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Abstract
We propose a framework to find optimal price-based policies to regulate markets char-
acterized by oligopolistic competition and in which consumers make a discrete choice 
among a finite set of alternatives. The framework accommodates general discrete choice 
models available in the literature in order to capture heterogeneous consumer behavior. In 
our work, consumers are utility maximizers and are modeled according to random utility 
theory. Suppliers are modeled as profit maximizers, according to the traditional microeco-
nomic treatment. Market competition is modeled as a non-cooperative game, for which an 
approximate equilibrium solution is sought. Finally, the regulator can affect the behavior of 
all other agents by giving subsidies or imposing taxes to consumers. In transport markets, 
economic instruments might target specific alternatives, to reduce externalities such as 
congestion or emissions, or specific segments of the population, to achieve social welfare 
objectives. In public policy, different agents have different individual or social objectives, 
possibly conflicting, which must be taken into account within a social welfare function. 
We present a mixed integer optimization model to find optimal policies subject to sup-
plier profit maximization and consumer utility maximization constraints. Then, we propose 
a model-based heuristic approach based on the fixed-point iteration algorithm that finds 
an approximate equilibrium solution for the market. Numerical experiments on an inter-
city travel case study show how the regulator can optimize its decisions under different 
scenarios.
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Introduction

Public intervention in transport markets can be motivated by several phenomena. For dec-
ades it has been acknowledged that transportation is a source of negative externalities, two 
well-known cases of which are pollution and congestion. Policies to address these issues 
include road pricing (Button and Verhoef 1998; Anas and Lindsey 2011), taxes on fuel or 
on vehicle purchase (Fullerton and West 2002; Eliasson et al. 2018) and creation of low 
emission zones (De Borger and Proost 2013; Cullinane and Bergqvist 2014; Lurkin et al. 
2021), among others. Currently, much attention is given to the contribution of the transport 
sector to the increase of greenhouse gas emissions which are a leading cause of climate 
change (IPCC 2014). Solutions that include a carbon tax are frequently proposed to reduce 
the negative impact of mobility on the environment. From a social perspective, a public 
entity might want to intervene in a transport market to incentivize mobility under certain 
circumstances. Indeed, improving mobility is often regarded as a means to increase eco-
nomic output and enhance access to job opportunities or other activities (Van Goeverden 
et al. 2006; Guzman and Oviedo 2018). Additionally, many transport markets, alike other 
network industries such as energy and telecommunications, are natural monopolies where 
suppliers benefit from large economies of scale and consumers place greater value on large 
networks than on small ones (Farsi et al. 2007).

Public intervention can take many forms. In this work, we look at regulation. Regula-
tion is defined as an indirect public intervention aimed at orienting actors towards some 
welfare goals (Ponti 2011). In this context, regulation can be seen as a middle way between 
a command-and-control approach and a pure market competition approach. Market regula-
tion options are generally framed within competition and antitrust laws that exist at local, 
national and international level and determine how a regulator can influence the market. 
One common approach to regulation is the use of economic instruments such as subsidies 
and taxes, which are the focus of this contribution.

It is well-known that the acceptability of economic instruments for public policy 
depends on the perceived fairness of the instruments and on their effects across the popula-
tion (Maestre-Andrés et al. 2019). To this end, discrete choice theory constitutes a powerful 
framework to analyze demand at a disaggregate level by accounting for product differentia-
tion and consumer behavioral heterogeneity (Ben-Akiva and Lerman 1985; Anderson et al. 
1992). A large body of discrete choice modeling literature exists which describes com-
plex disaggregate choice behavior. However, these models are generally aggregated before 
being included in models of competitive markets (McFadden and Reid 1975; Koppelman 
1976; Berry et al. 1995). The reason is that only the simplest disaggregate demand models, 
which require several limiting assumptions, satisfy the equilibrium existence conditions. In 
all other general cases, equilibrium existence is not guaranteed, and no analytical approach 
can be used to find one (Morrow and Skerlos 2011; Aksoy-Pierson et al. 2013; Gallego and 
Wang 2014).

Pacheco  Paneque et  al. (2021) present a novel approach to integrate general discrete 
choice models in mixed integer linear optimization by relying on simulation to draw from 
the distribution of the error term of the utility function. This methodology is particularly 
suitable for choice models that do not have a closed-form expression of the choice prob-
abilities, such as mixed logit and probit. Using this simulation-based technique, Bortolo-
miol et al. (2021) extend the analysis to competitive markets by introducing an algorith-
mic framework to find approximate equilibrium solutions of oligopolies in which demand 
is modeled at the disaggregate level. This generic framework accommodates observed 
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heterogeneity (e.g. socio-economic characteristics) and unobserved heterogeneity (e.g. 
parameter distribution) at the demand level, multi-product offer by suppliers and price dif-
ferentiation strategies.

In this paper, we build upon the contributions by Pacheco  Paneque et  al. (2021) and 
Bortolomiol et  al. (2021) and we propose a framework to find optimal policies to regu-
late oligopolistic transport markets where demand is modeled at a disaggregate level using 
discrete choice models. In markets characterized by imperfect competition between sup-
pliers and by heterogeneous consumer demand, regulation affects the strategic decisions 
of suppliers, which in turn are influenced by the preferences of the customers and by the 
decisions of their competitors. Our approach allows to exploit an estimated discrete choice 
model and include it by means of simulation in a model of regulated competition featuring 
heterogeneous demand, multi-product offer by suppliers and price differentiation. Only a 
few assumptions are made about the demand and the specification of the discrete choice 
model, in order to accommodate advanced choice models, such as mixtures of logit, mul-
tivariate extreme value models, multivariate probit models or hybrid choice models. The 
use of models that capture complex disaggregate choice behavior allows the regulator to 
account for product differentiation and consumer behavioral heterogeneity at the individual 
level, and therefore to better tailor its policies based on tradeoffs between different agents.

