytic cleavage [152],

and silence their translation (miRNA) [192].

Collectively, the balance of production and decay rates determines the abundance of RNA in a given

form (nascent, pre-mRNA, mature mRNA) in a given subcellular compartment (chromatin-bound,

nucleus, cytoplasm, organelles) [193]. The localisation of the RNA transcript also depends on its

function. For example, many non-coding RNAs such as long non-coding RNAs (lncRNAs) are found in

the nucleus [194], where they remodel chromatin architecture (Xist, Firre) or act as structural scaffold

for nuclear bodies (Malat1, Neat1). On the other hand, protein coding transcripts, which are meant to

be translated, are exported into the cytoplasm [114]. Interestingly, a study in the mouse liver showed

that a significant proportion of protein coding transcripts were enriched in the nucleus (13%), including

Mlxipl and Nlrp6, suggesting that the nuclear to cytoplasmic export rate is also a regulatory node for

protein coding genes [74].

The kinetic rates regulating the RNA processing steps are not constant, but adapt to environmental

stimuli such as the presence of hormones, temperature shifts [195], nutrient levels [196], inflammation

[95], or time of the day [78, 79]. In principle, every step during the RNA life-cycle could be regulated

in a temporally rhythmic manner, contributing to circadian gene expression. Rhythmic transcription
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is the starting point of rhythmic gene expression, and has been extensively studied in the circadian

context, particularly in the mouse liver [47, 59, 60]. The liver has the highest number of cycling mRNA

among all the tissues [28], and the rhythmic patterns are driven both by the endogenous circadian

clock, and by rhythmic (un)availability of food [30, 197]. Interestingly, rhythmic synthesis alone does

not account for the oscillations of all RNAs, implying a rhythmic regulation at the post-transcriptional

level. The extent to which post-transcriptional regulation contribute to circadian gene expression

is still debated, varying from ∼15% [60, 54], up to 70% [47]. Post-translational regulation also plays

a role in generating rhythmic profiles, as 50% of the cycling proteins did not have matching cycling

mRNA [61, 45]. Conversely, many rhythmically transcribed genes do not have corresponding cycling

mRNA [47] or protein [63], suggesting that amplitudes are dampened as rhythm propagates. There is

therefore more and more evidence underlining the importance of post-transcriptional regulation in

driving mRNA rhythmicity. Mathematical models showed that temporal regulation of mRNA stability

(i.e. degradation rate) offer the flexibility to boost amplitudes and fine-tune phases, [54, 79, 78, 158].

Rhythmic mRNA stability can be modulated through the activity of plethora of RNA-binding proteins

[198, 156], through silencing by miRNA [199], or by regulating poly(A) tail length [154] and regulating

deadenylase activity [200]. In the nucleus, processing rates, including export rates, can be modulated

by m6A methylation [147], or through rhythmic retention in nuclear paraspeckles [143].

In this study, we aim at understanding the circadian dynamics of RNA regulatory programs in the

mouse liver. More specifically, we focus on nuclear export, cytoplasmic degradation, and to some

extent on splicing. We performed RNA-sequencing of polyadenylated and total RNA from nuclear

and cytoplasmic fractions of mouse liver samples collected every 4 hours along a full daily cycle. This

dataset provides a genome-wide and temporal inventory of RNA subcellular localisation. We used these

measurements to feed our simplified model describing the RNA processing pathway: 1) in the nucleus,

pre-mRNA is co- and post-transcriptionally spliced to become a mature nuclear mRNA and 2) after

spending some time in the nucleus, the mRNA is transported to the cytoplasm where it is degraded.

As a first step of initial analysis, we explore the differences between RNA populations without the

temporal dimension. We analyse the relationships between nuclear pre-mRNA and nuclear mRNA,

and between nuclear mRNA and cytoplasmic mRNA, which, at steady-state, reflect the ratio of the

production rate and the decay rate. This first round of analysis revealed distinct signatures of export,

cytoplasmic degradation, and splicing, affecting specific classes of RNA. Notably, protein coding

transcripts are more abundant in the cytoplasm than in the nucleus, however, many nuclear-enriched

transcripts code for nuclear proteins associated with gene expression regulation (DNA modification,

RNA processing and export), suggesting a concordance of RNA and protein localisation. Moreover,

nuclear-enriched transcripts are shorter on average, while longer transcripts are more abundant in

the cytoplasm. Transcript length also influences the extent of co- versus post-transcriptional splicing:

short nuclear polyadenylated transcripts contain on average more unspliced introns, while longer

transcripts are more co-transcriptionally spliced. Next, we estimate the nuclear export rates and

the cytoplasmic degradation rates using a mathematical model developed by Wang et al.[201]. By

comparing the rhythmic profiles (amplitudes and phases) of nuclear pre-mRNA, nuclear mRNA, and

cytoplasmic mRNA, we estimate the export rates and cytoplasmic degradation rates of ∼1400 genes.

The median half-life of rhythmic transcripts in the cytoplasm is ∼2.5h, while the median nuclear
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lifetime is shorter than 30 minutes. The mathematical model is able to detect rhythmic degradation

processes. This analysis uncovered rhythmic patterns in the nucleus that most likely originate from a

rhythmic regulation of the nuclear export rate. This post-transcriptional regulatory step contributes

to the increase of the amplitude of highly rhythmic genes such as Dbp, Pck1, or Lpin1, but also to

the generation of de novo rhythms, and affects the temporal profiles of ∼10% of the rhythmic nuclear

transcriptome. Finally, by combining the estimated export rates and cytoplasmic degradation rates,

we reveal that for a majority of genes, the nuclear mRNA are processed within minutes, and the total

transcript lifetime is mainly determined by the cytoplasmic mRNA stability. However, some metabolic

genes remain in the nucleus for a few hours (up to 4 -5 hours), delaying the peak phase in the cytoplasm.

Therefore, we suggest that regulation of the nuclear export rate is a post-transcriptional tool to regulate

the timing of cytoplasmic mRNA accumulation by generating de novo rhythm or by tuning the phase

and amplitude of the nuclear mRNA.

4.2 Experimental design

In order to characterise the kinetics of RNA regulatory processes occurring in different cellular com-

partments, we isolated different RNA populations in the mouse liver. We sampled livers from individual

C57BL/6j and Cry1/Cry2 double-KO mice (CryKO) housed in a light-dark cycle and under a restricted

feeding regime every four hours (n = 2 per time point) (Fig.4.1.A). We fractionated liver cells from

intact tissue in sucrose gradient and isolated nuclear (Nuc or N) and cytoplasmic (Cyt or C) RNA. We

sequenced ribo-depleted total RNA (T), and polyadenylated RNA (A). In addition, we also sequenced

total RNA from the unfractionated liver tissue (U or Unf) (Fig.4.1.A). Together, we have three RNA

populations (N, C, U), and five types of RNA: Nuclear Total RNA “NT", Nuclear Polyadenylated RNA

“NA”, Cytoplasmic Total RNA “CT”, Cytoplasmic Polyadenylated RNA “CA", and Unfractionated Total

RNA “UT". We further quantified pre-mRNA (intron “I”) and mRNA (exon “E”) (see Methods: 4.3).

The RNA processing program is extremely rich and complex. We simplified the events occurring along

the RNA lifecycle and include the following steps in our model (Fig.4.1.B, C): we assume that the

pre-mRNA (p), which is transcribed at a rate T , is spliced and polyadenylated at a rate of s to produce

mature nuclear RNA (m). Then, this transcript is exported at a rate e into the cytoplasm (M), where it is

finally degraded at a rate γ (Fig.4.1.A). We use NTI (nuclear total pre-mRNA) to approximate the level of

pre-mRNA (p). NAE (nuclear polyadenylated mRNA) and CAE (cytoplasmic polyadenylated mRNA)

are used to describe the accumulation of mature RNA in the nucleus (m) and in the cytoplasm (M). We

focus particularly on nuclear export rate and cytoplasmic degradation rate. We will often refer to these

rates as cytoplasmic half-life ( log (2)
γ ), and as nuclear export time or nuclear retention time ( l og (2)

e ), with

the multiplicative factor of log(2). The sequential transformation of the RNA transcript can be written

as a system of simple ordinary differential equations (ODEs) (Fig.4.1.D). At steady, the equations are set

to 0 and each species is described by the ratio of its production and decay term.

In our study, CT (cytoplasmic total) is redundant with CA (cytoplasmic poly(A), therefore, it is not

included in the model, but we used it as an internal control. RNA from the unfractionated samples

(Unf) are also not used in the model, but serve as a reference dataset.
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Figure 4.1 – Kinetic model describing the RNA processing steps from the nucleus to the cytoplasm. A: Scheme of the
experimental design: 12 WT and 12 CryKO mice were kept in a 12:12 light-dark cycle. 3 days prior to the experiment,
food was given only during the dark phase (active phase). Livers were collected every 4 hours (n = 2), homogenised,
and centrifuged in sucrose gradient. RNA from cytoplasmic fraction (supernatant in sucrose) and nuclei (pellet)
were extracted. Ribo-depleted RNA (T) or Poly(A) pull-down RNA (A) from nuclear and cytoplasmic fractions were
sequenced. RNA from unfractionated liver tissues was also sequenced (ribo-depletion). B: Scheme representing
the journey of an RNA transcript starting with the transcription by RNA Polymerase II, splicing of the introns (red)
and addition of a poly(A) tail at the 3’ end, export to the cytoplasm, and degradation. C: Linear representation
of each RNA processing step modeled in this study. D: A system of first-order linear equations describes the
transformation of pre-mRNA to nuclear mRNA to cytoplasmic mRNA: T = Transcription rate [transcript × min−1],
s= splicing and polyadenylation rate [min−1], e = export rate [min−1], γ = degradation rate [min−1]. p = pre-mRNA,
m = nuclear mRNA, M = cytoplasmic mRNA. The dot indicates the approximation at steady-state.

4.3 Transcript-based RNA-seq quantification

We quantified both the expression at the gene level and at the transcript level. Indeed, genes often

have several expressed isoforms that are not processed the same way [114]: the final destination of a

protein coding gene is the cytoplasm where it is translated, while a target of nonsense-mediated decay

is not expected to be long-lived. Thus, in this context, it could be biologically more relevant to study

individual isoforms and take into account the RNA biotype. We additionally distinguished pre-mRNA

from mRNA. A commonly used procedure when analysing introns and exons from total RNA-seq is the

“union exon model”, in which all the isoforms of a given gene are merged [202]. A stringent annotation

is then used: if the genomic region is defined as “intron” in every isoform, then it is considered as an

intronic region. Otherwise, it is considered an “exon”. While this method is easier to implement [202],
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it creates some artifacts. Many intronic regions are masked, with the following consequence: when

introns are efficiently spliced before being exported and translated, the density of reads mapping on an

intronic region is lower than on an exonic region, especially in the cytoplasm, and to a lesser extent in

the unfractionated sample. However, an intron might be annotated as “exon” because of one specific

isoform, which may not even be expressed in the studied cell type. When counts are normalised by

the gene length (RPKM, FPKM, TPM), the exon length is artificially longer, resulting in a “dilution”

of the reads. Thus, the intron/exon ratio is biased such that splicing seems to occur less frequently

(Fig.4.2 B and C, example with Eif1). One solution is to create a genome annotation specific to the liver

transcriptome, by merging only the isoforms expressed above a certain threshold. Even if this method

corrects the annotation of some genes, it does not solve all the cases, especially when there are still

several isoforms expressed (Eif1: 3 out of 5 isoforms are expressed in the liver). This is particularly the

case when comparing two very different RNA populations. For instance, Retained Introns are mainly

present in the nucleus [107, 110] and are annotated as “exon”. In the cytoplasm, however, the retained

intron isoform may not be present and the corresponding genomic region is a spliced intron. In the

union-exon model, the exon length will be again too long, and the resulting normalised count will be

underestimated. Therefore, we used the pseudo-alignment algorithm implemented in Kallisto for RNA-

seq quantification in order to quantify the expression level per transcript rather than per gene [203]. We

provided as a reference the annotations of both mRNA and pre-mRNA (Fig.4.2.A). Technically, Kallisto’s

algorithm does not discriminate intronic from exonic regions, but only a “pre-mRNA transcript” from a

“mRNA transcript”. However, for sake of clarity, we name mature RNA “E” as for exon, and pre-mRNA

“I” as for intron. We acknowledge that a transcript-based approach is intrinsically more difficult and

generates more noise, especially when we include both premature and mature transcripts, because

different isoforms often have a high proportion of genomic overlap. Moreover, a nascent RNA may

temporarily have the same structure as a specific isoform because of the yet incomplete splicing.

Moreover, when the algorithm cannot discriminate between similar isoforms, reads are distributed

equally and are “diluted”.

Genes with a high number of annotated isoforms tend to express more isoforms, and do not follow

a minimalistic strategy [194] (Fig. 4.2.C). On average, 2-3 isoforms are expressed per gene, but some

outliers have up to 16 expressed isoforms (e.g. Aopep 16 isoforms, Ncor1 15 isoforms, Fig.4.2.D). The

dominant isoform usually captures at least 25% of the total gene expression (Fig.4.2.E). We only selected

isoforms that were contributing to at least 1/n to the total gene expression (n = number of annotated

isoforms), but with an additional minimal threshold of 0.2. To buffer noise associated with the high

number of isoforms, we summed the counts estimated by Kallisto if several isoforms belonged to

the same RNA biotype (based Ensembl classification). We then normalised counts by the average

transcript length, weighted by the relative expression of each isoform in each RNA population (Nuc

PolyA, Nuc Total, Cyt PolyA, Cyt Total, Unf Total). The normalisation by the transcript length was

performed using DESeq2 [204]. To reduce the number of biotypes, we grouped the biologically related

biotypes into 8 supergroups (see Methods 6.5.2). Protein coding (PC) transcripts contain an open

reading frame (ORF). Retained Intron (RI) is an alternatively spliced isoform that keeps an intron in its

final form [110]. Nonsense-mediated decay transcript (NMD) contains a premature stop codon and is

likely to be targeted to degradation [152]. Long non-coding RNA (lncRNA) is a non-coding transcript
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longer than 200bp. Processed Transcripts (PT) is a broad class that contains transcripts without an

open reading frame, including both long (> 200nt) and short non-coding RNA. Therefore, some well-

known long non-coding RNA such as Firre are annotated as PT. Small nuclear RNAs (snRNA) are short

non-coding transcripts involved in the processing of pre-mRNA. Small nucleolar RNA (snoRNA) are

small non-coding RNAs, in charge of ribosomal RNA modifications (2’-O-methylation modifications

and pseudouridylation [205]). Here, "snoRNA" also contain a subclass of snoRNA: the small Cajal

Body-specific RNA (scaRNA), which are “guides RNA” in charge of post-transcriptional modifications

of the spliceosomal U RNA (snRNA). Pseudogenes, whether they are being processed or not, are non-

coding transcripts that resemble functional genes. Finally, micro-RNAs (miRNA), are small non-coding

RNA (∼22bp) that repress the translation of the target mRNA. Of note, the quantification of small

RNA (miRNA, snoRNA) are relatively unreliable due to their size [206]. Finally, we also performed the

RNA-seq quantification at the gene level by summing all the counts assigned to the different isoforms

of the gene, and by normalising the counts by the gene length (average transcript length weighted by

the relative expression).

RNA-seq normalisation methods such as TPM or RPKM estimate the fraction of RNA species in the

sample, but do not allow a comparison of the absolute transcript abundance across samples with

different RNA composition, such as nuclear, cytoplasmic, or unfractionated RNA [207]. It only allows a

relative comparison of concentrations. In order to adjust the ratio between nuclear and cytoplasmic

RNA as well as possible, we took advantage of the dataset published by [196], where they converted

the counts of RNA-seq dataset of nuclear Poly(A) and cytoplasmic Poly(A) RNA from mouse liver into

number of molecules based on single-molecule RNA-FISH quantification (see Methods 6.5.3). By

applying a simple linear regression, we rescaled the RPKM values of NAE, NAI, NTE, NTI, CAE, and

CTE estimated by DESeq2 such that the ratio between nuclear and cytoplasmic RPKM is less biased,

although still arbitrary.

In total, we have 10 measurements for each of the twelve mice (NTE, NTI, NAE, NAI, CTE, CTI, CAE,

CAI, UTE, UTI), quantified with three different level of stratification: gene-level, biotype-level, and

isoform-level (with 10’000 to 12’000 unique genes and ∼35’000 isoforms). We will not use isoform-level

quantification, as the diversity of isoforms makes the quantification noisier and adds an unwanted layer

of complexity. Since the proportion of introns in the cytoplasm is low (Fig.4.3) and is not biologically

relevant in our study, we also ignore CTI and CAI samples.
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Figure 4.2 – A: Pipeline of RNA-seq quantification using Kallisto. Estimated counts per isoform are further summed
by Gene or by Biotype, and normalised by DESeq2. Additional filtering steps based on expression level are done (see
Methods 6.5.3). B: Reads from nuclear total, cytoplasmic total, and unfractionated total RNA population, aligned to
the mm10 genome using RNASTAR, displayed on IGV browser. Each RNA population is auto-scaled. Below are the
isoforms annotated by Ensembl for the gene Eif1. In blue: the three expressed isoforms: ENSMUST00000049385,
ENSMUST00000132618, ENSMUST00000152521. In grey: the other isoforms not expressed according to Kallisto.
C: Quantification of Eif1 with the union-exon model and by Kallisto (sum of the three isoforms in order to have a
quantification "per gene"). In the union-exon model, because of the overlapping isoforms, only a small portion
of the gene is considered as “intron”. Thus, the exonic counts are artificially lowered, the pre-mRNA seems
to be enriched in Unf Total. The isoform-specific quantification with Kallisto (right) corrects that artefact. D:
Distribution of number of isoforms per gene after filtering (based on expression level and isoform fraction). E:
Fraction of total gene expression of the dominant isoform, ordered by number of annotated isoforms per gene.
F:Distribution of number of expressed isoforms per gene.
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4.4 Characteristics and composition of nuclear and cytoplasmic tran-

scriptomes in mouse liver

We first characterise the different RNA populations in mouse liver cells without the temporal dimension.

The nucleus is the cellular compartment where transcription and splicing occurs. The Nuclear Total

RNA population (NT) includes all the transcripts found in the nucleus, from nascent transcripts to

fully transcribed, ready to be exported mature RNAs. As expected, the proportion of intron versus exon

reads is the highest in Nuclear Total sample, and the lowest in the cytoplasmic fraction (Fig.4.3). In

terms of the number of reads (reflecting the mass of the corresponding RNA), around 75% of the reads

align to pre-mRNA sequences. These proportions are similar to what has been previously described in

mouse liver for nuclear total RNA [122]. In mammals, introns are much longer than in lower organisms,

ranging from 1kb to 100 kb [82], which explain why intronic reads represent such a large fraction of the

RNA population.

Nuclear PolyA RNA population (NA) represents the population of fully-transcribed and polyadenylated

transcripts. Interestingly, 45% of the reads mass still map on pre-mRNA. Splicing is thought to mainly

occur co-transcriptionally, with 75 to 85% of the introns being removed while RNA Polymerase II is still

transcribing [92], from budding yeast [85] to human tissues [89]. However, the mouse liver is the only

example where co-transcriptional splicing has been shown to be less efficient, with only 45% of introns

being co-transcriptionally removed [90].

When these fractions of mass are normalized by the length of the gene features (exons and introns)

and thus reported as a fraction of the number of molecules (in RPKM, normalised by the length of

the transcript), about 1 in 8 polyadenylated transcripts in the nucleus is still a pre-mRNA, suggesting

that further splicing is indeed occurring after transcription is completed. Note that in Fig.4.3.B, we

only report fractions of protein coding transcripts in order to avoid biases associated with the different

compositions of RNA biotypes (e.g. snoRNA present almost exclusively in Nuclear Total samples

consume 20% of the exonic reads, see Fig.4.3.C). Finally, as expected, almost no pre-mRNA is detected

in the cytoplasmic RNA populations. The few percent that are still counted as pre-mRNA could come

from contamination by nuclear RNA during fractionation, or by an error during the pseudo-alignment

with Kallisto’s algorithm.
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Figure 4.3 – Global characteristics of PolyA and Total RNA populations in nuclear and cytoplasmic fractions.
A: Percentage of reads mapping on pre-mRNA or mRNA transcripts in each condition. B: Proportion of RPKM
(normalised by length) of protein coding transcripts mapping on pre-mRNA and mRNA. C: Fraction of each biotype
in each RNA sample. Dotted lines represent pre-mRNA. Pre-mRNA from cytoplasmic fraction are not shown. D:
Principal Component Analysis using mature mRNA only. PC 1 separates Nuclear from Cytoplasmic samples, and
PC2 separates Total from Polyadenylated samples. E: Loadings factors of PC1 and PC2, color-coded by biotypes.
Neat1 and Malat1 are highlighted (yellow and orange dots).

The vast majority of detected RNAs are protein coding transcripts, making up to 85% of mRNA

molecules in the cytoplasm and in the whole cells (Fig.4.3.B). All the other biotypes account for

less than 10% of the total RNA population in the cytoplasm. The nucleus is enriched for functional

small non-coding RNA. In fact, the most abundant small non-coding RNA are small nucleolar RNA

(snoRNA) found in the nucleolus and scaRNA, found in Cajal-bodies. SnoRNA, like snRNA, are not

polyadenylated, and are thus found almost exclusively in the Nuclear Total fraction. Retained Intron

isoforms (RI) are the most abundant in the nucleus (10 to 20%). RI are usually enriched in the nucleus,

where they are either exported, degraded, or spliced post-transcriptionally [110]. Of note, the true

composition of nuclear and cytoplasmic RNA populations are different from what we report here as

the extremely abundant ribosomal RNAs have been depleted before sequencing. Also, we excluded

abundant tRNA that are difficult to sequence and map due to their secondary structure. We also

excluded unannotated RNAs (Gm) or abundant RNA labelled as “miscellaneous” RNA.
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Principal Component Analysis (PCA) on the mRNA measurements shows that the subcellular local-

isation explains most of the variability between samples (64%, Fig.4.3.D). Unfractionated samples

lie between nuclear and cytoplasmic samples on PC1, although a little closer to cytoplasmic RNA.

Differences due to the type of RNA (PolyA versus Total) account for 17% of the variability. Genes mostly

expressed in the nucleus (upper left quadrant of Fig.4.3.D) belong to the family of snoRNA and snRNA

as previously seen in Fig.4.3.C. The long non-coding genes Malat1 and Neat1, hallmarks of nuclear-

enriched transcripts, also drive the difference between nuclear and cytoplasmic samples [74]. On the

other side of the plot, genes coding for ribosomal proteins (Rpl, Rps) are abundant in the cytoplasm.

Overall, PCA confirms the previous observations with the proportions of biotypes in each compart-

ment. Together with pre-mRNA and mRNA distribution, we recapitulated previously demonstrated

characteristics of nuclear and cytoplasmic RNA distribution, and verified that our cellular fractionation

of the liver cells performed as expected [194, 95, 208, 209].

4.5 Relationship between nuclear and cytoplasmic mRNA reveals

signatures of export and cytoplasmic half-life

We hypothesised that the ratios of RNA from two different populations could reveal the variability

in the parameters dictating RNA dynamics. We first considered the relationship between Nuclear

Polyadenylated mRNA (NAE) and Cytoplasmic Polyadenylated mRNA (CAE) at steady-state. In the

simplest scenario (no loss in the nucleus), the ratio of NAE over CAE reflects the ratio of two parameters:

the nuclear export rate and the cytoplasmic degradation rate (Fig.4.1). Namely, a fast export from the

nucleus to the cytoplasm would deplete the amount of RNA in the nucleus, and a long cytoplasmic

half-life in the cytoplasm would lead to an accumulation of mRNA in the cytoplasm. Both processes

decrease the ratio between nuclear and cytoplasmic RNA and results in an enrichment of RNA in

the cytoplasm. On the contrary, RNAs with a long export time (or long nuclear retention) and short

half-life in the cytoplasm would increase the nuclear to cytoplasmic ratio, resulting in an apparent

nuclear accumulation (Nuc/Cyt ratio, later calculated as the difference of log2(RPKM) of NAE and CAE).

Therefore, we investigated the relative subcellular levels.

Across all genes, the expression levels of NAE span 2.6 orders of magnitude in log10 (from -2.5 to 6.3 in

log2, whiskers of the boxplot, Fig.4.4.A). CAE has a wider distribution of expression level, from -2.5 to 10

in log2, which corresponds to about 4 orders of magnitude. The most abundant genes code for secreted

proteins such as Murine Urinary Proteins Mups, Albumine Alb, and Apolipoproteins (Apoc1, Apoa2),

and are enriched in the cytoplasm. The NAE/CAE ratio varies by a factor of almost 2500 (outliers

excluded), with a median log2 around -2.3, indicating that RNA transcript counts are more abundant in

the cytoplasm than in the nucleus. However, a fraction of transcripts are also found enriched in the

nucleus. A previous study by Bahar-Halpern et al. [196] showed that in the mouse liver, some protein

coding genes were indeed enriched in the nucleus, such as Nlrp6 (here log2-ratio = 1.6), and glucose

metabolism-related genes Mlxipl (log2-ratio = 3.4), Gcgr (log2-ratio = -0.1), and Gck (log2-ratio =-1.2).

Indeed, we verified the subcellular localisation of Mlxipl by single-molecule RNA-FISH (smFISH),

and the accumulation of nuclear transcripts was evident, although not quantifiable due to its high
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abundance and crowdedness of mRNA molecules (Fig.4.4.C). On the other side of the spectrum, Actb is

a typical example of a cytoplasmically enriched transcript ( log2-ratio = -3.64). By smFISH, the log2

ratio varied between time points, ranging from -1.42 to -3.8, with a median of -2.7.

We next aimed to determine which molecular processes (rate constants) were most responsible for

determining the ratio of the mRNA between the two measurements. In our simplified model, the steady

state concentration of log2(NAE) = log2(Transcription rate) + log2(export time), and the steady state

concentration of log2(CAE) = log2(Transcription rate) + log2(half-life). Fig.4.4.B shows the log2-ratio

of NAE/CAE as a function of either log2(NAE) or log2(CAE), and the correlation coefficient is higher

for CAE than for NAE (ρ = 0.67 for CAE, ρ = 0.06 for NAE). Given that the log2(Transcription rate) is

common to both CAE and NAE, the strong correlation coefficient suggests that the cytoplasmic half-life

has a higher influence on the ratio than the export time. Thus, the main driver of heterogeneity in the

nuclear-cytoplasmic ratio is the cytoplasmic half life rather than the nuclear retention time.

