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Modern cities dynamically face several challenges including digitalization, sustainability, resilience and
economic development. Urban planners and designers must develop urban forms that address these chal-
lenges. With the integration of new communication and information technologies (Smartphone, GIS,
Drones, IoT, Sensors, etc.), urban activities have generated large volumes of urban data. The rapid growth
in terms of collection and big data storage capacities combined with the ever-increasing computational
power of modern machines have made possible their efficient treatment using machine (ML) and deep
learning (DL) algorithms. The emergence of such groundbreaking methods has in turn helped to address
the challenges of modern-day cities in several domains (health, security, mobility, etc). ML algorithms
have been proposed to model the urban form’s indicators for intelligent urban planning decision making.
They have been proven to perform better than the traditional methods. However, the potential of ML has
not yet been fully explored in research for urban planning decision support. This paper presents a com-
prehensive review of ML applications for mitigating the challenges of modern cities planning. First and
foremost, an overview of the urban forms, sources of urban data, the ML and DL techniques as well as
their potential in solving the aforementioned challenges. For each ML method, we will highlight it work-
ing principle, advantages, disadvantages and potential applications using comparative tables. Finally, we
will discuss the issues and challenges of ML methods in urban form’s modeling while ultimately advocat-
ing some future research directions.
� 2022 Published by Elsevier B.V. on behalf of King Saud University. This is anopenaccess article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Digitization is increasing in almost all domains of daily life. The
rapid growth of storage memories and computational capacities of
machines have favored the emergence of new algorithms allowing
to efficiently process large volumes of collected data and make
them useful in various applications (Jordan and Mitchell, 2015;
Al-Garadi et al., 2020). These machines are enriched with recent
automatic learning methods to meet the needs of artificial intelli-
gence for various applications (Choung and Kim, 2019). Machine
learning (ML), which is at the intersection of computer science
and statistics, and at the heart of intelligence and data science, is
seeing its field of application expand day by day (Jordan and
Mitchell, 2015). ML methods are thus finding their way into
science, technology and commerce, leading to more evidence-
based decision making in many fields, including healthcare, manu-
facturing, education, financial modeling, law enforcement and
marketing (Al-Garadi et al., 2020). More recently, cities are being
more and more included in these applications especially to meet
the requirements in terms of sustainability, intelligence, economic
and financial resilience, etc (Li et al., 2020; Choung and Kim, 2019;
Liu et al., 2017). Thus, several approaches are proposed to model
the dynamics of urban drivers as a function of the different ele-
5944
ments (features) of the urban form. The latest research findings
show that ML methods have remarkably transcended the tradi-
tional techniques of predictive or prescriptive modeling of urban
form indicators to become an essential tool for urban planning
decision support (Ma et al., 2020; Hecht et al., 2013). Indeed, in
order to meet the challenges of the current complexity of emerging
urban big data, the modeling of urban indicators exploits more and
more the so-called intelligent automatic methods using ML
algorithms which are favored over the less efficient traditional
methods. Hence the actual emergence of ML models capable of
automatically improving their performance with the experience
gained in recent works (Al-Garadi et al., 2020).

Overall, previous studies have demonstrated that ML methods
continue to have a huge potential for addressing the problem of
modeling modern and intelligent urban forms (Choung and Kim,
2019; Ma et al., 2020). This problem mostly consists of a spatio-
temporal analysis (Gómez et al., 2020; Faghmous and Kumar,
2014). Thus, some emerging methods such as convolutional neural
networks (CNN) have proven to be effective in extracting features
from spatial data, while others such as recurrent neural networks
(RNN) deal with temporal data (Geng et al., 2019; Gómez et al.,
2020). Ensemble-based methods such as Random Forests (RF),
Bagging and boosting methods have proven to be very useful in
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various studies of smart urban forms (Jochem et al., 2018; Ma et al.,
2020; Geiß et al., 2020; Novack et al., 2011; Hecht et al., 2013;
Shafizadeh-Moghadam et al., 2017). Other categories of ML meth-
ods considered as simple supervised or unsupervised methods
have also been widely used for various urban form applications
(Abrantes et al., 2019; He et al., 2018; Li et al., 2020; Gao et al.,
2020). This enormous potential of ML methods at the crossroads
of urban form model complexity opens up a very promising area
of research for the years to come (Li et al., 2020). This issue is at
the center of modern urban planning challenges which aims to
achieve much smarter, digital, sustainable, developed, resilient
and inclusive urban forms.

In order to overcome these challenges in the digital era, urban
research is now trying to integrate an ever-increasing complexity
aiming to qualify the processes that intersect within urban envi-
ronments and that make up their dynamics. It strives not to reason
within an absolute framework, but to think in terms of scenarios,
often contrasted, in order to bring together a wider range of possi-
ble outcomes. The implementation of such an approach, based on
Fig. 1. Thematic taxonomy of ML

Table 1
Comparison of different types of machine learning.

supervised learning

Input data uses known and labeled
Computing complexity Very complex
Real-time Uses offline analysis
Sub-domains Classification and regres
Precision Accurate results
Number of classes Number of classes know
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foresight and still relatively new in urban planning and engineer-
ing, requires the use of suitable tools to take into account, manage
and analyze the complexity and intertwining of urban dynamics,
before projecting them into the future. Among these tools, model-
ing offers today important perspectives for decision support in
urban planning.

Thus, the objective of this paper is to provide a critical review of
the literature on recent applications of ML methods to urban form
modeling problems, the associated challenges, opportunities and
future research directions. This review will include an overview
of urban forms, urban data sources, and the description of the used
ML methods, highlighting their operating principles, advantages,
disadvantages and potential applications. Hence, we summarize
the key contributions of this review paper as follows:

� Provides a comprehensive review of urban forms and their var-
ious data sources for ML applications.

� In-depth review of the ML and recent advances in ML algo-
rithms applied in urban forms.
for urban form applications.

unsupervised learning

input data Known input data but unlabeled
Less complex
uses a real-time analysis process

sion Clustering and association rules
Moderate results

n Number of classes is unknown
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� In clear and easy-to-use tables, we summarize the categories of
ML methods according to their algorithmic principles, advan-
tages, disadvantages and potentials for intelligent urban plan-
ning applications.

� Discussion of the potentials, issues, challenges and future
research directions of ML application to meet the next genera-
tion urban planning challenges.

The remainder of this paper is organized as follows. Section 1
broadly describes the taxonomy of the review contents we discuss
in this paper while Section 3 provides an overview of urban data
sources for ML applications. Section 4 provides a in-depth review
of the ML and recent advances in ML algorithms applied in urban
form modeling. Finally 5 discusses the potentials, opportunities,
challenges and future direction of ML application in urban form
and finally Section 6 concludes our review.
2. Taxonomy of ML for urban form

Applications of ML algorithms for urban form modeling have
evolved enough in recent years to address urban planning chal-
lenges. Fig. 1 represents the taxonomy of ML applications involving
several domains. We have grouped these areas into four main cat-
egories: the urban form elements associated with the chosen study
area (city), the reliable data sources and used data type for target
task, the potential MLmodels, the targeted indicators. Additionally,
we have added the issues, scope, challenges and future directions.
We briefly describe each theme in more detail in the different sec-
tions below.
2.1. Urban form elements

In the design and modeling of ML applications for urban form,
we define the elements of urban form as the input geo-physical
features that will drive the chosen model (Dempsey et al., 2010).
The choice of these elements is very important because it allows
the best calibration and therefore the best efficiency of the model.
In this field of expertise, we include all the parameters that are
directly related to the geometric and physical shape of the city.
The field of urban indicators is for the most part associated with
the shape of the city in the geographical and logical sense. the Sec-
tion 3 gives more details on these different notions.
2.2. Urban form indicators

The goal of ML applications to city shape is to provide models to
simulate indicators from input elements describing the city shape.
To be efficient, it is necessary to master the associated indicators.
According to the taxonomy of Fig. 1, the study of these indicators
is therefore an area of expertise in the process of designing and
modeling ML applications for urban form. The Section 3.2.2 gives
more details on these different notions.
2.3. Urban data sources

Urban data collection and structuring is an area of high demand,
especially for ML-based applications. Without the data, ML models
can neither be trained nor calibrated (Al-Garadi et al., 2020; Jordan
and Mitchell, 2015). Urban data are characterized by their source,
scale, study area, nature (derived or raw, . . .In the Section 3.3, we
make a more detailed analysis on the collection and structuring of
urban data for ML applications based on the works of the literature.
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2.4. Ml models

Learning algorithms have been widely adopted in many real-
world applications due to their unique problem-solving nature
(Al-Garadi et al., 2020). Note that the value of these algorithms lies
in their ability to build machines that automatically calibrate and
progress through experience (Jordan and Mitchell, 2015). With
the explosion of processor capacities and the volumes of data col-
lected, learning algorithms have been widely applied in practice in
several domains among which urban planning. The development of
new algorithms and the emergence of low computational cost
algorithms capable of adapting and calibrating new datasets makes
the study of ML models and their potentials a central area to the
design of intelligent urban form applications. In the Section 4, we
study in detail, the ML models and their applications to the urban
form.
2.5. Issues, challenges and future directions

In this category, we explore a list of issues, scope, challenges,
and future directions for applying ML methods to address current
and future challenges in urban form. The Tables 3 and 6 summarize
works applying ML to urban form according to data (source, study
Table 3
Summary of ML methods for urban form modelling. Data sources have been targeted acco

Ref Year ML model

- Supervised

- Single methods Ensemb
method

- DT KNN SVM NB LR B RF AB

(Ma et al., 2020) 2020 U U U U U

(Hecht et al., 2013) 2013 U U U U U

(Choung and Kim, 2019) 2019 U

(Hecht et al., 2015) 2015
(Wang et al., 2020) 2020 U

(Arribas-Bel et al., 2019) 2019
(Abrantes et al., 2019) 2019
(Kleine Deters et al., 2017) 2017 U

(Chan et al., 2001) 2001 U U

(Liu et al., 2017) 2017 U

(Chen et al., 2013) 2013 U

(Jochem et al., 2018) 2018 U U

(Jack and McCormack, 2014) 2014
(Duerr et al., 2018) 2018 U U

(Kontokosta et al., 2018) 2018
(Lee, 2019) 2019 U

(Li et al., 2020) 2020
(Liu et al., 2019) 2019 U

(Milojevic-Dupont et al., 2020) 2020 U U

(Reades et al., 2019) 2019 U

(Novack et al., 2011) 2011 U U U U

(Sun et al., 2019) 2019 U U

(Gómez et al., 2020) 2020 U

(Shafizadeh-Moghadam et al., 2017) 2017 U U U U

(Tran et al., 2017) 2017 U

(Hart and Sailor, 2009) 2009 U

(Yang et al., 2020) 2020
(Gao et al., 2020) 2020 U U

(Okwuashi and Ndehedehe, 2020) 2020 U

(Chen et al., 2020) 2020 U U

(Geiß et al., 2020) 2020 U

(Kabano et al., 2021) 2021 U

(Yu et al., 2020) 2020 U

(Han et al., 2021) 2021
(He et al., 2018) 2018
(Lu et al., 2008) 2008
(Xing and Meng, 2020) 2020 U U U

(Kafy et al., 2021) 2021 U
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area, scale, . . .), learning types (suppressed (classification, regres-
sion), non-suppressed (clustering, association)), year of publication
and ML methods used. We discuss a sustainable, resilient and
inclusive urban form by including environmental, socio-economic
elements and indicators in addition to classical geophysical ele-
ments. We also focus on the challenges of ML applications or the
integration of ML with other technologies, of ML for an urban form
offering interdependent, resilient, intelligent, interconnected and
socio-economic sustainable urban environments. Finally, we
address the complexity of the ML field in relation to the trade-
offs in urban form applications.
2.6. Literature search strategy

In our study,wefirst conducted a literature searchon the SCOPUS
databaseinordertoperformtheliteraturereviewprocess.Thesearch
query performed groups together two categories of key concepts:
concept1 associatedwithurban includes terms such as ‘‘urbanplan-
ning”, ‘‘urban form”, ‘‘urban morphology” and ‘‘urban planning”
while concept2 related tomachine learning includes the terms ‘‘ma-
chine learning” and ‘‘deep learning”. In the searchquery, the boolean
‘‘AND” is used to combine the twomain concepts,whileOR is used to
include research articles and finally ‘‘EXCLUDE” is used to exclude
rding to Section 3.3

Data source Study area Target problem

Unsup. PT

s

GB Clust Asso

R Hybrid New York Land values
C Sensors Germany Urb Struc Types
C Sensors South Korea PM10

C Hybrid germany building footprint
R Sensors Texas Water quality

U C Hybrid Span urban areas
U Cl Hybrid Portugal typ urb occup

U C Sensors Quito(Ecuador) Pollution(PM2:5)
C Hybrid Hong Kong Environment
C Sensors Beijing Environment qlty
R Hybrid Guangdong Energy Consump
C Sensors Afghanistan Land use areas

U As Surveys Canada walking adults
U R Survey Florida water demand
U R Survey New York solid waste manag

R Hybrid US air quality
U Cl Sensors Wuhan urban fabric.

