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Sion, June 22, 2021 Arda Uran

This work was supported by Hasler Foundation Program: Cyber Human Systems (project number 16066), and
the Department of the Navy, Office of Naval Research (ONR) under the grant number N62909-17-1-2111.

ii



Abstract
This thesis aims to explore and exploit trade-offs in integrated circuits and systems to overcome

the fundamental bottlenecks faced by future data acquisition and communication systems.

Specifically, we target the emerging implantable neurotechnology and the advancing high-

speed communication domains as case studies.

The first part of the thesis addresses the extreme resource constraints of implantable neu-

rotechnology. As the number of electrodes for neural recording reaches towards thousands,

a single-chip solution is rendered infeasible in terms of both energy and area. To tackle this

problem, we present an analog front-end architecture that applies various energy- and area-

saving techniques to reduce the hardware resource demand of neural recording. The second

challenge has been transferring the massive data throughput over a wireless link to allow neu-

ral recording in independent environments. Inspired by the previous ideas for compression

and the emerging machine learning applications in neuroscience, we introduce an on-chip

adaptive feature extraction framework to reduce the overall data rate to the feasible range.

The second part of the thesis focuses on the timing uncertainty problem in high-speed com-

munication systems. The increasing data rates in wireline and wireless transceivers, and

the emerging need for multitransceiver architectures necessitate the lowest energy and area

for the frequency synthesis, which contradicts the current jitter-cost trade-off paradigm. To

allow the use of area-efficient ring oscillators for jitter-sensitive applications under low-power

constraints, we introduce a multiphase feedback phase-locked loop architecture, which sup-

presses the oscillator phase noise over a larger bandwidth.

Keywords:

Implantable neurotechnology, high-density neural recording, analog front-end (AFE), AC cou-

pling, inverter-based low-noise amplifier (LNA), analog-to-digital converter (ADC), successive

approximation register (SAR), monotonic switching, unit-length capacitor (ULC), on-chip

compression, compressed Hadamard transform (CHT), wireless power and data transfer,

machine learning, seizure detection, joint training, frequency synthesizer, phase-locked loop

(PLL), loop bandwidth, Gardner’s limit, multiphase feedback (MPF), voltage controlled ring

oscillator, matrix phase detector (MPD).
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Résumé
Cette thèse vise à explorer et exploiter des compromis dans les circuits et systèmes intégrés

pour surmonter les goulots d’étranglement fondamentaux auxquels sont confrontés les futurs

systèmes d’acquisition de données et de communication. Plus précisément, nous ciblons les

applications émergentes dans les domaines de la neurotechnologie implantable et celui des

communications à haut débit comme études de cas.

La première partie de la thèse aborde les contraintes de ressources extrêmes de la neuro-

technologie implantable. Comme le nombre d’électrodes pour l’enregistrement neuronal

atteint des milliers, une solution à puce électronique unique est rendue irréalisable en termes

d’énergie et de surface. Pour résoudre ce problème, nous présentons une architecture frontale

analogique qui applique diverses techniques d’économie d’énergie et de surface pour réduire

la demande en ressources matérielles de l’enregistrement neuronal. Le deuxième défi a été de

transférer l’énorme débit de données sur une liaison sans fil pour permettre l’enregistrement

neuronal dans des environnements indépendants. Inspiré par les idées précédentes pour la

compression et les applications émergentes d’apprentissage automatique en neuroscience,

nous introduisons un cadre d’extraction de caractéristiques sur puce pour réduire le débit de

données global à la plage possible.

La deuxième partie de la thèse se concentre sur le problème de l’incertitude temporelle

dans les systèmes de communication à haut débit. L’augmentation des débits de données

dans les émetteurs-récepteurs filaires et sans fil, ainsi que le besoin émergent d’architectures

multi-émetteurs-récepteurs nécessitent l’énergie et la surface les plus basses possibles pour

la synthèse de fréquences, ce qui contredit le paradigme actuel de compromis gigue versus

coût. Pour permettre l’utilisation d’oscillateurs en anneau de faible surface pour les appli-

cations sensibles à la gigue sous des contraintes de faible puissance, nous introduisons une

architecture de boucle à verrouillage de phase à rétroaction multiphase et implémentons un

synthétiseur de fréquence à large bande.

Mots clés : Neurotechnologie implantable, enregistrement neuronal haute densité, circuit fron-

tal analogique, couplage AC, amplificateur à faible bruit, convertisseur analogique-numérique,

registre d’approximation successive, commutation monotone , condensateur de longueur

unitaire, compression sur puce, transformée de Hadamard compressée, puissance sans fil et

transfert de données, apprentissage automatique, détection de crise, entraînement conjoint,

synthétiseur de fréquence, boucle à verrouillage de phase, bande passante de boucle, Limite

de Gardner, rétroaction multiphase, oscillateur en anneau commandé en tension, détecteur

de phase à matrice.
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Introduction

Integrated circuits (ICs) have benefited from the downscaling complementary metal-oxide-

semiconductor (CMOS) technology for many years as Moore’s Law predicted. The cost per

transistor has decreased steadily as dies got smaller and wafers got bigger. The transistors

have become faster, and the scaling supply voltage has reduced the energy consumption. As a

result, more functionality could be integrated in a single chip with each new technology.

The progress in the semiconductor industry has been the epicenter for advancements in

almost every other industry. In healthcare, for example, the advanced capabilities of wearable

and implantable medical devices have enabled better treatments with higher patient comfort.

In communications, the increasing speed of data transmission has allowed massive amounts

of information to be instantly accessible.

Today the scaling trend has neared its end due to several technical and economical difficulties.

Downscaling effort in the nanometer regime is disproportionately expensive, and small geom-

etry effects adversely impact circuit performance, especially for analog circuits. The ambition

for better technologies, on the other hand, has not seized to grow. Consequently, the new

emphasis is on innovating new circuits and systems to sustain the progress. The goal of this

thesis is to explore and exploit opportunities in integrated circuits and systems to solve the

technical bottlenecks in two different application domains.

The first domain is implantable neurotechnology, which is extensively reviewed in Chapter 1.

The primary research goal here is to remain extremely resource-frugal while extracting a

large amount of information from the brain. Chapter 2 presents a resource-efficient analog

front-end for maximizing the channel count within a single die [1]. Chapter 3 proposes a

recording framework which leverages machine learning to reduce the data rate for wireless

operation [2].

The second domain is high-speed communications, specifically frequency synthesis for

transceivers. The main research goal here is to make resource-efficient ring oscillators feasible

for jitter-sensitive applications. Chapter 4 introduces trade-offs in phase-locked loops, and

describes a technique for maximizing the loop bandwidth to mitigate the oscillator noise.

Chapter 5 presents the implementation details and the measured performance of the proto-

type [3]. We conclude the thesis with a summary of the main contributions and an outlook.
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1 Neural Recording Implants: A Review

The electrical nature of the nervous system was discovered in the late 18th century, when

Luigi Galvani (1737-1798) observed the contraction of a frog’s leg muscle when its exposed leg

nerve was struck by an electrical spark [4]. The discovery was elaborated with Emil du Bois-

Reymond’s (1818-1896) capture of the action potential using a galvanometer [5], an instrument

which converts electric current into mechanical motion by means of a magnetic coil. However,

due to its large inertia, the galvanometer was not able to measure this rapid signal accurately.

This may be considered as the beginning of the quest for a better neural interface.

The initial solutions for capturing the neural signals were also electromechanical. Julius

Bernstein (1839-1917) improved the measurements by incorporating sampling action into

the galvanometer [6]. The fundamental problem of inertia, was tackled by Willem Einthoven

(1860-1927) with the string galvanometer, where the slow coil was replaced by a light-weight

wire stretched between two poles of an electromagnet [7]. The string galvanometer became the

foundation for electrocardiography, and played a role in Edgar Adrian’s (1889-1977) discovery

of the all-or-nothing principle of motor nerve action potentials [8].

The all-or-nothing principle enabled the first shift from the slow mechanical domain to the

faster inertialess electronic domain. Herbert Gasser (1888-1963) and Joseph Erlanger (1874-

1965) could measure the action potential using a low-voltage cathode ray oscillograph thanks

to its constant shape in response to periodic stimuli [9]. However, the intensity of the cathode

ray oscillograph was not enough to capture weak single impulses in sensory neurons, thus the

electronics could not achieve immediate success.

The invention of the vacuum tube changed the landscape for neural recording as with many

other fields. Edgar Adrian used vacuum tube amplifiers to match weak neural signals to

the large input range of another low-inertia instrument called the capillary electrometer [10].

The search for better amplifiers for neurophysiology led to the invention of the differential

amplifier [11], which evolved to become an ubiquitous design element in electronics.
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The rapid progress and miniaturization of electronics and radio technologies during the

following decades created new possibilities for neuroscientific research. The stimoceiver [12]

devised by José Delgado (1915-2011) is considered as the pioneer of wireless neural recording

implants. This radio-controlled multichannel electronic headstage could both record and

stimulate the electrodes implanted in the brain, allowing the investigation of neurological

diseases and behavior on freely-behaving patients.

The invention of the integrated circuit (IC) in the late 1950s by Robert Noyce (1927-1990)

[13] and Jack Kilby (1923-2005) [14] radically changed the field of electronics and led to

custom ICs for implantable telemetry in the 1980s [15–17]. The rapidly increasing integration

density following the Moore’s Law [18] has fueled the race to the highest channel count and

functionality. The number of electrodes that can be processed within a single chip reached a

hundred in the 2000s [19] and it continues to increase. Today, we witness the emergence of

thousand-electrode recording systems-on-chip [20].

In this chapter, we compile the contemporary applications, needs and challenges of wireless

implantable multichannel neural recording ICs. Section 1.1 introduces the modern neural

probes and their use cases. Section 1.2 surveys the circuit techniques for sensing neural

potentials. The methods for wireless power and data transfer are discussed in Section 1.3. The

current solutions for tackling the data rate bottleneck of high channel count are reviewed in

Section 1.4. Finally, Section 1.5 summarizes the implications of this review for the design work

which will be presented in Chapters 2 and 3.

1.1 Introduction

The human brain is a complex network of around 86 billion neurons [21]. The interaction be-

tween neurons is an electrochemical process [22]. A neuron receives excitatory and inhibitory

inputs from other neurons via neurotransmitters shared through synapses, and the received

neurotransmitters alter the membrane potential by activating certain ion channels. If the

sum of the inputs rises the membrane potential above a certain threshold, a positive feedback

rapidly activates other ion channels and generates an action potential (AP) which signals the

target neurons1. A reverse process brings the membrane potential to its resting state.

1.1.1 Probing the Electrical Activity of the Brain

Probing the aforementioned electrical activity of neurons is the first stage of a neural interface.

Intracellular APs can be probed using patch-clamped glass micropipettes [23]. However, this

method destructs the cell membrane at least partially; therefore, it is only applicable for in

vitro studies with isolated cells, or short-term in vivo studies [24,25]. Extracellular APs resulting

from the movement of ions, and local field potentials (LFPs) created by the collective activity

of groups of neurons, can be measured using neural probes [26]. Figure 1.1 shows various

1This process is also called as "spiking" or "firing", and the APs are also called as "spikes" in the literature.
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Figure 1.1 – Types of neural probes for sensing electrical activity. Spatial and temporal resolu-
tions increase with the level of invasiveness. Reprinted from [27] under CC BY 4.0 license.

types of probes with different levels of invasiveness classified as depth electrodes, intracortical

electrodes, electrocorticography (ECoG), and electroencephalography (EEG).

Depth electrodes are used to reach the subcortical regions of the brain, and they usually have a

few recording sites at the tip of the lead [28]. Intracortical electrodes such as the Utah array and

the Michigan probe have leveraged the silicon microfabrication technology to create dense

microelectrode arrays (MEAs). The Michigan probe contains multiple recording sites along

its shank [29]. The recording sites can be configured in a variety of arrangements depending

on the application need [30]. Up to 1280 sites can be integrated in a single shank, and multi-

shank configurations can expand the 1D probe into a 2D array [31]. The Utah MEA is a 2D

arrangement of needle-like probes where the electrode site is at the tip [32].

Stiff penetrating MEAs offer the highest spatial and temporal resolution. However, they

also damage the recording site and the recordings deteriorate over time due to foreign body

reaction. Soft epidural or subdural ECoG grids placed on the surface of the brain have better

mechanical compatibility with the surrounding tissue, hence better long-term performance

[33]. ECoG grids can record the LFPs from superficial cortical neurons [26], and APs when the

grid has high density and conformability [34].

Strong and synchronized cortical activity can be recorded through the scalp using EEG, without

the costs and risks associated with implanting an invasive MEA. Although effective applications

such as virtual keyboards and controlling wheelchairs have been demonstrated via EEG, the

control of complex neuroprostheses have not yet been achieved [35]. This is mainly because

the spatial resolution of EEG is limited to centimeters, and the signal attenuation is high due

to the thick layer of tissues in between the electrode and the cortex [22]. As a result, advanced

applications demand exclusively invasive recordings.
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Actuator
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Stimulation
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Brain-machine interface

Localization of epileptic foci

Placement of DBS electrodes

Responsive neuromodulation

Adaptive DBS

Figure 1.2 – Application examples for invasive neural recording. (a) Brain-machine interface.
Image adapted from [36] with permission from Springer Nature. (b) Surgical aid. Image
reprinted from [37] with permission from John Wiley and Sons. (c) Closed-loop stimulation.
Image obtained from the product web pages of Percept PC, Medtronic Inc. and the RNS
System, Neuropace Inc.

1.1.2 Applications of Invasive Neural Recording

The applications of invasive multichannel neural recording can be classified intro three general

categories as illustrated in Figure 1.2. The first category (a) uses the recorded signals to control

an external device. The second category (b) aids the medical experts in their interventions by

providing physiological markers. The third category (c) describes closed-loop systems which

automatically act upon a detected brain state. Here we exemplify these classes within two

application domains: brain-machine interfaces (BMIs) and neurological disorders.

Brain-Machine Interfaces (BMIs)

BMIs are systems that translate brain activity to interact with objects. Majority of the demon-

strations target restoring lost functions or augmenting quality of life in disabled patients, such

as cursor control, prosthesis control, and speech decoding.

Cursor control: One of the first showcases of invasive BMIs was controlling a computer cursor

in 2D space. Hochberg et al. [38] implanted a tetraplegic subject with a 96-channel Utah MEA
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in primary motor cortex, three years after spinal cord injury. The subject’s movement intention

caused spiking activity modulations in the arm area of the primary motor cortex, which were

decoded to control a cursor and perform tasks such as opening an email or playing a game.

In a similar experiment by Schalk et al. [39], the subjects were epilepsy patients implanted

with 26 to 64-channel ECoG arrays covering large surfaces. Actual or imagined movements of

different body parts caused variations in recorded spectral band powers, which were decoded

to control a cursor. The time required to learn how to control this invasive interface was

reported to be significantly shorter than it was for noninvasive EEG-based interfaces.

Prosthesis control: Recordings from the motor cortex also enable the control of prosthetic

devices. In the 2006 study by Hochberg et al. [38], cursor intention was used to open and close

a robotic arm. In the 2012 study by Hochberg et al. [36], two tetraplegic subjects performed

reach and grasp tasks by imagining the movements. Each subject was implanted with a 96-

channel Utah MEA in the hand area of the primary motor cortex, and the neural signals were

decoded to control a robotic arm. Rastogi et al. [40] showed that grasping force can also be

decoded from the neural signals. In a demonstration by Ajiboye et al. [41], a participant with

spinal cord injury was able to control his own paralysed arm by decoding the intention from

two 96-channel Utah MEAs in the hand area of the motor cortex, and stimulating the arm

muscles through percutaneous electrodes.

Speech decoding: Cursor and prosthesis control BMIs can be coupled to a virtual keyboard

to produce speech and text, but with speeds much below the natural rate of speech. Speech

BMIs aim to achieve real-time synthesis by decoding brain signals. Anumanchipalli et al. [42],

demonstrated speech synthesis in 5 patients implanted with high-density ECoG arrays, using

a two-stage process where the first stage decodes neural signals into articulatory kinematic

features, and the second stage maps the decoded kinematic features into acoustic features.

Moses et al. [43] decoded question-and-answer dialogs from neural signals in 3 patients

implanted with 128 or 256-channel ECoG arrays. Makin et al. [44] decoded spoken sentences

directly from neural signals in 4 patients implanted with 128 or 256-channel ECoG grids.

Neurological Disorders

Epilepsy, Parkinson’s disease, and dementia are three of the most common neurological

disorders [45]. Research and clinical use of neural recording implants are critical for improving

the treatment of these disorders.

Epilepsy: Epilepsy is a brain disorder characterized by an enduring predisposition to generate

epileptic seizures, and by the neurobiologic, cognitive, psychological, and social consequences

of this condition, as defined by the International League Against Epilepsy [46]. An epileptic

seizure is a transient occurrence of symptoms due to abnormal excessive or synchronous

neuronal activity in the brain. 50 million people worldwide were estimated to suffer from

epilepsy by the World Health Organization (WHO) in 2019 [47].
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Although the majority of epilepsy cases can be treated with anti-epileptic drug therapies, up

to 37% are estimated to be drug-resistant (i.e. intractable) [48]. In this case, resection of the

epileptogenic zone is a possible solution. A study by Mohan et al. [49] reported that among 284

patients who underwent epilepsy surgery, the percentages of patients who remained seizure-

free at 5 and 10 years after the surgery were 47% and 38%, respectively. For the majority of

patients who were not seizure-free, the seizure frequency reduced significantly.

