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Abstract
Stochastic gradient descent (SGD) and randomized coordinate descent (RCD) are two of the

workhorses for training modern automated decision systems. Intriguingly, convergence prop-

erties of these methods are not well-established as we move away from the specific case of

smooth minimization. In this dissertation, we focus on related problems of nonsmooth opti-

mization and min-max optimization to improve the theoretical understanding of stochastic

algorithms.

First, we study SGD-based adaptive algorithms and propose a regret analysis framework over-

coming the limitations of the existing ones in the convex case. In the nonconvex case, we

prove convergence of an adaptive gradient algoritm for solving constrained weakly convex

optimization, generalizing the previously known results on unconstrained smooth optimiza-

tion. We also propose an algorithm combining Nesterov’s smoothing with SGD to solve convex

problems with infinitely many linear constraints, with optimal rates.

Then, we move on to convex-concave min-max problems with bilinear coupling and analyze

primal-dual coordinate descent (PDCD) algorithms. We obtain the first PDCD methods with

the optimal O(1/k) rate on the the standard optimality measure expected primal-dual gap,

which was an open question since 2014. Our analysis also aims to explain the practical be-

havior of these algorithms by showing that the last iterate enjoys adaptive linear convergence

without altering the parameters, depending on a certain error bound condition. Furthermore,

we propose an algorithm combining the favorable properties of two branches of PDCD meth-

ods: the new method uses large step sizes with dense data and its per-iteration cost depends

on the number of nonzeros of the data matrix. Thanks to these unique properties, this method

enjoys compelling practical performance complementing its rigorous theoretical guarantees.

Next, we consider monotone variational inequalities that generalize convex-concave min-max

problems with nonbilinear coupling. We introduce variance reduced algorithms that con-

verge under the same set of assumptions as their deterministic counterparts and improve

the best-known complexities for solving convex-concave min-max problems with finite-sum

structure. Optimality of our algorithms for this problem class is established in a recent work

via matching lower bounds.

Finally, we show our preliminary results on policy optimization methods for solving two player

zero-sum Markov games for competitive reinforcement learning (RL). Even though this is a

nonconvex-nonconcave min-max problem in general, thanks to the special structure, it is

tractable to find an approximate Nash equilibrium. We introduce an algorithm that improves
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Abstract

the best-known sample complexity of policy gradient methods. This development combines

tools from RL and stochastic primal-dual optimization, showing the importance of techniques

from convex-concave optimization.

Key words: randomized primal-dual methods, coordinate descent, variance reduction, adap-

tive gradient algorithms, min-max optimization, linearly constrained optimization, variational

inequalities.
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Résumé
L’algorithme du gradient stochastique et la méthode de descente par coordonnée randomisée

sont deux des principales approches utilisées pour l’entraînement des systémes de décision

modernes. Pourtant, leurs propriétés de convergence restent largement inexplorées lorsqu’il

s’agit d’optimiser des fonctions non lisses. Dans ce manuscrit, nous étudions des problémes

d’optimisation non lisses, ainsi que des problémes d’optimisation min-max dans le but d’amé-

liorer notre compréhension des ces méthodes stochastiques.

Nous commenćons par l’étude des algorithmes de gradient stochastique adaptatifs et pro-

posons un cadre d’analyse qui permet de dépasser les limites des cadres existant pour les

fonctions convexes. Dans le cas non-convexe, nous démontrons la convergence d’un algo-

rithme adaptatif pour résoudre des problémes [weakly convex constrained] en généralisant les

résultats connus pour les problémes non-contraint et lisses. Nous proposons également une

méthode combinant le “smoothing” de Nesterov avec l’algorithme du gradient stochastique

qui permet de résoudre des problémes convexes avec une infinité de contraintes linéaires en

atteignant un taux de convergence optimal.

Nous passons ensuite á l’étude des problémes min-max convexe-concave ayant un couplage

bilinéaire et nous analysons les algorithmes primal-dual de descente par coordonnée (PDCD).

Nous obtenons la premiére méthode PDCD atteignant le taux de convergence optimal de

O(1/k) mesuré en termes de l’écart primal-dual, résolvant ainsi un probléme resté ouvert de-

puis 2014. Notre analyse cherche également á expliquer le comportement observé en pratique

de ces algorithmes en montrant que, sous une condition simple, le dernier itéré admet un

taux de convergence linéaire adaptatif sans nécessiter une modification des paramètres. En

outre, nous proposons un algorithme qui mélange les propriétés favorables des deux branches

des méthodes PDCD : notre méthode utilise des pas larges pour des données denses et son

coût par itération dépend du nombre de coefficients non nuls de la matrice des données. Ces

propriétés uniques permettent á notre méthode d’avoir de bonnes performances en pratique

qui complimentent bien ses rigoureuses garanties théoriques.

Nous continuons par considérer les inégalités variationnelles monotones qui généralisent les

problémes min-max convexe-concave avec couplage non bilinéaire. Nous introduisons des

algorithmes avec réduction de variance qui convergent sous les mêmes hypothéses que leurs

équivalents déterministes et qui améliorent la complexité de résolution problémes min-max

convexe-concave ayant une structure de somme finie. L’optimalité de notre méthode a été

démontrée indépendamment par d’autres auteurs par l’établissement d’une borne inférieure.
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Résumé

Enfin, nous montrons quelques résultats préliminaires sur l’optimisation de politique dans

les jeux markoviens à somme nulle à deux joueurs dans le cadre de l’apprentissage par ren-

forcement compétitif. Bien que, en general, ces problémes soit des problemes min-max non-

convexe non-concave, la structure spéciale dont ils jouissent rend possible la détermination

d’un équilibre de Nash approché. Nous introduisons un algorithme qui atteint la meilleure

complexité en termes d’échantillons connue pour les méthodes dites de “policy gradient”.

L’élaboration de cette méthode a fait appel à des outils de l’apprentissage par renforcement et

à des outils de l’optimisation primale-duale stochastique, ce qui nous montre l’importance

des techniques issues de l’optimisation convexe-concave.

Key words : algorithmes primal-dual randomisée, méthode de descente par coordonnée,

réduction de variance, algorithmes de gradient adaptatifs, des problémes min-max, des pro-

blémes avec de contraintes linéaires, inégalités variationnelles.
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1 Introduction

Two of the most widely-used optimization algorithms nowadays are stochastic gradient de-

scent (SGD) and coordinate descent (CD), the ideas of which have been around for more than

70 years [RM51, Hil57, Kar37]. Despite their long histories, the research activity around these

methods have witnesses a surge of interest in the last two decades owing to the so-called big

data. Simple update rules with cheap per-iteration costs make them suitable in this era.

In 1990s, the focus of continuous optimization was on interior point methods which, in

contrast to stochastic methods, had computationally intensive iterations. While the main

tools of optimization are significantly different compared to 1990s, the guiding principle

remains: take advantage of structure when present. In the last decade, the particular revelation

surrounding SGD and CD was that randomization can be used as a technique for carefully

harnessing the structure of optimization problems, to design faster algorithms. We refer to the

class of algorithms based on SGD and randomized CD as stochastic algorithms.

Two concerns while deploying these methods in practice are reliability and adaptivity. The

former is related to the theoretical convergence guarantees of algorithms. The latter defines the

ability of an algorithm to enjoy fast convergence when favorable structures are present, without

the need to modify the algorithm. Surprisingly, as we move away from the standard setting

of smooth minimization, these natural requirements are often not satisfied for stochastic

algorithms.

This dissertation focuses on improving the understanding of stochastic algorithms for solving

structured nonsmooth optimization and min-max problems. We now make a brief technical

excursion and introduce these concepts more concretely to facilitate our discussion and

introduce the contributions.
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Chapter 1. Introduction

1.1 Problem description

The basic continuous optimization template is

min
x∈Rd

`(x), (1.1)

where ` : Rd →R∪ {+∞}. Depending on the structure of `, an optimization problem can be

smooth or nonsmooth, (strongly) convex or non-(strongly) convex. In particular, we say that ` is

. L-smooth if its gradient is L-Lipschitz continuous:

‖∇`(x1)−∇`(x2)‖ ≤ L‖x1 −x2‖, for all x1, x2 ∈Rd ,

. convex if

`(αx1 + (1−α)x2) ≤α`(x1)+ (1−α)`(x2), for any α ∈ [0,1], x1, x2 ∈Rd ,

. µ-strongly convex if there exists µ> 0 such that

`(αx1 + (1−α)x2) ≤α`(x1)+ (1−α)`(x2)−α(1−α)
µ

2
‖x1 −x2‖2, for all x1, x2 ∈Rd .

The most favorable case is when ` is smooth and strongly convex. In this case, stochastic

algorithms and their deterministic counterparts attain fast linear convergence [Nes03].

1.1.1 Lack of smoothness

Even though smooth optimization problems are common in practice, nonsmooth problems

provide a much more powerful framework. Even though nonsmooth problems are difficult in

full generality [NY83], empirical observations show that stochastic algorithms can still enjoy

fast convergence for solving them. Nesterov showed in [Nes05] that by opening the black box

and studying structured nonsmooth problems, we can avoid the worst-case lower bounds

in [NY83].

One class of structured nonsmooth problems is constrained optimization. We define con-

straints via indicator functions δK which is equal to 0 for admissible values (x ∈K) and +∞
otherwise.

Problems with a smooth objective and a constraint can be solved as if they are fully smooth

when the constraint set admits an efficient projection operator. On the other hand, when

the constraint set is defined with a linear equality, projection requires solving a linear system.

With large scale problems, algorithms requiring such projection steps are not feasible.

We formalize linearly constrained optimization as

min
x∈Rd

`(x), `(x) = f (x)+δK(Ax)+δB(x) =⇒ min
x∈B

f (x) : Ax ∈K, (1.2)
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1.2. Contributions and Organization

where A is a linear operator, K,B are convex sets and f is a convex function.

This template covers classical problems such as quadratically constrained quadratic programs

and it also naturally arises for representing the communication graph in distributed optimiza-

tion. Despite being classical, these fundamental problems continue to emerge in important

applications in machine learning (ML) and reinforcement learning (RL) [Wan20, AAF+20,

BRS18, JOV09, TSR+05].

The second example, also intimately connected to the first, is min-max optimization:

min
x∈Rd

`(x), `(x) = δX (x)+max
y∈Y

Φ(x, y) =⇒ min
x∈X

max
y∈Y

Φ(x, y), (1.3)

whereΦ is a coupling function describing the interaction between variables x, y . This prob-

lem is central in game theory [vN28] and it is also a convenient way to solve constrained

problems via Lagrangian duality [Ber99]. Recently, the problem (1.3) is getting increasingly

more popular thanks to many applications in adversarially robust, safe, and fair formulations

of ML [MMS+18, BTSK17, HSNL18, GPAM+14], competitive RL [DFG20, WLZL21], and many

others.

In this dissertation, we will be mostly focusing on the case whenΦ is convex-concave.

1.1.2 Presence of favorable structure

As mentioned before, optimization algorithms can attain a fast rate of convergence for smooth

and strongly convex problems. However, for the problems described in the previous section,

none of these assumptions hold in general. On the other hand, their specific structures make

them easier compared to generic nonsmooth problems. Next, we give three representing

examples of the favorable structures that can be used by stochastic algorithms.

◦ When the data matrix A in (1.2) is sparse, we can design CD-based algorithms to have a per-

iteration cost depending on the nonzeros of the associated matrix rather than its dimensions.

◦ When the coupling function in (1.3) is given as a a finite-sum of component functions, we

can design SGD-based methods to obtain stochastic estimates with a reduced variance.

◦ Even though the functions in eqs. (1.2) and (1.3) are not smooth and not strongly convex in

general, they might satisfy error bound conditions, such as having piecewise linear-quadratic

structure. For such problems, we can prove linear rate of convergence.

1.2 Contributions and Organization

In this dissertation, we have two research goals for solving nonsmooth optimization and min-

max problems: (i) providing a rigorous understanding of some existing stochastic algorithms

that have seen empirical success, (ii) introducing new provable algorithms when the existing

ones are insufficient.
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Chapter 2: Convergence of adaptive gradient algorithms for nonsmooth optimization with

convex and nonconvex objectives (based on works [AMMC20, AMC20]).

In this chapter, we focus on nonsmooth stochastic optimization problem

min
x∈K

f (x) = Eξ[ fξ(x)],

where K is convex, closed and f is either convex or weakly convex.

The class of Adam-type algorithms, (also referred to as adaptive gradient algorithms), are

extremely popular in deep learning applications. These methods incorporate exponential

moving averaging (EMA) for past gradient vectors and their element-wise squares, with the

EMA parameters denoted byβ1 andβ2. In practice, these parameters are chosen to be constant

values close to 1 (default values in Tensorflow and Pytorch are β1 = 0.9).

The work [RKK18] identified that the convergence analysis in [KB15] for Adam is incorrect

and proposed new Adam-type methods with small modifications to ensure convergence. On

the other hand, even the corrected regret analysis by [RKK18] follows the analysis of [KB15]

closely, therefore requires a linearly diminishing β1 schedule, which is opposite to what is

used practice. Moreover, these methods are being used with increasingly complicated neural

network structures, however, their convergence is only known for nonconvex problems which

are smooth and unconstrained.

• We show that the requirement of β1 in the convex analysis is a mere artifact of the proof,

and we propose a new regret analysis framework that allows a constant β1 parameter, with

provably better bounds compared to previous works. We show the generality of our technique

by applying it to most of the existing convergent Adam-type methods and equip all of their

guarantees with a constant β1 choice.

• Using our framework, we propose a convergence analysis for an adaptive gradient algo-

rithm for solving a class of nonsmooth nonconvex optimization problems. The problem

class we consider is constrained weakly convex problems which contain smooth noncon-

vex optimization with convex constraints and also potentially nonsmooth problems. This

result generalizes the class of nonconvex problems where adaptive gradient algorithms have

convergence guarantees.

Chapter 3: Smoothing and stochastic algorithms for linearly constrained problems (based on

works [ADFC17, FANC19])

In this chapter, we focus on the linearly constrained optimization problem,

min
x∈Rd

h(x)+ g (x), s.t. x ∈∩N
i=1Ki , where Ki = {x : Ai x ∈ bi }.

with convex functions h, g , matrix Ai and set bi .

A useful structure in this problem is the separability of the constraints, which can be used
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by coordinate methods (CD) to decrease per iteration cost. Moreover, these methods use

coordinate-wise Lipschitz constants for h and norms of blocks of the matrix A rather than

their global counterparts. These features help CD methods show fast convergence in practice.

Prior to our work [ADFC17] we were not aware of any CD algorithm with rate guarantees for

linearly constrained problem.

• We first focus on the case where N can be potentially infinite to solve problems with infinite

number of linear inclusion constraints. Using Nesterov’s smoothing along with SGD [RM51],

we obtain an algorithm with the rate Õ(1/
p

k) when h + g is only convex and Õ(1/k) when

h + g is restricted strongly convex, both of which are optimal (up to log factors) even in the

unconstrained setting [AWBR09].

• Unlike the previous approach for this problem based on alternating projections, our work

does not assume projectability of Ki which, depending on the dimensions of Ai , can be

prohibitive.

• When N is finite, by combining Nesterov’s smoothing technique [Nes05] and accelerated

proximal coordinate descent [FR15], we obtain a CD algorithm with O(1/k) rate which is

optimal in its dependence on k [Nes05].

• Our algorithm uses coordinatewise Lipschitz constants of h and norms of blocks of A, rather

than their global counterparts.

Chapter 4: Convergence of primal-dual coordinate descent (PDCD) methods and adaptivity to

functional structures (based on work [AFC21])

Primal-dual hybrid gradient method (PDHG) [CP11] is a classical algorithm for solving convex-

concave min-max problems with bilinear coupling function:

min
x∈X

max
y∈Y

g (x)+
n∑

i=1
〈Ai x, y (i )〉− f ∗

i (y (i )) (1.4)

Two fundamental results on the convergence of PDHG are (i) asymptotic convergence of

the sequence to a solution, (ii) O(1/k) convergence rate on the primal-dual gap function,

which is the standard optimality measure. Since 2014, different randomized variants of

PDHG are proposed [DL14, ZL15, FB19, LFP19]. Recently, Chambolle et al. [CERS18] intro-

duced stochastic PDHG (SPDHG) which have been popular especially in computational

imaging due to its practical performance, with implementations in different software pack-

ages [EMC+17, PAD+21, LL19, KPB+19]. Despite the practical interest, abovementioned stan-

dard theoretical results regarding the convergence of SPDHG remained open. In fact, in the

work that introduced one of the first randomized PDHG algorithm in 2014 [DL14], the diffi-

culty of deriving the O(1/k) guarantee for the expected primal-dual gap was pointed out and

this question remained open ever since.

In this chapter, we analyze SPDHG and prove under convexity assumption:

• Almost sure convergence of the sequence to a solution.

5



Chapter 1. Introduction

•O(1/k) convergence rate for the expected primal-dual gap.

• For the latter result, we introduce a new analysis technique for PDCD methods, inspired

by [NJLS09], which is of independent interest.

One reason for popularity of PDHG/SPDHG in practice is the linear rate of convergence of-

ten observed in empirical studies. On the other hand, the only case where we knew linear

convergence of SPDHG was when f , gi are strongly convex and the step sizes are set accord-

ingly [CERS18]. To derive a more general result on linear rate of convergence, we use an

error bound condition [DR09]. This condition not only holds for restricted strongly convex

functions, but also for problems with piecewise linear quadratic (PLQ) objective and linear

constraints, including quadratic programming, Lasso, support vector machines, etc.

• We show that without any modification on the algorithmic parameters, SPDHG converges

linearly with the error bound condition, which is a first step towards explaining its favorable

adaptive linear convergence in practice.

Chapter 5: Adapting to sparsity of the data via PDCD methods (based on work [AFC20])

One drawback of SPDHG [CERS18] is that its per iteration cost depends on one of the dimen-

sions of the data matrix, and does not decrease with sparse data. An alternative of SPDHG

in the prior literature was due to [FB19] where the per iteration cost depends on the number

of nonzeros of the data matrix, adapting to sparsity when it is encountered. The drawback

of the method of [FB19] however, was the restriction to smaller step sizes than SPDHG with

dense data. In this chapter, we design an algorithm that achieves the best of both worlds, for

solving (1.4).

• Our algorithm is the first to simultaneously use large step sizes with dense data and have

cheap per-iteration cost with sparse data.

• By assuming convexity, we prove almost sure convergence of the sequence to a solution.

• By assuming convexity, O(1/k) rate for expected duality gap.

• We prove adaptive linear convergence with an error bound condition (as in the result proven

for SPDHG in the previous chapter).

• Our algorithm can also handle an additional smooth term on top of (1.4), with step size rule

depending on coordinate-wise Lipschitz constants.

We conduct experiments on sparse, moderately sparse and dense datasets, to illustrate the

adaptation of our method to sparsity.

• As predicted by theory, our method enjoys the best performance in all the sparsity configura-

tions, compared to SPDHG [CERS18] and the method of [FB19].

We also compared our algorithm with stochastic variance reduction methods from ML litera-

ture [JZ13] that are designed specifically for strongly convex strongly concave problems and

our method was competitive despite its generality.
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Chapter 6: Variance reduction for provably faster min-max optimization (based on works [AMC21,

AM21])

In this chapter, we solve potentially nonbilinear convex-concave min-max problems with

finite sum structure.

min
x∈X

max
y∈Y

Φ(x, y). Let (x, y) = z, F (z) = [∇xΦ(x, y),−∇yΦ(x, y)], F (z) =
N∑

i=1
Fi (z). (1.5)

This structure is present for example in matrix games, Lagrangian formulation of constrained

optimization, empirical risk minimization. Prior to our work, Carmon et al. [CJST19] focused

on matrix games and showed that variance reduction can improve the complexity of Mirror-

Prox. On the other hand, [CJST19] required additional strong assumptions on top of Mirror-

Prox, such as boundedness of the domain or convexity of the map z 7→ 〈F (z), z −u〉,∀u ∈
Z . These assumptions are satisfied for matrix games, but can be violated even for slightly

more general linearly constrained optimization problems. Moreover, the analysis in [CJST19]

required conservative step sizes, and for the nonbilinear problem, a complicated three-loop

algorithm was used with suboptimal complexity. In addition, almost sure convergence of the

sequence was not proven.

• We design a variance reduction framework for min-max problems, and apply to extragradi-

ent, forward-reflected-backward, forward-backward-forward methods, with Euclidean and

Bregman setups.

• For problem (1.5), our algorithms converge under the same set of assumptions as determin-

istic methods, unlike previous work with spurious assumptions.

• Our results match the best-known complexity for bilinear case, and improve the best-known

complexity in the nonbilinear case.

• Our algorithms enjoy more freedom in choosing the step size, resulting in better practical

performance compared to [CJST19], even in the bilinear case.

• We show that our algorithms can converge linearly while staying agnostic to the strong

convexity (strong monotonicity) parameter.

• We also prove almost sure convergence of the sequence for monotone variational inequali-

ties and monotone inclusions.

• A recent independent work [HXZ21] proved matching lower bounds in this setting, establish-

ing the optimality of our algorithms.

Chapter 7: Improving sample complexity of policy optimization for competitive reinforcement

learning

In this chapter, we present our preliminary results for solving two player zero-sum Markov

games (also known as stochastic games). This problem template generalizes matrix games

and Markov Decision Processes (MDP) and used in competitive RL. Even without function
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approximation, this problem is nonconvex nonconcave in general. We focus on a class of policy

optimization methods, which are also known as actor-critic algorithms or policy gradient

algorithms. These methods jointly learn the optimal policy and the optimal value function.

By building on the recent advances on policy gradient methods for single agent RL and

stochastic primal-dual optimization, we prove sample complexity results for solving two

player zero-sum Markov games, for reaching to an approximate Nash equilibrium. Our results

improve the best-known sample complexity of policy gradient methods in the literature.

1.3 Notation and definitions

We introduce the basic notation, definitions and properties used throughout the dissertation.

Chapter-specific notations and definitions are included in the corresponding chapters.

Notation. Let X and Y be Euclidean spaces with inner product 〈·, ·〉 and norm ‖ · ‖. We also

define Z =X×Y and z = (x, y) ∈Z . For a positive definite matrix Q, we use 〈x, y〉Q = 〈Qx, y〉 to

denote weighted inner product and ‖x‖2
Q = 〈Qx, x〉 to denote weighted Euclidean norm. For a

set C, and positive definite Q, distance of a point x to C, measured in weighted norm is defined

as dist2
Q (x,C) = miny∈C ‖x − y‖2

Q = ‖x −PQ
C (x)‖Q , where we have defined the corresponding

projection operator P implicitly. When Q = I , we drop the subscript and write dist(x,C).

We define for σ ∈ Rn , the diagonal matrix D(σ) = diag(σ1, . . . ,σn). We define the support

function of the set K as suppK(x) = supy∈K〈x, y〉.

Given a vector x, we access i -th element as x(i ). We define ei as the i -th unit vector and

E (i ) = ei e>i . Unless used with a subscript, 1 in Kronecker products denotes the all-ones vector

1n ∈Rn . The notation [N ] represents the set {1, . . . , N }.

Properties of convex functions. Unless indicated otherwise, we consider a proper lower

semicontinuous (l.s.c.) convex function h : X →R∪ {+∞}.

Domain of a function h is denoted as domh. We encode equality constraints using the

indicator function δ{b} such that δ{b}(x) = 0 if x = b and δ{b}(x) =+∞ if x 6= b.

The proximal operator of h with weighting matrix τ, is defined as

proxτ,h(x) = argmin
u∈X

h(u)+ 1

2
‖u −x‖2

τ−1 . (1.6)

When τ is a scalar, we write proxτh instead of proxτ,h . We sometimes say proximable to mean

that the proximal operator of h can be computed efficiently.

A standard identity is

x̄ = proxh(x̂) ⇐⇒ 〈x̄ − x̂, x − x̄〉 ≥ h(x̄)−h(x) ∀x ∈X . (1.7)
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The Fenchel conjugate of h is defined as

h∗(y) = sup
z∈X

〈z, y〉−h(z).

We say that h is:

◦ µ-strongly convex if h(x)− µ
2 ‖x‖2 is convex for all x ∈X .

◦ µ-weakly convex if h(x)+ µ
2 ‖x‖2 is convex for all x ∈X .

◦ L-Lipschitz (or L-Lipschitz continuous) if |h(x1)−h(x2)| ≤ L‖x1 −x2‖ for all x1, x2 ∈X .

◦ L-smooth if h is differentiable and its gradient is Lipschitz continuous:

‖∇h(x1)−∇h(x2)‖ ≤ L‖x1 −x2‖, for all x1, x2 ∈X .

These definitions can be written with other norms that we omit for simplicity.

Lagrangian duality. Given a primal optimization problem

min
x∈X

h(x)+ g (x)+ f (Ax), (1.8)

where all functions are proper l.s.c. convex, h : X → R is smooth, g : X → R∪ {+∞}, f : Y →
R∪ {+∞}, A : X →Y . We can write the Lagrangian as

L(x, y) = h(x)+ g (x)+〈Ax, y〉− f ∗(y),

and the dual problem as

max
y∈Y

{
min
x∈X

L(x, y)

}
.

Unless stated otherwise, we assume a primal-dual solution pair z? = (x?, y?) exists. Then, we

have for any x ∈X , y ∈Y ,

L(x?, y) ≤L(x?, y?) ≤L(x, y?).

Optimality measure. Primal-dual gap is defined as:

Gap(x̄, ȳ) = sup
x,y

L(x̄, y)−L(x, ȳ).

It is easy to see that Gap(x̄, ȳ) = 0 if and only if (x̄, ȳ) is a primal-dual solution. Consequently,

for stochastic algorithms, the optimality measure is E[Gap(x̄, ȳ)].

Operators. In the last two chapters, we work with operator notation. We say that F : Z →Z is

◦ monotone if: 〈F (z1)−F (z2), z1 − z2〉 ≥ 0 ∀z1, z2 ∈Z .

◦ µ-strongly monotone if: 〈F (z1)−F (z2), z1 − z2〉 ≥ µ
2 ‖z1 − z2‖2 ∀z1, z2 ∈Z , with µ> 0.

◦ L-Lipschitz if: ‖F (z1)−F (z2)‖ ≤ L‖z1 − z2‖ ∀z1, z2 ∈Z .

9
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Constraint qualification. Let us consider the problem (1.8). Slater’s condition is a sufficient

condition for strong duality that states 0 ∈ ri(A dom g −dom f ), where ri denotes relative

interior [BC11]. For existence of primal-dual solution, it is standard to assume that a solution

exists for primal problem (1.8) and Slater’s condition holds.

10



2 Convergence of adaptive gradient
algorithms for nonsmooth problems

In this section we focus on the convergence properties of adaptive gradient algorithms that

are variants of the popular ADAM (Adaptive Moment estimation) algorithm, in the convex

and nonconvex settings. We first identify a limitation in the existing convex regret analyses

which requires parameter choices inconsistent with practice. We propose a new regret analysis

framework to overcome this issue. Using our framework, we also prove the first convergence

result of Adam-type adaptive gradient algorithms for solving a class of nonsmooth nonconvex

optimization problems.

This chapter is based on joint works with Yura Malitsky, Panayotis Mertikopoulos and Volkan

Cevher [AMMC20, AMC20].

2.1 Introduction

One of the most popular optimization algorithms for training neural networks is ADAM [KB15],

which is a variant of the general class of adaptive gradient algorithms [DHS11]. The main

novelty of ADAM is to apply an exponential moving average (EMA) to gradient estimate (first-

order) and to element-wise square-of-gradients (second-order), with parameters β1 and β2.

In practice, constant β1 and β2 values are used (the default parameters in PYTORCH and

TENSORFLOW are β1 = 0.9 and β2 = 0.999). However, the regret analysis in [KB15] requires

β1 → 0 with a linear rate, causing a clear discrepancy between theory and practice.

Recently, [RKK18] showed that the regret analysis of ADAM for online convex optimization

(OCO) in [KB15] contains a mistake and proposed AMSGRAD and ADAMNC as convergent

alternatives, along with proofs for nonconvergence of ADAM. Following this discovery, many

variants of ADAM are proposed with regret guarantees [RKK18, CZT+20, HWD19]. Unfortu-

nately, in all these analyses, the requirement β1 → 0 is inherited from [KB15] and is needed to

derive the optimal O(
p

T ) regret. In contrast, for favorable practical performance, methods

continue to use constant β1 in experiments.

Given the nonconvergence issues surrounding these methods, one can wonder whether there
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is an inherent obstacle – in the proposed methods or the setting – which prohibits optimal

regret bounds with a constant β1? In this chapter, we show that this specific discrepancy

between the theory and practice is only an artifact of the previous analyses. We point out the

shortcomings responsible for this artifact, and then introduce a new analysis framework that

attains optimal regret bounds for OCO with constant β1 at no additional cost (and with better

constants in the obtained bounds).

Given that the main applications of Adam-type methods is on training neural networks,

their behavior in nonconvex problems is of paramount importance. Many recent works

made progress on this direction [CLSH19, CZT+20, ZSJ+19, WWB19, LO19, DBBU20]. These

works focus on unconstrained smooth stochastic optimization, where the standard analysis

framework of the stochastic gradient descent (SGD) [GL13] can be used. Convergence of

adaptive methods for the more general setting of constrained and/or nonsmooth stochastic

nonconvex optimization has remained unexplored, while these settings have broad practical

applications [VPG19, MNSF17, MMS+18, IEAL18, DD19, DP19].

The difficulty of handling the combination of nonconvexity, adaptive step sizes, momentum

and constraints is mentioned in [CLX+19, Section 4.3]. In particular, in terms of our analysis,

(i) adaptivity introduces coupling between the step sizes and iterates, (ii) time-dependent

diagonal step size requires an analysis framework based on variable metrics, (iii) using a

constant β1 requires the new analysis framework we develop in this chapter. For details,

please see the discussions around Lemmas 2.10 and 2.11.

2.1.1 Contributions

. In the convex setting, our technique obtains data-dependent O(p
T

)
regret bounds for

AMSGRAD and ADAMNC [RKK18].

.We apply our technique to a strongly convex variant of ADAMNC, known as SADAM [WLC+20],

yielding data-dependent logarithmic regret with constant β1.

To the best of our knowledge, these are the first optimal regret bounds with constant β1.

. Finally, we apply our framework to derive a convergence guarantee for AMSGRAD for solving

constrained weakly convex optimization. This is the first result for adaptive gradient methods

for solving nonconvex problems beyond the simplest unconstrained smooth template.

It is worth noting that even though our analysis is more flexible and it provides better bounds

than prior works, it is not sufficient to explain why nonzero β1 helps in practice. This is an

interesting question requiring further investigation and is outside the scope of this chapter.

Organization. In the first part of the chapter, we analyze Adam-type algorithms for online

convex optimization (OCO). We introduce a new regret analysis framework that enables

optimal bounds with constant β1 parameter. In the second part, we move on to the nonconvex

setting to study constrained stochastic optimization with weakly convex objectives. We provide

12



2.2. Regret analysis for Online Convex Optimization

f Constraints β1 minibatch size Diagonal Adaptive

[CLSH19] L-smooth × const. 1 X X

[CLX+19] L-smooth X 0 ∼p
t X X

[DD19] ρ-weak. cvx. X 0 1 × ×
[MJ20] ρ-weak. cvx. X const. 1 × ×

This chapter ρ-weak. cvx. X const. 1 X X

Table 2.1 – Comparison with adaptive methods for smooth nonconvex optimization and SGD-based methods for
weakly convex optimization. Column “diagonal” refers to coordinate-wise step sizes and “adaptive” refers to step
sizes depending on observed gradients á la AdaGrad.

a brief comparison with the existing nonconvex results in Table 2.1. A comprehensive literature

review for both parts is given in Section 2.4.

2.2 Regret analysis for Online Convex Optimization

Problem Setup. In OCO, a loss function ft : K→Rd is revealed, after a decision vector xt ∈K
is picked by the algorithm. We then minimize the regret defined as

R(T ) =
T∑

t=1
ft (xt )−min

x∈K

T∑
t=1

ft (x). (2.1)

Our assumptions below are standard for OCO [Haz16] and are the same as [RKK18].

Assumption 2.1.

.K⊂Rd is a compact convex set.

. ft : K→R is a convex lsc function, g t ∈ ∂ ft (xt ).

.D = max
x,y∈K

‖x − y‖∞, G = max
t

‖g t‖∞.

Notation. For vectors a,b ∈ Rd standard operations ab, a2, a/b, a1/2, 1/a, max{a,b} are

supposed to be coordinate-wise. For a given at ∈ Rd , we denote the i -th coordinate as a(i )
t .

We use 1 for the vector of all ones. For lighter notation, throughout this chapter we use the

following notation for weighted projection: Pv =PD(v), where v ∈Rd , v (i ) > 0, for all i .

2.2.1 Dissection of the standard analysis

For the discussion, we use AMSGRAD in Algorithm 2.1, proposed by [RKK18] as a fix to ADAM.

Compared to ADAM, it has an extra step to enforce monotonicity of the second moment

estimator v̂t .

We first describe the shortcoming of the previous approaches in [RKK18, WLC+20], dating

back to [KB15]. Then we explain the mechanism that allows us to obtain regret bounds with

13



Chapter 2. Convergence of adaptive gradient algorithms for nonsmooth problems

Algorithm 2.1 AMSGRAD[RKK18]

1: Input: x1 ∈K, αt = αp
t

, α> 0, β1 < 1, β2 < 1,
m0 = v0 = 0, v̂0 = ε1, ε≥ 0

2: for t = 1,2. . . do
3: g t ∈ ∂ ft (xt )
4: mt =β1mt−1 + (1−β1)g t

5: vt =β2vt−1 + (1−β2)g 2
t

6: v̂t = max(v̂t−1, vt )

7: xt+1 =P v̂1/2
t

K (xt −αt v̂−1/2
t mt )

8: end for

constant β1. In this subsection, for full generality, consider mt being updated with β1t , as

in [RKK18, KB15]:

mt =β1t mt−1 + (1−β1t )g t . (2.2)

The standard way to analyze Adam-type algorithms is to start by nonexpansiveness to write

‖xt+1 −x‖2
v̂1/2

t
≤ ‖xt −x‖2

v̂1/2
t

−2αt 〈mt , xt −x〉+α2
t ‖mt‖2

v̂−1/2
t

.

Then using (2.2), one can deduce

(1−β1t )〈g t , xt −x〉 ≤−β1t 〈mt−1, xt −x〉+αt

2
‖mt‖2

v̂−1/2
t

+ 1

2αt

(
‖xt −x‖2

v̂1/2
t

−‖xt+1 −x‖2
v̂1/2

t

)
.

Let us analyze the above inequality. Its left-hand side is exactly what we want to bound, since

by convexity R(T ) ≤ ∑T
t=1〈g t , xt − x〉. The last two terms in the right-hand side are easy to

analyze, all of them can be bounded in a standard way using just definitions of v̂t , mt , and αt .

What can we do with the term −β1t 〈mt−1, xt −x〉? Analysis in [RKK18] uses Young’s inequality

−β1t 〈mt−1, xt −x〉 ≤ β1t

2αt
‖xt −x‖2

v̂1/2
t

+ β1tαt

2
‖mt−1‖2

v̂−1/2
t

.

The term β1t

2αt
‖xt − x‖2

v̂1/2
t

is precisely what leads to the second term in the regret bound

in [RKK18, Theorem 4]. Since αt = αp
t

, one must require β1t → 0.

Note that the update for xt+1 has a projection. This is important, since otherwise a solution

must lie in the interior of X , which is not the case in general for problems with a compact

domain. However, let us assume for a moment that the update for xt+1 does not have any

projection. In this simplified setting, applying the following trick will work.

Recall that xt = xt−1 −αt−1v̂−1/2
t−1 mt−1, or equivalently mt−1 = 1

αt−1
v̂1/2

t−1(xt−1 −xt ). Plugging it

into the error term 〈mt−1, xt −x〉 yields

−〈mt−1, xt −x〉 =− 1

αt−1
〈v̂1/2

t−1(xt−1 −xt ), xt −x〉

14



2.2. Regret analysis for Online Convex Optimization

= 1

2αt−1

[
‖xt −xt−1‖2

v̂1/2
t−1

+‖xt −x‖2
v̂1/2

t−1
−‖xt−1 −x‖2

v̂1/2
t−1

]
≤ 1

2
αt−1‖mt−1‖2

v̂−1/2
t−1

+ 1

2
‖xt −x‖2

v̂1/2
t /αt

− 1

2
‖xt−1 −x‖2

v̂1/2
t−1/αt−1

,

where the second equality follows from the Cosine Law and the first inequality is from

xt − xt−1 = −αt−1v̂−1/2
t−1 mt−1 and v̂1/2

t /αt ≥ v̂1/2
t−1/αt−1. We now compare this bound with

the previous one. The term αt−1‖mt−1‖2
v̂−1/2

t−1
, as we mentioned, is good for summation. Other

two terms are going to cancel after summation over t . Hence, it is easy to finish the analysis to

conclude O(
p

T ) regret with a fixed β1t =β1.

Unfortunately, xt+1 update has a projection, since otherwise the bounded domain assumption

is very restrictive. This prevents us from using the above trick. Its message, however, is that

one can expect a good bound with a fixed β1t .

For having a more general technique to handle β1, we will take a different route in the very

beginning — we will analyze the term 〈g t , xt − x〉 in a completely different way, without

resorting to crude Young’s inequality as in [RKK18]. Basically, this idea can be applied to any

framework with a similar update for the moment mt , as we will show for ADAMNC and SADAM.

2.2.2 A key lemma

As we understood above, the presence of the projection complicates handling 〈mt−1, xt −x〉. A

high level explanation for the cause of the issue is that the standard analysis does not leave

much flexibility, since it uses nonexpansiveness in the very beginning.

Lemma 2.1. Under the definition mt =β1mt−1 + (1−β1)g t , it follows that

〈g t , xt−x〉 = 〈mt−1, xt−1−x〉− β1

1−β1
〈mt−1, xt−xt−1〉+ 1

1−β1
(〈mt , xt −x〉−〈mt−1, xt−1 −x〉) .

The main message of Lemma 2.1 is that the decomposition of mt , in the second part of the

analysis in Section 2.2.1 is now done before using nonexpansiveness, therefore there would be

no need for using Young’s inequality which is the main shortcoming of the previous analysis.

Upon inspection on the bound, we see that the last two terms will telescope. The second term

can be shown to be of the order αt‖mt‖2
v̂−1/2

t
, and as we mentioned before, summing this term

will give O(p
T

)
. To see that the first term is benign, a high level explanation is to notice that

mt−1 is the gradient estimate used in the update xt = xt−1 −αt−1v̂−1/2
t−1 mt−1, therefore it can

be analyzed in the classical way.

Proof of Lemma 2.1. By definition of mt , g t = 1
1−β1

mt − β1

1−β1
mt−1. Thus, we have

〈g t , xt −x〉 = 1

1−β1
〈mt , xt −x〉− β1

1−β1
〈mt−1, xt −x〉
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= 1

1−β1
〈mt , xt −x〉− β1

1−β1
〈mt−1, xt−1 −x〉− β1

1−β1
〈mt−1, xt −xt−1〉

= 1

1−β1

(〈mt , xt −x〉−〈mt−1, xt−1 −x〉)+〈mt−1, xt−1 −x〉− β1

1−β1
〈mt−1, xt −xt−1〉.

�

This simple proof of the decomposition in Lemma 2.1 enables the new analysis without the

previous restrictions.

2.2.3 AMSGRAD

The regret bound for AMSGRAD in [RKK18, Theorem 4, Corollary 1] requires a decreasing β1

at least at the order of 1/t to obtain O(p
T

)
worst case regret. Moreover, a constant β1 results

in O(
T
p

T
)

regret in [RKK18, Theorem 4]. We now continue with the theorem showing that

the same O(p
T

)
can be obtained by AMSGRAD under the same assumptions as [RKK18].

Theorem 2.2. Under Assumption 2.1, β1 < 1, β2 < 1, γ= β2
1

β2
< 1, and ε> 0, AMSGRAD has the

regret

R(T ) ≤ D2
p

T

2α(1−β1)

d∑
i=1

√
v̂ (i )

T + α
√

1+ logT√
(1−β2)(1−γ)

d∑
i=1

√√√√ T∑
t=1

(g (i )
t )2. (2.3)

Our bound for R(T ) is also better than the one in [RKK18] in term of constants. We have

two terms in contrast to three in [RKK18] and each of them is strictly smaller than their

counterparts in [RKK18]. The reason is that we used i) new way of decomposition 〈g t , xt −x〉
as in Lemma 2.1, ii) wider admissible range for β1,β2, iii) more refined estimates for analyzing

terms. For example, the standard analysis to estimate ‖mt‖2
v̂−1/2

t
uses several Cauchy-Schwarz

inequalities. We instead give a better bound by applying generalized Hölder inequality [BB61].

Another observation is that having a constant β1 explicitly improves the last term in the regret

bound. With a non-decreasing β1, instead of constant β1, this term would have an additional

multiple of 1
(1−β1)2 . Since in general one chooses β1 close to 1, this factor is significant.

Remark 2.3. Notice that Theorem 2.2 requires ε > 0 in order to have the weighted projec-

tion well-defined. Such a requirement is common in the literature for theoretical analysis,

see [DHS11, Theorem 5]. In practice, however, one can set ε= 0.

Proof sketch of Theorem 2.2. We sum 〈g t , xt −x〉 from Lemma 2.1 over t , use m0 = 0 to get

T∑
t=1

〈g t , xt −x〉 ≤
T∑

t=1
〈mt , xt −x〉︸ ︷︷ ︸

S1

+ β1

1−β1

T∑
t=1

〈mt−1, xt−1 −xt 〉︸ ︷︷ ︸
S2

+ β1

1−β1
〈mT , xT −x〉︸ ︷︷ ︸

S3

.
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2.2. Regret analysis for Online Convex Optimization

By Hölder inequality, we can show that

S2 ≤
T−1∑
t=1

αt‖mt‖2
v̂−1/2

t
.

By using the fact that v̂ (i )
t ≥ v̂ (i )

t−1, and the same estimation as deriving S2,

S1 ≤ D2

2αT

d∑
i=1

√
v̂ (i )

T +
T∑

t=1

αt

2
‖mt‖2

v̂−1/2
t

.

By Hölder and Young’s inequalities, we can bound S3 as

S3 ≤αT ‖mT ‖2
v̂−1/2

T
+ D2

4αT

d∑
i=1

√
v̂ (i )

T .

We see that αt‖mt‖2
v̂−1/2

t
is common in all terms and it is well known that this term is good for

summation
T∑

t=1
αt‖mt‖2

v̂−1/2
t

≤ (1−β1)α
√

1+ logT√
(1−β2)(1−γ)

d∑
i=1

√√√√ T∑
t=1

(g (i )
t )2.

Combining the terms gives the final bound. �

Finally, if we are interested in the worst case scenario, it is clear that Theorem 2.2 gives regret

R(T ) = O(
√

log(T )T ). A quick look into the calculations yields that if one uses the worst

case bound g (i )
t ≤G , then the bound will not include a logarithmic term. However, then the

data-dependence of the bound will be lost. It is not clear if one can obtain a data-dependent

O(
p

T ) regret bound. In the following corollary, we give a partial answer to this question.

Corollary 2.4. Under Assumption 2.1, β1 < 1, β2 < 1, γ= β2
1

β2
< 1, and ε> 0, AMSGRAD achieves

R(T ) ≤ D2
p

T

2α(1−β1)

d∑
i=1

√
v̂ (i )

T + α
p

G√
1−β2(1−γ)

d∑
i=1

√√√√ T∑
t=1

|g (i )
t |. (2.4)

This bound has no log(T ) term, thus it is better in the worst-case. However its data-dependence

is worse than the bound in Theorem 2.2. Bound in Theorem 2.2 contains (g (i )
t )2 whereas bound

above contains |g (i )
t |. With small g (i )

t , the bound with logT can be better. We leave it as an

open question to have a
p

T bound with the same data-dependence as Theorem 2.2.

2.2.4 ADAMNC

Another variant that is proposed by [RKK18] as a fix to ADAM is ADAMNC which features an

increasing schedule for β2t . In particular, one sets β2t = 1− 1
t in

vt =β2t vt−1 + (1−β2t )g 2
t ,

17
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that results in the expression vt = 1
t

∑t
j=1 g 2

j , which is a reminiscent of ADAGRAD [DHS11].

In fact, to ensure that Pv1/2
t

X is well-defined, one needs to consider the more general update

vt = 1
t

(∑t
j=1 g 2

j +ε1
)

similar to the previous case with AMSGRAD.

Algorithm 2.2 ADAMNC[RKK18]

1: Input: x1 ∈K, αt = αp
t

, α> 0, β1 < 1, ε≥ 0, m0 = 0.

2: for t = 1,2. . . do
3: g t ∈ ∂ ft (xt )
4: mt =β1mt−1 + (1−β1)g t

5: vt = 1
t

(∑t
j=1 g 2

j +ε1
)

6: xt+1 =Pvt
1/2

K (xt −αt vt
−1/2mt )

7: end for

ADAMNC is analyzed in [RKK18, Theorem 5, Corollary 2] and similar to AMSGRAD it has

been shown to exhibit O(p
T

)
worst case regret only when β1 decreases to 0. We show in the

following theorem that the same regret can be obtained with a constant β1.

Theorem 2.5. Under Assumption 2.1, β1 < 1, and ε> 0, ADAMNC has the regret

R(T ) ≤ D2
p

T

2α(1−β1)

d∑
i=1

√
v (i )

T + 2α

1−β1

d∑
i=1

√√√√ T∑
t=1

(g (i )
t )2.

We skip the proof sketch of this theorem as it will have the same steps as AMSGRAD, just

different estimation for αt‖mt‖2
v−1/2

t
, due to different vt . The full proof is given in the appendix.

As before, compared to the bound from [RKK18, Corollary 2], constant β1 not only removes

the middle term of [RKK18, Corollary 2] but improves the last term of the bound by (1−β1)2.

2.2.5 SADAM

We know that ADAGRAD obtains logarithmic regret [DHS10], when the loss functions are µ-

strongly convex. A variant of ADAMNC for this setting is proposed in [WLC+20] and is shown

to obtain logarithmic regret when β1 decreases linearly to 0 [WLC+20, Theorem 1].

Algorithm 2.3 SADAM [WLC+20]

1: Input: x1 ∈K, αt = α
t , α> 0, β1 < 1, m0 = 0, ε≥ 0, β2t = 1−1/t .

2: for t = 1,2. . . do
3: g t ∈ ∂ ft (xt )
4: mt =β1mt−1 + (1−β1)g t

5: vt =β2t vt−1 + (1−β2t )g 2
t

6: v̂t = vt + ε1
t

7: xt+1 =P v̂t
K (xt −αt v̂−1

t mt )
8: end for

18
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Similar to AMSGRAD and ADAMNC, our new technique applies to SADAM to show logarithmic

regret with a constant β1 under the same assumptions as [WLC+20].

Theorem 2.6. Let Assumption 2.1 hold and ft be µ-strongly convex, ∀t . Then, if β1 < 1, ε> 0,

and α≥ G2

µ , SADAM has the regret

R(T ) ≤ β1dGD

1−β1
+ α

1−β1

d∑
i=1

log

(∑T
t=1(g (i )

t )2

ε
+1

)
.

Consistent with the standard literature of OGD [HAK07], to obtain the logarithmic regret, first

step sizeα has a lower bound that depends onµ. Compared with the requirement of [WLC+20]

for α≥ G2

µ(1−β1) , our requirement is strictly milder as 1−β1 ≤ 1 and in practice since β1 is near

1, it is much milder. Our bound is also strictly better than [WLC+20]. Moreover, we remove a

factor of 1
(1−β1)2 from the last term of the bound, compared to [WLC+20, Theorem 1].

2.3 Weakly convex optimization

Problem setup. We will prove the convergence of AMSGRAD for solving the problem

min
x∈K

{
f (x) = Eξ

[
f (x;ξ)

]}
, (2.5)

where f : Rd →R is ρ-weakly convex, K is closed convex, ξ is a r.v. following a fixed unknown

distribution. Problem (2.5) generalizes the previous analyses when f is L-smooth, as this

implies L-weak convexity, and K = Rd . However, there are many applications when K 6=
Rd [VPG19, MNSF17, MMS+18] or when f is not L- smooth [DD19, Section 2.1],[DR18, DP19].

Constrained stochastic minimization with nonconvexity presents challenges not met in the

convex setting [GLZ16, CLX+19]. In particular, until the recent work [DD19], even for SGD,

increasing mini-batch sizes were required for convergence in constrained nonconvex optimiza-

tion. To analyze AMSGRAD for solving (2.5), we build on the analysis framework of [DD19].

We show that AMSGrad achieves O(log(T )/
p

T ) rate for near-stationarity (see (2.8)) for solv-

ing (2.5). Key specifications for this result are the following:

◦ We can use a mini-batch size of 1.

◦ We use constant parameters β1,β2 used in practice [KB15, RKK18, CLSH19, AMMC20].

◦ We do not assume boundedness of the domain X .

We particularize our results for constrained optimization with L-smooth objectives and for a

variant of RMSprop. Comparison of our results with state-of-the-art is given in Table 2.1.

Finally, in a numerical experiment for robust phase retrieval, we show that AMSGRAD is

empirically more robust to variation of initial step sizes, than SGD and SGD with momentum.
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Examples of weakly convex problems. The class of problems we consider in this chap-

ter include constrained problems with L-smooth objectives which are, for example, studied

in [CLX+19] in the context of adversarial attacks. Other important examples with weak con-

vexity are composite objectives h(c(x)), where h is a convex Lipschitz continuous function

and c is a smooth map with Lipschitz continuous Jacobian. Concrete examples of weakly

convex problems are listed in [DD19, Section 2.1], which include robust phase retrieval, sparse

dictionary learning, Conditional Value-at-Risk, to name a few.

Notation. Due to nonconvexity, we cannot use standard definition of subgradients to

form a global under-estimator. Regular subdifferential, denoted as ∂ f , for nonconvex func-

tions [RW09, Ch. 8] is defined as the set of vectors q ∈ Rd such that, ∀x, y ∈ Rd , q ∈ ∂ f (x) if

f (y) ≥ f (x)+〈y −x, q〉+o(‖y −x‖), as y → x. (2.6)

When f is convex, this reduces to standard definition of a subdifferential and when f is

differentiable, this set coincides with {∇ f (x)}.

Given random iterates x1, . . . , xt , we denote the filtration generated by these realizations as

Ft =σ(x1, . . . , xt ), and the corresponding conditional expectation as Et [·] = E[·|Ft ].

Assumption 2.2.

• f : Rd →R is ρ-weakly convex with respect to norm ‖ ·‖.

• The set K⊆Rd is convex and closed.

• There exists g t such that E[g t ] ∈ ∂ f (xt ,ξt ) and ‖g t‖∞ ≤G ,∀t .

• f is lower bounded: f ? ≤ f (x),∀x ∈K.

Remark 2.7. We note that when f is ρ-weakly convex w.r.t. ‖ ·‖, then it is ρp
ε

-weakly convex

w.r.t. ‖ ·‖v̂1/2
t

, ∀t , since v̂ (i )
t ≥ ε> 0 (see Algorithm 2.1). We denote ρ̂ = ρp

ε
.

It is easy to verify this remark by noticing that x 7→ f (x)+ ρ
2 ‖x‖2 is convex and ρ̂

2 ‖x‖2
v̂1/2

t
≥ ρ

2 ‖x‖2.

A few remarks are in order for Assumption 2.2. First, we do not require boundedness of

the domain K. Second, weak convexity assumption is weaker than smoothness assumption

on f and the assumption of bounded gradients is standard [CZT+20, CLSH19, DBBU20]. In

principle, it is possible to relax the bounded gradient assumption to the weaker requirement

E‖g t‖2 ≤G as in [ZSJ+19, Remark 6. (ii)] with a slightly worse and complicated convergence

rate. For simplicity, we use Assumption 2.2.

Algorithm. We analyze AMSGRAD (see Algorithm 2.1) proposed in [RKK18]. As standard

in stochastic nonconvex optimization, we output a randomly selected iterate [DD19, GL13,

GLZ16]. We next define the composite objective

ϕ(x) = f (x)+δK(x).
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For nonsmooth problems, the standard stationarity measures such as the norm of (sub)gradients

are no longer applicable, see [DD19, MJ20] and [DP19, Section 4]. This motivates the following

definitions that, as we show below, relate to a relaxed form of stationarity. Based on ϕ and a

parameter ρ̄ > 0, we define the proximal point of xt and the Moreau envelope

x̂t = prox
v̂1/2

t
ϕ/ρ̄(xt ) = argmin

y

{
ϕ(y)+ ρ̄

2
‖y −xt‖2

v̂1/2
t

}
(2.7)

ϕt
1/ρ̄(xt ) = min

y

{
ϕ(y)+ ρ̄

2
‖y −xt‖2

v̂1/2
t

}
.

We compare the definitions with that of [DD19]. Due to the use of variable metric v̂t in

adaptive methods, we have a time dependent Moreau envelope, where the corresponding

vector v̂t is used for defining the norm. Important considerations for these quantities are

the uniqueness of x̂t and the smoothness of ϕt
1/ρ̄ . As we see now, choice of ρ̄ is critical for

ensuring these. In light of Remark 2.7, selecting ρ̄ > ρ̂ = ρp
ε

, and by using similar arguments

as [DD19, Lemma 2.2], it follows x̂t is unique and ϕt
1/ρ̄ is smooth with the gradient

∇ϕt
1/ρ̄(xt ) = ρ̄v̂1/2

t (xt − x̂t ).

Near stationarity. Near-stationarity conditions follow from the optimality condition of x̂t :

0 ∈ ∂ϕ(x̂t )+ ρ̄v̂1/2
t (x̂t −xt ), where we have used v̂t ,i ≤G2:

‖xt − x̂t‖2
v̂1/2

t
= 1

ρ̄2 ‖∇ϕt
1/ρ̄(xt )‖2

v̂−1/2
t

dist2(0,∂ϕ(x̂t )) ≤G‖∇ϕt
1/ρ̄(xt )‖2

v̂−1/2
t

ϕ(x̂t ) ≤ϕ(xt ).

(2.8)

Consistent with previous literature for weakly convex optimization [DD19, MJ20], we state the

guarantees in terms of the norm of the gradient of Moreau envelope. Given (2.8), this means

that xt is near stationary: it is close to its proximal point x̂t and x̂t is approximately stationary.

2.3.1 Convergence

We start with our main theorem that shows that the norm of the gradient of Moreau envelope

converges to 0 at the claimed rate, resulting in near-stationarity of xt∗ , as in (2.8).

Theorem 2.8. Let Assumption 2.2 hold. Let β1 < 1, β2 < 1, γ = β2
1

β2
< 1, ρ̄ = 2ρ̂, ε > 0 and t∗

selected randomly from [T ]. For, xt∗ as output of Algorithm 2.1, it follows that

E‖∇ϕt∗
1/ρ̄(xt∗)‖2

v̂−1/2
t∗

≤ 2dG

α
p
εT (1−β1)

[
C1 + (1+ logT )C2 +C3

]
,

where C1 = 8ραG + 1
dG

(
ϕ1

1/ρ̄(x1)− f ?
)
, C2 = 2ρp

(1−β2)(1−γ)

(
4+ 6Gp

ε

)
, C3 = 8G

ρ

∑d
i=1E(v̂ (i )

T+1)1/2.

The bound in Theorem 2.8 has complicated constants as it is usual for adaptive algorithms
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Chapter 2. Convergence of adaptive gradient algorithms for nonsmooth problems

in nonconvex case [CLSH19, CZT+20]. These constants are slightly simplified and the proof

of Theorem 2.8 in Section 2.5.4 includes the non-simplified version. Next, we explain and

interpret the bound in terms of dependence to key parameters.

Discussion on Theorem 2.8 In the context of near-stationarity (2.8), Theorem 2.8 states that

to have xt∗ such that ‖∇ϕt∗
1/ρ̄(xt∗)‖v̂−1/2

t
≤ ε, we require Õ(ε4) iterations. This matches the

known complexities for adaptive methods in unconstrained smooth stochastic optimiza-

tion [AMMC20, DBBU20, WWB19, ZSJ+18, CLSH19, CZT+20, LO19, ZSJ+19], and SGD-type

methods in weakly convex optimization [MJ20, DD19].

Next remark is about the metric of the norm used for the gradient of Moreau envelope in The-

orem 2.8. We then discuss the dependence of our bound w.r.t. important quantities.

Remark 2.9. By (2.8), one has ‖∇ϕt∗
1/ρ̄(xt∗)‖2

v̂−1/2
t∗

= ρ̄2‖xt∗ − x̂t∗‖2
v̂1/2

t∗
. Next, ‖xt∗ − x̂t∗‖2

v̂1/2
t∗

≥
p
ε‖xt∗−x̂t∗‖2 as v̂t ,i ≥ ε. It also holds that v̂ (i )

t ≤G2. Therefore, one can convert our guarantees

to ‖xt∗ − x̂t∗‖2 or ‖∇ϕt∗(xt∗)‖ by multiplying the right hand side by appropriate quantities

depending on δ or G . We leave the result with the metric, as δ and G are the worst case bounds.

Knowledge of ρ. To run the algorithm, one does not need to know the weak convexity

parameter ρ. The parameters ρ̄ and ρ̂ are merely for analysis purposes [DDKL20, MJ20], and

the convergence rate holds for any choice of step size αt , independent of ρ.

Dependence w.r.t. β1. Comparing with the previous work, the scaling of our bound in terms of

β1 is (1−β1)−1 matching the dependence for the unconstrained setting [AMMC20, DBBU20].

Dependence w.r.t. d . Standard dependence in the convergence rates of Adam-type algorithms

for unconstrained case is d/
p

T [AMMC20, DBBU20].1 Even though in Theorem 2.8, C3 has

worst case dependence d 2, this is merely due to assumptions. The main reason is that we do

not assume boundedness of the sequence xt , instead we prove the necessary result for the

analysis in Lemma 2.10. However, this result gives a bound for ‖xt − x̂t‖, which is naturally

dimension dependent. We used this bound in (2.45), where we need to bound ‖xt − x̂t‖∞.

In particular, if we had assumed a bound for ‖xt − x̂t‖∞, then in (2.45) we could have used it

instead of Lemma 2.10 to have standard d/
p

T in C3. Boundedness assumption also would

remove a factor of 1p
ε

in the bound, as those terms appear in the steps where we avoid

boundedness assumption. However, for generality, we do not assume boundedness.

Dependence w.r.t. ε. Our bound has a polynomial dependence of 1/ε similar to [AMMC20,

CZT+20, CLSH19]. In [DBBU20], a more refined technique from [WWB19] is used to have a

logarithmic dependence of 1/ε. This technique, used on the case of smooth unconstrained

problems in these works, did not seem to apply to our setting.

In this section, we will flesh out the main ideas of our proof with three lemmas. The proof

1In [CZT+20] better dependence is obtained by using step sizes in the order of 1p
d

, which we do not consider.
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2.3. Weakly convex optimization

of Theorem 2.8 is then a careful combination of these results and given in Section 2.5.4.

Useful lemmas. We start with a result showing that under Assumption 2.2, the quantity

‖xt − x̂t‖ from (2.8) stays bounded. Third term on RHS in (2.44) arises as a spurious term due

to time-dependent diagonal step sizes, which was not the case in previous works on weakly

convex optimization with scalar step sizes [MJ20]. Next lemma is the main tool for us to avoid

assuming boundedness of X . The proof of this lemma given in Section 2.5.4 combines the

definition of x̂t with weak convexity to reach the result.

Lemma 2.10. Let Assumption 2.2 hold. Let ρ̄ > ρ̂, and v̂t ≥ δ> 0. It follows that

‖xt − x̂t‖2 ≤ D̂2 := 4dG2

ε(ρ̄− ρ̂)2 .

A key aspect in the analysis of adaptive algorithms is the dependence of v̂t and g t that couples

x̂t and g t (see (2.7)), preventing taking expectation of 〈xt − x̂t , g t 〉 that we use for obtaining

the stationarity measure in the proof. Since this was not the case in prior works [DD19, MJ20],

we need a more refined analysis.

Lemma 2.11. Let Assumption 2.2 hold. Let qt = Et [g t ] ∈ ∂ f (xt ), then it follows that

αtEt 〈xt − x̂t , g t 〉 ≥αt (ρ̄− ρ̂)Et‖xt − x̂t‖2
v̂1/2

t
− (αt−1 −αt )

p
dD̂G − ρ̄− ρ̂

4ρ̄
Et‖x̂t − x̂t−1‖2

v̂1/2
t−1

− αt−1

2
Et‖mt−1‖2

v̂−1/2
t−1

−
(

1

2
+ ρ̄

ρ̄− ρ̂
)
α2

t−1p
ε
Et‖g t‖2.

Interpreting Lemma 2.11. We review the terms in this bound to gain some intuition. The first

term in the RHS is the stationarity measure (see (2.8)), second term will sum to a constant,

fourth and fifth terms will sum to log(T ) by Lemma 2.12. Handling the third term in RHS is

not as obvious, but we can show that we can cancel it using the contribution from another

part of the analysis that we detail in the full proof (see (2.44)).

One critical issue for Adam-type algorithms is to obtain results with constant β1 parameter.

As we show in Section 2.2, Lemma 2.1 is critical for this. Without Lemma 2.1, we would require

decreasing β1, especially for constrained problems, which we would like to avoid.

Next lemma is a standard estimation used for the analysis of Adam-based methods, since [KB15].

We used such estimations for Section 2.2 (see Lemma 2.15). As mentioned before, we get a

tighter bound than previous works, due to using a constant β1. In words, we bound the sum of

the norms of first moment vectors multiplied by the step size.

Lemma 2.12. Let β1 < 1, β2 < 1, γ= β2
1

β2
< 1, then it holds that

T∑
t=1

α2
t ‖mt‖2

v̂−1/2
t

≤ (1−β1)α2√
(1−β2)(1−γ)

dG(1+ logT ).
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Chapter 2. Convergence of adaptive gradient algorithms for nonsmooth problems

Figure 2.1 – left to right: κ= {1,10,100}. Number of epochs to reach f (x)− f ? ≤ 0.1 vs. initial step size2.
Each experiment is run 50 times, lines show the median and shaded areas cover between 20th and 80th
percentiles. We denote SGD with momentum by SHB.

2.3.2 A numerical experiment

This section illustrates the potential advantages of adaptive algorithms, in particular AMSGrad,

for solving a prototypical setting of a weakly convex problem, compared to SGD and SGD

with momentum [MJ20]. As popular in the literature of weakly convex stochastic optimiza-

tion [MJ20, DG19, DDKL20], we compare the algorithms in terms of their robustness to initial

step sizes. “Robustness to tuning” of algorithms is also investigated in the context of deep

learning in the literature and the advantage of adaptive algorithms such as Adam/AMSGrad is

observed [SMV+20, CSN+19].

We solve the robust phase retrieval problem [EM14, DDP20, DR19],

min
x∈Rd

1

n

n∑
i=1

|〈ai , x〉2 −bi |,

where A = [a1, . . . , an]> ∈ Rn×d , n = 300, d = 50. Weak convexity of this problem is well-

known [DD19, DDP20]. We recall the setup from [MJ20] that considered SGD with momentum

for solving this problem. The data is generated as A =QD , with a standard normal distributed

Q ∈Rn×d and D = linspace(1/κ,1,d), where κ≥ 1 controls the conditioning. We generate x?

as a standard normal random vector with unit norm. Then, b = Ax?+δη where elements

of η ∈ Rn have distribution N (0,25) and δ = diag(δ1, . . . ,δd ) is such that |{i∈[n]: δi=1}|
n = 0.2,

meaning that 20% of the observations are corrupted.

With this setup, it is proven in [DDP20, Lemma B.12] that only solutions of the problem are

{x?,−x?}. Therefore, for the algorithms, we will use f (xk )− f (x?) ≤ ε as the stopping criterion.

We run stochastic subgradient method (SGD) [DD19], momentum SGD (SHB) [MJ20] and

AMSGrad that we analyzed. For all algorithms, the step size is chosen as αk = α0p
k

. We varied

the initial step size2 between 0.01 and 10 for all algorithms, and we plotted the number of

epochs to reach f (x)− f (x?) ≤ 0.1. In terms of other parameters, we use both β = 0.1 and

2We make the “effective initial step sizes” of algorithms equal. In particular we pick αSGD
0 = αMSGD

0 =
αAMS

0

β2

√
maxi (g 2

1,i )
, since the initial step size of AMSGrad is α0√

v̂2
1

.
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β= 0.01 for SHB, as recommended in [MJ20] and β1 =β2 = 0.99 as popular, for AMSGrad.

We present the results in Figure 2.1 for varying values of κ= {1,10,100}, where each setup is

run for 50 times, medians are drawn as lines and the region between 20th and 80th percentiles

is shaded. [MJ20] observed that SHB improves the robustness of SGD to initial step sizes.

We observe in Figure 2.1 that AMSGrad shows a more robust behavior compared to both

algorithms. Our observations support the potential of AMSGrad and adaptive methods for

weakly convex optimization. Moreover, our findings about robustness of adaptive algorithms

to tuning is consistent with the findings from deep learning literature [SMV+20, CSN+19].

2.4 Related work

Convex world. AMSGRAD and ADAMNC were proposed by [RKK18] to fix the nonconvergence

issue for ADAM [KB15]. However, as the proof template of [RKK18] follows very closely the

proof of [KB15], the requirement for β1 → 0 remains in all the regret guarantees of these

algorithms. In particular, as noted by [RKK18, Corollary 1, 2], a schedule of β1t = β1λ
t−1 is

needed for obtaining optimal regret. [RKK18] also noted that regret bounds of the same order

can be obtained by setting β1t = β1/t . On the other hand, in the numerical experiments, a

constant value β1t =β1 is used consistent with the huge literature following [KB15].

Following [RKK18], there has been a surge of interest in proposing new variants of ADAM with

good practical properties; to name a few, PADAM by [CZT+20], ADABOUND and AMSBOUND

by [LXL19, Sav19], NOSTALGIC ADAM by [HWD19]. As the regret analyses of these methods

follow very closely the analysis of [RKK18], the resulting bounds inherited the same short-

comings explained in the previous paragraph. The experimental results reported on these

algorithms use a constant value of β1 in practice in order to obtain better performance.

Similar issues are present in other problem settings. For strongly convex setting, [WLC+20]

proposed SADAM as a variant of ADAMNC, which exploits strong convexity to obtain O(
logT

)
regret. SADAMwas shown to exhibit favorable practical performance in the experimental

results of [WLC+20]. However, the same discrepancy exists as previous ADAM variants: a

linearly decreasing β1t is required in theory but a constant β1t =β1 is used in practice.

One work that tried to address this issue is that of [FK19], where the authors focused on OCO

with strongly convex loss functions and derived an O(
p

T ) regret bound with a constant value

of β1 ≤ µα
1+µα , where µ is the strong convexity constant and α is the step size that is set as

α1/
p

T . [FK19, Theorem 2]. However, this result is not satisfactory, since the obtained bound

for β1 is weak: both strong convexity µ and the step size α1p
T

are small. This does not allow for

the standard choices of β1 ∈ (0.9,0.99) and the regret is suboptimal with strong convexity.

Moreover, a quick look into the proof of [FK19, Theorem 2] reveals that the proof in fact follows

the same lines as [RKK18] with the difference of using the contribution of strong convexity

to get rid of the spurious terms that require β1 → 0. Therefore, it is not surprising that the
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Chapter 2. Convergence of adaptive gradient algorithms for nonsmooth problems

theoretical bound for β1 depends on µ and α and can only take values close to 0. Second,

in addition to the standard Assumption 2.1, [FK19] also assumes strong convexity, which is

a quite stringent assumption by itself. In contrast, our approach does not follow the lines

of [RKK18], but is an alternative way that does not encounter the same roadblocks.

Nonconvex world. When convexity is removed, the standard setting in which the algo-

rithms are analyzed is stochastic optimization with a smooth loss function and no con-

straints [CLSH19, ZTY+18, ZSJ+19]. As a result, these algorithms, compared to the convex

counterparts, do not perform projections in the update step of xt+1 (cf., Algorithm 2.1). The

standard results bound the minimum gradient norm across all iterations.

An interesting phenomenon in this line of work is that a constant β1 < 1 is permitted for

the theoretical results, which may seem like weakening our claims. However, it is worth

noting that these results do not imply a guarantee for regret in OCO. Adding the convexity

assumption to these analyses for unconstrained, smooth stochastic optimization, does not

give a guarantee in the objective value, unless more stringent Polyak-Lojasiewicz or strong

convexity requirements are added in the mix.

Moreover, in the OCO setting that we analyze, loss functions are nonsmooth, and the algorithm

performs projections to the constraint set (which as we see is the main difficulty for constant

β1 analysis). Finally, online optimization includes stochastic optimization as a special case.

Given the difference of assumptions, the analyses in [CLSH19, ZTY+18, ZSJ+19] do not help

obtaining a regret guarantee for standard OCO.

A good example demonstrating this difference on the set of assumptions is the work [CLX+19],

where a variant of AMSGRAD is proposed for zeroth order optimization and it is analyzed in the

convex and nonconvex settings. Consistent with the previous literature in both, convergence

result for the nonconvex setting allows a constant β1 < 1 [CLX+19, Theorem 1]. However, the

result in the convex setting requires a decreasing schedule β1t = β1

t [CLX+19, Proposition 4].

Moreover, this result applies for the specific case of β1 = 0 which corresponds to a variant

of RMSprop [TH12, RKK18]. More importantly, since its analysis follows the one of [GLZ16],

increasing mini-batch sizes of the order
p

t are required [CLX+19, Theorem 2].

As we highlighted above, the analyses in convex/nonconvex settings follow different paths

and the results or techniques are not transferrable to each other. Thus, our main aim in this

chapter is to bridge the gap in the understanding of regret analysis for OCO and propose a

new analytic framework. As we see in the sequel, our analysis not only gives the first results in

OCO setting, it is also general enough to apply to the nonconvex case to derive guarantees for

constrained problems, generalizing the previous nonconvex analyses [LO19, WWB19, ZSJ+18,

CZT+20, CLSH19, ZSJ+19, DBBU20, BB20].

Weakly convex optimization is well studied with SGD based methods [DR18, DG19, DD19]. A

recent work by [MJ20], considers momentum SGD for solving (2.5). However, this algorithm

(i) does not use momentum with β2 and (ii) uses non-adaptive, scalar, fixed step size: in the
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notation of Algorithm 2.1, v̂t = 1, αt =α/
p

T . These make the algorithm less practical, while

simpler for analysis.

2.5 Proofs

2.5.1 Proofs for Section 2.2.3

Lemma 2.13 (Generalized Hölder inequality, BB61, Chap. 1.18). For x, y, z ∈Rn+ and positive

p, q,r such that 1
p + 1

q + 1
r = 1, we have:

∑n
j=1 x j y j z j ≤ ‖x‖p‖y‖q‖z‖r .

Above lemma is used to obtain a slightly tighter bound for ‖mt‖2
v̂−1/2

t
, than standard analysis.

Lemma 2.14 (Bound for ‖mt‖2
v̂−1/2

t
). Under Assumption 2.1, β1 < 1, β2 < 1, γ = β2

1
β2

< 1, ε > 0,

and the definitions of αt , mt , vt , v̂t in AMSGRAD, it holds that

‖mt‖2
v̂−1/2

t
≤ (1−β1)2√

(1−β2)(1−γ)

d∑
i=1

t∑
j=1

β
t− j
1 |g (i )

j |. (2.9)

Proof. From the definition of mt and vt , it follows that

mt = (1−β1)
t∑

j=1
β

t− j
1 g j , vt = (1−β2)

t∑
j=1

β
t− j
2 g 2

j . (2.10)

Then we have

‖mt‖2
v̂−1/2

t
≤ ‖mt‖2

v−1/2
t

=
d∑

i=1

(m(i )
t )2

(v (i )
t )1/2

=
d∑

i=1

(∑t
j=1(1−β1)β

t− j

1 g (i )
j

)2

√∑t
j=1(1−β2)βt− j

2 (g (i )
j )2

= (1−β1)2√
1−β2

d∑
i=1

(∑t
j=1β

t− j
1 g j ,i

)2

√∑t
j=1β

t− j
2 g 2

j ,i

≤ (1−β1)2√
1−β2

d∑
i=1

[(∑t
j=1(β

t− j
4

2 |g (i )
j | 1

2 )4
) 1

4 (∑t
j=1(β1/2

1 β−1/4
2 )4(t− j )

) 1
4
(∑t

j=1(βt− j
1 |g (i )

j |) 1
2 ·2

) 1
2

]2

√∑t
j=1β

t− j
2 (g (i )

j )2

= (1−β1)2√
1−β2

d∑
i=1

(
t∑

j=1
γt− j

) 1
2 t∑

j=1
β

t− j
1 |g (i )

j | ≤ (1−β1)2√
(1−β2)(1−γ)

d∑
i=1

t∑
j=1

β
t− j
1 |g (i )

j |,

where the first inequality is by (v̂ (i )
t )1/2 ≥ (v (i )

t )1/2, the second one follows from Lemma 2.13

with

x j =β
t− j

4
2 |g (i )

j | 1
2 , y j = (β1β

−1/2
2 )

t− j
2 , z j = (βt− j

1 |g (i )
j |) 1

2 and p = q = 4, r = 2,
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and the third one follows from the sum of geometric series and the assumption γ= β2
1

β2
< 1.