The remainder of this paper is organized as follows. Section “Literature review” posi-
tions our contribution with respect to the literature on social welfare in presence of dis-
crete choice models of user behavior and of imperfect competition. Section “A framework 
for regulated competition with discrete choice models” presents our discrete choice-based 
optimization model for regulated competition. The model can be integrated in an algorith-
mic framework that finds approximate equilibrium solutions for the market. Section “Case 
study” illustrates numerical experiments performed on a case study representing an inter-
city travel market. Finally, section “Conclusion” summarizes the main findings and pro-
vides directions for future research.

Literature review

Welfare economics is generally understood as the problem of achieving a social maximum 
derived from individual desires by comparing and ranking different social states (Arrow 
1951). If we postulate that interpersonal comparisons of utilities are meaningful, then 
value judgements are required to define a relation between utilities of different individuals 
and to aggregate them into a mathematical formula measuring social welfare. The neces-
sity and the appropriateness of comparing gains of certain individuals with losses of other 
individuals when evaluating economic policies are central in the seminal works by Pareto 
(1906), Bergson (1938) and Samuelson (1948). Later studies look at the interdependen-
cies between an individual’s social welfare function, representing ethical preferences, and 
their own utility function, representing personal tastes (Harsanyi 1955; Sen 1977), and 
formalize interpersonal comparability through social welfare functionals (d’Aspremont 
and Gevers 2002; Sen 2017). Social welfare functionals are flexible enough to incorpo-
rate many approaches to public policy, allowing not only descriptive but also normative 
analyses. Indeed, the study of social welfare has expanded to include subjective well-being, 
distributional preferences and intergenerational equity (Fleurbaey 2009).

Welfare economics uses social welfare functions to aggregate individual consumer 
behavior, which is generally modeled as the choice of a bundle of continuous goods subject 
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to a budget constraint. Complementing the continuous case, the theory of discrete choice 
modeling considers behavioral situations in which an agent makes a choice from a finite set 
of discrete alternatives (Ben-Akiva and Lerman 1985). Discrete choice models account for 
consumer behavioral heterogeneity at the disaggregate level. As such, these models allow 
for complex and precise representations of individual behavior by means of utility func-
tions that capture tastes and socio-economic characteristics.

Small and Rosen (1981) discuss how conventional methods of applied welfare econom-
ics can be generalized to handle random utility models of discrete choices. The authors 
recognize that welfare judgments are of paramount interest when analyzing taxes and sub-
sidies in some markets for which discrete choice models are used. They conclude that wel-
fare effects can be derived directly from micro data using the utility functions, avoiding 
the explicit use of aggregate demand functions, which are not normally obtained in closed 
form. In particular, consumer surplus can be expressed in different forms depending on the 
random term distributional assumptions. One of these forms is the log sum metric, utilized 
in the case of multivariate extreme value distribution. Batley and Ibáñez (2013) analyze the 
assumptions underlying the approach by Small and Rosen (1981). In particular, they show 
that the consumer surplus measure requires income effects of price and income changes to 
be equal to zero, thus excluding the possibility to have heterogeneous marginal utilities of 
income, which causes path dependence. Notwithstanding this limitation, the literature on 
welfare measurements using discrete choice models has largely followed the Marshallian 
framework (Hess et al. 2018). Alternative approaches that account for non-constant mar-
ginal utility of income rely on the Hicksian compensating variation (Hau 1985; Jara-Díaz 
and Videla 1990; McFadden 1995; Morey et  al. 2003; Batley and Dekker 2019). How-
ever, both analytical and simulation-based methods come with a substantial computational 
burden, and this is the main reason for their limited use in practical applications to date. 
Finally, another method to account for different marginal utilities of income is proposed by 
Hau (1986), who modifies the approach by Small and Rosen (1981) to incorporate explicit 
value judgements by assigning distributional weights to segments of the population. The 
methodology is then used to carry out a transport infrastructure cost-benefit analysis where 
the population is stratified by income.

In prescriptive studies, we encounter some works whose goal is to design optimal fares, 
taxes or subsidies using a model of discrete choice. De Borger (2000) presents a model to 
determine a welfare-optimal two-part tariff under logit model of discrete choice, subject 
to budgetary constraints and distributional preferences. The fixed and the variable compo-
nents of the tariff mimic the choices of ownership of a vehicle and quantity of consumption 
in terms of traveled kilometers. The expected value of the maximum utility for the logit 
model is obtained using the log sum welfare measure, interpreted as consumer surplus up 
to a constant, as in Small and Rosen (1981). It is shown that this methodology can be 
generalized to other classes of discrete choice models, for which there is no closed-form 
solution for the objective function, but no information is provided about computational 
tractability. A similar approach is followed in De Borger and Mayeres (2007), where nested 
constant elasticity of substitution utility functions are used. Borndörfer et al. (2012) pro-
pose a non-linear formulation to optimize fares on a public transport network. The demand 
functions take into account spatial heterogeneity in terms of origin-destination pairs and 
are based on a logit model to compromise between model accuracy and computability. 
Various objective functions are proposed to allow for the maximization of revenue, profit, 
demand, user benefit and social welfare.

The assumption that consumers are the only agents who react to welfare-maximizing 
policies is limiting when studying a regulated oligopolistic market where suppliers have 
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market power and have objectives that conflict with those of the regulator. Indeed, in 
the latter case the outcome is determined jointly by all decision-makers, and the strate-
gic behavior of firms in oligopolies is usually modeled using game theory (Fudenberg and 
Tirole 1991; Osborne and Rubinstein 1994). In a non-cooperative game, a Nash equilib-
rium solution is defined as a state in which no player can improve its payoff by unilater-
ally changing their decision (Nash 1951). Mathematically, an equilibrium is guaranteed to 
exist only if a number of conditions related to continuity, differentiability and convexity 
are satisfied for the demand, cost and profit functions (Murphy et al. 1982). In particular, 
these requirements pose limitations on the demand function. For this reason, the works 
that include discrete choice models in models of competitive markets and welfare analy-
sis rely on simplifying assumptions that pose limitations on the model specification. Two 
examples are provided. Anderson et al. (2001) propose a welfare analysis of the efficiency 
of ad valorem and unit taxes in an imperfectly competitive market where each firm pro-
duces a homogeneous good. Within their analysis of Bertrand competition, the authors use 
a logit model to capture unobserved heterogeneity across the population and suggest that 
it is possible to extend the results to the case of differentiated products and to multiproduct 
firms. Ivaldi and Vibes (2008) analyze intermodal and intramodal price competition in a 
single origin-destination intercity passenger transport market where each firm controls one 
product, products are differentiated and unobserved demand heterogeneity is captured by 
a nested logit model. In this context, a unique Nash equilibrium solution exists and can be 
found by solving the first-order conditions of the firms’ profit maximization problem. The 
welfare effects of a kerosene tax are also evaluated by means of a sensitivity analysis.