U R Survey Nanjing traffic flow
U R Hybrid Europe building heights

R Hybrid London gentrification
C Sensors Sao Paulo Urb Land Cover
R Hybrid China LST
C Sensors Colombia urban growth
C Sensors Tehran Urban growth
R Sensors Hanoï LST
R Sensors Portland UHI

U Cl Hybrid Wuhan LST
R Hybrid Wuhan LST
R Sensors Lagos (Nigeria) Land-use
R Sensors Singapoure LST/UHI
R Sensors Germany Build Height
R Sensors Uganda UHI
R Sensors Singapore UHI/LST

U Cl Sensors Boston (USA) Energy
U As Sensors China urban vitality
U As Hybrid Chicago (USA) Travel behavior

C Sensors Shenzhen (China) urb function
C Sensors Dhaka (Bangladesh) Land cover



Table 4
Comparison of ML methods for urban form modelling.

Type Algo Working Principle Advantages Disadvantages Application in urban modelling

Single ML
Methods

DT DT is a technique for structuring a set of learning
data in the form of trees made up of nodes and
leaves. Each node represents the test on the given
attribute, while the leaf represents the class
(Ruggieri, 2002; Bashir et al., 2014).

DT is a simple, easy-to-use and transparent
method. DT is the most favourable weak
learner algorithm for ensemble combination.

DT requires large storage because of its
construction nature. Understanding DTbased
methods is easy only if few DTs are involved.

Environment (Chan et al., 2001), urban structures
types (Hecht et al., 2013), urban land cover
(Novack et al., 2011), urban growth (Shafizadeh-
Moghadam et al., 2017), etc

LR Given a variable to predict Y ¼ f0;1g and a
predictive variable (explanatory variable)
X ¼ ðx1; x2; . . . ; xnÞ, LR is based on the
fundamental assumption of the Eq. (1).

Easily adaptable to both classification and
regression problems, easy to regularise, fast to
train and resistant to over-fitting

inefficient on separable non-linear data and in
multi-class classification

Land values (Ma et al., 2020), Air quality (Lee,
2019), LST (Gao et al., 2020), Urban growth
(Gómez et al., 2020).

KNN The principle of the KNN algorithm consists in
assigning the class or regression value by
averaging the k nearest neighboring values, for
numerical instances, or by applying the majority
vote for k neighbors, if the values of the instances
are categorical.

KNN is a popular and effective ML method for
urban modelling. It has a simple process which
extends its use to several levels of modeling.

The optimal k value usually varies from one
dataset to another; therefore, determining the
optimal value of k may be a challenging and
timeconsuming process.

Land Values (Ma et al., 2020), urban structure
type (Hecht et al., 2013), Land use areas (Jochem
et al., 2018) and UHI (Hart and Sailor, 2009)

NB NB’s principle consists in calculating the
posterior probability using Bayes’ theorem to
predict the probability that a particular set of
features of unlabelled samples corresponds to a
specific label with the hypothesis of
independence between the features.

NB is simple, ease of implementation, low
training sample requirement and robustness to
irrelevant features (Jordan and Mitchell, 2015;
Al-Garadi et al., 2020).

NB handles features independently and thus
cannot capture useful clues from the
relationships and interactions among features
(Al-Garadi et al., 2020).

urban function from landscape metrics (Xing and
Meng, 2020), LST/UHI (Chen et al., 2020), water
demand (Duerr et al., 2018)

SVM A SVM is based on nonlinear transformations of
the features into a higher-dimensional feature
space, where the classification problem becomes
linear separable. SVMmodels are basically binary
classifiers. With aggregation techniques, these
can be made applicable to multi-class problems.

-Suitable for linear and non-linear separable
data, -Widely used model, -High precision and
efficiency in large spaces, -Less prone to
overlearning and stable, -Noise robustness and
the problem of unbalanced classes

-Not suitable for large datasets as the very long
training time, -Less effective on noisier data
with overlapping classes; -Difficult to choose
the right kernel well adapted to the data; -
Unable to provide categorical data.

urban type structures (Hecht et al., 2013), land
values prediction (Ma et al., 2020), type of urban
occupation (Abrantes et al., 2019), Pollution
(PM2:5 (Kleine Deters et al., 2017), PM10 (Choung
and Kim, 2019)), uban functions from landscape
metrics (Xing and Meng, 2020), land uses
(Okwuashi and Ndehedehe, 2020), Land cover
(Kafy et al., 2021), etc
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Table 5
Comparison of Ensemble ML methods for urban form modelling.

Type Algo Working Principle Advantages Disadvantages Application in urban modelling

Ensemble
Methods

B Bagging algorithm (Breiman, 1996) consists of suc-
cession of bootstrap samples, basic weak learner
model application and aggregation. For classifica-
tion the results of the weak learners models results
are aggregated by voting (see Fig. 9(a)).

-Bagging reduces the variance when
predictors are unstable (Breiman, 1996), -
Estimate of the prediction error by Boot-
strap out of bag: prevents over-fitting

Bagging stable predictors doesn’t bring
anything and therefore you need classifiers that
are sufficiently different from each other to
improve performance.

urban structure types (Hecht et al., 2013), urban
land cover (Novack et al., 2011).

RF RF algorithm(Breiman, 2001) is an EM based on
bagging principle where each weak learner in the
random forest is trained on a random subset of data
according to the principle of ”bagging”, with a
random subset of characteristics (variable data
characteristics) according to the principle of ”ran-
dom projections”. The predictions are then averaged
when the data are quantitative or used for a vote of
qualitative data in the case of trees of classification
(Breiman, 2001; Bashir et al., 2014).

RF is efficient and robust to over-fit. RF
bypasses feature selection and requires
few tuning parameters. RF is almost the
most widely used algorithm, which
guarantees its reliability.

RF is based on the construction of several
randomly selected TDs; thus, it may be
impractical in specific real-time applications
where the required training data set is large
(Al-Garadi et al., 2020).

land values (Ma et al., 2020), urban structure types
(Hecht et al., 2013), water quality (Wang et al.,
2020), land use areas (Jochem et al., 2018), water
demand (Duerr et al., 2018), gentrification (Reades
et al., 2019), urban land cover (Novack et al., 2011),
LST/UHI (Sun et al., 2019; Chen et al., 2020), urban
growth (Gómez et al., 2020; Shafizadeh-Moghadam
et al., 2017), urban functions (Xing and Meng, 2020)
etc.

ET ET (Geurts et al., 2006) are a set of decision trees
built from bagging as explained above. However,
they differ from other EM by 1) the separation that
takes place in the internal nodes is random, the
attributes and thresholds tested are chosen at
random; 2) Extra-Trees use the whole learning set
to build the trees, not just a part as in the bagging
method.

ET algorithm saves time because it
randomly chooses the split point and does
not calculate the optimal one compared to
RF while they can perform similarly.
(Geurts et al., 2006).

-Reducing model interpretability -The design
time is high, -difficult to learn and inefficient
with such a large volume of data.

suitable for classification and regression problems
such as land values (Ma et al., 2020) and build
height (Geiß et al., 2020)

GB GB algorithm works by sequentially adding
predictors to a set, so that each tries to correct the
errors of its predecessor (Freund et al., 1999; Freund
et al., 1996). However, instead of adjusting the
weights of the instances at each iteration, as
AdaBoost does, this method tries to adjust the new
predictor to the residual errors committed by the
previous one (Géron, 2019).

GB is a generic algorithm to find
approximate solutions to the additive
modeling problem. GB builds trees on
previous classifier’s residuals thus well
capturing variance in data.

GB is sensitive to outliers since every classifier
is obliged to fix the errors in the predecessors.
GB is almost impossible to scale up because
every estimator bases its correctness on the
previous predictors.

pollution PM2:8 particle in urban area (Kleine Deters
et al., 2017), water demand prediction (Duerr et al.,
2018), solid waste management (Kontokosta et al.,
2018), urban traffic flow (Liu et al., 2019) and
building heights (Milojevic-Dupont et al., 2020)

AB AB is based on the fact that a new predictor to
correct the error of its predecessor simply gives a
little more attention to training cases on which the
predecessor has adapted less (Mishra et al., 2017;
Chengsheng et al., 2017).

AB can be implemented without the
reference to gradients by reweighting the
training samples based on classifications
from previous learners (Chengsheng et al.,
2017)

AB is from empirical evidence and particularly
sensitive to noise data.. Weak classifiers being
too weak can lead to low margins and
overfitting (Chengsheng et al., 2017)

Favourable for regression and classification
problems, both binary and multi-class. AB has been
applied for land values (Ma et al., 2020) and build
height (Geiß et al., 2020) predictions.
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Table 6
Summary of DL methods for urban form modelling. Data sources have been targeted according to Section 3.3. R = regression and C = Classification

Ref Year DL model PT Data source Study erea Target problem

Supervised model Unsup model RL
models

ANN MLP CNN DCNN TL RNN AE LSTM RL GAN

(Ma et al., 2020) 2020 U R Hybrid New York land values
(Liu et al., 2017) 2017 U C Sensors Beijing Environment Qlty
(Chang et al., 2019) 2019 U R Sensors Shenshen Energy
(Nice et al., 2020) 2020 U C Hybrid 1692 cities Urban typology
(Ibrahim et al., 2019) 2019 U C Sensors Egypt & Mumbai Slums
(Moosavi, 2017) 2017 U C Sensors Urban Structure
(Chan et al., 2001) 2001 U C Hybrid Hong Kong change in envmt
(Guo et al., 2020) 2020 U C Sensors Swi&Portu Flood prediction
(Kontokosta et al., 2018) 2018 U R Survey New York solid waste manag
(Middel et al., 2018) 2018 U C Sensors Climate
(Middel et al., 2019) 2019 U R Sensors Philadelphia Street (Mobility)
(Shen et al., 2018) 2018 U R Hybrid Wuhan PM2:5