We comment on the possibility of observing many zero gradients in the beginning, causing

vt = 0 until some t , which would cause the appearance of indeterminate form 0
0 in the upper

bound derived above, specifically in
(m(i )

t )2

(v (i )
t )1/2

. For this, we use the convention 0
0 = 0, in which

case the above derivations are always well-defined. For this, we argue as follows: recall first

that v (i )
t = 0 iff g (i )

j = 0 for all j = 1, . . . , t . This being the case, we also get m(i )
t = 0, and hence,

(m(i )
t )2

(v (i )
t )1/2

= 0. In fact, this was done only for convenience, since v̂ (i )
t ≥ ε and we can always exclude

zero terms from ‖mt‖2
v̂−1/2

t
, before using the first line in the above chain of inequalities. �

Lemma 2.15 (Bound for
∑T

t=1αt‖mt‖2
v̂−1/2

t
). Under Assumption 2.1, β1 < 1, β2 < 1, γ= β2

1
β2

< 1,

ε> 0, and the definitions of αt , mt , vt , v̂t in AMSGRAD, we have

T∑
t=1

αt‖mt‖2
v̂−1/2

t
≤ (1−β1)α

√
1+ logT√

(1−β2)(1−γ)

d∑
i=1

√√√√ T∑
t=1

(g (i )
t )2. (2.11)

Proof. We have

T∑
t=1

αt‖mt‖2
v̂−1/2

t
≤ (1−β1)2√

(1−β2)(1−γ)

d∑
i=1

T∑
t=1

αt

t∑
j=1

β
t− j
1 |g (i )

j | (Equation (2.9))

= (1−β1)2√
(1−β2)(1−γ)

d∑
i=1

T∑
j=1

T∑
t= j

αtβ
t− j
1 |g (i )

j | (Changing order of summation)

≤ (1−β1)√
(1−β2)(1−γ)

d∑
i=1

T∑
j=1

α j |g (i )
j | (

Using
T∑

t= j
αtβ

t− j
1 ≤ α j

1−β1

)

≤ 1−β1√
(1−β2)(1−γ)

d∑
i=1

√√√√ T∑
j=1

α2
j

√√√√ T∑
j=1

(g (i )
j )2 (Cauchy-Schwarz)

≤ (1−β1)α
√

1+ logT√
(1−β2)(1−γ)

d∑
i=1

√√√√ T∑
t=1

(g (i )
t )2

(
Using

T∑
j=1

1

j
≤ 1+ logT

)
. �

We now continue with the proof of Theorem 2.2.

Proof of Theorem 2.2. Let x ∈ argminy∈K
∑T

t=1 ft (y). Then by convexity, we immediately have

R(T ) ≤
T∑

t=1
〈g t , xt −x〉.

Hence, our goal is to bound the latter expression. If we sum the inequality from Lemma 2.1

28



2.5. Proofs

over t = 1, . . . ,T and use the fact that m0 = 0, we obtain

T∑
t=1

〈g t , xt −x〉 = 1

1−β1

(〈mT , xT −x〉−〈m0, x0 −x〉)+〈m0, x0 −x〉+
T−1∑
t=1

〈mt , xt −x〉

+ β1

1−β1

T∑
t=1

〈mt−1, xt−1 −xt 〉

= β1

1−β1
〈mT , xT −x〉+

T∑
t=1

〈mt , xt −x〉+ β1

1−β1

T∑
t=1

〈mt−1, xt−1 −xt 〉. (2.12)

We will separately bound each term in the right-hand side of (2.12) and then combine these

bounds together.

• Bound for
∑T

t=1〈mt , xt −x〉: As x ∈K, by nonexpansiveness, we get

‖xt+1 −x‖2
v̂1/2

t
= ‖P v̂1/2

t
K

(
xt −αt v̂−1/2

t mt
)−x‖2

v̂1/2
t

≤ ‖xt −αt v̂−1/2
t mt −x‖2

v̂1/2
t

= ‖xt −x‖2
v̂1/2

t
−2αt 〈mt , xt −x〉+‖αt v̂−1/2

t mt‖2
v̂1/2

t

= ‖xt −x‖2
v̂1/2

t
−2αt 〈mt , xt −x〉+α2

t ‖mt‖2
v̂−1/2

t
. (2.13)

We rearrange and divide both sides of (2.13) by 2αt to get

〈mt , xt −x〉 ≤ 1

2αt
‖xt −x‖2

v̂1/2
t

− 1

2αt
‖xt+1 −x‖2

v̂1/2
t

+ αt

2
‖mt‖2

v̂−1/2
t

= 1

2αt−1
‖xt −x‖2

v̂1/2
t−1

− 1

2αt
‖xt+1 −x‖2

v̂1/2
t

+ 1

2

d∑
i=1

(
(v̂ (i )

t )1/2

αt
− (v̂ (i )

t−1)1/2

αt−1

)
(x(i )

t −x(i ))2

+ αt

2
‖mt‖2

v̂−1/2
t

≤ 1

2αt−1
‖xt −x‖2

v̂1/2
t−1

− 1

2αt
‖xt+1 −x‖2

v̂1/2
t

+ D2

2

d∑
i=1

(
(v̂ (i )

t )1/2

αt
− (v̂ (i )

t−1)1/2

αt−1

)
+ αt

2
‖mt‖2

v̂−1/2
t

,

(2.14)

where the last inequality is due to the fact that v̂ (i )
t ≥ v̂ (i )

t−1, 1
αt

≥ 1
αt−1

, and the definition of D .2

Summing (2.14) over t = 1, . . .T and using that 1
2α0

‖x1 −x‖2
v̂1/2

0
= 0 yields

T∑
t=1

〈mt , xt −x〉 ≤ D2

2αT

d∑
i=1

(v̂ (i )
T )1/2 + 1

2

T∑
t=1

αt‖mt‖2
v̂−1/2

t
. (2.15)

• Bound for
∑T

t=1〈mt−1, xt−1 −xt 〉: Let us bound the last term in (2.12).

T∑
t=1

〈mt−1, xt−1 −xt 〉 =
T∑

t=2
〈mt−1, xt−1 −xt 〉 =

T−1∑
t=1

〈mt , xt −xt+1〉 (Using m0 = 0)

2Note that for t = 1 we suppose that 1
α0

= 0; this makes the above derivation still valid, as α0 is not used in the
algorithm, and this is only for convenience.
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≤
T−1∑
t=1

‖mt‖v̂−1/2
t

‖xt+1 −xt‖v̂1/2
t

(Hölder inequality)

=
T−1∑
t=1

‖mt‖v̂−1/2
t

∥∥∥P v̂1/2
t

K
(
xt −αt v̂−1/2

t mt
)−P v̂1/2

t
K (xt )

∥∥∥
v̂1/2

t

(Using xt ∈X )

≤
T−1∑
t=1

αt‖mt‖v̂−1/2
t

‖v̂−1/2
t mt‖v̂1/2

t
(Nonexpansiveness)

=
T−1∑
t=1

αt‖mt‖2
v̂−1/2

t
(‖u−1x‖u = ‖x‖u−1 ). (2.16)

At this point, we could use eq. (2.11) to obtain a final bound for
∑T

t=1〈mt−1, xt−1−xt 〉. However,

we postpone it to combine it with the term 〈mT , xT −x〉 in (2.12) to have a shorter expression.

• Bound for 〈mT , xT −x〉: This term is the easiest for estimation:

〈mT , xT −x〉 ≤ ‖mT ‖v̂−1/2
T

‖xT −x‖v̂1/2
T

(Hölder’s inequality)

≤αT ‖mT ‖2
v̂−1/2

T
+ 1

4αT
‖xT −x‖2

v̂1/2
T

(Young’s inequality)

≤αT ‖mT ‖2
v̂−1/2

T
+ D2

4αT

d∑
i=1

(v̂ (i )
T )1/2 (Definition of D) (2.17)

We now have all the ingredients required to bound the right-hand side of (2.12). To that end,

after all substitutions and some straightforward algebra, we obtain

RHS of (2.12) = β1

1−β1

(
〈mT , xT −x〉+

T∑
t=1

〈mt−1, xt−1 −xt 〉
)
+

T∑
t=1

〈mt , xt −x〉

≤ β1

1−β1

(
D2

4αT

d∑
i=1

(v̂ (i )
T )1/2 +

T∑
t=1

αt‖mt‖2
v̂−1/2

t

)
+ D2

2αT

d∑
i=1

(v̂ (i )
T )1/2 + 1

2

T∑
t=1

αt‖mt‖2
v̂−1/2

t

= (2−β1)D2

4αT (1−β1)

d∑
i=1

(v̂ (i )
T )1/2 + 1+β1

2(1−β1)

T∑
t=1

αt‖mt‖2
v̂−1/2

t

≤ D2
p

T

2α(1−β1)

d∑
i=1

(v̂ (i )
T )1/2 + 1

1−β1

T∑
t=1

αt‖mt‖2
v̂−1/2

t

≤ D2
p

T

2α(1−β1)

d∑
i=1

(v̂ (i )
T )1/2 + α

√
1+ logT√

(1−β2)(1−γ)

d∑
i=1

√√√√ T∑
t=1

(g (i )
t )2, (2.18)

where the second inequality follows from the assumption 2−β1

4 ≤ 1
2 , 1+β1

2 ≤ 1, and αT = αp
T

,

and the last follows by Lemma 2.15. �

2.5.2 Proofs for Section 2.2.4

We give analogous results to Lemmas 2.14 and 2.15, which are mostly standard and simplified

thanks to a constant β1.

30



2.5. Proofs

Lemma 2.16 (Bound for ‖mt‖2
v−1/2

t
). Under Assumption 2.1, β1 < 1, ε> 0, and the definitions of

αt , mt , vt in ADAMNC, it holds that

‖mt‖2
v−1/2

t
≤p

t (1−β1)
d∑

i=1

t∑
j=1

β
t− j
1 (g (i )

j )2√∑ j
k=1(g (i )

k )2
.

Proof. Using the expression (2.10) for mt and v (i )
t = 1

t

(∑t
j=1(g (i )

j )2 +ε
)
, we obtain:3

‖mt‖2
v−1/2

t
=

d∑
i=1

(m(i )
t )2

(v (i )
t )1/2

=
d∑

i=1

(∑t
j=1(1−β1)βt− j

1 g (i )
j

)2

√
1
t

(
ε+∑t

k=1(g (i )
k )2

) ≤p
t (1−β1)2

d∑
i=1

(∑t
j=1β

t− j
1 g (i )

j

)2

√∑t
k=1(g (i )

k )2

≤p
t (1−β1)2

d∑
i=1

(∑t
j=1β

t− j
1 (g (i )

j )2
)(∑t

j=1β
t− j
1

)
√∑t

k=1(g (i )
k )2

≤p
t (1−β1)

d∑
i=1

∑t
j=1β

t− j
1 (g (i )

j )2√∑t
k=1(g (i )

k )2

≤p
t (1−β1)

d∑
i=1

t∑
j=1

β
t− j
1 (g (i )

j )2√∑ j
k=1(g (i )

k )2
, (2.19)

where the first inequality is due to ε> 0, second inequality is by Cauchy-Schwarz, the third

one by the sum of geometric series, and the final one is by j ≤ t . �

Lemma 2.17 (Bound for
∑T

t=1αt‖mt‖2
v−1/2

t
). Under Assumption 2.1, β1 < 1, ε > 0, and the

definitions of αt , mt , vt in ADAMNC, it holds that

T∑
t=1

αt‖mt‖2
v−1/2

t
≤ 2α

d∑
i=1

√√√√ T∑
t=1

(g (i )
t )2. (2.20)

Proof. We have, by using Lemma 2.16

T∑
t=1

αt‖mt‖2
v−1/2

t
=

T∑
t=1

αt
p

t (1−β1)
d∑

i=1

t∑
j=1

β
t− j
1 (g (i )

j )2√∑ j
k=1(g (i )

k )2

=α(1−β1)
d∑

i=1

T∑
t=1

t∑
j=1

β
t− j
1 (g (i )

j )2√∑ j
k=1(g (i )

k )2
=α(1−β1)

d∑
i=1

T∑
j=1

T∑
t= j

β
t− j
1 (g (i )

j )2√∑ j
k=1(g (i )

k )2

≤α
d∑

i=1

T∑
j=1

(g (i )
j )2√∑ j

k=1(g (i )
k )2

≤ 2α
d∑

i=1

√√√√ T∑
j=1

(g (i )
j )2,

where the second equality is due to αt = αp
t

, third equality is by changing the order of summa-

tion, first inequality by summation of the geometric series. For the last inequality, we use a

3In the sequel, the same comments about the indeterminate form 0
0 apply here as in Lemma 2.14.
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standard inequality for numerical sequences, see for example [ACBG02, Lemma 3.5]

T∑
j=1

a j√∑ j
k=1 ak

≤ 2

√√√√ T∑
j=1

a j for all a1, . . . , aT ≥ 0. �

Proof of Theorem 2.5. We will follow the proof structure of Theorem 2.2. First, we start from (2.12)

which applies to ADAMNCas the update of mt is the same as AMSGRAD

R(T ) ≤
T∑

t=1
〈g t , xt −x〉 = β1

1−β1
〈mT , xT −x〉+

T∑
t=1

〈mt , xt −x〉

+ β1

1−β1

T∑
t=1

〈mt−1, xt−1 −xt 〉. (2.21)

Then we again bound each term in the right-hand side seperately.

• Bound for
∑T

t=1〈mt , xt −x〉: We proceed similarly to the derivations in (2.13) and (2.14), the

main change being that we now have vt instead of v̂t . We have:

〈mt , xt −x〉 ≤ 1

2αt−1
‖xt −x‖2

v1/2
t−1

− 1

2αt
‖xt+1−x‖2

v1/2
t

+ 1

2

d∑
i=1

(
(v (i )

t )1/2

αt
− (v (i )

t−1)1/2

αt−1

)
(x(i )

t −x(i ))2

+ αt

2
‖mt‖2

v−1/2
t

≤ 1

2αt−1
‖xt −x‖2

v1/2
t−1

− 1

2αt
‖xt+1 −x‖2

v1/2
t

+ D2

2

d∑
i=1

(
(v (i )

t )1/2

αt
− (v (i )

t−1)1/2

αt−1

)
+ αt

2
‖mt‖2

v−1/2
t

,

where the last inequality is due to
(v (i )

t )1/2

αt
≥ (v (i )

t−1)1/2

αt−1
, since by definition v (i )

t = 1
t

∑t
j=1(g (i )

j )2 and

αt = αp
t

. We now proceed to telescope this inequality, assuming as before that 1
α0

= 0. Doing

so, we obtain:
T∑

t=1
〈mt , xt −x〉 ≤ D2

2

d∑
i=1

(v (i )
T )1/2

αT
+ 1

2

T∑
t=1

αt‖mt‖2
v−1/2

t
. (2.22)

• Bounds for 〈mT , xT − x〉 and
∑T

t=1〈mt−1, xt−1 − xt 〉: These bounds will be similar as in the

proof of Theorem 2.2. Again, the only change in calculations in (5.38) and (2.17) is that now

we have vt instead of v̂t

T∑
t=1

〈mt−1, xt−1 −xt 〉 ≤
T−1∑
t=1

αt‖mt‖2
v−1/2

t
, (2.23)

and

〈mT , xT −x〉 ≤αT ‖mT ‖2
v−1/2

T
+ D2

4αT

d∑
i=1

(v (i )
T )1/2. (2.24)

We now combine (2.22), (2.23), and (2.24) in (2.21), estimate using the same steps in (2.18),
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and use the bound for
∑T

t=1αt‖mt‖2
v−1/2

t
from Lemma 2.17 to conclude:

T∑
t=1

〈g t , xt −x〉 = β1

1−β1
〈mT , xT −x〉+

T∑
t=1

〈mt , xt −x〉+ β1

1−β1

T∑
t=1

〈mt−1, xt−1 −xt 〉

≤
(

D2

2
+ β1D2

4(1−β1)

) d∑
i=1

(v (i )
T )1/2

αT
+

(
1

2
+ β1

1−β1

) T∑
t=1

αt‖mt‖2
v−1/2

t

≤ D2
p

T

2α(1−β1)

d∑
i=1

(v (i )
T )1/2 + 2α

1−β1

d∑
i=1

√√√√ T∑
t=1

(g (i )
t )2. �

2.5.3 Proofs for Section 2.2.5

Lemma 2.18 (Bound for ‖mt‖2
v̂−1

t
). Under Assumption 2.1, β1 < 1, ε> 0, and the definitions of

αt , mt , vt , v̂t in SADAM, it holds that

‖mt‖2
v̂−1

t
≤ t (1−β1)

d∑
i=1

t∑
j=1

β
t− j
1 (g (i )

j )2∑ j
k=1(g (i )

k )2 +ε
. (2.25)

Proof. We have

‖mt‖2
v̂−1

t
=

d∑
i=1

(m(i )
t )2

v̂ (i )
t

=
d∑

i=1

(m(i )
t )2

v (i )
t + ε

t

= t (1−β1)2
d∑

i=1

(∑t
j=1β

t− j
1 g (i )

j

)2

∑t
k=1(g (i )

k )2 +ε

≤ t (1−β1)
d∑

i=1

∑t
j=1β

t− j
1 (g (i )

j )2∑t
k=1(g (i )

k )2 +ε
≤ t (1−β1)

d∑
i=1

t∑
j=1

β
t− j
1 (g (i )

j )2∑ j
k=1(g (i )

k )2 +ε
, (2.26)

where we used v̂ (i )
t = 1

t

∑t
k=1(g (i )

k )2 + ε
t and expression for mt from (2.10) in the first line. First

inequality is by Cauchy-Schwarz and sum of geometric series; the last inequality is by j ≤ t . �

Lemma 2.19 (Bound for
∑T

t=1αt‖mt‖2
v̂−1

t
). Under Assumption 2.1, β1 < 1, ε> 0, and the defini-

tions of αt , mt , vt , v̂t in SADAM, it holds that

T∑
t=1

αt‖mt‖2
v̂−1

t
≤α

d∑
i=1

log

(∑T
t=1(g (i )

t )2

ε
+1

)
. (2.27)

Proof. We have, by Lemma 2.18

T∑
t=1

αt‖mt‖2
v̂−1

t
=

T∑
t=1

αt t (1−β)
d∑

i=1

t∑
j=1

β
t− j
1 (g (i )

j )2∑ j
k=1(g (i )

k )2 +ε

=α(1−β)
d∑

i=1

T∑
t=1

t∑
j=1

β
t− j
1 (g (i )

j )2∑ j
k=1(g (i )

k )2 +ε
=α(1−β)

d∑
i=1

T∑
j=1

T∑
t= j

β
t− j
1 (g (i )

j )2∑ j
k=1(g (i )

k )2 +ε
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≤α
d∑

i=1

T∑
j=1

(g (i )
j )2∑ j

k=1(g (i )
k )2 +ε

≤α
d∑

i=1
log

(∑T
t=1(g (i )

t )2

ε
+1

)
, (2.28)

where the second equality is by the definition of αt and the third equality is by changing the

order of summation. First inequality is by the sum of geometric series and the last inequality

is by

T∑
j=1

a j∑ j
k=1 ak +ε

≤ log

(∑T
j=1 a j

ε
+1

)
, (2.29)

for nonnegative a1, . . . , aT and ε> 0 – see e.g., [DHS10, Lemma 12],[HAK07, Lemma 11]. �

Proof of Theorem 2.6. Let x = argminy∈K
∑T

t=1 ft (y). In Theorem 2.2 we used convexity only

once: going from R(T ) to
∑T

t=1〈g t , xt − x〉. Instead, strong convexity gives us ft (x) ≥ ft (xt )+
〈g t , x −xt 〉+ µ

2 ‖xt −x‖2, which combined for all t yields

R(T ) =
T∑

t=1
ft (xt )− ft (x) ≤

T∑
t=1

〈g t , xt −x〉− µ

2

T∑
t=1

‖xt −x‖2. (2.30)

We want to estimate
∑T

t=1〈g t , xt −x〉. Similarly to (2.12), we have

T∑
t=1

〈g t , xt −x〉 ≤ β1

1−β1
〈mT , xT −x〉+

T∑
t=1

〈mt , xt −x〉+ β1

1−β1

T∑
t=1

〈mt−1, xt−1 −xt 〉. (2.31)

• Bound for
∑T

t=1〈mt , xt −x〉: We proceed similar to (2.13) and (2.14). The only change is that

now we have v̂t instead of v̂1/2
t

〈mt , xt −x〉 ≤ 1

2αt−1
‖xt −x‖2

v̂t−1
− 1

2αt
‖xt+1 −x‖2

v̂t
+ 1

2

d∑
i=1

(
v̂ (i )

t

αt
− v̂ (i )

t−1

αt−1

)
(x(i )

t −x(i ))2

+ αt

2
‖mt‖2

v̂−1
t

.

We sum the above inequality and use the fact that 1
α0
‖x1 −x‖2

v̂0
= 0 to obtain

T∑
t=1

〈mt , xt −x〉 ≤
T∑

t=1

d∑
i=1

(
v̂ (i )

t

2αt
− v̂ (i )

t−1

2αt−1

)
(x(i )

t −x(i ))2 +
T∑

t=1

αt

2
‖mt‖2

v̂−1
t

. (2.32)

• Bound for
∑T

t=1〈mt−1, xt−1 −xt 〉: This bound will be similar to the one we derived for Theo-

rem 2.2. The main change in the calculations of (5.38) is that we will have v̂t instead of v̂1/2
t for

using Hölder’s inequality and nonexpansiveness

T∑
t=1

〈mt−1, xt−1 −xt 〉 ≤
T−1∑
t=1

αt‖mt‖2
v̂−1

t
≤

T∑
t=1

αt‖mt‖2
v̂−1

t
. (2.33)
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We collect these estimations in (2.31) and (2.30) to derive

R(T ) =
T∑

t=1
ft (xt )− ft (x) ≤ β1

1−β1
〈mT , xT −x〉+ 1+β1

2(1−β1)

T∑
t=1

αt‖mt‖2
v̂−1

t

+
T∑

t=1

d∑
i=1

(
v̂ (i )

t

2αt
− v̂ (i )

t−1

2αt−1

)
(x(i )

t −x(i ))2 −
T∑

t=1

d∑
i=1

µ

2
(x(i )

t −x(i ))2. (2.34)

We collect the last two terms and use the assumption on the step sizeα≥ G2

µ and the definition

v̂ (i )
t = 1

t

∑t
j=1(g (i )

j )2 + ε
t to derive

v̂ (i )
t

2αt
− v̂ (i )

t−1

2αt−1
− µ

2
= (g (i )

t )2

2α
− µ

2
≤ 0.

Thus, (2.34) becomes

T∑
t=1

ft (xt )− ft (x) ≤ β1

1−β1
〈mT , xT −x〉+ 1+β1

2(1−β1)

T∑
t=1

αt‖mt‖2
v̂−1

t
.

We finalize by using 1+β1

2 ≤ 1, Lemma 2.19 for the last term, and ‖mt‖∞ ≤G , ‖xt −x‖∞ ≤ D for

the first term

T∑
t=1

ft (xt )− ft (x) ≤ β1dGD

1−β1
+ α

1−β1

d∑
i=1

log

(∑T
t=1(g (i )

t )2

ε
+1

)
. �

2.5.4 Proofs for Section 2.3

Proof of Lemma 2.10. By the definition of x̂t in (2.7), it follows that

ϕ(x̂t )+ ρ̄

2
‖xt − x̂t‖2

v̂1/2
t

≤ϕ(xt )+ ρ̄

2
‖xt −xt‖2

v̂1/2
t

=ϕ(xt ).

Next, we use ρ̂-weak convexity of ϕ with respect to norm ‖ ·‖v̂1/2
t

from Remark 2.7, and the fact

that xt , x̂t ∈X to get for any vector qt such that qt ∈ ∂ f (xt ),

ϕ(xt )−ϕ(x̂t ) ≤ 〈xt − x̂t , qt 〉+ ρ̂

2
‖xt − x̂t‖2

v̂1/2
t

.

We sum two inequalities and apply Cauchy-Schwarz inequality

ρ̄− ρ̂
2

‖xt − x̂t‖2
v̂1/2

t
≤ 〈xt − x̂t , g t 〉 ≤ ‖qt‖v̂−1/2

t
‖xt − x̂t‖v̂1/2

t
,

which yields
ρ̄− ρ̂

2
‖xt − x̂t‖v̂1/2

t
≤ ‖qt‖v̂−1/2

t
.
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As v̂t ,i ≥ ε and for qt such that Eg t = qt , ‖qt‖2 = ‖Eg t‖2 ≤ E‖g t‖2 ≤ dG2 by Assumption 2.2, we

have

‖qt‖2
v̂−1/2

t
≤ dG2

p
ε

and the final bound follows immediately. �

Proof of Lemma 2.11. We first decompose the LHS

αt 〈xt − x̂t , g t 〉 =αt 〈xt − x̂t , qt 〉+αt 〈xt − x̂t , g t −qt 〉
=αt 〈xt − x̂t , qt 〉+〈αt (xt − x̂t )−αt−1(xt−1 − x̂t−1), g t −qt 〉
+〈αt−1(xt−1 − x̂t−1), g t −qt 〉 (2.35)

In this bound, the last term will be 0 after taking conditional expectation Et as x̂t−1 depends

on v̂t−1, which, in turn, depends only on g1, . . . , g t−1, thus, independent of g t .

For the first term in (2.35), we recall that x̂t ∈ K, xt ∈ K, qt ∈ ∂ f (xt ). Then we use ρ̂-weak

convexity of f with respect to ‖ ·‖v̂1/2
t

,

〈xt − x̂t , qt 〉 ≥ f (xt )− f (x̂t )− ρ̂

2
‖xt − x̂t‖2

v̂1/2
t

=
(

f (xt )+ ρ̄

2
‖xt −xt‖2

v̂1/2
t

)
−

(
f (x̂t )+ ρ̄

2
‖xt − x̂t‖2

v̂1/2
t

)
+ ρ̄− ρ̂

2
‖xt − x̂t‖2

v̂1/2
t

≥ (ρ̄− ρ̂)‖xt − x̂t‖2
v̂1/2

t
, (2.36)

where the last step is due to x 7→ f (x)+δK(x)+ ρ̄
2 ‖x −xt‖2

v̂1/2
t

being ρ̄− ρ̂ strongly convex w.r.t.

‖ ·‖v̂1/2
t

, with the minimizer x̂t , and xt , x̂t ∈K.

Next, we need to lower bound the second term in (2.35). For this we upper bound the term

〈αt−1(xt−1 − x̂t−1)−αt (xt − x̂t ), g t −qt 〉 = (αt−1 −αt )〈xt − x̂t , g t −qt 〉
+αt−1〈xt−1 −xt , g t −qt 〉+αt−1〈x̂t − x̂t−1, g t −qt 〉. (2.37)

We proceed with bounding the first term in the RHS of (2.37), using αt ≤αt−1,

Et (αt−1 −αt )〈xt − x̂t , g t −qt 〉 ≤ (αt−1 −αt )Et‖xt − x̂t‖‖g t −qt‖
≤ (αt−1 −αt )D̂Et‖g t −qt‖
≤ (αt−1 −αt )D̂

√
Et‖g t‖2

≤ (αt−1 −αt )D̂
p

dG ,

where the second inequality follows from Lemma 2.10 and third inequality follows from

Jensen’s inequality and Et‖g t −Et g t‖2 ≤ Et‖g t‖2.

For the second term in the RHS of (2.37) we use Cauchy-Schwarz and Young’s inequalities and
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nonexpansiveness of weighted projection to get

Etαt−1〈xt−1 −xt , g t −qt 〉 ≤ 1

2
Et‖xt −xt−1‖2

v̂1/2
t−1

+ α2
t−1

2
Et‖g t −qt‖2

v̂−1/2
t−1

≤ α2
t−1

2
Et‖mt−1‖2

v̂−1/2
t−1

+ α2
t−1

2
p
ε
Et‖g t −qt‖2

≤ α2
t−1

2
Et‖mt−1‖2

v̂−1/2
t−1

+ α2
t−1

2
p
ε
Et‖g t‖2.

Similarly, we estimate the third term in the RHS of (2.37)

Etαt−1〈x̂t − x̂t−1, g t −qt 〉 ≤ ρ̄− ρ̂
4ρ̄

‖x̂t − x̂t−1‖2
v̂1/2

t
+ α2

t−1ρ̄

ρ̄− ρ̂ Et‖g t −qt‖2
v̂−1/2

t

≤ ρ̄− ρ̂
4ρ̄

‖x̂t − x̂t−1‖2
v̂1/2

t
+ α2

t−1ρ̄

(ρ̄− ρ̂)
p
ε
Et‖g t‖2.

Combining all the bounds gives the result. �

Proof of Lemma 2.12. We start with the result of Lemma 2.14

‖mt‖2
v̂−1/2

t
≤ (1−β1)2√

(1−β2)(1−γ)

d∑
i=1

t∑
j=1

β
t− j
1 |g j ,i |.

We will proceed similar to Lemma 2.15 with the only change of having α2
t instead of αt

T∑
t=1

α2
t ‖mt‖2

v̂−1/2
t

≤ (1−β1)2√
(1−β2)(1−γ)

d∑
i=1

T∑
t=1

α2
t

t∑
j=1

β
t− j
1 |g j ,i |

= (1−β1)2√
(1−β2)(1−γ)

d∑
i=1

T∑
j=1

T∑
t= j

α2
tβ

t− j
1 |g j ,i |

≤ 1−β1√
(1−β2)(1−γ)

d∑
i=1

T∑
j=1

α2
j |g j ,i |

≤ 1−β1√
(1−β2)(1−γ)

α2dG(1+ logT ). �

Theorem 2.8. Let Assumption 2.2 hold. Let β1 < 1, β2 < 1, γ = β2
1

β2
< 1, ρ̄ = 2ρ̂, ε > 0 and t∗

selected randomly from [T ]. Then, for iterate xt∗ generated by Algorithm 2.1, it follows that

E‖∇ϕt∗
1/ρ̄(xt∗)‖2

v̂−1/2
t∗

≤ 2

α
p

T

[
C1 + (1+ logT )C2 +C3

]
,

with C1 = 4ρβ1αp
ε(1−β1)

p
dD̂G+ϕ1

1/ρ̄(x1)− f ?, C2 = 5ρ
ε dG2+ 2ρp

ε

(
2Gp
ε
+ β1

1−β1
+ 2β2

1
(1−β1)2

)
1−β1p

(1−β2)(1−γ)
dG ,

C3 = ρ̄D̂2 ∑d
i=1E(̂v (i )

T+1)1/2, and D̂ := 2
p

dG
ρ .
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Proof. We sum the result of Lemma 2.1 by using At instead of xt − x, and use A1 = A0. with

m0 = 0. We note that we have At = ρ̄αt (xt − x̂t ), for t ≥ 1.

T∑
t=1

〈At , g t 〉 = β1

1−β1
〈AT ,mT 〉+

T∑
t=1

〈At ,mt 〉+ β1

1−β1

T−1∑
t=1

〈At − At+1,mt 〉. (2.38)

After plugging in the value of At , (2.38) becomes

T∑
t=1

ρ̄αt 〈xt − x̂t , g t 〉 ≤ β1ρ̄αT

1−β1
〈xT − x̂T ,mT 〉+

T∑
t=1

ρ̄αt 〈xt − x̂t ,mt 〉

+ β1ρ̄

1−β1

T−1∑
t=1

〈αt (xt − x̂t )−αt+1(xt+1 − x̂t+1),mt 〉. (2.39)

LHS of this bound is suitable for applying Lemma 2.11 to obtain the stationarity measure. We

have to estimate the three terms on the RHS.

• Bound for β1ρ̄αT

1−β1
〈xT − x̂T ,mT 〉 in (2.39): We bound this term by Cauchy-Schwarz inequal-

ity, Lemma 2.10, and ‖mt‖∞ ≤G :

〈xT − x̂T ,mT 〉 ≤ ‖xT − x̂T ‖‖mT ‖ ≤ D̂
p

dG . (2.40)

• Bound for β1ρ̄
1−β1

∑T−1
t=1 〈αt (xt − x̂t )−αt+1(xt+1 − x̂t+1),mt 〉 in (2.39): We have

〈αt (xt − x̂t )−αt+1(xt+1 − x̂t+1),mt 〉 = (αt −αt+1)〈xt+1 − x̂t+1,mt 〉+αt 〈xt −xt+1,mt 〉
+αt 〈x̂t+1 − x̂t ,mt 〉. (2.41)

For the first term in (2.41), we use that αt ≥ αt+1, Lemma 2.10, Cauchy-Schwarz inequality

and ‖mt‖∞ ≤G to obtain

T−1∑
t=1

(αt −αt+1)〈xt+1 − x̂t+1,mt 〉 ≤
T−1∑
t=1

(αt −αt+1)D̂
p

dG ≤α1D̂
p

dG .

For the second term of (2.41), using nonexpansiveness of weighted projection, we deduce

αt 〈xt −xt+1,mt 〉 ≤αt‖xt −xt+1‖v̂1/2
t
‖mt‖v̂−1/2

t
=αt‖xt −P v̂1/2

t
K (xt −αt v̂−1/2

t mt )‖v̂1/2
t
‖mt‖v̂−1/2

t

≤α2
t ‖mt‖2

v̂−1/2
t

.

First, summing (2.41), multiplying both sides of the inequality by β1ρ̄
1−β1

, and then plugging the

last two bounds, we have

β1ρ̄

1−β1

T−1∑
t=1

〈αt (xt − x̂t )−αt+1(xt+1 − x̂t+1),mt 〉

≤ β1ρ̄

1−β1
α1D̂

p
dG +

T∑
t=1

β1ρ̄α
2
t

1−β1
‖mt‖2

v̂−1/2
t

+
T−1∑
t=1

β1ρ̄αt

1−β1
〈x̂t+1 − x̂t ,mt 〉
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≤ β1ρ̄

1−β1
α1D̂

p
dG +

T∑
t=1

β1ρ̄α
2
t

1−β1
‖mt‖2

v̂−1/2
t

+
T∑

t=1

ρ̄− ρ̂
4

‖x̂t+1 − x̂t‖2
v̂1/2

t

+ ρ̄2

(ρ̄− ρ̂)

β2
1

(1−β1)2

T∑
t=1

α2
t ‖mt‖2

v̂−1/2
t

, (2.42)

where we used Young’s inequality in the last step.

• Bound for
∑T

t=1 ρ̄αt 〈xt − x̂t ,mt 〉 in (2.39): We proceed as in eq. (3.6) to (3.8) in [DD19], but

with a tighter bound in the beginning, where we use x 7→ f (x)+δK(x)+ ρ̄
2 ‖x −xt+1‖2

v̂1/2
t+1

being

ρ̄− ρ̂ strongly convex w.r.t. ‖ ·‖v̂1/2
t+1

, with the minimizer x̂t+1

ϕt+1
1/ρ̄ (xt+1) ≤ f (x̂t )+ ρ̄

2
‖x̂t −xt+1‖2

v̂1/2
t+1

− ρ̄− ρ̂
2

‖x̂t − x̂t+1‖2
v̂1/2

t+1

= f (x̂t )+ ρ̄

2
‖x̂t −xt+1‖2

v̂1/2
t

+ ρ̄

2
‖x̂t −xt+1‖2

v̂1/2
t+1−v̂1/2

t
− ρ̄− ρ̂

2
‖x̂t − x̂t+1‖2

v̂1/2
t+1

. (2.43)

We estimate the second term in the RHS of (2.43) by the definition of xt+1, then using x̂t ∈K
and nonexpansiveness of the weighted projection in the weighted norm

ρ̄

2
‖x̂t −xt+1‖2

v̂1/2
t

= ρ̄

2
‖P v̂1/2

t
K (xt −αt v̂−1/2

t mt )− x̂t‖2
v̂1/2

t

= ρ̄

2
‖P v̂1/2

t
K (xt −αt v̂−1/2

t mt )−P v̂1/2
t

K (x̂t )‖2
v̂1/2

t

≤ ρ̄

2
‖xt −αt v̂−1/2

t mt − x̂t‖2
v̂1/2

t

= ρ̄

2
‖xt − x̂t‖2

v̂1/2
t

+ ρ̄〈x̂t −xt ,αt mt 〉+ ρ̄

2
α2

t ‖mt‖2
v̂−1/2

t
.

We insert this estimate into (2.43) and use the definition of ϕt
1/ρ̄(xt ) to obtain

ϕt+1
1/ρ̄ (xt+1) ≤ϕt

1/ρ̄(xt )+ ρ̄αt 〈x̂t −xt ,mt 〉+ ρ̄

2
α2

t ‖mt‖2
v̂−1/2

t
+ ρ̄

2
‖x̂t −xt+1‖2

v̂1/2
t+1−v̂1/2

t

− ρ̄− ρ̂
2

‖x̂t − x̂t+1‖2
v̂1/2

t+1
. (2.44)

We manipulate the second to last term, by ‖a+b‖2 ≤ 2‖a‖2+2‖b‖2, v̂ (i )
t+1 ≥ v̂ (i )

t , and Lemma 2.10

ρ̄

2
‖x̂t −xt+1‖2

v̂1/2
t+1−v̂1/2

t
≤ ρ̄‖x̂t −xt‖2

v̂1/2
t+1−v̂1/2

t
+ Gρ̄p

ε
‖xt −xt+1‖2

v̂1/2
t

≤ ρ̄D̂2
d∑

i=1
((v̂ (i )

t+1)1/2 − (v̂ (i )
t )1/2)+ Gρ̄p

ε
α2

t ‖mt‖2
v̂−1/2

t
. (2.45)

We use this estimate in (2.44) and sum the inequality to get

ρ̄αt

T∑
t=1

〈xt − x̂t ,mt 〉 ≤ϕ1
1/ρ̄(x1)−ϕT+1

1/ρ̄ (xT+1)+
T∑

t=1

(
1

2
+ Gp

ε

)
ρ̄α2

t ‖mt‖2
v̂−1/2

t
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+ ρ̄D̂2
d∑

i=1
(v̂ (i )

T+1)1/2 −
T∑

t=1

ρ̄− ρ̂
2

‖x̂t − x̂t+1‖2
v̂1/2

t+1
. (2.46)

Combining estimates into (2.39). We now plug in (2.40), (2.42), (2.46) into (2.39) and use

αT ≤α, v̂1/2
t+1 ≥ v̂1/2

t to get

T∑
t=1

ρ̄αt 〈xt − x̂t , g t 〉 ≤ 2β1ρ̄α

(1−β1)
D̂
p

dG +ϕ1
1/ρ̄(x1)−ϕT+1

1/ρ̄ (xT+1)+ ρ̄D̂2
d∑

i=1
(v̂ (i )

T+1)1/2

+
T∑

t=1

(
1

2
+ Gp

ε
+ β1

1−β1
+ ρ̄

ρ̄− ρ̂
β2

1

(1−β1)2

)
ρ̄α2

t ‖mt‖2
v̂−1/2

t
−

T∑
t=1

ρ̄− ρ̂
4

‖x̂t − x̂t+1‖2
v̂1/2

t+1
. (2.47)

At this point, due to the coupling between x̂t , v̂t , and g t , we cannot directly take expectations,

so we use the estimations of Lemma 2.11. First we sum the result of Lemma 2.11 which gives

T∑
t=1

Et
[
αt 〈xt − x̂t , g t 〉

]≥ T∑
t=1

Et (ρ̄− ρ̂)αt‖xt − x̂t‖2
v̂1/2

t
− (α0)

p
dD̂G

−
T∑

t=1

ρ̄− ρ̂
4ρ̄

Et‖x̂t − x̂t−1‖2
v̂1/2

t−1
−

T∑
t=1

αt−1

2
Et‖mt−1‖2

v̂−1/2
t−1

−
T∑

t=1

(
1

2
+ ρ̄

ρ̄− ρ̂
)
α2

t−1p
ε
Et‖g t‖2.

We use here the assignments used for convenience: α0 = 0 and x̂0 = x̂1 and recall that m0 = 0.

We plug this estimation after taking full expectation in (2.47) and use v̂1/2
t−1 ≤ v̂1/2

t to obtain

ρ̄(ρ̄− ρ̂)
T∑

t=1
αtE‖xt − x̂t‖2

v̂1/2
t

≤ 2β1ρ̄α

(1−β1)
D̂
p

dG +ϕ1
1/ρ̄(x1)−EϕT+1

1/ρ̄ (xT+1)+ ρ̄D̂2
d∑

i=1
E(v̂ (i )

T+1)1/2

+
T∑

t=1

(
1+ Gp

ε
+ β1

1−β1
+ ρ̄

ρ̄− ρ̂
β2

1

(1−β1)2

)
ρ̄α2

t E‖mt‖2
v̂−1/2

t
+

T∑
t=1

(
1

2
p
ε
+ ρ̄

(ρ̄− ρ̂)
p
ε

)
ρ̄α2

t−1E‖g t‖2.

The only quantities left to estimate are
∑T

t=1α
2
t−1‖g t‖2 and

∑T
t=1α

2
t ‖mt‖2

v̂−1/2
t

. Using Lemma 2.12

and α0 = 0 shows that both these quantities are bounded by O(logT ):

T∑
t=1

α2
t ‖mt‖2

v̂1/2
t

≤ 1−β1√
(1−β2)(1−γ)

dG(1+ logT ).

T∑
t=1

α2
t−1‖g t‖2 =

T∑
t=2

α2
t−1‖g t‖2 ≤ dG2(1+ logT ).

The proof then follows by using (2.8), f ? ≤ f (x),∀x ∈X , picking ρ̄ = 2ρ̂, using αt ≥αT , and in

the end dividing both sides by TαT . �

2.6 Bibliographic note

Lemma 2.1 and Lemma 2.10 are due to Yura Malitsky.
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3 Smoothing and stochastic algorithms

In the last chapter, we focused on generic nonsmooth optimization template, for which

O(1/
p

K ) is the optimal rate [NY83]. To enhance this result, we have to consider structured

nonsmooth problems. In this chapter, we focus on convex problems with linear constraints.

To process the constraints randomly, our approach will be to use SGD and CD. A natural way

to incorporate these algorithms for solving nonsmooth problems is via Nesterov’s smoothing.

Smoothing helps us formulate a sequence of smooth problems to solve the original nonsmooth

problem. The idea in this chapter is to use SGD and accelerated proximal CD for solving the

smoothed problems, along with a homotopy strategy to change the smoothness parameter to

converge to the original problem.

Our SGD approach solves problems with infinitely many linear constraints with Õ(1/
p

K ) rate

and our CD approach solves problems with finitely many linear constraints with O(1/K ) rate,

both of which are optimal. These results are among the first rate guarantees for the corre-

sponding templates, with important advantages compared to contemporary developments.

This chapter is based on the joint works with Olivier Fercoq, Quoc Tran-Dinh, Ion Necoara

and Volkan Cevher [ADFC17, FANC19].

3.1 Introduction

In this chapter, we focus on the following problem:

P? = min
x∈Rd

{
P (x) = f (Ax)+ g (x)+h(x)

}
, (3.1)

where f : Rn → R∪ {+∞}, g : Rd → R∪ {+∞}, and h : Rd → R are proper, l.s.c. and convex

functions, A ∈ Rn×d is a given matrix and y? is a solution to the dual problem of (3.1). We

particularly focus on linearly constrained problems when fi (Ai x) = δbi (Ai x) for i ∈ [n]:

min
x∈Rd

g (x)+h(x), s.t. Ai x ∈ bi , i ∈ [n], (3.2)
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where Ai ∈ Rni×d , bi ⊆ Rni . This is a key structure that we can exploit with SGD and CD

methods to develop efficient algorithms. As we shall see, with SGD, we can even handle the

case when n is not finite. In this chapter, we only focus on this case, however as we will remark

later as well, it is straightforward to extend the developments in this chapter when f is not an

indicator but a Lipschitz continuous function.

Particular instances of (3.2) involve primal support vector machines (SVM) classification and

sparse regression which are central in machine learning [SSSSC11, GG09] Due to the huge

volume of data that is used for these applications, storing or processing this data at once

is often not preferred. Therefore, using these data points one by one or in mini batches in

learning algorithms is becoming more important. One direction that the literature focused so

far is solving unconstrained formulations of these problems, successes of which are amenable

to regularization parameters that needs to be tuned. With stochastic methods capable of

solving (3.4) directly, we present a parameter-free approach for solving these problems.

Approach. Our approach in this chapter is using Nesterov’s smoothing to formulate

min
x∈Rd

Pβ(x) = g (x)+h(x)+ fβ(Ax), (3.3)

where fβ(Ax) = maxy∈Rn 〈Ax, y〉 − f ∗(y)− β
2 ‖y − ẏ‖2, with center point ẏ . This problem is

a smooth estimate of (3.2) and obviously its solution set is different. There are several ap-

proaches to pickβ to ensure an approximate solution to (3.3) will give an approximate solution

to (3.2). This choice may require the knowledge of the desired accuracy, number of maximum

iterations or the diameters of the primal and/or dual domains as in [Nes05]. In order to make

this choice flexible and our method applicable to constrained problems, we employ a homo-

topy strategy as in [TDFC18], to gradually decrease β to 0 and obtain approximate solutions

to (3.2).

3.1.1 Contributions.

In Section 3.2, we consider the setting when n is not finite in (3.2), by using SGD.

.We provide a simple SGD-type algorithm without expensive projections.

. We prove Õ(1/
p

k) convergence rate for general convex objectives and Õ(1/k) rate for

restricted strongly convex objectives.

. We include generalizations of our framework for composite optimization with general

nonsmooth Lispchitz continuous functions in addition to indicator functions.

.We provide numerical evidence and verify our theoretical results in practice.

In the second part, we show that by considering finite n in Equation (3.2) and using accelerated

CD methods, we can improve the convergence rate.

.We propose a method combining accelerated proximal CD and smoothing to obtain O(1/K )
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3.2. Smoothing with SGD for infinitely many linear constraints

rate which is optimal for the deterministic problem (3.1).

.We show an efficient implementation to take full advantage of CD-based method.

Brief explanation for alternatives in the literature. The only work we are aware for solving

problems with infinitely many constraints was [PN17] that employed alternating projections

on the sets {x : Ai x ∈ bi }. Our algorithm is more general as these projections can be prohibitive

depending on dimensions of Ai .

Prior to the developments in this chapter on CD, we were not aware of a CD method for this

template with rate guarantees. After the publication of our results, we learned about [GXZ19]

that studied randomized linearized ADMM. The advantage of our approach is using coordinate-

wise Lipschitz constants of f and norms of Ai , whereas [GXZ19] requires global constants.

These are among the most important properties to make CD based methods practical.

We provide more comparisons in Section 3.2.5.

3.2 Smoothing with SGD for infinitely many linear constraints

We formalize the problem with infinitely many constraints. There are several interpretations as

considered in [NRP19]. Among these, we use almost-sure constrained approach. Let us denote

ξ as the random variable with distribution P and with Assumption 3.1, define the problem

min
x∈Rd

{P (x) := g (x)+h(x)} s.t. P ((A(ξ)x ∈ b(ξ)) = 1. (3.4)

In words, we seek to satisfy the linear inclusion constraints in (3.4) almost surely. This change

is what sets (3.4) apart from the standard stochastic convex optimization. We assume that A(ξ)

is a n ×d matrix-valued random variable and b(ξ) ⊆Rn is random nonempty, closed, convex.

For the special case when A(ξ) is an identity matrix, (3.4) is similar to the problem considered

in [NRP19] with a constraint set defined as the the intersection of a infinitely many sets.

As mentioned before, the only method that we were aware for problems with infinitely many

constraints was using possibly expensive projections on {x : Ai x ∈ bi } [PN17]. We take a

different approach and use Nesterov’s smoothing [Nes05]. In doing so, we avoid potentially

expensive projections and only use much simpler projections to the set b(ξ). We make use of

the stochastic gradients of h(·), proximal operators of the nonsmooth component g (·).

3.2.1 Preliminaries

Space of random variables. In our formulation, we have infinite dimensional dual variables.

We consider random variables of Rn belonging to the space

Y = {(y(ξ))ξ : E[‖y(ξ)‖2] <+∞}
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Chapter 3. Smoothing and stochastic algorithms

Y is a Hilbert space and its norm is ‖y‖ =
√
E[‖y(ξ)‖2]. We denote byµ the probability measure

of the random variable ξ, endowed with the scalar product

〈y, z〉 = E[y(ξ)>z(ξ)] =
∫

y(ξ)>z(ξ)µ(dξ).

Duality. We define the stochastic function

fξ(A(ξ)x) = δb(ξ)(A(ξ)x). (3.5)

As shown in [NRP19, Lemma 1] using simple arguments, (3.4) can be equivalently written as

min
x∈Rd

E[hξ(x)]+ g (x)+E[ fξ(A(ξ)x)] =: P (x)+ f (Ax), (3.6)

where A : Rd → Y is defined as the linear operator such that (Ax)(ξ) = A(ξ)x for all x and

f : Y →R∪ {+∞} is defined by

f (z) =
∫
δb(ξ)(z(ξ))µ(dξ).

We will assume that

‖A‖2,∞ = sup
ξ

‖A(ξ)‖ <+∞, (3.7)

so that A is in fact continuous. Note that assuming a uniform bound on ‖A(ξ)‖ is not restrictive

since we can replace A(ξ)x ∈ b(ξ) by

A′(ξ)x = A(ξ)x

‖A(ξ)‖ ∈ b′(ξ) = b(ξ)

‖A(ξ)‖ ,

without changing the set of vectors x satisfying the constraint, and projecting onto b′(ξ) is as

easy as projecting onto b(ξ). We define the Lagrangian L :Rd ×Y →R∪ {+∞} as

L(x, y) = P (x)+
∫
〈A(ξ)x, y(ξ)〉− suppb(ξ)(y(ξ))µ(dξ).

We assume strong duality holds. For this Slater’s condition is a sufficient condition [BC11]. We

also assume existence of a primal solution. In the context of duality in Hilbert spaces, Slater’s

condition refers to 0 ∈ sri(domG − A(domP )), where sri(·) refers to the strong relative interior.

Optimality conditions. We denote by (x?, y?) ∈ Rd ×Y a saddle point of L(x, y). For the

constrained problem, we say that x is an ε-solution if it satisfies

|P (x)−P (x?)| ≤ ε,
√
E
[
dist(A(ξ)x,b(ξ))2

]≤ ε. (3.8)

We continue with the assumptions regarding (3.4).
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3.2. Smoothing with SGD for infinitely many linear constraints

Assumption 3.1.

. A primal solution exists and strong duality holds.

. h is Lh-smooth and g is proximable. hξ, g are proper, l.s.c. convex.

.We have h = E[hξ(x)] and σh <+∞ such that E‖∇hξ(x)−∇h(x)‖2 ≤σ2
h .

. A(ξ) is a n ×d matrix-valued r.v., b(ξ) ⊆Rn is a random nonempty, closed, convex set.

3.2.2 Algorithm

We derive the main step of our algorithm from smoothing framework. The problem in (3.4)

is nonsmooth both due to g (x) and the constraints encoded in fξ(A(ξ)x) as in (3.5). We keep

g (x) intact since it is assumed to be proximable, and smooth f to get smoothed version of (3.6)

Pβ(x) = E[
hξ(x)

]+ g (x)+E[
fβ(A(ξ)x,ξ)

]
, (3.9)

where fβ(A(ξ)x,ξ) = 1
2β dist(A(ξ)x,b(ξ))2, in view of (3.3) and ẏ = 0. Note that Pβ(x) is Lh +

‖A‖2
2,2

β -smooth where

‖A‖2,2 = sup
x 6=0

√
E[‖A(ξ)x‖2]

‖x‖ ≤ ‖A‖2,∞,

with ‖A‖2,∞ being defined in (3.7). Note that (3.9) can also be viewed as a quadratic penalty

(QP) formulation. We also define the smoothed gap function

Sβ(x) = Pβ(x)−P (x?) = P (x)−P (x?)+ 1

2β

∫
dist(A(ξ)x,b(ξ))2µ(dξ). (3.10)

The main idea of our method is to apply stochastic proximal gradient (SPG) [RVV20] iterations

to (3.9) by using homotopy on the smoothness parameter β. Our algorithm has a double loop

structure where for each value of β, we solve the problem (3.9) with SPG upto some accuracy.

This strategy is similar to classical inexact quadratic penalty (QP) methods. In stark contrast

to this approach, Algorithm 3.1 has explicit number of iterations for the inner loop which is

determined by theoretical analysis, avoiding difficult-to-check stopping criteria for the inner

loop in inexact QP methods. Decreasing β to 0 according to update rules from our analysis

ensures the convergence to the original problem (3.4) rather than the smoothed problem (3.9).

In Algorithm 3.1, we present our method. Case 1 refers to parameters for general convex case

and Case 2 refers to restricted strongly convex case.

It may look unusual at first glance that in the restricted strongly convex case, the step size αs

is decreasing faster. This is due to restricted strong convexity allowing us to decrease faster the

smoothness parameter βs , and the step size is driven by the smoothness of the approximation.
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Chapter 3. Smoothing and stochastic algorithms

Algorithm 3.1 Stochastic approximation method for almost surely constrained problems
(SASC, pronounced as "sassy")

x0
0 ∈Rd

α0 ≤ 3/(4L(∇ f )), and ω> 1
Case 1: m0 ∈N∗; Case 2: m0 ≥ ω

µα0
.

for s ∈N do
ms = bm0ω

sc, and βs = 4αs ‖A‖2
2,∞

Case 1: αs =α0ω
−s/2; Case 2: αs =α0ω

−s .
for k ∈ {0, . . . ,ms −1} do

Draw ξ= ξs
k+1, and define z = A(ξ)xs

k .
D(xs

k ,ξ) :=∇hξ(xs
k )+ A(ξ)>∇z fβs (A(ξ)xs

k ,ξ)

xs
k+1 = proxαs g

(
xs

k −αsD(xs
k ,ξ)

)
end for
x̄s = 1

ms

∑ms

k=1 xs
k

Case 1: xs+1
0 = xs

ms
; Case 2: xs+1

0 = x̄s .
end for

3.2.3 Convergence

We present a key lemma which is instrumental in our analysis. It serves as a bridge between

βs with the smoothed gap in (3.10) and the optimality results in the sense of (3.8). This lemma

can be seen as an extension of [TDFC18, Lemma 1] with infinite dimensional dual variables.

Lemma 3.1. Let (x?, y?) be a saddle point of

min
x∈Rd

max
y∈Y

L(x, y).

Then, the following hold:

Sβ(x) ≥−β
2
‖y?‖2,

P (x)−P (x?) ≥− 1

4β

∫
dist(A(ξ)x,b(ξ))2µ(dξ)−β‖y?‖2,

P (x)−P (x?) ≤ Sβ(x),∫
dist(A(ξ)x,b(ξ))2µ(dξ) ≤ 4β2‖y?‖2 +4βSβ(x).

The simple message of Lemma 3.1 is that if an algorithm decreases the smoothed gap function

Sβ(x) and β simultaneously, then it obtains approximate solutions to (3.4) in the sense of (3.8),

i .e. it decreases feasibility and objective suboptimality.

Recall from (3.9), fβ(A(ξ)x,ξ) = 1
2β dist(A(ξ)x,b(ξ))2. The main technical challenge of applying

SPG to (3.9) with homotopy stems from the stochastic term due to constraints:

E[ fβ(A(ξ)x,ξ)], (3.11)
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3.2. Smoothing with SGD for infinitely many linear constraints

This term is in a suitable form to apply SPG, however its variance bound and Lipschitz constant

of its gradient becomes worse and worse as βk → 0. A naive solution for this problem would

be to decrease βk slowly, so that these bounds will increase slowly and they can be dominated

by the step size. Due to Lemma 3.1, the rate of decrease of βk directly determines the con-

vergence rate, so a slowly decaying βk would result in slow convergence for the method. Our

proof technique carefully balances the rate of βk and the additional error terms due to using

stochastic gradients of (3.11), so that the optimal rate of SPG is retained even with constraints.

We present the main theorems in the following two sections. The main proof strategy in

Theorem 3.2 and Theorem 3.3 is to analyze the convergence of Sβ(x) andβk and use Lemma 3.1

to translate the rates to objective residual and feasibility measures.

Convergence for General Convex Objectives.

Theorem 3.2. Let Assumption 3.1 hold. Let Ms = ∑s
l=0 ml and pick ω,α0,ms ,βs as Case 1

in Algorithm 3.1. Then, for all s,

E[P (x̄s)−P (x?)] ≤ C1p
Ms

[
C2 + log(Ms/m0)

log(ω)
C3

]
E[P (x̄s)−P (x?)] ≥− 2C4p

Ms
‖y?‖2 − C1p

Ms

[
C2 + log(Ms/m0)

log(ω)
C3

]
√
E
[
dist(A(ξ)x̄s ,b(ξ))2

]≤ 1p
Ms

[
2C4‖y?‖+2

√
C1C4

√
C2 + log(Ms/m0)

log(ω)
C3

]

where C1 =
p

m0ω

α0(m0−1)
p
ω−1

, C2 = ‖x?−x0
0‖2

2 +2α0m0σ
2
h , C3 = 2α2

0‖A‖2
2,∞m0‖y?‖2 +2α0m0σ

2
h and

C4 = 4α0
p

m0‖A‖2
2,∞

p
ωp
ω−1

.

Note that O(1/
p

k) rate is optimal for solving (3.4) with SGD [PJ92, AWBR09]. In Theorem 3.2,

we see that handling infinitely many constraints via SGD only brings overhead of a log.

Convergence for Restricted Strongly Convex Objectives. Now, we assume P (x) in (3.4) to be

restricted strongly convex in addition to Assumption 3.1: P (x) ≥ P (x?)+ µ
2 ‖x −x?‖2. Requir-

ing restricted strong convexity of P (x) is weaker than strong convexity of hξ(x) or g (x), see

[NNG18] for more details.

Theorem 3.3. Let Assumption 3.1 hold and P be µ-restricted strongly convex. Let Ms =∑s
l=0 ml

and pick ω,α0,ms ,βs as Case 2 in Algorithm 3.1. Then, for all s,

E[P (x̄s)−P (x?)] ≤ 1

Ms

[
D1 + log(Ms/m0)

log(ω)
D2

]
E[P (x̄s)−P (x?)] ≥−2D3

Ms
‖y?‖2 − 1

Ms

[
D1 + log(Ms/m0)

log(ω)
D2

]
√
E
[
dist(A(ξ)x̄s ,b(ξ))2

]≤ 1

Ms

[
2D3‖y?‖+2

√
D3

√
D1 + log(Ms/m0)

log(ω)
D2

]
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where D1 = ω
ω−1

m0
α0(m0−1)

1
2

∥∥x0
0 −x?

∥∥2+2α0m0
ω
ω−1σ

2
h , D2 = 2m2

0α0ω

(m0−1)(ω−1)

(
‖A‖2

2,∞‖y?‖2+σ2
h

)
, D3 =

4α0m0‖A‖2
2,∞

ω
ω−1 .

Similar comments to Theorem 3.2 can be made for Theorem 3.3. We have O(log(k)/k) rate for

both objective residual and feasibility under restricted strong convexity assumption. This rate

is optimal up to a logarithmic factor for solving (3.4) even without constraints.

3.2.4 Extension

We can extend our method for solving problems considered in [OG12], which corresponds

to (3.6) when fξ(·) is not an indicator function, but is L f -Lipschitz continuous. This assump-

tion is equivalent to dom( f ∗) being bounded [BC11]. This special case with g (x) = 0 is studied

in [OG12] with the specific assumptions in this section. Inspired by [Nes05], it has been shown

in [OG12], that one has the following bound for the smooth approximation of fξ(·)

E[ fξ(A(ξ)x)] ≤ E[ fβ(A(ξ)x,ξ)]+ β

2
L2

f . (3.12)

We can couple our main results with (3.12) to recover the guarantees of [OG12] with the

addition of the nonsmooth proximable term h(x). Essentially, after proving the bound for Sβ,

which is the first step in our proofs, we can directly use (3.12). We can also consider

min
x∈Rd

E
[
hξ(x)+ f1,ξ(A1(ξ)x)

]+ g (x), s.t. P (A2(ξ)x ∈ b(ξ)) = 1,

where f1,ξ is Lipschitz continuous and we have the same assumptions as (3.4) for the con-

straints. As argued above, we can use our results from Section 3.2.3 to solve this template.

3.2.5 Related Works

Even though SGD is well studied, it applies to unconstrained problems [NJLS09, MB11, PJ92].

With simple constraints admitting efficient projection, and without almost sure constraints,

projected SGD can be used [NJLS09]. In the case where g (x) in (3.4) is a nonsmooth proximable

function [RVV20] studied the convergence of stochastic proximal gradient (SPG) method which

uses stochastic gradients of hξ(x) with proximal operator of g (x). This method generalize

projected SGD, however, it still cannot process infinitely many constraints since it is not clear

how to project onto the stochastic set in (3.4).

Methods based on alternating projections solve the following template

min
x∈Rd

E
[
hξ(x)

]
: x ∈B(:=∩ξ∈ΩB(ξ)). (3.13)

Here, the feasible set B consists of the intersection of a possibly infinite number of convex sets.

When hξ(x) = 0 this corresponds to the convex feasibility problem is studied in [NRP19]. For
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3.2. Smoothing with SGD for infinitely many linear constraints

this setting, the authors combine the smoothing technique with minibatch SGD, leading to an

alternating projections algorithm with linear convergence.

The most related to our work is [PN17] where the authors apply a proximal point type algorithm

with alternating projections. Main idea behind [PN17] is to apply smoothing to hξ(x) and

apply stochastic gradient steps to the smoothed function, which corresponds to a stochastic

proximal point type of update, combined with alternating projection steps. The authors

show O(1/
p

k) rate for general convex objectives and O(1/k) for smooth and strongly convex

objectives. Smoothness requirement of [PN17] in the strongly convex case renders their results

not applicable to our composite setting in (3.4). In addition, strong convexity is stronger than

our assumption of restricted strong convexity. Lastly, [PN17] projects to B(ξ) at each iteration,

whereas we only project to b(ξ). Unless A(ξ) and b(ξ) are of very small dimension, projection

to B(ξ) can be prohibitive due to solving a linear system at each iteration.

Stochastic forward-backward algorithms can also solve (3.4). However, the papers introducing

those very general algorithms focused on proving convergence and did not present conver-

gence rates [Bia15, BHS19, Sal18]. There are some other works [WCLG15, MYJ13, YNW17] that

focus on (3.13) with finite number of constraints, which is more restricted than our setting.

When the number of constraints in (3.4) is finite and the objective is deterministic, Nesterov’s

smoothing framework is studied in [TDFC18, VNFC17, TDAFC19] with accelerated gradient

methods. These methods obtain O(1/k) (O(1/k2)) rate when the number of constraints is

finite and h(x) is a (strongly) convex function whose gradient ∇h can be computed.

Another related work is [OG12] where the authors apply Nesterov’s smoothing for Lipschitz fξ.

Note that in our main template (3.4), fξ(·) = δb(ξ)(·), which is not Lipschitz continuous.

3.2.6 Numerical Experiments

Sparse regression with basis pursuit on synthetic data

We solve basis pursuit (BP) problem, widely used in ML and signal processing [Don06, AKSV18]:

min
x∈Rd

‖x‖1 (3.14)

st: a>x = b, a.s.

where a ∈Rd , b ∈R. We consider the setting where the measurements arrive in a streaming

fashion, similar to [GG09]. For generating the data, we defined Σ as the matrix such that Σi , j =
ρ|i− j | with ρ = 0.9. We generated random vector x∗ ∈Rd , d = 100 with 10 nonzero coefficients

and independent N (0,Σ) random variables ai which are then centered and normalized. We

define bi = a>
i x∗. Because of the centering, there are multiple solutions to the infinite system

a>x = b a.s., and we wish to recover x∗ as the solution of the basis pursuit problem (3.14).

We compare SASC (Algorithm 3.1), SGD [NJLS09] and SPP [PN17]. We manually tuned the step
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Figure 3.1 – Performance of SGD, SPP and SASC on synthetic basis pursuit problem.

sizes for the methods and included the best obtained results. Since the BP problem does not

possess (restricted) strong convexity, we use the parameters from Case 1 in SASC and a fixed

step sizeµ for SPP which is used for the analysis in [PN17, Corollary 6]. We used the parameters

µ= 10−5 for SPP, m0 = 2, ω= 2, α0 = 10−2‖a1b1‖∞, where a1 is the first measurement and b1

is the corresponding result. We take n = 105 and make two passes over the data.

Figure 3.1 shows the results. We observe that SASC exhibits a Õ(1/
p

k) convergence in feasibil-

ity and objective suboptimality. The stair case shape of the curves comes from the double-loop

nature of the method. SPP can also solve this problem since the projection onto a hyperplane

is easy to do when the constraints are processed one by one. We see in Figure 3.1 that SPP is

initially almost as fast as SASC, however, it stagnates once it reaches the pre-determined accu-

racy determined by the fixed step size µ. We also tried running SGD on minx
1
2E

∥∥a>x −b
∥∥2

2

but this leads to non-sparse solutions, therefore SGD converges to another solution.

It is common in stochastic optimization to use mini-batches to parallelize and speed up

computations. SPP projects onto linear constraints each iteration. When the data is processed

in mini-batches, this requires solving linear systems with sizes depending on mini-batches.

On the other hand, SASC handles mini-batches without any overhead.

Portfolio optimization

In this section, we consider Markowitz portfolio optimization with the task of maximizing the

expected return given a maximum bound on the variance [AAEF07].

min
x∈Rd

−〈aav g , x〉 :
d∑

i=1
xi = 1 (3.15)

|〈ai −aav g , x〉| ≤ ε,∀i ∈ [1,n],

where short positions are allowed and aav g = E[ai ] is assumed to be known. This problem fits

to our template (3.4), with a deterministic objective function, n linear constraints and one

indicator function for enforcing
∑d

i=1 xi = 1 constraint.

We implement SASC and SPP from [PN17]. Since the structure of (3.15) does not have re-

stricted strong convexity, we apply the general convex version of SPP, which sets a smoothness
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Figure 3.2 – Performance of SASC and SPP on portfolio optimization for four different datasets

parameter µ depending on the final accuracy. We run SPP with two different µ values 10−1 and

10−2. We run SASC with the parameters α0 = 1, ω= 1.2, m0 = 2 and Case 1 in Algorithm 3.1.

We use NYSE (d = 36,n = 5651), DJIA (d = 30,n = 507), SP500 (d = 25,n = 1276) and TSE

(d = 88,n = 1258) where d corresponds to the number of stocks and n corresponds to the

number of days for which the data is collected and we set ε in (3.15) to be 0.2. These datasets

are also used in [BEYG04]. We compute the ground truth using cvx [GB14] and plotted the

distance of the iterates of the algorithms to the solution ‖x −x?‖ in Figure 3.2.

We can observe the behaviour of SPP from Figure 3.2 for different step size values µ. Larger µ

causes a fast decrease in the beginning, however, it also affects the accuracy that the algorithm

is going to reach. Therefore, large µ has the problem of stagnating at a low accuracy. Smaller µ

causes SPP to reach to higher accuracies at the expense of slower initial behaviour. SASC has

a steady behaviour and since it does not have a parameter depending on the final accuracy.

It removes the necessity of tuning µ in SPP, as we can observe the steady decrease of SASC

throughout, beginning from the initial stage of the algorithm.

Primal support vector machines without regularization parameter

In this section, we consider the classical setting of binary classification, with a small twist.

For the standard setting, given a training set {a1, a2, . . . , an} and labels {b1,b2, . . . ,bn}, where

ai ∈Rp ,∀i and bi ∈ [−1,+1] the aim is to train a model that will classify the correct labels for

the unseen examples. Primal hard margin SVM problem is

min
x∈Rd

1

2
‖x‖2 : bi 〈ai , x〉 ≥ 1,∀i . (3.16)

Since this problem does not have a solution unless the data is linearly separable, the standard

way is to relax the constraints, and solve the soft margin SVM problem with hinge loss instead:

min
x∈Rd

1

2
‖x‖2 +C

n∑
i=1

max{0,1−bi 〈ai , x〉}, (3.17)

where C has the role of a regularization parameter to be tuned. The choice for C has a drastic

effect on the performance of the classifier as also been studied in the literature [HRTZ04]. It is

known that poor choices of C may lead to poor classification models.

We have a radically different approach for the SVM problem. Since the original formula-

tion (3.16) fits to our template (3.4), we directly apply SASC. Even though the hard margin SVM
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problem does not necessarily have solution, applying SASC to (3.16) corresponds to solving a

sequence of soft margin SVM problems with squared hinge loss, by changing regularization

parameters. The advantage of such an approach will be that there will be no necessity for a

regularization parameter C since this parameter will correspond to 1
β in our case where β is

the smoothness parameter, for which we have theoretical guideline from our analysis.

We compare SASC with Pegasos algorithm [SSSSC11] which solves (3.17) by applying SGD.

Since the selection of the regularization parameter C effects the performance of the model, we

use 3 different values for theλ, namely {λ1,λ2,λ3} = {10−3/n,1/n,103/n}. We use datasets from

libsvm database [CL11a]: kdd2010 raw version (bridge to algebra) with 19,264,997

training examples, 748,401 testing examples and 1,163,024 features, rcv1.binary with

20,242 training examples, 677,399 testing examples and 47,236 features. For the last dataset,

news20.binary, since there was not a dedicated testing dataset, we randomly split examples

for training and testing with 17.996 training examples, 2,000 testing examples and 1,355,191

features. For SASC, we use α0 = 1/2, ω= 2 in all experiments and use the parameter choices in

Case 2 in Algorithm 3.1 due to strong convexity in the objective. We computed the test errors

for one pass over the data and compile the results in Figure 3.3.
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Figure 3.3 – Performance of SASC and Pegasos on SVM for three different datasets.

SASC seems to be comparable to Pegasos for different regularization parameters. As can be

seen in Figure 3.3, Pegasos performs well for good selection of the regularization parameter.

However, when the parameter is selected incorrectly, it might stagnate at a high test error

which can be observed in the plots. On the other hand, SASC gets comparable, if not better,

performance without the need to tune regularization parameter.

3.3 Smoothing with accelerated CD for linear constraints

In this section, we solve the problem in (3.1). As before, we particularize our results for

the linearly constrained case, this time with finitely many constraints. When f is instead

L f -Lipschitz continuous, it is straightforward to extend our results as explained in Section 6.4.

Our algorithmic strategy in Algorithm 3.2 is to use Nesterov’s smoothing along with accelerated

proximal CD method of [FR15]. Since we no longer focus on stochastic optimization, we aim to

get O(1/k) rate of convergence, which requires using acceleration. For CD setup, we introduce

the following notation.
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3.3. Smoothing with accelerated CD for linear constraints

Notation. Let us decompose the variable vector x into m-blocks where each block is denoted

by xi and has the size di ≥ 1 with
∑m

i=1 di = d . We decompose the identity matrix Id of Rd into

m block as Id = [U1,U2, · · · ,Um], where Ui ∈ Rd×di has di unit vectors in its columns. In this

case, any vector x ∈ Rd can be written as x = ∑m
i=1 Ui xi , and each block becomes xi =U>

i x

for i ∈ [m]. We define the partial gradients as ∇i h(x) =U>
i ∇h(x) for i ∈ [m]. We define the

weighted norms: ‖xi‖2
(i ) = 〈Hi xi , xi 〉, (‖yi‖∗(i ))

2 = 〈H−1
i yi , yi 〉. Here, Hi ∈Rpi×pi is a symmetric

positive definite matrix, and Li ∈ (0,∞) for i ∈ [n] and α> 0.

At iteration k, we pick index ik randomly w.p.. q = (q1, . . . , qm). As in [QR16] we use an arbitrary

distribution, which may allow designing a good distribution that captures the underlying

structure of specific problems. We define the σ algebra Fk+1 =σ(i0, . . . , ik ) and Ek [·] = E[·|Fk ].

Assumption 3.2. In (3.1), f , g and h are all proper, l.s.c. and convex. Moreover:

(a) The partial derivative ∇i h(·) Lipschitz continuous with L̂i ∈ [0,+∞), i.e., ‖∇i h(x +
Ui di )−∇i h(x)‖∗(i ) ≤ L̂i‖di‖(i ) for all x ∈Rp ,di ∈Rpi .

(b) The function g is separable, which has the following form g (x) =∑n
i=1 gi (x(i )).

(c) For f , we have f (Ax) := δ{b}(Ax), with b ∈Rn .

(d) A primal solution exists and strong duality holds.

In view of (3.3), as we focus on the case f (·) = δ{b}(·), we have

min
x

Pβ(x) = h(x)+ g (x)+ 1

2β
‖Ax −b‖2 = g (x)+ψβ(x).

It is easy to see that ψβ is differentiable, and its block partial gradient

∇iψβ(x) =∇i h(x)+ 1

β
A>

i (Ax −b) =: ∇i f (x)+ A>
i y∗

β(Ax) (3.18)

is Lipschitz continuous with the constant Li (β) := L̂i + ‖Ai ‖2

β , where L̂i is given in Assump-

tion 3.2, and Ai ∈Rn×di is the i -th column block of A.