We examined several genomic features that have been proposed to modulate kinetic rates (transcription

rate, export, decay) and thus mRNA localisation, such as gene length, transcript length, number of

exons, 3’UTR and 5’UTR length [208, 209, 126]. At the gene-level, the 5’UTR length and the gene length

do not correlate with the NAE/CAE ratio (Fig.4.4.F, J). The 3’UTR length has a positive correlation (ρ

= 0.39), indicating that transcripts with longer 3’UTR sequences are less cytoplasmic (Fig.4.4.G). The

length of the 3’UTR is often proposed as a predictor of mRNA stability, because of the presence of

many regulatory elements. Indeed, 3’ UTR acts as a binding site for various regulatory mechanisms,

most of which involved in decreasing the cytoplasmic stability of the transcript [210]. This is notably

the case of element promoting mRNA decay such as AU-rich elements, GU-rich elements (GREs) and

PUF protein-binding elements [152], and miRNAs binding sites involved in translation repression and

mRNA cleavage [192]. However, both stabilising and destabilising RNA-Binding Proteins often compete

for the same mRNA substrate [152], which in the end results in conflicting or undetectable effect of

the 3’UTR length on processing rates [209]. Thus, this positive correlation between 3’UTR length and

nuclear localisation could reflect both a slow export or a short half-life due to an increased presence of

destabilising regulatory elements in the 3’UTR [210].

Interestingly, we found that transcript length (corresponding to the sum of all exon lengths) has a

significant positive correlation with nuclear localisation (ρ = 0.5, Fig.4.4.D). Likewise, the number

of exons also explain part of the NAE/CAE ratio (ρ = 0.4, Fig.4.4.E). Transcripts of hundreds kB take

several hours to be fully transcribed, which could explain the longer residence time in the nucleus [211].

However, in that case, we would expect a correlation with the gene length (exons + introns), which was

not observed. One possible explanation would be that rather than transcription time, the number of

splicing events needed per transcript is the limiting step before export.
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Figure 4.4 – The ratio of nuclear and cytoplasmic mRNA reflects the relationship between export time and
cytoplasmic half-life. A: NAE versus CAE, in log2(RPKM), averaged over 6 time points and 12 animals. WT animals
only. Cyan squares represent known nuclear genes, and magenta squares cytoplasmic genes. Dashed line indicates
the 1:1: ratio. We note here that the abline has been scaled with the dataset from [196], and does not represent the
absolute ratio. In grey: Two-dimensional kernel density estimation. Number of genes = 10914. B: NAE / CAE ratio
in log2-scale against the average expression in the cytoplasm (up) or in the nucleus (bottom). C: smFISH of the
nuclear transcript Mlxipl and the cytoplasmic transcript Actb in liver FFPE sections, at ZT12. Nuclei are stained
with DAPI (grey). E,F,G,H: NAE/CAE log2-ratio against the following genomic features: Transcript length, number
of exons 5’UTR length, 3’UTR length, gene length. These features are transcript-specific, and were averaged based
on the relative expression level of each transcript to obtain a value per gene. Grey dashed line is the regression line

Because different classes of RNA are potentially processed by distinct regulatory programs, particularly

in the context of localisation [114], we performed a similar analysis as above, but stratified by RNA

biotypes (Fig.4.5).

Protein coding (PC) transcripts are mostly located in the cytoplasm (median log2(NAE/CAE): -2.3,

Fig.4.5.B). The cytoplasmic localisation of PC transcripts is not surprising, because their ultimate

purpose is to be translated and to produce proteins in the cytoplasm. The most nuclear-enriched

transcripts are the retained intron (RI), with a median log2(NAE/CAE) ratio of -1.3 (Fig. 4.5.B). RI

transcripts are exported to the cytoplasm where they can be translated, but many are rapidly degraded

because the remaining intron introduced a Premature Termination Coding (PTC), which triggers the

degradation by nonsense-mediated decay [110, 152]. Some retained introns are exclusively found in the

nuclear compartment, in which case they are referred to as “Detained Introns” [108]. The specific case

of Detained Introns would not be captured in the NAE/CAE ratio, because the ratio implies that the

50



4.5. Relationship between nuclear and cytoplasmic mRNA reveals signatures of export and
cytoplasmic half-life

transcripts are detected in both compartments. Thus, the actual nuclear enrichment of RI transcripts

might be even stronger.

For a long time, long non-coding RNA (lncRNA) were thought to be mainly found in the nucleus,

where they regulate chromatin structure (Firre), gene expression (Xist, X chromosome inactivation),

or act as scaffold of nuclear condensates (Malat1, Neat). However, many lncRNA are also exported

to the cytoplasm [212]. Recently, the subcellular localisation of lncRNA has been extensively studied

[126, 119, 124]. Because they do not produce any protein, their localisation determines their functions

[124]. Here, the well-known Malat1 and Neat1 are the most nuclear transcripts. Dreh, a lncRNA

regulating cytoskeleton, is one of the most cytoplasmically enriched lncRNA. The median NAE/CAE

log2-ratio is similar to that of protein coding transcripts. Of note, some lncRNA such as Firre are

annotated as “Processed Transcript” (PT) in the Ensembl database. PT are even more cytoplasmically

enriched, suggesting that indeed, long non-coding RNA are not only restricted to the nucleus, but

found in a wide range of locations [212].

The positive correlation between cytoplasmic expression level and cytoplasmic localisation previously

observed in Fig.4.4.B is valid for all biotypes, suggesting that cytoplasmic stability rather than export

influences the most subcellular distribution (Fig.4.5.A). This is particularly the case for PC transcripts,

where no correlation is found with the expression level of NAE. Interestingly, we find now a significant

positive correlation between the nuclear expression level and the NAE/CAE log2-ratio for RI-RNA and

lncRNA, accounting for 20% of the variance (R2 = 0.22 and R2 = 0.2). Therefore, the modulation of

the export rate can partially determine the subcellular localisation of lncRNA and RI-RNA, and these

differences could be the signature of the different mechanisms regulating processing of protein coding

transcripts or lncRNA and RI-RNA. Finally, the positive correlation of the NAE/CAE log2-ratio with the

(mature) transcript length is detected for all biotypes, and is striking for PC genes compared to that

observed at the all gene-level (R2 =0.41. Fig.4.5.D). Therefore, the subcellular localisation related to

transcript length is not a biotype-specific feature.
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Figure 4.5 – Relationship between NAE and CAE per biotype reveals biotype-specific and biotype-unspecific pat-
terns. A: Log2(NAE/CAE) shows a strong correlation with the expression level of CAE, defined as log2(Transcription
rate) + log2(half-life). B: Correlation of log2(NAE/CAE) against the expression level of NAE, defined as
log2(Transcription rate) + log2(export time). C: boxplot of the log2(NAE/CAE) ratio per biotype. Dashed line indi-
cates the median level when considering all the transcripts together. D: log2(NAE/CAE) against several genomic
features: Transcript length, number of exon, 3’UTR exon, and gene length. When R2 is less than 0.1, scatterplot
is not shown. Transcripts length positively correlates with the log2(NAE/CAE) in all RNA biotypes. In all figures,
number of gene per biotype is: PC = 10104, RI = 1093, LncRNA = 88, PT = 868, NMD = 883, Pseudogene = 72.

4.5.1 Localisation of Protein Coding transcripts matches the localisation of the

encoded proteins

Although most protein coding transcripts are mainly found in the cytoplasm, and that this enrichment

most likely results from a short cytoplasmic half-life, additional mechanisms may retain PC transcripts

in the nucleus [114, 113, 126]. For instance, one proposed role of nuclear retention is to buffer noise

associated with stochastic transcription [196, 127]. To characterise the biological functions of these

nuclear-enriched protein coding transcripts, we performed a functional enrichment analysis using

Gene Ontology (GO) database. We compared differentially expressed protein coding transcripts in NAE

and CAE (absolute value of log2(FC) > 2, 1600 genes in both groups out of 8925). We could confirm an

interesting and somewhat puzzling observation previously reported by Fazal et al. [208]: they showed

a concordance between protein and RNA localisation in human cells, using “APEX-seq”, a proximity
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RNA-labelling and sequencing method. Here, we found that nuclear transcripts code for nuclear

proteins involved in epigenetic modifications such as DNA methylation (KMT2, SETD1, EHMT1) and

DNA demethylation (KDM1-4) (Fig. 4.6.A). GO Terms related to mRNA processing (Iws1, Pabpn1, Cpsf6)

and particularly export (THO complex, Nxf1, Nucleoporins NUP) are also significantly enriched in the

nucleus. Additionally, factors involved in transcription by PolII and PolII (Ice1 and Ice2, Snapc4, Cdh8,

Ell), were also enriched in the nucleus.

On the other side of the spectrum, cytoplasmic RNA are mainly involved in translation, from ribosomal

RNA biogenesis and assembly (RPL, RPS), translation initiation (EIF), to elongation (EEF), and also

involved in mitochondrial translation. Transcripts coding for proteins involved in oxidative phosphory-

lation are also enriched in the cytoplasm: subunits of the mitochondrial respiratory complexes I-IV

(NDUF, SDH, UQCR and COX), Electron carrier (ETF and CYCS), and subunits of ATP synthase (ATP5).

Two metabolic functions mainly carried out by hepatocytes are also enriched in the cytoplasm: fatty

acid β-oxidation and detoxification. Proteins involved in the four reactions of the fatty acid β-oxidation

cycle (acyl CoA dehydrogenase, enoyl CoA hydratase, hydroxyacyl-CoA dehydrogenase and acetyl-CoA

acyltransferase) and other auxiliary enzymes involved in fatty acid oxidation in mitochondria are coded

by cytoplasmic RNA, as well as Glutathione-S-transferases (GST) from all three superfamilies (cytosolic,

mitochondrial, and microsomal), involved in Phase-II of detoxification of xenobiotics.

Figure 4.6 – Localisation of protein coding transcripts matches the localisation of the encoded protein. Boxplots
of the log2(NAE/CAE) ratio of protein coding transcripts belonging to GO Terms significantly enriched in the
cytoplasm or in the nucleus, based on EnrichR (Adjusted P-value < 0.1 and Combined Score > 50). Differential gene
expression was calculated with DESeq2. Transcripts (grouped by biotype) with a log2FC > 2 of < -2 were used (1685
in NAE and 1651 in CAE). GO Terms were grouped based on semantic similarity. Boxplots are constructed using all
the genes annotated in the significant GO Terms, whether these genes are enriched in one compartment or not.
Dotted line indicates the median log2(NAE/CAE) ratio of all protein coding genes. B: Localisation of transcripts
enriched in the cytoplasm (magenta) and in the nucleus (cyan) based on a published dataset of mouse liver tissue
[213].

We further verified the overall concordance between RNA and protein localisation using a published

dataset, in which the authors quantified proteins in different cellular fractions of mouse liver cells

by MASS-spectrometry, and assigned them to an organelle by protein correlation profiling [213]. In

our dataset, more than one third of the transcripts enriched in the cytoplasm (35%) were coding

for cytoplasmic proteins, and one fourth for proteins localised in mitochondria, compared to only

10% for nuclear protein. On the other hand, a similar proportion of nuclear transcripts were coding
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for nuclear or cytoplasmic proteins (28% and 25%, Fig.4.6.B). Together, this analysis suggests that

transcripts localisation matches to some extent protein localisation. Transcripts coding for highly

expressed functions (respiration, translation) are enriched in the cytoplasm. Because these are con-

stantly needed house-keeping functions, which need little regulation, transcripts are presumably stable

and accumulate in the cytoplasm. On the other hand, nuclear enriched transcripts often perform

regulatory processes (RNA processing, epigenetic modifications), which need to be dynamic. A rapid

response and adaptation to a stimulus could not be achieved with long-lived transcripts, except if a

particularly efficient destructive system is in place. Moreover, since nuclear retention acts as a passive

filter reducing transcriptional noise, retaining these transcripts could allow a better control of the

amount of transcripts available for translation [127].

4.5.2 Retained Intron as a class of nuclear-retained RNA

Retained Intron (RI) is a class of transcripts mainly found in the nucleus (Fig.4.5.C, [208], [214]). From

there, they can be exported into the cytoplasm, where they are often targeted for nonsense-mediated

decay [110]. Some are also degraded in the nucleus by nuclear exosomes [110]. Interestingly, RI

transcripts can be retained in the nucleus as stable transcripts and act as a reservoir of precursor mRNA,

awaiting for a signal that triggers their splicing and subsequent export [112]. To gain more insight about

the maturation (splicing) of Retained Intron, and to assess if RI indeed shows signatures of nuclear

enrichment due to their presumably slow export rate, we analysed pairs of RI and PC transcripts that

differ only by the presence of the retained intron (Fig.4.7.A). By restricting the analysis to pairs of RI-PC,

we make the assumption that the export (or degradation) rate of the RI transcript is the removal of the

retained intron, which then produces the PC mRNA. We compared the relative expression of nuclear

and cytoplasmic RI mRNA (NAE-RI and CAE-RI) to their corresponding spliced PC isoforms (NAE-PC

and CAE-PC). We summarised the different expression patterns in a heatmap and grouped genes in 5

clusters (Fig.4.7.B).

First, as expected, we observed that RI are far less abundant in the cytoplasm than in the nucleus

(CAE-RI < NAE-RI), and that CAE-RI are also less abundant than their corresponding PC isoform

(CAE-RI < CAE-PC), suggesting that RI transcripts are indeed mainly nuclear RNA. Out of the 260 pairs

analysed, only 14 CAE-RI were more expressed than their corresponding CAE-PC (cluster 5). When

we took a closer look at these genes, we noticed one limitation of the isoform-specific quantification

by Kallisto, as illustrated by Clptm1 (Fig. 4.7.G). In CAE, almost no reads map on the genomic region

corresponding to the retained intron, suggesting that the main cytoplasmic isoform is the protein

coding one. But the 3’UTR regions differ between PC and IR isoforms. Because most of the reads map

on short 3’UTR region corresponding to RI, but barely on the longer 3’UTR corresponding to the PC

isoform, Kallisto’s algorithm still assigns a majority of the reads to the RI isoform, despite the intron

being spliced. Thus, in this specific case, it is wrong to assume that the intron is still retained in the

cytoplasm.

The majority of the PC transcripts are more abundant in the cytoplasm than in the nucleus. These

cytoplasmically-enriched transcripts are in cluster 1 and 2. The main difference between cluster 1 and

2 resides in the relative abundance of the nuclear isoforms. In cluster 1 (n = 100), NAE-PC transcripts
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are slightly higher than NAE-RI, whereas in cluster 2, the RI isoforms are more abundant than the PC

isoform (n = 87). In the second case, the lifetime of the RI is longer than the PC isoform, either because

the post-transcriptional removal of the intron is a slow step, or because once fully-spliced, the PC is

efficiently exported to the nucleus. In the end, these PC transcripts mainly reside in the cytoplasm,

therefore, the splicing time of the remaining intron may only have a limited impact on the global

subcellular distribution compared to the effect of cytoplasmic half-life.

Nuclear-enriched genes are clustered in two groups. In cluster 3 (n = 35), the RI and PC isoforms are

present at comparable levels, suggesting similar relative lifetimes of NAE-PC and NAE-RI. In cluster 4 (n

= 24), there is a clear predominance of NAE-RI over NAE-PC. A possible explanation for cluster 4 (high

NAE-RI) is that the RNA transcript is retained in the nucleus in its immature form, and the splicing of

the last remaining intron (maturation) is a rate-limiting step. Once matured, the PC transcript is rapidly

exported. Genes in cluster 4 includes the splicing modulator Arglu1, a subunit of the pre-alpha-trypsin

inhibitor complex Itih3, the Glucokinase Regulatory Protein Gckr, and Shfl. At the gene-level (when

biotypes are not considered), they all appear as nuclear-enriched genes, and this is explained by the

predominance of the RI isoform, while the PC is in fact more cytoplasmic. Transcripts in cluster 3 were

significantly longer and had more exons compared to cluster 1 and 2 (pairwise t-test, p-value <0.05,

data not shown), in agreement with the previous observation that longer transcripts are more nuclear

(Fig.4.4.E), but no other genomic features, nor common functional roles (Gene Ontology, KEGG) that

could differentiate the five clusters were found.

Despite the small number of genes analysed, we could reveal distinct signatures. For example, some

transcripts that appear to be nuclear-enriched at the gene-level are in fact retained as their “immature”

RI form, while the spliced mature PC form does not accumulate in the nucleus but is rather rapidly

exported. This suggests intron retention is a potential post-transcriptional mechanism that modulates

the nuclear residence time of protein coding transcripts.
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Figure 4.7 – Retained Intron is a nuclear-enriched RNA biotype. A: Fates of an RI transcript: in the nucleus, RI
is either degraded by nuclear exosomes, exported as such into the cytoplasm, or spliced post-transcriptionally
to become the final protein coding transcript. B: Expression profiles of the RI isoform in the nucleus and in
the cytoplasm (NAE-RI, CAE-RI) and the protein coding isoform in the nucleus and in the cytoplasm (NAE-PC,
CAE-PC) of 260 genes. Only isoforms that differ by the presence of one additional exon were selected. Expression
levels were normalised per gene (per row, z-score). Genes were further clustered in 5 groups using hierarchical
clustering. C-G: Genome tracks of representative genes from each cluster (1-5). Grey box indicates the retained
intron. On the left, temporal profile of the corresponding RI and PC genes. Ensembl transcript ID (RI and
PC) Ppib: ENSMUST00000213785, ENSMUST00000034947, gene length: 6.39 kb , Cib3: ENSMUST00000211946,
ENSMUST00000098630, gene length: 8.5 kb, Stap2: ENSMUST00000233494, ENSMUST00000043785, gene length:
8.5kb, Shfl: ENSMUST00000043911, ENSMUST00000175820, gene length: 5.6 kb, Stap2: ENSMUST00000227181,
ENSMUST00000006697, gene length: 7.78 kb, Clptm1: ENSMUST00000208846, ENSMUST00000055242, gene
length: 31.77kb. (Blue: RI, Red: PC).
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4.6 Relationship between nuclear pre-mRNA and mRNA reveals sig-

natures of splicing and export times

We now analyse the first step of our simple model of RNA processing (Fig.4.1.C, D) in order to quantify

the relative contribution of splicing and nuclear export rates on the ratio of pre-mRNA to nuclear

mRNA.

If we assume that most introns are spliced before the end of transcription and polyadenylation (i.e.

co-transcriptional splicing), NTI (Nuclear Total pre-mRNA) corresponds to the nascent transcripts

[215, 216, 47]. At steady-state, the ratio of NTI versus NTE (or versus NAE if one neglects exons of

the nascent transcript) represents the ratio of splicing time over export time. The ratio is high if the

transcript is slowly spliced and / or quickly exported. On the contrary, the ratio is low if splicing is fast

and / or if the mRNA is retained in the nucleus. If splicing is not purely co-transcriptional, a fraction

of pre-mRNA are polyadenylated and are thus captured in NAI samples. In this case, the relationship

between NTI and NAE still represents the ratio of splicing and export times, but the rate s would be

a combination of co-transcriptional splicing (nascent transcript → NAE), and post-transcriptional

splicing (NAI → NAE). In order to estimate the proportion of polyadenylated pre-mRNA (NAI) in the

total population of pre-mRNA (NTI), we first recall here the observation that ∼12% of the nuclear

polyadenylated transcriptome encoding for proteins is composed of pre-mRNA (Fig.4.3). At the gene-

level, the median log2(NAI/NAE) is -3.05, meaning that the majority of polyadenylated mRNA are 8

times more abundant than the pre-mRNA isoform (Fig.4.8). As a comparison, in the nuclear total

RNA population, mRNA is only 2.6 times more abundant than pre-mRNA (log2(NTI/NTE) = -1.4).

The two nuclear mRNA populations (NAE and NTE) correlate with a Pearson’s correlation ρ of 0.9

(Fig.4.11.B), and the log2-ratio of NTI/NAE of -1.32 is very close to the -1.41 found for NTI/NTE. These

two observations suggest that there is a large overlap between NAE and NTE populations, apart from

the differences noted in Fig.4.3.C (sn(o)RNA, etc.), and the differences corresponding to the nascent

transcripts are most likely minor. By assuming that NAE equals NTE, and by comparing log2(NAI/NAE)

and log2(NTI/NAE), we deduce that NTI consists of 30% of polyadenylated pre-mRNA (NAI). This

is a rough estimation, but gives an idea of the composition of NTI genome-wide, and suggests that

post-transcriptional splicing might play a role as an mRNA maturation step.

To start analysing the relationship between splicing and export rates, we first neglect post-transcriptional

splicing and compare NTI and NAE. We find a strong correlation between the two measurements

(Fig.4.8.A, ρ = 0.77), suggesting that transcription rate, which is the common factor to both NTI and

NAE (Fig.4.1.D), has a larger effect on the expression level of NTI and NAE than export and splicing

rates. By performing a similar comparison as in Fig.4.4.B, we find that the log2-ratio of NTI/NAE is

more correlated with the export time (NAE) than with the splicing time (NTI) (Fig.4.8.C and D, ρ = 0.53

for NAE, ρ = 0.12 for NTI). This observation suggests that, on average, the abundance of spliced nuclear

mRNA (NAE) is more strongly determined by the variation of nuclear retention time rather than by a

fast splicing of the pre-mRNA. Note, however, that because transcription, splicing and export are not

always independent processes but can be functionally coupled, the interpretation of the correlations

may be more complicated. For instance, splicing factors are recruited along with conserved mRNA
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Figure 4.8 – The ratio of nuclear pre-mRNA and nu-
clear mRNA reflects the relationship between tran-
scription rate, splicing time, and export time. A:
log2 ratio of pre-mRNA versus mRNA in Nuclear
PolyA (NAI/NAE), in Nuclear Total (NTI/ NTE) and
in NIT/NAE. B: NTI versus NAE, in log2(RPKM), av-
eraged over 6 time-points. According to our model,
log2(NTI) is defined as log2(Transcription rate) +
log2(splicing time) and log2(NAE) is defined as
log2(Transcription rate) + log2(export time). In grey:
kernel 2d density. Boxplots on top and on the right
show the distribution of NTI and NAE. C : NTI / NAE
ratio in log2-scale, defined as log2(splicing time) -
log2(export time), against the average expression of
NTI. D : NTI / NAE ratio in log2-scale against the
average expression of NTI. Grey line indicates the
linear regression.

export machinery (TREX) and Exon Junction Complex during transcription, coupling splicing with

export [217]. The local environment associated with highly transcribed genes has a high concentration

of splicing factors [218, 219, 137], further linking transcription rate with efficient splicing. Therefore,

the anticorrelation of NAE (defined as log2(transcription rate) + log2(export time)) with NTI / NAE

(defined as log2(splicing time) - log2(export time)) could also be interpreted as a high transcription rate

promoting efficient splicing (short splicing time).

We next stratified the analysis by biotype. As expected, we still do not observe a relationship between

NTI/NAE log2-ratio and NTI for protein coding transcripts (Fig.4.9.A), since this group makes up

the majority of genes. However, we observe a weak positive correlation for Retained Intron, lncRNA,

and non-coding RNA (Pseudogenes, NMD, Processed transcripts). This suggests that splicing time

influences the overall abundance of pre-mRNA over mRNA, or that transcription rate and splicing rate

are not as coordinated as for PC genes. Even if the biogenesis of most RNAs included in this analysis

follows the same steps (transcription by RNA Polymerase II, 5’m7G capping, 3’polyadenylation), the

processing patterns could differ from one biotype to another [124]. For instance, lncRNA are notoriously

known to be poorly spliced, as seen in Fig.4.9.B [220]. Also, in contrast to PC genes, many lncRNA are

transcribed by an RNA PolII with a differentially phosphorylated C-terminal domain [221], which may

also contribute to the increased intron levels. Concerning the relationship of the NTI/NAE log2-ratio

with NAE, Retained Intron (RI) and non-coding RNAs (ncRNA) are the most strongly correlated with

the export time (Fig.4.9.C). Here, note that when we compare NTI and NAE, the export rate e reflects

not only the nucleo-cytoplasmic shuttle of the RNA transcript, but also any process that makes the

nuclear mRNA “disappear”. In case of an RI transcript, e therefore includes the post-transcriptional

splicing of the remaining intron, after which the transcript is no longer an RI isoform. Additionally, RI,

and other aberrant lncRNA and ncRNA are subject to RNA surveillance mechanisms and degraded if

necessary by RNA exosomes [222]. Therefore, the signatures of export and splicing processes are visible

in the pre-mRNA/mRNA levels of the purified nuclear RNA, and could additionally reflect distinct

58



4.6. Relationship between nuclear pre-mRNA and mRNA reveals signatures of splicing and export
times

mechanisms regulating mRNA levels of protein coding transcripts and other RNA biotypes.

Figure 4.9 – Relationship between splicing and export times per biotype. A: NTI / NAE ratio in log2-scale, defined as
log2(splicing time) - log2(export time), against the average expression of log2(NTI). B: NTI / NAE ratio in log2-scale
against the average expression of log2(NAE). Gray line indicates the linear regression. Non-Coding RNA consists
of NMD, Pseudogenes and Processed Transcripts that show similar patterns. C: log2(NTI / NAE) of each biotype,
showing that LncRNA are the least well spliced RNA.

.

4.6.1 Nuclear pre-mRNA reveals the extent of co- versus post-transcriptional splic-

ing

On average, polyadenylated nuclear RNA consists of 10% - 15% of pre-mRNA (Fig.4.3.B). Thus, although

the average expression level of NAI is low (Fig.4.8.A), a non-negligible fraction of introns is spliced

post-transcriptionally [90].

To further distinguish post-transcriptional splicing events, we compared the relative expression level

of polyadenylated pre-mRNA (NAI), defined in our model as log2(Transcription time) + log2(post-

transcriptional splicing time), and nuclear mRNA (NAE), defined as log2(Transcription time) + log2(export

time) (Fig.4.10). Analogously to previous analysis, the ratio at steady-state results from different combi-

nations of rates: when NAI/NAE is high, either the post-transcriptional removal of intron is slow, or fully

spliced mRNA are quickly exported. On the other hand, the NAI/NAE log2-ratio is low when mature

mRNA are retained in the nucleus, or alternatively, when post-transcriptional splicing is fast, which

can also be interpreted as the fact that most introns have already been removed co-transcriptionally.