(Novack et al., 2011) 2011 U C Sensors Sao Paulo Urban Land Cover
(Shafizadeh-Moghadam et al., 2017) 2017 U R Sensors Tehran Urban growth
(Verma et al., 2019) 2019 U C Sensors Mumbai Slums detection
(Janarthanan et al., 2021) 2021 U R Sensors Chennai Quality of air
(Fu et al., 2016) 2016 U R Sensors California Traffic flow
(Koschwitz et al., 2018) 2018 U R Hybrid Germany Heating & cooling
(Lu et al., 2021) 2021 U U R Hybrid UK Traffic flow
(Xayasouk et al., 2020) 2020 U U R Sensor Seoul Quality of air
(Geng et al., 2019) 2019 U U R Hybrid China ride-hailing
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reviewtypedocuments.ThusthequeryperformedinSCOPUSwasthe
following: TITLE-ABS-KEY ((‘‘urban planning”OR ‘‘urban form”OR ‘‘ur-
ban shape”OR ‘‘urbanmorphology”) AND (‘‘machine learning”OR ‘‘deep
learning”)) AND (EXCLUDE(DOCTYPE, ‘‘re”) OR EXCLUDE(DOCTYPE,
‘‘cr”) OR EXCLUDE(DOCTYPE, ‘‘le”)) AND (LIMIT-TO(LANGUAGE, ‘‘Eng-
lish”)). Thequery combining these keywords in the SCOPUSdatabase
resulted in the retrieval of 551 raw articles, 533 after excluding of
reviews, conference reviews and letters, then 521 after limiting to
English language.Thearticlesthusretrievedinacsvdocumentbythis
search query went through a filtering process allowing to keep only
Fig. 2. Filtering process for rele
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themost relevantones for the subject: ‘‘applications ofmachine learn-
ing methods to decision support of sustainable urban planning of urban
form”. In order to obtain targeted documents from the targeted liter-
ature, we adapted the search items after several filterings based on
data analysis techniques using the ORANGE tool (Demšar et al.,
2004; Demšar et al., 2013). The list of search terms finally included
in the filtering queries on ORANGE is illustrated by the Fig. 2. How-
ever, the articles recognized as relevant andwhich by chancewould
not have been retainedby the previous phaseswere addedmanually
inorder toendupwith206themostrelevantarticles for themapping
vant articles on ORANGE.



Table 7
Comparison of DL methods for urban form modelling.

Type Algo Working Principle Advantages Disadvantages Application in urban modelling

Simple NN models MLP The operating principle of the artificial neural network
(ANN) algorithms represented in Fig. 10 is very
schematically inspired by the functioning of the
biological neurons to which the method owes its name
(Thayse et al., 1988; Wang, 2003).

-High performance and computing power, -
Efficiency for high dimensional problems, -
Ability to work with complex characteristics,
-Parallel processing capability and fault
tolerance

-theoretically complex, -requires careful
adjustment, -requires a large amount of
data to be effective

land values (Ma et al., 2020), Change in
urban environment (Chan et al., 2001)

ANN Solid waste management (Ma et al.,
2020), urban typology (Nice et al.,
2020),

CNN models CNN DCNNs are based on the receptive field of the brain,
which processes input from sensors and is sensitive to
certain stimuli, such as the edges of the visual system.
They efficiently process large amounts of input data
and are therefore widely used in the fields of computer
vision (Krizhevsky et al., 2012).

-Efficiency for high dimensional problems, -
Requires less data and computing power, -
Ability to work with complex features, -
Parallel processing capability and tolerance to
variations

-theoretically complex, -requires careful
adjustment, -requires a large amount of
data to be effective

Flood prediction (Guo et al., 2020),
Climate (Middel et al., 2018), mobility
in street (Middel et al., 2019)

DCNN Quality of the urban environment (Liu
et al., 2017)

RNN-based models RNN RNNs permits continuing information related to past
knowledge by utilizing a special kind of looped
architecture. They are employed in many areas
regarding data with sequences, such as predicting the
next word of a sentence (Subasi, 2020).

RNNs and their variants have been found very
efficient in many applications with sequential
data. Urban features in certain cases can be
sequential data (Al-Garadi et al., 2020).

When RNNs are trained over longer
sequences than a few elements, they suffer
from gradient problems that disappear and
explode (Al-Garadi et al., 2020; Pascanu
et al., 2013).

Complex time-series prediction such as
predictions of traffic flow (Lu et al.,
2021), heating & cooling (Koschwitz
et al., 2018), ride-hailing (Geng et al.,
2019), etc.

LSTM A LSTM consists of a cell, an input gate, an output gate
and a forget gate. The cell stores values at arbitrary
time intervals and the three gates regulate the flow of
information in and out of the cell (Hochreiter and
Schmidhuber, 1997).

LSTM are well-suited for classifying,
processing and making predictions based on
time series data, since there can be lags of
unknown duration between important events
in a time series

LSTM Takes a long time to run, often
require more data to train than other
models and therefore more suitable for
large volumes of data, have lots of input
parameters to tune.

Complex time-series prediction such as
quality of air (Janarthanan et al., 2021;
Xayasouk et al., 2020)

GRU GRU is a RNN-based Encoder-Decoder consisting of
two RNNs networks. The first one encodes a sequence
of symbols into a fixed length vector representation,
and the other one decodes the representation into
another sequence of symbols. The encoder and decoder
are then jointly trained to maximize the conditional
probability of a target sequence (Cho et al., 2014;
Chung et al., 2014)

GRU networks are very popular and much
simpler and require less computational
power, so can be used to form really deep
networks

They are simpler in their principle of
operation but performance can sometimes
be limited in the face of certain problems.

Complex time-series prediction such as
quality of air (Janarthanan et al., 2021;
Xayasouk et al., 2020)
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Table 8
Comparison of DL methods for urban form modelling (Suite).

Type Algo Working Principle Advantages Disadvantages Application in urban modelling

AE AEs allow the input to be coded into a different
representation, and reconstruct it from that
learned representation. They are therefore trained
to reconstruct their original input. Once the model
is well trained, the encoder part can be used to
extract characteristics from the data (Makhzani
et al., 2015).

Effective for feature extraction, learning
representation learning to learn features
instead of manual features in traditional
ML and reduce dimensionality without any
prior data knowledge.

AEs are data-specific and therefore very restricted
to test data that are similar to train data. The
scalability of AEs are reduced.

Aes are used for image denoising and
compression; dimensionality reduction and
information retrieval as in the case of urban
structure (Moosavi, 2017) and Quality of air
(Xayasouk et al., 2020).

GAN Two networks are placed in competition in a game
theory scenario (Goodfellow et al., 2014). The first
network is the generator, it generates a sample
(e.g. an image), while its opponent, the discrimi-
nator, tries to detect whether a sample is real or
whether it is the result of the generator (Zhang
et al., 2019; Goodfellow et al., 2014). The learning
can be modeled as a zero-sum game.

GANs generate data that looks similar to
original data to solve problem of data in
ML by going into details of data and can
easily interpret into different versions.

GANs can be hard to train knowing that you need
to provide different types of data continuously to
check if it works accurately or not and generating
results from text or speech is very complex

Given semantic image or data sample, GANs
can be used to generate new plausible
examples data like Cityscape, layout, urban
design or urban growth (Shafizadeh-
Moghadam et al., 2017).

RL models RL The RL allow a learning agent to adjust his or her
policy based on errors and rewards and to derive
an optimal solution through trial and error. Three
methods for RL include 1) Value-based 2) Policy-
based and Model based learning (Sutton and Barto,
2011).

There is no supervisor, only a real number
or reward signal. works on interacting
with the environment, whereas the
supervised learning method works on
given sample data.

RL is computing-heavy and time-consuming in
particular when the action space is large (enough
data).

RL can be used to optimize large-scale
production systems without such how
different combinations will affect future
energy consumption (Chang et al., 2019)

TL TL simply consist to recover the acquired
knowledge of a pre-trained model (CNN for
example) on a huge dataset (such as Imagenet
which contains 1.2 million images (Krizhevsky
et al., 2012; Deng et al., 2009)), adapt them to the
structure of the model to your own data then re-
train it partially instead of training this network
from scratch (Tran et al., 2017).

Low resource requirements, easy to
implement, short execution time, better
performance for some complex problems
(Tan et al., 2018)

Transfer learning only works if the initial and
target problems are similar enough for the first
round of training to be relevant. We can’t remove
layers with confidence to reduce the number of
parameters; very compact model.

TL is commonly used with CNN for
computer vision tasks such as in the case of
Slums detection (Verma et al., 2019)
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processes. After the filtering processes, the remaining articles went
through the mapping processes allowing the construction of the
Tables 3 and 6 in the following sections.
3. Overview of urban planning DSS

The planning of the urban space or the urban form of a city
hosting its population is a central issue that can considerably influ-
ence its socio-economic and environmental impact and its sustain-
ability. Hence the need for DSS to master and better control this
task. In this section we discuss in turn the stakeholders in the
DSS planning process as described in the Fig. 3.

3.1. urban planning decision making

In urban planning, decision support systems (DSS) allow the
integration of models in the decision process of urban form plan-
ning. These models often consist in simplifying the reality of the
world, in order to better understand how decisions and events
interact with each other (Maignant, 2005). It then also allows
urban planning actors to adjust, reproduce or modify them
in vitro, in order to test parametric solutions to influence or direct
their consequences, to decide in advance on policies and strategies
that can lead to a desirable future. This forms a decision cycle that
we have represented in the Fig. 3. Machine learning (ML)
algorithms currently offer the best models for challenging urban
modeling problems. All the ML approaches and models proposed
in the retrieved works take up and adapt this initial idea, applying
it specifically to a particular question, a particular case or a specific
city. All of them aim to better consider the objectives of sustainable
development, and to propose viable solutions, in the short, med-
ium and long term, for controling, monitoring urban forms and
moreover predicting future trends in urban form indicators (Kafy
et al., 2021; Middel et al., 2018).

In this case, the urban planning DSS process represented in the
Fig. 3 particularly integrates the ML models for predictive model-
ing of urban form indicators according to its elements in order to
help in a better decision making. The cyclic process can be
restarted and continued until the best desired urban form is
obtained. Several ML models have been or can be used in the
design of urban planning DSS. But before studying them, it would
be important to clarify the concept of urban form, urban form ele-
ments and indicators and urban data.

