Characterization of Non-Stationary Signals in
Electric Grids: a Functional Dictionary Approach

Alexandra Karpilow, Student Member, IEEE, Asja Derviskadié, Guglielmo Frigo, Member, IEEE,
and Mario Paolone, Senior Member, IEEE

Abstract—With the expanding role of converter-interfaced
distributed energy resources, modern power grids are evolving
towards low-inertia networks that are increasingly vulnerable
to extreme dynamics. Consequently, advanced signal processing
techniques are needed to accurately characterize measured sig-
nals in power systems during non-stationary conditions. However,
as advocated by recent literature, state-of-the-art phasor estima-
tion methods are unable to sufficiently capture the broadband
nature of these signal dynamics since they rely on a quasi-
steady state, single tone model. Inspired by previous work by
the authors, this paper proposes a signal processing method that
uses a dictionary of kernels, modeling common signal dynamics,
to compress time-domain information into a few coefficients. The
identified signal model and the extracted coefficients capture the
broadband spectrum of typical power system signal dynamics and
allow for an improved reconstruction of the measured signal.

Index Terms—dictionary analysis, power system dynamics,
phasors, transient analysis, compressed sensing

I. INTRODUCTION

S we transition towards power grids based on distributed

renewable energy and power converters, the inertial ca-
pacity of the grid is curtailed, increasing the likelihood of
extreme dynamic behavior. Indeed, several real-world distur-
bances have been recorded recently with frequency ramps
preceding blackouts like the one in Australia in 2016 [1]],
phase steps occurring during the faults in California in 2016
and 2017 [2], [3]l, or amplitude modulations as seen in the
Continental European interconnected system in 2017 [4].

In this context, Phasor Measurement Units (PMUs) are
viewed as a critical tool in the future of measurement,
control and protections schemes in power grids [5[]. With
applications in state estimation, fault detection and location,
security/protection and voltage stability analysis, PMUs have
garnered significant attention in recent years. However, these
measurement devices employ signal processing techniques
based on steady state phasor models, the suitability of which is
questionable in the presence of significant electromechanical
transients. Phasor analysis relies on the extraction of a single
fundamental tone that is assumed to be stationary for the

A. Karpilow and M. Paolone are with the Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015, Switzerland.
A. Derviskadi¢ is with Swissgrid Ltd., Aarau, 5001, Switzerland.
G. Frigo is with the Swiss Federal Institute of Metrology (METAS), 3003
Bern-Wabern, Switzerland

This project is carried out within the frame of the Swiss Centre for
Competence in Energy Research on the Future Swiss Electrical Infrastructure
(SCCER-FURIES) with the financial support of the Swiss Innovation Agency
(Innosuisse - SCCER program).

duration of the observation window. However, as thoroughly
explored in literature [6[]-[9], signal dynamics (e.g., variations
or steps in the amplitude or phase) have broadband frequency
spectra that cannot be sufficiently approximated by narrow-
band phasor models.

The characterization of signal dynamics in power grids is,
therefore, an open question with a vast collection of related
research. Many techniques attempt to improve estimations of
an underlying phasor by approximating the dynamic compo-
nent using Taylor series expansions or the Taylor-Fourier (TF)
transform and Weighted Least Squares [10]], [L1]. In [L1],
when the extracted phasor model does not sufficiently match
the true signal, the window length is reduced and the algorithm
repeated in order to better satisfy the stationary assumption.
Alternatively, Compressed Sensing (CS) techniques and the
TF transform are used in [12] to identify the 1% and ond
order derivatives of the phasor in order to account for vari-
ation in the corresponding signal model parameters. During
slow dynamic operating conditions, dynamic phasor methods
improve estimations of the static phasor parameters and the
time-domain reconstruction. However, dynamic phasor models
are unable to represent faster variations or discontinuities in
the waveform which could lead to inaccurate frequency esti-
mations, erroneous power flow calculations and inappropriate
control actions [6], [7]. Furthermore, including the first and
second order derivatives of the phasor in the time-domain
reconstruction, according to the techniques presented in [[11]
and [12], requires large matrices of coefficients proportional
in size to the length of the window and the Taylor expansion
order. Other techniques offer improved signal models using
O-splines or sinc interpolation in order to estimate oscillatory
modes [[13]], [[14] but are limited by the modulation model
and may not be applicable for other common signal dynamics
characterizing the behavior of low-inertia grids.

Instead, in this paper, we propose a technique to fully
capture power system signal dynamics and provide essential
information on the state of the grid. Building off of the study in
[6]], which applies the Hilbert Transform (HT) in the analysis
of dynamic signals, we have developed the Functional Basis
Analysis (FBA) algorithm for the identification and charac-
terization of signal dynamics. The FBA method employs a
dictionary with kernels generated using parameterised models
of signal dynamics common in power grids. The dictionary
is used to identify the kernel and its associated parameters
that best match the given signal. For comparison, while the
Fourier Transform relies on a basis of sinusoidal functions at
discrete frequencies, the FBA dictionary is not restricted to



stationary sinusoids and is instead user-engineered to capture
diverse signal dynamics. In this paper, we focus on the analysis
and characterization of modulations and abrupt steps in the
amplitude and phase of the signal as well as ramping of the
instantaneous frequency. Depending on how the algorithm is
designed, the FBA method could be extended to analyze higher
frequency events, as demonstrated by the harmonic analysis
example in Appendix C.

The paper is structured as follows: Section [[I] explores the
theory supporting the dictionary’s design and modeling of
common signal dynamics. Section |lII| describes the proposed
FBA algorithm including parameter extraction and identifica-
tion of the signal dynamic. In Section we demonstrate
the performance of the algorithm when applied to synthetic
signal dynamics or data from real grid events, and compare it
with static and dynamic phasor estimation methods. Finally, in
Section |V| we conclude the paper by providing some remarks
on the performance and potential of the algorithm in the
processing of power grid dynamic signals.

II. THEORY

The problem addressed in this paper is framed as follows:
given a voltage or current signal from a power grid mea-
surement device, identify the true underlying signal dynamic
responsible for the corresponding continuous frequency spec-
trum and estimate the parameters that best characterize the
signal. Because the set of possible signal dynamics that are
likely to occur in power systems is finite, it can be sufficiently
spanned by a dictionary of functions modeling various com-
mon signals (e.g., phase modulations, frequency ramps) [6].
In the proposed FBA algorithm, the dictionary is composed of
parameterized kernels that represent the frequency spectrum of
known signal dynamics. The FBA algorithm leverages prop-
erties of analytic signals in the creation of dictionary kernels
in order to eliminate long-range spectral leakage caused by
the negative spectrum. For this reason, we recall some of the
basic theory behind the HT and analytic signals. The HT is a
linear operator that, for a generic time-varying signal x(t), is
defined as [15]):

Hlx(t)] = 1 /+°C () dr = 1 * x(t) (1)
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where * indicates convolution. Combining the HT H[z(t)]
with the original function yields the analytic signal & (¢) which,
due to the symmetry of the spectrum, contains only positive
frequency components [15]:

B(t) = a(t) +jH(x(t)). (2)

Therefore, the HT allows for the construction of the analytic
signal and the removal of interference from the negative
spectrum, which is prevalent in power system signals since
a large portion of the spectral energy is centered around 50
Hz and therefore close to DC. If we apply Euler’s formula, the
analytic form also allows for the representation of a real time-
domain signal as a complex exponential function which has
a more mathematically convenient form. Examples of these
transformations are shown in the next section.