We find that the log2-ratio of NAI/NAE correlates better with NAI than with NAE (ρ = 0.65 for NAI, ρ =

0.005 for NAE). Given that the log2(Transcription rate) is common to both NAI and NAE, the strong

correlation coefficient suggests that the post-transcriptional splicing time has a larger influence on the
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ratio than the export time (Fig.4.10.A, B). All RNA biotypes have similar correlation strength (Fig.4.10.C,

D). However, they differ by the splicing ratio: lncRNAs are again the least well spliced RNA class, while

protein coding transcripts have the lowest NAI/NAE log2-ratio (Fig.4.10.C). Moreover, polyadenylated

pre-mRNA is never enriched over mRNA (log2(NAI / NAE) < 0 for >98% of all the protein coding

transcripts), thus, post-transcriptional removal of introns always happens on a shorter time-scale than

export, and protein coding transcripts are not retained in the nucleus in the unspliced form. However,

as shown in the previous section (see 4.5.2), hundreds of protein coding transcripts contain a retained

intron. It is therefore possible that rather than being retained as a “protein coding pre-mRNA”, the

transcript is retained as its unspliced Retained Intron isoform.
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Figure 4.10 – Comparison of polyadenylated nuclear pre-mRNA and mRNA reveals signatures of post-
transcriptional splicing. A and B: log2-difference between nuclear pre-mRNA (NAI) and nuclear mRNA (NAE)
against log2(NAI) in A and against log2(NAE) in B. In grey: kernel 2d density. The NAI / NAE log2-ratio has a
stronger correlation with the expression level of NAI than NAE. C: NAI / NAE log2-ratio for each biotype. LncRNA
are the least well-spliced mRNA. D and E: same plot as in A and B, but for each biotype. Grey line is the linear
regression line.

To further distinguish different scenarios explaining the relationship between NAI and NAE, we com-

pared the log2-ratios with the Nuclear Total RNA population. NTI consists of both nascent pre-mRNA

and NAI, while NTE consists of both nascent mRNA and NAE. We estimated above that NTI con-

sists of ∼30% of NAI, but this ratio varies for each gene depending on the extent of co- versus post-

transcriptional splicing. Therefore, by integrating both Nuclear Total and Nuclear PolyA RNA population

in the same analysis, we aim to estimate the extent of co- and post-transcriptional splicing.
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As expected, the level of NTI is higher than NAI, because NTI represents the sum of both NAI and

nascent pre-mRNAs (Fig.4.11.A). The situation when NAI value approaches NTI is when the population

of nuclear pre-mRNAs mainly consists of fully transcribed and polyadenylated transcripts, and the

proportion of nascent pre-mRNA is very small. This situation can happen if the gene length is short:

transcription and 3’ end processing are already terminated by the time the spliceosome assembles

and splices the newly transcribed intron. If splicing and transcription are two processes occurring

concurrently, the longer the gene, and particularly the longer the downstream exon, the higher the

probability for the upstream intron to be detected and spliced. We indeed observe a strong correlation

between the expression of NAI and the gene length, while NTI, representing the total pool of pre-mRNA

in the nucleus, is not influenced by the gene length (Fig.4.12.A, B). This suggests that short genes are

less co-transcriptionally spliced than long genes. Among genes that are poorly co-transcriptionally

spliced due to their short length, we find for instance members of different classes of apolipoproteins

(APOA, APOC, APOE, APOF, APOL, APOM, Fig.4.11). On the other side of the spectrum, we find genes

with a much higher value of NTI compared to NAI, suggesting that for those genes, NTI is mainly

composed of nascent pre-mRNA and that polyadenylated pre-mRNA are relatively less abundant. For

these genes, technically, we cannot determine if the introns are removed while transcription is still

ongoing, or removed on an extremely fast time-scale post-transcriptionally. Co-transcriptional splicing

creates a typical sawtooth pattern of decreasing density of reads mapping on intron, with higher signal

toward the 5’ end, described in nascent-seq dataset [89, 59]. We observed the sawtooth patterns in

long genes such as Egfr or Plcxd2 (Fig.4.11FD), supporting the hypothesis that when NTI level is much

larger than NAI, NTI indeed reflects the population of nascent RNA. Therefore, the NTI/NAI log2-ratio

represents the extent of co- versus post-transcriptional splicing. Moreover, the strong correlation of

the log2-ratio and gene length (Fig.4.12) further supports the idea that the rate of co-transcriptional

splicing is higher for long genes than short genes, potentially related to the total time required for

the completion of transcription. This correlation was observed only for protein coding transcripts,

and to some extent for NMD (R2 of 0.15 compared to R2 of 0.4 for PC transcript), suggesting that the

mechanisms regulating splicing differ between distinct classes of RNA.
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Figure 4.11 – Relationship between NTI and NAI reveals the extent of co- versus post- transcriptional splicing
of protein coding transcripts. A: Comparison of pre-mRNA in PolyA et Total RNA population: log2(NTI) against
log2(NAI). NTI, which consists of NAI and nascent pre-mRNA, is thus higher than NAI. Genes whose genome track
are shown in D and E are labelled. Dashed line indicates the identity line. Red: 2D kernel density. Only protein
coding genes are shown. B: Comparison of nuclear mRNA from PolyA and Total RNA population (NAE versus
NTE). C: x-axis: the log2-ratio of NAI over NAE is defined as the log2(post-transcriptional splicing time (post-s))
minus log2(export time). y-axis: the log2-ratio of NAI over NAE is defined as the log2(post-s + co-transcriptional
splicing (co-s)) minus the log2(export time). The dashed line indicates when splicing is mainly post-transcriptional
(NTI = NAI). Dotted line is log2(NAI) + 4. The more the transcript is located above the identity line (toward the
dotted line), the higher the extent of co-transcriptional splicing. If a transcript is on the identity line, we cannot
determine the relative contribution of the export time and the post-transcriptional splicing. If a transcript is
mostly co-transcriptionally spliced, the value of the post-transcriptional splicing approaches 0. Assuming that
co-transcriptional splicing time does not vary much, log2(NTI/NAE) is directly proportional to the export time.
D: distribution of estimated log2export times (plus constant time) of co-transcriptionally spliced transcripts
(log2(NTI/NAI) < -4). E: Genome track view of short genes that are mainly post-transcriptionally spliced: Apoa4:
gene length 2.76 kb. Apol7a: 11kb. No reads map on the intronic region in the cytoplasm. F: Genome track view of
long genes that are mainly co-transcriptionally spliced: Plcxd2: gene length 51kb. Egfr: 166 kb. Genome tracks are
not to scale.
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Finally, we analyse again the NTI/NAE log2-ratio using the assumption that if NTI values are close to

NAI, splicing is mostly post-transcriptional, while if NTI is much greater than NAI, the splicing regime is

mainly co-transcriptional. We plot the NTI/NAE log2-ratio against the NAI/NAE log2-ratio (Fig.4.11.C):

in this way, genes on the identity line are presumably post-transcriptionally spliced, and genes further

apart from the diagonal are more co-transcriptionally spliced. If an RNA transcript goes through

extensive post-transcriptional splicing (on the identity line, Fig.4.11.C), the relative contribution of the

export time and the post-transcriptional splicing time cannot be separately estimated. However, in the

most extreme case where splicing is purely co-transcriptional, post-transcriptional splicing is virtually

null. Because we estimate co-transcriptional splicing at the gene-body level, and not specifically for

each intron, we make the simplifying assumption that the elongation rate is constant, and do not

take into account local variation of rates, for instance around the transcription start sites, and the

termination sites [? ]. Assuming that co-transcriptional splicing time, which is directly related to the

elongation rate [92], does not vary among genes, the NTI/NAE log2-ratio presumably reflects the export

time plus a constant.

We defined genes as co-transcriptionally spliced when the log2(NTI/NAE) is < -4 (arbitrary thresh-

old), including 1400 genes (∼15% of the protein coding transcripts). The log2 export times of co-

transcriptionally spliced genes are normally distributed (Fig.4.11.D). Among genes that are putatively

slowly exported, we find two members of the 17β-Hydroxysteroid dehydrogenases (Hsd17b7 and

Hsd17b12), and Fkbp5, a co-chaperone that modulates glucocorticoid receptor activity. Among genes

that are putatively quickly exported, we find several transcription factors such as Foxo1, active during

the fasted state and inactive in response to insulin during the fest state, Foxo3, regulating liver lipid

metabolism, or the deacetylase Sirt1, which acts as a sensor of cellular NAD+ level and also interacts

with the molecular circadian clock system. Preliminary analysis did not reveal any common biological

functions, nor enrichment for binding of specific RNA-Binding Proteins.

The comparison of the expression level of nuclear pre-mRNA in both Total and Poly(A) conditions is

therefore informative about the extent of co- and post-transcriptional splicing. The splicing regime is

strongly influenced by the gene length, and by extension, by the elongation time. This is particularly

the case for protein coding transcripts, while differences in splicing and export signatures observed for

the other biotypes suggest that regulatory programs may differ.

Figure 4.12 – Long protein coding genes are more co-transcriptionally spliced than short genes. A: Correlations of
the gene length (in log2(bp)) with the log2(NAI) (A), log2(NTI) (B) or the log2-ratio of NTI and NAI (C). The R2 were
all < 0.1 for other biotypes, except NMD with a R2 of 0.17 with NTI/NAE log2-ratio.
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4.6.2 Estimation of the relative variability of the kinetic rates

We finally combined all the variables (NTI, NAI, NAE, CAE) and analysed if the subcellular distribution

could be explained by the combination of splicing and export rates. For instance, splicing efficiency has

been shown to be the main predictor of the subcellular localisation of lncRNA, so that poorly spliced

RNA were mainly found in the nucleus [126]. By comparing log-ratios, we get rid of the influence of the

transcription rate (Fig.4.13). Here, we did not observe a correlation between the subcellular localisation

(log2(NAE/CAE) and between the total splicing time (log22(NTI/NAE)), the post-transcriptional splic-

ing time (log22(NAI/NAE)) nor the proportion of co- versus post-transcriptional splicing frequency

(log2(NAI/NAE)) for any biotype. We suggested in the previous section that cytoplasmic half-life has

the largest influence on the log2-ratio of NAE versus CAE (Fig.4.5, Fig.4.4), therefore, the influence

of other regulatory processes could be smaller, explaining the absence of correlation. To estimate

the relative contribution of each process (transcription time, splicing time, export time, cytoplas-

mic half-life), we estimated their variance across all genes (and in log-scale). Under the simplifying

assumption that these parameters are all independent, we can estimate the variance of each param-

eter by computing the matrix of covariance. For example, the matrix of covariance of Fig.4.8.B is

computed as follow: cov(NTI, NAE) = cov((log2(Splicing time) - log2(Transcription rate), log2(Export

time) - log2(Transcription rate )). Because of the assumption of independence and of the relationship:

cov(Y ,Y ) = var (Y ), the covariance matrix reduces to the variance of the common factor, here, tran-

scription rate. The variance of the transcription rate is 3.5 when comparing NTI to NAE (Fig.4.8.B), and

2.6 when using a different pair (NAE versus CAE, Fig.4.4.A). By computing the covariance matrix of the

scatterplots presented in Fig.4.13 (A and B), the estimated variance of cytoplasmic half-life (CAE) is in

the same range as transcription time (3.1 in A, 2.4 in B). In comparison, the variance of the export time

is smaller: 0.4 when estimated by comparing log2(NTI/NAE) to log2(NAE/CAE) as in A, and 0.8 when

comparing log2(NAI/NAE) to log2(NAE/CAE) as in B. The variance of the total splicing time can also be

estimated from the variance of NTI (from A), and is 1.4, while the variance of the post-transcriptional

splicing time is in the same range as cytoplasmic half-life and transcription rate (2.8, from B). The

estimated variances are different depending on which pair of comparisons is used, but it is difficult to

determine whether this inconsistency is due to incorrect assumptions of independence between the

parameters. Nevertheless, this analysis suggests that transcription, cytoplasmic degradation times and

post-transcriptional splicing times have larger variances relative to the mean compared to the export

and splicing times. This supports the hypothesis that variation of the stability of cytoplasmic mRNA

transcript explains more the subcellular localisation than the variation of the export step (Fig.4.4.B),

and thus, the regulation of the export process does not significantly impact the global distribution of

subcellular RNA transcripts.

With the quantification of nuclear pre-mRNA and mRNA, we could investigate some regulatory pro-

cesses occurring in the nucleus, namely the export and splicing, and additionally separate the global

splicing term into co- and post-transcriptional splicing. It is difficult to numerically evaluate the

rates, because we analyse the steady-state levels, which always reflects the contribution of two factors.

However, how one variable correlates (or not) with another variable, or with genomic features such as

gene length reveals specific patterns which often differ between protein coding transcripts and other

biotypes. Analysis of the relative variance helps to evaluate which process influences the most the
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Figure 4.13 – Subcellular distribution of RNA transcripts is not explained by the relationship between splicing
and export times. A: Scatterplot showing the relationship between export time and splicing time (log2(NTI) -
log2(NAE)) versus export time and cytoplasmic half-life (log2(NAE) - log2(CAE)) for each biotype. B: same plot as
A, but with the ratio of post-transcriptional splicing and export time on the y axis (log2(NAI/NAE)). C: comparison
of the extent of co- versus post- transcriptional splicing (log2(NTI / NAI) against log2(NAE) - log2(CAE)). Number
of transcripts per biotype: PC: 8337. RI: 509. LncRNA: 66. PT: 494. NMD: 536. Pseudogenes: 16.

RNA ratios. In the next section, we will use time-series RNA-seq profiles and focus on rhythmic genes

in an attempt to quantify these rates and explain the patterns observed in the analysis performed at

steady-state.
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4.7 Model-based approach to quantify kinetic parameters from time-

series profiles

The accumulation of RNA transcripts in any of the subcellular compartments results of the balance

between synthesis and decay rates. At steady-state (Fig.4.4, Fig.4.8), it was generally not possible to

deduce their respective contributions. However, as our lab showed before, it is sometimes possible

to determine these rates from time-series profiles when genes are rhythmic, using a mathematical

modelling approach developed by Wang et al.[201]. In essence, by comparing phase delays and relative

amplitude of causally related and oscillating RNA species, the approach can infer production and

degradation rates. Intuitively, the oscillations of long-lived and stable transcripts tend to dampen and

the phase (time of maximum expression level) will be delayed. On the contrary, the oscillations of

short-lived transcripts propagate with a minimal loss of amplitude and short phase delay.

In the initial study by Wang et al.[201], the production of mature mRNA was assumed to be equal

to the pre-mRNA multiplied by a parameter k that represents the rate of pre-mRNA processing, in-

cluding splicing and nuclear export. Intronic reads were used to represent pre-mRNA, and exonic

reads from the same biological samples used for mRNA. The two kinetic rates regulating the mRNA

level were the transcription and degradation rates. The authors were thus able to determine half-

lives (log(2)/degradation rate) for thousands of genes in mouse liver. Moreover, they uncovered the

contributions of rhythmic post-transcriptional regulation (specifically degradation) in modulating

temporal patterns of ∼35% of the rhythmic hepatic transcriptome. In that study, all post-transcriptional

regulation processes (co- and post- transcriptional splicing, and export) were pooled in a single rate k.

Using our fractionated liver cells data, we aim to exploit the quantification of mRNA in different cellular

compartments to add more details to the kinetic parameters of mRNA dynamics. More specifically, we

want to focus on the nucleocytoplasmic transportation, which was previously overlooked and whose

contribution to the 24 hours rhythmic gene expression has not been studied. Therefore, we split the

RNA processing into two distinct steps (hereafter referred to as NTI-NAE or step 1, and NAE-CAE or step

2) in order to apply the mathematical model of Wang et al. The first process describes the accumulation

of nuclear mRNA (NAE) due to splicing of pre-mRNA NTI and to nuclear export, the second describes

the accumulation of mRNA in the cytoplasm (CAE) due to export of NAE and cytoplasmic degradation

(Fig.4.14.A). Each step is described by an ordinary differential equation, where the first variable (NTI

in step 1, NAE in step 2) and the rate of degradation (export e in step 1, cytoplasmic degradation γ

in step 2) are either constant or rhythmic (for more details see 6.7). The combination of constant or

rhythmic production and degradation terms generates four different kinetic models (Model 1 to Model

4, Fig.4.14.B). The optimal model is selected by combining a maximum-likelihood approach with the

Bayesian information criterion (BIC) to control for model complexity. An arbitrary threshold of 0.6

is set on the BIC weight. For genes with constant levels of pre-mRNA and mRNA (Model 1 or M1),

only the ratio between the production and degradation can be determined, similar to the analysis

without the temporal component. So the degradation rate γ is structurally non identifiable ([223],

see 6.7). The degradation rate γ in Model 2 (rhythmic production, constant degradation) depends on

the relationship of the relative amplitudes and the phase shift between the first and second variable

(NTI and NAE, or NAE and CAE). The rhythmic pattern of the RNA is described by a cosinor function
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with a period of 24 hours, and is raised to a power β ranging from 1 to 2 in order to account for the

deformed, peaked oscillatory profiles that deviate from a symmetric cosinus function. When β is 1

(simple cosinus), an analytical solution exists (Fig.4.14.C) [79]. The phase delay cannot exceed 6 hours,

and the relative amplitude of the second RNA species cannot be higher than the relative amplitude of

the first RNA species (the amplitude always dampens) [54]. If the shape of the temporal profile is more

peaked (β > 1), the solution has to be found by numerical integration. Model 3 (M3) and model 4 (M4)

include rhythmic degradation, modeled as a simple cosinor with a mean, a relative amplitude, and a

phase. For genes in Model 3 (M3, constant production, rhythmic degradation), the kinetic parameters

can be particularly difficult to determine: because the first RNA species is constant, there is no phase

shift nor difference in amplitude, and the parameters are estimated from the shape of the temporal

profile. In model 4 (M4), rhythmic degradation can amplify the relative amplitude of the second RNA

species, or shift peak time beyond what is observed with a constant degradation. In all models, the

production term (splicing s in step 1, or export e in step 2) is defined as the ratio of the first and second

RNA species. Because NTI, NAE, and CAE come from samples processed and sequenced separately, the

relative abundance is not defined, therefore, these parameters do not have a biologically interpretable

value and will not be discussed.

Figure 4.14 – Kinetic model describing the temporal accumulation of pre-mRNA and mRNA. A: RNA processing
steps are split in two steps: first, we describe the temporal accumulation of nuclear mRNA in function of splicing
rate s and export rate e, and second, the temporal accumulation of cytoplasmic mRNA in function of export rate
e and degradation rate γ. B: The combination of constant or rhythmic pre-mRNA (p) and constant or rhythmic
degradation generates four models. C: Relationship between the ratio of relative amplitudes, phase delay, and

half-life. The data points represent estimated half-lives at step 2 (
log (2)
γ ). If the degradation term is constant (M2),

and if β= 1 (simple cosinus), then the analytical solution is: ar ct an(ωγ ) (left panel), and
γ√

γ2+ω2)
(rightpanel). If

β is not equal to 1, the solution is found by numerical integration. If the degradation term is not constant, M4, this
relationship is not valid anymore, generating temporal profiles with strongly increased or decreased amplitudes,
or large phase shift.
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4.8 Estimation of cytoplasmic degradation rates using time-series

RNA-seq profiles

We first applied the mathematical model to step 2 (NAE-CAE) in order to estimate cytoplasmic half-lives.

We start with step 2 since this concerns cytoplasmic half-lives, and has been addressed before to some

extent by Wang et al.[201]. To facilitate identification and take into account biologically plausible

ranges, we set the range of possible half-lives from 10 minutes to 24 hours. During the optimisation, the

degradation rate γ sometimes reaches our fixed upper or lower limit, and is therefore only identifiable

on one side (Left or Right, see Methods: 6.7). Even if the exact value cannot be determined, it informs

us about the stability of the gene in the cytoplasm and therefore we decide to keep those genes for

discussion (Fig.4.15.B). Out of the 11406 genes expressed in the liver, we confidently classified 1424

genes as having a rhythmic accumulation of nuclear RNA (M2 and M4), of which 79 are additionally

rhythmically degraded (M4). The rhythmic profile of 386 genes in the cytoplasm is due solely to the

temporal regulation of the cytoplasmic half-life (Fig.4.15.A, M3). Thus, ∼15% of expressed genes have

a rhythmic temporal profile in at least one cellular compartment. Additionally, 25% are degraded

rhythmically, in line with previous studies in the mouse liver (28% in [201], 30% in [79]). The median

half-lives were calculated including only values that do not reach the upper or lower boundary, and

are 2.45h for M2, 3.88h for M3 and 2.36h for M4. These estimations are consistent with the median

of 2.5h estimated by [201] in mouse liver. In general, mRNA half-lives range from minutes to several

hours, and the estimation varies depending on the model (cell type, tissue) and method (total RNA-seq,

transcription inhibition, metabolic labeling [224]). In NIH3T3 cells, using pulse-chase labeling method,

the estimated median mRNA half-life was 9h [225]. In other systems, the median of estimated mRNA

half-life was 3.9h in mouse ESCs [226], 4h in HEK293 cells [224], 3.4h in HELA cells [227], and 2.1h in

another experiment with NIH3T3 fibroblasts [155]. Our estimations are shorter, probably because our

method focuses only on rhythmic genes that are known to be particularly short-lived in order to sustain

rhythms [79].

In agreement with the previous study by Wang and colleagues in mouse liver, M4 are more abundantly

expressed, and have larger amplitude compared to M2 (Fig.4.15.C). Contrary to what had been previ-

ously reported, the distribution of peak times in the cytoplasm differed between the models. Indeed,

while M2 phases are more or less distributed throughout the days, we observe two enrichments of

phases in M3. The first wave of peak expression is between ZT3 and ZT9, with genes involved in break-

down of proteins such as Psmd3, Psmf1, Adrm1. A second enrichment of M3 peak time is between ZT14

and ZT18, including genes related to mRNA processing (Gene Ontology Term GO:0006397) such as

Srsf1, Srsf3, Sfpq, Thoc7, and Hnrnph1. Preliminary analysis did not reveal any common RNA-Binding

Proteins motifs in these groups of genes.

In Fig.4.14.D, we show some representative genes to illustrate the typical behavior of each model.

When degradation is constant (M2), the cytoplasmic half-life is determined by the ratio of relative

amplitudes and the phase delay. The more stable the transcript, the more the oscillations dampen,

and the longer the phase difference between NAE and CAE. Note that the phase delay never exceeds

6 hours (Fig.4.14.C) [54]. Transcripts with a short half-life, have similar temporal profiles in terms
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of peak and relative amplitude in the nucleus and in the cytoplasm (Fig.4.14.D). On the other hand,

a stable transcript such as Uox, which has an estimated half-life of 6.1h, has a damped amplitude

in the cytoplasm compared to the nucleus (log2FC of NAE: 1.2 , log2FC of CAE: 0.5). Incidentally,

Uox is sometimes classified as non-rhythmic when the transcriptome is analysed at bulk-level (no

fractionation nor intron / exon), and its rhythmic transcription is sometimes overlooked in circadian

studies [228]. Genes classified in model 3 are rhythmic only in the cytoplasm. Fus is a well-known

example of a gene rhythmically regulated at the post-transcriptional level [201, 54]. Finally, genes

in M4 are rhythmically regulated both at the transcription and degradation level, resulting in more

complex patterns, for instance a higher relative amplitude in the cytoplasm (Ddo, 7h) or a large phase

delay (Cbs, 1.4h). Rhythmic degradation can also advance the peak time of CAE, thus fine-tuning the

phase of short-lived transcripts [201]. Stability of Period genes are post-transcriptionally regulated,

as first demonstrated in Drosophila, with Per transcript being more stable during the rising phase,

and destabilised during the descending phase [158]. Similarly, the three Periods genes in mice are

targeted by different RBPs, such as the stabiliser hnRNP K and destabiliser by hnRNP D affecting Per3,

or hnRNP 1 regulating the stability of Per2 [120, 156]. However, in our dataset, all three Periods genes

were classified as M2 in all RNA comparisons (NAE-CAE, NIT-NAE, or UTI-UTE). Fitting the pattern

with a particularly short half-life was sufficient to explain the temporal patterns (Per1 and Per2: 10

minutes, Per3: 30 min).
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Figure 4.15 – Estimation of cytoplasmic half-life using time-serie RNA-seq profiles. A: Classification of genes in M2
(rhythmic NAE, constant degradation), M3 (constant NAE, rhythmic degradation), or M4 (rhythmic NAE, rhythmic
degradation). B: Distribution of cytoplasmic half-lives. The median (dotted line) is calculated excluding half-lives
reaching the lower or upper boundary (10 minutes and 24 hours). C: Distribution of log2FC of NAE and CAE of
genes classified in M2 and M4. Note that if degradation is constant (M2), the log2FC of CAE cannot be higher
than of the NAE. D: Circular histogram showing the phases (peak times) of CAE in each model. E: Representative
temporal profiles of NAE and CAE of genes in M2, M3 and M4 genes with short half-life (up) or long half-life
(bottom).

4.8.1 Identification of distinct dynamic strategies driving nuclear and cytoplas-

mic mRNA abundances

Our mathematical model uses the relationship of the phases and amplitudes between RNA species

in order to estimate the degradation rates. However, the relative expression level of NAE and CAE is

not taken into consideration. In order to integrate the relative subcellular abundance in our analysis

of rhythms, we clustered the 1345 genes classified as M2 in 8 groups according to the mean absolute

expression of CAE and of NAE, of the ratio of NAE and CAE, the log2 fold-change of NAE and of CAE,

and the phase difference between NAE and CAE (Fig.4.16.A). The last three parameters are an indirect

estimation of the half-life.
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Figure 4.16 – Clustering of M2 genes according to the mean expression level reveals different dynamic strategies
to reach the same steady-state level. A: Temporal profiles of NAE and CAE in each of the 8 clusters (hierarchical
k-means clustering). The phase of all genes have been aligned to ZT0 (NAE). The profiles drawn with thick lines
are computed based on the centers (mean) of each parameter. B: Boxplots of predicted half-lives in each cluster. C:
log2(NAE) versus log2(CAE), with colored polygons indicating the location of genes in each of the 8 clusters. Grey
dots show all the genes, while black dots show only rhythmic genes classified in model 2. D: Temporal RNA-seq
profiles fitted by the model of representative genes of each cluster (1 to 8 from top left to bottom right)

Cluster 1 contains genes that are the most abundant in the cytoplasm and in the nucleus. Cytoplasmic

temporal profiles are relatively dampened compared to the large amplitude in the nucleus and have a

large phase delay, reflecting a long half-life (Fig.4.16.B). Moreover, RNA transcripts are enriched in the

cytoplasm compared to the nucleus (median log2(NAE/CAE is -3.5)). Therefore, the most abundant

transcripts tend to be relatively stable compared to other rhythmic genes. A few genes do not match this

pattern and still show large cytoplasmic amplitudes (log2FC > 2) and short half-life such as Thrsp, Upp2,

and Fgl1 despite their high cytoplasmic abundance. The members of the Inter-Alpha-Trypsin Inhibitor

Heavy 1 to 4 are all in cluster 1 (except Itih5 that is almost not expressed in the liver). While Ith2 and

Ith4 are mainly cytoplasmic (log2(NAE/CAE) of -2.6 and -3.9 respectively), Ith3 is more abundant in

the nucleus, despite its slow predicted degradation rate (half-life: 11 hours, log2(NAE/CAE) is 0.4).