3.2. Concept of urban form

The word ‘‘form” has a large number of meanings and most of
them refer to a notion close to appearance (state, aspect, . . .). The
form has a subjective connotation linked to the notion of percep-
tion which is a function of the experience of each individual
(Schwarz, 2010). It is also analytical, there are concrete tools, more
or less effective, of characterization of the forms. Dempsey et al.
(2010) for example define urban form as ‘‘describe a city’s physical
Fig. 3. Cycle of ML application for urban form decision support system (DSS).
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characteristics” while according to Schwarz (2010), ‘‘urban form
encompasses both the physical structure and size of the urban fab-
ric as well as the distribution of the population in the area”. A
broader definition of urban form as in this study could have several
variants as well physical (spatial) (Dempsey et al., 2010) as socio-
economic (Huang et al., 2007; Schwarz, 2010; Frenkel and
Ashkenazi, 2008) and environmental. Thus, the elements and indi-
cators of urban form may differ from one work to another depend-
ing on the context and objectives of the study. Mathematicians
have been very interested in this notion, with an essentially geo-
metric vision. Physicists, on the other hand, have been more inter-
ested in spatial configurations, notably with the arrangement of
components in urban space (Huang et al., 2007). The geography
or more generally the social sciences are, as for them, leaned
towards the analysis of the forms as perceived space, lived, in
the analysis of hidden forms and in the representation of the spa-
tial forms. However, there would be a correlation between all these
different aspects which would make that spatial approaches (geo-
metrical, physical) or socio-economic or environmental could lead
to quasi-similar results. After this conceptual analysis, we have
grouped on the Fig. 4 the elements of the broadest possible urban
form into six categories including layout, landscape, density, land
use, building and infra-structures (Dempsey et al., 2010). Similarly,
the modeled urban form indicators of these elements are presented
in Fig. 5 and will be discussed in the following section.
3.2.1. Urban form features (elements)
There are large differences between cities in terms of urban

form and their ecological footprint. According to (Milder, 2012),
there are five key elements of urban form: density, area, land
use, road/public transportation infrastructure, and economic rela-
tionship with the surrounding environment (Dempsey et al.,
2010). However, these elements may vary from context to context
and the question of economic relationship as a very physical/geo-
metric element of urban form is quite relative (Schwarz, 2010).
Thus, we show on the Fig. 4 six main elements allowing to describe
the shape of the city: layaout, Infrastructures, Landscape, Housing/
Building type, Land use and Density (Dempsey et al., 2010). The
concept of density helps to distinguish or direct the growth of
the city towards compactness or sprawl (Li et al., 2020). The com-
pact city is often advocated as a more sustainable urban form, but
this is not uncontested (Milder, 2012). In fact, can the urban form
automatically influence its environmental impact, or can it only
Fig. 4. Features (elements) of urban form. Adapted from (Dempsey et al., 2010).



Fig. 5. Example of key categories of urban forms indicators to handle in urban planning process. These categories of indicators are the most commonly used in urban
engineering but may vary from one work to another depending on the objectives, issues and/or field of study. Adapted from (Dempsey et al., 2010; Schwarz, 2010).
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facilitate it? In other words, it would be the people and their
behavior that would ultimately determine the negative or positive
effects on the environment and thus the sustainability of the city.
To address the sustainability challenge of urban form, modern
urban planning increasingly exploits the large volumes of data col-
lected in cities and the emerging machine learning algorithms to
simulate predictive indicators of chosen urban forms.

3.2.2. urban form indicators
Urban form indicators are evaluation and decision-making

tools, developed from each of its elements in order to consider
the evolution of the urban form in relation to a given moment.
The urban forms that surround us can be apprehended by different
indicators. By definition, an indicator is a piece of data, selected
from a larger statistical set, which has a particular meaning and
representativeness (Maignant, 2005; Schwarz, 2010). It is also an
instrument capable of conveying information in synthetic form,
through different representations (numbers, graphs, thematic
maps, etc) (Maignant, 2005).

Here we describe the indicators associated with urban form that
have been or can be modeled by ML urban engineering algorithms.
As shown in the figure, we have categorized them into six major,
non-exhaustive categories: climatic, pollution (environmental),
density (land use), socio-economic, energy/water and mobility.
The indicators modeled by the different ML algorithms according
to the literature are each classified into one of the categories as
presented in the Tables 3, 5, 6 and 8. Note that this classification
is motivated by the work of (Schwarz, 2010; Dempsey et al.,
2010) and the majority of the papers here reviewed. The following
sections detail the different indicator types modeled by ML
approaches in the literature.
3.3. Urban data sources

ML feeds on the best possible data to better fit the targeted task
(Al-Garadi et al., 2020; Jordan and Mitchell, 2015). To infer pat-
terns associated with urban forms by ML techniques, the authors
relied on various data sources. These sources range from the most
classical ones such as satellite and institutional data to the most
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recent ones including ubiquitous data, i.e. data from devices
massively used by people and present almost everywhere in a city
(Niu and Silva, 2020). With all this data, it is possible to provide
more intelligent solutions to current challenges of cities, such as
‘‘sustainable planning, smart city, digitalization, resilience, ‘‘devel-
oping better strategies and studying the impact of new urban
development projects (Li et al., 2020). Globally the sources of urban
data collection are grouped into two main categories including
sensor-based technologies and surveys as shown in the figure.
These data sources allow us to have an idea of their reliability
according to the desired study and the real impact of the obtained
results.

Considering the sources of data based on sensors, we can divide
them in relation to the technologies of acquisition and transport
used that reflect the spatial extent of the territory covered and
the scale of accuracy of the data. In this sense, we distinguish:

� Satellite datawhich cover a relatively larger space and with a
relatively lower accuracy. They remain among the most used
in ML applications due to their high availability. Four constel-
lations are most often used in urban studies, including: Lansat
(Choung and Kim, 2019; Aniello et al., 1995; Gómez et al.,
2020; Okwuashi and Ndehedehe, 2020), Sentinel (Geiß
et al., 2020), MODIS (Kabano et al., 2021), ASTER (EOS,
1999), etc.

� Large-scale data which cover a relatively smaller area than
satellite data with greater accuracy. They are used more with
the emergence of drones and the search for better accuracy
(Vergouw et al., 2016).

� Data collected by terrestrial transporters like (bikes, motorcy-
cles, cars, . . .), is a new era that offers many possibilities in the
Open Data sector. Connected vehicles represent one of the most
promising solutions, of which several associations as well as the
municipality’s project have been proposed (Shelton et al., 2019).
Data on roads with bicycle use, one of the initiatives proposed
by the Open Street Map Foundation - OSM (Luxen and Vetter,
2011). As for the data coming from any crowd-source, their
quality is of concern because the volunteers who provide the
data do not have sufficient cartographic training and the quality
cannot be guaranteed (Basiri et al., 2016).
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� Ubiquitous mobile devices data that come from sensors
embedded in everyday mobile devices (Lee et al., 2008).

As for survey-based data (field, web, or any source), they are
paramount as data sources and are generally characterized by
superior quality. They are often used alone (Jack and McCormack,
2014; Kontokosta et al., 2018) or in combination with sensor data
for more comprehensive and reliable studies (Ma et al., 2020;
Abrantes et al., 2019; Lee, 2019). Finally, several studies classify
urban data sources according to accessibility, i.e. the storage plat-
form, which distinguishes institutional data from data published in
open source.

Considered one of the best geospatial processing platforms,
Google Earth Engine (GEE), is a cloud computing platform
designed to store and process huge (petabyte scale) datasets for
analysis and final decision making. After the Landsat series was
made freely available in 2008, Google archived all of the datasets
and linked them to the cloud computing engine for open source
use. Current data archives include those from other satellites (no-
tably Sentinel I, MODIS), as well as geographic information sys-
tem (GIS)-based vector datasets, social, demographic, weather,
digital elevation model, and climate data layers. (Liu et al.,
2017; Sun et al., 2019).

Technically, any urban phenomenon (including urban planning)
is described by two main categories of data: Spatial and Attribute.

1. Attribute data: gathering all alphanumeric data such as cen-
suses, statistics, surveys, etc).

2. Spatial data are any information having a spatial base. They
gather two types: (1) vector data (point, line and polygon) such
as data on the roads, administrative division, sewerage. . .ect. (2)
and raster data (image or raster) such as Satellites images,
Radar images, aerial photos etc. This is the most used type of
data in urban modelling.

Thus, survey data are most often attributive while sensor data
are mostly spatial. There is always this transition between vector
and raster (and/or raster and vector). Let’s take the example of data
from fixed sensors, we will be able to collect these data on several
points in the city, and generalize them over the entire study area
using the interpolation method. We can therefore go from a dis-
continuous data point to a continuous or matrix data by applying
a spatial interpolation (Tabios and Salas, 1985).
4. Overview of ML methods for Urban form application

The need to know how to build computers that automatically
improve through experience has made the field of machine learn-
ing one of the most emerging technical fields (Jordan and Mitchell,
2015). Machine learning, which is at the intersection of computer
science and statistics, and at the heart of intelligence and data
science, is seeing its field of application grow by the day. Thus, sev-
eral definitions can be attributed to the term Machine Learning
(ML). In the literature, it is often attributed the name ‘‘Machine
Learning” or ‘‘Statistical Learning” or ‘‘Artificial Learning”. Another
famous definition of ML is that of T. Mitchell (Mitchell et al., 1997)
according to which: ‘‘A computer program would learn from experi-
ence E with respect to a certain class of tasks T and performance mea-
sure P, if its performance on tasks in T, as measured by P, improves
with experience E.” This definition has been criticized by several
authors over time including those of A. Munoz (Munoz, 2014), M.
Mohri et al. (Mohri et al., 2018), M. Mitzenmacher et al. (Rish
et al., 2001) and very recently D. Borchmann et al. (Borchmann
et al., 2020). Overall, these authors have thus posed the general
problem of ML which alludes to three main factors: (1) A sample
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of training data; (2) A training model; and (3) One or more metrics
to evaluate and validate the model’s performance.

Among these three elements, the size of the data and the model
used are particularly important to achieve the best performance.
That’s why the advanced digitalization and the explosion of the
volumes of data collected make the models evolve day by day.
These models also become more and more complex to be more
efficient. This efficiency has made ML inescapable in many and var-
ied fields of application. Urban planning to meet the demands of
today’s cities is one of the areas where ML algorithms are increas-
ingly used to meet this major challenge. Many applications of ML
models in urban planning include the shape of the city. Thus, ML
models have already made it possible to better model several ele-
ments related to the shape of the application city. The Tables 3 and
6 summarize recent works applying ML models to solve problems
related to the shape of the city while the Table 4 draws up a com-
parative study of the various ML models used in this field. Depend-
ing on the target that we want to model by machine learning, ML
methods are classified into two main groups: Supervised learning
and unsupervised learning. However, there are other models called
hybrid or semi-supervised learning that have been widely used in
urban planning or learning methods by reinforcement, transfer or
recurrent, etc.

The Table 1 draws up a comparison of the types of learning
allowing us to classify each algorithmic model in order to detect
its potential cases of effective application. Crossing the Table 1
with the Tables 3 and 6 allows to highlight the applications of
the supervised and unsupervised learning models for the simula-
tion of the indices associated to the shape of the city. We notice
that the supervised learning methods are more widely used com-
pared to the unsupervised methods, which are very little used. This
shows that the data collected in most cases already have a precise
and known target with the learning process except in some cases
where clustering and association rules have been used. Another
very important aspect in the automatic learning process concerns
the nature of the problem which can be either a classification or
a regression. It can be seen that previous works consisted of both
classification processes (Novack et al., 2011; Lamb et al., 2019)
and regression processes (Gómez et al., 2020; Lee, 2019).

The Fig. 3 details the ML process for simulating urban form
indexes for use in urban planning decision support. Several impor-
tant steps such as data collection and pre-processing precede the
choice of ML the model. After training the model, the evaluation,
tuning and validation of the performances by appropriate metrics
follow. However, the heart of this process lies in the model whose
choice must be carefully motivated and need expertise to design
and train the best parameters. This is why in the rest of this section
we describe the most commonly used automatic learning models
in urban form modeling. We group them in three tables: 2, 3 and
6 containing unsupervised, classical suppervised and neural net-
work based learning methods (simple or deep), respectively. More-
over, we discuss their advantages, disadvantages and applications
in the field of urban form.

4.1. Unsupervised ML models

A learning problem is said to be unsupervised when only input
data is available and no corresponding output variables (Barlow,
1989). Unsupervised learning is particularly used in descriptive
analysis and is often used when dealing with urban forms (Han
et al., 2021). The objective of unsupervised learning is to model
the underlying structure or distribution in the input data set in
order to learn more. The name unsupervised learning is due to
the fact that unlike supervised learning (see Section 4.2), there is
no correct answer or teacher and therefore no a prior known label.
The algorithms are left to their own mechanisms to discover and



Fig. 6. Illustration of the search strategy for the k nearest neighbors.