Precise localization of the epileptic seizure onset zone (SOZ) is crucial to improve the success

rate of epilepsy surgeries. An approximate presurgical assessment can be made with magnetic

resonance imaging (MRI) and EEG recordings, but intracranial electroencephalography (iEEG)

is required for higher accuracy. If the SOZ is expected to be in deep brain tissues, stereotaxic

electroencephalography (sEEG) with depth electrodes is preferred. If the SOZ is expected to

be closer to the brain surface, ECoG is preferred [50].

In cases where resective surgery contains the risk of severe adverse effects on neurocogni-

tive functions, an alternative solution is implanted closed-loop neuromodulation [51]. This

technique delivers electrical stimulation to the SOZ when abnormal patterns are detected

in the continuously recorded ECoG activity. The recordings also allow the identification of

patient-specific dynamics for personalizing the treatment [52].

Parkinson’s disease: Parkinson’s disease is a neurodegenerative movement disorder with

cardinal motor symptoms being tremor, rigidity, bradykinesia/akinesia and postural instability,

which are associated with dopamine deficit caused by the death of cells in the substantia

nigra region of the brain [53]. A 2015 study by Feigin et al. [54] estimated 6.2 million people

worldwide to suffer from Parkinson’s disease.

There is no known cure for Parkinson’s disease, nor a method to stop its progression at the time

of this writing. The current treatments for symptomatic relief are mainly based on dopamine

medications for early stages, and deep brain stimulation (DBS) for advanced stages [53]. DBS

provides improvement in tremor for at least 10 years after implantation [55].

The success of DBS primarily depends on the precise placement of the stimulation electrodes.

The localization is achieved by preoperative MRI for coarse mapping, and intraoperative

microelectrode recording for searching activity patterns characteristic to the target region,

such as the beta range activity [56]. Moreover, recordings obtained during the surgery has

been found to predict the clinical improvements accurately at 6 months after the surgery [57].

Postoperative recording can improve the DBS therapy outcome by enabling personalized

treatments. Adaptive DBS triggers stimulation based on the LFPs recorded on the stimulation

electrodes. This method has been shown to be more effective and energy efficient than

continuous stimulation [58]. Dyskinesia-related oscillations recorded from the motor cortex

have been proposed as a potential feedback control signal to minimize the adverse effects [59].

A recent DBS system with integrated recording channels has demonstrated the correlation

between patient-reported adverse events and recorded LFPs [28].

10



1.2 Analog Front-Ends for Sensing Neural Potentials
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Figure 1.3 – A generic analog front-end.

Dementia: Dementia describes several diseases that affect memory, thinking, and behavior

progressively and faster than the normal course of aging. According to the WHO [60], 47

million people worldwide were affected by dementia in 2015, and the number is predicted to

reach 75 million in 2030 and 132 million by 2050.

60% to 70% of the dementia cases are caused by Alzheimer’s disease [60]. It cannot be cured or

stopped from progressing at the time of this writing, and the progress accelerates with age.

Therefore, early diagnosis is crucial. Recent studies [61,62] have reported correlations between

abnormalities in EEG markers and cognitive deficits in groups of Alzheimer’s disease patients

at different stages of the disease. Moreover, MEA recordings from the rat hippocampus have

been useful in studying abnormalities related to Alzheimer’s disease [63–65].

1.2 Analog Front-Ends for Sensing Neural Potentials

The vast majority of the demonstrations mentioned in Section 1.1.2 record the neural sig-

nals sensed through the electrodes using rack-mounted general-purpose neurophysiology

instruments. Although this approach serves well for proof-of-concept research in the labo-

ratory environment, translation to widespread use in independent environments calls for

fully-implantable electronics.

A neural recording system can fit in a single IC and can be operated on a small battery

or powered wirelessly when tailored to a specific application. As depicted in Figure 1.3, a

generic recording channel consists of a low-noise amplifier (LNA) to boost weak neural signals,

followed by an analog-to-digital converter (ADC) to produce a digital code for subsequent

operations. This channel architecture is collectively referred to as an analog front end (AFE).

Given a total power and area budget, the number of channels that can be integrated on a

single system-on-chip (SoC) depends on the energy and area efficiency of the single channel.

Therefore, optimizing the AFE is crucial in the design of an implantable multichannel neural

recording system. Depending on the application needs and resource restrictions, the AFE

architecture can be adapted in many ways, as reflected by the number of publications in the

past decades. This section intends to provide an overview of circuit specifications, challenges,

and current solutions from both LNA and ADC perspectives.
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Figure 1.4 – Bandwidth and amplitude of different types of neural signals. Reprinted from [68]
with permission from the American Association for the Advancement of Science (AAAS).

1.2.1 Specifications

Modern neurophysiology instruments are designed to investigate the detailed mechanisms of

neural activity with up to 16-bit resolution and 30 kHz sampling rate [66, 67], which are well

above the requirements of many practical applications. However, the implant power and area

restrictions demand an optimized recording front-end in order to maximize resource usage

efficiency. Here we focus on the factors that influence the choice of channel count, bandwidth,

and resolution for an implantable system.

Bandwidth

Figure 1.4 illustrates the expected bandwidth and the amplitude of neural signals at different

levels of invasiveness. The highest frequency neural signal of interest is the AP with 7 kHz

bandwidth. ECoG and LFP signals have lower bandwidths around 200-500 Hz.

Optimizing the LNA bandwidth and the ADC sampling rate for the target signal bandwidth

saves energy. The current drawn by most LNA topologies is proportional to the bandwidth, and

the power requirements of Nyquist-rate ADCs scale linearly with the sampling rate. Choosing

the sampling rate as 3 times higher than the amplifier bandwidth would be sufficient to digitize

the signal reliably without aliasing [69]. To distinguish the shape of each AP produced by a

group of neurons, a sampling rate between 10-40 kS/s is sufficient [70].

12

https://www.sciencemag.org/help/reprints-and-permissions


1.2 Analog Front-Ends for Sensing Neural Potentials

Resolution

Assuming the maximum peak of spiking activity at 1 mV and the minimum noise and interfer-

ence from neighboring neurons at 10 µV [71, 72], signal-to-noise ratio (SNR) at the recording

site is less than 100 [70, 72], which corresponds to 6 to 7 bits of dynamic range. Recording with

higher fidelity does not necessarily mean better performance from the application perspective.

For example, an analysis by Even-Chen et al. [69] finds that decoding movement intention

does not benefit from higher resolution above 7 bits.

Avoiding overdesign is essential for implantable AFEs as increasing resolution generally re-

quires a disproportionate increase in power and area. As a simple approximation for LNAs,

the bias current of a differential pair has to be scaled up 4 times in order to decrease the

input-referred thermal noise by half. On the ADC side, empirical analysis shows that power

increases by 2 times per additional bit for low to moderate resolution (below ∼10-bit), and by

4 times for higher resolutions [73]. The area trend shows an increase of 2.2 times per bit [74],

but the relationship is weaker due to non-scaling overheads of peripheral circuits [75].

A resolution-optimized design keeps the noise contribution of the LNA and the ADC below

the electrode site noise to avoid corrupting the signal. Olsson and Wise [76] measured the

site noise as 9.6 µV, and the site-referred noise of the amplifier as 8.9 µV, which led to a total

noise of 13.1 µV. Assuming 1 mV peak amplitude, a 5-bit digitizer was chosen since the site

and amplifier noise would have dominated the quantization noise at higher resolutions.

Channel count

The reliability of recordings depends not only on sufficient fidelity, but also on the alignment

of the target signal source with the electrode [77]. To increase the chances of alignment, high

channel count is desired. Furthermore, some of the electrodes in an electrode array may be

inactive due to site damage, connectivity issues, or degradation [78]. High channel count can

provide the redundancy to compensate for the lost electrodes. Moreover, the increased spatial

density and coverage can compensate for the limitations in time-series information such as

low sampling rate or low SNR [79].

High spatial density is especially important when high-frequency activity is of interest. As the

electrode spacing decreases, the increase in correlation is lower for high frequencies (>30 Hz)

than for low frequencies (<30 Hz), according to a study on a 4 mm-spaced 256-channel ECoG

grid implanted on human speech cortex [80]. Therefore, dense electrode arrays can capture

more high-frequency content.

Marblestone et al. [70] discussed the theoretical limits of electrode density for discriminating

spiking activity of individual neurons. Considering the exponential decay of the signal with

increasing distance to neuron, the interference from neighboring neurons at the recording

site, and the current spike sorting algorithms, 40 µm electrode spacing would be required to

detect spikes from every neuron, which corresponds to ∼10 neurons per electrode, and ∼7.5
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million electrodes for covering an entire mouse brain. The state-of-the-art MEAs can integrate

up to a thousand electrodes with down to 20 µm spacing [20, 31, 81].

1.2.2 Amplification

There has already been a few comprehensive reviews on LNAs. Ng et al. [82] compiled the

amplifier topologies used for neural recording. Bagheri et al. [83] reviewed the techniques

for noise and offset cancellation. Here we explore both aspects quantitatively by comparing

published solutions from the resource efficiency point of view.

Noise

Since the amplifier is the first active stage, its noise contribution irreversibly corrupts the

actual neural potential and propagates through the signal chain. Therefore, low-noise design

techniques are essential to ensure that the circuit noise is kept below the background noise

level of the neurons, which is in the order of 10 µVrms as discussed previously.

Noise efficiency factor (NEF) is a widely accepted metric that allows comparing different

topologies based on the noise-current-bandwidth trade-off. It normalizes the input-referred

circuit noise of an amplifier against the thermal noise of an ideal bipolar junction transistor

(BJT) [17]:

NEF =Vrms,in

√
2Itot

4kTUTπB
, (1.1)

where Vrms,in is the root-mean-square input-referred noise, Itot is the total current, UT is the

thermal voltage, and B is the bandwidth of the amplifier. Considering only the thermal noise

contribution, NEF of an ideal differential amplifier is limited to n
p

2 [84] where n is the weak

inversion slope factor with 1 < n < 1.7 [85].

While NEF captures the current efficiency of a circuit, it does not reflect its power efficiency

due to the lack of supply voltage (VDD ) in the equation. Power efficiency factor (PEF) [86]

accommodates this need and allows comparison between amplifiers in terms of noise-power-

bandwidth:

PEF = NEF 2VDD =
V 2

r ms,i n2Ptot

4kTUTπB
. (1.2)

There are a number of candidate operational transconductance amplifier (OTA) topologies

for LNA implementation. We compare the most commonly used topologies in the literature

based on their NEFs and PEFs in Figure 1.5 [83,84,86–100,100–124,124–133,133–140,140–152].

Telescopic cascode, inverter-based and current-reuse topologies have demonstrated higher

efficiency compared to the other known topologies. Nevertheless, NEF and PEF should be

evaluated together with the individual advantages and drawbacks of each topology.
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Figure 1.5 – Comparison of published NEF and PEF values for various amplifier topologies.
The bars represent median values.

Telescopic cascode amplifier can achieve a higher gain per current thanks to its cascode

transistors, which also do not contribute to noise. Consequently, this architecture has achieved

the NEF values closest to the n
p

2 limit among the architectures with a single differential pair.

The drawback of the cascode transistors is the large voltage headroom requirement which

does not permit aggressive supply scaling.

The inverter-based and current reuse topologies have multiple differential pairs in one current

branch, thus have lower theoretical NEF limits [153] as observed in Figure 1.5. The inverter-

based amplifier has a stack of P-channel metal-oxide-semiconductor (PMOS) and N-channel

metal-oxide-semiconductor (NMOS) differential pairs that provides additional gain per unit

current. However, the lack of cascode transistors decreases its robustness against supply

noise. The current reuse topology aims to amplify multiple channels at once with one stack of

differential pairs. Therefore, it requires a large voltage headroom and avoiding crosstalk is a

challenge [92].

Flicker noise dominates thermal noise in the neural frequency band between sub-1 Hz and

100 Hz. Chopper stabilization [138, 154, 155] is a common technique for removing flicker

noise, at the expense of reduced input impedance and switching artifacts at the output. These

adverse effects must be controlled by additional circuits such as impedance boosting and

ripple reduction [83].

Electrode offset

The electrode-tissue interface generates a potential in the range of hundreds of mV, and can

vary in the range of tens of mV from channel to channel and over time [71, 138, 156]. Most

analog circuits cannot accommodate such variability. The most common and straightforward
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Figure 1.6 – (a) Area and high-pass pole location trade-off. (b) Rate of progress for NAND gate
and metal-oxide-metal (MOM) capacitor area efficiencies.

work-around is to use capacitive coupling [129]. However, this method can be very area-

consuming when the resulting high-pass pole needs to be kept as low as 1 Hz and below. In

this case, the coupling capacitor and the feedback resistor need to be in the order of pF and

GΩ, respectively. Other methods to handle the electrode offset rely on active cancellation by

means of analog [17, 134] or mixed-signal [86, 132] feedback paths.

Figure 1.6a illustrates the trade-off between the circuit area and the high-pass cut-off based on

published front-ends [1,16,86,100,102,108,121,124,131,132,140,144,152,155,157–163]. Mixed-

signal methods have an obvious area advantage, especially in smaller process nodes since the

digital footprint shrinks faster than the capacitance density as observed in Figure 1.6b.

1.2.3 Digitization

Figure 1.7 shows the sampling rate and resolution choices in the neural recording literature for

the three most common ADC architectures [1, 19, 31, 83, 86, 90, 91, 94, 95, 97–102, 104–107, 109–

116, 120, 125–127, 130–133, 135, 136, 141, 143, 146, 147, 149, 151, 152, 157, 158, 161, 162, 164–183].

The reported effective numbers of bits (ENOB) have been between 6 and 12, with the majority

being around 8 to 10. The sampling rates cover the kHz range as this specification depends on

the signal band of interest.

Successive approximation register (SAR) ADC is the most commonly used architecture for low-

to-medium resolutions thanks to its high versatility and scalability. A charge-redistribution

SAR ADC is based on discrete-time charge manipulation on the sampled signal, therefore it

can be built without any static power consumption. For high resolution, ∆2Σ topology has
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been used thanks to its oversampling nature. It also eliminates the need for an LNA as it

samples directly the electrodes [110].

Voltage-controlled oscillator (VCO)-based ADCs have recently gained popularity thanks to

their amenability to process and voltage scaling. This topology operates in frequency domain

rather than in voltage domain and mostly uses digital elements, thus it can work with less

headroom and have a compact footprint. The voltage-to-frequency nonlinearity is the main

limitation for VCO ADCs; therefore, they need additional nonlinearity correction stages [170],

or they need to be placed in a feedback loop [86].

A true comparison of ADC performances is difficult due to a multitude of specifications driving

the design choices. Nevertheless, two simple figure of merits (FoMs) have been adopted in

the literature that capture power, sampling rate, and resolution as a single metric: Walden

FoM (FoMW) and Schreier FoM (FoMS). Definitions of these FoMs were covered in detail by

Murmann [184]. FoMW assumes 2 times increase in power per additional bit, which holds true

for low to moderate resolution ADCs up to about 8 bits. Higher resolution ADCs align better

with FoMS which assumes 4 times increase in power per additional bit.

Figure 1.8a and 1.8b plot the energy efficiencies of standalone ADCs and complete AFEs in the

literature. The energy per sample raises by an order of magnitude when the overhead of the

LNA is added to the ADC. The increasing energy cost of high resolution is clear in both figures.

Recently, energy-area figure of merit (E-A FoM) (Area×FoMW) has been proposed as a new

metric for comparing the total cost of neural recording AFEs [116]. Accordingly, Figure 1.9

adds the area dimension to Figure 1.8b. Although the popular SAR ADC exhibits superior

energy efficiency up to 10-bit resolution, its energy-area efficiency lags behind the emerging

VCO and ∆2Σ-based topologies.

1.3 Wireless Telemetry

Wireless communication is critical for the safety of long-term neural recording implants

since it eliminates burr holes and through-skull wires which are prone to physical damage

or infections [185]. In this section, we discuss the techniques and considerations for wireless

power and data transfer (WPDT) with examples from the literature.

1.3.1 Powering the Implant

The power consumption of implanted electronics is primarily constrained by thermal dissi-

pation, because excessive temperature elevation damages the electrical properties of brain

cell membranes and ion channels [70]. The widely accepted limit for safe operation is 1 to

2°C [186–189]. Marblestone et al. [70] estimated a maximum of 40 mW/cm2 power density for

staying below 2°C.
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Figure 1.7 – Sampling rate and resolution choices in the literature.
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Figure 1.8 – Energy efficiencies of published (a) ADCs and (b) AFEs.
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Figure 1.9 – Energy-area efficiencies of published AFEs.
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Another constraining factor for power consumption is the capacity of the power source. The

majority of the implantable interfaces rely on an implanted battery or wireless power transfer

(WPT). The small capacity of biocompatible batteries implies that an implant’s size grows with

its power need, which in turn limits the choice of where the implant is placed. For example,

deep brain stimulators are placed in the chest area with the wires passing through the neck

because the device is too large to fit inside the skull [190]. Moreover, batteries have to be

replaced via surgery approximately every 2 to 8 years [191]. Rechargeable batteries prolong

the battery lifetime a few more years, but the patient is responsible to charge it regularly [192].