A. Dictionary Kernels

For power systems, signal dynamics can be generically
modeled with the following function and the fundamental
frequency f,, amplitude A, and phase ¢:

z(t) = Ag(1 + ga(t))cos(2m fot + g, (t)+¢0)  (3)
which has the analytic form:
.i‘(t) _ Ao(l +gA(t))ei(27Tfot+9¢(t)+<P0) 4)

where g4(t) and g,,(t) account for the variation in amplitude
and phase, respectively || The FBA algorithm presented in this
paper was developed for five common power system dynamics:
(i) amplitude modulations, (ii) frequency ramps, (iii) phase
modulations, (iv) amplitude steps and (v) phase step Each
dynamic has a defined parametric model that is transformed
into its analytic counterpart using the HT.

Firstly, amplitude modulations (AM) typically result from
inter-area oscillation events and can be modeled as [|16]:

x(tvﬁy) = AO(l +szcos(2’/Tf7nt‘FSa'm))00‘9(27{-.](‘0t+900) (5)

where f,, is the modulating frequency (f,, < fo), ©m
is the phase of modulation and k,, is the depth of mod-
ulation. The key parameters can then be represented by
v = [Ao, fo, fm> L0s Pms k), While the analytic signal is
constructed using (@) and the amplitude and phase variations
9a(t) = kpcos(2m frut + p,) and g, (t) = 0.

The second case concerns frequency ramps (FR) which
occur in response to faults and large power imbalances and
often precede a severe grid collapse. Frequency ramps can
be modeled with a ramp rate R in Hz/s, the parameter set
v = [Ay, fo, ¥0, R] and the function [16]:

x(t, ) = Agcos(2m fot + Rt + ¢p). (6)

The functions g4(t) = 0 and g,(t) = Rrt? can be used in
(@) to create the analytic signal model.

Next we consider phase modulations (PM), which also
occur during inter-area oscillations and are modeled with a
parameter set v = [Ag, fo, fa> P0s Pa, ka) and the following
function:

SU(t, ’7) = AOCOS(Q,]TfOt + kaSin(Qﬂ—fat + 50{1) + 900) (7)

The analytic signal is then defined for g4 (t) = 0 and g,,(t) =
kosin(2mfot + ©q)-

Amplitude steps [AS] frequently occur during faults, load
shedding or generator disconnections and can be modeled with
a parameter set v = [Ay, fo, ks, ts, ©p] and the function [6]:

.Z'(t, ’V) = AO(l + ksh(t - ts))008<27rf0t + WO)' (8)

where k, is the relative step magnitude, h(t) is the heaviside
function and ¢, is the location of the step in the window.

IEq. @) is derived using the property that the HT of the product of two
signals with non-overlapping spectra is equal to the product of the low-
frequency term and the HT of the high-frequency term. For justification of
this assumption see [15]].

%An extension of the FBA method for extraction of harmonics is also
presented in Appendix C.



Consequently, the analytic signal is defined with g,(t) =
ksh(t —t,) and g, (t) = 0.

Finally, phase steps [PS] are modeled with a parameter set
v = [Aq, fo, kp, s o] and the function [6]:

x(t,y) = Agcos(2m fot + k,h(t —1t,) + ¢o). 9)

where k, and ¢, are the step magnitude and location, respec-
tively. Therefore, the analytic signal is defined with g4(¢) =0
and g, (t) = k,h(t —t,).

Using these models, dictionary kernels d(¢, ) for the FBA
are computed by finding the Discrete Fourier Transform (DFT)
of the analytic signal defined by a given set of parameters ~:

d(t,y) = DFT[2(t,7)]- (10)
The DFT coefficients for bins k = 1...L are defined as:
L—1
X (k)= oWy (11
1=0
where Wf = ¢ ™F/L are the roots of unity. We choose

to work in the frequency domain since this allows for the
compression of the time-domain signal into a discrete set of
Fourier coefficients. The Fourier Transform also acts as a low-
pass filter, significantly removing the impact of noise.

B. Dictionary Theory

Choosing a proper dictionary is a critical step in the
implementation of the FBA algorithm. Since the objective is to
identify the parameters of an unknown signal, an intuitive solu-
tion would be to have a uniform grid of the model parameters
(e.g-, fo, fm,®m) that spans the allowed space and includes
signals for all combinations of values. However, to properly
justify this choice, we need to clarify what makes a dictionary
effective and how to construct appropriate dictionaries. For
this, we look to the fields of sparse modeling and Compressed
Sensing (CS) [17] which have thoroughly studied the selection,
design and optimization of dictionaries.

CS focuses on representing a signal using a linear combi-
nation of only a few dictionary atoms (i.e. a sparse represen-
tation). More formally, let matrix D € CF* N pe a dictionary
of N kernels of length K and z € C* be the given signal. A
CS problem then involves solving for a sparse approximation
vector o« with only a few nonzero elements such that:

& = argmin ||| subject to ||[Da — z||y < e (12)
(03

where ¢ is a small positive constant. The performance of sparse

approximation algorithms is often studied using properties of

the dictionary, the most intuitive of which is mutual coher-

ence [[17]]. Coherence of a dictionary indicates the maximum

similarity between any two dictionary kernels (d;,d;) [17]:

H
|d;"d,|
J
p(D) = max
37 [|dg]l2]]d; ]2
where H signifies the Hermitian transpose. In designing a
dictionary, it is desirable to have kernels with low mutual
coherence when solving for a unique sparse representation,
as this can reveal underlying structures in the data.

d,j=1,..N (13)

Dictionary selection is commonly performed through either
Dictionary Learning or Dictionary Design [17]. The former
adapts an original dictionary to better fit a predefined set of
signals. However, this method does not guarantee the kernel
structure that we wish to maintain for the FBA algorithm (e.g.,
AM, FR, PM). The resulting dictionary would contain kernels
that have low coherence but are just as unknown as a test
signal in terms of parameter and dynamic identification.