3.3.1 Convergence

Theorem 3.4. Let
{

x̄k
}

be the sequence generated by Algorithm 3.2. In addition, let τ0 :=
min

{
qi | i ∈ [n]

} ∈ (0,1] and β0 := (1+τ0)β1 be given parameters. Then, we have
E [P (x̄k )−P (x?)] ≤ C∗(x0)

τ0(k−1)+1 +
β1‖y?−ẏ‖2

2(τ0(k−1)+1) +‖y?‖E [‖Ax̄k −b‖] ,

E [‖Ax̄k −b‖] ≤ β1

τ0(k−1)+1

[
‖y?− ẏ‖+ (‖y?− ẏ‖2 +2β−1

1 C∗(x0)
)1/2

]
,

(3.19)

where C∗(x0) := (1−τ0)(Pβ0 (x0)−P (x?))+∑n
i=1

τ0B (i )
0

2qi
‖x(i )

? −x(i )
0 ‖2

(i ). We note that the following

lower bound always holds −‖y?‖E [‖Ax̄k −b‖] ≤ E [P (x̄k )−P?], where y? is any dual solution.
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Chapter 3. Smoothing and stochastic algorithms

In particular, when we use uniform distribution, τ0 = qi = 1/n, the convergence rate is O (n
k

)
.

Algorithm 3.2 SMooth, Accelerate, Randomize The Coordinate Descent (SMART-CD)

Require: β1 > 0 and α ∈ [0,1] as two input parameters. Choose x0 ∈Rd .

1: Set B (i )
0 := L̂i + ‖Ai ‖2

β1
for i ∈ [m]. Compute Sα :=∑m

i=1(B (i )
0 )α and qi := (B (i )

0 )α

Sα
for all i ∈ [m].

2: Set τ0 := min
{

qi | 1 ≤ i ≤ m
} ∈ (0,1] for i ∈ [m]. Set x̄0 = x̃0 := x0.

3: for k ← 0,1, · · · ,kmax do
4: x̂k := (1−τk )x̄k +τk x̃k

5: y∗
k := y∗

βk+1
(Ax̂k ) = ẏ +β−1

k+1(Ax̂k −b).
6: Select a block coordinate ik ∈ [m] according to the probability distribution q .
7: Set x̃k+1 := x̃k , and compute the primal ik -block coordinate:

x(ik )
k+1 := arg min

x(ik )∈Rdik

{
〈∇ik f (x̂k )+ A>

ik
y∗

k , x(ik ) − x̂(ik )
k 〉+ gik (x(ik ))+

τk B (ik )
k

2τ0
‖x(ik ) − x̃(ik )

k ‖2
(ik )

}
.

8: x̄k+1 := x̂k + τk
τ0

(x̃k+1 − x̃k ).

9: τk+1 := τk
1+τk

, βk+2 := (1−τk+1)βk+1, and B (i )
k+1 := L̂i + ‖Ai ‖2

βk+2
for i ∈ [m].

10: end for

3.3.2 Efficient implementation

Since Algorithm 3.2 requires full vector updates at each iteration, we exploit the idea in

[LS13, FR15] and show that these vectors can be updated in an efficient manner. We next show

the equivalence between Algorithms 3.2 and 3.3, with its proof in Section 3.5.3.

Proposition 1. Let ck =∏k
l=0(1−τl ), ẑk = ck uk+z̃k and z̄k = ck−1uk+z̃k . Then, x̃k = z̃k , x̂k = ẑk

and x̄k = z̄k , for all k ≥ 0, where x̃k , x̂k , and x̄k are defined in Algorithm 3.2.

According to Algorithm 3.3, we never need to form or update full-dimensional vectors. Only

times that we need x̂k are when computing the gradient and the dual variable y∗
βk+1

. We

present two special cases, which are common in ML, that admits an efficient implementation.

Remark 3.5. We characterize the per-iteration cost in an important case. Let A, M ∈Rn×d and

(a) h has the form h(x) =∑m
j=1ϕ j (e>j M x), where e j is the j th standard unit vector.

(b) f is separable since f (Ax) = δ{b}(Ax).

We store and maintain the residuals r u,h
k = Muk , r z̃,h

k = M z̃k , r u, f
k = Auk , r z̃, f

k = Az̃k , to have

the per-iteration cost as O(max{|{ j | A j i 6= 0}|, |{ j | M j i 6= 0}|}) arithmetic operations. If f is

partially separable as in [RT16], then the complexity of each iteration will remain moderate.
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3.3. Smoothing with accelerated CD for linear constraints

Algorithm 3.3 Efficient SMART-CD

Require: Choose parameters as Algorithm 3.2. Set u0 = z̃0 := x0

1: for k ← 0,1, · · · ,kmax do
2: y∗

βk+1
(ck Auk + Az̃k ) := ẏ +β−1

k+1(ck Auk + Az̃k −b).
3: Select a block coordinate ik ∈ [n] according to the probability distribution q .
4: Let ∇k

i :=∇ik h(ck uk + z̃k )+ A>
ik

y∗
βk+1

(ck Auk + Az̃k ). Compute

t (ik )
k+1 := arg min

t∈Rdik

{
〈∇(i )

k , t〉+ gik (t + z̃(ik )
k )+ τk B

(ik )

k
2τ0

‖t‖2
(ik )

}
.

5: z̃(ik )
k+1 := z̃(ik )

k + t (ik )
k+1.

6: u(ik )
k+1 := u(ik )

k − 1−τk /τ0
ck

t (ik )
k+1.

7: τk+1 := τk
1+τk

, βk+2 := (1−τk+1)βk+1, and B (i )
k+1 := L̂i + ‖Ai ‖2

βk+2
for i ∈ [m].

8: end for

3.3.3 Restarting SMART-CD

Restarting accelerated methods significantly enhances practical performance when the under-

lying problem admits a (restricted) strong convexity condition. As a result, we describe below

how to restart (i.e., the momentum term) in Efficient SMART-CD. If the restart is injected in

the k-th iteration, then we restart the algorithm with the following steps:

uk+1 = 0, r u,h
k+1 = 0, r u, f

k+1 = 0, ẏ = y∗
βk+1

(ck r u, f
k + r z̃, f

k ), βk+1 =β1, τk+1 = τ0, ck = 1.

First three steps of the restart procedure is for restarting the primal variable which is classical

[OC15]. Restarting ẏ is also suggested in [TDFC18]. The cost of this procedure is essentially

equal to the cost of one iteration as described in Remark 3.5, therefore even restarting once

every epoch will not cause a significant difference in terms of per-iteration cost.

3.3.4 Numerical experiments

A degenerate linear program. We consider the following degenerate LP from [TDFC18]:
min
x∈Rd

2x(d)

s.t.
∑d−1

k=1 x(k) = 1, x(d) ≥ 0,

x(d) −∑d−1
k=1 x(k) = 0, (2 ≤ j ≤ l ).

(3.20)

Here, the constraint x(d) −∑d−1
k=1 x(k) = 0 is repeated l times. This problem satisfies the linear

constraint qualification condition, which guarantees the primal-dual optimality. We define

f (x) = 2x(d), g (x) = δ{x(d)≥0}(x(d)), h(Ax) = δ{b}(Ax), where

Ax =
[

d−1∑
k=1

x(k), x(p) −
d−1∑
k=1

x(k), . . . , x(d) −
d−1∑
k=1

x(k)

]>
, b = [1,0, . . . ,0]>,
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Figure 3.4 – The convergence behavior of 3 algorithms on a degenerate linear program.

we can fit this problem and its dual form into our template (3.1). We select d = 10 and l = 200.

We implement our algorithm, its restarting variant and VC-CD. We use the same mapping to

fit the problem into the template of VC-CD and show the results in Figure 3.4.

The explicit solution of the problem is used to generate the plot with suboptimality. We

observe that degeneracy of the problem prevents VC-CD from making progress towards the

solution, where SMART-CD preserves O(1/k) rate as predicted by theory. At the time of

this experiment, [FB19] proved almost sure convergence for VC-CD without rates. Since the

problem is non-strongly convex, restarting does not improve performance of SMART-CD.

Total Variation and `1-regularized least squares regression with fMRI data

In this experiment, we consider a computational neuroscience application where prediction

is done based on a sequence of fMRI images. Since the images are high dimensional and the

number of samples that can be taken is limited, TV-`1 regularization is used to get stable and

predictive estimation results [DGTV14]. The problem we solve is

min
x∈Rp

1
2‖M x −b‖2 +λr‖x‖1 +λ(1− r )‖x‖TV. (3.21)

This problem fits to our template with f (x) = 1
2‖M x−b‖2, g (x) =λr‖x‖1, h(u) =λ(1−r )‖u‖1,

where D is the 3D finite difference operator to define a total variation norm ‖ ·‖TV and u = Dx.

As mentioned before, our results can be easily extended to this case as h is Lipschitz.

We use an fMRI dataset where x is 3D image of the brain that contains 33177 voxels. Fea-

ture matrix M has 768 rows, each representing the brain activity for the corresponding

example [DGTV14]. We compare our algorithm with Vu-Condat [Vũ13], FISTA [BT09], AS-

GARD [TDFC18], Chambolle-Pock [CP11], L-BFGS [BLNZ95] and VC-CD in Figure 3.5 with

different values of λ and r . The simulation in Figure 3.5 is performed using benchmarking

tool of [DGTV14]. The algorithms are tuned for the best parameters in practice. Per-iteration

cost of SMART-CD and VC-CD is similar, therefore the behaviors of these two algorithms are

similar in this experiment. Since Vu-Condat’s, Chambolle-Pock’s, FISTA and ASGARD methods

work with full dimensional variables, they have slow convergence in time. L-BFGS has a close
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Figure 3.5 – The convergence of 7 algorithms for problem (3.21). The regularization parameters for the first plot
are λ= 0.001,r = 0.5, for the second plot are λ= 0.001,r = 0.9, for the third plot are λ= 0.01,r = 0.5.

performance to CD methods.

Linear support vector machines with bias

In this section, we consider an application of our algorithm to support vector machines (SVM)

problem for binary classification. Given a training set with n examples {a1, a2, . . . , an} such

that ai ∈Rd and class labels
{
b̄1, b̄2, . . . b̄n

}
such that b̄i ∈ {−1,+1}, we define the soft margin

primal support vector machines problem with bias as

min
w∈Rd

n∑
i=1

Ci max
(
0,1− b̄i (〈ai , w〉+w0)

)
+ λ

2 ‖w‖2. (3.22)

As it is a common practice, we solve its dual formulation, which is a constrained problem:
min
x∈Rn

{ 1
2λ‖MD(b̄)x‖2 −∑n

i=1 x(i )
}

s.t. 0 ≤ x(i ) ≤Ci , i = 1, · · · ,m, b̄>x = 0,
(3.23)

where D(b̄) represents a diagonal matrix that has the class labels b̄i in its diagonal and M ∈
Rd×n is formed by the example vectors. We fit this problem into our template by

f (x) = 1

2λ
‖MD(b̄)x‖2 −

n∑
i=1

x(i ), gi (x(i )) = δ{0≤x(i )≤Ci }, b = 0, A = b̄>.

We apply SMART-CD and compare with VC-CD and SDCA [SSZ13]. Even though SDCA is

a popular for SVMs, it cannot handle the bias term. Hence, it only applies to (3.23) when

b>x = 0 constraint is removed. This causes SDCA not to converge to the optimal solution

with the bias term in (3.22). We summarize the properties of the classification datasets we

used: rcv1.binary [CL11a, LYRL04] with n = 20,242, d = 47,236 in Figure 3.6, plot 1, a8a
[CL11a, Lic13] n = 22,696, d = 123, Figure 3.6, plot 2; gisette [CL11a, GGBHD05] n = 6,000,

d = 5,000, Figure 3.6, plot 3. We compile the results in Figure 3.6.

We compute the duality gap for each algorithm and present the results with epochs in the

horizontal axis since per-iteration complexity of the algorithms is similar. As expected, SDCA

gets stuck at a low accuracy since it ignores one of the constraints in the problem. We demon-

strate this in the first experiment and then limit the comparison to SMART-CD and VC-CD.
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Equipped with restart strategy, SMART-CD shows the fastest convergence behavior due to the

restricted strong convexity of (3.23).
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Figure 3.6 – Convergence of algorithms on the dual SVM (3.23) with bias. We only used SDCA in the
first dataset since it stagnates at a very low accuracy.

3.4 Proofs for Section 3.2

We recall the definitions of Pβ and Sβ from (3.10), (3.9). We first prove Lemma 3.1.

Proof of Lemma 3.1. Optimal Lagrange multiplier y? = (y?(ξ))ξ is a random variable of Y with

bounded variance due to the constraint qualification condition [BC11]. We start with:

−
∫
〈A(ξ)x, y?(ξ)〉+suppb(ξ) (y?(ξ))µ(dξ) ≤ P (x)−P (x?) = Sβ(x)− 1

2β

∫
dist(A(ξ)x,b(ξ))2µ(dξ),

(3.24)

where the inequality is by saddle point definition, and the equality is by the definition of Sβ.

We continue by bounding the inner product 〈A(ξ)x, y?(ξ)〉. Let z := A(ξ)x, then

〈z, y?(ξ)〉 = 〈z −Πb(ξ)(z), y?(ξ)〉+〈Πb(ξ)(z), y?(ξ)〉 ≤ dist(z,b(ξ))‖y?(ξ)‖+〈A(ξ)x?, y?(ξ)〉
≤ 1

4β
dist(z,b(ξ))2 +β‖y?(ξ)‖2 + suppb(ξ)(y?(ξ)), (3.25)

where the first inequality is by Cauchy-Schwarz, optimality conditions, properties of Fenchel’s

transform: A(ξ)x? ∈ ∂suppb(ξ)(y?(ξ)) ⇐⇒ y?(ξ) ∈ ∂δb(ξ)(A(ξ)x?) ⇐⇒ 〈p − A(ξ)x?, y?(ξ)〉 ≤ 0,

for all p ∈ b(ξ), due to convexity of δb(ξ)(·). The second inequality follows from Young’s

inequality and the definition suppb(ξ)(y?(ξ)) = supu∈b(ξ)〈u, y?(ξ)〉.

We use
∫ ‖y?(ξ)‖2µ(dξ) = ‖y?‖2, integrate (3.25) and plug in to (3.24) to obtain last inequality.

Second and third inequalities directly follow from (3.24) and (3.25). For the first inequality:

Sβ(x) = P (x)+ 1

2β

∫
dist(A(ξ)x,b(ξ))2µ(dξ)−P (x?)

= P (x)−P (x?)+
∫

max
y∈Rd

〈A(ξ)x, y〉− suppb(ξ)(y)− β

2

∥∥y
∥∥2
µ(dξ)

≥ P (x)−P (x?)+
∫
〈A(ξ)x, y?(ξ)〉− suppb(ξ)(y?(ξ))− β

2

∥∥y?(ξ)
∥∥2
µ(dξ) ≥−β

2
‖y?‖2,
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where the second equality uses definition of smoothing and the last inequality is by (3.24). �

3.4.1 General Convex Case

Lemma 3.6. Let Assumption 3.1 hold and assume ∀s,
Lh+‖A‖2

2,∞/βs

2αs
≤ 0, 2αs‖A‖2

2,∞− βs

2 ≤ 0.

E
[
PβS (x̄S)−PβS (x?)

]≤ 1

2αSmS
‖x?−x0

0‖2 +
∑S−1

s=0 βsαsms

2αSmS
‖y?‖2 +2

∑S
s=0α

2
s ms

αSmS
σ2

h . (3.26)

Proof. Let us define z = Ax ∈Y and Fβ(Ax) = E[ fβ(A(ξ)x,ξ)]. We start by using smoothness of

the function h(x)+Fβs (Ax)

Pβs (xs
k+1) ≤ h(xs

k )+ g (xs
k+1)+Fβs (Axs

k )+〈∇h(xs
k )+ A>∇zGβs (Axs

k ), xs
k+1 −xs

k〉

+ L(∇h +∇x Fβs )

2
‖xs

k+1 −xs
k‖2

= h(xs
k )+ g (xs

k+1)+Fβs (xs
k )+〈∇hξ(xs

k )+ A(ξ)>∇z fβs (A(ξ)xs
k ,ξ), xs

k+1 −xs
k〉

+〈∇h(xs
k )−∇hξ(xs

k )+ A>∇z Fβs (Axs
k )− A(ξ)>∇z fβs (A(ξ)xs

k ,ξ), xs
k+1 −xs

k〉

+ L(∇h +∇x Fβs )

2
‖xs

k+1 −xs
k‖2. (3.27)

We bound the linear terms in (3.27) separately. First, we use [Tse08, Property 1] with x = x?:

g (xs
k+1)+〈∇hξ(xs

k )+ A(ξ)>∇z fβs (A(ξ)xs
k ,ξ), xs

k+1 −xs
k〉 ≤ g (x?)− 1

2αs
‖xs

k+1 −xs
k‖2 (3.28)

+〈∇hξ(xs
k )+ A(ξ)>∇z fβs (A(ξ)xs

k ,ξ), x?−xs
k〉+

1

2αs
‖x?−xs

k‖2 − 1

2αs
‖x?−xs

k+1‖2

Further, by the fact that fβs (·,ξ) has 1/βs-Lipschitz gradient,

〈A(ξ)>∇z fβs (A(ξ)xs
k ,ξ), x?−xs

k〉 ≤ fβs (A(ξ)x?,ξ)− fβs (A(ξ)xs
k ,ξ)

− βs

2
‖∇z fβs (A(ξ)xs

k ,ξ)−∇z fβs (A(ξ)x?,ξ)‖2

= fβs (A(ξ)x?,ξ)− fβs (A(ξ)xs
k ,ξ)− βs

2
‖∇z fβs (A(ξ)xs

k ,ξ)‖2, (3.29)

where the equality is by ∇z fβs (A(ξ)x?,ξ) = 0, due to the definition of fβs (·,ξ) and A(ξ)x? ∈ b(ξ).

We now use the convexity, 〈∇hξ(xs
k ), x?−xs

k〉 ≤ hξ(x?)−hξ(xs
k ) and (3.29) in (3.28) to get

g (xs
k+1)+〈∇hξ(xs

k )+ A(ξ)>∇z fβs (A(ξ)xs
k ,ξ), xs

k+1 −xs
k〉 ≤ g (x?)+hξ(x?)−hξ(xs

k )

+ fβs (A(ξ)x?,ξ)− fβs (A(ξ)xs
k ,ξ)− βs

2
‖∇z fβs (A(ξ)xs

k ,ξ)‖2 + 1

2αs
‖x?−xs

k‖2 − 1

2αs
‖x?−xs

k+1‖2

− 1

2αs
‖xs

k+1 −xs
k‖2 (3.30)
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We define

Tαs g (xs
k ) = proxαs g (xs

k −αs(∇h(xs
k )+ A>∇z Fβs (Axs

k ))).

For the second linear term in (3.27), we apply conditional expectation knowing xs
k

Ek
[〈∇h(xs

k )−∇hξ(xs
k )+ A>∇z Fβs (Axs

k )− A(ξ)>∇z fβs (A(ξ)xs
k ,ξ), xs

k+1 −xs
k〉

]=
Ek

[
〈∇h(xs

k )−∇hξ(xs
k )+ A>∇z Fβs (Axs

k )− A(ξ)>∇z fβs (A(ξ)xs
k ,ξ), xs

k+1 −Tαs g (xs
k )〉

+〈∇h(xs
k )−∇hξ(xs

k )+ A>∇z Fβs (Axs
k )− A(ξ)>∇z fβs (A(ξ)xs

k ,ξ),Tαs g (xs
k )−xs

k〉
]

= Ek
[〈∇h(xs

k )−∇hξ(xs
k )+ A>∇z Fβs (Axs

k )− A(ξ)>∇z fβs (A(ξ)xs
k ,ξ), xs

k+1 −Tαs g (xs
k )〉]

≤ Ek
[‖∇h(xs

k )−∇hξ(xs
k )+ A>∇z Fβs (Axs

k )− A(ξ)>∇z fβs (A(ξ)xs
k ,ξ)‖‖xs

k+1 −Tαs g (xs
k )‖]

≤αsEk
[‖∇h(xs

k )−∇hξ(xs
k )+ A>∇z Fβs (Axs

k )− A(ξ)>∇z fβs (A(ξ)xs
k ,ξ)‖2]

≤ 2αsEk
[‖∇h(xs

k )−∇hξ(xs
k )‖2]+2αsEk

[‖A>∇z Fβs (Axs
k )− A(ξ)>∇z fβs (A(ξ)xs

k ,ξ)‖2]
≤ 2αsσ

2
h +2αsEk

[‖A(ξ)>∇z fβs (A(ξ)xs
k ,ξ)‖2]

≤ 2αsσ
2
h +2αs sup

ξ

‖A(ξ)‖2Ek
[‖∇z fβs (A(ξ)xs

k ,ξ)‖2] , (3.31)

where the second inequality is due to the definition of xs
k+1, Tαs g (xs

k ) and nonexpansiveness

of proximal operator. Fourth inequality is due to the fact that E
[‖X −E [X ]‖2

] = E[‖X ‖2
]−

(E [X ])2, for any random variable X and Ek
[

A(ξ)>∇z fβs (A(ξ)xs
k ,ξ)

]= A>∇z Fβs (Axs
k ).

We take conditional expectation of (3.27), knowing xs
k , and plug in (3.30), (3.31) to obtain

Ek
[
Pβs (xs

k+1)
]≤ Pβs (x?)+ 1

2αs
‖x?−xs

k‖2 − 1

2αs
Ek

[‖x?−xs
k+1‖2]+2αsEk

[‖∇hξ(xs
k )‖2]

+
(
2αs‖A‖2

2,∞− βs

2

)
Ek

[∇z fβs (A(ξ)xs
k ,ξ)

]+(
L(∇F )+‖A‖2

2,∞/βs

2
− 1

2αs

)
Ek

[‖xs
k+1 −xs

k‖2] .

We use the assumptions that 2αs‖A‖2
2,∞− βs

2 ≤ 0 and
L(∇h)+‖A‖2

2,∞/βs

2 − 1
2αs

≤ 0 to get

Ek
[
Pβs (xs

k+1)
]≤ Pβs (x?)+ 1

2αs
‖x?−xs

k‖2 − 1

2αs
Ek

[‖x?−xs
k+1‖2]+2αsσ

2
h .

We apply total expectation and sum for k ∈ {0, . . . ,ms −1} to obtain

E
[

Pβs

(
1

ms

ms∑
k=1

xs
k

)
−Pβs (x?)

]
≤ 1

2αsms
E
[‖x?−xs

0‖2]− 1

2αsms
E
[‖x?−xs

ms
‖2]+ 2αs

ms

ms−1∑
k=0

σ2
h

≤ 1

2αsms
E
[‖x?−xs

0‖2]− 1

2αsms
E
[‖x?−xs

ms
‖2]+2αsσ

2
h . (3.32)

By Lemma 3.1, by using Pβs (x?) = P (x?), we have Pβs (x)−Pβs (x?) ≥−βs

2 ‖y?‖2. By the restart-

ing rule of the inner loop, one has xs
ms

= xs+1
0 . Using the previous inequality in (3.32):

E
[‖x?−xs+1

0 ‖2]≤ E[‖x?−xs
0‖2]+βsαsms‖y?‖2 +4α2

s msσ
2
h (3.33)
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We now sum (3.33) for s ∈ {0,1, . . . ,S −1}

E
[‖x?−xS

0‖2]≤ ‖x?−x0
0‖2 +

S−1∑
s=0

βsαsms‖y?‖2 +4
S−1∑
s=0

α2
s msσ

2
h (3.34)

We now use (3.34) in (3.32) to obtain the result. �

Next, we estimate the rates of the parameters to determine the convergence rates:

Lemma 3.7. Denote as MS = ∑S
s=0 ms the total number of iterations to compute x̄S . Let

ω,α0,m0,ms be chosen as Case 1 in Algorithm 3.1. Then, for all s,
L(∇h)+‖A‖2

2,∞/βs

2 − 1
2αs

≤ 0

and 2αs‖A‖2
2,∞− βs

2 ≤ 0. Moreover,

βs ≤ 4α0
p

m0‖A‖2
2,∞

p
ωp

ω−1

1p
Ms

αsms ≥α0
(m0 −1)p

m0

p
ω−1p
ω

√
Ms

S−1∑
s=0

βsαsms ≤ 4α2
0‖A‖2

2,∞m0
log(Ms/m0)

log(ω)
S∑

s=0
α2

s ms ≤α0m0

(
log(Ms/m0)

log(ω)
+1

)

Proof. By definition of βs , we have 2αs‖A‖2
2,∞− βs

2 = 0. By using the definition of βs , along

with αs being decreasing and the condition on α0, we have
Lh+‖A‖2

2,∞/βs

2 − 1
2αs

≤ 0. Next,

MS =
S∑

s=0
ms =

S∑
s=0

bm0ω
sc ≤

S∑
s=0

m0ω
s = m0

ωS+1 −1

ω−1
, (3.35)

which in turn gives

ωS ≥ ω−1

ω

MS

m0
+ 1

ω
≥ ω−1

ω

MS

m0
. (3.36)

We now use this bound to get

βS = 4αS‖A‖2
2,∞ = 4α0‖A‖2

2,∞ω
−S/2 ≤ 4α0‖A‖2

2,∞

p
ωp

ω−1

p
m0p
MS

αSmS =α0ω
−S/2bm0ω

Sc ≥α0m0ω
S/2 −α0ω

−S/2 ≥α0
(m0 −1)p

m0

p
ω−1p
ω

√
MS .

We can also lower bound MS as

MS =
S∑

s=0
ms =

S∑
s=0

bm0ω
sc = m0 +

S∑
s=1

bm0ω
sc ≥ m0 +m0ω

S −1 ≥ m0ω
S ,

61



Chapter 3. Smoothing and stochastic algorithms

since m0 ≥ 1. We thus get

S ≤ log(MS/m0)

log(ω)
(3.37)

Further,

βsαsms = 4α2
0‖A‖2

2,∞ω
−sbm0ω

sc ≤ 4α2
0‖A‖2

2,∞m0.

Now we use (3.37) to show that

S−1∑
s=0

βsαsms ≤ S ×4α2
0‖A‖2

2,∞m0 ≤ 4αs
0‖A‖2

2,∞m0
log(MS/m0)

log(ω)
.

Lastly, we use the relation βs = 4αs‖A‖2
2,∞ to conclude last bound. �

Proof of Theorem 3.2. We first combine Lemma 3.6 and Lemma 3.7:

E[SβS (x̄S)] = E[
PβS (x̄S)−PβS (x?)

]≤ 1

2αSmS
‖x?−x0

0‖2 +
∑S−1

s=0 βsαsms

2αSmS
‖y?‖2 +2

∑S
s=0α

2
s ms

αSmS
σ2

h

≤
p

m0

(m0−1)

p
ωp
ω−1

α0
p

Ms

[1

2
‖x?−x0

0‖2 +
4α2

0‖A‖2
2,∞m0

log(Ms /m0)
log(ω)

2
‖y?‖2 +2α0m0

(
log(Ms/m0)

log(ω)
+1

)
σ2

h

]
= C1p

MS

[
C2 + log(MS/m0)

log(ω)
C3

]
We combine the inequality above with βS ≤ 4α0

p
m0‖A‖2

2,∞
p
ωp
ω−1

1p
Ms

= C4p
MS

and Lemma 3.1:

√
E
[
dist(A(ξ)x̄s ,b(ξ))2

]≤√
4β2

S

∥∥y?
∥∥2 +4βSSβS (x̄S)

≤ 2C4
∥∥y?

∥∥
p

MS
+ 2

p
C1C4p
MS

√
C2 + log(MS/m0)

log(ω)
C3 (3.38)

The other inequalities follow similarly using

SβS (x̄S) ≥ P (x̄S)−P (x?) ≥− 1

4βS

∫
dist(A(ξ)x̄S ,b(ξ))2µ(dξ)−βS‖y?‖2 ≥−2βS‖y?‖2−SβS (x̄S).

�

3.4.2 Restricted Strongly Convex Case

Lemma 3.8. Let Assumption 3.1 hold. Assume that for all s,
L(∇h)+‖A‖2

2,∞/βs

2αs
≤ 0, 2αs‖A‖2

2,∞−
βs

2 ≤ 0 and µαsms ≥ 1
c , for c < 1. Then,

E
[
PβS (xS

k )−PβS (x?)
]≤ cS

2αSmS
‖x?−x0

0‖2 +
∑S−1

s=0 cS+1−sβsαsms

2αSmS
‖y?‖2
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+
∑S−1

s=0 4cS+1−sα2
s ms

2αSmS
σ2

h +2αSσ
2
h . (3.39)

Proof. We proceed same as the proof of Lemma 3.6, until (3.32). In the case where F (x)+h(x)

satisfies restricted strong convexity, we can derive

Pβs (x)−Pβs (x?) ≥−βs

2
‖y?‖2 + µ

2
‖x −x?‖2. (3.40)

We use (3.40) in (3.32), along with the restarting rule x̄s = xs+1
0 to get

µαsmsE
[‖x?−xs+1

0 ‖2]≤ E[‖x?−xs
0‖2]+βsαsms‖y?‖2 +4α2

s msσ
2
h . (3.41)

Further, since µαsms ≥ 1
c , for c < 1:

E
[‖x?−xs+1

0 ‖2]≤ cE
[‖x?−xs

0‖2]+ cβsαsms‖y?‖2 +4cα2
s msσ

2
h . (3.42)

We now get, by recursively applying the inequality for s ∈ {0,1, . . . ,S −1}

E
[‖x?−xS

0‖2]≤ cS‖x?−x0
0‖2 +

S−1∑
s=0

cS−sβsαsms‖y?‖2 +
S−1∑
s=0

4cS−sα2
s msσ

2
h . (3.43)

We plug (3.43) into (3.32) to obtain the result. �

Next, we estimate the rates of the parameters in the restricted strongly convex case.

Lemma 3.9. Denote as MS = ∑S
s=0 ms the total number of iterations to compute x̄S . Let

ω,α0,m0,ms be chosen as Case 2 in Algorithm 3.1 and c = 1/ω< 1. Then, for all s,
Lh+‖A‖2

2,∞/βs

2 −
1

2αs
≤ 0 and 2αs‖A‖2

2,∞− βs

2 ≤ 0. Moreover,

βs ≤ 4α0m0‖A‖2
2,∞

ω

ω−1

1

Ms

αsms ≥α0(m0 −1)

S−1∑
s=0

cS−sβsαsms ≤ 4cSα2
0‖A‖2

2,∞m0

(
log(Ms/m0)

log(ω)

)
S−1∑
s=0

cS−sα2
s ms ≤ cSα2

0m0

(
log(Ms/m0)

log(ω)

)
cS ≤ ω

ω−1

m0

MS

Proof. We skip the proofs for the parts that are the same as Lemma 3.7. We have

βs = 4α0‖A‖2
2,∞ω

−s ≤ 4α0m0‖A‖2
2,∞

ω

ω−1

1

Ms
.
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In addition,

αsms =α0ω
−sbm0ω

sc ≥α0ω
−s(m0ω

s −1) ≥α0(m0 −1),

where the last inequality follows since ωs ≥ 1. We have

S−1∑
s=0

cS−sβsαsms ≤α0m0

S−1∑
s=0

cS−sβs ≤ 4α2
0‖A‖2

2,∞m0cS
S−1∑
s=0

(ωc)−s = S ×4α2
0‖A‖2

2,∞m0cS

Next, we have cS =ω−S ≤ ω
ω−1

m0
MS

. Fourth bound follows by combining the third bound with

βs = 4αs‖A‖2
2,∞. �

Proof of Theorem 3.3. We first combine Lemma 3.8 and Lemma 3.9:

E
[
SβS (xS

k )
]≤ cS

2αSmS
‖x?−x0

0‖2 +
∑S−1

s=0 cS−sβsαsms

2αSmS
‖y?‖2 +

∑S−1
s=0 4cS−sα2

s ms

2αSmS
σ2

h +2αSσ
2
h

≤
ω
ω−1

m0
MS

α0(m0 −1)

[1

2
‖x?−x0

0‖2 +
4α2

0‖A‖2
2,∞m0

(
log(Ms /m0)

log(ω)

)
2

‖y?‖2 +2α2
0m0

(
log(Ms/m0)

log(ω)

)
σ2

h

]
+ βS

2‖A‖2
2,∞

σ2
h ≤ 1

MS

[
D1 + log(Ms/m0)

log(ω)
D2

]

where βs ≤ 4α0m0‖A‖2
2,∞

ω
ω−1

1
Ms

= D3
MS

. We then use Lemma 3.1.

√
E
[
dist(A(ξ)x̄s ,b(ξ))2

]≤√
4β2

S

∥∥y?
∥∥2 +4βSSβS (x̄S)

≤ 2D3
∥∥y?

∥∥
MS

+ 2
p

D3

MS

√
D1 + log(MS/m0)

log(ω)
D2. (3.44)

The other inequalities follow similarly. �

3.5 Proofs for Section 3.3

3.5.1 Key lemmas

The following properties are key to design the algorithm, whose proofs are very similar

to [TDFC18, Lemma 10] using a different norm, so we omit the proof here. The proof of the

last property directly follows by using the explicit form of hβ(u) in the case when h∗(y) = 〈c, y〉.

Lemma 3.10. For any u, û ∈Rm , let fβ(u) = maxy 〈u, y〉− f ∗(y)− β
2 ‖y − ẏ‖2. Then,

(a) fβ(·) is convex and smooth with ∇ fβ(u) = y∗
β

(u) being Lipschitz continuous with L fβ = 1
β .

(b) fβ(u)+〈∇ fβ(u), û −u〉+ β
2 ‖y∗

β
(u)− y∗

β
(û)‖2 ≤ fβ(û).

(c) f (û) ≥ fβ(u)+〈∇ fβ(u), û −u〉+ β
2 ‖y∗

β
(u)− ẏ‖2.
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(d) If f ∗(y) = 〈c, y〉, then fβ(u) = fβ̄(u)+ (β̄−β)β
2β̄

‖y∗
β

(u)− ẏ‖2.

The following lemma is motivated by [FR15].

Lemma 3.11. Consider the iterates {x̄k , x̃k }k≥0 of Algorithm 3.2. Then, for k ≥ 0 and i ∈ [m], we

can write {x̄(i )
k } as a convex combination of {x̃(i )

l }k
l=0:

x̄(i )
k =

k∑
l=0

γ(i )
k,l x̃(i )

l , (3.45)

where γ(i )
k,l ≥ 0 and

∑k
l=0γ

(i )
k,l = 1. Moreover, the coefficients γ(i )

k,l can explicitly be computed as

γ(i )
k+1,l =


(1−τk )γ(i )

k,l , for l = 0, · · · ,k −1,

(1−τk )γ(i )
k,k +τk − τk

τ0
, for l = k,

τk
τ0

, for l = k +1.

(3.46)

Proof. Now, from the definition of x̄k+1 and x̂k , for i ∈ [m], we can write

x̄(i )
k+1 = (1−τk )x̄(i )

k +τk x̃(i )
k + τk

τ0
(x̃(i )

k+1 − x̃(i )
k ) = (1−τk )x̄(i )

k + (τk −
τk

τ0
)x̃(i )

k + τk

τ0
x̃(i )

k+1. (3.47)

We prove that x̄(i )
k =∑k

l=0γ
(i )
k,l x̃(i )

l for i ∈ [m] such that γ(i )
k,l ≥ 0 and

∑k
l=0γ

(i )
k,l = 1. For k = 0, we

have x̄0 = x̃0, which trivially holds by choosing γ(i )
0,0 = 1. Assume that this expression holds for

k ≥ 1, we prove it holds for k +1. From (3.47), using this induction assumption, we write

x̄(i )
k+1 = (1−τk )

k−1∑
l=0

γ(i )
k,l x̃(i )

l +
[

(1−τk )γ(i )
k,k +τk −

τk

τ0

]
x̃(i )

k + τk

τ0
x̃(i )

k+1 =
k+1∑
l=0

γ(i )
k+1,l x̃(i )

l ,

where constants γ(i )
k+1,l are as given in (3.46). It is easy to check

∑k+1
l=0 γ

(i )
k+1,l = (1−τk )

∑k
l=0γ

(i )
k,l +

τk − τk
τ0

+ τk
τ0

= (1−τk )+τk = 1. Since {τk }k≥0 is non-increasing, γ(i )
k,l ≥ 0. �

3.5.2 Convergence analysis of SMART-CD

Proof of Theorem 3.4. First, let us define the full primal proximal-gradient step as

¯̃xk+1 := argmin
x∈Rd

{
〈∇ψβk+1 (x̂k ), x − x̂k〉+ g (x)+τk

m∑
i=1

B (i )
k

2τ0
‖x(i ) − x̃(i )

k ‖2
(i )

}
, (3.48)

where ∇ψβk+1 (x̂k ) =∇h(x̂k )+ A>y∗
βk+1

(Ax̂k ). The primal coordinate step (Step 7) and Step 8 in

Algorithm 3.2 can be written as

x̃(i )
k+1 =

 ¯̃x(i )
k+1, if i = ik ,

x̃(i )
k , otherwise.

(3.49)
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Moreover, using [Tse08, Property 2], we know that for all x ∈Rd and for all i ∈ [m],

gi ( ¯̃x(i )
k+1) ≤ gi (x(i ))+〈∇iψβk+1 (x̂k ), x(i ) − ¯̃x(i )

k+1〉+
τk B (i )

k

2τ0

(
‖x(i ) − x̃(i )

k ‖2
(i ) −‖x(i ) − ¯̃x(i )

k+1‖2
(i )

)
−
τk B (i )

k

2τ0
‖ ¯̃x(i )

k+1 − x̃(i )
k ‖2

(i ). (3.50)

Now, since the partial gradient ∇ik h is L̂ik -Lipschitz continuous, using x̄(ik )
k+1 = x̂(ik )

k + τk
τ0

(x̃(ik )
k+1 −

x̃(ik )
k ) and x̄(i )

k+1 = x̂(i )
k for i 6= ik , we have

h(x̄k+1) ≤ h(x̂k )+〈∇ik h(x̂k ), x̄(ik )
k+1 − x̂(ik )

k 〉+ L̂ik

2
‖x̄(ik )

k+1 − x̂(ik )
k ‖2

(ik )

= h(x̂k )+ τk

τ0
〈∇ik h(x̂k ), x̃(ik )

k+1 − x̃(ik )
k 〉+ τ2

k L̂ik

2τ2
0

‖x̃(ik )
k+1 − x̃(ik )

k ‖2
(ik ). (3.51)

Taking conditional expectation and noting (3.49), we obtain

Ek
[
h(x̄k+1)

]≤ h(x̂k )+ τk

τ0

n∑
i=1

qi 〈∇i h(x̂k ), ¯̃x(i )
k+1 − x̃(i )

k 〉+ τ2
k

τ2
0

m∑
i=1

qi
L̂i

2
‖ ¯̃x(i )

k+1 − x̃(i )
k ‖2

(i ). (3.52)

We denote by ϕβ(x) := fβ(Ax). By Lemma 3.10, we see that ϕβk+1 has block-coordinate Lip-

schitz gradient with ‖Ai ‖2

βk+1
, where Ai is the i -th column block of A. Moreover, ∇iϕβk+1 (x) =

A>
i y∗

βk+1
(Ax). Hence, using x̄(ik )

k+1 = x̂(ik )
k + τk

τ0
(x̃(ik )

k+1 − x̃(ik )
k ) and x̄(i )

k+1 = x̂(i )
k for i 6= ik , we write

ϕβk+1 (x̄k+1) ≤ϕβk+1 (x̂k )+〈∇ikϕβk+1 (x̂k ), x̄(ik )
k+1 − x̂(ik )

k 〉+ ‖Ai‖2

2βk+1
‖x̄(ik )

k+1 − x̂(ik )
k ‖2

(ik )

=ϕβk+1 (x̂k )+ τk

τ0
〈∇ikϕβk+1 (x̂k ), x̃(ik )

k+1 − x̃(ik )
k 〉+ τ2

k‖Ai‖2

2τ2
0βk+1

‖x̃(ik )
k+1 − x̃(ik )

k ‖2
(ik ).

Taking the conditional expectation and noting (3.49), we get

Ek
[
ϕβk+1 (x̄k+1)

]≤ϕβk+1 (x̂k )+ τk

τ0

m∑
i=1

qi 〈∇iϕβk+1 (x̂k ), ¯̃x(i )
k+1 − x̃(i )

k 〉

+ τ2
k

τ2
0

m∑
i=1

qi
‖Ai‖2

2βk+1
‖ ¯̃x(i )

k+1 − x̃(i )
k ‖2

(i ). (3.53)

Now, we define

ĝ (i )
k :=

k∑
l=0

γ(i )
k,l gi (x̃(i )

l ) and ĝk :=
m∑

i=1
ĝ (i )

k . (3.54)

Using Lemma 3.11, we can write

ĝ (i )
k+1 =

k+1∑
l=0

γ(i )
k+1,l gi (x̃(i )

l ) =
k−1∑
l=0

(1−τk )γ(i )
k,l gi (x̃(i )

l )+
[

(1−τk )γ(i )
k,k +τk − τk

τ0

]
gi (x̃(i )

k )+ τk

τ0
gi (x̃(i )

k+1)
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= (1−τk )
k∑

l=0
γ(i )

k,l gi (x̃(i )
l )+τk gi (x̃(i )

k )+ τk

τ0

(
gi (x̃(i )

k+1)− gi (x̃(i )
k )

)
= (1−τk )ĝ (i )

k +τk gi (x̃(i )
k )+ τk

τ0

(
gi (x̃(i )

k+1)− gi (x̃(i )
k )

)
.

Using the definition (3.54) of ĝk , this estimate implies

ĝk+1 = (1−τk )ĝk +
m∑

i=1

[
τk gi (x̃(i )

k )+ τk

τ0

(
gi (x̃(i )

k+1)− gi (x̃(i )
k )

)]
.

Now, by the expression (3.49), we can show that

Ek
[
gi (x̃(i )

k+1)
]= qi gi ( ¯̃x(i )

k+1)+ (1−qi )gi (x̃(i )
k ).

Combining the two last expressions, we derive

Ek
[
ĝk+1

]= (1−τk )ĝk +
m∑

i=1

[
τk gi (x̃(i )

k )+ τk

τ0

(
E
[
gi (x̃(i )

k+1)
]− gi (x̃(i )

k )
)]

= (1−τk )ĝk +τk

m∑
i=1

gi (x̃(i )
k )+ τk

τ0

n∑
i=1

qi

(
gi ( ¯̃x(i )

k+1)− gi (x̃(i )
k )

)
. (3.55)

Let us define F̂ k
βk

:= h(x̄k )+ ĝk + fβk (Ax̄k ) ≡ h(x̄k )+ ĝk +ϕβk (x̄k ). Then, from (3.52), (3.53) and

(3.55), we have that

Ek

[
F̂ k+1
βk+1

]
≤

[
h(x̂k )+ τk

τ0

m∑
i=1

qi 〈∇i h(x̂k ), ¯̃x(i )
k+1 − x̃(i )

k 〉
]
+ τ2

k

2τ2
0

m∑
i=1

qi

(
L̂i + ‖Ai‖2

βk+1

)
‖ ¯̃x(i )

k+1 − x̃(i )
k ‖2

(i )

+
[
ϕβk+1 (x̂k )+ τk

τ0

m∑
i=1

qi 〈∇iϕβk+1 (x̂k ), ¯̃x(i )
k+1 − x̃(i )

k 〉
]

+
[

(1−τk )ĝk +τk

m∑
i=1

gi (x̃(i )
k )+ τk

τ0

m∑
i=1

qi

(
gi ( ¯̃x(i )

k+1)− gi (x̃(i )
k )

)]
, (3.56)

since ∇ψβk+1 (x̂k ) =∇h(x̂k )+∇ϕβk+1 (x̂k ). Now, using the estimate (3.50) into the last expression

and noting that B (i )
k = L̂i + ‖Ai ‖2

βk+1
, we can further derive that for all x,

Ek
[
F̂ k+1
βk+1

]≤ [
h(x̂k )+ τk

τ0

m∑
i=1

qi 〈∇i h(x̂k ), x(i ) − x̃(i )
k 〉

]
+

[
ϕβk+1 (x̂k )+ τk

τ0

m∑
i=1

qi 〈∇iϕβk+1 (x̂k ), x(i ) − x̃(i )
k 〉

]
+

[
(1−τk )ĝk +τk

m∑
i=1

gi (x̃(i )
k )+ τk

τ0

m∑
i=1

qi

(
gi (x(i ))− gi (x̃(i )

k )
)]

+
m∑

i=1
qi
τ2

k B (i )
k

2τ2
0

(‖x(i ) − x̃(i )
k ‖2

(i ) −‖x(i ) − ¯̃x(i )
k+1‖2

(i )

)
. (3.57)
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Let us choose x such that for all i ∈ [m], x(i ) =
(
1− τ0

qi

)
x̃(i )

k + τ0
qi

x(i )
? . Note that as τ0 ≤ qi for all i ,

x(i ) is a convex combination of x̃(i )
k and x(i )

? . We obtain

Ek

[
F̂ k+1
βk+1

]
≤ [h(x̂k )+τk〈∇h(x̂k ), x?− x̃k〉]+

[
ϕβk+1 (x̂k )+τk〈∇ϕβk+1 (x̂k ), x?− x̃k〉

]
+ [

(1−τk )ĝk +τk g (x?)
]

+
m∑

i=1
qi
τ2

k B (i )
k

2τ2
0

(∥∥∥∥τ0

qi
(x(i )
? − x̃(i )

k )

∥∥∥∥2

(i )
−

∥∥∥∥(
1− τ0

qi

)
x̃(i )

k + τ0

qi
x(i )
? − ¯̃x(i )

k+1

∥∥∥∥2

(i )

)
. (3.58)

We use ‖ax + (1−a)y − z‖2 = a‖x − z‖2 + (1−a)‖y − z‖2 −a(1−a)‖x − y‖2 to get∥∥∥∥(
1− τ0

qi

)
x̃(i )

k + τ0

qi
x(i )
? − ¯̃x(i )

k+1

∥∥∥∥2

(i )

=
(
1− τ0

qi

)
‖x̃(i )

k − ¯̃x(i )
k+1‖2

(i ) +
τ0

qi
‖x(i )

? − ¯̃x(i )
k+1‖2

(i ) −
(
1− τ0

qi

)
τ0

qi
‖x̃(i )

k −x(i )
? ‖2

(i )

≥ τ0

qi
‖x(i )

? − ¯̃x(i )
k+1‖2

(i ) −
(
1− τ0

qi

)
τ0

qi
‖x̃(i )

k −x(i )
? ‖2

(i ).

Using this estimate gives

Ek

[
F̂ k+1
βk+1

]
≤ [

h(x̂k )+τk〈∇h(x̂k ), x?− x̃k〉
]+[

ϕβk+1 (x̂k )+τk〈∇ϕβk+1 (x̂k ), x?− x̃k〉
]

+ [
(1−τk )ĝk +τk g (x?)

]+ m∑
i=1

τ2
k B (i )

k

2τ0

(
‖x(i )

? − x̃(i )
k ‖2

(i ) −‖ ¯̃x(i )
k+1 −x(i )

? ‖2
(i )

)
. (3.59)

Using the convexity of h, we have h(x̂k )+〈∇h(x̂k ), x?− x̂k〉 ≤ h(x?) and h(x̂k )+〈∇h(x̂k ), x̄k −
x̂k〉 ≤ h(x̄k ). Moreover, since x̂k = (1−τk )x̄k +τk x̃k , we have τk (x?− x̃k ) = (1−τk )(x̄k − x̂k )+
τk (x?− x̂k ). Combining these expressions, we obtain

h(x̂k )+τk〈∇h(x̂k ), x?− x̃k〉 ≤ (1−τk )h(x̄k )+τk h(x?). (3.60)

On the one hand, by the Lipschitz gradient and convexity of ϕβk+1 in Lemma 3.10(b), we have

ϕβk+1 (x̂k )+〈∇ϕβk+1 (x̂k ), x̄k − x̂k〉 ≤ϕβk+1 (x̄k )− βk+1

2
‖y∗

βk+1
(Ax̂k )− y∗

βk+1
(Ax̄k )‖2.

On the other hand, by Lemma 3.10(c), we also have

ϕβk+1 (x̂k )+〈∇ϕβk+1 (x̂k ), x?− x̂k〉 ≤ h(Ax?)− βk+1

2
‖y∗

βk+1
(Ax̂k )− ẏ‖2

Combining these two inequalities and using τk (x?− x̃k ) = (1−τk )(x̄k − x̂k )+τk (x?− x̂k ),

ϕβk+1 (x̂k )+τk〈∇ϕβk+1 (x̂k ), x?− x̃k〉 ≤ (1−τk )ϕβk+1 (x̄k )+τk f (Ax?)

− (1−τk )βk+1

2
‖y∗

βk+1
(Ax̂k )− y∗

βk+1
(Ax̄k )‖2 − τkβk+1

2
‖y∗

βk+1
(Ax̂k )− ẏ‖2.
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Next, using Lemma 3.10(d), we can further estimate

ϕβk+1 (x̂k )+τk〈∇ϕβk+1 (x̂k ), x?− x̃k〉 ≤ (1−τk )ϕβk (x̄k )+τk f (Ax?)− τkβk+1

2
‖y∗

βk+1
(Ax̂k )− ẏ‖2

− (1−τk )βk+1

2
‖y∗

βk+1
(Ax̂k )− y∗

βk+1
(Ax̄k )‖2 + (1−τk )(βk −βk+1)βk+1

2βk
‖y∗

βk+1
(Ax̄k )− ẏ‖2

≤ (1−τk )ϕβk (x̄k )+τk f (Ax?)− (1−τk )βk+1

2βk

[
βk+1 − (1−τk )βk

]‖y∗
βk+1

(Ax̄k )− ẏ‖2. (3.61)

Last inequality uses (1−τ)‖a−b‖2+τ‖a‖2−τ(1−τ)‖b‖2 = ‖a− (1−τ)b‖2 ≥ 0 for any a, b, and

τ ∈ [0,1]. Substituting (3.60) and (3.61) into (3.59), and using βk+1 = (1−τk )βk , we obtain

Ek
[
F̂ k+1
βk+1

]≤ (1−τk )
[
h(x̄k )+ ĝk +ϕβk (x̄k )

]+τk
[
h(x?)+ g (x?)+ f (Ax?)

]
+

n∑
i=1

τ2
k B (i )

k

2τ0

(‖x(i )
? − x̃(i )

k ‖2
(i ) −‖x(i )

? − ¯̃x(i )
k+1‖2

(i )

)
. (3.62)

Next, let us denote by Qk :=∑m
i=1

τ2
k B (i )

k
2τ0

[
‖x(i )

? − x̃(i )
k ‖2

(i ) −‖x(i )
? − ¯̃x(i )

k+1‖2
(i )

]
. We can write Qk as

Qk =
m∑

i=1

τ2
k B (i )

k

2τ0

[
‖x(i )

? − x̃(i )
k ‖2

(i ) −‖x(i )
? − ¯̃x(i )

k+1‖2
(i )

]
= Ek

[
τ2

k B (ik )
k

2qikτ0

(
‖x(ik )

? − x̃(ik )
k ‖2

(ik ) −‖x(ik )
? − x̃(ik )

k+1‖2
(ik )

)]

= Ek

[ m∑
i=1

τ2
k B (i )

k

2qiτ0

(
‖x(i )

? − x̃(i )
k ‖2

(i ) −‖x(i )
? − x̃(i )

k+1‖2
(i )

)]
, (3.63)

where the last equality follows from the fact that x̃(i )
k+1 = x̃(i )

k for i 6= ik . Substituting this estimate

to (3.62), using the definitions of F̂ k
βk

, P (x?) = P?, and taking conditional expectation gives

E
[

F̂ k+1
βk+1

−P?+
m∑

i=1

τ2
k B (i )

k

2qiτ0
‖x(i )

? −x̃(i )
k+1‖2

(i )

]
≤ E

[
(1−τk )

(
F̂ k
βk

−P?
)
+

m∑
i=1

τ2
k B (i )

k

2qiτ0
‖x(i )

? − x̃(i )
k ‖2

(i )

]
.

(3.64)

To telescope this inequality we assume that τ2
k B (i )

k ≤ (1−τk )
(
τ2

k−1B (i )
k−1

)
, which is equivalent to

τ2
k

(
L̂i + ‖Ai‖2

βk+1

)
≤ (1−τk )

[
τ2

k−1

(
L̂i + ‖Ai‖2

βk

)]
. (3.65)

By βk+1 = (1−τk )βk , this condition becomes

τ2
k

(
(1−τk )βk L̂i +‖Ai‖2)≤ (1−τk )2τ2

k−1

(
βk L̂i +‖Ai‖2) .
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This condition holds if τ2
k = (1−τk )2τ2

k−1, which leads to τk = τk−1
τk−1+1 , which is the update rule.

It is easy to show that τk = 1
k+τ−1

0
and βk = β1

τ0(k−1)+1 . We define Sk =∑n
i=1

τ2
k B k

i
2qiτ0

‖x?i − x̃k+1
i ‖2

(i ).

Then, we can show

E
[

F̂ k+1
βk+1

−P?+Sk

]
≤

k∏
i=1

(1−τi )E

[
F̂ 1
β1

−P?+
m∑

i=1

τ2
0B (i )

0

2qiτ0
‖x(i )

? − x̃(i )
1 ‖2

(i )

]

≤
k∏

i=1
(1−τi )

(
(1−τ0)(F̂ 0

β0
−P?)+

m∑
i=1

τ2
0B (i )

0

2qiτ0
‖x(i )

? − x̃(i )
0 ‖2

(i )

)
,

where the second inequality is by (3.64). Since τk = 1
k+τ−1

0
, it is easy to show that ωk+1 :=∏k

i=1(1−τi ) ≤∏k
i=1

i+τ−1
0 −1

i+τ−1
0

= 1
τ0k+1 . We have Pβ0 (x0) = F̂ 0

β0
, and x̃0 = x0; and by convexity of g

with Lemma 3.11, we also have g (x̄k ) = g
(∑k

l=0γk,l x̃l
) ≤ ∑k

l=0γk,l g (x̃l ) = ĝk . Hence, we can

write the above estimate as

E
[
Fβk (x̄k )−P?

]≤ 1

τ0(k −1)+1

[
(1−τ0)(Pβ0 (x0)−P?)+

m∑
i=1

τ0B (i )
0

2qi
‖x(i )

? −x(i )
0 ‖2

(i )

]
. (3.66)

Recall that we denote as y? a dual solution, existence of which is by Assumption 3.2. We define

Dβk (x) := P (x)+ fβk (Ax)−P? and apply [TDFC18, Lemma 1] to obtain the bounds

 P (x̄k )−P? ≤ Dβk (x̄k )+∥∥y?
∥∥‖Ax̄k −b‖+ βk

2

∥∥y?− ẏ
∥∥2 ,

‖Ax̄k −b‖ ≤βk

[
‖y?− ẏ‖+ (‖y?− ẏ‖2 +2β−1

k Dβk (x̄k )
)1/2

]
.

(3.67)

The result in (3.19) follows by taking expectation and using Jensen’s inequality. �

3.5.3 Equivalence of SMART-CD and Efficient SMART-CD

Proof of Proposition 1. We give a proof for the equivalence of Algorithm 3.2 and Algorithm 3.3

motivated by [FR15]. The claim trivially holds for k = 0 using the initialization of the param-

eters. Assume that the relations hold for some k. Using Step 5 of Algorithm 3.3, we have

z̃(ik )
k+1 = z̃(ik )

k + t (ik )
k+1. (3.68)

We can write from Step 4 of Algorithm 3.3 that

t (ik )
k+1 = argmin

t∈Rdik

{
〈∇ik h(ck uk + z̃k )+ A>

ik
y∗
βk+1

(
ck Auk + Az̃k

)
, t〉+ gik (t + z̃(ik )

k )+
τk B (ik )

k

2τ0
‖t‖2

(ik )

}

= argmin
t∈Rdik

{
〈∇ik h(ẑk )+ A>

ik
y∗
βk+1

(
Aẑk

)
, t〉+ gik (t + z̃(ik )

k )+
τk B (ik )

k

2τ0
‖t‖2

(ik )

}

= argmin
t∈Rdik

{
〈∇ik h(x̂k )+ A>

ik
y∗
βk+1

(
Ax̂k

)
, t〉+ gik (t + x̃(ik )

k )+
τk B (ik )

k

2τ0
‖t‖2

(ik )

}
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=−x̃(ik )
k +argmin

x∈Rdik

{
〈∇ik h(x̂k )+ A>

ik
y∗
βk+1

(
Ax̂k

)
, x − x̂(ik )

k 〉+ gik (x)+
τk B (ik )

k

2τ0
‖x − x̃(ik )

k ‖2
(ik )

}
=−x̃(ik )

k + x̃(ik )
k+1.

By (3.68) and the inductive assumption on x̃k , we obtain z̃k+1 = x̃k+1. Next, using the definition

of z̄k+1 and Step 6, we can derive

z̄k+1 = ck uk+1 + z̃k+1 = ck

(
uk −

1−τk /τ0

ck
(z̃k+1 − z̃k )

)
+ z̃k+1

= ck uk + z̃k +
τk

τ0
(z̃k+1 − z̃k ) = ẑk +

τk

τ0
(z̃k+1 − z̃k )

= x̂k +
τk

τ0
(x̃k+1 − x̃k ) = x̄k+1.

Finally, we use the definition of ẑk+1, ck and Step 4 of Algorithm 3.2, we arrive at

ẑk+1 = ck+1uk+1 + z̃k+1 =
ck+1

ck
(x̄k+1 − z̃k+1)+ z̃k+1

= (1−τk+1)(z̄k+1 − z̃k+1)+ z̃k+1 = (1−τk+1)(x̄k+1 − x̃k+1)+ x̃k+1

= (1−τk+1)x̄k+1 +τk+1x̃k+1 = x̂k+1.

Hence, we can conclude that Algorithm 3.2 and Algorithm 3.3 are equivalent. �

3.6 Bibliographic note

Lemma 3.1 is due to Olivier Fercoq.
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4 Convergence of stochastic primal-
dual hybrid gradient algorithm

This chapter is motivated by the compelling practical performance of the algorithm Stochastic

PDHG (SPDHG) [CERS18] in our experience. We focus on a similar problem template as the

previous chapter. SPDHG belongs to the class of primal-dual splitting methods, which is an

alternative approach to Nesterov’s smoothing. We refer to coordinate descent based variants

of such methods as PDCD methods.

In contrast to the favorable empirical performance we observed, theoretical guarantees of

SPDHG in [CERS18] were surprisingly weak, especially in the general convex-concave case.

This chapter provides a better analysis for this method with three new convergence results.

Among these, we highlight the optimal rate O(1/k) for the standard optimality measure

expected primal-dual gap. The difficulty in deriving this rate was already identified in one of

the earliest papers on PDCD [DL14] and we introduce a generic technique for overcoming it.

This chapter is based on the joint work with Olivier Fercoq and Volkan Cevher [AFC21].

4.1 Introduction

In this chapter, we focus on the stochastic primal-dual hybrid gradient (SPDHG) algorithm

proposed in [CERS18], for solving the optimization problem

min
x∈X

n∑
i=1

fi (Ai x)+ g (x), (4.1)

where fi : Yi → R∪ {+∞} and g : X → R∪ {+∞} are proper l.s.c. convex functions and f

is defined as the separable function such that f (y) = ∑n
i=1 fi (y (i )). Ai : X → Yi is a linear

mapping and A is defined such that (Ax)i = Ai x. We recall that this structure covers the

previously considered linealy constrained problem, in addition to empirical risk minimization

and imaging problems [CERS18].

We refer to [CP16a] for a review of deterministic primal-dual methods for solving this template.
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A common strategy for stochastic algorithms is to have coordinate-based updates for the

separable dual variable [SSZ13, ZX17, CERS18]. These methods show competitive practical

performance and are proven to converge linearly under the assumption that f ∗
i ,∀i and g are

µi and µg -strongly convex functions, respectively. Step sizes of these methods in turn depend

on µi ,µg to obtain linear convergence. SPDHG belongs to this class, being the randomized

version of PDHG [CP11, CP16b].

Chambolle et al. provide convergence analysis for SPDHG under various assumptions on the

problem template [CERS18]. In the general convex case, [CERS18] proved that a particular

Bregman distance between the iterates of SPDHG and any primal-dual solution converges

almost surely to 0 and the ergodic sequence has a O(1/k) rate for this quantity. Note however

in the general convex case, this result neither implies the almost sure convergence of the

sequence to a solution nor convergence rate on the expected primal-dual gap. If f ∗
i and

g are strongly convex functions, SPDHG-µ, which is a variant of SPDHG with step sizes

depending on strong convexity constants, is proven to converge linearly [CERS18, Theorem

6.1]. Estimation of strong convexity constants can be challenging in practice, restricting the

use of SPDHG-µ.

In its most basic form, standard step sizes of SPDHG are determined using only ‖Ai‖ [CERS18].

It is observed frequently in practice that the last iterate of PDHG or SPDHG with standard step

sizes has competitive practical performance. Yet, existing results come short to prove even the

most fundamental results about the algorithm such as iterate convergence or convergence

rate for expected primal-dual gap [CERS18]. In this chapter, we focus on SPDHG with standard

step sizes, and provide new theoretical results, paving the way for explaining its favorable

convergence behavior in practice.

4.1.1 Contributions

We prove the following new results for SPDHG.

.We prove that the iterates of SPDHG converge almost surely to a solution. For this purpose,

we introduce a representation of SPDHG as a fixed point operator in a duplicated space.

. For the ergodic sequence, we show that SPDHG has O(1/k) rate of convergence for the

expected primal-dual gap. We also prove the same rate for objective residual and feasibility for

linearly constrained problems. This the first time the optimal rate for the expected primal-dual

gap is attained by PDCD methods. Our technique for obtaining this result is generic and can

be of independent interest.

. When the problem is metrically subregular (see Section 4.6), we prove that SPDHG has

linear convergence with standard step sizes. Our result shows that without any modification,

basic SPDHG adapts to problem structure and attains linear rate when this assumption holds,

which can help explain its favorable performance in practice.
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.We show that SPDHG shows a competitive practical performance compared to SPDHG-µ

of [CERS18] and other state-of-the-art methods such as variance reduction methods.

We summarize our results and compare with those of [CERS18] in Table 4.2 (Page 106).

4.2 Preliminaries

4.2.1 Notation

Recall that X ,Y are Euclidean spaces. We denote the partitioning of the dual space as Y =∏n
i=1Yi . Given a vector x ∈X , we use bold symbol x to denote the duplicated version of this

vector, which consists of n ‘copies’ of x, and the corresponding space is denoted by X =X n .

Similarly, the duplicated dual space is Y =Yn and Z =X ×Y . The ‘copies’ might be the same,

or different, depending on how x is set. To access i th copy, we use the notation x(i ) ∈X . For the

operator T : Z →Z , and a duplicated vector q ∈Z , we denote the output as T (q) =
[

Tx (q)

Ty (q)

]
where, for example, i th primal copy is denoted as Tx (q)(i ) ∈X . Similarly, for the i th primal

copy in q , we use q x (i ) ∈X . To access i th primal and dual copies, we use q(i ) ∈Z .

For example, when we pick one coordinate at a time, we can set X =Rd , Y =Rn , which would

result in the duplicated spaces X =Rdn , Y =Rn2
, and Z =Rdn+n2

.

Probability of selecting an index i ∈ {1, . . . ,n} is denoted as pi > 0, with
∑n

i=1 pi = 1. We define

P = diag(p1, . . . , pn) and p = mini pi . Notation Fk defines the filtration generated by indices

{i1, . . . , ik−1}, selected randomly every iteration. Let Ek [·] := E [· |Fk ] denote the conditional

expectation with respect to Fk .

Using Fenchel conjugate, Problem (4.1) can be cast as the saddle point problem

min
x∈X

sup
y∈Y

n∑
i=1

〈Ai x, y (i )〉− f ∗
i (y (i ))+ g (x). (4.2)

A primal-dual solution (x?, y?) ∈Z? is characterized as

0 ∈
[

A>y?+∂g (x?)

Ax?−∂ f ∗(y?)

]
= F (x?, y?). (4.3)

Given the functions g and f ∗ as in (4.2), we define

Dg (x, z̄) = g (x)− g (x̄)+〈A> ȳ , x − x̄〉, (4.4)

D f ∗(y, z̄) = f ∗(y)− f ∗(ȳ)−〈Ax̄, y − ȳ〉. (4.5)

If z̄ = z? = (x?, y?), with z? denoting a primal-dual solution as defined in (4.3), then (4.4)

and (4.5) are Bregman distances generated by g and f ∗. Respectively, these functions measure
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the distance between x and x?; and y and y?. Consequently, given z, Dh(z, z?) is the Bregman

distance generated by h(z) = g (x)+ f ∗(y), to measure the distance between z and z?. When h is

merely convex, a bound on this quantity does not imply a bound on the Euclidean distance. We

also note that primal-dual gap function can be written as Gap(z) = supz̄∈Z D f ∗(x, z̄)+Dg (y, z̄).

4.2.2 Metric subregularity

For a set valued mapping F : U⇒V , we denote the graph of F by graF = {(u, v) ∈U×V : v ∈ Fu}.

We say that F is metrically subregular at ū for v̄ , with (ū, v̄) ∈ graF , if there exists η0 > 0 with a

neighborhood of subregularity N (ū) such that:

dist(u,F−1v̄) ≤ η0 dist(v̄ ,Fu), ∀u ∈N (ū). (4.6)

If N (ū) =U , then F is globally metrically subregular [DR09]. Absence of metric subregularity

is signaled by η0 =+∞. This assumption is used in the context of deterministic and stochastic

primal-dual algorithms in [LFP16, DL18, LFP19]. We study how the metric subregularity of

the Karush-Kuhn-Tucker (KKT) operator F in (4.3) implies linear convergence of SPDHG.

We note that metric subregularity of F holds in following cases:

◦ f ∗
i and g are strongly convex functions, since N (z̄) =Z .

◦ The problem (4.1) is defined with piecewise linear quadratic (PLQ) functions and dom g and

dom f ∗ are compact sets, in which case N (z̄) = dom g ×dom f ∗. In particular the domain of

a PLQ function can be represented as the union of finitely many polyhedral sets and in each

set, the function is a quadratic (see [LFP19, Definition IV.3]). Problems with PLQ functions

include Lasso, support vector machines, linear programs, etc.

Remark 4.1. In the first case above, compact domains are not needed since metric subregu-

larity holds globally for these problems. One can also relax strong convexity in the first case,

to weaker conditions as quadratic growth or restricted strong convexity, see [LP18, Lemma

4.3] for the details. Throughout the chapter, compact domain assumption is only needed

in the second example above, for PLQs, as one sufficient condition for Assumption 4.2. The

reason, as we will see in Theorem 4.8 is the lack of control on the low probability event that

the trajectory may make an excursion far away. The same assumption for proving linear

convergence of another primal-dual coordinate descent method is also needed in [LFP19].

Smoothed gap. In order to prove sublinear convergence rates for linearly constrained prob-

lems, we are going to utilize the smoothed gap framework introduced in [TDFC18]. For

Problem (4.1), the smoothed gap function is defined as

Gα,β(x, y ; ẋ, ẏ) = sup
u,v

g (x)+〈Ax, v〉− f ∗(v)

− g (u)−〈Au, y〉+ f ∗(y)− α

2
‖u − ẋ‖2 − β

2
‖v − ẏ‖2. (4.7)
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4.3 Algorithm

Chambolle et al. proposed SPDHG [CERS18], which fits into the PDCD class of algorithms,

proposed before in [ZX17, FB19, DL14]. A comprehensive literature review is given in Sec-

tion 4.5. Several variants of SPDHG are analyzed in [CERS18]. In this chapter, we focus on the

standard SPDHG which we include as Algorithm 4.1.

Algorithm 4.1 Stochastic PDHG (SPDHG) [CERS18, Algorithm 1]

Input: Pick step sizes σi ,τ by (4.8) and x0 ∈X , y0 = y1 = ȳ1 ∈Y . Given P = diag(p1, . . . , pn).
for k = 1,2, . . . do

xk = proxτ,g (xk−1 −τA> ȳk )
Draw ik ∈ {1, . . . ,n} such that Pr(ik = i ) = pi .
y (ik )

k+1 = proxσik
, f ∗

ik
(y (ik )

k +σik Aik xk )

y (i )
k+1 = y (i )

k , ∀i 6= ik

ȳk+1 = yk+1 +P−1(yk+1 − yk ),
end for

Remark 4.2. We use serial sampling of blocks in our analysis for the ease of notation. We can

extend our results with other samplings by using expected separable overapproximation (ESO)

inequality as in [CERS18].

We focus on following standard step size rules for primal and dual step sizes τ,σi , which only

depend on ‖Ai‖ and not any other structural constants about the problem

p−1
i τσi‖Ai‖2 ≤ γ2 < 1. (4.8)

Next section illustrates our novel theoretical results for SPDHG improving on [CERS18].

Assumption 4.1.

• fi and g are proper, l.s.c., convex functions.

• The set of solutions to (4.1) is nonempty.

• Slater’s condition holds [BC11].

Slater’s condition is a standard sufficient assumption for strong duality, which is used in most

works in the literature of primal-dual methods [BC11, CP11, CERS18, LFP19, TDFC18, FB19].

Strong duality ensures that a dual solution exists in (4.2) and the set of primal-dual solutions

is characterized by (4.3).

77



Chapter 4. Convergence of stochastic primal-dual hybrid gradient algorithm

4.4 Convergence

We start with a lemma analyzing one iteration behavior of the algorithm. This lemma is

essentially the same as [CERS18, Lemma 4.4] up to minor modifications and is included for

completeness, with its proof in Section 4.7.1.

For the lemma, we introduce the following notation

V (z) = 1

2
‖x‖2

τ−1 + 1

2
‖y‖2

D(σ)−1P−1 +〈Ax,P−1 y〉,

Vk (x, y) = 1

2
‖x‖2

τ−1 −〈Ax,P−1(yk − yk−1)〉+ 1

2
‖yk − yk−1‖2

D(σ)−1P−1 + 1

2
‖y‖2

D(σ)−1P−1 .
(4.9)

We also define the full dimensional dual update

ŷ (i )
k+1 = proxσi , f ∗

i
(y (i )

k +σi Ai xk ), ∀i ∈ {1, . . . ,n}.

Lemma 4.3. Let Assumption 4.1 hold. It holds for SPDHG that, ∀x ∈X ,∀y ∈Y ,

Dg (xk , z)+D f ∗(ŷk+1, z) ≤Vk (xk−1 −x, yk − y)−Ek
[
Vk+1(xk −x, yk+1 − y)

]
−V (zk − zk−1). (4.10)

Moreover, under the step size rules in (4.8), we have with C1 = 1−γ

V (zk − zk−1) ≥C1

(
1

2
‖xk −xk−1‖2

τ−1 + 1

2
‖yk − yk−1‖2

D(σ)−1P−1

)
, (4.11)

Vk (x, y) ≥C1

(
1

2
‖x‖2

τ−1 + 1

2
‖yk − yk−1‖2

D(σ)−1P−1

)
+ 1

2
‖y‖2

D(σ)−1P−1 , (4.12)

Lower bound in (4.11) specifically uses the structure of the vector yk − yk−1, therefore it would

not be true for any y in the function V (x, y). In all our proofs, we only need nonnegativity of

V (zk − zk−1) which is proven at the end of proof of Lemma 4.3 in Section 4.7.1.

4.4.1 Almost sure convergence

In this section, we prove almost sure convergence of the iterates of SPDHG to a solution

of (4.1). We first introduce an equivalent representation of SPDHG that is instrumental in our

proofs. On a high level, this can be seen similar to the representation in [HY12] for PDHG. This

representation shifts the update of the primal update so that the algorithm can be written as a

fixed point operator. Since the definition of ȳk+1 depends on the selected index ik at iteration

k, the operator T is defined such that all the possible values of ȳk+1 and consequently, of xk+1

are captured.
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Lemma 4.4. Let us define T : Z →Z that to (x , y) associates (x̂ , ŷ) such that ∀i ∈ {1, . . . ,n},

ŷ(i ) = proxD(σ), f ∗(y(i )+D(σ)Ax(i ))

ȳ(i ) = y(i )+ (1+p−1
i )(ŷ(i )i − y(i )i )e(i )

x̂(i ) = proxτ,g (x(i )−τA> ȳ(i ))

where x(i ) ∈X , y(i ) ∈Y .

The fixed points of T are of the form (x(i ), y(i )) such that (x(i ), y(i )) ∈Z?, ∀i ∈ {1, . . . ,n}. More-

over, (
xk+1, ŷk+1

)= (
Tx (1⊗xk ,1⊗ yk )(ik ),Ty (1⊗xk ,1⊗ yk )(1)

)
.

We also denote

S̄ = blkdiag(τ−1Idn×dn , In×n ⊗D(σ)−1),

P̄ = blkdiag(p1Id×d , . . . , pn Id×d , p1In×n , . . . , pn In×n).

We then have,

‖T (1⊗xk ,1⊗ yk )− (1⊗xk ,1⊗ yk )‖2
S̄P̄

= Ek

[
‖xk+1 −xk‖2

τ−1 +‖yk+1 − yk‖2
D(σ)−1P−1

]
.

Before the proof of the lemma, we use an example to illustrate the notation and the main idea.

Example 4.5. Let d = 1, n = 2, then x =
[

x(1)

x(2)

]
∈R2, y =

[
y(1)

y(2)

]
∈R4, and

S̄ = diag(τ−1,τ−1,σ−1
1 ,σ−1

2 ,σ−1
1 ,σ−1

2 ) ∈R6×6,

P̄ = diag(p1, p2, p1, p1, p2, p2) ∈R6×6.