WPT has been used to recharge implanted batteries, or even to eliminate them completely by

directly powering the implant. The two most common WPT strategies are inductive coupling

for superficial implants, and ultrasound for deep implants. The former is more efficient for

cortical implants as the depth is 5-10 mm under the scalp. Similar to the case of batteries, the

power need influences the size of the implant with inductive coupling. High power over long

distance enforces low field frequency for electromagnetic safety, which in turn requires a large

coil diameter. On-chip coils become feasible below 1 mW and 1 cm [115, 132].

Apart from WPT, energy harvesting from body resources has also been investigated. A glucose

biofuel cell reported by Zebda et al. [193] was able to generate 193.5 µW/cm2 average power. An

enzyme-based biofuel cell by Bollella et al. [194] generated 10 µW for powering a temperature

sensor with memory and wireless data connectivity. Although such power levels do not match

the multichannel neural recording requirements yet, the combined progress in biofuel cells

and low-power circuit techniques is promising towards fully-autonomous implants.

1.3.2 Communication

The choice of the communication standard is driven by a multidimensional trade off between

power, range, data rate, and complexity. We can categorize the current options for medical

applications in three categories: passive, narrowband (NB), and ultra-wideband (UWB) [195].

Passive communication uses a pair of reader and tag, which are generally inductively coupled.

The reader sends data to the tag by modulating the magnetic field, and the tag talks back by

load modulation or backscattering. This strategy has been popular since the first examples of

integrated WPDT [196], mainly because load modulation requires minimal overhead on the

implant side, thus it can achieve below 10 pJ/b efficiency [126, 127]. As with inductive power

links, the range of passive communications is in the centimeters range.

NB transmitters rely on modulating a carrier frequency using frequency-shift keying (FSK)

[168, 172] or on-off keying (OOK) [93]. The main advantage of NB over passive techniques

is extending communication distance to the meters range, at the expense of higher power

consumption. To illustrate, Bonfanti et al. [105] reported 3.5 mA increase in current for

extending the range from 5 cm to 10 m with an FSK transmitter.
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Figure 1.10 – Comparison of data rate and transmitter power for various strategies.

Passive and NB transmitters are effective for data rates up to the Mbps range. However, the

data rate requirement for high-resolution multichannel systems has reached the order of tens

of Mbps. A relatively recent technique that achieves up to 90 Mbps [95] is UWB, which relies on

modulating a carrier frequency with time-domain pulses. The data rate and the range of UWB

depend on the frequency band and the topology used as studied by Kassiri et al. [110, 172].

For short range up to 10 cm, the 3.1-10.6 GHz band achieved 45 Mbps while consuming 0.1

mW. The range increased up to 1 m by operating in the sub-1 GHz band, at reduced data

rate of 10 Mbps. The delay- and VCO-based topologies also produced different results. The

former achieved 10 Mbps at 10 cm consuming 0.1 mW, and the latter achieved 46 Mbps at 2 m

consuming 3.7 mW.

Figure 1.10 summarizes the solution space proposed in the literature [93, 95, 97, 104, 105, 110,

114, 126, 127, 133, 164, 168, 172, 197]. Based on this graph, we can conclude that backscattering

has been favored for its low power consumption when data rate is in the order of Mbps and

the transmission range is limited to a few centimeters. For higher data rates, UWB has been

a solution with approximately the same energy efficiency (pJ/b), and with range up to a few

meters. FSK/OOK-based NB transmitters can increase the range up to around 10 meters at

the expense higher energy per bit.

The power overhead of wireless communication largely depends on the laws of electromag-

netics and the transmission medium. Therefore, the circuit-level innovations progress slowly.

The only shortcut to save power is to reduce the data rate and to use duty cycling, where the

data is shipped in bursts and then the radio is shut down until the next cycle.
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Figure 1.11 – Advantages and disadvantages of (a) raw data transmission, (b) on-chip com-
pression, and (c) on-chip classification.

1.4 Data Rate Reduction Techniques

The straightforward method to create a neural recording application is to send the recorded

data off-chip and process at the receiver side, as done by the majority of demonstrations

discussed in Section 1.1.2. Nevertheless, the strive for high channel count, high resolution

and high sampling rate inevitably leads to a data deluge. As an example, a 10-bit, 20 kS/s AFE

produces a throughput of 200 kb/s per channel. For a thousand channels, this means 200

Mb/s overall throughput that needs to be transferred via the wireless link. This data rate is

currently not feasible due to the physical and technological limitations of implant, as reviewed

in Section 1.3. The established medical transceivers support up to 800 kb/s [198], whereas the

recently proposed UWB transmitters report from 10 to 90 Mb/s.

To work around the data rate bottleneck, two approaches have been dominantly used. The

first approach reduces the data throughput by compressing the raw data stream. The second

approach aims to eliminate the need for high-speed data transmission altogether by perform-

ing the user-end classification task on the chip. Figure 1.11 summarizes the advantages and

disadvantages of each approach and the following sections discuss them in detail.

1.4.1 On-Chip Compression

On-chip compression aims to reduce the transmitted data rate by discarding parts of the raw

data while retaining the information content. Here we focus on three compression approaches
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Figure 1.12 – Three on-chip compression approaches: spike detection, CS, and LBCS.

for neural signals as illustrated in Figure 1.12: spike detection, compressed sensing (CS), and

learning-based compressive subsampling (LBCS).

Spike Detection

Spiking rate, amplitude and timing serve as neural features for many BMIs [36, 38, 41]. In this

case, transmitting only spike information would be sufficient for such applications. Spike

detection compares the neural signal stream to a threshold determined based on a statistical

metric, thus it can be easily implemented on-chip. Harrison [199] transmitted only the

presence and the timing of detected spikes from a 100-channel, 10-bit, 30 kS/s raw data

stream. Assuming a firing rate around 10 Hz, transmitting only the 7-bit address of the channel

reduced the data rate from 30 Mb/s to an average of 7 kb/s. Olsson and Wise [76] also included

the amplitude as a coarse indicator of the spike shape.
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Multichannel MEAs record multiple neurons per electrode. Therefore, transmitting only the

timing and amplitude data leads to information loss. Spike sorting aims to detect individual

spikes and associate them with individual neurons by clustering the spike shapes; however, im-

plementing it on-chip requires a large area [200]. An alternative strategy has been transmitting

a time window around the detected spike for off-chip spike sorting [106, 109, 135, 143].

The loss of the global signal shape limits the use of spike detection to only a few cases. Majority

of neural recording applications require the full waveform for further feature engineering such

as extracting spectral powers [28,42,51] or for visual diagnosis [28]. In addition, the bandwidth

saving thanks to spike detection is highly dependent on the firing rate, which is generally

assumed to be between 10 to 100 Hz. Spikes are missed if many channels are simultaneously

and consecutively active above this rate, such as during a seizure [76, 143].

Compressive Sensing

The Shannon-Nyquist sampling theorem states that a continuous signal can be fully recovered

from its sampled representation if the sampling rate is twice its bandwidth [201]. This theorem

forms the basis of standard data acquisition systems, but it assumes that the whole bandwidth

is densely occupied by the signal. In reality, many natural signals are sparse or compressible,

meaning that few large coefficients capture the most of the information [202].

Compressive sensing theory [203] posits that a sparse signal x ∈ RN with only K non-zero

elements (K-sparse) can be recovered from its compressed representation y ∈RM , measured

through a sensing matrixΦ ∈RM×N with M < N as

y =Φx , (1.3)

where the sensing matrix Φ satisfies the restricted isometry property (RIP). Random ma-

trices with Gaussian or Bernoulli distributions satisfy the RIP with high probability if M ≥
cK l og (N /K ) where c is a small constant [202]. The compression ratio (CR) can then be defined

as CR = N /M . Figure 1.13 illustrates a generic measurement with CS.

Some natural signals like electrocardiography (ECG) are already sparse in time domain. Other

signals like neural potentials may not be sparse in time domain, but a sparse representation

can generally be found in another basisΨ as

y =ΦΨx =Θx . (1.4)

Choosing Ψ as an orthonormal basis ensures the RIP of Θ if Φ satisfies the RIP. Common

choices forΨ are spectral transforms such as discrete Fourier transform (DFT), discrete cosine

transform (DCT), or Hadamard transform.

CS has been applied to neural signals with on-chip implementations. Liu et al. [91] presented

a digital CS processor that was shared among 16 channels. In simple mode, the coefficients
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Figure 1.13 – Illustration of a generic CS measurement.

of the sensing matrix Φ were ternary, corresponding to a simple sign inversion. In high-

resolution mode, the coefficients had 4-bit resolution and multiplications were implemented

by changing the gain of the analog amplifier to avoid digital multipliers. The coefficients were

generated randomly offline and loaded in the beginning before each measurement to avoid

on-chip storage. The signal was recovered by finding the sparsest estimation in its own learned

dictionary through orthogonal matching pursuit. The post-reconstruction SNRs were 9.04 dB,

4.85 dB, and 3.78 dB for CRs 4, 8, and 16, respectively. Spike detection on the reconstructed

signal achieved near-lossless performance for CRs 8 or below.

Shoaran et al. [131] approximated a Bernoulli matrix with an on-chip pseudorandom binary

sequence (PRBS) generator. The coefficients implied summation or subtraction of the ampli-

fied neural potentials from all channels in analog domain before digitizing, which was named

multichannel compressed sensing (MCS). Reconstruction was performed by finding the spars-

est representation in Gabor domain through `1,2 mixed norm minimization. This method

achieved up to 16 CR for the 16-channel prototype with an average 21.8 dB post-reconstruction

SNR when CR was 4.

The main drawback of CS is that the recovery requires solving minimization problems. This re-

quires a powerful and fast processor at the receiver side for real-time decoding. Moreover, the

recovered signal’s SNR is usually below 10 dB at high compression rates. The frequency spec-

trum experiences significant distortion [91] which could affect the application performance if

the spectral band powers are important.
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Figure 1.14 – Illustration of the LBCS concept with a subsampled Hadamard measurement
matrix.

Learning-Based Compressive Subsampling (LBCS)

Although random matrices satisfy the theoretical constraints of CS, matrices that are aware of

the signal structure have been found to perform better in practice [204, 205]. The structured

subsampling problem can be written similarly as

y = PΩΨx , (1.5)

where PΩ is a subsampling operator that selects the rows of Ψ indexed by the set Ω. The

subsampling concept is illustrated in Figure 1.14 on a Hadamard matrix. The signal can be

recovered by using standard CS algorithms, or by a fast linear decoder as

x̂ =Ψ∗PT
Ωy . (1.6)

Choosing the best setΩ depends on the signal structure and the recovery algorithm used. One

possible solution is to randomizeΩ based on signal properties known a priori. Baldassarre et

al. [206] formedΘ by subsampling a Hadamard matrix randomly according to a probability

function that favors the low frequencies since they are known to contain more energy. This

method, named structured Hadamard sampling (SHS), achieved an average 22.2 dB post-

reconstruction SNR with tree norm recovery when CR was 16.

An alternative and better solution was proposed again by Baldassarre et al. [207], called LBCS.

Briefly, LBCS minimizes the mean square error of the reconstructed signal by learning the set

of indicesΩ that captures the highest average energy, by training on an example dataset of
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m measurements {x1, x2, ..., xm}:

Ω̂= argmax
Ω,|Ω|=M

1

m

m∑
j=1

∑
i∈Ω

|〈Ψi , x j 〉|2 . (1.7)

Aprile et al. applied this concept to neural signals in [208]. Two studies from the iEEG.org

dataset portal were used to learn the setΩ that subsamples a Hadamard matrix. The learned

setΩwas used to subsample and recover the signals using a linear decoder as in (1.6). This

method achieved 28.48 and 18.06 dB SNR for 16 and 64 CR, respectively.

Not only the choice of Ω but also the choice of the orthonormal basis Ψ is important for

post-reconstruction performance of LBCS. Aprile et al. [209] implemented a DCT matrix

instead of a Hadamard matrix, achieving 28.48 and 18.06 dB SNR for 16 and 64 CR, respectively.

The main drawback of choosing DCT over Hadamard was the power and area overhead of the

on-chip memory used to store the 8-bit quantized DCT coefficients. Therefore, there exists a

trade-off between reconstruction quality and hardware resource utilization [210].

The main issue with LBCS is that the learned set of indicesΩ always favors the lowest indices of

Ψ. This is not surprising as neural signals contain the most energy at low frequencies and the

performance metric for reconstruction is SNR. In this case, PΩΨ essentially implements a low-

pass filter and discards the high-frequency information that could be useful as biomarkers.

1.4.2 On-Chip Classification

The relationship between the neural signals and the target outcome is often implicit and

cannot be programmed, especially when the dimensionality of multichannel recording is

considered. Therefore, many applications mentioned in Section 1.1.2 use a machine learning

(ML) algorithm which learns a model of the complex relationship by training on example data.

Machine Learning for Neuroscience

A typical ML algorithm consists of two main steps: feature extraction and decoding [211].

Feature extraction aims to reduce the dimensionality of the raw data by transforming it into

descriptive components that are relevant to the task. Spectral band powers2 are the most

commonly used features for neuroscience applications. Low-frequency band powers have

been used in DBS placement and tuning [28, 56], speech decoding [42, 43], and cursor control

[39]. High-frequency oscillations (HFOs) have been used as biomarkers for epileptic seizures

[212, 213] and as predictors of arm movement [41].

A decoder predicts the outcome from the extracted features through regression (if the outcome

is continuous as in cursor and prosthesis control) or classification (if the outcome is discrete

2The traditional EEG bands are named as delta (δ: 1-4 Hz), theta (θ: 4-8 Hz), alpha (α: 8-13 Hz), beta (β: 13-30
Hz), gamma (γ: 30-150 Hz), ripples (150-250 Hz) and fast ripples (>250 Hz).
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as in speech decoding or seizure detection). Regression is often implemented as an adaptive

filter that tunes its parameters over time, such as least-squares [38] or Kalman [36, 41] filters.

Classification is usually performed by a decision algorithm such as a support vector machine

(SVM) or an artificial neural network (ANN) [42, 44, 57]. The classifier learns its parameters

from example data (training), and applies them on future signals (inference). Regression and

classification may be performed simultaneously in cases like cursor control with clicking [214].

Hardware Constraints

Recent studies have focused on implementing ML algorithms on the chip to avoid high-speed

data transfer between the implant and the processor. This approach has been explored espe-

cially for closed-loop neuromodulation where the recordings are used to trigger stimulation

in response to identified events. However, on-chip ML faces serious challenges due to the

resource constraints of the implanted chip.

First, the implemented classifiers are usually primitive compared to what can be achieved on

software or unconstrained hardware. Sophisticated methods such as deep neural networks

(DNNs) are currently not suitable for implantable chips [215]. Consequently, simplified

versions of SVMs [158,216,217] and decision trees [218] have been popular choices for on-chip

implementation.

Secondly, even with a simple classifier and a moderate number of channels, an on-chip ML

implementation requires a large silicon area. To illustrate, the single-die demonstration by

O’Leary et al. [158] allocated 3.31 mm2 to classify seizures from 32 channels, which was more

than half of the total chip area. The multidie solution by Wang et al. [217] fabricated a separate

3.5 mm2 chip in addition to the 8-channel sensing front-end. The high cost of on-chip ML is

a result of the expensive computations needed for feature extraction and classification. The

common feature extractors like finite impulse response (FIR) filter banks [158], fast Fourier

transform (FFT) [216] or discrete wavelet transform (DWT) [217] processors require multiply-

and-accumulate operations. Moreover, the coefficients for the feature extractor and the trained

classifier model need to be stored on an on-chip memory.

Finally, the hardware needs to be optimized for a specific algorithm. ML for neuroscience

is still youthful and fixing the algorithm at the implant level may limit the adaptability to

future progress. Moreover, neural signals are notorious for their long-term and trial-to-trial

variability, thus the algorithms generally require frequent re-adaptations [214]. Furthermore,

although the reported seizure detection performances for on-chip classifiers have been high

on hand-picked datasets, medical applications demand generality and robustness which

currently have not been addressed due to the limited availability of patient data [219].
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1.5 Summary

The quest for a better neural interface continues with compelling challenges. Recording and

processing neural activity have been clinically and conceptually proven to benefit patients

with neurological disorders; however, we need fully-implantable neural recording SoCs to

enable widespread use of this promising technology with more advanced applications.

The number of channels that can be integrated within a chip depends on the energy and area

consumption of the AFE. The vast literature on AFEs has continuously decreased the cost of

recording and reached close to 1 fJ mm2/c-s E-A FoM. However, it has to be pushed down

further to allow thousand-channel systems within mm-scale footprints and mW-level powers.

Chapter 2 will address this need.

Wireless power and data transfer is a necessity for safe and long-term operation in independent

environments. For power transfer, energy-frugal operation is not only important for keeping

the power source dimensions as small as possible, but also for guaranteeing the thermal

safety of surrounding tissue. For data transfer, the increasing number of recording channels

towards thousands results in data rates exceeding 100 Mbps. Wireless transmission at this rate

becomes a serious bottleneck with the current standards.

On-chip compression methods have emerged as viable solutions for reducing the data through-

put. However, these methods tend to partially lose or distort the frequency spectrum of neural

signals, which could be detrimental to the many applications that rely on spectral content.

On the other hand, we see ML algorithms more often as the end-user of the recorded data

at the receiver side, due to the complex relationship between the neural signals and their

outcome. Consequently, recent effort has been towards implementing on-chip ML. Although

this approach eliminates the need for high-speed transmission, it consumes too much of the

chip resources and does not seem to be a future-proof solution at the moment. The lessons

learned from both compression and ML effort inspire a new framework presented in Chapter 3,

which leverages machine learning to extract only the necessary information content.
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2 An Energy-Area Efficient Wideband
Neural Recording Front-End

Implantable neural recording demands the lowest energy and area consumption per channel

to integrate as many channels as possible within strict resource constraints. In this chapter we

address the challenge of increasing the resource efficiency of a neural recording AFE.