S.C. Koumetio Tekouabou, E.B. Diop, R. Azmi et al. Journal of King Saud University – Computer and Information Sciences 34 (2022) 5943–5967
present the interesting structure of the data. Unsupervised learn-
ing problems can be grouped into clustering or association. The
Table 2 summarizes a comparison between these two groups while
giving potential applications to the problems of modeling urban
form indexes.

4.1.1. Clustering methods
A clustering problem is a problem where one wants to discover

inherent group in the data, such as the clusters of urban occupation
types according to urban form indexes. It’s a bit similar to multi-
class classification, but here we don’t provide the labels, the system
understands the data itself and aggregates the data (Barlow, 1989).
For example, given a set of images, group them into different
objects. Several algorithms are proposed for this type of problem.
As shown in the Table 2, the most used are K-means (Krishna
and Murty, 1999; Li et al., 2020), EM algorithms (Moon, 1996;
Han et al., 2021), Gaussian mixture models (Han et al., 2021;
Reynolds, 2009), graph clustering (Schaeffer, 2007). Clustering
approaches are often used to model indicators of urban forms such
as urban tenure types (Abrantes et al., 2019), urban fabrics (Li et al.,
2020), LST/UHI (Gao et al., 2020), building energy modelling (Han
et al., 2021), . . .

4.1.2. Association rules methods
An association rule learning problem is a modeling problem

where one wants to discover rules that describe a large part of
the data, such that buyers of X also tend to buy Y. Another example
is a person who uses one means of transportation to get to work
could still use another or could from a given urban area. The most
used algorithms for this type of problem are the A-priori algorithm
(Wei et al., 2009; He et al., 2018) and the CAR (Class Assoication
Algorithm) (Nguyen et al., 2013; Lu et al., 2008). The Apriori algo-
rithm is a very popular solution for associative problems. It allows
you to find the most frequently used items together such as walk-
ing adults (Jack and McCormack, 2014) or uban vitality (He et al.,
2018) based urban form indexe such as urban growth. An alterna-
tive to this algorithm for association rule problems is the CAR algo-
rithm that was used to determine work travel behavior as a
function of urban form in Chicago by (Lu et al., 2008).

The unsupported learning techniques thus studied are only a
fine part of the work applying machine learning techniques to
modulate the indices of urban forms. The following Section 4.2
focuses on supervised learning techniques which are widely used.

4.2. Classical Supervised ML models

4.2.1. DT
The decision trees (DT) algorithm is a technique for structuring

a set of learning data in the form of trees made up of nodes and
leaves. Each node represents the test on the given attribute, while
the leaf represents the class (Ruggieri, 2002; Bashir et al., 2014).
The basic decision tree induction algorithm is using the top-
down recursive method of building a decision tree. The algorithm
uses the information gain based on the entropy measurement as
heuristic information, selects a sample of classification attributes
that can be called (Tekouabou et al., 2021). The attribute then
becomes test or decision attribute of the node (Jindal et al., 2016;
Xu et al., 2016). Although fast and simple, the DT algorithm
becomes very inefficient for large databases but remains widely
used in many modeling problems. Moreover, as mentioned in the
Table 4, the formed tree can become difficult to understand when
the number of branches increases. Because of its instability charac-
terized by high variance and bias, DT is the basis for other, more
powerful approaches such as ensemble methods (Tekouabou
et al., 2020; Tekouabou et al., 2021). Its relative efficiency and sim-
plicity has earned it several applications in a variety of fields. DT
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has been used for the modeling of urban patterns associated with
the shape of the city such as the environment (Chan et al., 2001),
the urban structures types (Hecht et al., 2013), the urban land
cover in Sao Paolo (Novack et al., 2011), the urban growth in Teh-
ran (Shafizadeh-Moghadam et al., 2017), etc.

4.2.2. LR
The ‘‘logit” or logistic regression (LR) learning model is one of

the oldest machine learning models. According to A. de Palma &
J.F. Thisse (De and Thisse, 1989), V. Loonis (Loonis, 2006) et J. Hos-
mer et al. (Hosmer et al., 2013), the technique was first introduced
by J. Berkson in 1944 (Berkson, 1944; Berkson, 1951). Given a vari-
able to predict Y ¼ f0;1g and a predictive variable (explanatory
variable) X ¼ ðx1; x2; . . . ; xnÞ, LR is based on the fundamental
assumption of the Eq. (1).

ln
pðXj1Þ
pðXj0Þ ¼ b0 þ b1:x1 þ b2:x2 þ . . .þ bn:xn ð1Þ

The technique is famous because it is easily adaptable to both
classification and regression problems. It is very efficient for binary
classification problems and when the data are not numerous. But
its main disadvantage in classification is that its performance is
appropriate in binary classification and much less in multi-class
classification and especially when the amount of data increases.
Several models of this family have been used to model urban forms
among which: BayesianRidge, Lasso Regressor and Ridge regressor
by (Gómez et al., 2020) to predict urban growth based on spatio-
temporal data. Ordinary Least Square (OLS) regressor which is a
type of simple linear regressor is also used in the literature (Chen
et al., 2020). Several works have also implemented models based
on this algorithm to simulate the patterns of the urban form of
which (Ma et al., 2020) for land values prediction, (Lee, 2019) for
air quality or (Gao et al., 2020; Chen et al., 2020) to model the
LST and many other works that show that the approach is very
promising to detect urban pattern from urban form indexes.

4.2.3. KNN
The k nearest neighbor (KNN) algorithm is one of the classical

learning algorithms that uses a non-parametric method based on
the calculation of similarity or dissimilarity to solve a classification
or regression problem (Zhang et al., 2017; Koumétio and Toulni,
2021). The principle of the KNN algorithm (see Fig. 6) consists in
assigning the class or regression value by averaging the k nearest
neighboring values, for numerical instances, or by applying the
majority vote for k neighbors, if the values of the instances are cat-
egorical. After selecting the k nearest neighbors, the value can be
predicted either by the average of the outputs of the k neighbor
(uniform weighting) or by a weighted sum defined by a weighting
function (Sinta et al., 2014; Acharya et al., 2017; Koumétio and



Fig. 8. From an SVM with RBF kernel (left) to an SVM with linear kernel (right)
(Press et al., 2007). The choice of the kernel is very important to optimize the
performance of the SVM algorithm. This figure shows that from an RBF kernel, we
can switch to a linear kernel easier to understand as explained in (Tekouabou et al.,
2021; Tekouabou et al., 2020).
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Toulni, 2021). The KNN algorithm is also of particular interest for
the design of skill regions for dynamic selection algorithms for
set classifiers (Roy et al., 2018) or as a weak learner for construct-
ing ensemble models and many other applications.

The great advantage of the KNN model is that it reduces the
dimensionality of the features to improve efficiency by using two
layers of feature reduction (Cherif, 2018; Al-Garadi et al., 2020).
Then the KNN algorithm integrates a classification method based
on the choice of distances (Euclidean, Manathan, Jaqqart. . .). The
proposed KNN model has shown good prediction results of the
land values (Ma et al., 2020), urban structure type (Hecht et al.,
2013), land use ereas (Jochem et al., 2018) and UHI (Hart and
Sailor, 2009). This diversity of application shows that the method
could have an important scope of application for urban form
modeling.
4.2.4. NB
The NB classifier is a type of simple probabilistic Bayesian clas-

sification based on the Bayes theorem (Walpole et al., 1993;
Mitzenmacher and Upfal, 2017). The basic idea is to calculate the
probabilities that the samples belong to their classes. The method
is said to be naïve because the model is based on the assumption
that all variables are independent. This is a very simple assumption
that makes NB a very efficient classifier, especially when the size of
the data and the number of variables is small (Lewis, 1998). The NB
Classifier has solved many classification problems until it has been
outperformed in recent decades by other more efficient classifiers
such as the Ensemble Classifiers. NB approach has been applied for
modelling LST/UHI (Chen et al., 2020) and urban functions from
landscape metrics (Xing and Meng, 2020) according to urban form
indicators. Globally, the NB algorithm has been slightly used to
model urban patterns because of the complexity of the input data
which makes its performance inappropriate. A similar approach
was used by (Duerr et al., 2018) as Bayesians Bayesian additive
regression trees (BART) model to forecast water demand according
to urban form.
4.2.5. SVM
The Support Vector Machine (SVM) algorithm is one of the most

widely used supervised machine learning methods for both classi-
fication and regression problems. The fundamental principles of
SVM are derived from the work of C. Cortes & Vapnik (Cortes and
Vapnik, 1995) who introduced in 1995 the principle of support
vector network and the first vector support machine concepts
(Hearst et al., 1998). This method has been widely used in the sci-
entific community and has proven to be very robust for several
general classification and regression problems (Vapnik, 2013).
Fig. 7. Operating principle of a conventional SVM (Press et al., 2007).
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SVM algorithms are based on two key ideas which are the concept
of maximum margin and the concept of kernel function(Smola and
Schölkopf, 2004). In linear classification, the vector support creates
a hyperplane that separates the data into two subsets with a max-
imum margin (Smola and Schölkopf, 2004; Tekouabou et al., 2021)
as illustrated in the Fig. 7. In particular, in cases where the data is
not linearly separable, they map the data representation space into
a larger area where a more appropriate linear separator is likely to
be available.

The main objective of using SVM is to accurately classify invis-
ible data by minimizing classification errors through a decision
function (Jindal et al., 2016) and the appropriate kernel (Fig. 8).

The SVM algorithm has been particularly used in several predic-
tion works whether in classification or regression. As shown in the
Table 3, SVM is one of the most widely used algorithms for model-
ing patterns associated with the shape of the city. The use of SVM
in urban planning has been widely diversified and the algorithm is
very promising. Some examples of relevant use cases are the mod-
eling of urban type structures (Hecht et al., 2013), land values pre-
diction (Ma et al., 2020), type of urban occupation (Abrantes et al.,
2019), Pollution (PM2:5 (Kleine Deters et al., 2017), PM10 (Choung
and Kim, 2019)), uban functions from landscape metrics (Xing
and Meng, 2020), land uses (Okwuashi and Ndehedehe, 2020),
etc. However, SVM suffers from some of the problems mentioned
in the Table 4 which make several more powerful algorithms out-
perform its performance facing certain complex problems. This is
the case of ensemble methods which he sometimes uses as a basic
learner as we will see in the following section.
4.3. Ensemble methods (EM)

In ML modeling processes, one of the most powerful techniques
is ensemble learning. It is the combination of weak models into a
strong model. (Opitz and Maclin, 1999). Weak learners are in most
cases decision trees (DT) or artificial neural networks (ANN) or
support vector machines (SVM), nearest neighbors (k-NN) or naive
bayes (NB) (Tekouabou et al., 2021). Each of these independent
weak learners provides an alternative prediction of the overall
problem, and the final prediction results from a combination (usu-
ally by weighted or unweighted voting) of these alternative predic-
tions (Bolón-Canedo and Alonso-Betanzos, 2019). The EM
approaches generally provide a more stable and accurate predic-
tion because the error is much smaller than that provided by any
of the individual base models that make up EM. (Diez-Olivan
et al., 2019). EMs have been used a lot in recent years and also in
our work. The ensemble technique is based on three main
approaches: bagging (Breiman, 1996), boosting (Freund and
Schapire, 1995) et stacking. In supervised statistical learning,



Fig. 9. Two large families of EM combinations (a) Bagging and (b) Boosting (Tekouabou et al., 2020; Tekouabou et al., 2021).
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regression and classification, EMs have been particularly devel-
oped since 1984 with Breiman’s work in statistics for bagging
methods. (Breiman, 1996) et de Freund et Schapire in computer
science a few years later for boosting methods (Freund and
Schapire, 1995). Random forests (RF) (Breiman, 2001) have been
very successful and have generated a lot of interest both in their
theoretical aspects and in their numerous applications. These
methods have been motivated by the fact that some models such
as regression and classification trees are ‘‘unstable” (Bashir et al.,
2014); a slight disturbance in the training sample can lead to a sig-
nificant change in the structure of the model and improve its per-
formance. Methods based on ensemble technique have been very
relevant in the modeling of several urban planning indicators that
we will review in turn according to the most used bagging or
boosting techniques so far.