Fortunately, methods exist that allow for more precise
control and design of the dictionary by incorporating domain
knowledge. In particular, the Parametric Dictionary Design
(PDD) algorithm allows for the optimization of the dictionary
with respect to coherence while maintaining a meaningful
parametric model for the kernels [18]]. We adapted this method
for complex dictionaries and the kernel models discussed in
Section in order to better understand and design the
structure of optimal dictionaries for the FBA algorithm.

For the sake of nomenclature, a few key terms need to
be explained. First, the Gram of dictionary D is defined as
the set of inner products of the columns of D, G := DD,
Therefore, if the kernels of D are normalized, the magnitude of
the diagonal elements of G is equal to 1 and each off-diagonal
element G; ; is the pairwise coherence of the corresponding
kernels (d;, d;). If the off-diagonal elements of G are all equal
in magnitude, then D is called an equiangular tight frame
(ETF). An ETF is an overcomplete set of N vectors in K
dimensional space (where overcompleteness signifies N > K)
that are maximally separated. The dictionary coherence for an
ETF is the minimum for a given set (K, N). For a complex
ETF matrix D € (CKXN, the off-diagonal elements of the
Gram have a fixed magnitude defined as [19]:

N-K

Gul=i=\gmo¥irs 09

It is important to note that complex ETFs only existif N < K 2
and N < (N - K )2 [19]. Furthermore, tight frames are, by
definition, overcomplete versions of an orthogonal basis set
and therefore have a degree of redundancy since N > K
[18]. Consequently, it is desirable to limit the length of the
kernels K to a manageable size in order to reduce the number
of kernels needed in the dictionary. In the FBA algorithm, each
element of kernel d, ; € ck corresponds to a frequency bin
in the spectrum of the analytic signal (TI0). Since the range
of study for power system measurement units in Europe is
centered around 50 Hz, much of the spectrum can be trimmed
and the kernels can be limited to an appropriate range (e.g.,
20 to 80 Hz).

The objective of the PDD algorithm is to find a structured
dictionary that is as close as possible to an ETF, and therefore
has maximum incoherence. This is achieved by alternatively
projecting a parameterized dictionary onto the set AN of
Grams for ETFs and then projecting back onto the parame-
terized dictionary space D. Algorithm 1 provides details on
this method. As introduced in Section [[I-A] the dictionary
kernels are parameterized D(I') € D where I' € RP*Y
is the parameter matrix with columns 7; and p parameters
(e.g. Vi = [fo,isSm,i»®m,] and p = 3). The elements of



the kernels are the coefficients of the DFT bins found in
(ﬂ;l'[) and are therefore complex, a feature which changes the
implementation of the algorithm described in [18].

To start, the parameter matrix I and corresponding dictio-
nary are initialized and the Gram is computed. In step 4, we
project the current Gram onto the set of feasible Grams for
ETFs A" . For an arbitrary complex matrix Z, the closest Gram
in the ETF set is found by setting the diagonal values to 1 and
the off-diagonal entries to [[19]:

g = {fjé(lf Ijml sB
e/ \%i3) | otherwise

where [i is the coherence calculated in (T4). In step 5, the
projection is modified to be partway between the original
Gram G(I';,,) and the projection onto the ETF set Gp,  with
a = 0.5. The resulting Gram G Ry, 18 therefore more similar
in structure to the dictionary set D, making the projection onto
this set in step 6 easier [18]]. The projection onto the dictionary
set D is found by applying Gradient Descent (GD) to the
following optimization problem [18]:

. H 2
min (), o(T) :=|IDT)"D(T) — GRm“HF. (15)
The objective function ®(T") is, in general, non-convex, and
is minimized here by implementing the following GD updates
to I for iterations h = 1...H and step size e:

ril -l v
o

(16)

When deriving the gradient of the objective function, it
is convenient to separate the real and imaginary components
such that the complex dictionary and Gram are defined as
D = Dg, +jDy,, and G = G, +jG ,,, respectively, where
the complex Gram G is Hermitian G" = G). The objective
function can then be rewritten as:

(b(F) :H(Dge _J.D?m)(DRe +jDIm) - (GRe +JGIm)H§7
:|‘D£6DR6 + D?mDIm - GRe||%'+

HDEeDIm_’_DgeDIm _Glm”%‘ (17)

The gradient of the objective is found using the Jacobian
chain rule:

ODg, 0P oDy, 0P
Vr® = . 18
r T D, = 9T 8Dy, (18)
Algorithm 1 Parametric Dictionary Design [[18]]

1: Initialization: m=1, D(T';) € D
2: while m < M do
3: G(Fm) = D(Fm)HD(Fm)
4 Gp =ming.,~||G(,,) —Gllr
5: GRm+1 = O[GPm+1 -+ (]. — Q)G(Fm)l{
6 D(,11) €DI,,)U{YDeD:|D"D-Gg  [lr<

IG(T,) = Gr,, , IlF}
7: m=m-++1
8: end while

For derivations of (Vp, ®,Vp, @) and (VpDg., V1Dy,,),
see Appendix A. In practice, the GD algorithm and outer
loop (Algorithm 1) are implemented for H and M iterations,
respectively, or until the dictionary parameters exceed the
boundary conditions.

Implementing PDD for each of the signal models discussed
in Section we can observe how the parameters evolve
during the iterations. For instance, when optimizing a dic-
tionary of frequency ramps, we observe that the parameters
spread uniformly within the allowed parameter space. How-
ever, for signal dynamics where the fundamental frequency is
dominant (e.g., amplitude modulations), it is useful to fix all
parameters except for one and optimize over the free param-
eter. When this is done, it is observed that the free variable
will spread uniformly across the parameter range. These results
verify that a low coherence dictionary of AM, FR, AS, PS or
PM spectra is one that contains almost uniformly distributed
parameters and can therefore be defined with a parameter grid
for fixed parameter resolutions and ranges.

C. Dictionary Design

Based on the results of the last section, the dictionaries used
for the remainder of this paper are defined by the resolution (or
cardinality) and the range of each parameter set. As a useful
visual, the dictionary is organized into tensors of rank (p+ 1)
for p parameters, an alternative form to the one in Sec. @
Dimensions 1 through p correspond to the parameter sets while
the (p+ 1) dimension contains the kernels. For example, a FR
dictionary can be defined as a rank 3 tensor D € C"%o xnpx K
where ny and np are the number of different fundamental
frequencies and ramp rates, respectively. A specific dictionary
kernel d; ; € ck, containing K frequency bins, is identified

J :
in Fig. |1/ for a given f; and R’.

III. FUNCTIONAL BASIS ANALYSIS

In this section, we provide details on the proposed algo-
rithm. For each signal dynamic, a dictionary is built offline and
composed of kernels for a given parameter set v, as discussed
in Section II. The steps for estimating the signal parameters
are described in Algorithm 2, specifically for a dictionary with
p = 2 parameters where n; and n, are the cardinality of the
respective parameter sets.