The conventional AFE depicted in Figure 2.1a is AC-coupled to the electrodes to reject large

and variable DC offsets building on the tissue-electrode interface, as discussed in Section 1.2.2.

The coupling capacitor also presents a high input impedance to the electrode, and serves as

an isolation layer against static device currents and short circuits [220]. Despite its advantages,

AC-coupled AFEs have limited scalability for multichannel integration. The capacitor area

becomes a serious bottleneck when a high gain and a low high-pass pole is required as they

both demand a very large coupling capacitor.

Several DC-coupled techniques have been proposed to eliminate bulky coupling capacitors,

at the expense of other circuit qualities. Direct digitization (Figure 2.1b) by an ADC results in

excessive input-referred noise [167]. Canceling the offset through a mixed-signal feedback

loop (Figure 2.1c) [86] requires a well-matching digital-to-analog converter (DAC) and it has a

digital power overhead proportional to the sampling rate. Delta modulating the input with

switched capacitors (Figure 2.1d) can achieve rail-to-rail cancellation at the cost of reduced

input impedance and increased noise at high sampling rates [110], which is also the case

when the electrodes are multiplexed into a shared front-end (Figure 2.1e) [100]. Moreover, the

effects of injecting switching currents into the neural tissue have not been addressed.

Due to these fundamental limitations of DC coupling, AC coupling is still favorable for wide-

band recording thanks to low noise, passive offset rejection, and high input impedance. This

chapter describes a both energy- and area-efficient neural recording AFE that permits high

integration density while keeping the benefits of AC coupling [1]. The architecture follows the

conventional approach depicted in Figure 2.1a: a capacitively-coupled low-noise amplifier

(CC-LNA) boosts and filters neural signals within LFP and AP bands, followed by a unit-length

capacitor (ULC)-based SAR ADC. The sections of this chapter describe both parts and present

the measurement results of a prototype.
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Figure 2.1 – (a) AC-coupled front-end architecture, and DC-coupled area reduction techniques
using (b) direct digitization [167], (c) mixed-signal offset cancellation [86], (d) switched-
capacitor delta modulation [110], and (e) electrode multiplexing [100].
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Figure 2.2 – Top level schematic of the SAR ADC highlighting the main components.

2.1 ULC-Based Asynchronous SAR ADC

We start with the ADC as it is the key element in the efficiency of the proposed AFE. We chose

an asynchronous SAR ADC since it can provide the digital sample within a single clock period,

contrary to its synchronous counterpart which requires N+1 clock periods for N-bit resolution.

Therefore, it works at the same clock frequency as the subsequent digital stages and does not

require a higher clock in the system. In addition to timing benefits, it also permits a smaller

capacitor array as the sampled charge does not need to be held for longer than a fraction of

the clock period.

Figure 2.2 shows the top-level block diagram of the 10-bit asynchronous SAR ADC. The track

and hold switch (T/H) stores the amplifier output (VA) on the capacitive digital-to-analog

converter (CDAC). The voltage on the DAC (VDAC) is controlled by the DAC control bits (dacp9:0,

dacn9:0) which are set by the logic block. The logic block realizes the succesive approximation

program based on the the decision (dec, rdy) of the comparator. It also generates the required

asynchronous clocks for the sampling switch (Φs) and the comparator (Φc ), and registers the

final output (D9:0). The following subsections explain each block in detail.
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Figure 2.3 – Layout of a unit-length capacitor and the dimensions used in this work.

2.1.1 Unit-Length Capacitor Array DAC (ULCDAC)

The power and area of a SAR ADC strongly depend on the size of the CDAC. In a conventional

N-bit CDAC, each binary weight Wi is constructed by using 2i unit capacitors Cu in parallel,

such that the total capacitance CT is given by

CT =
N−1∑
i=0

Wi =
N−1∑
i=0

2i Cu = (2N −1)Cu . (2.1)

Since CT grows exponentially with increasing number of bits, making the unit capacitor as

small as possible is desirable for an efficient design. The lower bound for the unit capacitor is

theoretically set by the kT/C thermal noise level. In order to keep the thermal noise below the

quantization noise,
kT

CT
< V 2

LSB

12
⇒ Cu > 12kT

(2N −1)V 2
LSB

, (2.2)

where VLSB is the quantization step. According to (2.2), the unit capacitor has to be larger than

51 aF for a 10-bit ADC with 1 V full-scale voltage (VLSB = 1/1024 = 977µV ). Such value is much

smaller than the library capacitors in modern CMOS processes. Therefore, a custom capacitor

array has to be built to avoid overdesign.

In the context of this thesis, improving the area efficiency of the overall 10-bit AFE consists in

reducing the CDAC area. The CDAC used in this work is based on the ULC concept, which was

originally proposed by Harpe in [221]. A ULC relies on the difference of two metal capacitors,

Ci and C ′
i , formed by the lateral-field fringing capacitances of three metal plates on the same

layer as drawn in Figure 2.3. The encapsulating plate shown in green is the common DAC

voltage VDAC, and the center plates shown in blue are driven by complementary control

voltages bi and bi. If the break point of the center plates is at the center of the total length

LT OT , Ci =C ′
i =CNOM .

A binary weight Wi can be constructed by moving the break point of the center plates by ±∆i ,

where ∆i is a multiple of the unit length L∆:

Wi =Ci −C ′
i =CNOM +C∆i − (CNOM −C∆i ) = 2C∆i , ∆i = 2i L∆ . (2.3)
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Figure 2.4 – (a) Conventional switching scheme. (b) Monotonic switching scheme.

As a result, an N-bit unit-length capacitor array digital-to-analog converter (ULCDAC) requires

N ULCs instead of 2N −1 unit capacitors. Moreover, the ULCDAC can be constructed using

few metal layers and placed above the other circuits.

The ULCDAC implemented in [221] uses the conventional switching scheme to simplify

the logic circuit driving the ULCDAC control signals. The flowchart of this scheme is given

in Figure 2.4a. In the beginning of each conversion stage, the control bits are preset, and

depending on the comparator decision, they are either kept or inverted. Inversion means

wasted charge on both the DAC plates and the logic circuit, thus this scheme is not energy

efficient.

To obtain further energy savings for multichannel neural recording, we adapted the ULCDAC

concept in [221] with a more energy-efficient switching scheme. Monotonic switching de-

scribed by Liu et al. [222] and illustrated in Figure 2.4b avoids the charge waste problem of the

traditional scheme by manipulating the control voltages only after the comparator decision.

Another benefit is that the first comparison is made on the sampled voltage; therefore, the

capacitor with the largest weight is eliminated and the array size is halved.

The main drawback of monotonic switching is that the common-mode voltage of the differ-

ential VDAC approaches to the ground as the conversion progresses which adversely effects

the speed and noise of the comparator. A solution is to employ a complementary CDAC that

switches in the opposite direction, as implemented by Kull et al. [223]. This requires a second

CDAC switching in the opposite direction, but brings no area overhead as the single CDAC size

is halved thanks to monotonic switching. The resulting energy efficiency of the monotonically-
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switched constant common-mode ULCDAC is 10% lower than the its conventionally-switched

counterpart, without an area penalty.

The schematic of the overall ULCDAC is shown in Figure 2.5a. It comprises 4 single-ended

ULCDACs, named DACP+, DACP-, DACN+, and DACN-. When DACP+ switches and changes

VDAC+, DACP- switches oppositely and causes an equal amount of opposite change in VDAC-

to maintain a constant common-mode differential voltage. The same applies to DACN+ and

DACN-. The capacitor pairs Ci and C ′
i driven by complementary control signals represent

ULC binary weights. The reference voltages are supply (VDD) and ground which are delivered

to the plates via simple CMOS inverters and buffers.

The layout of the ULCDAC is shown in Figure 2.5b. The total number of ULCs in the overall

ULCDAC is 76. Each single-ended ULCDAC is segmented into 4-bit binary least significant

bit (LSB) and 4-bit unary most significant bit (MSB) arrays to maintain a square shape and to

keep mismatch under control as explained in [221]. The remaining two bits are implicit as the

first comparison is performed on the sampled input, and the LSB weights are implemented

single-ended.

In this work the ULC is constructed in M6 and M7 layers in parallel using the dimensions in

Figure 2.3. The ULCDAC is placed above the other ADC blocks with shielding in M4 and M5

layers. The resulting C∆0 and CNOM are 0.1 fF and 3.9 fF, respectively.

The total capacitance CT OT of the ULCDAC on which the input voltage is sampled is given by

CT OT = (76×2CNOM )+CPAR = 388.04 f F , (2.4)

where CPAR is the parasitic capacitance of the plates and the routing. However, the effective

capacitance CEF F differs from the total capacitance as the switching operates only on C∆i :

CEF F = 4× (29 −1)×C∆0 = 204.40 f F . (2.5)

Consequently, the sampled voltage experiences an attenuation, reducing the full-scale voltage

of the ADC to a fraction of the supply voltage:

VF S =±VDD × CEF F

CT OT
=±0.527V . (2.6)

Although this reduction can be a drawback in some cases, in our specific application where

the ADC is preceded by an amplifier, it has further area-saving benefits for the LNA design

which will be discussed in Section 2.2.

2.1.2 Track-and-Hold Switches

The most basic sampling circuit for ADCs is the CMOS switch shown in Figure 2.6a, where the

input voltage is connected to the CDAC via parallel NMOS and PMOS transistors. Although it
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Figure 2.5 – (a) Schematic and (b) layout of the constant common-mode ULCDAC.
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Figure 2.6 – (a) CMOS sampling switch and (b) the bootstrapped switch used in this work.

is small in size, this method suffers from a nonideality called charge injection which prevents

its use above 8-bit resolution. The charge accumulated in the channels of the transistors when

the switch is on, QC HP and QC H N , are given by

QC HP =WP LPCOX (VSGP −|VT HP |) =WP LPCOX (VI N −|VT HP |) , (2.7)

QC H N =WN LN COX (VGSN −VT H N ) =WN LN COX (VDD −VI N −VT H N ) . (2.8)

When the switch turns off, approximately half of the sum of these input-dependent charges is

injected onto the CDAC. This causes a significant distortion ∆VD AC on the sampled voltage

especially when the CDAC has a low capacitance:

∆VD AC = QC HP +QC H N

2CD AC
. (2.9)

A solution to the input-dependent charge injection problem is the bootstrapped switch shown

in Figure 2.6b. During hold mode,Φs is high, the storage capacitor CP is precharged to VDD,

and M5 is open. During tracking mode,Φs is low and CP is connected in between VIN and VX

such that M5 opens with a constant VGS of VDD independent of VIN. In this case, the charge

injected onto VDAC is constant and it is canceled thanks to differential operation.

All transistors in Figure 2.6b are high-voltage type in order to withstand internal voltages

exceeding the nominal supply voltage. The storage capacitor CP is generally implemented

with a metal-oxide-metal (MOM) capacitor to reduce leakage. However, this would require

several layers of metal and prevent the switches to be placed under the ULCDAC, which already

takes 4 of the 7 available layers. This problem was solved here by using a PMOS transistor (M3)

as CP since it has superior capacitance density compared to other available passive devices.

The leakage was verified to allow down to 500 Hz sampling rate and the resulting linearity is

above 15 bits across PVT corners and mismatch.
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Figure 2.7 – (a) Asynchronous logic block and its main components: (b) standby controller, (c)
comparator clock generator, and (d) unit conversion stage.

2.1.3 Asynchronous Logic

The asynchronous logic essentially realizes the flowchart given in Figure 2.4b. It produces

the internal clocks, adjusts the ULCDAC, and registers the comparator decisions. The block

diagram in Figure 2.7a denotes four main components: a standby control, a comparator clock

generator, 10 conversion stages representing 10 bits, and a register to store the output. The

circuit is a hybrid implementation of dynamic and static CMOS logic techniques to achieve

low-power and robustness.

The ADC starts at the standby mode where it tracks the input voltage (Φs low). Upon a rising

clock edge, the ADC holds the input voltage (Φs high), leaves the standby mode, and executes

the chain of 10-unit stages. Each unit stage is realized by the circuit shown in Figure 2.7b. When
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Figure 2.8 – Dynamic double-tail comparator.

a stage is enabled (eni), a comparison request (reqi) is asserted. The comparator is clocked (Φc

high) whenever a request is asserted as realized by the OR gate shown in Figure 2.7c. When the

comparator decision (dec) is ready (rdy high), the appropriate ULCDAC plate (dacpi or dacni)

is set, and the next stage (eni-1) is activated. The last stage asserts the done signal which saves

the final output on the register and instructs the standby controller in Figure 2.7d to reset the

internal signals until the next conversion.

2.1.4 Dynamic Double-Tail Comparator

The comparator employs the well-known dynamic double-tail architecture whose schematic

is shown in Figure 2.8. The input transistors and the tail switch of the first stage are sized to be

in the weak inversion regime for keeping the input noise level low. The simulated gain of the

first stage is 12. The second stage uses high-Vt PMOS and low-Vt NMOS transistors to ensure

a low switching threshold for the cross-coupled latch. This provides enough latency for the

first stage output difference to grow. The output of the latch is buffered, and a ready signal is

issued after each decision. The two latch outputs are at high state during pre-charge, therefore

a simple OR gate is able to produce the ready signal.

2.2 Capacitively-Coupled Low-Noise Amplifier (CC-LNA)

For this work, the signal swing at the electrode is expected to be 10 mV, following the commer-

cial specifications [224]. Given the ∼530 mV input range of the ADC, the required closed-loop

gain for the CC-LNA is 35 dB.

2.2.1 Gain Requirement

The closed-loop transfer function H(s) of a feedback amplifier is given by

H(s) = A(s)

1+β(s)A(s)
, (2.10)

where A(s) is the open loop transfer function of the amplifier, and β(s) is the feedback transfer

function. For the CC-LNA, A(s) can be approximated as a single-pole system with DC gain A0
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Figure 2.9 – (a) Required k to achieve a target H0 for various A0. (b) Fully-differential
capacitively-coupled LNA.

and and cutoff at ωOL , and β(s) is the capacitor ratio Ci n/C f b = 1/k:

A(s) = A0

1+ s
ωOL

, β(s) = 1

k
. (2.11)

Substituting (2.11) in (2.10), we can obtain a representation

H(s) = H0
1

1+ s
ωC L

, where H0 = k

1+ k
A0

, ωC L =ωOL(1+ A0

k
) . (2.12)

(2.12) suggests that as A0 increases, the closed-loop gain will converge asymptotically to k.

From this relation, we can determine A0 and k based on a target H0. According to Figure 2.9a,

the open-loop gain of the OTA A0 needs to be greater than 50 dB to be able to set the closed-

loop gain H0 accurately with k.

AC-coupled amplifiers rely on capacitive feedback to realize the desired gain. There are

two different approaches to implement a capacitive feedback network: a single capacitor,

or a capacitive T-network. As analyzed both theoretically and experimentally in [160], the

capacitive T-network brings significant area savings, at the expense of higher input-referred

noise. Consequently, the choice of the method depends on what the specific application

favors. In our case, area gains in the ADC make it easier to favor low input-referred noise to

achieve lower NEF. Therefore, we have chosen to implement the single capacitor feedback

structure, which is also easier to place and has less routing parasitics.

Figure 2.9b shows the CC-LNA schematic. The nominal gain of the amplifier is set by the

capacitor ratio CAC/CFB. CAC was chosen as 2 pF, and CFB can be configured from 15 fF to

65 fF corresponding to 30 to 40 dB programmable gain. Diode-connected PMOS feedback

resistors (simulated nominal RFB = 50 TΩ) ensure that the high-pass cut-off at 1/(2πRFBCFB)
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Figure 2.10 – Transistor-level schematic of the two-stage inverter-based OTA.

stays below 1 Hz for all configurations of CFB across corners. The low-pass cut-off can be

adjusted by changing the bias current of the OTA.

2.2.2 Operational Transconductance Amplifier (OTA)

The fully-differential two-stage OTA is shown in Figure 2.10. Based on the review of candidate

topologies in Section 1.2, an inverter-based topology was chosen. This topology has high noise

efficiency thanks to current being reused by the complementary NMOS and PMOS differential

pairs.

All pairs are constructed with thick-oxide transistors to operate in weak inversion regime.

Using the weak inversion expressions of gm and gd s , the gain of a single stage can be written

as

AV = gm

gd s
= ID

nUT

λL

ID
= λL

nUT
, (2.13)

which depends mostly on the length of the transistors.

The total gain of the two stages is 63 dB. The first stage provides 38 dB gain, the second stage

adds 25 dB and drives the ADC input. The output common-modes of two stages are sensed

via diode-connected transistors and set nominally to VDD/2 by individual common-mode

feedback (CMFB) amplifiers. Compensation capacitors (CC1 = 240 fF, CC2 = 35 fF) and the ratio

of tail currents ensures stability in all corners.

The gain-bandwidth of the amplifier is expressed by

GBW = gm1

CC 1
= ID

nUT CC 1
. (2.14)

39



Chapter 2. An Energy-Area Efficient Wideband Neural Recording Front-End

ASYNC. 
LOGIC

CLOCK 
GEN.

REG.

ULCDAC 
(above)

DAC 
DRIVERS

COMP.