Then, we have by letting x = 1⊗xk , y = 1⊗ yk ,

ŷ(1) = proxD(σ), f ∗(yk +D(σ)Axk ), ŷ(2) = proxD(σ), f ∗(yk +D(σ)Axk ),

ȳ(1) = yk + (1+p−1
1 )

[
ŷ(1)(1) − y (1)

k
0

]
, ȳ(2) = yk + (1+p−1

2 )

[
0

ŷ(2)(2) − y (2)
k

]
,

x̂(1) = proxτ,g (xk −τA> ȳ(1)), x̂(2) = proxτ,g (xk −τA> ȳ(2)).

We have T (1⊗xk ,1⊗ yk ) =
([

x̂(1)

x̂(2)

]
,

[
ŷ(1)

ŷ(2)

])
. By using the definition of ŷk+1 in Lemma 4.3, we

see that (xk+1, ŷk+1) = (x̂(1), ŷ(1)) if ik = 1 and (xk+1, ŷk+1) = (x̂(2), ŷ(1)) if ik = 2. Note that we

can take any copy of ŷ as ŷ(1) = ŷ(2). Moreover, depending on ik , one obtains yk+1 from ŷk+1

with a coordinate-wise update, as given in SPDHG (see Algorithm 4.1).

Proof of Lemma 4.4. Let (x , y) be a fixed point of T . Then it follows that
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y(i ) = proxD(σ), f ∗(y(i )+D(σ)Ax(i )), ∀i , ȳ(i ) = y(i ), ∀i and x(i ) = proxτ,g (x(i )−τA>y(i )), ∀i .

Hence, optimality conditions for each i are clearly the same as (4.3). Therefore fixed points of

T are such that (x(i ), y(i )) ∈Z?,∀i .

The equality (xk+1, ŷk+1) = (Tx (1⊗xk ,1⊗ yk )(ik ),Ty (1⊗xk ,1⊗ yk )(1)) is therefore another way

to write the algorithm. Since when inputted (1⊗xk ,1⊗ yk ), T outputs (1⊗ ŷk+1) for the dual

variable, we can simply take first copy for ŷk+1.

For the last result, we use ‖ŷk+1 − yk‖2
D(σ)−1 = Ek

[‖yk+1 − yk‖2
D(σ)−1P−1

]
to show

‖T (1⊗xk ,1⊗ yk )− (1⊗xk ,1⊗ yk )‖2
S̄P̄

=
n∑

i=1

(
‖Tx (1⊗xk ,1⊗ yk )(i )−xk‖2

τ−1 pi +‖Ty (1⊗xk ,1⊗ yk )(i )− yk‖2
D(σ)−1 pi

)
=

n∑
i=1

(‖Tx (1⊗xk ,1⊗ yk )(i )−xk‖2
τ−1 pi

)+‖ŷk+1 − yk‖2
D(σ)−1

( n∑
i=1

pi
)

= Ek

[
‖xk+1 −xk‖2

τ−1 +‖yk+1 − yk‖2
D(σ)−1P−1

]
,

where we also used that
∑n

i=1 pi = 1. �

We proceed with the main theorem of this section. We will present the main ideas and the

main ingredient that makes the proof possible in the following proof sketch. The details of the

proof utilizing classical arguments from [CP15, Ber11, IBCH13] are deferred to Section 4.7.2.

Theorem 4.6. Let Assumption 4.1 hold and define ∆k =Vk+1(xk −x?, yk+1− y?). Then, it holds

that E[Vk (xk−1 − x?, yk − y?)] ≤ ∆0,
∑∞

k=1E[V (zk − zk−1)] ≤∆0. Moreover, almost surely, there

exists (x?, y?) ∈Z?, such that the iterates of SPDHG satisfy (xk , yk ) → (x?, y?).

Proof sketch. On (4.10), we pick (x, y) = (x?, y?) and by convexity, Dg (xk , z?) ≥ 0, D f ∗(ŷk+1, z?) ≥
0. Next, by using the definition of ∆k , we write (4.10) as

Ek [∆k ] ≤∆k−1 −V (zk − zk−1).

We apply Robbins-Siegmund lemma [RS71, Theorem 1] to get that almost surely,∆k converges

to a finite valued random variable and V (zk − zk−1) → 0. Consequently, by (4.11), ‖yk − yk−1‖
converges to 0 almost surely. Since almost surely, ∆k converges and ‖yk − yk−1‖ converges to

0, by using the definition of Vk in (4.9), we have that ‖zk − z?‖ converges almost surely.

Next, we denote q k = (1⊗xk ,1⊗ yk ) and use the arguments in [CP15, Proposition 2.3], [FB19,

Theorem 1] to argue that there exists a setΩwith P(Ω) = 1 such that for every z? ∈Z? and for

every ω ∈Ω, ‖zk (ω)− z?‖ converges and ‖T (q k (ω))−q k (ω)‖→ 0. As for every ω ∈Ω, (zk (ω))k

is bounded, we denote by z̃ = (x̃, ỹ) one of its cluster points. Then, we denote q̃ = (1⊗ x̃,1⊗ ỹ)

and say that q̃ is a cluster point of (q k (ω))k .
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The key step in our proof that enables the result is the fixed point characterization of T

in Lemma 4.4. With this result, we derive z̃ ∈Z? as q̃ is a fixed point of T .

To sum up, we have shown that at least on some subsequence, zk (ω) converges to z̃ ∈Z?. As

for every ω ∈Ω and z? ∈Z?, ‖zk (ω)− z?‖ converges, the result follows. �

4.4.2 Linear convergence

The standard approach for showing linear convergence with metric subregularity is to obtain

a Fejer-type inequality of the form [LFP19]

Ek [d(zk+1 − z?)] ≤ d(zk − z?)−V (T (zk )− zk ), (4.13)

for suitably defined norms d and V and operator T . However, as evident from (4.10) and the

definition of Vk+1 in (4.9), one iteration result of SPDHG does not fit into this form. When

x = x?, y = y?, Vk+1(xk −x?, yk+1−y?) does not only measure distance to solution, but also the

distance of subsequent iterates yk+1 and yk . In addition, Vk+1 includes xk −x? and yk+1 − y?
rather than xk+1 −x? and yk+1 − y?, which further presents a challenge due to asymmetry, for

using metric subregularity. Therefore, an intricate analysis is needed to control the additional

terms and handle the asymmetry in Vk+1. In addition, Lemma 4.4 is necessary to identify T .

We need the following notation and lemma which builds on Lemma 4.4 for easier compu-

tations with metric subregularity. For the operators, we adopt the convention in [LFP19].

Operator C is the concatenation of subdifferentials, M is the skew symmetric matrix that is

formed using matrix A. Operator F is the KKT operator and H is the “metric” that helps us

write the algorithm in proximal point form (see Lemma 4.4). Due to duplication in Lemma 4.4,

we need duplicated versions of C and M . Consistent with the notation of Lemma 4.4 , we use

boldface to denote operators which operate in the duplicated space.

Lemma 4.7. Under the notations of Lemma 4.4, to write compactly the operation of T , let us

define the operators

C : (x, y) 7→ (∂g (x),∂ f ∗(y)),

M : (x, y) 7→ (A>y,−Ax),

C : (x , y) 7→ (∂g (x(1)), . . . ,∂g (x(n)),∂ f ∗(y(1)), . . . ,∂ f ∗(y(n))),

M : (x , y) 7→ (A>y(1), . . . , A>y(n),−Ax(1), . . . ,−Ax(n)),

F =C +M ,

and

H : (x , y) 7→ (
τ−1x(1)+ A>(1+p−1

1 )E(1)y(1), . . . ,

τ−1x(n)+ A>(1+p−1
n )E(n)y(n),D(σ)−1 y(1), . . . ,D(σ)−1 y(n)

)
.
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Let q k = (1⊗xk ,1⊗ yk ) , q̂ k+1 = T (q k ) and ẑk+1 = (xk+1, ŷk+1) = ((q̂ k+1)x (ik ), (q̂ k+1)y (1)). Then,

we have (H −M)q k ∈ (C +H)q̂ k+1, (M −H)(q̂ k+1 −q k ) ∈ (C +M)q̂ k+1, and

Ek
[
dist2(0,F ẑk+1)

]= Ek
[
dist2(0, (C +M)ẑk+1)

]= dist2
P̄

(0, (C +M)q̂ k+1).

Proof. We start by the representation in Lemma 4.4 by incorporating the update of ȳk+1, and

recalling the definition of E(i ) = ei e>i , ∀i ∈ {1, . . . ,n}

ŷ(i ) = proxD(σ), f ∗(y(i )+D(σ)Ax(i ))

x̂(i ) = proxτ,g (x(i )−τA> [
y(i )+ (1+p−1

i )E(i )(ŷ(i )− y(i ))
]
)

= proxτ,g (x(i )−τA>(1+p−1
i )E(i )ŷ(i )+τA>(−In×n + (1+p−1

i )E(i ))y(i )).

We now use the definition of proximal operator to obtain

D(σ)−1 y(i )+ Ax(i ) ∈ ∂ f ∗(ŷ(i ))+D(σ)−1 ŷ(i )

τ−1x(i )− A>y(i )+ A>(1+p−1
i )E(i )y(i ) ∈ ∂g (x̂(i ))+τ−1x̂(i )+ A>(1+p−1

i )E(i )ŷ(i ).

We identify

H q =



τ−1x(1)+ A>(1+p−1
1 )E(1)y(1)

...

τ−1x(n)+ A>(1+p−1
n )E(n)y(n)

D(σ)−1 y(1)
...

D(σ)−1 y(n)


, M q =



A>y(1)
...

A>y(n)

−Ax(1)
...

−Ax(n)


,

C q̂ =



∂g (x(1))
...

∂g (x(n))

∂ f ∗(y(1))
...

∂ f ∗(y(n))


, H q̂ =



τ−1x̂(1)+ A>(1+p−1
1 )E(1)ŷ(1)

...

τ−1x̂(n)+ A>(1+p−1
n )E(n)ŷ(n)

D(σ)−1 ŷ(1)
...

D(σ)−1 ŷ(n)


,

and assign q = q k and q̂ = q̂ k+1, by definition of T in Lemma 4.4 to obtain the first inclusion.

The second inclusion follows by adding to both sides M q̂ k+1 and rearranging.

For the equality, we write

Ek
[
dist2(0, (C +M)ẑk+1)

]= n∑
i=1

dist2(0, (C +M)q̂ k+1(i ))pi

= dist2
P̄

(0, (C +M)q̂ k+1),
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where the first equality follows by ẑk+1 = (xk+1, ŷk+1) = ((q̂ k+1)x (ik ), (q̂ k+1)y (1)) and the sec-

ond equality is by the definitions of C , M , C , and M and (q̂ k+1)y (i ) = (q̂ k+1)y (1), ∀i . �

We continue by presenting our assumption for linear convergence (see Section 4.2.2).

Assumption 4.2. Metric subregularity holds for KKT operator F in (4.3) at all z? ∈Z?

for 0 with constant η> 0 using the norm ‖ ·‖S with S = diag(τ−11p ,σ−1
1 , . . . ,σ−1

n ), and the

neighborhood of regularity N (z?) contains ẑk ,∀k.

In the next theorem, we show that SPDHG with step sizes in (4.8) attains linear convergence

with Assumption 4.2. The proof idea is to utilize the negative term −V (zk − zk−1) in (4.10) to

obtain contraction. For this, we use the results of Lemmas 4.4 and 4.7 to write this term with

the fixed point characterization given in Lemma 4.4, which allows using metric subregularity.

The full proof is deferred to Section 4.7.3.

For the proof, define the notations

(x?,k−1, y?,k ) = arg min
(x,y)∈Z?

Vk (xk−1 −x, yk − y),

which exists since Vk is a nonnegative quadratic function. We also define

∆k =Vk+1(xk −x?,k , yk+1 − y?,k+1),

Φk =∆k −
C1

4ζ
‖yk − y?,k‖2

D(σ)−1 ≥ 0.

Theorem 4.8. Let Assumptions 4.1 and 4.2 hold. Then it holds that

Ek [∆k ] ≤∆k−1 −V (zk − zk−1), (4.14)

and

E

[
C1

2
‖xk −x?,k‖2

τ−1 + 1

2
‖yk+1 − y?,k+1‖2

D(σ)−1P−1

]
≤ (1−ρ)k 2Φ0,

where, ρ = C1p

2ζ , ζ= 2+2η2‖H −M‖2, C1 = 1−γ.

One important remark about Theorem 4.8 is that the knowledge of the metric subregularity

constant η is not needed for running the algorithm. Step sizes are chosen as (4.8) and linear

convergence follows directly when Assumption 4.2 holds. Important examples where Assump-

tion 4.2 holds are given in Section 4.2.2.

Even though Assumption 4.2 is more general than prior assumptions for linear convergence

and our result is agnostic to the choice of the step size, we observe in practice that SPDHG can

be much faster than the rate derived in Theorem 4.8. We reflect on this issue more in Chapter 8

and present open questions in this context.
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Remark 4.9. Metric subregularity is used in Theorem 4.8 in the weighted norm

distS(z,Z?) ≤ ηdistS(0,F z),

where S = diag(τ−11p ,σ−1
1 , . . . ,σ−1

n ). In view of (4.6) if η0 is the constant using the standard

Euclidean norm, it is obvious that η≤ ‖S‖‖S−1‖η0, but we use η in Theorem 4.8 since it can be

smaller, resulting in a better rate.

4.4.3 Sublinear convergence

In this section, we prove optimal convergence rates for the ergodic sequence with different

optimality measures. First, we study the expected primal dual gap and next, we study objective

value and feasibility for linearly constrained problems.

Convergence of expected primal-dual gap

We recall the definition of the primal-dual gap function,

Gap(x̄, ȳ) = sup
z∈Z

H(x̄, ȳ ; x, y) := sup
z∈Z

g (x̄)+〈Ax̄, y〉− f ∗(y)− g (x)−〈Ax, ȳ〉+ f ∗(ȳ). (4.15)

It is also possible to consider the restricted primal-dual gap in the sense of [CERS18, CP11],

which for any set B =Bx ×By ⊆Z would correspond to

GapB(x̄, ȳ) = sup
z∈B

H(x̄, ȳ ; x, y). (4.16)

The standard reference for validity of restricted primal-dual gap is [Nes07, Lemma 1].

The quantity of interest for stochastic algorithms is the expected (restricted) primal-dual

gap E
[
GapB(x̄, ȳ)

]
. As also mentioned in [DL14], showing convergence rate for this quantity

is not straightforward, due to the coupling between supremum and expectation, In [DL14],

convergence rate is shown in a relaxed quantity called “perturbed gap function”. We are not

aware of any results for a PDCD method with O(1/k) rate for expected primal-dual gap.

Even though this result was claimed in [CERS18], the proof has a technical issue, near the end

of the proof in [CERS18, Theorem 4.3]1. Since the supremum of expectation is upper bounded

by the expectation of the supremum, which is in the definition of expected primal-dual gap,

the order of expectation in the proof is incorrect. As we could not find a simple way of fixing

the issue using the existing techniques, we introduce a new technique and provide a proof to

show that the conclusions of [CERS18, Theorem 4.3], for the primal-dual gap, are still correct,

with different constants in the bound.

Our technique in the following proof is inspired by the stochastic approximation literature of

1We communicated this with the authors who acknowledged the mistake
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variational inequalities and saddle point problems (see [NJLS09, Lemma 3.1] for a reference).

In this reference and followup works, such an analysis is used to obtain O(1/
p

k) rates with

decreasing step size and SGD-based methods. In the new proof, we adapt this idea by using

the structure of PDCD to obtain the optimal O(1/k) rate of convergence with constant step

size. Our technique uses Euclidean structure of the dual update of SPDHG, therefore might

not be directly applicable to cases with Bregman distances being used for proximal operator.

We start with the lemma to decouple supremum and expectation in the proof.

Lemma 4.10. Given a point ỹ1 ∈Y , for k ≥ 1, we define the sequences

vk+1 = yk − ŷk+1 −P−1(yk − yk+1), and, ỹk+1 = ỹk −P vk+1. (4.17)

Then, we have for any y ∈Y ,

K∑
k=1

〈ỹk − y, vk+1〉D(σ)−1 ≤ 1

2
‖ỹ1 − y‖2

D(σ)−1P−1 +
K∑

k=1

1

2
‖vk+1‖2

D(σ)−1P , (4.18)

E

[
K∑

k=1

1

2
‖vk+1‖2

D(σ)−1P

]
≤ 1

C1
∆0. (4.19)

Moreover, vk and ỹk are Fk -measurable and Ek [vk+1] = 0.

Proof. For brevity in this proof, we denoteΥ= D(σ)−1P−1. We have ∀y ∈Y ,

1

2
‖ỹk+1 − y‖2

Υ = 1

2
‖ỹk − y‖2

Υ−〈P vk+1, ỹk − y〉Υ+ 1

2
‖P vk+1‖2

Υ

= 1

2
‖ỹk − y‖2

D(σ)−1P−1 −〈vk+1, ỹk − y〉D(σ)−1 + 1

2
‖vk+1‖2

D(σ)−1P .

Summing this equality gives the first result.

For the second result, we use Ek
[
P−1(yk − yk+1)

]= yk − ŷk+1, law of total expectation, and the

definition of variance,

E

[
K∑

k=1

1

2
‖vk+1‖2

D(σ)−1P

]
=

K∑
k=1

1

2
E
[
Ek

[
‖vk+1‖2

D(σ)−1P

]]
≤

K∑
k=1

1

2
E
[
Ek

[
‖P−1(yk+1 − yk )‖2

D(σ)−1P

]]
=

K∑
k=1

1

2
E
[
‖yk+1 − yk‖2

D(σ)−1P−1

]
≤ 1

C1
∆0,

where the last inequality follows by
∑∞

k=1E [V (zk+1 − zk )] ≤∆0 from Theorem 4.6 and 1
2‖yk+1−

yk‖2
D(σ)−1P−1 ≤ 1

1−γV (zk+1 − zk ) from Lemma 4.3.

Other results follow by the definition of the sequences and Ek
[

yk+1 − yk
]= P (ŷk+1 − yk ). �
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We now describe our proof strategy for handling the abovementioned difficulty. Proof of Lemma 4.3,

given in Section 4.7.1, proceeds by developing terms involving random quantities, by utilizing

conditional expectations. In this case, however, our approach is to proceed without using

conditional expectation since the quantity of interest requires us to take first supremum and

then the expectation of the estimates. Our proof strategy will be to characterize the error term,

and then utilize the results Lemma 4.10 to decouple and bound this term. First, we give the

variant of Lemma 4.3 without taking expectations, with its proof given in Section 4.7.4.

Lemma 4.11. We define f ∗
P (y) =∑n

i=1 pi f ∗
i (y (i )), and similar to (4.5) DP

f ∗(ȳ , z) =∑n
i=1 pi f ∗

i (ȳ (i ))−
pi f ∗

i (y (i ))−〈(Ax)i , pi (ȳ−y)(i )〉 and recall the definitions of V and Vk from (4.9) andH from (4.15).

Then, it holds that

H(xk , yk+1; x, y) ≤Vk (xk−1 −x, yk − y)−Vk+1(xk −x, yk+1 − y)−V (zk − zk−1)

+Ek +DP−1−I
f ∗ (yk , z)−DP−1−I

f ∗ (yk+1, z)−〈y, vk+1〉D(σ)−1 , (4.20)

where vk+1 = yk − ŷk+1 −P−1(yk − yk+1) and

Ek = 1

2

[‖yk‖2
D(σ)−1 −‖ŷk+1‖2

D(σ)−1 −
(‖yk‖2

D(σ)−1P−1 −‖yk+1‖2
D(σ)−1P−1

)]
+ 1

2
‖yk+1 − yk‖2

D(σ)−1P−1 − 1

2
‖ŷk+1 − yk‖2

D(σ)−1 + f ∗(yk )− f ∗(ŷk+1)

− ( f ∗
P−1 (yk )− f ∗

P−1 (yk+1))−〈Axk , yk − ŷk+1 −P−1(yk − yk+1)〉, (4.21)

and also Ek [Ek ] = 0.

With this lemma, we have identified the problematic inner product term for deriving the rate

for expected gap, which is 〈y, vk+1〉 in (4.20)). This is the only term coupling the free variable

z and random term vk+1. In the next theorem, we use Lemma 4.10 to manipulate this inner

product. In particular, the idea in Lemma 4.10 was to bound the error term by ‖yk − yk+1‖2

which is proven to be small in Theorem 4.6, which is due to using PDCD updates. For the rest

of the terms in (4.20), we observe that the terms with Vk will telescope and Ek has expectation

0 and it is independent of free variable z.

Theorem 4.12. Let Assumption 4.1 hold. Define the sequences xavg
K = 1

K

∑K
k=1 xk and yavg

K+1 =
1
K

∑K
k=1 yk+1, where xk , yk are generated by SPDHG and recall the definition of H from (4.15).

Then, for any bounded set B =Bx ×By ⊆Z , the following result holds for the expected primal

dual gap defined in (4.15)

E

[
sup
z∈B

H(xavg
K , yavg

K+1; x, y)

]
= E[

GapB(xavg
K , yavg

K+1)
]≤ CB

K
, (4.22)

where
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CB = 3

2
sup
x∈Bx

‖x0 −x‖2
τ−1 + sup

y∈By

‖y1 − y‖2
D(σ)−1P−1 + f ∗

P−1−I (y1)+
(

1

C1
+ 2γ

p

)
∆0

+γ‖x0‖2
τ−1 + γ

p
‖y1 − y?‖2

D(σ)−1P−1 +
n∑

i=1

(
1

pi
−1

)(
− f ∗

i (y (i )
? )+‖Ai x?‖D(σ)P

√
2∆0

)
.

Moreover, for the smoothed gap function (see (4.7)), it holds that

E
[
G 1+2γ

2K , 1
2K

(xavg
K , yavg

K+1; x0, y1)
]
≤ Ce

K
,

where

Ce = γ‖x0‖2
τ−1 + γ

p
‖y1 − y?‖2

D(σ)−1P−1 +
(

1

C1
+ 2γ

p

)
∆0

+ f ∗
P−1−I (y1)+

n∑
i=1

(
1

pi
−1

)(
− f ∗

i (y (i )
? )+‖Ai x?‖D(σ)P

√
2∆0

)
.

We defer the proof to Section 4.7.5 due to its length. However, we remark that the main

difficulty is solved by characterizing the error term in Lemma 4.11 and bounding it due

to Lemma 4.10, as explained already. The rest of the proof estimates the exact constants.

Convergence of objective values

The guarantee for the expected primal-dual gap, which is recovered by setting B = X ×Y
in (4.22) requires bounded primal and dual domains. In this section, we show that O(1/k)

rate of convergence in terms of objective values and/or feasibility can be shown with possibly

unbounded primal and dual domains.

Theorem 4.13. Let Assumption 4.1 hold. We recall xavg
K = 1

K

∑K
k=1 xk .

• If f is L( f )-Lipschitz continuous (whence the dual domain is bounded), and y1 ∈ dom f ∗,

E
[

f (Axavg
K )+ g (xavg

K )− f (Ax?)− g (x?)
]≤ Ce,1

K
.

• If f (·) = δ{b}(·) with b ∈Y ,

E
[
g (xavg

K )− g (x?)
]≤ Ce,2

K
, E

[‖Axavg
K −b‖D(σ)P

]≤ Ce,3

K
,

where Ce is as defined in Theorem 4.12 and Ce,1 =Ce + 2
p L( f )2 + 1+2γ

2 ‖x0 −x?‖2
τ−1 ,

Ce,3 = 1
2

{
‖y?− y1‖D(σ)−1P−1 +

(
‖y?− y1‖2

D(σ)−1P−1 +4Ce +6‖x?−x0‖τ−1

)1/2}
,

Ce,2 =Ce + 1
2‖y?− y1‖2

D(σ)−1P−1 + 1+2γ
2 ‖x0 −x?‖2

τ−1 +‖y?‖D(σ)−1P−1Ce,3.

The proof of the theorem is a basic consequence of Theorem 4.12 and [TDFC18, Lemma 1].

We provide the proof in Section 4.7.6.
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4.5 Related works

We summarize the comparison of the most related PDCD methods in Table 5.1 (Page 106).

Primal camp. Stochastic gradient based methods (SGD) can be applied to solve (4.1) [RM51,

NJLS09]. However, this approach cannot get linear convergence except special cases [NRP19]

due to properties of SGD. One alternative is variance reduction to obtain linear convergence

under the assumption that functions fi are smooth and g is strongly convex or fi are smooth

and strongly convex [JZ13, XZ14, AZ17]. Smoothness of fi is equivalent to strong convexity of

f ∗
i . Therefore, the linear convergence results of these methods require the similar assumptions

as [CERS18, Theorem 6.1]. Moreover, as in [CERS18], variance reduction based methods

require knowing µi and µg to set the algorithm parameters to obtain linear convergence.

For the specific case of fi (·) = δbi (·), SGD-type methods are proposed in [PN17, Xu20, FANC19].

However, these methods only obtain O(1/k) rate with strong convexity of g , since they focus

on the general problem where the objective can be given in expectation form. Even though

this rate is optimal for their template, it is suboptimal for (4.1).

Primal-dual camp. A line of research utilizes coordinate descent type of schemes for

solving (4.1). Coordinate descent with random sampling for unconstrained optimization is

proposed in [Nes12] and later generalized and improved in [RT14, FR15]. These methods

apply coordinate descent in the primal and obtain linear convergence rates with smooth and

strongly convex fi or smooth fi and strongly convex g .

Another approach is to apply coordinate ascent in the dual to exploit separability of the dual

in (4.1). Stochastic dual coordinate ascent (SDCA) and its accelerated variant are proposed

in [SSZ13, SSZ14]. These methods require smoothness of fi and strong convexity of g for linear

convergence and the parameters depend on the smoothness and strong convexity constants.

SPDHG that we analyzed in this chapter is proposed in [CERS18]. The authors proved linear

convergence of the modified method SPDHG-µ [CERS18, Theorem 6.1] by assuming strong

convexity of f ∗
i , g and special step sizes depending on strong convexity constants. Asymp-

totic convergence and the O(1/k) rate results in [CERS18, Theorem 4.3] are given in terms of

Bregman distances which is not a valid and standard optimality measure. We prove linear

convergence with standard step sizes in (4.8) and with weaker metric subregularity assump-

tion, detailed in Section 4.2.2. Moreover, in the general convex case, we prove almost sure

convergence of the iterates to a solution, which is the standard result and stronger than the

corresponding result in [CERS18] with Bregman distances. Finally, we prove O(1/k) rate, with

possibly unbounded domains, for the standard optimality measure expected primal-dual gap.

The comparison of the results is also summarized in Table 4.2.

PDCD methods similar to SPDHG are proposed in [ZX17, DL14, FB19]. These variants assume

strong convexity of f ∗
i , g to guarantee linear convergence. Only [FB19] proved linear conver-

gence with step sizes independent of strong convexity constants which provided a partial
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answer for adaptivity of SPDHG-type methods to strong convexity. However, as detailed in

Table 5.1, with dense A matrix, and uniform sampling, this method requires step sizes n times

smaller than (4.8) which is problematic in practice (see Section 4.6.1). For sublinear conver-

gence, [FB19] proved O(1/
p

k) rate on a randomly selected iterate, under similar assumption

to ours whereas [ZX17] requires boundedness of dual domain, setting a horizon, and gives

primal-only complexities (not anytime rates).

PDCD algorithms are also studied in [CP15, CP19, PR15]. As mentioned in [FB19, CERS18],

operator theory-based proofs of these methods require using small step sizes depending on

global information, which causes slow performance in practice.

CD methods for linearly constrained problems are studied in Chapter 3 and [DL14, LM18].

These methods obtain only sublinear convergence rates. In Theorem 4.13, the specific case

of f (·) = δ{b}(·) is studied in [LM18] and a similar result was derived. The rate in [LM18] has

a different nature in the sense that it is an almost sure rate where the constant depends on

trajectory, whereas our rate is in expectation.

Latafat et al. [LFP19] proposed a method called TriPD-BC and proved linear convergence

for their method under metric subregularity. There exist two drawbacks of TriPD-BC for our

setting. First, when A is not of special structure, such as block diagonal, one needs to use a

complicated duplication strategy for an efficient implementation (see [FB19]). Second issue is

that as in [FB19], this method needs to use n times smaller step sizes with dense A. For the

details of duplication and small step sizes, we refer to [FB19]. The need to use small step sizes

seriously affects the practical performance of the algorithm as illustrated in Section 4.6.1.

Some standard references for deterministic primal-dual algorithms are [CP11, CP16b, HY12,

TDFC18, TDAFC19, EZC10]. As observed in [CERS18], coordinate descent-based variants

significantly improve the practical performance of these deterministic methods.

Our results imply global linear convergence for deterministic PDHG when n = 1, answering

the question posed in [CP11]: “It would be interesting to understand whether the steps can be

estimated in Algorithm 1 without the a priori knowledge of µi ,µg .” We note that in the third

part of Assumption 4.2, compact domains are not needed for this case. We highlight that such

behaviour of deterministic primal-dual methods is investigated before in [LFP16, LFP19].

Linear programming. A related notion to metric subregularity for linear programming is

Hoffman’s lemma due to classical result in [Hof52], which is used by many researchers to show

linear convergence of ADMM-type methods for LPs [YZH+15, YH16, LYZZ18]. The drawback

of these approaches is that one needs to know the constant η to run the algorithm which is

difficult to estimate in general. Our analysis recovers these results specific to LPs with a much

simpler algorithm that does not need the knowledge of η.
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4.6 Numerical evidence

In this section, we support our theoretical findings by showing that SPDHG with step sizes

in (4.8) obtains linear convergence for problems satisfying metric subregularity. The problems

we solve, namely, basis pursuit, Lasso, and ridge regression all satisfy metric subregularity.

Among them, only ridge regression is strongly convex-strongly concave, thus this is the only

problem where linear convergence results from [CERS18] apply by using SPDHG-µ [CERS18,

Theorem 6.1]. We show that even in this case, when strong convexity constants are small, ap-

plying SPDHG can be more beneficial for some datasets. SPDHG-µ is not applicable for other

problems due to lack of strong convexity either in the primal or dual. We illustrate favorable

behavior of SPDHG against popular methods SVRG [JZ13] and accelerated SVRG [ZSC18].

For space limitations, we include results with one or two datasets for each problem. For

SPDHG, as in [CERS18], we use uniform sampling of coordinates and τ= γ
n maxi ‖Ai ‖ and σi =

γ
‖Ai ‖ , with γ= 0.99 for all problems. For the other methods, we use the suggested theoretical

step sizes in the respective papers and we do not fine tune any of the methods.

4.6.1 Sparse recovery with basis pursuit

We first solve the basis pursuit problem which is a fundamental problem in signal process-

ing [CDS01] and also finds applications in machine learning [GS18, AKSV18]:

min
x∈Rd

‖x‖1 : Ax = b. (4.23)

Since basis pursuit is PLQ, metric subregularity holds. The aim in this section is to illustrate

the difference on the step sizes mentioned in Section 4.5, Table 5.1 and verify the empirical

linear convergence of SPDHG. We compare SPDHG with coordinate descent version of Vu-

Condat algorithm, developed in [FB19], which we refer to as FB-VC-CD. Note that [LFP19]

requires duplication for an efficient implementation for this problem and it uses the same step

sizes as [FB19]. For this reason, we only compare with FB-VC-CD and note that the practical

performance of [LFP19] is expected to be similar to FB-VC-CD with same step sizes.

We generate the data matrix A synthetically where n = 500 and d = 1000 and entries of data

matrix follow a normal distribution. We generate a covariance matrix Σi , j = ρ|i− j | with ρ = 0.5

and a sparse solution x? with 100 nonzero entries. We then compute b = Ax?.

The analysis of SPDHG in [CERS18] shows O (1/k) rate on the Bregman distance to solution

on the ergodic sequence whereas our analysis shows linear convergence on the last iterate.

FB-VC-CD is proven to have O(1/
p

k) rate for this problem [FB19]. FB-VC-CD is specially

designed to exploit sparsity in the data. However, in our case the data is dense, which causes

FB-VC-CD to use n times smaller step sizes. As shown in Figure 4.1, FB-VC-CD exhibits a slow

rate whereas SPDHG converges faster, as predicted by our theoretical results.
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Figure 4.1 – Linear convergence of SPDHG for basis pursuit problem.

4.6.2 Lasso and ridge regression

In this section we solve ridge regression and Lasso problems, formulated as

min
x∈Rd

1

2
‖Ax −b‖2 + λ

2
‖x‖2, and, min

x∈Rd

1

2
‖Ax −b‖2 +λ‖x‖1, (4.24)

respectively. In terms of structure, the first problem is smooth and strongly convex, or equiva-

lently, its Lagrangian is strongly convex-strongly concave. For this problem class, [CERS18]

showed linear convergence for the method SPDHG-µ, which is a modified version of SPDHG

using strong convexity and strong concavity constants for step sizes. In addition, SVRG and

accelerated SVRG obtain linear convergence for this problem [XZ14, ZSC18, AZ17].
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Figure 4.2 – Ridge regression, YearPredictionMSD, n = 463,715,d = 90.
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Figure 4.3 – Ridge regression, w8a, n = 49,749,d = 300.

We use regression datasets from libsvm [CL11b], perform row normalization, and use three

different regularization parameters for each case and compile the results in Figures 4.2–4.4
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Figure 4.4 – Ridge regression, sector, n = 6,412, d = 55,197.

along with information on datasets and regularization parameters.

In the regime n ≥ d , we observe in Figures 4.2 and 4.3 that, for large λ, or equivalently,

large strong convexity constants, SPDHG-µ is faster than SPDHG, which is expected since

SPDHG-µ is designed to use strong convexity, whereas our result holds generically without

any modifications on the algorithm. However, we observe that, especially when λ is small,

SPDHG gets a faster linear rate than SPDHG-µ, which may suggest robustness of SPDHG over

SPDHG-µ. SPDHG exhibits competitive performance against SVRG and accelerated SVRG.

Goal of this experiment is not to argue that SPDHG gets the best performance in all cases

since this is a very specific instance where most algorithms convergence linearly. Our goal

is rather to illustrate that even though our linear convergence results apply to a broad class

of problems, SPDHG is still competitive when compared to methods which are designed to

exploit the structure of this specific setting.

In the regime n ≤ d , we observe in Figure 4.4 that SPDHG-µ shows a faster behavior with

small µ. This seems intuitive, since in this case the strong convexity purely comes from the

regularization term and SPDHG-µ directly exploits this knowledge to get a better performance.

We then solve Lasso in (4.24), for which SPDHG-µ does not apply and accelerated SVRG cannot

get linear rates in general. We compare with SVRG for varying regularization parameters,

datasets with n ≤ d or n ≥ d , and compile the results in Sections 4.6.2 and 4.6.2. We observe

that SPDHG converges linearly and exhibits a better practical performance than SVRG.
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Figure 4.5 – Lasso, mnist scale, n = 60,000,d = 780.
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Figure 4.6 – Lasso, rcv1.binary, n = 20,242, d = 47,236.

4.7 Proofs

4.7.1 Proof of Lemma 4.3

Proof. As in [CERS18], we define the iterate ŷ with full dimensional update

xk = proxτ,g (xk−1 −τA> ȳk ), (4.25)

ŷ (i )
k+1 = proxσi , f ∗

i
(y (i )

k +σi Ai xk ). (4.26)

By (1.7), we get, ∀x ∈X and ∀y ∈Y and ∀i = {1, . . . ,n}

g (x) ≥ g (xk )+〈xk −x, A> ȳk〉+
1

2
‖xk −xk−1‖2

τ−1 + 1

2
‖xk −x‖2

τ−1 − 1

2
‖x −xk−1‖2

τ−1 ,

f ∗
i (y (i )) ≥ f ∗(ŷ (i )

k+1)−〈ŷ (i )
k+1 − y (i ), Ai xk〉+

1

2
‖ŷ (i )

k+1 − y (i )
k ‖2

σ−1
i
+ 1

2
‖ŷ (i )

k+1 − y (i )‖2
σ−1

i

− 1

2
‖y (i ) − y (i )

k ‖2
σ−1

i
.

We sum the second inequality from i = 1 to n and add to the first inequality to obtain

0 ≥ g (xk )− g (x)+〈xk −x, A> ȳk〉+ f ∗(ŷk+1)− f ∗(y)−〈ŷk+1 − y, Axk〉
+ 1

2

(−‖xk−1 −x‖2
τ−1 +‖xk −x‖2

τ−1 +‖xk −xk−1‖2
τ−1

)
+ 1

2

(
−‖yk − y‖2

D(σ)−1 +‖ŷk+1 − y‖2
D(σ)−1 +‖ŷk+1 − yk‖2

D(σ)−1

)
. (4.27)

We recall

Dg (xk , z) = g (xk )− g (x)+〈A>y, xk −x〉, (4.28)

D f ∗(ŷk+1, z) = f ∗(ŷk+1)− f ∗(y)−〈Ax, ŷk+1 − y〉. (4.29)

We add and subtract 〈A>y, xk −x〉−〈Ax, ŷk+1 − y〉 on the right hand side of (4.27) and use the

definitions in (4.28) and (4.29) to get

0 ≥ Dg (xk , z)+D f ∗(ŷk+1, z)+〈xk −x, A>(ȳk − y)〉−〈ŷk+1 − y, A(xk −x)〉
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+ 1

2

(−‖xk−1 −x‖2
τ−1 +‖xk −x‖2

τ−1 +‖xk −xk−1‖2
τ−1

)
+ 1

2

(
−‖yk − y‖2

D(σ)−1 +‖ŷk+1 − y‖2
D(σ)−1 +‖ŷk+1 − yk‖2

D(σ)−1

)
. (4.30)

Note that at step k of SPDHG in Algorithm 4.1, we select an index ik ∈ {1, . . . ,n} randomly with

probability pik and perform the following step on the dual variable

y (ik )
k+1 = ŷ (ik )

k+1, and y (i )
k+1 = y (i )

k ,∀i 6= ik . (4.31)

For any Y ∈Y that is measurable with respect to Fk , (4.31) immediately gives

Ek [yk+1] = P ŷk+1 + (I −P ) yk , (4.32)

Ek

[
‖yk+1 −Y ‖2

D(σ)−1

]
= ‖ŷk+1 −Y ‖2

D(σ)−1P +‖yk −Y ‖2
D(σ)−1(I−P ). (4.33)

A simple manipulation of (4.32) and plugging in Y = y and Y = yk in (4.33) respectively, gives

ŷk+1 = P−1Ek [yk+1]− (P−1 − I )yk (4.34)

‖ŷk+1 − y‖2
D(σ)−1 = Ek

[
‖yk+1 − y‖2

D(σ)−1P−1

]
−‖yk − y‖2

D(σ)−1(P−1−I ) (4.35)

‖ŷk+1 − yk‖2
D(σ)−1 = Ek

[
‖yk+1 − yk‖2

D(σ)−1P−1

]
. (4.36)

We apply (4.35) and (4.36) to the last line of (4.30) to get

1

2

(
−‖yk − y‖2

D(σ)−1 +‖ŷk+1 − y‖2
D(σ)−1 +‖ŷk+1 − yk‖2

D(σ)−1

)
= 1

2

(
−‖yk − y‖2

D(σ)−1P−1 +Ek

[
‖yk+1 − y‖2

D(σ)−1P−1 +‖yk+1 − yk‖2
D(σ)−1P−1

])
. (4.37)

In addition, we have for the bilinear term in (4.30) that

〈xk −x, A>(ȳk − y)〉−〈ŷk+1 − y, A(xk −x)〉 = 〈A(xk −x), ȳk − ŷk+1〉
= 〈A(xk −x), ȳk −P−1Ek [yk+1]+ (P−1 − I )yk〉
=−Ek

[〈A(xk −x),P−1(yk+1 − yk )〉]+〈A(xk −x),P−1(yk − yk−1)〉
=−Ek

[〈A(xk −x),P−1(yk+1 − yk )〉]+〈A(xk−1 −x),P−1(yk − yk−1)〉
+〈A(xk −xk−1),P−1(yk − yk−1)〉. (4.38)

where the second equality is by (4.34), and third equality is by the definition of ȳk .

We now insert (4.37) and (4.38) into (4.30) and also add and subtract 1
2‖yk − yk−1‖2

D(σ)−1P−1

0 ≥ Dg (xk , z)+D f ∗(ŷk+1, z)+ 1

2
‖yk − yk−1‖2

D(σ)−1P−1 − 1

2
‖yk − yk−1‖2

D(σ)−1P−1

−Ek
[〈A(xk −x),P−1(yk+1 − yk )〉]+〈A(xk−1 −x),P−1(yk − yk−1)〉

+〈A(xk −xk−1),P−1(yk − yk−1)〉
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+ 1

2

(−‖xk−1 −x‖2
τ−1 +‖xk −x‖2

τ−1 +‖xk −xk−1‖2
τ−1

)
+ 1

2

(
−‖yk − y‖2

D(σ)−1P−1 +Ek

[
‖yk+1 − y‖2

D(σ)−1P−1

]
+Ek

[
‖yk+1 − yk‖2

D(σ)−1P−1

])
. (4.39)

The first result follows by using the definitions of V and Vk .

It is straightforward to prove (4.11) and (4.12). Since y ( j )
k = y ( j )

k−1,∀ j 6= ik−1,

|〈Ax,P−1(yk − yk−1)〉| = |〈Aik−1 x, p−1
ik−1

(y (ik−1)
k − y (ik−1)

k−1 )〉|
≤ ‖Aik−1 x‖p−1

ik−1
‖y (ik−1)

k − y (ik−1)
k−1 ‖

=
(
τ1/2σ1/2

ik−1
p−1/2

ik−1
‖Aik−1‖

)
τ−1/2‖x‖p−1/2

ik−1
σ−1/2

ik−1
‖y (ik−1)

k − y (ik−1)
k−1 ‖

≤ γ
(
τ−1/2‖x‖p−1/2

ik−1
σ−1/2

ik−1
‖y (ik−1)

k − y (ik−1)
k−1 ‖

)
≤ γ

2

(
‖x‖2

τ−1 +‖y (ik−1)
k − y (ik−1)

k−1 ‖2
p−1

ik−1
σ−1

ik−1

)
= γ

2

(
‖x‖2

τ−1 +‖yk − yk−1‖2
D(σ)−1P−1

)
, (4.40)

where the last step is due to y ( j )
k = y ( j )

k−1,∀ j 6= ik−1. Inserting (4.40) into the definitions of

V (zk − zk−1) and Vk (z) in (4.9) is sufficient to prove (4.11) and (4.12). �

4.7.2 Proof of Theorem 4.6

Proof. On (4.10), we pick (x, y) = (x?, y?) and by convexity, Dg (xk , z?) ≥ 0, D f ∗(ŷk+1, z?) ≥ 0.

Next, by using ∆k =Vk+1(xk −x?, yk+1 − y?), we write (4.10)

Ek [∆k ] ≤∆k−1 −V (zk − zk−1). (4.41)

We denote q k = (1⊗ xk ,1⊗ yk ). By taking total expectation and summing (4.41), and us-

ing Lemma 4.4, we have
∑∞

k=1E
[
‖T (q k−1)−q k−1‖2

S̄P̄

]
<+∞. We use Fubini-Tonelli theorem

to exchange the infinite sum and the expectation to obtain E
[∑∞

k=0 ‖T (q k−1)−q k−1‖2
S̄P̄

]
<

∞. Here, since
∑∞

k=0 ‖T (q k−1)−q k−1‖2
S̄P̄

is nonnegative, we conclude that
∑∞

k=0 ‖T (q k−1)−
q k−1‖2

S̄P̄
is finite almost everywhere, which implies that ‖T (q k−1)−q k−1‖2

S̄P̄
converges to 0

almost surely. Thus we established: there exists ΩT with P(ΩT ) = 1 such that ∀ω ∈ΩT , we

have T (q k (ω))−q k (ω) → 0.

We apply Robbins-Siegmund lemma [RS71, Theorem 1] on (4.41) to get that almost surely, ∆k

converges to a finite valued random variable and V (zk − zk−1) → 0. Consequently, by (4.11),

‖yk − yk−1‖ converges to 0 almost surely. Then, since almost surely, ∆k converges and ‖yk −
yk−1‖ converges to 0, we have that ‖zk − z?‖ converges almost surely.
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In particular, we have shown that

P

{
ω ∈Ω : lim

k→∞
‖zk (ω)− z?‖ exists.

}
= 1. (4.42)

The probability 1 set from which we select the trajectories is defined via z?. We define the set

Ωz? =
{
ω ∈Ω : lim

k→∞
‖zk (ω)− z?‖ exists.

}
(4.43)

Thus our statement is actually, for each z? ∈Z?, there exists a setΩz? with probability 1, such

that ∀ω ∈Ωz? , limk→∞ ‖zk (ω)− z?‖ exists.

We will now follow the arguments in [CP15, Proposition 2.3], [Ber11, Proposition 9], [IBCH13,

Theorem 2], [FB19, Theorem 1] to strengthen this result.

Let us pick a set C which is a countable subset of ri(Z?) that is dense in Z?. Let us denote the

elements of C as vi for i ∈N.

We just proved that for all vi ∈Z?, ∃Ωvi with P(Ωvi ) = 1, such that ∀ω ∈Ωvi , limk→∞ ‖zk (ω)−
vi‖ exists. Let us denote ΩC =∩i∈NΩvi . As ΩC is the intersection of a countable number of

sets of probability 1, P(ΩC) = 1.

Next, we set z̃ ∈Z?. As C is dense in ri(Z?), there exists a subsequence vϕ(i ), where ϕ : N→N

is an increasing function, such that vϕ(i ) → z̃.

We pick ω ∈ΩC and study the existence of limk→∞ ‖zk (ω)− z̃‖. By triangle inequality, ∀i ∈N,

‖zk (ω)− vϕ(i )‖−‖vϕ(i ) − z̃‖ ≤ ‖zk (ω)− z̃‖ ≤ ‖zk (ω)− vϕ(i )‖+‖vϕ(i ) − z̃‖.

Rearranging gives

−‖vϕ(i ) − z̃‖ ≤ ‖zk (ω)− z̃‖−‖zk (ω)− vϕ(i )‖ ≤ ‖vϕ(i ) − z̃‖.

As ω is chosen from ΩC , and any element of ΩC is also an element of Ωvi , we know that

limk→∞ ‖zk (ω)− vϕ(i )‖ exists. Moreover, recall that vϕ(i ) → z̃.

We take limit as k →∞,

−‖vϕ(i ) − z̃‖ ≤ lim inf
k→∞

‖zk (ω)− z̃‖− lim
k→∞

‖zk (ω)− vϕ(i )‖

≤ lim sup
k→∞

‖zk (ω)− z̃‖− lim
k→∞

‖zk (ω)− vϕ(i )‖

≤ ‖vϕ(i ) − z̃‖.

As we take the limit along the subsequence defined by ϕ(i ), we have limi→∞ ‖vϕ(i ) − z̃‖ = 0,

which gives the equality of liminf and limsup.
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Thus, ∀ω ∈ΩC with P(ΩC) = 1 and ∀z̃ ∈Z?, we have that limk→∞ ‖zk (ω)− z̃‖ exists.

We pickω ∈ΩC∩ΩT and as we have that (zk (ω))k is bounded, we denote by z̃ = (x̃, ỹ) one of its

cluster points. Then, we denote q̃ = (1⊗ x̃,1⊗ ỹ) and say that q̃ is a cluster point of (q k (ω))k .

As T (q k (ω))− q k (ω) → 0, by continuity of T we have T (q̃)− q̃ → 0, therefore q̃ is a fixed

point of T . We now use Lemma 4.4 to argue that fixed points of T which we denote as

(x f ( j ), y f ( j )) j={1,...,n} are such that (x f ( j ), y f ( j )) ∈Z?,∀ j ∈ {1, . . . ,n}. Since q̃ is a fixed point of

T , we conclude that z̃ ∈Z?.

To sum up, we have shown that at least on some subsequence zk (ω) converges to z̃ ∈Z?. Then,

the result follows due to existence of the limit, proven earlier. �

4.7.3 Proof of Theorem 4.8

Proof. Starting from the result of Lemma 4.3, we have

Dg (xk , z)+D f ∗(ŷk+1, z) ≤−Ek
[
Vk+1(xk −x, yk+1 − y)

]+Vk (xk−1 −x, yk − y)

−V (zk − zk−1). (4.44)

We pick x = x?,k−1, y = y?,k , with z?,k = (x?,k−1, y?,k ) and use convexity to get Dg (xk , z?,k ) ≥ 0

and D f ∗(ŷk+1, z?,k ) ≥ 0. In addition, we define

∆k−1 =Vk (xk−1 −x?,k−1, yk − y?,k )

∆̃k =Vk+1(xk −x?,k−1, yk+1 − y?,k ).

We use these definitions in (4.44) to write

Ek
[
∆̃k

]≤∆k−1 −V (zk − zk−1).

By definition of (xk
?, yk+1

? ), we have ∆k ≤ ∆̃k , which implies that

Ek

[
∆k

]
≤∆k−1 −V (zk − zk−1).

Recursion of this inequality gives boundedness of the iterates xk and yk , in expectation. How-

ever, it is not possible to derive sure boundedness of the sequence. Without sure boundedness,

the set that includes xk , yk depends on the specific trajectory of the algorithm, and it is not

possible to find a set independent of these. As metric subregularity holds for PLQs with a

bounded neighborhood (see Section 4.2.2), we cannot utilize this result and this is the main

reason for the need for bounded domains in this case. This assumption ensures the existence

of a uniform set bounding the sequence, to use metric subregularity assumption for PLQs.

We recall S = diag(τ−11p ,σ−1
1 , . . . ,σ−1

n ), S̄ and P̄ are as defined in Lemma 4.4, and dist2
S(zk ,Z?) =

‖zk −PS
Z?

(zk )‖2
S = ‖xk − x̃?,k‖2

τ−1 +‖yk − y?,k‖2
D(σ)−1 where x̃?,k is the projection of xk onto the
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set of solutions with respect to norm ‖·‖τ−1 . We now use Assumption 4.2 stating that F =C +M

is metrically subregular at PS
Z?

(ẑk+1) for 0. We recall, q k = (1⊗ xk ,1⊗ yk ) and q̂ k+1 = T (q k )

and estimate as

‖xk − x̃?,k‖2
τ−1 +‖yk − y?,k‖2

D(σ)−1 = dist2
S(zk ,Z?) ≤ Ek

[
‖zk −PS

Z?
(ẑk+1)‖2

S

]
≤ 2Ek

[‖zk − ẑk+1‖2
S

]+2Ek

[
‖ẑk+1 −PS

Z?
(ẑk+1)‖2

S

]
≤ 2Ek

[‖zk − ẑk+1‖2
S

]+2η2Ek
[
dist2

S(0, (C +M)ẑk+1)
]

= 2Ek
[‖zk − ẑk+1‖2

S

]+2η2 dist2
S̄P̄

(0, (C +M)q̂ k+1)

≤ 2Ek
[‖zk − ẑk+1‖2

S

]+2η2‖M −H‖2‖q̂ k+1 −q k‖2
S̄P̄

, (4.45)

where the first inequality is due to the definition of dist2
S(zk ,Z?), third inequality is due to

metric subregularity of C +M (see Remark 4.9) since dist2
S(ẑk+1,Z?) = ‖ẑk+1 −PS

Z?
(ẑk+1)‖2

S .

Second equality and fourth inequality are by Lemma 4.7 and Cauchy-Schwarz inequality.

First, we use ‖ŷk+1 − yk‖2
D(σ)−1 = Ek

[
‖yk+1 − yk‖2

D(σ)−1P−1

]
to estimate

Ek
[‖zk − ẑk+1‖2

S

]= Ek
[‖xk+1 −xk‖2

τ−1

]+‖ŷk+1 − yk‖2
D(σ)−1

= Ek

[
‖xk+1 −xk‖2

τ−1 +‖yk+1 − yk‖2
D(σ)−1P−1

]
. (4.46)

Second, we use Lemma 4.4 to obtain

‖q̂ k+1 −q k‖2
S̄P̄

= ‖T (1⊗xk ,1⊗ yk )− (1⊗xk ,1⊗ yk )‖2
S̄P̄

= Ek

[
‖xk+1 −xk‖2

τ−1 +‖yk+1 − yk‖2
D(σ)−1P−1

]
. (4.47)

We combine (4.46) and (4.47) in (4.45) to get

1

2
‖xk−x̃?,k‖2

τ−1 + 1

2
‖yk − y?,k‖2

D(σ)−1

≤ (2+2η2‖N −H‖2)Ek

[
1

2
‖xk+1 −xk‖2

τ−1 + 1

2
‖yk+1 − yk‖2

D(σ)−1P−1

]
. (4.48)

Herein, we denote ζ= 2+2η2‖H −M‖2.

By using (4.11), we have that, for all α ∈ [0,1]

Ek−1 [V (zk − zk−1)] ≥C1Ek−1

[
1

2
‖xk −xk−1‖2

τ−1 + 1

2
‖yk − yk−1‖2

D(σ)−1P−1

]
≥ C1

ζ

(
1

2
‖xk−1 − x̃?,k−1‖2

τ−1 + 1

2
‖yk−1 − y?,k−1‖2

D(σ)−1

)
≥ C1

ζ

(
α

2
‖xk−1 − x̃?,k−1‖2

τ−1 + 1

2
‖yk−1 − y?,k−1‖2

D(σ)−1

)
, (4.49)

where the second inequality is due to (4.48).
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We have, by definition of x?,k−1 that

∆k−1 ≤Vk (xk−1 − x̃?,k−1, yk − y?,k )

= 1

2
‖xk−1 − x̃?,k−1‖2

τ−1 + 1

2
‖yk − y?,k‖2

D(σ)−1P−1 + 1

2
‖yk − yk−1‖2

D(σ)−1P−1

−〈P−1 A(xk−1 − x̃?,k−1), yk − yk−1〉
≤ 1

2
‖xk−1 − x̃?,k−1‖2

τ−1 + 1

2
‖yk − y?,k‖2

D(σ)−1P−1 + 1+γ
2

‖yk − yk−1‖2
D(σ)−1P−1 + γ

2
‖xk−1 − x̃?,k−1‖2

τ−1

= 1+γ
2

‖xk−1 − x̃?,k−1‖2
τ−1 + 1+γ

2α
‖yk−1 − y?,k−1‖2

D(σ)−1 + 1+γ
2

‖yk − yk−1‖2
D(σ)−1P−1

− 1+γ
2α

‖yk−1 − y?,k−1‖2
D(σ)−1 + 1

2
‖yk − y?,k‖2

D(σ)−1P−1 ,

where the second inequality is due to (4.8).

We now take conditional expectation of both sides and use (4.49) to get

Ek−1 [∆k−1] ≤ (1+γ)ζ

C1α
Ek−1 [V (zk − zk−1)]+ 1+γ

2
Ek−1

[
‖yk − yk−1‖2

D(σ)−1P−1

]
+ 1

2
Ek−1

[
‖yk − y?,k‖2

D(σ)−1P−1

]
− 1+γ

2α
‖yk−1 − y?,k−1‖2

D(σ)−1 .

By using (4.11) and requiring that (1+γ)
C1

≤ (1+γ)ζ
C1α

, or equivalently ζ≥α, which is not restrictive

since α is finite, and one can increase η as in (4.6) to satisfy the requirement, we can combine

the first two terms in the right hand side to get

Ek−1
[
∆k−1

]≤ 2(1+γ)ζ

C1α
Ek−1

[
V (zk − zk−1)

]+ 1

2
Ek−1

[‖yk − y?,k‖2
D(σ)−1P−1

]
− 1+γ

2α
‖yk−1 − y?,k−1‖2

D(σ)−1 .

We now insert this inequality into (4.14) and use that Ek−1 [Ek [∆k ]] = Ek−1 [∆k ]

Ek−1 [∆k ] ≤ Ek−1 [∆k−1]− C1α

2(1+γ)ζ
Ek−1 [∆k−1]

+ C1α

4(1+γ)ζ
Ek−1

[
‖yk − y?,k‖2

D(σ)−1P−1

]
− C1

4ζ
‖yk−1 − y?,k−1‖2

D(σ)−1 .

We take full expectation and rearrange to get

E

[
∆k −

C1α

4(1+γ)ζ
‖yk − y?,k‖2

D(σ)−1P−1

]
≤

(
1− C1α

2(1+γ)ζ

)
E

[
∆k−1 −

C1

4ζ(1− C1α
2(1+γ)ζ )

‖yk−1 − y?,k−1‖2
D(σ)−1

]
. (4.50)
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We require

C2 = C1α

4p(1+γ)ζ
≤ C1

4ζ
≤ C1

4ζ(1− C1α
2(1+γ)ζ )

⇐⇒ α≤ (1+γ)p. (4.51)

Let us pick α= (1+γ)p so that C2 = C1
4ζ and define

Φk =∆k −C2‖yk − y?,k‖2
D(σ)−1 .

We note (4.49) and (4.14) to have

‖yk − y?,k‖2
D(σ)−1 ≤ 2ζ

C1
Ek [V (zk+1 − zk )] ≤ 2ζ

C1
Ek [∆k ] .

Then, we can lower boundΦk as

E
[
Φk

]≥ (
1−C2

2ζ

C1

)
E
[
∆k

]= 1

2
E
[
∆k

]
. (4.52)

Therefore, it follows that E [Φk ] is nonnegative, by the definition of ∆k and (4.12).

We can now rewrite (4.50) as

E
[
Φk

]≤ (1−ρ)E
[
Φk−1

]
,

where ρ = C1p

2ζ . We have shown that Φk converges linearly to 0 in expectation. By (6.35), it

immediately follows that ∆k converges linearly to 0.

To conclude, we note ∆k =Vk+1(xk −x?,k , yk+1 − y?,k+1), and (4.12), from which we conclude

linear convergence of ‖xk −x?,k‖2
τ−1 and ‖yk+1 − y?,k+1‖2

D(σ)−1P−1 .

It is obvious to see that 0 < ρ follows by the fact that η is finite by metric subregularity and

ρ < 1 follows since γ< 1 and p ≤ 1. �

4.7.4 Proof of Lemma 4.11

Proof. We note

H(xk , ŷk+1; x, y) = g (xk )+〈Axk , y〉− f ∗(y)− g (x)−〈Ax, ŷk+1〉+ f ∗(ŷk+1),

∆x = 1

2

[−‖xk−1 −x‖2
τ−1 +‖xk −x‖2

τ−1 +‖xk −xk−1‖2
τ−1

]
,

∆y = 1

2

[
−‖yk − y‖2

D(σ)−1 +‖ŷk+1 − y‖2
D(σ)−1 +‖ŷk+1 − yk‖2

D(σ)−1

]
,

and, ∀(x, y) ∈X ×Y . Then, we can write (4.27) as

0 ≥H(xk , ŷk+1; x, y)+〈A(x −xk ), ŷk+1 − ȳk〉+∆x +∆y . (4.53)
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We next note that

H(xk ,ŷk+1; x, y) =H(xk , yk+1; x, y)+〈Ax, yk+1 − ŷk+1〉+ f ∗(ŷk+1)− f ∗(yk+1)

− (
f ∗

P−1−I (yk+1)− f ∗
P−1−I (yk )

)+ (
f ∗

P−1−I (yk+1)− f ∗
P−1−I (yk )

)
+〈Ax, (P−1 − I )(yk+1 − yk )〉−〈Ax, (P−1 − I )(yk+1 − yk )〉
=H(xk , yk+1; x, y)+ f ∗(ŷk+1)− f ∗(yk )− ( f ∗

P−1 (yk+1)− f ∗
P−1 (yk ))

+〈Ax, yk − ŷk+1 −P−1(yk − yk+1)〉
+ (

f ∗
P−1−I (yk+1)− f ∗

P−1−I (yk )
)−〈Ax, (P−1 − I )(yk+1 − yk )〉

=H(xk , yk+1; x, y)+ f ∗(ŷk+1)− f ∗(yk )− ( f ∗
P−1 (yk+1)− f ∗

P−1 (yk ))

+〈Ax, yk − ŷk+1 −P−1(yk − yk+1)〉+DP−1−I
f ∗ (yk+1, y)−DP−1−I

f ∗ (yk , y). (4.54)

By the definition of ȳk in SPDHG, we have for the bilinear term in (4.53) that

〈A(x −xk ), ŷk+1 − ȳk〉 = 〈A(x −xk ), ŷk+1 − yk −P−1(yk − yk−1)〉
= 〈A(x −xk ), ŷk+1 − yk〉−〈A(x −xk ),P−1(yk − yk−1)〉
= 〈A(x −xk ), ŷk+1 − yk〉−〈A(x −xk−1),P−1(yk − yk−1)〉
−〈A(xk−1 −xk ),P−1(yk − yk−1)〉
= 〈A(x −xk ),P−1(yk+1 − yk )〉−〈A(x −xk−1),P−1(yk − yk−1)〉
−〈A(xk−1 −xk ),P−1(yk − yk−1)〉
+〈A(x −xk ), ŷk+1 − yk −P−1(yk+1 − yk )〉. (4.55)

We focus on ∆y and get

−∆y = 1

2

[
−‖ŷk+1 − yk‖2

D(σ)−1 −‖ŷk+1 − y‖2
D(σ)−1 +‖yk − y‖2

D(σ)−1

+
(
‖yk − y‖2

D(σ)−1P−1 −‖yk+1 − y‖2
D(σ)−1P−1

)
−

(
‖yk − y‖2

D(σ)−1P−1 −‖yk+1 − y‖2
D(σ)−1P−1

)]
=−1

2
‖yk+1 − y‖2

D(σ)−1P−1 + 1

2
‖yk − y‖2

D(σ)−1P−1 − 1

2
‖ŷk+1 − yk‖2

D(σ)−1 +εk , (4.56)

where

εk = 1

2

[
‖yk − y‖2

D(σ)−1 −‖ŷk+1 − y‖2
D(σ)−1

(
‖yk − y‖2

D(σ)−1P−1 −‖yk+1 − y‖2
D(σ)−1P−1

)]
= 1

2

[
‖yk‖2

D(σ)−1 −‖ŷk+1‖2
D(σ)−1 −

(
‖yk‖2

D(σ)−1P−1 −‖yk+1‖2
D(σ)−1P−1

)
−2〈y, yk − ŷk+1 −P−1(yk − yk+1)〉D(σ)−1

]
. (4.57)
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We use eqs. (4.54)–(4.56) in (4.53), add and subtract 1
2‖yk−yk−1‖2

D(σ)−1P−1 and use the definition

vk+1 = yk − ŷk+1 −P−1(yk − yk+1) from Lemma 4.10 to obtain

H(xk ,yk+1; x, y) ≤−1

2
‖xk −x‖2

τ−1 + 1

2
‖xk−1 −x‖2

τ−1

−〈A(x −xk ),P−1(yk+1 − yk )〉+〈A(x −xk−1),P−1(yk − yk−1)〉
− 1

2
‖xk −xk−1‖2

τ−1 − 1

2
‖yk − yk−1‖2

D(σ)−1P−1

−〈A(xk −xk−1),P−1(yk − yk−1)〉− 1

2
‖yk+1 − y‖2

D(σ)−1P−1

+ 1

2
‖yk − y‖2

D(σ)−1P−1 − 1

2
‖ŷk+1 − yk‖2

D(σ)−1 + 1

2
‖yk − yk−1‖2

D(σ)−1P−1

+ 1

2

[
‖yk‖2

D(σ)−1 −‖ŷk+1‖2
D(σ)−1 −

(
‖yk‖2

D(σ)−1P−1 −‖yk+1‖2
D(σ)−1P−1

)]
+ f ∗(yk )− f ∗(ŷk+1)− ( f ∗

P−1 (yk )− f ∗
P−1 (yk+1))−〈y, vk+1〉D(σ)−1

−〈Axk , yk − ŷk+1 −P−1(yk − yk+1)〉+DP−1−I
f ∗ (yk , z)−DP−1−I

f ∗ (yk+1, z). (4.58)

We obtain the first result of the lemma by using the definitions of Vk and V from Lemma 4.3,

and definition of Ek from (4.21).

Second, on Ek (see (4.21)), we use the following conditional expectation estimations

Ek
[
P−1(yk − yk+1)

]= yk − ŷk+1, Ek

[
f ∗

P−1 (yk )− f ∗
P−1 (yk+1)

]
= f ∗(yk )− f ∗(ŷk+1),

Ek

[
‖yk+1 − yk‖2

D(σ)−1P−1

]
= ‖ŷk+1 − yk‖2

D(σ)−1

Ek [Ek ] =−1

2
‖ŷk+1 − yk‖2

D(σ)−1 + 1

2
Ek

[
‖yk+1 − yk‖2

D(σ)−1P−1

]
+ 1

2

(
‖yk‖2

D(σ)−1 −‖ŷk+1‖2
D(σ)−1

)
− 1

2
Ek

[
‖yk‖2

D(σ)−1P−1 −‖yk+1‖2
D(σ)−1P−1

]
+ f ∗(yk )− f ∗(ŷk+1)−Ek

[
f ∗

P−1 (yk )− f ∗
P−1 (yk+1)

]−〈Axk , yk − ŷk+1 −Ek
[
P−1 (

yk − yk+1
)]〉

= 0.

�

4.7.5 Proof of Theorem 4.12

Proof. We will continue from the result of Lemma 4.11. We have for the last error term in (4.20)

−〈y, vk+1〉D(σ)−1 = 〈ỹk − y, vk+1〉D(σ)−1 −〈ỹk , vk+1〉D(σ)−1 , (4.59)

where ỹk is the random sequence defined in Lemma 4.10.

We sum (4.20) after using (4.59) and Lemma 4.3

K∑
k=1

H(xk , yk+1; x, y) ≤−VK+1(xK −x, yK+1 − y)+V1(x0 −x, y1 − y)+DP−1−I
f ∗ (y1; z)

102



4.7. Proofs

−DP−1−I
f ∗ (yK+1; z)+

K∑
k=1

(
〈ỹk − y, vk+1〉D(σ)−1 −〈ỹk , vk+1〉D(σ)−1 +Ek

)
, (4.60)

Next, by Young’s inequality

−〈A(x −xK ),P−1(yK+1 − yK )〉 ≤ γ

2
‖x −xK ‖2

τ−1 + γ

2
‖yK+1 − yK ‖2

D(σ)−1P−1 . (4.61)

On (4.60), we can use (4.18) from Lemma 4.10 with ỹ1 = y1 = y0 and (4.61) with the definition

of VK+1(xK −x, yK+1 − y) from Lemma 4.3, and by γ< 1 from the step size rules in (4.8) to get

K∑
k=1

H(xk , yk+1; x, y) ≤ 1

2
‖x0 −x‖2

τ−1 +‖y1 − y‖2
D(σ)−1P−1 + f ∗

P−1−I (y1)− f ∗
P−1−I (yK+1)

+〈Ax, (P−1 − I )(yK+1 − y1)〉+
K∑

k=1

(
1

2
‖vk+1‖2

D(σ)−1P −〈ỹk , vk+1〉D(σ)−1 +Ek

)
. (4.62)

We have 〈Ax, (P−1 − I )(yK+1 − y1)〉 ≤ γ
2‖x‖2

τ−1 + γ
2p ‖yK+1 − y1‖2

D(σ)−1P−1 and γ
2‖x‖2

τ−1 ≤ γ‖x −
x0‖2

τ−1 +γ‖x0‖2
τ−1 by Young’s inequality and (4.8).

We use these inequalities, arrange (4.62), and divide both sides by K

1

K

K∑
k=1

H(xk , yk+1; x, y) ≤ 1

K

{
1+2γ

2
‖x0 −x‖2

τ−1 +‖y1 − y‖2
D(σ)−1P−1 +γ‖x0‖2

τ−1

+ γ

2p
‖yK+1 − y1‖2

D(σ)−1P−1 + f ∗
P−1−I (y1)− f ∗

P−1−I (yK+1)

+
K∑

k=1

(
1

2
‖vk+1‖2

D(σ)−1P −〈ỹk , vk+1〉D(σ)−1 +Ek

)}
. (4.63)

We now take supremum of (4.63) with respect to z, note that only the first two terms on the

right hand side depend on z = (x, y), and x0, y1 are deterministic. Then we take expectation of

both sides of (4.63) and use γ< 1

E

[
sup
z∈B

1

K

K∑
k=1

H(xk , yk+1; x, y)

]
≤ 1

K

{
sup
z∈B

{
3

2
‖x0 −x‖2

τ−1 +‖y1 − y‖2
D(σ)−1P−1

}

+E
[
γ

2p
‖yK+1 − y1‖2

D(σ)−1P−1 + f ∗
P−1−I (y1)− f ∗

P−1−I (yK+1)

]
+γ‖x0‖2

τ−1

+
K∑

k=1

1

2
E
[
‖vk+1‖2

D(σ)−1P

]
−

K∑
k=1

E
[〈ỹk , vk+1〉D(σ)−1

]+ K∑
k=1

E [Ek ]

}
. (4.64)

First, as ỹk is Fk -measurable, Ek [vk+1] = 0, by Lemma 4.10, and by the law of total expectation,

E

[
K∑

k=1
〈ỹk , vk+1〉D(σ)−1

]
=

K∑
k=1

E
[
Ek

[〈ỹk , vk+1〉D(σ)−1

]]
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=
K∑

k=1
E
[〈ỹk ,Ek [vk+1]〉D(σ)−1

]= 0. (4.65)

On (4.64), we use (4.19) from Lemma 4.10, (4.65), and
∑K

k=1E[Ek ] =∑K
k=1E [Ek [Ek ]] = 0, which

follows from Lemma 4.11 along with the law of total expectation, to obtain

E

[
sup
z∈B

1

K

K∑
k=1

H(xk , yk+1; x, y)

]
≤ sup

z∈B

{
3

2K
‖x0 −x‖2

τ−1 + 1

K
‖y1 − y‖2

D(σ)−1P−1

}
+ γ

2K p
E
[
‖yK+1 − y1‖2

D(σ)−1P−1

]
+ γ

K
‖x0‖2

τ−1

+ 1

K
E
[

f ∗
P−1−I (y1)− f ∗

P−1−I (yK+1)
]+ 1

C1K
∆0. (4.66)

By Theorem 4.6 and Lemma 4.3, E
[
‖yK+1 − y?‖2

D(σ)−1P−1

]
≤ 2∆0, and by Jensen’s inequality and

concavity of square root, E
[‖yK+1 − y?‖D(σ)−1P−1

]≤p
2∆0. With these estimations we have

E
[
‖yK+1 − y1‖2

D(σ)−1P−1

]
≤ 2‖y1 − y?‖2

D(σ)−1P−1 +4∆0. (4.67)

As fi is proper, lower semicontinuous, convex, and Ai x? ∈ ∂ f ∗
i (y?i ), we additionally note that

f ∗
i (yK+1

i ) ≥ f ∗
i (y?i )+〈Ai x?, y (i )

K+1 − y (i )
? 〉 ≥ f ∗

i (y (i )
? )−‖Ai x?‖D(σ)P‖y (i )

K+1 − y (i )
? ‖D(σ)−1P−1 ,

and

E
[

f ∗
P−1−I (yK+1)

]= n∑
i=1

(
1

pi
−1

)
E
[

f ∗
i (y (i )

K+1)
]

≥
n∑

i=1

(
1

pi
−1

)(
f ∗

i (y (i )
? )−‖Ai x?‖D(σ)PE

[
‖y (i )

K+1 − y (i )
? ‖D(σ)−1P−1

])
≥

n∑
i=1

(
1

pi
−1

)(
f ∗

i (y (i )
? )−‖Ai x?‖D(σ)P

√
2∆0

)
. (4.68)

We now use (4.67) and (4.68) in (4.66) to obtain

E

[
sup
z∈B

1

K

K∑
k=1

H(xk , yk+1; x, y)

]
≤ 3

2K
sup
x∈Bx

‖x0 −x‖2
τ−1 + 1

K
sup
y∈By

‖y1 − y‖2
D(σ)−1P−1

+ γ

K p
‖y1 − y?‖2

D(σ)−1P−1 + 2γ

K p
∆0 + γ

K
‖x0‖2

τ−1 + 1

K
f ∗

P−1−I (y1)

+ 1

K

n∑
i=1

(
1

pi
−1

)(
− f ∗

i (y (i )
? )+‖Ai x?‖D(σ)P

√
2∆0

)
+ 1

C1K
∆0 =:

CB
K

.

We define as CB the constant of right hand side and use Jensen’s inequality on the left hand

side with definitions of xavg
K and yavg

K+1 to get the first result.

For the second part of the theorem, we proceed the same until (4.63). Then, we move the

terms 1+2γ
2K ‖x0 − x‖2

τ−1 and 1
K ‖y1 − y‖2

D(σ)−1P−1 to the left hand side, take supremum, use the
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definition of smoothed gap, then take expectations of both sides and use the same estimations

as in the first part to conclude. �

4.7.6 Proof of Theorem 4.13

Proof. We have, from Theorem 4.12, the following bound for the smoothed gap (see also (4.7))

E
[
G 1+2γ

2K , 1
2K

(xavg
K , yavg

K+1; x0, y1)
]
≤ Ce

K
.

• When f is Lipschitz continuous in the norm ‖ · ‖D(σ), we will argue as in [FB19, Theorem

11]. On (4.7), with the parameters used in this theorem, we make the following observations.