We are given a sampled signal z(¢;) for [ = 1...L. Since
the mathematical model of the signal is unknown, the analytic
form Z(¢;) first needs to be approximated in step 2 by means

Fundamental
Frequencies » $°
‘\0

Dictionary
Kernels

RLR:LR3 .. RJ
Ramp Rates

Fig. 1. Visual of a FR dictionary D characterized by parameters f, and R.



of a filter with a magnitude response of nearly O for positive
frequencies and large attenuation (e.g., -120 dB) for the
negative frequency domain.

In steps 3-4, the frequency spectrum X ruu Of the analytic
signal is computed and curtailed such that only bins in the
desired frequency range remain (e.g., 20 to 80 Hz)’| This range
is selected to analyze the transients detailed in Section [[I-A]
but could be modified to extract higher frequency components
(see Appendix C for an example of harmonic detection).

In step 5, we project the resulting trimmed frequency
spectrum X onto each atom d; ; in the dictionary which yields
a complex coefficient of the projection c; ;. The coefficient
is used to scale and rotate the kernel for evaluation of the
residual e, ; in step 6 with E € R™ ™2 representing the matrix
of residuals e, ; for all kernels. In steps 7-8, the kernel with
the smallest residual in E is identified and the corresponding
parameters -, are used as the initial guess for a GD algorithm.

For steps 9-14, GD is used to optimize the model parameters
such that the objective function, defined in step 10 (i.e., the
difference between the true spectrum X and the kernel spec-
trum d(7y)), is minimized in each update (step 12). For clarity,
let C(v) = d(7)" Xd(y) — X and ¥(v) = C(7)"C(y). The
objective can then be framed as:

O(7) =[d()" Xd(y) - Xlla = [CN]. (19
=\ CCH) =VI(). (20)

Algorithm 2 Functional Basis Analysis

1: Input: signal z(¢;), dictionary D
Projection:

2 () = z(t) +;7'H(ac(tl)) =filter[x(t;)]
3 Xy = DFT[2(t))]
4: X = trim[Xfu”]
sici ;=X i=1,.,ny and j =1,..,n,
6: €; 5 = [[c; jdi j — X[
7. [i*,57] = arg min[E]
8: M= F(Z*v.]*)
GD loop:

9: Initialization: m =1, 1 < M, e € R+,
2 .
10: q)(’ym) = Hd(’Ym) Xd(’%n) - XH2
11: while m < M or |®,,,; — D,,| > ¢ do
12: ’7m+1 = Ym + emv'y(b‘,ym
133 m=m+1 '
14: end while
15 9" =
16: Reconstruct signal: Z(t;) = dynamic model (7™)
17: Compute Time-Domain Error

The derivation of the gradient of the objective with respect
to the parameters is presented in Appendix B. It is also
important to note that the selection of the step size e, is
not trivial. This is formulated as an internal optimization loop
where the step size is adaptively chosen for each iteration

*Note that the curtailed spectrum X is made to have a unit norm. This is
because the GD steps and the original dictionary are designed for normalized
kernels with magnitudes of 1.

m to minimize the objective function. For Algorithm 2, a
backtracking line-search is implemented such that the step
size is iteratively decreased by ¢ = Se where 5 € (0,1). The
step size is shrunk until it adequately reduces the objective
function, satisfying the exit inequality [20]:

O(y+ eAy,,) < () + eV, Ay, (@21

with control parameters 8 and « € (0,0.5), and descent
direction Avy,, = =V, ®. As this is a non-convex problem,
the solution found may be a local minimu

GD is terminated after a fixed number of iterations or
after the change in the objective function is below a pre-
determined limit €. Once completed, the final set of parameters
~* is used to reconstruct the original signal (step 16). The
dynamic model from the dictionary, as discussed in Section
II-Al is computed for 4" and the time period defined by the
window. The estimated fundamental amplitude and phase are
not included in the parameter set v but instead are determined
from the coefficient of the projected true signal spectrum onto
the predicted signal spectru

¢ =d() X = AL = |7, 0 = 27 (22)
The Time-Domain Error (TDE), defined as:
rpp - 13t = a(t)]ls -

L 2
21:1 z(t;)

is then computed in step 17 to evaluate the accuracy of the re-

construction’} It should be noted that, in a real-world scenario

where the true parameters of the signal are unknown, the TDE

is the only available metric for performance evaluation.

A. Identification of Multi-Dynamic Signals

Some care must be taken when identifying which dynamics
are present in the signal. As discussed in Section the
dictionaries are designed such that the coherence of kernels
in a given dictionary (e.g., AM, PM, FR, AS, PS) is reduced.
However, the coherence of the dictionaries is larger than zero
(i.e., not an orthogonal basis) and therefore it is possible for the
projection of a signal onto this functional set to yield multiple
solutions with similar residuals, TDEs and spectra.

To complicate matters, some dynamics are similar and easily
misidentified and, in the case of multi-dynamics, the detection
of the proper combination can be challenging. Ideally, we
would like to perform, in parallel, the dictionary projection
and optimization of the signal for each dynamic model, and
compare the resulting TDE to determine which dynamic is
present. However, this strategy fails when multiple dynamics
are involved. For instance, feeding an AM/FR signal into a
FR dictionary will yield inaccurate estimations of the FR due
to the AM distortions of the spectrum.

*The assessment of the global minimum of the objective is beyond the
scope of this paper.

For this projection to yield the appropriate amplitude, the original and
predicted signal spectra, calculated by (1), should be normalized by the signal
length, L.

SThis metric is normalized by the energy present in the signal window so
that consecutive estimations can be compared.



Instead, we propose the heuristic Algorithm [3] that leverages
some observed properties of the dictionaries and the signal
dynamics. Specifically, the AM, AS and PS dictionaries can
reliably extract an estimate of the parameters characterizing
discontinuities or modulations, even in the presence of other
dynamics. Furthermore, when the FR or PM dictionary kernels
include the appropriate fixed AM or AS component, accurate
estimations of the other dynamic parameters can be found.