However, we showed in a previous section (section 4.5.2) that the nuclear enrichment of Itih3 is in fact

due to the presence of a retained intron (RI) isoform. The RI isoform is short-lived (half-life of 30 min
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when estimated at the biotype-level), and does not accumulate in the cytoplasm. On the other hand,

the protein coding isoform is long-lived and enriched in the cytoplasm, matching the pattern of genes

in cluster 1 (log2(NAE/CAE) of -2.5, half-life 24h). Itih1 also appears to be more nuclear compared to

the other genes in cluster 1 (log2 ratio of -1). Itih1 has no annotated Retained Intron, however, on the

genome track, we clearly see an increased density of reads mapping on the intron 19 compared to other

intronic regions that are likely better spliced. The presence of the poorly spliced, putative retained

intron could also explain why Itih1 appears to be nuclear-enriched despite the long half-life.

Genes in cluster 2 have a similar pattern to cluster 1 (cytoplasmic enrichment, long half-life), but

at a lower expression level. Thus, overall, the relatively long half-life could explain the preferential

cytoplasmic localisation for genes in these two clusters.

Figure 4.17 – Itih1 and Itih3 are enriched in the nucleus, potentially through an intron mechanism. A: Genome
track view of Itih3 of NAE and CAE at ZT16. Grey box indicates the retained intron. Gene length: 15kb isoform:
PC Isofom: ENSMUST00000006697, RI isoform: ENSMUST00000227181. B: Fitted RNA-seq profiles of Itih3 at
the gene-level or at the biotype-level. PC isoforms: sum of counts mapping on ENSMUST00000006704 and
ENSMUST00000163118. C: Genome track view of Itih1 of NAE and CAE at ZT16. Grey box indicates the putative
retained intron. Gene length: 14.1kb. Genome tracks are not on scale. D: Fitted RNA-seq profiles of Itih1, Itih2 and
Itih4 at the gene-level.

Genes in clusters 3 and 4 are also enriched in the cytoplasm, however, as implied by the large amplitudes

of CAE and similar phases between in the nucleus and in the cytoplasm, these genes are short-lived

(Fig.4.16.B). In this case, the cytoplasmic localisation cannot be entirely explained by the transcript

stability, but instead could result from a particularly efficient export. When we report the mean

expression levels of all the clusters on the NAE-CAE space (similar to the scatterplot of Fig.4.4.A), cluster

2 and 3 indeed overlap due to their equivalent expression level. Thus, different combinations of kinetic

rates (slow degradation or fast export) lead to similar mean levels at steady-state (Fig.4.16.C). Fast RNA

export can be promoted by m6A methylation, a common post-transcriptional mRNA modification

[148]. Based on a published dataset of Methylated RNA immunoprecipitation sequencing (MeRIP-seq)

in the mouse liver at ZT13 [229], we compared the number of methylation sites and the size of the

peaks, but preliminary analysis did not reveal any difference between clusters.

Genes in clusters 5, 6 and 7 are also predicted to be short-lived (Fig.4.16.B). In contrast to clusters 3 and

4, the NAE/CAE ratio tends toward a nuclear enrichment, so the high turnover rate could explain the
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cytoplasmic depletion. We typically find core clock genes in these three clusters (Fig.4.18.A, note that

Dbp and Nr1d1 were classified as M4). As expected, they are all short-lived (< 2.5h). Moreover, they

are more enriched in the nucleus compared to all cycling genes (the median value of log2(NAE/CAE)

of all rhythmic genes is -2.3). The subcellular localisation of RNA transcripts was verified in situ by

smFISH on the same liver samples used for the RNA-seq (Fig.4.18.D, E). Bmal1 (also called Arntl) has a

log2(NAE/CAE) ratio of -1.44. At the peak (ZT0), there was on average 1.6 times more cytoplasmic mRNA

than nuclear mRNA (8.3 cytoplasmic transcript for 5 nuclear transcripts “per nucleus” (see Methods

6.3). In RNA-seq data, the cytoplasmic enrichment is larger (∼2.7 times). However, as discussed in

section 4.12.3, the nuclear to cytoplasm ratio quantified by smFISH tends to be biased toward higher

nuclear values. Because the thickness of the tissue section is 8µm, we sample a higher proportion of

the nuclear volume compared to the hepatocyte volume (nuclear diameter: ∼9µm, hepatocyte volume:

∼7000µm3 [185]). Thus, one should always keep in mind that only the relative nuclear to cytoplasmic

ratio among different genes can be compared.

The three Periods isoforms stand out by their strong nuclear enrichment, despite having similarly short

half-lives compared to the other core clock genes, suggesting that they could be potentially slowly

exported. We compared Per1 transcripts localisation by smFISH on the same sample as Bmal1. In

RNA-seq data, nuclear Per1 transcripts are 2.6 times more abundant than cytoplasmic transcripts.

By smFISH, we found a 1:1 ratio (∼5 nuclear and cytoplasmic mRNA in the imaged cytoplasmic and

nuclear volumes at ZT12). Despite the different ratios quantified by RNA-seq and smFISH, it is clear

that Per1 RNAs are more nuclear-enriched compared to Bmal1. Thus, this suggests that Periods RNAs

may contain signals (e.g. motifs) or are bound by RBPs that cause them to be more slowly exported

compared to other core-clock and cyclic genes. Several genes have similarly short half-life, nuclear

enrichment, and high cytoplasmic amplitude as Periods genes. These genes, including Mthfr, Chrna,

Chka, and Ciart (Fig.4.18.C), and might be processed in a similar way to Periods. Future work may

identify these mechanisms.
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Figure 4.18 – Core clock genes are short-lived, and Period genes show nuclear localisation A: RNA-seq temporal
profiles of core clock genes and some clock-controlled genes (here ParbZIP family members) in NAE and CAE.
B: Estimated half-lives against the log2(NAE/CAE) ratio. As expected, clock genes are all short-lived and more
nuclear compared to the median ratio of all rhythmic genes (median indicated by dashed horizontal line). C:
log2(NAE/CAE) against the amplitude in the cytoplasm of all the genes in cluster 5, 6 and 7. Core clock genes
are marked with triangles. Genes with a similar pattern to Periods genes are labelled with a dot. These genes
have a high cytoplasmic amplitude (log2FC CAE >2) and are enriched in the nucleus. D: smFISH of Per1, Bmal1
(also named Arntl) at their respective peak and trough. Scale bar: 10µm. E: Quantification of mRNA transcripts
on smFISH images. 5-6 images were taken per animal (technical replicates) and the average number of mRNA
molecules per number of nuclei per image is represented by a point. The mean is represented by the bar. Because
n=1 per time point, no error bar is shown.
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Finally, cluster 8 contains genes with a rather flat cytoplasmic profile, suggesting a long half-life.

Contrary to clusters 1 and 2, transcripts are not particularly enriched in the cytoplasm. Therefore, the

observed NAE/CAE could result from a slow export. However, because of the overall low expression, we

cannot exclude that noise hides cytoplasmic rhythms. Still, some genes have reliable patterns, such as

Ppcdc (Fig.4.16.D), and could be candidates for being regulated by a slow export.

The combined analysis of rhythms, absolute and relative levels, and half-lives pointed toward genes

that may be rapidly exported (clusters 3 and 4), rapidly degraded in the cytoplasm (cluster 5-7), or

slowly exported from the nucleus (cluster 8). Genes with similar cytoplasmic expression levels are

controlled by distinct combinations of rates. Among core clock genes in clusters 5 to 7, the three Periods

isoforms stood out as potentially slowly exported. In the next section, we will provide an independent

analysis of nuclear export times applying the same mathematical framework on NTI and NAE RNA

samples.

4.9 Estimation of nuclear export rates rates using time-series RNA-

seq profiles

The life cycle of an RNA transcript starts in the nucleus, where it undergoes various processing steps.

Introns are co- and post-transcriptionally spliced, a m7G-cap is added to the 5’ end, a Poly(A) tail is

added to the 3’end, and the transcript is coated with RNA-binding proteins, forming export competent

ribonucleoproteins [230]. The combination of these processes ultimately modulates the time spent by

an RNA in the nucleus. Moreover, any of these steps can in principle be regulated in a circadian manner.

In order to estimate the nuclear lifetimes and to uncover potentially rhythmic patterns generated by

rhythmic nuclear export, we applied the mathematical model used above and compared the rhythmic

profiles of nuclear pre-mRNA (NTI) and nuclear mRNA (NAE). Here, the export time refers to the time

spent by a fully transcribed and spliced polyadenylated transcript in the nucleus. Note that therefore,

nuclear degradation, although not specifically included in the model, acts to increase the effective

export rate.

We confidently classified 1632 genes in one of the three models with rhythmic NAE (BIC <0.6, Fig.4.19).

The vast majority (1428) were rhythmically transcribed and exported with a constant rate (M2). 13%

were exported rhythmically (M3 + M4, Fig.4.20), suggesting that nuclear export is a post-transcriptional

mechanism contributing to modulation and generation of rhythmic profiles. In Fig.4.20 we show

some representative profiles of genes classified as M3, whose rhythmic accumulations of nuclear

mRNA are only attributed to rhythmic mRNA export. Proteins encoded by these genes cover a large

variety of biological functions, such as deacetylation (Lypla2, Sirt5), nuclear speckles assembly and

splicing (Srrm2, Akap8l), hypermethylation of sn(o)RNA m7G cap (Tgs1), or NAD(P)H)-dependent

oxidoreduction (Rdh13). However, Gene Ontology Terms enrichment analysis did not reveal any

common biological function for M3 genes.

The nuclear rhythms generated by rhythmic export propagate until the cytoplasm. However, the

median log2FC of CAE (cytoplasmic mRNA) is lower than those originating from M2 or M4 genes

(median log2FC: 1.1 (M2), 0.76 (M3), 1.5 (M4), data not shown). While some oscillations are completely
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lost in the cytoplasm because of the long stability of cytoplasmic mRNA, others keep oscillating with

relatively large amplitudes (Fig.4.21).

The distribution of NAE phases in M3 shows an enrichment around ZT8 (Fig.4.19.C, 33% of the M3

genes are in the time window between ZT6 and ZT10). By contrast, peak times of M2 genes, whose

rhythms are generated by rhythmic transcription, show the typical bimodal distribution of phases

peaking at the end of the light phase (ZT22) and the dark phase (ZT10), reflecting the two “waves”

of transcriptional activity in the liver [54, 69]. Phases of M4 genes, whose nuclear accumulation is

also regulated by rhythmic export, are distributed throughout the day. The phase of shortest export

time (highest rate) is enriched in the second part of the night phase (half of the M4 genes have the

highest export rate between ZT18 to ZT 24/0). The difference between the peak of export rate and

peak of transcription rate modulates the resulting pattern of NAE: temporal profiles of metabolic

transcripts such as Pck1, Lpin1 or Ppard are amplified by antiphasic rhythmic export, while genes such

as Sqle or Lipc are dampened while maintaining a phase coherence because export peak time matches

transcription peak time (Fig.4.19.D). Thus, the temporal profiles of several key metabolic enzymes are

boosted by regulating the export process in a timely manner.
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Chapter 4. Comprehensive analysis of the circadian hepatic transcriptome at subcellular scale

Figure 4.19 – Estimation of export times using time-series RNA-seq profiles. A: Classification of genes in M2 (rhyth-
mic transcription, constant export), M3 (constant transcription, rhythmic export), or M4 (rhythmic transcription,
constant export). B: Distribution of estimated nuclear lifetimes (export times) of the three models. The median
(dotted line) is calculated excluding export times reaching the lower or upper boundary (5 minutes and 12 hours).
C: Distribution of peak times of rhythmic nuclear mRNA (NAE). D: Distribution of peak time of rhythmic export
rates (shortest export times) of M3 and M4 (in M2, export is constant). D: Representative temporal profiles of
nuclear pre-mRNA (NTI) and nuclear mRNA (NAE) in M2, M3 and M4 genes with short export time (up) or long
export time (bottom).
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Figure 4.20 – Representative temporal profiles of NTI-NAE genes classified as M3 (constant transcription, rhythmic
degradation). All the genes all have a log2FC > 0.8. Genes were all classified as M2 or M4 in the analysis of step 2
(NAE vs CAE). Plots are arranged by expression level of NAE (highest NAE Srrm2 in the upper left corner). Light
blue dots and solid line: NAE, purple dots and dotted line: NTI.
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Figure 4.21 – Representative temporal profiles of NAE and CAE of genes classified as M3 in step 1 (constant
transcription, rhythmic degradation). Plots are arranged by expression level of NAE (highest NAE Srrm2 in the
upper left corner). Light blue dots and dashed line: NAE, orange dots and solid line: CAE. All the genes were
classified as M2 in step 2 (constant degradation), except Lars2 and Lypla2 that were classified as M4 (rhythmic
degradation)

From the literature, the nuclear residence time is usually shorter compared to the cytoplasmic half-life.

Indeed, previous studies estimated that nuclear lifetime ranges from 5 minutes to less than a couple

of hours (maximal estimated nuclear residence time: 40 minutes in [116], 90 min in [127], 2 hours in

[196]). In our model of step 1, we set the range of possible export times from 5 minutes to 12 hours.

More than one third of the genes in our dataset reaches the lower boundary of 5 minutes (600 genes),

suggesting that indeed, rhythmic transcripts are usually exported on a short time scale. The median

export time, if we include those genes, is 25 minutes for M2 and M3 genes, and 12 minutes for M4

genes. If we exclude export times reaching the boundaries (lower and upper limits), the median of
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4.9. Estimation of nuclear export rates rates using time-series RNA-seq profiles

estimated export time is about 50 to 60 minutes in all three models (Fig.4.19.B).

We further stratified the analysis of the 1438 genes classified as M2 by clustering genes in function

of their temporal profiles (phases, relative amplitudes) and mean expression levels, similar to the

clustering in Fig.4.16. This allows a better identification of long-lived genes from rapidly exported

genes (Fig.4.22).

Genes in cluster 5 and 6 have the longest retention time in the nucleus (shortest export time: 1h and

1.6h, median: 2.3h and 4.6 h). As a consequence, the nuclear mRNA amplitude is strongly reduced,

such that a majority of these transcripts are no longer considered rhythmic in step 2, and are classified

as M1 (Fig.4.22). We looked for functional enrichments (GO Terms) in cluster 5 and 6 (potentially

retained in the nucleus) using the rhythmic liver transcriptome as the background. A relevant metabolic

function enriched in cluster 5 is related to sterol metabolism (hormone biosynthesis GO:0042446)

with Srd5a1, Hsd17b2 and Dhcr7, and SREBP cleavage-activating protein Scap, and all have relatively

long nuclear lifetime between 2h and 3.5h. However, major genes involved in the directly related

function of cholesterol synthesis (GO:0042632) are processed extremely rapidly in the nucleus (Insig1,

Cyp7a1, Hmgcr, export time of 5 minutes). This suggests that despite being rhythmically transcribed,

biologically related genes have distinct dynamic patterns in the nucleus. We additionally noticed

that genes involved in fructose metabolism (Aldob: 6.8h, Khk: 4.8h, Sord: 1.4h, Fbp1: 6h) were also

particularly long-lived, but were classified in cluster 1 due to their high expression level.

Figure 4.22 – A: Traces of the temporal profiles of NTI and NAE grouped in 6 clusters based on the mean expression
of NTI and NAE, their relative expression level, the phase delay, and the log2FC (hierarchical k-means clustering).
The phase of all genes have been aligned to ZT0 (NTI). The profiles drawn with thick lines are computed based on
the centers (mean) of each parameter. B: Boxplots of predicted export time in each cluster. C: Classification of
genes in each cluster in step (NAE-CAE). Due to the long export time, the amplitudes in cluster 6 are damped and
are not detected in step 2 anymore, resulting in classification as M1 in step 2.
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Chapter 4. Comprehensive analysis of the circadian hepatic transcriptome at subcellular scale

Clock genes are typically quickly exported, and are therefore in cluster 2, 3 and 4. Nuclear residence

times range from 5 minutes to 1.1 hour (longest: Clock. Note that Nr1d1 and Dbp are classified in M4,

and the NAE relative amplitude is amplified, see Fig.4.23). The three Periods mRNA were particularly

enriched in the nucleus, and we hypothesised in the previous section that they could have (relatively)

long nuclear residence times (Fig.4.18). Here, all three Period genes are classified as M2, indicating that

their export time is not gated in function of time of day. In the analysis, we find that Per1 has an export

time of 12 min, while Per2 and Per3 are more retained, with a nuclear half-life of 43 min and 39 min

respectively.

In Fig.4.16.D, we showed a group of genes that were enriched in the nucleus despite their long cyto-

plasmic half-lives (cluster 8). We hypothesised that those mRNAs might be slowly exported, explaining

the relative nuclear abundance. However, the median export time of genes in cluster 8 was only 15

minutes (median computed using only genes classified as M2 in step 1). Genes in cluster 5, 6 and 7,

which include the clock genes, were equivalently quickly exported (medians of 12, 8 and 15 minutes,

respectively). Median values of clusters 1, 2, 3 and 4 are respectively 21 min, 25 min, 28 min (longest

export time) and 10 min (shortest export time). Our mathematical model has a limited resolution in the

estimation of export times, and therefore might not be able to discriminate between different dynamic

strategies when involving particularly rapidly exported and degraded transcripts. Nevertheless, we

were able to uncover rhythmic patterns in the nucleus, which strongly suggests that the nuclear lifetime

varies around the day for ∼ 10% of the rhythmic nuclear mRNA.

Figure 4.23 – Fitted temporal profiles of clock genes, with their corresponding export time. All the genes are
classified as M2, except Dbp and Nr1d1, whose amplitudes are boosted with a rhythmic export rate.
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4.10 Relationship between the kinetic rates of mRNA

4.10.1 No global coordination of the export rates and cytoplasmic degradation

rates

So far, we have investigated the two steps of the RNA life cycle independently: the pre-mRNA (NTI)

is spliced to produce a mature and polyadenylated mRNA (NAE), which resides in the nucleus for a

certain time until being exported (step1), and once in the cytoplasm (CAE), is degraded at a specific

rate γ (step 2). We now explore whether these two rates are related to each other, to get a global picture

of the entire process.

Globally, we find virtually no correlation between the nuclear export time and cytoplasmic half-life for

rhythmically transcribed genes (M2 in both step 1 and step 2). One situation where the two processes

could be coordinated is for rhythmic genes transcribed with high amplitudes: in order to propagate

rhythmic temporal patterns without major loss between cellular compartments, the transcript might

be processed efficiently from the transcription site in the nucleus to the cytoplasm. For instance, all

the clock genes are exported within 1 hour and have short cytoplasmic half-lives of less than one hour,

except for Rorγ and Hlf (2h and 2.5h respectively) (Arntl, Clock, Cry1, Cry2, Per1, Per2, Per2, Nr1d1,

Nr1d2, Rorc, and PARbZip family members Dbp, Tef, Hlf ). However, there was no notable relationship

between the export rate or the degradation rate with the amplitude nor with the relative amplitude of

NTI, NAE or CAE, which suggests that the control mechanism that sets the relative amplitude could be

largely independent of the export and degradation rate, and is therefore predominantly controlled at the

transcriptional level (data not shown). We further compared the processing rates with the rhythmicity

of their encoded proteins. We used the dataset published by Wang and Mauvoisin et al. [231], who

assessed the rhythmicity of ∼5000 nuclear proteins in mouse liver. While there was no significant

difference between export rates of transcripts coding for cycling or constant nuclear proteins, those

coding for proteins displaying a circadian pattern in the nucleus were overall degraded faster in the

cytoplasm (Fig.4.24.B,C). Thus, our data did not reveal a coordination of export and degradation rates

neither globally, nor specifically for high-amplitude rhythmic transcripts, although the proteomic data

revealed a systematic decrease in the cytoplasmic half-life for proteins with nuclear oscillations.

83



Chapter 4. Comprehensive analysis of the circadian hepatic transcriptome at subcellular scale

Figure 4.24 – A: Scatterplot shows no correlation between export time and cytoplasmic degradation half-life. Only
genes classified as M2 in both step 1 (NTI-NAE) and step 2 (NAE-CAE) are shown. R2 when excluding estimated
parameters reaching the upper and lower boundaries: 0.0038, p-value = 0.17. B: Boxplot of export times estimated
from step 1 of genes whose corresponding proteins were shown to be cycling (R) or flat (F) in nuclear fraction
of mouse liver (Wang, Mauvoisin et.al 2017 [231]). The two populations of export times were not significantly
different (Mann-Whitney U test, p-value: 0.56). C: Boxplots of cytoplasmic half-lives estimated from step 2. The
cytoplasmic half-lives of transcripts with cycling protein (R) are significantly shorter than those who are not cycling
(p-value: 0.003). Number of R genes = 147, F genes = 253.

4.10.2 Cellular fractionation reveals regulatory processing steps hidden in bulk

analysis

In the present study, we fractionated liver cells and we estimated separately the nuclear and cytoplasmic

lifetimes. In principle, their sum represents the total lifetime of the RNA transcript. We thus compare

the sum of the export and the degradation times (“combined”) to the total lifetime estimated using

the unfractionated sample ("total", using pre-mRNA UTI against mRNA UTE). When comparing

UTI to UTE, as originally done in [201], the estimated degradation rate γ encompasses all the post-

transcriptional processes from splicing, nuclear export, and cytoplasmic degradation.

We observed a significant positive correlation between the combined lifetimes with the total lifetime

(Pearson’s correlation ρ = 0.54, Fig.4.25.A). The combined lifetime of 60% of the genes are within a

margin of error of a factor 2 compared to the total lifetime (341 / 561 genes, genes classified as M2

in all three comparisons). Some discrepancies arise when the cytoplasmic RNA level is relatively low

compared to the nuclear RNA. As shown with the example of Pnpla6 (Fig.4.25.B), the rhythmic temporal

profile detected in UTE mainly reflects the oscillations of nuclear mRNA, while the low abundance and

low amplitude cytoplasmic profile makes almost no contribution to the overall signal. In this case, the

export time is 50 minutes and the cytoplasmic half-life is 24 hours, while the total lifetime estimated by

UTI-UTE is 30 minutes, and thus, at the bulk level, we predominantly measure the export time, and not

the sum of the two rates. On the other hand, the same scenario (short export time, long cytoplasmic

half-life) is well captured by the unfractionated samples if CAE level is relatively high. For example,

Slco1a4 is exported very quickly (5 min), and is long-lived in the cytoplasm (4.5h, Fig.4.25.C). At the

bulk level (UTI-UTE), the estimated total lifetime is 4.6h, accurately representing the total lifetime of

the RNA transcript. We verified whether the total lifetime was only reflecting the cytoplasmic half-life
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due to the overall higher abundance of CAE, or if the nuclear retention time was also contributing

to the total lifetime. The cytoplasmic half-life alone explains 20% of the total lifetime, while nuclear

half-life explains 15% (Fig.4.25.D, E). Thus, even if the correlation of the total lifetime is stronger with

the cytoplasmic lifetime than with nuclear lifetime, the nuclear residence time significantly contributes

to the total lifetime.

Figure 4.25 – The RNA lifetime estimated from unfractionated RNA population is the sum of nuclear and cytoplas-
mic lifetimes. A: Correlation between the total half-life estimated by comparing the temporal profiles of UTI and
UTE against the sum of the export time estimated from step 1 and the cytoplasmic degradation time estimated
from step 2, in log2. Only genes classified as M2 in all three comparisons are used (number of genes = 561). If
excluding genes reaching the upper and lower boundaries: R2 = 0.44. 60% of the genes are between the two dashed
lines (intercept at +1 and -1). B: Temporal RNA-seq profiles of Pnpla6 of NTI (dashed line), NAE (solid line), CAE,
UTI (dashed) and UTE (solid green). The temporal profiles of UTI and UTE most likely reflect the temporal profiles
of nuclear RNA, but not CAE. Thus, the total estimated lifetime (30 minutes) does not match the sum of nuclear
export time (50 minutes) plus the cytoplasmic half-life (24h). C: Temporal RNA-seq profiles of Slco1a4. The sum of
the nuclear export imte (5 minutes) plus the cytoplasmic half-life (4.5h) matches to the total half-life estimated
by UTI-UTE (4.6h). D and E: Scatterplots of the total estimated half-life (UTI-UTE) against cytoplasmic half-life
estimated in step 2 (B) or nuclear export time from step 1 (C).

We next sought to determine the relative contribution of the nuclear and cytoplasmic lifetime to the

total lifetime. We looked at the relative difference between the nuclear and cytoplasmic lifetime in

function of the total lifetime, including only genes whose combined times matched the total lifetime

by at most a factor 2 (Fig.4.26.A, n = 341). Overall, RNA transcripts spend more time in the cytoplasm

than in the nucleus (median of the log2(nuclear/cytoplasmic lifetime): -1.3 ). Out of the 561 genes,

119 (20%) have a longer export time than cytoplasmic degradation time. Focussing on long-lived

transcripts revealed different combinations of rates. Genes such as Acox2, Uox and Ahcy are rapidly
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exported (within 15 minutes), and their long total lifetime is predominantly determined by their

cytoplasmic stability (6.1h, 11.1h and 13.5h), and thus, nuclear export is not a limiting step. Some

genes spend approximately the same amount of time in both compartments, resulting in an equal

contribution to the long total lifetime. For example Gckr, which regulates the activity of Glucokinase

by sequestering the enzyme in the nucleus when glucose level is low, has a nuclear lifetime of 2.9h

and a cytoplasmic lifetime of 3.2h (total: 7.3h). Dio1, which catalyses the conversion of the inactive

thyroid hormone T4 to its active T3 form, also spends an equal amount of time in the nucleus and in

the cytoplasm (2.5h, cytoplasmic: 2.5h, total: 4h). Another protein related to thyroid hormone, Thrsp

(thyroid hormone responsive), has similar nuclear and cytoplasmic lifetime (1.4h in the nucleus, 1h in

the cytoplasm, total: 1.9h). Abcb11, the bile salt export pump, also shows a similar pattern (nuclear

lifetime: 2.6h, cytoplasmic: 2.4h, total: 6.4h). The peak time of these transcripts in the cytoplasm is

thus delayed because of the relatively long nuclear retention time. On the rightmost side of the x-axis,

where transcripts spend more time in the nucleus than in the cytoplasm, we show as examples Cutal

(nuclear lifetime: 2.5h, cytoplasmic: 10min), Gramd4 (nuclear lifetime: 1.2h, cytoplasmic: 12min), or

the circadian gene Clock (nuclear lifetime: 1.14h, cytoplasmic: 10min). These genes are particularly

unstable in the cytoplasm, which results in very similar temporal profiles in both the nucleus and in

the cytoplasm. In this case, the total lifetime is predominantly determined by the nuclear export time.