T/H

CMFB
BIAS

OTA 

STAGE 2

CC1 ,CC2

OTA 

STAGE 1

RFB

CFB

CAC

4
0
 µ

m

164 µm

LNA ADC

Figure 2.11 – The annotated layout and the micrograph of the analog front-end fabricated in
TSMC 65nm LP process.

Therefore, the bandwidth of the amplifier can be changed by adjusting ID with minimal effect

on the other parameters. When the total current is 600 nA, the gain-bandwidth of the two-stage

amplifier is approximately 2 MHz.

2.3 Measurement Results

Figure 2.11 displays the annotated micrograph of the prototype fabricated in TSMC 65nm

6X1Z1U LP CMOS. The total channel area is 164 µm×40 µm (6560 µm2) and the ULC-based

SAR ADC takes 35 µm×45 µm (1575 µm2). The AFE was characterized first electrically, then

connected to a soft µECoG array [225] for in vitro validation.

2.3.1 Bench Characterization

The measured LNA responses for different gain and bandwidth configurations are given in

Figures 2.12a and 2.12b. The gain can be modified between 30.8 dB to 40.1 dB by trimming the

feedback capacitor CFB. The high-pass cut-off frequency is around 0.05 Hz. The bandwidth

can be adjusted between 500 Hz and 10 kHz by adjusting the bias current, which correspond

to 30 nA and 600 nA total supply current from 1 V supply, respectively. The total harmonic

distortion (THD) of the amplifier is 1.1% when 8 mV peak-to-peak differential input applied

with maximum gain, and the common-mode rejection ratio (CMRR) is 56 dB. As shown in

Figure 2.13, the input-referred noise (IRN) is 1.9 µVrms over the LFP band (1 Hz-500 Hz), 2.5

µVrms over the AP band (500 Hz-10 kHz), and 3.1 µVrms over the full bandwidth (1 Hz-10 kHz).
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Figure 2.12 – Measured LNA Bode plots for different (a) gain and (b) bandwidth configurations.
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Figure 2.13 – Measured input-referred noise spectrum of the front-end.

Figure 2.14a shows the measured output spectrum of the standalone ADC and the variation

of effective number of bits (ENOB) across sampling rates. The ADC is able to achieve 70 dB

spurious-free dynamic range (SFDR) and 9.2 ENOB over the entire bandwidth up to 2.5 MS/s,

after which the performance drops. The ADC consumes 47 nW when operating at 20 kS/s,

and the consumption scales linearly with the sampling rate. The input range of the ADC was

measured as 0.69 Vppd.

The output spectrum of the complete channel in comparison with the standalone ADC re-

sponse is given in Figure 2.14b. The channel performance reduces to 8.1 ENOB and 68 dB

SFDR when the LNA is connected. This is due to the LNA increasing the overall noise floor, and

the increased nonlinearity due to the MOS feedback resistors (RFB) of the LNA. The histogram

in the inset of Figure 2.14b depicts the intradie variation of ENOB across 15 measured samples

which reflects the ULCDAC mismatch. Although this variation could be improved with a

small resource penalty by increasing the ULC L∆ if necessary, the worst-case performance still

facilitates the 50 dB dynamic range of neural signals [86].
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Figure 2.14 – Measured output frequency spectrum of (a) the standalone ADC and (b) the
overall channel.

2.3.2 In Vitro Characterization

Figure 2.15 shows the test setup for in vitro measurements. The prototype was connected

to a custom soft µECoG array, provided by Dr. Florian Fallegger of EPFL Laboratory for

Soft Bioelectronic Interfaces. It was microfabricated using thin-film and silicon processing

technology inspired from the e-dura process [225, 226]. The array was submerged into a

phosphate-buffer saline (PBS) solution, together with electrodes driven by a signal generator.

The board and the solution were placed inside a Faraday cage to prevent interference from

affecting the measurements. Two tests were conducted using different signals. The first

test was to validate the detection of intermittent pulses. 1 ms-long current pulses with 5

ms interpulse duration were applied from an A-M Systems Model 2100 pulse stimulator.

Figure 2.16a displays the recorded pulse waveforms (average of 10, then superimposed) with

respect to the applied current pulse amplitudes. As plotted in Figure 2.16b, the recorded

amplitudes exhibit good linearity, except for the point at 5 mA which is an error due to

premature sampling before the generator output stabilized.

The second test was to validate the spectral quality of the recordings. Sinusoidal voltages

with various frequencies were applied to the solution from Analog Discovery 2. Figure 2.17a

and Figure 2.17b show the recorded waveforms and their FFTs, respectively. The peaks of

the FFT match the applied frequency. The dominance of low-frequency noise (1/f2) below

500 Hz, the high-pass behavior observed from the amplitude of the peaks, and the strong

harmonics are caused by the noise and impedance characteristics of the electrode and the

electrode-electrolyte interface [227].
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Figure 2.15 – Test setup for in vitro validation.

(a) (b)

Figure 2.16 – (a) The recorded pulse waveforms (average of 10 then superimposed) with respect
to the applied current pulse amplitudes and (b) amplitude linearity.

(a) (b)

Figure 2.17 – (a) Time and (b) frequency domain plots of the recorded sinusoidal waveforms.
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Table 2.1 – AFE performance summary and comparison with the state of the art.

JSSC’12[86] JSSC’15[135] JSSC’17[110] JSSC’18[116] SSCL’18[152] JSSC’18[167] TBCAS’19[228] TBCAS’20[100] This work

Technology 65nm 65nm 130nm 180nm 65nm 180nm 180nm 65nm 65nm

VDD [V] 0.5 1 1.2 0.5 / 1 0.6 1.8 0.5 2.5 / 0.5 1

Coupling DC AC DC AC DC DC AC DC AC

Multiplexing No Yes No No No No No Yes No

Bandwidth [Hz] 10-10k 10-8k 0.01-500 0.4-10.9k 0.1-500 0-10k 1-6.8k 1-1k 0.05-10k

Sampling Rate [kS/s] 20 20 1 1 25 1 20 31.25 2 20

IRN [µVrms] 4.9 7.5 1.13 3.32 2.2 12.07 1 5.4 1.66 3.1

NEF/PEF 5.99 / 17.96 4.45 / 12.9 2.86 / 9.82 1 3.02 / 4.56 8.7 / 45.4 29.1 1 / 1529 1 2.99 / 4.46 2.21 / 12.21 1 0.97 / 0.94

ADC Topology VCO SAR ∆-∆Σ ∆-∆Σ VCO ∆Σ OTA-C ∆Σ ∆-SAR ∆-SAR SAR

Area/Channel [mm2] 0.013 0.0258 0.013 2 0.058 3 0.01 2 0.0049 2 0.16 3 0.0023 3 0.00656

Power/Channel [µW] 5.04 1.84 0.63 2 3.05 3 3.2 2 39.14 2 0.88 3 2.98 3 0.65

Resolution [ENOB] 7.2 4 8.2 4 11.7 1@130 Hz 10.3@1kHz 8.18 1@40 Hz 8.2@1kHz 7.7 4 8 5 8.1

ADC FoMW [fJ/c-s] 84 4.25 1 n/a 35.2 n/a n/a 19.6 23.32 1 4.0

Channel FoMW [fJ/c-s] 1713.9 1 312.86 1 189.36 1 108.83 11034 1 7180 135.43 1 5820 1 118.5

E-A FoM [mm2×fJ/c-s] 22.28 1 8.07 1 2.46 1 6.34 110.34 1 35.182 1 21.67 1 13.39 1 0.78
1 Estimated from published data. 2 On-chip decimation filter. 3 Off-chip decimation filter. 4 ADC only. 5 Above 200 Hz.
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Figure 2.18 – Energy-area efficiency comparison with the state of the art.

2.3.3 Discussion

Table 2.1 summarizes the performance of the proposed neural recording front-end and com-

pares it with the state-of-the-art works [86,100,110,116,135,152,167,228]. The silicon footprint

of the front-end presented here is four times smaller than the smallest AC-coupled front-end

reported, and it is comparable to the recent DC-coupled ones. The power consumption is the

lowest among the wideband front-ends, which results in channel 0.97 NEF and 0.94 PEF.

The energy efficiencies (FoMW) of the ADC and the channel align with the other architectures.

However, the combined energy and area efficiency improves the state of the art in E-A FoM

by three times. In other words, the energy-area cost per sample is 12 times lower than that of

other similar resolution front-ends as compared in Figure 2.18. Moreover, the modularity of

the presented architecture makes it easily scalable. A thousand-channel AFE would occupy

less than 7 mm2 footprint1 and consume less than 1 mW.

1This estimate neglects the problem of pad arrangement. Flip-chip methods with the pads over the circuits
could be a possible solution for such density.
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3 A Wireless Neural Recording SoC for
Machine Learning Applications

The translation of neurotechnology applications from laboratory to widespread use depends

on the long-term operability in independent environments. Consequently, wireless connectiv-

ity is a desired feature for implants as it eliminates the infection-prone tethered connections.

Nevertheless, transmitting the data rates reaching the 100 Mbps regime poses a grand chal-

lenge for moving towards thousand-channel systems.

We have reviewed the current approaches for data rate reduction in Section 1.4. Based on

the fact that ML emerges rapidly as the end-user of neural data, the recent trend has been to

explore on-chip ML. However, current demonstrations display a large energy and area need

even with small number of channels, rendering this approach infeasible for massively parallel

recording. Moreover, optimizing and fixing the hardware at the implant level does not lend

itself to upgrades easily as the youthful field of ML progresses.

In this chapter we consider ML as a new opportunity in the context of compression and

present a wireless multichannel neural recording SoC targeting ML applications [2]. Inspired

by the advantages and disadvantages of the previous efforts, we adopt a new approach where

feature extraction is performed on-chip to reduce the data rate, but the classifier is off-chip to

reduce the die area and to maintain algorithm flexibility. As illustrated in Figure 3.1, the key

concept here is that we train the on-chip feature extractor and the off-chip classifier jointly,

such that the chip resources are used optimally.

Figure 3.2 shows the block diagram of the SoC. For this prototype we integrate 16 channels,

but the concept can be extrapolated to any number of channels since the channel architecture

is modular with an individual AFE and feature extractor. The AFE described in Chapter 2 is

employed here. The feature extractor based on compressed Hadamard transform (CHT) is

introduced in Section 3.1. The WPDT subsystem comprising an inductive power link and

an impulse radio ultra-wideband (IR-UWB) transmitter is described in Section 3.2. Finally,

Section 3.3 presents and discusses the performance of the proposed approach.
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Figure 3.2 – Block diagram of the proposed neural recording system-on-chip.

3.1 On-Chip Feature Extractor

The feature extractor can be considered as an adaptation of the LBCS concept introduced

in Section 1.4.1. Suppose that we have an annotated dataset where X = {x1, x2, ..., xm} repre-

sents m different measurements, and Y = {y1, y2, ..., ym} represents their binary annotations.

Instead of learning a subsampling maskΩ that captures the most of the energy in the signal,

we learn theΩ that yields the best classification performance. In mathematical notation, this

corresponds to solving the following minimization problem:

Ω̂= argmin
Ω,|Ω|=M

m∑
j=1

|yi − f (PΩΨx j )| , (3.1)

where f is the classifier model which transforms the selected features into a decision. In plain

words, we learn theΩ that extracts for the most descriptive features.

A chief benefit of the proposed feature extractor is that the waveforms can still be reconstructed

by changing the selection paradigm in (3.1) back to (1.7) which maximizes the retained energy.

The reconstructed waveforms not only serve as means of diagnosis for long-term implantation,

but also allow new features to be extracted on the receiver side if needed.
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Figure 3.3 – FFT, DCT, and Hadamard transform matrices with their basis functions. 8-by-8
examples are shown for simplicity.

3.1.1 Compressed Hadamard Transform (CHT) Processor

As reviewed in Section 1.4.2, most of the neural recording applications use spectral band

energies as features. Accordingly, the features we use in this work are based on Hadamard

transform, which is a class of Fourier transforms like FFT and DCT. Figure 3.3 compares the

transform matrices and the basis functions of the three transforms. FFT is a complex transform

which decomposes the signal into magnitude and phase components. DCT operates only in

the real domain, hence its computational complexity is less than FFT. Both FFT and DCT have

sinusoidal basis functions, meaning that any hardware implementation needs to store the

coefficients with a certain resolution. On the other hand, Hadamard transform is much more

hardware-friendly compared to FFT and DCT since its coefficients are either +1 or -1.

Figure 3.4 illustrates the Hadamard transform of a time-series containing a seizure event. We

can clearly see that only few indices contain significantly more energy during the seizure.

Therefore, computing only these descriptive indices instead of the full transform is sufficient

for classification purposes. We term the custom matrix formed by the selection of indices as

CHT.
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Figure 3.5 – Digital circuit implementation of the Compressed Hadamard Transform (CHT)
processor.

The CHT features are computed by a processor which essentially implements the matrix

product of a 64-sample input window with 8 selected rows from the 64-by-64 Hadamard matrix.

Figure 3.5 shows the block diagram of the digital circuit. Since the Hadamard coefficients are

±1, the product can be implemented by an adder. A 16-bit adder/subtractor is required since

64 successive additions are performed on the 10-bit ADC samples (10+log(64)=16). A bank

of 8 16-bit accumulators, corresponding to 8 selected rows, hosts the intermediate results
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during the 64 cycles. The processor runs 8 times faster than the sampling rate of the ADC such

that a single adder could be shared to reduce the area. Row and column counters keep track

of the operation sequence. The selected row index is fetched from the configurable look-up

table based on the current row counter value. The Hadamard coefficient corresponding to the

selected row index and the column counter value is generated on-the-fly by a combinational

logic circuit, without a coefficient memory.

Each channel can be configured individually to output either the raw data recorded by the AFE,

or the features computed by the CHT processor. When raw data is sent, the CHT processor is

bypassed and the 10-bit stream is transmitted. When features are sent, the 64-sample window

reduces to a feature vector of 8 features and the bit size increases from 10 bits to 16 bits. To

simplify the output mapping of individually configurable channels, the 8×16-bit features are

mapped into a 13×10-bit output register which is fed into the global 10-bit data stream.

The transformation of the 64×10-bit input window into the 8×16-bit feature vector yields an

overall data reduction of 80%. This means that 5 times more channels can be recorded at

the same data rate. To illustrate, the number of channels that could be accommodated by a

state-of-the-art 40 Mbps UWB transmitter [110] could be increased from 200 to 1000.

3.2 Wireless Power and Data Transfer (WPDT)

As reviewed in Section 1.3, inductive powering and UWB data transmission are the most

suitable WPDT solutions for high-density implantable recording. This section briefly explains

the WPDT subsystems included in the SoC prototype. The blocks described here were designed

and verified by Dr. Kerim Ture of EPFL Radio Frequency Integrated Circuits Group, and full

details can be found in his thesis [229].

3.2.1 Half-Wave Rectifier and Low-Dropout (LDO) Regulator

The on-chip power receiver blocks are shown in Figure 3.6a. The induced AC power on

the antenna is first rectified to DC by a delay-compensated active half-wave rectifier, then

regulated by a low-dropout (LDO) regulator.

The rectifier is composed of a PMOS pass transistor and control circuitry. The pass transistor

charges the 400 nF off-chip reservoir capacitor only when the input is higher than the output,

and turns off otherwise, hence the half-wave operation. The bulk of the pass transistor is

dynamically biased by a composite PMOS diode to reduce the pass transistor’s resistance

and leakage. The timing of the switch is controlled by two comparators that detect the sign

changes at the input and the output. The gate of the pass transistor is driven by a buffer stage.

To improve the efficiency of the rectifier, the delay of the comparators and the gate driver are

compensated by introducing offset to the comparators such that the control circuit is triggered

before the input changes its sign.
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Figure 3.6 – (a) Schematic of the power receiver blocks and (b) the measured outputs.

The rectifier is followed by an LDO regulator which attenuates the ripples on the rectified volt-

age by 20 dB. The regulator output is stabilized by a 200 nF off-chip load capacitor. Figure 3.6b

displays the measured output waveforms of the power receiver blocks. Overall, the power

receiver provides 1 V supply voltage to the internal blocks.

3.2.2 Impulse-Radio Ultra-Wideband (IR-UWB) Transmitter

The raw data rate of the 16-channel, 20 kS/s, 10-bit AFE is 3.2 Mb/s. When only features

are sent from all channels, the data rate reduces by 80% to 640 kb/s. When we extrapolate

these numbers to a 1000-channel system, we observe the need for at least 40 Mb/s. As we

have discussed in Section 1.3, UWB is the only suitable low-power method for such high data

rates. Accordingly, the uplink communication for this prototype is established by an IR-UWB

transmitter.

The IR-UWB pulses are generated by modulating a carrier frequency by fixed-duration pulses.

The schematic of the IR-UWB transmitter is drawn in Figure 3.7a. The 6 GHz carrier frequency

is generated by a an active inductor-based LC oscillator. The active inductor takes much

less silicon area than a regular spiral inductor as it is built using only transistors (M1-M4)

and resistors (R1-R2). The pulse generator modulates the carrier frequency by driving the

tail transistor (M7) of the oscillator. If the data to be sent is logic ’1’, the oscillator turns on

for 1.8 ns mandated by the delay on the clock line. The resulting pulse characteristics in

time and frequency domains are shown in Figure 3.7b. The power spectral density (PSD)

of the transmitted pulses complies with the indoor emission mask regulated by the Federal

Communications Commission of the United States [230].
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Figure 3.7 – (a) Schematic of the IR-UWB transmitter and (b) the measured output.