These limitations on the demand function pose a severe restriction on the discrete 
choice model specification, and therefore on the possibility to conduct a truly disaggregate 
analysis and to develop disaggregate policies. We take a complementary stance and present 
a methodology that is applicable to complex discrete choice models at the expense of pure 
equilibrium existence conditions. With our work, we leverage on simulation to propose a 
comprehensive model that integrates general discrete choice models into a game-theoretic 
model of regulated competition, where the regulator aims to optimize a cardinal social wel-
fare function which admits interpersonal comparisons of utility. In this context, the added 
value of our framework is twofold. First, it allows to generate a more precise representa-
tion of demand by modeling both observed and unobserved heterogeneity at a disaggregate 
level. Secondly, it allows to develop policies that leverage on disaggregate demand models 
to target specific segments of the population.

A framework for regulated competition with discrete choice models

We consider a regulated competitive market where a number of different products are 
offered to a population by two or more suppliers that have market power.

On the demand side, let N represent the set of heterogeneous consumers (or groups 
of consumers), who are assumed to be utility maximizers, and let I indicate the dis-
crete and finite set of alternatives available in the market. Utility functions Uin are 
defined for each consumer or group of homogeneous consumers n ∈ N  and alternative 
i ∈ I . According to random utility theory (Manski 1977), Uin can be decomposed into a 
systematic component Vin which includes all that is observed by the analyst, accounting 
for the socio-economic characteristics and tastes of the individual and for the attributes 
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of the alternative, and a random term �in which captures the uncertainties caused by 
unobserved attributes and unobserved taste variations.

The deterministic part V can be generically expressed as

where pin is the price paid by consumer n when purchasing alternative i, �pin is a pre-esti-
mated parameter of the discrete choice model and qin is the scalar product of the vectors 
of all the exogenous variables of the choice model and the corresponding pre-estimated 
parameters.

On the supply side, let K represent the set of suppliers and let Ik ⊂ I indicate the 
subset of alternatives controlled by each supplier k ∈ K . We impose that ∪k∈KIk ⊂ I , in 
order to allow customers to leave the market without purchasing. We assume that each 
supplier solves a choice-based optimization problem, modeled in the form of a mixed 
integer optimization problem, aimed at finding the strategy that maximizes its profits. 
We define as Sk the set of strategies that can be selected by supplier k. A strategy con-
sists in a vector (or bundle) pS of decisions about all prices pS

in
 , potentially differenti-

ated for each (class of) consumer n ∈ N  and alternative i ∈ Ik.
Furthermore, we assume the existence of a regulator, which is an entity that can 

use economic instruments, that is, subsidies and taxes, to influence the behavior of the 
other agents, thus modifying the equilibrium outcome of the market. In a general case, 
we assume that the regulator has a budget B which is available to finance some poli-
cies. The policies set by the regulator affect the price pin paid by consumer (group) n 
for alternative i, which in return affects the utilities Uin of the consumers.

By combining the decisions of the regulator and of the suppliers, we obtain the 
prices pin paid by the consumers, which can be decomposed as

where pS
in

 is the revenue made by the supplier in case of purchase and tin is the tax or the 
subsidy set by the regulator. If tin > 0 , then a tax is imposed on the purchase of alternative i 
by customer n. If tin < 0 , then a subsidy is offered for the same purchase.

Then, we can write an optimization problem from the point of view of the regulator, 
whose goal is to maximize a social welfare function (SWF) at equilibrium. The deci-
sion variables of the regulator problem are the continuous tin variables, potentially dif-
ferentiated for each (class of) consumer n ∈ N  and alternative i ∈ Ik . For modeling pur-
poses, we define bounds on the tax and subsidy levels, expressed by the non-negative 
parameters Mt

in
 and Ms

in
 , such that −Ms

in
≤ tin ≤ Mt

in
.

Let us now look in detail at the different components of the modeling framework.

Constraints

Three sets of conditions need to be enforced to model the common behavioral assump-
tions about consumers and suppliers: (i) utility maximization conditions; (ii) profit 
maximization conditions; (iii) equilibrium conditions. On top of them, other problem-
specific constraints can be defined to model specific market features.

(1)Vin = �pinpin + qin,

(2)pin = pS
in
+ tin,
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Utility maximization

Concerning utility maximization, we impose a set of linear constraints by applying the 
simulation-based linearization approach proposed by Pacheco Paneque et al. (2021). A 
set R of independent draws are extracted from the known error term distribution of the 
discrete choice model for each n ∈ N and i ∈ I , corresponding to different behavioral 
scenarios. For each scenario r ∈ R , the drawn error term parameter �inr is included in the 
utility function as follows:

and consumers deterministically choose the alternative with the highest utility. This means 
that the utility of the chosen alternative is equal to

Then, we can express the deterministic choice of consumer n ∈ N in a specific scenario 
r ∈ R using the binary variable Pinr as follows:

For each consumer n and scenario r, expressions (3–5) can be reformulated as a set of lin-
ear constraints in the following manner:

Constraints (6) define the utility functions. Constraints (7–9) state that the consumer 
chooses the alternative with the highest utility. The parameter MU must be sufficiently big 
to inactivate constraints (8) for all alternatives that are not chosen. A valid value of MU is 
the difference between the highest and the lowest utility across all alternatives, which itself 
depends on the bounds on prices, taxes and subsidies. Constraints (10) are the domain 
constraints.

Over a sufficiently large number of draws, we obtain the choice probabilities

and the expected maximum utilities

(3)Uinr = Vin + �inr,

(4)Umax
nr

= max
j∈I

Ujnr.