In our model, the nuclear residence time cannot fully explain the longest total lifetime because we set

the maximal export time to 12 hours. Moreover, when the transcript is retained in the nucleus for a

long period of time, the amplitude of the oscillations of NAE is reduced to a point that the gene can no

longer be classified as “M2” in step 2, but is instead classified as M1 (constant nuclear mRNA). Here,

the longest nuclear retention time that still allows rhythms to propagate into the cytoplasm is 3.8h if

we consider only genes whose combined lifetime matches well the total lifetime estimated, like Pltp

(nuclear lifetime: 3.8h, cytoplasmic: 1.1h, total: 5.6h) or Hsd17b2 (nuclear lifetime: 3.5h, cytoplasmic:

0.9h, total: 4.9h). Of note, Hsd17b2 was indeed shown as a potentially retained transcript in the analysis

of NTI - NAE at steady (Fig.4.11). If we include genes that are less well estimated, a nuclear retention of

up to 5 hours still generate rhythmic profiles that are detectable at step 2, for instance Pdia3 (nuclear

lifetime: 5.1h, cytoplasmic: 10min, total: 2.5h), Fdft1 (nuclear lifetime: 4.8h, cytoplasmic: 2.0h, total:

13.8h) or Oat (nuclear lifetime: 4.0h, cytoplasmic: 1.1h, total: 15.3). Therefore, there is an upper

threshold on the retention time above which downstream rhythm propagation is severely impaired.

There are few genes with export time above 5 hours and that were not included in the global analysis

(Fig.4.25) because not classified as M2 in step2, but still show good concordance between nuclear and

total lifetime, such as Wwox (nuclear lifetime: 8.6, total: 6.4h), Lpl (nuclear lifetime: 8.1, total: 6.9h),

Glo1 (nuclear lifetime: 4.76, total: 5.5h), or Egfr (nuclear lifetime: 12h, total: 7.3h, also highlighted as a

potentially retained transcript in Fig.4.11).

Together, this analysis confirms that isolating nuclear and cytoplasmic transcriptomes can be used to

separately estimate regulatory processing steps that are indistinguishable at the bulk level. Moreover,

while time spent in the nucleus has a minor contribution to the overall lifetime for a majority of the

transcript, nuclear retention plays an important role by delaying the phase in the cytoplasm for several

genes with important metabolic functions related to carbohydrate, thyroid hormone, and bile acids.
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Figure 4.26 – Relative contribution of the export time and cytoplasmic half-life to the total lifetime. A: Scatterplot
showing the relationship between the total lifetime estimated from UTI and UTE against the log2-ratio of the export
time (nuclear lifetime) and the cytoplasmic degradation time (cyto. Lifetime=. The y-axis is log2-transformed, but
values on the axis are linear. Color code indicates long export time (yellow) or fast export (dark blue). Clock genes
are highlighted in pink. Only genes classified as M2 in all three comparisons (NTI-NAE, NAE-CAE, and NAE-CAE)
are shown. Additionally, the sum of the nuclear and cytoplasmic lifetime is within a margin of error of 2 compared
to the total lifetime. B, C and D: Temporal profiles of NTI (dotted blue line), NAE (solid blue), CAE (orange) and
UTI and UTE (green lines) of selected genes. Temporal profiles were fitted independently for each RNA with a
harmonic linear regression, not with the mathematical model. In B: Cytoplasmic lifetime is much longer than the
nuclear lifetime, therefore, contributes predominantly to the total lifetime estimated by comparing UTI and UTE.
C: RNA transcript spends an equivalent amount of time in the nucleus and in the cytoplasm. D: Cytoplasmic half
life is shorter than nuclear half-life
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4.10.3 Subcellular RNA distribution versus estimated kinetic rates

At steady-state, the ratio of nuclear versus cytoplasmic RNA levels is directly related to the ratio of the

time spent in the nucleus (nuclear retention time) over the time spent in the cytoplasm (cytoplasmic

half-life). However, different combinations of rates lead to the same steady-state level, and their

relative contribution is unknown. In order to quantify this, in the previous sections, we independently

estimated the nuclear export rates and the cytoplasmic degradation rates of rhythmically transcribed

genes, based on their temporal patterns (phase delay and relative amplitude). In principle, the ratio

of these two rates should explain the subcellular distribution of transcripts observed at steady-state.

Unfortunately, the difference between the log2-nuclear lifetime and the cytoplasmic lifetime did not

correlate with the log2(NAE/CAE) (Fig.4.27.A ρ = 0.02, p-value = 0.6). Even after restricting the analysis

to genes whose export and degradation rates that matched the total degradation rates estimated from

UTI-UTE (from the section above, n = 341 genes, “well-estimated”), the correlation only marginally

improved (ρ = 0.16, p-value = 0.0028, data not shown). When analysing the log2(NAE/CAE) ratio without

the temporal dimension (Fig.4.4, section 4.6.2), we suggested that the cytoplasmic degradation is the

process with the largest variance along with transcription rates, and that differential RNA distribution

in the nucleus and in the cytoplasm is most likely explained by the variation in cytoplasmic stability

(Fig.4.4). When investigated separately, the cytoplasmic degradation rates could not explain more than

2% of the log2(NAE/CAE) ratio variability (Fig.4.27.B). However, if we restrict the analysis to the 341

well-estimated genes, the correlation improved, with a Pearson’s correlation ρ = 0.33 (p-value = 3.2

x 10−10). The export rate is a poor predictor of the ratio (Fig.4.27.C), independently of the analysed

genes set. Therefore, for a subset of ∼ 300 genes, the degradation rate is a more potent driver of the

localisation of RNA transcripts than nuclear export rate. Stable transcripts tend to accumulate in the

cytoplasm, while short-lived transcripts appear to be enriched in the nucleus because of the high

turnover rate.

We additionally investigated the relationship between the kinetic rates and the transcript length,

because we showed that longer transcripts tend to be more enriched in the nucleus compared to the

cytoplasm (Fig.4.4, Fig.4.5). The transcript length (but not the gene length) has a significant negative

correlation with the cytoplasmic half-life in both gene sets (Fig.4.27.D, ρ = -0.3 for all genes classified

as M2, ρ = -0.34 if restricted to well-estimated genes, p-value < 10−10). We found no significant

correlation with the export rate (Fig.4.27.E). This suggests that long transcripts are associated with

faster cytoplasmic degradation rate, which results in their apparent enrichment in the nucleus.
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Figure 4.27 – The ratio of nuclear and cytoplasmic lifetimes does not explain the subcellular distribution of
rhythmic genes. A: Scatterplot showing the relationship between the Top row: Genes that were classified as
M2 in both step 1 and step 2. n = 884 genes. Bottom row: genes that were classified as M2 in step 1, step 2
and UTI-UTE, and whose sum of lifetimes matches the total lifetime estimated with UTI-UTE. N = 341 genes.
Excluding parameters that reach the upper or lower boundary only marginally affected the R2 by less than 1% in
all comparisons. D and E: correlation of the transcript length (y-axis) with the cytoplasmic half-life or with the
export times (log2-transformed). If only well-estimated parameters are used (341 genes): R2 = 0.12 for cytoplasmic
half-life and R2 = 0.023 for export time.
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4.11 Discussion

4.11.1 Characterisation of the nuclear and cytoplasmic transcriptome revealed

different subcellular localisation of distinct RNA classes

As an initial exploratory analysis of our dataset from nuclear and cytoplasmic fractions, we first charac-

terised the differences between RNA populations, and investigated two classes of RNA with specific

subcellular distributions: protein coding transcripts and Retained Intron.

Protein coding transcripts are the most abundant RNA biotype, particularly in the cytoplasmic fraction.

These PC transcripts are on average more abundant in the cytoplasm than in the nucleus. Still, a non-

negligible fraction of protein coding transcripts are found at greater levels in the nucleus. A functional

enrichment analysis (GO terms) of differentially localised transcripts revealed a concordance between

the preferential localisation of the RNA and its encoded protein [208]. We found that nuclear transcripts

code for gene expression regulatory functions such as epigenetic modifications, mRNA processing,

and export (THO complex, Nxf1, Nucleoporins NUP), while proteins coded by cytoplasmic mRNA are

mainly involved in translation, oxidative phosphorylation, fatty acid β-oxidation and detoxification.

The concordance between RNA and protein localisation was further verified with a published dataset

from mouse liver [213].

Transcripts coding for housekeeping functions are often stabilised, while those coding transcription

regulatory proteins could be kept unstable in order to facilitate rapid adaptation of protein production

in response to external stimuli [152]. Here, because we analysed the steady-state expression level, we

could not determine whether the relative subcellular abundance is a consequence of the long half-lives

of housekeeping functions versus the presumably short half-lives of genes involved on regulatory

functions [232], or if an active nuclear retention mechanism restrict the nuclear export, therefore acting

as a passive filter lowering the noise associated with stochastic transcription [127, 128, 196].

Transcripts with a retained intron (RI) make up to 15% of the nuclear transcriptome, and are particularly

enriched in the nucleus compared to the cytoplasm. RI transcripts are either rapidly degraded in the

nucleus, or exported to the cytoplasm, but also serve as substrates of post-transcriptional splicing

[111, 129, 110]. We thus asked whether the relationship between RI and the corresponding PC had a

specific signature reflecting a mechanism of nuclear retention. Among the 260 pairs defined, ∼10%

were associated with a greater nuclear abundance at the gene-level, and this enrichment was predomi-

nantly due to the higher abundance of the RI isoform over the PC isoform. This pattern could reflect

the scenario where RI is slowly post-transcriptionally spliced, and the resulting PC mRNA is rapidly

exported. This suggests that post-transcriptional splicing could slow down the export of a PC transcript

by retaining the RNA as an immature form in the nucleus. Notably, the nuclear-enriched gene Gckr

followed that pattern and has a long estimated nuclear retention time (3h). However, we were not able

to estimate the kinetic parameters for the retained intron isoform because it was not cycling, and our

method is limited to rhythmic profiles. Moreover, even if we restrict the analysis to pairs of transcripts

that differ only by the presence of one intron in PC, we are not able to tell if these pairs represent bona

fide precursor-product relationships. Nevertheless, RI is a class of RNA biotypes with distinct signatures

related to the preferential nuclear localisation, which is influenced by both the nuclear lifetime and
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cytoplasmic lifetime. What triggers the post-transcriptional splicing and release of the mRNA includes

heat shock events [111], or neural activity [112], but have only been demonstrated on a case-by-case

basis, and remain largely unknown.

4.11.2 Estimation of the co- versus post-transcriptional splicing times using nu-

clear pre-mRNA and mRNA

Splicing is thought to mainly occur co-transcriptionally in most studied organisms [87], [86, 91, 89, 87].

However, the proportion of introns that are removed concurrently with transcription is still under

debate, depending on the model organism and on experimental method [92].

In this study, we investigated the question of the proportion of co- versus post-transcriptionally spliced

genes by comparing the expression level of pre-mRNA from isolated nuclei. We specifically compared

the population of total pre-mRNA (NTI) to the polyadenylated pre-mRNA (NAI), which represents

transcripts that have been fully transcribed and terminated, but still contain intronic regions. We first

verified that the NAI/NTI log2-ratio could reflect the splicing regime. A value of NAI close to NTI means

that most of the pre-mRNA in the nucleus are terminated pre-mRNA, thus, a large fraction of intron

still needs to be post-transcriptionally removed. If NTI is much larger than NAI, most of the captured

pre-mRNA are nascent transcripts, meaning that almost no introns remain in the polyadenylated form.

We visually verified if the small NAI/NTI log2-ratio reflects a co-transcriptional splicing regime by

inspecting the distribution of reads mapping on intronic regions. We observed sawtooth patterns with

the 5’ enrichment and 3’ depletion of reads, particularly on long intron, which is typically described in

nascent-seq datasets, and reflect the (uniform) distribution of RNA PolII along the gene body [59, 89].

Therefore, the relationship of nuclear polyadenylated pre-mRNA versus the total population of nuclear

pre-mRNA informs us about the extent of co- versus post-transcriptional splicing. We noticed a

strong correlation of the NAI/NTI log2-ratio with the gene length: long pre-mRNA tends to be more

co-transcriptionally spliced, while short pre-mRNAs are more post-transcriptionally spliced. These

observations support the view that transcription and splicing are two processes occurring in parallel,

and that splicing frequency depends on the time required for transcription. When the gene is short,

transcription is already completed by the time the intron is recognised and spliced. If the gene is long,

there is more time allocated to the spliceosome to recognise the splice sites, assemble on the pre-

mRNA, and cleave the intron. However, it is also known that the machineries involved in the pre-mRNA

processing interact with each other, for instance by recruiting splicing and processing factors directly

on the site of transcription [233], or because all these factors are concentrated in one location, such

as in nuclear speckles, or in phase-separated condensates [218]. Moreover, coordination patterns of

RNA processing steps differ whether it is for protein coding transcripts or other RNA classes, such as

lncRNA, and depends on the phosphorylation status of the RNA PolII [221], or on the recruited RNA-

binding proteins [119]. Here, we observed different signatures of export and splicing for different RNA

biotypes. For instance, lncRNA has the lowest splicing frequency, with a particularly high abundance of

polyadenylated pre-mRNA. Retained Intron is more influenced by the export time compared to other

RNA biotypes. Here, we emphasise again that the process of export does not discriminate between

the transport of RNA to the cytoplasm, and the nuclear degradation or, in case of Retained Intron, the
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post-transcriptional splicing of the remaining intron. Moreover, the correlation between the extent of

co- versus post-transcriptional splicing with gene length was absent for all the other biotypes except

by Nonsense-mediated decay NMD (NMD: R2 0.17, Protein Coding: R0.4). Because the degradation

mediated by Nonsense-mediated decay occurs in the cytoplasm after the initiation of translation,

it would not be surprising that NMD transcripts are processed in a similar way as protein coding

transcripts in the nucleus. Together, these observations further suggest that different biotypes are

regulated by different processing programs.

In this analysis, we investigated the extent of co- versus post-transcriptional splicing at the transcript-

level, without taking into consideration different splicing efficiencies among introns of the same gene

body. But each intron has different splicing kinetic rates depending on its position along the gene

[91], on the length of the downstream exon, ans on whether the flanking exons are alternatively or

constitutively spliced [107]. One method is to quantify reads mapping on an intron - exon junctions

versus reads mapping on exon-exon junctions, and to define a co-transcriptional splicing index for

each intron (CoSI) [194], however, this would not allow to discriminate different isoforms like with

we did with the pseudo-alignment using Kallisto. A more sophisticated but complex method is the

long-read sequencing, for instance using Nanopore technology, which additionally allows to uncover

patterns of splicing order [234].

4.11.3 Mathematical model to quantify kinetic parameters

For years, the gold standard to study RNA dynamics has been through transcriptional blockage methods

(Amanitin, Actinomycin D [235]) and fitting an exponential decay function. Pulse-chase strategy with

uracil analogs (4sU [225], EU [236]) label nascent transcripts during a short period of time. These

labelled transcripts are then chased at different time points, and again, the decay curve allows an estima-

tion of the half-life. Snapshot images of subcellular RNA distribution, either obtained by smRNA-FISH

or by RNA-seq of fractionated cells allows a characterisation of nuclear and cytoplasmic transcrip-

tomes [214, 74, 209, 95, 194]. Recently, proximity-labelling based sequencing (APEX-seq, [208]) could

achieve a high spatial resolution, mapping the localisation of RNA transcripts in several subcellular

compartments such as the nucleolus, endoplasmic reticulum, cytosol, outer and inner membrane of

the mitochondria. These studies revealed broad patterns of localisation for diverse RNA classes.

Mathematical modelling methods using ordinary differential equations (ODEs) to describe RNA-seq

signals can infer genome-wide the kinetic parameters of RNA processing steps in a label-free manner

[216]. Temporally dynamic datasets reflecting different cellular states are needed in order to solve the

system, for instance during cell cycle, stem cell differentiation [237], or at different circadian time-

points [78, 79]. Here, we applied the model previously developed in the Naef laboratory. A system of two

ODEs describes the rhythmic profiles of pre-mRNA and mRNA, which uses the relationship between

the phases and relative amplitudes in order to infer the production and the decay terms. Additionally,

the decay term is described as a cosine function, and thus identifies temporal patterns regulated by

rhythmic degradation. In order to apply the ODE system as such, we splitted our model of an RNA

lifecycle in two distinct steps (NTI →NAE, and NAE→CAE). This allowed us to estimate the cytoplasmic

degradation rate of ∼1300 genes and the nuclear export rate of ∼1400 rhythmic genes. Additionally,
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modulating the nuclear lifetime in a rhythmic manner contributes to generating oscillations of nuclear

mRNA of ∼100 genes, and also to boosting the amplitude of several key metabolic genes (Pck1, Lpin1,

Por). We estimated that rhythmic nuclear export is a post-transcriptional regulatory step affecting

∼10% of the rhythmic profiles of mature nuclear mRNA.

Limitations of the model

The model can be extended by fitting both processes together, such that the term common to both

step 1 and step 2 (the export rate e) is fitted only once. Additionally, in the current model, if the nuclear

mRNA (NAE) is rhythmically exported in step 1, the temporal profile may have a shape that deviates

from a cosinor function. But that same NAE is then modeled with a cosinor in step 2, which may not be

the most appropriate function, resulting in a high error of the fit, and consequently, the gene would

be unclassified in step 2. Modeling the two steps together would however increase the number of

parameters and complexify the model, while affecting the fit of only a small fraction of the genes: less

than 5% of the genes classified in step 1 were transcribed and exported rhythmically (91 genes in M4),

therefore, the complexification of the model may only bring minor improvements.

One major limitation of the model is that the degradation rate (or export rate) is estimated using only

the relationship of the phases and relative amplitudes, but the relative mean expression level of the

two RNA species are not taken into account. In this study, we were not able to explain the subcellular

distribution of transcripts using the estimated export rates and cytoplasmic degradation rates. Even

if we could confidently quantify the relative contribution of the nuclear and cytoplasmic lifetimes

to the total RNA lifetime for ∼300 genes, the relative amount of time spent by a transcript in each

compartment did not reflect the relative subcellular abundance of the transcript. Therefore, a major

improvement to the model would be to integrate the information contained in the ratio of the mean

expression level, and use it to constrain the parameters. We attempted to include the mean expression

levels and stratified the analysis by clustering temporal patterns in function of the relative subcellular

abundance (Fig.4.16). While this analysis revealed that the same steady-state levels of nuclear and

cytoplasmic RNA can be achieved by different dynamic strategies (different combination of rates), our

predictions concerning the export rates that should explain the observed patterns, for instance, that

Period genes should be retained in the nucleus, were not confirmed with the estimation from step 1.

The absence of correlation between the NAE/CAE log2-ratio and the ratio of the export and degradation

rates could also be because the errors on the export times are larger than anticipated. The model

reliably detects long export times on the order of our sampling time (in the range of hours). While

cytoplasmic mRNA lifetime is indeed in the range of hours (median of 2.5h), the nuclear lifetime is

much shorter (median of 25 min), and many genes reached our lower boundary of 5 minutes. Therefore,

the temporal resolution may not allow a precise quantification of processes happening on extremely

short time-scales. While this is still informative to discriminate rapidly exported transcripts from

nuclear retained transcripts, and also to discover rhythmic patterns (M3, M4), the resulting ratio of

rates might be too affected to predict the final subcellular localisation. The log2(NAE/CAE) was partially

explained by the cytoplasmic half-lives when restricting the analysis to ∼300 well-estimated parameters

(∼10% of the total variance, Fig.4.27.D), while no correlation was found when comparing the export rate
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of the same genes. This further suggests that cytoplasmic degradation rates might be better estimated

than export rates.

A last reason that may account for part of the inability to explain the NAE/CAE log2-ratio is that long-

lived nuclear transcripts are not taken into account when comparing the two rates. Long nuclear

retention is associated with damped amplitudes. Subsequently, these transcripts are not detected as

rhythmic in step 2, but classified as M1, and the degradation rate is unidentifiable. We found that the

maximum nuclear lifetime for the rhythm to be propagated into the cytoplasm is around 4 to 5 hours.

Identification of long-lived nuclear RNA

Despite not being able to fully explain the subcellular distribution of RNA, our dataset still allowed us

to obtain biologically relevant estimations of cytoplasmic half-lives for rhythmic transcripts (∼2.5h).

Additionally, even if we were not able to precisely quantify short export times, we were able to dis-

tinguish nuclear mRNA that are processed within minutes from those that have longer half-lives (in

the range of hours). Long-lived nuclear mRNA are of particular interest, because they can only be

detected by using cellular fractionation. In the original work by Wang et al. [201], pre-mRNA and mRNA

from total unfractionated liver cells were used in order to estimate the cytoplasmic degradation rates,

but nuclear lifetime was neglected. For a majority of genes, this assumption is valid because of the

little contribution of nuclear lifetime to the total lifetime. However, when nuclear lifetime significantly

contributes to the total RNA lifetime, our dataset provides a different perspective to the global view of

the kinetic processes. Typically, we could quantify the relative contribution of nuclear and cytoplasmic

lifetimes, and highlight some genes whose cytoplasmic mRNA phase is delayed because of the slow

nuclear export (Gckr, Dio1, Ppa1, Hsd17b2, Abcb11).

In this study, we described distinct dynamic patterns and highlighted genes with intriguing profiles,

but were not able to find mechanisms that could explain the different regulatory modes. We performed

many functional enrichment analyses interrogating several databases (GO, KEGG, Wikipathway), and

usually found enrichments for functions related to the metabolism of lipid, cholesterol, carbohydrates,

xenobiotics, and complement system. Enrichment of these functions is expected since we are studying

the rhythmic transcriptome of the liver. However, in most cases, the enriched biological functions were

not specific enough to clearly separate the different groups of genes. Searching for common biological

functions to explain similar temporal patterns is probably a too naive method.

One genomic feature associated with the estimated kinetic rates is the transcript length. At steady-

state, we observed that the long transcripts were preferentially located in the nucleus, while short

transcripts were more abundant in the cytoplasm. We found a weak yet significant association with

the cytoplasmic degradation rates, such that short transcripts tend to be associated with long half-life,

while long transcripts are more prone to degradation. The link between transcript length and decay rate

was already hinted at by a previous study in Drosophila Kc167 cells [209]. Degradation predominantly

occurs through the deadenylation of the poly(A) tail followed by exonuclease attack [152], and has not

been shown to be specifically related to the transcript length. The higher instability of long transcripts

may reflect an increased probability to be stochastically attacked by endonucleases [209].
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In our search for possible mechanisms discriminating between rapidly and slowly exported RNA,

we looked for differential m6A RNA methylation patterns using a published dataset of MeRIP-seq in

mouse liver [229]. m6A RNA methylation is a very common mRNA modification, which is usually

associated with fast processing, export, translation, and decay [147, 144]. Preliminary analysis did not

reveal specific enrichment of m6A counts or sites that could differentiate rapidly exported from slowly

exported nuclear mRNA, but we may need to refine the analysis.

RNA processing rates such as splicing, packing, and export are modulated by various RBPs, which are

recruited on specific RNA sequences / structures [193]. We specifically looked at the RNA bound by

NONO, a multifunctional nuclear protein associated with nuclear paraspeckles, which has been shown

to modulate the maturation of RNA, notably those related to glucose and lipid metabolism in mouse

liver [122]. Using the published NONO-RIP seq in WT and NONOgt mice (lacking a functional NONO

protein)[122], we separately examined rhythmic target RNA whose phase were delayed in NONOgt

compared to WT (suggesting that NONO promotes fast processing) and those who were advanced in

NONOgt (suggesting a retention role of NONO). However, at this stage of the analysis, we were unable

to draw any conclusion concerning the potential role of NONO regarding our estimated export times.

The default pathway of a correctly processed protein coding mRNA, i.e. 5’capped, 3’polyadenylated,

spliced, coated with the right set of RBPs, is most likely the export to the cytoplasm [114]. The presence

of retention-promoting features such as specific motifs, hyperedited regions, high GC content, or un-

spliced intron may compromise the export of the transcript [238]. In our study, a more in-depth search

for such features should be implemented in the future in order to explain the different combination of

kinetic rates that we observed. Finally, it would be interesting to distinguish the cases when nuclear

enrichment is a consequence of the accumulation of slow processing steps, or if mRNAs are actively

retained, and therefore creates a reservoir of mRNA ready to be released in response to a signal. In

the context of the liver transcriptome, feeding-related signals (insulin, glucagon), could trigger such

response.

4.11.4 Concluding remarks

From birth to death, every step during the life cycle of an RNA transcript is tightly regulated to ensure

proper cellular function. In this study, we made a simple model of the complex network of RNA process-

ing steps, including splicing, nuclear export, and cytoplasmic degradation. We provide a genome-wide

and temporal catalogue of RNA subcellular localisation in the liver, along with a comprehensive esti-

mation of the nuclear and cytoplasmic life times of cycling transcripts. This work suggests that mRNA

oscillations can be post-transcriptionally regulated at the level of nuclear export, and contributes to a

better understanding of the dynamic regulation of the transcriptome over the 24h day.
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4.12 Supplementary Analysis

In this chapter, we provide additional analyses related to the Chapter 4. However, these analyses are

not necessary for the understanding of the project.

4.12.1 Overview of temporal characteristics of the liver transcriptome

Rhythmic transcriptome of WT mouse liver

Circadian rhythms of the liver transcriptome have already been extensively studied [60, 47, 228]. It is one

of the organs with the highest number of rhythmic genes, with an estimate of 10 to 20% of cycling mRNA

[239, 8, 42]. However, this proportion of rhythmic genes varies from one study to another. This can be

due to different experimental conditions (light-dark, dark-dark cycle, age, constant or feeding regimen

[37, 33, 228], but also to statistical analysis, whether it is based on a cutoff (p-value, minimal amplitude),

or on model selection [60, 228]. In this section, we briefly present basic temporal characteristics of

the dataset, and recapitulate some known results from the liver chronobiology. We analysed rhythmic

genes in different RNA populations without taking into consideration any modelling aspect. We fitted a

cosinor function with a period of 24 hours to the read counts during the normalisation procedure of

RNA-seq with DESeq2 [204] (see Methods 6.5.3). We tested the fitted function against a model with an

intercept only, and genes are considered rhythmic if the p-value is less than 0.01. We additionally set a

threshold on the amplitude so that a rhythmic gene has to be at least twice as expressed at the peak

than at the trough (log2 fold-change > 1, Fig.6.3.A). We found between 500 and 850 rhythmic genes

in each of the eight RNA populations, which represents ∼5% of the liver transcriptome (11’000 genes)

(Fig.6.3.B). Even if the proportions are lower than what has been previously reported, we actually found

similar values from another published total liver RNA-seq dataset [60] when applying the same fitting

method and cutoffs (around 500 rhythmic genes in Total RNA from whole liver tissue). 115 genes were

rhythmic in all RNA populations, and 179 in at least 7 out of 8 conditions.

When rhythm propagates from one compartment to another, the temporal features (namely phase and

amplitude) vary depending on the stability (half-life) of the transcript [54]. If a transcript is long-lived,

the oscillations dampen and the phase peaks later. On the contrary, short-lived transcripts have similar

phases and relative amplitudes in each compartment. If the degradation is not constant but rhythmic,

other temporal patterns can be observed, for example: the relative amplitude increases, the phase

shift is much larger than expected (theoretical limit is 6 hours), or rhythm can be generated de novo

[79]. The mathematical framework describing how degradation and export rates modulate rhythmic

patterns are explained in the main results section (See Method: 6.7). Therefore, in section, we only

provide a simple overview of the rhythmic dataset.