Algorithm 3 Signal Characterization via FBA

1: Input: Signal Z(t;),
Qictionaries DAJ\I’ Dp]u, DFR? DAS’ Dps, DSS
2 Xy = DFT[2(t))]
3: X = trim[Xfu”]
AM, PM, FR, AS, PS, and SS detection:
4: Algorithm 2 (AM):
= Yam = [fg,AM7 f:;L,AI\47 @:n,AM]’ TDE sy
5. Algorithm 2 (PM):
= vpar = Ufo.pars fa.pars Pa.par)s TDEpy
6: Algorithm 2 (FR):
— YFR = [fg,FR, R}R]’ TDEpg
7: Algorithm 2 (AS):
— Yas = [fo.a5: ks, a8:ts, a5, TDE g
8: Algorithm 2 (PS):
— vps = [fo.ps: kn.ps:ty ps), TDEpg
9: Algorithm 2 (SS):
— 'YZ‘S = [fg,ss], TDEgg
AS/PM, AS/FR and AS/PS detection:
10: if ks,AS 75 0 then
11 Dag/pyr = DPM(E:,ASaf:,AS)
122 Das/rr = Drr(ks as:ts as)
13:  Algorithm 2 (AS/PM):
— Yas/pm = [fo ks i ts, fareals TDEAs/py
14:  Algorithm 2 (AS/FR):
— Yas/rr = 1[0, ks, ts, R, TDE 45/rR
15:  AS/PS:
— Yas/ps = [fo.pss ks, as:ts, a5, kp pss th ps]
TDE4s/ps
16: end if
AM/PM, AM/FR and AM/PS detection:
17: if f), aps # O then
18 Dan/pym = DP]VI({:;’L,Ava:n,AM)
19: Dangyrr = Drr(fm,ans Pm,anr)
20:  Algorithm 2 (AM/PM):
= Yam/pm = [fos fms mos farals TDEAn pu
21:  Algorithm 2 (AM/FR):
- VZM/FR =[fo, fom» P> R'], TDEAM/FR
22:  AM/PS:
— Yam/ps = [fo,ps: fom,ans O, ants kp psytp ps)
TDE A ps
23: end if
24: dynamic = argmin(TDE gy, qmics)

*

25y = denamic

To reduce computation time, dictionaries for AM, PM, FR,
AS, PS and Steady State (SS) conditions are pre-computed
and stored. Once the input analytic signal Z(¢;) is properly

transferred into the frequency domain (steps 2 and 3), steps
4-9 are performed to identify AM, PM, FR, AS, PS and SS
signals. Algorithm 2 is executed in parallel for each of these
dynamics and the resulting estimated parameters and TDE are
recorded. If a sufficiently large AS is detected, steps 10-15
are completed to identify combinations of amplitude steps and
PM, FR and PS dynamics. The FR and PM dictionaries are
adapted in steps 11 and 12 to incorporate the amplitude step
term: (14 k h(t —t,)). Two versions of Algorithm 2 are then
performed in parallel using the modified dictionaries D 45/ rr
and D 4g/pps. In steps 13 and 14, the full set of parameters
are optimized for both AS/PM and AS/FR dynamics and the
resulting TDE are computed. Note that, in step 15, the AS/PS
waveform is reconstructed using the parameters identified by
analysis of the separate dynamics (steps 7 and 8) rather than
a combined dynamic dictionary. As discussed previously, AS,
PS and AM dictionaries are capable of accurately extracting
parameters even in the presence of other dynamics.

Similarly, if AM is detected, steps 17-22 are per-
formed to identify the multi-dynamic signals AM/PM,
AM/FR and AM/PS. The amplitude modulation term (1 +
ki cos(2 fr, anrt + ©m anr)) is embedded into the FR and
PM dictionaries and the parameters are optimized in steps 20-
21. As discussed above, the AM/PS waveform is estimated
in step 22 using parameters from analysis of the AM and PS
dynamics (steps 4 and 8). Finally, the signal dynamic corre-
sponding to the smallest TDE is identified and its parameters
are reported as the final solution (steps 24 and 25).

It is important to note that the simultaneous presence of
significant FR and PM dynamics, though rare, is exceptionally
difficult to identify, particularly for short window lengths.
Indeed, for short observation periods, the time- and frequency-
domain of PMs and FRs can be almost indistinct, particularly
for slow modulations. Therefore, discriminating between PMs
and FRs in a 60 ms window is challenging and the identifica-
tion of PM/FR is significantly more so. However, it should be
noted that, although PM, FR or PM/FR may be misidentified,
the FBA algorithm will anyhow reconstruct a signal with low
TDE, as demonstrated in Section With a longer window,
it may be possible to differentiate between these dynamics.
However, the trade-off between longer windows and latency
is a compromise that must be made by the designer.

B. Computational Complexity

The proposed algorithm has been developed for eventual
implementation in typical microcontroller architectures used
in PMUs, like FPGA-based (Field Programmable Gate Array)
devices. For this reason, the algorithm should be programmed
optimally. The computational complexity of the overall al-
gorithm is dependent on the number of dictionary kernels
N, frequency bins K, samples in the input signal L, and
parameters in the model p. The gradient descent iterations M
and steps for the backtracking line-search () also impact the
complexity. We will represent the computational complexity
of the DFT calculation as £(K, L) for simplicity.

While each dictionary projection in Algorithm 3 is an
O(KN) procedure, the projection onto the single dynamic



dictionaries (e.g., AM, SS, FR) can be done in parallel. Simi-
larly, the optimization of the parameters for each dynamic can
be parallelized and costs O(M ((Q+p)¢+QL)). If necessary,
the creation of combined dynamic dictionaries could also be
done in parallel, requiring O(N (§+ L)) operations. Projection
onto the dictionaries and optimization of the parameters for
the combined signal dynamic models (e.g., AM/PM, AS/FR)
would take a total of O(KN) and O(M((Q + p)¢ + QL))
operations, respectively, when performed in parallel. Regard-
ing the computation of the DFT coefficients, the Fast Fourier
Transform function is characterized by a complexity of £ =
O(Llogy(L)). However, since only K of the frequency bins
are required a direct calculation of the coefficients for the spe-
cific bins would be less expensive, costing only £ = O(KL).
This could be made even more efficient using methods like
MSDFT where the Fourier coefficients of desired frequency
bins are calculated using previous calculations and therefore
needing only £ = O(17K) operations [21].

IV. PERFORMANCE ASSESSMENT

In this section, the proposed FBA method’s capacity to
identify dynamic signals typical in power systems is eval-
uated. In we explore the benefits and limitations of
the algorithm for different window lengths. In [[V-B| we
compare the performance of the algorithm to both standard and
dynamic phasor-based methods as a function of the modulating
frequency, step size or ramp rate of the dynamic. Finally, in
the FBA algorithm is applied to waveforms adapted from
real-world grid events.

For all tests, the FBA dictionaries are defined by the resolu-
tions and ranges in Table |I] and the following parameter sets:
YAM = [anfm7§0m]’ TPM = [anfanga]? YFR = [anR]7
YAas = [vaksvtsL and ypg = [vakpvtp] with k,, and k,
fixed at 0.1. The ranges in Table [I] were selected to capture
common transients observed in the real-world, based on the
dynamic tests described in the IEEE Standard C37.118 [22].
As discussed in Sections and the coherence of
the dictionary kernels is reduced by uniformly spacing the
model parameters within the parameter ranges. Therefore, the
resolutions were chosen based on the algorithm’s performance
and the computational cost. A higher resolution parameter set
reduces the likelihood of identifying a local rather than global
minimum in Algorithm 2, but increases the computational
burden of projecting the input signal onto the dictionary.