(5)Pinr =

{

1 if Uinr = Umax
nr

,

0 otherwise.

(6)Uinr = �pin (p
S
in
+ tin) + qin + �inr ∀i ∈ I,

(7)Uinr ≤ Umax
nr

∀i ∈ I,

(8)Umax
nr

≤ Uinr +MU(1 − Pinr) ∀i ∈ I,

(9)
∑

i∈I

Pinr = 1 ∀i ∈ I,

(10)Pinr ∈ {0, 1} ∀i ∈ I.

(11)Pin =

∑

r∈R Pinr

∣ R ∣



	 Transportation

1 3

Numerical experiments by Pacheco Paneque et al. (2021) show that good approximations 
of the choice probabilities and of the expected maximum utility can be obtained with a 
fairly low number of draws.

Profit maximization

The profit maximization problem of each supplier can be expressed through the following 
mixed integer linear optimization model:

In (13), pS
in

 is the revenue obtained from the sale of product i to consumer n [see Eq. (2)], 
Pin is the probability that consumer group n chooses alternative i ∈ Ik [see Eq. (11)], and 
�n is the size of group n, i.e. the number of individuals with homogeneous socioeconomic 
characteristics. The supplier optimization problem constitutes lower-level optimization 
constraints for the regulator optimization problem.

Equilibrium conditions

Consistently with Bortolomiol et  al. (2021), we use �-equilibrium conditions to identify 
stationary states of the system in which no competitor can increase its profit to more than 
1 + � times its current payoff by unilaterally changing its strategy. Formally, let us con-
sider a market state S = (pS, t) , which is defined by the strategies pS

k
 of all suppliers k ∈ K 

and the vector of all taxes (or subsidies) tin set by the regulator. Let us define as �k(S) the 
expected profit of supplier k in state S and as �max

k
(S−k) the expected profit obtained by sup-

plier k when best responding to state S−k , defined by the strategies of the regulator and all 
suppliers except k. Then, S is an �-equilibrium if

Problem‑specific constraints

Other problem-specific constraints can be integrated in a mixed integer linear formulation. For 
instance, many competition laws impose that the taxation or subsidization of products sold by 
competing suppliers must be fair, meaning that no competitive advantage must arise due to the 
intervention of the government in the market. On the supplier side, constraints can be included 
to ensure that demand for an alternative does not exceed capacity. This can be achieved by 
means of exogenous priority rules that simulate the arrival process of customers, as shown 
in Binder et al. (2017). With this technique, it is also possible to model price differentiation 
strategies based on the time of booking. On the consumer side, price bounds can be set to 
define limits for price discrimination across different population groups. All these sets of con-
straints reduce the feasible set of solutions in the optimization problems of the regulator and of 

(12)EMUn =

∑

r∈R U
max
nr

∣ R ∣
.

(13)max
pS
k

�k =
∑

i∈Ik

∑

n∈N

�nPinp
S
in
,

(14)s.t. constraints (6–10).

(15)�max
k

(S−k) ≤ (1 + �)�k(S) ∀k ∈ K.
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the suppliers. Their effect in terms of computational time and resulting equilibrium is gener-
ally problem-dependent. In the case study presented in section “Case study”, we show how 
our modeling framework can integrate some of these constraints. Other constraints, includ-
ing capacity constraints and the related congestion effects, come with additional integrality 
constraints or non-linearities, which require the design of ad-hoc algorithms to be tackled 
(Pacheco Paneque 2020).

Objective function

The objective of the market regulator is to maximize a cardinal social welfare function (SWF). 
We assume that this function takes into account the following components: (i) expected maxi-
mum utilities of the consumers; (ii) expected profits of the suppliers; (iii) market externalities; 
(iv) cost of policy implementation. To allow for comparability of different terms, we choose to 
monetize all values that are measured in non-monetary terms.

Expected utilities As shown in (12), expected maximum utilities can be derived directly 
from the discrete choice-based optimization model. The utility functions must be converted 
from preference space into the equivalent formulation in willingness-to-pay space, as dis-
cussed by Train and Weeks (2005). We consider linear income effects, thus adhering to the 
assumption outlined by Batley and Ibáñez (2013) under which the framework by Small and 
Rosen (1981) is consistent with economic theory. This means that consumer surplus can be 
obtained by dividing the expected maximum utility by a cost coefficient �p , which corresponds 
to the constant marginal utility of income.

This component of the SWF can then be written as follows:

Expected profits The sum of the expected profits of the suppliers can also be obtained 
directly from the discrete choice-based optimization model. The expected profits of sup-
plier k are defined in Eq. (13), so the sum of the expected profits is simply

Externalities In transportation, externalities can be generally expressed as a function of 
demand, which is itself derived from the choice probabilities, as follows:

In the case of environmental externalities, we may approximate CO2 and other emissions to 
a linear function of demand:

where di is the demand for alternative i and ci is a parameter representing the monetized 
cost of emissions per person choosing alternative i, which can be expressed as

(16)SWFU =
∑

n∈N

�n
EMUn

�p
.

(17)SWF� =
∑

k∈K

�k.

(18)di =
∑

n∈N

�nPin.

(19)SWFE = −
∑

i∈I

cidi,

(20)ci = 𝓁i ⋅ ei ⋅ SCC,
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where �i is the distance traveled if alternative i is chosen [km], ei is the CO2 emissions pro-
duced per unit of distance when traveling with alternative i [ton/km] and SCC is the social 
cost per unit of carbon emission [monetary unit/ton].

In the case of negative externalities caused by road congestion, it is well-known that a non-
linear relation exists between traffic volume and total travel time, which also affects the utility 
of the users. This requires a fixed-point iteration approach to be used in order to reach lower-
level user equilibrium.

Public budget The monetary impact of the policy for the regulator is given by the differ-
ence between the taxes that are collected and the subsidies that are handed out from and to 
consumers, and is therefore conditional on their choices. The budget can be expressed as the 
sum of the products of the continuous tax variables tin and the binary choice variables Pinr:

Expressions (16), (17), (19) and (21) capture different aspects of welfare which are relevant 
in policy-making. They can be integrated in a unique objective function, or alternatively 
they can be treated as different objectives in a multi-objective optimization problem. In the 
rest of this work, we follow the former approach.