The amplitude range is the largest at the transcriptional level (introns) and the lowest in the cytoplasm

(Fig.6.3.A), suggesting a gradual damping of oscillations as rhythms propagate. The higher number of

rhythmic genes detected in the cytoplasm compared to the nucleus (pre-mRNA and mRNA) suggests

that post-transcriptional mechanisms generate rhythmic mRNA accumulation [47, 59]. However, these

oscillations are less strong than those generated at the transcriptional level, such as the core clock
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genes. Particularly, Arntl, Nr1d1 and Per3, together with Dbp and Rgs16, are amongst the genes with

the largest fold change in all RNA types (Fig.6.3.C). We show some representative temporal profiles of

core clock genes in Fig.4.29. They are all rhythmically transcribed (rhythmic intron) and accumulate

with similar phases and amplitudes in all RNA populations, in agreement with their estimated short

half-lives [78]. The only exception is Cry2, with p-value of 0.02 did not pass our cutoff for rhythmicity.

Because the liver is a metabolic organ that responds to the circadian food (un)availability, genes related

to lipid (Lpin1), carbohydrates metabolism(Gys2), and energy homeostasis (Nampt) are also rhythmic.

We observe the typical bimodal distribution of transcriptional activity (depicted by NTI and UTI)

peaking at dusk and dawn, around ZT10 and ZT21 [44] (Fig.6.3.D). Accumulation of mRNA in the

nucleus (NAE and NTE) also follow the typical bimodal distribution with the same phases as pre-mRNA,

while the two peaks of cytoplasmic mRNA are shifted by ∼4 to 5 hours in the cytoplasm, particularly in

CTE. In CAE, the distribution is more uniform. The phase distribution in UTE is also bimodal, however,

the profile is more homogeneous overall, probably because Unf Total is a mixture of both nuclear and

cytoplasmic transcripts, peaking at different times of the day.

We specifically looked at the phase difference of each gene between two RNA populations: NTI - NAE

(nuclear pre-mRNA that is polyadenylated and spliced), and NAE-CAE (nuclear mRNA exported to the

cytoplasm). The average phase shift is 1 hour between NTI and NAE, and 2 hours between NAE and

CAE (Fig.6.3.E and F). This suggests that the export rate, which governs the phase delay between NTI

and NAE, happens on a shorter time-scale than the cytoplasmic degradation rate, which controls the

NAE-CAE phase shift. Therefore, with a simple analysis of rhythmic profiles, we can already discern

genes with atypical parameters. Gstm7 has a long phase delay between the peak time in the nucleus

and in the cytoplasm (4.7h) and we indeed estimated a long half-life of 5h (Fig.6.3.F). In the nucleus,

Aqp8 also stood out because of the long phase delay between NTI and NAE (2.7h), and has a long

nuclear lifetime of 2h, longer than the median of 20 minutes estimated in the main section.

In the main section, we used a more sophisticated mathematical model to analyse rhythmic patterns

with underlying assumptions. For instance, here, the cosinor is fitted independently on each RNA

species, therefore, the phase of pre-mRNA is allowed to peak before the mRNA, which is biologically

not relevant. Alternatively, we could use a model-selection based approach as in [60] and [228], where

rhythmic parameters are fitted on all the conditions at the same time, and are allowed to be shared

(same phase and amplitude in all conditions, a parsimonious model), or independent. The model of

Wang et al. [201] was preferred, as it allows to estimate the kinetic parameters dictating the mRNA

profiles, and additionally uncovers rhythmic degradation processes.
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Figure 4.28 – Temporal parameters of different RNA populations. A: Cumulative number of genes with a log2FC
larger than a threshold value (on the x-axis) in each RNA population. Dotted line indicates the threshold at log2FC
of 1. B: Number of rhythmic genes with a log2FC >= 1 per population. C: Circular plot showing the Distribution of
phase and amplitude of all rhythmic genes. Clock genes are highlighted. D: Distribution of phases of rhythmic
genes. E: Comparison of phases between NTI and NAE (337 genes, mean phase shift 0.9 hours) and NAE and CAE
(299 genes, mean phase shift of 2.1h) F: RNA-seq profiles of two example genes with large phase delay: Aqp8 with a
phase shift of 2.5 hours between pre-mRNA and mRNA in the nucleus, and Gstm7 with a phase delay of 4.7h.
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Figure 4.29 – Representative RNA-seq profiles (log2(RPKM)) of core clock genes and metabolic genes in 8 RNA
populations: Nuc Total, Nuc PolyA, Cyt Total, Cyt PolyA, Unf Total. pre-mRNA profiles are shown in dashed lines.
Raw counts were fitted with a cosinor function and tested against a model with an intercept only, using DESeq2. A
gene is considered rhythmic if p-value < 0.01 and log2FC > 1.

Rhythmic transcriptome of clock-deficient mouse liver (Cry1/Cry2 KO)

In addition to WT mice, we use a clock-disrupted mouse model which lacks functional core clock

proteins CRY1 and CRY2 [240]. These mice have disrupted patterns of locomotor activity and of feeding.

In a recently published comparative study in mouse liver [228], 40% of the rhythmic genes in WT

became arrhythmic in Cry1/2 KO, and overall, amplitudes were damped. Among the remaining cycling

genes, half of them were “food-driven”, which means that they lose rhythmic expression in the absence

of rhythmic food intake ad libitum. For a more in-depth analysis of the rhythmic phenotypes of the

Cry1/Cry2-KO mice, please refer to the work of Weger et al., co-published by the Naef group [228].

In our dataset, with a threshold on the amplitude (log2FC > 1), we found around 300 rhythmic genes in

the nucleus, and only around a hundred in the cytoplasm, for a total of 769 genes rhythmic at least in
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one RNA population (Fig.4.30). All core clock genes (Cry1, Cry2, Per1, Per2, Per3, Arntl, Clock, Nr1d1,

Rorc) were arrhythmic in CryKO mice. It was previously reported that Per2 is driven by systemic cues

and continues to cycle even in the absence of a functional clock [241]. In our dataset, even if Per2 did

not pass our set threshold for rhythmicity, it has the lowest p-value among all the core clock genes

(p-value of 0.028 in UTI), suggesting that there were still some remaining rhythmicity.

Overall, there is a decrease of amplitudes between CryKO and WT (Fig.4.30.B), in line with the previous

observation that genes whose transcription is driven by the clock have higher amplitudes than those

entrained by systemic signals [228]. The amplitude range was the largest at the transcriptional level

(UTI, NTI) (Fig.4.30.A). Only 48 genes have an amplitude above 8-fold, compared to a 138 in WT. Rgs16

is the gene with the highest amplitude in all compartments, similar to WT. Other high amplitude genes

include genes involved in hepatic metabolic function, such as Lpin1 , Scd1 , Angptl4 and Txnip (lipid

metabolism), G6pc and Pck1 (glucose metabolism), and Hmcgr, Hmgcs2 Sqle, Insig1, Srebf1 (cholesterol

metabolism). We also observed a shift of peak times between WT and CryKO (Fig.4.30.D). Overall,

genes in CryKO tend to be slightly phase-advanced compared to WT, a phenomenon also observed in

[228].

Only 327 rhythmic genes in CryKO were also cycling in WT. Therefore, more than half of the rhythmic

genes were previously not cycling in WT, despite both groups of animals being held in the same

conditions (light-dark condition, night-restricted feeding). The average mean expression level of the

“de novo” rhythms were 2 to 4 times lower than the mean expression level of genes that were rhythmic

in both datasets, thus, these rhythms could be due to noise inherent to low expression. However, some

genes were convincingly rhythmic only in CryKO, such as the lipogenic genes Me1 and Retsat, and

the cholesterogenic Msmo1 (Fig.4.30.D). All three genes are targets of the nuclear hormone receptor

PPARα, a central regulator bridging the core clock machinery to lipid, cholesterol, and ketone bodies

metabolism [52]. Globally, genes that were rhythmic only in CryKO were enriched for KEGG Pathway

“PPARα signalling”, (p-value < 10−7). However, the mRNA level of Pparα was not rhythmic in CryKO,

while peaking during fasting time in WT (ZT8). Therefore, it seems that the transcriptional program

regulating lipid homeostasis and induced by fasting might be stronger in CryKO than in WT, although

the regulation cannot be explained by the transcription of the PPARα.

Globally, there are less rhythmic genes than in WT, and the remaining cycling genes have on average

a lower amplitude, as expected from a mouse model with no running clock [228]. However, because

the mice are no in free-running conditions, but kept in an environment with cycling stimuli (12:12

light-dark cycle, restricted access to food during the active phase), many functions, particularly those

related to feeding / fasting cycles, are still rhythmically entrained.
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Figure 4.30 – Temporal characteristic of CryKO liver transcriptome. A: Number of rhythmic genes with a log2FC >
1 in each RNA Type. B: Log2FC of rhythmic genes in WT and CryKO. The average log2FC is lower in CryKO than in
WT (Paired t-test, p-value at least < 10−4 for all RNA types. Number of genes per RNA type: NTI = 74, NTE = 68,
NAI = 92, NAE =78, CTE = 33 ,CAE = 46, UTI = 68, UT = 35. C: Cumulative number of genes with a log2FC larger
than a threshold value (on the x-axis) in each RNA population. Dotted line indicates the threshold at log2FC of 1.
D: Phase delay between CryKO and WT. If the phase delay is positive, CryKO peaks earlier than WT. E: Temporal
RNA-seq profiles of three genes that were flat in WT but rhythmic in CryKO.
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4.12.2 Estimation of kinetic parameters in clock-deficient mouse model

In the main section, we investigated the role of the clock in regulating rhythmic RNA accumulation

patterns in the cellular fractions, as well as their roles in the regulation of rhythmic nuclear export and

rhythmic mRNA degradation by analysing rhythmic patterns of NTI and NAE, and NAE and CAE. We

performed the same analysis in Cry1/Cry2-KO mice (step 1: NTI-NAE, and step 2: NAE-CAE). However,

due to the lack of robust temporal patterns involving rhythmic degradation or rhythmic export, we

only provide here a preliminary round of analysis.

We first compare nuclear pre-mRNA and mRNA (NTI versus NAE) to explore rhythmic regulation of

the export rate. We classified 941 in one of the three models (Fig.4.31.A). 77% were classified as M2

(rhythmic transcription, constant export). We found a surprisingly high number of genes classified as

M3 (rhythmic export), but with only little overlap with the M3 genes in WT (genes in common: 10). 41

genes have their amplitudes or phases additionally tuned by rhythmic export (M4). Out of the 726 M2

genes, 429 were also rhythmically transcribed in WT. We noticed that overall, genes that were cycling

only in CryKO were enriched for functions related to lipid and sterol metabolism. Particularly the

target genes regulated by the lipid-activated nuclear receptors LXR and PPARα, master regulators of the

energy homeostasis, have more robust rhythmic patterns in CryKO than in WT, suggesting a stronger

response of the transcriptional program regulating lipid homeostasis, most likely in response to fasting

and feeding pattern. We focussed the analysis on genes that were common in both genotypes. 60% of

the rhythmically transcribed genes classified as M2 in WT became arrhythmic (M1, n = 756) in CryKO,

and ∼30% are also classified as M2 (n = 366, Fig.4.31.B). Genes that are still transcribed rhythmically

in CryKO (M2) have lower amplitudes both in pre-mRNA (NTI) and mRNA (NAE) compared to WT

(Fig.4.30.B). As mentioned above, some genes, mainly related to sterol and fructose metabolism, have

larger amplitudes in CryKO than WT, for example Srebf1, Cyp39a1, Khk, or Adlob (Fig.4.31.D). Phases

are also shifted (Fig.4.30.D), with some extreme cases like Tymp (phase difference of 6 hours, Fig.4.31.D).

These differences in temporal profiles result in a low concordance of estimated half-lives (R2 = 0.15,

Fig.4.31. F). Still, some profiles remain similar in both genotypes, as exemplified by Acat2 (Fig.4.31.G)

The majority of genes classified as M3 in WT (constant transcription, rhythmic export) became com-

pletely arrhythmic in the absence of functional CRY1 and CRY2 proteins (65%, Fig.4.31.A). 18 genes

were classified as M2 in CryKO, 3 as M4 (Mup14, Egr1 and Slc15a2), and 10 genes remained classified as

M3 in CryKO suggesting that the rhythmic profiles detected in nucleus is not driven by the clock, but

by other systemic signals (food, activity). These genes include Fgfr2, Kif13b, Zfp871, Rdh13, Dnajc12,

Rnf169, Rsad1, Sh3pxd2a, 2310022B05Rik, and Txndr2. The overlap of genes classified as M3 is small,

but not due to random sampling (hypergeometric test, p-value =0.0006). Surprisingly, we found 174

genes classified as M3 in CryKO. Among these genes, half were classified as M1 in WT (n = 76), such as

Bcr1, and 54 were classified as M2, such as Acox2 (Fig.4.31.H). Sntg2 and Vmp1 are the only genes that

were classified as M4 in WT and became M3 in absence of rhythmic transcription, which would reflect

a scenario where a gene remains rhythmically exported despite the loss of rhythmic transcription

(Fig.4.31.I).

102



4.12. Supplementary Analysis

Figure 4.31 – A: Classification of NTI and NAE from CryKO in M2 (rhythmic transcription, constant export), M2
(constant transcription, rhythmic export), or M4 (combination of rhythmic transcription and export). B: Proportion
of genes classified as M1, M2, M3 or M4 in CryKO, compared to their classification in WT. C: Distribution of the
amplitudes (log2FC) of NTI and NAE in WT and CryKO shows a global decrease of amplitude in CryKO. P-value
NTI: 0.0017, p-value NAE: < 10−10, paired t-test. Only genes classified as M2 in both genotypes are shown. D:
Correlation of amplitudes in WT and CryKO (left: NTI, right: NAE). E: Phases of WT and CryKO of genes classified
as M2 in both genotypes (left: NTI, right: NAE). Circulation correlation: ρ = 0.13 and p-value = 0.005, ρ = 0.16
for NTI, 8*10−4 for NAE. F: Correlation of export time estimated for genes classified as M2 in both genotypes (n
= 366). G: Temporal fits of NTI and NAE in WT and CryKO. Acat2 has a similar profile in both genotypes, and
similar estimated export time (1.8h in WT and 2.1h in CryKO). Aldob has a larger amplitude in CryKO than in WT.
Estimated export time: 6.8h in WT, 5 min in CryKO. Tymp is delayed by 6 hours in CryKO. Estimated export time: 1h
in WT, 5 min in CryKO. H: Genes classified as M3 in CryKO. Rdh13 has a similar temporal profile in both genotypes.
Bcar1 was classified as M1 in WT, M3 in CryKO. Acox2 was M2 in WT, M3 in WT. NAE peaks at ZT19. 19.6 in WT,
and at ZT15.4 in CryKO. I: Genes classified as M4 in WT, but due to the loss of rhythmic transcription, become M3
in WT.
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We next compared the nuclear mRNA and cytoplasmic mRNA to explore rhythmic cytoplasmic degra-

dation.

Out of the 1811 genes classified in M2, M3 or M4 (rhythmic in either nucleus, cytoplasm, or both

according to the model classification) in WT animals, 433 were still rhythmic in CryKO. Additionally,

281 genes were rhythmic only in CryKO but not in WT. These genes had a similar range of amplitudes in

CryKO than the 433 that were rhythmic in both WT and CryKO, but the median expression level was 2

times lower, hinting that this might be a consequence of more noisy patterns. Out of the 714 rhythmic

genes in CryKO, the vast majority (87%) were classified in M2 (Fig.4.32.A). Only 48 genes were classified

as M3, and 44 genes as M4. The proportion of rhythmically degraded genes in CryKO is thus two times

lower compared to WT (12% versus 25% in WT). As with the phases of NTI and NAE, the distribution

of cytoplasmic phases shows a bimodal distribution, enriched around ZT8 and ZT20. The median of

estimated half-lives of M2 genes is 2.75h, similar to what has been estimated for WT genes. Globally,

these half-lives only poorly correlate with those estimated in WT (Fig.4.32.D), as it was the case in step1.

In Fig.4.32.E, we show some representative examples of genes found in M2: Por peak at the same time

of day in both genotypes (CryKO: ZT11, WT: ZT12). The estimated half-lives are similar (CryKO: 0.75h,

WT: 1.0h), and they only differ by the reduced amplitude in the CryKO liver (log2FC CryKO: 0.9, log2FC

WT: 2.3). The temporal profiles of Oat are similar in both genotypes (log2FC CryKO: 0.8, log2FC WT:

0.7) and the stabilities are in the same range (CryKO: 1.1h, WT: 1.7h). The main difference is in their

peak times, which are almost antiphasic (CryKO: ZT19, WT: ZT9). Finally, Ttc23 has a shorter half-life in

CryKO than in WT.

We next focussed on M3 genes, whose rhythmicity is solely due to rhythmic degradation. Only 8 genes

were commonly classified as M3 in both WT and CryKO mice (Nop53, Slc25a42, Sox5, BC023105, Tardbp,

Enox2, Apoo-ps, Fam214b). We also looked for genes that were classified as M4 in WT (rhythmic tran-

scription and rhythmic degradation) and were still rhythmically degraded despite being constitutively

transcribed (M3 in CryKO). Only 4 genes met the condition: Bhlhe40, Ppp1r3b, Mir6236 and Scp2-ps2,

but only the first two genes show convincing temporal patterns (Fig.4.32.E).

A clock-deficient mouse model is in theory an excellent way to check whether findings involving

rhythms are due to the circadian clock or to other rhythms, e.g. due to the day/night cycle or the feed-

ing/fasting cycle. Here, as there was little overlap between the rhythmic profiles and the classifications

between WT and CryKO, and as we had no particular findings to test, we decided not to pursue the

analysis of CryKO. However, additional rounds of analysis may reveal post-transcriptional regulation

directly related to the clock.
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Figure 4.32 – Classification of rhythms in Cry1/Cry2-KO mice. A: Number of genes classified in M2, M3 and M4
based on the comparison of NAE and CAE. B: Distribution of CAE phase of genes classified as M2. C: Distribution
of estimated half-lives. The median half-lives is 2.75h for M2, 1.5h for M3 and 1h for M4. Half-lives reaching the
upper or lower boundaries were not included to compute the medians. D: Comparison of estimated half-life of
genes classified in M2 in both WT and CryKO (n = 317). E: Representative temporal fit of genes classified in M2 in
both WT and CryKO. Por: similar phase and half-life, but reduced amplitude in CryKO. Half-life WT: 1.0h, CryKO:
0.75h. Oat: A large phase delay between WT and CryKO is observed. Half-life WT: 1.05h, CryKO: 1.75h. Ttc23:
Half-life in WT is much longer than in CryKO (5.1h against 0.4h). F: Temporal RNA-seq profiles of two genes that
were rhythmically transcribed and degraded in WT (M4), but constitutively transcribed and still rhythmically
degraded in CryKO (M3).

.

105



Chapter 4. Comprehensive analysis of the circadian hepatic transcriptome at subcellular scale

4.12.3 Comparison of temporal parameters from single-molecule RNA-FISH and

RNA-seq

To substantiate the RNA-seq profiles, we performed smFISH experiments on the same liver tissue and

quantified the rhythmic parameters of nuclear and cytoplasmic mRNA.

Because the smFISH protocol was not compatible with immunostaining of the hepatocyte membrane,

we could not count the exact number of RNA molecules per cell. Instead, we quantified a "density

per nucleus": we divided the total number of detected dots by the number of segmented nuclei. The

number of RNA / number of nuclei is only a proxy of the actual number of molecules per cell, because

many hepatocytes are binucleated [242]. To assess the rhythmicity of nuclear and cytoplasmic mRNA,

we fitted the mRNA counts with a harmonic generalised linear model. We assumed a Negative Bino-

mial distribution of the mean mRNA counts per time-point and per localisation (nucleus, cytoplasm).

Additionally, we use a model selection approach (See Methods 6.4.3). In short, the parameters describ-

ing rhythmic profiles (a and b) can be either constant or null. Moreover, they can be the same for

nuclear and cytoplasmic RNA or independent, and the best model is chosen best on BIC. If a and b are

independent, temporal patterns are not the same in the nucleus and in the cytoplasm.

We targeted Agxt, a liver-specific gene with a strong diurnal pattern with a large phase delay between

nuclear and cytoplasmic RNA accumulation (Fig.4.33). In RNA-seq, the phase and amplitude (log2FC)

of nuclear mRNA (NTE) are ZT 1 and 1.55, and the phase and amplitude of cytoplasmic mRNA (CTE)

are ZT 5 and 1.52. By smFISH, the number of RNA transcripts per number of nuclei ranges from 30

to almost 100 in the cytoplasm, and from 10 to 20 in the nucleus. The model with the lowest BIC was

the one with different parameters for nuclear and cytoplasmic profiles. Fitted phases were late by 2

hours in smFISH compared to RNA-seq (nuclear: ZT 3, cytoplasmic: ZT 7), and while the cytoplasmic

amplitude was similar to the one in RNA-seq (1.3), the nuclear amplitude was 3 times lower (0.5). The

low amplitude of nuclear RNA could be because of the particularly low ZT0 sample, which looks like an

outlier that acts to decrease the amplitude. Thus, cytoplasmic amplitude was consistent with RNA-seq,

but nuclear amplitude was not. Despite the difference of phases of two hours, the robust rhythms and

the phase differences between nuclear and cytoplasmic mRNA are well detected by smFISH.
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Figure 4.33 – Comparison of temporal characteristics of RNA-seq and smFISH. A: smFISH of Agxt on liver FFPE
tissue. Representative images at ZT0, 4, 8, 12, 16 and 20. Maximal projection of all z-stacks (8µm). Blue: nuclei
stained with DAPI. scale bar: 10µm B: Quantification of mRNA transcripts on smFISH images. A harmonic
generalised linear model assuming a negative binomial distribution of the mean mRNA count is fitted to the
number of nuclear and cytoplasmic mRNA. (Methods). Only mice from serie 2 were used (n = 6). 5-6 images were
taken per animal (technical replicates) and the average number of mRNA molecules per number of nuclei per
image is represented by a datapoint. Between 300 and 700 nuclei were segmented by time-point. Only hepatocytes
from the midlobular zone were quantified, in order to avoid biases due to zonation. Images were taken with a
spinning disk confocal microscope. C: RNA-seq temporal profile of NAE and CAE.
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We also quantified the temporal expression of Actb, a well known cytoplasmically enriched mRNA

(Fig.4.34, Fig.4.4). In RNA-seq, the phase and amplitude of nuclear mRNA (NTE) are ZT22 and 0.6,

and the phase and amplitude of cytoplasmic mRNA (CTE) are ZT1 and 0.9. By smFISH, the number

of nuclear mRNA per number of nuclei varies from 2 to 15, and from 10 to 150 in the cytoplasm. The

temporal profile of nuclear mRNA peaks at ZT0 with a fitted amplitude of 1.3. The cytoplasmic profile

peaks at ZT1 with fitted amplitude of 2. The concordance of the phases between RNA-seq and smFISH

is in a window of 2 hours. However, the amplitude in smFISH is larger than in RNA-seq, presumably

because of the ZT12 sample that has a particularly low number of mRNA.

With these two examples, we showed that rhythmic patterns of nuclear and cytoplasmic mRNA can be

detected and quantified by smFISH. The phases could be estimated within a 2 hours window compared

to RNA-seq, and the fitted amplitudes were sometimes sensitive to outliers. However, the “conversion

rate” of the number of molecules to RPKM varies between Actb and Agxt. The average CTE expression

level of Agxt is 7.5 log2(RPKM) and NTE is 3.75 log2(RPKM), which corresponds to 50 cytoplasmic and

11 nuclear mRNA molecules per nucleus (median over 6 time points). The average Actb expression level

is 9.7 log2(RPKM) in the cytoplasm and 5.9 log2(RRKM) in the nucleus, corresponding to an average

of 70 and 10 cytoplasmic and nuclear mRNA. The RNA-seq quantification suggests that nuclear and

cytoplasmic Actb RNA are ∼4.5 times more abundant than nuclear and cytoplasmic Agxt RNA. However,

by smFISH, Actb is only 1.4 times more abundant in the cytoplasm than Agxt. Potential sources of

discrepancy include different hybridisation efficiencies for different probes, and experimental batch

effects affecting the hybridisation amplification steps, and eventually the imaging setting and image

analysis parameters. Importantly, Agxt is a zonated gene enriched in the periportal area. Even if we

only quantified mRNA from the midlobular zone of both Agxt and Actb, we actually showed that the

expression level of Agxt already reaches its highest value in the midlobular zone. Thus, we most likely

overestimated the expression level by smFISH compared to the bulk-level quantification by RNA-seq

(Fig.4.33). Therefore, while smFISH can be used as an alternative method to confirm rhythmic patterns,

one should keep in mind the spatial heterogeneity of a tissue, and that bulk-level quantification may

not be representative of in situ measurements.

We calibrated the nuclear and cytoplasmic RNA-seq data based on a previously published dataset [74]

(see Methods 6.5.3), in order to obtain a nuclear to cytoplasmic ratio as “realistic” as possible, even if

the relationship between NAE and CAE is still not absolute. Here, for Agxt, there are ∼5 times more

mRNA detected in the cytoplasm than in the nucleus. By RNA-seq, the log2 ratio of 2.25 suggests a

cytoplasmic enrichment of ∼13 times. For Actb, cytoplasmic mRNA are ∼7 times more abundant than

nuclear mRNA, and the cytoplasmic enrichment estimated by RNA-seq is ∼14 times. The nuclear to

cytoplasmic ratio estimated by RNA-seq and by smFISH differ by a factor 2 to 3. The ratio quantified

by smFISH is also not absolute, because we do not sample the same proportion of the nucleus and

the cytoplasm. The average nuclear diameter of a tetraploid hepatocyte is 9 µm, while the average

hepatocyte volume (including mono- and bi-nucleated cells of 2n and 4n) is around 7000µm3 [185],

with length varying from 15 to 25 µm (personal measurements). With a tissue section of 8µm, we never

count mRNA from an entire hepatocyte, and the sampling proportion differs between the nucleus and

the hepatocyte. If we roughly assume that a hepatocyte is a cube with an edge of 20µm containing a

nucleus of a diameter of 9µm, and that we uniformly sample a section of 8µm, on average, a proportion
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4.12. Supplementary Analysis

Figure 4.34 – Comparison of temporal characteristics of RNA-seq and smFISH. A: smFISH of Actb on liver FFPE
tissue. Representative images at ZT0, 4, 8, 12, 16 and 20. Maximal projection of all z-stacsk (8µm). Blue: nuclei
stained with DAPI. scale bar: 10µm B: Quantification of mRNA transcripts on smFISH images. Only mice from
serie 2 were used (n = 6). 5 to 6 images were taken per animal and per time point. Only hepatocytes from the
midlobular zone were quantified, in order to avoid biases due to zonation. C: RNA-seq temporal profile of NAE
and CAE
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of 0.5 of the nuclei are sampled, but only 0.37 of the cytoplasm. Thus, different sampling proportions

of the nuclear and the cytoplasmic content could account for a difference of 30%, and therefore, the

nuclear to cytoplasmic mRNA ratio is biased toward slightly higher nuclear value. Moreover, there is a

risk that mRNA that are actually above or below the nucleus appear like they are inside the nucleus

when projecting all the z-stack images on a 2D plane. It would be interesting to use a 3D reconstruction

image software to quantify the error rate when assigning a transcript to the nucleus or to the cytoplasm.