4.3.1. Bagging algorithm
The bagging algorithm owes its name to the contraction of

‘‘Bootstrap Aggregating” which the principle is depicted by the
Fig. 9(a). It is the basis of a family of highly performing MEs for
regression problems and supervised classification. We designate
by ðX;YÞ a random vector representing the learning data where X
takes its values in Rp and Y in R. We denote Dn =
ðX1; Y1Þ; . . . :; ðXn;Yn) an independent and equitably distributed
sample. And with the same law as ðX;YÞ and m̂ðxÞ ¼ E½Y jX ¼ x�
the classification/regression function. For x 2 Rp, we consider the
mean square error of an estimator m and its bias-variance decom-
position as follows (Tekouabou et al., 2020; Bashir et al., 2014):

ðm̂ðxÞ �mðxÞÞ2 ¼ ðEm̂ðxÞ �mðxÞÞ2 þ Vðm̂ðxÞÞ ð2Þ
They consist in aggregating a number B of the models m̂1; m̂2,

. . ., m̂B such that:

m̂ðxÞ ¼ 1
B

XB

k¼1

ðm̂kðxÞÞ ð3Þ

and so we have:

Em̂ðxÞ ¼ Em1ðxÞ ð4Þ
and

Vðm̂ðxÞÞ ¼ 1
B
Vðm1ðxÞÞ ð5Þ
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The bias of the aggregate model is therefore the same as that of
the m̂k but the variance decreases. Of course, in practice it is almost
impossible to consider independent models m̂k insofar as they all
depend on the same sample Dn. The bagging approach is to try to
mitigate the dependency between the models that are aggregated
by building them on bootstrap samples. Almost as efficient as the
RF algorithm which owes its basic principle to it, the bagging algo-
rithm has however been widely used to model urban planning
indices. Some rare works using this method include (Hecht et al.,
2013) for urban structure types modelling and (Novack et al.,
2011) for urban land cover.

4.3.2. Random Forest (RF) Algorithm
RF algorithm is nothing more than a particular method of bag-

ging consisting of an aggregation of weak learners based on ran-
dom variables (Breiman, 2001). Most often, the weak learner
consists of trees built with the Classification and Regression Tree
Algorithm (CART) whose principle is to recursively partition the
space generated by the explanatory variables in a dyadic way
(Bashir et al., 2014). More precisely, at each partitioning step, a
part of the space is divided into two sub-parts according to a vari-
able (Zhang and Haghani, 2015). In its most classic formula, it per-
forms parallel learning on multiple weak learners randomly
constructed and trained on different subsets of data (Breiman,
2001). The ideal number of weak learners is an important param-
eter that can be several hundred or more. It is highly variable
and depends on the problem. Concretely, each weak learner in
the random forest is trained on a random subset of data according
to the principle of ‘‘bagging”, with a random subset of characteris-
tics (variable data characteristics) according to the principle of
‘‘random projections”. The predictions are then averaged when
the data are quantitative or used for a vote of qualitative data in
the case of trees of classification (Breiman, 2001; Bashir et al.,
2014). RF algorithm is known to be one of the most efficient
‘‘out-of-the-box” classifiers (i.e. requiring little data pre-
processing). RF has been used in many applications, including con-
sumer and complex applications such as real-time image classifica-
tion. In this trend, it is certainly, as shown in the Table 3, the most
widely used algorithm for modeling urban planning indices
according to the parameters associated with the shape of the city.
Among its many applications where RF has most often defied other
algorithms, we can cite the following urban planning pattern mod-



Fig. 10. Operating principle of an artificial neural network.
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elling: land values (Ma et al., 2020), urban structure types (Hecht
et al., 2013), water quality (Wang et al., 2020), land use areas
(Jochem et al., 2018), water demand (Duerr et al., 2018), gentrifica-
tion (Reades et al., 2019), urban land cover (Novack et al., 2011),
LST/UHI (Sun et al., 2019; Chen et al., 2020), urban growth
(Gómez et al., 2020; Shafizadeh-Moghadam et al., 2017), urban
functions (Xing and Meng, 2020) etc.

4.3.3. Extra-Trees (ET) algorithm
The Extra-Trees algorithm (extremely randomized trees)

(Geurts et al., 2006) are a set of decision trees built from bagging
as explained above. However, they differ from other set methods
on several points including: (1) the separation that takes place in
the internal nodes is random, the attributes and thresholds tested
are chosen at random; (2) Extra-Trees use the whole learning set to
build the trees, not just a part as in the bagging method. Relative to
the other EM, the ET algorithm remains however little used.

4.3.4. Adaptif Boosting (Adaboost) algorthm
The adaptive boosting (Adaboost) algorithm is part of the family

of boosting EMs. AB is based on the fact that a new predictor to cor-
rect the error of its predecessor simply gives a little more attention
to training cases on which the predecessor has adapted less. The
result is new predictors that increasingly focus on difficult cases.
For example, to create an AdaBoost classifier, one must consider
a first classifier that is nothing more than a decision tree. This
trained primitive tree is used to make predictions about the train-
ing set. The weight corresponding to misclassified trainings is then
increased. A second classifier is then formed on the basis of these
updated weights (Mishra et al., 2017). The second classifier again
makes predictions about training data. The weights are then
updated and so on. Once all the predictors have been trained, the
game makes predictions very similar to bagging or gluing opera-
tions. The only difference is that the resulting predictors have dif-
ferent weights based on their overall accuracy over the weighted
training sets (Géron, 2019). AB algorithm has been used to model
the land values (Ma et al., 2020) and build height (Geiß et al.,
2020) according to urban form features.

4.3.5. Gradient Boosting (GB) algorithm
GB algorithm works in a similar way to AdaBoost by sequen-

tially adding predictors to a set, so that each tries to correct the
errors of its predecessor (Freund et al., 1999; Freund et al., 1996).
However, instead of adjusting the weights of the instances at each
iteration, as AdaBoost does, this method tries to adjust the new
predictor to the residual errors committed by the previous one
(Géron, 2019). The steps concerning the process of running these
boosting set algorithms as shown in Fig. 9(b) were also detailed
in (Tekouabou et al., 2019; Tekouabou et al., 2020). The GB algo-
rithm is another very popular boosting method that has given good
performance in several applications. Gb has been applied to detect
pollution PM2:8 particle in urban area (Kleine Deters et al., 2017),
water demand prediction (Duerr et al., 2018), solid waste manage-
ment (Kontokosta et al., 2018), urban traffic flow (Liu et al., 2019)
and building heights (Milojevic-Dupont et al., 2020).

4.4. NN based models

ML based on neural networks and particularly in depth is the
fastest growing area of AI that has revolutionized the field of
machine learning. The first simulations of human neural networks
were the perceptrons created in 1957 by F. Rosenblatt (Rosenblatt,
1958). The algorithm will inspire the current concept of deep
learning through multilayer perceptrons, artificial neural net-
works, deep neural networks, convolutional neural networks and
recurrent neural networks, etc. Deep learning is used in tasks such
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as visual recognition, speech recognition, natural language pro-
cessing and biomedicine and has had very favorable results. The
technique is now very much in demand in urban sciences as in
all other fields. To facilitate the simulation, nodes (neurons) are
allocated at several levels to simulate a neural network. Generally,
there is an input layer and an output layer. In a deep learning net-
work, there are also several hidden layers. Deep learning uses sev-
eral matrix operations to simulate the functioning of neurons.
Calculations in matrix operations are generally simple. However,
when many calculations are required, parallel operation is more
appropriate. Deep learning methods have been shown to outper-
form previous state-of-the-art machine learning techniques in sev-
eral areas, computer vision being one of the most important cases
(Voulodimos et al., 2018).

4.4.1. ANN
The operating principle of the artificial neural network (ANN)

algorithms represented in Fig. 10 is very schematically inspired
by the functioning of the biological neurons to which the method
owes its name. Indeed, neurons receive signals (electrical
impulses) through highly branched extensions of their cell body
(dendrites) and then send information through long extensions
(axons) (Thayse et al., 1988). The ANN algorithm learns a particular
model using a direct-acting neural network formed by a back-
propagation algorithm. In this operation, the neuron is primarily
a mathematical operator that performs a weighted sum followed
by a non-linear function. The particularity of this function is that
it must be limited, continuous and differentiable. The most com-
monly used are the sigmoid functions (Wang, 2003) because the
forms of the derivatives of their inverse functions are extremely
simple and easy to calculate, which improves the performance of
the algorithm. The working principle of the ANNs is shown in the
Fig. 10 and better detailed in (Thayse et al., 1988; Wang, 2003)
The oldest neural networks still widely used today are the Multi-
layers Perceptron (MLP). (Rosenblatt, 1958). Their architecture is
shown in the Fig. 11 (on the left side).

For the modeling of urban form indicators, both MLPs and ANNs
have proven to be effective in a number of studies. For example,
MLP has been used for modelling the land values (Ma et al.,
2020), Change in urban environment (Chan et al., 2001) while
the ANN algorithm modelled the solid waste management (Ma
et al., 2020), urban typology (Nice et al., 2020). However, NN has
still been widely used under other architectures including deep
and/or convolutional learning.

4.4.2. CNN
One of the drawbacks of traditional ANNs is the parameters

used, so CNNs were introduced to overcome this problem by
reducing the data parameters (Guo et al., 2017). The principle of
parameter reduction is based on three concepts: sparse interaction,
parameter sharing and representation. Reducing connections



Fig. 11. Comparison between a simple neural network (left) and a deep neural network (right). The input, hidden and output layers are respectively in red, yellow and blue
colors.
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between layers increases scalability and improves the complexity
of NNN training time. The operating principle of CNN is thus
inspired by biological processes (Matsugu et al., 2003). They
consist of a multilayer stack of perceptrons whose purpose is to
pre-process small amounts of information (Kuo, 2016). CNNs have
proven to be effective in large applications including image and
video recognition, recommendation systems and natural language
processing (LeCun et al., 1995; Matsugu et al., 2003). CNNs have
been shown to provide better performance in several urban shape
indication modeling projects, including the following: flood predic-
tion (Guo et al., 2020), climate (Middel et al., 2018), mobility in
street (Middel et al., 2019) etc. CNNs are potentially very promising
for urban form modelling applications that are mostly image-
based. The method has been at the origin of deep convolutional
networks and other approaches more efficient to solve complex
problems.
4.5. DNN-based models

The DNN is a kind of NN consisting of several layers of non-
linear processing units (hidden layers). Its architecture makes it
efficient for feature extraction and transformation. The Fig. 11
shows that a DNN made up of three layers, the input layer, the hid-
den layers, the output layer. In the input layer, neurons are gener-
alized from features obtained from sensors that perceive the
environment (Han et al., 2015). Hidden layers may consist of one
or more layers, the neurons in them are called feature representa-
tions. The output layer contains the results we want, for example
the distribution of all possible actions. Each successive DNN layer
uses the output of the previous layer as input. All neurons in the
layers are fully activated by weighted connections.