By [BC11, Corollary 17.19], when f is L( f )-Lipschitz continuous in the norm ‖·‖D(σ), it follows

that ‖y1 − y‖2
D(σ)−1 ≤ 4L( f )2. By Lipschitzness and the definition of conjugate function, we

can pick y ∈ ∂ f (Axavg
K ) 6= ; such that 〈Axavg

K , y〉− f ∗(y) = f (Axavg
K ). Next by Fenchel-Young

inequality, f ∗(yavg
K+1)−〈A>yavg

K+1, x?〉 ≥− f (Ax?). We also use p = mini pi to obtain (see (4.7))

E

[
G 1+2γ

K , 1
K

(xavg
K , yavg

K+1;x0, y1)

]
≥ E[

f (Axavg
K )+ g (xavg

K )− f (Ax?)− g (x?)
]

− 2

pK
L( f )2 − 1+2γ

2K
‖x0 −x?‖2

τ−1 ,

where the result directly follows.

• When f (·) = δ{b}(·), we use [TDFC18, Lemma 1], to obtain the bounds

E
[
g (xavg

K )− g (x?)
]≤ E[

G 1+2γ
2K , 1

2K
(xavg

K , yavg
K+1; x0, y1)

]
+ 1+2γ

2K
‖x0 −x?‖2

τ−1 −E
[〈y?, Axavg

K −b〉]+ 1

2K
‖y?− y1‖2

D(σ)−1P−1 ,

E
[‖Axavg

K −b‖D(σ)P
]≤ 1

2K

{
‖y?− y1‖D(σ)−1P−1 +

(
‖y?− y1‖2

D(σ)−1P−1

+4KE
[
G 1+2γ

2K , 1
2K

(xavg
K , yavg

K+1; x0, y1)
]
+2(1+2γ)‖x0 −x?‖2

τ−1

)1/2}
.

We use Cauchy-Schwarz inequality on 〈y?, Axavg
K −b〉 and use the bound of E

[‖Axavg
K −b‖D(σ)P

]
to conclude. �
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Lemma 4.4 and Theorem 4.8 are mainly due to Olivier Fercoq. The results in Section 4.4.3

are mainly due to the author of this dissertation. The remaining results are joint between

coauthors.
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5 A sparsity aware primal-dual coordi-
nate descent algorithm

In this chapter, we continue studying PDCD methods and propose a new algorithm to improve

SPDHG analyzed in the previous chapter. The new method bridges the benefits of SPDHG

with other PDCD methods designed for sparse data [FB19, LFP19]. In addition to rigorous

convergence guarantees, we show that the method has per-iteration cost depending on the

number of nonzeros of the data matrix, which was not the case for SPDHG. As predicted by

our theory, the new method attains a compelling empirical performance with both dense and

sparse datasets.

This chapter is based on the joint work with Olivier Fercoq and Volkan Cevher [AFC20].

5.1 Introduction

In this chapter, we consider the problem

min
x∈X

f (x)+ g (x)+h(Ax), (5.1)

where f , g : X → R∪ {+∞} and h : Y → R∪ {+∞} are proper, lower semicontinuous, convex

functions, A : X →Y is a linear operator. X and Y are Euclidean spaces such that X =∏n
i=1Xi ,

and Y = ∏m
j=1Y j . Moreover, f is assumed to have coordinate-wise Lipschitz continuous

gradients and g ,h admit easily computable proximal operators.

We recall that the advantage of coordinate-based methods is that they access to blocks of A

and update a subset of variables, resulting in cheap per iteration costs. Moreover, they utilize

larger step sizes depending on the properties of the problem in selected blocks. Existing PDCD

methods fail to retain both these advantages, as sparsity of A varies. In particular, methods

that have cheap per-iteration costs with sparse A [FB19, LFP19], are restricted to use small

step sizes with dense A. On the other hand, methods that can use large step sizes with dense

A such as SPDHG [CERS18], have high per-iteration costs with sparse A.

Contributions. In this chapter, we identify random extrapolation as the key to design a
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Chapter 5. A sparsity aware primal-dual coordinate descent algorithm

Step sizes
with dense data

iteration
cost

block-wise
Lipschitz

probability
law

Efficient
implementation

[CERS18] nτiσ‖Ai‖2 < 1 m N/A arbitrary direct†

[FB19] n2τiσ‖Ai‖2 < 1 |J (i )|∗ Yes uniform direct or dupl.
[LFP19] n2τiσ‖Ai‖2 < 1 |J (i )|∗ No arbitrary duplication‡

PURE-CD nτiσ‖Ai‖2 < 1 |J (i )|∗ Yes arbitrary direct

Table 5.1 – Comparison of PDCD methods. We only compare here the most related methods to ours
and include a comprehensive literature review in Section 5.5. In the last column, we refer to the way
one needs to implement the algorithm, for it to be efficient in both sparse and dense settings. ∗ J (i ) is
defined in (5.2). †SPDHG only has implementation for dense setting and not for sparse. ‡The concept
of duplication for PDCD is described in [FB19].

method that combines the benefits of the methods in two camps and propose the primal-dual

method with random extrapolation and coordinate descent (PURE-CD).

. PURE-CD exhibits the advantages of [FB19, LFP19] in the sparse setting and the advantages

of [CERS18] in the dense setting simultaneously, achieving the best of both worlds.

. As PURE-CD has the favorable properties in both ends of the spectrum, it has the best per-

formance in the regime in between: moderately sparse data (see also Section 5.6.1). Table 5.1

compiles a summary for the comparison of PURE-CD and previous methods.

. In addition to adapting to the sparsity of A, we prove that PURE-CD also adapts to unknown

structures in the problem, and obtains linear rate of convergence, without any modifications

in the step sizes, with metric subregularity.

. In the general convex case, we prove that the iterates of PURE-CD converges almost surely

to a solution of problem (5.1).

.We show that in this case, the ergodic sequence obtains the optimal O(1/k) rate of conver-

gence on the expected primal-dual gap.

5.2 Preliminaries

5.2.1 Notation

For u ∈Xi , Ui (u) ∈X is such that each element of Ui (u) is 0, except the block i which contains

u. We use block size of 1 for simplicity. We use the following notation for the sparse setting,

J (i ) = { j ∈ {1, . . . ,m} : A j ,i 6= 0}

I ( j ) = {i ∈ {1, . . . ,n} : A j ,i 6= 0}.
(5.2)

In words, given a matrix A and i ∈ {1, . . . ,n}, J(i ) denotes the row indices that correspond to

nonzero values in the column indexed by i . Similarly, with j ∈ {1, . . . ,m}, I ( j ) gives the column

indices corresponding to nonzero values in the row indexed by j .
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5.2. Preliminaries

Moreover, given positive probabilities (pi )1≤i≤n , we define

π j =
∑

i∈I ( j )
pi . (5.3)

In the simple case of pi = 1/n, it is easy to see that nπ j corresponds to number of nonzeros in

the row indexed by j .

At iteration k, the algorithm randomly picks an index ik+1 ∈ {1, . . . ,n}. To govern the selection

rule, we define the probability matrix P = diag(p1, . . . , pn), where pi = Pr(ik+1 = i ), and p =
mini pi . We define as Fk the filtration generated by the random indices {i1, . . . , ik }.

Denoting z = (x, y), we define the functions

Dp (xk+1, z) = f (xk+1)+ g (xk+1)− f (x)− g (x)+〈A>y, xk+1 −x〉,
Dd (ȳk+1, z) = h∗(ȳk+1)−h∗(y)−〈Ax, ȳk+1 − y〉.

Optimality. Problem (5.1) has the following saddle point formulation

min
x∈X

max
y∈Y

f (x)+ g (x)+〈Ax, y〉−h∗(y).

KKT conditions state that the vector z? = (x?, y?) is a primal-dual solution when

0 ∈
[
∇ f (x?)+∂g (x?)+ A>y?

Ax?−∂h∗(y?)

]
=: F (z?). (5.4)

We call Z? the set of such solutions.

Metric subregularity. We use the metric subregularity assumption for proving linear conver-

gence. We refer to Section 4.2.2 for the details. We are interested in the metric subregularity of

KKT operator F (see (5.4)) for 0. Intuitively speaking, as 0 ∈ F (z?),∀z? ∈Z?, metric subregu-

larity of F for 0 essentially gives us a way to characterize the behavior of the iterates around

the solution set.

We state our main assumptions which are standard in the literature [FB19, CERS18, LFP19]:

Assumption 5.1. f , g and h are proper, lower semicontinuous, convex.

. g is separable, i.e., g (x) =∑n
i=1 gi (x(i )), and f has coordinatewise Lipschitz gradients

such that ∀x ∈X ,∀u ∈Xi ,

f (x +Ui (u)) ≤ f (x)+〈∇i f (x),u〉+ βi

2
‖u‖2. (5.5)

. Set of solutions to problem (5.1) is nonempty.

. Slater’s condition holds.
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Chapter 5. A sparsity aware primal-dual coordinate descent algorithm

5.3 Algorithm

In this section, we sketch the main ideas behind our algorithm. PDHG1, due to [CP11, Con13,

Vũ13] reads as
x̄k+1 = proxτ,g

(
x̄k −τ

(∇ f (x̄k )+ A> ȳk
))

ȳk+1 = proxσ,h∗
(
ȳk +σA(2x̄k+1 − x̄k )

)
.

(5.6)

The main intuition behind PDCD methods proposed by [ZX17, FB19, CERS18] is to incorporate

coordinate based updates. Among these methods, [ZX17] specializes in strongly convex-

strongly concave problems, whereas the other other ones focus on convex-concave problems.

A closely related approach concentrated on the following interpretation of primal-dual method (5.6)

which is named as TriPD in [LFP19, Algorithm 1]

ȳk+1 = proxσ,h∗
(
ŷk +σAx̄k

)
x̄k+1 = proxτ,g

(
x̄k −τ

(∇ f (x̄k )+ A> ȳk+1
))

ŷk+1 = ȳk+1 +σA(x̄k+1 − x̄k ).

(5.7)

By moving the ȳk+1 update in TriPD to take place after ŷk+1 update, one obtains (5.6).

As observed in [LFP19], this particular interpretation of primal-dual method is useful for

randomization. TriPD-BC as proposed in [LFP19] iterates as

ȳk+1 = proxσ,h∗
(
yk +σAxk

)
x̄k+1 = proxτ,g

(
xk −τ

(∇ f (xk )+ A> ȳk+1
))

ŷk+1 = ȳk+1 +σA(x̄k+1 −xk )

Draw an index ik+1 ∈ {1, . . . ,n} randomly.

x(ik+1)
k+1 = x̄(ik+1)

k+1 , x( j )
k+1 = x( j )

k ,∀ j 6= ik+1

y ( j )
k+1 = ŷ ( j )

k+1,∀ j ∈ J (ik+1), y ( j )
k+1 = y ( j )

k ,∀ j 6∈ J (ik+1).

One immediate limitation of TriPD-BC is that to update yk+1, it needs x̄k+1, whereas only

x̄(ik+1)
k+1 is needed to update xk+1. As also discussed in [LFP19], this scheme is suitable when

A has special structure such as sparsity. When A is dense, the method updates all elements

of yk+1 and ŷk+1, in which case both ȳk+1 and x̄k+1 are computed, which has the same cost

as a deterministic algorithm. For an efficient implementation in the dense setting, one can

use duplication of dual variables as described in [FB19]. However, in this case the method is

restricted to use small step sizes as discussed in [FB19]. Compared to SPDHG in [CERS18], the

step sizes can be n times worse, deteriorating the performance of the method considerably in

the dense setting.

On the other hand, the drawback of SPDHG is that it needs to update all dual variables (or

all primal variables for the formulation in Chapter 4) at every iteration, whereas the methods

1This method is also known as Vũ-Condat algorithm.
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in [FB19, LFP19] update only a subset of dual variables depending on the sparsity of A. When

the dual dimension is high, per iteration cost of [CERS18] can become prohibitive.

Our idea, inspired by [CERS18], to make TriPD-BC efficient for dense setting is to use xk+1

rather than x̄k+1 in the update of ŷk+1. Although simple to state, this modification makes

ŷk+1 random, rendering the analysis of [LFP19] and other analyses working with monotone

operators not applicable.

This leads to our algorithm, primal-dual method with random extrapolation and coordinate

descent (PURE-CD). Our method uses large step sizes as in [CERS18] in the dense setting,

while staying efficient in terms of per iteration costs in the sparse setting as in [FB19, LFP19].

These make PURE-CD the first PDCD algorithm that provably obtains favorable properties in

both sparse and dense settings.

Algorithm 5.1 Primal-dual method with random extrapolation and coordinate descent (PURE-
CD)

1: Input: Diagonal matrices θ,τ,σ> 0, chosen according to (5.8), (5.9).
2: for k = 0,1. . . do
3: ȳk+1 = proxσ,h∗

(
yk +σAxk

)
4: x̄k+1 = proxτ,g

(
xk −τ

(∇ f (xk )+ A> ȳk+1
))

5: Draw ik+1 ∈ {1, . . . ,n} with Pr(ik+1 = i ) = pi

6: x(ik+1)
k+1 = x̄(ik+1)

k+1

7: x( j )
k+1 = x( j )

k ,∀ j 6= ik+1

8: y ( j )
k+1 = ȳ ( j )

k+1 +σ jθ j (A(xk+1 −xk ))( j ),∀ j ∈ J (ik+1), y ( j )
k+1 = y ( j )

k ,∀ j 6∈ J (ik+1)
9: end for

5.4 Convergence Analysis

In this section, we analyze the convergence behavior of Algorithm 5.1 under various assump-

tions. We first start with a lemma analyzing one iteration of the algorithm.

Lemma 5.1. Let Assumption 5.1 hold. Recall the definitions of Dp and Dd from Section 5.2.1

and let θ = diag(θ1, . . . ,θm) and π= diag(π1, . . . ,πm) be chosen as

θ j =
π j

p
, where π j =

∑
i∈I ( j )

pi , and p = min
i

pi . (5.8)

We define the functions, given z,

V (z) =
p

2
‖x‖2

τ−1P−1 +
p

2
‖y‖2

σ−1π−1 ,

Ṽ (z) =
p

2
‖x‖2

C (τ) +
p

2
‖y‖2

σ−1 ,

where C (τ)i = 2pi

pτi
− 1
τi
−pi

∑m
j=1π

−1
j σ jθ

2
j A2

j ,i −
βi pi

p .

111



Chapter 5. A sparsity aware primal-dual coordinate descent algorithm

Then, for the iterates of Algorithm 5.1, ∀z ∈Z , it holds that:

Ek
[
Dp (xk+1, z)

]+pDd (ȳk+1, z)+Ek [V (zk+1 − z)]

≤ (1−p)Dp (xk , z)+V (zk − z)− Ṽ (z̄k+1 − zk ).

The main technical challenge in the proof of the lemma, compared to the corresponding

results in [LFP19] and [CERS18] is handling stochasticity in both variables xk+1, yk+1 (and also

ŷk+1 for [LFP19]). Using coordinatewise Lipschitz constants of f with arbitrary sampling also

requires an intricate analysis.

The result of Lemma 5.1 is promising for deriving convergence results for Algorithm 5.1. When

z = z? in Lemma 5.1, as Dp (xk+1, z?) ≥ 0, Dd (ȳk+1, z?) ≥ 0 and when step sizes are chosen such

that Ṽ is a squared norm, Lemma 5.1 describes a stochastic monotonicity property similar

to [FB19]. In particular, it shows that Dp (xk+1, z?)+V (zk+1 −z?) which measures the distance

to solution in a Bregman distance sense, is monotonically nonincreasing in expectation.

5.4.1 Almost sure convergence

Almost sure convergence is a fundamental property for randomized methods describing the

limiting behavior of the iterates in different realization of the algorithm. The following theorem

states that the iterates of Algorithm 5.1 converge almost surely to a point in the solution set.

Theorem 5.2. Let Assumption 5.1 hold and let θ, π be as in Lemma 5.1. Choose step sizes τ, σ

such that

τi <
2pi −p

βi pi +p−1pi
∑m

j=1π jσ j A2
j ,i

. (5.9)

For the iterates zk of Algorithm 5.1, almost surely there exist z? ∈Z? such that zk → z?.

We analyze the step size rule (5.9) in Theorem 5.2 and compare with existing efficient methods

in dense and sparse settings.

Remark 5.3.

. Let A be dense, with all its elements being nonzero, pi = 1/n and f (·) = 0, then the step size

rule reduces to

τi < 1

nσ‖Ai‖2 ,

which is the step size rule of SPDHG [CERS18, AFC21], making it favorable in the dense

setting (see Section 4.6.1). In contrast, step size rules of [FB19, LFP19] are n times worse due

to duplication, in this case.
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. Let A be diagonal, and we use pi = 1
n , which results in π j = 1

n . Then,

τi < 1

βi +∑m
j=1σ j A2

j ,i

,

which is the step size rule of Vu-Condat-CD [FB19], upon using the definition of J (i ) from (5.2).

Similarly, Algorithm 5.1 updates 1 dual coordinate and 1 primal coordinate, in this case.

In contrast, SPDHG [CERS18] updates m dual coordinates, resulting in m times higher per

iteration cost.

We note that the step sizes of TriPD-BC [LFP19] depend on global Lipschitz constant of f

rather than the coordinatewise ones. Using coordinatewise Lipschitz constants in practice is

important for the success of coordinate descent, as they give larger step sizes [Nes12, RT14,

FR15].

The takeaway from Remark 5.3 is that Algorithm 5.1 recovers the characteristics of the best

performing methods in fully dense and fully sparse settings. Moreover, as it is the only method

with the desirable dependencies in both cases, it has the best properties in the moderate

sparse cases. We validate this observation with numerical experiments in Section 5.6.

5.4.2 Linear convergence

Linear convergence of primal-dual methods in practice is a widely observed phenomenon [CP11,

LFP16]. We show that Algorithm 5.1 also shares this property and obtains linear convergence

under metric subregularity, without any modification on the algorithm.

We define the Bregman-type projection onto the solution set

z?,k = arg min
u∈Z?

Dp (xk ,u)+V (zk −u). (5.10)

We now show that z?,k is well-defined under our assumptions. First, the solution set is convex

and closed. Second, Dp (xk ,u) ≥ 0 for all u ∈Z? and it is also lower semicontinuous. Third, we

remark that V (zk −u) is a squared norm (see Lemma 5.1), thus coercive, therefore the sum is

coercive and lower semicontinuous over Z?. Hence, z?,k exists.

The definition of z?,k in (5.10) is more involved compared to the corresponding quantity

in [LFP19]. This is in fact due to us using coordinatewise Lipschitz constants in our step sizes,

rather than the global Lipschitz constant in [LFP19].

Assumption 5.2.

KKT operator F is metrically subregular at all z? ∈Z? for 0, and z̄k ∈N (z?),∀z?,∀k.

Theorem 5.4. Let Assumptions 5.1 and 5.2 hold. Let θ and the step sizes τ,σ be chosen according

to (5.8) and (5.9), respectively. Moreover, z?,k = (x?,k , y?,k ) is as defined in (5.10). Then, for zk
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Chapter 5. A sparsity aware primal-dual coordinate descent algorithm

generated by Algorithm 5.1, it follows that

E

[ p

2
‖xk −x?,k‖2

τ−1P−1 +
p

2
‖yk − y?,k‖2

σ−1π−1

]
≤ (1−ρ)k∆0,

where ρ = min
(
p,

C2,Ṽ

CV ,2((2+2c)+(1+c)(η‖H−M‖+β̄))2

)
, ∆0 = Dp (x0, z?,0)+V (z0 − z?0 ), β̄ is the global

Lipschitz constant of f ,

C2,Ṽ = p

2 min
{

mini C (τ)i ,min j σ
−1
j

}
, CV ,2 = 1

2 max
{

maxi
1
τi

,max j
1
σ j

}
, c =C2,V

p‖A‖/2,

C2,V =
√

2

p min
{

mini τ
−1
i p−1

i ,min j σ
−1
j π−1

j

} , and

H =
[
τ−1 A>

0 σ−1

]
, M =

[
0 A>

−A 0

]
.

The proof is given in Section 5.8.3. The first remark about Theorem 5.4 is similar to Chap-

ter 4. Since metric subregularity constant η is not required in the algorithm, the step sizes to

achieve linear convergence are the same step sizes as (5.9). Therefore, PURE-CD adapts to

structures on the problem, without any need to modify the algorithm, and attains linear rate

of convergence.

We refer to Section 4.2.2 for example problems when metric subregularity holds and as a result

PURE-CD obtains linear convergence. Compared with the linear convergence rate in [LFP19]

for TriPD-BC, our result have a similar contraction factor, however, due to larger step sizes

(see Remark 5.3), the rate comes with a better constant.

5.4.3 Ergodic rates

In this section, we study Algorithm 5.1 in the general case, under Assumption 5.1, and show

the optimal O(1/k) convergence rate on the ergodic sequence. The quantity of interest is the

primal-dual gap function [CP11]

Gap(x̄, ȳ) = sup
z∈Z

f (x̄)+ g (x̄)+〈Ax̄, y〉−h∗(y)− f (x)− g (x)−〈Ax, ȳ〉+h∗(ȳ). (5.11)

A related quantity is the restricted gap function [CP11], which, for any set C ⊂Z is defined as

GapC(x̄, ȳ) = sup
z∈C

f (x̄)+ g (x̄)+〈Ax̄, y〉−h∗(y)− f (x)− g (x)−〈Ax, ȳ〉+h∗(ȳ). (5.12)

See [Nes07, Lemma 1] for validity of restricted gap function as an optimality measure.

Due to randomization in PDCD, we are interested in the expected primal-dual gap, denoted

as E
[
GapC(x̄, ȳ)

]
. As described in Chapter 4, it is technically challenging to prove rates for

this quantity as it is the expectation of supremum. We use the technique we introduced

in Chapter 4 to show convergence of expected primal-dual gap for SPDHG of [CERS18]. This
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rate is for ergodic sequence averaging xk and the full dual variable ȳk . We can use this

technique for our analysis. However, there remains another challenge as full dual variable is

not computed in PURE-CD. Thus, averaging ȳk is not feasible in our case.

In addition to Assumption 5.1, in this section we will assume separability of h, to be able to do

an efficient averaging with the dual iterate.

Due to the asymmetric nature of Algorithm 5.1, there are fundamental difficulties for proving a

rate with averaging yk+1. On this front, we propose a new type of analysis for the dual variable.

To start with, we define the following iterate which has the same cost to compute as yk+1 each

iteration. Let y̆1 = y1 = ȳ1,

y̆ ( j )
k+1 = ȳ ( j )

k+1, ∀ j ∈ J (ik+1),

y̆ ( j )
k+1 = y̆ ( j )

k , ∀ j 6∈ J (ik+1).
(5.13)

We note that y̆k is Fk -measurable and more useful properties of y̆k for analysis are given

in Lemma 5.11 in Section 5.8.4.

Due to the definition of y̆k , it is now feasible to compute and average this iterate. We can show

the convergence of expected primal-dual gap by averaging y̆k and xk . We remark that we use

some coarse inequalities to give simple constants for Theorem 5.5 and Theorem 5.7. Therefore,

the bounds are not optimized with respect to dimension dependence. In Section 5.8.4, we give

these theorems with their original, tighter bounds and we show how we transform the tighter

bounds into the constants we give in this section.

Theorem 5.5. Let Assumption 5.1 hold and θ,τ,σ are chosen as in (5.8), (5.9). Moreover, let h

be separable. Let xav
K = 1

K

∑K
k=1 xk and y av

K = 1
K

∑K
k=1 y̆k , where y̆k is defined in (5.13), then for

any bounded set C = Cx ×Cy ⊂Z , with iterates of Algorithm 5.1, we have

E
[
GapC(xav

K , y av
K )

]≤ Cg

pK
,

where Cg =∑4
i=1 Cg ,i , Cτ,Ṽ = mini C (τ)iτi ,

Cg ,1 = supz∈C
{
2p‖x0 −x‖2

τ−1P−1 +2p‖y0 − y‖2
σ−1π−1

}+4
√
∆0p−1‖A‖supy∈Cy

‖y‖τP

+2
√
∆0(p−1 +2p−3C−1

τ,Ṽ
)‖A‖supx∈Cx

‖x‖σπ,∑4
i=2 Cg ,i = ∆0

(
5+9p−1 +C−1

τ,Ṽ

(
1+10p−1 +14p−2

))
+ (1−p)( f (x0)+ g (x0)− f (x?)− g (x?))+

h∗(y0)−h∗(y?)+p‖Ax?‖2
σπ−1 +‖A>y?‖2

τP .

Remark 5.6. When implementing averaging of xk , and y̆k , one should use a technique similar

to [DL15b]. The main idea is to only update the averaged vector at the coordinates where an

update occurred. For this, we remember for each coordinate, the last time it is updated, wait

until a coordinate is selected again and update the averaged vector using this information.

The result in Theorem 5.5 would give a rate for primal-dual gap when C =Z . However, in

general such a rate is not desirable as taking a supremum over Z might result in an unbounded
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constant. This rate would be meaningful when both primal and dual domains are bounded in

which case one would take the supremum in Cg ,1 over the bounded domains.

Alternatively, in the following theorem, we show that for two important special cases, we can

extend this result to show guarantees without bounded domains. Namely, we show the same

rate for the case when h(·) = δ{b}(·), b ∈Rm to cover linearly constrained problems. Moreover,

we show the result for the case when h is Lipschitz continuous.

Theorem 5.7. Let Assumption 5.1 hold. We use the same parameters θ,τ,σ and the definitions

for xav
K and y av

K as Theorem 5.5. We consider two cases separately:

. If h(·) = δ{b}(·), we obtain

E[ f (xav
K )+ g (xav

K )− f (x?)− g (x?)] ≤ Co

pK
.

E[‖Axav
K −b‖] ≤ C f

pK
.

. If h is Lh-Lipschitz continuous, we obtain

E[ f (xav
K )+ g (xav

K )+h(Axav
K )− f (x?)− g (x?)−h(Ax?)] ≤ Cl

pK
,

where C f = 3c1‖x?−x0‖τ−1P−1 +2
p

c1Cs +4c1‖y?− y0‖σ−1π−1 ,

Co =Cs +‖y?‖σ−1π−1C f +2c1p−1V (z0 − z?),

Cl =Cs + c1‖x?−x0‖2
τ−1P−1 +4c1L2

h ,

Cs =Cg ,2 +Cg ,5 +Cg ,6, with c1 = 2p +2, Cg ,2 as defined in the statement of Theorem 5.5 in Sec-

tion 5.8.4 and Cg ,5,Cg ,6 are defined in the proof in (5.81), (5.82).

5.5 Related works

One of the first PDCD methods is SPDC, which is proposed in [ZX17], that solves a special

case of problem (5.1) with f = 0. SPDC has linear convergence when g ,h∗ are strongly convex

and the step sizes are selected according to strong convexity constants. In the general convex

case, SPDC has perturbation-based analysis, which needs to set an ε, requires knowing ‖x?‖2,

and shows ε-based iteration complexity results, and not anytime convergence rates. Almost

sure convergence of the iterates of SPDC is not proven in the general convex case. Moreover,

the step sizes of SPDC are scalar and they depend on the maximum block norm of A. It is

shown in [ZX17] that in the specific cases when g (x) = ‖x‖2 or g (x) = ‖x‖1 +‖x‖2, one can use

a special implementation for efficiency with sparse data.

[TQMZ20] proposed a new method similar to SPDC with the same type of guarantees as [ZX17].

Due to similar analysis techniques, this method inherits the abovementioned drawbacks of

SPDC. For this method, [TQMZ20] showed a new implementation technique for sparse data,

that can be used with any separable g (x).
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An early PDCD method is proposed by [DL14] where the authors focused on showing sublinear

convergence rates. The authors showed guarantees for a weaker version of expected primal-

dual gap function in (5.11).

Building on [DL14], block-coordinate variants of alternating direction method of multipliers

(ADMM) are proposed in [GXZ19, XZ18]. These papers focus on linearly constrained problems

and show ergodic sublinear convergence rates. Moreover, [XZ18] showed that under strong

convexity assumption and special decomposition of the blocks, the method achieves linear

convergence. This linear convergence result, similar to [ZX17] requires knowing the strong

convexity constants to set the algorithmic parameters. Moreover, these results generally set

step sizes depending on global Lipschitz constants and norm of whole matrix A.

Another early PDCD variant to solve problem (5.1) in its full generality, where f , g ,h are all non-

separable, is by [FB19]. This method uses coordinatewise Lipschitz constants of the smooth

part and it is designed to exploit sparsity of A. This method has almost sure convergence

guarantees as well as linear convergence when g ,h∗ are strongly convex. As opposed to most

results in this nature, it is not required to know strong convexity constants to set the step sizes.

In the general convex case, the method has O(1/
p

k) rate for a randomly selected iterate. As

argued in Section 5.4.1, main limitation of [FB19] is that small step sizes are required when

matrix A is dense. Moreover, the results in this paper are restricted to uniform probability law

for selecting coordinates.

One of the most related works to ours, and a building block of PURE-CD is TriPD-BC [LFP19].

The authors showed almost sure convergence of the iterates and linear convergence under

metric subregularity, by using global Lipschitz constants of f for the step sizes. This work

did not have any sublinear convergence rates in the general convex case. Similar to [FB19],

TriPD-BC is designed for sparse setting and an efficient implementation is by duplication

of dual variables, which as explained in [FB19] results in small step sizes (see Sections 5.4.1

and 6.2).

Another building block of PURE-CD is SPDHG by [CERS18], to solve (5.1) when f = 0. Linear

convergence result of SPDHG by [CERS18] is similar to [ZX17] and requires setting step sizes

with strong convexity constants. In the partially strongly convex case, [CERS18] provedO(1/k2)

rates. Moreover, our analysis in Chapter 4 gave stronger results for the method. As explained

before, even though SPDHG is fast with dense data, it needs to update all the dual coordinates,

resulting in high per iterations costs with sparse data (see Sections 5.4.1 and 6.2).

5.6 Numerical experiments

5.6.1 Effect of sparsity

As explained in Section 5.4.1, and Remark 5.3, PURE-CD brings together the benefits of

different methods that are designed for dense and sparse cases. We now compare the empirical
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Figure 5.1 – Lasso: Left: rcv1, n = 20,242,m = 47,236, density = 0.16%, λ= 10; Middle: w8a, n = 49,749,m = 300,
density = 3.9%, λ= 10−1; Right: covtype, n = 581,012, m = 54, density = 22.1%, λ= 10.
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Figure 5.2 – Ridge regression: Left: sector, n = 6,412,m = 55,197, density = 0.3%, λ = 0.1; Middle: a9a, n =
32,561,m = 123, density = 11.3%, λ= 0.1; Right: mnist, n = 60,000, m = 780, density = 19.2%, λ= 1.

performance of PURE-CD with Vu-Condat-CD from [FB19] which has desirable properties

with sparse data and SPDHG from [CERS18] which has desirable properties with dense data.

We select uniform sampling, pi = 1/n, so (5.9) simplifies to

τi < 1∑m
j=1θ jσ j A2

j ,i

. (5.14)

We provide a step size policy inspired by the step size rules chosen in [CERS18] and [FB19].

We use the following step sizes, for γ< 1

σ j = 1

θ j maxi ′ ‖Ai ′‖
, τi = γmaxi ′ ‖Ai ′‖

‖Ai‖2 .

We note that in contrast to [CERS18], step sizes are both diagonal. In our case, it is important to

utilize diagonal step sizes for both primal and dual variables since we perform coordinate-wise

updates for both primal and dual variables and the step sizes need to be set appropriately

to obtain good practical performance. For SPDHG and Vu-Condat-CD, we use step sizes

suggested in the papers.

In the edge cases (one nonzero element per row or fully dense), it is easy to see that our step

size policy reduces to the suggested step sizes of [CERS18] and [FB19].

For experiments, we used the generic coordinate descent solver, implemented in Cython,

by [Fer19], which includes an implementation of Vu-Condat-CD with duplication and we
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5.6. Numerical experiments

implemented SPDHG and PURE-CD. We solve Lasso and ridge regression, where we let g (x) =
λ‖x‖1, h(Ax) = 1

2‖Ax −b‖2, f = 0, and g (x) = λ
2 ‖x‖2, h(Ax) = 1

2‖Ax −b‖2, f = 0, respectively,

in our template (5.1). Then, we apply all the methods to the dual problems of these, to access

data by rows.

We use datasets from LIBSVM with different sparsity levels [CL11b]. The properties of each

data matrix are given in the caption of the corresponding figures. For preprocessing, we

removed all-zero rows and all-zero columns of A and we performed row normalization. The

results are compiled in Figure 5.2.

We observe the behavior predicted by theory. With sparse data such as rcv1, where density

level is 0.16%, SPDHG makes very little progress in the given time window. The reason is that

the per iteration cost of SPDHG in this case is updating 47,236 dual variables, whereas for

PURE-CD and Vu-Condat-CD, the cost is updating 75 dual variables. We note that PURE-CD is

faster than Vu-Condat-CD due to better step sizes. On the other hand, with moderate sparsity,

SPDHG and Vu-Condat-CD is comparable, whereas PURE-CD exhibits the best performance.

For denser data, SPDHG and PURE-CD exhibit similar behavior where Vu-Condat-CD is slower

than both due to smaller step sizes.

5.6.2 Comparison with specialized methods

In this section, we compare the practical performance of PURE-CD with state-of-the-art al-

gorithms that are designed for strongly convex-strongly concave problems. We defer some

of the plots and more details about experiments to Section 5.7. We focus on the problem

minx
1
n

∑n
i=1 hi (Ai x)+ λ

2 ‖x‖2, where hi (x) = (x −bi )2. Each hi is smooth with Lipschitz con-

stants Li = 2 and the second component is strongly convex, which results in strong convexity

in both primal and dual problems.

In this case, the algorithms SDCA [SSZ13], ProxSVRG [XZ14], Accelerated SVRG [ZSC18],

SPDC [ZX17] are all designed to use the strong convexity to obtain linear convergence. These

algorithms use the strong convexity constant λ for setting the algorithmic parameters. More-

over, as all the abovementioned algorithms have special implementations to exploit sparsity

in this specific case, we make the comparison with respect to number of passes of the data,

rather than time. The results are compiled for two datasets in Figure 5.3 and more datasets

are included in Section 5.7. We use theoretical step sizes for all the algorithms, given in the

respective papers.

• PURE-CD-λ: This variant uses the non-agnostic step sizes, using λ, which still satisfy the

theoretical requirement (5.14).

σ j = n

θ j
p

nλmaxi ′ ‖Ai ′‖
, τi = γ

p
nλmaxi ′ ‖Ai ′‖

n‖Ai‖2 .
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Chapter 5. A sparsity aware primal-dual coordinate descent algorithm

• PURE-CD: This variant is with the standard agnostic step sizes.

σ j = n

θ j maxi ′ ‖Ai ′‖
, τi = γmaxi ′ ‖Ai ′‖

n‖Ai‖2 .

We observe that PURE-CD has a consistent linear convergence behavior as predicted by theory.

In most of the datasets (see Section 5.7), it has the fastest convergence behavior. However, in

some datasets, as λ gets smaller, we observed that the linear rate of PURE-CD slowed down,

which motivated us to try PURE-CD-λ, which incorporates the knowledge of λ as the other

methods. It seems to show favorable behavior when PURE-CD slows down.

The takeaway message is that PURE-CD, which is designed for a general problem, adapts

to strong convexity well with agnostic step sizes in most cases. However, in some cases, it

does not perform as good as the algorithms which are designed to exploit strong convexity. In

those cases however, one can choose separating step sizes of PURE-CD accordingly, and use

PURE-CD-λ to get better performance.
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Figure 5.3 – top: a9a, n = 32,561, m = 123, bottom: sector, n = 6,412, m = 55,197.

5.7 More experimental results

In this section, we compare the practical performance of PURE-CD with state-of-the-art

algorithms that are designed to exploit problem structures. In particular, we focus on the
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problem

min
x

1

n

n∑
i=1

hi (Ai x)+ λ

2
‖x‖2, (5.15)

where hi (x) = (x −bi )2. Each hi is smooth with Lipschitz constants Li = 2 and the second

component is strongly convex. This is equivalent to strong convexity in both primal and dual

problems.

In this case, the algorithms SDCA, SVRG, Accelerated SVRG/Katyusha, SPDC are all designed

to use the strong convexity to obtain linear convergence. These algorithms use the strong

convexity constant λ for setting the algorithmic parameters (with the exception of SVRG

which theoretically needs it to set number of inner loop iterations). Moreover, as all the

abovementioned algorithms have special implementations to exploit sparsity, for fairness, as

all algorithms have different structures, we did not try to implement them in the most efficient

manner, therefore we make the comparison with respect to number of passes of the data,

rather than time.

We use PURE-CD with the agnostic step size and also with a non-agnostic step size that uses

λ. Both step size rules are supported by theory. Moreover, similar to Section 5.6, we apply

PURE-CD to the dual problem of (5.15) to access the data row-wise as other methods.

The details of parameters for each algorithm:

• SVRG: We use the theoretical step size given in [XZ14, Theorem 3.1]

• Accelerated SVRG/Katyusha: We use the theoretically suggested step size parameter and

acceleration parameter [ZSC18, Theorem 1, Table 2]

• SDCA: We use directly the specialization of SDCA for ridge regression, as decribed in [SSZ13,

Section 6.2]

• SPDC: We use the step sizes from [ZX17, Theorem 1]

• PURE-CD-λ: This variant uses the non-agnostic step sizes, using λ. We note that the step

sizes satisfy the theoretical requirement (5.14).

σ j = n

θ j
p

nλmaxi ′ ‖Ai ′‖
, τi = γ

p
nλmaxi ′ ‖Ai ′‖

n‖Ai‖2 .

• PURE-CD: This variant is with the standard agnostic step sizes, as in Section 5.6. We note

that the step sizes are scaled by n since the problem is scaled by 1/n, compared to Section 5.6.

σ j = n

θ j maxi ′ ‖Ai ′‖
, τi = γmaxi ′ ‖Ai ′‖

n‖Ai‖2 .

We use datasets from LIBSVM, and try three different regularization parameters 1
n , 10−1

n , and
10−2

n . We performed preprocessing by removing the all-zero rows and columns from the data

matrix, then we normalized row norms of A. We chose the parameters as described above and
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did not perform any tuning for any algorithm.

We observe that PURE-CD has a consistent linear convergence behavior as predicted by theory.

In most of the datasets, it has the fastest convergence behavior. However, in some datasets, as

λ gets smaller, we observed that the linear rate of PURE-CD slowed down, which motivated us

to try PURE-CD-λ, which incorporates the knowledge of λ as the other methods. It seems to

show favorable behavior when PURE-CD slows down.

The takeaway message is that PURE-CD adapts very well with agnostic step sizes in most cases.

However, in some cases, it does not perform as good as the algorithms which are designed to

exploit structure. In those cases however, one can choose separating step sizes of PURE-CD

accordingly, and use PURE-CD-λ to get better performance.
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Figure 5.4 – w8a, n = 49,749, m = 300.
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Figure 5.5 – a9a, n = 32,561, m = 123.
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Figure 5.6 – covtype, n = 581,012, m = 54.
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Figure 5.7 – sector, n = 6,412, m = 55,197.
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Figure 5.8 – rcv1.binary, n = 20,242, m = 47,236.
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Figure 5.9 – news20, n = 15,935, m = 62,061.
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Figure 5.10 – mnist, n = 60,000, m = 780.
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Figure 5.11 – leukemia, n = 38, m = 7,129.
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Figure 5.12 – YearPredictionMSD, n = 463,715, m = 90.

5.7.1 Further details about experiments

The experiments are done on a computer with Intel Core i7 CPUs at 2.9 GHz.

5.8 Proofs

5.8.1 Proofs for one iteration result

We start with technical lemmas. Our first result computes the conditional expectation of yk+1.

Lemma 5.8. Let yk+1 as defined in Algorithm 5.1, and recall the definitions of π and P from Sec-

tion 5.2.1. Then it holds that for any Fk -measurable Y and ∀γ= {γ1, . . . ,γm}, with γi > 0,

Ek

[
‖yk+1 −Y ‖2

γ

]
= ‖ȳk+1 −Y ‖2

γπ−‖yk −Y ‖2
γπ+‖yk −Y ‖2

γ+2〈ȳk+1 −Y ,γσθAP (x̄k+1 −xk )〉

+
n∑

i=1

m∑
j=1

piγ jσ
2
jθ

2
j A2

j ,i (x̄(i )
k+1 −x(i )

k )2.

Proof. First, we note that for Fk -measurable Y , it follows that

Ek

[
‖yk+1 −Y ‖2

γ

]
= Ek

[
m∑

j=1
γ j

(
y ( j )

k+1 −Y ( j )
)2

]
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= Ek

[ ∑
j∈J (ik+1)

γ j (ȳ ( j )
k+1 +σ jθ j (A(xk+1 −xk ))( j ) −Y ( j ))2 + ∑

j 6∈J (ik+1)
γ j (y ( j )

k −Y ( j ))2

]

=
n∑

i=1
pi

[ ∑
j∈J (i )

γ j

(
ȳ ( j )

k+1 +σ jθ j A j ,i (x̄(i )
k+1 −x(i )

k )−Y ( j )
)2 + ∑

j∉J (i )
γ j

(
y ( j )

k −Y ( j )
)2

]

=
n∑

i=1

∑
j∈J (i )

piγ j (ȳ ( j )
k+1 −Y ( j ))2 +2

n∑
i=1

∑
j∈J (i )

piγ jσ jθ j A j ,i (x̄(i )
k+1 −x(i )

k )(ȳ ( j )
k+1 −Y ( j ))

+
n∑

i=1

∑
j∈J (i )

piγ j

(
σ jθ j A j ,i (x̄(i )

k+1 −x(i )
k )

)2 +
n∑

i=1

∑
j∉J (i )

piγ j (y ( j )
k −Y ( j ))2 (5.16)

where for the third equality, we used the fact that xk+1 is different from xk only on the coordi-

nate ik+1 and x̄(ik+1)
k+1 = x(ik+1)

k+1 , which gives

(A(xk+1 −xk ))( j ) = (A((x(ik+1)
k+1 −x(ik+1)

k )eik+1 ))( j ) = A j ,ik+1 (x̄(ik+1)
k+1 −x(ik+1)

k ).

We focus on the last term on the right hand side of (5.16)

n∑
i=1

∑
j∉J (i )

piγ j (y ( j )
k −Y ( j ))2 =

n∑
i=1

n∑
j=1

piγ j (y ( j )
k −Y ( j ))2 −

n∑
i=1

∑
j∈J (i )

piγ j (y ( j )
k −Y ( j ))2

= ‖yk −Y ‖2
γ−

m∑
j=1

∑
i∈I ( j )

piγ j (y ( j )
k −Y ( j ))2 = ‖yk −Y ‖2

γ−
m∑

j=1
π jγ j (y ( j )

k −Y ( j ))2

= ‖yk −Y ‖2
γ−‖yk −Y ‖2

γπ (5.17)

where we use the fact that
∑n

i=1

∑
j∈J (i )γ

′
j ,i =

∑m
j=1

∑
i∈I ( j )γ

′
j ,i , for any γ′, due to the definition

of J (i ), I ( j ) and π j =∑
i∈I ( j ) pi .

We estimate the first term of (5.16), similar to (5.17)

n∑
i=1

∑
j∈J (i )

piγ j (ȳ ( j )
k+1 −Y j )2 =

m∑
j=1

∑
i∈I ( j )

piγ j (ȳ ( j )
k+1 −Y ( j ))2 = ‖ȳk+1 −Y ‖2

γπ. (5.18)

We lastly estimate the second and third terms of (5.16). We use the fact that A j ,i = 0, if j ∉ J (i )

to obtain

2
n∑

i=1

∑
j∈J (i )

piγ jσ jθ j A j ,i (x̄(i )
k+1 −x(i )

k )(ȳ ( j )
k+1 −Y ( j ))+

n∑
i=1

∑
j∈J (i )

piγ j

(
σ jθ j A j ,i (x̄(i )

k+1 −x(i )
k )

)2

= 2
n∑

i=1

m∑
j=1

piγ jσ jθ j A j ,i (x̄(i )
k+1 −x(i )

k )(ȳ ( j )
k+1 −Y ( j ))+

n∑
i=1

m∑
j=1

piγ j

(
σ jθ j A j ,i (x̄(i )

k+1 −x(i )
k )

)2

= 2〈ȳk+1 −Y ,γσθAP (x̄k+1 −xk )〉+
n∑

i=1

m∑
j=1

piγ j

(
σ jθ j A j ,i (x̄(i )

k+1 −x(i )
k )

)2
. (5.19)

We use (5.17), (5.18), and (5.19) in (5.16) to obtain the final result. �

We continue with the following lemma which handles necessary manipulations for the terms
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Chapter 5. A sparsity aware primal-dual coordinate descent algorithm

involving the primal variable, to handle arbitrary probabilities.

Lemma 5.9. We recall that P = diag(p1, . . . , pn), p = mini pi , and define

x ′ = xk +P−1p(x −xk ) = P−1px + (1−P−1p)xk ,

and

gP (x) =
n∑

i=1
pi gi (x(i )).

Then, for a function g (x) =∑n
i=1 gi (x(i )), the following conclusions hold:

gP (x ′) ≤ pg (x)−pg (xk )+ gP (xk ),

‖x ′−xk+1‖2
τ−1 −‖x ′−xk‖2

τ−1 = p‖x −xk+1‖2
τ−1P−1 +‖xk+1 −xk‖2

τ−1 −p‖xk+1 −xk‖2
τ−1P−1

−p‖x −xk‖2
τ−1P−1 .

Proof. We have that x ′(i ) = p−1
i px(i ) + (1−p−1

i p)x(i )
k . It follows by convexity of gi that

gP (x ′) =
n∑

i=1
pi gi (x ′(i )) ≤

n∑
i=1

pgi (x(i ))+ (pi −p)gi (x(i )
k ) = pg (x)−pg (xk )+ gP (xk ).

Moreover, since for any 0 ≤ c ≤ 1 and any u, v , it is true that ‖cu + (1− c)v‖2 = c‖u‖2 + (1−
c)‖v‖2 − c(1− c)‖u − v‖2, we obtain

‖x ′−xk+1‖2
τ−1 = p‖x −xk+1‖2

τ−1P−1 +‖xk+1 −xk‖2
τ−1 −p‖xk+1 −xk‖2

τ−1P−1

−p‖x −xk‖2
τ−1P−1 +p2‖x −xk‖2

τ−1P−2 .

Lastly, plugging in x ′ = xk +P−1p(x −xk ) to ‖x ′−xk‖2 gives

−‖x ′−xk‖2
τ−1 =−p2‖x −xk‖2

τ−1P−2 . �

We are now ready to prove Lemma 5.1 which describes the one iteration behavior of the

algorithm.

Proof of Lemma 5.1. By the definition of proximal operator and convexity, ∀x ′ ∈X , ∀y ∈Y ,

pi gi (x ′(i )) ≥ pi gi (x̄(i )
k+1)−pi 〈∇i f (xk )+ (A> ȳk+1)(i ), x ′(i ) − x̄(i )

k+1〉
+ 1

2

(
‖x(i )

k − x̄(i )
k+1‖2

τ−1
i pi

+‖x ′(i ) − x̄(i )
k+1‖2

τ−1
i pi

−‖x ′(i ) −x(i )
k ‖2

τ−1
i pi

)
,

ph∗(y) ≥ ph∗(ȳk+1)+p〈Axk , y − ȳk+1〉+
p

2

(‖yk − ȳk+1‖2
σ−1 +‖y − ȳk+1‖2

σ−1 −‖y − yk‖2
σ−1

)
.

We sum the first inequality for i = 1 to n, then add it to the second inequality and use the
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definition gP (x) =∑n
i=1 pi gi (x(i )) to derive

gP (x ′)+ph∗(y) ≥ gP (x̄k+1)+ph∗(ȳk+1)−〈∇ f (xk ),P (x ′− x̄k+1)〉−〈A> ȳk+1,P (x ′− x̄k+1)〉

+p〈Axk , y − ȳk+1〉+
1

2

(
‖xk − x̄k+1‖2

τ−1P +‖x ′− x̄k+1‖2
τ−1P −‖x ′−xk‖2

τ−1P

)
+

p

2

(‖yk − ȳk+1‖2
σ−1 +‖y − ȳk+1‖2

σ−1 −‖y − yk‖2
σ−1

)
. (5.20)

First, we note that for Fk -measurable X and any γ = diag(γ1, . . . ,γn), such that γi > 0, the

following hold

Ek [g (xk+1)] = gP (x̄k+1)− gP (xk )+ g (xk ), (5.21)

Ek [xk+1] = P x̄k+1 −P xk +xk ,

Ek

[
‖xk+1 −X ‖2

γ

]
= ‖x̄k+1 −X ‖2

γP −‖xk −X ‖2
γP +‖xk −X ‖2

γ. (5.22)

We use (5.22) with γ= τ−1 and X = x ′ to obtain

1

2

(
‖xk − x̄k+1‖2

τ−1P +‖x ′− x̄k+1‖2
τ−1P −‖x ′−xk‖2

τ−1P

)
= 1

2

(
‖xk − x̄k+1‖2

τ−1P +Ek
[‖x ′−xk+1‖2

τ−1

]−‖x ′−xk‖2
τ−1

)
. (5.23)

We use γ=π−1σ−1 and Y = y in Lemma 5.8, then

‖ȳk+1 − y‖2
σ−1 = Ek

[‖yk+1 − y‖2
σ−1π−1

]+‖yk − y‖2
σ−1 −‖yk − y‖2

σ−1π−1

−2〈ȳk+1 − y,π−1θAP (x̄k+1 −xk )〉−
n∑

i=1

m∑
j=1

piπ
−1
j σ jθ

2
j A2

j ,i (x̄i
k+1 −xi

k )2. (5.24)

We let x ′i = p−1
i pxi + (1−p−1

i p)xi
k , and use Lemma 5.9 to get

gP (x ′) ≤ pg (x)−pg (xk )+ gP (xk ). (5.25)

Combined with (5.21), the last inequality gives

gP (x̄k+1)− gP (x ′) ≥ Ek
[
g (xk+1)

]− g (xk )+pg (xk )−pg (x). (5.26)

We further use x ′ = P−1px + (1−P−1p)xk = xk +P−1p(x −xk ) in (5.20) to obtain

−〈∇ f (xk ),P (x ′− x̄k+1) =−p〈∇ f (xk ), x −xk〉−〈∇ f (xk ),P (xk − x̄k+1)〉, (5.27)

and

−〈A> ȳk+1,P (x ′− x̄k+1)〉 =−p〈A> ȳk+1, x −xk〉−〈A> ȳk+1,P (xk − x̄k+1)〉. (5.28)
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Moreover, by using Lemma 5.9 in (5.23), we get

1

2
Ek

[‖x ′−xk+1‖2
τ−1

]− 1

2
‖x ′−xk‖2

τ−1 =
p

2
Ek

[‖x −xk+1‖2
τ−1P−1

]+ 1

2
Ek

[‖xk+1 −xk‖2
τ−1

]
−

p

2
Ek

[‖xk+1 −xk‖2
τ−1P−1

]− p

2
‖x −xk‖2

τ−1P−1 . (5.29)

We also note that Ek

[
‖xk+1 −xk‖2

τ−1P−1

]
= ‖x̄k+1 −xk‖2

τ−1 .

In (5.20), we collect eqs. (5.23), (5.24) and (5.26)–(5.29) to obtain

0 ≥ Ek [g (xk+1)]− g (xk )+pg (xk )−pg (x)+ph∗(ȳk+1)−ph∗(y)+p〈Axk , y − ȳk+1〉
−p〈∇ f (xk ), x −xk〉−〈∇ f (xk ),P (xk − x̄k+1)〉−p〈A> ȳk+1, x −xk〉−〈A> ȳk+1,P (xk − x̄k+1)〉

+
p

2
Ek

[‖xk+1 −x‖2
τ−1P−1

]− p

2
‖xk −x‖2

τ−1P−1 +‖x̄k+1 −xk‖2
τ−1P −

p

2
‖x̄k+1 −xk‖2

τ−1

+
p

2
‖ȳk+1 − yk‖2

σ−1 +
p

2
Ek

[‖yk+1 − y‖2
σ−1π−1

]− p

2
‖yk − y‖2

σ−1π−1

−〈ȳk+1 − y, pπ−1θAP (x̄k+1 −xk )〉− 1

2

n∑
i=1

m∑
j=1

ppiπ
−1
j σ jθ

2
j A2

j ,i (x̄i
k+1 −xi

k )2. (5.30)

We use coordinatewise smoothness of f to obtain

−〈∇ f (xk ),P (xk − x̄k+1)〉 =−〈∇ f (xk ),Ek [xk −xk+1]〉 ≥ Ek

[
f (xk+1)− f (xk )− 1

2
‖xk+1 −xk‖2

β

]
≥ Ek [ f (xk+1)]− f (xk )− 1

2
‖x̄k+1 −xk‖2

βP . (5.31)

Next, by using the definition of Ṽ and C (τ), we note

Ṽ (z̄k+1 − zk ) =
p

2
‖ȳk+1 − yk‖2

σ−1 +‖x̄k+1 −xk‖2
τ−1P −

p

2
‖x̄k+1 −xk‖2

τ−1

− 1

2

n∑
i=1

m∑
j=1

ppiπ
−1
j σ jθ

2
j A2

j ,i (x̄(i )
k+1 −x(i )

k )2 − 1

2
‖x̄k+1 −xk‖2

βP . (5.32)

Using definition of V , Dp , Dd (see Section 5.2.1) in (5.30) along with −p〈∇ f (xk ), x − xk〉 ≥
−p f (x)+p f (xk ) and the last inequality yields

0 ≥ Ek
[
Dp (xk+1; z)

]− (1−p)Dp (xk ; z)+pDd (ȳk+1; z)+ Ṽ (z̄k+1 − zk )+Ek [V (zk+1 − z)]

−V (zk − z)+p〈Axk , y − ȳk+1〉−p〈A> ȳk+1, x −xk〉−〈A> ȳk+1,P (xk − x̄k+1)〉
−〈ȳk+1 − y, pπ−1θAP (x̄k+1 −xk )〉−〈A>y, xk+1 −x〉+p〈Ax, ȳk+1 − y〉

+〈A>y, xk −x〉−p〈A>y, xk −x〉. (5.33)

We work on the bilinear terms to get

〈A>y, xk −x〉−〈A>y, xk+1 −x〉−〈A> ȳk+1,P (xk − x̄k+1)〉−〈y − ȳk+1, pπ−1θAP (xk − x̄k+1)〉
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= 〈A>y, xk −xk+1〉−〈A> ȳk+1,Ek [xk −xk+1]〉−〈y − ȳk+1, pπ−1θAEk [xk −xk+1]〉
= Ek

[
〈A>(y − ȳk+1), xk −xk+1〉−〈y − ȳk+1, pπ−1θA(xk −xk+1)

]
= 0, (5.34)

where the last equality is due to the requirement in (5.8) as

pπ−1θ = I ⇐⇒ θ j =
π j

p
, ∀ j ∈ {1, . . . ,m}.

We continue to estimate the remaining bilinear terms as

p
[〈Axk , y − ȳk+1〉−〈A> ȳk+1, x −xk〉+〈Ax, ȳk+1 − y〉−〈A>y, xk −x〉]=

p
[〈A>(y − ȳk+1), x −xk〉+〈y − ȳk+1, A(xk −x)〉]= 0. (5.35)

We use the last estimation, eqs. (5.34) and (5.35) in (5.33) to finish the proof. �

5.8.2 Proof for almost sure convergence

We include proof of Theorem 5.2.

Proof of Theorem 5.2. Equipped with Lemma 5.1, we will follow the standard arguments as

in [FB19]. We refer to [FB19, Theorem 1] for the finer details of the arguments.

We first invoke the main result of Lemma 5.1 with z = z? = (x?, y?) where z? ∈Z?:

Ek
[
Sp (xk+1)

]+pSd (ȳk+1)+Ek [V (zk+1 − z?)] ≤ (1−p)Sp (xk )+V (zk − z?)

− Ṽ (z̄k+1 − zk ), (5.36)

where we have used the definitions

Sp (xk+1) = Dp (xk+1; z?) ≥ 0, Sd (ȳk+1) = Dd (ȳk+1; z?) ≥ 0.

Nonnegativity of these quantities follow from the definition of z? as in (5.4) and convexity.

Moreover, we recall the definitions of V , Ṽ from Lemma 5.1. Then, we see that Ṽ (z) is

nonnegative by the choice of step sizes τ,σ and θ j = π j

p . It is also immediate that V (z) is

nonnegative.

Then, we can write (5.36) as

Ek
[
Sp (xk+1)+V (zk+1 − z?)

]≤ Sp (xk )+V (zk − z?)−p
(
Sp (xk )+Sd (ȳk+1)

)
. (5.37)

We use Robbins-Siegmund lemma on this inequality and nonnegativity of Sp (xk ),Sd (ȳk ),V (z),Ṽ (z)

to conclude that V (zk−z?) converges almost surely,
∑

k Sp (xk )+Sd (ȳk+1) <∞, therefore Sp (xk )

and Sd (ȳk ) converges to 0 almost surely. Then, we strengthen these conclusion by arguing
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as [FB19, Theorem 1], [IBCH13], [CP15, Proposition 2.3], to get the result: there existΩ1 with

P(Ω1) = 1, such that ∀w ∈Ω1 and ∀z? ∈Z?, V (zk (ω)− z?) converges.

We now take full expectation of (5.36), use the nonnegativity of Sp (xk ), Sd (ȳk ), and sum the

inequality to obtain,

∞∑
k=0

E
[
Ṽ (z̄k+1 − zk )

]≤ Sp (x0)+V (z0 − z?) :=∆0 <∞. (5.38)

By Fubini-Tonelli theorem, E
[∑∞

k=0 Ṽ (z̄k+1 − zk )
]<∞. Since Ṽ (z̄k+1 − zk ) is nonnegative we

have that Ṽ (z̄k+1 − zk ) converges almost surely to 0. Then, by the definition of Ṽ (z) and the

choice of step sizes, it follows that z̄k+1 − zk converges to 0 almost surely. We say that there

existΩ2 with P(Ω2) = 1 such that ∀ω ∈Ω2, z̄k+1(ω)− zk (ω) → 0.

We define T : Z →Z such that

ȳ = proxσ,h∗
(
y +σAx

)
,

x̄ = proxτ,g

(
x −τ(∇ f (x)+ A> ȳ)

)
.

It is easy to see that z̄k+1 = T (zk ).

We use the definition of proximal operator in the definition of T and compare with the

definition of a saddle point in (5.4) to conclude that the fixed points of T correspond to the set

of saddle points Z?.

We now fix ω ∈Ω1 ∩Ω2 and then it follows that zk (ω) is a bounded sequence, from what we

have proved beforehand. As zk (ω) is bounded, it converges on at least one subsequence.

We denote by ž the cluster point of this subsequence. By the fact that z̄k+1(ω) = T (zk (ω))

and z̄k+1(ω)− zk (ω) → 0, we conclude that T (zk (ω))− zk (ω) → 0. As T is continuous, by the

nonexpansiveness of proximal operator, we get ž is a fixed point of T and that ž ∈Z?.

Since we know that for any ω ∈Ω1 ∩Ω2 and for any z? ∈Z?, V (zk (ω)− z?) converges, and we

have proved V(zk (ω)− ž) converges to 0 at least on one subsequence with ž ∈Z?, we conclude

that the sequence zk converges to a point ž ∈Z?, almost surely. �

5.8.3 Proof for linear convergence

In this section, we include the proof of Theorem 5.4. First, we need a lemma to characterize

the specific choice of projection onto the solution set, given in (5.10).

Lemma 5.10. Let us denote

z?,k = arg min
u∈Z?

Dp (xk ;u)+V (zk −u).

ze
?,k = arg min

u∈Z?

V (zk −u).
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We have that V 1/2(z?,k − ze
?,k ) ≤ cV 1/2(zk − ze

?,k ), where c =C2,V

√
‖A‖

2 and C2,V is such that for

any z, ‖z‖ ≤C2,V V (z)1/2.

Proof. Let us first remark that since u = (ux ,uy ) ∈ Z∗ is a saddle point of the Lagrangian

L(x, y) = f (x)+g (x)+〈Ax, y〉−h∗(y), we have that Dp (xk ,u) = L(xk ,uy )−L(ux ,uy ) is indepen-

dent of ux and affine in uy . In particular, for any primal solution x?, there exists a constant,

C (xk , x?) = f (xk )+g (xk )− f (x?)−g (x?) such that Dp (xk ,u) =C (xk , x?)+〈A(xk −x?),uy 〉, for

all u ∈Z?. We have also used here the fact that for two different primal solutions x?,1, x?,2, it

follows that L(x?,1,uy ) = L(x?,2,uy ), where uy is a dual solution.

By prox inequality, we have for any z ∈Z ,

C (xk , x?)+〈A(xk −x?), y?,k〉+V (z − z?k ) ≤C (xk , x?)+〈A(xk −x?), y〉+V (zk − z)

−V (z?,k − zk ),

V (ze
?,k − z) ≤V (zk − z)−V (ze

?,k − zk ),

where x? is any primal solution. For the first inequality, we plug in z = ze
?,k and for the second

inequality, we plug in z = z?,k . Summing both equalities and rearranging yields

2V (ze
?,k − z?,k ) ≤ 〈A(xk −x?), ye

?,k − y?,k〉

Since the inequality holds for any x? ∈ X?, we can plug in xe
?,k and use Cauchy-Schwarz

inequality to get

2V (ze
?,k − z?,k ) ≤C 2

2,V ‖A‖V (zk − ze
?,k )1/2V (z?,k − ze

?,k )1/2.

Lastly C2,V =
√

2

p min
{

mini τ
−1
i p−1

i ,min j σ
−1
j π−1

j

} . �

Proof of Theorem 5.4. We note the definitions, as in [LFP19],

A : (x, y) 7→ (∂g (x)+∂h∗(y))

M : (x, y) 7→ (A>y,−Ax)

C : (x, y) 7→ (∇ f (x),0)

H : (x, y) 7→ (τ−1x + A>y,σ−1 y).

Under this notations, KKT operator defined in (5.4) can be written as

F = A+M +C . (5.39)

Moreover, z̄k+1 = (H + A)−1(H − M −C )zk , which in fact (without the term ∇ f (xk )) is the

well-known Arrow-Hurwicz operator [AAHU58].
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Moreover, we will use the following inequalities regarding V and Ṽ (see Lemma 5.1 for the

definitions)

Ṽ (z) ≥C2,Ṽ

(‖x‖2 +‖y‖2) :=
p

2
min

{
min

i
C (τ)i ,min

j
σ−1

j

}(‖x‖2 +‖y‖2) , (5.40)

V (z) ≤CV ,2
(‖x‖2 +‖y‖2) := 1

2
max

{
max

i

1

τi
,max

j

1

σ j

}(‖x‖2 +‖y‖2) . (5.41)

We recall the definition of z?,k

z?,k = arg min
u∈Z?

Dp (xk ,u)+V (zk −u).

We now argue that z?,k is well-defined under our assumptions. Under Assumption 5.1, we

know that the solution set is convex and closed; Dp (xk ,u) ≥ 0 for all u ∈Z? and it is also lower

semicontinuous. Next, we remark that V (zk −u) is a squared norm, thus coercive, therefore

the sum is coercive and lower semicontinuous over Z?. Hence, z?,k exists.

We use the result of Lemma 5.1 with z = z?,k and Dd (ȳk+1, z?,k ) ≥ 0

Ek

[
Dp (xk+1; z?k )+V (zk+1 − z?k )] ≤ (1−p)Dp (xk ; z?k )+V (zk − z?k )− Ṽ (z̄k+1 − zk ).

We use the definition of z?,k+1 to deduce

Ek

[
Dp (xk+1, z?,k+1)+V (zk+1 − z?,k+1)] ≤ (1−p)Dp (xk , z?,k )+V (zk − z?,k )

− Ṽ (z̄k+1 − zk ). (5.42)

In addition to Bregman projections z?,k and z̄?,k+1, we introduce the definitions for Euclidean

projections (see Lemma 5.10)

ze
?,k = arg min

u∈Z?

V (zk −u),

z̄e
?,k+1 = arg min

u∈Z?

V (z̄k+1 −u).

Now, we use triangle inequalities and Lemma 5.10 to get

V (zk − z?,k )1/2 ≤V (zk − ze
?,k )1/2 +V (ze

?,k − z?,k )1/2 ≤ (1+ c)V (zk − ze
?,k )1/2

≤ (1+ c)(V (zk − z̄k+1)1/2 +V (z̄k+1 − z̄e
?,k+1)1/2 +V (ze

?,k − z̄e
?,k+1)1/2)

We use nonexpansiveness with metric V on the last term, to obtain

V (zk − z?,k )1/2 ≤ (2+2c)V (zk − z̄k+1)1/2 + (1+ c)V (z̄e
?,k+1 − z̄k+1)1/2.

We use the definition of z̄e
?,k+1 to get V (z̄k+1 − z̄e

?,k+1) ≤ V (z̄k+1 −PZ?
(z̄k+1)), where PZ?

is

defined to be standard Euclidean projection, and then we use the relation between V and
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Euclidean norm from (5.41)

V (zk − z?,k )1/2 ≤ (2+2c)
√

CV ,2‖zk − z̄k+1‖+ (1+ c)
√

CV ,2‖PZ?
(z̄k+1)− z̄k+1‖

= (2+2c)
√

CV ,2‖zk − z̄k+1‖+ (1+ c)
√

CV ,2 dist(z̄k+1,Z?). (5.43)

We now use metric subregularity of F for 0 (see Assumption 5.2), and the assumption that

z̄k+1 ∈N (z?),∀z?,

dist(z̄k+1,Z?) ≤ ηdist(0,F (z̄k+1)).

We now use that (H −M −C )(zk − z̄k+1) ∈ F (z̄k+1), which can be obtained by using (5.39) and

z̄k+1 = (H + A)−1(H −M −C )zk . Therefore

dist(z̄k+1,Z?) ≤ η‖(H −M −C )(zk − z̄k+1)‖ ≤ η(‖H −M‖+ β̄)‖zk − z̄k+1‖,

where β̄ is the global Lipschitz constant of f .

We plug this inequality into (5.43) to obtain

V (zk − z?,k ) ≤CV ,2((2+2c)+ (1+ c)(η‖H −M‖+ β̄))2‖z̄k+1 − zk‖2.

Moreover, since Ṽ (z̄k+1 − zk ) is a squared norm, under the step size condition, it follows that

Ṽ (z̄k+1 − zk ) ≥C2,Ṽ ‖z̄k+1 − zk‖2, as in (5.40), therefore,

V (zk − z?,k ) ≤ CV ,2((2+2c)+ (1+ c)(η‖H −M‖+ β̄))2

C2,Ṽ
Ṽ (z̄k+1 − zk ).

We use this inequality in (5.42) to obtain

Ek

[
Dp (xk+1, z?k+1)+V (zk+1 − z?,k+1)] ≤ (1−p)Dp (xk ; z?,k )

+
(
1− C2,Ṽ

CV ,2((2+2c)+ (1+ c)(η‖H −M‖+ β̄))2

)
V (zk − z?,k ),

where the constants C2,Ṽ , CV ,2 are as defined in (5.40), (5.41).

We take full expectation and define ρ = min
(
p,

C2,Ṽ

CV ,2((2+2c)+(1+c)(η‖H−M‖+β̄))2

)
. Then, we have

that

E
[
Dp (xk+1, z?,k+1)+V (zk+1 − z?,k+1)

]≤ (1−ρ)E
[
Dp (xk , z?,k )+V (zk − z?,k )

]
.

We have that 0 < ρ < 1, as metric subregularity constant η> 0. Hence, linear convergence of

Dp (xk , z?,k ) and V (zk − z?,k ) follows. We obtain the final result after using the definition of V ,

and the fact that Dp (xk+1, z?,k+1) ≥ 0. �
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5.8.4 Ergodic convergence rates

We introduce the following lemma, which establishes the properties of the sequence y̆k ,

defined in (5.13).

Lemma 5.11. We recall the definition of y̆k from (5.13): let y̆1 = y1 = ȳ1 and

y̆ ( j )
k+1 = ȳ ( j )

k+1, ∀ j ∈ J (ik+1)

y̆ ( j )
k+1 = y̆ ( j )

k , ∀ j 6∈ J (ik+1),

where computing y̆k+1 requires the same number of operations as computing yk+1 every itera-

tion, and y̆k is Fk -measurable.

Moreover, if it holds for a function l that l (y) =∑m
j=1 l j (y ( j )) and

lγ(y) =
m∑

j=1
γ j l j (y ( j )),

we have the following for the sequence y̆k , and Fk -measurable Y :

Ek

[
y̆ ( j )

k+1 − y̆ ( j )
k

]
=π j

(
ȳ ( j )

k+1 − y̆ ( j )
k

)
,∀ j

Ek

[
‖y̆k+1 −Y ‖2

γ

]
= ‖ȳk+1 −Y ‖2

γπ−‖y̆k −Y ‖2
γπ+‖y̆k −Y ‖2

γ

Ek
[
l (y̆k+1)

]= lπ(ȳk+1)− lπ(y̆k )+ l (y̆k )

Ek

[
‖y̆k+1 − yk+1‖2

γ

]
= ‖x̄k+1 −xk‖2

B(γ) +‖y̆k − yk‖2
γ−‖y̆k − yk‖2

γπ

K∑
k=1

E
[
‖y̆k+1 − y̆k‖2

γ

]
≤ 2

K∑
k=1

E
[
‖ȳk+1 − yk‖2

γπ

]
+2

K∑
k=1

E
[
‖x̄k+1 −xk‖2

B(γ)

]
E
[
‖y̆k −Y ‖2

γπ

]
≤ 2E

[
‖yk −Y ‖2

γπ

]
+2

K∑
k=1

E
[
‖x̄k+1 −xk‖2

B(γ)

]
,

where B(γ)i = pi
∑m

j=1θ
2
jγ jσ

2
j A2

j ,i , and π j =∑
i∈I ( j ) pi .

Proof. We first use the definition of y̆k to get the first result. For any j ,

Ek [y̆ ( j )
k+1] = Ek

[
1 j∈J (ik+1) ȳ ( j )

k+1 +1 j 6∈J (ik+1) y̆ ( j )
k

]
=

n∑
i=1

pi

[
1 j∈J (i )

(
ȳ ( j )

k+1

)+1 j 6∈J (i ) y̆ ( j )
k

]
= ∑

i∈I ( j )
pi ȳ ( j )

k+1 +
∑

i 6∈I ( j )
pi y̆ ( j )

k = ∑
i∈I ( j )

pi ȳ ( j )
k+1 +

n∑
i=1

pi y̆ j
k −

∑
i∈I ( j )

pi y̆ ( j )
k

= y̆ ( j )
k +π j

(
ȳ ( j )

k+1 − y̆ ( j )
k

)
.

For the second result, we estimate similar to Lemma 5.8

Ek

[
‖y̆k+1 −Y ‖2

γ

]
= Ek

[ ∑
j∈J (ik+1)

γ j (ȳ ( j )
k+1 −Y ( j ))2 + ∑

j 6∈J (ik+1)
γ j (y̆ ( j )

k −Y ( j ))2

]
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=
n∑

i=1
pi

[ ∑
j∈J (i )

γ j (ȳ ( j )
k+1 −Y ( j ))2 + ∑

j 6∈J (i )
γ j (y̆ ( j )

k −Y ( j ))2

]

=
m∑

j=1

∑
i∈I ( j )

piγ j (ȳ ( j )
k+1 −Y ( j ))2 +

m∑
j=1

n∑
i=1

piγ j (y̆ ( j )
k −Y ( j ))2 −

m∑
j=1

∑
i∈I ( j )

piγ j (y̆ ( j )
k −Y ( j ))2

= ‖ȳk+1 −Y ‖2
γπ+‖y̆k −Y ‖2

γ−‖y̆k −Y ‖2
γπ.

We derive the third result using similar estimations

Ek
[
l (y̆k+1)

]= Ek

[ ∑
j∈J (ik+1)

l j (ȳ ( j )
k+1)+ ∑

j 6∈J (ik+1)
l j (y̆ ( j )

k )

]

=
n∑

i=1
pi

[ ∑
j∈J (i )

l j (ȳ ( j )
k+1)+ ∑

j 6∈J (i )
l j (y̆ ( j )

k )

]

=
m∑

j=1
π j l j (ȳ ( j )

k+1)+
m∑

j=1

n∑
i=1

pi l j (y̆ ( j )
k )−

m∑
j=1

π j l j (y̆ ( j )
k )

= lπ(ȳk+1)− lπ(y̆k )+ l (y̆k ).

For the fourth result, we use the definitions of both y̆k+1 and yk+1 (see Algorithm 5.1 and (5.16)),

Ek

[
‖y̆k+1 − yk+1‖2

γ

]
= Ek

[ ∑
j∈J (ik+1)

γ j

(
ȳ ( j )

k+1 − (ȳ ( j )
k+1 +σ jθ j A j ,ik+1 (x(ik+1)

k+1 −x(ik+1)
k ))

)2

+ ∑
j 6∈J (ik+1)

γ j

(
y̆ ( j )

k − y ( j )
k

)2 ]
=

n∑
i=1

pi

[ ∑
j∈J (i )

γ j

(
σ jθ j A j ,i (x̄(i )

k+1 −x(i )
k )

)2 + ∑
j 6∈J (i )

γ j

(
y̆ ( j )

k − y ( j )
k

)2
]

=
n∑

i=1
pi

∑
j∈J (i )

γ jσ
2
j A2

j ,iθ
2
i (x̄(i )

k+1 −x(i )
k )2 +

n∑
i=1

pi

m∑
j=1

γ j (y̆ ( j )
k − y j

k )2 −
n∑

i=1

∑
j∈J (i )

piγ j (y̆ ( j )
k − y ( j )

k )2

= ‖x̄k+1 −xk‖2
B(γ) +‖y̆k − yk‖2

γ−‖y̆k − yk‖2
γπ, (5.44)

where for the second equality, we used the fact that xk+1 is different from xk only on the

coordinate ik+1, which gives

(A(xk+1 −xk ))( j ) = (A((x(ik+1)
k+1 −x(ik+1)

k )eik+1 ))( j ) = A j ,ik+1 (x̄(ik+1)
k+1 −x(ik+1)

k ),

and for the last equality, we noted A j ,i = 0,∀ j 6∈ J (i ) and defined

B(γ)i = pi

m∑
j=1

γ jσ
2
jθ

2
j A2

j ,i .