For the tests in Sections[[V-A]and [[V-B] and in order to have
better control and knowledge of the true dynamic, synthetic
signals are created using models of the dynamics of interest

TABLE I
PARAMETER SETS FOR FBA DICTIONARIES
Parameter | Resolution Range
fo 0.02 Hz [49,51] Hz
Jms> fa 0.1 Hz [0,5] Hz
P> Pa 0.13 rad [0, 27] rad
R 0.1 Hz/s +[0.2, 5] Hz/s
kg, k, 0.01 +[0.1,0.8],[7/18, 57 /18]
sitp 0.4 ms [10,T,, — 10] ms

TABLE II
60 MS WINDOW: MEAN TDE AND MAXIMUM FE AND RFE FOR SIGNAL
DYNAMIC TESTS USING THE FBA ALGORITHM.

Signal Max FE | FE Limit | Max RFE | RFE Limit Mean

Dynamic (mHz) (mHz) (mHz/s) (mHz/s) TDE
SS 0.1 5 2 10 8.20E-06
AM 0.9 60 32 2300 9.90E-06
FR 5 10 147 200 1.00E-05
PM 8 60 112 2300 1.30E-05
AS 4 - 0 - 1.16E-03
PS 31 - 0 1.00E-03
AM/FR 2 - 223 - 1.40E-05
AM/PM 8 60 276 3000 1.90E-05
AM/PS 57 - 0 - 1.32E-03
AS/FR 24 280 1.10E-03
AS/PM 17 - 330 1.20E-03
AS/PS 100 - 0 3.80E-03

discussed in Section Because the model of these signals
is known, the filter in step 2 of Algorithm 2 is unnecessary and
we can compute the analytic signal directly using the equations
presented in Section The signals are generated with a
sampling frequency of 5 kHz for a parameter set and duration
defined by each test and described in the following sections.

Several metrics are used to evaluate the algorithm’s perfor-
mance, including the TDE in (23) and the parameter error de-
fined for each parameter as: Ye,ror = |[Yerue — Vest|- Addition-
ally, in order to compare the FBA method to state-of-the-art
measurement techniques in power systems, we make reference
to the current standard for synchrophasor estimation, IEEE Std
C37.118 [22]. In particular, we consider frequency error (FE)
and the rate of change of frequency error (RFE). Traditionally,
these metrics represent the deviation of the phasor estimated
frequency and ROCOF from the true instantaneous frequency
and ROCOF at the reporting time, conventionally located at
the center of the window.

A. Window Sensitivity and Parameter Estimation Accuracy

For a comprehensive evaluation of the FBA algorithm’s
performance, tests are conducted on a variety of signal dy-
namics. For each dynamic type, 500 signals are generated
with 80 dB of white Gaussian noise for 7, = 60 ms and 200
ms periods, with parameters randomly selected from within
specified ranges.

« Dynamics: SS, AM, PM, FR, AS, PS, AS/FR, AS/PM,

AS/PS, AM/PS, AM/PM and AM/FR.

o Parameter ranges: f, € [49,51] Hz, (f,,,f.) € [0,5]
Hz, R € [-5,5] H#ss, (¢, P,) € [0,27] rad,
ks € £[0.1,0.8], k, € £[r/18,5m/18] and (t,,t,) €
[0.01,T,, — 0.01] s.

The mean parameter errors and TDE and maximum FE and
RFE are reported for the different window sizes in Tables
and [Ml The limits for the PMU tests detailed in IEEE Std
C37.118 are provided for reference in Table

As previously discussed, a 60 ms window is frequently too
short to distinguish between FRs and PMs as the time-domain
evolution of the frequency dynamic is nearly identical within
such an observation interval. Although misidentified signals
yield invalid parameter estimations, the time and frequency



TABLE III
200 MS WINDOW: MEAN PARAMETER ERROR AND TDE AND MAXIMUM FE AND RFE FOR SIGNAL DYNAMIC TESTS USING THE FBA ALGORITHM.

Mean Parameter Error
Signal Dynamic fo fm P fa Pq R tg kg 2 ky TDE Max FE | Max RFE
(mHz) | (mHz) | (rad) | (mHz) (rad) (mHz/s) (ms) (%) (ms) (%)

SS 0.2 - - - - - - - - - 4.50E-06 0.016 1.2

AM 0.2 35 0.02 - - - - 5.70E-06 0.1 6

PM 5 - - 58 0.16 - - - 1.80E-05 4.7 222

FR 14 - - 48 - - 2.40E-04 13 420

AS 1 - 1.5 2.6 - - 5.20E-04 1.3 0

PS 3.5 - - - - - - - 0.511 | 0.45 | 8.80E-04 11 0
AM/PM 4 45 0.08 76 0.14 30 - - - - 3.70E-05 3 196
AM/FR 13 39 0.04 - - - - - - - 3.70E-05 18 498
AM/PS 4 62 0.12 - - - - 0.57 0.93 | 9.30E-04 13 0
AS/PM 11 - - 72 0.135 - 0.535 1.1 - - 1.00E-03 33 560
AS/FR 3.3 - - 34 0.59 1.23 - - 1.20E-03 18 146
AS/PS 6.4 - 1.29 2.86 0.77 1.28 | 2.00E-03 109 0

domain reconstructions are extremely accurate for a 60 ms
window. For this reason, only the FE, RFE and TDE are
presented for this window size in Table [II}

Indeed, with a 60 ms window, the maximum FE and RFE
found for the generated cases are well within the limits
specified by the standard. Furthermore, the mean TDE is
consistent across all dynamics, with AS and PS being the
exception due to the presence of an abrupt discontinuity.
Observe that the RFE for these step discontinuities is 0 Hz/s
since the model correctly assumes that there is no frequency
variation present in the window. With a 200 ms window,
as shown in Table the FBA method accurately extracts
the parameters of the signal and distinguishes between most
dynamics, although slow FRs are occasionally mistaken for
PMs. Note that even in cases where a step in the amplitude
and phase occurs in the same window (AS/PS) at different
locations and magnitudes, the FBA method can accurately
identify the dynamic and estimate the step parameters and the
underlying frequency.

B. Comparison with Phasor-based Algorithms

In this section, the performance of the proposed algorithm is
compared with both standard and dynamic phasor estimation
methods. For the former, we selected a 2-point iterative
Interpolated DFT (i-IpDFT) algorithm with a Hann window
and negative spectrum compensation which is compliant with
P and M class requirements [23]. For the dynamic phasor
method, we employed the Compressed Sensing Taylor-Fourier
multifrequency (CSTEM) method [12] which captures the 1%
and 2" order derivatives of the phasor.