Different activation functions can be used to solve different
problems. You can also create your own activation function to
solve your own problem. There are also several predefined func-
tions, such as ‘‘re-read”, ‘‘tanh”, softmax, sigmoid, etc. After the cal-
culations, the flow undergoes from the input to the output, in the
output layer and in each hidden layer, we can calculate the error
derivatives backwards, and back propagate the gradients to the
input layer, so that the weights can be updated to optimize a cer-
tain loss of function. This is the heart of the learning part, to find
the right weights and biases. The following deals with the different
types of DNNs.
4.5.1. DCNN
The DCNNs come from the deepening of the layers of the NDCs

that we presented in the Section 4.4.2. DNNs efficiently process
large amounts of input data and are therefore widely used in the
fields of computer vision. They consist of a stacking of layers to
form different CNN deep network architectures. Thus, a DCNN con-
sists of three main layers: (1) The ‘‘convolutional layer” which uses
a small patch size to scan over the entire image in giant steps. (2)
The ‘‘pooling Layer” which pools the layers performs a subsam-
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pling operation and reduces the input dimensions. Its function is
to progressively reduce the spatial dimensions size of the represen-
tation and therefore the number of parameters, the calculation in
the network and therefore also to control the overlay. There are
many types of pooling layers: Max-pooling, Average-pooling, etc.
(3) The ‘‘full connected layer” which like the normal layer of the
deep neural network is fully connected completely to all activa-
tions of the previous layer. There are famous CNN and DCNN based
architectures with complex image data sets such as LeNet-5 (LeCun
et al., 2015), AlexNet (Wang et al., 2019), Imagenet (Krizhevsky
et al., 2012; Deng et al., 2009), Densenet (Huang et al., 2017).
4.5.2. RNN
RNNs are based on the work of (Rumelhart et al., 1986) pub-

lished in 1986. MLPs can be useful for entries of fixed size, but
what about cases where the size of the entries varies, for example
natural language sentences? One solution would be to divide the
problem into pieces and consider each piece independently using
MLPs. However, in naive cases, it is the interaction between the fol-
lowing elements of a sequence that carries the most information.
RNN is a type of non-convex model that addresses these concerns.
RNN is essentially a sequence of MLPs. When it calculates a hidden
vector, it takes into account not only the input but also the value of
the hidden vector that precedes it in the sequence (Subasi, 2020).
The grating training techniques are the same as for classical grat-
ings (gradient backpropagation), however RNNs face the problem
of gradient disappearance to learn how to memorize past events.
New architectures have therefore been proposed to overcome this
problem, in particular LSTM and GRU networks. Recurrent Neural
Network (RNN) based deep learning methods such as LSTM and
GRU perform better than auto regressive integrated moving aver-
age (ARIMA) model (Fu et al., 2016).
4.5.2.1. Long Short-Term Memory (LSTM). The LSTMs consists of a
cell, an input gate, an output gate and a forget gate. The cell stores
values at arbitrary time intervals and the three gates regulate the
flow of information in and out of the cell (Hochreiter and
Schmidhuber, 1997). The LSTM architecture has been proposed to
overcome the problem of gradient disappearance posed by RNNs
networks.Indeed, RNNs are great tools adapted to a wide variety
of tasks. However, they have a serious flaw: when they are trained
on sequences longer than a few elements, they suffer from gradient
problems that disappear and explode. This was initially a major
obstacle to the successful application of RNN to real-world prob-
lems. Interestingly enough, the LSTM solution was not really algo-
rithmic, but architectural. By manipulating the set of equations
defining the network architecture, (Hochreiter and Schmidhuber,
1997) have succeeded to ensure that there was always a direct
path from the network output to any input, thus mitigating the
problem of explosive gradients that disappear. LSTM works well
for time series prediction. Thus, if data is in a sequential format
(Time, Sentence, etc.,) such as many problems in urban modelling,
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LSTM is good to go for those kind of problems. The LSTM have been
well applied to challenge the prediction of quality of air
(Janarthanan et al., 2021) and traffic flow (Fu et al., 2016) according
to urban form. According to the Tables 7, LSTMs, like their
recurrent counterpart in recurrent-based principle GRU, present
great potential for the modeling of time series of data associated
with urban forms.

4.5.2.2. Gated recurrent unit (GRU). The GRU network is a RNN-
based Encoder- Decoder consisting of two RNNs networks. The first
one encodes a sequence of symbols into a fixed length vector rep-
resentation, and the other one decodes the representation into
another sequence of symbols. The encoder and decoder are then
jointly trained to maximize the conditional probability of a target
sequence (Cho et al., 2014; Chung et al., 2014).

4.5.3. Autoencoder (AE)
AEs allow the input to be coded into a different representation,

and reconstruct it from that learned representation. Fig. 12 shows
the basic architecture of AEs which is divided into two parts: the
encoder part and the decoder part. Once the model is well trained,
the encoder part can be used to extract characteristics from the
data. They are therefore trained to reconstruct their original input.
Once the model is well trained, the encoder part can be used to
extract characteristics from the data (Makhzani et al., 2015).
Indeed, an AE is a form of feature extraction algorithm that can
use the features generated by an AE in any other algorithm, for
example for classification.

The simplest form of an AE is an MLP with a single hidden layer.
But Geoffrey Hinton has developed a pre-training technique for
deep auto-encoding (DAE) (Hinton and Salakhutdinov, 2006). This
method consists in treating each neighboring set of two layers as a
restricted Boltzmann machine so that the pre-training approaches
a good solution, then using the backpropagation technique to
refine the results (Hinton and Salakhutdinov, 2006). The main
objective of DAEs is to make features more robust by presenting,
for example, only corrupted images and not real images. These
models have proven to be very efficient and are able to learn very
powerful representations. Since this does not change the model
itself but only the data it is trained on, moreover, it is very simple
to apply this principle to any auto-encoder (Hinton et al., 2011).

An alternative to DAEs is to force the model to learn a sparse
representation of the input data; these models are called sparse
auto-encoders (Ng et al., 2011). Typically, these models have a
wider representation than other models, but the units are rarely
Fig. 12. Architecture of a basic auto-encoder (Hinton and Salakhutdinov, 2006).
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activated simultaneously. They are usually trained by adding an
additional term to the loss function (Ng et al., 2011; Mienye
et al., 2020). urban structure (Moosavi, 2017), Quality of air
(Xayasouk et al., 2020).

4.5.4. Transfer Learning (TL)
The TL can be seen as the ability of a system to recognize and

apply knowledge and skills, learned from previous tasks, to new
tasks or areas sharing similarities (Tan et al., 2018). The question
that arises is: how to identify similarities between the target task
(s) and the source task(s), and then how to transfer knowledge
from the source task(s) to the target task(s)? There are three
research challenges in transfer learning, namely ‘‘what we trans-
fer”, ‘‘how to transfer” and ‘‘when to transfer”. The benefits of TL
include the following: low resource requirements, easy to imple-
ment, short execution time, better performance for some complex
problems (Tan et al., 2018). Research on new original DNN archi-
tectures funded by the world’s major corporations is rarely ori-
ented towards urban data and is very expensive (Jordan and
Mitchell, 2015; Al-Garadi et al., 2020). TL techniques are very
important as they allow the transfer of the training parameters
of these models and adapt them to urban data with good perfor-
mances (Verma et al., 2019). In practice, TL is commonly used with
CNN for computer vision tasks, as this network is data intensive.
Instead of training this network from scratch, a CNN pre-trained
on a huge dataset (such as Imagenet which contains 1.2 million
images (Krizhevsky et al., 2012; Deng et al., 2009)) can be exploited
in three ways. Mamy algorithms are available for transfer learning
in Markov logic networks (Mihalkova et al., 2007), Bayesian net-
works (Niculescu-Mizil and Caruana, 2007) and DNN (Tan et al.,
2018). Transfer learning has also been applied to cancer subtype
discovery (Hajiramezanali et al., 2018), building utilization
(Mihalkova et al., 2007; Arief-Ang et al., 2018), digit recognition
(Maitra et al., 2015), etc. They are very potential for urban form
indicators modelling application such as urban growth model pro-
posed by (Shafizadeh-Moghadam et al., 2017).
5. Discussion: potentials, challenges and future directions

This section is dedicated to the discussion of ML methods as
decision support tools in the urban planning process. The major
aspects of this discussion are ML potentials and issues, challenges
and finally future research directions. We will refer much more to
the data on most relevant papers in the literature that we summa-
rized in Tables 3 for those involving non NN-based methods and 6
for the others. The summery is carried out according to the year of
publication, type of ML model (i.e. the type of learning problem),
data sources, study areas and target problems. This summary
addresses issues related to the implementation of ML strategies
and the possibilities of integrating ML with other technologies,
issues of computational complexity, and the requirements of
trade-offs between urban form, its indicators and urban planning.

5.1. Potentials and issues of ML applications for urban planning DSS

ML models currently offer enormous potential for applications
in several areas including urban planning. To better convey this
section, we have illustrated the potential of ML in Fig. 13. This fig-
ure shows that ML methods are at the center of effective modeling
of urban indexes to aid in intelligent planning decisions for urban
forms that meet current and future challenges.

From the point of view of urban planning and the uses of urban
forms, ML models address several issues that we group here into
three major categories including: a) the socio-economic issues,
which address challenges such as inclusiveness, development and



Fig. 13. Illustration of the potential role of ML for urban forms applications.
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resilience of the city, etc.; b) the environment and sustainability,
which includes indicators to address the challenges of ecological
sustainability of the city, and finally c) the digital and smart city,
which includes indicators of digital integration to address the chal-
lenges of smart and digital city. We will address these different
aspects in turn in the following sub-sections.
5.1.1. ML for addressing urban sustainability issues
In general, ML models help predict a target indicator based on

several variables. This predictive analysis allows to anticipate some
extreme phenomena. Thus, thanks to ML models, urban planning
can be assisted by decision support tools to simulate and plan
the sustainable urban forms development. The type of building,
the types of occupation of urban spaces, the density of the popula-
tion, etc considerably affect the sustainability of the city. The
strength of ML is that it allows to simulate these indicators accord-
ing to the urban forms and find the most sustainable one by detect-
ing indicators changes (Chan et al., 2001). Ml models can be useful
for designing IoT and AI which provide tools to monitor air pollu-
tion, UHI, LST (Xu et al., 2019), solid waste and other indicators of
urban form in real-time. ML tools can allow the predictive identi-
fication of pollution sources in order to simulate sustainable urban
form indicators. According to a report by the WHO, 97% of cities in
low- and middle- income countries with more than 100,000 inhab-
itants do not meet WHO air quality guidelines (Osseiran and
Chriscaden, 2016). Several works have shown that ML models
could be used to operate urban waste management and recycling,
energy use according to urban form elements. The power of ML
algorithms allows to evaluate environmental indicators on a large
scale (Liu et al., 2017). Multiple examples show that the applica-
tion of smart methods is central to modern sustainable urban form
planning.
5.1.2. ML for addressing digital and smart city issues
The creation of smart, digital and connected cities is at the cen-

ter of modern urban planning. The evolution of urban forms in
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today’s cities is a key issue with the galloping urbanization world-
wide (Ma et al., 2020; Middel et al., 2019; He et al., 2018). To
become more influential, cities must demonstrate digital transfor-
mation and integration initiatives by creating true smart cities. The
Internet of Things is at the heart of the smart city and enables the
enrichment of collected urban data into Urban Big Data (UBD).
These UBD not only aggregate information on all urban activities
but are also the ideal raw material for ML algorithms. Indeed, from
these UBD, ML will allow the creation of AIs allowing to make the
city more intelligent (Jordan and Mitchell, 2015). But also and most
importantly, the processing of UBD by the rising power of ML algo-
rithms will allow urban planners to predict the evolutionary trends
of the city and to regulate them by orienting the shape of the city
towards the most sustainable, intelligent, digital and connected
form possible. Thus, urban data enriches the ML to create AI for
IoT and intelligent urban planning which then makes the city more
and more intelligent, digital and connected which in turn helps
enrich UBD. And the cycle repeats over and over. The power of
ML algorithms, the engine of AI and therefore of IoT applications,
and intelligent urban planning are crucial for addressing the chal-
lenges of smart and digital city (Al-Garadi et al., 2020; Jordan and
Mitchell, 2015).
5.1.3. ML for addressing socio-economic issues
In the previous section, we have shown that the ML could allow

the development of sustainable urban forms. This is achieved
through intelligent urban planning decision support tools. Smart
planning would help design and mobilize appropriate investments
in the development of sustainable, resilient and inclusive urban
forms. Indeed, with ML, city planners can simulate and predict
the number of people who will continue to suffer the adverse
effects not only of climate change, but also of reduced economic
growth, lower quality of life and increasing social instability
(Osseiran and Chriscaden, 2016). These simulations should make
it possible to move towards the most inclusive urban forms that
offer better socio-economic indicators (Grant et al., 2010). Some
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applications of ML for handling socio-economic issues from urban
form features include: urban vitality (He et al., 2018), travel behav-
ior (Lu et al., 2008), gentrification (Reades et al., 2019), urban func-
tions (Xing and Meng, 2020), etc.