For the fifth result, we first take full expectation and then sum the inequality (5.44)

K∑
k=1

E
[
‖y̆k − yk‖2

γπ

]
≤

K∑
k=1

E
[
‖x̄k+1 −xk‖2

B(γ)

]
+‖y1 − y̆1‖2

γ. (5.45)
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Then, we write from the second result that

Ek

[
‖y̆k+1 − y̆k‖2

γ

]
= ‖ȳk+1 − y̆k‖2

γπ ≤ 2‖ȳk+1 − yk‖2
γπ+2‖y̆k − yk‖2

γπ.

We take full expectation and sum to get

K∑
k=1

E
[
‖y̆k+1 − y̆k‖2

γ

]
≤ 2

K∑
k=1

E
[
‖ȳk+1 − yk‖2

γπ

]
+2

K∑
k=1

E
[
‖y̆k − yk‖2

γπ

]
≤ 2

K∑
k=1

E
[
‖ȳk+1 − yk‖2

γπ

]
+2

K∑
k=1

E
[
‖x̄k+1 −xk‖2

B(γ)

]
,

where we have used (5.45) and the fact that y̆1 = y1.

For the last result, we note that

E‖y̆k −Y ‖2
γπ ≤ 2E‖yk −Y ‖2

γπ+2E‖y̆k − yk‖2
γπ,

and we use (5.45) with y̆1 = y1, for the second term. �

We continue with the restatement and the proof of Theorem 5.5. This length of the proof is due

to the complications discussed earlier. First, as discussed in [AFC21], the order of expectation

and supremum requires a special proof which delays taking expectations of the estimates

(which prohibits simplifications and results in long expressions). Lemma 5.12 thus can be

seen as a version of Lemma 5.1 with expectation not taken.

However, this is not enough due to the special structure of our new method suited for sparse

settings. In particular, we have to manipulate the terms with dual variable carefully, as we

cannot average ȳk (see Lemma 5.1). Therefore, the treatment with y̆k , which is characterized

in Lemma 5.11 and Lemma 5.13, is an intricate part of our proof.

Lemma 5.12. Let Assumption 5.1 hold. Given the definitions of Dp and Dd given from Lemma 5.1,

it follows that

0 ≥ Dp (xk+1, z)+pDd (ȳk+1, z)− (1−p)Dp (xk ; z)+ Ṽ (z̄k+1 − zk )+ 1

2
‖x̄k+1 −xk‖2

βP +S1 +S2

+V (zk+1 − z)−V (zk − z),

where

S1 = gP (x̄k+1)− gP (xk )− (
g (xk+1)− g (xk )

)
− f (xk+1)+ f (xk )−p f (xk )+p f (x)−p〈∇ f (xk ), x −xk〉−〈∇ f (xk ),P (xk − x̄k+1)〉

+
p

2
‖x̄k+1‖2

τ−1 −
p

2
‖xk‖2

τ−1 −
( p

2
‖xk+1‖2

τ−1P−1 −
p

2
‖xk‖2

τ−1P−1

)
+

p

2
‖ȳk+1‖2

σ−1 −
p

2
‖yk‖2

σ−1 +p〈ȳk+1,π−1θAP (x̄k+1 −xk )〉
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+
p

2

n∑
i=1

pi

m∑
j=1

π−1
j σ jθ

2
j A2

j ,i (x̄(i )
k+1 −x(i )

k )2 −
p

2

(
‖yk+1‖2

σ−1π−1 −‖yk‖2
σ−1π−1

)
,

S2 = 〈y, A(xk −xk+1)− AP (xk − x̄k+1)〉+p〈x, xk − x̄k+1 −P−1(xk −xk+1)〉τ−1

−p〈y,π−1σ−1(yk − yk+1)−σ−1(yk − ȳk+1)+π−1θAP (x̄k+1 −xk )〉.

Proof. We now follow the proof of Lemma 1 without taking conditional expectations, similar

to ergodic convergence rate proof of [AFC21].

First, we have, from (5.20)

gP (x ′)+ph∗(y) ≥ gP (x̄k+1)+ph∗(ȳk+1)−〈A> ȳk+1,P (x ′− x̄k+1)〉+p〈Axk , y − ȳk+1〉︸ ︷︷ ︸
T1

−〈∇ f (xk ),P (x ′− x̄k+1)〉︸ ︷︷ ︸
T2

+ 1

2

(
‖xk − x̄k+1‖2

τ−1P +‖x ′− x̄k+1‖2
τ−1P −‖x ′−xk‖2

τ−1P

)
︸ ︷︷ ︸

T3

+
p

2

(‖yk − ȳk+1‖2
σ−1 +‖y − ȳk+1‖2

σ−1 −‖y − yk‖2
σ−1

)
︸ ︷︷ ︸

T4

. (5.46)

We start with T1 and add and subtract 〈A>y, xk+1 − x〉 − p〈Ax, ȳk+1 − y〉 − 〈A>y, xk − x〉 +
p〈A>y, xk −x〉+ g (xk+1)+ gP (xk )− g (xk )−p〈y − ȳk+1,π−1θAP (xk − x̄k+1)〉

T1 = g (xk+1)− g (xk )+ gP (xk )+ gP (x̄k+1)− g (xk+1)+ g (xk )− gP (xk )+ph∗(ȳk+1)

−〈A> ȳk+1,P (x ′− x̄k+1)〉+p〈Axk , y − ȳk+1〉+p〈y − ȳk+1,π−1θAP (xk − x̄k+1)〉
+〈A>y, xk+1 −x〉−p〈Ax, ȳk+1 − y〉+〈A>y, xk −x〉−p〈A>y, xk −x〉
−〈A>y, xk+1 −x〉+p〈Ax, ȳk+1 + y〉−〈A>y, xk −x〉+p〈A>y, xk −x〉
−p〈y − ȳk+1,π−1θAP (xk − x̄k+1)〉. (5.47)

We first use x ′(i ) = p−1
i px(i ) + (1−p−1

i p)x(i )
k as in Lemma 5.9 to get

−〈A> ȳk+1,P (x ′− x̄k+1)〉 =−p〈A> ȳk+1, x −xk〉−〈A> ȳk+1,P (xk − x̄k+1)〉.

Next, we use that

p
[−〈A>y, xk −x〉+〈Ax, ȳk+1 − y〉+〈Axk , y − ȳk+1〉−〈A> ȳk+1, x −xk〉

]=
p

[〈A>(y − ȳk+1), x −xk〉+〈y − ȳk+1, A(xk −x)〉]= 0,

to obtain

T1 = g (xk+1)− g (xk )+ gP (xk )+ gP (x̄k+1)− g (xk+1)+ g (xk )− gP (xk )+ph∗(ȳk+1)

−〈A> ȳk+1,P (xk − x̄k+1)〉+p〈y − ȳk+1,π−1θAP (xk − x̄k+1)〉
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+〈A>y, xk+1 −x〉−p〈Ax, ȳk+1 − y〉+〈A>y, xk −x〉
−〈A>y, xk+1 −x〉−〈A>y, xk −x〉+p〈A>y, xk −x〉
−p〈y − ȳk+1,π−1θAP (xk − x̄k+1)〉. (5.48)

We use θ j = π j

p to deduce

〈A>y, xk −xk+1〉−〈A> ȳk+1,P (xk − x̄k+1)〉−〈y − ȳk+1, pπ−1θAP (xk − x̄k+1)〉
=−〈y, AP (xk − x̄k+1)〉. (5.49)

We use the last identity and recall the definitions of Dp and Dd to write T1 as

T1 = Dp (xk+1, z)− f (xk+1)+ f (x)+pDd (ȳk+1, z)+ph∗(y)− (1−p)Dp (xk ; z) (5.50)

−p
(
g (xk )− g (x)

)+ gP (xk )+ gP (x̄k+1)− g (xk+1)+ g (xk )− gP (xk )

+〈y, A(xk −xk+1)− AP (xk − x̄k+1)〉+p〈y − ȳk+1,π−1θAP (xk − x̄k+1)〉+ (1−p)( f (xk )− f (x)).

Second, for T2, we use x ′ = P−1px + (1−P−1p)xk = xk +P−1p(x −xk ) to obtain

T2 =−〈∇ f (xk ),P (x ′− x̄k+1) =−p〈∇ f (xk ), x −xk〉−〈∇ f (xk ),P (xk − x̄k+1)〉.

We now combine these two estimates

T1 +T2 = Dp (xk+1, z)+pDd (ȳk+1, z)− (1−p)Dp (xk , z)+ gP (xk )+pg (x)−pg (xk )+ph∗(y)

− f (xk+1)+ f (xk )−p f (xk )+p f (x)−p〈∇ f (xk ), x −xk〉−〈∇ f (xk ),P (xk − x̄k+1)〉
+ gP (x̄k+1)− g (xk+1)+ g (xk )− gP (xk )+〈y, A(xk −xk+1)− AP (xk − x̄k+1)〉
+p〈y − ȳk+1,π−1θAP (xk − x̄k+1)〉. (5.51)

We now work on T3 in (5.46), in order to make terms depending on x telescope. First, we note

that by Lemma 5.9, with the slight change of using x̄k+1 instead of xk+1 and τ−1P instead of

τ−1 in the metric, we get

1

2
‖x ′− x̄k+1‖2

τ−1P − 1

2
‖x ′−xk‖2

τ−1P =
p

2
‖x − x̄k+1‖2

τ−1 −
p

2
‖x −xk‖2

τ−1

+ 1

2
‖x̄k+1 −xk‖2

τ−1P −
p

2
‖x̄k+1 −xk‖2

τ−1 .

Thus, on T3, we add and subtract
p

2 ‖x −xk+1‖2
τ−1P−1 −

p

2 ‖x −xk‖2
τ−1P−1

T3 = ‖x̄k+1 −xk‖2
τ−1P −

p

2
‖x̄k+1 −xk‖2

τ−1 +
p

2
‖x −xk+1‖2

τ−1P−1 −
p

2
‖x −xk‖2

τ−1P−1

+
p

2
‖x − x̄k+1‖2

τ−1 −
p

2
‖x −xk‖2

τ−1 −
( p

2
‖x −xk+1‖2

τ−1P−1 −
p

2
‖x −xk‖2

τ−1P−1

)
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= ‖x̄k+1 −xk‖2
τ−1P −

p

2
‖x̄k+1 −xk‖2

τ−1 +
p

2
‖x −xk+1‖2

τ−1P−1 −
p

2
‖x −xk‖2

τ−1P−1 +
p

2
‖x̄k+1‖2

τ−1

−
p

2
‖xk‖2

τ−1 +p〈x, xk − x̄k+1〉τ−1 −
( p

2
‖xk+1‖2

τ−1P−1 −
p

2
‖xk‖2

τ−1P−1 +p〈x, (xk −xk+1)〉τ−1P−1

)
+

p

2
‖x̄k+1‖2

τ−1 −
p

2
‖xk‖2

τ−1 −
( p

2
‖xk+1‖2

τ−1P−1 −
p

2
‖xk‖2

τ−1P−1

)
+p〈x, xk − x̄k+1 −P−1 (xk −xk+1)〉τ−1 . (5.52)

We estimate T4 in (5.46) similarly. First note that θ j = π j

p and on T4, we add and subtract

p

2

(
‖y − yk+1‖2

σ−1π−1 −‖y − yk‖2
σ−1π−1 +2〈y − ȳk+1,π−1θAP (xk − x̄k+1)〉

+
n∑

i=1
pi

m∑
j=1

π−1
j σ jθ

2
j A j ,i

(
x̄(i )

k+1 −x(i )
k

)2
)
. (5.53)

In particular, we have

T4 =
p

2
‖yk − ȳk+1‖2

σ−1 +
p

2
‖y − yk+1‖2

σ−1π−1 −
p

2
‖y − yk‖2

σ−1π−1

+
p

2
‖y − ȳk+1‖2

σ−1 −
p

2
‖y − yk‖2

σ−1 +p〈ȳk+1 − y,π−1θAP (x̄k+1 −xk )〉

+
p

2

n∑
i=1

pi

m∑
j=1

π−1
j θ2

jσ j A2
j ,i (x̄(i )

k+1 −x(i )
k )2 −

( p

2
‖y − yk+1‖2

σ−1π−1 −
p

2
‖y − yk‖2

σ−1π−1

)

−p〈ȳk+1 − y,π−1θAP (x̄k+1 −xk )〉−
p

2

n∑
i=1

pi

m∑
j=1

π−1
j σ jθ

2
j A2

j ,i (x̄(i )
k+1 −x(i )

k )2

=
p

2
‖yk − ȳk+1‖2

σ−1 +
p

2
‖y − yk+1‖2

σ−1π−1 −
p

2
‖y − yk‖2

σ−1π−1

+
p

2
‖ȳk+1‖2

σ−1 −
p

2
‖yk‖2

σ−1 +p〈ȳk+1,π−1θAP (x̄k+1 −xk )〉

+
p

2

n∑
i=1

pi

m∑
j=1

π−1
j σ jθ

2
j A2

j ,i (x̄(i )
k+1 −x(i )

k )2 +p〈y, yk − ȳk+1〉σ−1 −p〈y,π−1θAP (x̄k+1 −xk )〉

−
p

2

(
‖yk+1‖2

σ−1π−1 −‖yk‖2
σ−1π−1

)
−p〈y, yk − yk+1〉σ−1π−1

−p〈ȳk+1 − y,π−1θAP (x̄k+1 −xk )〉−
p

2

n∑
i=1

pi

m∑
j=1

π−1
j σ jθ

2
j A2

j ,i (x̄(i )
k+1 −x(i )

k )2. (5.54)

To simplify, let us introduce some more definitions to have simpler expression when we

combine T1,T2,T3,T4 from eqs. (5.51), (5.52) and (5.54). On a high level, S1 will collect zero

mean terms independent of (x, y) and S2 will collect zero mean terms dependent on (x, y).

S1 = gP (x̄k+1)− gP (xk )− (
g (xk+1)− g (xk )

)
− f (xk+1)+ f (xk )−p f (xk )+p f (x)−p〈∇ f (xk ), x −xk〉−〈∇ f (xk ),P (xk − x̄k+1)〉

+
p

2
‖x̄k+1‖2

τ−1 −
p

2
‖xk‖2

τ−1 −
( p

2
‖xk+1‖2

τ−1P−1 −
p

2
‖xk‖2

τ−1P−1

)
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+
p

2
‖ȳk+1‖2

σ−1 −
p

2
‖yk‖2

σ−1 +p〈ȳk+1,π−1θAP (x̄k+1 −xk )〉

+
p

2

n∑
i=1

pi

m∑
j=1

π−1
j σ jθ

2
j A2

j ,i (x̄(i )
k+1 −x(i )

k )2 −
p

2

(
‖yk+1‖2

σ−1π−1 −‖yk‖2
σ−1π−1

)
(5.55)

S2 = 〈y, A(xk −xk+1)− AP (xk − x̄k+1)〉+p〈x, xk − x̄k+1 −P−1(xk −xk+1)〉τ−1

−p〈y,π−1σ−1(yk − yk+1)−σ−1(yk − ȳk+1)+π−1θAP (x̄k+1 −xk )〉

We can now collect T1,T2,T3,T4, and use the definitions of S1,S2, in (5.46)

gP (x ′)+ph∗(y) ≥ Dp (xk+1; z)+pDd (ȳk+1; z)− (1−p)Dp (xk ; z)+ gP (xk )+pg (x)−pg (xk )

+ph∗(y)+
p

2
‖x −xk+1‖2

τ−1P−1 −
p

2
‖x −xk‖2

τ−1P−1 +
p

2
‖y − yk+1‖2

σ−1π−1 −
p

2
‖y − yk‖2

σ−1π−1

+‖x̄k+1 −xk‖2
τ−1P −

p

2
‖x̄k+1 −xk‖2

τ−1 −
p

2

n∑
i=1

pi

m∑
j=1

π−1
j σ jθ

2
j A2

j ,i (x̄i
k+1 −xi

k )2

− 1

2
‖x̄k+1 −xk‖2

βP + 1

2
‖x̄k+1 −xk‖2

βP +
p

2
‖yk − ȳk+1‖2

σ−1 +S1 +S2. (5.56)

We make few observations on this inequality. First, by Lemma 5.9, as in (5.25)

gP (xk )+pg (x)−pg (xk )− gP (x ′) ≥ 0.

Second, we have, as in (5.32)

Ṽ (z̄k+1 − zk ) =
p

2
‖ȳk+1 − yk‖2

σ−1 +‖x̄k+1 −xk‖2
τ−1P −

p

2
‖x̄k+1 −xk‖2

τ−1

− 1

2

n∑
i=1

m∑
j=1

ppiπ
−1
j σ jθ

2
j A2

j ,i (x̄(i )
k+1 −x(i )

k )2 − 1

2
‖x̄k+1 −xk‖2

βP

=
p

2
‖ȳk+1 − yk‖2

σ−1 +
p

2
‖x̄k+1 −xk‖2

C (τ),

where

C (τ)i = 2pi

pτi
− 1

τi
−pi

m∑
j=1

π−1
j σ jθ

2
j A2

j ,i −
βi pi

p
.

We use these estimates in (5.56) and the definition of V to conclude. �

Lemma 5.13. Let Assumption 5.1 hold and let h be separable. Given the definitions of Dp and

Dd from Lemma 5.1, we define

Dγ

d (ȳk+1, z) =
m∑

j=1
γ j

(
h∗

j (ȳ ( j )
k+1)−h∗

j (y ( j ))−〈(Ax)( j ), ȳ ( j )
k+1 − y ( j )〉

)
.

Moreover let S1,S2 be as Lemma 5.12, and y̆k as Lemma 5.11, it follows that

0 ≥ pDp (xk+1, z)+pDd (y̆k+1, z)+ Ṽ (z̄k+1 − zk )+ 1

2
‖x̄k+1 −xk‖2

βP +V (zk+1 − z)−V (zk − z)
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+S1 +S2 + (1−p)Dp (xk+1, z)− (1−p)Dp (xk , z)+pDπ−1−I
d (y̆k+1, z)−pDπ−1−I

d (y̆k , z)

+ph∗(ȳk+1)−ph∗(y̆k )−p
(
h∗
π−1 (y̆k+1)−h∗

π−1 (y̆k )
)+p〈Ax, y̆k − ȳk+1 −π−1 (

y̆k − y̆k+1
)〉.

Proof. This lemma is an intricate part of the proof of Theorem 5.5. If we finish the estimations

as in Chapter 4, then we will end up needing to average ȳk . However, this is not feasible in our

algorithm, since we do not update full dual vector, thus we do not compute ȳk unless the data

is fully dense. We will use Lemma 5.11 to go from ȳk to y̆k . Let us repeat the definition of y̆k

from Lemma 5.11: Let y̆1 = y1 = ȳ1, and

y̆ ( j )
k+1 = ȳ ( j )

k+1, ∀ j ∈ J (ik+1)

y̆ ( j )
k+1 = y̆ ( j )

k , ∀ j 6∈ J (ik+1).

We now work on Dd (ȳk+1; z) and note that h∗
γ is defined as in Lemma 5.11.

Dd (ȳk+1; z) = Dd (y̆k+1; z)−〈Ax, ȳk+1〉+h∗(ȳk+1)+〈Ax, y̆k+1〉−h∗(y̆k+1)

= Dd (y̆k+1; z)−〈Ax, ȳk+1〉+h∗(ȳk+1)+〈Ax, y̆k+1〉−h∗(y̆k+1)

+h∗
I−π−1 (y̆k+1)−h∗

I−π−1 (y̆k+1)+h∗
I−π−1 (y̆k )−h∗

I−π−1 (y̆k )

+〈Ax, (I −π−1)(y̆k+1 − y̆k )〉−〈Ax, (I −π−1)(y̆k+1 − y̆k )

= Dd (y̆k+1; z)+h∗(ȳk+1)−h∗(y̆k )− (
h∗
π−1 (y̆k+1)−h∗

π−1 (y̆k )
)

+h∗
π−1−1(y̆k+1)−h∗

π−1−1(y̆k )+〈Ax, y̆k − ȳk+1 −π−1 (
y̆k − y̆k+1

)〉
+〈Ax, (I −π−1)(y̆k+1 − y̆k )〉
= Dd (y̆k+1; z)+h∗(ȳk+1)−h∗(y̆k )− (

h∗
π−1 (y̆k+1)−h∗

π−1 (y̆k )
)

+〈Ax, y̆k − ȳk+1 −π−1 (
y̆k − y̆k+1

)〉+Dπ−1−I
d (y̆k+1; z)−Dπ−1−I

d (y̆k ; z)

We insert this estimate into the result of Lemma 5.12 to finish the proof. �

The following lemma is similar to Lemma 4.10.

Lemma 5.14. Given a Euclidean space S , a fixed diagonal matrix γ º 0, let the random se-

quences uk , vk ∈S be Fk -measurable with

uk+1 = vk+1 −Ek [vk+1] .

Let x̃1 be arbitrary and set for k ≥ 1,

x̃k+1 = x̃k +uk+1.

Then, x̃k is Fk -measurable and we have

K∑
k=1

〈x,uk+1〉γ ≤
1

2
‖x̃1 −x‖2

γ+
K∑

k=1
〈x̃k ,uk+1〉γ+

1

2

K∑
k=1

‖vk+1‖2
γ,
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with E
[∑K

k=1〈x̃k ,uk+1〉γ
]= 0 and for any S ⊂S

Esup
x∈S

K∑
k=1

〈x,uk+1〉γ ≤ sup
x∈S

1

2
‖x̃1 −x‖2

γ+
1

2

K∑
k=1

E‖vk+1‖2
γ.

Proof. First, by the definition of x̃k+1, for all x ∈S
1

2
‖x̃k+1 −x‖2

γ =
1

2
‖x̃k −x‖2

γ+〈x̃k −x,uk+1〉γ+
1

2
‖uk+1‖2

γ.

Summing this inequality gives

K∑
k=1

〈x,uk+1〉γ ≤
1

2
‖x̃1 −x‖2

γ+
K∑

k=1
〈x̃k ,uk+1〉γ+

K∑
k=1

1

2
‖uk+1‖2

γ.

We take supremum and expectation of both sides to get

E

[
sup
x∈S

K∑
k=1

〈x,uk+1〉γ
]
≤ sup

x∈S

1

2
‖x̃1 −x‖2

γ+
K∑

k=1
E
[〈x̃k ,uk+1〉γ

]+ K∑
k=1

1

2
E
[
‖uk+1‖2

γ

]
.

By the law of total expectation, Fk -measurability of x̃k and Ek [uk+1] = 0, we have

K∑
k=1

E
[〈x̃k ,uk+1〉γ

]= K∑
k=1

E
[
Ek

[〈x̃k ,uk+1〉γ
]]= K∑

k=1
E
[〈x̃k ,Ek [uk+1]〉γ

]= 0.

Finally, we use the definition of uk and the inequality E‖X −EX ‖2 ≤ E‖X ‖2 which holds for

any random variable X . �

As mentioned in the main text, we will give the theorems in the appendix with tighter, but

more complicated constants. After Theorem 5.7, we show how we obtained the simplified

bounds in our main text.

Theorem 5.5. Let Assumption 5.1 hold and θ,τ,σ are chosen as in (5.8), (5.9). Moreover, let h

be separable.

We define xav
K = 1

K

∑K
k=1 xk and y av

K = 1
K

∑K
k=1 y̆k , where y̆k is defined in (5.13), then for any

bounded set C = Cx ×Cy ⊂Z with iterates of Algorithm 5.1, it holds that

E
[
GapC(xav

K , y av
K )

]≤ Cg

pK
,

where Cg =Cg ,1 +Cg ,2 +Cg ,3 +Cg ,4, Cτ,Ṽ = mini C (τ)iτi ,

Cg ,1 = supz∈C
{
2p‖x0 −x‖2

τ−1P−1 +2p‖y0 − y‖2
σ−1π−1

}+ (1−p)4
√
∆p−1‖A‖supy∈Cy

‖y‖τP

+2p
√
∆0p−1 +‖2P −p‖∆0p−3C−1

τ,Ṽ
‖A‖‖π−1 − I‖supx∈Cx

‖x‖σπ,

Cg ,2 = ‖2P −p‖
(
1+‖P/p‖+‖τ1/2P 1/2 A>π−1/2σ1/2‖2

)
2∆0

pCτ,Ṽ
+∆0C−1

τ,Ṽ
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+ (4+4‖τ1/2P 1/2 A>π−1/2σ1/2‖2)∆0,

Cg ,3 = (1−p)
(

f (x0)+ g (x0)− f (x?)− g (x?)+‖A>y?‖τP

√
2∆0p−1

)
,

Cg ,4 = ph∗
π−1−I

(y̆0)+p
∑m

j=1(π−1
j −1)h∗

j (y j
?)+ p

2 ‖Ax?‖2
σπ−1 +∆0 +

‖2P−p‖∆0

p2Cτ,Ṽ
.

Proof. We start with the result of Lemma 5.13. First, we will manipulate the terms arising in

S2 +〈Ax, y̆k − ȳk+1 −π−1(y̆k − y̆k+1) (see definition of S2 in Lemma 5.12).

−
(
S2 +p〈Ax, y̆k − ȳk+1 −π−1(y̆k − y̆k+1)〉

)
=−〈y, A(xk −xk+1)− AP (xk − x̄k+1)〉

−p〈x, xk − x̄k+1 −P−1(xk −xk+1)〉τ−1 +p〈y,π−1σ−1(yk − yk+1)−σ−1(yk − ȳk+1)

+π−1θAP (x̄k+1 −xk )〉−p〈Ax, y̆k − ȳk+1 −π−1(y̆k − y̆k+1)〉 (5.57)

For the four terms on the right hand side, we will apply Lemma 5.14. First, Ek
[
π−1

(
y̆k − y̆k+1

)]=
y̆k − ȳk+1 from Lemma 5.11, Ek

[
P−1(xk −xk+1) = xk − x̄k+1

]
, by coordinate wise updates. Fi-

nally, as in the proof of Lemma 5.11, we can derive, as A j ,i = 0,∀i 6∈ I ( j ),

Ek [y ( j )
k+1] =

n∑
i=1

pi

[
1 j∈J (i )

(
ȳ ( j )

k+1 +σ jθ j A j ,i (x̄(i )
k+1 −x(i )

k )
)+1 j 6∈J (i ) y ( j )

k

]
= y ( j )

k + ∑
i∈I ( j )

pi
(
ȳ ( j )

k+1 − y ( j )
k )+

n∑
i=1

piσ jθ j A j ,i (x̄(i )
k+1 −x(i )

k )

= y ( j )
k +π j (ȳ ( j )

k+1 − y ( j )
k )+σ jθ j (AP (x̄k+1 −xk ))( j )

Ek [yk+1] = yk +π(ȳk+1 − yk )+σθAP (x̄k+1 −xk )

⇐⇒ Ek
[

yk − yk+1
]=π(yk − ȳk+1)−σθAP (x̄k+1 −xk ).

In particular, for (5.57), we set in Lemma 5.14

uk+1 =−p−1σπA(xk −xk+1)+p−1σπAP (xk − x̄k+1), γ=σ−1π−1p,S =Y , x̃1 = y1.

uk+1 = (xk −xk+1)−P (xk − x̄k+1), γ= τ−1P−1, S =X , x̃1 = x1,

uk+1 =
(
yk − yk+1

)−π(
yk − ȳk+1

)+σθAP (x̄k+1 −xk ), γ=σ−1π−1, S =Y , x̃1 = y1,

uk+1 = τPA> (
π−1 (

y̆k − y̆k+1
)− (

y̆k − ȳk+1
))

, γ= τ−1P−1, S =X , x̃1 = x1,

Then, we can apply Lemma 5.14 for these cases to bound (5.57) as

Esup
z∈C

[(5.57)] ≤ sup
z∈C

{
p‖x −x1‖2

τ−1P−1 +p‖y − y1‖2
σ−1π−1

}
+

K∑
k=1

p

2
E
[‖xk −xk+1‖2

τ−1P−1

]
+E[‖yk − yk+1‖2

σ−1π−1

]+ K∑
k=1

1

2p
E‖σπA(xk −xk+1)‖2

σ−1π−1

+
K∑

k=1

p

2
E‖τPA>π−1(y̆k − y̆k+1)‖2

τ−1P−1 . (5.58)
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We now recall the definition of S1 from (5.55), and use the identities (5.21), (5.22), Lemma 5.8,

along with the law of total expectation to estimate

E

[
S1 + 1

2
‖x̄k+1 −xk‖2

βP

]
= E

[
− f (xk+1)+ f (xk )−〈∇ f (xk ),P (xk − x̄k+1)〉+ 1

2
‖x̄k+1 −xk‖2

βP

]
+pE

[
f (x)− f (xk )−〈∇ f (xk ), x −xk〉

]
≥ E

[
− f (xk+1)+ f (xk )−Ek

[〈∇ f (xk ), xk −xk+1〉
]+ 1

2
‖x̄k+1 −xk‖2

βP

]
≥ E

[
−1

2
Ek

[
‖xk −xk+1‖2

β

]
+ 1

2
‖x̄k+1 −xk‖2

βP

]
= E

[
−1

2
‖xk − x̄k+1‖2

βP + 1

2
‖x̄k+1 −xk‖2

βP

]
= 0, (5.59)

where the first inequality is by convexity, second inequality is by coordinatewise smoothness of

f . Furthermore, for the result of Lemma 5.13, by Lemma 5.11 and the law of total expectation

E
[
h∗(ȳk+1)−h∗(y̆k )− (

h∗
π−1 (y̆k+1)−h∗

π−1 (y̆k )
)]= 0. (5.60)

We rearrange and sum the result of Lemma 5.13, take supremum and expectation, plug

in eqs. (5.58)–(5.60), and use Ṽ is a squared norm

E

[
sup
z∈C

K∑
k=1

p
(
Dp (xk , z)+Dd (y̆k , z)

)]≤ sup
z∈C

3p

2

(‖x −x0‖2
τ−1P−1 +‖y − y0‖2

σ−1π−1

)
+Esup

z∈C
(1−p)

(
Dp (x0, z)−Dp (xK , z)

)+Esup
z∈C

pDπ−1−I
d (y̆0, z)−pDπ−1−I

d (y̆K , z)

+
K∑

k=1

p

2
E‖xk −xk+1‖2

τ−1P−1 +‖yk − yk+1‖2
σ−1π−1 +

K∑
k=1

1

2p
E‖σπA(xk −xk+1)‖2

σ−1π−1

+
K∑

k=1

p

2
E‖τPA>π−1(y̆k − y̆k+1)‖2

τ−1P−1 . (5.61)

We first note by (5.38)

∞∑
k=1

E
[
Ṽ (z̄k+1 − zk )

]≤∆0. (5.62)

Ṽ (z̄k+1 − zk ) ≥
pCτ,Ṽ

2
‖x̄k+1 −xk‖2

τ−1 +
p

2
‖ȳk+1 − yk‖2

σ−1 , (5.63)

with Cτ,Ṽ = mini C (τ)iτi , where we used the definition of Ṽ from Lemma 5.1.

We have

Esup
z∈C

Dp (x0, z)−Dp (xK , z) = E sup
z∈Cy

f (x0)+ g (x0)− f (xK )− g (xK )+〈A>y, x0 −xK 〉
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≤ E sup
z∈Cy

f (x0)+ g (x0)− f (xK )− g (xK )+‖A‖‖y‖τP‖x0 −xK ‖τ−1P−1 . (5.64)

Then, we use the optimality conditions, convexity, and (5.36)

E
[

f (xK )+ g (xK )
]≥ E[

f (x?)+ g (x?)−〈A>y?, xK −x?〉
]

≥ E[
f (x?)+ g (x?)−‖A>y?‖τP‖xK −x?‖τ−1P−1

]
≥ f (x?)+ g (x?)−‖A>y?‖τP

√
2∆0

p
. (5.65)

to obtain for this estimation

Esup
z∈C

Dp (x0, z)−Dp (xK , z) ≤ f (x0)+ g (x0)− f (x?)− g (x?)+‖A>y?‖τP

√
2∆0p−1

+4
√

2∆0p−1‖A‖ sup
y∈Cy

‖y‖τP . (5.66)

We estimate similarly to obtain

Esup
z∈C

pDπ−1−I
d (y̆0; z)−pDπ−1−I

d (y̆K ; z) = p Eh∗
π−1−I (y̆0)−h∗

π−1−I (y̆K )−〈Ax, (π−1 − I )(y̆0 − y̆K )〉.

≤ p Eh∗
π−1−I (y̆0)−h∗

π−1−I (y̆K )+‖A‖‖π−1 − I‖‖x‖σπ‖y̆0 − y̆K ‖σ−1π−1 . (5.67)

By convexity and Lemma 5.11

E
[

h∗
π−1−I (y̆K )

]
= E

[
m∑

j=1
(π−1

j −1)h∗
j (y̆ ( j )

K ) ≥
m∑

j=1
(π−1

j −1)
(
h∗

j (y ( j )
? )+〈(Ax?) j , y̆ ( j )

K − y ( j )
? 〉

)]

≥ E
[

m∑
j=1

(π−1
j −1)h∗

j (y ( j )
? )− 1

2
‖Ax?‖2

σπ−1 − 1

2
‖y̆K − y?‖2

σ−1π−1

]

≥ E
[

m∑
j=1

(π−1
j −1)h∗

j (y ( j )
? )− 1

2
‖Ax?‖2

σπ−1 −‖yK − y?‖2
σ−1π−1 −

K∑
k=1

‖x̄k+1 −xk‖2
B(π−2σ−1)

]

≥
m∑

j=1
(π−1

j −1)h∗
j (y ( j )

? )− 1

2
‖Ax?‖2

σπ−1 − ∆0

p
−
‖2P −p‖∆0

p3Cτ,Ṽ
, (5.68)

where we used

‖x‖2
B(π−2σ−1) ≤

1

p2 ‖2P −p‖‖x‖2
τ−1 , (5.69)

which follows by using the step size rule from (5.9) and definition of B(γ) from Lemma 5.11.

Thus, the final bound for (5.67), after using Lemma 5.11

Esup
z∈C

pDπ−1−I
d (y̆0; z)−pDπ−1−I

d (y̆K ; z) ≤ ph∗
π−1−I (y̆0)+p

m∑
j=1

(π−1
j −1)h∗

j (y̆ ( j )
? )+

p

2
‖Ax?‖2

σπ−1
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+∆0 +
‖2P −p‖∆0

p2Cτ,Ṽ
+2p

√
∆0p−1 +‖2P −p‖∆0p−3C−1

τ,Ṽ
‖A‖‖π−1 − I‖ sup

x∈Cx

‖x‖σπ. (5.70)

We continue to estimate, by Lemma 5.8, the definition of B(γ) from Lemma 5.11, and the

definition of π j

Ek
[‖yk+1 − yk‖2

σ−1π−1

]= ‖ȳk+1 − yk‖2
σ−1 +2〈ȳk+1 − yk ,π−1θAP (x̄k+1 −xk )〉

+
n∑

i=1

m∑
j=1

piπ
−1
j σ jθ

2
j A2

j ,i (x̄(i )
k+1 −x(i )

k )2

≤ ‖ȳk+1 − yk‖2
σ−1 +‖ȳk+1 − yk‖2

σ−1 +
n∑

i=1

m∑
j=1

p2
i π

−2
j σ jθ

2
j A2

j ,i (x̄(i )
k+1 −x(i )

k )2

+
n∑

i=1

m∑
j=1

piπ
−1
j σ jθ

2
j A2

j ,i (x̄(i )
k+1 −x(i )

k )2

≤ 2‖ȳk+1 − yk‖2
σ−1 +

(
1+‖P/p‖

)
‖x̄k+1 −xk‖2

B(π−1σ−1), (5.71)

K∑
k=1

p

2
Ek

[‖xk+1 −xk‖2
τ−1P−1

]= p

2

K∑
k=1

‖x̄k+1 −xk‖2
τ−1 ≤ ∆0

Cτ,Ṽ
. (5.72)

We will continue with estimating the last two terms of (5.61):

1

2p
Ek

[‖σπA(xk −xk+1)‖2
σ−1π−1

]= Ek

[
1

2p

m∑
j=1

σ jπ j ((A(xk −xk+1))( j ))2

]

= Ek

[
1

2p

m∑
j=1

σ jπ j A2
j ,ik+1

(x(ik+1)
k − x̄(ik+1)

k+1 )2

]

= 1

2p

m∑
j=1

n∑
i=1

piσ jπ j A2
j ,i (x(i )

k − x̄(i )
k+1)2

=
p

2
‖x̄k+1 −xk‖2

B(π−1σ−1). (5.73)

Finally,

K∑
k=1

E
[
‖τPA>π−1(y̆k+1 − y̆k )‖2

τ−1P−1

]
≤ ‖τ1/2P 1/2 A>π−1/2σ1/2‖2

K∑
k=1

E‖y̆k+1 − y̆k‖2
σ−1π−1

≤ ‖τ1/2P 1/2 A>π−1/2σ1/2‖2
K∑

k=1
E
[

2‖ȳk+1 − yk‖2
σ−1 +2‖x̄k+1 −xk‖2

B(π−1σ−1)

]
, (5.74)

where we use Lemma 5.11 for the last inequality.

By, eqs. (5.71)–(5.74), we finalized the bound for the last three terms in (5.61)

K∑
k=1

p

2
E‖xk −xk+1‖2

τ−1P−1 +‖yk − yk+1‖2
σ−1π−1 +

K∑
k=1

1

2p
E‖σπA(xk −xk+1)‖2

σ−1π−1
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+
K∑

k=1

p

2
E‖τPA>π−1(y̆k − y̆k+1)‖2

τ−1P−1 ≤Cg ,2, (5.75)

where

Cg ,2 = ‖2P −p‖
(
1+‖P/p‖+‖τ1/2P 1/2 A>π−1/2σ1/2‖2

) 2∆0

pCτ,Ṽ
+ ∆0

Cτ,Ṽ

+ (4+4‖τ1/2P 1/2 A>π−1/2σ1/2‖2)∆0.

Cg ,2 basically collects the bounds in eqs. (5.71)–(5.74) and uses the estimates from eqs. (5.62)

and (5.63) on this bound.

Then, on (5.61), we use eqs. (5.62), (5.63), (5.66) and (5.69)–(5.74), definition of primal-dual

gap function in (5.11), and Jensen’s inequality to conclude. �

Theorem 5.7. Let Assumption 5.1 hold. We use the same parameters θ,τ,σ and the definitions

for xav
K and y av

K as Theorem 5.5. We consider two cases separately:

. If h(·) = δ{b}(·), we obtain

E
[

f (xav
K )+ g (xav

K )− f (x?)− g (x?)
]≤ Co

pK
.

E
[‖Axav

K −b‖]≤ C f

pK
.

. If h is Lh-Lipschitz continuous, we obtain

E
[

f (xav
K )+ g (xav

K )+h(Axav
K )− f (x?)− g (x?)−h(Ax?)

]
≤ Cl

pK
,

where C f = 2c2

√
‖y?− y0‖2

σ−1π−1 +Csc−1
2 +2c1c−1

2 ‖x0 −x?‖2
τ−1P−1 +2c2‖y?− y0‖σ−1π−1 ,

Co =Cs +‖y?‖σ−1π−1C f + c1‖x0 −x?‖2
τ−1P−1 + c2‖y?− y0‖2

σ−1π−1 ,

Cl =Cs + c1‖x?−x0‖2
τ−1P−1 +4c2L2

h ,

c1 =
3p

2 +p‖(2P −p)1/2‖‖π−1 − I‖,

c2 =
3p

2 + (1−p)‖(2P −p)1/2‖, Cs =Cg ,2 +Cg ,5 +Cg ,6, with Cg ,2 as defined in Theorem 5.5 and

Cg ,5,Cg ,6 are defined in the proof in (5.81), (5.82).

Proof. We will use the first result of Lemma 5.14 on the result of Lemma 5.13, similar to (5.61).

The difference is that we take supremum and expectation after using Lemma 5.14 and we pro-

cess the terms (1−p)
(
Dp (xk , z)−Dp (xk+1, z)

)+p
(
Dπ−1−I

d (y̆k , z)−Dπ−1−I
d (y̆k+1, z)

)
with small

differences. In particular,

K−1∑
k=0

(1−p)
(
Dp (xk ; z)−Dp (xk+1; z)

)= (1−p)
(
Dp (x0; z)−Dp (xK ; z)

)
= (1−p)

(
f (x0)+ g (x0)− f (xK )− g (xK )+〈A>y, x0 −xK 〉

)
.
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For the final term, we estimate using the step size rule (5.9)

〈A>y , x0 −xK 〉 =
n∑

i=1

m∑
j=1

A j ,i y ( j )(x(i )
0 −x(i )

K ) ≤
n∑

i=1

√√√√ m∑
j=1

A2
j ,i (x(i )

0 −x(i )
K )2σ jπ j

√√√√ m∑
j=1

(y ( j ))2σ−1
j π−1

j

≤
n∑

i=1

√
p(2pi −p)(x(i )

0 −x(i )
K )2τ−1

i p−1
i

√√√√ m∑
j=1

(y ( j ))2σ−1
j π−1

j

≤
n∑

i=1

1

2

√
2pi −p(x(i )

0 −x(i )
K )2τ−1

i p−1
i +

p
√

2pi −p

2
‖y‖2

σ−1π−1


≤

‖(2P −p)1/2‖
2

‖x0 −xK ‖2
τ−1P−1 +

‖(2P −p)1/2‖
2

‖y‖2
σ−1π−1

≤
‖(2P −p)1/2‖

2
‖x0 −xK ‖2

τ−1P−1 +‖(2P −p)1/2‖(‖y − y0‖2
σ−1π−1 +‖y0‖2

σ−1π−1

)
. (5.76)

We estimate similarly to obtain

K−1∑
k=0

p
(
Dπ−1−I

d (y̆k , z)−Dπ−1−I
d (y̆k+1, z)

)
= p

(
h∗
π−1−I (y̆0)−h∗

π−1−I (y̆K )−〈Ax, (π−1 − I )(y̆0 − y̆K )〉) ,

and

−〈Ax, (π−1 − I )(y̆0 − y̆K )〉 ≤ 1

2
‖(2P −p)1/2‖‖π−1 − I‖(‖x‖2

τ−1P−1 +‖y̆0 − y̆K ‖2
σ−1π−1

)
≤ ‖(2P −p)1/2‖‖π−1 − I‖

(
‖x −x0‖2

τ−1P−1 +‖x0‖2
τ−1P−1 + 1

2
‖y̆0 − y̆K ‖2

σ−1π−1

)
. (5.77)

We sum the result of Lemma 5.13, use eqs. (5.76) and (5.77), use the first result of Lemma 5.14

(see (5.57)), move the terms depending on (x, y) to LHS, take the supremum over Z and

expectation. With these steps, instead of (5.61), we get

E

[
sup
z∈Z

K∑
k=1

p
(
Dp (xk , z)+Dd (y̆k , z)

)− c1‖x0 −x‖2
τ−1P−1 − c2‖y0 − y‖2

σ−1π−1

]
≤ p

(
h∗
π−1−I (y̆0)−h∗

π−1−I (y̆K )
)+ (1−p)

(
f (x0)+ g (x0)− f (xK )− g (xK )

)
+

K∑
k=1

p

2
E‖xk −xk+1‖2

τ−1P−1 +E‖yk − yk+1‖2
σ−1π−1 +

K∑
k=1

1

2p
E‖σπA(xk −xk+1)‖2

σ−1π−1

+
K∑

k=1

p

2
E‖τPA>π−1(y̆k − y̆k+1)‖2

τ−1P−1 +‖(2P −p)1/2‖
(

1

2
E‖x0 −xK ‖2

τ−1P−1 +‖y0‖2
σ−1π−1

)
+‖(2P −p)1/2‖‖π−1 − I‖

(
‖x0‖2

τ−1P−1 + 1

2
E‖y̆0 − y̆K ‖2

σ−1π−1

)
, (5.78)

where c1 =
3p

2 +p‖(2P −p)1/2‖‖π−1 − I‖, c2 =
3p

2 + (1−p)‖(2P −p)1/2‖.

We divide both sides by p and use Jensen’s inequality to obtain the smoothed gap func-
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tion [TDFC18]

G 2c1
pK ,

2c2
pK

(xav
K , y av

K , x0, y0) = sup
z∈Z

Dp (xav
K , z)+Dd (y av

K ; z)− c1

pK
‖x −x0‖2

τ−1P−1 − c2

pK
‖y − y0‖2

σ−1π−1 .

Then, we have, as in the proof of Theorem 5.5 that (see eqs. (5.61) and (5.75))

pKE[G 2c1
pK ,

2c2
pK

(xav
K , y av

K ; x0, y0)] ≤Cg ,2 +p
(
h∗
π−1−I (y̆0)−h∗

π−1−I (y̆K )
)

+ (1−p)
(

f (x0)+ g (x0)− f (xK )− g (xK )
)

+ (1−p)‖(2P −p)1/2‖
(

1

2
‖x0 −xK ‖2

τ−1P−1 +‖y0‖2
σ−1π−1

)
+p‖(2P −p)1/2‖‖π−1 − I‖

(
‖x0‖2

τ−1P−1 + 1

2
‖y̆0 − y̆K ‖2

σ−1π−1

)
(5.79)

By using (5.65) and (5.68) we obtain the bound

(1−p)
(

f (x0)+ g (x0)− f (xK )− g (xK )
)+p

(
h∗
π−1−I (y̆0)−h∗

π−1−I (y̆K )
)≤Cg ,5, (5.80)

where

Cg ,5 = (1−p)

(
f (x0)+ g (x0)− f (x?)− g (x?)+‖A>y?‖τP

√
2∆0

p

)

+p

(
h∗
π−1−I (y0)−

m∑
j=1

(π−1
j −1)h∗

j (y j
?)+ 1

2
‖Ax?‖2

σπ−1 + ∆0

p
+
∆0‖2P −p‖

p2Cτ,Ṽ

)
. (5.81)

Next, we bound the last two terms in (5.79) using E [V (zk − z?)] ≤∆0 from (5.37) and we denote

the bound as Cg ,6

Cg ,6 = (1−p)‖(2P −p)1/2‖
(

4∆0

p
+2‖y?‖2

σ−1π−1

)

+p‖(2P −p)1/2‖‖π−1 − I‖
(

4∆0

p
+2‖x?‖2

τ−1P−1

)
, (5.82)

so that RHS of (5.79) is upper bounded by Cg ,2 +Cg ,5 +Cg ,6.

We consider two cases:

• If h is Lh Lipschitz continuous in norm ‖ ·‖σπ, then ‖y − y0‖2
σ−1π−1 ≤ 4L2

h . Then, we argue as

in [FB19, Theorem 11] to get

E
[

f (xav
K )+ g (xav

K )+h(Axav
K )− f (x?)− g (x?)−h(Ax?)

]≤ E[
G 2c1

pK ,
2c2
pK

(xav
K , y av

K ; x0, y0)

]
+ c1

pK
‖x?−x0‖2

τ−1P−1 + 4c2

pK
L2

h .
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• If h(·) = δb(·), we use [TDFC18, Lemma 1] to obtain

E
[

f (xav
K )+ g (xav

K )− f (x?)− g (x?)
]≤ E[

G 2c1
pK ,

2c2
pK

(xav
K , y av

K ; x0, y0)

]
+ c1

pK
‖x0 −x?‖2

τ−1P−1

+ c2

pK
‖y?− y0‖2

σ−1π−1 +E
[‖y?‖σ−1π−1‖Axav

K −b‖σπ
]

, (5.83)

E [‖Ax −b‖σπ] ≤ 2c2

pK
‖y?− y0‖σ−1π−1

+ 2c2

pK

√√√√‖y?− y0‖2
σ−1π−1 +

pK

c2

(
E

[
G 2c1

pK ,
2c2
pK

(xav
K , y av

K ; x0, y0)

]
+ c1

pK
‖x0 −x?‖2

τ−1P−1

)
.

We plug in the bound of E

[
G 2c1

pK ,
2c2
pK

(xav
K , y av

K ; x0, y0)

]
to obtain the final results. �

Simplification of the constants. As mentioned before Theorem 5.5, we now give the inequali-

ties we use to obtain the bounds we have in the main text for Theorem 5.5 and Theorem 5.7

compared to the ones we have in the appendix. It is easy to see by using coarse inequalities, we

first pi p−1 ≤ p−1, second, 2pi −p ≤ 2, third, π−1
j −1 ≤ p−1 as π j ≥ p. Finally, by the definition

of τi in (5.9), we can derive ‖τ1/2P 1/2 A>π−1/2σ1/2‖2 ≤ 2p−1. By using these constants in the

bounds of Theorem 5.5 and Theorem 5.7 in the appendix, we arrive at the bounds given for

these theorems in the main text.
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6 Stochastic variance reduction for
variational inequalities

In this chapter, we focus on monotone variational inequalities (VI) with finite sum struc-

ture, which is a generalization of convex-concave min-max problems. We study variance

reduced methods, that also provide alternative ways to PDCD for solving problems we focused

in Chapters 4 and 5.

We introduce variance reduced extragradient, forward-backward-forward and forward-reflected-

backward methods. Similar to minimization, the new methods potentially improve the com-

plexity of the deterministic algorithms depending on the Lipschitz constants. Our results

reinforce the correspondence between variance reduction in min-max problems and mini-

mization. A recent work showed optimality of our algorithms by establishing matching lower

bounds.

This chapter is based on joint works with Yura Malitsky and Volkan Cevher [AM21, AMC21].

6.1 Introduction

We are interested in solving variational inequalities (VI)

Find z? ∈Z : 〈F (z?), z − z?〉+ g (z)− g (z?) ≥ 0, ∀z ∈Z , (6.1)

where g is a proper lower semicontinuous convex function and F is a monotone operator also

given as the finite sum F = 1
n

∑n
i=1 Fi .

A special case of monotone VIs is the structured saddle point problem

min
x

max
y
Ψ(x, y)+ f (x)−h(y), (6.2)

where f , h are proper lower semicontinuous convex functions and Ψ is a smooth convex-
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concave function. Indeed, problem (6.2) can be formulated as (6.1) by setting

z = (x, y), F (z) =
[
∇xΨ(x, y)

−∇yΨ(x, y)

]
, g (z) = f (x)+h(y),

and F (z) = 1
n

∑n
i=1 Fi (z) (see [BB16, Section 2], [CGFLJ19, CJST19] for examples).

Another related problem is the monotone inclusion where the aim is to

find z? ∈Z such that 0 ∈ (A+F )(x),

where A : Z⇒Z and F : Z →Z are maximally monotone operators and F is Lipschitz contin-

uous with finite sum form. Monotone inclusions generalize (6.1) and our results also extend

to this setting as will be shown in Section 6.4.1. Due to convenient abstraction, it is the

problem (6.1) that will be our main concern.

The case whenΨ in (6.2) is convex-concave and, in particular when it is bilinear, has found

numerous applications in machine learning, image processing and operations research, result-

ing in efficient methods being developed in the respective areas [CP11, EZC10, SSZ13, HA21].

As VI methods solve the formulation (6.1), they seamlessly apply to solve instances of (6.2)

with nonbilinearΨ.

In addition to the potentially complex structure ofΨ, the size of the data in modern learning

tasks lead to development of stochastic variants of VI methods [NJLS09, BMSV19, IJOT17]. An

important technique on this front is stochastic variance reduction [JZ13] which exploits the

finite sum structures in problems to match the convergence rates of deterministic algorithms.

In the specific case of convex minimization, variance reduction has been transformative over

the last decade [JZ13, DBLJ14, HLLJM15, KHR20]. As a result, there has been several works

on developing variance reduced versions of the standard VI methods, including forward-

backward [BB16], extragradient [Kor76, CGFLJ19], and mirror-prox [Nem04, CJST19]. Despite

recent remarkable advances in this field, these methods rely on strong assumptions such

as strong monotonicity [BB16, CGFLJ19] or boundedness of the domain [CJST19] and have

complicated structures for handling the cases with non-bilinearΨ [CJST19].

Such a dichotomy does not exist in minimization: variance reduction comes with no extra

assumptions. This points out to a fundamental lack of understanding for its use in saddle

point problems. This chapter shows that there is indeed a natural correspondence between

variance reduction in variational inequalities and minimization.

6.1.1 Contributions

We design variance reduced extragradient and forward-reflected-backward methods, with

Euclidean and Bregman setups. Our algorithms either match or improve complexity of existing
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Assumptions µ-adaptivity Complexity

[Kor76, Nem04, MT20b]
EG/MP, FoRB

F is monotone X O
(

N LF
ε

)
[BB16, CGFLJ19, SZY17]
FB, EG/MP

F is strongly monotone × N/A

[CJST19]
EG/MP

F is monotone +
z 7→ 〈F (z)+∇̃g (z), z −u〉 is cvx.
∀u; or bounded domains

× O
(
N +

p
N L
ε

)
This chapter
EG/MP, FoRB

F is monotone X O
(
N +

p
N L
ε

)
Table 6.1 – Table of algorithms with F (z) =∑N

i=1 Fi (z). EG: Extragradient, MP: Mirror-Prox, FB: forward-
backward, FoRB: forward-reflected-backward. Complexity column refers to complexity under mere
monotonicity.

methods and also have unique properties compared to previous works:

.Our methods are the first variance reduced VI algorithms that converge almost surely, under

mere monotonicity.

. For bilinear problems, we match the best-known complexity.

. For nonbilinear, convex-concave finite-sum problems, we improve the best-known com-

plexity by a log factor and remove the boundedness assumption of the previous work, with

simpler algorithms.

.We also show application of our techniques for solving monotone inclusions and strongly

monotone problems. Our results for monotone inclusions potentially improve the rate of

deterministic methods (depending on the Lipschitz constants).

. Our linear rate of convergence for strongly convex problems do not require parameters

depending on the strong convexity constants.

. Recent work [HXZ21] proved matching lower bounds for the problem class we consider.

6.1.2 Related works

Most of the research in variance reduction has focused on convex minimization [JZ13, DBLJ14,

KHR20, HLLJM15], leading to efficient methods in both theory and practice. On the other

hand, variance reduction for solving VIs is started to be investigated recently. One common

technique for reducing the variance in stochastic VIs, is to use increasing mini-batch sizes,

which leads to high per iteration costs and slower convergence rates in practice [IJOT17,

BMSV19, CS21].

A different approach used in [MKS+20] was to use the same sample in both steps of stochastic
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extragradient method [JNT11] to reduce the variance, which results in a slower O(1/
p

k) rate.

The results of [MKS+20] for bilinear problems on the other hand are limited to the case when

the matrix is full rank. The most related to our work, in the sense how variance reduction is

used, are [BB16, CJST19, CGFLJ19] (see Table 2.1).

For the specific case of strongly monotone operators, [BB16] proposed algorithms based on

SVRG and SAGA, with linear convergence rates. Two major questions for future work are

posed in [BB16]: (i) obtaining convergence without strong monotonicity assumption and

(ii) proving linear convergence without using strong monotonicity constant in the algorithm

as a parameter.

The work by [CGFLJ19] proposed an algorithm based on extragradient method [Kor76] and

under strong monotonicity assumption, proved linear convergence of the method. The

step size in this work depends on cocoercivity constant, which might depend on strong

monotonicity constant as discussed in [CGFLJ19, Table 1]. Thus, the result of [CGFLJ19] gave

a partial answer to the second question of [BB16] while leaving the first one unanswered.

An elegant recent work of [CJST19] focused on matrix games and proposed a method based

on the mirror prox [Nem04]. The extension of the method of [CJST19] for general min-max

problems is also considered there. Unfortunately, this extension not only features a three

loop structure, but also uses the bounded domain assumption actively and requires domain

diameter as a parameter in the algorithm [CJST19, Corollary 2]. This result has been an

important step towards an answer for the first question of [BB16].

Finally, this chapter answers an open problem posed in [MT20b] regarding a stochastic exten-

sions of the forward-reflected-backward method. Our result improves the preliminary result

in [MT20b, Section 6], which still requires evaluating the full operator every iteration.

6.1.3 Preliminaries and notation

We work in Euclidean space Z =Rd with scalar product 〈·, ·〉 and induced norm ‖ ·‖. Domain

of a function g : Z →R∪ {+∞} is defined as dom g = {z ∈Z : g (z) <+∞}. Proximal operator of

g is defined as

proxg (u) = argmin
z∈Z

{
g (z)+ 1

2
‖z −u‖2

}
.

We call an operator F : K→Z , where K⊆Z ,

• L-Lipschitz, for L > 0, if ‖F (u)−F (v)‖ ≤ L‖u − v‖, ∀u, v ∈K.

• monotone, if 〈F (u)−F (v),u − v〉 ≥ 0, ∀u, v ∈K.

• ν-cocoercive, for ν> 0, if 〈F (u)−F (v),u − v〉 ≥ ν‖F (u)−F (v)‖2, ∀u, v ∈K.

• µ-strongly monotone, for µ> 0, if 〈F (u)−F (v),u − v〉 ≥µ‖u − v‖2, ∀u, v ∈K.
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For example, in the context of (6.2) and (6.1), F is (strongly) monotone whenΨ is (strongly)

convex- (strongly) concave. However, it is worth noting that both cocoercivity and strong

monotonicity fail even for the simple bilinear case whenΨ(x, y) = 〈Ax, y〉 in (6.2).

Given iterates {zk }k≥1, {wk }k≥1 and the filtration Fk = σ{z1, . . . , zk , w1, . . . , wk−1}, we define

Ek [·] = E[·|Fk ] as the conditional expectations with respect to Fk .

Finally, we state our common assumptions for (6.1).

Assumption 6.1.

(a) g : Z →R∪ {+∞} is proper lower semicontinuous convex.

(b) F : dom g →Z is monotone.

(c) F = 1
n

∑n
i=1 Fi , with average Lipschitzness: E‖Fξ(x)−Fξ(y)‖2 ≤ L2‖x − y‖2

(d) The solution set of (6.1), denoted by Z?, is nonempty.

6.2 Algorithm

Our algorithm is a careful mixture of a recent deterministic algorithm for VIs, proposed

by [MT20b], with a special technique of using variance reduction in finite sum minimization

given in [HLLJM15] and [KHR20].

It is clear that for n = 1 any stochastic variance reduced algorithm for VI reduces to some

deterministic one. As a consequence, this immediately rules out the most obvious choice —

the well-known forward-backward method (FB)

zk+1 = proxτg (zk −τF (zk )), (6.3)

since its convergence requires either strong monotonicity or cocoercivity of F . The classical

algorithms that work under mere monotonicity [Kor76, Pop80, Tse00] have a more compli-

cated structure, and thus, it is not clear how to meld them with a variance reduction technique

for finite sum problems. Instead, we chose the recent forward-reflected-backward method

(FoRB) [MT20b]

zk+1 = proxτg (zk −τ(2F (zk )−F (zk−1))), (6.4)

which converges under Assumption 2.2 with n = 1.

When g = 0, this method takes its origin in the Popov’s algorithm [Pop80]. In this specific case,

FoRB is also equivalent to optimistic gradient ascent algorithm [DISZ18, RS13] which became

increasingly popular in machine learning literature recently [DISZ18, DP18, MOP20, MLZ+19].

Among many variance reduced methods for solving finite sum problems minz f (z) := 1
n

∑n
i=1 fi (z)
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Algorithm 6.1 Variance reduced forward-reflected-backward (VR-FoRB)

1: Input: Probability p ∈ (0,1], step size τ= p
4L . Let z0 = w0 = z−1 = w−1 ∈Z

2: for k = 0,1. . . do
3: Draw an index ik ∈ {1, . . . ,n} uniformly at random
4: zk+1 = proxτg (zk −τF (wk )−τ(Fik (zk )−Fik (wk−1)))

5: wk+1 =
{

zk+1, with probability p

wk , with probability 1−p
6: end for

one of the simplest is the Loopless-SVRG method [KHR20] (see also [HLLJM15]),

zk+1 = zk −τ∇ f (wk )−τ(∇ fik (zk )−∇ fik (wk ))

wk+1 =
zk , with probability p,

wk , with probability 1−p,

which can be seen as a randomized version of the gradient and hence forward-backward

methods. The latter is the exact reason why we cannot extend this method directly to the

variational inequality setting, without cocoercivity or strong monotonicity.

An accurate blending of [MT20b] and [KHR20], described above, results in Algorithm 6.1.

Compared to Loopless-SVRG, the last evaluation of the operator at step 4 of Algorithm 6.1 is

done at wk−1, instead of wk . In the deterministic case when n = 1 or p = 1, this modification

reduces the method to FoRB (6.4) and not FB (6.3). The other change is that we use the most

recent iterate zk+1 in the update of wk+1, instead of zk in the Loopless-SVRG. Surprisingly,

these two small distinctions result in the method which converges for general VIs without the

restrictive assumptions of the previous works.

We note that we use uniform sampling for choosing ik in Algorithm 6.1 for simplicity. Our ar-

guments directly extend to arbitrary sampling as in [BB16, CJST19] which is used for obtaining

tighter Lipschitz constants.

6.3 Convergence analysis

We start with a key lemma that appeared in [MT20b] for analyzing a general class of VI meth-

ods. The proof of this lemma is given in the appendix for completeness. The only change

from [MT20b] is that we consider the proximal operator, instead of a more general resolvent.

Lemma 6.1. [MT20b, Proposition 2.3] Let g : Z →R∪ {+∞} be proper lower semicontinuous

convex and let x1, U0,U1,V1 ∈Z be arbitrary points. Define x2 as

x2 = proxg (x1 −U1 − (V1 −U0)). (6.5)
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Then for all x ∈Z and V2 ∈Z , it holds

‖x2 −x‖2 +2〈V2 −U1, x −x2〉+2〈V2, x2 −x〉+2g (x2)−2g (x)

≤ ‖x1 −x‖2 +2〈V1 −U0, x −x1〉+2〈V1 −U0, x1 −x2〉−‖x1 −x2‖2. (6.6)

The benefit of Lemma 6.1 is that it gives a candidate for a Lyapunov function that can be used

to prove convergence. We will need a slight modification in this function due to randomization

in Algorithm 6.1.

6.3.1 Convergence of the iterates

We start by proving the almost sure convergence of the iterates. Such a result states that the

trajectories of the iterates generated by our algorithm converge to a point in the solution

set. This type of result is the analogue of sequential convergence results for deterministic

methods [MT20b].

For the iterates {zk }, {wk } of Algorithm 6.1 and any z ∈ dom g , β> 0 we define

Φk+1(z) := ‖zk+1 − z‖2 +2τ〈F (zk+1)−F (wk ), z − zk+1〉+
β

2
‖zk −wk‖2 + 1

2
‖zk+1 − zk‖2

Θk+1(z) := 〈F (zk+1), zk+1 − z〉+ g (zk+1)− g (z).

The first equation plays the role of a Lyapunov function and the second is essential for the rate.

Lemma 6.2. Let Assumption 6.1 hold and Fξ be Lipschitz for all ξ, τ< 1−p1−p
2L , β= 1p

1−p
−1,

and the iterates {zk } are generated by Algorithm 6.1. Then for any z ∈ dom g ,

Ek [Φk+1(z)+2τΘk+1(z)] ≤Φk (z). (6.7)

This lemma is essential in establishing the convergence of iterates and sublinear convergence

rates that we will derive in the next section. We now continue with the proof.

Proof. We set in Lemma 6.1 U0 = τFi (wk−1), U1 = τF (wk ), V1 = τFi (zk ), V2 = τF (zk+1), and

x1 = zk , with ik = i . Then by (6.5) and step 4 of Algorithm 6.1, x2 = zk+1, thus, by (6.6)

‖zk+1 − z‖2 +2τ〈F (zk+1)−F (wk ), z − zk+1〉+2τ
(〈F (zk+1), zk+1 − z〉

+ g (zk+1)− g (z)
)≤ ‖zk − z‖2 +2τ〈Fi (zk )−Fi (wk−1), z − zk〉

+2τ〈Fi (zk )−Fi (wk−1), zk − zk+1〉−‖zk+1 − zk‖2. (6.8)

First, note that by Lipschitzness of Fi , Cauchy-Schwarz and Young’s inequalities,

2τ〈Fi (zk )−Fi (wk−1), zk − zk+1〉 ≤ 2τ2L2‖zk −wk−1‖2 + 1

2
‖zk − zk+1‖2. (6.9)
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Thus, it follows that

‖zk+1 − z‖2 +2τ〈F (zk+1)−F (wk ), z − zk+1〉+
1

2
‖zk+1 − zk‖2 +2τΘk+1(z)

≤ ‖zk − z‖2 +2τ〈Fi (zk )−Fi (wk−1), z − zk〉+2τ2L2‖zk −wk−1‖2. (6.10)

Taking expectation conditioning on the knowledge of zk , wk−1 and using that Ek Fi (zk ) = F (zk ),

Ek Fi (wk−1) = F (wk−1), we obtain

Ek‖zk+1 − z‖2 +2τEk〈F (zk+1)−F (wk ), z − zk+1〉+
1

2
Ek‖zk+1 − zk‖2

+2τEkΘk+1(z) ≤ ‖zk − z‖2 +2τ〈F (zk )−F (wk−1), z − zk〉+2τ2L2‖zk −wk−1‖2. (6.11)

Adding
β

2
Ek‖zk −wk‖2 = β(1−p)

2
‖zk −wk−1‖2, (6.12)

which follows from the definition of wk , to (6.11), we obtain

Ek [Φk+1(z)+2τΘk+1(z)] ≤Φk (z)

+
(
2τ2L2 + β(1−p)

2

)
‖zk −wk−1‖2 − 1

2
‖zk − zk−1‖2 − β

2
‖zk−1 −wk−1‖2. (6.13)

The proof will be complete, if we can show that the expression in the second line is nonpositive.

Due to our choice of β and τ this is a matter of a simple algebra. As β+ 1 = 1p
1−p

, β
1+β =

1−√
1−p, and 2τL < 1−√

1−p = β
1+β , we have

2τ2L2 + β(1−p)

2
≤ 1

2

( β2

(1+β)2 + β

(1+β)2

)
= β

2(1+β)
. (6.14)

Then we must show that

β

1+β‖zk −wk−1‖2 ≤ ‖zk − zk−1‖2 +β‖zk−1 −wk−1‖2,

which is a direct consequence of ‖u+v‖2 ≤ (1+ 1
β )‖u‖2+(1+β)‖v‖2. The proof is complete. �

Theorem 6.3. Let Assumption 6.1 hold and let τ< 1−p1−p
2L . Then for the iterates {zk } of Algo-

rithm 6.1, almost surely there exists z? ∈Z? such that zk → z?.

Remark 6.4. For p = 1, i.e., when the algorithm becomes deterministic, the bound for the

stepsize is τ< 1
2L , which coincides with the one in [MT20b] and is known to be tight. In this

case analysis will be still valid if for convenience we assume that ∞·0 = 0.

For small p we might use a simpler bound for the stepsize, as the following corollary suggests.

Corollary 6.5. Suppose that p = 1
n and τ≤ p

4L = 1
4Ln . Then the statement of Theorem 6.3 holds.
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Proof. We only have to check that p
2 ≤ 1−√

1−p, which follows from
√

1−p ≤ 1− p
2 . �

6.3.2 Convergence rate for the general case

In this section, we prove that the average of the iterates of the algorithm exhibits O(1/k)

convergence rate which is optimal for solving monotone VIs [Nem04]. The standard quantity

to show sublinear rates for VIs is gap function which is defined as

G(z̄) = sup
z∈Z

〈F (z), z̄ − z〉+ g (z̄)− g (z).

As this quantity requires taking a supremum over the whole space Z which is potentially

unbounded, restricted versions of gap functions are used, for example in [Nes07, Mal19]

GC(z̄) = sup
z∈C

〈F (z), z̄ − z〉+ g (z̄)− g (z), (6.15)

where C ⊆ dom g is an arbitrary bounded set. It is known that GC(z̄) is a valid merit function,

as proven by [Nes07, Lemma 1]. As we are concerned with randomized algorithms, we derive

the rate of convergence for the expected gap function E [GC(zk )].

Theorem 6.6. Given {zk } generated by Algorithm 6.1, we define the averaged iterate zav
K =

1
K

∑K
k=1 zk . Let C ⊂ dom g be an arbitrary bounded set. Then under the hypotheses of Theo-

rem 6.3 it holds that

E
[
GC(zav

K )
]≤ 1

K

[
1

τ
sup
z∈C

‖z0 − z‖2 + 2τL2(1+β)

δβ
dist(z0,Z?)2

]
,

where δ= β
1+β − 4τ2L2(1+β)

β .

Remark 6.7. If we set p = 1
n , τ = p

3
p

2L
, and β = 1p

1−p
− 1, the rate will be bounded by

nL
K

(
3
p

2supz∈C ‖z0 − z‖2 +12
p

2dist(z0,Z?)2
)
, hence it is O( nL

K ).

The high level idea of the proof is that on top of Lemma 6.2 we sum the resulting inequality

and accumulate termsΘk (z). Then we use Jensen’s inequality to obtain the result.

There are two intricate points in these kind of results. First, the convergence measure is

the expected duality gap E[GC(zav
K )] that includes the expectation of the supremum. In a

standard analysis, it is easy to obtain a bound for the supremum of expectation, however

obtaining the former requires a technique, which is common in the literature for saddle point

problems [NJLS09, AFC21]. Roughly, the idea is to use an auxiliary iterate to characterize the

difference two quantities, and show that the error term does not degrade the rate.

Second, as duality gap requires taking a supremum over the domain, the rate might contain a

diameter term as in [CJST19]. The standard way to adjust this result for unbounded domains

is to utilize a restricted merit function as in (6.15) on which the rate is obtained [Nes07]. We
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note that the result in [CJST19] not only involves the domain diameter in the final bound, but

it also requires the domain diameter as a parameter for the algorithm in the general monotone

case [CJST19, Corollary 2].

It is worth mentioning that even though our method is simple and the convergence rate

is O(1/k) as in [CJST19], our complexity result has a worse dependence on n, compared

to [CJST19]. In particular, our complexity is O(n/ε) instead of the O(
p

n/ε) of [CJST19]. This

is because our step size has the factor of p which is of the order 1
n in general and it appears

to be tight based on numerical experiments. We see in Section 6.4.3 one way to get over this

issue and derive a method that works under our general assumptions and features favorable

complexity guarantees as in [CJST19].

6.3.3 Convergence rate for strongly monotone case

We show that linear convergence is attained when strong monotonicity is assumed.

Theorem 6.8. Let Assumption 6.1 hold and let F be µ-strongly monotone. Let z? be the unique

solution of (6.1). Then for Algorithm 6.1 with τ= p

4
p

2L
, it holds that

E‖zk − z?‖2 ≤
(
1− µp

8
p

2L

)k

‖z0 − z?‖2. (6.16)

Remark 6.9. We analyzed the case when F is strongly monotone, however, the same analysis

would go through when F is monotone and g is strongly convex. One can transfer strong

convexity of g to make F strongly monotone.

A key characteristic of our result is that strong monotonicity constant is not required in the

algorithm as a parameter to obtain the rate. This has been raised as an open question by [BB16]

and a partial answer is studied by [CGFLJ19] (see Table 2.1). Our result gives a full answer to

this question without using strong monotonicity constant in all cases.

We next discuss the dependence of µ in the convergence rate. Our rate has a dependence

of 1
µ compared to 1

µ2 of non-accelerated methods of [BB16] and the method of [CGFLJ19].

This difference is important especially when µ is small. On the other hand, in terms of

n, our complexity has a worse dependence compared to [CJST19] and accelerated method

of [BB16] as discussed before. Using the analysis we have in Section 6.4.3, one can improve

this complexity.

6.3.4 Beyond monotonicity

Lastly, we illustrate that our method has convergence guarantees for a class of non-monotone

problems. There exist several relaxations of monotonicity that are used in the literature [DL15a,

MLZ+19, IJOT17, Mal19]. Among these, we assume the existence of the solutions to Minty
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variational inequality given as

∃ẑ ∈Z : 〈F (z), z − ẑ〉+ g (z)− g (ẑ) ≥ 0, ∀z ∈Z . (6.17)

Under (6.17), we can drop the monotonicity assumption and show almost sure subsequential

convergence of the iterates of our method. Naturally, in this case one can no longer show

sequential convergence as with monotonicity (see Theorem 6.3).

Theorem 6.10. Suppose that Assumption 6.1 (a), (c), (d) and the condition (6.17) hold. Then

almost surely all cluster points of the sequence {zk } generated by Algorithm 6.1 are in Z?.

Proof. We will proceed as in Theorem 6.3 and [Mal19, Theorem 6]. We note that Lemma 6.2

does not use monotonicity of F , thus its follows in this case. In the inequality

Ek [Φk+1(z)+2τΘk+1(z)] ≤Φk (z).

we plug in z = ẑ for a point satisfying (6.17).

Then, by (6.17), we have

Θk+1(ẑ) = 〈F (zk+1), zk+1 − ẑ〉+ g (zk+1)− g (ẑ) ≥ 0.

We then argue the same way as in Theorem 6.3 to conclude that almost surely, {zk } is bounded

and cluster points of {zk } are in Z?.