The full model

By combining the constraints presented in section “Constraints” and the objective function 
presented in section “Objective function”, we obtain the following mixed integer optimization 
model that maximizes the SWF as a function of the taxation and subsidization chosen by the 
regulator:

(21)SWFB =
�

i∈I

�

n∈N

�n

∑

r∈R Pinr

∣ R ∣
tin.

(22)max
t

SWF(t, pS)

(23)s.t. −Ms
in
≤ tin ≤ Mt

in
∀i ∈ I,∀n ∈ N,

(24)t�
in
= tin +Ms

in
∀i ∈ I,∀n ∈ N,

(25)0 ≤ � �
inr

≤ (Ms
in
+Mt

in
)Pinr ∀i ∈ I,∀n ∈ N,∀r ∈ R,

(26)t�
in
− (Ms

in
+Mt

in
)(1 − Pinr) ≤ � �

inr
≤ t�

in
∀i ∈ I,∀n ∈ N,∀r ∈ R,

(27)−Ms
in
≤ �inr ≤ Mt

in
Pinr ∀i ∈ I,∀n ∈ N,∀r ∈ R,

(28)� �
inr

−Ms
in
− (Ms

in
+Mt

in
)(1 − Pinr) ≤ �inr ≤ � �

inr
−Ms

in
∀i ∈ I,∀n ∈ N,∀r ∈ R,
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The objective function (22) maximizes the social welfare function defined by the regulator. 
Constraints (23) impose that the subsidies and taxes set by the regulator respect the given 
bounds. Constraints (24) define the non-negative variables t′

in
 by means of a transformation. 

Notice that the parameters Ms
in

 and Mt
in

 , which are upper bounds representing the maximum 
possible values for the subsidies and taxes, are necessary to linearize the product of the 
binary choice variable Pinr and the continuous variable tin , which is done in constraints 
(25–28). More specifically, constraints (25–26) say that each auxiliary variable � ′

inr
 is equal 

to t′
in

 if Pinr is equal to 1 and is equal to 0 if Pinr is equal to 0, while constraints (27–28) say 
that �inr is equal to the product Pinr ⋅ tin . Constraint (29) ensures that the budget of the regu-
lator is respected. The expressions (30) represent the objective functions of the lower-level 
problem, enforcing the profit maximization condition on all suppliers. Finally, constraints 
(31–35) are the utility maximization constraints (6–10).

Model‑based heuristic framework

To solve (22–35), we propose a model-based heuristic approach based on the fixed-point 
iteration algorithm which finds optimal policies subject to approximate equilibrium condi-
tions. More specifically, two mixed integer linear optimization models are derived from 
(22–35): the supplier’s profit maximization model (30–35), where the regulator’s decisions 
as well as the prices of all other suppliers are fixed, and a modified regulator’s welfare 
maximization model (22–29)  +  (31–35) where all supply prices are fixed and the opti-
mization constraints (30) are not enforced. Algorithm  1 presents the pseudocode of the 
proposed solution.

(29)
∑

i∈I

∑

n∈N

∑

r∈R

�inr ≤ B

(30)�k = max
pS
k

∑

i∈Ik

∑

n∈N

�nPinp
s
in

∀k ∈ K,

(31)s.t. Uinr = �pin (p
S
in
+ tin) + qin + �inr ∀i ∈ I,∀n ∈ N,∀r ∈ R,

(32)Uinr ≤ EMUnr ∀i ∈ I,∀n ∈ N,∀r ∈ R,

(33)EMUnr ≤ Uinr +MU(1 − Pinr) ∀i ∈ I,∀n ∈ N,∀r ∈ R,

(34)
∑

i∈I

Pinr = 1 ∀i ∈ I,∀n ∈ N,∀r ∈ R,

(35)Pinr ∈ {0, 1} ∀i ∈ I,∀n ∈ N,∀r ∈ R.
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Starting from an initial state S = (pS, t) , the fixed-point iteration algorithm works as fol-
lows. First, the regulator solves model (22–29)  +  (31–35) to find t∗ that maximizes the 
SWF given pS . A new state S∗ = (pS, t∗) is obtained, for which the expected profits �k(S∗) 
are computed. Then, each supplier solves model (30–35) given t∗ and pS∗

−k
 to obtain the 

best-response expected profits �BR
k
(S∗) . With all best-response profits, we can compute the 

value �S∗ as follows:

This value gives information about the stability of an approximate equilibrium solution, 
that is, the higher �S∗ is, the less stable the solution is, since there is a greater incentive for 
at least one supplier to move away from it. If �S∗ is lower than the current best � , this means 
that S∗ is the most stable solution found so far. Finally, state S is updated with the best-
response strategies of all suppliers before restarting with a new iteration. When implement-
ing the algorithm, checks can be made to track visited states and diversify the search of the 
solution space within the algorithm. The algorithm can be terminated based on different 
stopping criteria, such as finding an �-equilibrium solution with � lower than a predefined 
target or reaching a maximum number of iterations.

Notice that, when using demand functions based on general disaggregate choice mod-
els, which are highly non-linear and non-convex, there is no pure equilibrium existence 
condition for the resulting problem, and no analytical method can be exploited to find a 
pure equilibrium solution. More generally, the existence of a �-equilibrium solution cannot 
be proved for any given �.

Case study

In this section, we illustrate the model-based algorithmic framework presented in sec-
tion “Model-based heuristic framework” on a case study for which a non-trivial discrete 
choice model of demand is taken from the literature (Cascetta and Coppola 2012).