The following dynamic cases are analyzed:

« Amplitude modulations: characterized by f, = 50 Hz and

modulating frequencies spanning f,, € [0.1, 5] Hz.

o Phase modulations: characterized by f, = 50 Hz and

modulating frequencies spanning f, € [0.1,5] Hz.

« Frequency ramps: characterized by f;, = 49 Hz with ramp

rates R € [0.1,5] Hz/s or f, = 51 Hz with ramp rates
R € [-5,—0.1] Hz/s.

o Amplitude steps: characterized by f, = 50 Hz and k, €

+[0.1,0.8].

« Phase steps: characterized by f

+[r /18,57 /18].

50 Hz and k, €

Each signal is generated for the given dynamic and parameter
set for a duration of 5 s. 80 dB of white noise is added and
a 60 ms sliding window with a reporting rate of 50 fps is
applied. Note that the FR tests are halted when the frequency
exceeds the boundaries of the dictionary (i.e.,[49, 51] Hz) and
the step tests are stopped when the transient is cleared. For
each signal, the worst case FE and TDE are recorded and the
results are presented in Fig. 2] [3] [} [5] and [6]

It is worth noting that FE is a metric designed for phasor
estimates. Since a computed phasor is essentially an average of
the signal dynamic present in the window and the FE compares
the frequency estimated for the center of the window, this error
is generally low for dynamics with linear changes in frequency.
However, while the frequency at the reporting time (i.e., the
center of the window) may be well aligned with the phasor
frequency, the steady-state assumption is invalid for the rest
of the window. This limitation is reflected in the TDE metric
which indicates the suitability of the reconstructed signal
across the full window, without relying on static assumptions
as is the case with FE and total vector error (TVE) [22].

In Fig. 2] we see how modulations in the amplitude can
significantly distort the phasor estimates found by the i-IpDFT
algorithm. Indeed, the worst case FE and TDE for i-IpDFT
increase with the magnitude of the modulation, eventually
exceeding the IEEE standard limit of 60 mHz. CSTFM can
cope with amplitude modulations better and therefore displays
improved FE (though it is sometimes unreliable and can result
in large errors as observed at f,, = 1.5 Hz). For faster
amplitude modulations, however, the dynamic phasor is unable
to capture the signal dynamic properly, which is reflected by
the increase in both the FE and TDE. The performance of the
FBA algorithm, in contrast, is not affected by the modulation.
In fact, the time and frequency error metrics stay relatively
steady for all values of f,, and show that the FBA algorithm
consistently outperforms both the i-IpDFT and dynamic phasor
methods for faster AM dynamics.

The results of the FR tests for ramp rates between -5 and
5 Hz/s are shown in Fig. [3] All methods perform well within
the P class limit of 10 mHz for FR tests [22]]. While the i-
IpDFT and CSTFM methods have comparable performance to
the FBA algorithm in terms of FE, we again need to remember
the limitations of the FE metric in describing dynamics. As
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Fig. 2. Amplitude Modulation test: Worst-Case FE and TDE for i-IpDFT,
CSTFM and FBA methods as a function of the modulating frequency. The
dashed line represents the IEEE Standard limit of 60 mHz for AM tests.

demonstrated by the TDE curves in Fig. 3] the reconstructed
frequency and signal are better matched by the FBA method,
which tracks the full frequency dynamic rather than just the
average. The TDE for the FBA method is low for all ramp
rates while the i-IpDFT error increase with the ramp rate R.
Since the frequency change is linear, the CSTFM algorithm
can sufficiently capture the waveforms and, for all ramp rates,
has similar performance to the FBA method.

The results for the PM tests, shown in Fig. El, demonstrate
a similar trend. The FE for all methods is comparable, with
values ranging from less than 1 mHz up to 10 mHz, well
below the IEEE limit of 60 mHz. Since most PMs viewed
by a 60 ms window resemble frequency ramps, the averaged
frequency found with a phasor estimation algorithm closely
matches the true frequency at the center of the window, as was
the case with the FR tests. However, the FBA method shows
a clear improvement over the i-IpDFT algorithm in terms of
TDE since the overall frequency trend present in the window
is better matched. As was the case with AM, the TDE for the
CSTFM method begins to diverge for faster modulations.

Amplitude and phase steps are particularly challenging
dynamics for phasor extraction algorithms. Indeed, Fig. [5] and
[ demonstrate how poorly the i-IpDFT and CSTFM algorithms
perform in the presence of amplitude or phase steps with
increasing relative magnitudes. The FE estimated by these
methods can be in the order of several Hz when the step change
occurs in the center of the observation window. In contrast, the
FBA method is capable of capturing and characterizing these
signal dynamics and yields relatively small frequency and
time-domain errors. Indeed, the algorithm can accurately track
the movement of steps through the observation window while
maintaining an excellent estimate of the signal’s frequency.

C. Real-World Signals

In this section, two waveforms from real grid events are
analyzed with the FBA, i-IpDFT and CSTFM dynamic phasor
methods. Since the ground truth values of the underlying
signal dynamic are unknown, the TDE for the overlapping
observation windows is the only indicator of how well the
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Fig. 3. Frequency Ramp test: Worst-Case FE and TDE for i-IpDFT, CSTFM

and FBA methods as a function of the ramp rate. The dashed line represents
the IEEE Standard limit of 10 mHz for FR tests.
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Fig. 4. Phase Modulation test: Worst-Case FE and TDE for i-IpDFT, CSTFM
and FBA methods as a function of the modulating frequency. The dashed line
represents the IEEE Standard limit of 60 mHz for PM tests.
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Fig. 5. Amplitude Step test: Worst-Case FE and TDE for i-IpDFT, CSTFM
and FBA methods as a function of the step magnitude.
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Fig. 6. Phase Step test: Worst-Case FE and TDE for i-IpDFT, CSTFM and
FBA methods as a function of the step magnitude.

reconstructed waveform matches the input signal. For this
analysis, a 60 ms window is used with a 50 fps reporting
rate and the FBA dictionaries defined by Table [} The analytic
signal of the waveform is computed using a filter of order 31
and a transition width set to 507 radians per sample in order
to comply with PMU-based applications [6].

The first case involves a voltage sag that occurred at the
input power of the MWPI paper manufacturing plant as the
result of a short circuit in the one of the plant’s transformers
[24]. A current waveform from the event is analyzed and
the resuling TDE for each method is displayed in Fig. []
Note that the bottom two graphs show the TDE and signal
dynamic parameters at the reporting times which are aligned
with the start of the observation window (e.g., the TDE at
0.2 s corresponds to the window from 0.2 s to 0.8 s). From
0 s to 0.13 s, the FBA method detects subtle modulations in
the amplitude and frequency of the waveform but the TDE is
comparable for all techniques. When the step change occurring
at 0.8 seconds in Fig [7(top) enters the observation window
(i.e., the window from 0.12 s to 0.8 s) the amplitude step is
detected by the FBA algorithm and remains in the window for
four consecutive iterations until the event is cleared. During
this period, the FBA algorithm shows a clear improvement
relative to the i-IpDFT technique, while also demonstrating
comparable performance to the dynamic phasor method. Fur-
thermore, unlike the CSTFM algorithm, the FBA identifies the
dynamics present and estimates the characterizing parameters.