Some urban economic infrastructure arrangements have proven
to be more efficient, resilient, and inclusive than others, offering
better quality of life. Thanks to ML methods, we can now better
model the patterns of these urban forms in order to refine those
of future cities to meet the needs of rapid urbanization. In Africa
for example, ML models are at the center of segmentation of slums
and predictive modeling of their evolution to better anticipate
responses. In Africa, ML also helps better target areas of poverty
and future social conflict to guide NGO aid and government strate-
gies (Osseiran and Chriscaden, 2016).

5.1.4. ML for addressing urban land use optimization issues
The use of space is central to urban planning (Schwarz, 2010).

Some even define the urban forms that are the result of urban
planning as the way in which urban space is used. This is the
spatial component of the problem of modeling by ML techniques
(Geng et al., 2019; Gómez et al., 2020; Faghmous and Kumar,
2014). This spatial component is most often based on vector image
data from sensors. Classical models use a lot of pre-processing
techniques to reduce this data before training the models with rel-
atively low accuracies. ML and particularly DL methods allow to
process this data faster, easier and more efficiently (Jordan and
Mitchell, 2015). Thus, they allow to optimize the accuracy of land
use DSS in order to make better long term predictions and antici-
pate phenomena such as urban sprawl. Several studies have used
ML approaches to predict for example urban growth
gomez2020spatiotemporal,shafizadeh2017coupling, land values
(Ma et al., 2020), urban land cover (Novack et al., 2011), land use
areas (Jochem et al., 2018), type of urban occupation (Abrantes
et al., 2019), urban function from landscape metrics (Xing and
Meng, 2020). Controlling the use of urban space is key to better
directing the growth of the city towards the most sustainable
forms while ensuring the best uses.

5.2. Challenges of ML for urban applications

The rapid growth of the urban population throughout the world
in general and more particularly in Africa. The type of occupation
of urban spaces highlight the planning challenges of the cities of
the future (Novack et al., 2011; Shafizadeh-Moghadam et al.,
2017). The city is more than ever at the center of tomorrow’s chal-
lenges. One of the greatest challenges of urban planning today is to
produce urban forms that meet the challenges of today’s cities.
With global warming, smart city, digital deployment, political
instability, urban sprawl, public health, changes in lifestyles and
work habits (He et al., 2018), our world and its cities are at the
heart of many transformations. These changes need to be accu-
rately represented in the collected datasets in order to design the
most realistic models possible, which is not always the case. Thus
ML applications to urban planning must cope with data collection
and algorithmic complexity. We discuss these two challenges in
the remainder of this section.

5.2.1. ML Implementation and Computational complexity
The ML algorithms are sometimes complex and require ade-

quate skills to build the optimal model in order to obtain the
desired results. This complexity could be further increased with
the large volume of urban data collected nowadays. As a result,
the implementation and deployment of ML and especially DL mod-
els requires high computational capability and energy to operate.
Energy consumption is a crucial challenge for the adoption of ML
for real-time application (Jordan and Mitchell, 2015). One of the
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current execution and deployment solutions is the use of cloud ser-
vers which in turn suffer from a high wireless power overhead.
Furthermore, the availability of applications for such solutions is
based on network conditions. Therefore, if the network connectiv-
ity is low, the offloading of the cloud will be impossible, which
results in the unavailability of the applications (Al-Garadi et al.,
2020). On the other hand, ML frameworks capable of effectively
reducing computational complexity should be developed. Better
yet, graphical interfaces to efficiently process urban data for urban
planners who do not necessarily have advanced ML skills should be
developed. Thus, reducing computational complexity and increas-
ing algorithmic transparency is of practical importance for future
research.

Another very important challenge is that many emerging DL
model architectures are not trained on urban data. They are then
adapted to urban data with relatively lower performance and time
gab. Research on new ML models (DNN architecture) specific to
urban data can be extremely costly and only a few institutions
such as Facebook do it. In this sense, transfer learning could be a
very important technique to implement these models more easily
to urban data but there will always be this slow development com-
pared to other fields (Chang et al., 2019).

5.2.2. The challenge of ML for urban data
In Section 3.3 we have discussed the different sources and types

of urban data. The Section 4 enlightened us on the methods of
machine learning and eventually their potential applications.

As mentioned in the Section 3.3, data is the lifeblood of ML
applications. They have used various urban data sources which
we discuss here in terms of the sources as mentioned in Tables 3
and 6. The objective here is to know the types of data, their sources
and suitability for ML applications as grouped in Tables 2, 4 and 7.
Globally, these tables show that both simple ML and NN-based
methods are used for all types of data. However, we have noticed
that the simple ML methods are much more often used when it
comes to attribute data or data usually extracted from satellite
images which are vector data, most often by deep learning meth-
ods (Guo et al., 2020; Middel et al., 2018; Middel et al., 2019). This
allows ML to propose insightful solutions to the problem of model-
ing the spacial aspects of urban forms for various types of data. On
the other hand, recent methods based on recurrent neural net-
works complement these spatial solutions by proposing models
(RNN (Koschwitz et al., 2018; Lu et al., 2021; Geng et al., 2019),
LSTM (Janarthanan et al., 2021; Fu et al., 2016; Lu et al., 2021),
GRU (Janarthanan et al., 2021; Xayasouk et al., 2020)) for efficiently
modeling temporal data of complex urban forms. This explains the
completeness of ML’s current strength in modeling urban form
problems. From the point of view of the type of ML problem, tem-
poral components are most often a regression while spatial compo-
nent are association, clustering or mostly classification.
Reinforcement learning has experienced a meteoric progress which
has a great impact in urban form applications, especially through
the simulation of new forms from millions of existing old forms
in the world. Knowing that images are often complex to process
and require more skills in ML algorithms implementation espe-
cially for complex problems, learning techniques by simpler trans-
fer is also more solicited (Verma et al., 2019).

From Tables 3 and 6, we can see that urban data come from
satellite image sensors and are therefore often large and complex.
ML and particularly DL methods associated with currently emerg-
ing microprocessor techniques remain among the best tools of the
moment to take advantage of these data. In one case or another,
this profit is the result of the intelligent modeling that ML allows
us. The question then arises: which models for which type of data
and which urban applications? Thus, in addition to the data, in the
previous sections, we have highlighted that the urban modeling
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problem is most often composed of spatial and temporal
components. Whether the data is attribute or vector, from sensors,
surveys or both, the Tables 7, 5 and 7 compare simple, ensemble
and NN-based algorithms respectively by highlighting their appli-
cations to different problems. Thus, through ML-based intelligent
decision support tools, urban planners can already simulate differ-
ent indicators of urban form. However, there is an uneven distribu-
tion of scientific study areas around the world. Very few works
have been conducted in African countries.
5.3. Future research directions

With the advent of UBD, most static models do not fit the evo-
lution of today’s cities. More efficient ML methods allow for better
processing of these data. Thus, intelligent urban planning could
benefit from it both in the design of urban forms and in the reori-
entation of the planning process according to the evolution of the
city. The future direction of the applications of ML methods will
consist very much in the diversification of the offered models, their
adaptation to the scalability of the collected urban data. The types
of urban data and their spatio-temporal characteristics show that
DL methods for example will be used more. However, the algorith-
mic complexity and the explanatory power of the designed models
will have to be addressed. The applications of ML to urban planning
should better address the current challenges that we have high-
lighted in the previous sections. This has already been the case in
several areas such as medical diagnosis, intelligent and automated
marketing, automotive, etc. where research on the applications of
ML models is quite advanced. Developing countries are still very
little studied even though these areas have the highest urbaniza-
tion rates in the world. More than 97% of these cities do not meet
WHO air quality guidelines (Osseiran and Chriscaden, 2016).
Therefore it becomes more than urgent to integrate new elements
to the urban planning process (or at least the future urban forms
should integrate the following new elements) in order to meet
the challenges of the current cities. On the other hand, new emerg-
ing NN architectures such as GAN networks should be much more
widely adopted to simulate the growth of the city and design inno-
vative future urban forms that meet the current requirements
(Shafizadeh-Moghadam et al., 2017). In order to include the pro-
cesses of urban evolution in these models, nothing less than a para-
digm shift of the growing or accelerating urban regions is required.
This statement is valid not only for the field of urban simulation
but also for urban research in general, which more than ever
should be enriched by ML applications to meet modern city
requirements. When the processes of urban evolution and muta-
tion are analyzed and quantified empirically, simulation models
can be built to support the planning of better future urban forms.
6. Conclusion

Intelligent predictive modeling is a major component of current
urban planning to meet the challenges of modern urban forms.
With the advent of UBDs, most static models are not well adapted
to the evolution of today’s cities. More efficient ML methods allow
for a better processing of these data for both in the urban form
usages. It can help for simulation, monitoring and better yet pre-
diction of the best indicators to support decision making in intelli-
gent planning process according to desired future of the city. Thus,
the quite complex ML algorithms, little known in their great
emerging diversity, are at the center of intelligent planning to meet
the challenges in current and future urban planning. Therefore, in
this paper, we have provided a detailed literature review of all the
elements that enable the implementation of ML models for smart
city planning. We started with an overview of urban planning
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and urban form by discussing the elements and indicators of mod-
ern urban form, followed by an overview of the sources of urban
data. Then we reviewed the most popular methods of ML by high-
lighting their operating principles, advantages, disadvantages and
especially their potential applications to the problem of urban
modeling. Finally we discussed the potentials, challenges, and the
future potential applications of ML models to urban planning. This
study introduces a clear and transparent document that can
encourage researchers to advance intelligent modeling of urban
form indicators to support smart planning and thus meet the chal-
lenges of the sustainable, smart, digital, inclusive and resilient city
of tomorrow. In addition to these challenges, there is a very uneven
distribution in terms of study area. Almost all contributions are
concentrated in Western and Asian countries while very few stud-
ies have been conducted in African and Latin American countries.
Future research on the applications of ML methods to urban plan-
ning should strive to address the challenges highlighted in this
study.
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