�S
∗

= min{� ∣ �max
k

(S∗
−k
) ≤ (1 + �)�k(S

∗) ∀k ∈ K}.
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Data

We consider a competitive intercity travel market connecting two cities in a typical 
morning period. The travel distance between the two cities is assumed to be 1200 km 
for all travel modes. The market is served by an airline, a high-speed rail company and 
an intercity train company operating under public service obligations. Additionally, we 
include the possibility that customers use a private means of transport, which is mod-
eled as an opt-out alternative. We endogenously model the pricing strategies of the air-
line and of the high-speed rail operator, which must decide on the prices at which to sell 
tickets for each scheduled departure time. The price of the intercity train and of private 
transport are assumed to be fixed and exogenously given. We also endogenously model 
the policies of the regulator, which decides on taxes or subsidies that lead to a welfare-
maximizing outcome.

Table 1 shows the supply data used for the tests. Travelers can choose among six dif-
ferent alternative services to go from origin to destination within a given time period. 
The car alternative is modeled as exogenous option, i.e. all its attributes are assumed 
to be parameters of the problem, while train and air alternatives are modeled endog-
enously, that is, the two competing operators, each controlling two alternatives, and the 
regulator strategically determine prices and taxes or subsidies in response to the condi-
tions of the market. The attributes that are included in the customer utility functions for 
the different alternatives are cost, in-vehicle travel time, waiting time, access time to 
and egress time from terminals, early or late arrival at destination with respect to the 
desired arrival time of the traveler.

Furthermore, we generate a synthetic population of 1000 travelers for the given OD 
pair. Individuals are characterized by a trip purpose (business or other), an income level 
(high or low), and a specific origin location (urban or rural) which leads to different 
access times to terminals. For the sake of the experiments, we assume that business 
travelers have a desired arrival time at destination between 9:00 and 12:00, which fol-
lows a non-uniform distribution: 50% of them desire to arrive between 9:00 and 10:00 
(peak period), the rest between 10:00 and 12:00. Furthermore, we assume that all non-
business travelers are indifferent to arrival time. The following demand patterns are to 
be mentioned: there is a higher proportion of high income and business travelers among 
urban travelers than among rural travelers; a part of business travelers are reimbursed 

Table 1   Attributes of all 
scheduled services for the 
analyzed problem instance

Alternative 0 1 2 3 4 5

Mode Car IC Air Air HSR HSR
Endogenous No No Yes Yes Yes Yes
Operator – – 2 2 1 1
Dep – 23:00 7:30 9:30 4:30 8:30
Arr – 9:00 9:00 11:00 10:30 14:30
TT 12 h 10 h 1 h 30’ 1 h 30’ 6 h 6 h
WT – – 1h 1h – –
Access – 0–60′ 30–60′ 30–60′ 0–60′ 0–60′
Egress – 0–30′ 30-60′ 30–60′ 0–30′ 0–30′
Price 120 € 60 € p

2
p
3

p
4

p
5

Tax/subsidy – tTRAIN tAIR tAIR tTRAIN tTRAIN
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and are therefore less price sensitive. We categorize the synthetic population in 12 
groups of consumers, each having homogeneous socioeconomic characteristics. Table 2 
represents the contingency table of the synthetic population.

The discrete choice model is derived from Cascetta and Coppola (2012), where a nested 
logit model is estimated from a RP/SP survey dataset collected in Italy at the national level. 
Table 3 illustrates the parameters used in our experiments. Two separate sets of parameters 
are considered for business trips and other trip purposes. Additionally, the cost parame-
ters are mode-specific and interact with income, producing different values of travel time 
savings, which are reported in Table  4. Two nests �HSR and �Air capture the correlation 
between the scheduled services of the high-speed train operator and of the airline. Values 
without asterisk are taken as such from Cascetta and Coppola (2012). The �costcar parameter 
for reimbursed business customers is derived by assuming that the ratio between the values 
of travel time of reimbursed and non-reimbursed business travelers by car is the same as by 
train. We have introduced an additional distinction between high income and low income 
travelers. This is done in order to test scenarios where public intervention is targeted to 
specific segments of the population. We have arbitrarily assumed that �cost parameters of 
non-reimbursed business travelers and of other travelers from Cascetta and Coppola (2012) 
apply to our low income segment of the population. �cost parameters for high income cus-
tomers are derived by assuming that the ratio between the values of travel time of high 
income and low income customers is the same as in the SAMPERS long-distance model 
developed in Sweden and reported in Börjesson (2014).

We remark that the dataset used for the experiments and the derived results are hypo-
thetical and do not represent real scenarios that are related to choices made by existing 
high-speed rail operators.

Numerical experiments

The framework described in section “A framework for regulated competition with discrete 
choice models” allows to model various policies and answer questions about the strate-
gic behavior of all agents at equilibrium. Common regulatory policies include price-based 
instruments such as taxes and subsidies, but also other instruments such as emission 

Table 2   Contingency table for the synthetic population according to socio-economic characteristics

Group (n) Size ( �
n
) Trip purpose Reimbursement Income Origin

1 350 Other – Low Rural
2 332 Other – Low Urban
3 37 Other – High Rural
4 39 Other – High Urban
5 9 Business No Low Rural
6 24 Business Yes Low Rural
7 16 Business No Low Urban
8 68 Business Yes Low Urban
9 5 Business No High Rural
10 30 Business Yes High Rural
11 21 Business No High Urban
12 69 Business Yes High Urban
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allowances. With respect to demand, we can look at the effect of taxes and subsidies on 
the choices and the utilities for the population as a whole and for specific segments. With 
respect to supply, we can look at the changes in the pricing strategies and at the effect of 
regulation on profits. With respect to regulation and welfare, we can look at a social wel-
fare function that combine consumers’ utilities, suppliers’ profits, public budget and envi-
ronmental effects to understand tradeoffs between these different objectives.

Base scenario Initially, we assume that the regulator sets uniform taxes or subsidies 
across consumers. Likewise, the suppliers set uniform prices to all consumers, that is, there 
is no price differentiation. Two components of the SWF, which are the sum of the expected 
profits SWF� and the public expenditure SWFB , are expressed in the monetary terms. The 
other two components, which are the sum of the expected utilities SWFU and the externali-
ties SWFE , must be converted into monetary units. To convert the expected utilities, we set 
the constant marginal utility of income to be the weighted average of the �cost parameters 
across transport modes (see Table 3), with weights that reflect the market shares used in 
the phase of calibration. The resulting value is −0.01832 . To monetize externalities, we 
use the social cost of carbon (SCC), defined as the monetary value of the damage caused 
by emitting one more unit of carbon at some point of time (Nordhaus 1994; Pearce 2003; 
Stern et al. 2006). The SCC is typically derived from integrated assessment models which 
require an assumption on the future path of CO2 concentration in the atmosphere. Although 
the range of SCC estimates available in the literature is quite broad, this indicator has been 
central in shaping climate policy and is extensively used within cost-benefit analyses. Here, 
we test values ranging between 100 and 300 € per ton of carbon.