The second case studies a three-phase fault on a 161 kV
transmission line caused by a lightning strike [25]]. A voltage
waveform is adapted from data captured by a Digital Fault
Recorder during the event and is analyzed in Fig. [§] It can be
observed that the amplitude step at around 0.2 s is identified by
the first window containing the step (i.e. the window from 0.14
s to 0.2 s). The step remains in the window for 3 consecutive
iterations until it is cleared, around 0.2 s. The TDE comparison
shows the improvement in the reconstructed waveform for the
FBA technique relative to i-IpDFT algorithm. Furthermore,
the FBA performs similarly or better than the dynamic phasor
technique, while simultaneously providing insight into the sig-
nal dynamic and corresponding parameters. While the gradual
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Fig. 7. Analysis of a voltage sag in the MWPI paper manufacturing plant:
current waveform adapted from (top), TDE for reconstructed signals
using FBA, i-IpDFT and CSTFM algorithms (middle), signal dynamics and
parameters estimated by the FBA method (bottom).

amplitude change at 0.3 s can be captured by the dynamic
phasor model, the more abrupt amplitude step at 0.2 s is
identified and better characterized by the FBA method using
the AS dictionary.
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Fig. 8. Analysis of a three-phase fault due to lightning: voltage waveform
adapted from (23] (top), TDE for reconstructed signals using FBA, i-IpDFT
and CSTFM algorithms (middle), signal dynamics and parameters estimated
by the FBA method (bottom).



V. CONCLUSION

In this paper, we presented a method for detecting and
characterizing signal dynamics in power systems. Details on
signal dynamic models, dictionary design, signal parameter
estimation and dynamic detection were discussed.

For validation, the algorithm was tested on various synthetic
and real-world signals and compared to standard and dynamic
phasor estimation methods. The results show an improvement
in the time and frequency reconstruction with the added benefit
of simultaneous signal dynamic identification and parameter
estimation. The proposed FBA algorithm is currently capable
of identifying amplitude/phase modulations, amplitude/phase
steps and frequency ramps as well as steady-state conditions.
Further work will involve implementing the algorithm in an
FPGA-based device and validating the performance.

While PMUs are limited by steady-state assumptions, forc-
ing operators to interpret phasor estimations during transients,
the FBA is not so restricted. The proposed algorithm allows for
improved signal and frequency reconstruction and immediate
identification of grid dynamics. With further development, we
see this method as a flexible and powerful tool for processing
power system signals during non-stationary conditions.

APPENDIX A: DERIVATION OF PDD GRADIENTS
The gradient of the objective is adapted from (I8) to be:

Vr® =VrDg, ® Vp, &+ VD, @ Vp, & (24

where ® represents the tensor product of two 3-D arrays. This
tensor multiplication is defined with the first two indexes used
for a simple matrix-matrix product and the third parameter
acting as the index of this product [18]].

The gradient of each dictionary kernel d(y) with respect to
the parameter set is found easily for each model in Section
IT-A] using (I0) and (TI)) and the following relationship:

od(k) _ 0 Lz_l Kl _ Lz_l k1 97 (7)
1=0 1=0

The partial derivative of the objective with respect to the
real and imaginary components of the dictionary is shown in

(26) and 27):
VDRe(b = 4DReDlReDRe + 4DReD/ImDIm - 4DR€GR6
+ 4DlmD}mDRe - 4DImD/ReDIm - 4DImGIm- (26)

Vb,
+ 4DR6D/ReDIm - 4DR€D/I7RDR€ - 4DR6GIm'

m(p = 4DImD/ReDRe + 4DImD/ImDIm - 4DImGRe
27

APPENDIX B: DERIVATION OF FBA GRADIENTS
Let the kernel and signal be represented as d(vy) = dg.(7)+
jdrn(y) and X = Xp. + jX;,,- Then, analogous to the
PDD method, the gradient of the objective with respect to
the parameters y can be expressed as:

00(y) 1 [8dRe ¥ (y)
8’y 8(13@

o 20

8’7 8dIm

. (28

/ ! I
ILet €1 = XRe/dRe’ Cy = X{dee’ C3 = XRPQdIm?s 042:
)glmdlm’ Cs = dRedRe’ Ce = dlmdlm and b = (cl +02+03+
¢y + 2¢i¢q4 — 2¢9¢3). After some manipulations, the gradients
9% and 2% can be expressed as (29) and (30).

odp, odp.,
ov
:2bdRe + (C5 + Cg — 2)(261XR€ + ...
odp,
202X1m, + 204XR€ — 2C3X]m). (29)
ov
:2bd1m + (C5 + Cg — 2)(263XR€ + ...
ody,,
204X 1 + 201 X1y, — 263X Re) (30)

APPENDIX C: HARMONIC DETECTION

In order to estimate harmonic tones, Algorithm 3 is first
used to approximate the fundamental frequency, which should
be only minorly affected by the harmonic components given
the frequency range under analysis (20-80 Hz) and assuming
there are no inter-harmonics close to the fundamental. Once
the fundamental is approximated, the frequencies of the har-
monics are locked in at integer multiples of this fundamental,
so only the amplitude and phase of these components is
unknown. A baseline signal &(t) = 2o(t) + 21 (¢) +... + T (¢)
and its frequency spectrum X can be constructed with the
estimated fundamental and a finite number of harmonics
present, with an assumed relative amplitude of 0.1 and phase
of 0. We can then isolate the frequency bins surrounding
each of the located harmonics and project the corresponding
segments of the baseline spectrum X onto the true spectrum
X. The amplitude of the harmonic is then approximated with
the magnitude of the projection coefficient:

for h=1..H 31
cn = X5 X, (32)
Ay, = lep], ¢n = Loy, (33)

For a simple example, we simulate 60 ms of a steady state
signal with 80 dB of Gaussian noise, a fundamental frequency
of 50.15 Hz and 3rd, 7th and 9th harmonics with relative
amplitudes of 5%, 5%, and 1.5%, respectively. The Total
Harmonic Distortion (THD) is, therefore, less than 8%. These
parameters were selected based on the limits for harmonic
voltages specified in the standard EN 50160 [26]. As shown
in Fig. 0] the algorithm correctly identifies the fundamental
frequency with an error of 1.5 mHz and approximates the
relative harmonic amplitudes with errors of 2 to 6% with
respect to the reference harmonic amplitudes. The TDE for
the reconstructed signal is 2.9E-04 making it comparable to
the results for other signal dynamics presented in Table
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