Note that the steps in Theorem 6.3 for showing sequential convergence relies on the choice

of z as an arbitrary point in Z?, which is not the case here, therefore, we can only use the

arguments from Theorem 6.3 for showing subsequential convergence. �

6.4 Extensions

We illustrate extensions of our results to monotone inclusions and Bregman projections. We

also show how to improve the complexity bounds derived in the previous section. The proofs

for this section are given in the appendix in Section 6.6.

6.4.1 Monotone inclusions

We choose to focus on monotone VIs in the main part of the chapter for being able to derive

sublinear rates for the gap function. In this section, we show that our analysis extends directly

for solving monotone inclusions. In this case, we are interested in finding z such that 0 ∈ (A+
F )(z), where A,F are monotone operators and each Fi is Lipschitz with the form F = 1

n

∑n
i=1 Fi .

In this case, one changes the prox operator in the algorithm, to resolvent operator of A which

is defined as JτA(z) = (I +τA)−1(z). Then, one can use Lemma 6.1 as directly given in [MT20b,
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Proposition 2.3] to prove an analogous result of Theorem 6.3 for solving monotone inclusions.

Moreover, when A +F is strongly monotone, one can prove an analogue of Theorem 6.8.

We prove the former result and we note that the latter can be shown by applying the steps

in Theorem 6.8 on top of Theorem 6.11, which we do not repeat for brevity.

Theorem 6.11. Let A : Z ⇒ Z be maximally monotone and F : Z → Z be monotone with

F = 1
n

∑n
i=1 Fi , where Fi is L-Lipschitz for all i . Assume that (A +F )−1(0) is nonempty and let

the iterates {zk } be generated by Algorithm 6.1 with the update for zk+1

zk+1 = JτA(zk −τF (wk )−τ(Fik (zk )−Fik (wk−1))). (6.18)

Then, for τ< 1−p1−p
2L , almost surely there exist z? ∈ (A+F )−1(0) such that zk → z?.

6.4.2 Bregman distances

We developed our analysis in the Euclidean setting, relying on `2-norm for simplicity. However,

we can also generalize it to proximal operators involving Bregman distances. In this setting,

we have a distance generating function h : Z →R, which is 1-strongly convex and continuous.

We follow the standard convention to assume that subdifferential of h admits a continuous

selection, which means that there exists a continuous function ∇h such that ∇h(x) ∈ ∂h(x) for

all x ∈ dom∂h. We define the Bregman distance as D(z, z̄) = h(z)−h(z̄)−〈∇h(z̄), z − z̄〉. Then,

we will change the proximal step 4 of Algorithm 6.1 with

zk+1 = argmin
z

{
g (z)+〈F (wk )+Fik (zk )−Fik (wk−1), z − zk〉+

1

τ
D(z, zk )

}
. (6.19)

We prove an analogue of Lemma 6.2 with Bregman distances from which the convergence rate

results will follow.

Lemma 6.12. Let Assumption 6.1 hold and

Φk+1(z) := D(z, zk+1)+τ〈F (zk+1)−F (wk ), z − zk+1〉+
β

4
‖zk −wk‖2 + 1

2
D(zk+1, zk ).

Moreover, suppose τ< 1−p1−p
2L ,β= 1p

1−p
−1, and the iterates {zk } are generated by Algorithm 6.1

with the update (6.19) for zk+1. Then for any z ∈ dom g ,

Ek [Φk+1(z)+τΘk+1(z)] ≤Φk (z).

6.4.3 Improving complexity

We introduce a variance reduced extragradient algorithm in Algorithm 6.2, building on the

analysis techniques presented earlier in the chapter. This algorithm is able to use a bigger

step size that carefully balances the complexity bounds. For running algorithm in practice, we

suggest p = 2
N ,α= 1−p, and τ= 0.99

p
p

L . However, specific problem may require a more careful
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Algorithm 6.2 Extragradient with variance reduction

Input: Probability p ∈ (0,1], probability distribution Q, step size τ, α ∈ (0,1). Let z0 = w0

for k = 0,1, . . . do
z̄k =αzk + (1−α)wk

zk+1/2 = proxτg (z̄k −τF (wk ))
Draw an index ξk according to Q
zk+1 = proxτg (z̄k −τ[F (wk )+Fξk (zk+1/2)−Fξk (wk )])

wk+1 =
{

zk+1, with probability p

wk , with probability 1−p
end for

selection. As before, by eliminating all randomness, Algorithm 6.2 reduces to the classical

extragradient method in [Kor76, Nem04].

Analysis for the Euclidean case

For the iterates (zk ), (wk ) of Algorithm 6.2 and any z ∈ dom g , we define

Φk (z) :=α‖zk − z‖2 + 1−α
p

‖wk − z‖2.

Lemma 6.13. Let Assumption 6.1 hold, α ∈ [0,1), p ∈ (0,1], and τ=
p

1−α
L γ, for γ ∈ (0,1). Then

for (zk ) generated by Algorithm 6.2 and any z? ∈ Sol, it holds that

Ek [Φk+1(z?)] ≤Φk (z?)− (1−γ)
(
(1−α)‖zk+1/2 −wk‖2 +Ek‖zk+1 − zk+1/2‖2

)
.

Moreover, it holds that
∑∞

k=0

(
(1−α)E‖zk+1/2 −wk‖2 +E‖zk+1 − zk+1/2‖2

)
≤ 1

1−γΦ0(z?).

Proof. By convexity of g and the definitions of zk+1 and zk+1/2, we have that for all z,

〈zk+1 − z̄k +τ[F (wk )+Fξk (zk+1/2)−Fξk (wk )], z − zk+1〉 ≥ τg (zk+1)−τg (z),

〈zk+1/2 − z̄k +τF (wk ), zk+1 − zk+1/2〉 ≥ τg (zk+1/2)−τg (zk+1).
(6.20)

We sum two inequalities and arrange to get

〈zk+1 − z̄k , z − zk+1〉+〈zk+1/2 − z̄k , zk+1 − zk+1/2〉+τ〈Fξk (wk )−Fξk (zk+1/2), zk+1 − zk+1/2〉
+τ〈F (wk )+Fξk (zk+1/2)−Fξk (wk ), z − zk+1/2〉 ≥ τ[g (zk+1/2)− g (z)]. (6.21)

For the first inner product we use definition of z̄k and identity 2〈a,b〉 = ‖a +b‖2 −‖a‖2 −‖b‖2

2〈zk+1 − z̄k , z − zk+1〉 = 2α〈zk+1 − zk , z − zk+1〉+2(1−α)〈zk+1 −wk , z − zk+1〉
=α(‖zk − z‖2 −‖zk+1 − z‖2 −‖zk+1 − zk‖2)+ (1−α)

(‖wk − z‖2 −‖zk+1 − z‖2 −‖zk+1 −wk‖2)
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=α‖zk − z‖2 −‖zk+1 − z‖2 + (1−α)‖wk − z‖2 −α‖zk+1 − zk‖2 − (1−α)‖zk+1 −wk‖2. (6.22)

Similarly, for the second inner product in (6.21) we deduce

2〈zk+1/2 − z̄k , zk+1 − zk+1/2〉 =α‖zk+1 − zk‖2 −‖zk+1 − zk+1/2‖2 + (1−α)‖zk+1 −wk‖2

−α‖zk+1/2 − zk‖2 − (1−α)‖zk+1/2 −wk‖2. (6.23)

For the remaining terms in (6.21), we plug in z = z?, use that zk+1/2, wk is deterministic under

the conditioning of Ek and Ek
[
F (wk )+Fξk (zk+1/2)−Fξk (wk )

]= F (zk+1/2) to obtain

Ek
[〈F (wk )+Fξk (zk+1/2)−Fξk (wk ), z?− zk+1/2〉+ g (z?)− g (zk+1/2)

]
= 〈F (zk+1/2), z?− zk+1/2〉+ g (z?)− g (zk+1/2)

≤ 〈F (z?), z?− zk+1/2〉+ g (z?)− g (zk+1/2) ≤ 0 (6.24)

where the last step is due to monotonicity and definition of z?. Next, we estimate

Ek
[
2τ〈Fξk (wk )−Fξk (zk+1/2), zk+1 − zk+1/2〉

]≤ Ek
[
2τ‖Fξk (wk )−Fξk (zk+1/2)‖‖zk+1 − zk+1/2‖

]
≤ τ2

γ
Ek

[‖Fξk (zk+1/2)−Fξk (wk )‖2]+γEk
[‖zk+1 − zk+1/2‖2]

≤ (1−α)γ‖zk+1/2 −wk‖2 +γEk
[‖zk+1 − zk+1/2‖2] , (6.25)

by Cauchy-Scwarz, Young’s inequalities and Lipschitzness. We use (6.22), (6.23), (6.24), and (6.25)

in (6.21), after taking expectation Ek and letting z = z?, to deduce

Ek
[‖zk+1 − z?‖2]≤α‖zk − z?‖2 + (1−α)‖wk − z?‖2 − (1−α) (1−γ)‖zk+1/2 −wk‖2

− (
1−γ)

Ek
[‖zk+1 − zk+1/2‖2] . (6.26)

By the definition of wk+1 and Ek+1/2, it follows that

1−α
p

Ek+1/2
[‖wk+1 − z?‖2]= (1−α)‖zk+1 − z?‖2 + (1−α)

(
1

p
−1

)
‖wk − z?‖2. (6.27)

We add (6.27) to (6.26) and apply the tower property Ek [Ek+1/2[·]] = Ek [·] to deduce

αEk
[‖zk+1 − z?‖2]+ 1−α

p
Ek

[‖wk+1 − z?‖2]≤α‖zk − z?‖2 + 1−α
p

‖wk − z?‖2

− (1−γ)
(
(1−α)‖zk+1/2 −wk‖2 +Ek

[‖zk+1 − zk+1/2‖2])
.

Using the definition of Φk (z), we obtain the first result. Applyting total expectation and

summing the inequality yields the second result. �

Almost sure convergence of this method can be proven by using the same arguments as Theo-

rem 6.3. For brevity, we omit the proof.
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For the convergence rate, we use a similar technique as Theorem 6.6. We start with a simple

lemma for “switching” the order of maximum and expectation, which is required for showing

convergence of expected gap. Such a lemma is standard for such purpose [NJLS09].

Lemma 6.14. Let F = (Fk )k≥0 be a filtration and (uk ) a stochastic process adapted to F with

E[uk+1|Fk ] = 0. Then for any K ∈N, x0 ∈Z , and any compact set C ⊂Z ,

E

[
max
x∈C

K−1∑
k=0

〈uk+1, x〉
]
≤ max

x∈C
1

2
‖x0 −x‖2 + 1

2

K−1∑
k=0

E‖uk+1‖2.

Theorem 6.15. Let Assumption 6.1 hold, p ∈ (0,1],α= 1−p, and τ=
p

1−α
L γ, for γ ∈ (0,1). Then,

for zK = 1
K

∑K−1
k=0 zk+1/2, for the iterates of Algorithm 6.2, it follows that

E
[
Gap(zK )

]=O
(

Lp
pK

)
.

In particular, for τ=
p

p
2L , the rate is E

[
Gap(zK )

]≤ 17.5Lp
pK maxz∈C ‖z0 − z‖2.

Recall that we denote the cost of computing one Fξ(·) as Cost, and the cost of computing F (·)
as Cost×N . For a finite sum example, as in Section 7.2, this is the most natural assumption.

Corollary 6.16. Let the conjecture of Theorem 6.15 hold. Then the average total complex-

ity (see Remark 6.17) of Algorithm 6.2 to reach ε-accuracy is O
(
Cost× (pN +2)

(
1+ Lp

pε

))
. In

particular, for p = 2
N it is O

(
Cost×

(
N +

p
N L
ε

))
.

Remark 6.17. For Algorithm 6.2, since per iteration cost is random, the result is “average”

total complexity: expected number of iterations to get a small expected gap. On the other

hand, Algorithm 6.3 has a fixed cost per iteration, thus, it gives a more standard notion of

complexity: number of iterations to get a small expected gap.

Remark 6.18. To see why we let α = 1− p, consider the proof with any choice of α. The

resulting bound will beO
(

1p
1−α +

p
1−α
p

)
. Thenα= 1−p optimizes it in terms of p dependence.

Analysis for Bregman case

In this section, we use the same setup as Section 6.4.2, with primal-dual norm pair ‖ · ‖ and

‖ · ‖∗. We recall the three point identity which can be seen as the analogue of the standard

Euclidean identity 2〈a,b〉 = ‖a +b‖2
2 −‖a‖2

2 −‖b‖2
2:

〈∇h(x)−∇h(y), z −x〉 = D(z, y)−D(z, x)−D(x, y) ∀x, y, z ∈Z . (6.28)

Note that since h is 1-strongly convex with respect to norm ‖ ·‖, we have D(u, v) ≥ 1
2‖u − v‖2.

Naturally, we say that F : dom g → Z∗ is LF -Lipschitz, if ‖F (u)−F (v)‖∗ ≤ LF‖u − v‖, ∀u, v .

However, Lipschitzness for a stochastic oracle this time is more involved. We prefer stochastic
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oracles Fξ of F with as small L as possible. Moreover, the proof of Lemma 6.13 indicates

that in k-th iteration we need Lipschitzness only for already known two iterates. Hence,

following [GK95, CJST19], in contrast to Algorithm 6.2, we do not fix distribution Q in the

beginning, but allow it to vary from iteration to iteration.

Definition 6.19. We say that F has a stochastic oracle Fξ that is variable L-Lipschitz in mean,

if for any u, v ∈ dom g there exists a distribution Qu,v such that

(i) F is unbiased: F (z) = Eξ∼Qu,v

[
Fξ(z)

] ∀z ∈ dom g ;

(ii) Eξ∼Qu,v

[‖Fξ(u)−Fξ(v)‖2∗
]≤ L2‖u − v‖2.

Note that the second condition holds only for given u, v , but the constant L is universal for

all u, v . Changing u, v also changes a distribution, hence the name “variable”. Without loss

of generality, we denote any distribution that realizes the above Lipschitz bound for given u,

v by Qu,v . This definition resembles the one in [CJST19, Definition 2]. It is easy to see when

Qu,v =Q for all u, v , we get the same definition as before in Assumption 6.1.

For brevity we introduce the new set of assumptions. It is important to remark that Assump-

tion 6.2 is not a restriction of Assumption 6.1: every item is either the same or more general.

Assumption 6.2.

(i) The solution set Z? is nonempty.

(ii) The function g ∈Z →R∪ {+∞} is proper convex lsc.

(iii) The operator F : dom g →Z∗ is monotone.

(iv) The operator F has a stochastic oracle Fξ that is variable L-Lipschitz in mean (see Def-

inition 6.19).

In this setting, we can simply adjust the steps of Algorithm 6.2 and correspondingly the

analysis of Lemma 6.13, as in Section 6.4.2. However, to show a convergence rate, double

randomization in Algorithm 6.2 causes technical complications. Therefore, in the Bregman

setup we propose a double loop variant of Algorithm 6.2 (see Algorithm 6.3), similar to the

classical SVRG [JZ13]. Our algorithm can be seen as a variant of Mirror-Prox [Nem04] with

variance reduction.

Compared to Algorithm 6.2, w s serves the same purpose as wk : the snapshot point in the

language of SVRG [JZ13]. Since we have two loops in this case, we get w s by averaging, again,

similar to SVRG for non-strongly convex optimization [RHS+16, AZY16]. The difference due to

Bregman setup is that we have the additional point w̄ s that averages in the dual space. This

operation does not incur additional cost. For running algorithm in practice, we suggest K = N
2 ,

α= 1− 1
K , and τ= 0.99

p
p

L .
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Algorithm 6.3 Mirror-prox with variance reduction

1: Input: Step size τ, α ∈ (0,1), K > 0. Let z−1
j = z0

0 = w0 = z0,∀ j ∈ [K ]

2: for s = 0,1. . . do
3: for k = 0,1. . .K −1 do
4: zs

k+1/2 = argminz

{
g (z)+〈F (w s), z〉+ α

τD(z, zs
k )+ 1−α

τ D(z, w̄ s)
}

.

5: Fix distribution Qz s
k+1/2,w s and sample ξs

k according to it

6: zs
k+1 = argminz

{
g (z)+〈F (w s)+Fξs

k
(zs

k+1/2)−Fξs
k
(w s), z〉+ α

τD(z, zs
k )+ 1−α

τ D(z, w̄ s)
}

.

7: end for
8: w s+1 = 1

K

∑K
k=1 zs

k

9: ∇h(w̄ s+1) = 1
K

∑K
k=1∇h(zs

k )
10: zs+1

0 = zs
K

11: end for

Similar to Euclidean case, we define for the iterates (zs
k ) of Algorithm 6.3 and any z ∈ dom g ,

Φs(z) :=αD(z, zs
0)+ (1−α)

m∑
j=1

D(z, zs−1
j ),

where Φ0(z) = (α+K (1−α))D(z, z0), due to the definition of z−1 from Algorithm 6.3. Since we

have two indices s,k in Algorithm 6.3, we define F s
k =σ(z0

1/2, . . . , z0
K−1/2, . . . , zs

1/2, . . . , zs
k+1/2) and

Es,k [·] = E[·|F s
k

]
. We now introduce some definitions to be used in the proofs of this section.

Θs
k+1/2(z) = 〈F (zs

k+1/2), zs
k+1/2 − z〉+ g (zs

k+1/2)− g (z), (6.29)

e(z, s,k) = τ〈F (zs
k+1/2)−Fξs

k
(zs

k+1/2)−F (w s)+Fξs
k
(w s), zs

k+1/2 − z〉. (6.30)

δ(s,k) = τ〈Fξs
k
(w s)−Fξs

k
(zs

k+1/2), zs
k+1 − zs

k+1/2〉−
1

2
‖zs

k+1 − zs
k+1/2‖2 − 1−α

2
‖zs

k+1/2 −w s‖2

(6.31)

The first expression is for deriving the rate, the second e(z, s,k) for controlling the error caused

by maxz∈C E[·] 6= Emaxz∈C[·], and the third term δ(s,k) is nonpositive after taking expectation.

Lemma 6.20. Let Assumption 6.2 hold, α ∈ [0,1), and τ=
p

1−α
L γ for γ ∈ (0,1). We have:

(i) For any z ∈Z and s,K ∈N, it holds that

K−1∑
k=0

τΘs
k+1/2(z)+αD(z, zs+1

0 )+ (1−α)
K∑

j=1
D(z, zs

j )

≤αD(z, zs
0)+ (1−α)

K∑
j=1

D(z, zs−1
j )+

K−1∑
k=0

[e(z, s,k)+δ(s,k)].
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(ii) For any solution z?, it holds that

Es,0
[
Φs+1(z?)

]≤Φs(z?)− (1−α)(1−γ2)

2

K−1∑
k=0

Es,0
[‖zs

k+1/2 −w s‖2] .

(iii) It holds that
∑∞

s=0
∑K−1

k=0 E‖zs
k+1/2 −w s‖2 ≤ 2

(1−α)(1−γ2)Φ
0(z?).

In order to prove the convergence rate, we need the Bregman version of Lemma 6.14.

Lemma 6.21. Let F = (F s
k )s≥0,k∈[0,K−1] be a filtration and (us

k ) a stochastic process adapted to

F with E[us
k+1|F s

k ] = 0. Given x0 ∈Z , for any S ∈N and any compact set C ⊂ dom g

E

[
max
x∈C

S−1∑
s=0

K−1∑
k=0

〈us
k+1, x〉

]
≤ max

x∈C
D(x, x0)+ 1

2

S−1∑
s=0

K−1∑
k=0

E‖us
k+1‖2

∗.

Theorem 6.22. Let Assumption 6.2 hold, α ∈ [0,1), and τ =
p

1−α
L γ for γ ∈ (0,1). Then, for

zS = 1
K S

∑S−1
s=0

∑K−1
k=0 zs

k+1/2, with the iterates of Algorithm 6.3, it follows that

E
[
Gap(zS)

]≤ 1

τK S

(
1+

(
1+ 8γ2

1−γ2

)
(α+K (1−α)

)
max
z∈C

D(z, z0).

Corollary 6.23. Let K = N
2 and α = 1− 1

K = 1− 2
N , and τ =

p
1−α
L γ for γ ∈ (0,1). Then the

total complexity of Algorithm 6.3 to reach ε-accuracy is O
(
Cost×

(
N + L

p
N
ε

))
. In particular, if

τ=
p

1−α
3L =

p
2

3
p

N L
, the total complexity is Cost×

(
2N + 43

p
N L
ε maxz∈C D(z, z0)

)
.

6.5 Numerical verification

In this section, we include preliminary experimental results for our algorithms. We would like

to note that these results are mainly for verifying our theoretical results and are not intended

to serve as complete benchmarks. More experimental results can also be found in [AM21].

First, we apply Algorithm 6.1 to the unconstrained bilinear problem. It was shown in [CGFLJ19]

that this simple problem is particularly challenging for stochastic methods, due to unbounded-

ness of the domain, where the standard methods, such as stochastic extragradient method [JNT11],

diverges. Our assumptions are general enough to cover this case and we now verify in practice

that our method indeed converges for this problem by setting d = n = 100 and generating

Ai ∈Rd×d randomly with distribution N (0,1)

min
x∈Rd

max
y∈Rd

1

n

n∑
i=1

〈Ai x, y〉. (6.32)

For this experiment, we test the tightness of our step size rule by progressively increasing it.

Recall that our step size is τ= p
cL , where c = 4 is suggested in our analysis, see Corollary 6.5.

We try the values of c = {0.5,1,2,4} and observe that for c = 0.5 the algorithm diverges, see the
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Figure 6.1 – Left: bilinear problem. Middle: Constrained minimization with data generated by normal distribution.
Right: Constrained minimization with data generated by uniform distribution.

first plot in Figure 6.1. The message of this experiment is that even though slightly higher step

sizes than what is allowed in our theory might work, it is not possible to significantly increase

it.

The second problem we consider is constrained minimization, which is an instance where the

dual domain is not necessarily bounded. We want to solve

min
x∈C

f (x) s.t. hi (x) ≤ 0, i = 1, . . . ,m,

where f (x) = 1
2‖x −u‖2 for some u ∈ Z and hi (x) = ‖Ai x −bi‖2 −δi for Ai ∈ Rd×d , bi ∈ Rd ,

δi ∈ R++, and C is a unit ball. In other words, we want to find a projection of u onto the

intersection given by C and the constraint inequalities {x : hi (x) ≤ 0}. Introducing Lagrange

multipliers yi for each constraint, we obtain (see Section 5.7 for further details)

min
x∈Rd

max
y∈Rm+

f (x)+
m∑

i=1
yi hi (x).

As the Lipschitz constant in this problem does not admit a closed-form expression, we first

estimate the Lipschitz constant by finding an L such that deterministic method converges.

Next, we note that even though we analyzed Algorithm 6.1 with a single step size τ for both

primal and dual variables x, y , one can use different step sizes for primal and dual vari-

ables (see [Mal19, Section 4.1]). Therefore, we tuned the scaling of primal and dual step sizes

for both methods with one random instance and we used the same scaling for all tests for both

methods.

We set p = 1/m. Every iteration, the deterministic method needs to go through all m con-

straints to compute
∑m

i=1 yi∇hi (x), whereas our method computes ∇hi (x) for only one i . The

setup is with m = 400, d = 100, and the data is generated with the normal distribution N (0,1).

We ran 10 different instances of randomly generated data and plotted all results, see the second

plot in Figure 6.1. We observe that practical performance is similar with Algorithm 6.1 and

deterministic methods.
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In the third plot of Figure 6.1, we implement Algorithm 6.2 for solving simplex constrained

matrix games and compare with deterministic algorithms. We see that as predicted by the

theory of Algorithm 6.2, the practical performance improves that of deterministic methods.

6.6 Proofs

6.6.1 Proofs for Section 6.3

Proof of Lemma 6.1. By using the definition of x2 and convexity of g , we have for all x ∈Z

g (x) ≥ g (x2)+〈x1 −U1 − (V1 −U0)−x2, x −x2〉
= g (x2)+〈x1 −x2, x −x2〉−〈U1, x −x2〉−〈V1 −U0, x −x2〉. (6.33)

Since 2〈a,b〉 = ‖a‖2 +‖b‖2 −‖a −b‖2, ∀a,b, it follows that

2〈x1 −x2, x −x2〉 = ‖x1 −x2‖2 +‖x −x2‖2 −‖x −x1‖2.

Simple rearrangements give

−〈U1, x −x2〉 = 〈V2 −U1, x −x2〉−〈V2, x −x2〉

and

−〈V1 −U0, x −x2〉 =−〈V1 −U0, x −x1〉−〈V1 −U0, x1 −x2〉.
Using the last three equalities in (6.33) completes the result. �

Proof of Theorem 6.3. From Lemma 6.2 we have for any z ∈ dom g

Ek [Φk+1(z)+2τΘk+1(z)] ≤Φk (z).

First, we show that Φk+1(z) is nonnegative for all z ∈ dom g . This is straightforward but

tedious. Recall that 1−√
1−p = β

1+β and hence 2τL ≤ β
1+β . Then by Cauchy-Schwarz and

Young’s inequalities,

−2τ〈F (zk+1)−F (wk ), z − zk+1〉 ≤ 2τL‖zk+1 −wk‖‖zk+1 − z‖

≤ β

2(1+β)

(
‖zk+1 −wk‖2 +‖zk+1 − z‖2

)
≤ β

2(1+β)
‖zk+1 − z‖2 + β

2(1+β)

((
1+ 1

β

)‖zk+1 − zk‖2 + (1+β)‖zk −wk‖2
)

= β

2(1+β)
‖zk+1 − z‖2 + 1

2
‖zk+1 − zk‖2 + β

2
‖zk −wk‖2. (6.34)
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Therefore, we deduce

Φk+1(z) ≥ ‖zk+1 − z‖2 − β

2(1+β)
‖zk+1 − z‖2 ≥ 1

2
‖zk+1 − z‖2. (6.35)

Now let z = z̄ ∈Z?. Then by monotonicity of F and (6.1),

Θk+1(z̄) = 〈F (zk+1), zk+1 − z̄〉+ g (zk+1)− g (z̄) ≥ 〈F (z̄), zk+1 − z̄〉+ g (zk+1)− g (z̄) ≥ 0. (6.36)

Summing up, we have thatΘk+1(z̄) ≥ 0,Φk (z̄) ≥ 0 and Ek Φk+1(z̄) ≤Φk (z̄). Unfortunately, this is

still not sufficient for us, so we are going to strengthen this inequality by reexamining the proof

of Lemma 6.2. In estimating the second line of inequality (6.13) we used that 2τL ≤ 1−√
1−p,

however, both in the statements of Lemma 6.2 and Theorem 6.3 we assumed a strict inequality.

Let

δ= β

1+β − 4τ2L2(1+β)

β
⇐⇒ 4τ2L2 = β2

(1+β)2 − δβ

1+β . (6.37)

From 2τL < 1−√
1−p = β

1+β it follows that δ> 0. Now, inequality (6.14) can be improved to

equality as

2τ2L2 + β(1−p)

2
= 1

2

( β2

(1+β)2 − δβ

(1+β)
+ β

(1+β)2

)
= β(1−δ)

2(1+β)
. (6.38)

This change results in a slightly stronger version of (6.7)

Ek [Φk+1(z̄)+2τΘk+1(z̄)] ≤Φk (z̄)− δ

2

(
‖zk − zk−1‖2 +β‖zk−1 −wk−1‖2

)
. (6.39)

AsΦk+1(z̄) ≥ 0 andΘk+1(z̄) ≥ 0, we can apply Robbins-Siegmund lemma [RS71] to conclude

that {Φk+1(z̄)} converges almost surely and that

∞∑
k=1

E
[‖zk − zk−1‖2 +‖zk−1 −wk−1‖2]<∞. (6.40)

It then follows that almost surely, ‖zk − zk−1‖2 → 0 and ‖zk−1 −wk−1‖2 → 0. Moreover, due

to (6.35), {zk } is almost surely bounded and therefore by the definition ofΦk , continuity of F ,

and (6.40), we have that ‖zk − z̄‖2 converges almost surely.

More specifically, this means that for every z̄ ∈Z?, there exists Ωz̄ with P(Ωz̄ ) = 1 such that

∀ω ∈ Ωz̄ , ‖zk (ω) − z̄‖2 converges. We can strengthen this result by using the arguments

from [Ber11, Proposition 9], [CP15, Proposition 2.3] to obtain that there exists Ω with P(Ω) = 1

such that for every z̄ ∈Z? and for every ω ∈Ω, ‖zk (ω)− z̄‖2 converges.

We now pick a realization ω ∈Ω and note that zk (ω)− zk−1(ω) → 0 and zk−1(ω)−wk−1(ω) → 0.

Let us denote by z̃ a cluster point of the bounded sequence zk (ω). By using the definition of
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zk and convexity of g , as in the proof of Lemma 6.1, we have for any z ∈Z

g (z) ≥ g (zk (ω))+ 1

τ
〈zk−1(ω)− zk (ω), z − zk (ω)〉−〈F (wk−1(ω)), z − zk (ω)〉

−〈Fik−1 (zk−1(ω))−Fik−1 (wk−2(ω)), z − zk (ω)〉.

Taking the limit as k →∞ and using that g is l.s.c. and ∀i , Fi is Lipschitz, zk (ω)− zk−1(ω) → 0

and zk−1(ω)−wk−1(ω) → 0, we get that z̃ ∈Z?. Then, as we have that ‖zk (ω)− z̃‖2 converges

and we have shown that ‖zk (ω)− z̃‖2 converges to 0 at least on one sebsequence, we conclude

that the sequence (zk (ω)) converges to some point z̃, where z̃ ∈Z?. �

Proof of Theorem 6.6. First, we collect some useful bounds. Consider (6.39) with a specific

choice z̄ = PZ?(z0). Taking a full expectation and then summing that inequality, we get

δ

2

∞∑
k=0

E
[‖zk − zk−1‖2 +β‖zk−1 −wk−1‖2]≤ ‖z0 −PZ?

(z0)‖2 = dist(z0,Z?)2, (6.41)

which also implies by Young’s inequality that

βδ

2(1+β)

∞∑
k=0

E‖zk −wk−1‖2 ≤ dist(z0,Z?)2. (6.42)

Next, we rewrite (6.10) as

2τΘk+1(z)+‖zk+1 − z‖2 +2τ〈F (zk+1)−F (wk ), z − zk+1〉+
1

2
‖zk+1 − zk‖2

≤ ‖zk − z‖2 +2τ〈F (zk )−F (wk−1), z − zk〉+2τ2L2‖zk −wk−1‖2

+2τ〈Fik (zk )−Fik (wk−1)− (F (zk )−F (wk−1)), z − zk〉. (6.43)

Let νk = τ(Fik (zk )−Fik (wk−1)− (F (zk )−F (wk−1))), then Ek [νk ] = 0. We define the process {ẑk }

by ẑ0 = z0 and

ẑk+1 = ẑk +νk . (6.44)

Note that for Fk =σ{z1, . . . , zk , w1, . . . , wk−1}, ẑk is Fk -measurable. It also follows that ∀z ∈Z

‖ẑk+1 − z‖2 = ‖ẑk − z‖2 +2〈νk , ẑk − z〉+‖νk‖2, (6.45)

which after summation over k = 0, . . . ,K −1 yields

K−1∑
k=0

2〈νk , z − ẑk〉 ≤ ‖z0 − z‖2 +
K−1∑
k=0

‖νk‖2. (6.46)

With the definition of νk we can rewrite (6.43) as

2τΘk+1(z)+‖zk+1 − z‖2 +2τ〈F (zk+1)−F (wk ), z − zk+1〉+
1

2
‖zk+1 − zk‖2

≤ ‖zk − z‖2 +2τ〈F (zk )−F (wk−1), z − zk〉+2τ2L2‖zk −wk−1‖2
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+2〈νk , z − ẑk〉+2〈νk , ẑk − zk〉.

We use (6.12), the definition ofΦk , and the arguments in Lemma 6.2 to show that the last line

of (6.13) is nonpositive, to obtain

2τΘk+1(z)+Φk+1(z)+ β

2

(
Ek ‖zk −wk‖2 −‖zk −wk‖2

)
≤Φk (z)+2〈νk , z − ẑk〉+2〈νk , ẑk − zk〉. (6.47)

Summing this inequality over k = 0, . . . ,K −1 and using bound (6.46) yields

2τ
K−1∑
k=0

Θk+1(z)+ΦK (z)+ β

2

K−1∑
k=0

(
Ek ‖zk −wk‖2 −‖zk −wk‖2

)
≤Φ0(z)+2

K−1∑
k=0

〈νk , z − ẑk〉+2
K−1∑
k=0

〈νk , ẑk − zk〉

(6.46)≤ Φ0(z)+‖z0 − z‖2 +2
K−1∑
k=0

‖νk‖2 +2
K−1∑
k=0

〈νk , ẑk − zk〉

= 2‖z0 − z‖2 +2
K−1∑
k=0

‖νk‖2 +2
K−1∑
k=0

〈νk , ẑk − zk〉. (6.48)

We now take the supremum of this inequality over z ∈ C and then take a full expectation. As ẑk

is Fk -measurable, E[Ek [·]] = E[·], and Ekνk = 0, we have Ek [〈νk , ẑk − zk〉] = 0. Using this and

thatΦK (z) ≥ 0 by (6.35), we arrive at

τE

[
sup
z∈C

K−1∑
k=0

Θk+1(z)

]
≤ sup

z∈C
‖z0 − z‖2 +

K−1∑
k=0

E‖νk‖2. (6.49)

It remains to estimate the last term
∑K−1

k=0 E‖νk‖2. For this, we use a standard inequality

E‖X −EX ‖2 ≤ E‖X ‖2 and Lipschitzness of Fik

K−1∑
k=0

E‖νk‖2 =
K−1∑
k=0

Eτ2‖Fik (zk )−Fik (wk−1)− (F (zk )−F (wk−1))‖2

≤ τ2
K−1∑
k=0

E‖Fik (zk )−Fik (wk−1)‖2 ≤ τ2L2
K−1∑
k=0

E‖zk −wk−1‖2

(6.42)≤ 2τ2L2(1+β)

δβ
dist(z0,Z?)2. (6.50)

Plugging this bound into (6.49), we obtain

τE

[
sup
z∈C

K−1∑
k=0

Θk+1(z)

]
≤ sup

z∈C
‖z0 − z‖2 + 2τ2L2(1+β)

δβ
dist(z0,Z?)2. (6.51)
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Finally, using monotonicity of F , followed by Jensen inequality, we deduce

sup
z∈C

K−1∑
k=0

Θk+1(z) ≥ sup
z∈C

K∑
k=1

(
〈F (z), zk − z〉+ g (zk )− g (z)

)
≥ KGC(zav

K ),

which combined with (6.51) finishes the proof. �

Proof of Theorem 6.8. We start from (6.8) with ik = i ,

‖zk+1 − z‖2 +2τ〈F (zk+1)−F (wk ), z − zk+1〉+2τg (zk+1)−2τg (z)

+2τ〈F (zk+1), zk+1 − z〉 ≤ ‖zk − z‖2 +2τ〈Fi (zk )−Fi (wk−1), z − zk〉
+2τ〈Fi (zk )−Fi (wk−1), zk − zk+1〉−‖zk+1 − zk‖2

Setting z = z? and using strong monotonicity of F ,

〈F (zk+1), zk+1 − z?〉+ g (zk+1)− g (z?) ≥ 〈F (z?), zk+1 − z?〉+µ‖zk+1 − z?‖2

+ g (zk+1)− g (z?) ≥µ‖zk+1 − z?‖2.

Hence, we have

(1+2τµ)‖zk+1 − z?‖2 +2τ〈F (zk+1)−F (wk ), z?− zk+1〉+‖zk+1 − zk‖2

≤ ‖zk − z?‖2 +2τ〈Fi (zk )−Fi (wk−1), z?− zk〉
+2τ〈Fi (zk )−Fi (wk−1), zk − zk+1〉.

Then, we continue as in the proof of Theorem 6.3 until we obtain a stronger version of (6.39)

due to the strong monotonicity term

Ek

[
(1+2µτ)‖zk+1 − z?‖2 +2τ〈F (zk+1)−F (wk ), z?− zk+1〉

+ β

2
‖zk −wk‖2 + 1

2
‖zk+1 − zk‖2

]
≤ ‖zk − z?‖2 +2τ〈F (zk )−F (wk−1), z?− zk〉

+ β

2
‖zk−1 −wk−1‖2 + 1

2
‖zk − zk−1‖2 − δ

2

(
‖zk − zk−1‖2 +β‖zk−1 −wk−1‖2

)
. (6.52)

Let ak+1 = 1
2‖zk+1 − z?‖2 and

bk+1 =
1

2
‖zk+1 − z?‖2 +2τ〈F (zk+1)−F (wk ), z?− zk+1〉+

1

2
‖zk+1 − zk‖2 + β

2
‖zk −wk‖2.

Note that we have bk+1 + 1
2‖zk+1 − z?‖2 =Φk+1(z?) ≥ 1

2‖zk+1 − z?‖2 by (6.35), hence bk+1 ≥ 0.

Using the definitions of ak and bk in (6.52), it follows that for any ε≤ δ,

Ek
[
(1+4µτ)ak+1 +bk+1

]≤ ak +bk −
ε

2

(‖zk − zk−1‖2 +β‖zk−1 −wk−1‖2) , (6.53)
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Next, we derive

RHS of (6.53) = ak +bk −
ε

2
‖zk − zk−1‖2 − ε

2
β‖zk−1 −wk−1‖2 (6.54)

=
(
1+ ε

2

)
ak +

(
1− ε

2

)
bk −

ε

4
‖zk − zk−1‖2 − εβ

4
‖zk−1 −wk−1‖2

+ετ〈F (zk )−F (wk−1), z?− zk〉 ≤
(
1+ 3ε

2

)
ak +

(
1− ε

2

)
bk , (6.55)

where the last inequality follows from (6.34) with a shifted index k. Then, (6.53) becomes

Ek
[
(1+4µτ)ak+1 +bk+1

]≤ (
1+ 3ε

2

)
ak +

(
1− ε

2

)
bk . (6.56)

Since ε≤ δ is arbitrary, we can choose ε such that 1+4µτ> 1+ 3ε
2 . For instance, we can set

ε= min
{
δ,2µτ

}
, (6.57)

that results in

Ek
[
(1+4µτ)ak+1+bk+1

]≤ (1+3µτ)ak +
(
1− ε

2

)
bk

=
(
1− µτ

1+4µτ

)
(1+4µτ)ak +

(
1− ε

2

)
bk

≤
(
1−min

{
µτ

1+4µτ
,
ε

2

})(
(1+4µτ)ak +bk

)
. (6.58)

Taking a full expectation and using that ε
2 = min{δ2 ,µτ} and b0 = 0, we obtain

E
[
(1+4µτ)ak+1 +bk+1

]≤ (
1−min

{
µτ

1+4µτ
,
δ

2

})
E
[
(1+4µτ)ak +bk

]
≤

(
1−min

{
µτ

1+4µτ
,
δ

2

})k+1

(1+4µτ)a0.

Now it only remains to compute the contraction factor. By our choice of τ, we have τL = p

4
p

2
≤

1−p1−p

2
p

2
= β

2
p

2(1+β)
, and hence,

δ= β

1+β − 4τ2L2(1+β)

β
≥ β

2(1+β)
≥ 1−√

1−p

2
≥ p

4
. (6.59)

From µ≤ L it follows that 4µτ= µpp
2L

≤ pp
2
< 1 and, hence, µτ

1+4µτ ≥
µτ
2 = µp

8
p

2L
. Thus, we obtain

min

{
µτ

1+4µτ
,
δ

2

}
≥ min

{
µp

8
p

2L
,

p

8

}
= µp

8
p

2L
,

which finally implies the result. �
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6.6.2 Proofs for Section 6.4

We first need a generalized version of Lemma 6.1. In fact, this is the exact form proven

in [MT20b], therefore we do not provide its proof.

Lemma 6.24. [MT20b, Proposition 2.3] Let A : Z⇒Z be maximally monotone and let x1,U0,U1,

V1 ∈Z be arbitrary points. Define x2 as

x2 = J A(x1 −U1 − (V1 −U0)). (6.60)

Then for all x ∈Z , V2 ∈Z , and U ∈−A(x), we have

‖x2 −x‖2 +2〈V2 −U1, x −x2〉+2〈V2 −U , x2 −x〉
≤ ‖x1 −x‖2 +2〈V1 −U0, x −x1〉+2〈V1 −U0, x1 −x2〉−‖x1 −x2‖2. (6.61)

Proof of Theorem 6.11

Proof. We will start similar to Lemma 6.2. After setting U0 = τFi (wk−1), U1 = τF (wk ), V1 =
τFi (zk ), V2 = τF (zk+1), x1 = zk , x2 = zk+1 with ik = i and plugging into Lemma 6.24, we have

‖zk+1 − z‖2 +2τ〈F (zk+1)−F (wk ), z − zk+1〉 ≤ ‖zk − z‖2

+2τ〈Fi (zk )−Fi (wk−1), z − zk〉+2τ〈Fi (zk )−Fi (wk−1), zk − zk+1〉−‖zk+1 − zk‖2

−2τ〈F (zk+1)−F (z), zk+1 − z〉. (6.62)

We use monotonicity for the last term and get

‖zk+1 − z‖2 +2τ〈F (zk+1)−F (wk ), z − zk+1〉 ≤ ‖zk − z‖2 −‖zk+1 − zk‖2

+2τ〈Fi (zk )−Fi (wk−1), z − zk〉+2τ〈Fi (zk )−Fi (wk−1), zk − zk+1〉. (6.63)

The rest of Lemma 6.2 follows in this case the same way with the lack of the terms withΘk+1(z).

Then, similar arguments as in Theorem 6.3 with the changes of i ) not havingΘk+1(z), i i ) using

the definition of resolvent instead of proximal operator to show cluster points are solutions,

will give the result (see also [MT20b, Theorem 2.5]). �

We now present a version of Lemma 6.1 with the proximal operator using Bregman distance.

Lemma 6.25. Let g : Z →R∪ {+∞} be proper lower semicontinuous convex and let x1,U0,U1,

V1 ∈Z be arbitrary points. Define x2 as

x2 = argmin
z∈Z

{
g (z)+〈U1 + (V1 −U0), z −x1〉+D(z, x1)

}
. (6.64)

Then, for all x ∈Z , V2 ∈Z we have

D(x, x2)+〈V2 −U1, z −x2〉+〈V2, x2 −x〉+ g (x2)− g (x)
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≤ D(x, x1)+〈V1 −U0, x −x1〉+〈V1 −U0, x1 −x2〉−D(x2, x1). (6.65)

Proof. By the definition of x2, it follows from [Tse08, Property 1] that

g (x) ≥ g (x2)−〈U1 +V1 −U0, x −x2〉−D(x, x1)+D(x, x2)+D(x2, x1).

For the bilinear term, we argue the same as Lemma 6.1. �

Proof of Lemma 6.12

Proof. We will follow the proof of Lemma 6.2 with suitable changes for Bregman distances.

First, set U0 = τFi (wk−1), U1 = τF (wk ), V1 = τFi (zk ), V2 = τF (zk+1), x1 = zk , then x2 = zk+1

with ik = i and we plug these into (6.65) to get

D(z, zk+1)+τ〈F (zk+1)−F (wk ), z − zk+1〉+τ(〈F (zk+1), zk+1 − z〉
+ g (zk+1)− g (z)) ≤ D(z, zk )+τ〈Fi (zk )−Fi (wk−1), z − zk〉

+τ〈Fi (zk )−Fi (wk−1), zk − zk+1〉−D(zk+1, zk ).

First, note that by Lipschitzness of Fi , Cauchy-Schwarz, Young’s inequalities, and since 1
2‖zk −

zk−1‖2 ≤ D(zk , zk−1),

τ〈Fi (zk )−Fi (wk−1), zk − zk+1〉 ≤ τ2L2‖zk −wk−1‖2 + 1

4
‖zk − zk+1‖2

≤ τ2L2‖zk −wk−1‖2 + 1

2
D(zk+1, zk ) (6.66)

Thus, it follows that

D(z, zk+1)+τ〈F (zk+1)−F (wk ), z − zk+1〉+
1

2
D(zk+1, zk )+τΘk+1(z)

≤ D(z, zk )+τ〈Fi (zk )−Fi (wk−1), z − zk〉+τ2L2‖zk −wk−1‖2. (6.67)

Taking expectation conditioning on the knowledge of zk , wk−1 and using that Ek Fi (zk ) = F (zk ),

Ek Fi (wk−1) = F (wk−1), we obtain

Ek D(z, zk+1)+τEk〈F (zk+1)−F (wk ), z − zk+1〉+
1

2
Ek D(zk+1, zk )

+τEkΘk+1(z) ≤ D(z, zk )+τ〈F (zk )−F (wk−1), z − zk〉+τ2L2‖zk −wk−1‖2. (6.68)

Adding
β

4
Ek‖zk −wk‖2 = β(1−p)

4
‖zk −wk−1‖2, (6.69)

which follows by the definition of wk , to (6.68), we obtain
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Ek [Φk+1(z)+Θk+1(z)] ≤Φk (z)

+
(
τ2L2 + β(1−p)

4

)
‖zk −wk−1‖2 − 1

2
D(zk , zk−1)− β

4
‖zk−1 −wk−1‖2. (6.70)

To show that the last line is nonpositive, we use (6.14), Young’s inequality as in Lemma 6.2 and
1
2‖zk − zk−1‖2 ≤ D(zk , zk−1).

Nonnegativity ofΦk follows as in Theorem 6.3 after using 1
2‖zk − zk−1‖2 ≤ D(zk , zk−1). �

6.6.3 Proofs Section 6.4.3

Proof of Theorem 6.15

Proof of Lemma 6.14. First, we define the sequence xk+1 = xk +uk+1. It is easy to see that xk

is Fk -measurable. Next, by using the definition of (xk ), we have

‖xk+1 −x‖2 = ‖xk −x‖2 +2〈uk+1, xk −x〉+‖uk+1‖2.

Summing over k = 0, . . . ,K −1, we obtain

K−1∑
k=0

2〈uk+1, x −xk〉 ≤ ‖x0 −x‖2 +
K−1∑
k=0

‖uk+1‖2.

Next, we take maximum of both sides and then expectation

E

[
max
x∈C

K−1∑
k=0

〈uk , x〉
]
≤ max

x∈C
1

2
‖x0 −x‖2 + 1

2

K−1∑
k=0

E
[‖uk+1‖2]+K−1∑

k=0
E [〈uk+1, xk〉] .

We use the tower property, Fk -measurability of xk , and E [uk+1|Fk ] = 0 to finish the proof,

since
∑K−1

k=0 E [〈uk+1, xk〉] =
∑K−1

k=0 E [〈E [uk+1|Fk ] , xk〉] = 0. �

Proof of Theorem 6.15. Let

Θk+1/2(z) = 〈F (zk+1/2), zk+1/2 − z〉+ g (zk+1/2)− g (z).

We proceed as Lemma 6.13 until getting (6.26): using (6.22) and (6.23) in (6.21) gives

2τΘk+1/2(z)+‖zk+1 − z‖2 ≤α‖zk − z‖2 + (1−α)‖wk − z‖2

+2τ〈Fξk (wk )−Fξk (zk+1/2), zk+1 − zk+1/2〉
− (1−α)‖zk+1/2 −wk‖2 −‖zk+1 − zk+1/2‖2

+2τ〈F (zk+1/2)−Fξk (zk+1/2)−F (wk )+Fξk (wk ), zk+1/2 − z〉,︸ ︷︷ ︸
e1(z,k)

(6.71)

where we call the last term by e1(z,k).

178



6.6. Proofs

Now, we set α= 1−p. We want to rewrite (6.71) usingΦk (z) = (1−p)‖zk −z‖2+‖wk −z‖2. For

this, we need to add ‖wk+1 − z‖2 −‖wk − z‖2 to both sides. Then, we define the error

e2(z,k) = p‖wk − z‖2 +‖wk+1 − z‖2 −‖wk − z‖2 −p‖zk+1 − z‖2

= 2〈pzk+1 + (1−p)wk −wk+1, z〉−p‖zk+1‖2 − (1−p)‖wk‖2 +‖wk+1‖2.

With this at hand, we can cast (6.71) as

2τΘk+1/2(z)+Φk+1(z) ≤Φk (z)+e1(z,k)+e2(z,k)

+2τ〈Fξk (wk )−Fξk (zk+1/2), zk+1 − zk+1/2〉
−p‖zk+1/2 −wk‖2 −‖zk+1 − zk+1/2‖2.

We sum this inequality over k = 0, . . . ,K −1, take maximum of both sides over z ∈ C, and then

take total expectation to obtain

2τKE
[
Gap(zK )

]≤ max
z∈C

Φ0(z)+E
[

max
z∈C

K−1∑
k=0

(
e1(z,k)+e2(z,k)

)]

−E
K−1∑
k=0

(
‖zk+1 − zk+1/2‖2 +p‖zk+1/2 −wk‖2

)
+2τE

K−1∑
k=0

[〈Fξk (wk )−Fξk (zk+1/2), zk+1 − zk+1/2〉
]

(6.72)

where we used Emax
z∈C

K−1∑
k=0

Θk+1/2(z) ≥ KE
[
Gap(zK )

]
, which follows from monotonicity of F ,

linearity of zk+1/2 7→ 〈F (z), zk+1/2 − z〉, and convexity of g .

The tower property, the estimation from (6.25), and 1−α= p applied on (6.72) imply

2τKE
[
Gap(zK )

]≤ max
z∈C

Φ0(z)+E
[

max
z∈C

K−1∑
k=0

(
e1(z,k)+e2(z,k)

)]
. (6.73)

Therefore, the proof will be complete upon deriving an upper bound for the second term on

RHS. We instantiate Lemma 6.14 twice for this bound. First, for e1(z,k) we set in Lemma 6.14,

Fk =σ(ξ0, . . . ,ξk−1, wk ), x̃0 = z0, uk+1 = 2τ
(
[Fξk (zk+1/2)−Fξk (wk )]− [F (zk+1/2)−F (wk )]

)
,

where by definition we set F0 =σ(ξ0,ξ−1, w0) =σ(ξ0). With this, we obtain the bound

E

[
max
z∈C

K−1∑
k=0

e1(z,k)

]
= E

[
max
z∈C

K−1∑
k=0

〈uk+1, z〉
]
−E

[
K−1∑
k=0

〈uk+1, zk+1/2〉
]
= E

[
max
z∈C

K−1∑
k=0

〈uk+1, z〉
]

≤ max
z∈C

1

2
‖z0 − z‖2 + 1

2

K−1∑
k=0

E‖uk+1‖2

≤ max
z∈C

1

2
‖z0 − z‖2 +2τ2L2

K−1∑
k=0

E‖zk+1/2 −wk‖2, (6.74)
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where the second equality follows by the tower property, Ek [uk+1] = 0, and Fk -measurability

of zk+1/2. The last inequality is due to

E‖uk+1‖2 = E[
Ek ‖uk+1‖2]≤ 4τ2E

[
Ek ‖Fξk (zk+1/2)−Fξk (wk )‖2]≤ 4τ2L2E‖zk+1/2 −wk‖2,

where we use the tower property, E‖X −EX ‖2 ≤ E‖X ‖2, and Assumption 6.1(iv).

Second, we set in Lemma 6.14

Fk =σ(ξ0, . . . ,ξk , wk ), x̃0 = z0, uk+1 = pzk+1 + (1−p)wk −wk+1,

and use E
[
Ek+1/2[‖wk+1‖2 −p‖zk+1‖2 − (1−p)‖wk‖2]

]= 0, to obtain the bound

Emax
z∈C

K−1∑
k=0

e2(z,k) = 2Emax
z∈C

K−1∑
k=0

〈uk+1, z〉 ≤ max
z∈C

‖z0 − z‖2 +
K−1∑
k=0

E‖uk+1‖2

= max
z∈C

‖z0 − z‖2 +p(1−p)
K−1∑
k=0

E‖zk+1 −wk‖2, (6.75)

where the inequality follows from Lemma 6.14 and the second equality from the derivation

E‖uk+1‖2 = E[
Ek+1/2 ‖uk+1‖2]= E[

Ek+1/2 ‖Ek+1/2 [wk+1]−wk+1‖2]
= E[

Ek+1/2 ‖wk+1‖2 −‖Ek+1/2 [wk+1]‖2]
= E[

p‖zk+1‖2 + (1−p)‖wk‖2 −‖pzk+1 + (1−p)wk‖2]= p(1−p)E‖zk+1 −wk‖2,

which uses E‖X −EX ‖2 = E‖X ‖2 −‖EX ‖2.

Combining (6.74), (6.75), and (6.73), we finally arrive at

2τKE
[
Gap(zK )

]≤ max
z∈C

Φ0(z)+max
z∈C

1

2
‖z0 − z‖2 +2τ2L2

K−1∑
k=0

E‖zk+1/2 −wk‖2

+max
z∈C

‖z0 − z‖2 +p(1−p)
K−1∑
k=0

E‖zk+1 −wk‖2 (6.76)

We have to estimate terms under the sum:

E

[
K−1∑
k=0

(
2τ2L2‖zk+1/2 −wk‖2 +p(1−p)‖zk+1 −wk‖2)]

≤ p E

[
K−1∑
k=0

(
2‖zk+1/2 −wk‖2 +‖zk+1 −wk‖2)]

≤ p E

[
K−1∑
k=0

(
(2+

p
2)‖zk+1/2 −wk‖2 + (2+

p
2)‖zk+1 − zk+1/2‖2

)]

≤ 2+p
2

1−γ Φ0(z∗) ≤ 3.5

1−γ max
z∈C

Φ0(z), (6.77)
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where the first inequality in (6.77) uses Lemma 6.13 and 1−α= p.

Now we use that w0 = z0 and, hence,Φ0(z) = (2−p)‖z0 − z‖2 ≤ 2‖z0 − z‖2 in (6.76). This yields

2τKE
[
Gap(zK )

]≤ (
2+ 3

2
+ 7

1−γ
)

max
z∈C

‖z0 − z‖2 = 7

(
1

2
+ 1

1−γ
)

max
z∈C

‖z0 − z‖2.

Finally, using τ=
p

pγ
L , we obtain

E
[
Gap(zK )

]≤ 7L

2
p

pγK

(
1

2
+ 1

1−γ
)

max
z∈C

‖z0 − z‖2 =O
(

Lp
pK

)
.

In particular, with a stepsize τ=
p

p
2L , the right-hand side reduces to 17.5Lp

pK maxz∈C ‖z0 − z‖2. �

Proof of Corollary 6.16. In average each iteration costs pNCost+2Cost = (pN +2)Cost. To

reach ε-accuracy we need
⌈
O

(
Lp
pε

)⌉
iterations. Hence, the total average complexity is

O
(

Cost×(pN+2)Lp
pε

)
. Finally, the optimal choice p = 2

N results in O
(

Cost×pN L
ε

)
complexity. �

Proof of Theorem 6.22

Proof of Lemma 6.21. Define for each s ≥ 0 and for k ∈ {0, . . . ,K −1},

xs
k+1 = argmin

x∈dom g
{〈−us

k+1, x〉+D(x, xs
k )}, and let xs+1

0 = xs
m .

First, we observe xs
k is F s

k -measurable. By the definition of xs
k+1, we have for all x ∈ dom g ,

〈∇h(xs
k+1)−∇h(xs

k )−us
k+1, x −xs

k+1〉 ≥ 0.

We apply three point identity to obtain

D(x, xs
k )−D(x, xs

k+1)−D(xs
k+1, xs

k )−〈us
k+1, x −xs

k+1〉 ≥ 0.

We estimate the inner product by Hölder’s, Young’s inequalities, and strong convexity of h,

〈us
k+1, x −xs

k+1〉 = 〈us
k+1, x −xs

k〉+〈us
k+1, xs

k −xs
k+1〉

≥ 〈us
k+1, x −xs

k〉−
1

2
‖us

k+1‖2
∗−

1

2
‖xs

k+1 −xs
k‖2

≥ 〈us
k+1, x −xs

k〉−
1

2
‖us

k+1‖2
∗−D(xs

k+1, xs
k ),

which, combined with the previous inequality gives

〈us
k+1, x〉 ≤ D(x, xs

k )−D(x, xs
k+1)+〈us

k+1, xs
k〉+

1

2
‖us

k+1‖2
∗.
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We sum this inequality over k, s, take maximum, use xs+1
0 = xs

K and the same derivations as at

the end of the proof of Lemma 6.14 to show
∑S−1

s=0
∑K−1

k=0 E
[〈us

k+1, xs
k〉

]= 0. �

Proof of Lemma 6.20. By the definition of zs
k+1/2, using convexity of g and three point identity

(for example see [AM21, Lemma 3.2]), we have

τ
(
g (zs

k+1)− g (zs
k+1/2)+〈F (w s), zs

k+1 − zs
k+1/2〉

)≥ D(zs
k+1, zs

k+1/2)

+α
(
D(zs

k+1/2, zs
k )−D(zs

k+1, zs
k )

)
+ (1−α)

(
D(zs

k+1/2, w̄ s)−D(zs
k+1, w̄ s)

)
. (6.78)

With the same reasoning as the previous inequality, by using zs
k+1, we have for any z ∈Z

τ
(
g (z)− g (zs

k+1)+〈F (w s)+Fξs
k
(zs

k+1/2)−Fξs
k
(w s), z − zs

k+1〉
)
≥ D(z, zs

k+1)

+α
(
D(zs

k+1, zs
k )−D(z, zs

k )
)
+ (1−α)

(
D(zs

k+1, w̄ s)−D(z, w̄ s)
)
. (6.79)

Note that for any u, v , the expression D(u, w̄ s)−D(v, w̄ s) is linear in terms of ∇h(w̄ s), that is

D(u, w̄ s)−D(v, w̄ s) = 1

K

K∑
j=1

(
D(u, zs−1

j )−D(v, zs−1
j )

)
. (6.80)

Summing up (6.78) and (6.79) and using (6.80), we obtain

τ
(
g (z)− g (zs

k+1/2)+〈F (w s)+Fξs
k
(zs

k+1/2)−Fξs
k
(w s), z − zs

k+1/2〉
)
≥ D(z, zs

k+1)−αD(z, zs
k )

+ 1−α
K

K∑
j=1

D(zs
k+1/2, zs−1

j )− 1−α
K

K∑
j=1

D(z, zs−1
j )+D(zs

k+1, zs
k+1/2)

+τ〈Fξs
k
(zs

k+1/2)−Fξs
k
(w s), zs

k+1 − zs
k+1/2〉. (6.81)

By D(u, v) ≥ 1
2‖u − v‖2 and Jensen’s inequality, we have

1−α
K

K∑
j=1

D(zs
k+1/2, zs−1

j ) ≥ 1−α
K

K∑
j=1

1

2
‖zs

k+1/2 − zs−1
j ‖2 ≥ 1−α

2
‖zs

k+1/2 −w s‖2, (6.82)

D(zs
k+1, zs

k+1/2) ≥ 1

2
‖zs

k+1 − zs
k+1/2‖2. (6.83)

By using (6.29), (6.82), and (6.83) in (6.81), we deduce

τΘs
k+1/2(z)+D(z, zs

k+1) ≤αD(z, zs
k )+ 1−α

K

K∑
j=1

D(z, zs−1
j )

+τ〈Fξs
k
(w s)−Fξs

k
(zs

k+1/2), zs
k+1 − zs

k+1/2〉−
1

2
‖zs

k+1 − zs
k+1/2‖2 − 1−α

2
‖zs

k+1/2 −w s‖2,

+τ〈F (zs
k+1/2)−Fξs

k
(zs

k+1/2)−F (w s)+Fξs
k
(w s), zs

k+1/2 − z〉︸ ︷︷ ︸
e(z,s,k)

,
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where we have defined the last term as e(z, s,k) (see (6.30)). We sum this inequality over k to

obtain the result in (i ).

Next, similar to (6.25), we estimate by Assumption 6.2(iv) and Young’s inequality

τEs,k〈Fξs
k
(w s)−Fξs

k
(zs

k+1/2), zs
k+1 − zs

k+1/2〉

≤ Es,k

[
τ2

2
‖Fξs

k
(w s)−Fξs

k
(zs

k+1/2)‖2
∗+

1

2
‖zs

k+1 − zs
k+1/2‖2

]
≤ (1−α)γ2

2
‖zs

k+1/2 −w s‖2 + 1

2
Es,k‖zs

k+1 − zs
k+1/2‖2, (6.84)

since τ2L2 = (1−α)γ2. We take expectation of (6.81), plug in z = z∗; use (6.24), (6.84), (6.82),

and (6.83) to get

Es,k
[
D(z∗, zs

k+1)
]≤αD(z∗, zs

k )+ 1−α
K

K∑
j=1

D(z∗, zs−1
j )+ (1−α)(γ2 −1)

2
‖zs

k+1/2 −w s‖2. (6.85)

By using Es,0[·] = Es,0
[
Es,k [·]], we have

Es,0D(z∗, zs
k+1) ≤ Es,0

[
αD(z∗, zs

k )+ 1−α
K

K∑
j=1

D(z∗, zs−1
j )− (1−α)(1−γ2)

2
‖zs

k+1/2 −w s‖2
]

.

(6.86)

Summing the inequality over k = 0, . . . ,K −1 and using the definition ofΦs(z∗) with zs+1
0 = zs

K ,

we get (ii). Finally, we take total expectation of (ii) and sum over s to obtain (iii). �

Proof of Theorem 6.22. We start with the result of Lemma 6.20 and proceed similar to Theo-

rem 6.15. Since zs+1
0 = zs

K , we use definition ofΦs(z), and sum the inequality in Lemma 6.20(i)

over s to obtain

S−1∑
s=0

K−1∑
k=0

τΘs
k+1/2(z)+ΦS(z) ≤Φ0(z)+

S−1∑
s=0

K−1∑
k=0

[e(z, s,k)+δ(s,k)]

We take maximum and expectation, use E
[

maxz∈C
∑S−1

s=0
∑K−1

k=0 τΘ
s
k+1/2(z)

]
≥ τK SE

[
Gap(zS)

]
to deduce

τK SE
[
Gap(zS)

]≤ max
z∈C

Φ0(z)+E
[

max
z∈C

S−1∑
s=0

K−1∑
k=0

e(z, s,k)

]
+E

[
S−1∑
s=0

K−1∑
k=0

δ(s,k)

]
.

The term E
∑S−1

s=0
∑K−1

k=0 δ(s,k) is nonpositive by the tower property, Lipschitzness, Young’s

inequality, and τ <
p

p
L (the same arguments used in (6.84) can be applied here with δ(s,k)

defined as (6.31)). Therefore,

τK SE
[
Gap(zS)

]≤ max
z∈C

Φ0(z)+E
[

max
z∈C

S−1∑
s=0

K−1∑
k=0

e(z, s,k)

]
.
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We next bound the second term on RHS, similar to the proof of Theorem 6.15. For s ∈ {0, . . . ,S−
1} and k ∈ {0, . . . ,K−1}, setF s

k =σ(z0
1/2, . . . , z0

K−1/2, . . . , zs
1/2, . . . , zs

k+1/2), us
k+1 = τ[F (w s)−Fξs

k
(w s)−

F (zs
k+1/2)+Fξs

k
(zs

k+1/2)], which help us write

Emax
z∈C

S−1∑
s=0

K−1∑
k=0

e(z,k) = Emax
z∈C

S−1∑
s=0

K−1∑
k=0

τ〈F (w s)−Fξs
k
(w s)−F (zs

k+1/2)+Fξs
k
(zs

k+1/2), z − zs
k+1/2〉

= Emax
z∈C

S−1∑
s=0

K−1∑
k=0

〈us
k+1, z〉−

S−1∑
s=0

K−1∑
k=0

E〈us
k+1, zs

k+1/2〉 = Emax
z∈C

S−1∑
s=0

K−1∑
k=0

〈us
k+1, z〉,

where the last equality is by the tower property, F s
k -measurability of zs

k+1/2 and Es,k [us
k+1] = 0.

We apply Lemma 6.21 with the specified F s
k , us

k+1 to obtain

Emax
z∈C

S−1∑
s=0

K−1∑
k=0

e(z,k) ≤ max
z∈C

D(z, z0)+
S−1∑
s=0

K−1∑
k=0

τ2E‖Fξs
k
(zs

k+1/2)−Fξs
k
(w s)+F (w s)−F (zs

k+1/2)‖2
∗

≤ max
z∈C

D(z, z0)+
S−1∑
s=0

K−1∑
k=0

4τ2E‖Fξs
k
(zs

k+1/2)−Fξs
k
(w s)‖2

∗ (6.87)

≤ max
z∈C

D(z, z0)+
S−1∑
s=0

K−1∑
k=0

4τ2L2E‖zs
k+1/2 −w s‖2 (6.88)

≤ max
z∈C

D(z, z0)+ 8τ2L2

(1−α)(1−γ2)
Φ0(z?), (6.89)

where (6.87) is due to the tower property and E‖X −EX ‖2∗ ≤ 2E‖X ‖2∗+2‖EX ‖2∗ ≤ 4E‖X ‖2∗, which

follows from triangle inequality, Young’s inequality, and Jensen’s inequality. Moreover, (6.88)

is by variable Lipschitzness of Fξ, and the last step is by Lemma 6.20. Consequently, by

Φ0(z?) ≤ maxz∈CΦ0(z) = (α+K (1−α))maxz∈C D(z, z0) and τ2L2 = (1−α)γ2 we have

τK SE
[
Gap(zS)

]≤ max
z∈C

[
D(z, z0)+

(
1+ 8τ2L2

(1−α)(1−γ2)

)
Φ0(z)

]
=

(
1+

(
1+ 8γ2

1−γ2

)
(α+K (1−α)

)
max
z∈C

D(z, z0). �

Proof of Corollary 6.23. As α= 1− 1
K , it holds that α+K (1−α) = 1− 1

K +1 ≤ 2. With this, from

Theorem 6.22 it follows

E
[
Gap(zS)

]≤ 1

τK S

(
1+

(
1+ 8γ2

1−γ2

)
(α+K (1−α)

)
max
z∈C

D(z, z0)

≤ Lp
KγS

(
3+ 16γ2

1−γ2

)
max
z∈C

D(z, z0) =O
(

Lp
N S

)
. (6.90)

One epoch requires one evaluation of F and 2K of Fξ, thus in total we have (N +2K )Cost =
2NCost. To reach ε accuracy, we need

⌈
O

(
Lp
Nε

)⌉
epochs. Hence, the final complexity is
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O
(
Cost×

(
N + L

p
N
ε

))
. By setting γ= 1

3 in (6.90), we get specific constants. We have

E
[
Gap(zS)

]≤ 15Lp
K S

max
z∈C

D(z, z0) = 15
p

2Lp
N S

max
z∈C

D(z, z0).

Since 30
p

2 < 43, the final complexity is Cost×
(
2N + 43

p
N L
ε maxz∈C D(z, z0)

)
. �

6.7 Bibliographic note

For the results in Section 6.4.3, the main contributions of the author of this dissertation are

derivation of the improved complexity results in Euclidean case and designing and analyzing

the algorithm for Bregman case. The design of the algorithm in the Euclidean case (Algo-

rithm 6.2) (in particular, the idea of using z̄k for improving the step size) and the initial proof

for the Euclidean case (in particular, Lemma 6.13) are due to Yura Malitsky.
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7 Sample complexity of two-player zero
sum Markov Games

In this chapter, we focus on two player zero-sum Markov games, with applications in competi-

tive reinforcement learning (RL). Unlike the previous chapters, this problem can be nonconvex-

nonconcave, however it has a special structure that ensures tractability. We provide some

preliminary results on improving the sample complexity of policy gradient methods for this

problem. Our analysis have intimate connections to the techniques presented in Chapters 4–6.

Therefore, we believe that this chapter is a good illustration of importance of fundamental

techniques for convex-concave problems, even when solving nonconvex problems that arise

in modern machine learning.

This chapter is based on the unpublished joint work with Niao He, Luca Viano and Volkan

Cevher.

7.1 Introduction
Markov game framework is introduced by [Sha53] as stochastic games and popularized in RL

with [Lit94]. In the basic form of the model, two agents with competing interests interact

in an environment where the reward and the state transition depend on the actions of both

players. Even with this simplicity, such systems have seen impressive success for example in

game-playing and robotics [KBP13, SSS+17, MKS+15, VBC+19, BS19].

While value-based methods [SWYY20, BJY20, BJ20, XCWY20, TWYS20] offer near-optimal guar-

antees, the policy gradient (PG) methods, including actor-critic (AC) algorithms have found

limited use in the zero-sum Markov games despite their model-free and easy-to-implement

structure, their flexibility and generality [SLA+15, SWD+17, WBH+17].

The PG methods [Kak01, SMSM00] directly optimize the value function in the policy space— a

non-convex optimization problem even in the basic tabular, single agent setting. Intriguingly,

recent results [AKLM20, CCC+20, MXSS20, BR19, BR21, XWL20b, Lan21, KDMR21, HWWY20,

XWL20a, KDMR21] demonstrate globally optimal convergence of PG methods by identifying

hidden convexity, including extensions to the multi-agent setting [DFG20, WLZL21, ZTLD21].
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The existing results on PG methods for tabular two-player zero-sum Markov games mostly fo-

cus on decentralized algorithms with sample complexities Õ(ε−12.5) [DFG20], Õ(ε−8) [WLZL21],

and even Õ(ε−4) with more restrictions [WLZL21]; see Section 7.1.2 for the details. With

function approximation, [ZTLD21] obtains Õ(ε−6) sample complexity when given access to

unbiased sampling oracles for the value functions.

On the other hand, the best-known sample complexity for converging to a globally optimal

policy in the single agent problem is Õ(ε−2) in the tabular case [Lan21]. As this complexity is

achieved by value-based/model-based methods in the multi-agent setting [SWYY20, ZKBY20],

one expects a similar complexity to be attainable for policy-based methods. Our work precisely

bridges this gap and develops policy gradient methods whose performance for multi-agent RL

is closer to their single agent counterparts.

7.1.1 Contributions

We propose an algorithm based on actor-critic framework for solving two-player zero-sum

Markov games in the tabular case, that match the best-known sample complexity results to

find a globally optimal policy in the single agent setting [Lan21, KDMR21, HWWY20, XWL20b].

Surprisingly, we achieve these results—to our knowledge, for the first time with policy gradient

methods—mostly by a careful adaptation of the recent results for policy gradient methods

in single agent setting, temporal difference learning, error propagation framework of policy

iteration, and by employing techniques from stochastic primal-dual optimization in the

two-stage framework of [PSPP15].

These developments require a careful algorithm design and analysis. In particular, two-stage

nature of the algorithm incurs biases between the stages that we have to control carefully.

Obtaining Õ(ε−2) complexity requires a tighter analysis for both stages of the algorithm, with

strict control on the aforementioned bias. Therefore, it requires more advanced techniques

and algorithms, inspired from the stochastic primal-dual optimization literature. We explicitly

highlight our important new techniques as insights in the sequel. The full proofs are included

in the appendices.

7.1.2 Related works

Policy gradient methods. Recently, there is growing interest in global convergence of pol-

icy gradient methods in the single agent setting. In particular, several papers have shown

convergence rates of natural policy gradient (NPG) methods in the tabular setting with as-

suming access to exact value function oracle [AKLM20, CCC+20, MXSS20, BR19, BR21] and

when value functions are estimated from data [SEM20, XWL20b, Lan21, KDMR21, HWWY20,

XWL20a, KDMR21]. To our knowledge, the best sample complexity for NPG methods with in-

ner loop for policy evaluation is Õ(ε−2) and is due to [Lan21]. For two time-scale NAC, the best

sample complexity is Õ(ε−4) as obtained in [KDMR21, HWWY20, XWL20b] (see also [KCM21,
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Table 1]). For a general overview of results in multi agent RL we refer to [ZYB21] and here we

only cover the results most related to ours.

Policy gradient methods for two-player zero-sum Markov games. With the positive results

on global convergence of PG methods for single agent problems, translating these results to

the competitive multi-agent setting has been the goal of many recent works. In particular,

independent policy gradient methods where the agents are interacting symmetrically has

been considered in [DFG20, WLZL21]. The work of [DFG20] built on [AKLM20] by using REIN-

FORCE gradient estimator [Wil92] and obtained sample complexity of O(ε−12.5) for reaching

to one-sided Nash equilibrium.

The algorithm of [WLZL21] built on optimistic gradient descent-ascent (GDA) method com-

bined with a running estimate of the value function, obtaining Õ(ε−8) sample complexity for

obtaining a policy pair with small duality gap. In addition, [WLZL21] showed that one can im-

prove this complexity to Õ(ε−4) when restricted to Euclidean setup with metric subregularity

assumption. There are two drawbacks of this result: First, as pointed out in [DFG20], metric

subregularity constant can be arbitrarily small, resulting in degradation of the rate. Second,

as also pointed out by [WLZL21], this result is limited to Euclidean setting and cannot be

extended to the NPG with softmax policy update, which is non-Euclidean. The algorithm can

be seen similar to the gradient ascent algorithm in [AKLM20]. As shown in [AKLM20] for single

agent problems, NPG methods have much better convergence properties than Euclidean

projected gradient ascent methods. For comparison with the works in [DFG20, WLZL21], we

also refer to Remark 7.1.