Additionally, we define the upper bounds Ms
in

 and Mt
in

 to be equal to 30 € for all alterna-
tives and customers, and we do not impose a public budget constraint.

Table 5 presents the approximate equilibrium solutions for five values of the SCC. These 
solutions are obtained by running Algorithm 1 with two possible stopping criteria: either 
a solution is found where no supplier can improve its profits by more than 1% by best-
responding, i.e. 𝜀 < 0.01 , or a maximum number of iterations (200 in our experiments) is 
reached. In the latter case, we report the solution with the lowest value of � . Bortolomiol 
et al. (2021) provide a broader analysis of the approximate equilibrium solutions found by 
using a simulation-based framework. To obtain the choice probabilities through simulation, 
we use 200 draws from the error term distribution for each alternative i and customer n.

By looking at the strategic policy decisions of the regulator, we observe that air taxes 
and train subsidies are higher for higher values of the SCC parameter. For SCC ≥ 250 €/
ton, the regulator sets the maximum level of intervention. This result reflects the relative 
importance of the cost of externalities with respect to all other objectives. On the suppliers’ 
side, we see that, for moderate public intervention, the fares set by the airline operator are 
higher than the fares offered by the high-speed rail operator. This choice is motivated by 
the travelers’ willingness to pay for large travel time savings. When air taxes and train sub-
sidies increase, e.g. in the scenario with SCC = 200 €/ton, the airline operator decreases 
its prices in order not to lose too many customers (i.e. high market share, lower markup). 
Contrarily, the optimal prices of the high-speed rail operator exhibit non-monotonic varia-
tions, for which different possible explanations coexist. In fact, it is important to notice that 
profit functions are generally multimodal in presence of disaggregate demand. On the one 
hand, similar profits can be obtained with different pricing strategies and market shares. 
On the other hand, when a supplier manages two or more alternatives, there is a form of 
internal competition between these alternatives, which is particularly relevant when the 
desired arrival time of the demand does not play a dominant role in the utility function, 
that is, they are nearly perfect substitutes. Notice that this type of analysis is very much 



Transportation	

1 3

Ta
bl

e 
5  

A
pp

ro
xi

m
at

e 
eq

ui
lib

riu
m

 so
lu

tio
ns

 fo
r a

n 
ob

je
ct

iv
e 

fu
nc

tio
n 

th
at

 m
ax

im
iz

es
 th

e 
so

ci
al

 w
el

fa
re

 fu
nc

tio
n 

w
ith

 v
al

ue
s o

f t
he

 S
C

C
 b

et
w

ee
n 

10
0 

an
d 

30
0 

€/
to

n

SC
C

�
tC
O

2
A

ir 
pr

ic
es

H
SR

 p
ric

es
Re

gu
la

tio
n

O
bj

ec
tiv

e 
fu

nc
tio

n

r
2

r
3

r
4

r
5

t T
R
A
IN

t A
IR

S
W
F
U

S
W
F
�

S
W
F
E

S
W
F
B

10
0

0.
01

4
14

7.
12

10
1.

08
10

9.
26

82
.4

2
83

.3
5

−
14

.6
1

2.
26

0
90

,5
98

−
14

,7
12

−
69

07
15

0
0.

01
0

13
2.

26
93

.0
8

93
.2

9
88

.6
2

84
.5

1
−

29
.6

8
12

.7
3

80
29

86
,7

23
−

19
,8

38
−

13
,2

07
20

0
0.

00
8

12
5.

43
81

.2
8

79
.9

2
86

.9
7

76
.0

4
−

29
.9

0
26

.8
0

10
,5

16
79

,9
84

−
25

,0
86

−
95

88
25

0
0.

01
1

12
3.

62
80

.5
4

79
.5

3
86

.4
7

79
.4

4
−

30
.0

0
30

.0
0

90
16

80
,3

15
−

30
,9

06
−

89
55

30
0

0.
01

0
11

8.
39

79
.9

6
90

.3
4

86
.2

0
76

.4
9

−
30

.0
0

30
.0

0
88

04
80

,8
13

−
35

,5
17

−
10

,1
67

Ta
bl

e 
6  

S
eg

m
en

te
d 

m
on

et
iz

ed
 u

til
iti

es
 a

nd
 m

ar
ke

t s
ha

re
s f

or
 h

ig
h 

an
d 

lo
w

 in
co

m
e 

cu
sto

m
er

s w
ith

 v
al

ue
s o

f t
he

 S
C

C
 b

et
w

ee
n 

10
0 

an
d 

30
0 

€/
to

n

SC
C

M
on

et
iz

ed
 u

til
iti

es
M

ar
ke

t s
ha

re
s h

ig
h 

in
co

m
e

M
ar

ke
t s

ha
re

s l
ow

 in
co

m
e

S
W
F
H U

S
W
F
L U

C
ar

IC
A

ir1
A

ir2
H

SR
1

H
SR

2
C

ar
IC

A
ir1

A
ir2

H
SR

1
H

SR
2

10
0

0
0

0.
05

3
0.

04
2

0.
32

9
0.

15
9

0.
34

5
0.

07
3

0.
02

4
0.

12
5

0.
24

5
0.

16
8

0.
26

1
0.

17
7

15
0

71
7

73
12

0.
04

6
0.

04
6

0.
30

1
0.

16
2

0.
36

6
0.

07
9

0.
01

5
0.

14
1

0.
19

8
0.

15
3

0.
27

5
0.

21
8

20
0

83
2

96
84

0.
04

6
0.