The power consumption of the transmitter is data-dependent as the oscillator turns on only

for transmitting logic ’1’. The measured power for raw data and feature transmission modes

were 33 µW and 6.6 µW, respectively. These values correspond to 10.3 pJ/b energy efficiency,

which lies together with the state-of-the-art transmitters shown in Figure 1.10.

3.3 Measurement Results

Figure 3.8 displays the 16-channel prototype fabricated in TSMC 65nm 6X1Z1U LP CMOS

process. The dimensions including the pad frame are 1.6 mm by 0.78 mm, and the core blocks

occupy a total of 0.382 mm2. Figure 3.9a presents the area breakdown of the chip. The area

per channel including the AFE and the CHT processor is 0.021 mm2.

The total power consumption of the chip is 401.45 µW including the power and command

receiver (355 µW). The pie charts in Figure 3.9b and Figure 3.9c show the power breakdown

of the system for raw data and CHT feature transmission modes, respectively. First, we

observe that the power overhead of the CHT processor is 1.83 µW/channel. However, the

data-dependent power consumption of the UWB transmitter decreases by 5 times from 2.06

µW/channel to 0.41 µW/channel when features are transmitted, which largely compensates for

the power overhead of the feature extractor. In total, the power overhead of feature extraction

is only 6.7%.
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Figure 3.9 – Power and area breakdowns of the wireless neural recording SoC.

3.3.1 Offline Seizure Classification

Epileptic seizure detection has been a popular benchmark for neural signal classifiers due to

the availability of large datasets containing hours of recordings from many patients. Moreover,

the widespread use of spectral features for seizure detection makes it a reasonable task for

demonstrating the efficacy of the proposed approach.

Dataset Description

Classification experiments were performed offline on two datasets. The first one is the CHB-

MIT dataset [231]. It contains 24 EEG recording sessions collected from 22 pediatric subjects

with intractable seizures at the Children’s Hospital Boston. The sessions are organized in

1-hour segments, 136 of which contain one or more annotated seizure events. The total
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Figure 3.10 – Processing pipeline of the classification experiments.

number of seizures in all sessions is 180. The number of channels in the recordings varies

between 23 and 26. The signals were sampled with 16-bit resolution at 256 S/s sampling

rate. The second dataset is the iEEG.org collection [232], maintained by the University of

Pennsylvania and Mayo Clinic. We selected 16 studies, each of which is a continuous multi-day

recording. The selected studies contain a total of 103 seizures. The number of channels in the

recordings varies between 16 and 116. The signals were sampled with 16-bit resolution at 500

S/s sampling rate.

Classifier Algorithm

The classifier was implemented in Python language using the XGBoost package [233]. We

chose XGBoost based on its superior performance over other algorithms in ML competitions

[233] and its training speed even with large datasets. XGBoost stands for Extreme Gradient
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Boosting, as it implements a gradient-boosted decision tree algorithm. A decision tree is a

classifier model that predicts the outcome of an input feature vector by successively comparing

the feature elements to certain thresholds inferred from the training data. Gradient boosting

forms an ensemble of decision trees incrementally by adding a new model that predicts the

residuals of existing models. The final decision is the aggregate of the decisions of the trees in

the ensemble.

The classifier model for the seizure detection experiments here is an ensemble of 8 decision

trees with a maximum depth of 4. A new model was trained for each study to avoid underfitting

due to the large patient-to-patient variations. The patient data was partitioned into sequences

where each sequence was at least one hour long and contains at least one seizure. The resulting

blocks were used as training and test sets for leave-one-out cross-validation.

The processing pipeline is described in Figure 3.10. The raw time-series signals were first

requantized to 10 bits, then reorganized into 64-sample non overlapping windows to be

compatible with the designed CHT processor. In order to standardize the different number

of channels, an initial training was performed to select the most descriptive 16 channels per

patient and 8 Hadamard indices per channel. The main training was performed using only

those channels and indices, which simulates the chip configuration.

Classification Results

Figure 3.11 presents the results obtained on each study in the two datasets containing a total

of 265 seizures from 40 patients. For most patients, all seizures could be detected with no

false alarms. The average sensitivity for the CHB-MIT dataset was 92%, and reaches 97.8%

if the two outliers (chb06 and chb16) are excluded. The false alarm rate (FAR) is 0.117/hour

which corresponds to around 3 FARs per day. The average sensitivity for the iEEG.org dataset

is 90.5% and the FAR is 0.171/hour, corresponding to around 4 FARs per day. The main reason

for the performance difference between the two datasets is that the iEEG.org recordings

are intracranial, as the name suggests. Since neural signals are picked up more strongly by

implanted electrodes compared to EEG, strong nonseizure activity can mislead the classifier

depending on the implanted location.

The most important observation here is that the descriptive indices vary significantly between

patients and span the entire spectrum. Figure 3.12 visualizes the obtained results after the

feature importance analysis. For the CHB-MIT dataset, the index ranges 15-20 and 40-45

have significantly higher importance. If we treat these indices as frequencies with 256 S/s

sampling rate, they correspond to 30-40 Hz (low-γ) and 80-90 Hz (γ) bands, respectively. For

the iEEG.org dataset, the important index ranges are 5-15, 28-30 and 57-64, which correspond

to 20-60 Hz (low-γ), 110-120 Hz (high-γ), and 220-250 Hz (ripple) bands, respectively, with 500

S/s sampling rate. These findings are in accordance with the epilepsy literature suggesting the

utility of HFOs for seizure detection [234]. It should be noted that selecting the exact indices

manually would be very difficult, if not impossible, if we had not used joint training.
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Study ID # Seiz. # Det. Sensitivity FAR Study ID # Seiz. # Det. Sensitivity FAR
chb01 7 7 100% 0.143/h Study 004-2 3 3 100% 0.000/h
chb02 3 3 100% 0.000/h Study 006 4 2 50% 0.125/h
chb03 7 7 100% 0.140/h Study 011 3 3 100% 0.000/h
chb04 4 4 100% 0.667/h Study 012-1 6 4 67% 0.250/h
chb05 5 5 100% 0.000/h Study 014 8 7 88% 0.000/h
chb07 3 3 100% 0.000/h Study 016 7 7 100% 0.714/h
chb08 5 5 100% 0.000/h Study 017 9 9 100% 0.000/h
chb09 4 4 100% 0.333/h Study 020 8 7 88% 0.438/h
chb10 7 7 100% 0.000/h Study 021 9 8 89% 0.722/h
chb11 3 3 100% 0.000/h Study 022 7 7 100% 0.000/h
chb12 27 26 96% 0.000/h Study 023 4 4 100% 0.250/h
chb13 10 9 90% 0.286/h Study 027 6 6 100% 0.000/h
chb14 8 8 100% 0.000/h Study 028 9 6 67% 0.111/h
chb15 20 20 100% 0.000/h Study 030 8 8 100% 0.063/h
chb17 3 3 100% 0.667/h Study 031 4 4 100% 0.000/h
chb18 5 5 100% 0.000/h Study 037 8 8 100% 0.063/h
chb19 3 3 100% 0.000/h Total 103 93 90.5% 0.171/h
chb20 8 8 100% 0.000/h
chb21 4 4 100% 0.000/h
chb22 3 3 100% 0.000/h
chb23 7 5 71% 0.333/h
chb24 16 15 94% 0.000/h
chb06 10 2 20% 0.000/h
chb16 8 3 38% 0.400/h
Total 162 157 97.8% 0.117/h

iEEG.org DatasetCHB-MIT Dataset

Figure 3.11 – Summary of the classification results on the CHB-MIT and iEEG.org datasets.
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Figure 3.13 – Test setup for the in vivo validation of the reconstruction mode.

3.3.2 In Vivo Waveform Reconstruction

As mentioned before, an important benefit of using the CHT features is that the waveform

can be reconstructed at the receiver side by taking the inverse transform, which is a linear

operation that can be performed in real time. Figure 3.12 illustrates the reconstruction mode.

If we configure and transmit the lowest indices, the inverse transform will give us the low-pass

filtered version of the raw recording with more than 20 dB post-reconstruction SNR, as in

previous LBCS demonstrations by Aprile [210]. We can also emulate a band-pass filter by

selecting higher index groups.

Experiment Setup

We validated the reconstruction mode in vivo on an anesthetized transgenic rat. All animal

experiments were approved by the Veterinary Office of the canton of Geneva in Switzerland

and were in compliance with all relevant ethical regulations under animal license number

GE 174_17. Figure 3.13 shows the experiment setup.

The preparation of the animal and the surgery was performed by Dr. Alix Trouillet of EPFL

Laboratory for Soft Bioelectronic Interfaces. A W-Tg(Thy1-COP4/YFP) (NBRP 0685, Kyoto,

Japan) transgenic female adult rat (∼220 g body weight) was anesthetized with a mix of

Ketamine (50-90 mg/kg) and Xylazine (5-10 mg/kg) diluted in NaCl before being head-fixed

in a stereotaxic frame (David Kopf Instruments). A large craniotomy was performed, then a

custom 16-channel soft µECoG array was placed epidurally over the exposed cortex.

The custom soft µECoG array was provided by Dr. Florian Fallegger of EPFL Laboratory for Soft

Bioelectronic Interfaces, and it was microfabricated using thin-film and silicon processing

technology, inspired from the e-dura process [225, 226]. A ground wire was fixed to the skull

using a metallic screw. The array was connected to the test board using a flex cable and a

custom-made FPC-to-header converter board. The test board hosting the prototype chip was

interfaced to a PC using Digilent Analog Discovery 2 multifunction instrument and a Python
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3.3 Measurement Results

Figure 3.14 – Raw and reconstructed waveforms obtained during the in vivo experiment.

script for configuration and real time visualization of the recorded data.

The optical stimulation was delivered using a diode-pumped solid-state blue laser (473 nm,

100mW max power, Laserglow Technologies) coupled via a FC/PC terminal connected to a

200 µm core optical fiber (ThorLabs). Using a micromanipulator, the fiber was placed at the

center of each µECoG array. The duration and frequency of the laser pulses were controlled by

the A-M Systems Model 2100 pulse stimulator.

Reconstructed Waveforms

The optical pulses were delivered at 1 Hz with 100 ms pulse width with varying laser powers

from 30 to 70 mW. For each power level, the chip was configured to record first raw data and

then CHT features with the lowest 8 Hadamard indices.

Figures 3.14a-c plots the 16-channel waveforms recorded simultaneously. We can observe that

the activity patterns differ by the applied power level. In all cases, the raw amplitude levels

and pulse shapes are accurately represented by the reconstructed waveforms. Figure 3.14d

shows the aligned spontaneous multiunit spiking activity (MUA) observed only on channel 8

in between trials, which verifies that the spike shapes are preserved after reconstruction.
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Table 3.1 – SoC performance summary and comparison with the state of the art.

JSSC’17[110] JSSC’18[158] JSSC’20[216] ISSCC’18[217] This work

Technology 130nm 130nm 40nm 180nm 65nm

VDD [V] 1.2 1.2 0.58 1.5 1

Number of Channels 64 32 14 8 16

Blocks Included AFE+FE+CLF+TX AFE+FE+CLF FE+CLF AFE+FE+CLF AFE+FE+TX

Total Area [mm2] 3.86 7.59 2.56 5.83 0.382

Total Power [mW] 0.47* 0.714** 1.9 0.013** 0.0464*

Feature Extractor FIR+PLV FIR+PLV/SE/CFC FFT+SE DWT+KDE CHT

Dimensionality Reduction - Autoencoder mRMR ICA XGBoost

Feature Dimension n/r 125 16 48 128

Feature Computation Fixed Fixed Fixed Fixed Adaptive

Waveform Reconstruction No No No No Yes

Feature Extractor Area [mm2] 1.285 0.475‡ 0.618‡ 0.817‡ 0.121

Classification Rate [class/s] n/r 4 11.1 0.074 312.5

Energy/Classification [µJ] n/r 168.6 170.9 14.2 0.149

Classifier Algorithm Threshold SVM SVM SVM XGBoost DT

Dataset Custom EU CHB-MIT CHB-MIT CHB-MIT

Sensitivity 75% 100% 96.6% 97.8% 97.8%

False Alarm Rate/Specificity 0.5/h 0.81/h 0.28/h 99.7% 0.12/h

* Power management blocks excluded. ** Estimated from the reported values. ‡ Estimated from the micrograph.

3.3.3 Discussion

Table 3.1 summarizes the performance of the proposed neural recording front-end and com-

pares it with previous works implementing on-chip classification [110, 158, 216, 217]. The

results point to several improvements over the state of the art.

First, contrary to other methods, waveform reconstruction is possible with CHT. Secondly,

the area occupied by the CHT processor is the smallest because Hadamard transform is more

hardware friendly compared to other transforms like FFT or wavelet transform. Thirdly, the

energy per each feature output is much less than on-chip classification. At 20 kHz sampling

rate, the transmitted features enable 312.5 class/s at the receiver side, which corresponds

to 149 nJ/class or 9.3 nJ/class/channel energy efficiency for the AFE, CHT processor and

UWB transmitter combined. This means that sending multichannel data to off-chip to more

advanced and flexible classifiers is more profitable than on-chip classification. Finally, while

taking much less area and energy on the chip, the seizure detection performance with CHT

features is similar to [216, 217] on the same dataset.
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4 A Wideband Phase-Locked Loop
Technique for Mitigating VCO Noise

Today’s connected world increasingly relies on high-speed data communication. In just a

few decades, data rates have increased by several orders of magnitude for both wireless and

wireline transceivers [235, 236]. This rapid advancement can be attributed in part to the

downscaling technology which has brought faster transistors. However, as we reach beyond

100 Gbps data rates, the dominant performance-limiting factor shifts from transistor speed to

timing precision.

Timing uncertainty in electronics is quantified as jitter in time domain, and phase noise in

frequency domain. The IEEE Standard for Jitter and Phase Noise [237] defines jitter as "the

deviation of the reference instants of a sequence of events from their ideal values", and phase

noise as "the random fluctuations in the phase of a periodic signal". The sources of these

deviations can be random due to electronic noise of the devices, or deterministic due to

interference from other circuits.

Figure 4.1 pictures the effects of timing uncertainty in three different applications. In wireline

communications, bit error rate (BER) depends on jitter. Figure 4.1a illustrates a generic

wireline link. The transmitter (TX) sends the bit stream to the receiver (RX) through a channel,

which could be a cable or a printed circuit board (PCB) trace. The data is synchronized with

the TX clock, which is then recovered at the RX side. Ideally, the transmitted symbols should

construct an open eye when superposed within a unit interval. In other words, they should

perfectly align with the recovered RX clock at the sampling instant. In reality, the jitter on the

data causes the eye to close and increases the chances of incorrect sampling.

In wireless communications, phase noise directly affects the network capacity. As depicted in

Figure 4.1b, a generic wireless TX upconverts the transmitted bit stream to the local oscillator

(LO) frequency. To allow multiple users to communicate simultaneously, the total available fre-

quency band is divided into subcarriers. Ideally, all channels should be contained within their

bandwidths, but the spectral leakage due to the phase noise of the LO corrupts the adjacent

channels. Reciprocal mixing at the RX side during downconversion is the manifestation of the

same problem. To reduce the effects of spectral leakage and reciprocal mixing, a subcarrier
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Figure 4.1 – Jitter-sensitive applications: (a) wireline communications, (b) wireless communi-
cations, and (c) high-speed ADCs.

spacing depending on the phase noise of the LOs needs to be allocated at the expense of

reduced network efficiency.

In high-speed ADCs, the maximum achievable resolution is determined by jitter. Figure 4.1c

shows a generic sampling operation where the input signal is captured by a sampling clock.

The jitter on the sampling clock translates into a voltage error on the sampled signal. Depend-

ing on the speed and the resolution of the ADC, this error can exceed the quantization and

other noise sources.

In almost every high-speed system, the fast symbol-rate clock is synthesized by a phase-locked

loop (PLL) from a lower-frequency reference, such as a crystal oscillator (XTAL) or a similar

low-noise generator. The output phase noise of a PLL is closely related to the type of VCO used,

and the loop bandwidth. Section 4.1 briefly introduces the considerations for both aspects.

A proposed solution for mitigating the effect of VCO phase noise is presented in Section 4.2,

which forms the basis for the design work presented in Chapter 5.
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Figure 4.2 – (a) Charge-pump PLL, and (b) jitter transfer functions for reference and VCO.

4.1 Phase-Locked Loop Considerations

Figure 4.2a shows a generic integer-N charge-pump PLL, denoting the five main components:

phase detector (PD), charge pump (CP), loop filter (LF), VCO, and feedback divider (FDIV).

The VCO output is divided by the FDIV ratio (N) and compared to the reference input via the

PD. Any error between the two phases results in a proportional CP current IC P injected into

the LF. This adjusts the control voltage VC T RL such that the reference and the VCO remain in

phase.

Figure 4.2b shows the jitter transfer functions from the reference and the VCO to the output.

The PLL tracks1 the reference phase and rejects that of the VCO within its loop bandwidth

(BW). For higher frequencies, the VCO phase noise is dominant. Therefore, the ideal condition

to achieve low phase noise for both the reference and the VCO. While ultra-clean reference

sources are already available up to the GHz range [238], achieving an on-chip low-phase-noise

VCO is a grand challenge due to energy and area limitations.

4.1.1 Voltage-Controlled Oscillators

The cost of lowering VCO phase noise in terms of power consumption is proportional to

the fourth power of the target jitter as pointed out by Razavi [239]. The jitter targets for the

state-of-the-art communication systems have reached below 100 fs and will soon reach below

10 fs for the next generation. Providing this level of timing precision will make the frequency

synthesis the power bottleneck instead of the functional blocks.