Finally, we cannot exclude different probe binding efficiency in the nucleus and in the cytoplasm,

as well different backgrounds fluorescent intensities that impair the signal-to-noise ratio. For all the

reasons listed above, one should always keep in mind that the nuclear to cytoplasmic ratio, either by

smFISH or RNA-seq, are arbitrary. Only the “relative ratio” among different genes can be compared.

4.12.4 Absence of apparent contamination by the endoplasmic reticulum in cu-

clear fractions

The outer face of the nuclear envelope forms a continuum with the membrane of the endoplasmic

reticulum (ER). Therefore, during cellular fractionation, there is a risk that the ER and the associated

ribosomes are co-purified with the nuclear fraction [95]. These ER-bound ribosomes specifically

translate mRNAs coding for transmembrane and secreted proteins, although transcripts coding for

cytosolic proteins have been found to be translated by the same ER-bound ribosomes [243]. Transcripts,

especially those part of the secretome, might be wrongly assigned to the nuclear fraction, while

they are actually located in the cytoplasm. Therefore, we verified whether ER-translated genes were

enriched in the nuclear fractions. To this end, we compared the Nuc/Cyt ratio in both PolyA and

Total RNA populations with two published datasets. In the first dataset, Chen et al.[244] fractionated

J558 murine plasmacytoma cells by sequential detergent extraction method, and isolated cytoplasmic

and ER-bound RNAs. The expression level of 68 selected genes were measured in each population by

qPCR, and a cytosolic vs ER enrichment score was attributed to each gene. We did not observe any

correlation between (Fig.4.35.A and B). We did not observe any significant correlation between the

nuclear localisation and the ER-enrichment score in both PolyA and Total RNA populations, indicating

that transcripts translated by ER-bound ribosomes are not enriched in the nucleus. In the second

dataset (HEK293 cells), ER-bound ribosomes were biotinylated and pulled down, followed by the

sequencing of the associated mRNA (proximity-specific ribosome profiling) [245]. They assigned an

enrichment value based on the log2 ratio of ribosome footprint in the biotinylated versus whole-cell

sample. Again, no correlation between nuclear enrichment and ER-enrichment was found (Fig.4.35.C,

D). Finally, we also looked at the subcellular localisation of genes coding for protein annotated as

“highly secreted” by MetazSecKB, based on prediction by SignalP4, Phobius, TargetP and WoLF PSORT.

The log2 ratio of NAE/CAE of genes annotated as “highly secreted” was not significantly different from

those not annotated as such in both PolyA and Total population (Fig.4.35.E, F). Based on these results,

we conclude that there is no detectable contamination of the nuclear RNA population by the mRNA

translated on the endoplasmic reticulum.
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Figure 4.35 – Nuclear fractions are not enriched for transcripts translated by ER-bound ribosomes. A: Left:
scatterplot of log2(NAE) and log2(CAE). Colored dots represent genes from [209], color-coded by their enrichment
score (orange = cytosolic, blue = ER-enriched). No correlation was found between the ER enrichment score and the
nuclear localisation (p-value: 0.2, Pearson’s correlation R2: 0.02). B: same as A, but comparing Total RNA (NTE and
CTE). p-value = 0.2, R2 = 0.02. C: Comparison with the dataset published by Jan et al. in HEK243 cells [245]. Again,
no correlation is found between the ER-enrichment score and the Nuc/Cyt ratio in both PolyA and Total RNA
populations (p-value = 0.6 and p-value = 0.9). E,F: log2(NAE/CAE) and log2(NTE/CTE) ratio of genes predicted
as “Highly secreted” by MetaSecKB database (“YES”). Mean ratios were not significantly different between genes
annotated as “highly secreted” ("YES") and the other genes ("NO").
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5 Circadian and chromatin contacts-

dependent modulation of transcrip-

tional bursting parameters

5.1 Background

Due to the stochastic nature of transcription, a majority of mammalian genes are transcribed in bursts

[246, 70, 73]. Indeed, most RNAs are produced during limited time periods followed by longer periods

of transcriptional inactivity. Although it is a ubiquitous phenomenon, genes are characterised by

transcriptional bursting parameters that vary considerably from gene to gene, in a tissue-specific

manner [196]. Typically, these parameters are the burst frequency, which is the rate of switching

between periods of transcriptional inactivity and activity, and the burst size, which is the average

number of RNAs transcribed per burst episode.

smFISH distributions can be used to precisely describe the mode of transcription of a gene and

notably provides information regarding its transcriptional bursting properties [72, 75]. If transcription

is constitutive, the expected distribution of mRNAs per cell follows a Poisson distribution, while if

occurring in bursts, the variance of the distribution is often greater than expected with a Poisson

distribution, and the bursting model, which can be approximated with a negative binomial distribution,

can increase the amount of variance (known as overdispersion). The number of actively transcribing

loci per nucleus can be estimated using an intronic probe signal and is known as the burst frequency,

while the intensity of the dot at the transcription site presents a good approximation of the burst size

[72]. The burst frequency is inversely proportional to the expression noise (the noise is reduced if the

frequency is high).

Transcriptional bursting parameters depend on many aspects of gene regulation such as local chro-

matin environment, histone modification and DNA looping [71]. Also, circadian genes are known

to display changes in bursting parameters throughout the day. Notably, in cultured cells, rhythmic

variation of burst frequency but not burst size has been shown to modulate the rhythmic expression of

various circadian reporters [73, 75]. Moreover, in the Bmal1 core clock gene, the daily increase of burst

frequency was positively correlated with the presence of acetylated histones at the promoter.

For this project, I collaborated with Jérôme Mermet and Jake Yeung, first co-authors of [64], to mea-
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sure expression and transcriptional bursting parameters of Cry1, a core clock component. They had

previously found that in this gene, BMAL1-dependent oscillatory promoter-enhancer interactions

participated in modulating rhythmic expression in the mouse liver. Deletion of an enhancer that

was rhythmically recruited to the Cry1 promoter was sufficient to decrease the rhythmic chromatin

contacts. The deletion also reduced the peak of Cry1 mRNA expression profile, and shortened the

circadian period of locomotor activity of mice (Cry1∆e strain).

Since Cry1 was (1) differentially expressed throughout the day, (2) displaying rhythmic histone acetyla-

tion levels at its promoter and (3) regulated by promoter-enhancer contacts, we thought of assessing

the variations in its bursting pattern at two time-points corresponding to its expression peak and

trough. By using smFISH probes targeting intronic and exonic region of Cry1 and inferring bursting

parameters in WT and Cry1∆e mice at two times of the day, I showed that the burst frequency, but not

the burst size, regulates the rhythmic gene expression level of Cry1. The frequency is also modulated by

rhythmic promoter-enhancer contacts. Thus, as for reporter expression in cultured cells, the rhythmic

expression of an endogenous gene in the liver is also exclusively linked to modulations of the burst

frequency, and these bursting properties are directly linked to the presence of dynamic promoter-

enhancer contacts. Taken together, the results presented in this study established oscillating and

clock-controlled promoter-enhancer looping as a regulatory layer underlying circadian transcription

(through modulation of burst frequency) and behavior.

5.2 Results

To quantify the expression of Cry1 mRNA and estimate its bursting features, we first performed smFISH

in liver cryosections at the peak of expression (ZT20) and trough (ZT8), and in WT and Cry1∆e animals

(Fig.5.1). Because the simultaneous staining of hepatocyte membranes was not compatible with the

smFISH protocol, we did not retrieve the absolute copy number of mRNA per cell, nor did we take into

account binucleation. In addition, the thickness of the cryosection (8µm) is smaller than the diameter

of hepatocytes (∼25µm), and does not capture whole cells. Instead, we measure a “concentration” of

mRNA related to the number of segmented nuclei per microscopy image. We were thus able to compare

the relative variation of RNA concentration between conditions. On average, mRNA concentration

varies from 4 to 20 mRNA/nucleus in WT, and from 7 to 13.7 mRNA/nucleus in Cry1∆e (Fig.5.1.b). The

peak accumulation is reduced by 31% in Cry1∆e compared to WT. At ZT8, Cry1∆e level is slightly higher

than WT level. RNA-seq was performed on the same liver samples used for smFISH (Fig.5.1.c), and

shows very similar patterns: a reduction of 27% of expression between the two genotypes at their peak

expression time (ZT20), and a slightly higher level at ZT8 in Cry1∆e. The latter is explained by the phase

advance of Cry1 expression in Cry1∆e compared to WT (on average, clock genes are phase advanced by

30 minutes). Thus, we were able to recapitulate RNA-seq quantification using smFISH as an alternative

approach.
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Figure 5.1 – smFISH against Cry1 pre-mRNA in the liver of WT (top) and Cry1∆e (bottom) animals at ZT8 (left) and
ZT20 (right). B: Quantification of Cry1 transcripts (exon) in smFISH images. Unit is the number of RNA transcripts
divided by the total number of nuclei in each microscopy image. Shown are mean and standard errors over two
animals. C: RNA-seq Cry1 mRNA profiles in Cry1∆e and littermates WT animals (Transcripts per Million, TPM).
Bars indicate standard deviation over 3 animals (on courtesy of Jake Yeung).

Next, we asked whether time of the day and the Cry1 intronic enhancer could modulate transcrip-

tional bursting parameters. While counting mRNAs in the cytoplasm uses exonic probes, analysis

of transcriptional bursting is best done with intronic probes. We designed smFISH probes targeting

Cry1 pre-mRNA to detect active transcription sites (TSs), and estimated the transcriptional bursting

parameters at ZT20 and ZT8. We defined the burst fraction as the fraction of active TSs in each nucleus,

proportional to the burst frequency per allele. We used the burst intensity, which is the mean intensity

of a TSs instead of the burst size (the actual number of RNA being transcribed), which we were able

to compare across conditions. Because hepatocytes are polyploid cells harbouring 2, 4, 8 or even

16 copies of their genome, we first estimated the ploidy of each nucleus based on the size [185]. We

fitted a Gaussian mixture model with four clusters to represent diploids, tetraploid and octoploids

nuclei (Fig.5.2.a). The last cluster with an extremely large variance accounts for the outliers and is

not used in the analysis. Ploidy distribution changes in function of age [186], thus, the proportions

vary from one study to another. However, for mice older than 8 weeks old, the majority of nuclei is

tetraploid [196, 186, 247]. In our case, the most abundant hepatocytes are indeed tetraploids (67%,

average diameter of 9.38 ± 0.89µm), followed by octoploids (21%, 13 ± 0.81µm) and diploid cells (11%,

6.80 ± 0.38µm) (Fig. 5.2).

We modeled the number of active TSs per nucleus with genotype-dependent slopes and compared it

to a reduced model without a genotype effect (Fig.5.3.A), and showed a significant difference at ZT20.

We divided the number of active TSs by the estimated ploidy to obtain the burst fraction (Fig.5.3.B).

The estimated burst fraction was 2.4 times higher at ZT20 compared to ZT8 in WT and 1.92 in Cry1∆e
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Figure 5.2 – Ploidy distribution. A: Distribution of nucleus diameters for a representative animal. Colored curves
show Gaussian mixture model corresponding to diploids (2N), tetraploid (4N) and octoploid (8N) nuclei. The
fourth curve catching outliers is not shown. B: percentage 2N, 4N and 8N nuclei in each animal (n=2 per time
point and genotype).

(Fig.5.3), indicating a time-dependent modulation of gene expression by varying burst frequency.

Importantly, the burst fraction was reduced by 28% in Cry1∆e, a value matching the observed reduction

of mRNA accumulation in RNA-seq and smFISH. For the burst size, as for the burst fraction, we

modeled the mean intensity of intronic dots with genotype-dependent intercepts and compared it

to a reduced model. By contrast to the burst fraction, the burst intensity was similar in all conditions

(Fig.5.3.D,E). Thus, the decreased Cry1 mRNA levels in Cry1∆e at ZT20 can be quantitatively explained

by the lowered burst fraction. In summary, dynamic DNA loops involving clock enhancers modulate

transcriptional bursting in mammalian tissues, specifically, rhythmic enhancer control burst frequency

while maintaining burst size.

5.3 Concluding Remarks

Most studies assessing transcriptional bursting parameters from smFISH data either fit a negative

binomial to the distribution of transcripts per cell [72, 73], or quantify the number and signal intensity

of TSs together with the number of transcripts per cell [248, 249]. In our imaging conditions, these

approaches could not be considered due to the impossibility to simultaneously perform smFISH and

mark cell boundaries. Consequently, in this study, we estimated the burst size (or burst intensity) from

the intronic signal intensity at TSs, and the burst fraction from the number of active TS per loci (after

assigning every nuclei to a ploidy). The burst size was estimated from the relative change in intronic

signal intensity at TS rather than the absolute number of transcripts at TS. It is theoretically possible to

identify active TS from the intronic signal and quantify the transcription intensity with the co-localising

exonic signal normalised to the intensity of a single RNA molecule, for instance in the cytoplasm, but

the approach is imprecise notably because of the important background variations in different regions

of the cell. Also, our smFISH labelling strategy uses an amplification step that makes it difficult to

estimate the fluorescence intensity of a single mRNA. It is also worth noting that estimating the number

of transcripts at TSs is also challenging using more conventional smFISH techniques lacking signal

amplification steps, as in these conditions, the normalised signal of a single transcript also varies by 2

to 3 folds [250].
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Figure 5.3 – Burst frequencies and burst intensities measured from images of smFISH performed against Cry1
pre-mRNA in Cry1∆e (dashed) and WT (solid) at ZT8 (red) and ZT20 (blue). A: Number of active transcription sites
(TSs) averaged per animal increases with ploidy. At ZT20, Cry1∆e animals show reduced number of TSs compared
to WT: lines show mixed-effect linear model with genotype-dependent slopes. P-value testing the null hypothesis
that slopes are equal: 0.00014 (F-test). At ZT8, the slopes are not different (p=0.84). B: Number of active TSs in
each nucleus divided by the estimated ploidy. Shown are means and standard errors over nuclei collected from
two animals in each of the four conditions. Number of nuclei: WT-ZT8 n=2191; Cry1∆e-ZT8 n=983; WT-ZT20
n=2150; Cry1∆e-ZT20 n=1473. In B, * and *** show p<0.05 and p<0.001, respectively, T-test. C: Active TS intensity
averaged per animal shows comparable intensities across ploidy and conditions: lines show mixed effect model
with genotype-dependent intercepts, intercept comparisons at both ZT8 (p(H0:equal intercept)=0.53, F-test) and
ZT20 (p=0.41) are not significant. In D, differences between genotypes are not significant.

Despite these limitations, our approach provides a reliable estimate of the bursting properties of an

endogenous core clock gene in mouse liver, and how they vary between time points and experimental

conditions. These bursting properties of Cry1 are likely to vary in other systems, since bursting

parameters are tissue-specific [196]. Our analysis confirmed that changes in expression levels in

circadian genes throughout the day mainly arise from modulation of burst frequency. While this

tendency had already been observed in cultured cells [71, 76], it was so far never confirmed in tissues.

Also, our data highlighted the importance of DNA looping in this process. The formation of enhancer-

promoter contacts influences the burst frequency together with other factors such as histone acetylation

[71] or nucleosome density [251, 252].
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5.4 Clock-dependent chromatin topology modulates circadian tran-

scription and behavior: Abstract

This work was part of the paper published in Genes and Development by the following authors (first

authors in bold): Jérôme Mermet, Jake Yeung, Clémence Hurni, Daniel Mauvoisin, Kyle Gustafson,

Céline Jouffe, Damien Nicolas, Yann Emmenegger, Cédric Gobet , Paul Franken, Frédéric Gachon, Félix

Naef [64].

The circadian clock in animals orchestrates widespread oscillatory gene expression programs, which

underlie 24-h rhythms in behavior and physiology. Several studies have shown the possible roles

of transcription factors and chromatin marks in controlling cyclic gene expression. However, how

daily active enhancers modulate rhythmic gene transcription in mammalian tissues is not known.

Using circular chromosome conformation capture (4C) combined with sequencing (4C-seq), we dis-

covered oscillatory promoter–enhancer interactions along the 24-h cycle in the mouse liver and kidney.

Rhythms in chromatin interactions were abolished in arrhythmic Bmal1 knockout mice. Deleting a

contacted intronic enhancer element in the Cryptochrome 1 (Cry1) gene was sufficient to compromise

the rhythmic chromatin contacts in tissues. Moreover, the deletion reduced the daily dynamics of

Cry1 transcriptional burst frequency and, remarkably, shortened the circadian period of locomotor

activity rhythms. Our results establish oscillating and clock-controlled promoter–enhancer looping as

a regulatory layer underlying circadian transcription and behavior.
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6 Methods

6.1 Mouse Liver sampling

All mice experiments were performed on male mice aged from 8 to 12 weeks old, and housed in 12:12

light:dark cycle. 3 days prior sacrifice, mice were given access to food only during the active phase

(night-restricted feeding). WT mice were C57/BL6J mice and Cry1/Cry2 double-KO (later referred

to as CryKO) are described in [240]. Breeders genotype was Cry1 -/- and Cry2+/-. For the project

on Transcriptional Bursting, Cry1∆e mice were generated by the EPFL Transgenic core facility and

described in [64].

For the project on liver zonation (Chapter 3), 4 WT mice were sacrificed by decapitation every 3 hours

(ZT0, 3, 6, 9, 12, 15, 18 and 21). ZT0 is the beginning of the light phase, and ZT12 is beginning of the

dark phase. For the project on subcellular localisation (Chapter 4), 2 WT mice and 2 CryKO mice were

sacrificed by decapitation every 4 hours (ZT0, 4, 8, 12, 16, 20).

Pieces of liver were immediately collected after sacrifice for histological analysis (single-molecule

RNA-FISH and immunostaining) and for RNA extraction.

6.2 Cellular fractionation of liver tissue and RNA extraction

For nuclear and cytoplasmic RNA extraction, a piece of ∼300mg was dissected from the big lobe. Cellu-

lar fractionation was done as described in [253]. Liver pieces were put in 15ml Falcon tube filled with

ice-cold PBS up to a total volume of 2.9ml, then transferred into a Potter-elvehjem homogeniser, and

homogenised with a PTFE pestle with few milliliters of a 2.2M sucrose homogenisation buffer (total

volume of homogenisation buffer: 18ml). The homogenate was transfered into the remaining homo-

geneisation buffer and layered on top of 7.2ml of a 2.05M sucrose cushion buffer in ultra-centrifuge

tubes. The liver homogenate was ultra-centrifuged in a Beckman SW28 rotor at a speed of 24K rotation

per minute, at 4C◦ for 1 hour. 10 ml of the supernatant (cytoplasmic extract) was taken. From the

10ml of the cytoplasmic extract, 2 ml was poured in 8ml of RNAse-free H2O and 30ml ethanol (final

EtOH concentration of 70%) and frozen overnight at -80C◦. The remaining cytoplasmic was stored at
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-80C◦. The next day, the cytoplasmic extract in ethanol was centrifuged at 5000 rpm for 15 min at 4C◦ to

precipitate RNA. Ethanol was discarded, and the pellet was resuspended in 800µl of Qiazol (Qiagen).

RNA was extracted on spin columns using the miRNEasy Mini Kit (Qiagen) according to manufacturer’s

instructions.

After taking 10 ml of the cytoplasmic fraction following the ultracentrifugation, the remaining sucrose

buffer was discarded. The wall of the tubes were cleaned with a tissue to remove all the remaining

sucrose buffer. The pellet (nuclei) was resuspended in 3ml of Nuclear RNA extraction buffer, and was

mechanically homogeneised with a syringe. 3ml of water-saturated phenol (pH 4.5) and 1200µl of

chloroform:isoamyl alcohol 24:1 were added to the resuspended pellet, and were well shaken before

resting for 15 minutes at room temperature. The mix was centrifuged at 4C◦ at 4000rpm for 20min.

The supernatant was resuspended in ethanol (700 µl of supernatant for 1000µl of ethanol 100%). RNA

was then extracted on spin columns using miRNEasy kit from Qiagen according to manufacturer’s

instructions, including a gDNAse treatment (Qiagen).

For total liver RNA extraction, pieces from the main liver lobes were frozen in liquid nitrogen. About

20mg were grounded and were used for RNA extraction using the miRNEAsy kits (Qiagen).

Composition of 2.2M homogenisation buffer: 2.2M sucrose, 15mM KCl, EDTA, 10mM Hepes pH 7.6,

0.15 mM spermine, 0.5 mM spermidine, in RNAse-free water. Just before use, add 1/200 PMSF, 1/100

DTT 0.1M, and 1/100 Protease inhibitor cocktail (aprotinin, leupeptin, pepstatin). Composition of

the 2.05M sucrose cushion buffer: 2.05M sucrose, 10% glycerol, 15mM KCl, EDTA, Hepes Ph.7.6,

0.15mM spermine, 0.5mM spermidine, in RNAse-free water. Just before use, add: 1/100 Protease

Inhibitor (aprotinin, leupeptin, pepstatin), 1/200 PMSF, 1/100 DTT 0.1M. Composition of the Nuclear

RNA extraction buffer : guanidium thiocyanate (50% of the final weight), Na citrate 0.75M pH7, in

RNAse-free water. Just before use, add: 1/10 NaAcO 2M pH4 and 1/100 β-mercaptoethanol.

The quality of extracted RNA was assessed with the Nanodrop (concentration, 260/280 and 230/260

ratio) and with the Agilent Tapestation 4200 (automated electrophoresis). All the RNA had a RIN value

ranging from 7.5 to 9.5. Cytoplasmic RNA, particulary in WT, had the lowest quality.

6.3 Single-molecule RNA-FISH

Dissected liver pieces were immediately embedded in O.C.T Compound (Tissue-Tek; Sakura-Finetek

USA), snap-frozen in isopentane cooled with dry ice, and stored at -80C◦ (fresh-frozen samples).

Other pieces of liver were fixed in 10% Neutral buffered Formalin (NBF) at 4C◦ for 24 to 36 hours.

Fixed samples were then washed in PBS 1x for 30 minutes, and dehydrated in standard ethanol series

followed by xylene bath, and finally embedded in paraffin (formalin fixed paraffin embedded, FFPE

tissues). Sections were 8µm thick.

Single-molecule RNA Fluorescent in situ Hybridization (smFISH) experiments were all performed

using the RNAScope technology (Advanced Cell Diagnostics). smFISH experiments were performed

by the Histology Core Facility at EPFL, according to manufacturer’s instructions. Housekeeping genes

Ppib, Ubc and Polr2A were used as positive controls, and DapB, from the Bacillus subtilis strain SMY

was used as an internal negative control. Nuclei were counter-stained with DAPI or with Dracq5.
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6.4. Microscope image acquisition and quantification of single-molecule RNA-FISH images

smFISH experiments with Arntl and Per1 was performed together with an immunofluorescence against

Glutamine Synthetase, a marker of the pericentral vein (ab49873, Abcam, diluted 1:2000 in PBS/BSA

and 0.5%/Triton-X0.01%). Sections were mounted with ProLong Gold Antifade Mountant. For fresh-

frozen liver cryosections, the RNAScope Fluorescent Multiplex Assay was used. For FFPE samples, the

RNAScope Fluorescent Multiplex V2 Assay was used.

Catalog number of the probes: Cry1 pre-mRNA: 500231. Cry1: 500031. Per1: 438751. Arntl: 438741.

Actb: 316741. Agxt: 525261. Mlxipl: 558141.

6.4 Microscope image acquisition and quantification of single-molecule

RNA-FISH images

Two different microscopes were used depending on the project. For the Transcriptional Bursting

project and the Liver Zonation project (Chapter 3 and Chapter 5), cryosections were imaged with the

Leica DM5500 widefield microscope and a motorised-stage. Z-stacks were acquired with a distance of

0.2µm between each Z position, (∼40 images per frame) with an oil-immersion x63 objective. For the

Subcellular Localisation project (Chapter 4), all samples were FFPE. Sections were imaged with the

Visitron Spinning Disk CSU W1 with a motorized stage.Z-stacks were acquired with a distance of 0.2µm

between each Z position, (∼40 images per frame) with an oil-immersion x63 objective.

All z-stacks were maximally projected for analysis. The image processing pipeline was developed using

ImageJ. mRNA spots are detected by first applying a Gaussian blur, followed by the edge-detector

Laplacian filter. The local maxima - corresponding to the spots - are computed and counted. Nuclei

are detected by applying a median blur filter, the Otsu method for automatic thresholding, and the

watershed algorithm for segmentation. We were not able to stain the hepatocytes membrane together

with the smFISH protocol: none of the antibodies usually employed to stain the membranes were

compatible with the smFISH protocole (E-Cadherin (ab76055), N-Cadherin (ab76057), Pan-cadherin

(ab6529, ab16505), β-catenin (ab32572, D10A8), F-actin binding Phalloidin (A12379)). Therefore, we

did not quantify the number of mRNA molecules per cell. Instead, we quantified a density of mRNA

per nuclei: we counted all the mRNAs present in one microscopy image and divided by the number of

segmented nuclei.

6.4.1 Quantification of spatio-temporal mRNA profiles

mRNA and nuclei were detected and counted as mentionned above. Each microscopy image contains

one central vein (CV) and one portal vein (PV). PV and CV were manually detected based on the

presence or absence of bile ducts, detected by DAPI staining. To facilitate the identifcation of the veins

when targeting putatively non-zonated genes (Per1 and Arntl), we additionally performed an immunos-

taining of Glutamine Synthetase (Abcam ab49873, dilution 1:2000), a marker of CV. The contour of the

veins were manually drawn in ImageJ. Endothelial cells lining the veins and cholangiocytes forming

the bile ducts were excluded from the analysis. The Euclidean distance between two veins (d) and the

distance from the veins of each mRNA transcript and of each nuclei were calculated. mRNA transcripts

were assigned to the periportal (PP) or pericentral (PC) zone when the distance from the corresponding
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vein was smaller than one-third of d . If the mRNA and the nuclei were at a distance of 2
3 d from both the

CV and the PV, they were assigned to the midlobular zone (Mid). d ranges from 50 to 130µm (Fig.3.1).