04
5

0.
29

7
0.

15
7

0.
36

5
0.

09
0

0.
01

5
0.

13
2

0.
17

6
0.

14
5

0.
27

7
0.

25
5

25
0

68
4

83
32

0.
04

7
0.

04
5

0.
29

0
0.

15
4

0.
37

8
0.

08
6

0.
01

5
0.

14
1

0.
17

4
0.

14
0

0.
28

4
0.

24
7

30
0

56
9

82
35

0.
04

6
0.

04
4

0.
29

8
0.

13
5

0.
38

4
0.

09
3

0.
01

6
0.

13
9

0.
17

4
0.

11
7

0.
28

9
0.

26
6



	 Transportation

1 3

instance-dependent and is influenced by factors such as similarities across alternatives, 
degree of heterogeneity across the population and size of the population groups, among 
others.

By analyzing the different components of the SWF, we observe that, when we increase 
the SCC, the increased relative weight of the emissions component causes a stronger public 
intervention. The negative sign of the SWFB component indicates that the money distrib-
uted to subsidize rail alternatives is larger than the money collected from taxes on air tick-
ets. We infer that this result is partially motivated by the fact that the utility specification of 
the used choice model includes mode-specific �cost parameters. In this particular case, this 
means that a unitary price change on the train alternatives has a higher effect on the utility 
than a unitary price change on the air alternatives. In general, the appropriateness of using 
mode-specific cost parameters and the selection of a valid value for the marginal utility 
of income within our modeling framework are open questions for which further research 
should be conducted to derive more sound conclusions.

Table 6 shows the impact of regulation on utilities and market shares at a disaggregate 
level, according to the defined income-segments. The comparison between the scenarios 
with SCC = 100 €/ton and SCC = 300 €/ton shows that heavier public intervention causes 
the highest air-to-rail modal shift to occur among low income people, who are more price 
sensitive. Furthermore, the prevalence of subsidies over taxes in these scenarios has a posi-
tive effect on the segmented SWFU of both high income and low income travelers. The 
values of SWFU for SCC = 100 €/ton are set to 0 and used as a benchmark. Notice that all 
these analyses neglect all exogenous information such as the source of the public budget.

Marginal cost of public funds Next, we test a variant of the modeling framework in 
which a marginal cost of public funds (MCF) is defined to penalize deviations from the 
deregulated scenario. In this case, the MCF is applied to both handed-out subsidies and 
collected taxes and is proportional to the level of public intervention. The value is arbitrar-
ily set to 0.1. Table 7 presents the aggregate results of the new scenario. A pairwise com-
parison of the results of Tables 5 and 7 shows that the consequence of including the MCF 
is a lower intervention for SCC ≤ 200  €/ton. As a result, the airline can set higher fares 
while preserving its competitive advantage over the slower alternatives.

Disaggregate policy scenario We perform a final set of experiments where the assump-
tion of equal policy across the population is relaxed. Specifically, the goal is to determine 
an optimal policy where the decision of the regulator is different between the two identi-
fied income segments. The results are presented in Table 8. We observe that both air and 
rail alternatives are taxed for the high-income segment, while subsidies are given to low-
income rail and air travelers when SCC ≤ 200 €/ton. This is explained by the higher value 
assigned to monetary savings by the low income segment, which is captured in the SWFU 
component of the objective function. Indeed, all monetary transfers from suppliers or from 
the public budget to the consumers whose price sensitivity is higher (in absolute terms) 
than the value of the marginal utility of income result in an increase in the SWF. Only for 
SCC ≥ 250 €/ton does the emissions component SWFE play a dominant role in the objec-
tive function.

We remark that the presented segmentation is speculative and other socioeconomic 
characteristics (e.g. geographic location, age) or policy strategies (e.g. only taxation, only 
subsidization, revenue recycling) could be used to regulate a market at the disaggregate 
level.
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Conclusion

In this paper, we introduced a framework to find optimal price-based policies to regulate 
markets characterized by oligopolistic competition and in which consumers make a dis-
crete choice among a finite set of alternatives. The optimization problem of the regulator 
is written as a mixed integer linear optimization problem, and the objective function is 
a social welfare function which includes the utilities of the individuals, the profits of the 
suppliers, the public budget and the effect of externalities. The framework accommodates 
general disaggregate models of demand by relying on simulation to linearize the expres-
sion of the consumers’ choice probabilities. Using a disaggregate representation of demand 
allows to account for product differentiation and consumer behavioral heterogeneity. How-
ever, this comes at the expense of equilibrium existence condition. To find approximate 
equilibrium solutions, we proposed a model-based heuristic approach based on the fixed-
point iteration algorithm. Our methodology was tested on a transportation case study about 
an intercity travel market, where we evaluated price-based instruments in the context of 
emissions reduction.

The proposed framework is very general and requires limited assumptions on the speci-
fication of the used discrete choice models. This means that it can accommodate a large 
variety of choice models available in the literature. In particular, the use of disaggregate 
demand models allows to design disaggregate policies that leverage on subsidization or 
taxation to obtain desirable outcomes from economic, social and environmental points of 
view.

The following research directions could be further investigated.
Other experiments that could be performed through our framework could investigate 

price differentiation strategies at the supply level (Bortolomiol et al. 2021). Additionally, 
decisions other than price could be included in the framework, both for the suppliers and 
for the regulator. Examples are product assortment, capacity levels and quality changes, 
among others. Adapting the mathematical models is straightforward, if these variables 
appear as linear or integer variables in the utility functions. However, these extensions 
would come with additional computational complexity caused by the expanded solution 
space. Consequently, the applicability of our framework to large-scale problem depends on 
the capability to efficiently exploit the problem structure and find tight bounds or ad-hoc 
algorithms to such hard combinatorial problem.

A fundamental issue in public policy is the aggregation of individual utilities into a 
social welfare function. Different agents have different utilities and objectives that conju-
gate individual and social welfare. Therefore, multi-objective social welfare optimization 
problems cannot prescind from value judgements. In this context, our framework could be 
adapted to incorporate distributional preferences, policy acceptability and perceived fair-
ness in the social welfare function.
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