The VCO area also becomes a limiting factor when multiple PLLs have to be integrated on the

same die together with other large blocks, as in the case of multilane wireline transceivers

[240] or transceiver arrays for 5G beamforming [241]. The two VCO types used in integrated

CMOS PLLs are the ring VCO and the LC VCO. For the majority of high-speed applications the

LC VCO is preferred over the ring due to its superior phase noise performance, at the expense

1The reference phase noise is amplified due to the frequency multiplication factor N. Therefore, using a higher
reference frequency and lower N benefits the output phase noise at low frequencies.
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of much higher area occupation [242–244]. This is because the ring VCO can be constructed

using only active elements in a compact fashion, whereas the LC VCO involves inductors and

varactors which require a larger silicon area and additional coupling considerations.

Unfortunately, the VCO challenges are fundamental and cannot be solved easily using circuit

trade-offs. Therefore, we focus on increasing the PLL bandwidth such that the impact of VCO

phase noise is mitigated and the ring VCOs become feasible for jitter-sensitive applications.

4.1.2 Loop Bandwidth

The s-domain second-order transfer function of a PLL from the reference to the output is

given by
θOU T

θREF
= N

2sζωn +ω2
n

s2 +2sζωn +ω2
n

. (4.1)

Here, ωn is the natural frequency and ζ is the damping factor, and they are related to the block

parameters as

ωn =
√

KV COKPD IC P

NC1
, ζ= R

2

√
KV COKPD IC PC1

N
, (4.2)

where KV CO and KPD are the gains of the VCO and PD, R and C1 are the LF resistor and capac-

itor, and N is the multiplication factor. Together, ωn and ζ determine the -3 dB bandwidth

(ω−3dB ) and the jitter peaking (JP ) of the low-pass transfer function as [245]

ω−3dB ,REF =ωn

√
1+2ζ2 +

√
(1+2ζ2)2 +1, JP ≈ 1

4ζ2 . (4.3)

Similarly, the high-pass transfer function from the VCO to the output and its -3 dB bandwidth

can be computed as [245]
θOU T

θV CO
= s2

s2 +2sζωn +ω2
n

, (4.4)

ω−3dB ,V CO =ωn

√
2ζ2 −1+

√
(2ζ2 −1)2 +1 . (4.5)

According to (4.3), increasingωn and ζ increases the bandwidth and reduces peaking. However,

this does not accurately capture the reality because of three reasons.

First, the second order PLL suffers from large VC T RL ripples due to the series R, which cause

reference spurs in the output spectrum [242]. In practice, a parallel capacitor C2 is added to

the LF for a smoother VC T RL , resulting in a third-order loop. In this case, increasing ζ does

not indefinitely increase bandwidth and reduce peaking as prescribed by (4.3), but starts to

increase peaking after a certain value.

Secondly, the equations neglect the loop delay, which decreases the phase margin and thus

increases jitter peaking [246]. Figure 4.3 visualizes the effect of increasing ζ with and without
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Figure 4.3 – Peaking in the third-order jitter transfer function with and without loop delay.

loop delay in a third-order PLL. The same increase in ζ creates much higher peaking in the

presence of loop delay, which is inevitable in circuit implementations.

Finally, the s-domain analysis assumes a continuous-time operation, whereas in reality the

loop has a discrete-time nature since the PD acts only in response to the edges of its inputs. As

a rule-of-thumb, the validity of the continuous-time approximation is limited to ω−3dB <∼
0.1ωREF , known as Gardner’s limit [247]. For higher bandwidths, the granularity effects take

over and reduce stability. In this case the s-domain equations become too optimistic to capture

the actual trade-offs. The third-order z-domain transfer functions provided by Gardner [247]

and Hanumolu et al. [248] are more accurate, but these tedious analytical expressions are less

interpretable. Therefore, we will focus more on simulated responses based on an ideal model.

4.2 Multiphase Feedback Phase-Locked Loop

There has been a few previous studies that have tried to achieve bandwidths beyond Gardner’s

limit. Kong and Razavi [242] proposed a type-I synthesizer with a master-slave sampling loop

filter and harmonic traps to counteract the reference spurs caused by large swings at VC T RL .

This technique achieved 0.25 fREF bandwidth with -65 dBc reference spur level. Ting and Lee

[249] proposed a type-II synthesizer with a subsampling feedforward path which created an

additional zero in the VCO jitter transfer function (JTF). They reported 0.2 fREF bandwidth, yet

they did not report the spur level. Although the proposed methods could go beyond Gardner’s

limit, they do not address the fundamental limitation, which is the loop update rate.

In this work, we propose a new architecture called multiphase feedback (MPF) PLL to overcome

this limitation. Figure 4.4 shows a 4-phase example of the concept. The main modification over

the conventional PLL architecture is the XOR matrix phase detector (MPD), which compares

the reference input with multiple feedback phases.
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Figure 4.4 – A 4-phase example of the MPF PLL concept.

M=4

R

F

ICP

M=2M=1

R

F

ICP

R

F

ICP

Figure 4.5 – IC P for different values of active PDs.

4.2.1 XOR Matrix Phase Detector

XOR PDs inherently double the loop update rate as they compare both rising and falling

edges of the input and the feedback clocks, as opposed to conventional phase-frequency

detectors (PFDs) which compare only a single edge. They have been used extensively for

phase interpolators in clock and data recovery circuits which adjust the locked output phase

by small increments. Toifl et al. [250] used a common-mode logic (CML)-style XOR PD where

the coarse adjustment selected two of the multiple feedback phases, and fine adjustment

weighed the contribution of each phase to achieve the desired phase adjustment. Tajalli et

al. [240] used a CMOS logic XOR PD where each branch of the XOR gate was composed as an

array of 15 units such that they could be weighed individually to achieve the target phase.

Unlike the conventional XOR PDs used for phase interpolation [240,250], the MPF PLL employs

an XOR MPD where each feedback phase contributes equally to IC P . Figure 4.5 illustrates IC P

for different numbers of active PDs (M). M=1 corresponds to the XOR PD case, where the loop

is updated at every rising and falling edge of the reference phase and a single feedback phase.

M=2 uses two feedback phases with 90° shift. As a result, ICP resembles a staircase. M=4 uses

all four feedback phases with 45° shift, which creates more time instances for updating the

loop. The increased loop update rate allows a stable operation with a bandwidth close to fREF

without excessive peaking.
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Figure 4.6 – (a) Behavioral JTF simulation setup with multitone sinusoidal phase input and (b)
the resulting time-domain and frequency-domain plots.

4.2.2 Behavioral Simulation

Simulating the bandwidth of the MPF PLL with the conventional linearized phase-domain

model is difficult since its operation cannot be approximated as a continuous-time system.

Therefore, we modeled the MPF PLL in Verilog-A language and simulated it in time domain

using Spectre circuit simulator. The simulation setup is depicted in Figure 4.6a. The reference

input clock is phase modulated with a multitone sinusoidal signal Vφ which is expressed as

Vφ(t ) =
NPSD∑
k=1
k∈P

sin

(
2πk

fREF

NPSD
t

)
, (4.6)

where NPSD is the number of samples for PSD computation. The frequencies are prime

multiples of fREF /NPSD to guarantee coherent sampling.

The voltage-domain results of the simulation VREF and VOU T are post-processed using an

OCEAN script to extract the JTF. The script computes the reference and output phase devia-

tions φREF and φOU T based on the zero crossings of the voltage waveforms, then computes

their PSDs. The PSDs display peaks at the exact frequencies that construct Vφ as shown
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Figure 4.7 – 3D plots showing the effects of R and IC P on bandwidth and peaking for different
M values.

in Figure 4.6b. The difference between the reference and the output PSDs gives the JTF.

The described behavioral simulation technique was used to explore the design space for the

MPF PLL. For these simulations, we chose fREF as 781.25 MHz and N as 8 to produce 6.25

GHz output. Figure 4.7 displays the 3D plots showing the effects of R nd IC P on bandwidth

and peaking for different values of M. For M=1, it is not possible to achieve above 600 MHz

bandwidth without excessive jitter peaking. However, when we start to add more phases into

the loop we see an improvement. For M=2 and M=4, bandwidths above 700 MHz are possible

with less than 2 dB peaking.

4.3 Summary

The growing data rates in wireline and wireless communication systems demand unprece-

dented levels of timing precision. However, lowering the phase noise of CMOS PLLs requires

a disproportional increase in energy consumption and silicon footprint. As a result, timing

uncertainty is foreseen to be the main limiting factor for next-generation transceivers.

The high-frequency local clock in a transceiver is generated from a low-frequency reference

clock by a multiplying PLL. The loop tracks the reference phase noise and rejects that of the

VCO within its bandwidth. Consequently, increasing the loop bandwidth could permit the use

of noisy but compact ring VCOs for jitter-sensitive applications.

The discrete high-order nature of the PLL limits the stable bandwidth to a fraction of the

reference frequency. Extending the bandwidth beyond this limit results in excessive jitter

peaking and eventually the loss of stability. We have addressed this challenge with a MPF

PLL which increases the loop update rate by comparing the reference phase with multiple

feedback phases. The behavioral simulation results show that the loop bandwidth can be

increased close to the reference frequency without compromising stability. Based on this

premise, Chapter 5 presents a circuit implementation of the MPF PLL.
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5 A 6.25 GHz Integer-N Ring PLL with
0.92fREF Bandwidth

In this chapter we present a silicon implementation of the MPF PLL introduced in Chapter 4

[3]. Section 5.1 describes the design details, Section 5.2 provides the simulation results, and

Section 5.3 discusses the measured characteristics of the fabricated prototype.

5.1 Architecture Details

The top level block diagram of the PLL is shown in Figure 5.1. The core blocks MPD, LF,

VCO, and FDIV, are combined with four auxiliary blocks: bandgap reference (BGR), lock

assist (LA), input reference buffer and output source-series terminated (SST) buffer. The

control parameters ICP, R1, C1 and M are configured through a serial interface (CFG). For

this prototype, the multiplication ratio N is set to be 8, and fREF is 781.25 MHz to synthesize

6.25 GHz. This technique, however, is applicable to any integer N. The following subsections

explain each block in detail.

MPD

+CP
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&BUF
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Figure 5.1 – Top level block diagram of the MPF-PLL.
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Figure 5.2 – Schematic of the MPD+CP and the loop filter.

5.1.1 Matrix Phase Detector and Loop Filter

The most important element of the proposed wideband PLL is the matrix phase detector and

charge pump (MPD+CP), whose schematic is shown in Figure 5.2 together with the LF. Four

integrated XOR-based phase detector and charge pump (PD+CP) circuits (PD0:3) compare

the reference input (R, R) with all 4 phases of the feedback divided clock (F0:3, F0:3) and inject

ICP into the LF. The LF consists of C1=10pF, and programmable R1 between 400Ω and 800Ω.

C2 is implicitly created by the parasitic capacitances at VCTRL node. C1 is implemented as

a combination of metal-oxide-semiconductor (MOS) and MOM capacitors to reduce the

footprint.

Each PD is integrated with its CP current source to prevent additional loop delay. The drains

of the current source transistors need to switch at 6.25 GHz nominal output frequency when

all PDs are enabled, thus they need to be small with short channel lengths. The switching

speed comes at the expense of increased susceptibility to drain-induced current mismatch

depending on the value of VCTRL. To compensate for this adverse effect, the charge pump

bias voltages VBP and VBN are driven by a replica bias circuit, which clamps the output of the

replica branches to the stable capacitor voltage VCAP through feedback amplifiers.

The XOR operation is implemented as CMOS logic branches. The operation of a CMOS XOR

gate branch is not symmetrical as illustrated in Figure 5.3a. If the branch is turned on by input

F, only one internal node has to be charged to turn on the current source transistor. If the

branch is turned on by R, two internal nodes have to be charged to turn on the current source

transistor. In a regular PD this would only cause a small delay mismatch; however, in a PD+CP

it causes a large mismatch in ICP transients.
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Figure 5.3 – (a) Transient current mismatch problem and (b) its mitigation using symmetrical
branches.
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Figure 5.4 – Simulated ICP and VCTRL for different M values.

The solution employed here was using two identical XOR PD+CPs, where the input order of the

second PD+CP is flipped compared to the first one ({R,F}→{F,R}). The transient ICP differences

are largely mitigated thanks to this symmetrical operation as shown in Figure 5.3b.

The PD+CPs can be enabled or disabled individually (EN0:3,EN0:3) to assess the effect of

increasing number of active PD+CPs (M) on the bandwidth and phase noise. Figure 5.4 depicts

ICP at locked state for different M values.
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Figure 5.5 – Schematic of the multiphase multiloop VCO.

5.1.2 Voltage-Controlled Ring Oscillator

Figure 5.5 shows the schematic of the VCO. The core of the VCO is a 4-stage pseudo-differential

ring oscillator with 8-phase output. The ring has a multiloop architecture [251] where each

inverter-based stage has two inputs. The primary and the secondary inputs are driven by the

two preceding stages. The cross-coupled weak inverters at the differential outputs ensure

180° phase difference. Although they increase the delay of the circuit by resisting the change

imposed by the primary and secondary inputs, they also increase the slew rate when the

positive feedback takes over which leads to better phase noise [252].

The analysis of the multiloop architecture has been provided by Sun and Kwasniewski [251]

and Liu et al. [252]. If we denote the transconductance of the primary, secondary, and cross-

coupled inverters as gmp , gms , and gmc , the oscillation frequency for this 4-stage multiloop

ring can be written as

fosc = 1

2πRC
+ gms − gmc

2πC
, (5.1)

where R and C correspond to the equivalent output resistance and capacitance of a single

stage, respectively. Therefore, the nominal fosc at the nominal VCTRL can be tuned by adjusting

the strengths of the secondary and the cross-coupled inverters. Based on simulations, we set

them as gmp = gms = 3gmc to achieve 6.25 GHz with VCTRL ' VDD/2.
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Figure 5.6 – Simulated (a) gain and (b) voltage swing of the VCO.

The frequency tuning characteristic of the ring VCO is plotted in Figure 5.6a. The frequency

gain (KVCO) at 6.25 GHz nominal operating frequency is 36 GHz/V. The swing of the current-

starved ring oscillator output is not full-scale and it is frequency-dependent as seen in Fig-

ure 5.6b. Therefore, it has to be restored to full-scale by a level shifter.

Level Shifter and Buffer

The ring oscillator output is AC-coupled to the level shifter via coupling capacitors. The input

bias voltage of the level shifter is set via a CMFB circuit, such that the output common-mode

voltage is kept at a defined level, nominally at VDD/2. The output common-mode voltage is

sensed via two resistors, then the error between the desired VCM is amplified. The amplifier

output sets the input common mode voltage via two resistors. Anticipating fairly symmetrical

operation, all phases share the same amplifier to reduce the footprint. The output of the

level shifter is buffered by a cascade of strong inverters to drive the subsequent stages and

interconnects.

Lock Assist Mechanism

Acquiring the locked state with an XOR PD requires the initial frequency of the VCO to be

close to the intended frequency. To ensure this, a manual lock assist mechanism is employed.

First, all PD+CPs are disabled and a 10-bit R-2R resistor ladder DAC is connected to enforce

VCTRL. The frequency of the VCO can then be adjusted by configuring the DAC code through

the configuration interface. Then, the DAC is disconnected and the PD+CPs are enabled.

5.1.3 Feedback Divider

Figure 5.7 shows the feedback divider constructed by a cascade of three divide-by-2 flip-flops.

The differential flip-flops are made of master-slave latches with tri-state inverters. The output
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Figure 5.7 – Schematic of the feedback divider.
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Figure 5.8 – Schematic of the bias current generator.

of the divider is re-timed by the full-speed VCO output to avoid noise and delay accumulation.

The re-timer also produces 4 phases required by the MPD by sampling the divided clock in a

shift register fashion.

5.1.4 Bandgap Reference

The bias currents required by the CP and the VCO CMFB amplifier are supplied by the on-chip

proportional to absolute temperature (PTAT) current generator shown in Figure 5.8. It employs

a basic BJT-based architecture [253]. A small startup circuit ensures that the generator is not

stuck at off state after power on. The generated current is trimmable between 7.5 and 20 µA

with two control bits. Other values can also be supplied with the external bias option.
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Figure 5.9 – (a) Schematic of the input buffer and (b) its operation in the presence of phase
mismatch.

5.1.5 Input Buffer

The input buffer receives the reference input clock produced by an external signal generator.

Since the generator and the coaxial cables are 50Ω-matched, the first stage is a split differential

50Ω termination. The output swing and the DC level of the input depend on the generator

specifications. To comply with multiple instruments, the terminated signal is AC-coupled

then boosted to rail-to-rail swing by a level shifter. The cross-coupled inverters at the output

of the level shifter equalize the zero crossings of the differential phases, which may be skewed

due to cable and PCB trace mismatches. Figure 5.9b simulates such case where the 128 ps

phase mismatch reduces to 5 ps after the cross-coupled level shifter. The resulting rail-to-rail

signal is buffered to drive the MPD.

5.1.6 Output Driver

The PLL output is sent off-chip by the output driver shown in Figure 5.10. The PLL output

is first divided down by 8 since measuring the full speed output was not possible due to test

setup limitations1. This division does not distort the range of interest (up to fREF ) and was

compensated by adding 10log(82) = 18.06 dB to the measured phase noise.