Another very related work to ours is [ZTLD21] which considered (i) tabular setting with ex-

act value functions and (ii) online setting with function approximation, also using the error

propagation scheme of [PSPP15]. Building on [AKLM20], this work showed Õ(ε−6) sample

complexity with function approximation, with access to unbiased samples of the value func-

tions. However, the sample complexity in the tabular case is not characterized in this paper

and transferring the result obtained for function approximation would give Õ(ε−6) sample

complexity with access to unbiased samples for the value functions. In contrast, we focus

on the tabular setting and analyze the sample complexity when we do not have access to

unbiased value function oracles. Indeed, lack of unbiased samples for value functions required

us to use new insights described in the sequel, to derive the tighter complexities Õ(ε−2).

7.2 Preliminaries

Notation. We consider the tabular setting with finite state and action spaces denoted by S,

A, B . The discount factor is γ< 1. The policy of the min agent is denoted as x and the max

agent as y with actions sets A,B , respectively. Interaction of the agents is as follows: At state s,

both agents take actions independently of each other a ∼ x(·|s) and b ∼ y(·|s). Based on the

actions, the environment transitions to the next state s′ ∼ P (·|s, a,b) and the agents receive

reward r (s, a,b). Given a policy pair x, y , we denote the stationary state distribution induced
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by the pair as ρx,y . We use e(st ) ∈R|S| to denote the unit vector such that e(s) = 1 if s = st and

e(s) = 0, if s 6= st . We use the same notation for e(st , at ). Given a policy x, we sometimes use

the notation xs for x(·|s). The value function for state s is defined as

V x,y (s) = Ex,y

[ ∞∑
t=0

γt r (st , at ,bt )|s0 = s

]
,

where Ex,y is taking over random variables st , at ,bt for all t ≥ 0 as at ∼ x(·|st ), bt ∼ y(·|st )

and st+1 ∼ P (·|st , at ,bt ). Similarly, the action value function is defined as Qx,y (s, a,b) =
Ex,y

[∑∞
t=0γ

t r (st , at ,bt )|s0 = s, a0 = a,b0 = b
]
.

With these definitions, we can now state the formal problem. For all s, we aim to solve

min
x(·|s)∈∆

max
y(·|s)∈∆

V x,y (s).

Nash equilibrium. We assume the existence of a pair of policies x?, y? that are Nash equi-

librium, namely, for all s, V x?,y (s) ≤V x?,y?(s) ≤V x,y?(s). We refer to V x?,y? as V ? for lighter

notation. In this chapter, we are interested in finding a one-sided Nash equilibrium, similar

to [DFG20, ZTLD21, ZYB19, BRM19]. As mentioned in [DFG20], for the other player, one can

rerun the algorithm by switching roles to have the guarantee for both players. In particular, for

an initial state distribution µ, we seek for xout such that

Es0∼µ[max
y

V xout ,y (s0)−V ?(s0)] ≤ ε.

Interaction procedure. We use the interactions of the agents with the environment to

estimate the value functions and related oracles for the running of the algorithm. At each

interaction episode, agents have access to (si , ai ,r (si , ai ,bi ), si+1) and (si ,bi ,r (si , ai ,bi ), si+1),

respectively. In terms of access of agents, our oracle model is similar to [DFG20, WLZL21].

However, one difference in our case is that we require a game etiquette: Our algorithms have

two stages where the agents have to behave differently (see Section 7.2). In particular, in the

second stage of our algorithms, one agent fixes its policy as the other agent tries to find an

approximate best response. In the first stage, both policies are updated simultaneously. As

long as this etiquette is respected by the agents, they do not need further communication.

Bregman distances and softmax update rule. For convenience, we use the formalism of

Bregman distances [NY83]. Given Bregman distance D(·, ·) and vector g (s, ·), the update rule

xt+1(·|s) = P (xt (·|s), g (s, ·)) = arg min
x(·|s)∈∆

〈g (s, ·), x(·|s)〉+D(x(·|s), xt (·|s)), (7.1)

corresponds to the softmax update when D is chosen to be the KL divergence. When g =Qxt ,

this update is known as NPG with softmax parameterization [AKLM20, Lemma 5.1]. To simplify

our bounds, we instantiate the constants throughout the chapter when D is KL divergence.

However, arguments in our developments would also hold for arbitrary Bregman distances as

in [ZCH+21].
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Assumption 7.1.

(i) For given state distributionsµ,σ, the concentrability coefficients are bounded [PSPP15]:

sup
j

sup
x1,y1,...,x j ,y j

∥∥∥∥µPx1,y1 . . .Px j ,y j

σ

∥∥∥∥∞ =: Cµ,σ <+∞.

(ii) There exists ρ such that, for any policy pair x, y , ρx,y ≥ ρ > 0, where ρx,y is the station-

ary state distribution induced by the policy pair.

(iii) There exists x, y such that, for any policy pair x, y , x ≥ x > 0, y ≥ y > 0.

(iv) r (s, a,b) ≤ 1.

Our rationale on the assumptions. Assumption 7.1(ii) and (iii) essentially mean positive

definiteness of the sampling matrices in policy evaluation. To our knowledge, some form of

this assumption is required in most of the existing work with best-complexity on TD-type

methods [BRS18, XWL20b, KCM21, Lan21, HWWY20, XWL20a, WZXG20, ZXL19] in the single-

agent setting. An alternative to Assumption 7.1(iii), as proposed in [KDMR21], introduces

ε-greedy exploration with a certain deterioration in the rate. From an analysis perspective,

the use of ε is the same as the use of Assumption 7.1(iii). Therefore, to be consistent with

most of the literature, we use Assumption 7.1(iii) (See also [Lan21, Remark 1, Section 5.2]).

The assumption (iv) is for simplicity. In the sequel, we will use the parameters λθmin,λνmin de-

pending on x, y ,ρ from Assumption 7.1 and λωmin only depends on ρ. These are the minimum

eigenvalues of the sampling matrices in policy evaluation routines.

Remark 7.1. Among the related works for policy gradient methods in multi agent setting, As-

sumption 7.1(ii) is required in [WLZL21] but not Assumption 7.1(iii). A different assumption is

made in [DFG20] regarding the minimum probability of the game stopping at any state action

pair being nonzero: therefore one should be careful while comparing complexities. These

works use ε-greedy exploration instead of Assumption 7.1(iii). To avoid Assumption 7.1(iii), we

can also use greedy exploration [KDMR21], [Lan21, Remark 1], with degradation in ε depen-

dence, that we omit for brevity. To compare with single agent complexities, we keep Assump-

tion 7.1(iii). One could also do an algorithm-specific analysis, similar to [MXSS20, Lemma 5,

Lemma 9] to characterize when Assumption 7.1(iii) holds.

A relaxed form of concentrability coefficient is used in [DFG20]. In [WLZL21], the sample com-

plexity bound does not have dependence on concentrability coefficient, however, the bounds

in [WLZL21, Theorem 1, 2] have |S| dependence even with access to true value functions.

Indeed, concentrability coefficient can be bounded by |S| by picking σ accordingly [Mun03].

As the existing results on policy gradient methods for Markov games already have a pessimistic

dependence on |S| [DFG20, WLZL21], it seems this additional dependence on our results is

not too problematic in terms of final dependence on |S|.

Error propagation for approximate dynamic programming In [PSPP15], an error propaga-

tion analysis is conducted for an approximate version of generalized policy iteration, for

191



Chapter 7. Sample complexity of two-player zero sum Markov Games

zero-sum Markov games. In particular, the authors showed that the following two-stage

algorithm will converge:

◦ Greedy step: Given a fixed value function Vk−1, find the policy pair which is an ε-equilibrium.

min
x s∈∆

max
y s∈∆

∑
a,b

x(a|s)y(a|s)Qk−1(s, a,b) =: xsQ s
k−1 y s , (7.2)

where Qk−1(s, a,b) = r (s, a,b)+γ∑
s′ P (s′|s, a,b)Vk−1(s′). When it is clear from the context,

we drop the subscript of Qk−1. This problem is a matrix game and is notably the sample-

complexity bottleneck [PSPP15]. Let us denote by εg the accuracy for this step and xk as the

output at iteration k:

EEs∼σ[max
y s∈∆

xs
kQ s

k−1 y s −min
x s∈∆

max
y s∈∆

xsQ s
k−1 y s] = εg ,k (s),

where the expectation is over the randomness of the specific algorithm used to generate xk .

◦ Evaluation step: This step consists of finding an approximate best response. As one policy

is fixed (xk ), one can view the fixed policy as a part of the environment. Denote yk as the

approximate best-response computed in this step. The resulting value function Vk =V xk ,yk is

fed to the greedy step in the next iteration. Let us denote by εe the accuracy for this step and

y∗
k the best response:

Es∼σ[V xk ,y∗
k (s)−V xk ,yk (s)] = εe,k (s),

where the expectation is taking over the randomness of the algorithm used to generate yk .

Then, [PSPP15, Theorem 1], [ZTLD21] have shown that the following inequality holds.

EEs∼µ[max
y∈∆

V xK ,y (s)−V ?(s)] ≤ Cµ,σK

1−γ Õ
(

sup
k≤K

εg ,k + sup
k≤K

εe,k

)
+O

(
Cµ,σγ

K

1−γ
)
. (7.3)

Natural policy gradient. As we work in the tabular setting, in this chapter, we focused on the

natural policy gradients [Kak01] in softmax parameterization which admits a simple update

rule. In particular, the update rule for NPG in single agent setting is [AKLM20, Lemma 5.1]

πt+1(·|s) ∝πt (·|s)exp(ηQπt (s, ·))

which corresponds to the more general update (7.1) when Bregman distance D in (7.1) is

chosen to be the KL divergence. To get a sample-based version of this algorithm, one needs to

learn Qπt (s, a) = Eπt

[∑∞
t=0γ

t r (st , at )|s0 = s, a0 = a
]

typically in an inner policy evaluation loop

as in [Lan21]. This approach is sometimes referred to as natural actor critic (NAC). Note that

the update rule in [AKLM20, Lemma 5.1] is written with the advantage function, however, due

to softmax parameterization, it is equivalent to the form we give.

Temporal difference learning. For constructing action value function from samples, we

will use temporal difference learning and in particular TD(0) [Sut88, BRS18, TVR97]. This

algorithm can be seen as a stochastic approximation scheme for solving a linear equa-
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tion [TVR97, Lan21]. In particular, by denoting the stationary state distribution under π

as ρπ, we define

Fπ(θ)(s, a) = ρπ(s)π(a|s)
(
θ(s, a)− r (s, a)−γ ∑

s′,a′
P (s′|s, a)π(a′|s′)θ(s′, a′)

)
.

First, we note that Fπ(θ?) = 0 where θ? =Qπ. Under Assumption 7.1(ii, iii), it is well-known

that Fπ is strongly monotone (see [BRS18, Lemma 3], [Lan21, Section 5.2]. The main tools to

show this are Assumption 7.1(ii, iii) and Bellman operator being γ-contraction. Then, one can

use for example [BC11, Example 22.6, Example 20.7].

One can sample st ∼ ρπ, at ∼ π(·|st ) and st+1 ∼ P (·|st , at ), at+1 ∼ π(·|st+1) and form the

stochastic oracle F̃ (θt ) = e(st , at )
(
θt (st , at )− r (st , at )−γθt (st+1, at+1)

)
for TD(0). Note that

under i.i.d. assumption, F̃ (θt ) is an unbiased estimate of Fπ(θt ). The results for TD(0) can

be extended to Markovian setting without the i.i.d. assumption by using a uniform mixing

assumption [BRS18].

Our approach. We introduce an algorithm in natural actor critic (NAC) framework with

inner loops for policy evaluation [KT00, PS08]. By solving the abovementioned two steps, we

will obtain an approximate Nash equilibrium. We will leverage forward-reflected-backward

algorithm to solve the matrix game in the evaluation step efficiently [MT20b]. For estimating

value functions used as oracles in these algorithms, we employ TD(0) [TVR97, BRS18, Sut88].

To our knowledge, the best complexities in the single agent setting are obtained with this

approach [Lan21, HWWY20, KCM21].

Markovian bias. We assume that we can sample from the steady state distribution of a given

policy. With normal interaction with the environment, this is not the case and we obtain

a single stream of data. As a result, TD(0) update is biased—commonly referred to as the

Markovian bias. A large body of literature in the single agent literature showed that the effect

of this bias in TD(0) update is essentially additive and can be handled by assuming uniform

mixing of the induced Markov chain [WZXG20, BRS18, ZXL19, KDMR21, XWL20b, XWL20a].

These analyses apply to our policy evaluation routines, extending them to the Markovian

setting. For simplicity, we show our techniques with i.i.d. assumption, which can be extended

to Markovian data with the uniform mixing assumption.

7.3 A reflected natural actor-critic algorithm with a game etiquette

Greedy step. In this step, at iteration k, we compute an approximate equilibrium of the matrix

game (7.2). As Vk−1 is fixed, this is a standard matrix game and throughout this loop, we omit

the dependence of Q on k and leave it implicit. Let us denote the oracle of x-player for solv-

ing (7.2): θx
?,t (s, a) = Eb∼yt (·|s)Q(s, a,b) =∑

b yt (b|s)r (s, a,b)+γ∑
s′,b yt (b|s)P (s′|s, a,b)Vk−1(s′).

Note that unlike standard stochastic setting, we do not have an unbiased estimate of θx
?,t but

instead, we have inner loops to learn this oracle. With this oracle (that we will see next how to
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obtain), the update of FoRB will be

xt+1(·|s) = P (xt (·|s),η
(
2θx

t+1(s, ·)−θx
t (s, ·))). (7.4)

We will give an analysis of FoRB without unbiased oracles and we will take special care for the

stochastic dependency to make sure to decompose bias and variance (See Insight 1).

We now show how to compute this oracle for x player without accessing to actions or policy

of y . The same reasoning applies to y update. Similar to [Lan21], using the sampling matrix

diag(ρxt ,yt )⊗diag(xt ), we define the operator

F x
t (θx )(s, a) = ρxt ,yt (s)xt (a|s)

(
θx (s, a)−∑

b
yt (b|s)r (s, a,b)−γ∑

s′,b
yt (b|s)P (s′|s, a,b)Vk−1(s′)

)
.

(7.5)

First, it holds that F x
t (θx

?,t ) = 0. Moreover, F x
t is strongly monotone as mins,a ρ

xt ,yt (s)xt (a|s)

is separated from 0, by Assumption 7.1(ii), (iii). One important point here is that we do

not have access to an unbiased sample of Vk−1 as it is the value function depending on

xk−1, yk−1. Instead, we will use a potentially biased estimate V̂k−1. After obtaining a sample

ξn = (sn , an ,bn , sn+1), we define the stochastic operator for x-player

F̃ x
t (θx

n ,ξn) = e(sn , an)
(
θx

n(sn , an)− r (sn , an ,bn)−γV̂k−1(sn+1)
)
. (7.6)

Assuming access to i.i.d. samples, we see that expectation of this operator w.r.t. ξn gives

Eξn [F̃ x
t (θx

n ,ξn)] = F x
t (θx

n)+δv,t , (7.7)

withδv,t = γ∑
s,a,b,s′ ρ

xt ,yt (s)xt (a|s)yt (b|s)P (s′|s, a,b)e(s, a)
(
Vk−1(s′)− V̂k−1(s′)

)= γPxt ,yt (Vk−1−
V̂k−1).

Formulation (7.6) ensures that x agent only accesses sn ,r (sn , an ,bn), st+n and its own action

an to form the stochastic oracle and y accesses sn ,r (sn , an ,bn), sn+1 and its own action bn . We

have additional bias coming from the approximation of Vk−1 by V̂k−1, the estimation of which

is important for getting our complexity results. Markovian data would bring additional bias as

mentioned before.

Evaluation step. In this step, x player fixes its policy and y computes an approximate best

response. This step will output Vk−1 will be the value function of the policy pair that will be

the output of this step. In our algorithm, the players will remember these policies because

they will need to compute an estimate of Vk−1 with small bias in the greedy step.

In particular, at iteration t , agents will be interacting with policies xk and yt , since x player

keeps its policy fixed. The natural policy gradient for the y-player is ν?,t = Ea∼xk (·|s)Qxk ,ȳt (·, a, ·):

ν?,t (s,b) =∑
a

xk (a|s)r (s, a,b)+γ ∑
s′,a,b′

P (s′|s, a,b)xk (a|s)ȳt (b′|s′)ν?,t (s′,b′)
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Algorithm 7.1 Reflected NAC with a game etiquette

Require: P defined in (7.1) in Section 7.1. Subroutine Policy-Eval (see Algorithm 7.2).
Initial policies x0, y0, ȳ0

for k = 0,1, . . . do
Greedy step
for t = 0,1, . . . ,T −1 do

[V̂ x
k−1, V̂ y

k−1] = [Policy-Eval(xk−1, yk−1, N ,βωn ), Policy-Eval(xk−1, yk−1, N ,βωn )]

[θx
t+1, θy

t+1] = [Policy-Eval(xt , yt , N , V̂ x
k−1,βθn),Policy-Eval(xt , yt , N ,V̂ y

k−1,βθn)]
xt+1(·|s) = P (xt (·|s),η

(
2θx

t+1(s, ·)−θx
t (s, ·)))

yt+1(·|s) = P (yt (·|s),−η(
2θy

t+1(s, ·)−θy
t (s, ·)))

end for
Output xk = 1

T

∑T
t=1 xt .

Evaluation step
for t = 0,1, . . . ,T −1 do
νt+1 = Policy-Eval(xk , ȳt , N ,β=βνn)
ȳt+1(·|s) = P (ȳt (·|s),−ηνt+1(s, ·))

end for
Output yk = ȳ t̂ , where t̂ ∈ [T ] is selected uniformly at random.

end for

We use the sampling matrix (as [Lan21, Sec. 5.2]) D(ρxk ,ȳt )⊗D(ȳt ) and define the operator

Fν
t (νt )(s,b) = ρxk ,ȳt ȳt (b|s)

[
νt (s,b)−∑

a
xk (a|s)r (s, a,b)

−γ ∑
s′,a,b′

xk (a|s)P (s′|s, a,b)ȳt (b′|s′)νt (s′,b′)
]

,

such that Fν
t (ν?,t ) = 0. Strong monotonicity of Ft follows from Assumption 7.1(ii), (iii), and

that the operator Tν(s,b) =∑
a xk (a|s)r (s, a,b)+γ∑

s′,a,b′ xk (a|s)P (s′|s, a,b)ȳt (b′|s′)ν(b′, s′) is

γ contraction in `∞ norm [BC11, Example 22.6 and 20.7]. We define the stochastic operator

after sampling sn ∼ ρxk ,ȳt , an ∼ xk (·|sn), bn ∼ ȳt (·|sn), sn+1 ∼ P (·|sn , an ,bn), bn+1 ∼ ȳt (·|sn+1)

F̃ν
t (νn ,ξn) = e(sn ,bn)

(
νn(sn ,bn)− r (sn , an ,bn)−γνn(sn+1,bn+1)

)
,

and as we assume we sample sn ∼ ρxk ,ȳt , Eξn [F̃ν
t (νn ,ξn)] = Fν

t (νn). In particular, we see that as

long as sn , an ,bn , sn+1,bn+1 are estimated in the prescribed way, there is no need for ȳt update

to see the actions or policy of xk for F̃ν
t (νn ,ξn) to be unbiased estimate of Fν

t (νn).

Remark 7.2. At the evaluation step, policy and the value function at a random iterate is

outputted. We do not need to run for T iterations and store all the variables, instead, we can

compute t̂ before starting the algorithm, which is standard, see [FB19, Remark 5].

Remark 7.3. For the best complexity, our analysis requires fresh estimates of V̂k−1 at every

iteration (see Algorithm 7.1 and Insight 4). This allows us to obtain a tight bound for the bias

and get the O(ε−2) complexity. Without fresh samples, Algorithm 7.1 would have a O(ε−3)
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Algorithm 7.2 Policy-Eval (y-player)

Require: Policy pair x, y , iteration counter N , oracle V̂k−1, step size β
for n = 0,1, . . . , N −1 do

Sample sn ∼ ρx,y (·), an ∼ x(·|sn), bn ∼ y(·|sn), sn+1 ∼ P (·|sn , an ,bn).
if β=βωn then

F̃ (ϕn ,ξn) = e(sn)
(
ϕn(sn)− r (sn , an ,bn)−γϕn(sn+1)

)
else if β=βθn then

F̃ (ϕn ,ξn) = e(sn ,bn)
(
ϕn(sn ,bn)− r (sn , an ,bn)−γV̂k−1(sn+1)

)
else if β=βνn then

Sample also bn+1 ∼ y(·|sn+1).
F̃ (ϕn ,ξn) = e(sn ,bn)

(
ϕn(sn ,bn)− r (sn , an ,bn)−γϕn(sn+1,bn+1)

)
end if
ϕn+1 =ϕn −βn F̃ (ϕn ,ξn)

end for
Ensure: ϕN

complexity. This insight is in contrast to the black box view of [PSPP15], which uses an estimate

of Vk−1 from the evaluation step within the greedy step. Our analysis behooves both agents

to remember the output policies of evaluation step instead, so that they can recompute Vk−1

with a lower bias in the greedy step.

7.3.1 Convergence of Reflected NAC with a game etiquette

Theorem 7.4. (See Theorem 7.14) Let Assumption 7.1 hold. For Algorithm 7.1, for the output of

x-player

EEs0∼µ[max
y

V xk ,y (s0)−V ?(s0)] ≤ kCρ,σÕ
(

1

T (1−γ)3 + |S|2(|A|2 ∨|B |2)

N (1−γ)5(λθminλ
ω
minλ

ν
min)2

)
+O(γk )

which gives Õ(
C 2
µ,σ|S|2(|A|2∨|B |2)

ε2(1−γ)8(λθminλ
ω
minλ

ν
min)2 ) sample complexity.

A critical point to derive the fastest rate as observed by [Lan21] in the single agent setting is to

characterize the bias and variance separately. As the algorithm in [Lan21] would correspond

to GDA when applied in our setting, we extend the ideas there to the FoRB algorithm.

Insight 1. The existing analyses for stochastic versions of FoRB are not suitable for us. In the

stochastic variant in [MT20b], deterministic oracle is computed at each iteration. [BSCB20]

uses unbiased oracles with bounded variance and decreasing step size. In our case, we will

have biased oracles and we will use inner loops to decrease bias and variance. Therefore,

we need to develop an analysis with constant step size and that characterizes the bias and

variance explicitly in the next lemma.
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7.3. A reflected natural actor-critic algorithm with a game etiquette

We drop the superscripts from θ,V̂k−1 (see Alg. 7.1) as estimations are symmetric. Define e1,t +
e2,t = η〈θt+1(·|s)−E[θt+1(·|s)|xt ], x(·|s)−xt (·|s)〉−η〈θy

t+1(·|s)−E[θy
t+1(·|s)|yt ], y(·|s)− yt (·|s)〉.

Lemma 7.5. (See Lemma 7.15) Let Assumption 7.1 hold. Denote xout = 1
T

∑T
t=1 xt and yout =

1
T

∑T
t=1 yt and let η= 1−γ

8

EEs∼µ
[

max
x s ,y s

xs
outQ

s y s −xsQ s yout

]
= Õ

(
1

ηT

)
+O

(
1

T

T∑
t=1

E‖E[θt+1|xt ]−θ?,t‖
)

+O
(
η

T

T∑
t=1

E‖θt+1 −θ?,t‖2 +E‖θt −θ?,t−1‖2

)
+ 1

Tη
EEs∼µmax

z

T∑
t=1

[e1,t +e2,t ].

Remark 7.6. Even though the first term is of the correct order, we have to estimate the three

remaining terms. The second and third terms are the bias and variance coming from inexact

estimation of the oracles of both players.

Insight 2. The last error term in the lemma involving e1,t ,e2,t is due to the coupling between

the free variables xs , y s and randomness of the algorithm. For this error, we adapt the “ghost

iterate” trick from [NJLS09] which we adapted to coordinate methods in Chapter 4.

Next is the the variance estimation, which is similar to [Lan21], except handling the error term

coming from V̂k−1 as in Insight 3.

Lemma 7.7. Let Assumption 7.1 hold. Let βθn = 2
λθmin(n+n0)

for n0 ≥ 1. Then, for Algorithms 7.1

and 7.2,

E‖θN −θ?,t‖2
2 ≤O

(
|S||A|

(1−γ)2N 2 + 1

N (λθmin)2(1−γ)2
+ |S||A|

(λθmin)2
E‖V̂k−1 −Vk−1‖2

∞

)
.

Insight 3. Different from the standard critic analyses [HWWY20, KDMR21], we account for

the additional bias coming from having V̂k−1 instead of real Vk−1 (see (7.7)). We exploit

strong monotonicity of the operator Ft in (7.5) to make sure the error term appears as

E‖V̂k−1 −Vk−1‖2∞ in the bound instead of E‖V̂k−1 −Vk−1‖∞, which would deteriorate the rate.

The next estimation is critical for obtaining the complexity result. In particular, we will see how

to bound the bias of θt+1. Since in Lemma 7.5, we need a tight bound for ‖E[θt+1|xt ]−θ?,t‖ =
‖E[θN |xt ]−θ?,t‖, we have to be careful with the additional bias from V̂k−1.

Lemma 7.8. Let Assumption 7.1 hold, βθn = 2
λθmin(n+n0)

, n0 = 6λ2
max

(λθmin)2 . For Algorithms 7.1 and 7.2

‖E[θN |xt ]−θ?,t‖2 ≤O
(

|S||A|
(1−γ)2N 2 + 10|S||A|

(λθmin)2
‖E[V̂k−1|xt ]−Vk−1‖2

∞

)
. (7.8)
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Insight 4. The reason to use fresh estimates for V̂k−1 at each t as in Algorithm 7.1 is the

result of this lemma (see Remark 7.3). Since the bias term in the algorithm’s analysis is

‖E[θN |xt ]−θ?,t‖ in Lemma 7.5, we take the square root of the result of Lemma 7.8. If V̂k−1 is

estimated before xt , then we will have E‖V̂k−1−Vk−1‖ in the bound of Lemma 7.5, which will

have the rate O(1/
p

N ). On the other hand, if we estimate V̂k−1 freshly as in Algorithm 7.1,

then we will be able to use the improved bias bound ‖E[V̂k−1|xt ]−Vk−1‖ ≤O(1/N ) as in the

next lemma.

Lemma 7.9. Let Assumption 7.1 hold and βωn = 2
λωmin(n+n0) , with n0 = 6λ2

max

(λωmin)2 . The variance and

bias of V̂k−1, computed as in Algorithm 7.1 satisfies

‖E[V̂k−1|xt , yt ]−Vk−1‖2
2 ≤O

( |S||A|
(1−γ)2N 2

)
, E‖V̂k−1 −Vk−1‖2

2 ≤O
(

1

N (1−γ)2λ2
min

)
.

Unlike the greedy step, the evaluation step (finding the best response) mirrors the single agent

analysis closely. We defer the details to Section 7.4.2. Combining Lemma 7.5 with the result of

the evaluation step (which is of the same order) in (7.3) gives Theorem 7.4.

7.4 Proofs

7.4.1 Basic results on RL

Lemma 7.10. Define θt recursively as θt+1 = θt −βt F̃ (θt ,ξt ) where r (s, a,b) ≤ 1 and F̃ (θt ,ξt ) =
e(s′, a′)(θt (s′, a′)− r (s, a,b)−γθt (s′′, a′′)) and recall the definition of Qk (s, a,b) = r (s, a,b)+
γ

∑
s′ P (s′|s, a,b)Vk (s′). Then, it follows for any t ,k

‖θt‖∞ ≤ 1

1−γ , ‖θt‖2 ≤
p|S||A|

1−γ , ‖V̂k−1‖∞ ≤ 1

1−γ ,

‖F̃ (θt ,ξt )‖2 ≤ 3

1−γ , ‖Qk (s, a,b)‖∞ ≤ 2

1−γ .

Proof. The first inequality is proven by induction, for example see [KDMR21, Lemma C.10].

Following inequalities are either basic consequences of the first inequality or directly follow

from definition. �

A classical result that we use frequently in the proofs is performance difference lemma [KL02].

The statement of the lemma is slightly different due to multi agent setting, but since one

policy is held fixed while changing the other one, the original proof of the lemma extends

straightforwardly. The proof for this case is given in [DFG20].

Lemma 7.11 (Performance difference lemma. See [KL02, DFG20]). For any policies x, y1, y2
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and any state s0

V x,y1 (s0)−V x,y2 (s0) = 1

1−γEs∼d
x,y1
s0

〈Ea∼x(·|s)Q
x,y2 (s, a, ·), y1(·|s)− y2(·|s)〉

A standard result that we use is Lipschitzness of y 7→V x,y (s0).

Lemma 7.12. For any policies x, y1, y2,

‖V x,y1 −V x,y2‖∞ ≤ 2

(1−γ)2 max
s

‖y1(·|s)− y2(·|s)‖1.

Proof. By performance difference lemma [KL02] and Cauchy-Schwarz inequality, for any s0,

V x,y1 (s0)−V x,y2 (s0) = 1

1−γEs∼d
x,y1
s0

〈Ea∼x(·|s)Q
x,y2 (s, a, ·), y1(·|s)− y2(·|s)〉

≤ 1

1−γEs∼d
x,y1
s0

‖Ea∼x(·|s)Q
x,y2 (s, a, ·)‖∞‖y1(·|s)− y2(·|s)‖1.

Next, we are going to further upper bound the right hand side using Lemma 7.10

V x,y1 (s0)−V x,y2 (s0) ≤ 1

1−γ max
s

‖Ea∼x(·|s)Q
x,y2 (s, a, ·)‖∞‖y1(·|s)− y2(·|s)‖1

≤ 2

(1−γ)2 max
s

‖y1(·|s)− y2(·|s)‖1.

We take maximum over s0 to conclude. �

Lemma 7.13. We have

‖Qx,y1 −Qx,y2‖∞ ≤ 2γ

(1−γ)2 max
s

‖y1(·|s)− y2(·|s)‖1.

Proof. We note that by the definition of Qx,y1 it follows that for all s, a,b

|Qx,y1 (s, a,b)−Qx,y2 (s, a,b)| = γ
∣∣∣∣∣∑

s′
P (s′|s, a,b)

(
V x,y1 (s′)−V x,y2 (s′)

)∣∣∣∣∣ .

Jensen’s inequality, and the previous lemma gives the result. �

7.4.2 Proofs for Reflected NAC with a game etiquette

Proofs for greedy step of Reflected NAC with a game etiquette

We recall the definition of Ft when θ?,t (s,b) = Ea∼xt (·|s)Q(s, a,b)

Ft (θ)(s,b) = ρxt ,yt (s)yt (b|s)
[
θ(s,b)−∑

a
xt (a|s)r (s, a,b)−γ∑

s′,a
xt (a|s)P (s′|s, a,b)Vk−1(s′)

]
.
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We recall that Ft is strongly monotone with λθmin under Assumption 7.1. Moreover Ft is

Lipschitz with λmax. We refer to previous section for how the oracles in the algorithm can

be computed without accessing to other agent’s policy or actions. Moreover, we do not put

subscripts θx ,θy as the estimations will be symmetric.

Theorem 7.14. [See Theorem 7.4] Let Assumption 7.1 hold. For Algorithm 7.1

EEs0∼µ[max
y

V xk ,y (s0)−V ?(s0)] ≤ Cµ,σk

(1−γ)
Õ

{
1

T (1−γ)2 + |S|(|A|∨ |B |)
λθmin(1−γ)2N

+ |S|2(|A|2 ∨|B |2)

(λθmin)2N 2(1−γ)2
+ |S||A|

(λθmin)2(λωmin)2(1−γ)2N

|S||B |
(1−γ)4N 2 + 1

N (1−γ)4(λνmin)2 +
p|S||B |

(1−γ)2N

}
+O

(
Cµ,σγ

k

(1−γ)

)
,

which gives Õ(
C 2
µ,σ|S|2(|A|2∨|B |2)

ε2(1−γ)8(λθminλ
ω
minλ

ν
min)2 ) sample complexity.

Proof. We combine Lemmas 7.7–7.9 and 7.15 and corollary 7.20. �

Our theoretical results here bring together ideas from single agent NPG analysis of [Lan21] and

stochastic primal-dual optimization techniques from [MT20b, NJLS09]. In particular, we will

be using ideas from [MT20a, NJLS09] in the analysis we develop for extending ideas of [Lan21]

to the greedy step of the multi agent algorithm we have.

We first analyze the policy evaluation routine in Algorithm 7.1. In particular, we will bound the

variance and bias of θt+1 as an estimate of θ?,t (s,b) = Ea∼xt (·|s)Qk−1(s, a,b). As this routine is

in an inner loop (indexed by n), the policies we sample, consequentlyFt is fixed, therefore we

drop the subscript. The proofs of these lemmas will be similar to [Lan21], except the additional

bias we have due to V̂k−1.

Proof of Lemma 7.7. By the definition of θn ,

‖θn+1 −θ?,t‖2
2 = ‖θn −θ?,t‖2

2 −2βn〈F̃ (θn ,ξn),θn −θ?,t 〉+β2
n‖F̃ θ(θn ,ξn)‖2

2.

We take expectation Eξn where ξn = (sn , an ,bn , sn+1) is the sample at iteration n of Algo-

rithm 7.2

Eξn F̃ (θn ,ξn) = F (θn)+γPxt ,yt (Vk−1 − V̂k−1),

as in (7.7) where Pxt ,yt was also defined. As we stated, we omit the dependence of Ft to t as t

is fixed throughout this loop. Thus,

Eξn‖θn+1 −θ?,t‖2
2 = ‖θn −θ?,t‖2

2 −2βn〈F (θn),θn −θ?,t 〉
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−2βnγ〈Pxt ,yt (Vk−1 − V̂k−1),θn −θ?,t 〉+β2
n‖F̃ (θn ,ξn)‖2

2.

We use strong monotonicity (with F (θ?,t ) = 0) for the first inner product and Cauchy-Schwarz

and Young’s inequalities for the second inner product

Eξn‖θn+1 −θ?,t‖2
2 ≤

(
1−2βnλ

θ
min

)
‖θn −θ?,t‖2

2 +
βnγ

2

λθmin

‖Pxt ,yt (Vk−1 − V̂k−1)‖2
2

+βnλ
θ
min‖θn −θ?,t‖2

2 +β2
nEξn‖F̃ (θn ,ξn)‖2

2

≤
(
1−βnλ

θ
min

)
‖θn −θ?,t‖2

2 +
βnγ

2|S||A|
λθmin

‖Vk−1 − V̂k−1‖2
∞+β2

nEξn‖F̃ (θn ,ξn)‖2
2, (7.9)

where we estimated ‖Pxt ,yt (V̂k−1−Vk−1)‖2
2. We will use Lemma 7.10 to upper bound ‖F̃ (θn ,ξn)‖2

2 ≤
2

(1−γ)2 . We define Θn such that Θn(1−βnλmin) ≤ Θn−1 with Θ0 = Θ1 = 1. We multiply both

sides of the inequality withΘn after taking total expectation, to get

ΘnE‖θn+1 −θ?,t‖2
2 ≤Θn−1E‖θn −θ?,t‖2

2 +
Θnβnγ

2|S||A|
λθmin

E‖V̂k−1 −Vk−1‖2
∞+ 2Θnβ

2
n

(1−γ)2 .

Summing the inequality gives

ΘNE‖θN+1 −θ?,t‖2
2 ≤Θ0‖θ1 −θ?,t‖2

2 +
N∑

n=1

Θnβnγ
2|S||A|

λθmin

E‖V̂k−1 −Vk−1‖2
∞+

N∑
n=1

2Θnβ
2
n

(1−γ)2 .

Using the definition of βn and settingΘn(1−βnλmin) =Θn−1 givesΘn =Θ1
(n+n0)(n+n0−1)

(n0)(n0+1) . Let

us useΘ0 =Θ1 = 1 and bounds from Lemma 7.10 for ‖θ1 −θ?,t‖2
2,

E‖θN −θ?,t‖2
2 ≤

2n0(n0 +1)|S||A|
(1−γ)2(N +n0)(N +n0 −1)

+ 8N

(N +n0)(N +n0 −1)(1−γ)2(λθmin)2

+ 3γ2|S||A|
(λθmin)2

E‖V̂k−1 −Vk−1‖2
∞.

�

Proof of Lemma 7.8. We are going to take expectation of the recursion

θn+1 = θn −βn F̃ (θn ,ξn),

first w.r.t. sample ξn ,

Eξnθn+1 = θn −βnEξn F̃ (θn ,ξn)

= θn −βnF (θn)−βnγPxt ,yt (V̂k−1 −Vk−1),

where we used (7.7) where Pxt ,yt was also defined.
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We will now take expectation E[·|xt ]. We note F and Pxt ,yt are linear

E[θn+1|xt ] = E[θn |xt ]−βnFt (E[θn |xt ])−βnγPxt ,yt (E[V̂k−1|xt ]−Vk−1).

We denote θ̄n = E[θn |xt ] and δ̄= γPxt ,yt (E[V̂k−1|xt ]−Vk−1) in the above equality which makes

the recursion θ̄n+1 = θ̄n −βnF (θ̄n)−βn δ̄. We then have

‖θ̄n+1 −θ?,t‖2
2 = ‖θ̄n −θ?,t‖2

2 −2βn〈F (θ̄n), θ̄n −θ?,t 〉−2βn〈δ̄, θ̄n −θ?,t 〉

+ 3β2
n

2
‖F (θ̄n)‖2

2 +3β2
n‖δ̄‖2

2, (7.10)

where we also used Young’s inequality to split the term β2
n‖F (θ̄n)+ δ̄‖2.

By strong monotonicity and Lipschitzness of F along with F (θ?,t ) = 0,

2βn〈F (θ̄n), θ̄n −θ?,t 〉 = 2βn〈F (θ̄n)−F (θ?,t ), θ̄n −θ?,t 〉 ≥ 2βnλ
θ
min‖θ̄n −θ?,t‖2

2,

β2
n‖F (θ̄n)‖2

2 =β2
n‖F (θ̄n)−F (θ?,t )‖2

2 ≤β2
nλ

2
max‖θ̄n −θ?,t‖2

2.

By Cauchy-Schwarz and Young’s inequalities, it follows that 2βn〈δ̄, θ̄n −θ?,t 〉 ≤ βnλ
θ
min

2 ‖θ̄n −
θ?,t‖2

2 + 2βn

λθmin

‖δ̄‖2
2. Using these three inequalities in (7.10) gives

‖θ̄n+1 −θ?,t‖2
2 ≤

(
1− 3

2
βnλ

θ
min +

3

2
β2

nλ
2
max

)
‖θ̄n −θ?,t‖2

2 +
2βn

λθmin

‖δ̄‖2
2 +3β2

n‖δ̄‖2
2.

We now use n0 = 6λ2
max

(λθmin)2 and βn = 2
λθmin(n+n0)

to estimate

3βn

2

(
λθmin −βnλ

2
max

)
=3βn

2

(
λθmin −

2λ2
max

λθmin(n +n0)

)
≥ 3βn

2

(
λθmin −

2λ2
max

λθminn0

)
=βnλ

θ
min.

Therefore, the recursion is

‖θ̄n+1 −θ?,t‖2
2 ≤

(
1−βnλ

θ
min

)
‖θ̄n −θ?,t‖2

2 +
2βn

λθmin

‖δ̄‖2 +3β2
n‖δ̄‖2

2.

This recursion is similar to (7.9), in particular, by noting βn ≤ 1
λθmin

, and bounding ‖δ̄‖2
2 as

‖Pxt ,yt (E[V̂k−1|xt ]−Vk−1)‖2
2 ≤ |S||A|‖Pxt ,yt (E[V̂k−1|xt ]−Vk−1)‖2∞ ≤ |S||A|‖E[V̂k−1|xt ]−Vk−1‖2∞

‖θ̄n+1 −θ?,t‖2 ≤
(
1−βnλ

θ
min

)
‖θ̄n −θ?,t‖2 + 5βn |S|||A|

λθmin

‖E[V̂k−1|xt ]−Vk−1‖2
∞.

We finally defineΘn asΘn(1−βnλmin) =Θn−1 givesΘn =Θ1
(n+n0)(n+n0−1)

n0(n0−1) , whereΘ0 =Θ1 = 1.

We multiply both sides of the inequality withΘn and sum to get the result. �

We estimate the bias and variance of the estimation of V̂k−1 in Algorithm 7.1, very similar
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to [Lan21]. Unlike [Lan21] that derived O(1/N 3) bound for the bias, we derive a O(1/N 2)

bound which will be sufficient. We note that the previous two lemmas had additional bias not

present in [Lan21], however the next result does not have this bias and therefore the arguments

in [Lan21] would be enough. We provide a brief proof to be self-contained.

Let us recall that Vk−1 = V xk−1,yk−1 and by sampling sn ∼ ρxk−1,yk−1 , an ∼ xk−1(·|sn), bn ∼
yk−1(·|sn), sn+1 ∼ P (·|sn , an ,bn), the oracle

F̃ω(ωn ,ξn) = e(sn)
(
ωn(sn)− r (sn , an ,bn)−γωn(sn+1)

)
,

satisfies Eξn F̃ω(ωn ,ξn) = Fω(ωn), where Fω is defined as

Fω
k−1(ω)(s) = ρxk−1,yk−1 (s)

(
ω(s)−∑

a,b
xk−1(a|s)yk−1(b|s)r (s, a,b)

−γ ∑
s′,a,b

xk−1(a|s)yk−1(b|s)P (s′|s, a,b)ω(s′)
)
,

where Fω
k−1(Vk−1) = 0 and also as before Fω

k−1 is strongly monotone with λωmin. We will drop

the subscript of Fω since k is fixed in this loop.

Proof of Lemma 7.9. For the variance, we have by taking expectation w.r.t. ξn

Eξn‖ωn+1 −Vk−1‖2
2 = ‖ωn −Vk−1‖2

2 −2βn〈Eξn [F̃ω(ωn ,ξn)],ωn −Vk−1〉+β2
nEξn‖F̃ω(ωn ,ξn)‖2

2.

By Eξn F̃ω(ωn ,ξn) = Fω(ωn), Fω(Vk−1) = 0, and strong monotonicity of Fω, similar to our previ-

ous proofs for policy evaluation,

E‖ωn+1 −Vk−1‖2
2 =

(
1−2βnλ

ω
min

)
E‖ωn −Vk−1‖2

2 +β2
nE‖F̃ω(ωn ,ξn)‖2

2.

The end of the proof is the same as Lemma 7.7, except that we do not have here the additional

bias term in Lemma 7.7. Therefore, the result follows.

For the bias, we will argue as in Lemma 7.8. Taking expectation of the recursion w.r.t. ξn gives

Eξnωn+1 =ωn −βnFω(ωn).

We now unroll the expectation until xt and use linearity of Fω

E[ωn+1|xt ] = E[ωn |xt ]−βnFω(E[ωn |xt ]).

Denoting ω̄n = E[ωn |xt ] gives the recursion ω̄n+1 = ω̄n −βnFω(ω̄n), and therefore

‖ω̄n+1 −Vk−1‖2
2 = ‖ω̄n −Vk−1‖2

2 −2βn〈Fω
k−1(ω̄n),ω̄n −Vk−1〉+β2

n‖Fω(ω̄n)‖2
2.

We will now use Lipschitzness and strong monotonicity of Fω and that Fω(Vk−1) = 0 and
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similar to Lemma 7.8, we obtain the recursion

‖ω̄n+1 −Vk−1‖2
2 =

(
1−2βnλmin +β2

nλ
2
max

)‖ω̄n −Vk−1‖2
2.

By the choice of n0 and βn , similar to Lemma 7.8, it holds that 2βnλmin −β2
nλ

2
max ≥ βnλmin.

By definingΘn the same way as Lemma 7.8 and summing the inequality gives the result. �

We analyze the outer algorithm for solving the matrix game in greedy step. The algorithm is

based on FoRB from [MT20b] due to its simple update with one projection and one oracle.

Similar to [MT20b], let us define the “Lyapunov-like” function

Φs
t+1 = D(x(·|s), xt+1(·|s))+η〈θ?,t+1(s, ·)−θt+1(s, ·), x(·|s)−xt+1(·|s)〉

+ 1

2
D(xt+1(·|s), xt (·|s)). (7.11)

We call this “Lyapunov-like” since it is not non-increasing. Moreover, unlike [MT20b], Φt is

not necessarily nonnegative. However, it is sufficient for our purposes as it is bounded. Note

that we will also use the following error functions

e1,t = η〈θt+1(·|s)−E[θt+1(·|s)|xt ], x(·|s)−xt (·|s)〉
e2,t = η〈θy

t+1(·|s)−E[θy
t+1(·|s)|yt ], yt (·|s)− y(·|s)〉.

Lemma 7.15. [See Lemma 7.5] Let Assumption 7.1 hold. Denote xout = 1
T

∑T
t=1 xt and yout =

1
T

∑T
t=1 yt and let η= 1−γ

8

EEs∼σ
[

max
x s ,y s

xs
outQ

s y s −xsQ s yout

]
=O

(
Φs

0 −Φs
T

ηT

)
+O

(
1

T

T∑
t=1

E‖E[θt+1|xt ]−θ?,t‖
)

+O
(

1

T

T∑
t=1

ηE‖θt+1 −θ?,t‖2 +E‖θt −θ?,t−1‖2

)
+ 1

Tη
EEs∼σmax

z

T∑
t=1

[e1,t +e2,t ]).

Remark 7.16. By Lemma 7.7 and Lemma 7.8, the second and third term will bring dependence

O ( 1
N +E‖E[V̂k−1|xt ]−Vk−1‖

)
. We will see in the next lemma how to handle error terms e1,e2

and will use the bound derived earlier for E‖E[V̂k−1|xt ]−Vk−1‖ in Lemma 7.9.

Proof. By the update rule, it follows for all s and x(·|s) ∈∆,

〈∇D(xt+1(·|s), xt (·|s))+η(2θt+1(s, ·)−θt (s, ·)), x(·|s)−xt+1(·|s)〉 ≥ 0.

By three point identity,

D(x(·|s), xt+1(·|s)) ≤ D(x(·|s), xt (·|s))−D(xt+1(·|s), xt (·|s))

+η〈(2θt+1(s, ·)−θt (s, ·)), x(·|s)−xt+1(·|s)〉. (7.12)
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We now manipulate the inner product by adding and subtracting θ?,t+1

η〈(2θt+1(s, ·)−θt (s, ·)), x(·|s)−xt+1(·|s)〉 = η〈θt+1 −θ?,t+1(s, ·), x(·|s)−xt+1(·|s)〉
+η〈θt+1(s, ·)−θt (s, ·)+θ?,t+1(s, ·), x(·|s)−xt+1(·|s)〉

= η〈θt+1(s, ·)−θ?,t+1(s, ·), x(·|s)−xt+1(·|s)〉+η〈θt+1(s, ·)−θt (s, ·), x(s, ·)−xt (·|s)〉
+η〈θt+1(s, ·)−θt (s, ·), xt (·|s)−xt+1(·|s)〉+η〈θ?,t+1(s, ·), x(·|s)−xt+1(·|s)〉. (7.13)

The first two inner products in the final inequality will telescope if we can replace θt+1 with

θ?,t in the second one. For this we have to be careful with bias and variance. Let us take the

second inner product

η〈θt+1(s, ·)−θt (s, ·), x(·|s)−xt (·|s)〉 = η〈θ?,t (s, ·)−θt (s, ·), x(·|s)−xt (·|s)〉
+η〈θt+1(s, ·)−θ?,t (s, ·), x(·|s)−xt (·|s)〉.

Now in this estimation, we will add and subtract terms involving E[θt+1(s, ·)|xt ] to obtain

η〈θt+1(s, ·)−θt (s, ·), x(·|s)−xt (·|s)〉 = η〈θ?,t (s, ·)−θt (s, ·), x(·|s)−xt (·|s)〉
+η〈E[θt+1(s, ·)|xt ]−θ?,t , x(·|s)−xt (·|s)〉+η〈θt+1(s, ·)−E[θt+1(s, ·)|xt ], x(·|s)−xt (·|s)〉

≤ η〈θ?,t (s, ·)−θt (s, ·), x(·|s)−xt (·|s)〉+2η‖E[θt+1|xt ]−θ?,t‖∞+e1,t , (7.14)

where the inequality is due to Cauchy-Schwarz and we use the definition of e1,t for the last

term. Next, we use Cauchy-Schwarz and Young’s inequalities for the third inner product in

RHS of (7.13) to derive

η〈θt+1(s, ·)−θt (·|s), xt (·|s)−xt+1(·|s)〉 ≤ η2‖θt+1(s, ·)−θt (·|s)‖2
∞+ 1

4
‖xt (·|s)−xt+1(·|s)‖2

1

≤ 4η2 [‖θt+1(s, ·)−θ?,t (s, ·)‖2
∞+‖θ?,t (s, ·)−θ?,t−1(s, ·)‖2

∞+‖θ?,t−1(s, ·)−θt (s, ·)‖2
∞

]
+ 1

4
‖xt (·|s)−xt+1(·|s)‖2

1. (7.15)

As θ?,t (s, a) = Eb∼yt (·|s)Q(s, a,b), we have

‖θ?,t (s, ·)−θ?,t−1(s, ·)‖∞ ≤ max
b,a

|Q(s, a,b)|‖yt (·|s)− yt−1(·|s)‖1

≤ 2

1−γ‖yt (·|s)− yt−1(·|s)‖1, (7.16)

where the second inequality is by Lemma 7.10 and the first by Jensen. We join (7.14), (7.15),

and (7.16) in (7.13)

η〈(2θt+1(s, ·)−θt (s, ·)), x(·|s)−xt+1(·|s)〉 ≤ η〈θt+1(s, ·)−θ?,t+1(s, ·), x(·|s)−xt+1(·|s)〉
η〈θ?,t (s, ·)−θt (s, ·), x(·|s)−xt (·|s)〉+2η‖E[θt+1|xt ]−θ?,t‖∞+e1,t
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+4η2 [‖θt+1 −θ?,t‖2
∞+‖θ?,t−1 −θt‖2

∞
]+ 16η2

(1−γ)2 ‖yt (·|s)− yt−1(·|s)‖2
1

+ 1

4
‖xt (·|s)−xt+1(·|s)‖2

1 +η〈θ?,t+1(s, ·), x(·|s)−xt+1(·|s)〉. (7.17)

We note that by strong convexity of Bregman distance w.r.t. `1 norm, 1
4‖xt (·|s)−xt+1(·|s)‖2

1 ≤
1
2 D(xt+1(·|s), xt (·|s)) and similarly for the term involving difference of yt and yt−1.

We insert (7.17) into (7.12) by using the definition ofΦt

η〈θ?,t+1(s, ·), xt+1(·|s)−x(·|s)〉+Φs
t+1 ≤Φs

t +e1,t +2η‖E[θt+1|xt ]−θ?,t‖∞
+4η2 [‖θt+1 −θ?,t‖2

∞+‖θ?,t−1 −θt‖2
∞

]
+ 32η2

(1−γ)2 D(yt (·|s), yt−1(·|s))− 1

2
D(xt (·|s), xt−1(·|s)).

We sum this inequality and use the definition of θ?,t+1 to obtain

η

T

T−1∑
t=0

〈Eb∼yt+1(·|s)Q(s, ·,b), xt+1(·|s)−x(·|s)〉 ≤ Φs
0 −Φs

T

T
+ 1

T

T−1∑
t=0

e1,t

+ 1

T

T−1∑
t=0

2η‖E[θt+1|xt ]−θ?,t‖∞+ 4η2

T

T∑
t=1

[‖θt+1 −θ?,t‖2
∞+‖θ?,t−1 −θt‖2

∞
]

+ 1

T

T∑
t=0

32η2

(1−γ)2 D(yt (·|s), yt−1(·|s))− 1

2
D(xt (·|s), xt−1(·|s)).

We estimate the error terms in the last line. The terms in the second line will be the bias and

variance arising from using θt+1 instead of the true oracle. By the symmetric estimation on

the y player, we can obtain the similar inequality. For making the comparison, we will denote

the corresponding oracle as θy (θ in the previous estimations correspond to θx ). In particular

θ
y
?,t+1(s,b) = Ea∼xt+1(·|s)Q(s, a,b), and the corresponding Lyapunov-like function asΦs

t ,y

η

T

T−1∑
t=0

〈Ea∼xt+1(·|s)Q(s, a, ·), y(·|s)− yt+1(·|s)〉 ≤
Φs

0,y −Φs
y,T

T
+ 1

T

T−1∑
t=0

e2,t

+ 1

T

T−1∑
t=0

2η‖E[θy
t+1|xt ]−θy

?,t‖∞+ 4η2

T

T∑
t=1

[
‖θy

t+1 −θ
y
?,t‖2

∞+‖θy
?,t−1 −θ

y
t ‖2

∞
]

+ 1

T

T∑
t=0

32η2

(1−γ)2 D(xt (·|s), xt−1(·|s))− 1

2
D(yt (·|s), yt−1(·|s)).

After summing up the two inequalities and recalling that we bound the RHS of:

xs
outQ

s y s −xsQ s y s
out =

1

T

T∑
t=1

〈Ea∼xt (·|s)Q(s, a, ·), y(·|s)〉− 1

T

T∑
t=1

〈Eb∼yt (·|s)Q(s, ·,b), x(·|s)〉

= 1

T

T∑
t=1

[〈Ea∼xt (·|s)Q(s, a, ·), y(·|s)− yt (·|s)〉−〈Eb∼yt (·|s)Q(s, ·,b), x(·|s)−xt (·|s)〉] , (7.18)

206



7.4. Proofs

we pick η≤ 1−γ
8 to cancel the last terms in the last lines of the estimations. Since we estimate

θt and θy
t in the same way, their bounds as we derived in Lemma 7.8, Lemma 7.7 will be the

same, therefore in the bound we do not include both and simply put them under big-Oh. Next,

we take maximum over x, y , take expectation w.r.t. state distribution σ and total expectation

w.r.t. randomness in the algorithm and use the definitions of xout and yout to conclude. �

For error terms e1,t ,e2,t , we use the technique to change the order of maximum and expecta-

tion from the literature of stochastic primal-dual methods [NJLS09, Lemma 3.1]. Recall:

e1,t = η〈θt+1(·|s)−E[θt+1(·|s)|xt ], x(·|s)−xt (·|s)〉
e2,t = η〈θy

t+1(·|s)−E[θy
t+1(·|s)|yt ], yt (·|s)− y(·|s)〉

We will derive the bound or e1,t and the bound for e2,t is symmetrical.

Lemma 7.17. We have

1

T
EEs∼σmax

x

T∑
t=1

e1,t ≤ log |A|
T

+ 1

T

T∑
t=1

4η2E‖θt+1 −θ?,t‖2
∞.

Proof. First note that 〈θt+1(·|s)−E[θt+1(·|s)|xt ], xt (·|s)〉 does not depend on x and by the tower

property of conditional expectation,

T∑
t=1

EEs∼ση〈θt+1(·|s)−E[θt+1(·|s)|xt ], xt (·|s)〉

= EEs∼ση〈E[θt+1(·|s)|xt ]−E[θt+1(·|s)|xt ], xt (·|s)〉 = 0.

Therefore, we have to estimate

EEs∼σmax
x

T∑
t=1

η〈θt+1(·|s)−E[θt+1(·|s)|xt ], x(·|s)〉.

Let nt (s, ·) =−η(θt+1(·|s)−E[θt+1(·|s)|xt ]). First, we note that E[nt (s, ·)|xt ] = 0. Next, we define

the auxiliary “ghost” process

x̃t+1(·|s) = argmin
x

〈nt (s, ·), x(·|s)〉+D(x(·|s), x̃t (·|s)).

Note that x̃t and xt depend on the same randomness by definition of x̃t , therefore conditioned

on xt , x̃t is deterministic. Standard mirror descent analysis gives for any x

〈nt (s, ·), x(·|s)〉 ≤ D(x(·|s), x̃t (·|s))−D(x(·|s), x̃t+1(·|s))+〈nt (s, ·), x̃t (·|s)〉+‖nt (·|s)‖2
∗.

We sum the inequality take maximum and then expectation

EEs∼σmax
x

T∑
t=1

〈−nt (s, ·), x(·|s)〉 ≤ Es∼σD(x(·|s), x̃1(·|s))+
T∑

t=1
EEs∼σ〈−nt (s, ·), x̃t (·|s)〉
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+
T∑

t=1
EEs∼ρ‖nt (·|s)‖2

∞.

By tower property and that x̃t is deterministic conditioned on xt , we have
∑T

t=1E〈nt (s, ·), x̃t (·|s)〉 =∑T
t=1E〈E[nt (s, ·)|xt ], x̃t (·|s)〉 = 0. Recall the definition of nt and use Young’s inequality with

Jensen’s inequality to get

E‖nt (s, ·)‖2 = Eη2‖θt+1(·|s)−E[θt+1(·|s)|xt ]‖2
∞

≤ 2Eη2‖θt+1(·|s)−θ?,t‖2
∞+2Eη2‖θ?,t −E[θt+1(·|s)|xt ]‖2

∞ ≤ 4Eη2‖θt+1(·|s)−θ?,t‖2
∞.

�

Proofs for evaluation step of Reflected NAC with a game etiquette

This part mirror closely the analyses for single agent setting, as the best response step is like a

single agent problem where the other agent (fixed) can be seen as part of the environment.

Therefore, the development in this part will be similar to [Lan21]. Let us restate that the main

concern in this part was to make sure that ȳt updates do not require seeing the policy xk or

the actions of x-player. As we showed that it is the case, we will only provide the proofs here,

with mostly using the arguments of [Lan21]. Therefore, the proofs in this part are brief and

are included for being self-contained and for easy navigation. At the point of view of this loop

(runs from n = 0, · · · , N −1), ν?,t is fixed.

Lemma 7.18. Let Assumption 7.1 hold, βn = 2
λνmin(n+n0) . Evaluation step in Alg. 7.1 satisfies

E‖νN −ν?,t‖2
2 ≤O

(
|S||B |

(1−γ)2N 2 + 1

N (1−γ)2(λνmin)2

)
, ‖E[νN |ȳt ]−ν?,t‖2

2 ≤O
(

2|S||B |
(1−γ)2N 2

)
.

Proof. For the variance, we have by taking expectation w.r.t. ξn = (sn , an ,bn , sn+1,bn+1)

Eξn‖νn+1 −ν?,t‖2
2 = ‖νn −ν?,t‖2

2 −2βn〈Eξn [F̃ν
t (νn ,ξn)],νn −ν?,t 〉+β2

nEξn‖F̃ν
t (νn ,ξn)‖2

2.

By Eξn F̃ν
t (νn ,ξn) = Fν

t (νn), Fν
t (ν?,t ) = 0, and strong monotonicity of Fν

t ,

E‖νn+1 −ν?,t‖2
2 =

(
1−2βnλ

ν
min

)
E‖νn −ν?,t‖2

2 +β2
nE‖F̃ν

t (νn ,ξn)‖2
2.

The end of the proof is the same as Lemma 7.9.

For the bias, we will argue as in Lemma 7.9. Taking expectation of the recursion w.r.t. ξn gives

Eξnνn+1 = νn −βnFν
t (νn).

We now unroll the expectation until yt and use linearity of Fν
t

E[νn+1|ȳt ] = E[νn |ȳt ]−βnFν
t (E[νn |ȳt ]).
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Denoting ν̄n = E[νn |ȳt ] gives

‖ν̄n+1 −ν?,t‖2
2 = ‖ν̄n −ν?,t‖2

2 −2βn〈Fν
t (ν̄n), ν̄n −ν?,t 〉+β2

n‖Fν
t (ν̄n)‖2

2.

We will now use Lipschitzness and strong monotonicity of Fν
t and that Fν

t (ν?,t ) = 0 and similar

to Lemma 7.9, we obtain the recursion

‖ν̄n+1 −ν?,t‖2
2 =

(
1−2βnλ

ν
min +β2

nλ
2
max

)‖ν̄n −ν?,t‖2
2.

By the choice of n0 and βn , similar to Lemma 7.9 the result follows. �

We will now give a proof similar to [Lan21, Theorem 2] [AKLM20] regarding the NPG algorithm

for finding the best response.

Theorem 7.19. Let Assumption 7.1 hold and η> 0. For the evaluation step of Algorithm 7.1.

1

T

T∑
t=1

V xk ,y∗
k (s0)−V xk ,ȳt (s0) ≤ η

(1−γ)T
E

[
E

s∼d
xk ,y∗

k
s0

D(y∗
k (·|s), y1(·|s))−V xk ,ȳ1 (s)+V xk ,ȳt+1 (s)

]

+ η

2(1−γ)2

1

T

T∑
t=1

E‖ν?,t −νt+1‖2
∞+ 2

1−γ
1

T

T∑
t=1

E‖E[νt+1|ȳt ]−ν?,t‖∞

Corollary 7.20. We use the bound from Lemma 7.18 to obtain

Õ
(

1

T (1−γ)2

)
+O

(
|S||B |

(1−γ)4N 2 + 1

N (1−γ)4(λνmin)2

)
+O

( p|S||B |
(1−γ)2N

)
. (7.19)

Proof. By the update rule of ȳt+1, it follows for any s, ȳ [Tse08, Property 1]

D(ȳ(·|s), ȳt+1(·|s)) ≤ D(ȳ(·|s), ȳt (·|s)) − D(ȳt+1(·|s), ȳt (·|s)) − 〈ηνt+1(s, ·), ȳ(·|s) − ȳt+1(·|s)〉.
(7.20)

We manipulate the inner product

−η〈νt+1(s, ·), ȳ(·|s)− ȳt+1(·|s)〉 =−η〈νt+1(s, ·), ȳ(·|s)− ȳt (·|s)〉−η〈νt+1(s, ·), ȳt (·|s)− ȳt+1(·|s)〉
=−η〈ν?,t (s, ·), ȳ(·|s)− ȳt (·|s)〉−η〈νt+1(s, ·), ȳt (·|s)− ȳt+1(·|s)〉

−η〈νt+1(s, ·)−ν?,t (s, ·), ȳ(·|s)− ȳt (·|s)〉. (7.21)

By the performance difference lemma and using the definition of ν?,t = Ea∼xk Qxk ,ȳt (·, a, ·).

V xk ,ȳt+1 (s0)−V xk ,ȳt (s0) = 1

1−γEs∼d
xk ,ȳt+1
s0

〈Ea∼xk (·|s)Q
xk ,ȳt (s, a, ·), ȳt+1(·|s)− ȳt (·|s)〉

= 1

1−γEs∼d
xk ,ȳt+1
s0

〈ν?,t (s, ·), ȳt+1(·|s)− ȳt (·|s)〉

= 1

1−γEs∼d
xk ,ȳt+1
s0

[
〈νt+1(s, ·), ȳt+1(·|s)− ȳt (·|s)〉
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+〈ν?,t (s, ·)−νt+1(s, ·), ȳt+1(·|s)− ȳt (·|s)〉
]

≥ 1

1−γEs∼d
xk ,ȳt+1
s0

[
〈νt+1(s, ·), ȳt+1(·|s)− ȳt (·|s)〉− η

2
‖ν?,t (s, ·)−νt+1(s, ·)‖2

∞

− 1

2η
‖ȳt+1(·|s)− ȳt (·|s)‖2

1

]
, (7.22)

where the last step uses Cauchy-Schwarz and Young’s inequalities.

Plugging in ȳ = ȳt in (7.20) and using strong convexity of D gives

−η〈νt+1(s, ·), ȳt (·|s)− ȳt+1(·|s) ≥ D(ȳt (·|s), ȳt+1(·|s))+D(ȳt+1(·|s), ȳt (·|s))

≥ ‖ȳt+1(·|s)− ȳt (·|s)‖2
1,

which implies that 〈νt+1(s, ·), ȳt+1(·|s)− ȳt (·|s)〉− 1
2η‖ȳt+1(·|s)− ȳt (·|s) ≥ 0.

Recall that d xk ,ȳ t+1
s0

(s) = (1−γ)
∑∞

t=0γ
t Prxk ,ȳt+1 (st = s|s0), therefore 1−γ ≤ d xk ,ȳ t+1

s0
(s0) ≤ 1.

Using the two previous inequalities in (7.22) gives

〈νt+1(s, ·), ȳt+1(·|s)− ȳt (·|s)〉 ≤V xk ,ȳt+1 (s)−V xk ,ȳt (s)+ 1

2η
‖ȳt+1(·|s)− ȳt (·|s)‖2

1

+ η

2(1−γ)
‖ν?,t −νt+1‖2

∞.

We use the final inequality, (7.21), and strong convexity of D in (7.20) to get

η〈ν?,t (s, ·), ȳ(·|s)− ȳt (·|s)〉+D(ȳ(·|s), yt+1(·|s))−ηV xk ,ȳt+1 (s) ≤ D(ȳ(·|s), yt (·|s))

−ηV xk ,ȳt (s)+ η2

2(1−γ)
‖ν?,t −νt+1‖2

∞+η〈ν?,t (s, ·)−νt+1(s, ·), ȳ(·|s)− ȳt (·|s)〉. (7.23)

In view of the definition ν?,t = Ea∼xk (·|s)Qxk ,ȳt (·, a, ·), performance difference lemma gives

(1−γ)(V xk ,y∗
k (s0)−V xk ,ȳt (s0)) = E

s∼d
xk ,y∗

k
s0

〈ν?,t (s, ·), y∗
k (·|s)− yt (·|s)〉. Plugging in y = y∗

k in (7.23)

and taking E
s∼d

xk ,y∗
k

s0

of both sides give

η(1−γ)(V xk ,y∗
k (s0)−V xk ,ȳt (s0))+E

s∼d
xk ,y∗

k
s0

[
D(y∗

k (·|s), ȳt+1(·|s))−ηV xk ,ȳt+1 (s)
]

≤ E
s∼d

xk ,y∗
k

s0

[
D(y∗

k (·|s), ȳt (·|s))−ηV xk ,ȳt (s)+ η2

2(1−γ)
‖ν?,t −νt+1‖2

∞

+η〈ν?,t (s, ·)−νt+1(s, ·), ȳ∗
k (·|s)− ȳt (·|s)〉

]
. (7.24)

We take expectation w.r.t. the randomness in the algorithm, use tower property, the fact that

conditioned on ȳt , y∗
k (·|s)− ȳt (·|s) is deterministic, Cauchy-Schwarz inequality, ȳ(·|s) ∈∆ for

any ȳ , s. Then, we note that d
xk ,y∗

k
s0

does not depend on t and sum the inequality over t . �
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8 Conclusions and Future Directions

In this dissertation, we designed and analyzed stochastic algorithms for solving structured

nonsmooth problems given in eqs. (1.2) and (1.3). Our results enhance the toolkit of contin-

uous optimization via adaptive and practical algorithms with optimal rate and complexity

guarantees, either matching or improving the state-of-the-art.

We summarize the contributions of each chapter with potential future directions.

• In Chapter 2, we studied adaptive gradient methods for solving nonsmooth stochastic

optimization problems with convex and nonconvex objectives. First, we introduced a regret

analysis framework for the more general online convex optimization (OCO) template. This

framework addresses an important theory-practice gap on the choice of exponential moving

average (EMA) parameters, which are of paramount importance on the empirical success

of these methods. Next, we analyze an Adam-type algorithm for solving constrained weakly

convex problems. This problem template generalizes unconstrained smooth minimization,

which is the only setting studied in the previous literature for adaptive methods.

Role of momentum. Even though our developments made it possible to obtain regret guar-

antees with constant EMA (a.k.a. momentum) parameters, our bounds still suggest not

incorporation momentum. This is common in all the analyses that we are aware for Adam-

type algorithms. Recently, some works investigate the role of momentum to idenfity when

momentum improves SGD [Def20, GLZX19, CM20]. On this line of work, we believe that it is

interesting to study adaptivity along with momentum to understand why or when Adam-type

algorithms can improve SGD.

Convergence for nonsmooth nonconvex optimization. Even though our results for noncon-

vex case generalize the existing convergence results, they are still not sufficient to explain

why these methods work in complicated neural network structures with nonsmooth and

nonconvex objective functions. The hardness of this problem template is recently established

along with some positive results for SGD [ZLSJ20, Sha20]. Studying convergence properties

of Adam-type algorithms for these general problems is a natural future direction due to their
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Chapter 8. Conclusions and Future Directions

practical use.

• In Chapter 3, we designed algorithms coupling Nesterov’s smoothing with SGD and acceler-

ated proximal coordinate descent to solve linearly constrained problems with optimal rates.

Our results also stochastic optimization problems with stochastic constraints that hold almost

surely.

Stochastic constraints. One natural future direction concerning our developments is to

consider more general classes of stochastic constraints. Some examples are constraints that

hold in expectation or probabilistic constraints with potential use in the popular field of

distributionally robust optimization [RM19].

Theoretical understanding of restart. To enhance the empirical performance of our smooth-

ing based accelerated proximal CD framework, we found out that restarting strategies were

essential. We showed in a followup work that smoothing with deterministic accelerated meth-

ods still have the same worst-case guarantees [TDAFC19]. However, this does not explain the

improved practical performance we observe with restarts. Some recent progress on restarting

in minimization [FQ20] and deterministic primal-dual optimization [Fer21, HL20] can be

good starting points.

• In Chapter 4, we analyzed the stochastic primal-dual hybrid gradient (SPDHG) algorithm

which had empirical success but weak theoretical guarantees. To explain the favorable prac-

tical performance, we proved almost sure convergence of the sequence to a solution, the

optimal O(1/k) rate on the expected primal-dual gap and adaptive linear convergence with

an error bound condition.

Tighter analysis for adaptive linear convergence. Despite these strengthening of the guaran-

tees, our results still do not completely characterize the adaptive linear convergence behavior

of SPDHG in practice. In particular, one of the three main contributions of Chapter 4 was to

show that SPDHG obtains linear rate of convergence under general assumptions that hold

for a large body of problems, with an agnostic step size selection. A natural question is: How

does this rate translate to practice? For this purpose, we perform a controlled experiment on a

simple problem

min
x∈Rd

µ

2
‖x‖2 : Ax = b,

with d = n = 10. Upon writing the KKT conditions for the problem, we obtain F =
[
µI A>

A 0

]
and metric subregularity constant η is the smallest eigenvalue of F in absolute value.

For simplicity, we focus on PDHG, which is a specific case of SPDHG, and plot the predicted

rate and the empirical rate in Figure 8.1.

We observe that the empirical rate of convergence is much faster than the worst case rate

predicted by theory. We point out several explanations for this phenomenon: ◦ Metric subreg-
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Figure 8.1 – left: empirical and theoretical linear rates, right: empirical rates with different µ.

ularity is too general to capture structures observed in practice.

◦ Our step size choice is independent of metric subregularity constant, preventing optimizing

the theoretical rate with respect to these quantities.

In fact, this phenomenon is not specific to our analysis and it seems like a drawback of the

existing approaches utilizing metric subregularity [LFP19, LFP16]. On this front, we observe

that in our example, as µ increases, metric subregularity constant η degrades. However, as

we see in the plot, the practical performance degrades when µ is either too big or too small

(see Figure 8.1). This observation suggests that there might exist better regularity measures

beyond metric subregularity that would help us derive better rates. We believe that this is a

promising future direction. A recent work by Fercoq [Fer21] made progress on this question.

• In Chapter 5 we designed the first PDCD algorithm which is efficient with both sparse and

dense data. Moreover, we also proved the best-known convergence guarantees for our new

method PURE-CD, using some of the techniques we developed in Chapter 4. In our numerical

experiments with varying levels of sparsity, PURE-CD showed the fastest convergence among

the the state-of-the-arts, as predicted by our theory.

Strong convexity and better bounds. We believe that there are two interesting future direc-

tions on improving the theoretical understanding of PURE-CD. The most immediate one is

to exploit strong convexity when it exists, to improve the convergence rate. Strongly convex

setting is much more studied in the literature due to its simplicity and we expect PURE-CD to

recover the best-known theoretical results. The second future direction is a more careful study

on the dimension dependence of our bound. In particular, we expect PURE-CD to obtain a

better overall complexity than deterministic methods and PDCD methods without adaptation

to sparsity.

Linear programming solver. As also mentioned before, metric subregularity that we used for

showing linear convergence is connected to Hoffman’s Lemma for linear programming (LP).

There is a recent trend in the literature to design fast first-order algorithms for LPs [AHLL21,

YZH+15]. Our practical experience with PURE-CD was highly positive due to its adaptivity

to metric subregularity and sparsity simultaneously. An interesting future direction is to

particularize PURE-CD for LPs both theoretically and practically by implementing it as an LP

solver.
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• In Chapter 6, we designed variance reduced algorithms for solving convex-concave min-

max problems with finite sum structure. Our algorithms have almost sure convergence

under convexity, and they improve the existing complexity results. Recent work also showed

matching lower bounds to our developments.

Sparsity. The recent work by [CJST20] built on the algorithm in [CJST19] and improved the

complexity for matrix games in Euclidean setup, for sparse data, by using specialized data

structures. We believe that these techniques can also be used in our algorithms.

Stochastic oracles. As we have seen for bilinear and nonbilinear problems, harnessing the

structure is very important for devising suitable stochastic oracles with small Lipschitz con-

stants. On top of our algorithms, an interesting direction is to study important nonbilinear

min-max problems and devise particular Bregman distances and stochastic oracles to obtain

complexity improvements.

• In Chapter 7, we analyzed a policy optimization method for solving two player zero-sum

Markov games. Our sample complexity result improved the best-known complexity of policy

gradient methods in this setting.

Simpler algorithms. To get the tightest estimates, we needed to use an asymmetric algorithm

with inner loops for policy evaluation. We think that an interesting future direction is to design

symmetric algorithms and/or algorithms with less inner loops with the same complexity

estimate. These aspects would enhance the practical impact of the method.
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