6.4.2 Modeling spatio-temporal profiles

To assess the rhythmicity in the three liver zones (PC, PP and Mid), we built a simple model selection

framework based on generalised linear model. We fitted a harmonic regression on the mRNA counts

per image with a log-link function, and used the number of detected nucleus per zone as an offset

in order to get the density of "number of mRNAs per number of nuclei". We assumed that yt is the

number of mRNA per zone and per time-point, which follows a negative Binomial distribution. We

used the relation:

yz,t ∼ N B(µz,t ,θ)

l og2(µz,t ) = mz +az cos(ωt )+bz si n(ωt )+ log2(Nz )

with mz,t the number of mRNA in the zone z per time point t , Nz the number of nuclei in the zone z,

az and bz the coefficient of the cosine and sine functions, ω the frequency ( 2∗pi
24 ). The phase (peak of

expression) is defined as arctan( b
a ) and the amplitude (or log2 fold change) as

p
a2 +b2. To compare

rhythmicity parameters and the mean expression level in the three zones (mz , az and bz ), we used a

model selection approach. We allowed az and bz to be zero (non-rhythmic), nonzero (rhythmic), or to

be shared between PP, PC and/or Mid. If az and bz are shared between PC, PP or Mid, then the phase

and log2FC are the same in the three zones, and the model is more parsimonious. The mean mRNA

count mz can also be shared (no difference of expression level between zone) or independent, in which

case the profile is zonated. The Baysian Information Criterion (BIC) is then calculated to account for

model complex, and the model with the lowest BIC is chosen. BIC = −log (L)+K ∗ l og (N ), with log (L)

the log-likelihood, K the number of parameters, and N the number of data points.

6.4.3 Quantification of nuclear and cytoplasmic temporal mRNA profiles

We detected mRNA and nuclei as mentioned above. Additionally, each mRNA was labelled as "nuclear"

if it belongs to a segmented nucleus, or cytoplasmic otherwise. To assess the rhythmicity of nuclear

and cytoplasmic mRNA profiles, we used the same model selection framework as for the zonation

profiles. Instead of using zone-specific parameters to describe the temporal profile (mz , az , bz ), we

used "localisation-specific" parameters (nuclear or cytoplasmic). These parameters can be either zero

(flat profile) or non-zero (rhythmic), and can be shared (same phase and amplitude in the nucleus and

in the cytoplasm), or independent. The best model is chosen best on the BIC.

6.4.4 Quantification of transcriptional bursting parameters

For the estimation of Cry1 transcriptional bursting parameters (burst size and burst fraction), we

counted the number of active transcription sites (TSs) per nucleus. To detect TSs, we designed smRNA-
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FISH probes targeting Cry1 pre-mRNA (RNAScope catalog number: 500231, targeting the 1047-2454

region of intron 1). To estimate burst size, transcription site intensities were quantified on the sum

projection of the ten best focused stacks per image. Total transcription site signals were computed

using a mask of 3x3 pixels. Burst fraction was calculated as the number of active transcription sites in

each nucleus divided by its estimated ploidy, and these fractions were then averaged over the entire

populations of nuclei. We assigned the ploidy (2N, 4N, 8N) based on the nuclear diameter. Typical

values of nuclear diameters reported in the literature are approximately 7µm (2N), 9µm (4N) and 11µm

(8N) [254, 185]. 16N nuclei also exist, but are rare and were not included in the analysis [185]. A four-

components Gaussian mixture model was fitted to the diameter distribution (R Package “mixtools”).

Nuclei with a probability of >0.7 to belong to one of the 3 inferred populations with the smallest mean

were assigned to 2N, 4N, 8N, respectively. The Gaussian distribution with the largest variance captured

outliers in nuclei diameters (>15-18 µm) and were discarded.

6.5 RNA-sequencing and mapping

We sequenced three different RNA populations: from isolated nuclei (N), from the cytoplasmic extract

(C), and from total liver tissue (unfractionated, U). We sequenced polyadenylated RNA by Poly(A)+

selection, and total RNA after ribo-depletion. In total, we have five types of RNA: Unfractionated total

(UT), Nuclear Total (NT), Nuclear PolyA (NA), Cytoplasmic Total (CT), and Cytoplasmic PolyA (CA).

6.5.1 Library preparation

Library preparation and sequencing were done by the Gene Expression Core Facility (GECF) at EPFL.

To sequence polyadenylated nuclear and cytoplasmic RNA, we used the "TruSeq stranded mRNA LT"

kit from Illumina, starting from 650 ng RNA, according the the manufacturer’s protocol. To sequence

total RNA, we used the "Kapa RNA hyperPrep with Riboerase" prep combined with "KAPA Unique

Dual-Indexed Adapter Kit" from Illumina, starting from 650 ng RNA. Libraries were sequenced on

a Hiseq4000. We used a SBS 50 cycles and SR cluster kit, performing a single read sequencing of 65

nucleotides. We sequenced on average 70M reads for NA and NT, 25M reads for CA and CT, and 50M

reads for UT.

6.5.2 Pseudo-alignment of RNA-seq reads with Kallisto

Quantification of pre-mRNA and mRNA expression levels was performed using Kallisto version 0.46.0

[203]. A combined index was built using reference fasta files from Ensembl for mus musculus (mm10,

GRCm38). In particular, pre-mRNA (introns and exons) and mRNA (exons) reference sequences

were used as an input and named accordingly. Pseudoalignment and quantification were run on the

aforementioned combined kallisto index with parameters "–single –rf-stranded -l 100 -s 30 -s 30". TPM

(transcript per million) and estimated counts at (pre-) transcript level were used for further analysis.

We filtered lowly expressed transcripts. We only used TPM of mRNA in Unf Total RNA population,
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because the estimation of mature transcript is more robust than of pre-mRNA. We kept transcripts

that have a sum of TPM > 0.5 in either WT or CryKO. We then calculated the Isoform Fraction (IF)

for each transcript, which is the TPM of the isoform divided by the sum of TPM of all isoforms of a

given gene. We defined a gene-specific threshold that depends on the number of annotated isoforms

(n): the IF has be greater than 1
n to be kept. Additionally, we set the maximal threshold to 0.2, such

that when a gene has only two isoforms, if one contributes to more than 20% of the total expression,

it is not filtered out. If a transcript meets the condition in at least 6 samples out of the 120 samples

(5 RNA populations, 2 genotypes), it is kept. Again, we filter transcripts based on the mRNA TPM

only, because it is more difficult to obtain robust isoform-specific quantification of pre-mRNA, that

share most of their intron between isoforms. In addition to the isoform-specific quantification, we

pooled the isoforms belonging to the same biotype in order to have a biotype-specific quantification.

We summed the TPM and the estimated counts. As for the gene length used for normalisation, we

calculated the averaged effective gene length (estimated by Kallisto), weighted by the expression level

of each isoform in each condition (therefore, gene length may differ between RNA population). We

created 7 biotypes, based on the Ensembl description. Protein coding (PC), Retained Intron (RI),

snRNA, and Processed Transcripts are defined by Ensembl. Nonsense mediated decay and non stop

decay are grouped as "NMD". We grouped lincRNA, bidirectional promoter lncRNA, sense overlapping,

sense intronic, 3prime overlapping ncRNA, lncRNA and in one biotype named "long non-coding RNA

(lncRNA) . Small Nucleolar RNA (snoRNA) comprises the biotypes "snoRNA" and "scaRNA". All the

biotypes containing the keyword "pseudogenes", whether they are processed, transcribed or not are

grouped as "Pseudogene".

Finally, we summed all the transcripts by gene, independently of their biotype, in order to have gene-

wise quantification. The gene length was calculated as the weighted average based on the relative

expression of all the isoforms in each RNA population.

Defining pairs of Protein Coding and Retained intron

To define pairs of protein coding transcript and retained intron, we matched the exon start and exon

end based on the gene annotation provided by Ensembl (release 102, November 2020). We allowed

a difference of 1 nucleotide. We also considered as "pairs" when the retained intron overlapped two

consecutive exons.

6.5.3 Statistical analysis of rhythmic gene expression

We normalised the counts estimated by Kallisto using the R package "DESeq2" [204]. The normalisation

procedure by DESeq2 models raw counts with a negative binomial distribution with two parameters: a

meanµg and a dispersion parameterαg . The gene-specific meanµg is the number of counts multiplied

by a sample-specific "size factor" estimated by the median-of-ratio method, which rescales the library

size and aligns the median expression level of all the samples to a "pseudo-reference sample". The

dispersion parameterαg is estimated for each gene. To overcome the low number of replicates, DESeq2

algorithm assumes that genes with similar level of expression have a similar dispersion. Thus, it fits a
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curve to the dispersion estimates in function of expression values. Gene-specific αg are then shrunk

toward this curve.

The fit is performed using a Generalized Linear Model (GLM). Here, we directly implement a rhythmic

analysis during the normalisation process, using the following model:

l og2(µg ,s,t ) = ag ,s ∗ cos(w t (s))+bg ,s ∗ si n(w t (s)) (6.1)

where Ng ,s,t is the mean counts fitted by the negative binomial distribution for gene g, for sample s at

circadian time-point (ZT) t . ag ,s and bg ,s the coefficients of the cosine and sine functions, and ω= 2π
24 .

The phase (peak of expression) is defined as ar ct an( b
a ) and the amplitude is (or log 2 fold change) asp

a2 +b2.

The full model with rhythmic parameters is tested with a Likelihood Ratio test against the reduced

model with an intercept only. The intercept fitted by DESeq is used as the mean expression level over

the 6 time points. Genes with a p-value < 0.01 and a log2 FC > 1 were considered as rhythmic.

The normalisation procedure was carried out on pre-mRNA and mRNA count sets separately, and for

each RNA type (Nuc Total, Nuc PolyA, Cyt Total, Cyt Poly, Unf Total). We used the combined library size

(pre-mRNA + mRNA) per sample to adjust for sequencing depth. The size factor was estimated using

mRNA only, such that the median level of mRNA is aligned for all the samples. The same size factor is

applied to the pre-mRNA, such that the relationship between pre-mRNA and mRNA is conserved.

Normalisation of counts by gene length

For statistical testings such as differential gene expression, DESeq2 uses raw counts. However, for

visualisation or exploratory purposes (e.g. PCA), we use counts normalised by gene length, in a similar

way to RPKM (Reads Per Kilobase Million), using the estimated size factor, library size of the pseudo-

reference sample, and gene length. The gene length is specific to each RNA fraction. It is the weighted

average based on the relative expression level of each isoform. Our RPKM-like value is thus defined as

follow:

RPK M = Count s

si ze f actor ∗pseudo l i b.si ze ∗ g ene l eng th
∗109 (6.2)

Filtering RNA-seq data

We removed transcripts assigned to one of the following Ensembl biotype (release 102): T-cell receptor

genes, Immunoglobin genes, TEC, mitochondrial RNA, miscelanneous RNA, ribozyme, antisense RNA,

mitochonrdial RNA, rRNA, miRNA, and tRNA.

We filtered genes based on their expression level. Since the three RNA types have been processed and

normalised separately, we cannot directly compare the expression values. Therefore, we defined a

threshold value specific to each RNA type per genotype. We arbitrarily set the threshold such that
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at least 50% of the genes are kept, based on the mean value fitted by DESeq2 (Intercept). We only

considered the mRNA expression level, because the estimation of the pre-mRNA level is less accurate.

If the mean expression level of a gene is higher than the threshold in at least one RNA type, but not in

others, it is kept. We applied the same procedure to filter genes from the biotype-specific quantification

and transcripts for the isoform-specific quantification. In total, the number of expressed genes in the

gene-wide quantification is 11251, 12081 in the biotype-specific quantification, and 40991 transcripts

from 12219 genes in the isoform-specific quantification.

Calibration of the nuclear and cytoplasmic ratio

The expression levels in RPKM are not comparable across the different RNA types due to indepen-

dent RNA extraction, sequencing, and normalisation procedures. In order to readjust the nuclear-

cytoplasmic ratio, we took advantage of the dataset published by Bahar-Halpern et.al. [196]. The

authors converted the counts obtained from sequencing nuclear and cytoplasmic PolyA RNA from

mouse liver into number of molecules per cells using smFISH. This allowed the authors to cali-

brate the RNA-seq data, and to compare the ratio of nuclear and cytoplasmic mRNA. In order to

rescale the RPKM of our nuclear and cytoplasmic fractions, we applied a linear regression model

such that: log2(Nuc. tr anscr i pt s B H) ∼ αn + l og2(C y t . RPK M) and l og2(C y t . tr anscr i pt s B H) ∼
αc + log2(Nuc. RPK M). The offset is then our calibration factor. Here, Nuc refers to either NAE or NET,

and Cyt to CTE or CAE. We used the mean RPKM over all the time points, fitted by DESeq2. BH stands

for Bahar-Halpern, first author of [196]. We decided to apply the same calibration to the CryKO dataset,

assuming that relationship between nuclear and cytoplasmic transcript abundance is globally similar

between genotypes. The log2(NAE) RPKM was shifted by a factor -1.34, the log2(CAE) RPKM by a factor

1.2, the log2(NTE) by a factor -0.15, and the log2(CTE) by a factor 0.7.

Figure 6.1 – Correlation between the nuclear-cytoplasmic ratio from our dataset (Hurni) and the dataset published
in [196]. NAE and CAE are RPKM averaged over the 6 time-points. In grey: correlation before calibration. In green:
after calibration. The log2ratio was shifted by a factor [196]. In grey:
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6.6 Functional Enrichment Analysis

Every time we tested for enrichment of biological functions, we combined several sources including

Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Wikipathways databases.

We used both the EnrichR R package [255] or TopGO package using weight01 algorithm [256].

6.6.1 Gene Ontology Analysis of nuclear and cytoplasmic genes

We tested for gene set enrichment of protein coding transcripts in nuclear and cytoplasmic fractions

using Gene Ontology Terms derived from "Biological Processes". We used the Fisher’s exact test

implemented in EnrichR package to test for significance [255]. GO Terms with an adjusted p-value <
0.1 and a Combined Score > 30 were considered as enriched. We grouped together Terms that were

semantically similar. Nuclear and Cytoplasmic enrichment were assessed using DESeq2 [204]. Raw

counts of NAE and CAE samples were tested for enrichment using the cellular localisation (Nuclear

of Cytoplasmic) as a variable in the design formula. Transcripts with a log2 FC > 2 and an adjusted

p-value >0.01 were considered as enriched.

6.7 Mathematical modeling of rhyhthmic RNA processing rates

The processes regulating RNA expression rate are numerous, including transcription regulation steps

(chromatin conformation, histone marks), PolII elongation, termination (polyadenylation of 3’ tail and

addition of 5’ cap), co- and post-transcriptional splicing, m6A methylation, nucleo-cytoplasmic export,

binding of various RBPs, deadenylation of polyA tail, and final degradation. All these processes affect

the stability of the mRNA transcript, and therefore its level of accumulation.

To describe the accumulation of each RNA specie in the nucleus or in the cytoplasm, we assume the

following model (Fig.6.2): pre-mRNA p, transcribed with a rate T , is spliced and polyadenylated at a

rate of s to produce mature nuclear RNA m. Then, this transcript is further processed and exported

at a rate e into the cytoplasm M , where it is finally degraded at a rate γ. This model ignores nuclear

degradation.

Figure 6.2 – Scheme describing the journey of an RNA from transcription, accumulation in the nucleus, accumula-
tion in the cytoplasm, and degradation
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This model is summarised with a simple set of first-order differential equations:

ṗ = T − s ∗p (6.3a)

ṁ = s ∗p −m ∗e (6.3b)

Ṁ = e ∗m −γ∗M (6.3c)

where: p = pre-mRNA, m = nuclear mRNA, M = cytoplasmic mRNA. The parameters are: T = Tran-

scription rate [molecule ∗ t i me−1], s = splicing and polyadenylation rate [t i me−1], e = export rate

[t i me−1], γ= cytoplasmic degradation rate [t i me−1].

Since the system is under-determined, and that transcription rate is unknown, we first focused on

the analysis at steady-state, where the variables are described by the ratio of the transcription and

degradation term (Eq.6.4). We can describe the subcellular enrichment of RNA transcripts in the

nucleus or in the cytoplasm, by using the ratio p
m and m

M . However, it is nearly impossible to determine

which term drives the most that distribution. For instance, there could be a higher number of nuclear

RNA transcripts than cytoplasmic transcripts because they are retained in the nucleus, or they could be

extremely short-lived in the cytoplasm, which results in an apparent nuclear enrichment.

p∗ = T

s
(6.4a)

m∗ = s ∗p

e
≈ T

e
(6.4b)

M∗ = e ∗m

γ
= T

γ
(6.4c)

We use nuclear pre-mRNA N T I as a proxy for p, nuclear polyadenylated mRNA N AE for nuclear

transcripts m, and cytoplasmic polyadenylated mRNA C AE for M . When these variables are injected

in the equation 6.4 and are log2-transformed, they become :

l og2(N T I ) = log2(Tr anscr i pti on r ate)− l og2(spl i ci ng r ate) (6.5a)

log2(N AE) = log2(Tr anscr i pti on r ate)− log2(expor t r ate) (6.5b)

l og2(C AE) = log2(Tr anscr i pti on r ate)− log2(deg r ad ati on r ate) (6.5c)

6.7.1 Modeling temporal RNA profiles and estimation of kinetic parameters

In order to estimate the kinetic parameters (splicing and polyadenylation s, export e, and cytoplasmic

degradation γ), we used a mathematical modeling approach developed by two former post-doctoral

researchers from the Naef gorup (Jingkui Wang and Laura Symul, co-authors of [78]). In the original

model, a first-order differential equation describes the temporal variation of mature RNA m (exonic

reads from total liver RNA-seq) in function of pre-mRNA p (intronic reads), processing rate k, and

degradation rate γ. Pre-mRNA is described either by a cosinor function with a period of 24 hours

if rhythmic, or by a constant if expressed constitutively. In addition, the degradation term can also

be constant and rhythmic, and the latter case would explain some temporal patterns such as gain
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of relative amplitude or a particularly large phase-delay otherwise not possible in case of constant

degradation [79].

Here, we split the RNA processing journey (Fig. 6.2) into two successive but independent steps: step

1 describes the transformation of pre-mRNA p into nuclear polyadenylated mRNA m, and step 2

described the transformation of m to cytoplasmic mRNA M .

For step 1, the equations are the following:

dm

d t
= s ∗p(t )−e(t )∗m(t ) (6.6a)

with

p(t ) = pmi n + Ap (
1+ cos(w t −φp )

2
)β (6.6b)

e(t ) = e0(1+εe ∗ cos(w t −φe )) (6.6c)

pmi n is the minimum value of p, Ap is the amplitude (peak to trough), φp is the phase (peak time), and

ω is the angular frequency 2π
24 . If the gene is constitutively expressed, then p(t) = p0. e0 is the mean

export rate. If the export is rhythmic, the relative amplitude of export εe varies between ]0,1]. φe is the

phase of export rate.

We apply the same model to step 2 between nuclear RNA m and cytoplasmic RNA M , with γ being the

cytoplasmic degradation rate.

d M

d t
= e ∗m(t )−γ(t )∗M(t ) (6.7a)

with

m(t ) = mmi n + Am(
1+ cos(w t −φm)

2
)β (6.7b)

γ(t ) = γ0(1+εγ∗ cos(w t −φγ)) (6.7c)

We used a cosine function with a period of 24 hours to describe circadian oscillations. To account for

patterns that are more peaked, an exponent β is added to the cosine function, which ranges from 1 to 2

(Fig. 6.3). We do not allow a higher value of β, as we empirically observed that a sharper function tends

to catch outlier data points and artificially increase the number of rhythmic genes.
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Figure 6.3 – Shape of cosinor function for β= 1,1.5 or 2

According to the model, pre-mRNA p and export e can be either rhythmic or constant (m and γ in step

2). The combination of constant or rhythmic production and degradation terms generates 4 possible

models (Fig.6.4).
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Figure 6.4 – Combination of rhythmic or constant transcription (depicted by pre-mRNA p) and rhythmic or
constant degradation generates four different models. m = mRNA.

• Model 1 describes the case when transcription is constant, thus profiles of pre-mRNA and mRNA

accumulation are flat. The only parameter that can estimated is the ratio of production and

degradation rates, which is the ratio of the mean expression level of pre-mRNA over mRNA

(steady-state).

• Model 2 represents the case when rhythmic accumulation of both species is driven solely by the

first variable. The relationship of phases and amplitudes of the two species are derived from the

equations, and can be summarised in two properties: first, the relative amplitude (peak minus

trough, divided by the mean) of the second specie cannot be higher than the relative amplitude of

the first specie. In other terms, the oscillations dampen as rhythm propagates. The dampening is

more important as the half-life is long (Fig. 6.5). Second, the phase difference is always less than

6 hours. In model 2, when β= 1, the phase delay is given by ar ct an( w
γ ), which is not defined

above π/2 (6 hours in circadian time). If β >1, there is not analytical solution, and the solution is

found by numerical integration.

• Model 3 represents the case when a gene is constitutively expressed, but a rhythmic post-

transcriptional step (export or degradation) generates rhythmic accumulation. Since the first

variable is flat, only the ratio of degradation over production can be confidently estimated. The
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mean half-life is often non-identifiable, and depends on the shape of the second variable (peaked

shape are more easily fitted).

• Model 4 is when both p and e (m and γ in step 2) are oscillating. The combination of rhythmic in-

put and post-transcriptional processing allows patterns that do not follow the equation described

in Fig.6.5 for model 2, such as an amplification of relative amplitude, or a large phase-shift.

0

2

4

6

0 4 8 12 16 20 24

Half life [hr]
Ph

as
e(

m
) −

 P
ha

se
(p

) [
hr

]

0.0

0.5

1.0

0 4 8 12 16 20 24

Half life [hr]

Re
l. 

Am
p.

 m
/ R

el
.A

m
p.

p

Figure 6.5 – Relationship between half-life and relative amplitudes (left) and phase delay (right) for M2 model with
β= 1.

We fitted each of the four models to experimental RNA-seq profiles. We used N T I for unspliced

pre-mRNA p, N AE for nuclear mature RNA m, and C AE for cytoplasmic RNA M . We applied the

mathematical model to step 1 and step 2 independently. Each gene is fitted with the four models, and

the one with best the Bayesian information criterion (BIC) is chosen. We only selected genes with a

probability of BIC > 0.6.

Parameters estimation

We fitted the model to experimental profiles of step 1 and step 2 independently. The following explana-

tion and equations (6.8 and 6.9) refers to step 1. To adapt the equation to step 2, nuclear RNA m has to

be replaced by cytoplasmic RNA M , and pre-mRNA p by m.

We inferred the rates of 8 parameters (for M4): Ap , Mi np , φp , β, s, e0, εe , and φe . Depending on the

gene, s, e0, εe and φe can be difficult to identify, especially for M3 and M4. To alleviate the parameter

non-identifiability, we estimated instead the following combinations of parameters: s′ = s/e0, ε′e =
εe ∗ e0/

√
(e2

0 +w2) ) and φ′
e = φ : e + at an( w

e0
) [79]. We used the function optim from the R package

"stats" with the method "L-BFGS-B". The optimisation was done using R code developed by Jingkui

Wang, author of [78], with some adjustments.
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We assumed that RNA-seq counts data follows a binomial distribution [204]. Thus, the log-likelihood

function to be minimised for each gene is:

log L =∑
n

log N B(nm(t )|µm(t ),αm(t ))+ log N B(np (t )|µp (t ),αp (t )) (6.8a)

with

µp (t ) = p(t )Sp (t )Lp (6.9a)

µm(t ) = m(t )Sm(t )Lm (6.9b)

(6.9c)

Here, n(t ) is the read counts. The subscripts p and m stand for pre-mRNA and nuclear mRNA. α is the

dispersion parameter of the negative binomial distribution, specific to each gene and time-point. It

is estimated by the R package "DESeq2" [204], which uses an empirical Bayes shrinkage method to

make more robust estimation of α (fit type: "parametric"). µ(t ) is the expected mean of counts, which

is the concentration of transcripts (p(t ) or m(t )) multiplied by the gene length, and a sample-specific

scaling factor S, and further multiplied by 109 to obtain convenient values. Thus, the "concentration of

tanscripts" can be understood as an equivalent of RPKM (reads per kilo per million base pairs). The

scaling factor S, also estimated by DESeq2, is a normalisation term specific to each sample multiplied

by the library size of a "pseudo-sample" (mean of the twelve library sizes, each scaled by their specific

normalisation factor). The scaling factor was first estimated separately on each RNA population,

including only mRNA, such that the median expression level of mRNA are aligned between samples

(Nuc.Total, Nuc.PolyA, and Cyt.PolyA). m(t ) was calculated by numerical integration, because there is

no analytical solution.

Boundaries on parameters

We bounded the parameters with physiologically relevant values:

• Nuclear retention time ( log (2)
e0

): 5 minutes to 12 hours [196, 127].

• Cytoplasmic half-life ( log (2)
γ0

): 10 minutes to 24 hours.

• Relative amplitude of rhythmic export and rhythmic degradation (εe and εγ): between 0 and 1.

It was noticed by Wand et al. that relative amplitude close to 1 renders the optimisation very

sensitive. Therefore, εe and εγ higher than 0.8 are penalized by a sigmoid function.

Identifiability Analysis for kinetic parameters

Depending on the dataset (number of observations, sampling density), parameters cannot always be

identified unambiguously. Structural non-identifiability results from the model and parametrisation,

while practical non-identifiability results from the amount and quality of the experimental data. For

instance, genes in M1 (constant expression and accumulation), only the ratio of production and
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degradation term can be determined, and γ (cytoplasmic degradation rate in NAE-CAE, and export

rate in NIT-NAE) is thus structurally non-identifiable. To determine the practical identifiability of the

parameter γ, we used the Profile Likelihood (PL) as described in [223] and as implemented in [78].

We sampled 10 different values of γ within the boundaries and maximized the likelihood for each γ.

If the likelihood is constant for all the values, the parameter is structurally non-identifiable. If the

parameter is practically non-identifiable, the likelihood varies for different values of γ and reaches a

minimum, but the variation is smaller than a defined threshold. If the PL varies sufficiently, then the

parameter is considered as identifiable.

Here, we defined two thresholds: the 0.68 quantile and 0.95 quantile of a χ2 distribution with degree

of freedom of 1 [257]. If the variation of PL is higher than the 0.95 quantile, the identifiability of γ is

considered "good". If it is only higher than the 0.68 quantile, is it considered as "pass". If lower, it is

defined as practically non-identifiable.

We looked at the PL variation for γ values lower than the estimated γ ("left identifiability") and for values

higher than the estimated γ ("right identifiability"). Therefore, if the estimated γ reached the upper or

lower boundary, the parameter would necessarily be non identifiable from the right, respectively left.

In our analysis, we selected genes whose estimated degradation / export rates was at least identified as

"passed" either from the left, from the right, of from both sides.
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