1The available instruments were not capable of measuring the full-speed output, and 6.25 GHz requires an
optimized high-speed driver such as LVDS or CML which is beyond the scope of this work.
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Figure 5.10 – Schematic of the output driver.

The divided output is sent out by the SST driver. The driver consists of 40 unit slices, each of

which has an equivalent source impedance of 1.5 kΩ. Nominally, 30 slices would be sufficient

to match 50Ω. To counter process-voltage-temperature (PVT) variations, 15 of the slices can

be switched on or off by a 4-bit control signal.

5.2 Simulation Results

5.2.1 Bandwidth Simulation

Simulating the loop bandwidth of the transistor-level schematic using the transient simulation

method described in Section 4.2 takes an impractically long time. This is because an accurate

result can only be obtained by simulating the parasitic-extracted netlist of the circuit which

has thousands of elements. To shorten the simulation times, we used the sampled periodic

transfer function (PXF) analysis offered by SpectreRF [254]. The sampled PXF can measure the

instantaneous gain from a signal source to a single time point of the periodic output signal.

Although this analysis is meant to be used for voltages and currents, we exploited it in the

context of JTF by converting an AC voltage source vi n to an AC phase deviation φr e f via a

Verilog-A phase modulator model where

φr e f = vi n . (5.2)

The AC output voltage variation vout in response φr e f can be converted back to output phase

φout as

φout = vout

dVOU T
d t

∣∣∣
VOU T =0

, (5.3)

where dVOU T
d t

∣∣∣
VOU T =0

is the slew rate of the output at the zero crossing instant. The JTF can then

be extracted as

JTF = φout

φi n
= vout

vi n

(
dVOU T

d t

∣∣∣
VOU T =0

)−1

. (5.4)
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5.3 Measurement Results

Figure 5.11a displays the JTF obtained using sampled PXF analysis for M being 1, 2 and 4. The

loop bandwidths were measured as 260 MHz, 470 MHz and 695 MHz, and the jitter peaks

were measured as 4 dB, 2.8 dB and 3.4 dB, respectively. The spur levels for the three cases were

observed as -29.3 dBc, -40.2 dBc and -44.6 dBc as shown in Figure 5.11b.

5.2.2 Phase Noise Simulation

The phase noise of the PLL was simulated with SpectreRF’s periodic noise analysis. Fig-

ure 5.12a-c display the plots obtained for each M value with individual noise contributors. At

low frequencies the noise of MPD+CP is dominant for all. For M=1, VCO starts to dominate

above 20 MHz. For M=2 and M=4, the contribution of the VCO noise is almost fully suppressed.

Figure 5.12d plots the output phase noises and the VCO contributions in a single plot for a

better comparison. The output spot noise reduction at 120 MHz for M=2 and 4 are 6 dB and

7.2 dB, respectively. The RMS jitter values integrated from 10 to 100 MHz are 162, 108, and 106

fs for M=1, 2, and 4, respectively.

5.3 Measurement Results

The micrograph of the prototype fabricated in TSMC 40nm LP CMOS process is displayed

in Figure 5.13. The core blocks highlighted in yellow occupy a total of 0.0085 mm2 and

dissipate 7 mW in total at 1.2 V supply voltage. The area and power breakdowns are given

in Figure 5.14a and Figure 5.14b, respectively. The contribution of the additional PD+CPs is

marginal compared to the power overhead of the VCO and the feedback divider. The fabricated

prototype was characterized by two sets of measurements to verify the bandwidth extension

and the phase noise performance using the measurement setup shown in Figure 5.15.

5.3.1 Bandwidth Measurements

For bandwidth measurements, the 781.25 MHz reference frequency was summed with a

high-frequency interferer and the peak at the output phase noise graph was registered. The

interferer frequency was varied from 100 MHz to 700 MHz with 50 MHz increments to form

the JTF. Figure 5.16a shows the overlaid PN plots with interference at 200, 400, and 600 MHz,

measured for different values of M. The peak amplitude observed at 600 MHz indicates that

high-frequency interference can pass through the loop when more than one PD is active.

Figure 5.16b shows the registered peak amplitudes for different values of M as a function of

frequency. The measured -3 dB bandwidths were 0.48fREF, 0.74fREF, and 0.92fREF for M values

1, 2, and 4, respectively. The peaking when M=4 is around 2.5 dB, which is acceptable for many

applications. Lower peaking is achievable either by reducing ICP or re-optimizing the loop

filter. Figure 5.16c displays the same measurement with reduced ICP which exhibits 1.7 dB

peaking at the expense of slightly reduced (0.83fREF) bandwidth.
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Figure 5.11 – Simulated (a) jitter transfer function and (b) reference spur plots.
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Figure 5.12 – Simulated phase noise with (a) M=1, (b) M=2, and (c) M=4. (d) Comparison of
the output phase noise and VCO contribution across M values.
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Figure 5.13 – Micrograph of the prototype fabricated in TSMC 40nm LP process.
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Figure 5.14 – (a) Area and (b) measured power breakdowns of the MPF PLL.
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Figure 5.15 – Test setup for characterizing the PLL.
79



Chapter 5. A 6.25 GHz Integer-N Ring PLL with 0.92fREF Bandwidth
P

N
 (

d
B

c
/H

z
)

100M 1G
Frequency Offset (Hz)

-120

-110

-100

-90
Measured Phase Noise with M=4

P
N

 (
d

B
c
/H

z
)

100M 1G
Frequency Offset (Hz)

-120

-110

-100

-90
Measured Phase Noise with M=4

100M 1G
-120

-110

-100

-90

Frequency Offset (Hz)

Measured Phase Noise with M=2

P
N

 (
d

B
c

/H
z
)

100M 1G
-120

-110

-100

-90

Frequency Offset (Hz)

Measured Phase Noise with M=2

P
N

 (
d

B
c

/H
z
)

100M 1G

P
N

 (
d

B
c
/H

z
)

Measured Phase Noise with M=1

-120

-110

-100

-90

Frequency Offset (Hz)
100M 1G

P
N

 (
d

B
c
/H

z
)

Measured Phase Noise with M=1

-120

-110

-100

-90

Frequency Offset (Hz)

2
0
0

 M
H

z

7
8
1

.2
5

 M
H

z

4
0
0

 M
H

z

6
0
0

 M
H

z

2
0
0

 M
H

z

7
8
1

.2
5

 M
H

z

4
0
0

 M
H

z

6
0
0

 M
H

z

2
0
0

 M
H

z

7
8
1

.2
5

 M
H

z

4
0
0

 M
H

z

6
0
0

 M
H

z

(a)

200 400 600

Frequency Offset (MHz)

-20

-15

-10

-5

0

5

M
a

g
n

it
u

d
e

 (
d

B
)

Measured PLL Transfer Function

M Bandwidth

1 380 MHz

2 580 MHz

4 720 MHz

M=1 M=2 M=4

ICP=160μA 

(b)

200 400 600

Frequency Offset (MHz)

-20

-15

-10

-5

0

5
M

a
g

n
it

u
d

e
 (

d
B

)
Measured PLL Transfer Function

M=1 M=2 M=4

M Bandwidth

1 380 MHz

2 600 MHz

4 650 MHz ICP=120μA 

(c)

Figure 5.16 – (a) Measured phase noise with high frequency interferer, and the JTF plots for (b)
ICP=4 µA and (c) ICP=1.5 µA.

5.3.2 Phase Noise Measurements

Figure 5.17 plots the output phase noise measured at different M values and compares them

to the phase noise of the reference phase noise (normalized to 6.25 GHz) including the signal

generator and the spectrum analyzer. At low frequencies, the PLL tracks the reference phase

noise very closely, meaning that the measurement is limited by the instrument noise.

The jitter generation of the PLL starts to become prominent after 1 MHz. The overlaid plot

verifies that the extended bandwidth results in higher suppression of the VCO phase noise as

M increases. When we zoom in near fREF, we observe that the output phase noise continues to

track the reference for higher M. The higher jitter peaking for M=4 is also noticeable in this

range.

Table 5.1 summarizes the spot noise and integrated jitter values. The comparison of the values

for the 100 MHz-700 MHz band is especially interesting since the measured values converge

to the reference value as M increases.
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5.3 Measurement Results
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Figure 5.17 – Overlay of measured phase noise plots for different values of M.

Table 5.1 – Measured spot noise and integrated jitter values.

Reference M=1 M=2 M=4

Frequency Offset Spot Noise (dBc/Hz)

10 kHz -91.77 -90.04 -90.28 -90.94

100 kHz -98.21 -97.07 -97.21 -97.40

1 MHz -105.53 -104.81 -104.68 -105.04

10 MHz -116.07 -113.76 -114.18 -114.67

100 MHz -116.26 -114.51 -115.44 -115.99

Integration BW RMS Jitter (ps)

10 kHz-10 MHz 0.42 0.47 0.47 0.45

50 kHz-10 MHz 0.37 0.42 0.42 0.40

10 kHz-100 MHz 0.69 0.84 0.79 0.75

10 kHz-200 MHz 0.87 1.02 0.96 0.92

100 MHz-700 MHz 1.34 1.28 1.30 1.34

5.3.3 Discussion

Table 5.2 summarizes the measured performance of the proposed PLL and compares it with the

state-of-the-art wideband ring VCO-based PLLs [242, 249]. The loop bandwidth to reference

frequency ratio obtained in this work is 4.5 and 4 times higher than what has been reported in

[249] and [242], respectively. Moreover, this design achieves 1.8 times smaller silicon footprint

compared to [242] in a similar process. The spot noise at 10 MHz is 8 dB lower than the other

works. The integrated jitter values are also similar or lower despite the noise limitation of the

measurement setup.
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Chapter 5. A 6.25 GHz Integer-N Ring PLL with 0.92fREF Bandwidth

Table 5.2 – MPF-PLL performance summary and comparison with the state of the art.

JSSC’16[242] ISSCC’20[249] This work

Technology 45nm 40nm 40nm

VDD [V] 1 0.9 1.2

VCO Type Ring Ring Ring

fCLK [GHz] 2.4 5.25 6.25

fREF [MHz] 22.6 21 781.25

Bandwidth [MHz] 5.6 4 7201 / 6502

Bandwidth/fREF 0.25 0.2 0.921 / 0.832

Area [mm2] 0.015 0.161 0.0085

Power [mW] 4 9.01 7

Spur [dBc] -65 n/r -44.6‡

PN @ 10 kHz [dBc/Hz]* -86.91 -83.50 -90.94

PN @ 100 kHz [dBc/Hz]* -100.87 -92.27 -97.40

PN @ 1 MHz [dBc/Hz]* -105.47 -94.3 -105.04

PN @ 10 MHz [dBc/Hz]* -107.99 -100.77 -115.99

RMS Jitter [ps] 0.97 1.95 0.75

Integration Range [Hz] 1k-200M 50k-10M 10k-100M

FoM [dB]** -234.1 -224.6 -234.0

* Normalized to 6.25 GHz. ** FoM = 10log10(σ2
r ms ×PmW ). ‡ Simulated.

1 2.5 dB peaking. 2 1.7 dB peaking.
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Conclusion

Part I: Implantable Neurotechnology

Summary

In the first part of this thesis, we addressed the contemporary challenges in implantable

neurotechnology, which provides life-changing opportunities to many patients with neuro-

logical conditions. The future of this technology not only promises better treatments for a

wider audience, but also aspires to enhance human capabilities by achieving symbiosis with

machines. However, there is a wide technology gap between the current state of research

and these ambitions which led to the present study. We extensively reviewed the current

applications, limitations, and solutions for neural recording in Chapter 2 from a circuits and

systems perspective. Based on this review, we identified two main research goals for future

massively-parallel wireless neural recording SoCs.

First, we need to record as many neurons as possible for resolving the very implicit electrical

manifestation of neural activity. As the number of channels reaches towards thousands, we

see that a single-chip solution becomes infeasible in terms of both energy and area. To tackle

this challenge, we presented an AFE architecture in Chapter 2 that applies various energy- and

area-saving techniques to reduce the hardware resource demand of neural recording. The

fabricated prototype in 65nm CMOS technology displays 12 times improvement in energy-area

efficiency over the state of the art.

Secondly, we need wireless connectivity to make the brain interface technology available to a

wider audience because a wired connection between the implant and the external devices is

infection-prone and uncomfortable. Nevertheless, the current wireless solutions for implants

do not support the ultra-high data throughput of massively-parallel recording. Inspired

by the previous ideas for compression and the emerging machine learning applications in

neuroscience, we introduced a new wireless neural recording approach in Chapter 3 to tackle

the data rate bottleneck. This approach extracts spectral features on-chip using versatile and

hardware-friendly CHT, and applies classification off-chip to maintain algorithm flexibility.

A second mode of operation for the feature extractor is waveform reconstruction, which is

extremely valuable for medical applications yet has been overlooked in previous studies.
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Conclusion

The SoC prototype in 65nm CMOS containing the AFE, CHT processor, and WPDT subsystems

achieved 2.9 µW power and 0.021 mm2 area per channel, suggesting that a thousand-channel

system would be feasible within a single 7 mm-by-3 mm chip. For comparison, an industry-

standard 64-channel electrophysiology chip occupies 7.3 mm by 4.2 mm [255]. Moreover, the

power density of the channel is 14 mW/cm2 which is much below the 40 mW/cm2 limit for

temperature elevation.

The data rate reduction of the implemented approach is 80% without compromising the

detection performance. Extrapolating to a thousand-channel system, the data rate reduction

would be from 200 Mb/s to 40 Mb/s, which is within the capabilities of the current standards.

To summarize, Part I took a step towards future brain interfaces by exploiting trade-offs in

circuits and systems and relaxing their resource requirements. However, the implications of

this study go beyond the field of neurotechnology. In essence, any data acquisition problem

with resource constraints and high throughput could benefit from the presented architectures.

Future Work

For the AFE part, the biggest room for improvement is in the design of the LNA. As seen

in Figure 2.14b, the nonlinearity of the LNA causes around 1-bit reduction in the effective

resolution of the overall AFE. Therefore, a more linear architecture can enhance the recording

quality. A secondary consideration is the spread of the ENOB across fabricated samples. This

is mainly due to the mismatch of the ULCDAC and it could be mitigated by enlarging the array

with a small area penalty.

For the CHT processor part, the Hadamard indices do not fully exercise their allocated 16-bit

width, especially for higher indices representing high frequencies [256]. Further data rate

reduction could be achieved by statistically analyzing this redundancy.

For the software part, the next step would be to focus on highly sophisticated classifiers such

as DNNs or recursive neural networks (RNNs) to fully realize the premise of the proposed

hardware. A major challenge for these type of classifiers is the scarcity of patient data. Such

classifiers require large amounts of high-quality data for each patient, which is usually not

attainable with the currently available datasets. A recent method considers merging data from

several patients which can relax this requirement [257]. Furthermore, the flexibility of the

software classification could be further leveraged to create general-purpose neural interfaces,

where a library of classifiers for various tasks controls CHT configurations or reconstructions.

The prototype fabricated for demonstration could include only 16-channels, whereas the pro-

jections based on the achieved results anticipate feasible integration of a thousand channels

within a single die. However, reaching the stage where such a system can be fabricated and

developed for chronic implantation requires the strong commitment of an interdisciplinary

team and an ample budget.
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5.3 Part II: High-Speed Communications

Part II: High-Speed Communications

Summary

In the second part of the thesis, we focused on the timing uncertainty bottleneck in high-

speed wireline and wireless communication systems. The increasing data rates and the

emerging need for multitransceiver architectures necessitate the lowest energy and area for

the frequency synthesis, which contradicts the current jitter-cost trade-off paradigm.

In Chapter 4, we investigated the limitations for PLL-based frequency synthesizers and iden-

tified a wide loop bandwidth as the key target, to mitigate the VCO noise and to allow the

use of cost-effective ring oscillators instead of bulky LC counterparts. We introduced an MPF

PLL-based synthesizer architecture as a solution to the bandwidth limitations in traditional

PLLs. To accurately validate the benefit of the proposed system, we devised a time-domain

simulation method instead of relying on linearized phase-domain models.

In Chapter 5, we presented the design of a 6.25 GHz MPF PLL in 40 nm CMOS. We described

our circuit solutions and again used time domain simulation methods based on periodic

steady-state analyses to validate the transistor-level circuit. The fabricated prototype achieved

a measured bandwidth of up to 0.92 fREF within a silicon footprint of 0.0085 mm2, which

improve the state of the art by 3 times and 1.8 times, respectively.

Future Work

Although the bandwidth extension was observable, the main limitation of this study was that

the measured phase noise and jitter values were lower bounded by the instrument noise. We

could obtain better results if we had access to a reference source and a spectrum analyzer

with lower phase noise floors than the available instruments. Another setup-related limitation

was that we were not able to measure the reference spur levels. This was because we had to

divide the output clock by eight to be compatible with the available measurement equipment.

A future prototype should include the necessary on-chip high-speed drivers for sending the

full-speed clock off-chip.

The simulated and the measured jitter values of the proposed synthesizer still do not reach the

levels required by next generation links. As pointed out by Razavi [239], the next-generation 224

Gbps 4-level pulse amplitude modulation (PAM-4) links, and 256-level quadrature amplitude

modulation (256-QAM) for 5G radio will require below 100 fs timing precision. Now that the

limiting factor is the PD noise with the virtually full bandwidth, a future work would be to focus

on decreasing the contribution of the PD using techniques such as subsampling. Moreover,

integrating the synthesizer in an actual transceiver could unlock system-level trade-offs to

tolerate the residual jitter.
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